
1 ? '. ' < • • ? . -

! /£

ON.

H 2^370 2.
MONASH UNIVERSITY V©(. J

THESIS ACCEPTED IN SATISFACTION OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

27 January 2004

Sec. Research Graduate School Committee
Under the Copyright Act 1968, this thesis must be used only under the
normal conditions of scholarly fair dealing for the purposes of
research, criticism or review. In particular no results or conclusions
should be extracted from it, nor should it be copied or closely
paraphrased in whole or in part without the written consent of the
author. Proper written acknowledgement should be made for any
assistance obtained from this thesis.

•rf

/ • ; ; • ; . ;

A Study of Single Laser Interferometry-based Sensing

and Measuring Technique in Robot Manipulator

Control and Guidance

Volume 1

Submitted By

PekLooTEOH
Bachelor of Engineering (Monash University - Australia)

A thesis submitted in fulfillment of the
requirements for the degree of

Doctor of Philosophy in Engineering Science

Department of Mechanical Engineering
Monash University

September 2003

Statement

This thesis contains no material which had been accepted for the award of any other degree

in any university, and, to the best of my knowledge and belief, it contains no material

which has been previously published or written by any other person, except where due

reference is made in the text of the thesis.

Melbourne, September 2003

PekLooTEOH

Acknowledgements

The research presented in this thesis was conducted in the Robotics & Mechatronics

Research Laboratory (RMRL) at the Department of Mechanical Engineering, Monash

University. The author wishes to express his sincere gratitude towards his supervisor

Associate Professor Bijan SHIRINZADEH for providing the research facilities and his

guidance and assistance during the course of this study. The author wishes to extend his

appreciation to Dr. GUrsel ALICI. The author also wishes to express his appreciation to

Mr. Hugh VENABLES, Mr. Lcng GOH, Mr. Eric WIRTH, Mr. Arthur TURNOCK, and

Mr. Mark SYMONDS for the construction of mechanical and electronic- components. This

study was partly funded by the Australian Research Council (ARC) - file number:

R001078/82, Monash University and the Harold Armstrong Research Fund.

The author would also like to thank Mr. Andrew McCONVILLE, Mr. Ryan

STEVENSON, Mr. Alan GAN, and all his housemates for their friendship and

encouragements during the course of the research work.

Last but not least, the author would like to express his gratitude to his parents and his

girlfriend. He will always remember their encouragement and support.

Abstract

With the ever growing requirement for accuracy in many applications, specially the

dynamic accuracy required by applications such as machining, laser cutting, laser welding,

etc., it has become obvious that robot calibration techniques are crucial. Researchers have

shown that in order to improve the dynamic response of robot manipulators, their

performance must be measured accurately under motion. Laser interferometry-based

tracking techniques for dynamic position and orientation (pose) measurements has been

proposed recently. It is well known that such measurements will allow the identification of

the dynamic model and its incorporation into robot control will dramatically improve the

performance of the robots. Moreover, by externally sensing the pose of the robot end-

effector on-line, a closed-loop control can be established.

This project is undertaken to investigate issues associated with the single beam laser

interferometry-based dynamic measurement technique for the tracking and dynamic

position measurements of moving targets. The research also aims to establish a

methodology for the laser-based closed-loop control and guidance of robot manipulators. A

Laser Interferometry-based Sensing and Measuring (LISM) assembly was developed for

this purpose. The physical make-up, functionality, measurement and analysis techniques

employed for each sub-system have been presented. The behaviour and characteristics of

the sub-systems on the performance of the LISM apparatus have also been studied.

Experiments on closed-loop control and guidance of robot manipulators have been

conducted with a robot manipulator and the experimental results are presented.

Conclusions on the performance of the proposed methodologies are drawn based on the

results.

An orientation measurement strategy has also been established to examine the feasibility of

dynamic robot orientation measurement using a specially developed Gimbal apparatus. In

addition, an error model associated with uncertainties of the position and orientation

measurements has been characterised. The knowledge of uncertainties allows the

characterisation and specification of individual sub-system for the experimental apparatus

to improve the performance.

TABLE OF CONTENTS

TABLE OF CONTENTS I

TABLE OF FIGURES V

LIST OF TABLES .X

1 INTRODUCTION 1

1.1 Problem Description 1

1.2 Robot Kinematic Model and Calibration 2

1.3 Principal Contributions 5

1.4 Organisation of this Thesis 6

2 BACKGROUND AND LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Laser Interferometer 8

2.2.1 Single Frequency 10

2.2.2 Heterodyne (Dual Frequency) 10

2.2.3 Advantages and Disadvantages of Laser Interferometer 12

2.3 Position Sensing Detectors 12

2.3.1 Segmented Detector 12

2.3.2 Lateral Effect Detector 13

2.4 Reflecting Target 14

2.5 Beam Steering Mechanism 16

2.6 Review of Laser-based Dynamic Measurement Techniques 17

2.6.1 Dual Laser Interferometry-Based Tracking and Measurement Technique 18

2.6.2 Single Laser Interferometry-Based Tracking and Measurement Technique 21

2.6.3 Multiple-laser Tracking Robot-Calibration Technique 26

2.7 Summary 27

3 EXPERIMENTAL LISM APPARATUS: DEVELOPMENT AND

CHARACTERISATION OF SUB-SYSTEMS 28

3.1 Introduction 28

3.2 Principle of Laser Interferometry-based Sensing and Measuring for Position

Measurement 28

3.3 Laser Interferometer sub-system 31

3.3.1 Specifications 31

3.3.2 Measurement and Reference Beam Offset 31

3.3.3 Sub-system Interface 33

3.3.4 Instability in Laser Interferometry 33

3.4 PSD sub-system 34

3.4.1 Specifications 34

3.4.2 PSD Calibration 36

3.4.3 Experimental Analysis 40

3.4.4 Sub-system Interface 49

3.5 Beam Steering sub-system 50

3.5.1 Specifications 50

3.5.2 Experimental Analysis 50

3.6 Supervisory Control Unit 54

3.6.1 Specifications 54

3.6.2 Sub-systems' Software Architecture 56

3.6.3 Control Program Software Architecture 56

3.7 Target Following Control Algorithm (TFCA) 61

3.7.1 Estimation of Birdbath's Laser Radial Distance and Motor Angles 61

3.7.2 Motor Angular Rotation Calculation 61

3.7.3 Target Lateral Offset Determination.... .*. 63

3.7.4 Control Algorithm- Position Mode and Velocity Mode 65

3.7.5 Predictive Control Algorithm 66

3.8 Experimental Investigation 70

3.9 Recommendations for Possible Improvemems 77

3.10 Summary 79

4 EXPERIMENTAL INVESTIGATION OF THE PROPOSED ORIENTATION

MEASUREMENT METHODOLOGY 80

4.1 Introduction 80

4.2 Principle of Dual PSD-based Orientation Measurement Methodology 80

4.3 Position Sensing Detector 82

n

4.4 Orientation Measurement Formulation 85

4.5 Experimental Results 87

4.6 Orientation Compensation Algorithm 91

4.7 Integration with Experimental LISM apparatus 96

4.8 Summary , 98

5 KINEMATIC MODEL AND UNCERTAINTIES ANALYSIS OF

EXPERIMENTAL LISM APPARATUS 99

5.1 Introduction 99

5.2 Errors Analysis 99

5.2.1 Laser Interferometer Sub-system 100

5.2.1.1 Environmental factors 100

5.2.1.2 Geometric and manufacturing errors 101

5.2.1.3 Instrument errors 102

5.2.2 Beam Steering Sub-system ..102

5.2.3 PSD Sub-system 102

5.2.4 Orientation Measurement Sub-system 103

5.2.5 Reflecting Target 103

5.2.6 Measurement Platform Geometry and Environmental Effect 103

5.3 Kinematic Model and Calibration Methodology 104

5.4 Measurement Uncertainties 110

5.4.1 Expression and Analysis of Uncertainty '. 110

5.4.2 Methodology for the Estimation of Uncertainties , 111

5.4.2.1 Uncertainties in Position Measurement I l l

5.4.2.2 Uncertainties in Orientation Measurement 121

5.5 Summary 126

6 INVESTIGATION OF CLOSED-LOOP CONTROL OF ROBOT

MANIPULATORS USING LISM 127

6.1 Introduction 127

6.2 Principle of Robot Closed-loop Control Using LISM 127

6.3 Control Methodology 128

6.3.1 Position Control Mode.. 131

6.3.2 Velocity Control Mode 131

in

6.4 Experimental Set-up , 132

6.5 Experimental Results and Discussions 133

6.6 Limitations 151

6.7 Summary 153

7 INVESTIGATION OF LASER INTERFEROMETRY-BASED GUIDANCE OF

ROBOT MANIPULATORS 154

7.1 Introduction 154

7.2 Principle of Laser Interferometry-based Guidance Using LISM 154

7.3 Control Methodology 156

7.3.1 Trajectory Specification and Path Generation 156

7.3.2 Beam Steering 157

7.3.3 Methodology for Guidance Offset Determination 158

7.3.4 Methodology for Guidance Offset Compensation 159

7.4 Experimental Set-up 160

7.5 Experimental Results and Discussion 161

7.6 Limitations 172

7.7 Summary 173

8 CONCLUSIONS AND FUTURE WORK ,...174

8.1 Conclusions 174

8.2 Recommendations for Future Work 175

REFERENCES 177

APPENDICES., 183

IV

TABLE OF FIGURES

Figure 2.1: Sinusoidal representation of light wave 9

Figure 2.2: Schematic diagram of a laser interferometer 9

Figure 2.3: Constructive and destructive interference pattern 9

Figure 2.4: Single Frequency Laser Interferometer 11

Figure 2.5: Heterodyne laser interferometer , / /

Figure 2.6: Four segments detector 14

Figure 2.7: Dual axis lateral effect detector , 14

Figure 2.8: Air-path type retroreflector 75

Figure 2.9: Cat's eye retroreflector 16

Figure 2.10: Right angle glass prism „ 16

Figure 2.11: A typical beam steering mechanism 17

Figure 2.12: Schematic diagram of Optical Scanner Measurement Technique 19

Figure 2.13: Measurement sub-system layout for Optical Scanner Measurement Technique 19

Figure 2.14 - Robotest measurement technique 20

Figure 2.15 - The two dimensional optical measurement technique with double reflector 21

Figure 2.16 - Schematics of the first 5-axis single laser interferometry-based measurement technique.... 22

Figure 2.17 -3D single laser interferometry-based measurement technique 23

Figure 2.18: A functional diagram of the 6-axis sensor measurement technique reported by Vincze elal24

Figure 2.19: The multiple laser tracking robot-calibration technique 26

Figure 2.20: Side view of 3D tracking mechanism with spherical seat bearing 27

Figure 3.1: Functional layout of LISM technique 29

Figure 3.2: Photo of LISM apparatus 29

Figure 3.3: Photo oftheZMI-1000 laser interferometer measurement sub-system.... 32

Figure 3.4: Beam offset due to lateral misalignment . 32

Figure 3,5: Beam offset due to angular misalignment 33

Figure 3.6: Alternate laser interferometry set-up...., 34

Figure 3.7: Photo of the PSD sub-system with the signal conditioning device 55

Figure 3.8: PSD effective range , 36

Figure 3.9: PSD calibration set-up „ . 37

Figure 3.10: Calibration graph for full positive range of the detector along PSD x andy-axes 38

Figure 3.11: Calibration graph for the range of-3 to 3 mm along PSD x andy-axes using 2nd order

polynomial 39

Figure 3.12: Mean error and RMS error between calculated and actual beam positions along PSD x-axis

, 41

Figure 3.13: Mean error and RMS error between calculated and actual beam positions along PSDy-axis

,.42

Figure 3.14: Fourier frequency transform of PSD's channel 12 sampling at 4000 Hz 44

Figure 3.15: Minimum voltage from PSD's channel 12 with no light falling on PSD 44

Figure 3.16: RMS error of calculated beam positions along PSD x-axis with moving average ... 45

Figure 3.17: RMS error of calculated beam positions along PSDy-axis with moving average 46

Figure 3.18: Mean error and RMS error of calculated beam positions along PSD x-axis with

compensation and moving average 47

Figure 3.19: Mean and RMS of calculated beam positions along PSDy-axis with compensation and

moving average 48

Figure 3.20: Beam steering sub-system with 2 mirrors 52

Figure 3.21: Motor 1 response with target at 1000mm. S3

Figure 3.22: Motor 2 response with target at 1000mm. , 53

Figure 3.23: Schematic diagram of L1SMsubsystems' structure. , 55

Figure 3.24: Software architecture of Encoder object , 57

Figure 3.25: Software architecture of PSD object 57

Figure 3.26: Software architecture ofZygo laser interferometer object. 5*

Figure 3.27: Control software user interface...., 58

Figure 3.28: Software architecture of control program 59

Figure 3.29: Schematic represc-iztion of beam steering mechanism « 62

Figure 3.30: Angular rotation for Mirror 2 with target moving along LISMz-axis 62

Figure 3.31: Angular rotation for Mirror 2 with target moving along LISMyz-plane. „ 63

Figure .vU J: Beam steering mechanism when Motor 1 atO degree. 64

Figure 3.32: Beam steering mechanism hhen Motor 1 at 90 degree 64

Figure 3.34: LISM position control block diagram 65

Figure 3.35: LISM velocity control block diagram.66

Figure 3.36: LISM predictive control block diagram 66

Fig'ire 3.37: Laser beam path with target moving along LISMyz-plane 68

Figure 3/ 3: Laser beam path with target moving along LISMxy-plane. 69

Figure 3.39: PSD readings using position mode tracking with robot moving at velocity oflOmm/s and

acceleration oflOmm/s2 with target at 0.6m, 71

Figure 3.40: PSD readings using position mode tracking with robot moving at velocity oflOmm/s and

acceleration oflOmm/s2 with target at 1m. 71

Figure 3.41: PSD readings using position mn'te tracking with robot moving at velocity of20mm/s and

acceleration of 10mm/'2 with target at 0.6m., 72

Figure 3.42: PSD readings using velocity made tracking with robot moving at velocity oflOmm/s and

acceleration oflOmm/s2 with target at 0.6m. ,.., 74

Figure 3.43: PSD readings using velocity mode tracking with robot moving at velocity oflOmm/s and

acceleration of 10mm/s2 with target at 0.8m. «, 74

Figure 3.44: PSD readings using velocity mode tracking with robot moving at velocity of20mm/s and

acceleration oflOmm/s2 with target at 0.6m. , 75

Figure 3.45: PSD readings using velocity mode tracking with robot moving at velocity oflOmm/s and

acceleration of 10mm/s2 with target at 0.6m using different update period.., 75

VI

Figure 3.46: PSD readings using predictive position mode tracking with robot moving at velocity of

lOmm/s and acceleration of10mm /s3 with target at 0.5m „. 76

Figure 3.47: FSD readings using predictive velocity mode tracking with rcbot moving at velocity of

lOmm/s and acceleration of10mm /s2 with target at 0.5m. 77

Figure 3.48: Optics efficiency of LISM apparatus 78

Figure 4.1: Gimbal unit assembly . 81

Figure 4.2: Orientation measurement experimental set-up 81

Figure 4.3: Calibration plot for PSD 2 in the range of-6 to 6 mm along x- andy-axes using 3rd order

polynomial 83

Figure 4.4: Calibration plot for PSD 3 in the range of-6 to 6 mm along x- andy-axes using 3rd order

polynomial , 84

Figure 4.5: Top view of Gimbal unit , 86

Figure 4.6: Actual pitch angle based on encoder's readings vs pitch angle calculated using OMF 87

Figure 4.7: Actual yaw angle based on encoder's readings vsyaw angle calculated using OMF. 88

Figure 4.8: Error of calculated pitch angle using OMF vs actual pitch angle... 89

Figure 4.9; Error of calculated yaw angle using OMF vs actual yaw angle 89

Figure 4.10: Laser interferometry set-up with incident beam off-centre 90

Figure 4.11: Error of roll angle calculated using OMF with pitch and yaw angles equal to zero 91

Figure 4.12: Orientation Compensation Algorithm control block diagram 92

Figure 4.13: Flowchart for the orientation compensation algorithm 92

Figure 4.14: Single compensation of small pitch angle using OCA . 93

Figure 4.15: Single compensation of small yaw angle using OCA , 93

Figure 4.16: Single compensation of large pitch angle using OCA ,. 94

Figure 4.17: Single compensation of large yaw angle using OCA 94

Figure 4.18: Continuous, compensation of small pitch and yaw angles using OCA 95

Figure 4.19: Continuous compensation of large pitch and yaw angles using OCA ,...95

Figure 4.20: Optics efficiency with Gimbal unit. 97

Fi litre 5.1: Comparison between proper polarisation alignment and polarisation mixing 101

Figure 5.2: Angular deviation of beam caused by imperfection ofretroreflector 104

Figure 5.3: Kinematic model of the experimental LISM apparatus 105

Figure 5.4: Error of position measured using LISM apparatus calculated using the uncalibrated

kinematic model with respect to radial distance from the last mirror 108

Figure 5.5: Error of position measured using LISM apparatus calculated using the calibrated kinematic

model with respect to radial distance from the last mirror. 109

Figure 5.6: Kinematic model of the experimental LISM apparatus for uncertainties calculation Ill

Figure 6.1: Block diagram of closed-loop control using LISM feedback. 128

Figure 6.2: Flowchart of closed-loop control algorithm using LISM ., 129

Figure 6.3: Schematic description of linear path generated by LISM closed-loop control algorithm....... 130

Figure 6.4: Schematic description of via points generated by LISM closed-loop controi algorithm 130

Figure 6.5: Experiment set-up with LISM apparatus and robot manipulator. 133

vn

xl

Figure 6.6: Error between measured and target robot positions without LISM closed-loop control while

moving in robot x-axfs : 134

Figure 6.7: Error between measured and target robot positions without LISM closed-loop control while

moving in roboty-axis 134

Figure 6.8: Error between measured and target robot positions without LISM closed-loop control while

moving in robot z-axis , 13S

Figure 6.9: Error between measured and target robot positions using position mode closed-loop control

while moving in robot x-axis with via points distance of10mm..., 137

Figure 6.10: Error between measured and target robot positions using position mode closed-loop control

while moving in robot y-axis with via points distance of 10mm 138

Figure 6.11: Error between measured and target robot positions using position mode closed-loop control

while moving in robot z-axis with via points distance of 10mm 139

Figure 6.12: Error between measured and target robot positions using position mode closed-loop control

while moving in robot x-axis with via points distance of5mm,... 140

Figure 6.13: Error between measured and target robot positions using position mode closed-loop control

while moving in robot y-axis with via points distance of 5mm 141

Figure 6.14: Error between measured and target robot positions using position mode closed-loop control

while moving in robot z-axis with via points distance of 5mm 142

Figure 6.15: Target and actual robot positions in x-axis using velocity mode closed-loop control while

moving in robot x-axis with commanded velocity of5mm/s 145

Figure 6.16: Error between measured and target robot positions using velocity mode closed-loop control

while moving in robot x-axis with commanded velocity of5mm/s. 145

Figure 6.17: Target and actual robot positions in y-axis using velocity mode closed-loop control while

moving in robot y-axis with commanded velocity ofSmm/s 146

Figure 6.18: Error between measured and target fobot positions using velocity mode closed-loop control

while moving in robot y-axis with commanded velocity of5mm/s 146

Figure 6,19: Target and actual robot positions in z-axis using velocity mode closed-loop control while

moving in robot z-axis with commanded velocity of5mm/s , 147

Figure 6.20: Error between measures and target robot positions using velocity mode closed-loop control

while moving in robot z-axis with commanded velocity of5mm/s 147

Figure 6.21: Target and actual robot positions in x-axis using velocity mode closed-loop control while

moving in robot x-axis with commanded velocity of2tnm/s . 148

Figure 6.22: Error between measured and target robot positions using velocity mode closed-loop control

while moving in robot x-axis with commanded velocity of2mm/s. 148

Figure 6.23: Target and actual robot positions in y-axis using velocity mode closed-loop control while

moving in robot y-axis with commanded velocity of2mm/s. 149

Figure 6.24: Error between measured and target robot positions using velocity mode closed-loop control

while moving in robot y-axis with commanded velocity of2mm/s, » 149

Figure 6.25: Target and actual robot positions in z-axis using velocity mode closed-loop control while

moving in robot z-axis with commanded velocity of2mm/s ,150

vm

Figure 6.26: Error between measured and target robot positions using velocity mode closed-loop control

while moving in robot z-axis with commanded velocity of2mm/s 150

Figure 6.27: Over and under correction of robot due to lengthy update rate 152

Figure 7.1: Flowchart ofllG control algorithm 155

Figure 7.2: Error between measured and target robot positions using position mode guidance while

moving in robot x-axis . , 162

Figure 7.3: Error between measured and target robot positions using position mode guidance while

moving in roboty-axis , 163

Figure 7.4: Error between measured and target robot positions using position mode guidance while

moving in robot z-axis 164

Figure 7.5: Error between measured and target robot positions using position mode guidance while

moving in robot xyz-axis 165

Figure 7.6: Error between measured and target robot positions using velocity mode guidance while

moving in robot x-axis =, 168

Figure 7.7: Error between measured and target robot positions using velocity mode guidance while

moving in robot y-axis 169

Figure 7.8: Error between measured and target robot positions using velocity mode guidance while

moving in robot z-axis . 170

Figure 7.9: Error between measured and target robot positions using velocity mode guidance while

moving in robot xyz-axis . 171

IX

m

LIST OF TABLES

Table 3.1: Motor response characteristics 54

Table 3.2: Sampling frequencies of sub-systems and thread in control program. 66

Table 3.3: Experimental LISM apparatus performance specifications 79

Table 5.1: Kinematic parameters before and after calibration... 108

Table 5.2: Uncertainty ofretroreflectorx co-ordinate at 4 different motors configurations 115

Table 5.3: Uncertainty ofretroreflectory co-ordinate at 4 different motors configurations 116

Table 5.4: Uncertainty of retroreflector z co-ordinate at 4 different motors configurations 117

Table 5.5: Uncertainty ofretroreflectorx co-ordinate at 4 different motors configurations with higher

instruments' accuracy 118

Table 5.6: Uncertainty ofretroreflectory co-ordinate at 4 different motors configurations with higher

instruments' accuracy 119

Table 5.7: Uncertainty of retroreflector z co-ordinate at 4 different motors configurations with higher

instruments' accuracy 120

Table 5.S: Uncertainty of roll, pitch and yaw angles » 124

Table 5.9: Uncertainty of roll, pitch and yaw angles with higher instruments' accuracy and larger beam

offset. , , 125

Table 6.1: Comparison of RMS and steady state position error with and without the implementation of

position mode closed-loop control. 135

Table 6.2: Comparison of RMS and steady state position error with and without the implementation of

velocity mode closed-loop control 144

Table 7.1: Comparison of RMS and steady state position errors with and without the position mode LIG

algorithm. 161

Table 7.2: Comparison of RMS and steady state position errors with and without the velocity mode LIG

algorithm..... 167

X

Chapter 1

Introduction

1.1 Problem Description

During the past two decades, there has been an increase in the number of applications for

robots in the manufacturing and service industries. Robots are used extensively in

applications such as parts handling, machining, welding and assembly operations. Three

main parameters, resolution, repeatability and accuracy, are used to describe the

positioning accuracy and the path following capability of the robot manipulators.

Traditional techniques for the programming of robots have utilised the teach-by-showing

method where the robot is jogged to each of the desired Cartesian positions and the joint

positions are recorded in the memory of the controller [1]. The program then read these

joint positions during playback. In this approach, the critical factor is the repeatability of

the robot. In fact, the repeatability of industrial robots is at least a magnitude better than

their accuracy.

Robot manipulators today are required to perform complex assembly and high precision

path following ^ ations. These applications depend significantly on the absolute

accuracy of the robotic devices. The utilisation of off-line programming techniques in

developing robot application programs has further emphasised the need for greater

absolute accuracy in robots. For off-line programming, robot paths are calculated for a

particular task and a program containing a number of poses along these paths is generated

and downloaded to the robot controller. These poses are specified in Cartesian co-ordinates

and not from taught positions. The robot accuracy becomes significant in such an

approach.

The application of robots acquiring measurements of manufactured parts also requires

improved robot accuracy. In such an application, a measurement device is attached to the

end-effector of the robot, which moves the device into position to take a measurement. All

measurements are related back to the end-effector's pose. The measurement accuracy will

only be as good as the robot's positioning accuracy. Furthermore, the need to develop

performance measurement techniques for the assessment of the suitability of various robots

1

to different tasks again focuses on the importance of absolute accuracy. According to the

ISO 9283 standard produced by the International Standards Organisation, path and velocity

accuracy are key characteristics in this assessment [2].

Various robot control strategies have been designed to improve robots' position accuracy

and trajectory following capability. This is achieved by finding the difference between the

desired and actual position quantities through feedback. These control strategies can be

generally separated into joint-based control and Cartesian-based control. Joint-based

control schemes utilise position quantities expressed in joint space whereas Cartesian-

based control schemes utilised position quantities expressed in Cartesian space. Joint-based

control is widely used in the industry. Cartesian-based control is still in the research stage

due to the unavailability of Cartesian-based feedback devices.

The aim of this research is to investigate the issues associated with laser interferometry-

based closed-loop control and guidance of robot manipulators. Control variables governing

the effectiveness of the strategies are investigated and studied.

1.2 Robot Kinematic Model and Calibration

The first step in any control design is to accurately model the robotic devices to be

controlled. The variables of robotic devices that need to be modelled include the actuator

characteristics, the kinematic parameters and the inertial parameters. Accurate modelling

of these parameters is important to achieve high position accuracy and high performance

position control.

The kinematic model in robotics is the mathematical representation of the geometry of the

robot mechanism and the required configurations of that mechanism to position the end-

effector at a desired pose. Firstly, the robot mechanism must first be described

mathematically as a kinematic chain of rigid links connected by means of revolute or

prismatic joints using a kinematic model. The most common approach involves the

formation of a transformation matrix that contains joint and link values known as the

Denavit-Hartenberg (DH) parameters [1, 3]. The accuracy of the DH parameters

determines how accurately the robot end-effector's position can be calculated. However,

no robotic devices are ever manufactured perfectly. There exist slight variations in DH

parameters because of the occurrence of the following errors:

• Geometric errors - Errors in robot geometry caused by the inaccuracies in the

manufacture and assembly of the components within robot. These errors are not

taken into account in the kinematics calculations and the ideal values of the

parameters are used. Further, flexing and bending of the robot arm due to external

loading causes errors in the calculations of the actual location of the end-effi ctor.

Moreover, the materials used for the manufacture of robots u e sensitive to

temperature change, which in turn vary the geometry of the robot. Heat sources

include motors, friction and environmental changes. These errors are non-linear and

they cannot be compensated for by a simple scaling factor.

• Non-geometric errors - Errors that occur during robot motion, where there will be

inertial loading and dynamic resonance caused by the motion. These errors are

difficult or expensive to model. They a^e usually ignored during a point to point

operation when the path is not important. During a path following operation, these

errors become significant. Improper calibration, sensor inaccuracies, drive train

backlash, etc., are other non-geometric errors. These errors are difficult to identify

and model.

Thes^ variations can result in end-effector inaccuracy of several millimetres for many

industrial robots. Robot kinematic calibration has been recognised as a basic process to

improve the position accuracy for any robotic device [4].

Robot kinematic calibration is the method used to improve the robot absolute accuracy

without modifying the mechanical unit by compensating for the variations of kinematic

parameters using an external measuring device. The most difficult aspect of kinematic

calibration is that many measurements throughout the workplace are required to establish

compensation values for the variations of kinematic parameters and to obtain accurate

measurements of the end-effector position. Traditional methods of calibration have

involved calibration fixtures with precision points and special position measurement

apparatus. Examples of these methods include extensible ball bar, dial indicators, linear

variable differential transducers (LVDT), Latin Square Ball Plate methods and co-ordinate

measurement machines. [5, 6]. All of these methods are time-consuming or do not provide

dynamic measurements. Further, constraints are being placed on the robot that will affect

and limit the range of the robot's movement. Modem methods include RoboTrak with

3

string-pull device [6, 7], photogrammetry method with CCD cameras [5, 6, 8] and

theodolites triangulation methods [91. Dynamic measurements can be obtained using the

above methods. However, considerable amount of time is needed for setting up the above

measurement equipment and these techniques will only provide high accuracy when

performed by a skilled operator. Recently, laser position measuring methodologies have

been proposed [10, 11, 12, 13, 14, 15, 16, 17, 18, 19. 20, 21, 22]. These measurement

techniques can provide real-time, high accuracy, non-contact and automatic dynamic

measurements in a volume typical of robot workspaces. This research aims at investigating

the dominant variables in laser interferometry-based sensing and measuring (LISM)

technique. Although commercial laser position measuring systems are available, some

proprietary information regarding the systems could not be obtained, thus hinders the

investigation process. Therefore, an experimental LISM apparatus was established for this

study. The effect of the dominant variables on the accuracy, repeatability, speed and target

following capability of the LISM apparatus were examined. Furthermore, orientation

measurement capabilities are not available in the commercial system and there is a lack of

experimental results on the performance. Orientation measurement methodology using an

experimental Gimbal unit was being studied. The capabilities of the proposed methodology

are reported through experimental verification. This experimental LISM apparatus and

experimental Gimbal unit will improve the fundamental understanding and knowledge of

the hardware integration and control techniques on the LISM technique for position and

orientation (pose) measurement.

It has been shown that the rigid body dynamics of robotic systems could create substantial

trajectory errors during fast motion [4]. Control techniques that use the dynamic model of

the robot have been designed to predict actuator commands corresponding to a motion. The

dynamic model consists of the kinematic parameters as well as the motor parameters and

the inertial parameters of payload and robot links. A robot's trajectory errors can be

reduced by using accurate parameters in the model. However, obtaining an exact dynamic

model is difficult as there will be some modelling errors as well as errors caused by

unexpected disturbances not included in the model. This will also involves considerable

amount of trial and error to obtain an accurate estimation. Significant amount of

computation power and a high sampling rate are also required to improve the stability of

the techniques [1, 4, 23]. Furthermore, a robot's trajectory is usually specified in Cartesian

space whereas the robot control is implemented in joint space. The incompatibility

between Cartesian and joint space variables introduces errors in the techniques [23]. This

nullifies the extra computational power used in the control.

In this study, the experimental LISM apparatus is employed to investigate the issues

associated with the closed-loop control of robotic devices. Laser interferometry-based

position feedback control and laser interferometry-based guidance control strategies are

proposed to provide an onliije control of robotic devices.

The specific aims of this thesis include:

- to identity the key variables in the LISM technique and characterise the effects of the -.e

variables on the performance of the LISM apparatus;

- to establish an orientation measurement technique;

- to characterise and develop an error model associated with uncertainties of the pose

measurements obtained from the experimental LISM apparatus;

- to investigate issues, requirements, and factors associated with ground truth feedback

sensing, and establish a methodology for closed-loop conjrol of robot manipulators;

- to establish a methodology for laser interferometry-based guidance of robot

manipulators.

1.3 Principal Contributions

To assist in assessing the thesis, the principal contributions presented in this thesis are

summarised as follows:

1. Experimental LISM apparatus for the tracking and dynamic measurement of a

moving target with an unknown trajectory has been developed. It is shown that the

PC-based LISM apparatus has slow update rate due to limited real-time capability

of Windows operating system. The key variables affecting the tracking

performance of the LISM apparatus is the noise in the PSD sub-system and the low

update rate. Higher laser beam power and motors with higher resolution and

accuracy are also required to improve the tracking performance.

2. Dual PSD-based orientation measurement methodology using the specially

developed Gimbal unit for the measurement of the relative orien ation of the

retroreflector with respect to the laser beam is presented. It is demonstrated

experimentally that the dual PSD-based orientation measurement methodology is

feasible in measuring the pitch and yaw angles of the retroreflector accurately. The
5

accuracy of roll angle measurement is affected by the initial fixed beam offset

applied in the set-up. The proposed approach can also be used to rotate the target

retroreflector, such that the line of sight for the incident laser beam is maintained.

This approach effectively removed the limitation of ihe small incident acceptance

an^le for the retroreflector.

3. The establishment of the kinematic model for the LISM apparatus is presented.. It is

demonstrated experimentally that accuracy of the dynamic position measurements

obtained from the calibrated kinematic model improved significantly.

4. The sources of errors associated with the LISM apparatus and the Gimbal unit have

been identified. Dominant variables associated with the uncertainties of the

measurements obtained fiom the experimental LISM apparatus and the Gimbal unit

has been established. The knowledge of these dominant variables allows the correct

selection of hardware components to improve the measurements accuracies.

5. Closed-loop control and laser interferometry-based guidance of robot manipulators

have been established. The behaviour and effects of the proposed methodologies on

the robot end-effector have been investigated through experimental results. It has

been shown that the path following and positioning accuracy of the robot end-

effector can be improved with the implementation of the proposed methodologies.

6. The major limitation of the proposed closed-loop control and laser interferometry-

based guidance of robot manipulators has been recognised to be the communication

delay between the LISM control unit and the robot controller.

These contributions have been published in 5 conference papers, and 2 journal papers. Full

contents of these papers are provided in Appendix G.

1.4 Organisation of this Thesis

Chapter 2 presents a review of the previously published work related to the background of

the problem addressed in this thesis and various techniques, the control algorithms, and

components related to this study.

Chapter 3 presents the establishment of the LISM apparatus, and the experimental

verification conducted to determine the dominant variables of the apparatus and the effect

of these variables on the performance.

Chapter 4 provides the study of orientation measurement technique using an experimental

Gimbal unit. The capabilities of the proposed methodology are reported through

experimental verification.

Chapter 5 presents the kinematic model of the LISM apparatus, which is essential for the

measurement of the positions of the end-effector. Analysis of the uncer^nties of the

measurement acquired by the LISM apparatus and Gimbal unit are evaluated and

conclusions are drawn from the analysis providing an insight into the accuracy of the

LISM apparatus and the Gimbal unit.

Chapter 6 presents the design and development, together with the evaluation of the

proposed closed-loop control strategy in the control of the position of robotic devices. The

experimental implementations en a 6-axis robot manipulator are presented.

Chapter 7 presents the design of the proposed laser interferometry-based guidance control

strategy for robot control. Experimental results providing a fundamental understanding of

the effects of the methodology or robot performance are also discussed.

Chapter 8 presents conclusions and recommendations for future work.

Chapter 2

Background and Literature Review

2.1 Introduction

This chapter presents the background of the sub-systems required to establish a laser

interferometry-based dynamic measurement technique. This is followed by a review of the

laser-based dynamic measurement techniques with single, dual or multiple beams

established over the past decade. The underlying concept and capabilities (e.g. speed,

accuracy, and range), as well as any special features of the various techniques are reported.

2.2 Laser Interferometer

An American physicist, Albert A. Michelson, first invented the laser interferometer in

1880 [24]. The underlying concept of laser interferometry is based on the wave theory of

light, which states that light travels as a sinusoidal wave with wavelength, X as shown in

Fig. 2.1. Fig. 2.2 shows a schematic diagram of a laser interferometer. As shown, a laser

beam is emitted from laser source L. Beamsplitter B reflects about half of the power of the

laser to the fixed reference retroreflector R. The remainder of the laser passes through the

beamsplitter B and strikes the target retroreflector T. The beams from R and T are

combined at the receiving optics point O. As T moves, there is a progression of light and

dark bands (fringe shift) produced by the constructive and destructive interference of the

peaks and the valleys of the light waves (Fig. 2.3). Photo detectors and computer-

controlled counters are used to pick up the beam and determine the number of shifts from

light to dark band. The relative distance moved by the target retroreflector can be measured

with a resolution equal to half of the wavelength of the laser, XI2.

However, significant inaccuracies could be introduced in such a technique since the

computerised counter would count fringe shift when T is moving away from (or towards)

the interferometer and at the same time moves infinitesimally towards (or away from) the

interferometer due to vibration. This design does not take into account the directional

changes of the target motion, and hence appropriate adjustments need to be made to the

technique as described in the following sections.

8

i

+ 1 -

- 1 -

i

h f_ u
7J2

f
Figure 2.1: Sinusoidal representation of light wave

Fixed Reference
Retroreflector R

Target
Retroreflector T

Laser Source
L

Primary
beam

Reference
beam

Beam Splitter
B

Detector
O

Figure 2.2: Schematic diagram of a laser interferometer

shifted
•> to left by

Fixed

> Result

-2 -

Constructive Interference

, •*• move •

+1

+2 - •

•*• Fixed

-*• Result

-2 -

Destructive interference

.3: Constructive and destructive interference pattern

2.2.1 Single Frequency

For a single frequency laser interferometer, the laser beam is polarised by the beam splitter

into its horizontal and vertical components. Two detectors are used to detect the reflected

beams at the receiver - one through a 0° polariser (sine detector) and the other a 45°

polariser (cosine detector). By compaiing the phase relationship of the two waveforms as

shown in Fig. 2.4, the counting electronics can determine whether a fringe shift was caused

by target T moving towards or away from the interferometer [24].

2.2.2 Heterodyne (Dual Frequency)

A special variant of single frequency laser employing the Zeeman split is used in the dual

frequency, or heterodyne interferometers. Two frequency components, Fl and F2, with a

difference of approximately 1.3 MHz are generated by a magnetic field. They are polarised

at right angles to each other to allow them to be separated by optical polarisers [24, 25].

Fig. 2.5 shows a heterodyne interferometer.

As the beam passes through the interferometer, F2 is directed to the fixed reference

retroreflector at R where it is reflected and directed to the detector D. Fi passes through

polarising beam splitter to target retroreflector T. As T moves, frequency Fi just appear to

shift based on the Doppler Principle, yielding a frequency change of AFi. Movement of T

towards the interferometer will increase Fi, causing a positive change in Fi. Alternatively,

any movement of T away from the interferometer will decrease Fi, causing a negative

change in Fi. At the detector D, Fi and F2 are recombined to give the interference signal

with a frequency equal to:

Interference signal = [F2 - (Fi ± AFO] (2.1)

Electronics in the laser head generates a reference signal with frequency equal to F2 - Fi.

The interference and reference signals are combined to give the frequency change AFi,

which represents the rate of change of me target f displacement. Integration is carried out

to yield the relative displacement of the target T.

10

Sine
Detector

Fixed Reference
Retroreflector R

Target
Retroreflector T

Laser Source
L

X/4 Plate
0°

Polariser

Polarising Beam
Splitter B in

Interferometer
X/4 Plate

45° Polariser

Cosine
Detector

Phase
Detector

Measurement beam

Reference beam

Figure 2.4: Singk Frequency Laser Interferometer

Fixed Reference
Retroreflector R

Target
Retroreflector T

4 •

Laser Source
L

Polarising Beam
Splitter B in

Interferometer

Phase Frequency
Detector

Counter

Reference Beam
Measurement Beam

Figure 2.5: Heterodyne laser interferometer

11

2.2.3 Advantages and Disadvantages of Laser Intelferometer

The most significant advantage of the laser interferometer is the higher measuring

resolution obtained. A single frequency lacer interferometer has an inherent resolution of

X/8 or 0.08 [xm and a heterodyne laser interferometer has an inherent resolution of A/4 or

0.16 urn.

One drawback of laser interferometer is the variation of the laser's wavelength due to

changes in the operating environment (e.g. temperature, pressure and humidity). Accuracy

of the measurement will degrade with the variation in wavelength. Additional sensors such

as temperature, pressure and humidity sensors are necessary to provide on-line adjustments

to the wavelength. Further, the interferometer measures only the relative change in target

displacement, not the absolute distance of the target.

2.3 Position Sensing Detectors

Silicon Position Sensing Detectors (PSDs) are photodiodes used to detect and record the

position of a laser beam incident on the detector surface. These detectors operate by the

absorption and conversion of the photon energy o: the laser into an electrical current.

Electrodes are attached to the detectors and the currents measured from each electrode can

be employed to give the positions of the centroid of the laser beam relative to the centre of

the detector [26]. There are two types of detectors commonly used for beam position

measurement, the segmented detector and the lateral effect detector [27,28].

2.3.1 Segmented Detector

The segmented detector is a uniform disc of silicon with small gaps across the surface to

divide the sensing surface into two or four equal sectors. Each sector produces a current

proportional to the amount of light incident on it. If the beam is centred, each sector will

provide an equal amount of photo-current. Fig. 2.6 shows a schematic diagram of the

surface of the four segments detector for two-dimensional measurements.

The equations used to calculate X and Y displacements of the beam are:

(2.2)
ql+q2+q3+q4

Y =
q{+q2+q3+q4

(2.3)

12

where ql, q2, q3, and q4 are the current outputs of the detector's quadrants.

One limitation of the segmented detector is that the position signals are meaningful only

when the beam falls on all segments. The photocurrents also become non-linear with

displacements of more than 10 % of the beam radius. Only small beam displacement can

be measured accurately. Segmented detectors are excellent devices for applications such as

beam centering [28].

2.3.2 Lateral Effect Detector

The lateral effect detector is a continuous photodiode with no gaps. The electrodes are

connected in such a way that the opposite pair yield photo-currents that are processed to

give the displacement of the beam [28]. Fig. 2.7 shows the diagram of this detector type for

two-dimensional measurements.

The equations used to calculate X and Y displacements of the beam are:

x = (2.4)

•y

where qi (i = 1,2, 3, 4) represents photo-current recorded by electrode i.

(2.5)

However, photo-currents become non-linear with beam displacement away from the

centre. Linearisation of detector response can be performed through calibration to obtain a

precise measurement across the entire sensing area. This linearisation enables the lateral

effect detector to measure the position of a beam over its entire surface. One limitation to

this type of detector is that each lateral effect detector has its own unique set of calibration

correction factors for linearisation. Therefore, calibration has to be performed for each

lateral effect detector or change in detector set-up.

13

Sensor
Surface

Dividing
Gap

Figure 2.6: Four segments detector

Figure 2.7: Dual axis lateral effect detector

2.4 Reflecting Target

The most common reflecting target used is a specially arranged mirror assembly called the

air-path type retroreflector. Fig. 2.8 shows a diagram of a standard air-path type

retroreflector. It is made up of three mirrors with high reflective index assembled in such a

way that they are orthogonal to each other. The intersection point of the three mirrors will

be the centre of the retroreflector. An ideal retioreflector will have the properties that a

light beam incident on any point on the retroreflector, regardless of its orientation, will be

reflected through 180°. The reflected beam will travel back parallel to the incident beam.

14

The centre of the retroreflector is lueall^ the midpoint between the incident and the

reflected beams. The retroreflector is attached to the end-effector of a robot manipulator,

and it is usually lightweight to minimise loading effects on the robot. It has a light incident

angle range of ±30° from the centre axis.

The second type of reflecting target is known as the cat's eye retroreflector [19, 29]. Fig.

2.9 shows a diagram of the cat's eye retroreflector. Commercial cat's eye retroreflectors

consist of two glass hemispheres with similar refractive indices joined together with a thin

layer of adhesive material. The incident aperture is reflection free and the other side is

coated with a reflecting material. A beam entering at any point will be refracted and

incident on the reflecting material. The reflected beam will once again be refracted and exit

the retroreflector. Ideally, the reflected beam is parallel to the entered beam. This

retroreflector has a light incident angle range of about ±75° from the centre axis.

Other types of reflecting targets include solid glass retroreflector and right-angle glass

prism. Fig. 2.10 shows a diagram of a right-angle glass prism. Similar to the cat-eye

retroreflector, the incident aperture is reflection free and a beam will be reflected parallel

to the incident beam based on the principle of total internal reflection [27]. However, due

to the refraction at the incident aperture surface, a lateral distance error occurs. Thus, these

types of retroreflectors have a very limited incident angle range to ensure accurate

measurements.

Incident

Retroreflector

Figure 2.8: Air-path type retrorefketor

15

Laser Beam

Beam incident aperture

Hemisphere lenses-

Reflecting surface

Incident

Reflected

Figure 2.9: Cat's eye ntronjkctor

Beam incident aperture

*—Internal reflection

Incident laser beam

Reflected laser beam

Figure 2.10: Right angle glass prism

2.5 Beam Steering Mechanism

Beam steering mechanisms (BSM) are used to keep the laser beam directed on the target.

In this technique, a single mirror attached to an actuation mechanism (e.g. galvanometer,

stepper, servo motors) is the most common type of BSM used to direct the laser beam

towards the target. Two axes of rotations are needed to direct the laser beam to any spatial

location. Position sensors (e.g. potentiometer, optical shaft encoder, or capacitive position

transducer) are attached to the actuators to read the angular displacement. Fig. 2.11 shows

the figure of a typical BSM.

16

Actuator to rotate
mirror about the
horizontal axis

Actuator to rotate
mirror about the
vertical axis

Vertical axis

Mirror

"G5
Horizontal

1
Figure 2.11:A typical beam steering mechanism

2.6 Review of Laser-based Dynamic Measurement Techniques

Laser-based dynamic measurement techniques involve the tracking of the reflecting target

attached to the end-effector of the robot or other positioning devices. The laser beam is

directed to the reflecting target by the BSM, Ideally, the laser beam hits the centre of the

target, causing no offset between the incident and reflected beam. When the target starts

moving, the laser beam does not hit the centre of the target, which results in a displacement

between the incident and the reflected beam. This displacement is measured by the PSD

and constitutes the trackirg offset. The laser-based dynamic measurement controller

minimises the tracking offset by turning the BSM, thus enabling the laser beam to follow

arbitrary movements of the target. Position and orientation information of the target can be

obtained by analysing data sampled from various sensors. The control architecture of the

laser-based dynamic measurement technique can be divided into 5 functional groups:

1) Sensing of target displacement in the direction of the beam;

2) Sensing of tracking offset along the plane perpendicular to the direction of the

beam;

3) Sensing of the target orientation;

4) Directing the beam towards the target to maintain tracking;

5) Calculation of the target position and/or orientation.

17

This section presents a review of published works on laser-based dynamic measurement

techniques. These techniques can be broadly classified into two categories: interferometric

ani non-intcrferometric. Non-interferometric based techniques a;e included due to the

similarity in principle and configurations. Central issues include the physical make-up and

functionality of the hardware, the measurement and analysis techniques employed, and

where appropriate, control strategies for the technique to provide for the 5 functional

groups as stated above.

2.6.1 Dual Laser mterferometry-Based Tracking and Measurement Technique

The first laser interferometry-based dynamic measurement technique utilising two laser

beams, known as the Optical Scanner Measurement Technique, was proposed by Gilby and

Parker [15]. Fig. 2.12 shows a general layout of this measurement technique. This

technique involves tracking an air-path type retroroflector using two similar static

measurement sub-systems (Fig. 2.13), reported as tracking heads. A quadrant detector (4-

segment PSD) is used to detect the tracking offset of the retro-reflected beam. The laser

beam from each unit is directed towards the retroreflector by two optical scanners mounted

in orthogonal rotation axes. The optical scanner is made up of a plane mirror driven by a

moving iron galvanometer. A capacitive position transducer is used to provide angular

displacement. The knowledge of the scanner angles and tracking offsets allows the

determination of line of sight. The combination of two lines of sights from each tracking

head with the relative position between the heads provides a means to calculate the

position of the target by triangulation. This method is reported to be capable of providing

dynamic position measurements of target moving at a maximum velocity of 5 m/s with

accuracy better than ±0.01 mm in a 1 m3 working volume [15],

Further developments of the Optical Scanner Measurement Technique produced the

Optotrac Measurement Technique [16]. This is based on the same principle as the Optical

Scanner Measurement Technique utilising triangulation to determine the position of the

object being tracked. It is claimed to be capable of obtaining the static and dynamic

performance of robots to ISO standards us well as being fully portable and self-calibrating.

The overall design of the system is similar to that of the Optical Scanner Measurement

Technique as outlined in Fig. 2.13. However, this technique uses a cat's eye reflector as

the target optic instead of the air-path type retroreflector. A tracking head geometric

modelling is included to account for the geometrically imperfect tracking head. Calibration

of this model is essential in order to attain the highest possible accuracy. The prototype is

18

claimed to have repeatability better than 10 urn and accuracy of ±0.1 mm. The measuring

volume is lm . It is also claimed that this set-up also allows automatic recovery when the

tracking signal is lost [16].

Moving
target
(Retroreflector)

Stationary
two axis
measurement
sub-system

Stationary
two axis
measurement
sub-system

Figure 2.12: Schematic diagram of Optical Scanner Measurement Technique

To and frota
Retroreflector

Mirror rotation axis of the optical
scanners parallel to the beam

Mirror rotation axis of the
optical scanners perpendicular
to the beam

Mirrors for
beam deflection

Beam Splitter

Photodiode Quadrant
Detector

Beam Coilimator

Quarter Wave Plate

"*-•>. Laser-Beam

Figure 2.13: Measurement sub-system layout for Optical Scanner Measurement Technique

19

Beam Splitter

rX .

Modulator

Beam
Splitter

Laser

Laser Head

Laser

Collimator
^m

PSD

PSD

P
S
D

9

Computer

r

Signal
Processor

1 7 Incident

^ Reflected

Figure 2.14 - Robotest measurement technique

The Robotest Measurement technique was developed through close collaboration between

Polytec GmbH and die Institute of Tooling Machinery and Industrial Technology of the

University of Karlsruhe in Germany [17]. This technique can measure motion along a

linear path, recording the deviations of the robot and its displacement, velocity and

acceleration. Fig. 2.14 shows the layout of the apparatus. This technique comprises a

stationary laser head and a measurement head mounted on the robot's end effector. The

laser head contains two lasers and an interferometer while the measurement head contains

a retroreflector and three position sensitive diodes of the lateral effect detector type. This

technique is used to measure the robot's linear displacement of up to ±3 um accuracy for

velocities up to 10 m/s within a cylindrical measuring volume of 10m in length and 20 mm

in radius. The apparatus can sample data at up to 5 kHz [17].

A two-dimensional version of the Optical Scanner Measurement Technique was reported

by Heeren and Veldpaus [18]. Fig. 2.15 provides a schematic representation of the

technique. The laser beam from each measurement unit is directed towards the

retroreflector pair with a flat mirror controlled by an actuator. The actuator was designed to

reduce Coulomb friction to achieve high resolution and repeatability. The optical encoder

consists of a code wheel with 3 encoder modules built around it to achieve resolution of 10"
5 radian. The tracking offset of the retro-reflected beam is detected by a 2-segment PSD,

which measures the beam horizontal deviation from the centre. Piano-cylindrical lenses are

20

Double reflector
R

Mirror B Mirror A

I) Incident

Reflected

Figure 2.15 - The two dimensional optical measurement technique with double reflector

mounted in front of the PSD to ensure that the beam spot detection is insensitive to small

translation of the retroreflector in the vertical (z) diiection. The position of the double

reflector mounted on the target can be found by triangulation. The measurement of the

robot's end effector position is restricted to a horizontal plane of approximately i m2. The

resolution and repeatability of the system is reported as 0.05 mm with a maximum tracking

speed of 5 m/s [18].

2.6.2 Single Laser Interferometry-Based Tracking and Measurement Technique

Recent studies have focused on single beam laser interferometry-based measurement

techniques. It was first proposed by Lau, et al. at the National Bureau of Standards [14]. It

was reported to be able to mensure the position of a moving target as well as the pitch and

roll angle of the target. Fig. 2.16 shows the set-up of this technique. This technique

comprises of a tracking unit and a target unit. The tracking unit includes a laser

interferometer system and a dual-axes servo-controlled tracking mirror (cardan joint) to

direct the laser beam towards the air-path type retroreflector. The target unit consists of a

partial mirror (15% transmission) and 2 two-dimensional lateral effect detectors and this

target is rotated by a dual-axes servo. Additional optics such as the retardation plates and

polarising beamsplitters are included to provide for 2 beam paths. The first beam path

directs the beam to PSD A, used for the measurement of tracking offset. Appropriate

commands are generated for the servo- controlled tracking mirror to correct the offset. The

second beam path directs the beam to PSD B, which produces a measurement of angular

misalignment between the measuring beam and the surface of the mirror. Appropriate

21

commands are generated for the dual-axes servo to rotate the target unit so that the target

mirror stays perpendicular to the measuring beam. The accuracy of this technique is

reported to be 0.002% of the measuring range for position and 1 arc second for pitch and

yaw angles in a measuring volume of 2x2x2 m3 [14].

Quaterwave
Retardation

Plate
Tracking Mirror Target Unit

Quaterwave
Retardation

Plate
Polarising

Beamsplitter

Beamsplitter

Plane Mirror
Interferometer

Target Mirror

1st Beam Path

2nd Beam Path
Fringe

Counter

Laser Head

Figure 2.16 — Schematics of the first 5-axis single laser interferometry-based measurement technique

22

\j> /Tracking Mirror

/

c
Retroreflector

Beamsplitter

y

Dua! Axis Lateral
Effector Detector

i j » j

Single Beam
interferometer

Laser Head

1

Fringe
Counter

Measurement
Beam

Reference
Beam

Figure 2.17—3D single laser interferometry-basedmeasurement technique

Lau et. al. also reported a technique for position measurements only. In this case, a cat's

eye or an air-path type retroreflector is used instead of the servoed target. At the

beamsplitter, part of the retro-reflected beam is directed onto a dual-axes lateral effect

detector to determine the tracking offset. The remaining beam returned to the

interferometer is picked up by the detector in the laser interferometer. This is used to

determine beam displacement using the Doppler Shift principle. Tracking of the target

retroreflector is achieved by rotating the tracking mirror by the corrective angles calculated

using the tracking offset. Fig. 2.17 shows the set-up of this technique.

23

Robot end-effector

•
Cardan joint
with driving /
& angular /

sensor \

x,y,z

l_,
i k i

_ _]

^
e,q>,<t>

^ r̂ -̂ n Retroreflector

, / / ^ CCD Camera

X _ ^ |—̂
^ mirror

8x
Control gy

a.P Unit d

m

^

*—hi

m i

PSE

cz) Incident

B ^ Reflected

Image
processing

i i l
Inter-

ferometer

>

U

Figure 2.1'8: A. functionaldiagram of the 6-axis sensor measurement technique reported by Vinc^e et.al.

Vincze et. al. [10, 11, JO, 31, 32] reported a technique which allows measurement of both

robot's position and orientation of its end effector in real time. A functional diagram of the

technique is provided in Fig. 2.18. A similar set-up to the technique proposed by Lau et. al.

is used for the position measurement. To account for geometric errors of the cardan joint

and the misalignment of the optical components, a description of the kinematic model of

the apparatus is presented. With this model, the position of the target is calculated using

the cardan joint angles, the displacement measured using the laser interferometer and the

PSD signal. It is reported that the developed prototype system based on this approach has a

position measurement accuracy of 0.2 mm and has a sampling rate of 10 kHz. It is capable

of tracking robot velocities of up to 6 m/s and accelerations of up to 25 m/s2. It is claimed

that a predictive control algorithm and a floating point digital signal processor used in this

approach improve the position measurement accuracy to 50 urn and robot acceleration of

up to 100 m/s2 [32],

Orientation measurement is achieved by capturing and analysing the image of the reflected

laser beam [12]. This can be achieved by directing part of the retro-reflected beam to a

Charged Coupled Device (CCD) camera using another beamsplitter. The image captured

by the camera consists of darkened lines whose directions and angles are directly related to

the orientation of the retroreflector. Analysis of this image enables the determination of the

roll p, pitch <f>, and yaw q> of the end effector. The accuracy of the orientation calculation

depends upon the accuracy of the CCD camera and subsequent image processing [10]. For

24

the technique described, it was reported that the overall orientation measurement accuracy

was better than 10 arc seconds (0.0027°) for a working range of ±30° of pitch or yaw with

an unrestricted roll angle. However, the sampling rate of normal CCD arrays is restricted

to 50 Hz, which is not sufficient for real-time orientation measurement. A linear CCD

array may be used to provide real-time measurement as these allow sampling rates of more

than 1 kHz. The accuracy of the technique is limited to an extent by the effects of

atmospheric conditions on the laser beam. However, the greatest loss of accuracy is caused

by errors resulting from the determination of the shadow line projections on the CCD

arrays. Less information about the retroreflector edges is collected, which reduces the

accuracy of the resulting measurement. In addressing this, additional geometric features

can be added to the retroreflector such as wire cross hairs across the front of the

retrorefiector [10,11, 12, 31].

A similar method developed is the Luxwess measurement technique [22]. This

measurement technique is based on the same conceptual design as the previous technique

described. A number of changes and improvements have been made to enhance its

performance. This approach employs Jiree mirrors and a single prism instead of the

previous two-axis cardan joint with a single plain mirror. This allows twice the accuracy of

the single mirror approach [22]. Backlash is eliminated through the use of direct drive

motors that are mounted directly to the axes without any coupling and air bearings are used

to eliminate friction. Tumbling effects are measured on-line using miniaturised capacitive

sensors, and miniaturised temperature sensors measure the temperature of the beam

steering unit. Luxwess has a position measurement accuracy of 50 \xm per meter distance.

The system has a sampling rate of 10kHz that enables a maximum velocity and

acceleration of object being measured of 6m/s and 10m/s2 respectively [22].

Another method of laser-based orientation measurement technique for a mobile robot has

been proposed by Bao et. al. [33]. This technique does not require image processing. This

orientation measurement technique is achieved by incorporating two PSDs and a

beamsplitter located on an optical set-up along with the retroreflector. This optical set-up is

then positioned on a two-axis cardan joint, which is then mounted on the mobile robot to

be tracked. This approach is reported to offer real time orientation measurement with high

precision. It is claimed that the precision of this orientation measurement is in the order of

0.0002 radians (0.011°) provided that there are no construction errors in building the

system [33]. However, the claimed accuracy was never substantiated by experiments.

25

• i j

2.6.3 Multiple-laser Tracking Robot-Calibration Technique

A technique that utilises four laser-interferometer sub-systems, each of which is mounted

on its own two-axis tracking mechanism, has also been proposed [19]. This technique

makes use of a specially designed cat's eye retroreflector target and spherical seat bearings

to provide a tracking accuracy below 1 um in a cubic space with sides of a few metres

when air turbulence is neglected. Fig. 2.19 provides a schematic diagram of the proposed

technique.

This technique is based on the principle of multiple-laser trilateration (i.e. a co-ordinate

measuring method using only length data by laser interferometry). It is unique in that

unlike other techniques that employ mirror rotation for target tracking, this technique

employs interferometer rotation. A small single-beam Michelson interferometer is attached

on each tracking mechanism. The interferometers are attached to the laser head via

polarisation-maintaining optical fibres. Each interferometer can provide a measure of the

distance from the tracking mechanism to the cat's eye target and can accept movement of

the target up to 0.6 m/s. The cat's eye retroreflector used was specially developed and was

reported to give an optical path error of less than 1 um along two different circumferences

between ± 80° (the best commercially available cat's eyes generally have an error of about

3 urn). Thus, the use of this particular cat's eye ensures high accuracy for a maximum

range of incident angles [19]. The tracking error for each mechanism is determined in the

conventional way using a beamsplitter to divert the return beam from the target to a

quadrant detector. Fig. 2.20 shows a diagram of the tracking mechanism.

Interferometer with
tracking sensor - mounted,
on a two-axis mechanism

Industrial robot

Cat's eye retroreflector

Figure 2.19: The multiple laser tracking robot-calibration technique

26

Direct drive motor to
rotate the \
interferometer about
the vertical axis

Vertical axis

Optical fibre laser

Direct drive motor
to rotate the
interferometer
about the vertic
axis

Interferometer
unit sitting on
spherical seat
bearing

Horizontal
aids

Figure 2.20: Side view of 3D tracking mechanism with spherical seat bearing

2.7 Summary

The background of components to establish a laser interferometry-based sensing and

measuring (LISM) apparatus has been presented. The previously published work related to

this study, together with the various techniques and control algorithms implemented have

also been reviewed. The next chapter will focus on the establishment of the experimental

LISM apparatus and the experimental verifications of the performance of the apparatus.

27

11]

Chapter 3

Experimental LISM Apparatus: Development and
Characterisation of Sub-systems

3.1 Introduction

This chapter provides a description of the principle of the Laser Interferometry-based

Sensing and Measuring (LISM) technique and the sub-systems constituting the

experimental LISM apparatus. This apparatus will be based on a single laser

interferometry-based technique utilising a PSD to detect tracking offset and a laser

interferometer to determine the target displacement. The sub-systems can be divided into

the following 4 main functional groups:

1) Laser Interferometer sub-system;

2) PSD sub-system;

3) Beam steering sub-system;

4) Orientation measurement sub-system;

The physical make-up, specification, functionality and the measurement and analysis

techniques employed for each sub-system are the central of focus of this chapter.

Orientation measurement sub-system is presented in the next chapter.

3.2 Principle of Laser Interferometry-based Sensing and Measuring for
Position Measurement

Laser interferometry-based sensing and measuring of robot motion generally involves the

dynamic acquisition of the positions of a robot end-effector in its workspace. It can also be

used to provide orientation measurements of the robot's end-effector. The LISM technique

uses the linear and angular displacement data, obtained from the interferometer and beam

steering mechanism, respectively, to provide the position of the target retroreflector

mounted on the end-effector of a robot manipulator. It maintains tracking of the target

retroreflector by sensing the offset of the incident and reflected laser beam from the target.

It subsequently performs offset corrections by adjusting the angles of the beam steering

mechanism. The functional layout of the LISM technique developed in this study is shown

in Fig. 3.1. A photo of the apparatus is shown in Fig. 3.2.

28

Robot
Manipulator

Motor Controller
breakout box

Retroreflector on robot
i-effector Stepper Motor

with Encoder

Reference
-.;:•: .<: 'ustmerir-ftjr Retrorelkctor^3 L i n e a r

Laser Interferometer
Controller

Supervisory Control Unit]
for LISM

Figure 3.1: Functional layout ofLISM technique

Linear
Interferometer

Beam Steering
Mechanism

Figure 3.2: Photo ofLISM apparatus

29

As shown in the layout, a heterodyne laser beam is emitted from the laser head. The laser

beam passes through a polarisation beamsplitter in the interferometer, where it is split into

a reference beam and a measurement beam. The reference beam is directed to the reference

retroreflector where it is reflected and directed to the fibre optic pick-up. It is then

transmitted to the measurement board on the laser interfcrr-ieter controller. The

measurement beam passes through a 70-30 beamsplitter before being directed to a

retroreflector by the beam steering mechanism. The retroreflector is generally mounted on

the robot's end-effector. At the retroreflector, the incident measurement beim is reflected

through 180° and the reflected measurement beam travels back parallel to the incident

beam. If the incident measurement beam does not hit the centre of the retroreflector, there

will be an offset between the incident and the reflected measurement beams.

This reflected measurement beam follows the same path back to the 70-30 beamsplitter.

70% of this beam power is directed to the interferometer before being deflected by the

polarisation beamsplitter in the interferometer ana picked up by the fibre optic cable. As

the end-effector carrying the retroreflector is moved, there is a shift in frequency for the

measurement beam based on the Doppler Principle [24]. The measurement and reference

beams are combined in the laser interferometer controller to form the interference signal,

which provides the rate of change of target displacement. This rate is then integrated to

provide the relative displacement of the target. The remaining 30% of the reflected beam

power is directed by the 70-30 beamsplitter to a position sensing detector (PSD). This PSD

determines the offset between the incident and the reflected laser beams. This offset is

referred to as the tracking offset.

The LISM control system minimises the trading offset obtained from the PSD acquisition

system by signalling the motor controller which in turn rotates the axes of the beam

steering mechanism, thus following the arbitrary movements of the target. Measurement of

the position of the target in space is obtained from the displacement of the beam, tracking

offsets, and angular displacements of the axes of the beam steering mechanism. The above

information is utilised within the kinematics equations of the LISM apppjatus describing

the Cartesian position of the target. A predictive control algorithm that allows estimation of

the future position of the target from the previous position, velocity and acceleration

values, [36], can be employed to increase the Sj. ~sd of tracking.

30

3.3 Laser Interferometer sub-system

3.3.1 Specifications

The laser interferometer measurement sub-system is the Zygo ZMI-1000 interferometer

[25, 37]. The diameter of the beam is 6 mm with a minimum and maximum power of 425

{4.W and 1000 |iW, respectively. The ZMI-1000 is capable of measuring the relative

displacement of a retroreflector moving up to 1.1 m/s in the direction of the beam with a

linear resolution of 2.47 nm. Fig. 3.3 shows the photo of the ZMI-1000.

It must be noted that the laser interferometer only measures relative position change

between the interferometer and the target retroreflector. It does not measure absolute

position. Several factors affect the accuracy of the measurements made. These factors

include the environmental conditions (e.g. temperature, pressure), optical alignments and

electronic noise. These factors and their effects must be taken into consideration to

evaluate the performance of the overall LISM apparatus. This will be discussed in detail in

Chapter 5.

33.2 Measurement and Reference Beam Offset

The measurement and reference beams should have zero offset at the fibre optic pick-up

for the entire range of displacement. The interference signal is produced only from the

overlapped area of the measurement and reference beams. A beam offset between the

measurement and reference beam will cause a reduction in the interference signal. The

beam offset can arise from two types of misalignment:

1) Lateral misalignment due to the movement of target reflector or the interferometer.

2) Angular misalignment due to the angular offset between the measurement beam

and the axis of displacement being measured.

Lateral misalignment will produce a beam offset (equivalent to tracking offset)

corresponding to twice the lateral offset, which does not vary with beam displacement. Fig.

3.4 shows a beam offset due to lateral misalignment.

31

Figure 3.3: Photo of the ZMI-1000 laser interferometer measurement sub-system

Linear Interferometer

Fibre Optic Pickup |

Moving Target
Retroreflector

Reference
Beam

/Measurement
Beam

• Lateral Offset Beam Offset
(2 x Lateral Offset)

Reference Beam Path
Measurement Beam Path

Figure 3.4: Beam offset due to lateral misalignment

During the noimal operation of the LISM apparatus, the movement of the target

retroreflector along the plane perpendicular to the laser beam will cause a lateral offset and

thus a beam offset as described above. In order to maintain measurement, the maximum

permissible beam offset must be determined. The maximum permissible beam offset was

found to be ±3 mm. The maximum lateral offset that the retroreflector can accommodate is

thus ±1.5 mm, above which the acquired measurement will not be reliable. In order to

follow the retroreflector, the supervisory control unit must be able to detect this offset and

to reduce this offset before it reaches the maximum.

For angular misalignment, the beam offset will vary by an amount directly proportional to

the product of the misalignment angle (in radians) and the beam displacement. Fig. 3.5

shows the effect of beam offset due to angular misalignment.

32

Linear Interferometer
"I Angle of Moving Target

Misalignment RetrorefIector

of
Motion

Position A Position B
Fibre Optic Pickup

Reference Measurement Reference
B e a m ^ ^ V B e a m Beam

Measurement
Beam

Position A ^ ^ overlapped Position B

region

Figure 3.5: Beam offset due to angular misalignment

3.3.3 Sub-system Interface

The ZMI-1000 controller synchronises the measurements in the installed measurement

board as well as relaying this information through the RS232 port or the GPIB (IEEE *88

General Purpose Interface Bus) port [25] to a host PC. In the current set-up, only the

RS232 interface is used. The ZMI-1000 controller can sample up to 130 KHz. However,

the update rate on a host PC relies heavily on the speed of transmission of user commands

and sampled data. The position register is being read continuously, and a 32 bit data is

returned at a maximum rate of 200Hz with RS232. This slower rate is due to the fact that

the PC's processor is slow in processing the user commands and the sampled data.

Moreover, due to the multitasking nature of the Windows operating system, other tasks

may require the procesror's attention. A faster processor would improve the sampling rate.

3.3.4 Instability in Laser Interferometry

During the measuring operation, there must not be any laser beam feedback into the laser

head. The polarising beamsplitter and the quaterwave retardation plate are used to prevent

this [25, 37]. However, due to the imperfect nature of these components, a small amount of

reflected measurement beam is fed back into the laser head. The occurrence of this causes

the emitted laser to become unstable, resulting in errors in the measurements recorded [25].

To prevent this, the set-up shown in Fig. 3.6 should be used. Instead of directing the laser

beam through the centre of the polarising beamsplitter, it is offset by a fixed amount. The

incident beam will not hit the centre of the target retrorefiector and thus the reflected beam

33

Linear Interferometer f

Linear Head

Fibre Optic Pickup

Moving Target
Retroreflector

j>

Reference Beam Path
Measurement Beam Path

Figure 3.6: Alternate laser interferometry set-up

will also be offset from the centre by a corresponding amount. The fibre-optic pickup

assembly is mounted as shown so that the reference and the returned measurement beam

completely overlap each other. There will be no feedback of the beam to the laser head and

thus improve laser stability.

3.4 PSD sub-system

3.4.1 Specifications

The PSD sub-system is responsible to provide the supervisory control unit with the

tracking offset of the target. The sub-system consists of a position sensing detector (PSD),

a signal conditioning device, and a data acquisition board. Fig. 3.7 shows the photo of this

sub-system.

The detector used in this sub-system is a Lateral Effect Detector [28]. This detector has a

position measuring range of ±9.4 mm along the two axes. The responsivity of the detector

for the Zygo laser beam with wavelength of 632 nm is 0.42 A/W. This value determines

the amount of photocurrent produced by the incident beam power. The dark current of the

detector ranges from 12 nA to 250 nA. The dark current contributes to the noise in the

measurement acquired by the detector. Rise time for this detector is 5 us, which

corresponds to a maximum update rate of 200 KHz.

The photocurrent signals generated by the detector must be conditioned and optimised for

the input type and input range of the data acquisition board. This device is used to provide

optimisation in the following areas:

34

1) Amplification- Photocurrent signals generated by the PSD are first converted to

voltage signals. The amplitude of these voltage signals are generally very low level

and should be amplified to increase resolution and reduce noise. Amplification and

conversion is achieved by the use of an operational amplifier. Amplification factor

is determined by the size of the resistor used, which in this case is 2.2 MQ [26, 27,

28].

2) Filtering- The purpose of filters is to remove unwanted noise from the signals to be

measured. Noise filters such as low pass filters are used to eliminate high frequency

noise before the data acquisition board samples the signals. This is achieved by the

addition of a capacitor on the operational amplifier [28, 38]. The resistance and the

capacitance determine the cut off frequency, which in this case is 1000 Hz.

The data acquisition (DAQ) board samples and converts conditioned analogue voltage

signals into digital code representations for computer processing and storage through

analogue-to-digital (A/D) conversion. The DAQ board used in this application is a Data

Translation DT303 [39]. Maximum sampling rate for this board is 440 kSamples/s. Several

input channels can be sampled using multiplexing. However, the input circuit shares a

common A/D converter and thus the number of input channels in use usually affects the

sampling rate. The smallest detectable voltage change is 0.024% of the selected input

range.

Signal Conditioning
Device

Figure 3.7: Photo of the PSD sub-system with the signal conditioning device

35

3.4.2 PSD Calibration

By using a beam diameter of 6 mm, the effective position measuring range of the detector

is, as shown in Fig. 3.8, ±6.4 mm. This is because the laser spot has to fall on the sensing

area at all times for valid measurement. Since the DAQ board is sampling voltage,

calibration has to be carried out to obtain a relationship between the voltage sampled and

the relative position of the laser beam. The PSD is first mounted onto a rotation stage and

then onto a 2-axes translation stage as shown in Fig. 3.9. The translation stage is used to

move the PSD along each of the 2 orthogonal axes independently and the rotation stage is

used to ensure that the translations are along the principle axes of the PSD. During the

calibration process, a laser beam is directed onto the centre of the PSD and the PSD is

translated along the x- and y-axes independently at very small increments. The

corresponding voltages from all 4 channels are recorded. The voltage ratio at each position

is calculated as follows [28]:

V -V3 ' (3.1)VRatioX =
Vi+Vx

V -V
VRatioY = 2 4

V +V
(3.2)

where VRatioX and VRatioY are voltage ratio along PSD's x- and y-axes, respectively and

Vc (c = 1,2,3 or 4) are voltages from corresponding channel number.

6 mm

Laser
Beam

6.4 mm
9.4 mm

Figure 3.8: PSD effective range

36 \

Translational
Stage

Figure 3.9: PSD calibration set-up

The voltage ratio is plotted against the position to obtain the relationship between the

voltage ratio and the beam position. This must be performed carefully to ensure accurate

measurements. Fig. 3.10 shows an example of the calibration graph for the full effective

measuring range of the detector. The horizontal axis of the graph represents the voltage

ratio whereas the vertical axis represents the actual beam displacement along the PSD x-

and y-axes. Fig. 3.10 shows that this detector exhibits significant non-linearity when the

beam is positioned more than 4 mm from the centre of the PSD. Therefore the range of ±3

mm is selected. This corresponds to a retroreflector's lateral offset of ±1.5 mm, which

matched the tolerable offset for the Laser Interferometer sub-systera.

Due to the non-linearity of the PSD, 2nd order polynomial are used to describe the

relationship between the voltage ratio and the beam positions. Hie calibration graph is

presented in Fig. 3.11 along with the equations describing the relationship as follows:

PSD-x = 1.519 x VRatioX2 + 7.472 x VRatioX for VRatioX > 0.0

PSD-x = -1.283 x VRatioX2 + 7.391 x VRatioX for VRatioX < 0.0

PSD-y = 1.769 x VRatioY2 + 7.344 x VRatioY for VRatioY > 0.0

PSD-y = -1.351 x VRatioY2 + 7.834 x VRatioY for VRatioY < 0.0

(3.3)

(3.4)

(3.5)

(3.6)

where VRatioX and VRatioY are voltage ratio along PSD's x- and y-axes, respectively,

PSD-x and PSD-y are calculated beam positions along PSD's x- and y-axes, respectively.

37

Actual Displacement along PSD x-axis vs Voltage Ratio for full PSD
range

I

13

«» -
8 -
7

4 -
3
2

0^
1 -

•

•

•

0.2 0.4 0.6

Voltage Ratio

0.8

Actual Displacement along PSD y-axis vs Voltage Ratio for full PSD
range

c 8

.2 5

•m Q. 2

1 I
0.2 0.4 0.6

Voltage Ratio

0.8

Figure 3.10: Calibration graph for full positive range of the detector along PSD x andj-axes

38

Actual Displacement along PSD x-arfs vs Voltage Ratio for PSD range of 0 to 3 mm, 2nd order polynomial

0.15 0.2 0.25

Voltage Ratio

0.3 0.35 0.4

Actual Displacement along PSD x-axis vs Voltage Ratio for PSD range of -3 to 0 mm, 2nd order polynomial

*

i
ok

§

0.00

-0.50

-1.00

-1.50

•2.00

-2.50

-3.00

-3.50

R2» 0.9999

-0.4 -0.35 -0.3 -0.25 •02

Voltage Ratio

-0.15 -0.1 -0.05

Actual Displacement along PSD y-axis vs Voltage Ratio for PSD range of 0 to 3 mm, 2nd order polynomial

y*1.7685x2 + 7.3441x

0.25 0.3 0.35

Actual Diiplacemant along PSD y-axis vs Voltage Ratio for PSD range of 0 to -3 mm, 2nd order polynomial

i , 0.00

| -0.50-C

"8

-1.00

-1.50

-2.00

-2.50

-3.00

-3.50

-0.35 -0.3 -0.25 -02 -0.15 -0.1

y-1.3512x'*7.834x

0.9999

Voltage Ratio

0.4

Figure 3.11: Calibration graph for the range of—3 to 3 mm along PSD x andj-axes using 2* order
polynomial

39

3.4.3 Experimental Analysis

The behaviour of the PSD sub-system is determined by displacing the PSD (thus moving

the laser beam away from the centre) by a known distance and a collection of samples

taken at each position. The positions calculated using Eqs. 3.3 to 3.6 are compared with the

actual displacement. Fig. 3.12 and 3.13 show the mean errors and Root Mean Square

(RMS) errors [40] between the calculated and the actual positions along the x and y-axes,

respectively. From the figures, it can be observed that the mean error of the positions

calculated using Eqs. 3.3 to 3.6 is ±0.16 mm. The calculated positions also have large

fluctuations with a maximum RMS error of 0.17 mm.

To determine the resolution of the PSD sub-system, the following calculation is used.

Using an input range of ±10 V, the smallest detectable voltage is 0.0048 V. Assuming that

the PSD is linear within the ±3 mm range (Fig. 3.11), a beam displacement that will

increase Vi and V2 by 0.0048 V will decrease V3 and V4 by the same amount. The

resolution can then be determined by differentiating Eq. 3.3 and 3.5 to obtain:

resolution along X = 4MJ
-V2 xdVx

(3.7)

' 2

resolution along Y = 4M
'~VA

2xdV2-V2
2xdV4

(3.8)

where Mxi = 1.519 and Mx2 = 7.472 when V3 > V!;

Mxl = -1.283 and M& = 7.391 when V3 < Vi;

Mxi = 1.769 and M& = 7.344 when V2 > V4;

Mxl = -1.351 and M^ = 7.834 when V2 < V4;

Vc (c = 1,2,3 or 4) are voltages from corresponding channel number;

dVc is the change in voltage.

The resolution for both axes was found to be 15 Jim (refer to Appendix A).

40

o.

o

Mean error of Calculated PSD-x position vs Actal Position along PSD x-axis

-&G50-

-0=040-

Jfc©&

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD x-axis (mm)

2.00 3.00 4.00

1

Mean error of Calculaled PSD-y position vs Actal Position along PSD x-axis

W0O-
QQQ

I = 0.0081X1 + 0.0219Xy^~
R' = 0 5895

^0*60-
1=040

- 4 . 0 0 - 3 . 0 0 - 2 . 0 0 -1.00 0.00 1.00

Actual Position along PSD x-axis (run)

ZOO X) 4.00

§

"S

RMS error of Calculated PSD-x position vs Actal Position along PSD x-axis

-O420

-&400

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD x-axis (mm)

2.00 3.00 4.00

RMS error of Calculated PSD-y position vs Actal Position along PSD x-axis

0420-

-ftO80-
040

J.020-

»»»• •

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD x-axis (mm)

2.00 3.00 4.00

Figure 3.12: Mean error and RMS error between calculated and actual beam positions along PSD x-axis

41

2
0 .

h

CO
0 .

I
S

i
o

I

o

C/5

a:

Mean error of Calculated PSD-x position vs Adat Position along PSD y-axis

0=030-
0=040-

-0=060-
-o.oao-

9i x* _ n^i^9jf

M14W-
-4.00 -3.00 -2.00 -1,00 0.00 1.00

Actual Position along PSD y-axis (mm)

2.00 3.00 4.00

Mean error of Calculated PSD-y position vs Adal Position along PSD y-axis

J-Q4Q-

-©.«»•

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD y-axis

2.00 3.00 4.00

RMS error of Calculated PSD-x position vs Adal Position along PSD y-axis

-0080-

-0=070-

-0=066-

0=040-

-0430-

-&020-

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD y-axls (mm)

2.00 3.00 4.00

RMS error of Calculated PSD-y position vs Adal Position along PSD y-axls

Actual Position along PSD y-axls (mm)

Figure 3.13: Mean error and BMS error between calculated and actual beam positions along PSD y-axis

(V

42

The characteristics, thus performance of the PSD sub-system is dependent on several

factors. These include:

1) Beam power directed onto the PSD;

2) Environment and equipment noise;

3) PSD uniformity and misalignment;

4) DAQ board resolution and accuracy.

Since the amount of photocurrent produced from each channel is directly proportional to

the magnitude of the beam power incident on the PSD sensing area, a lower beam power

generates a lower photocurrent. The ratio of this signal-carrying photocurrent to the ratio of

the dark current (i.e. signal to noise (S/N) ratio) produced by the detector is therefore

lower. This will reduce the resolution and accuracy of this sub-system. With the rise of

temperature, the responsivity of the PSD decreases while the magnitude of dark current

increases. This v.111 also lower the S/N ratio, which further reduces the resolution and

accuracy.

In addition to the dark current, there are other factors that will affect the performance. Fig.

3.14 shows the frequency analysis for a PSD channel. The frequency plot shows peaks at

the frequency of 50Hz and at subsequent harmonics. A possible source of these peaks is

the noise currents generated by the amplifier in the signal conditioning device, the PC and

other surroundirt:, electronics [26,41]. The noise currents were determined by sampling the

voltages from the PSD by covering the sensing surface of the PSD. In view of the fact that

no light falls on the PSD, the voltages from all channels should be at minimum (i.e. 0.00V

in this case). However, experimental results show that all channels exhibit high voltage

fluctuation when the sensing surface of the PSD is covered. An example of a voltage plot

is shown in Fig. 3.15. The effect of these noises can be examined by rewriting Eq. 3.7 and

3.8 as follows:

(3.9)

(3.10)dPSD-y = 4M
V Mia)'

where dPSD-x and dPSD-y represents the change in PSD-x and PSD-y, respectively, dlnc

and Ic (c = 1,2,3 or 4) are noise currents and photocurrents from each channel, respectively.

From these equations, it can be observed that higher signal-carrying photocurrents from

each channel will increase both the numerator and denominator, but at a higher rate for the
43

denominator. Therefore, the change of PSD-x or PSD-y due to the noise currents will be

smaller. Moreover, a smaller coefficient Mxj or My* (i = 1, 2) will also reduce the effect of

noise currents. However, this coefficient is directly related to the measuring range of the

detector and can only be reduced by using a smaller detector [28].

Figure 3.14: Fmrier frequency transform of PSD s channel 12 sampling at 4000 H%

Minimum voltage at Channel 12 when no light falls on the PSD

No. of Sample

Figure 3. IS: Minimum voltage from PSD's channel 12 with no light falling on PSD

44

To reduce the effect of noise, a moving average technique is used. The average of a fixed

number of previous samples with the current sample is acquired. This will diminish the

effect of the noise current, while allowing the detection of voltage change due to the actual

offset of the beam from the centre of the PSD. Fig. 3.16 and 3.17 show the RMS errors of

calculated beam positions along PSD x- and y-axes, respectively, using a moving average

technique with a period of 5. By comparing with Fig. 3.12 and 3.13, it can be observed that

the RMS errors reduces by an order of 2 with the use of moving average to smooth the

signal. The corrected signal is therefore more stable. The number of samples used in the

averaging should be resolved with the consideration that higher number of samples used

will decrease the responsivity of the tracking controller to the sudden change in actual

beam offset. The tracking controller will be lagging by a factor of 5 in this case.

Other measures that can be used to remove noise without affecting the responsivity of the

controller are by using a better operational amplifier and other electronic components in

the amplifier circuit. Appropriate shielding of the amplifier circuit from the surrounding

electronics can also be implemented.

Q

3

RMS error of Calculated PSD-x position vs Actal Position along PSD x-axis with moving average of period 5

-046Q

-G.O60-

-&O40-

• • •

-©£00

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD x-axis (mm)

2.00 3.00 4.00

RMS error of Calculated PSD-y position vs Actal Position along PSD x-axis with moving average of period S

>.
6
0

•5

-0T440-

Q 4 OQ

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD x-axis (mm)

2.00 3.00 4.00

Figure 3.16: RMS error of calculated beam positions along PSD x-axis with moving average

45

6w
Q.

RMS error of Calculated PSD-x position vs Actal Position along PSD y-axls with moving average of period S

-O069

-&O6O

0=040

&090

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD y-axis (mm)

2.00 3.00 4.00

f
o 3.
"5

RMS error of Calculated PSD-y position vs Actal Position along PSD y-axis with moving average of period 5

-0:090-
0.080
0.070
0.060

-&030-
-OG20-
-&040-

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD y-axis (mm)

2.00 3.00 4.00

Figure 3.17: RMS error of calculated beam positions along PSDj-axis nnth moving average

A detailed analysis of Fig. 3.12 and 3.13 show that mean error of calculated beam position

PSD-x changes with the translation of beam along PSD y-axis and vice versa. This is due

to the non-uniform responsivity of the PSD throughout the surface as well as misalignment

of the PSD. This relationship can be represented by the following equations:

ErrX =-0.0021 xPSD-y2 -0.0117xPSD-y (3.11)

ErrY = 0.008 lx PSD-x2 + 0.0219 x PSD-x (3.12)

where ErrX and ErrY represents the errors of calculated beam positions, PSD-x and PSD-

y, respectively.

By compensating the error of calculated beam positions with results from Eqs. 3.11 and

3.12, followed by the moving average technique, the mean error of the calculated PSD

positions has been reduced to ±0.07 mm with a maximum RMS error of 0.09 mm. The

results for beam positions along the PSD x- and y-axes are plotted in Fig. 3.18 and 3.19.

46

Mean error of Calculated PSD-x position vs Actal Position along PSD x-axis with compensation and moving
average

-&060-
-0=040-
-0=030-
-&020-

» • *

-4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00

Actual Position along PSD x-axis (mm)

3.00 4.00

Mean error of Calculated PSD-y position vs Actal Position along PSD x-axis with compensation and moving
average

I
3

UJ 0 .

-40.&0-

-&04&

—0 020

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD x-axis (mm)

2.00 3.00 4.00

RMS error of Calculated PSD-x position vs Actal Position along PSD x-axis with compensation and moving
average

6

•
• •

—0IQ6G-
0 060

0 6*30 i
1 • • • *

•
•

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD x-axis (mm)

2.00 3.00 4.00

RMS error of Calculated PSD-y position vs Actal Position along PSD x-axis with compentat-on and moving
average

"5 >•

-0r060-

-ftOOO-

_» *

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD x-axis (mm)

ZOO 3.00 4.00

Figure 3.18: Mean emr and RMS error of calculated beam positions along PSD x-axis with compensation
and moving average

47

6
CO
CL

1
8
3

Mean error of Calculated PSD-x position vs Actal Position along PSD y-axis with compensaticn and moving
average

-0420

0=04fl
-0=046
-0=020
-0=026

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD y-axis (mm)

2.00 3.00 4.00

Mean error of Calcuiated PSD-y position vs Actal Position along PSD y-axis with compensation and moving
average

i
o
•5

-0&50

-0=040

•0.020

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD y-axis (mm)

2.00 3.00 4.00

6
CO
0 .

o
•5 *

V)

RMS error of Calculated PSD-x position vs Actal Position along PSD y-axis with compensation and moving
average

-O&4&
-0=036

-0=005

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD y-axis (mm)

2.00 3.00 4.00

RMS error of Calculated PSD-y position vs Actal Position along PSD y-axis with compensation and moving
average

I

•s >•

•

—Qt400-

n rinn

0 060

0 020

0=000-

• * •

-4.00 -3.00 -2.00 -1.00 0.00 1.00

Actual Position along PSD y-axis (mm)

2.00 3.00 4.00

Figure 3.19: Mean and RMS of calculated beam positions along PSD y-axis with compensation and moving
average

48 K \

It must be emphasised that the improved mean error and RMS error using above

calibration techniques applies only to this particular PSD connected to specific channels on

the signal conditioning device. Calibration has to be performed all over again in the event

of a change of PSD or change in its set-up, as well as a switch to other channels.

As mentioned before, the DAQ board uses an A/D converter to convert the input analogue

voltage into a digital representation. A higher resolution A/D converter will provide a more

accurate digital representation of the analogue voltage. In addition, when the input voltage

is increased, the digital representation should also increase linearly. In reality, some non-

linearity exists and this is measured by the Effective Number of Bits (ENOB) [42, 43],

which measures the overall accuracy of the DAQ board. A higher ENOB DAQ board will

provide more accurate measurements.

3.4.4 Sub-system Interface

Two different types of input operations are provided by the DAQ software development kit

(SDK) [44]. They are the single value operation and the continuous buffered input

operation. The single value operation is preferred because real time data can be obtained at

a higher rate. In the single value operation, each data value is being sampled and returned

immediately. For a 4 channels sampling, the channels are sampled sequentially by

changing the channel in the software program. The software calculates the relative position

of the beam after sampling all 4 channels. The current maximum update rate is 1000 Hz

(4000 Samples per second). This rate is slow given that the maximum sampling rate

specified is lxl05 samples per second for 4 channels. This is again due to the fact that the

PC's processor is slow in processing the user commands and the sampled data as well as

the multitasking nature of the Windows operating system. This rate can be increased by the

use of a faster processor.

The PSD sub-system is the most important sub-system in the LISM apparatus. The

performance of this sub-system will directly affect the performance of the LISM apparatus.

With an update rate of 1000 Hz (500 Hz in Nyquist Frequency) and a maximum position

measuring range of ±3 mm, the maximum target velocity of 750 mm/s in the direction

perpendicular to the laser beam can be achieved (1 mm lateral offset of the target

retroreflector generates 2 mm tracking offset on the PSD). As mentioned previously, the

use of moving average will reduce the responsivity of the controller and thus lower the

49

maximum target velocity. A moving average with a period of 5 will reduce the maximum

target velocity to about 150 mm/s.

3.5 Beam Steering sub-system

3.5.1 Specifications

This sub-system consists of a stepper motor with an optical encoder and a servo motor with

resolver. These motors used to provide the horizontal and vertical rotations of the beam

steering mirror, allowing the laser beam to be directed towards the centre of the

retroreflector. The vertical axis is driven by a Compumotor DR11Q0E direct drive servo

motor system with resolver feedback [45]. The resolution of this motor is 0.00059° with an

accuracy of 0.0125°. A maximum speed of 1.5 revolutions per second is permitted. The

horizontal axis is driven by a Rorze stepping motor driver with microstep capability of up

to 80000 steps per revolution (0.0045°) [46]. The encoder attached to the motor has a

resolution of 40000 steps per revolution (0.009°). The maximum velocity of this axis is

6.25 revolutions per second. This axis is driven in open-loop as the motor may become

unstable in a closed-loop configuration. In order to satisfactorily implement a closed-loop

stepper motor system, the motor must have a resolution 4 times higher than the encoder

[47]. With the current encoder, a motor resolution of 160000 steps per revolution is

required.

Both motor systems are connected to the Acroloop ACR2000 4-axes motion controller

card [48]. This is a 32-bit floating point, multi-tasking Digital Signal Processor (DSP)

based motion controller. The controller has a separate operating system with onboard

multi-tasking executive. This separate operating system allows the time critical events to

be handled by the Acroloop controller, which thus release the supervisory control unit's

processor for other tasks.

3.5.2 Experimental Analysis

The most important function of the beam steering sub-system is to provide optimal and

smooth tracking of the moving target retroreflector. As the motion of the target

retroreflector in 3D workspace is random, the motor controller of the beam steering sub-

system must have fast response to follow the random motion of the target. A high response

is also critical in maintaining the interference between the measurement and the reference

50

beams at all times during tracking for dynamic measurements. As the ACR2000 controller

employs a full PID control algorithms, the PID settings and the motion profile of the

motors must be properly tuned to improve performance [49].

Another function of the beam steering sub-system is to provide the supervisory control unit

with the current angular positions of both motors for the calculation of the Cartesian co-

ordinates of the target. This requires that the steady-state error of the motors to be as small

as possible in order to obtain high accuracy measurements. High motor resolution is also

necessary for smooth tracking and accurate measurements.

In this study, the beam steering sub-system's configuration shown in Fig. 3.20 is

employed. In this configuration, the first mirror's position is fixed and is used to direct

laser beam towards the second mirror directly on top. The second mirror is rotated by the 2

motors to direct the beam towards the target retroreflector. As there is only 1 moving

mirror, this configuration is easier to fine-tune. However, the laser beam path is

perpendicular to the rotation axis of the 2nd motor. The effective resolution of the 2nd motor

is reduced by a factor of 2, as a motor rotation of 1° will result in a beam angular

displacement of 2°.

The performance of the motors was determined by investigating the response of each

motor to a step input. By varying the motion profile (i.e. velocity and acceleration settings)

and the PID values, the steady state error, rise time and percentage of overshoot were

determined from the response curve to a step input. The step sizes selected was for a

tracking offset of 1.5 mm with retroreflector at various radial distances (beam

displacement from the intersection of the horizontal and vertical rotation axes). A sample

response curves for both motors are presented in Fig. 3.21 and 3.22, with the other

response characteristics tabulated in Table 3.1.

From Table 3.1, it can be observed that the servo motor has negligible steady state error

compared to the stepper motor. This is due to undetected position loss in the open-loop

stepper system. The percentage of overshoot in the servo motor is high due to high gains.

Beam offset produced due to overshooting is nonetheless within the ±3 mm range, so beam

interference is not interrupted, fhe stepper motor has zero overshoot. The rise time for

both motors are about 20 ms. However, it can be noticed that both motors require a

considerable amount of time (about 300 ms) to reach steady state. For the reasons that a

51

new motion command will not be executed when one is currently active and that the

commanded position cannot be changed on the fly, this long delay can affect the

performance of the LISM apparatus during a target following process.

Beam steering

mirror

Motor 1
(Servo Motor
with resolvef)

Motor 2
(Stepper Motor
with optical
encoder)

Fixed
Mirror

Figure 3.20: Beam steering sub-system with 2 mirrors

52

.21 .-Motor 1 response with target at 1000mm

Figure 3.22: Motor 2 response mth target at 1000mm

53

Table 3.1 Motor response characteristics

Motor 1
Radial

Distance
(mm)
1000
500
300
100

Input
step
size
147
293
489
1467

Final angular
displacement

(steps)
146
292
488
1466

Overshoot
(steps) (%)

33
17
67
133

22.45
5.80
13.70
9.07

Rise Time
(ms)
20
20
20
20

Steady
state
error
1 step
1 step
1 step
1 step

Beam offset
due to

overshoot (mm)
0.337
0.087
0.206
0.136

Motor 2
Radial

Distance
(mm)
1000
500
300
100

Input
step
size
10
19
32
96

Final angular
displacement

(steps)
8
20
30
96

Overshoot
(steps) (%)

0
0
0
0

0.00
0.00
0.00
0.00

Rise Time
(ms)
20
20
20
20

Steady
state
error

2 steps
1 step

2 steps
0

Beam offset
due to steady

state error (mm)
0.314
0.079
0.094
0.000

3.6 Supervisory Control Unit

3.6.1 Specifications

The supervisory control unit (SCU) used in this set-up is an Intel based Pentium HI 866

MHz personal computer with 256Mb RAM. SCU is running on Windows NT and the

control software is developed using Microsoft Visual C++ 6. The object-orientated

programming architecture in C++ enables decomposition and abstraction of the sub-

system's operations into object modules. The decomposition and abstraction offer easier

management of the complexity of the program due to the amount of code and the range of

activities [50, 51]. Further, all the details of the operations of the sub-systems can be

hidden from the user. This program architecture is also more efficient when the hardware

used in each sub-system is changed, as only the object responsible for the operation of the

sub-system has to be modified [38]. Fig. 3.23 shows the schematic diagram of the sub-

systems' structure in the SCU PC. The software architecture of the sub-systems is

described m the next section.

Fig. 3.23 shows that the main module holds the Target Position Computation (TPC). TPC

requires the current motors' angular displacements, along with the tracking offset

measured by the PSD and radial distance recorded by the laser interferometer. These

values are obtained via the sub-systems' objects, which communicate with the respective

hardware's drivers to send commands ani poll data from the hardware. As described in

Section 3.5.1, the on-board operating system in the Acroloop controller allows the off-

54

loading of the time-critical motion program into the controller. In this set-up, the Target

Following Control Algorithm (TFCA) will be loaded into the on-board program. User

variables can be defined in the on-board program to store external data transmitted into the

Acroloop hardware registers [52]. Variables for the PSD readings and the Zygo

measurement will be updated by the PSD and ZYGO object's thread, respectively, at its

sampling rate. Encoder object provides the main module with the sampled encoder counts.

Encoders Motors

PSD

m
D D

DT303

PCI Bus

PSD Object

MCUPC

u.—^> Command Flow Path

Data Flow Path

• Physical Interface

ACR2000

Target Following
Control Algorithm

n
ISA Bus

Encoder
Object

Main Module

Target Position
Computation

ZMI-1000 Controller

Figure 3.23: Schematic diagram o/USM sub-systems' structure

55

, ' » • *

3.6.2 Sub-systems* Software Architecture

Three objects are used to represent three sub-systeins. These are the Encoder Object, PSD

Object and Zygo Object. Each uses different code to operate its associated hardware. Fig.

3.24 to 3.26 show the flowcharts of the software architectures for these objects.

Each object, once started, will first initialise and commence communication with the

corresponding hardware. Variables used to store the corresponding raw values are then

declared and initialised. As shown in Fig. 3.24 to 3.26, each object consists of a thread. A

thread is a C++ programming facility providing the support for pre-emptive multitasking

(i.e. the ability to run more than one section of code simultaneously) [53, 54] within a

program by switching rapidly between running sections. The thread in each object

continuously loops through its section of code to sample the raw values from the

corresponding hardware. The raw values are converted into informative data that can be

used by the TFCA and the TPC in the main module. These data and the monitored sub-

systems' frequency are transmitted to the Acroloop hardware registers and the main

module, respectively, when requested. The operating system decides which section of code

is to be run at a given time, based upon factors such »s priority setting and whether a

particular section is waiting to read or write. By switching between threads, data sampling

from all sub-systems appear to be running simultaneously. However, it is not desirable to

have too many threads running at the same time due to the processor's and computer's

memory limitations. Therefore, careful consideration must be taken as to whether each

thread is necessary. Further, the programmer has no control over how often a thread is

executed. A thread with a higher priority setting or associated with simpler task will be

scanned through more often.

When the user stops the control program, each object's sampling thread will first be

terminated. The communication with the hardware will then be closed and any memory

allocated for the variables will be cleared.

3.6.3 Control Program Software Architecture

When the control program is executed, the link with all objects is first initialised. Variables

used in the program will then be declared and initialised. A window interface as shown in

Fig. 3.27 will then be presented to the user. Fig. 3.28 shows the flowchart of the software

architecture for the control program.

56
<• V *

Start

Initialise and set up
communication with

hardware

Thread section

Initialise local
variables

0c1, e^

Start thread

r

Get encoders' counts

r

Convert encoders' counts
to angles

Send 0c1 & 8^ to
main module

t

Send sampling
frequency, Freqm(Vtor to

main module

NO

End Thread

Close
communication with

hardware

Clean up allocated
memory for local

variables

End

YES

Figure 3.24: Software architecture of Encoder object

Thread section

Start

Initialise and set up
communication with

hardware

Initialise local variables
PSD-x, PSD-y, FreqpSD, V,,

V2,V3,V4,VRatioX,
VRatioY

Start thread

Sample 4 PSD
channels' voltages

Convert voltages to
beam positions on PSD,

PSD-x, PSD-y

Send PSD-x & PSD-y to
main module and TFCA

Send sampling
frequency, Fret^SD to

main module

NO

End Thread

Close communication
with hardware

Clean up allocated
memory for local

variables

End

YES

Figure 3.25: Software architecture of PSD object

57 " V . %

' ' ' ' • • ' ,

Start

Initialise and set up
communication with

hardware

Initialise local variables

Start thread

Thread section

Sample interferometer
count

Convert interferometer
count to beam radial

distance, l ^

Send \nM to main
module and TFCA

Send sampling
frequency Freq^

tor lain module

End Thread

Close
con muni cation with

hardware

Clean up allocated
memory for local

variables

End

YES

Figure 3.26: Software architecture ofZygo laser interferometer object

m

mm
!4

i l l4

I

.TTOJ*

Figure 3.27: Control software user interface

m
I

58

Start r Thread section

Initialise and link
with i ub-systems1

objects

Initialise locai
variables Ax, Az, A8j,

A92, x, y, z

Open file for data
storage

Start sub-systems'
thread

Start thread

GetPSD-x.PSD-y. l^ ,
8cl & 0^ from sub-

systems' objects

Calculate current
target position x, y, z

NO

YES

Run TFCA in
Acroloop

Display and save data
to file

Stop TFCA

End Thread

Stop sub-systems'
object

Clean up allocated
memory for local

variables

End Program

Figure 3.28: Software architecture of control program

The operator uses the buttons to initialise each sub-system and start or stop each sub-

system's sampling thread. The control program consists of another thread. This thread

contains code sections for kinematic equations (to be discussed in the next chapter) for

Target Position Computation (TPC). The TFCA will only be carried out if tracking is

started. The TFCA takes the tracking offset measured by the PSD, the radial distance

recorded by the laser interferometer and the current positions of both motors to compute

the necessary rotations for each motor. The Cartesian position of the target retroreflector

with respect to a reference co-ordinate frame will be calculated using the kinematic

equations and stored in the allocated variables, updating on the screen every second. The

Cartesian position, together with the measurements recorded from the sub-systems, will

also be written into a file in this thread for off-line analysis purposes. When the program is

5? V

stopped, each object will be called to terminate its sampling thread. The target following,

target position calculation and file writing processes will then be terminated. Link with

objects and memory allocated for local variables will be cleared.

Table 3.2 tabulates sampling frequency of all sub-systems and the rate of execution of

control program's thread. From the table, it can be observed that the limiting factor that

affects the speed of tracking is the execution rate of the TFCA in the motor controller. An

overall LISM update rate of 50 Hz (20 ms) can be achieved, which is just sufficient for

real-time target following. Computation of the target position is carried out at 15 Hz.

The tracking and measuring rate in the current set-up is limited by the low processing

power of the PC. Maximum sampling rate for the sub-systems cannot be achieved due to

limited real-time capability of the Windows operating system. The slow sampling rate is

also due to high processor load caused by the large number of sampling threads in the

control program. The tracking and measuring rate can be improved by adding an analogue

and RS232 input on the Acroloop controller card. PSD and Zygo data can be transmitted

directly into the Acroloop hardware registers, which thus reduced the load of the PC

processor. Additional DAQ board and hardware driver are not required, which will

improves the sampling rate of the sub-systems. High data transfer rate in the Acroloop

DSP (Texas Instruments™ TMS320C3X [48, 55]) also allow for higher sampling rate. The

SCU PC will be used to provide user interface and TPC, while the DSP in the Acroloop

controller will be employed solely for TFCA. This design should result in a more efficient

PC-DSP hybrid LISM control architecture.

Table 3.2: Sampling frequencies of sub-systems and thread in control program

Processes
PSD sampling
Encoder sampling
ZYGO sampling using RS232
Computation with TPC
TFCA in Acroloop Controller

Min(Hz)
514

10
81
10
40

Max (Hz)
584
26
88
15
50

60
, «,•

3.7 Target Following Control Algorithm (TFCA)

As mentioned in the previous section, the motor controller includes an inner-loop PID

controller. The TFCA converts the measurements from the sub-systems to the command

signal for the motor controller. This section outlines the algorithm used for this conversion.

3.7.1 Estimation of Birdbath's Laser Radial Distance and Motor Angles

Prior to the target following process, a tracking reference (TR) point has to be located. It

was decided that this point should be the intersection point between the horizontal and

vertical rotation axes. The LISM control system records the radial distance from point TR

to the target, together with encoders' values and the PSD offsets to calculate the necessary

rotations for both motors. Moreover, an initial reference target position, called the birdbath,

was used to initialise the laser interferometer as well as the azimuth and elevation angles of

both motors. Fig. 3.29 shows the schematic representation of the beam steering

mechanism, illustrating the birdbath and its relative distance from the TR.

3.7.2 Motor Angular Rotation Calculation

As Motor 2 of the beam steering mechanism is responsible for maintaining tracking in the

LISM z direction, calculation for the amount of rotation required for this motor was

derived from the schematic shown in Fig. 3.30. The figure shows the retroreflector's initial

position at point A at time t=0 with the laser beam path shown in red. The laser beam is

hitting the centre of the retroreflector and there is no beam offset. Point B indicates a new

retroreflector position at time t=tu (where tu is the LISM update period). Thf, dotted line

indicates the propagation of the laser beam before any rotation of the mirror has taken

place. The current radial distance recorded by the interferometer will be half of the

distance of the path TR-C-D-E-F. Since C-D = i>F = V* x A-C, this distance is equivalent

to the distance TR-A (refer to Appendix B). The target lateral offset Ad2 is calculated as

described in the next section. The commanded angular displacement for motor 2 A&2 is

calculated using the following equation:

(3.13)

where lnM represents the current radial distance recorded by the laser interferometer and

Ad2 represents the current target lateral offset for motor 2.

61

301.721 mm

Motor 2

M i r r o r 1 Side View

Mirror 2

Top View

143.015 mm
Target

Retroreflector
at birdbath

143.015
mm

301.721 mm

.,(143.015
25 361°

= V143.0152+301.721* = 333.899mm

Figure 3.29: Schematic representation of beam steering mechanism

mirror 2
retroreflector

.iO." Angular rotation for Mirror 2 with target moving along USM t^-axis

62

</
mirror 2

TR |G

1 ^ /

retroreflector

\ s . E

/ ^ D

i . i / : Angular rotation for Mirror 2 with target moving along USMj^-pJane

The factor of Vz is used because a motor rotation of 1° will result in a beam angular

displacement of 2° for motor 2. A similar approach was taken for motor 1 and the

commanded angular displacement for motor 1 A &x is calculated from:

-t (3.14)

where &ct represents the current angle of motor 2 and Adi represents the current target

lateral offset for motor 1.

Fig. 3.31 shows another schematic representation of the beam propagation when the

retroreflector is displaced along yz plane. There are now additional displacements along y-

axis. The current laser interferometer radial distance recorded by the interferometer will be

half of the distance of the path TR-D-E-F-G. This distance is equivalent the distance of

TR-B (Appendix B). The rotation angle required for motor 2 and motor 1 can also be

calculated using Eq. 3.13 and 3.14, respectively.

3.7.3 Target Lateral Offset Determination

Fig. 3.32 and 3.33 show the diagrams of beam steering mechanism when motor 1 is at 0°

and at 90°, respectively. These figures show that when the target retroreflector is displaced

along LISM z-axis, the beam offset detected by the PSD wil! be along the PSD y axis in

Fig. 3.32 and PSD x-axis in Fig. 3.33. Beam offsets detected by the PSD have to be scaled

by the following equations to determine the magnitude of Adi and Ad2 in Eqs 3.15 to 3.16.

Adi and Ad2 are only dependent on the current angular displacement of motor 1.

63

Ad, = -(PSD-xxcos«9c, + PSD-y x sin &cl)

Ad2 = - (- PSD-x x sin &cX + PSD-y x cos ,9e,)

(3.15)

(3.16)

where PSD-x and PSD-y are the beam offsets detected by the PSD along the PSD's x- and

3'-axes, respectively and &el represents the current angular displacement of motor 1.

Target 1 ^ £ _
lateral & n

offset t
Mirror 2

Motor 1 at
0 degree

Reflected laser beam
•=£> Incident laser beam

Beam
offset PSDy

-1 Jk
~T

PSD
Mirror 1

Figure 3.32: Beam steering mechanism when Motor 1 atO decree

Target 1 ^
lateral TT
offset T

Motor 1 at
90 degree

X

Mirror 2

i i

Mirror 1

Reflected laser beam
Incident laser beam

PSDy

PSDx

PSD

Figure 3.33: Beam steering mechanism when Motor 1 at 90 degree

64

3.7.4 Control Algorithm- Position Mode and Velocity Mode

In position mode, the rotational angular displacements calculated from Eqs. 3.13 and 3.14

are sent to the motor controller. The motors will then go through the specific motion

profile to move hy the commanded angular displacement. Since the commanded angular

displacement cannot be changed on the fly in this particular controller, the motors have to

come to a halt before the next motion command is executed. Fig. 3.34 shows the block

diagram of this control approach. In velocity mode, the motors are commanded to run

continuously where the velocity is controlled. Each motor's velocity could be changed on

the fly. Thus, the motors do not have to stop and start between positional changes when

tracking. The commanded velocities are computed so that the motors' motion does not

exceed the desired angular displacement before the next velocity command. With an

overall LISM update of 50 Hz, the commanded velocity can be calculated by the following

equation:

° - A<9' - (3.17)

where i is the motor number, ASf is the angular displacement calculated using Eq. 3.13

and 3.14, and £, is the commanded angular velocity for motor i. A period of 40 ms is used

to account for the time required to accelerate and decelerate to the desired velocity. The

control block diagram is as shown in Fig. 3.35.

V
i

Beam
positions

Laser
Interferometer

Radial
distance

S) ,
J Beam

offsets

4

t

TPC&
TFCA

J

voltages

current

A Q

curren&a

PSD

Motor PID
controller

k-r

track Retrorefiector
Displacement

Figure 3.34: LISM position control block diagram

65

'"Va

X
Beam

positions

Laser
Interferometer

Radial
distance

~/ Beam
offsets

KPSD

?urre>UQci

r i

TPC&
TFCA

i
0

voltage.5

currenl&c2

Motor PID
controller

Mnfrhrc
InOlUI S»

PSD

iracK Retroreflector
Hlsplat

Figure 3.35: USM velocity control block diagram

Laser
Interferometer

1=0/

Radial
distance! ,

Beam
offsets

Bterj*"
current!),,

TPC
Position!

Velocity

Estimate Pndlctor

Future
positions

Transformation

Acceleration
AS,

Motor PID
controller Motors

track RttroraflMtor
DlspUMimnt

Beam
positions

voltages
PSD

current Sti

Figure 3.36: LISM predictive control block diagram

3.7.5 Predictive Control Algorithm

In order to improve the tracking speed of the target retroreflector, a predictive control

algorithm has been implemented [36]. The proposed algorithm requires the position of the

retroreflector in Cartesian space to be known during tracking so that the velocity and

acceleration of the retroreflector can be predicted. This control algorithm comprises an

estimator and a predictor. Fig. 3.36 shows the block diagram of LISM controller 'with the

predictive control algorithm.

The TPC computes the position of the retroreflector based on the sensor's data from the

sub-systems and sends these data to the estimator. The estimator uses the current and past

retroreflector positions to estimate the velocity and acceleration of the target. This is

undertaken using the following equations:

x(k) -x(k- (3.18)

66

-

u *u

(3.19)

where /„ is the LISM update interval, x(k) is the actual position at time k, x(k) and x(k)

are the estimated velocity and acceleration, respectively. This method has the advantage of

computational efficiency but suffers from sensitivity to measurement noise.

The predictor module predicts the next position of the target using the current measured

position, estimated velocity and estimated acceleration. This prediction is based on the

assumption that the states of the target cannot change drastically within a few sample

intervals due to inertia. The next position of the target retroreflector is calculated using the

following equation:

1 .. 2
u 2 "

where x(k+\) is the predicted position at time k+1. The predicted positions are

transformed to the future set point angular displacement of the motors.

To convert the incremental position information calculated from Eq. 3.20 into incremental

angular displacement of the motors, the relationship between the current position of the

centre of the retroreflector and the required angular displacement of the motors must first

be established. Fig. 3.37 shows the schematics of the beam path for retroreflector moving

along LISM yz-plane. From Fig. 3.37, lradiai, QC2 and Ad2 are the measurements obtained

from the sub-systems. As shown in Fig. 3.37, there is an additional displacement of the

laser beam when the laser beam is not pointing precisely at the centre of the target

retroreflector. By using the laser displacement detected, together with the PSD

measurements and the current angular displaceme it of the motors, the current z position

2current of the retroreflector's centre can be obtained from:

current Zin-.agmc,y + (3.21)
c2

is an imaginary z position directly on top or below Zcurrcnt. This imaginary position

can be determined by:

7. = /
imaginary imaginary

Ad2 (3.22)

where 1 imaginary is the radial distance from the tracking reference TR to the imaginary

position and lradtai is the current radial distance recorded by the laser interferometer.

67

^imaginary—!

Zc:urrent

Figure 3.37: Laser beam path with target moving along LJSMj^-plane

Substituting Eq. 3.21 into Eq. 3.13 gives:

* radial

\ Z current ~ Z imaginery

^radial

(3.23)

Fig. 3.38 shows the schematics of th? beam path for the retroreflector moving along LISM

xy-plane. Current x position of the retroreflector's centre xcurrent can be obtained by:

x = x -1 -
current "imaginary n r . c Q

(3.24)

imaginary hmaginary-xy

cl

(3.25)
9cl - Ad2 tan 2&c2) cos 2i9c2 sm 8cl

where lima&nary-xy is the radial distance from the tracking reference TR to the imaginary

point on xy-plane.

By substituting Eq. 3.24, Eq. 3.14 can be written as:

, = tan
- i = tan"

el.

~~ \Xairrent ~ Ximaginary (3.26)

68

Figure 3.38: Laser beam path with target moving along USM xy-plane

With the implementation of the predictive control algorithm, the current positions of the

retroreflector's centre is replaced by the predicted positions. Therefore, Eq. 3.21 and 3.24

can be rewritten as follows:

- * tan
2

"'I

A«9, = t a n - i

1 radial

*• predict •*imaginary

(3.27)

(3.28)

where zpredict and xpredjct are the predicted z and predicted x positions, respectively.

For velocity control, the new commanded velocity is calculated by the following equation:

£ = A<9< , (3.29)
' 40xl0"3

where i is the motor number, A<9, is the angular displacement calculated using Eq. 3.27

and 3.28, and 9, is the commanded angular velocity for motor i.

69

In this approach, instead of only correcting the tracking offset, the LISM controller will

rotate the beam steering mechanism to position the laser beam at the predicted position.

When the beam is being directed to this position, the retroreflector would have moved and

there will again be a tracking offset. The next tracking loop will take the new sub-systems'

measurements to update the estimates of the velocity and acceleration. The velocity and

acceleration is again used for the prediction of the following position. Tracking behaviour

can be increased considerably, since knowledge about the future is used to minimise the

tracking offset.

3.8 Experimental Investigation

Experiments were conducted to determine the behaviour of the control algorithms

presented for the LISM apparatus. The criterion for evaluation of the behaviour and

effectiveness of the methodology is the magnitude of the tracking offsets detected by the

PSD. The lower the magnitude, the more effective the algorithm, hi addition, the

algorithms were also evaluated for their ability to follow the target running at different

velocities. The working range of the LISM apparatus was also determined. The

experiments conducted involved the tracking of the motion of the target retroreflector

mounted on a Motoman SKI20 robot manipulator. The robot was commanded to move

along a 3D path at different velocities. The results are presented in Figs. 3.39 to 3.44.

Figs. 3.39 to 3.41 show the PSD readings for the Target Following Control Algorithm

(TFCA) in position mode. From Figs. 3.39 to 3.41, it can be observed that there is a

significant amount of oscillation in the PSD readings. These Oa .ilations are due to the

noise in the PSD. The TFCA picks up the tracking offsets due to target displacement with

noise values and perform corrections by driving the corresponding motors, thus causing

under or over correction of the tracking offsets. The other reason is due to the overshooting

of the motors. The tracking offsets detected by the PSD due to overshoot were corrected

when the robot moves towards the next position. This will direct the beam away from the

centre of the retroreflector in the direction opposite to the travel of the target, creating a

larger tracking offset. This leads to the swinging of the beam about the centre of the

retroreflector. Other possible reasons are the coupling effect between both motors,

vibration of the mirror due to tumbling of motors and hysteresis effect [47].

70

PSD readings using position mode tracking vs time

-PSO-y

Time (ms)

Figure 3.39: PSD readings usingposition mode tracking with robot moving at velocity of 10mm/s and
acceleration of 10mm I s2 with target at 0.6m

Mean PSD-x = 0.4mm
PSD-x oscillation = 1.15mm, -0.26mm
Mear I SD-y = -0.4mm
PSD-y oscillation = 0.67mm, -1.32mm

PSD readings using position mode tracking vs time

Time (ms)

——-PS^yJ

Figure 3.40: PSD readings usingposition mode tracking with robot moving at velocity of 10mm/s and
acceleration of 10mm/s2 with target at 1m

Mean PSD-x = 0.4mm
PSD-x oscillation = 1.14mm, -0.14mm
Mean PSD-y = -0.4mm
PSD-y oscillation = 1.54mm, -2.41mm

71

PSD readings using position mode tracking vs time

•2.3

•3

- P S D *

-PSO-»

Time (ms)

Figure 3.41: PSD readings using position mode tracking with robot moving at velocity of'20mmfs and
acceleration of 10mm/s2 with tatget at 0.6m

Mean PSD-x = 0.8mm
PSD-x oscillation = 1.87mm, -0.1mm
Mean PSD-y = -0.8mm
PSD-y oscillation = 0.77mm, -2.32mm

By comparing Fig. 3.39 with Fig. 3.40, it can be noticed that the magnitude of oscillations

for PSD-y increased with the distance of the target from the LISM apparatus. This is

caused by the inaccuracy of Motor 2, where there are undetected position losses in the

open-loop stepper system. The position loss was shown in Table 3.1 to be higher with the

target located further away from the LISM apparatus. Moreover, it can be observed from

Fig. 3.22 that there is a delay of about 300ms before motor 2 reaches the commanded

angular displacement. Within this period, the tracking offset detected is further corrected,

causing over correction. Moreover, the mean offset should be smaller with the increase in

target distance. However, no decrease in mean offset can be observed. This is due to the

slow update of the TFCA algorithm. With a target moving at lOmm/s, the beam offset

created along the PSD x- and y-axes at every update interval of 20ms is 2 x 10 x 20 x 10'3

= 0.4 mm. Another possible reason is due to imperfections in the retroreflector used. The

laser beam was not being reflected through an angle of 180°, rather with a slight angular

deviation [27]. Therefore, there could be a slight change in path of the beam and increases

the tracking offset detected by the PSD. This offset due to beam angular deviation

increases with the target distance.

72

By comparing Fig. 3.39 with Fig. 3.41, it can be observed that the magnitude of the mean

offset and fluctuations for both PSD readings increased with the target moving at a higher

velocity. This is again due to the limitation of the update interval. The laser beam is not

able to keep up with the faster target motion and thus produces larger tracking offsets. The

slow update interval also limits the maximum target acceleration that can be followed to 10

mm/s2. The acceleration can be increased by having a higher update rate. With more

updates, more corrections of the tracking offsets can be made before the laser beam gets

beyond the 3mm mark.

From the experimental results for position mode tracking, it can be concluded that the

TFCA in position mode can follow a target moving at a velocity of iOmm/s and

acceleration of lOmm/s2. The maximum working range is 1000mm from the intersection

point between the horizontal and vertical rotational axes of the beam steering mechanism.

The velocity can be increased to 20mm/s with a working range of 600mm.

Figs. 3.42 to 3.44 show the results of the PSD readings for the TFCA in velocity mode.

From these figures, it can be observed that the oscillation of the PSD-x readings are higher

compared to results obtained using position mode. This is due to the low update rate of the

TFCA algorithm. The motors are commanded to move continuously based on the velocity

calculated from the tracking offsets and the update rate. The effect of noise in the PSD

readings introduces error in the calculated motors' angular velocities. The laser beam is

moving at the commanded velocity until the next update rate, thus causing the wavering of

the beam about the centre of the retroreflector.

One way of reducing the magnitude of oscillation is by increasing the period used in Eq.

3.17. However, this will lower the commanded velocity and thus reduces the permissible

velocity of the target to be followed. Fig. 3.45 shows the results obtained using a period of

80ms for motor 1. The maximum target velocity that can be followed is lOmm/s at the

range of 600mm, compared to 20mm/3 at the same range shown in Fig. 3.44. The mean for

the PSD-x has increased from 0.4mm to 1.2mm, indicating a slower tracking velocity. The

range of oscillation has decreased from 2.72mm to 0.82mm. PSD-y has a similar

magnitude of fluctuation compared to position mode because of slow response. The slower

response of this motor can be further demonstrated by observing the higher mean for the

PSD-y compared to Fig. 3.39. The response can be improved by decreasing the period used

in Eq. 3.17. However, this will result in larger fluctuations due to noise. Fig. 3.45 shows

73

PSD readings using velocity mode tracking vs time

• •PSO*

-PSO-y

Time (ms)

Figure 3.42: PSD readings using velocity mode tracking with robot moving at velocity of 10mm/s and
acceleration of 10mm// with target at 0.6m

Mean PSD-x = 0.4mm
PSD-x oscillation = 1.97mm, -0.75mm
Mean PSD-y = -0.7mm
PSD-y oscillation = -0.25mm, -1.69mm

PSD readings using velocity mode tracking vs time

r hiII ii I in

-1.5

•J

•2.5

m

Time (ms)

Figure 3.43: PSD readings using velocity mode tracking with robot moving at velocity of 10mm/s and
acceleration of 10mm // with target at 0.8m

Mean PSD-x = 0.5 mm
PSD-x oscillation = 2.29mm, -1.75mm
Mean PSD-y = -0.75mm
PSD-y oscillation = 0.05mm, -1.86mm

74

M 0 >

1 •

PSD readings using velocity mode tracking vs time

Time (ms)

Figure 3.44: PSD readings using velocity mode tracking with robot moving at velocity of 20mmIs and
acceleration of 10mm /s2 with target at 0.6m

Mean PSD-x = 0.8mm
PSD-x oscillation = 1.62mm, 0.5mm
Mean PSD-y =-1.5mm
PSD-y oscillation = -0.8mm, -2.66mm

PSD readings using velocity mode tracking vs time

- P S D *

- P S D *

Time (ms)

Figure 3.45: PSD readings using velocity mode tracking with robot moving at velocity of 10mm/s and
acceleration of 10mm // with target at 0.6m using different update period

Mean PSD-x = 1.2mm
PSD-x oscillation = 1.62mm, 0.8mm
Mean PSD-y = -0.4mm
PSD-y oscillation = 1.6mm, -1.5mm

{]

75

the results obtained using a period of 20ms for motor 2. The mean error for PSD-y

decreased from 0.7mm to 0.25 mm and the range of oscillation for PSD-y increased from

1.44mm to 3.1mm.

From Figs. 3.42 to 3.44, it can be concluded that the TFCA in velocity mode can follow a

target moving at a velocity of lOmm/s and at an acceleration of lOmm/s2. The maximum

working range is 800mm from the intersection point between the horizontal and vertical

rotational axes of the beam steering mechanism.

Figs. 3.46 and 3.47 show the results of the PrsD readings for the TFCA in predictive

position and predictive velocity mode, respectively. From the figures, it cau be observed

that there is no improvement in tracking performance, hi fact, the maximum working range

has been reduced to 500mm from the intersection point between the horizontal and vertical

rotational axes of the beam steering mechanism. This is due to the large amount of

oscillation in the PSD readings, which results from the error in the prediction of the target

position. There are errors in the predicted positions mainly cai ied by the fact that the

control algorithm is not updating quickly enough. Due to the slow update, the assumption

that the states of the target cannot change drastically within a few sample intervals is

invalid.

PSD readings using preditive position mode tracking vs time

- P S D *

-reo?

Timo (ms)

Figure 3.46: PSD readings usingpredictiveposition mode tracking with robot moving at velocity of 10mm/s
and acceleration of 10mm // with target at 0.5m

Mean PSD-x = 0.5mm
PSD-x oscillation = 0.8mm, 0.2mm
Mean PSD-y = -0.5mm
PSD-y oscillation = 0.6mm, -1.0mm

76

PSD readings using predictive velocity mode tracking vs time

-PSO-v

Time (ms)

Figure 3.47: PSD readings using predictive velocity mode tracking with robot moving at velocity of 10mm/s
and acceleration of 10mm / / with target at 0.5m

Mean PSD-x = 0.5mm
PSD-x oscillation = 1.6mm, -1.0mm
Mean PSD-y =-0.4mm
PSD-y oscillation — 0.8mm, -1.3mm

Another source of the error in the predicted positions is the noise in the position

measurement. As stated in Section 3.7.5, the estimator module used to estimate the

velocity and acceleration of the target retroreflector is sensitive to measurement noise.

Inaccurate velocity and acceleration estimation will affect the accuracy of the predicted

position of the target retroreflector calculated using Eq. 3.20.

3.9 Recommendations for Possible Improvements

To improve the target following performance, the following improvements may be

considered:

1) Lower PSD noise - A lower noise in the FSD can reduce the oscillations of the

beam. A target moving at a higher velocity can be followed with lower beam

oscillations because the beam will stay within the ±3mm range. This can be

<ichieved by implementing a better PSD with lower dark current and/or better

quality components in the signal conditioning device. A more efficient filtering

technique can also be implemented to reduce the noise in the PSD measurements.

2) Higher update rate - With a higher update rate, a higher target velocity and

acceleration can be obtained. Appropriate corrections of the tracking offset can be

77

performed before the beam moves beyond the ±3mm range. A higher update rate

can also allow the implementation of the predictive control algorithm. The update

rate can be increased by the utilisation of more efficient hardware components and

the implementation of the software architecture described in Section 3.6.3. A faster

computer can also be considered.

3) Higher laser beam power and larger beam diameter - Fig. 3.48 shows the

percentage of beam power emitted from lassr head onto the PSD. With a PSD

responsivity of 0.42 A/W, the photo-currents on the PSD is 7.35uA. The existing

PSD has a dark current of 0.25uA. This contributes to a signal to noiss (S/N) ratio

of 29.4. Higher beam power will improve the signal to noise ratio of the PSD

measurements. With a higher beam power, together with a larger beam diameter,

the maximum beam offset permitted to maintain interference can also be increased.

As a result, a higher target velocity and acceleration can be followed.

4) Dynariic modelling of the motors - A good dynamic model can improve the

tracking performance by reducing the coupling effect of both motors and vibration.

5) Motor with higher resolution and better performance - A closed-bop configuration

can be established for motor 2 with higher motor resolution. Higher motor

resolution will also allow for the tracking of a target located further away from the

LISM apparatus. More steps are required to correct a small tracking offset, thus

decreasing the position loss. A better motor performance can also reduce the

position loss, vibration, overshoot and response time, resulting in faster and

smoother tracking of the target.

Beam power
425nW

Linear Interferometer
with 50-50 Beamsplitter ™

45% Transmtesivity
45% REflectivity

70-30 Beamsplitter
65% Transmissivity

25% Reflectivity

Reference Beam Path
Measurement Beam Path

85% Reflectivity
Retroreflector

Fibre Optic Pickup PSD

2 Elliptical Flat Mirror
93% Reflectivity

4.12% of beam power
directed to PSD

Photo-current at PSD = 425nW x 0.0412 x 0.42A/W = 7.35JJA

Figure 3.48: Optics efficiency of LISM apparatus
78

Table 3.3: Experimental LISM apparatus performance specifications

Performance Criteria
Samp'ing rate
Maximum velocity of target
Maximum acceleration of target
Maximum target distance

Specifications
50 Hz

20 mm/s
10mm/s2

1000 mm

3.10 Summary

In this chapter, the physical make-up, specification, functionality, and the measurement

and analysis techniques employed for each sub-system implemented in the experimental

apparatus uave been presented. The software architecture of the control software has also

been presented. The target following control algorithms used in this apparatus have been

developed. The equations responsible for the calculation of the motors' angular

displacements based on the measurements obtained from the sub-systems had been

derived. Further, the effect of the control algorithms used has been examined and the

limitations analysed. The performance specification for the LISM apparatus is summarised

in Table 3.3. Position tracking mode is selected in the experimental LISM apparatus as this

control mode provides for a higher tracking velocity, more stable tracking and a larger

range. The experimental LISM apparatus is used for the development of the proposed

closed-loop control and laser interferometry-based guidance of robot manipulators in the

later chapters. Next chapter provides the study of orientation measurement technique,

together with the experimental verification of the technique.

79

Chapter 4

Experimental Investigation of the Proposed Orientation
Measurement Methodology

4.1 Introduction

Orientation measurement in laser interferometry-based measurement using the CCD

camera and the CCD array based methods has been studied [11, 12, 13, 14]. The range of

measurement using these methods is limited due to the small incident acceptance angle of

the retroreflector. Moreover, the centre of the retroreflector has to be covered by the laser

beam for a valid measurement to be acquired. Multi-laser interferometry-based technique

that utilises triangulation has also been studied [19]. The set-up cost for this method will be

higher compared to the single laser-interferometry based technique. Another approach to

orientation measurement in LISM is the dual PSD-based orientation measurement [56, 57,

58]. This chapter presents the experimental investigation of the dual PSD-based orientation

measurement methodology. The physical set-up and control algorithm of this methodology

are the centre of focus in this chapter.

4.2 Principle of Dual PSD-based Orientation Measurement Methodology

Dual PSD-based orientation measurement methodology utilises a specially developed

Gimbal unit as shown in Fig. 4.1. The Gimbal unit consists of two position sensitive diodes

(PSDs), a beamsplitter, and a retroreflector mounted on the intersection of the 2 axes of

rotations. When the laser beam from the experimental LISM apparatus passes through the

70-30 beamsplitter on the Gimbal unit, it splits into two beams. 30% of this beam power is

incident on the second PSD and the remaining will be directed towards the retrorefiector.

The reflected beam will travel back to the beamsplitter, parallel to the incident beam. At

the beamsplitter, 30% of the laser beam will again be directed to the third PSD and the

remaining laser beam will return to the beam LISM apparatus. Orientation of the

retrorefiector with respect to the laser beam is calculated from the beam positions

measurement along the x- and y-axes of the two PSDs und the geometry of the Gimbal

unit. A photo of the experimental set-up is shown in Fig. 4.2.

80

YCR

c
Retroreflector S^r

XCR

Beamsplitter

Figure 4.1: Gimbal unit assembly

Micro-stepping
rotary table

Figure 4.2: Orientation measurement experimental set-up

81

The experimental set-up consists of Gimbal unit mounted on a micro-stepping rotary table

with a gear ratio of 45:1. A motor with resolution of 51200 steps per revolution is used to

drive the table, providing rotation about the axis ZCR shown in Fig. 4.1. This gives a

maximum resolution of 2304000 steps per revolution. Another motor with a resolution of

50800 is used to provide rotation about the axis XCR shown in Fig. 4.1. These motors are

used to rotate the Gimbal unit (and thus the retroreflector) about the centre of the

retroreflector based on the orientation calculated. The retroreflector will therefore always

face the direction of the incoming laser beam. This improves the measuring range of the

LISM apparatus.

4.3 Position Sensing Detector

The PSDs used are of lateral effect detector type as described in Section 3.4. Another set of

calibrations had to be performed because different PSDs and sampling channels are

employed. Moreover, it was observed that there is a significant amount of reflection from

the surface of the PSDs. The reflection from PSD2 will cause corruption to the data

sampled by PSD3 and vice versa. Quarter wave plates and polarisers are placed in front of

both PSDs to impede reflection from the surface of one PSD to another. This again had to

be taken into account during the calibration process. The software program for orientation

measurement will refer to the calibration graph when the voltage values are detected to

convert these into corresponding displacements. Figs. 4.3 and 4.4 show the graphical

relationships between the position of the laser beam and the voltage difference detected by

the x- and y-axes of both PSDs. A third order polynomial is used to represent the

relationship as follows:

PSD2-X = 3.6791 x VRatioX3 + 0.1048x VRatioX2 + 5.8582x VRatioX

PSD2-y = 3.2779xVRatioY3 -f 0.2419x VRatioY2 +6.2109xVRatioY

' PSD3-X = 2.6272 x VRatioX3 + 0.1193 x VRatioX2 + 6.64 x VRatioX

PSD3-y = 2.5995 x VRatioY3 + 0.0682 x VRatioY2 + 6.65 92 x VRatioY (4.4)

where VRatioX and VRatioY are voltage ratio along the corresponding PSD's x- and y-

axes, respectively, PSD2-X and PSD2-y are calculated beam positions along PSD2's x- and

y-axes, respectively, PSD3-X and PSD3-y are calculated beam positions along PSD3's x-

and y-axes, respectively.

(4.1)

(4.2)

(4.3)

82

K
a
§

Actual Displacement along x-axis for PSD2 vs Voltage Ratio in the range of -6 to 6 mm,
3rd order polynomial

I -0.8 -0.6 -0.4 -02

y = 3.6781X3 + 0.104B*1 + 5.B582X
R3 = 0.9996

0.2 0.4 0.6 0.8

Voltage Ratio

Actual Displacement along y-axis for PSD2 vs Voltage Ratio in the range of -6 to 6 mm,
3rd order polynomial

I -0.8 -0.6 -0.4

-8-

y = 3.2779X5 + 0.2418X1 + 6.2109*
R* = 0.9995

0.2 0.4 0.6 0.8

Voltage Ratio

Figure 4.3: Calibration plot for PSD 2 in the range of-6 to 6 mm along x- andy-axes using 3rd order
polynomial

83

Actual Displacement along x-axis for PSD3 vs Voltage Ratio in the range of -6 to 6 mm,
3rd order polynomial

I -0.8 -0.6 -0.4

2.6272Xl*0.1193XJ*6.64x

R2 = 0.9995

0.2 0.4 0.6 0.8

Voltage RaUo

Actual Displacement along y-axis for PSD3 vs Voltage Ratio in the range of -6 to 6 mm,
3rd order polynomial

E

X

I -0.8 -0.6 -0.4

y = 2.5995X1 • 0.0682X1 • 6.6592X

R2:: 0.9998

0.2 0.4 0.6 0.8

Voltage Ratio

Figure 4.4: Calibration plot for PSD 3 in the range of-6 to 6 mm along x- andy-axes using 3rd order
polynomial

84

4.4 Orientation Measurement Formulation

Fig. 4.5 shows a top view of the optical arrangement on the Gimbal unit. The governing

equations to determine the orientation of the retroreflector (co-ordinate system CR) relative

to the laser beam (co-ordinate system CL) are thus as follow [56, 57, 58]:
aTa = RoKz,<p)Rot(y,p)Rot(x,<P) (4.5)

where p , <f>, and q> are the roll, pitch and yaw angles, respectively.

From Fig. 4.5, it can be seen from the properties of the triangle that:

(4.6)

The pitch angle ^can be calculated by the following equation:

. (4.7)
2/ , - / ,+ / ,

where /; is the distance between the centres of the beamsplitter and the retroreflector, h

and I3 are the distances between the centres of the beamsplitter and PSD2 and PSD3

respectively, D2X and Z)j, are the detected positions of the laser beam on PSD2 and PSD3

along the x-axis, respectively, A?y and D^y are the detected positions of the laser beam on

PSD2 and PSD3 along the y-axis, respectively.

The roll angle, p , is calculated from the point of intersection between the laser beam and

the xz-plane of the co-ordinate system CR2. This is carried out using the following

equations:

Blx=-D2l+(l2-lx)tan<p (4.8)

B ~D -(7 i)*331^ (4 9)

where Bix and Biz are x and z co-ordinates, respectively, of the point of intersection

between the laser beam and the xz-plane of the co-ordinate system CR.

85

Retroreflector

<P

._
- ^ s i n p -Dixcos<p

.5 : Top wwa/ of Gimbal unit

The co-ordinate system Ci?2 is found from the transformation as follows:

CRCCR2=Rot(z,(p)Rot(x,<t>)

cos#> -sin^p OTl 0 0

cos^ 0 0 cos^ - s in^

0 0 1 J|0 ^
(4.10)

0

The point of intersection between the laser beam and the xz-plane of the co-ordinate

system CR2 is therefore as follows:

(4.11)

86

where B2x and B2z are x and z co-ordinates, respectively, of the point of intersection

between the laser beam and the xz-plane of the co-ordinate system

The roll angle, p, is determined by:

B (4.13)
2x

4.5 Experimental Results

Preliminary experiments were performed in order to observe the capability of the

Orientation Measurement Formulations (OMF) in determining the orientation of the

Gimbal unit with respect to the laser beam. To acquire the pitch <f> and yaw <p angles, the

Gimbal unit was rotated about the horizontal and vertical rotation axes, individually. The

orientations calculated by Eqs. 4.6 and 4.7 and the encoders' readings were recorded. The

results are shown in Figs. 4.6 and 4.7.

? • ' !

Actual Pitch Angle based on Encoder's Readings vs Calculated Pitch Angle

CalculatMl Pitch Angle (dagnt)

Figure 4.6: Actual pitch angle based on encoders readings vs pitch angle calculated using OMF

87

• • - . • . •TV- : 1 " d

Actual Yaw Angle h»«ed on Encoder's Reading vs Calculated Yaw Angle

1

Calculated Y « w . . . , i^ ,'

Figure 4.7: Actual jaw angle based on encoder's readings vsjaw angle calculated using OMF

Based on Figs. 4.6 and 4.7, the actual angles measured based on the encoders' readings can

be related to the calculated angles by the following relationships:

(4.14)

(4.15)

where <f>acNai and <pactuai are the actual pitch and yaw angles, respectively, <J)OMF and (POMF

are the pitch and yaw angles calculated using OMF, respectively. By applying Eqs. 4.6,

4.7, 4.14 and 4.15, the errors between the calculated and actual angles are shown in Figs

4.8 and 4.9. Based on these figures, it can be concluded that the error in orientation

calculated using OMF is 0.3° (0.005 rad) for pitch angle and 0.2° (0.0035 rad) for yaw

angle. These errors are predominantly due to the noise in the PSDs and inaccurate

geometric parameters used. Further, it can be observed that the magnitude of errors grows

with larger angles. This is because as the angles of the retroreflector increase relative to the

laser beam, the laser beam is being directed further away from the centre of the PSDs.

Non-uniformity and non-linearity of the PSDs introduce errors in the PSD measurements

and thus create higher deviations in the angles calculated. An error of 0.1° (0.0017 rad) can

be obtained within the ±1° range. Ths maximum range of angular displacements for the

retroreflector relative to the laser beam is ±3°. The incident laser beam will move out of

the PSD range above ±3° and thus no measurements can be taken.

Error between Calculated and Actual Pitch Angle vs Actual Pitch Angle, using OMF

•s-

of
 P

itc
h

 A
ng

le
 (d

i

i

•
• •

i -3 -2

•

• •

0.4 1

03

0 **

• • • •

i

' • • •

1

• •
> • • — - • •

2 3

Actual Pitch Angla (degr»t)

Figure 4.8: Error of calculated pitch angle using OAJF vs actual pitch angle

Error between Calculated and Actual Yaw Angle vs Actual Yaw Angle using OMF

•

• ^

1 -3 4^

•

• •

•
A. " •• • -1

—0-2—|

016

C 1

-0 06

0 1

016

-O2-

i 1

* •

• • *

• • •

2 t

I

I

Actual Yaw Angle (d*jnn)

Figure 4.9: Error of calculated jaw angle using OMF vs actual jaw angle

89

hi order to measure the roll angle, the incident laser beam has to be directed off the centre

of the retroreflector as shown in Fig 4.10. By using a beam offset of 2 mm and with zero

pitch and yaw angles, the roll angle is calculated using Eqs. 4.8 to 4.13. Fig. 4.11 shows

the errors between calculated and actual angles. The error of the roll angle calculated using

OMF is 2.5° (0.04 rad). This high amount of error is due to noise in PSD2. When the pitch

and yaw angles are equal to zero, Eqs. 4.8 to 4. 12 are rewritten as follows:

K=~D2x (4.16)

B\z=&ly (4.17)

(4.18)

(4.19)

J2x

By substituting the above equations into Eq. 4.13, the roll angle is equal to:

B.Ix -D. 2x

(4.20)

By using a beam offset of 2 mm, D2x is equal to 1 mm. A noise value of 0.1 mm in D2y will

create an error of 5.71° (0.1 rad) in the calculated roll angle. This error can be reduced by

using a larger beam offset. However, increasing the beam offset will reduce the range of

angular displacements for the retroreflector. This is because the laser beam is being

directed further away from the centre of both PSDs and will move out of the PSDs range

more rapidly when there are changes in pitch and yaw angles. Furthermore, the non-

linearity and non-uniformity of the PSDs also introduce error in the angles calculated.

Linear Interferometer

Laser Head

Fibre Optic Pickup

Moving Target
Retroreflector

X

Fixed Beam
offset

Reference Beam Path

Measurement Beam Path

Figure 4.10: Laser interferotnetry set-up with incident beam off-centre

90

Error between Calculated and Actual Roil angle using OMP

NcofSwipte

Figure 4.11: Error of roll angle calculated using OMF with pitch and jaw angles equal to %ero

4.6 Orientation Compensation Algorithm

Based on the angles calculated using OMF, the relative angles between the laser beam and

the retroreflector can be compensated by the Orientation Compensation Algorithm (OCA).

A block diagram of the OCA is shown in Fig. 4.12. First, the Gimbal will be positioned at

the initial reference point, which corresponds to zero roll, pitch and yaw angles with

respect to the laser beam. When there are changes in the pitch and yaw angles, the motors

associated with the Gimbal unit will be commanded to zero the angles at each update. The

main advantage of this approach is that with the ability to rotate the retroreflector so that it

always face the direction of incoming laser beam, the limitation of small incident

acceptance angle of the retroreflector has effectively been removed. This improves the

measuring range of the retroreflector. The change of orientation from the initial reference

can be determined from the encoders' readings. A flowchart for the OCA is provided in

Fig. 4.13. Figs 4.14 to 4.19 show the implementation of the OCA for the correction of

pitch and yaw angles.

91

r=0 A
—\1

A

Beam
positions

KPSD2

•
jam

voItage

' D

OMF
¥

offsets t

^PSDJ
voItage

s
PSD3

current^

A •

OCA
=-• Motor PID

controller
Motors

5

current^

PSD3

Compensate

1
i
i
i
i

Change in
Retrorefiector's

OriAntatlnn
i
i
i
i
i

Figure 4.12: Orientation Compensation Algorithm control block diagram

BEGIN

Sample voltages from
PSD 2 and PSD 3

PSD 2 (left)
Determine offsets from the

centre of PSD using
calibration graph

PSD 3 (right)
Determine offset from the

centre of PSD using
calibration graph

A..A,
L

Determine roll {p), pitch (<}>),
yaw(<p)

Drive motors to compensate
pitch and yaw

Figun 4.13: Flowchart for the orientation compensation algorithm

92

Pitch and Yaw angles vs Time

o.e

•Pitch

-Yaw

5 § 5 I I I H 1 § I I I I | § I 1 1 I I
Time (ms)

l i l i i i i l l i i

Figure 4.14: Single compensation of small pitch angle using OCA

Pitch angle steady state error = 0.10°

Yaw angle steady state error = 0.02°

Response time = 1 sec

Pitch and Yaw angles vs Time

•0.12

-Pitch

-Yaw

Time (ms)

Figure 4.15: Single compensation ofsmallyaw angle using OCA

Pitch angle steady state error = -0.04°

Yaw angle steady state error = -0.04°

Response time =1.2 sec

93

3 ,

2.S

I-
s •

| 0.5

0

•OS .

Pitch and Yaw angles vs Time

«w* v»v <ws •" ^ ^ <{*• K<(? j?J>jtj? ^ ,/> J? jp jf p* ^ ^ ^ ^ 4* ^ ^ £ £• ^ ^ <?-

Time (ms)

—•— Pitch

—*-Yaw

.16: Single compensation of large pitch angle using OCA

Pitch angle steady state error = 0.34°

Yaw angle steady state error = 0.08°

Response time = 1.5 sec

Pitch and Yaw angles vs Time

p -0.5
a

I.,
a>

- H • • • • • • • • • • • • • " • • • • • M M

-Pitch

-Yaw

Time (ms)

Figure 4.17: Single compensation of large jaw angle using OCA

Pitch angle steady state error = 0.06°

Yaw angle steady state error = -0.16°

Response time = 1.7 sec

94

Pitch and Yaw angles vs Time

-Pitch

-Yaw

Time (ms)

^: Continuous compensation of small pitch andyaw angles using OCA

Pitch angle steady state error = ±0.2°

Yaw angle steady state error = ±0.2°

Response time = 1.9 sec

Pitch and Yaw angles vs Time

•s- o
in
£

•Pitch

-Yaw

Time (ms)

Figure 4.19: Continuous compensation of large pitch andyaw angles using OCA

Pitch angle steady state error = ±0.2°

Yaw angle steady state error = ±0.2°

Response time = 4 sec

95

Figs 4.14 and 4.15 show the single compensation of a small (<1°) pitch and yaw angles,

respectively. The response time is about 1 second in both cases. Figs 4.16 and 4.17

illustrate the single compensation of large (>2°) pitch and yaw angles, respectively. The

response time can be observed to be longer when compared with small angles

compensation. This is due to the implementation of a constant velocity profile in both

cases above. Further, the steady state error is higher compared to the error with small

angles compensation. This is due to the growth of the error in the calculated angles with

the increase in angular displacement of the retroreflector with respect to the laser beam as

shown in Figs 4.8 and 4.9. Since the motors are commanded to move by the angles

calculated, the error in the calculated angles results in inaccurate angular displacements

commanded.

Figs 4.18 and 4.19 illustrate the implementation of continuous OCA for the compensation

of pitch and yaw angles. The response time for small and large angles compensation is 2

and 4 seconds, respectively. The response is slower compared to single OCA due to the

motors having to move through the motion profile to repeatedly compensate for the angles

calculated. This results in the starting and stoping of the motors and thus a longer delay.

Moreover, the continuous command received by the motor controller causes some

interruption to the motors' motions. From Figs 4.18 and 4.19, it can be observed that the

pitch and yaw angles are varying between ±0.2° at steady state. This fluctuation is the

result of the noise in the PSDs. This noise led to the fluctuations of the calculated pitch and

yaw angles of the retroreflector with respect to the laser beam and the motors are

commanded to compensate for these changes continuously.

4.7 Integration with Experimental LISM apparatus

The orientation measurement methodology can be incorporated into the experimental

LISM apparatus to provide for the position and orientation (pose) measurements. However,

this is not the objective of this study. Further, the current set-up has the following

limitations:

A) By using the Gimbal unit, more optics are added to the laser beam path. Each optic

will reduce the beam optical power due to imperfect optical efficiencies. With the

addition of a 70-30 beamsplitter, the optical power at PSD 1 within the

96

experimental LISM apparatus is further reduced as shown in Fig 4.20. Photo-

currents generated by the beam is 3.11 uAmp, which gives a Signal to Noise (S/N)

ratio of 12.44. This ratio is half of the S/N ratio of 29.4 as shown in Section 3.9.

Due to the lower S/N ratio, the target following performance is greatly affected.

B) The experimental LISM apparatus described in Chapter 3 is set-up to direct the

laser beam to the centre of the retroreflector. To measure the roll p angle, the

incident beam has to be directed off the centre of the retroreflector as shown in Fig.

4.10. This involves a major relocation of the laser head and the fibre optic pickup

so that the reference and the measurement beams will still completely overlapped

each other. The PSD in the LISM apparatus also has to be shifted so that when the

reflected beam is at point R (Fig. 4.10), the tracking offset measured by the PSD

will be zero.

C) Additional codes have to be added into the LISM's control program. The PSD

object has to sample 12 channels of PSD data instead of 4. An orientation

compensation algorithm (OCA) has to be added together with the Target Following

Control Algorithm (TFCA) (Section 3.7) to the on-board program on the ACR2000

controller. 4 motors are being controlled as opposed to 2, and 4 encoders have to be

sampled compared to 2. All these factors would reduce the sampling frequency of

each of the other sub-systems and the rate of execution of the control program.

Reference Beam Path
Measurement Beam Path

Linear Interferometer
with 50-50 Beamsplitter

45% Transmissivity
45% Reflectivity 70-30 Beamsplitter

65% Transmissivity v

25% Reflectivity

6.46% of beam power
directed to PSD 2

PSD 2 Gimbal Unit

2 Elliptical Flat Mirror
93% Reflectivity

Fibre Optic Pickup PSD1 1.74% of beam power
directed to PSD 1

85% Reflectivity
Retroreflector

3.03% of beam power
directed to PSD 3

Photo-current at PSD 1 = 425fiW x 0.0174 x 0.42 A/W = 3.11jiA

Photo-current at PSD 2 = 425,iW x 0.0646 x 0.42 A/W = 11.53^<

Photo-current at PSD 3 = 425^W x 0.0303 x 0.42 A W = 5.41pA

Figure 4.20: Optics efficiency with Gimbal unit

97

The following improvements are recommended to allow for the pose measurements of the

target:

A) The use of higher laser beam power and a PSD with a lower dark current so that

higher S/N ratio can be obtained. The performance of the TFCA, OCA and pose

measurements can be greatly improved. S/N ratio in the order of 100 is required.

B) A faster computer is required to increase the sampling frequency of all sub-systems

and rate of execution of control programs.

C) Higher resolution, direct drive closed-loop motor systems can be used. This reduces

the position loss, vibration, overshoot, gear backlash and response time of the

motors, resulting in faster and smoother compensation of the pitch and yaw angles

calculated.

D) Due to the reason that the full range of the PSDs is used for orientation

measurement, PSDs with better linearity and uniformity can greatly improve the

accuracy of angles calculated using OMF.

E) The Gimbal unit developed for this study is heavy. This whole assembly has to be

rebuilt with strong but light material. The weight of the motors, PSDs, beamsplitter

and retroreflector also has to be taken into account to reduce the weight.

4.8 Summary

hi this chapter, the experimental investigation of the dual PSD-based orientation

measurement methodology has been presented. Due to limitations presented, full

integration of this methodology into the experimental LISM apparatus could not be

performed to allow for the real time pose measurements of the target. However, from the

experimental results, it can be observed that the proposed methodology can be used for the

measurements of the retroreflector's orientation relative to the incident laser beam.

Moreover, the Gimbal unit can be rotated based on the angles calculated. The retroreflector

will therefore always face the direction of the incident laser beam, maintaining the line of

sight for the incident laser beam. This approach effectively removed the limitation of small

incident acceptance angle of the retroreflector. Next chapter present the kinematic model

of the experimental LISM apparatus, which is essential for the calculation of the positions

of the end-effector. Analysis of the uncertainties of the measurements acquired by the

LISM apparatus and the Gimbal unit are also evaluated.

98

Chapter 5

Kinematic Model and Uncertainties Analysis of Experimental
LISM Apparatus

5.1 Introduction

This chapter presents formation of the kinematic model of the experimental LISM

apparatus. This model is important for the calculation of the target Cartesian positions

using the angular displacements of the motors, the laser interferometer measurements, PSD

measurements and the geometry of the apparatus. The accuracy of the LISM's

measurements obtained is dependent on the accuracy of the parameters used in the model.

However, no mechanical system is ever manufactured perfectly. For the experimental

LISM apparatus, there will always be slight variations in the kinematic parameters or error

due to the sensors and transducers used. These errors can be broadly classified into

geometric and non-geometric errors. Geometric errors are caused by the inaccuracies in

manufacturing and assembly of the components (such as mirror-positioning error, motors,

laser and PSD misalignment). These errors can be compensated through calibration using a

kinematic model of the LISM apparatus, thus improving the accuracy of the target

position's measurement made by LISM. Non-geometric errors are caused by the inherent

characteristics of the sensors and transducers, the environmental effects, the dynamic

resonance, etc. Non-geometric errors comprise of tumbling motion, motor backlash,

sensitivity of the material to temperature, encoder coupling, noise, etc. These errors occur

randomly and are difficult, if not impossible, to determine. These errors will contribute to

the uncertainties of the measurements acquired by the LISM apparatus.

5.2 Errors Analysis

Position measurements acquired by experimental LISM apparatus and orientation

measurements acquired by the orientation measurement methodology rely heavily on the

use of other sensors and transducers. Some of the possible sources of errors in the

measurements include:

• unknown effects of the environmental conditions on the measurements;

• error in measurements acquisition from various instruments;

99

• resolution of various instruments;

• approximations and averaging steps (where applicable) made in the measurements

process;

• inexact values of reference instruments (e.g. for calibration purposes).

Four different sub-systems were developed in this study. These sub-systems are the laser

interferometer sub-system, beam-steering sub-system, position sensitive detector (PSD)

sub-system, and finally the orientation measurement sub-system. The sources and

magnitudes of errors associated with each sub-system are analysed in the following

sections.

5.2.1 Laser Interferometer Sub-system

The overall accuracy of any laser interferometry apparatus is affected by a number of

different factors including, [25,59]:

• environmental fact- •;

• geometric and manufacturing errors;

• Instrument errors.

5.2.1.1 Environmental factors

The refractive index of the laser beam is affected by the variations in the environmental

conditions such as ambient temperature, air pressure, and humidity. A variation in the

index of refraction introduces variation in the wavelength. As the laser beam displacement

is computed using the wavelength (Section 2.2), variation in wavelength during

measurement introduces error in the displacement measured. An error of approximately

±lum/m occurs in the index of the laser used due to each of the following environmental

changes, [25]:

• 1 ° C change in the air temperature;

• 2.8mm Hg change in air pressure;

• 90% change in the relative humidity.

A uniform change in temperature also causes expansion or contraction of the

interferometer components and introduces further error in the displacement measured. The

linear irterferometer used within this LISM apparatus has a temperature coefficient of less

than 0.022 um/°C.

ICO

5.2.1.2 Geometric and manufacturing errors

Misalignment of the optics introduces errors such as cosine error, Abbe' offset error and

polarisation mixing error [25]. A cosine error is a measurement error caused by an angular

misalignment between the laser beam and the axis of motion of the displacement being

measured. The cosine error degrades the signal received by the receiver, and more

importantly, reduces the accuracy of measurement because of not measuring the actual

target displacement. Abbe' offset is the result of an offset between the measurement laser

beam and the axis of motion of the target. Positioning the beam as close as possible to the

axis of motion will reduce the Abbe' offset.

Polarisation mixing error is due to the misalignment of the laser head relative to the

interferometer and the imperfections in the polarisation beamsplitter. This produces a

leakage of undesired polarisation state into the two polarised frequencies. Polarisation

mixing will introduce distortion in the interference signal, which will produce a non-

linearity between the measured displacement and the actual displacement, and thus affect

the accuracy of measurement. Fig. 5.1 shows a comparison between properly aligned

polarising system and polarising mixing. With properly aligned polarisation, the

measurement and reference beams each "^ntain only one frequency, Fi and F2,

respectively. For the polarisation mixr , - shown in Fig. 5.1, the measurement and

reference beams contain not only the frequencies Fi or F2, respectively, but also a small

portion of the each other's beam frequency. Polarisation mixing error is cyclic with a

period of 360° occurring approximately every 158 nm (a quarter of the wavelength) of

displacement for a double pass interferometer, [25]. This cyclic error is non-cumulative.

Beam Splitter in
interferometer

Laser Beam
Measurement

Beam

Reference
Beam

Beam Splitter in
Interferometer

Laser Beam
Measurement

Beam

Reference Beam

Figure 5.1: Comparison between proper polarisation alignment and polarisation mixing

101

5.2.1.3 Instrument errors

The laser interferometer used has a maximum electronic error of 1.3 counts. The

contribution of this error to the uncertainty analysis is a product of the electronic accuracy

and the optical resolution of the interferometer used. In this case, with each count equals to

2.74 nm, the electronic error is ±3.21 nm, [25].

Due to the imperfections of the optical components and their coatings, there will again be a

leakage of undesired polarisation state. This will cause polarisation mixing error of the

beams within the interferometer. For a linear interferometer, this error is ±0.8 nm, [25].

5.2.2 Beam Steering Sub-system

As shown in Section 3.5, this sub-system consists of an open-loop stepper motor with

optical encoder and a closed loop servo motor with resolver feedback. The vertical axis

controlled by the serve motor has a resolution of 0.00059° and an accuracy of 0.0125°. The

horizontal axis is controlled by a stepper motor, and it has a maximum resolution oi

0.0045° using a step rate of 80000 steps per revolution. This motor has an accuracy of

0.045°. The encoder used for the horizontal axis is a 10000-line encoder with a maximum

resolution of 0.009°.

The stepper motor is responsible for rotating the attached mirror to direct the beam along

the LISM's z-axis, whereas the servo motor is responsible for turning the attached mirror,

directing the beam along the LISM's x-axis. Both axes of rotations have to intersect each

other, and the point of intersection corresponds to the tracking reference point (Section 3.7)

of the laser beam. However, imperfections in the construction process (e.g. the positioning

of the mirrors, misalignment of the rotational axes, etc.), and in the assembly of the beam

steering sub-system affect its precision. Other possible sources of errors are inherent

hardware error, motor electronic design, heat generated from friction between the moving

parts, shaft misalignment between the motors and the encoders, and shaft bending due to

load and tumbling of motors [60].

5.2.3 PSD Sub-system

In Section 3.4, it was shown that the main sources of error include the linearity and the

sensitivity of the PSD, the beam power incident on the sensor area, the amount of dark

current, and the environmental noise [26,41]. The maximum error is ±0.07 mm. This error

was calculated from the deviation of the calibrated results from the known reference.
102

5.2.4 Orientation Measurement Subsystem

The main source of error for the dual PSD-based orientation measurement approach is the

error inherent in the PSD. Furthermore, Eqs. 4.6 to 4.13 are used to describe the orientation

of the target retroreflector with respect to the laser beam. These equations consist of the

geometric parameters of the Gimbal unit. Imperfection in manufacturing and assembly of

the Gimbal unit will degrade the accuracy of the measurements acquired.

5.2.5 Reflecting Target

The reflecting target used is the most commonly used air-path type retroreflector. Fig. 2.8

shows the make-up of this retroreflector. An ideal retroreflector has the attributes to ensure

that a light beam incident onto any point on the retroreflector, regardless of its orientation,

is reflected through 180°, and the reflected beam must travel back parallel to the incident

beam. The centre of the retroreflector is always exactly centred between the incident and

the reflected beams.

Possible errors in a retroreflector are associated with the construction of the retroreflector.

For air-path type reflector, the mirrors are joined together usually with adhesive. There

could be an imperfection in joining the mirrors, and the three mirrors used might not

intersect each other at a single point. This causes an offset error so that the centre of the

retroreflector is not exactly centred between the incident and the reflected beams. This

contributes to the error in the position measurement in LISM. Further, there may exist an

error associated with the orthogonality of the mirrors. Therefore, the beam may not be

reflected through an angle of 180°, rather with a slight angular deviation and there could be

a change in the path of the beam. The angular deviation is specified as 0.0014° (5 arc sec)

in this case as stated in [27]. Moreover, as the beam offset recorded by the PSD is not the

real offset due to the lateral motion of the retroreflector, there will be an additional error in

the beam offset measured. Fig. 5.2 shows the error due to the imperfection in the

construction of the retroreflector.

5.2.6 Measurement Platform Geometry and Environmental Effect

All the sub-systems including the laser interferometer and the other optics are located on

an optical breadboard. The flatness of the breadboard will affect the accuracy of the LISM

by contributing to the cosine error. Furthermore, the misalignment between optics

contributes further to the inaccuracy of the results. Environmental conditions also affect

the properties of materials used in the LISM apparatus and thus its geometry.

103

Air-path type / \
Retroreflector/ \

/

Incident z-
Beam

r Reflected
Beam J

Additional
beam offset
recorded by

the PSD

\
f Reflected
% Beam deviated
^ by 9

\

Figure 5.2: Angular deviation of beam caused by imperfection of retroreflector

The following sections present the kinematic model and calibration process to reduce

geometric errors. The uncertainty analysis is presented next to determine the overall

measurement uncertainty of the LISM apparatus.

5.3 Kinematic Model and Calibration Methodology

Kinematic model provides a mathematical description of the path of the laser beam to the

retroreflector on the robot end-effector and makes use of the coordinate systems (CS)

shown in Fig. 5.3. A co-ordinate frame is placed on each of the mirrors with the xy-plane

describing the mirror surface and the z-axis directed to the blind side of the mirror, hi the

current configuration, the description of the mirrors relative to the reference co-ordinate

frame are given as follows [61]:

Mx =

M2 =[Transl(x2iy2,z2)][Rotz(&cX)][Transl(dx3)dy33dz3)]

[Rotx(#c2)][Amirr(a2,j32,zm2)]
(5.2)

104

ft'ct

Retroreflector
Mirror

X,ml

Mirror 1

Co-ordinate
system convention

Y

Laser
Head

Figure 5.3: Kinematic model of the experimentalUSM apparatus

where Rotz(9cX) and Rotx(&c2) are transformation due to rotations of the vertical and

horizontal motors, Mi is the co-ordinate frame on mirror 1 relative to the reference co-

ordinate frame, M2 is the co-ordinate frame on mirror 2 relative to the reference co-

ordinate frame. Trans(dx3,dy3,dz3) is the transformation matrix from the vertical

rotational axis to the horizontal rotational axis. This is to account for the misalignment of

the motors rotational axes.

Amin(a,p,z) is the transformation matrix to place the xy-plane of the mirror co-ordinate

frame on the mirroring surface and the z-axis towards the blind side of the mirror [22]. On

a perfectly plane mirror surface, the rotation about z-axis and translation along the xy-

plane will not alter the reflected beam. Therefore,

mi)] (i= 1,2) (5.3)

Another co-ordinate frame is placed on the source of the laser beam with the z-axis aligned

with the beam. This frame is translated to each mirror in turn and reflected according to the

physical positions of each mirror described by the co-ordinate frame Mj and M2. If Ln

denotes the laser frame, the reflected laser frame LN+I with its origin on the. mirror plane

can be described as follows:

105

Lo =

= O,1) (5.4)

& , yL) (5.5)

where Lo represents the transformation from the reference co-ordinate frame to the first

laser frame.

is a function of the mirror's and the current laser's co-ordinate frames [22]. After

reflection from the last mirror, the beam is directed towards the target retroreflector. This is

a simple translation along the beam and can be described as follows:

LR ^WramKa^a^anWRoKa^p^YR)] (5.6)

where a^ and aYR are deviations from the centre of the retroreflector when the laser beam

does not hit the centre of the retroreflector. Both can be determined from the target lateral

offset calculated from Eq. 3.15 and 3.16, as follows:

Ad,

-Ad2

cos 2 ^

(5.7)

(5.8)

where Adx and Ad2 are target lateral offsets calculated from Eq. 3.15 and 3.16,

respectively. aZR is the displacement of the beam from the last mirror to the retroreflector

and can be calculated from the following equation:

aZR = U < , / " M tan,9cl - Ad2 tan2,9c2 (5.9)

where lradiai is the radial distance of the laser beam.

To account for the geometric errors, every transformation parameter p in the kinematic

model of the LISM apparatus consists of the ideal value given in the design specifications

plus an error value Ap, which represents the geometric error associated with that

parameter. This provides the following equation:

The kinematic model consists of 21 parameters with corresponding geometric errors. These

errors can be compensated through calibration by comparing the position determined using

the model with those obtained from a known reference. The difference in position can be

related to the system parameters by J, the calibration matrix, which represents a

106

differential change in position of the modelled transformation °LR with respect to

differential change in parameter/?.

Ae=JAp , (5.11)

where Ae is the differential change in position between the measured and the calculated

value using the modelled transformation °LR, Ap is the differential change in parameters p .

The generalised inverse o f / i n Eq. 5.11 can be found and by using linear least squares

method, and thus Ap can be found by the following formulation, [11,62]:

Ap^fAx (5.12)

where J* is the generalised inverse or commonly known as the Moore-Penrose inverse of

the calibration matrix.

The calibration was carried out using 150 reference points. Eq. 5.12 was solved using a

program prepared in MATLAB in conjunction with the optimisation toolbox (refer to

Appendix C for the complete MATLAB program). Table 5.1 tabulates the parameters

before and after calibration obtained by the use of this methodology.

Figs. 5.4 and 5.5 compare the errors of the position measurements obtained using the ideal

model and the calibrated model, respectively. From Fig. 5.5, the accuracy of position

measurements made by LISM apparatus is ±0.5mm within a radial distance of 900mm.

Accuracy degrades further with radial distance higher than 900mm. The overall position

error has been reduced significantly (by 89%) when compared to position measurements

calculated using the ideal model. However, the calibrated position error is high due to

several reasons. Firstly, the repeatability of the motors is low, especially the stepper motor

due to open-loop configuration. There can also be undetected position loss that introduces

error in the angular displacements detected by the encoders, thus results in inaccurate

position measurement. Secondly, imperfections in the roundness of the motor axis

introduce tumbling of the motors [60]. Tumbling of the motors affects each parameter in

the model. However, this is not modelled in this study. Thirdly, the redundancy of the

parameters is not being studied. Redundancy of the kinematic parameters may affect the

reliability of the parameter estimated [22]. Furthermore, the measurements obtained from

each sub-system have high uncertainty (as presented in next section). This introduces

uncertainty in position measurements, which affects the accuracy of the parameters

estimated.

107

aXL(mm)
aYL(mrc)
aZL(mm)
<*L (deg)
PL(deg)
YiXdeg)

Table 5.1: Kinematic parameters

initial

0.00

0.00

162.00

-90.00

0.00

0.00

calibrated

0.00

0.00

162.00

-90.12

0.00

-0.15

ax, (mm)
aYi (mm)
az, (mm)
a, (dcg)
Pi(deg)

zWi (mm)

initial

0.00

465.13

162.00

-135.00

0.00

0.00

before and after calibration

calibrated

0.00

465.13

162.00

-135.12

0.14

0.00

aX2(mm)
aY2(mm)
azj(mm)

dax3(mm)
day, (mm)
daz3(mm)
aj(deg)
Pi(deg)

z»2(mni)

initial

0.00

465.13

548.37

0.00

0.00

0.00

45.00

0.00

0.00

calibrated

-0.40

465.72

534.51

0.00

22.07

0.00

44.86

0.17

25.67

Error of positions calculated using the uncalibrated kinematic model vs radial distance

mm.

- B T X

-EitY
-EITZ

Radial Distance (mm)

Figure 5.4: Error of position measured using USM apparatus calculated using the uncalibrated kinematic
model with respect to radial distance from the last mirror

108

! • * •) ' •

1.5

-1.5

2.5

1.5

Error of positions calculated using the calibrated kinematic model vs radial distance

- E n X I

Radial Distance (mm)

Error of positions calculated using the calibrated kinematic model vs radial distance

-EnY

Radial Distance (mm)

Error of positions calculated using the calibrated kinematic model vs radial distance

-ErrZ

Radial Distance (mm)

Figure 5.5: Errvr of position measured using USM apparatus calculated using the calibrated kinematic model
with respect to radial distance from the last mirror

109
1 ' .

5.4 Measurement Uncertainties

This section describes the uncertainties associated with LISM apparatus. An uncertainty

analysis approach is introduced and the overall measurement uncertainty of the LISM

apparatus and the Gimbal unit is presented [61].

5.4.1 Expression and Analysis of Uncertainty

The objective of any measurement technique is to determine the value of the measurand

(i.e. a particular quantity to be measured at a particular condition). In general, the result of

a measurement technique is only an estimate of the true value of the measurand. The result

is only complete when stated with the uncertainty of that estimate. The uncertainty,

therefore, indicates the dispersion of the values of the measurand, [63]. The total

uncertainty comprises uncertainties of many components, which can be obtained from

either the results of a series of measurements or experience/other information. The former

is termed Type A Uncertainty, and the latter Type B Uncertainty, [63]. hi order to develop

a formulation for the uncertainties, it is important to establish the formulation for

correlated and uncorrelated inputs. For a measurement m, whose results depend on

uncorrelated input estimates xi, X2, ...XN, the standard uncertainty of the measurement is

obtained by appropriately combining the standard uncertainties of these input estimates.

The combined standard uncertainty of the estimate m denoted by uc(m) is calculated from

the following equations, [63]:

= f(xl)x2,...,xN)

!L
dxt

u2(x,)

(5.13)

(5.14)

where / i s the function of m in terms of input estimates xj, X2, ...xx , u(xi) is a standard

uncertainty of inputs which may be evaluated either from Type A Uncertainty or from

Type B Uncertainty, uc
2(m) is known as the combined variance.

When the input estimates are correlated, the combined variance uc
2(m) associated with the

results of a measurement is determined by the following equation:

'=1 >=/+> dxt

(5.15)

110

where u(xu Xj) denotes the estimated covarianee associated with Xi and xj.

An analysis is necessary to identify the contribution of each source of errors from the sub-

systems to the overall measurement uncertainty of the whole system. From this analysis,

the major source of uncertainty can be determined. Depending on the accuracy required,

appropriate adjustments in the set-up of the LISM apparatus can be made to reduce the

uncertainty, and thus to improve the accuracy and repeatability of the measurements.

5.4.2 Methodology for the Estimation of Uncertainties

The uncertainties in position measurement and orientation measurement are estimated in

the following examinations, with the assumption that the input estimates are uncorrelated.

5.4.2.1 Uncertainties in Position Measurement

The approach to uncertainty calculation is based on assuming that all the geometrical

errors are compensated using technique shown in Section 5.3. With this assumption, the

position of the retroreflector can be determined by translating the co-ordinate frame of the

laser beam to each mirror in turn and rotating the frame about a particular axis by

appropriate angles. This is shown in Fig. 5.6.

z R
yXb" XJL

R % ^ 7 ^
YyT-s. /\x ^ /

Retroreflector ^

Mirror 2

Yi

t

Y2

Zi

\^2

Mirror 1

Yo

^ \ ^ XL

Lp^O^ Laser

S O S J Head
Y L X U ^

Zo
A

Xo

World CS

Figure 5.6: Kinematic model of the experimentalUSM apparatus for uncertainties calculation

111

With this method, the position of the retroreflector with respect to the world reference can

be written as:

% =^44^ (5.16)

where ^ =[/raw/(aAX,fllx,a2L)][i2ott(-900)]

A, =[transl(zL',azl)][Rotx(90°)]

A2 = [transl{zx ;aZ2)][Rotz($ci)][Rotx(-90° + 2&c2)]

AR = [transl(z2; am)] [transl(x2; a^)] [transl(y2 \aYR)]

The angular displacement 0C2 is multiplied by 2 as the laser beam is rotated by twice the

angular displacement of motor 2. From the °AR matrix given by Eq. 5.16, the x, y, and z

Cartesian positions of the retroreflector are:

= a
XR

y = aXR sin(^ci) + aYR cos(^cl) sin(2,9c2

z = -aYR cos(2^c2) + a^ sin(2^c2) + aZ2 + a

(5.17)

l)cos(2«9c2) + azl+aYL (5.18)

(5.19)

By expressing the standard uncertainty of measurements calculated using Eqs 5.17 to 5.19,

the variance of the retroreflector's position can be calculated with the following equations:

5x

SScl

8x

5x
S&,

2J

u\Ad2)+
Sx

SI

1 +
sin2Q9cl)
cos(»9c,)

) ^ 4
COS(2i9c2;

radial J

8x

radial

)+21 ^

-\2

-12

-12

(5.20)

112

u\y) =
Sy
S&.e l .

Sy
69.

u2(Ad2)+

+ Ad2 s

- 2 A c / 2

cos(,9cl)

51
Sy

SAd2j

c2 J

Sy

radial _

cos

c cos(25c2)

w2(A</,) +

n2

-|2

u\&c2)+ (5.21)

Sz Sz
S3.

Sz

SAd
2j

u2(Ad2)+

c2 .

Sz
1radial

- ^ r s i n (2 ^ 2)

^2

_SAdx
u\Adx) +

sin(25c2)
1cos(^1) c2

^a/cos(25c2)
2

u\Ad2)

(5.22)
If
t

113

where u(0ci) and u(0c^) are uncertainties of the angular displacements of the motors,

u(Adi) and u(M$ are uncertainties of the beam offset measured by the FSD that take into

account the errors caused by the PSD and the retroreflector errors, u(lmdiai) is the

uncerUiinty of the laser interferometer.

The standard uncertainty of x, y, and z measurements can be determined by the square root

of Eqs. 5.20 to 5.22 as follows:

(i = x> y>z) (5-23)

iii

It must be noted that the uncertainties of positions determined using this approach are

dependent on the instantaneous angular displacement of the motors and the displacement

of the laser beam. Tables 5.2 to 5.4 tabulate the uncertainty obtained using Eq. 5.23 with

various angular displacements of the motors. The results were calculated based on the

assumption that the laser beam is hitting the centre of the retroreflector and the target is

located 600mm avay from the lest mirror.

»t

From Table 5.2 tc 5.4, it can be observed that the coefficients for u(Oci) and u(9C2) are the

dominant variables in the overall uncertainties of the position measurements. With the

present motor accuracy, the maximum uncertainty is 0.51mm for x, 0.69mm for y, 0.95mm

for z. To improve the uncertainty, motors and PSD with higher accuracy are required. With

the utilisation of motors with accuracy of 0.003° and PSD with accuracy of 0.01mm, the

maximum uncertainty can be reduced to 0.04mm ior x, 0.05mm for y, 0.06mm for z. This

is shown in Table 5.5 to 5.7.

114

• * • * '

Table 5.2: Uncertainty of retroreflector x co-ordinate at 4 different motors

configurations

0d = O°

002 = 0°

'radial = 600 mm
Ad1 « 0
Ad2 = 0

u(x) (mm)

0ci = 450

0o2 = 24.5°

Ijadia, = 600 mm

Ad1=0
Ad2 = 0

u(x) (mm)

0oi=45°

002 = 0°

l̂ dia, = 600 mm
Ad1=0
Ad2 = 0

u(x) (mm)

001 = 0°

0o2 = 24.5°

Ifadia, = 600 mm

Ad1=0
Ad2 = 0

u(x) (mm)

6x/8Ad1

1

(5x/8Ad1)*

1

u*(Adl)
0.01

0.164726

5x/5Ad1

1.5

(5x/8Ad1)*

2.25

uz(Ad1)
0.01

0.513246

5x/5Ad1

1

(5x/8Ad1)*

1

u2(Ad1)
0.01

0.136262

5x/5Ad1

1.707107

(8x/8Ad1)'

2.914214

uz(Ad1)
0.01

0.194191

5x/5Ad2

0

(8x/8Ad2)'

0

u'(Ad2)
0.01

0

(Sx/51,,,,,.,)2

0

U2(lr.dl«l)
0.000001

8x/50c1

-600

(8x/89c1)2

360000

«2t8c1)
4.75965E-08

8x/80c2

0

(8x/50c2)2

0

u2(0c2)
6.1685E-07

5x/5Ad2

1207107

(5x/8Ad2)'

1.457107

u2(Ad2)
0.01

8x/6lra-tal

-0.5

(Sx/SI^,,,)2

0.25

U (fndlal)
0.000001

Sx/S9c1

-300

(8x/80c1)2

90000

u2(6ct)
4.75965E-08

8x/80c2

600

(8x/50c2)2

360000

U2(0C2)
6.1685E-07

8x/8Ad2

0

(Sx/8Ad2)l£

0

u2(Ad2)
0.01

Sx/SUd,,,
0

(5X/5U,,.,)2

0

u:(lr.din)
0.000001

Sx/80e1

-4P.4.2640687

(8x/80c1)2

180000

u2<0ci)
4.75965E-08

8x/89c2

0

(8x/50c2)2

0

U2(0C2)
6.1685E-07

8x/8Ad2

0

(8x/5Ad2)*

0

uz(Ad2)
0.01

Sx/51^,.,

-0.707106781

(8X/5U,,,)2

0.5

U2dr,dl.l)
0.000001

8x/80c1

-424.2640687

(8x/80c1)
2

180000

u2(ec1)
4.75965E-08

8x/80c2

0

(8x/89c2)2

0

U2(0C2)
6.1685E-07

115

Table 5.3: Uncertainty of retroreflector y co-ordinate at 4 different motors

configurations

ec1 = o3

602 = 0°

'radial = 600 mm
Ad1 = 0
Ad2 = 0

u(y) (mm)

ec1 = 45°
602 = 45°

•radial = 600 m m

Ad1 = 0
Ad? = 0

u(y) (mm)

ec1 = 45°
002 = 0°

•radial = 600 m m

Ad1 = 0
Ad2 = 0

u(y) (mm)

eci = 0°

0o2 = 24.5°

'radial = 600 mm
Ad1 = 0
Ad2 = 0

u(y) (mm)

5y/5Ad1

0

(8y/8Ad1)'

0

uz(Ad1)
0.01

0.001

8y/8Ad1

0.5

(Sy/8Ad1)*

0.25

uz(Ad1)
0.01

0.493377

5y/5Ad1

0

(8y/8Ad1)'

0

u2(Ad1-
0.01

0.68795

8y/8Ad1

0.292893

(Sy/8Ad1)*

0.085786

uz(Ad1)
0.01

0.097086

5y/5Ad2

0

(8y/8Ad2)'

0

u'(Ad2)
0.01

5y/8ir,dl,i
1

(Sy/sUd,.,)2

1

u2(U.,)
0.000001

8y/59cl

0

(8y/89cl)
2

0

U2(0d)
4.76E-08

8y/S0c2

0

(8y/80c2)
2

0

u2(9c2)
6.17E-07

5y/5Ad2

-1.20711

(8y/8Ad2)'

1.457107

u2(Ad2)
0.01

8y/8ir,d,aI

0.5

(Sy/sir,,,,,,)2

0.25

U 2 (U I . I)
0.000001

8y/89cl

-300

(8y/89cl)
2

90000

U2(0d)
4.76E-08

8y.'80c2

-600

(5y/86c2)
2

360000

U2(9C2)

6.17E-07

5y/5Ad2

-1.70711

(8y/8Ad2)'

2.914214

uz(Ad2)
0.01

6y/8i«dU!

0.707106781

(5y/8Ud!,.)
2

0.5

U2(lradl.l)
0.000001

5y/80cl

0

(8y/89cl)
2

0

U2(0d)
4.76E-08

8y/S0c2

-848.528

(Sy/8002)1

720000

U2(9C2)
6.17E-07

5y/5Ad2

0

(8y/8Ad2)'

0

u2(Ad2)
0.01

Sy/Sirad,,,

0.707106781

(Sy^Ud,,,)2

0.5

u2(Ud«..)
0.000001

5y/89ci
-424.264

(8y/89cl)
2

180000

u2i0ci)
4.76E-08

8y/S9c2

0

(8y/80c2)2

0

u2(0c2)
6.17E-07

\ '

116

Table 5.4: Uncertainty of retroreflcctor z co-ordinate at 4 different motors

configurations

eci = o°
602 = 0°

'radial= 600 mm

Ad1=0
Ad2 = 0

u(z) (mm)

ec1 = 45°
9c2 = 24.5°

'radiai= 600 mm
Ad1 = 0
Ad2 = 0

u(z) (mm)

ec1 = 45°
0c2 = 0O

'radial = 600 m m

Ad1 =0
Ad2 = 0

u(z) (mm)

0c, = 0°

Bcz = 24.5°

'radial= 600 mm
Ad1 = 0
Ad2 = 0

u(z) (mm)

5z/5Ad1

0

(8z/8Ad1)*

0

uz(Ad1)
0.01

0.947768

5z/5Ad1

-0.707107

(8z/8Ad1)*

0.5

uz(Ad1)
0.01

0.670813

5z/5Ad1

0

(5z/8Ad1)*

0

uz(Ad1)
0.01

0.667076

5z/6Ad1

0

(5z/5Ad1)"

0

uz(Ad1)
0.01

0.947768

8z/5Ad2

1

(8z/8Ad2)'

1

u2(Ad2)
0.01

Sz/5lradial

0

(SztfUd,.,)2

0

U2(lr,dl.l)
0.000001

8z/88c,
0

(6z/80cl)
2

0

u2(Bd)
4.75965E-08

Sz/86c2

1200

(Sz/S8c2)
2

1440000

u2(9c2)
6.17E-07

5z/5Ad2

0.292893

(8z/8Ad2)i

0.085786

uz(Ad2)
0 01

Sz/Slndi,)

0.707106781

(Sz/SUd...)2

0.5

U2(lradi.l)
0.000001

5z/58cl

0

(8z/56cl)
2

0

"2(e t i)
4.75965E-08

8z/88c2

848.5281

(5z/88c2)2

720000

U2(9c2)

6.17E-07

5z/5Ad2

0.292893

(8z/8Ad2)i

0.085786

uz(Ad2)
0.01

Sz/SUd...
0.707106781

(Sz/SUi..)2

0.5

uz(lndi.i)
0.000001

8z/S6cl

0

(8z/86cl)
2

0

u2(eci)
4.75965E-08

8z/8Gc2

848.5281

(£z/89c2)2

720000

u2(9e2)
6.17E-07

5z/5Ad2

1

(6z/5Ad2)'

1

u1(Ad2)
0.01

Sz/Slradl.!
0

(Sz/au...)2

0

u2(iradi.i)
0.000001

8z/89cl

0

(8z/89cl)
2

0

u2(Gd)
4.75965E-08

8z/88c2

1200

(8z/89c2)2

1440000

u2(9c2)
6.17E-07

[l.

t'i

117

Table 5.5: Uncertainty of retroreflector x co-ordinate at 4 different motors

configurations with higher instruments' accuracy

ec1 = o°
602 = 0°

•radial = 600 mm

Ad1=0
Ad2 = 0

u(x) (mm)

6d=45°
602 = 24.5°

Iradiai = 600 mm

Ad1=0
Ad2 = 0

u(x) (mm)

ec1 = 45°
6o2 = 0°

•radial = 600 mm
Ad1 = 0
Ad2 = 0

u(x) (mm)

6d = 0°

6C2 = 24.5°

Iraciai = 600 mm

Ad1=0
Ad2 = 0

u(x) (mm)

Sx/8Ad1

1

(8x/SAd1)*

1

uz(Ad1)
0.0001

0.032969

5x/6Ad1

1.5

(5x/SAd1)*

2.25

u2(Ad1)
0.0001

0.04O058

5x/5Ad1

1

(8x/8Ad1)*

1

uz(Ad1)
0.0001

0.024361

5x/5Ad1

1.707107

(5x/5Ad1)'

2.914214

uz(Ad1)
0.0001

0.028025

8x/8Ad2

0

(8x/8Ad2)*

0

u2(Ad2)
0.0001

5x/5lrad,,,
0

(5X/8I,.,,,.,)2

0

u2(lrad.,.)
0.000001

Sx/88C,
-600

(8x/89cl)
2

360000

u2(0ci)
I 2.74156E-09

8x/58c2

0

(8x/86c2)
2

0

u2<ec2)
2.74156E-09

6x/5Ad2

1.207107

(8x/5Ad2)'

1457107

uz(Ad2)
0.0001

Sx/81,,,,,.,
-0.5

(Sx/Slnunrt)2

0.2i>

uz(Udi.i)
0.000001

8x/S6cl

-300

(8x/86cl)
2

90000

u2(8c1)
2.74156E-09

8x/89c2

600

(8x/88c2)
2

360000

U2(6C2)

2.74156E-09

5x/5Ad2

0

(8x/8Ad2)'

0

uz(Ad2)
0.0001

5x/Slrad,.,
0

(6X/8U,,,.,)2

0

U2(lr,dl.l)
0.000001

8x/86c,
-424.2640687

(8x/89cl)
2

180000

U2(8c1)
2.74156E-09

8x/88c2

0

(8x/S9c2)
2

0

u2(ec2)
2.74156E-09

Sx/5Ad2

0

(8x/8Ad2);

0

uz(Ad2)
0.0001

Sx/Slndiai
-0.707106781

(Sx/81^,.,)2

0.5

U2(lr,di.l)
0.000001

8x/S6cl

^24.2640687

(6x/66cl)
2

180000

U2(9C1)

2.74156E-09

8x/S9c2

0

(8x/89c2)
2

0

U2(8C2)

2.74156E-09

i
il

i

118

Table 5.6: Uncertainty of retroreflector y co-ordinate at 4 different motors

configurations with higher instruments' accuracy

Ooi = 0°
9c2=0°

'radial - 600 mm
Ad1 = 0
Ad2 = 0

u(y) (mm)

9C1 = 45°

9c2 = 24.5°

Udiai = 600 mm
Ad1 = 0
Ad2 = 0

u(y) (mm)

9C1 = 45°

9c2 = 0°

•radial - 600 mm
Ad1 = 0
Ad2 = 0

u(y) (mm)

9C, = 0°

9e2 = 24.5e

'radial = 600 mm
Ad1 = 0
Ad2 = 0

u(y) (mm)

5y/5Ad1

0

(5y/8Ad1)*

0

uz(Ad1)
0.0001
0.001

6y/5Ad1

0.5

(Sy/SAdi)*

0.25

uz(Ad1)
0.0001

t.037479

5y/5Ad1

0

(8y/8Ad1)*

0

u2(Ad1)
0.0001

0.047601

5y/5Ad1

0.292893

(Sy/8Ad1)*

0.085786

u2(Ad1)
0.0001

0.022418

5y/5Ad2

0

(5y/5Ad2)*

0

uz(Ad2)
0.0001

8y/8indI.i
1

(5y/8U...)2

1

U2(lr,dl.l)
0.000001

5y/89c,

0

(8y/89c l)
2

0

u2(ec1)
2.74E-09

8y/89c2

0

(8y/89c2)2

0

u2(9c2)
2.74E-09

5y/5Ad2

-1.20711

(8y/8Ad2)'

1457107

u2(Ad2)
0.0001

Sy/5lradl.l

0.5

(Sy/5ir,d...)2

0.25

U2(UdIal)
0.000001

8y/80ci

-300

(8y/89c l)
2

90000

u2(8c1)
2.74E-09

8y/80c2

-600

(8y/89c2)2

360000

u2(ec2)
2.74E-09

Sy/5Ad2

-1.70711

(8y/8Ad2)ii

2.914214

uz(Ad2)
0.0001

Sy/Slrad,..

0.707106781

(SytfUd,,,)2

0.5

U2(lradl«l)
0.000001

8y/8Gc,

0

(6y/S9cl)
2

0

u2(9c1)
2.74E-09

8y/89c2

-848.528

(8y/89c2)2

720000

U2(9C2)

2.74E-09

Sy/SAd2

0

(8y/8Ad2)*

0

u2(Ad2)
0.0001

8y/5lr,dl.l
0.707106781

(Sy/sUd...)2

0.5

U2(lr.di.l)
0.000001

6y/89c,

-424.264

(8y/80c l)
2

180000

u2(9c1)
2.74E-09

8y/89c2

0

(8y/89c2)2

0

u2(0c2)
2.74E-09

119

Table 5.7: Uncertainty of retroreflector z co-ordinate at 4 different motors

configurations with higher instruments' accuracy

6ei = 0°
0c2=O°

radial - 600 mm

Ad1=0
Ad2 = 0

u(z) (mm)

0C1 = 45°

0c2 = 24.5°

'radial = 600 mm
Ad1 = 0
Ad2 = 0

u(z) (mm)

0C1 = 45°

0c2=O°

•radial = 600 mm

Ad1=0
Ad2 = 0

u(z) (mm)

eci = o°
0c2 = 24.5°

radial = 600 mm

Ad1=0
Ad2 = 0

u(z) (mm)

5z/5Ad1

0

(8z/8Ad1)*

0

u2(Ad1)
0.0001

0.063623

5z/SAd1

-0.707107

(8z/8Ad1)*

0.5

uz(Ad1)
0.0001

0.045089

5z/8Ad1

0

(8z/8Ad1)*

0

uz(Ad1)
0.0001

0.044531

5z/5Ad1

0

(5z/8Ad1)*

0

u2(Ad1)
0.0001

0.063623

5z/5Ad2

1

(5z/5Ad2)'

1

u2(Ad2)
0.0001

5z/5lradi,i
0

(5Z/5U,!,,,)2

0

U2(fr.dial)
0.000001

5z/88c,
0

(6z/56cl)
2

0

u2(eci)
2.74156E-09

8z/80c2

1200

(8z/89c2)
2

1440000

u2(ec2)
2.74E-09

Sz/5Ad2

0.292893

(5z/5Ad2)*
0.085786

u2(Ad2)
0.0001

8z/5lr,dlal

0.707106781

(52/SUd...)2

0.5

U2(ir,di.l)
0.000001

5z/56cl

0

(5z/59e,)
2

0

u2(0d)
2.74156E-09

8z/80c2

848.5281

(8z/89c2)
2

720000

u2(ec2>
2.74E-09

Sz/5Ad2

0.292893

(6z/5Ad2)'

0.085786

uz(Ad2)
0.0001

Sz/Sl^dj,,
0.707106781

(Sz/SI^,.,)2

0.5

U2(>r.dlal)

0.000001

5z/8e(i l

0

(8z/80cl)
2

0

U2(0d)
2.74156E-09

8z/80c2

848.5281

(Sz/89c2)
2

720000

u2(9c2)
2.74E-09

Sz/SAd2

1

(8z/8Ad2)'

1

uz(Ad2)
0.0001

Sz/5lradl,,
0

(5Z/6U,.,)2

0

u2(lrad...)
0.000001

8z/86el

0

(8z/8Gcl)
2

0

U2(0d)
2.74156E-09

8z/80c2

1200

(8z/89c2)
2

1440000

u2(9e2)
2.74E-09

120

A

5.4.2.2 Uncertainties in Orientation Measurement

For the dual PSD-based orientation measurement approach, the uncertainty can be

estimated by expressing the uncertainty of the Orientation Measurement Formulation

(OMF) obtained using Eqs. 4.6 to 4.13 as follows [61].

From Eq. 4.6, let w, = tan q>-— —. The variance of «/ can be calculated using the
2/, - / 2 + / 3

following equation:

8nx

~5D~2x

u\D2x) +

s 2 .

u\l2) +
Snx

8nx

Jb^x
2

5nx

3 .

- 1

.2/,-/2+/,J
-2(D3x-D2x)

L(2/1-/2+/3)2J

(2lx-l2+l3)
2\

[2/,-/2+/3J

L(2/,-/2+/3)2J

(5.24)

I.i

From Eq. 4.7, let «, = tan^ = —&• — cose?. The variance of «2 can be calculated using
911+1

the following equation:

2>-J
2

SD,

8n 8n2

COS (9

L2/ , - / 2+/ 3J

5<p

COS ̂ 7

27, - /2

u\l2)+

u\<p)

(5.25)

121

B
Similiarly, from Eq. 4.13, let «3 = tan p = ——. The variance of n$ can be calculated using

B2x

the following equation:

5n3

SDy,

Sn,

Sn3

5D,,,

Jl.2 . 8<p
u\<p)

AD.2x

B——-A(-sm<p +
COS0

-B-
COSf COS<p

u\!2)+

cos^.
B[-D2y sin 0 - (/2 - /,) —] - A[D2y sin q> cos <j> -

_. sin^sinff1
1 cos2 <p

A[D2x sin <p + (l2 - /,) cos q> + D2y sin ̂ cos 9> -

V'2 *W » 2
COS $J COS

2
COS

(5.26)

(5.27)

(5.28)

,

122

The uncertainty of the angles can be obtained from the arctan of the square root of die

variances given by Eqs. 5.24 io 5.26:

u{Angle) = tan-'lX/j,)] (i = 1,2,3) (5.29)

where Angle represents q>, <f>, and p.

It must be noted that the uncertainty in q>, which is the rotation of the Gimbal unit about

the z-axis in Fig. 4.1, is dependent only on the geometry of the gimbal and the PSD

measurements. However, the uncertainty in ^ , which is the rotation of the gimbal about

the x-axis in Fig. 4.1, is dependent on <p as well as the uncertainty in <p. Uncertainty in p,

which is the rotation of the gimbal about the y-axis in Fig. 4.1, is dependent on the

instantaneous values and uncertainties of both <p and ^ . The uncertainty of the angles

calculated based on q> = 0, <j> = 0 and a beam offset of 2mm is tabulated in Table 5.8.

From Table 5.8, it can be observed that the coefficients of w(ZW, ufD^), u(D^t u(Diy) are

the dominant parameters in the overall uncertainties of the orientation measurements.

These are measurements made by the PSDs, and thus they are equivalent to the uncertainty

of the PSD measurements. The uncertainty is 0.07° for both yaw and pitch angles, and

5.71° for roll angle. Due to the high uncertainty associated with the calculation of roll

angle, OMF is not effective in acquiring roll angle in the current set-up. Uncertainty for

orientation measurement can be reduced by ufing PSD with a better accuracy.

Furthermore, the uncertainty of roll angles was observed to be dependent on the beam

offset as described in Section 4.5. Thus, uncertainty for the roll angle can be further

improved by using a larger beam offset. Alignment tools to establish a beam offset of

12.8mm have been provided by Zygo. With the utilisation of PSD with an accuracy of

0.01mm and a beam offset of 12.8mm (£>2x= 6.4mm, Z)jx= 6.4mm), the uncertainty can be

reduced to 0.007° for both yaw and pitch angles and 0.090° for roll angle. This is shown in

Table 5.9.

123

Table 5.8: Uncertainty

D2X= * rnm

D3x = 1 mm

I, = 60 mm

I2= 60 mm

I3= 60 mm

"(nO
u(<p) /degree)

D2y=0

D3y = 0

E1 = 60 mm

I2 = 6O mm

l3 = 60 mm

9 = 0

u(n2)
u(4>> (degree)

Dax = 1 mm

D2y=0

li = 60 mm

I2=6O mm

l3 = 60 mm

<p = 0

<j) = 0
A = 0
B = -1 mm

u(n3)
u(p) (degree)

Snt/SDzx

-8.33E-03

(Sn^SDz,)2

6.94E-05

u2(D2x)
0.01

0.0011785
0.0675237

5n2/5D2v

8.33E-03

(Sn^D^) 2

6.94E-05

U2(D2v)
0.01

0.0011785
0.0675237

5n^5D2x

0

(Sn^D^)2

0

0.01

0.1
5.7105931

8n1/8D3x

8.33E-03

(Sn^Dj,)2

6.94E-05

uZ(D3x)
0.01

8n2/8D3y

8.33E-03

(8n2/8D3x)
2

6.94E-05

u2(D3v)
0.01

of roll, pitch and yaw angles

SrMSli

0

(5n,l5\tf
0

u2di)
0.01

Srtj/S^

0

(8112/81,)*

0

u2di)
0.01

SnVSiz

0

(8n i /8l2)z

0

u2d2)
0.01

5n2/5l2

0

(8n2/8l2)2

0

u\k)
0.01

Srii/Slj

0

(5n1/8l3)2

0

u2d3)
0.01

6n2/5l3

0

(8n2/8l3)z

0

u2d3)
0.01

5n2/5(p

0

(Snj/Scp)2

0

U2(q>)

1.44E-06

8n3/5D2v

-1

(Sr^/SD^)2

1

u2(D3x)
0.01

Snj/Sli

0

(8IW8I,)2

0

u2di)
0.01

Sn3/SI2

0

(5n^5\2)
2

0

u2fl2)
0.01

5n?/5<}>

0

(Sn^S^)2

0

uz(*)
1.44E-06

6n3/5(p

0

(SnaJ'Sq))2

0

U*(q>)

1.44E-06

124

Table 5.9: Uncertainty of roll, pitch and yaw angles with higher instruments' accuracy

and larger beam offset

D& = 6.4 mm
D3x = 6.4 mm
\i - 60 mm
l2=60mm
l3=60mm

u(nO
u(<p) (degree)

D^-O
U = 60 mm
l 2 = 6 0 m m

l 3 = 6 0 m m

cp = O

u(n2)
u(<j>) (degree)

^2x = 6.4 mm

l t - 6 0 mm

I2=CO mm

! 3 = 6 0 m m

q> = 0

<j)=0
A = 0
B = -6.4 mrn

u(n3)
U(P) (degree)

Sn^SDz,

-8.33E-03

6.94E-05

U2(D2x)

0.0001
0.O001179
0.0057524

8n2/5D2v

8.33E-03

(Srij/jD^)2

6.94E-05

U2(D2y)
0.0001

0.O001179
0.0067524

8n3/8D2x

0

(8n1/8D2x)
z

0

U^Dja)

0.0001

0. J015625
0.O895246

6n1/5D3);

8.33E-03

(8n^dD3x)
2

6.94E-05

u2(D3x)
0.0001

Sn2/SD3y

8.33E-03

(8n2/8D3x)
z

6.94E-05

U2(D3V)

0.0001

Srii/Sli

0

(Srn/Sli)2

0

u2di)
0.0001

0

(Snz/SI,)2

0

u2di)
0.0001

0

(SrVSIj)2

0

u2(l2)
0.0001

5n2/SI2

0

(8n2/8l2)2

0

u2d2)
0.0001

5iVSI3

0

(Sni/Slj)2

0

u2(l3)
0.0001

5n2/5l3

0

(8n2/Slj)2

0

u2(l3)
0.0001

5n2/8cp

0

(8n2/8q>)2

0

U2(<p)

1.44E-08

6n :/5D2y

-0.15625

(8n1/8D2y)
1'

0.024414

U2(D3X)

0.0001

0

(SnilSU)2

0

u2di)
0.0001

5n3/SI2

0

(orii/SIa)2

0

«2d2)
0.0001

8n3/5(j>

0

(Sn^)2

0

uz(<J>)
1.44E-08

8n3/8cp

0

(8n,/8(?)2

0

UZ((p)

1.44E-08

125

m

5.5 Summary

hi this chapter, the sources of errors associated with the LISM apparatus and the Gimbal

unit have been identified. The establishment and calibration of the kinematic model of the

LISM apparatus has been presented. An approach to analyse the overall uncertainties of the

measurement made by the LISM apparatus and the Gimbal unit has also been presented. It

is desirable that position or orientation measurements obtained have a very high accuracy,

at least better than the accuracy of the robot manipulator to be measured in order to carry

out calibration of the robot manipulator. This requires that the uncertainty of the

measurements made by the LISM apparatus due to geometric and non-geometric or any

other errors to be less than the accuracy desired. This knowledge of uncertainty and the

analysis method allow the correct selection of individual sub-system devices for the LISM

apparatus and the Gimbal unit in order to improve the measurement accuracy.

Next chapter presents the investigation of issues, requirements, and factors associated with

the establishment of a methodology for closed-loop control of robot manipulators using the

LISM apparatus.

: j

*

k

126 ill

Chapter 6

Investigation of Closed-loop Control of Robot Manipulators
using LISM

6.1 Introduction

Robot manipulators have been used in many manufacturing industries. Due to an increase

in complexity and higher quality requirements in production operations, a more accurate

control of robot's end-effector is required. Various robot control architectures have been

developed to allow the end-effector's position to be controlled so that a desired position

can be reached or a desired trajectory can be followed with high precision and stability.

However, there are limitations on the existing architectures such as the computational

power requirement, the uncertainty of the robot structure, the incompatibility between

joint-space and Cartesian space, mechanical hysteresis and friction, external disturbance,

etc. [1, 4, 6, 23, 64, 65, 66, 67, 68]. In this chapter, a closed-loop control of the robot

manipulator using the Laser Interferometry-based Sensing and Measuring (LISM)

apparatus is proposed. This is a control methodology where the LISM apparatus is used to

perform dynamic measurements of the robot's end-effector during robot manipulation to

perform compensation or error adjustment on-line. The control algorithm for this

methodology, together with the measurement and analysis techniques are described in the

following sections. Experimental implementation of the methodology on an industrial

robot manipulator is also presented. The results are analysed to examine the effectiveness

of the methodology. This feedback of the actual Cartesian position improves the robot path

accuracy and the robot approach toward a desired point without the need of complex

dynamic model of the robot manipulator [69, 70, 71].

6.2 Principle of Robot Closed-loop Control Using LISM

A LISM Closed-Loop Control (CLC) is a control methodology where the LISM apparatus

is used as a position sensor to measure the Cartesian position of the robot's end-effector.

The LISM apparatus maintains tracking of the robot's end-effector while it is moving

along a predefined path. During the robot motion, there may be wobbling and bending of

the robot arm along the path of motion, which causes the position of the end-effector to

127

deviate from the desired path. The LISM apparatus is implemented as a processing unit to

determine the position error. Feedback of the position error from the LISM apparatus is

used to provide a position compensation specification to the robot manipulator. This

position error can be converted to compensation joint angles by the robot controller and fed

into the robot's joint space controller as shown in Fig. 6.1. This feedback loop ensures a

higher positioning accuracy as the error of the robot end-effector in Cartesian space can be

detected using the LISM apparatus. Further, this methodology ensures that the deviation of

the end-effector's travel is within a desired error-limit and thus improves the path accuracy

of the robot end -effector.

6.3 Control Methodology

A flowchart of the control algorithm is provided in Fig. 6.2. Two different methods of

commanding the robot have been investigated. The first method is based on the command

of robot positions. The second method is by controlling the robot velocity based on the

calculated position errors. In both methodologies, the control software first prompts the

operator for the desired trajectory of the robot. This trajectory must consist of the starting

point, the end point, and the other desired control points that the end-effector must reach.

Straight line motion segments are used to join the start point to the first control point, from

each control point to the next, and finally from the last control point to the end point. Fig.

6.3 shows the schematic description of the generated path. A number of via points, used for

the verification of robot position along each motion segment, are generated and plotted

along each motion segment. Fig. 6.4 shows the same generated motion segments with the

inclusion of the target points (start, end, control and via points).

Rcbot Controller

-\—¥

Trajectory
Conversion

Actuator

0

LISM
Measurement

Figure 6.1: Block diagram of closed-loop control using USMfeedback.

128

I

(BEGIN)

I Track Robot

Robot Motion Detection
Process

Robot trajectory
specifications and
path generation to
form target points

j = 1 to m (no. of
motion segments)
i = 0 to n (no. of
target points on

motion segment j)

Acquire robot
motion status

Calculate Robot
Position P_

position error =
|PC-PT,D]|

position error =

Position error
compensation

YES

YES
Interrupt request

generation to
update current

position Pc

Exit

NO

Position error
compensation

Position
Mode

Velocity
Mode

Send position
error to robot

controller

YES
Stop Robot

Motion Detection
Process

Convert position error
to robot position

increment within 15ms
clock tick

Exit

Figure 6.2: Flowchart of closed-loop control algorithm using LJSM

129

i^:l%

Retroreflector on
obot end-effector

£ontrol point 1

ontrol point 2
Start & end
point

Robot Controller

Linear path
generated by LISM
closed-loop control
algorithm

LISM
apparatus

Communication link
between robot controller
and LISM control unit

LISM control
t

Figure 6.3: Schematic description of linear path generated by LISM closed-loop control algorithm

Retroreflector on <f
robot end-effector p

6

Robot Controller ^ O U g * .

<" ^ / J

Communication link ^ v .
between robot controller ^ \
and LISM control unit

/ ^

IK
Laser bearrTh

<

i

LISM control
s. unit 1

Via points generated
by LISM closed-
loop control
algorithm

LISM
y& apparatus

rvxH

Figure 6.4: Schematic description of via points generated by LISM closed-loop control algorithm

130

I

6.3.1 Position Control Mode

In position control mode, the via points are generated based on frequent a robot position

verification is required. Due to the incapability of changing the position of most industrial

robots on the fly, the robot has to stop at each target point in position control mode. The

motion status of the robot manipulator is being monitored continuously by the motion

status detection process as shown in Fig. 6.2. When the robot has stopped by reaching a via

point, the current position of the robot measured by the LISM apparatus is compared to the

next via point and the resultant position increment is transmitted to the robot. By using

more via points along a motion segment, the path accuracy of the end-effector can be

further improved.

. § 1

In the case where a control point has been reached, the position error is compared to the

predefined error limit. If the error is more than the predefined error limit, this error is again

compensated by commanding the robot to move by the calculated increment. If the

position error is less than the predefined error limit, the robot is commanded to move to the

next via point on the next motion segment. In the case of reaching an end point, the error is

compensated continuously until the end-effector of the robot reaches a position where the

error is less than the predefined error limit. The predefined error limit is specified based on

the precision required at each control point or end point. This reduces steady state error due

to the inaccuracy of the robot controller in positioning the end-effector of the robot.

Further, the position error of the robot is minimised before the robot is commanded to the

next control point. By using this methodology, the end-effector of the robot is commanded

to all the target points increment by increment along the predefined path.

6.3.2 Velocity Control Mode

In velocity control mode, the via points are generated based on the average velocity

commanded and update interval. Instead of stopping at each via point as described in

position control mode, these via points are used for checking the position of the robot at

every update interval. At every update interval, the current position of the robot measured

by the LISM apparatus is compared to the next via point to calculate the position

increment. The velocity of the robot is updated based on the resultant position increment.

With lower average velocity, more via points are generated and the path accuracy of the

end-effector can be further improved.

Similarly, when a control point has been reached, the position error is compared to the

131

predefined error limit. If the error is more than the predefined error limit, this error is again

compensated by commanding the robot to move by the calculated velocity. The robot is

commanded to move to the next via point on the next motion segment only when the error

is less than the predefined error limit. In the case of reaching the end point, the error is

compensated continuously until the end-effector of the robot reaches a position where the

error is less than the predefined error limit. By controlling the velocity of the robot, the

position error can be compensated on the fly. The end-effector of the robot is therefore

commanded through all of the target points continuously along the predefined path.

I

m
i'S't

6.4 Experimental Set-up

Experiments have been performed to establish the behaviour of the control algorithm for

closed-loop control of robot manipulators. The experimental set-up, shown in Fig. 6.5,

consists of the mentioned experimental LISM apparatus and a Motoman robot manipulator.

A special feature of the Motoman robot controller is that the velocity of the robot can be

controlled using the TurboLink interface [72]. This is carried out using the real-time

service function, which synchronises with the real-time clock of the controller to read

incremental position data from an application program. The interval of the real-time clock

is 15 ms by default. The robot moves by the commanded increment at every clock tick.

Zero increment is used if it is not updated by the user, thus stopping the robot. This robot

has a resolution of 20um and a repeatability of 0.4mm [73].

During the experiments, a robot tool co-ordinate frame was first established so that

subsequent movements of the end-effector were recorded with respect to the origin of this

co-ordinate frame (refer to Appendix D for the procedures of transforming LISM

measurements into positions with respect to the robot tool co-ordinate frame). The co-

ordinate frames are shown in Fig. 6.3.

In the first experiment, the position control mode was used. The end-effector was

commanded to an end point by moving along a single axis. The Cartesian co-ordinates of

the end-effector at every target points were recorded using the LISM apparatus. Two

different sets of results were recorded for motion along each axis, one with the method of

CLC and the other without. The experiment was repeated using a higher number of target

points along the path.

132
1 11

Target
retroreflector

Robot end-
effector

Figure 6.5: Experiment set-up with LISM apparatus and robot manipulator

The second experiment was performed to investigate the velocity control mode in this

methodology. Again, the end-effector was commanded to an end point by moving along a

single axis at a desired velocity. The experiment was repeated using a lower velocity. The

Cartesian co-ordinates of the end-effector at each update interval were recorded using the

LISM apparatus. The performance of the position and velocity control modes were

compared in order to identify the effectiveness and behaviour of both control modes.

I

6.5 Experimental Results and Discussions

Figs. 6.6 to 6.8 show the error between the measured and target robot positions without the

LISM closed-loop control, moving along the robot x-, y- and z-axes, respectively. From

these figures, it can be observed that there are initial position errors. This suggests that the

starting position commanded by the robot controller differs from the desired starting point.

The possible source of this error is the inaccurate kinematic parameters used in the

kinematic model of the robot manipulator. Moreover, there were non-linear effects such as

static and dynamic Siction, hysteresis, and non-rigid behaviour of the robot manipulator

[68, 74]. When the robot was in motion, there were changes in the position error, which

represents a deviation of the end-effector away from the desired path. More significant

changes can be observed in the x and z co-ordinates. A possible reason for this

phenomenon could be the wobbling and bending of the robot arm due to gravitational

133

I

force. Table 6.1 indicates that the maximum RMS position error for the end-effector along

the commanded path is 0.7mm along the x- and y-axes, and 1.6mm along the z-axis. The

maximum steady state error is ±0.8mm along the x- and y-axes, and ±1.8mm along the z-

axis. Due to the fact that the robot controller does not observe the steady state error, this

error will not be eliminated.

ib-i

r

Error between measured and target robot portions without USM clos«d-loop control, moving In robot x-axls

1-Si

1 2 3 4 5 6 7 8 9 tO 11 12 13 14 15 tS 17 1» IS 20 21 22 23 24 25 28 27 28 29 30 31

- E I T X

- E I T Y

-ErrZ

Figure 6.6: Error between measured and target robot positions without USM closed-loop controlwhile moving
in robot x-axis

M
ftI

Error between measured and target robot positions without USM closed-loop control, moving in lobot y-axh

-EirX

-EITY

- B T 2

(1 2 3 4 S 6 7 • 9 10 11 12 1! 14 15 IS 17 IB IS 20 21 22 23 24 25 26 27 28 24 30 31

Figun 6.7: Error between measured and target robot positions without USM closed-bop control while moving
in robotj-axis

134

m

Error betwatn measured and Urget robot posltlone without USM cloatd-ioop control, moving In robot i-ixli

a •• •

-EnX
-EnV
-EnZ

1 2 3 4 5 6 7 8 » 10 11 12 13 14 1S 18 17 11 HI 29 21 22 23 24 25 2S 27 28 29 M 31

TwgttPoMNo.

Figure 6.8: Error between measured and target robot positions without USM closed-loop control while moving
in robot %-axis

Table f 1: Comparison of RMS and steady state position error with and without the

implementation of position mode closed-loop control

Distance between two via points: 10mm

Move along
X
Y
Z

With position mode CLC
RMS Error

X
0.045
0.054
0.035

Y
0.044
0.040
0.020

Z
0.109
0.179
0.121

Without CLC
RMS Error

X
0.733
0.235
0.245

Y
0.634
0.479
0.717

Z
0.795
0.924
1.556

Move along
X
Y
Z

With position mode CLC
Steady state E /or

X
0.039

-0.030
0.003

Y
-0.042
0.013
0.017

Z
-0.015
0.030
0.041

Without CLC
Steady state Error

X
0.828

-0.422
-0.338

Y
0.695
0.320
0.804

Z
0.420

-0.815
-1.805

Distance between two via points: 5mm

Move along
X
Y
Z

With position mode CLC
RMS Error

X
0.053
0.042
0.036

Y
0.045
0.054
0.020

z
0.113
0.168
0.113

Without CLC
RMS Error

X
0.733
0.235
0.245

Y
0.634
0.479
0.717

Z
0.795
0.924
1.556

_

Move along
X
Y
Z |

With position mode CLC
Steady state Error

X
-0.052
-0.012
-0.081

Y
0.045

-0.006
-0.0?.3

Z
-0.047
-0.011
-0.049

Without CLC
Steady state Error

X
0.028

-0.422
-0.338

Y
0.695
0.320
0.804

Z
0.420

-0.815
-1.805

135

With the implementation of position mode closed-loop control (CLC), the initial position

error has been compensated by first commanding the robot to the desired starting position

as shown in Figs 6.9 to 6.11. There were still fluctuations in the position errors mainly due

to the inaccurate kinematic parameters used in the kinematic model of the robot

manipulators. The position compensation inciement provided by the CLC algorithm was

not being acted upon by the robot controller. In addition, there were coupling effect among

the moving joints, which causes the coupling among the motion directions in Cartesian

space. Furthermore, the error may be the results of non-linear effects such as friction,

stiction, and elastic deformations of the robot arm. The magnitude of fluci'uation is higher

along z-axis due to the gravitational force. It must be roted that these errors were being

detected by the control algorithm through the dynamic measurements of the robot end-

effector. Therefore, compensation can be performed, resulting in a lower RMS position

error of 0.05mm along the x-axis, 0.04mm along the y-axis and 0.18mm along the z-axis

(Table 6.1). It must be noted that the RMS position errors in x, y, z directions have been

reduced by 93 %, 94 %, 89 %, respectively. Likewise, the maximum steady state error has

been reduced to ±0.04mm along the x-, y- and z-axes.

When the distance between the generated via points was reduced, the path and position

accuracy of the end-effector did not improve as expected (see Figs. 6.12 to 6.14). This is

again due to the bending of the robot arm and inaccurate kinematic model of the robot

manipulator. Further, with smaller position increments, non-lirear effect such as static

friction is more dominant on the motion of the robot. Moreover, the RMS position error

achieved in the previous section was close to the repeatability, and the steady state error

was comparable to the resolution of the robot manipulator. Consequently, further

improvement in path and position accuracy could, not be attained. Table 6.1 indicates

maximum RMS position error of 0.05mm along the x- and y-axes, and 0.17mm along the

z-axis. The maximum steady state error is ±0.08mm along the x-axis, ±0.05mm along the

y- and z-axes. It must be noted that the steady state position errors in x, y, z directions have

been reduced by 90 %. 94 %, 97 %, respectively.

136

IImrt*

m

I
i

ffl

Error betwten measured ind target rrt t i positions using position mode dosaoMocp control, moving In
lobot x-nxls wttti via p«lnts distance M 10mm

1 2 3 4 5 B 7 1 B 1011 1J 1314 15 18 17 11102021 22233-1 25 28 2728 M30J1 32 33 3415 34 37 3339 *)41 «?4J
TwgrtPoMNo.

Error between measured and target robot positions using position mode closed-loop control, moving In
robot x-axls with via points distance of 10mm

0.05

1 2 3 4 S S 7 6 B 1011 12 13 14 15 1817 1) I t 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 38 37 38 314041 42 43

Tatgat Point No.

Error between measured and target robot posltlor * using position mode closed-loop control, moving In
robot x-axls with via points distance of 10mm

-EnZ

1 2 3 4 5) 7 8 8 10 11 12 13 14 15 IB 17 I11920 21 222324 25282729 283031 3233 3495 3887 M 3J 4041 42 43

Taiy* Point Na.

k ;
it.

Figure 6.9: Error between measured and target robot positions usingposition mode closed-kop control while
moving in robot x-axis with via points distance of 10mm

137

i

1

I

Error betwmen measured and Urge! rtbot positions using position mod* clossd-loop control, moving In
robot y-axla -with vlr ooirrts distance of 10mm

-0.15

1 2 3 4 S 6 7 > 9 1011 1213 14 15 1S 17 1» IB 2021 22 23 242S25 2 7 2 8 » 30 31 32 33 34 3S3037 M M 4 0 4 1 42

Targtt Point No.

Error betwev. measured and target robot positions using position mod* closed-loop control, moving In
robot y-axlt with via points distance of 10mm

0.15

-EnV

1 2 3 4 5 6 7 8 B 10 11 1213 14 15 18 17 I t 18 20 21 22 23 24 25 28 27 28 29 30 31 « 33 34 35 36 37 34 M 40 41 42

rmw* Point No.

Eiror bttwesn measured and target robot positions using position mod* closed-loop control, moving In
robot y-axls with via points distance of 10irco

1 2 3 4 5 6 7 1 0 1011 12 15 14 15 19 17 « 19 20 21 22 23 24 25 SB 2728 2» 30 31 32 33 34 35 39 37 38 39 40 4142

T«nj«tl>oln«N<j.

Figure 6.10: Error between measured and target robot positions using position mode closed-hop control while
moving in roboty-axis with via points distance of 10mm

138

I

i

Error between measured and target robot positions using position mode cloaed-loop control, moving In
robot z-axls with via points distance of 10mm

D M

1 2 3 4 5 8 7 a 0 10 11 12 13 14 1S 18 17 16 19 20 21 22 23 24 25 28 27 28 2S 30 31 32 33 34 35 3 * 3 7 38 39 40 41 4,"

TaWQQi Point No*

Error between measund and target robot positions using position mode closed-loop control, moving In
robot z-axl* with via points distance of 10mm

-EirY

1 2 3 4 5 S 7 > 9 10 11 12 13 14 15 13 17 18 IB 20 21 22 23 24 2S 2 *27 26 25 30 31 32 33 34 35 3S 37 38 39 40 41 42

Tvget Point No.

Error between measured and targat robot positions using position mode closed-loop control, moving in
robot 2-axls with via points distance of 10mm

0.2

-0.S

•SSF*

1 2 3 4 5 8 7 8 0 10 11 12 13 14 1$ 18 17 18 19 20 21 22 23 24 25 26 17 2« 28 30 31 32 33 34 33 M S7 JJ 3S 40 <1 42

Ta^ctPoMNo.

Figure 6.11: Error between measured and target robot positions using position mode closed-hop control while
moving in robot t^axis with via points distance of 10mm

139

Error betwean measured and target robot positions using position mode closed-toop control, moving In
robot x-axi* with via points distance of 5mm

0.1s

0.09

-o.os

-0.1

-0.15

•02

I—•—EirX

TtrgttPoMNo.

Error betwean measured and target robot positions using position mode closed-loop control, moving In
robot x-axis with via points dUtanoe of 5mm

-ErrY

S 3 8 R
TvgatPcMNo.

Error between measured and target robot positions using position mode closed-loop control, moving in
robot x-axis with via points distance of 5mm

0.4

0.3

•02

-o.t

-E ITZ

Twyvt Point No*

Figure 6.12: Error between measured and target robot positions usingposiiinn mode closed-loop control while
moving in robot x-axis with via points distance of 5mm

140

I
I

m
1

p

Error between measured and target robot positions using position moia closed-loop control, moving In
robot y-axis with via point* distance of 5mm

0.15

-0.15

-ErrX

TareMPoMNo.

Error between measured and target robot positions using postticn mode closed-loop control, moving in
robot y-axis with via points dlstancs of 5mm

0.25

•0.15

-E ITY I

s 5 a s s c
TanjatPoMNc

Error between measured and target robot positions using position mode closed-loop control, moving ..
robot y-axis wtth via points distance of 5mm

-0.4

-0.6

-0.8

-EtrZ |

TaroMPoMNo.

Figure 6.13: Errvr between measured and target robot positions using position mode closed-loop control while
moving in robotj-axis with via points distance of5mm

141

1

I1

i

I

Error between measured «nd target robot position, using position mod* ck>u<Moop control, moving In
robot z-axls with via points distance of 5mm

o.M

-EnX

v n < n i ^ O k v n i o f-

Error b*twa«n measured and taroet robot positions using position mod* closed-loop control, moving In
robot z-axls wftti via points distance of 5mm

TaigttPoMNo.

Error betwten maasurad and target robot positions using position mode closed-loop control, moving In
robot z-axls with via points distance of 5mm

-0.3

-EirZ

L l i

Figure 6.14: Error between measured and target robot positions usingposition mode closed-loop control while
moving in robot ^axis with via points distance of 5mm

142

I

Figs. 6.15 to 6.20 show the results for velocity mode CLC. The RMS and steady state

position error is tabulated in Table 6.2. From this table, it can be observed that the RMS

position error was very high for the axis that the robot was commanded to move along (i.e.

higher RMS position error along x-axis when the robot was commanded to move along the

robot x-axis). This is because when a command was being sent to the robot using the

TurboLink interface, there was a delay of 300ms before the command was being acted

upoi by the robot. In order to synchronise with the real time clock of the robot controller,

an update interval of 15ms was used for the velocity mode closed-loop control algorithm.

At every 15ms, the subsequent via point was used to calculate the position error. The robot

was still approaching the first via point while the position error was computed using the

20th via point due to this delay. This results in higher RMS position error. A time-delay

control algorithm is required to reduce the error [75]. However, for robot motion along a

single axis, the high RMS position error (greyed diagonal elements in Table 6.2) for the

co-ordinate that the robot was commanded to move along does not cause any path

deviation. The end-effector was observed to be following the desired path closely at the

commanded velocity, as shown in Figs. 6.15, 6.17 and 6.19. The deviation of the robot

from the desired path was dominated by the position error in the other two directions,

mainly due to the 300 ms delay and the coupling among the motion directions. From Table

6.2, it can be observed that the maximum RMS position error is higher when compared to

position mode guidance. Similarly, these errors were being detected and compensated by

the control algorithm, resulting in improved RMS position error when compared to

commanding the robot without closed-loop control algorithm. With the omission of the

diagonal elements, Table 6.2 indicates maximum RMS position error of 0.1mm along the

x-axis, and 0.3mm along the y- and z-axes. By comparing with the maximum RMS

position errors without CLC (Fig. 6.7 to 6.8), the maximum RMS position errors have been

reduced by 86 %, 57 %, 81 % in the x, y, z directions, respectively. The maximum steady

state error is ±0.07mm along the x- and y-axes, and ±0.05mm along the z-axis.

Figs. 6.21 to 6.26 show the results for velocity mode CLC using a lower commanded

velocity. From Table 6.2, it can be observed the RMS position error was also very high for

the co-ordinate that the robot was commanded to move along due to the same reason as

described above. However, it can be observed that the RMS position error has been

reduced in the other non-moving co-ordinates when compared to higher commanded

velocity. This was due to the higher number of via points generated, and thus position

compensation was carried out more frequently. The path accuracy of the end-effector was

143

1

1

I

I*

i
p

?••

1

I
hi

further improved. Table 6.2 indicates a maximum RMS position error of 0.08mm along the

x-axis, and 0.15mm along the y-axis and 0.27mm along the z-axis. The maximum steady

state error is ±0.07mm along the x-axis, ±0.05mm along the y-axis, and ±0.02mm along

the z-axis.

Table 6.2: Comparison of RMS and steady state position error with and without the

implementation of velocity mode closed-loop control

Average velocity 5mm/s

Move along
X
Y
Z

With velocity mode CLC
RMS Error

X

0.096
0.045

Y Z
0.294 0.249

mmm
0.110

Move along
X
Y
Z

0.327

With velocity mode CLC
Steady state Error

X
-0.033
0.045
0.066

Y
0.071
0.011

-0.015

z
0.016

-0.043
0.026

Without CLC
RMS Error

X
0.733
0.235
0.245

Y
0.634
0.479
0.717

Z
0.795
0.924
1.556

Without CLC
Steady state Error

X
0.828

-0.422
-0.338

Y
0.695
0.320
0.804

Z
0.420

-0.815
-1.805

Average velocity 2mm/s

Move along

With velocity mode CLC
RMS Error

X
x few^Hff
Y
Z

0.078
0.075

Y
0.152

0.080

Z
0.253
0.265

wmmrn

Without CLC
RMS Error

X
0.733
0.235
0.245

Y
0.634
0.479
0.717

Z
0.795
0.924
1.556

Move along
X
Y
Z

With velocity mode CLC
Steady state Error

X
-0.060
0.073
0.068

Y
0.031
0.041

-0.026

z
0.014
0.015

-0.014

Without CLC
Steady state Error

X
0.828

-0.422
-0.338

Y
0.695
0.320
0.804

Z
0.420

-0.815
-1.805

144

Tara*l and actual robot petition* In x-cxis using wloelty mod* ctoMtHoop control, owing bi robot x-axli with commandwJ
avarag* valeclty of 5mmh

« i; : a 8 = ! 8

. /i": Target and actual robot positions in x-axis using velocity mode closed-loop control while moving
in robot x-axis with commanded velocity of 5mmI s

P .

I-
I

Error b«tvm<n m u i u n d and targtt robot position* in y-4xU using velocity mod* cloud-loop control, moving In robot x-a«is with
commanded av*rag* valocity of 5mm/*

S 5 2 j = s - f i a R 8 S i ! • ; : s i

Error b t tmrn musurad and targtt robot position* In x-*xia u«Jna valoclty mod* cloud-loop control, moving in robot x-wtis wHh
commandad avarag* valoclty of imnv's

* 3 £ S S 5 3 6
Tlni.(.|

$ 8 5 3 8 8 2 =

?. 16: Error between measured and target robot positions using velocity mode closed-loop control while
moving in robot x-axis with commanded velocity of 5mmI s

145

1
I

I
§
IK

I

Target and actual robot poaKlons In y-axt» uaing velocity mod* ctotwHoop control, moving In robot y-ixl» with comnundail
»v«rag» v»(oelly of Smm/s

S 8
lira, (i)

". 17: Target and actual robot positions inj-axis using velocity mode closed-loop control while moving in
robotj-axis with commanded velocity of 5mm/s

W,

I

fj'A

§
m

p

Error txtwrnn muturcd and Urgat robot positinni in n-axii uting vtlocll;- mod* cloMd-toop control, moving In robot y-*xii with
commtndad avang* velocity of Smm/t

8 : ; ; n H » s s J u

Enor batwMn muaunK) and Urgat robot potitletu in i-axl* tuing vtlocKy mod* elo*«d-loop control, moving in re bat y-txU wKh
commanded avarag* velocity of 5mmfa

S = S = S 5 ? B
Tkm(i)

Figure 6.18: Error between measured and target robot positions using velocity mode closed-hop control while
moving in roboty-axis with commanded velocity of 5mmIs

146

Targat and actual robot poaHJons In x-txla ualng velocity mods cloiwd-); op control, moving In robot z-a«!a with eommandtd
avarega valoctty ol Smm/»

Tbn.(.)

Figure 6.19: Target and actual robot positions in %-axis using velocity mod*:' ,y loop control while moving in
robot %-axis with commanded velocity

I
a 0.2

0.1

0

•0.1

•0-2

-0.1

Error bttwnn nraaaured and target robot positions in x-axis ualng velocity mod* cloM(Moop control, moving in robot z-axia with
commandtd avarag* vtloelty of Smnli

Error batwaan maasurad and targat robot ossitlona in y-uis using valoclty moda closed-loop control, moving In robot z-axia with
eommandtd avarag* valoclty of Smnv'i

A

" " f s s K S C s s s s j g e s s g g g s ^ s H

Figure 6.20: Error between measured and target robot positions using velocity mode closed-loop control while
moving in robot %axis with commanded velocity of 5mmI s

I

147

I

I

Targtt and actual robot poalttont In x-axla using vuloclty mod* cbMd-toop control, movlna In robot x-uia with commandid
av*raga velocity of 2mm/i

=1

Figure 6.21: Target and actual robot positions in x-axis using velocity mode closed-loop control while moving
in robot x-axis with commanded velocity of 2mm/s

1
5 :

Error bctwMn manured and tirrjtt robot poaWons In y-axl» uting valoclty mod* cioaad-loop control, moving In robot x-«xl« wHh
cominandtd avorag* velocity of 2mm/«

TtM,(.)

Error b«twt«n nvtaturad and Urgtt robot poaKiona In i-iit» using valoclty mod* closed-loop control, moving In robot i-jxl» with
commandod avcrag* velocity of 2mm/s

Figure 6.22: Error between measured and target robot positions using velocity mode closed-loop control while
moJng in robot x-axis with commanded velocity of 2mm/s

148
Iff]

-1

I

>;

I
I
1

1

m

I

Targat anu actual robot ooaltlonain y-r.3l*ualnfl valoelty mod* closad-loop control, moving In r; hot y.
axldwltlt commtndad avaraga valoelty of 2mm'!

•Tvgo l

••Adual

Figure 6.23: Target and actual robot positions iny-axis using vehcity mode closed-loop control while moving in
roboty-axis with commanded velocity of 2mm/s

Error batw -tn i m a u n d i n , targat rotx. '• po»itlom In x-mti* wmg valoelty mexj* ctoaod-loop control, moving in robot y-axta wild
commandtd t v a n y u«locity of 2nnVa

Error brtwaon m u u n d and tvgtt robot potWona in z-aida using valoUty mod* cloa«d-loop control, moving In robot y-axit with
command*d av*rag« valoelty of 2mmAa

2 : 8 « s if ; ? s s 3 8 S it ; « ; S ? ? >; « ? i ? 5

Figure 6.24: Error bttween measured and target robot positions using velocity mode closed-loop control while
moving in roboty-axis with commanded velocity of 2mmis

\ :i

)

149

I
I

I

3\

I

Targat and actual robot poaltloiu In i-ula utlng valoclty mod* closwMoop control, moving in robot i-axlt with commanded

Figure 6.25: Target and actual robot positions in %-axis using velocity mode cbsed-loop control while moving in
robot %-axis with commanded velocity of '2mmI s

Error batwwn maasuraC and tsrg*t robot positions In x-axis using vslocltv nvooa closad-loop control, moving In robot i-ail» with
commandad awrag* v»lo;lty of 2mnVa

Error batwaan maasurad and targat robot posltfona in y-axls using valocity moda clo*ad-loop control, moving in robot z-aii* with
commandad vvaraga valoclty of 2mnVa

" t\|L1ju^^^

= • ! S S R 8 S » S 8 J B E J 8 « S 8 J 8 S a 5 J H » H » « « « ii R 5 flS 5 H

Figure 6.26: Error between measured and target robot positions using velocity mode closed-loop control while
moving in robot %-axis with commanded velocity of 2mm/s

150

Position mode CLC provides better path and positioning accuracy compared to velocity

mode CLC. However, in position mode control, the robot has to stop at each target point

before moving to the next. This is not desirable in normal robot operations. Path and

positioning accuracy of the end-effector in velocity mode CLC can be improved by using a

time-delay control algorithm. Moreover, a faster communication interface between the

LISM control unit and the robot controller, and a shorter delay for the robot to act upon the

command transmitted to the robot controller can further improve path and positioning

accuracy in velocity mode CLC.

it

From the experimental results, it can be concluded that the closed-loop control algorithm

using LISM technique improves the steady state positioning accuracy and the path

following capability of the robot manipulator. This is accomplished by dynamic

measurements of robot positions and compensating the position errors. The final steady

state error is close to the resolution of the robot manipulator. The RMS position error of

the robot end-effector along the commanded path has been improved to be comparable to

the repeatability of the robot, indicating higher path accuracy.

From Chapter 5, it has been shown that the error of the position measured by the

experimental apparatus is high. The robot position measurements shown in the experiments

have an uncertainty of ±0.5 mm. However, robot manipulators are known to have absolute

position errors in the order of 2-10 mm. Although the robot may not be commanded along

a path as accurately in the Cartesian space, experiments have indicated that the robot can

be commanded to follow closely the path plotted by the LISM apparatus. By improving the

accuracy of the LISM apparatus, the proposed closed-loop control methodology is feasible

in providing accurate position control of robot manipulators.

6.6 Limitations

There are several aspects that affect the effectiveness of the proposed closed-loop control

methodology (CLC). The first limitation is that the robot cannot move at a velocity higher

than the tracking velocity of LISM. Secondly, the update rate of the control algorithm

affects the effectiveness of the methodology. This rate is dependent on the update rate of

the LISM apparatus to perform position measurement, the time required by robot controller

to move the robot's end-effector and the delay in communication between the LISM and

151

s
5

Robot end-effector

W *-

Over
correction

Position error

Under
correction

Actual Robot Path

i Desired Robot Path

27; Over and under correction of robot due to lengthy update rate

robot controller. A slow CLC update rate may create over or under correction of the

position error in velocity mode CLC. This is illustrated by Fig. 6.27. At point A, a position

error is detected. At the same time, the end-effector is deviated from A due to some non-

linear effects. If the position error compensation is carried out at point B, under correction

will occur due to the larger position error at this instant. On the other hand, if the position

error compensation is carried out at point C, over correction will occur. This is due to the

fact that the position error is now on the other side of the desired path and applying the

compensation calculated at A will move the end-effector further away from the desired

path.

I

In the proposed CLC methodology, the position error in Cartesian co-ordinates is

transmitted to the robot controller. This position error is converted into the necessary joint

angles by the robot controller using the default robot kinematic model. Therefore, the

effectiveness of this control methodology is dependent on the accuracy of the kinematic

model of the robot manipulator. An inaccurate model will affect the behaviour of the

control methodology, as the compensation specification provided by the closed-loop

control algorithm is not being accomplished by the robot controller. Further, there are

coupling effect among the moving joints, which causes the coupling among the motion

directions in Cartesian space. One way of overcoming this limitation is by controlling the

robot joints directly. The position error is first converted to the joint angles using the

accurate kinematic and dynamic model of the robot. The joint angles computed are then

transferred to the robot controller. However, the computation of the joint angles from the

kinematic and dynamic model has shown to be time consuming and computationally
i ti

152

inefficient [4, 7, 68]. Further, the parameters of the model rely on the instantaneous joint

positions and velocities, which has to be obtained from the robot controller. This further

increases the load on the communication link, which results in a longer update interval.

I

The air-path type retroreflector used in this study has a small incident beam acceptance

angle. As only the position of the end-effector is controlled, the incident beam will move

out of the incident angle range. To rectify this, the gimbal unit developed for orientation

measurement in Chapter 4 can be used. The gimbal unit can be commanded to rotate the

retroreflector so that it always faces the incoming laser beam. The addition of the gimbal

unit also allows the orientation of the end-effector to be measured, which paves the way for

the closed-loop control of robot orientation.

The actual path and position accuracy of the closed-loop control methodology is dependent

on the resolution of the robot used. By specifying an enor limit less than the resolution of

the robot will create a 'ringing' effect as the robot controller will be commanded to move

the end-effector to a position that cannot be reached due to the low resolution.

Kl

I

6.7 Summary

In this chapter, the development and the evaluation of the proposed closed-loop control

methodology using LISM apparatus have been presented. From the experimental results, it

can be concluded that the proposed closed-loop control methodology using LISM

technique improves the steady state positioning accuracy and the path following capability

of the robot manipulator. The final steady state error is close to the resolution of the robot

manipulator. The path accuracy of the robot end-effector has also been improved. Next

chapter presents the design of the proposed laser interferometry-based guidance control

strategy for robot control. Experimental results providing a fundamental understanding

insight of the effects of the methodology on robot performance are also discussed.

153

Chapter 7

Investigation of Laser Xnterferometry-based Guidance of Robot
Manipulators

7.1 Introduction

I
1

In this chapter, a Laser Interferometry-based Guidance (LIG) of the robot manipulator

using LISM apparatus is presented. This is a control strategy where the LISM apparatus is

used to guide the robot's end-effector to a desired point in Cartesian space along a

predefined trajectory [76, 77]. For LIG, the sub-systems are the same as described in

Chapter 6, however the manners in which these are utilised are altered. It must be

emphasised that the objective of this research is to establish a methodology rather than to

meet the requirements for high-speed manipulation. The control algorithm for this

methodology, together with the measurement and analysis techniques are described in the

following sections. Experiments conducted on an industrial robot are also presented,

Several aspects governing the effectiveness of the strategy in the guidance of robot

manipulators and the limitations of the strategy are investigated and discussed.

V

I

Is

7.2 Principle of Laser Interferometry-based Guidance Using LISM

Laser Interferometry-based Guidance (LIG) is the technique of directing the end-effector

of a robot manipulator to a desired position in Cartesian space along a predefined straight-

line trajectory by steering the laser beam. In this technique, the LISM apparatus is not only

used as a position sensor to measure the dynamic Cartesian position of the end-effector,

but also acts as a processing unit for robot path generation and guidance offset

compensation in the control algorithm. In order to direct the robot end-effector, the laser

beam is displaced by a predefined distance along the generated path, and thus generates a

guidance offset. The sensors in the LISM apparatus detect the guidance offset and

subsequently perform guidance offset compensation by driving the robot manipulator. A

flowchart of the LIG control algorithm is provided in Fig. 7.1.

154 * • !

1
I
8

(BEGIN)

Robot trajectory
specifications and
path generation to
form target points

j = 1 to m (no. of
motion segments)
i = 0 to n (no. of
target points on

motion segment j)

= 0

Transform target point
H b T i 0] t o USM

L

Calculate ^ ^
target Of LISM motor

Steer Laser Beam by

e M a r g e t a Z U l g e t

direct laser beam to
target point LISMPT1D]

Calculate robot
position Pc

Guidance offset
estimation

Guidance offset
compensation

Calculate robot
position Pc

Guidance offset
compensation

i_
Guidance offset

estimation

C END

i = 0

Guidance offset
compensation

Position
Mode

Velocity
Mode

Send guidance
offset to robot

controller

Motion Detection
Process

Convert guidance
offset to robot

velocity

_ offset

Exit

Figure 7.1: Flowchart ofUG control algorithm

i •

155

I

7.3 Control Methodology

As shown in Fig. 7.1, the LIG control algorithm consists of 4 main functional modules.

These are namely:

1) trajectory specification and path generation;

2) beam steering;

3) guidance offset determination;

4) guidance offset compensation.

The fiinctionality of and the critical aspects within each module will be discussed in the

following sections.

73A Trajectory Specification and Path Generation

The control methodology requires the specification of the desired trajectory for the robot

manipulator [76, 77]. This trajectory must consist of the starting point, the end point, and

any number of intermediate control points that the end-effector must reach. In order to

guide the end-effector to the desired points, the path of the guiding laser has to be first

determined. A linear or non-linear path can be used. For the purpose of this study, only

linear path is considered.

j i

I!

i

In the case where the specified start point is different from the current position, a straight-

line motion segment will first be generated from the current position to the start point.

Subsequent motion segments will be determined to join the start point to the first control

point, then from each control point to the next, and finally from the last control point to the

end point. The schematic description of the generated path is similar to Fig. 6..3. hi order to

maintain dynamic measurements of the end-effector's position, a discrete number of via

points, to be followed by the laser beam, are generated and plotted along the generated

motion segments. These via points are calculated based on the length of each motion

segments and the step size specified. The step size between via points must not be greater

than the maximum lateral offset required by the laser interferometer to maintain

interference. The generated path with the inclusion of the target points is shown in Fig. 6.4.

The control software uses all these target points (start, end, control and via points) to direct

the laser beam. It must be emphasised that these points are with respect to the robot

manipulator's tool co-ordinate frame.

156 T i

if

7.3.2 Beam Steering

In view of the fact that the target points are specified with respect to the robot

manipulator's co-ordinate frame, these target points must be transformed into the LISM's

frame. This is performed by the following equation:

(7.1)USM p _LS!M
Marge! ~ J

Robot p
••target

i

where USKiP.target is the target point's position with respect to the LISM's co-ordinate frame,

USMARobol is the transformation matrix from robot's tool co-ordinate frame to LISM's co-

ordinate frame, and Wo6o'MarEe, is the target point's position with respect to the robot's co-

ordinate frame.

The detail transformation matrix USM A^ is described in Appendix D. From USM P^*, the

angular displacement of the motors in LISM apparatus can be obtained using the following

equations:

USM.

-1 ''target

USM
^target /

(7.2)

:l-target ~ T t a n

USM ,
'target

I USM 2 USM 2
U -̂ target "*" /target

(7.3)

where USM x, USM USM
target: target

z t are the Cartesian co-ordinates of the target points with

respect to the LISM's co-ordinate frame, and i9e|_target are the absolute angular9e|_target

displacement of motor 1 and 2, respectively, to position the laser beam at the target points.

1 The elevation angular displacement is divided by 2 due to the laser beam travel being

perpendicular to the rotation axis of motor 2 (as described in Chapter 3). Commands are

issued to move the axes of the beam steering mechanism to position the beam in the

required polar configurations, mcrement by increment, following the target points along

the path. When the laser has moved at each increment, there will be a beam offset in the

reflected beam. This beam offset is detected through dynamic measurement operations and

will be utilised to determine the guidance offset.

157

I
I

i

7.3.3 Methodology for Guidance Offset Determination

When the laser beam is not pointing to the centre of the retroreflector, there will be an

additional displacement of the laser beam as shown in Fig. 3.30. By using the detected

laser displacement, together with the PSD measurements and the current angular

displacements of the beam steering motors, the current position of the centre of the

retroreflector can be obtained by the following equations:

USM
Xcurrent ~ -^ x

cos 8,ai-currmt

USM .

USM
^current = L><COs(2&el..currM)-

Ad,

where

L=\

USM ,

radial

current '

az-atrrent
-Ad2tan(2&cl_cunent))

(7.4)

(7.5)

(7.6)

(7.7)

USM USM
T are the current Cartesian co-ordinates of the

centre of the retroreflector with respect to the LISM's co-ordinate frame, az-current and

el-current are the current absolute angles of the motors, lradial is the laser displacement

recorded, Ad, and Ad2 are the target lateral offsets calculated from Eqs 3.15 and 3.16.

I

i

These positions with respect to the LISM's co-ordinate frame were converted to the robot's

frame using the following equations:
Robot p _Robot j USM p /"T ON

•I,-. . — Slum * ^Current V'" -

where Robot i
Cuirtnt is the current position with respect to the robot's co-ordinate frame,

USM ;
'Current

is the current position with respect to the LISM's co-ordinate frame, and

Robot AUSM is the transformation matrix from LISM's to robot's co-ordinate frame.

Robo'AUSM can be obtained from the inverse of USM ARobot in Eq. 7.1.

The guidance offset AP can be estimated by the difference between the target point and

the current position:

A?= Robot p _Robo(p
••target •'•Current (7.9)

158

I

I

7.3.4 Methodology for Guidance Offset Compensation

The guidance offset calculated in Eq. 7.9 is corrected by commanding the corresponding

axes of the robot manipulators. Two different methods of commanding the robot have been

investigated. The first is based on the command of the robot's position. The second is by

means of controlling the robot's velocity, hi position control mode, the guidance offset is

fed to the robot controller. The end-effector of the robot is then commanded to move

relative to the current position. As soon as the robot starts moving, a robot motion

detection process as described in Section 6.3.1 is triggered. When the robot has stopped,

the current robot position is updated. For the case where a via point has been reached, the

laser beam is steered to the next via point and the new guidance offset is calculated. If a

control point has been reached, the guidance offset is compared to a predefined error limit.

If the guidance offset is more than the predefined error limit, this offset is again

compensated by commanding the robot end-effector. If the guidance offset is less than the

predefined error limit, the laser beam is steered to the next via point on the next motion

segment. The predefined error limit can be specified based on the precision required, hi

this way, the end-effector of the robot is commanded to all the target points, increment by

increment, along the specified path.

I

hi velocity control mode, the velocity of the robot is computed during every update

interval using the following equation:

AP
r

update

V =
guide (7.10)

where V^ is the guiding velocity and Tupdate is the LIG update rate. This update rate is

dependent on the sampling rate of the LISM apparatus to perform dynamic measurements

and to move the axes of the beam steering mechanism, communication delay between the

LISM and robot controller, and the time required by the robot controller to move the

robot's end-effector.

At each update interval, the current position of the robot is updated and a new guidance

offset is calculated using the next via point. As the robot is commanded to move

continuously, the LISM apparatus must be able to steer the laser beam to the next via point

with the new robot velocity computed and transmitted to the robot before the guidance

offset exceeds the maximum lateral offset required by the laser interferometer to maintain

interference. Similarly, the guidance offset is compared to the predefined error limit at

159

i
every control points. The laser beam is steered to the next via point or. the next motion

segment only when the guidance offset is less than the predefined error limit. In this way,

the end-effector of the robot is commanded to move to the target points continuously along

the specified path.

7.4 Experimental Set-up

Experiments have been performed to establish the behaviour and capability of the LIG

control algorithm for the guidance of robot manipulators. A similar experimental set-up as

shown in Fig. 6.5, consists of the experimental LISM apparatus and a Motoman robot

manipulator. The same robot tool co-ordinate frame is utilised so that subsequent LISM

measurements of the end-effector is recorded with respect to this tool co-ordinate frame.

For the first experiment, the position control mode is used. The end-effector is guided to an

end point by moving along a single axis. The Cartesian co-ordinates of the end-effector

before the execution of the beam steering module are recorded. This Cartesian co-ordinates

are used to determine the position error between the recorded and the target positions. This

error shows the effectiveness of the control algorithm in compensating for the previous

guidance offsets before the beam is steered to the next target point. The lower the position

error, the more effective is the control algorithm. Next, the end-effector is guided to move

to an end point in 3-dimensional space. The step size between via points used in this

experiment is 0.5 mm. Figs. 7.2 to 7.5 show the error between the recorded and target

positions using position mode guidance.

i

I

The second experiment involves the command of the robot end-effector in velocity mode.

The end-effector is guided to an end point by moving along a single axis. Subsequently,

the end-effector is commanded to move to an end point in 3-dimensional space. The step

size between via points used in this experiment is 0.5 mm. Similarly, the Cartesian co-

ordinates of the end-effector prior to the steering of the beam are recorded. The errors

between recorded and target positions are presented in Figs. 7.6 - 7.9. Furthermore, the

performance of LIG algorithm using position and velocity modes are compared to identify

the behaviour and effects of both control modes.

160

Miiii

£

7.5 Experimental Results and Discussion

From Figs. 7.2 - 7.5, it can be observed that there are fluctuations in the position errors.

This is due to the robot controller not being able to move the robot accurately. Moreover,

there exist non-linear effects such as friction, stiction, hysteresis, and non-rigid behaviour

of the robot manipulator [6, 68, 74]. The z-axis shows the highest fluctuation due to the

gravitational forces of the robot manipulator. Another source of error is the position loss in

the open-loop stepper motor or misalignment of the encoder in the beam steering

mechanism. This results in the deviations of the position of the retroreflector's centre

recorded by the LISM apparatus. Furthermore, the update rate of the TPC (Target Position

Calculation.) is slow as shown in Table 3.2. The previous robot positions may be used in

guidance offset determination. The inaccuracy in the measured position and the slow

position update result in an inaccurate guidance offset determination, and therefore, an

inaccurate position increment is being sent to the robot controller. These errors are being

detected through dynamic measurements and are being taken into account in the guidance

offset determination. This results in the improved RMS position error when compared to

commanding the robot without the LIG control algorithm, as shown in Table 7.1. As

indicated, implementation of the LIG control algorithm provides improvement in robot

path and positioning accuracy.

I

I
!

Table 7.1: Comparison of RMS and steady state position errors with and without the

position mode LIG algorithm

Move along
X
Y
Z
XYZ

With position mode guidance
RMS Error

X
0.065
0.036
0.031
0.047

Y
0.088
0.030
0.016
0.037

Z
0.073
0.076
0.066
0.056

Without guidance
RMS Error

X
0.286
0.441
0.491
0.677

Y
0.112
0.153
0.177
0.063

Z
0.918
0.203
0.338
0.610

Move along_
X
Y
Z
XYZ

With position mode guidance
Steady state Error

X
-0.001
0.018
0.020
0.044

Y
-0.016
0.028

-0.001
0.012

Z
0.050

-0.042
0.040

-0.049

Without guidance
Steady state Error

X
0.346

-0.799
-0.773
0.635

Y
0.166

-0.262
0.25

0.011

Z
1.733
0.211

-0.543
0.704

161

I

I

'$

Error betwtan mt-lured ind target robot positions using petition i.ioda guidance, moving In robot x-axi*

005

-0.15

8 5 8 8 ft C 3
T « j « Point No.

Error between measured and Urget robot positions using position mode guidance, moving In robot x-axis

0.05

-0.25

Error between measured and target robot positions using position mode guidance, moving In rot*st x-axls

T««rtl»oMNa.

Figure 7.2: Error between measured and target robot positions using position mode guidance while moving in
robot x-axis

• • • • * ! ' ; !

162

I
i

i

8
i

I

I

Error batw**n measured and targtt robot positions using position mods guidanc*, moving In robot y-uls

0.12,

Tugct Point No.

Error btrwaan measured and Urgtt robrt positions using position mcd* guidanc*, moving in robot y-axls

O.OB

-EnY

; s s s ; s ; s ; u
Tanjot Point No.

Error b*tw**n m*asur*d and targat robot positions using position mod* guidance, moving in robot y-axis

; 5 s s 5 s ; ? ; s 5 8 c £ : J : s ; s ; ; p s ; s ; ? s s ; K J s s : s

Figure 7.3: Error between measured and target robot positions usingposition mode guidance while moving in
roboty-axis

163

1

i ' !

1

j

j

1

I

I

Error batwaan imtiurad and targtt robot posKlona using position moda guldanca, moving In robot z-axls

-EnX

Two* Point No.

Error batwaen measured and target robot positions using position moda guidance, moving in robot z-axls

0.04

-ErrY

T w g * Point No.

Error batween maasured and target robot positions using position moda guldanea, moving in robot z-axls

0.2

0.1S

•0.3

-0.35
SS S & 3 8

T « r * Point Mo.

Figure 7.4: Error between measured and target robot positions using position mode guidance whik moving in
robot %-axit

164

1*5

1

i

Error betw**n measured and target robot positions using position mode guidance, moving hi robot xyz-axis

•- *r r*. o

T«rj«l Point No.

Error batvnMn rmatured and targtt robot potMona using position mod* guidance, moving In robot xyz-axis

T*WQGC Point No*

Error !Ktw**n tnoamred and tarc«t robot positions using position mod* guidance, moving in robot xyz-uis

l ^ | M P o M N &

Figure 7.5: Error between measured and target robot positions usingposition mode guidance while moving in
robot xy^-axis

•II!

165

it

From Figs. 7.6 - 7.9, it can be observed the magnitude of the error fluctuations is higher

along the axis that the robot is commanded to move along (i.e. higher fluctuation in x error

when the robot is commanded to move along the robot x-axis). This is because when a

command is being sent to the robot using the TurboLink interface, there is a delay of

300ms before the command is being acted upon by the robot. At the beginning of each

update interval, the robot is still approaching the via point due to this delay. This results in

a larger guidance offset when the next via point is used to compute the robot velocity. This

higher velocity is then used to move the robot to the next via point, resulting in overshoot

of the robot during the next update interval. Following that, the robot is subsequently

commanded to move at a lower velocity to the next via point, resulting in the lagging of the

robot in the following update interval. A time-delay control algorithm is required to

improve the error. Further, the error in robot position is also due to the inaccuracy in the

velocity calculated in Eq. 7.10, where a constant update rate is used. During the operation,

the update rate monitored can be observed to be varying and the communication between

the LISM and the robot controller is not being carried out at a constant rate of 66Hz. This

results in the higher magnitude of error when compared to the position mode guidance.

For robot motion along a single axis, the high magnitude of fluctuation along the axis that

the robot is commanded to move along does not cause any path deviation. Deviation of the

robot from the desired path is dominated by the position error in the other two co-

ordinates. From Table 7.2, it can be observed that the RMS position error is higher when

compared to position mode guidance. Similarly, these errors are being detected and

compensated by the LIG methodology, resulting in an improved RMS position error when

compared to commanding the robot without the LIG control algorithm.

By using position mode guidance, the final steady state error between the robot position

and the end point is about ±0.05 mm. With the use of velocity mode guidance, the final

steady state error between the robot position and the end point is about ±0.08 mm. The

final steady state error for both modes of guidance is comparable to the resolution of the

robot. Position mode guidance provides a better path and positioning accuracy compared to

velocity mode guidance. However, in position mode guidance the robot has to stop at each

target point before moving to the next. This is not desirable in normal robot operation. Path

and positioning accuracy of the end-ef?eotor in velocity mode guidance can be improved

by having a faster communication interface between the LISM control unit and the robot

166

•if

controller. A time-delay control algorithm is also necessary to account for the

communication delay.

In Chapter 5, it has been shown that the uncertainty of the position measured by the

experimental apparatus is high. The robot positions shown in the experiments have an

uncertainty of ±0.5 mm. However, such industrial robot manipulators have been known to

have position errors in the order of 2-10 mm. Although the robot may not be guided along

a path as accurately in the operational space, experiments have indicated that the robot can

be commanded to follow closely the path plotted by the LISM apparatus. Accurate robot

position control with LIG can be established by improving the measurement accuracy of

the LISM apparatus.

H i

s
I
Si

I

Table 7.2: Comparison of RMS and steady state position errors with and without the

velocity mode LIG algorithm

Move along
X
Y
Z
XYZ

With velocity mode guidance
RMS Error

X
0.373
0.070
0.043
0.301

Y
0.085
0.246
0.064
0.172

Z
0.181
0.176
0.301
0.237

Without guidance
RMS Error

X
0.286
0.441
0.491
0.677

Y
0.112
0.153
0.177
0.063

Z
0.918
0.203
0.338
0.610

Move along
X
Y
Z
XYZ

With velocity mode guidance
Steady state Error

X
0.060

-0.029
0.044

-0.038

Y
-0.083
-0.064
0.012

-0.021

Z
-0.045
-0.074
-0.049
0.036

Without guidance
Steady state Error

X
0.346

-0.799
-0.773
0.635

Y
0.166

-0.262
0.25

0.011

Z
1.733
0.211

-0.543
0.704

m

167

I

Error batman measured and target robot positions using valoctty mode guidance, moving In robot x-axis

- E I T X

1*1

-0.4

-as

T B9^0& PCWrt Mo^

Error between meuured and target robot positions using velocity mods guidance, moving in robot x-axis

Error between measured and target robot positions using velocity mode guidance, moving in robot x-axls

s s & s s
TargMPaMNs.

Figure 7.6: Error between measured and target robot positions using velocity mode guidance while moving in
robot x-axis

5 S

168

I !

1

Error between measured and target robot positions using velocity mode guidance, moving In robot y-uls

e s s t s

Enor between measured and targot robot positions using velocity mode guidance, moving in robot y-axis

Error between measured and target robot positions using velocity mode guidance, moving In robot y-axls

•0.8

s ; s s s
Targrt Point No.

Figure 7.7: Error between measured and target robot positions using velocity mode guidance while moving in
robotj-axis

169

I

Error batwaen m w u r a d and target robot positions using velocity mods guidance, moving In robot z-axl>

-0.15

• • » : t ; n 5 s ; s ; s s s t J i s s
Twgtt Point No.

Error between i M U u n d and targat robot positions using valoctty mods guldanca, moving fat robot z-«xls

0.2

tMft Potol No.

Error between measured and target robot positions using velocity mode guidance, moving In robot z-axls

-EltZ

Figure 7.8: Error between measured and target robot positions using velocity mode guidance while moving in
robot ^axis

170

Error between msssumd and Urgat robot positions using velocity mods guidance, moving In robot xyx-»xls

Twgat Point No.

•0.2

Error bttween msasursd snd target robot positions using velocity mod* guldsncs, moving In robot xyz-axi*

- £ n Y

TargM Point No.

-0.4

-0.1

Error behvaan maaaurad and Urgat robot portions using velocity moda guldanea, moving In robot xyz-sxls

TattalPoMNo.

Figure 7.9: Error between measured and target robot positions using velocity mode guidance while moving in
robot xy^-axis

171

7.6 Limitations

Section 7.5 shows that the LIG control algorithm is feasible in providing position control

of a robot manipulator to follow the path dictated by the LISM. apparatus. However, there

are several aspects that affect the effectiveness of the proposed strategy. The first limitation

is that the step size between target points, as described in Section 7.3.1, must be less than

the maximum lateral offset required by the laser interferometer to maintain interference.

Further, this step size is also dependent on the magnitude of vibration experienced by the

robot end-effector during motion. This is because the laser beam is not following the

motion of the robot in this case. A high magnitude of vibration may create a lateral offset

larger than the maximum lateral offset required by the laser interferometer to maintain

interference. Laser displacement measurements acquired will not be reliable, and thus

dynamic measurements of the robot's position cannot be carried out.

In velocity mode guidance, a step size of 0.5 mm is used. With a LIG update rate of 400

milliseconds, the maximum velocity that the robot can be commanded to move is 1.25

mm/s. In order to increase the robot velocity, the maximum lateral offset and the LIG

update rate has to be improved. The lateral offset can be increased by using a laser

interferometer with higher beam power and larger beam diameter. As described in Section

7.3.4, the LIG update rate is dependent on the update rate of LISM apparatus and the robot

controller. It is also affected by the delay in the communication mterface provided by the

robot controller. A faster processing unit is required to improve the response time of the

LISM apparatus to perform dynamic measurements as well as controlling the axes of the

beam steering mechanism. Faster processing un;t can also ensure a constant

communication rate between the PC and the robot controller, resulting in a more accurate

velocity commands. An open architecture robot controller with a shorter delay between

receiving and acting upon velocity command is necessary to improve the LIG control

algorithm update rate. Additionally, the LIG' control algorithm update rate affects the path

accuracy of the LIG control strategy in velocity mode. A slow update irate may create over

or under correction of the guidance offset as described in Section 6.6.

hi the proposed LIG control algorithm, the guidance offset in Cartesian co-ordinate is

transmitted to the robot controller. Therefore, the effectiveness of LIG control strategy is

dependent on the accuracy of the kinematic model of the robot manipulator. An inaccurate

model will affect the effectiveness of the LIG control strategy as discussed in Section 6.6.

172

I
I!

The air-path type retroreflector used in this study has the same limitation as discussed in

Section 6.6. The addition of the gimbal unit can allow the orientation of the end-effector to

be measured, which paves a way for the guidance of robot orientation.

As shown in Eq. 7.4 - 7.7, the computation of the position of the centre of the retroreflector

when the incident beam is off-centre is dependent on the beam offset detected by the PSD.

Inaccurate PSD readings will affect the precision of the guidance offset calculated using

Eq. 7.9. Moreover, imperfections in the retroreflector as described in Chapter 5 may cause

the incident beam not being reflected through an angle of 180°, but rather with a slight

angular deviation. This angular deviation results in inaccurate PSD readings. This

inaccuracy in PSD readings increases with the distance between the LISM apparatus and

the robot end-effector. Inaccurate guidance offset calculated will affect the effectiveness of

the guidance offset compensation in the LIG control strategy.

p.

The path and position accuracy of the LIG control strategy is dependent on the resolution

of the robot used. By specifying an error limit less than the resolution of the robot will

create a 'ringing' effect as the robot controller will be commanded to move the end-

effector to a position that cannot be reached due to low resolution.

7.7 Summary

In this chapter, the development and the evaluation of the proposed Laser Interferometry-

based Guidance (LIG) technique have been presented. Experiments have indicated that the

robot can be guided to follow the path plotted by the LIG algorithm. The absolute

positioning accuracy of the robot can be improved to about 0.1mm. This is much more

accurate than most industrial robots with an absolute accuracy of 2-10 mm. The RMS

position error of the robot manipulator has been improved to be comparable to the

repeatability of the robot, indicating Mgher path accuracy.

Next chapter presents the conclusions and recommendations for future work.

173

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this study, an experimental laser interferometry-based sensing and measuring (LISM)

apparatus for the tracking and dynamic position measurements of a moving target with an

unknown trajectory has been developed. The experimental LISM apparatus has allowed the

characterisation of sub-systems and their effects. Control strategies for target following and

dynamic position measurement has also been developed and applied on the LISM

apparatus. The performance of the LISM apparatus was verified by experimental results on

a Motoman SKI 20 robot manipulator. It has been shown that the current experimental set-

up is satisfactory for the tracking and the dynamic position measurements of the target.

A methodology for dual PSD-based orientation measurement using a specially developed

Gimbal unit has been established and verified by experimental results. It has been shown

that the proposed approach can be used to measure the retroreflector's pitch and yaw

angles accurately. The accuracy of roll angle measurement is affected by the initial fixed

beam offset applied in the set-up. The proposed approach can also be used to rotate the

target retroreflector, such that the line of sight for the incoming laser beam is maintained.

This approach effectively removes the limitation of small incident acceptance angle for the

retroreflector. The orientation measurement methodology can be incorporated into the

experimental LISM apparatus to provide for dynamic position and orientation (pose)

measurements of the robot end-effector.

A comprehensive derivation of the kinematic model for the experimental LISM apparatus

has been established. This model was implemented for the experimental calibration of the

LISM apparatus. A total of 21 parameters of the model have been identified. Based on the

calibrated model, the accuracy of position measurements made by LISM apparatus was

established. This shows an improvement of 83% when compared to position measurements

using the uncalibrated modeL

174

An approach to analyse the sources of errors and the uncertainties for the position and

orientation measurements acquired by the LISM apparatus and the Gimbal unit, r&

respectively, has also been presented. The dominant variables in the overall uncertainties 'f>
ft

of the measurements acquired have been established. It has been shown that for position \^

measurements acquired by the LISM apparatus, the dominant variables in the overall v*!;

uncertainties are the accuracy of the beam steering motors used and the accuracy of the • -;&;;

PSD utilised. For orientation measurements, the dominant variable in the overall Vw

uncertainties is the accuracy of the PSD utilised. Furthermore, the uncertainty for roll angle \ \$.

measurements is also dependent on the magnitude of the beam offset implemented. The 'i'*j|

knowledge of these dominant variables allows the correct selection of hardware -£?

| components to improve the measurement accuracy. .'VTJ

|

t>

8.2 Recommendations for Future Work

I
I The research presented in this dissertation is part of a research program being conducted in

the Robotic & Mechatronics Research Laboratory. The ultimate goal of this program is to
175

:i
In Chapter 6 and 7, the methodologies for the closed-loop control (CLC) and the laser

interferometry-based guidance (LIG) of robot manipulator have been established. Based on

the above, the experimental investigations of the proposed methodologies on the Motoman

SKI 20 have been performed. It was observed that the effectiveness of the CLC and the

LIG methodologies is affected by the delay for the robci to act upon the command

transmitted to the robot controller. This delay contributes to a slow update rate, which

results in the over or under correction of the robot's position error. Moreover, the robot

kinematic model employed by the robot controller also affects the effectiveness of the CLC

and the LIG methodologies because the Cartesian position values are used. In addition, the ,

length of the robot's path to be controlled or guided is restricted by the small incident beam

acceptance angle of the target retroreflector. In CLC, the maximum velocity of the robot is,

as expected, restricted by the tracking speed of the LISM apparatus. In LIG, the maximum

lateral offset required by the laser interferometer to maintain interference and the update

rate of the LIG control algorithm restricts the maximum velocity of the robot. Based on the

experimental results, it can be concluded that the implementation of the proposed CLC and

| LIG methodologies improves the robot's positioning accuracy and path following

capability. The improved robot's positioning accuracy is comparable to the resolution of

the robot.

study the issues such as bending arid oscillation associated with long-reach manipulators

using the experimental LISM apparatus and to establish an effective technique of

compensation through a laser-interferometry based closed-loop control and guidance. The &

I current research can be extended in the following areas: ' :<-•§•

M Dynamic orientation measurement

1
Implementation of hardware and software

The speed of tracking and the accuracy of pose measurement can be improved with the

| implementation of appropriate hardware and software. Chapter 5 shows that uncertainties
I

of the position and orientation, measurements can be reduced by 94% and 98%,

respectively, with the utilisation of appropriate hardware. For the software, a real time

extension for Windows is required [78]. Alternatively, a PC-DSP hybrid based control

architecture can be used (Section 3.6.3). An open architecture motor controller may be

used to realise a better tracking performance. Additional control strategies can be designed

and implemented for the driving of the beam steering motors in the LISM apparatus.

Dynamic modelling of the motors can also be established to improve the performance by

removing the coupling effect among the beam steering motors and tumbling of the motors.

CLC and LJG control algorithms

The performance of CLC and LIG control algorithms can be improved by the

implementation of a time-delayed control algorithm to account for the delay in

communication and the delay for the robot to act upon the command transmitted to the

robot controller. Further, the experimental investigations of the CLC and LIG control

methodologies on robot orientation can be performed with the implementation of the

proposed orientation measurement methodology. This can then be followed by the

experimental study of the CLC and LIG control methodologies on a long-reach

manipulator.

176

•II

* • < • : ;The next step of the experiment?d apparatus development and subsequent investigation

should be the integration of the orientation measurement methodology into the •/?<$£

experimental LISM apparatus. This apparatus is essential for providing dynamic position : '0.

and orientation (pose) measurements of the robot end-effector, as well as increasing the

measuring range of the LISM apparatus by maintaining the line of sight of the incident

laser beam. This apparatus will also make possible the calibration of the robot end-

effector's orientation.

References

1. J. J. Craig, Introduction to Robotics 2lld edition, Addison Wesley, 1991.

2. ISO 9283, Manipulating industrial robots - performance criteria and related test

methods, International Organisation for Standardisation, 1987.

3. R. P. Paul, Robot Manipulators: Mathematics, programming, and control, MIT Press,

1981.

4. C. H. An, C. Atkeson, J. Hollerbach, Model-based control of a robot manipulator, MIT

Preys, pp. 1-110,1988.

5. B. C. Jiang, J. T. Black, R. Duraisamy, "A review of recent developments in robot

metrology", Journal of Manufacturing Systems, Vol. 7 No. 4, pp. 339-357,1988.

6. K. Lau, R. J. Hocken, "A Survey of Current Robot Metrology Methods", Annals of the

CIRP, Vol. 32 No. 2, pp. 485-488,1984.

7. J. Owens, "Robotrak: Calibration on a shoestring", Industrial Robot, Vol. 21 No. 6, pp.

10-13,1994.

8. R. Gooch, "Optical metrology in manufacturing automation", Industrial Robot, Vol. 18

No. 2, pp. 81-87,1998.

9. M. R. Driels, U. S. Pathre, "Robot calibration using an automatic theodolite",

International Journal of Advance Manufacturing Technology, Vol. 9, pp. 114-125,

1994.

10. H. Gander, M. Vincze, J.P. Prenninger, "An external 6-D-sensor for industrial robots",

Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and

Systems. Yokohama, Japan, pp. 975-978, July 26-30,1993.

11. M. Vincze, J.P. Prenninger, H. Gander, "A laser tracking system to measure position

and orientation of robot end effectors under motion", International Journal of Robotics

Research Vol. 13 No. 4, pp. 305-314. 1994.

12. J. P. Prenninger, H. Gander, M. Vincze, "Contactless position and orientation

measurement of robot end-effectors", IEEE Proceedings of Robotics and Automation.

Vol. 1, pp. 180-185,1993.

13. B. Shirinzadeh, "Laser interferometry-based tracking for dynamic measurements",

Industrial Robot, Vol. 25 No. 1, pp. 35-41,1998.

14. K. Lau, R. Hocken, L. Haynes, "Robot performance measurements using automatic

laser techniques, Robotics and Computer-Integrated Manufacturing", Vol. 2 No. 3/4,

pp 227-236,1985.

177

15. J. H. Giiby, G. A. Parker, "Laser tracking system to measure robot arm performance",

Sensor Review, pp. 180-184, October 1982.

16. J. R. R. Mayer, G. Parker, "A portable instrument for 3-D dynamic robot measurement

using triangulation and laser tracking", IEEE Transactions on Robotics and

Automation. Vol. 10 No. 4, pp. 504-516, August 1994.

17. H. Weuie, U. Reichling, "Optical test system for industrial robots", Summary paper.

CLEO '89 Conference on Laser Electro-Optics. Vol. 8, p. 122.1989.

18. T. A. G. Heeren, F. E. Veldpaus, "An optical system to measure the end-effector

position for on-line control purposes", International Journal of Robotics Research Vol.

U N o . l , pp. 53-63, 1992.

19.0. Nakamura, et. al., "A laser tracking robot-performance calibration system using

ball-seated bearing mechanisms and a spherically shaped cat's eye retroreflector",

Review of Scientific Instruments, Vol. 65 No. 4, pp. 1006-1011, April 1994.

20. C. Leigh-Lancaster, B. Shirinzadeh, Y. L. Koh, "Development of laser tracking

system", IEEE Proceedings of the 4th Annual Conference on Mechatronics and

Machine Vision in Practice (M2VEP), Australia, pp. 163-168, September 1997.

21. B. Shirinzadeh, Y. L. Koh, Alvin, "Control strategy for laser tracking and robot

dynamic measurements", Proceedings of the 13th ISPE/ Intentional Conference On

CAD/CAM, Robotics & Factories cf the Future, Vol 2, pp. 886-891,1997.

22. S. Spiess, M. Vincze, M. Ayromlou, "On the calibration of 6-D laser tracking system

for dynamic robot measurements", IEEE Transactions on Instrumentation and

Measurement, Vol. 47 No. 1, pp. 270-274, February 1998.

23. G. Alici and R. Daniel, "Experimental comparison of model-based robot position

control strategies", Proceedings of th<; 1993 EEEE/RJS International Conference on

Intelligent Robots and Systems, Yokohama, Japan, pp. 76-83, July 1993.

24. Teletrac Corporation, Obtaining ultimate accuracy, Version 6, Teletrac Corporation,

March 1996.

25. Zygo Corporation, ZMI-1000 System Manual OMP-041 ID, Zygo Corporation, 2000.

26. J. Graeme, Photodiode Amplifiers, McGraw-Hill, 1995.

27. Melles Griot, Melles Griot 1995/96 Catalogue, Melles Griot USA, 1996.

28. UDT Sensors Inc., Standard photo detector component catalogue, UDT Sensors Inc.,

1998.

29. W. Zurcher, R. Loser, S. A. Kyle, "Improved reflector for interferometric tracking in

three dimensions", Optical Engineering, Vol. 34 No. 9, pp. 2740-2743, September

1995.

"3

^"9

•••'•a

IH

178

30. S. Decker, H. Gander, M. Vincze, J. P. Prenninger, "Dynamic measurement of position

and orientation of robots", IEEE Transactions on Instrumentation and Measurement,

Vol. 41 No. 6, December 1992.

31. K.M. Filz, M. Vincze, J.P. Prenninger, "Camera system to detect the orientation of a '1

corner cube in real time", Proceedings of the IEEE International Conference on ,'••

Robotics and Automation, Vol. 6, pp. 1713-1718,1995. +. 1

32. H. Gander, M. Vincze, J. P. Prenninger, "Application of a floating point digital signal -{; -

processor to the control of a laser tracking system", IEEE Transactions on Control ,j,

Systems Technology, Vol. 2 No. 4, December 1994. [><$

33. Y. Bao, N . Fujiwara, "Dynamic measurement orientation by LTS", Proceedings of the | ; ,^

Japan/USA Symposium on Flexible Automation, Vol. 1, pp. 545-548,1996. ."$?

34. S. J. Ovaska, "FIR prediction using newton's backward interpolation algorithm with J>\

smoothed successive differences", IEEE Transactions on Instrumentation and . ^'#

Measurement, Vol. 40 No . 5, pp . 811-815, October 1991. • /*•

35. S. J. Ovaska, "Newton-type predictors - A signal processing oriented viewpoint", „•;•?

Signal Processing, Vol. 25, pp. 251-257,1991. £$

36. B. Shirinzadeh, P. L. TEOH, "A study of predictive control for laser tracking of --*?5

robots", Proceedings of Pacific Conference on Manufacturing (PCM98), Brisbane, ' '*j*

Australia, pp. 328-333, August 1998. ' * $

37. F. C. Demarest, "High-resolution, high-speed, low data age uncertainty, heterodyne is

displacement measuring interferometer electronics", Measurement Science and '$&

Technology, Vol. 9 No. 7, pp. 1024-1030,1998. *§|

38. P. D. Lawrance and K. Mauch, Real-Time Microcomputer System Design: An .'j&?

Introduction, McGraw-Hill, 1987. \.jj-

39. Data Translation Inc., DT300 Series detailed specifications, /*&

http://www.datatranslation.com. ^

40. M. R. Spiegel, L. J. Stephens, Schaum's Outline of Theory and Problems of Statistics

3rd Edition, McGraw-Hill, pp. 63, 1999.

41. D. A. Bradley, D. Dawson, N. C. Burd and A. J. Loader, Mechatronics, Chapman &

Hall, 1996.

42. Data Translation Inc., ENOB (Effective Number Of Bits) - The Accurate Way to

Choose a Data Acquisition Board, http://www.datatranslation.com.

43. Data Translation Inc., Choosing data acquisition boards and software,

http://www.datatranslation.com.

179

44. Data Translation Inc., DataAcq SDK: Getting started manual, Data Translation Inc.,

USA.

45. Parker Hannifin Corporation, Dynaserv D M & DR Direct Drive Servos User Guide,

Parker Hannifin Corporation, Compumotor Division, USA, March 1995.

46. Rorze Corporation, Rorze RD-023MSH Instruction Manual, Rorze Corporation,

Hiroshima, Japan.

47. Parker Hannifin Corporation, Engineering Reference Guide, Compumotor Catalogue

8000-4, Parker Hannifin Corporation, Compumotor Division, USA, pp. 330,2002.

48. Parker Hannifin Corporation, ACR Technical Brochure Version 3.0, Parker Hannifin

Corporation, Compumotor Division, USA.

49. Parker Hannifin Corporation, Compumotor Online Support,

http://www.compumotor.com.

50. A. Burns, A. Wellings, Real-Tirne Systems and Programming Languages 2n d Edition, .'f^'

Addison-Wesley, pp . 169-202,1997. • *j*s

51. B . Overland, C++ in Plain English 3 r d edition, M & T Books, pp299-483. 2001 . :$:•

52. Parker Hannifin Corporation, AcroLIB API User 's Guide Version 3.00, Parker Jg

Hannifin Corporation, Compumotor Division, USA, April 1997. : "-.J?.

53. Julian Temptaman, Beginning Windows N T Programming, Wrox Press, p p 199-568, £%&

2000. - i f
54. Charles Petzold, Programming Windows 5th edition, Microsoft Press, pp 1197-1240, -^gj

1999- 'M
55. E. C. Ifeachor, B. W. Jervis, Digital Signal Processing, Addison-Wesley, pp. 614-672,

1998. =

56. B. Shirinzadeh, P. L. Teoh, C. W. Foong, "Orientation measurement using vision and t

non-vision based techniques in laser tracking system", 30th International Symposium

on Robotics, Tokyo, Japan, pp. 317-324,1999.

57. B. Shirinzadeh, P. L. Teoh, C. W. Foong, Y. D. Liu, "Orientation measurement

technique in laser interferometry based tracking system for robot manipulator

calibration", Proceedings of Pacific Conference on Manufacturing (PCM2000),

Detroit, USA, Vol. 2, pp. 788-793, September 2000.

58. P. L. Teoh, B. Shirinzadeh, "Dual position sensitive diode-based orientation

measurement in laser interferometry-based sensing and measurement technique",

Proceedings of SPIE- The International Society for Optical Engineering, Vol. 4564, pp.

98-106, October 2001.

180

-3
* • • '

59. W. Augustyn, P. Davis, "An analysis of polarization mixing errors in distance

measuring interferometers", Journal of Vacuum Science and Technology B, Vol. 8 No.

6, pp. 2032-2036, 1990.

60. M. Vincze, J. Prenninger, R Gander, "A model of tumbling to improve robot

accuracy", Journal of Mechanism and Machine Theory, Vol. 30 No. 6, pp. 849-859,

1995.

61. P. L. Teoh, B. Shirinzadeh, C. W. Foong, G, Alici, "The measurement uncertainties in

laser interferometry-based sensing and tracking technique", Journal of Measurement,

Vol. 32 No. 2, pp 135-150, September 2002.

62. A. Ben-Israel, T. N. E. Greville, Generalised Inverses: Theory and Applications,

Wiley-Interscience, pp. 7-38, 1974.

63. ISO, Guide to expression of uncertainties in measurement, International Organisation

for Standardisation, Switzerland, 1993.

64. L. Scivicco and B. Siciliano, Modelling and control of robot manipulators, Springer,

pp. 213-268,2000.

65. F. Reyes and R. Kelly, "Experimental evaluation of model-based controllers on a

diiect-drive robot arm", Journal of Mechatronics, Vol. 11 No. 3, pp. 267-28?-, 2001.

66. A. De Carli and R. Caccia, "A comparison of some control strategies for motion

control", Mechatronics, Vol. 5 No. 1, pp. 61-71,1995.

67. T. Yasuho et. al., "Identification and model based control of a 6 D. O. F industrial

manipulator", Robot Control, Proceedings c f the IF AC Symposium, Nantes, France,

Vol. 1, pp. 111-117, September 1997.

68. G. Alici, Robot force control for remote drilling in hazardous environments, PhD

Thesis, University of Oxford, UK, 1993.

69. P. L. Teoh, B. Shirinzadeh, G. Alici, "Experimental analysis of laser interferometry-

based sensing and measuring technique for a 3D dynamic positioning system",

Proceedings of Pacific Conference on Manufacturing (PCM2002), Vol. 2, pp. 882-887,

November 2002.

70. P. L. Teoh, B. Shirinzadeh, "3D external ground truth feedback sensing for robot

manipulators using laser interferometer-based sensing and measurement technique",

Proceedings of the 8th IEEE Conference on Mechatronics and Machine Vision in

Practice (M2VIP), Hong Kong, pp. 261-265, August 2001.

71. P. L. Teoh, PhD Professional Disputation Thesis, Department of Mechanical

Engineering, Monash University, Australia, August 2002.

181

I
72. Yaskawa Electric Corporation, Yasnac MRC instructions: turbo functions, Yaskawa ?

Electric Corporation, Japan, 1997. "}

73. Yaskawa Electric Corporation, Motoman-SK120 Instructions, Yaskawa Electric "£

Corporation, Japan, pp. 18,1997. v",

74. G. Alici, and R. W. Daniel, "Static friction effects during hard-on-hard !.;.''
-,«

contact tasks and their implications for manipulator design", The / ^
•yi*

International Journal of Robotics Research, Vol 13 No. 6, pp. 508-520,1994. • -J^

75. T. J. Tarn and K. Brady, "A framework for the control of time-delayed telerobotic >-"'%•

systems", Robot Control, Proceedings of the IF AC Symposium, Nantes, France, Vol. 1, -f/'j

pp. 599-604, September 1997. -*"*,!

76. B . Shirinzadeh, H. C. Chong, K. C. Lee, P. L. Teoh, "Issues and techniques for '-*-•£.'

interferometry-based laser guidance of a manipulator", The 5th International -:|£

Conference on Control, Automation, Robotics and Vision, Singapore, Vol. 1, pp . 2 7 1 - £ \

275 ,1998 . :'Sf

77. B . Shirinzadeh, P. L. Teoh, C. W. Foong, Y. D. Liu, "A strategy for accurate guidance .%

of a manipulator using laser interferometry-based sensing technique", Sensor Review, \i*j

Vol. 19 N o . 4, pp. 292-299,1999. *}£

78. Venturcom Inc., RTX: Real t ime extension datasheet, Venturcom Inc.,

http://www.vci.com. ,"*'•'

I
t
I
it

182

Doctoral / MPhil Thesis Library Release Authorisation
www.monash.edu.au/phdschol/examinations/librarv release authoiisation.rtf

Privacy Notice: The information on this form is collected for the primary purpose of seeking your consent to release you
thesis to the library. If you choose not to complete all the questions on this form, it may not be possible for your thesis to be
released to the library. You have s right to access personal information that Monash University holds about you, subject to
any exceptions in relevant legislation. If you wish to seek access to your personal information or inquire about the handling of
your personal information, please contact the University Privacy Officer on (03) 9905 6011.

1. Details of the candidate

TEOH

 |

I

A STUDY OF LASER INTERFEROMETRY-BASED SENSING AND MEASURING
TECHNIQUE IN ROBOT MANIPULATOR CONTROL AND GUIDANCE

Full name:

Postal address:

Telephone:

Email address:

Title of thesis:

2. Key words

Please nominate the key words which identify the thesis for the purpose of library cataloguing. Please note
that some disciplines have their own thesaurus for this purpose.

[LASER INTERl-EROMETER, ROBOT CONTROL, ROBOT GUIDANCE I

3. Consent for use of thesis

e circle as appropriate
do not agree that this thesis, held in any form, eg paper, micro, electronic, may be made

for consultation within the Library.
' do not agree that this thesis may be available for reproduction on paper or in

licioielectronic form.
> I note that in any case, my consent is required only for the three years following acceptance of my

thesis.

he Library, when supplying information to the national bibliographic database, often needs to distinguish
'between two or more authors of similar name. Your help, through providing the following additional details,
would be appreciated.

13-11-1976

Date:1

Date of birth:

Any other publications:

4. Declaration by candidate

Candidate's signature:

5. Ratification by academic unit

This is to ascertain that the Department / School / Centre / Institute has no objection to the candidate's
options regarding access to the Library thesis copy. If sq^ please sign below and return the completed form
to: Monash Graduate School, Building 3D, ClaytorvCampus.

Supervisor's signature: j 1 D a t e : / ^
(please print name) 1 ASSdCWFE'TfoQpisSOR BIJAN SHIRiNZADEH

H
MONASH UNIVERSITY

THESIS ACCEPTED IN SATISFACTION OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

ON 27 January 2004

Sec. Research Graduate School Committee
Under the Copyright Act 1968, this thesis must be used only under the
normal conditions of scholarly fair dealing for the purposes of
research, criticism or review. In particular no results or conclusions
should be extracted from it, nor should it be copied or closely
paraphrased in whole or in part without the written consent of the
author. Proper written acknowledgement should be made for any
assistance obtained from this thesis.

A Study of Single Laser Interferometry-based Sensing

and Measuring Technique in Robot Manipulator

Control and Guidance

Volume 2

Submitted By

Pek Loo TEOH
Bachelor of Engineering (Monash University - Australia)

A thesis submitted in fulfillment of the
requirements for the degree of

Doctor of Philosophy in Engineering Science

Department of Mechanical Engineering
Monash University

September 2003

Appendix A

Calculation of PSD resolution

The 4 channels of the PSD within the experimental LISM apparatus give a voltage of Vc at

the output of the signal conditioning device. The voltage Vc (c = 1,2, 3,4) varies from 1 V

to 5 V within the PSD range of-3 to 3 mm. For the DAQ board, an input range of ±10V

and a resolution of 12 bits were used. The smallest detectable voltage change is thus

0.0048V.

By assuming that the PSD is linear within the ±3 mm range, V3 = 5 V when Vi = 1 V.

Moreover, when dV3 = O.O048, dVi = -0.0048.

1 •• 1 v c^c r-lx0.0048-25x-0.0048>iresolution along X = 6.076 x
I 216 J
/ l x 0.0048-5 x-0.0048>|

' { 36 J+14.944 J " I (A.1)

= 0.0152 mm

When V3 = 1 V when Vi = 5 V. Moreover, when dV3 = -0.0048, dVi = +0.0048.

'-25x-0.0048-lx0.0048^
resolution along X = -5.132 x

216)

(A.2)

= -0.0146/ran

Similiarly, V2 = 5 V when V4 = 1 V and dV2 = 0.0048 when dV4 = -0.0048.

, • , v , f l - f - lx 0.0048-25 x-0.0048^1
resolution along Y = 7.076 x

V 216), ,o/lx0.0048-5x-0.0048"i
t.ooo -+ 1 4 . 6 8 8 * " — ~~ ™"™l (A.3)

= 0.0155 mm

When V2 = 1 V when V4 = 5 V and dV2 = -0.0048 when dV4 = 0.0048.

1 •• 1 v SAM f-25x-0.0048-1x00048^
resolution along Y = -5.404 x

\ 216)
(A.4)

V 36
= -0.0154 mm

The resolution of the PSD is thus 15um.

Appendix B

Beam propagation for laser displacement calculation

• /• i

u.

TR
r ~
F

337,2229

287,2229

1"i

A92

362,2229

\

^

/ I S J
A

Fig B. 1: Beam propagation when the target has moved along %-axis

Fig. B.I shows the retroreflector's initial position at point A with the laser beam path

shown in solid red line. The laser beam is hitting the centre of the retroreflector and there is

no beam offset. Point B indicates a new retroreflector position. The dotted red line

indicates the propagation of the laser beam before any rotation of the mirror has taken

place. The current laser radial distance recorded will be as follows:

laser radial distance = —
2

= -(337.2229 + 50 + 287.2229 + 50) (B.I)

= 362.2229

= TR->A

The rotation angle A £2 required to position the beam at the point B can be calculated using

the right angle triangle TR -» A ->• B.

Fig. B.2 shows the retroreflector's initial position at point A with the laser beam path

shown in solid red line. Point D indicates a new retroreflector position when the

retroreflector is displaced along the yz-plane. The dotted red line indicates the propagation

of the laser beam before any rotation of the mirror has taken place. The current laser radial

distance recorded will be as follows:

'..ill

laser radial distance = - (TR
2

E - > F - I - F - > G)

= -(437.2229 + 50 + 387.2229 + 50)

= 462.2229

= TR->B

(B.2)

The rotation angle A &2 required to position the beam at the point C can be calculated using

the right angle triangle TR ->• B -> C.

•I
Y

/ :
TR - 1

r

i—~—

G

437,2229

387,2229

AG2 /

462,2229

\

_ ^

—

X /

7A T
D B

Fig B.2: Beam propagation when the target has moved alongj^plam

Appendix C

Program prepared in MATLAB to solved the generalised inverse of J matrix and identify

differential change in parameters used in the kinematic model of LISM apparatus

[D:\Project\Thesis Chapters\appendix\pr,
[September 17, 2003

.\KinematicModel21.m Page 1
10:23:16 AM

isyms Malphal Mbetal Mzedl
jsyms Malpha2 Mbeta2 Mzed2
syms Malpha3 Mbeta3 Mzed3
syms quel que2
syms Al A2 A3
syms xml yml zml
syms xm2 ym2 zm2
syms dxm3 dym3 dzm3
isyms xL yL zL
syms alphaL betaL gammaL
syms alphaW betaW gamrnaW
isyms xPsd yPsd Zygo

load calibrationFull.txt;
pL=calibrationFull(:, 3)
pquel=calibrationFull{:
pque2=calibrationFull(:
!LeicaX=calibrationFull(
LeicaY=calibrationFull(
LeicaZ=calibrationFull(

CMalphal
SMalphal
CMalpha2
SMalpha2

CMBetal =
SMBetal =
CMBeta2 =
SMBeta2 =

= cos(Malphal)
= sin(Malphal)
= cos(Malpha2)
= sin(Malpha2)

cos(Mbetal);
sin(Mbetal);
cos(Mbeta2);
sin(Mbeta2);

4) ;
5) ;
, 6) ;
, 7) ;
, 8);

Cquel = cos(quel);
Squel = sin(quel);

Cque2 = cos(que2);
Sque2 = sin(que2);

Rxl = [1 0 0 0;
0 CMalphal -SMalphal 0;
0 SMalphal CMalphal 0;
0 0 0 1] ;

Ryl = [CMBetal 0 SMBetal 0;
0 1 0 0;
-C.MBetal 0 CMBetal 0;
0 0 0 1];

Tzl = [1 0 0 0;
0 1 0 0;
0 0 1 Mzedl;
0 0 0 1];

Rx2 = [1 0 0 0;
0 CMalpha2 -SMalpha2 0;
0 SMalpha2 CMalpha2 0;
0 0 0 1] ;

Ry2 = [CMBeta2 0 SMBeta2 0;
0 1 0 0;
-SMBeta2 0 CMBeta2 0;
0 0 0 1];

Tz2 = [1 0 0 0;
0 1 0 0;
0 0 1 Mzed2;

ID:\Project\Thesis Chapters\appendix\pr
jseptember 17, 2003

. . \KinematicModel21 .iu Page 2
10:23:16 AM

0 0 0 2];

Ami =
Amirrl
Am2 =
Amirr2

Tml =

Tm2 =

Trn3 =

Rzql =

Rxq2 =

Rxl
=
Rx2
=

[1
0
0
0
[1
0
0
0
[1
0
0
0

it

Ami
it

Am2

0
1
0
0
0
1
0
0
0
1
0
0

0
0
1
0
0
0
1
0
0
0
1
0

Ryl * Tzl;
;
Ry2 * Tz2;

xml;
yml;
zml;

U;
xm2;
ym2;
zm2;
l];
dxm3;
dym3 ;
dzm3;

l];
[Cquel -Sqxiel 0
Squel Cquel 0
0
0
[1
0
0
0

0

0 1
0 0

0
Cque2 -Sque2
Sque2 Cque2
0 0

0;
0;
0;

l-H

0;
0;
0;

U;

Tl = Tml;
T2 = Tm2;
Mis = Tl * Amirrl;
I Ml = Mis;
|M2s = T2 * Rzql * Tm3 * Rxq2 * Amirr2;
M2 = M2s;

CalphaL
SalphaL
CbetaL =
SbetaL =
CgammaL
SgammaL

= cos(alphaL);
= sin(alphaL);
: cos(betaL);
: sin(betaL);
- cos(gammaL);
= sin(gammaL) ;

RxL = [1 0 0 0;
0 CalphaL -SalphaL 0;
0 SalphaL CalphaL 0;

0 SbetaL 0;
1 0 0;

0 0
RyL = [CbetaL

0
-SbetaL 0 CbetaL 0;
0 0 0 1]

RzL = [CgammaL -SgammaL 0
SgairanaL CgammaL 0

1

TL =

0
0

[1 0
0 1
0 0
0 0

LOs = TL *
L0 = LOs;

0
0 0

0;
0;
0;
1] ;

0 xL;
0 yL;
1 zL;
0 1] ;

RzL RyL RxL;

5D:\Project\Thesis Chapters\appendix\pr...\KinematicModel21.m Page 3
jSeptember 17, 2003 10:23:16 AM

In = M1(1,4)*M1(1,3) 4 M1(2,4)*M1(2,3) + Ml (3, 4) *M1 (3, 3) - Ml (1, 3) +L0 (1, 4) -Ml (2, 3) *L0 (2, «T
14)- Ml(3,3)*L0(3,4);
|d = M1(1,3)*LO{1,3) + Ml(2,3)*L0(2,3) + Ml(3,3)*L0(3,3);
JAl = n/d;
JnLCll = LO{1,1)*M1(1,3) + 1,0 (2,1)*M1 (2,3) + LO(3,1)*M1(3,3);
SnLC21 = LO(1,2)*M1(1,3) + LO(2,2)*M1(2,3) + LO(3,2)*M1(3,3);
v = 2*d*d;
c=l-v;
v_m=v/(l-d*d);
B ••= eye{4) ;

Bll = nLC21*nLC21*v_m + c;
JB12 = -nLC21*nLCll*v_m;
B13 = -nLCll*2*d;
B21 = B12;
SB22 = nLCll*nLCll*v_m + c;
JB23 = -nLC21*2*d;
B31 = -B13;
B32 = -B23;
B33 = c;
B34 - Al;
B = [Bll B12 B13 0;

B21 B22 B23 0;
B31 B32 B33 B34;
0 0 0 1];

ARefll = B;
Lls = LO * ARefll;
LI =̂ Lls;
I ok = 1

n = M2(1,4)*M2(1,3) + M2 (2, 4) *M2 (2, 3) + M2 (3, 4) *M2 (3, 3) - M2 (1, 3) *L1 (1, 4) -M2 (2, 3) *L1 (2, vf
4)- M2{3,3)*L1(3,4);
d = M2(1,3)*L1{1,3) + M2(2,3)*L1(2,3) + M2(3,3)*L1'3,3);
|A3 = n/d;
nLC13 = L1(1,1)*M2(1,3) + LI(2,1)*M2(2,3) + LI(3,1)*M2(3,3);
nLC23 = L1(1,2)*M2(1,3) + LI(2,2)*M2(2,3) + LI(3,2)*M2(3,3);
v = 2*d*d;
c=l-v;
v_m=v/(l-d*d);
B = eye{4) ;
BIT = nLC23*nLC23*v_m + c;
B12 = -nLC23*nLC13*v_m;
B13 = -nLC13*2*d;
B21 = B12;
B22 = nLC13*nLCl3*v_m + c;
B23 = -nLC23*2*d;
B31 = -B13;
B32 = -B23;
B32 = c;
B34 = A3;
B = [Bll B12 B13 0;

B21 B22 B23 0;
B31 B32 B33 B34;
0 0 0 1];

[ARefl3 = B ;
L2s = LI * ARefl3;
L2 = L2s;
ok = 2

T4 = [1 0 0 xPsd;
0 1 0 -yPsd;

i:\Project\Thesis Chapters\appendix\pr
jSeptember 17, 2003

. \KinematicModel21 .ia Page 4
10:23:16 AM

0 0 1 Zygo;
0 0 0 1);

L3s = L2 * T4;
13 = L3s;%subs(L4s);
ok = 3

Rs = L3;
pX = Rs(l,4);
pY = Rs(2,4);
pZ = Rs{3,4);

Malphal = -3*pi/4;
Mbetal = 0.0;
Mzedl = 0.0;
xml =0.0;
yml = 465.13;
zml = 162;
xm2 = 0.0;
ym2 = 465.13;
zm2 = 548.365;
Malpha2 = pi/4;
Mbeta2 = 0.0;
Mzed2 = 0.0;
dxm3 =0.0;
dym3 = 0,0;
dzm3 =0.0;

xPsd = 0.0;
yPsd = 0.0;

alphaL = -pi/2;
betaL = 0.0;
gammaL = 0.0;
xL = 0.0;
yL = 0.0;
zL = 162;

A = L3;
R = subs(A);
ok = 4

el_l =diff(pX,
el 2 =diff(pX,
el_3 =diff(pX,
el 4 =diff(pX,
el_5 =diff(pX,
el 6 =diff(pX,
el_7 =diff(pX,
el 8 =diff(pX,
el_9 =diff(pX,
el 10=diff(pX,
el_ll=diff(pX,
el 12=diff(pX,
en_13=diff(pX,
el 14=diff(pX,
el_15=diff(pX,
el 16=diff(pX,
el 17=diff(pX,
el_18=diff(pX,
el 19=diff(pX,
el 20 =diff(pX,

•Malphal1);
'Mbetal1);
'Mzedl');
•Malpha2');
'Mbeta2');
'Mzed2');
'xml1);
' yml') ;
1 z m l ') ;
s x m 2 ') ;
' y n ^ ') ;
1 zm2') ;
1dxm3');
1dym3 •) ;
1dzm3•);
'xL');
•yL');
•zL1);
•alphaL');
•betaL1);

>:\Project\Thesis Chapters\appendix\pr...\KinematicModel21.m
September 17, 2003

Page 5
10:23:16 AM

il_21 =diff(pX, 'gairanaL');

_1 =diff(pY,
_2 =diff(pY,
_3 =diff(pY,

Je2_4 =diff(pY,
|e2_5 =diff(pY,
Je2_6 =diff(pY,
Je2_7 =diff(pY,
Je2_8 =diff(pY,
Ie2_9 =diff(pY,
!e2_10=diff (pY,
[e2_ll=diff (pY,
Ie2_12=diff (pY,
e2_13=diff(pY,
e2_14=diff(pY,
|e2_15=diff (pY,
e2_16=diff(pY,
e2_17=diff(pY,
e2_18=diff(pY,
|e2_19=diff (pY,
]e2_20 =diff(pY,
e2 21 =diff(pY,

e3_l =
e3_2 =
e 3 _ 3 ••
e3_4
e 3 _ 5 ••

e3_6 :
e3_7 ••
e3_8 =
e3_9 =

| e 3 _ 1 0 :

|e3_ll=
i e 3 1 2 :

I e3_15:
e3_16^
e 3 1 7 :

e3_20
e3 21

=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff (pZ,
=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff(pZ,
=diff (pZ,

•Malphal1);
•Mbetal1);
'Mzedl1};
•Malpha2');
•Mbeta2');
•Mzed2 !);
1 xml') ;
1 yml') ;
1 zml •) ;
1 xm2 •) ;
• ym2 •) ;
1 zm2 ') ;
1dxm3');
•dym3');
1dzm3');
'xLM;
• y L 1) ;

•zL');
1alphaL');
'betaL');
'gammaL');

1Malphal 1);
•l-lbetal1);
1Mzedl 1);
'Malpha2');
'Mbeta2');
'Mzed2');
1 xml') ;
' yml') ;
1 zml •) ;

•ym2');
1 zm2 ') ;
1dxm3');
1 dym3 •) ;
1 dzm3') ;
• x L 1) ;

•yL1);
•zL');
1 alphaL•);
•betaL 1);
1gammaL')

;e_rowl=[el_l el_2 el_3 el_4 el_5 el_6 el_7 e l_8 el_9 el_10
5"el_16 el_17 el_18 el_19 el_20 e l _ 2 1] ;
e_row2=[e2_l e2_2 e2__3 e2_4 e2_5 e2_6 e2_
5 e2_16 e2_17 e2_18 e2_19 e2_20 e2_21];
e_row3=[e3_l e3_2 e3_3 e3_4 e3_5 e3_6 e3_
5 e3_16 e3_17 e3_18 e3_19 e3_20 e3_21];
rl = subs (e__rowl) ;
|r2 = subs(e__row2);
i r3 = subs(e_row3);

for i=l:l:134
quel = pquel(i,l);
que2 = pque2(i,1);
Zygo = pL(i,l);

e l 1 2 e l 1 3 e l 1 4

7 e 2 8 e 2 9 e 2 1 0 e 2 l l e 2 1 2 e 2 1 3 e 2 1 4

7 e3 8 e2 9 e3 10 e3 11 e3 12 e3 13 e3 14 e3

i:\Project\Thesis Chapt*rs\appendix\pr
;eptember 17, 2003

.\KinematicModel21.m Page 6
10:23:16 AM

- LeicaY(j,l);XYZ(3,j) - LeicaZ{j,1)];

r l l = subs(rl);
r22 = subs(r2);
r33 = subs(r3);

E = [rl l ;r22;r33];
if i==l

EE=[E];
else

EE=[EE;E];
end
i

3k = 5

Eor j=l:l:134
quel = pquel(j,l);
que2 = pque2(j,l);
Zygo = pL(j,l);

RR = subs(R);

XYZ(1,j) = RR(lf4);
XYZ(2,j) = RR(2,4);
XYZ(3,j) = RR(3,4);
ERR=[XYZ{l,j) - LeicaX(j,l);XYZ(2,
if j==l

er_f=[ERR];
else

er_f=[er_f;ERR] ;
end
j

lend
ok = 6
LLM=EE\er_f;
I ok = 7

para = [Mcilphal Mbetal Mzedl Malpha2 Mbeta2 Mzed2 xml yml zird xm2 ym2 zm2 dxm3 dym3
3 xL yL zlj alphaL betaL gammaL]
para_c = p<xra' - LLM;
Malphal = para_c(l);
Mbetal = para_c(2);
Mzedl = para_c(3);
Malpha2 = para_c(4);
Mbeta2 = para_c(5);
Mzed2 = para_c(6);
xml = para_c{7);
yml = para_c(8);
zml = para_c(9);
Ixm2 = para_c(10);
ym2 = para_c(ll);
zm2 = para_c(12);
dxin3 = para_c{13);
dym3 = para_c(14);
dzm3 = para_c{15);
xL = para_c(16);
yL = para_c(17);
zL = para_c(18);
alphaL = para_c{19);
betaL = para_c(20);
gammaL = para_c(21);

>:\Proj ect\Thesis Chapters\appendix\program\OffsetNew21.m
September 17, 2003

Page 1
10:25:42 AM

syms quel;
;yms que2;
syms Zygo;

lalphal = -3*pi/4;
Detal = 0.0;

Izedl = 0.0;
nl = 0.0;

= 465.13;
Szml = 162;

= 0.0;
= 465.13;

sm2 = 548.365;
4alpha2 = p i / 4 ;
>eta2 = 0.0;
ed2 = 0 . 0 ;

ixin3 = 0.0;
iym3 = 0.0;
Izm3 = 0.0;
cFsd = 0.0;
.'Psd = 0.0;
ilphaL = - p i / 2 ;
setaL = 0.0;

IgammaL = 0 . 0 ;
JxL = 0.0;
jyL = 0.0;
IzL = 162;

iload ca l ib ra t ionFu l l . t x t ;
|pL=calibrationFull(: ,3)
jpquel=calibrationFull(:
lpque2=calibrationFull(:
!LeicaX--calibrationFull (
JLeicaY=calibrationFull(
!LeicaZ=calibrationFull(

[CMalphal
iSMalphal
CMalpha2
SMalpha2

JCMBetal =
ISMBetal =
|CMBeta2 =
SMBeta2 =

= cos(Malphal]
= sin(Malphal]
= cos(Malpha2]
= sin(Malpha2;

cos(Mbetal);
sin(Mbetal);
cos(Mbeta2);
sin(Mbeta2);

4);
5);
,6);
,7);
,8);

jCquel - cos(quel);
Squel = sin(quel);

Cque2 = cos(que2);
jSque2 = sin(que2);

[Rxl = [1 0 0 0;
0 CMalphal -SMalphal 0;
0 SMalphal CMalphal 0;
0 0 0 1] ;

|Ryl = [CMBetal 0 SMBetal 0;
0 1 0 0;
-SMBetal 0 CMBetal 0;
0 0 0 1];

|Tzl = [1 0 0 0 ;

i:\Project\Thesis Chapters\appendix\program\0ffsetNew21.m
September 17, 2003

Page 2
10:25:42 AM

0 1 0 0;
0 0 1 Mzedl;
0 0 0 1];

= [1 0 0 0;
0 CMalpha2 -SMalpha2 0;
0 SMalpha2 CMalpha2 0;
0 0 0 1];

= [CMBeta2 0 SMBeta2 0;
0 1 0 0;
-SMBeta2 0 CMBeta2 0;
0 0 0 1] ;

[•z2 = [1 0 0 0;
0 1 0 0;
0 0 1 Mzed2;
0 0 0 1] ;

nl = Rxl * Ryl * T z l ;
d r r l = Ami;

= Rx2 * Ry2 * Tz2 ;
d r r 2 = Am2;

rml =

rm2 =

rm3 =

[1 0
0 1
0 0
0 0
[1 0
0 1
0 0
0 0
[1 0
0 1
0 0
0 0

0 xml;
0 yml;
1 zml;
0 1];
0 xm2;
0 ym2;
1 zm2;
0 1];
0 dxm3;
0 dym3;
1 dzm3;
0 1];

jRzql = [Cquel -Squel 0 0;
Squel Cquel 0 0;
0 0 1 0 ;
0 0 0 1];

[Rxq2 = [1 0 0 0;
0 Cque2 -Sque2 0;
0 Sque2 Cque2 0;
0 0 0 1] ;

iTl = Tml;
]T2 = Tm2;
IMls = Tl * Amirrl;
[Ml = Mis;
lM2s = T2 * Rzql * Tm3 * Rxq2 * Amirr2;
[M2 = M2s;

CalphaL
jSalphaL
jCbetaL =
JsbetaL =
ICgaitimaL
IsgammaL

= cos(alphaL) ;
= sin(alphaL);
: cos(betaL);
: sin(betaL);
= cos (gammaL) ;
= sin(gammaL);

|RxL = [1 0 0 0;
0 CalphaL -SalphaL 0;
0 SalphaL CalphaL 0;

•:t

): \Proj ectXThesis Chapters\appendix\program\OffsetNew21.m
September 17, 2003

Page 3
1 0 : 2 5 : 4 2 AM

yL =

zl. =

L =

0s =
0 =

0 0
[CbetaL
0
-SbetaL
0
[CgammaL
SgammaL
0
0

[10 0 xL;
0 1 0 yL;
0 0 1 zL;
0 0 0 1];
TL * RzL

LOs;

0
1
0
0

0
°>betaL
0
CbetaL
0

-SgemmaL
CgammaL
0
0

•k

0;
0;
0;
1]
0
0
1
0

RyL * RxL

l];

f

0;
0;
0;
1];

= M 1 (1 , 4) * M 1 (1 , 3) + M 1 (2 , 4) * M 1 (2 , 3) + Ml (3 , 4) * M 1 (3 , 3) - M l (1 , 3) * L 0 (1 , 4) - M l (2 , 3) * L 0 (2 ,
14) - M l (3 , 3) * L 0 < 3 , 4) ;
jd = M 1 (1 , 3) * L O (1 , 3) + M l (2 , 3) * L 0 (2 , 3) + M l (3 , 3) * L 0 (3 , 3) ;

= n / d ;
lLCll = L O (1 , 1) * M 1 (1 , 3) + L O (2 , 1) « M 1 (2 , 3) + LO(3 ,1) * M 1 (3 , 3) ;
1LC21 = L O { 1 , 2) * M 1 (1 , 3) + L O (2 , 2) * M 1 (2 , 3) + L O (3 , 2) * M 1 (3 , 3) ;

= 2*d*d;
| c = l - v ;
j v _ m = v / (l - d * d) ;
IB = e y e (4) ;
IB11 = nLC21*nLC21*v_m + c ;
JB12 = -nLC21*nLCl l*v_m;
1B13 = - n L C l l * 2 * d ;
IB21 = B12;
lB22 = n L C l l * n L C l l * v _ m + c ;
JB23 = -nLC21*2*d;
JB31 = - B 1 3 ;
JB32 = - B 2 3 ;
B33 = c ;
B34 = A l ;

|B = [B l l B12 B13 0 ;
B21 B22 B23 0 ;
B31 B32 B33 B34;
0 0 0 1] ;

l e f l l = B;
j L l s = LO * A R e f l l ;
[LI = L l s ; % s u b s (L l s) ;
ok = 1

n = M2(1 ,4)*M2<1 ,3) + M 2 (2 , 4) * M 2 (2 , 3) + M2 (3 , 4) * M 2 (3 , 3) - M2 (1 , 3) * L 1 (1 , 4) - M 2 (2 , 3) * L 1 (2 ,
4) - M 2 (3 / 3) * L 1 (3 , 4) ;

jd = M 2 (1 , 3) * L 1 (1 , 3) + M 2 { 2 , 3) * L 1 (2 , 3) + M 2 (3 , 3) * L 1 (3 , 3) ;
A3 = n / d ;

|nLC13 = L 1 (1 , 1) * M 2 (1 , 3) + L I { 2 , 1) * M 2 (2 , 3) + L I (3 , 1) * M 2 (3 , 3) ;
nLC23 = L 1 (1 , 2) * M 2 { 1 , 3) + L I (2 , 2) * M 2 (2 , 3) + L I (3 , 2) * M 2 (3 , 3) ;
v = 2*d*d;
c = l - v ;
v _ m = v / (l - d * d) ;
B = e y e (4) ;
B l l = nLC23*nLC23*v_m + c ;
B12 = -nLC23*nLC13*v_m;
B13 = -nLC13*2+d;
B21 = B12;

I B 2 2 = nLC13*nLC13*v m + c ;

b:\Project\Thesis Chapters\appendix\program\OffsetNew21.m
{September 17, 2003

Page 4
10:25:42 AM

B23 = -nLC23*2*d;
331 = - B 1 3 ;
B32 = - B 2 3 ;
B33 = c ;
B34 = A3;
B = [B l l B12 B13 0;

B21 B22 B23 0;
B31 B32 B33 B34;
0 0 0 1] ;

ARefl3 = B ;
L2s = LI * ARef l3 ;
L2 = L2s ;
ok = 2

T4 = [1 0 0 xPsd;
0 1 0 - y P s d ;
0 0 1 Zygo;
0 0 0 1] ;

L3s = L2 * T4;
L3 = L3s ;%subs (L4s) ;
ok = 3 •

R s
pX

p Y

pZ

L 3 ;
P s (l , 4) ;
R s (2 , 4) ;
R s (3 , 4) ;

JA = L 3 ;
jR = subs (A) ;
ok = 4

[for k = l : 1 : 1 3 4
quel = pquel(k,l);
que2 = pque2(k,1);
Zygo = pL(k,1);

RR = subs(R);

XYZ(l,k) = RR(1,4) ;
XYZ(2,k) = RR(2,4) ;
XYZ(3,k) = RR(3,4) ;
ERR=[XYZ(l,k) - LeicaX(k,l);XYZ(2,k)
if j==l

er_f=[ERR];
else

er_f=[er_f;ERR];
end
k

lend

- LeicaY(k,l);XYZ(3,k) - LeicaZ(k,1)];

Appendix D

Alignment procedures and establishment of robot's tool co-ordinate frame

This appendix provides procedures for aligning the co-ordinate frame of the experimental

LISM apparatus so that the apparatus is measuring position information with respect to the

robot's tool co-ordinate frame.

Robot's end-
effector

Robot's tool
co-ordinate
frame

XuSM

LISM co-ordinate

Experimental
LISM
apparatus

Figure D. 1: Robot positions utilised for the establishment of robots tool co-ordinate frame

Alignment procedure

To establish the robot's tool co-ordinate frame, the following procedures are used:

1) Mount the LISM apparatus in a convenient position as shown in Fig. D.I. The

position of the LISM apparatus must be chosen so that all the reference points can

be pointed to by the laser beam from the LISM apparatus;

2) Place the target retroreflector at the birdbath. Start the tracking of the target

retroreflector;

3) Place the retroreflector at the end-effector of the robot manipulator;

4) Jog the robot to move the retroreflector to the first reference point (USMPnfx)• Click

on the button STATIC SAMPLE as shown in Fig. D.2. A static point sampling

dialog box (Fig. D.3) will appear. Enter the name for the currant point and press

OK, The current position of the reference point with respect to the LISM co-

ordinate frame will be recorded. The first reference point is to become the origin of

the robot's tool co-ordinate frame.

5) Repeat step 4 by jogging the robot in the robot's positive x direction to the second

reference point (USMPnf2)- This reference point is used to indicate the positive x-

axis of the robot's tool co-ordinate frame.

6) Repeat step 4 by jogging the robot in the robot's positive x and positive y direction

to the third reference point (ZJSWi>n,/3)• This reference point is used to indicate the

positive xy-plane of the robot's tool co-ordinate frame.

7) All these reference points will be written in a file RefPtLISM.ini under the

directory c:\winnt.

8) To align the axis, click on the TRANSFORMATION button. A dialog box as

shown in Fig. D.4 will be presented to the user. Select the appropriate reference

points in the combo box. Enter a name for the co-ordinate frame and press OK. The

function TransformationO will be executed to compute the transformation matrix

USM ̂ robot u s e d for the transformation of position information with respect to the

LISM co-ordinate frame to the robot's tool co-ordinate frame. The determination of

the matrix USi'fAn)bot is presented in the following section.

i

SET HOME |

GDHDUE
C UwMotocom

C UteTuboLr*

DRIVE BEAM | START GUIDANCE

CORRECT I ZEROiNG
Diiv« Robot lhroushg«n«u*»<! pith
«*>OJ| gwdmct or EGTFS. M * t H I
anotfac badw « an to racod • » pcmbon

MeatwtdPiMibon
isMveloUSM Robot Cviflnt Fotibon

FBCOfoKj [font conboAot rafaHvtloCSSdcolad

EGTFSFREQ C UwMotccan

1 Figure D.2: USM control program

StaticPoint Sample

Enter name of Point

List of Sampled Points

Point Name X Co-ordinate
try 1.000

Y Co-ordinate
2.000

Z Co-ordinate
3.000

I 21

OK

Cancel

1

D.i: Static point sampling dialog box

Tr ansformatidrt

-Origin

Select the reference point that represent
the origin

Wrfte something here

Enter a name for the CS

Cancel |

-AXIS 1

Select the reference point that represent
the point on the first axis

! d

-Axis 2
Select the reference point that represent
the point on the plane made by first and
second axes

I Z\

Figure DA: Transformation dialog box

Transformation matrix determination

USM 1S represented by the Z-Y-X Euler angle set [1] given by the following equation:

USM
"robot ~

cacfi casfisy-sacy casj3cy + sasy USM xnfl

sacfi sasfisy + cacy saspcy-casy USMyrcf{
USM _

-sfi
0

easy

0

cjScy

0
're/1

where ca = cos a and sec = sin a, etc., USM. USM

1

USM

(D.I)

zrefx are the x, y and z

positions of the reference point with respect to the LISM co-ordinate frame.

\ ,

The aim is to determine the angles a, p and y in the transformation matrix. This is done by

first rewiite the position information of the references points with respect to the robot's

tool co-ordinate frame as follows:

0 0] (D.2)

o] (D.3)n _ froio/
rref2 ~ I f"ref2

robot n _ f,
V 3 ~ L

robot . robot. o] (D.4)

I/.WFollowing that, Pnf2 is rewritten as the following equation:

USM p _L1SM A robit
rre/2~ Arobot Jp

re/2
USM

USM

USM

Xref2

yre/2

Zre/2

1

LISM .
lref\cac/3 cocSjSsy — scccy casfky + sasy

sacfi sasfisy + cacy socs/3cy-casy —y n f l

0
easy

0

cficy

0

USM .

USM ,
-re/1

A

B

C

1

xnf2+

Cref\— Xref2

_USM
1~~ "«/2

7
ref\ ref2

robot
"re/2

0

0

1

(D.5)

(D.6)

(D.7)

(D.8)

From Eqs. D.6 and D.7, the equations can be rearranged as follows:

USM USM _ rr/r arobot
Xref2 Xref\-CaCP Xref2

USM -USM - eacflrot""x
^re/2 yref\-SaCP Xrtf2

(D.IO)

By dividing Eq. D.IO with Eq. D.9, the following equations can be obliined;

USM USM.

USM USM
Xrcf2

a = tan
- i

USM , USM.

USM
X-.r->~~

(D.11)

(D.12)

From Eq. D.8, the equation can be rearranged as follows:
USU _USM _ -arobot

Zref2 Zrcf\ ~ SP Xref2

USM „ £/SW_

nf\
robot.

USM USM

V l

(D.13)

(D.14)

(D.15)
're/2

rob°'xrcf2 c a n b e determined by computing the length between

shown in the following equation:

and USMPref2 as

robot USMV USM i/ffl/, USM ,J (D.16)

Only the positive solution is used as n " xnfl indicates the positive x-axis of the robot's

tool co-ordinate frame. The length between USMPnfx and USM Pref2 cannot be zero (i.e.

USMPren^
USMPref2) to prevent (3 from becoming infinity.

In order to find / , USMPrefi is rewritten as:

USM n _
rref$ ~

USM,

USM

USM ,

yrc/3

''refl

D =

E =

.USM A robot n

cacp caspsy — sacy caspcy + sasy

sacp saspsy + cacy saspcy-casy

- sP easy cPcy

0 0 0

D

E

F

robot

= -sP""""x

USM .

USM .

USM

- (casPsy -

• (sasPsy + cacy)

re/3 ,+ ' i= 2

rcfl

refl

robot

robot

0
1

P. 17)

re/3

(D.18)

(D.19)

p.20)

Eq. D.20 can be rearrange to give the following equations:

jrobot ,

sy =

-sin"1'
USM USM. robots

(D.21)

P.22)

robolyref3 c a n o e determined by reierring to Fig D.5. In this figure, the vector

between USM PnfX and USM Pnfl is represented by lx and the vector between USMPKfl and

USMPrefi is represented by /2 . Angle 9 can be found using the dot product between Tx and

T2 as shown in the following equations:

cos«9 (D.23)

robot. rofto/,

robot robot _i_ro*°'ii robot.
rcj 2 rcj J • re/ z •

1.J
robot

ref3
robot,

(D.24)

r Zref2
7 7

ref3 = \h \\l (D.25)

T \(USM „ JLKM Y 4 (USM USM
Vr"""z«/2J P-26)

«9 = cos-1

v

ref\

•*«/2

_USM
Zref\ Zref3

robot.. robot.. .robot robot
V Zref2 Zref3

f P.27)

(D.28)

As a result, reference point 3 can be obtained using the following equations:

robot
Xref3 ~ u

robot ,

(D.29)

p .30)

\

With Arobot, any other point recorded by the LISM apparatus can be transformed into

position with respect to robot's tool co-ordinate frame by:

robot
•*/wint ~"

robot A USM n (D.31)

where

robot y i

robot
J'nr/3

LISMp
nf\ i

LISM p

-rre/2

• \ ^ w ,
1 robot v

n • . . • robot A-
Robot tool *rC/3co-ordinate

frame

. 5 : Plane view of robots reference positions

Appendix E

Control programs created for the tracking, target position measurement, robot closed-loop

control and robot guidance

1/ TrackingClassDlg.cpp : implementation f i l e

^include "stdafx.h"
^include "TrackingCla33.h"
((include "TrackingClassDlg.h"
^include "acrolib.h"
|finclude "math.h"
^include "SSClass.h"
(Jinclude "StaticPt.h"
jfinclude "Transformation.h"
If include "Path.h"

(fifdef _DEBUG
^define new DEBUG_NEW
feundef THIS_FILE
fjtatic char THIS_FILE[] = FILE ;
Rendif

tnt SelPathType;
tnt LocationPointer, OriginSelect, PosXSelect, PosYSelect;
tnt CurrLocationPointer;
300I bReplace;
tnt Num0fPt[4];
tnt CurrPt;
tnt NumOfLine;
tnt CurrLine;
isigned long pACRAddress [1] ;
isigned long pACRAddressi[l] /
300I m_bAPRorCAT;
3C_DATA_CARTESIAN RefRelToLISMCartesian[3] ;
3C_DATA_CARTESIAN PtRelToLISMCartesian[Max_Point] ;
2C_DATA_CARTESIAN PtRelToCS [1] ;
3C_DATA_CAR'XESIAN CommandPos [1]/

3C_DATA_CARTESIAN StartPoint [1] ;

3C_DATA_CARTES IAN Las tPoint [1] ;

//Current position of point in Cartesian
//co-ordinates
//Start position of path in Cartesian
//co-ordinates
//End position of path in Cartesian
//co-ordinates

C_DATA_CARTESIAN PointList [Max_Line] [Max_ViaPoint] ; //Positions of path in Cartesian
//co-ordinates Max no. 128

ouble alpha, beta, gamma;
ouble distl2, distl3;
ouble TransMatrix[4] [4] ;
ouble InvTMatrix[4] [4];
String CS[10]; //Max of 10 CS can be stored
nt CS_Counter; //Counter to store no of co-ordinates

//system set-up
ouble RobotCurX, RobotCurY, RobotCurZ;
ouble RobotDesX, RobotDesY, RobotDesZ;
ouble RobotX, RobotY, RobotZ;
ouble RobotMovXEGTFSTurbo, RobotMovYEGTFSTurbo, RobotMovZEGTFSTurbo;
ouble LISMDfcsX, LISMDesY, LISMDesZ;
float aveVel;
FILE* FileEgtfs;
FILE* FilePath;
FILE* FileGuidance;
FILE* FileRobotDr;
111/1111/11/III III/II///II/I//I/IIII/I////11/11(1/ItfillIII/Il/ll71/7//I/I/17
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:

CAboutDlg();

\lI Dialog Data
//{{AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX);
//}}AFX_DATA

// ClassWizard generated virtual function overrides
// {{AFX_VIRTUAL (CAboutDlg)
protected:
v i r t u a l void DoDataExchange(CDataExchange* pDX); / / DDX/DDV suppor t
//}}AFX_VIRTUAL

[// Implementation
protected:

//{{AFX_MSG (CAboutDlg) \ t
//))AFX_MSG i
DECLARE MESSAGE MAP ()

soutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)

// {(AFXJDATA_INIT (CAboutDlg)
/ / } } AFX_DATA_INIT

jroid CAboutDlg: :DoDstaExchange (CDataExchange* pDX)

CDialog::DoDataExchange(pDX);
// {{AFX_DATA_MAP (CAboutDlg)
//}}AFX_DATA_MAP

bEGIN_MESSAGE_MAP (CAboutDlg, CDialog)
// {{AFX_MSG_MAP (CAboutDlg)

// No message handlers
//}}AFX_MSG_MAP

t,ND_MESSAGE_MAP ()

111111 /1111 /111111 / f 11 it 11 /1111 n i /11 f i m 11 m 11 /1 /11 /11 / it n m 111 m i /1 m
11 CTrackingClassDlg dialog

pTrackingClassDlg::CTrackingClassDlg(CWnd* pParent /*=NULL*/)
: CDialog(CTrackingClassDlg::IDD, pParent)

//{{AFX_DAT1> T-"-7 (CTrackingClassDlg)
m_sStatus = _ / . " ") ;
m_uiPSDFreq == 0;
m_uiENCFreq = 0;
m_uiZYGOFreq = 0;
m_lEncl = 0;
m_lEnc2 = 0 ;
m_lfPSDX = 0.0;
mJLfPSDY = 0.0;
m_lfLaserDist = 0.0;
ia_uiStepSize = 0 ;
m_sBeam = _T ("") ;
m_uiCoinpThreadFreq = 0 ;
m_lfPosX = 0.0;
m_lfPosY = 0.0;
m_lfPosZ = 0.0;
m_lfPosX2 = 0.0;
m_lfPosY2 == 0.0;
m_lfPosZ2 = 0.0;
m_uiTurboFreq = 0;
m_uiEGTFSFreq = 0 ;
m_uiGuidanceFreq = 0 ;
m_lfVel =0.0; !
m_lfRobotX = 0.0;
m_lfRobotY = 0.0;
m_lfRobotZ =0.0; x

m_lfTurboTryAcc =0.0; I
m_lfTurboTryVel = 0.0;
m_fDx = O.Of;
m_fDy = O.Of;
m_fDz = O.Of; , ,x
//}}AFX_DATA_INIT J
// Note that Loadlcon does not require a subsequent Destroylcon in Win32 r
m_hlcon = AfxGetApp()->LoadIcon(IDR MAINFRAME);

(k
void CTrackingClassDlg: :DoDataExchange (CDataExchange* pDX) • <";'

CDialog::DoDataExchange(pDX); '^, ̂ .
//{{AFXJDATA_MAP (CTrackingClassDlg) '} ~z ̂
DDX_Control(pDX, IDC_BUTTON_POINT_SAMPLE, m_ctrlPointSample) ; fat^i
DDX_Control(pDX, IDC_RADIO_TURB0_C0RR2, m_ctrlRadioTurbo2); §Ct>
DDX_Control (pDX, IDC_RADIO_MOTOCOM_CORR2, m_ctrlRadioMotocom2); ' f"? >^;
DDX_Control (pDX, IDC_BUTTON_MRITE_FILE, m_ctrlWriteFile) ; I - \-j
DDX_Control(pDX, IDCJDZ, m_ctrlDz);
DDX_Control(pDX, IDC_DY, m_ctrlDy);
DDX_Control(pDX, IDC_DX, m_ctrlDx>;
DDX_Control (pDX, IDC_RADIO_PATH DRIVE, m_ctrlRadioPathDrive) ;
DDX_Control (pDX, IDC_RADIO MOTOCOM DRIVE, m_ctrlRadioMotocomDrive) ;

DDX_Control (pDX, IDC_BUTT0N_TURBOTRY, m__ctrlTurboTry) ;
DDX_Control(pDX, IDC_RADIO_TURBO_CORR, m_ctrlRadioTurbo)/
DDX Control(pDX, IDC_RADI0_M0T0COM_C0RR, m_ctrlRadioMotocom);
DDX"~Control(pDX, IDC_BUTTON GUIDANCE, m_ctrlButtonGuidance);

~ ~ lDDX_Control(pDX, IDC_BUTTON_EGTFS, m_ctrlButtonEGTFS)/
DDX_Control(pDX,
DDX_Control(pDX,

_ p ,
DDX_Control(pDX,
DDX_Control (pDX,
DDX_Control(pDX,

l(

_ p
DDXControl(p

_
DDXControl

_ _
IDC_COMBO_CS, m_ctrlCoinboCS);
IDC BUTT0N_DRIVE_R0BOT, m_ctrlDriveRobot) /

DDX_Control(pDX, IDC~BUTTON_OPEN_PORT, m_ctrlOpenPort);
DDX_Control (pDX, IDC_BUTTON_DYNAMIC_SAMPLE, m_ctrlDynamicSample) ;
DDX_Control (pDX, IDC_BUTTON_STATIC_SAMPLE, m_ctrlSample) ;
DDX_Contrcl(pDX, IDC_RADIO_CAT, m_ctrlRadioCAT);
DDX_Control(pDX, IDC_RADIO_APR, m_ctrlRadioAPR);

l(DX IDC_BUTTON_GO_BB, m_ctrlGoBB) ;
IDC_BUTTON_TRACK, m_ctrlTracJc) ;

_ I D C _ C H E C K _ D I S P L A Y , m_ctrlCheckDisplay);
DDX_Control(pDX, IDC_RADIO_RS232, m_ctrlRadioRS232);
DDX_Control(pDX, IDC_RADIO_GPIB, m_ctrlRadioGPIB);
DDX_Control(pDX, IDC_BUTTON_UP, m_ctrlUp);
DDX_Control(pDX, iDC_BUTTON_INIT, m_ctrllnit);
DDX_Control(pDX, IDC_EDIT_STEP_SIZE, m_ctrlStepSize);
DDX_Control (pDX, IDC_BUrTON_S\JBSYSTEM, m_ctrlSubSy3tem) ;

l(IDC_BUTTON_DEC STEPSIZE, m_ctrlDecStepSize);
IDC_BUTTON_INC~STEPSIZE, m_ctrlIncStepSize) ;

_ I D C _ B U T T O N _ R I G H T , m_ctrlRight);
DDX_Control (pDX, IDC_BUTTON_LEFT/ ro_^.trlLef t) ;
DDX_Control(pDX, IDC_BUTTON_DOWN, m_ctrlDown);
DDX_Text(pDX, IDC_STATIC_STATUS, m_sStatus) ;
DDX_Text(pDX, IDC_EDIT_PSD_FREQ, m_uiPSDFreq);
DDX_Text(pDX, IDC_EDIT_ENC_FREQ, m_uiENCFreq);

IDC_EDIT_ZYGO_FREQ, ai_uiZYGOFreq) ;
IDC_EDIT_ENC1, m_lEncl) ;
IDC_EDIT_ENC2, m_lEnc2);
IDC_EDIT_PSDX, m_lfPSDX);
IDC_EDIT_PSDY, m_lf PSDY) ;
IDC_EDIT_ZYGO, m_lfLa3erDist) ;

DDX_Text(pDX, IDC_EDIT_STEP SIZE, m_uiStepSize);
DDXJText (pDX, IDC_STATIC_B' AM, m_sBeam) /
DDX_Text(pDX, IDC_EDIT_C0MPTHR3AD_FREQ, m_uiCompThreadFreq);

IDC_POSX, m_lfPosX);
IDC_POSY, m_lfPosY)/
IL"._POSZ, m_lfPosZ);
IDC_POSX2, m_lfPosX2);
IDC_POSY2, m_lfPosY2);
IDC_POSZ2, m_lfPosZ2);
IDC_EDIT_TURBO_FREQ, m_uiTurboFreq);

DDX_Text(pDX, IDC_EDIT_EGTFS_FREQ, m_uiEGTFSFreq);
DDX_Text(pDX, IDC_EDIT_GUIDANCE_FREQ, m_uiGuidanceFreq);
DDX_Text(pDX, IDC_EDIT_VEL, m_lfVel);
DDX_Text(pDX, IDC_EDIT_ROBOT_CUR_Xj. m_lfRobotX) ;
DDX_Text(pDX, IDC_EDIT_ROBOT_CUR_Y, m_lfRobotY) ;
DDXJText(pDX, IDC_EDIT_ROBOT_CUR_Z, m_lfRobotZ);
DDX_Text(pDX, IDC_EDIT_ACC2, m_lfTurboTryAcc);

IDC_EDIT_VEL2, m_lfTurboTryVel);
IDC_DX, m_fDx);
IDC_DY, m_fDy);

DDX_Text(pDX, IDC_DZ, m_fDz);
//}}AFX DATA MAP

DDXJText(pDX,
DDX_Text(pDX,
DDX_Text(pDX,
DDX_Text(pDX,
DDX Tex.t(pDX,
DDXJText(pDX,

DDX_Text(pDX,
DDX_Text(pDX,
DDX_Text(pDX,
DDX_Text(pDX,
DDX_Text(pDX,
DDX_Text(pDX,
DDX_Text(pDX,

DDX_Text(pDX,
DDX_Text(pDX,
DDX_Text(pDX,

3EGIN MESSAGE_MAP(CTrackingClassDlg, CDialog)
/7{{AFX_MSG MAP(CTrackingClassDlg)
ON_WM_SYSCOMMAND()
ONJWMJ?AINT ()
ON_WM_QUERYDRAGICON{)
ON_BN CLICKED(IDC_BUTTON_INIT, OnButtonlnit)
ONjmTTIMERO
ON_BN_CLICKED(IDC_BUTTON_SUBSYSTEM, OnButtonSubsystem)
ON_BN__CLICKED (IDC_BUTTON_UP, OnButtonUp)
ON_BN_CLICKED(IDC_BUTTON_DOWN, OnButtonDovm)
ON_BN__CLICKED (IDC_BUTTON_LEFT, OnButtonLaft)
ON_BN_CLICKED(IDC_BUTTON RIGHT, OnButtonRight)
ON EN_CHANGE(IDC_EDIT STEE_SIZE, OnChangeEditStepSize)
ON~BN_CLICKED(IDC_BUTfON_ReINIT ZYGO, OnBUTTONRelNITZYGO)
ON_BN_CLICKED(IDC_RADIO_GPIB, OnRadioGpib)
ON_BN_CLICKED(IDC_RADIO_RS232, OnRadJ oRs232)
ON_BN_CLICKED(IDC_BUTTON TRACK, OnButtonTrack)
ON_BN__CLICKED (IDC_BUTTON^SET_BB, OnButtonSetBb)
ON_BN__CLICKED{IDC_BUTTON GO_BB, OnButtonGoBb)
OM_BN_CLICKED(IDC_RADIO_APR, OnRadioApr)

ONJBN_CLICKED (IDC__RADIO_CAT, OnRadioCat)
ON_BN_CLICK£D(IDC__BUTTON_STATIC SAMPLE, O n B u t t o n S t a t i c S a m p l e)
ON BN CLICKED (IDC_BUTTON_DYNAMIC_SAMPLE/ OnButtonDynamicSample)
ONlBN~CLICKED(IDCJBUTTON_OPEN_PORT, OnBut tonOpenPor t)
ON_BN~CLICKED (IDC__3UTTON_DRIVE_ROBOT, OnBut tonDr iveRobot)
ON_BlTcLICKED(IDC_CHECK_TX, OnCheckTx)
ON_BN_CLICKED (IDC__CHECK_TY, OnCheckTy)
ON BN_c:LICKED(IDC__CHECK_TZ, OnCheckTz)
O N I B N J ' . L I C K E D (IDC__BUTTON_RESET, OnBut tonRe3et)
ON_EN CHANGE(IDC_EDIT_ACC, OnChangeEditAcc)
ON_BN~C.MCKED (IDC__BUTTON_TRANSFORMATION, O n B u t t o n T r a n s f o r m a t i o n)
ON BN~CLICKED(IDC__BuTTON_PATH_GENERATION, O n B u t t o n P a t h G e n e r a t i o n)
ONJ W_CLICKED (IDC__BUTTON_EGTFS, OnBu t tonEg t f s)
ON_BN_CLICKED (IDC__BUTTO^_GUIDANCE, OnBut t onGuidance)
ON_BN_CLICKED(IDC_RADIO_TURBO_CORR, OnRadioTurboCorr)
ON_BN_CLICKED(IDC__RADIO_MOTOCOM_CORR, OnRadioMotocomCorr)
ON_BN_CLICKED(IDC BUTTON_TURBOTRY, O n B u t t o n T u r b o t r y)
ON_BN_CLICKED(IDC~RADIO_MOTOCOM_DRIVE, OnRadioMotocomDrive)
ON_BN CLICKED (IDC__RADIO_PATH DRIVE, OnRadioPa thDr ive)
ON_EN~CHANGE (TDC_DX, OnChangeDx)
ON_EN_CHANGE(IDC_DY, OnChangeDy)
ON_EN_CHANGE(IDC_DZ, OnChangeDz)
ON_CBN_SELCHANGE(IDC_COMBO_CS, OnSelchangeComboCs)
ON_BN_CLICKED (IDC__BUTTONJWRITE_FILE, O n B u t t o n W r i t e F i l e)
ON_EN_CHANGE(IDC_EDIT VEL, OnChangeEdi tVel)
ON_BN_CLICKED(IDC BUTTON_DRIVE_BEAM, OnButtonDriveBeam)
ON_BN_CLICKED (IDC~E"^TTON_CORRECT, O n B u t t o n C o r r e c t)
ON_BN_CLICKED(IDC_BUTTON_ZERO, OnButtonZero)
ON_BN__CLICKED (IDC__BUTTON_TRY, OnButtonTry)
ON_EN_CHANGE (IDC_EriV?_ACC2, OnChangeEditAcc2)
ON_BN_CLICKED {IDC_BUTTOM_POINT_SAMPLE, OnBut tonPoin tSample)
ON_BN^CLICKED (IDC__RADIO_MOTOCOM_CORR2, OnHadioMotocomCorr2)
ON_BN_C1.CKED(IDC__RADIO_TURBO C0RR2, OnRadioTurboCorr2)
//}}AFX_MSG_MAP

flND_MESSAGE_MAP ()

///////////////////////////////////7///////////////////7////////V///////////7
// CTrackingClassDlg message hand le r s

BOOL CTrackingClassDlg::OnInitDialog()

CDialog: :OnIni tDia log() ;

/ / Add "Abou t . . . " menu i tem t o system menu.

/ / IDM_ABOUTBOX must be i n the system command range .
ASSERT((IDM_ABOUTBOX & OxFFFO) == IDMJV^OUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)

CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);
i f (IstrAboutMenu.IsEmptyO)

pSysMenu->AppondMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);

\ }

1

/ / Set the icon for this dialog. The framework does this automatically
/ / when the application's main window i s not a dialog
Setlcon(m_hlcon, 1RVF.) / / / Set big icon
Setlcon(m_hlcon, FALSE); / / Set small icon

/ / TODO: Add extra ini t ial izat ion here
hlmageStart.LoadBitmap (IDB_START) ;
hlinageStop. LoadBitmap (IDB_STOP);
m_ctrlTrack.SetBitmap(hImageStart);

m_ctrlCheckDisplay.SetCheck(l);

m_bTrack = false;
m_bInitFlag = false;
m_bSubSystemRun = false;
m_bDataThread = false;
m_bFileFlag = false;
ni_bSample = false;

ni_bDynamicSample =» false;

m_bEncoderThread = false;
m_bP3dThread = false;
m_bZygoThread = false;

m_bGPIBorRS232 = false;
m_ctrlRadioGPIB.SetCheck(0);
m_ctrlRadioRS232.SetCheck(l);

m_r:trlRadioAPR. SetCheck (1) ;
m_ctr.XRadioCAT.SetCheck (0) ;
m_bAPRorCAT = true;

m_lfLaserDist = 0.0;
m_lfPSDX =0.0;
ia_lfPSDY = 0.0;
m_lEncl = 0;
m_lEnc2 = 0 ;

m_bUpdateTurbo = false;
m_bTurboTryThread = false;
m_bDriveRobot = false;
m_bDriveRobotWrite = false;

m_bTx = false;
m_bTy = false;
m_bTz = false;

bReplace = false;
char temp[256] ;
char buffer[128];

GetPrivateProfileString("No", "Total Pt Num", NullString, temp, (int)sizeof(temp), "RefPtLI

LocationPointer < no ; LocationPointer++)

int no = atoi(temp);
UpdateData(false);
for (LocationPointer=0

.ini")

L");

sprintf(buffer, "RofPoint%d", LocationPointer+1);
GetPrivateProfileString(buffer, "Name", NullString, temp, (int)sizeof(temp), "RefPtLISM

PtRelToI-ISMCartesian[LocationPointer] .name = temp;
GetPrivateProfileString(buffer, "X", NullString, temp, (int)sizeof(temp), "RefPtLISM.in

PtRelToLISMCartesian[LocationPointer].x = atof(temp);
GetPrivateProfileString(buffer, "Y", NullString, temp, (int)sizeof(temp), "RefPtLISM.in

PtRelToLISMCartesian[LocationPointer].y = atof(temp);
GetPrivateProfileString(buffer, "Z", NullString, temp

PtRelToLISMCartesian[LocationPointer].z = atof(temp).

GetPrivateProfileString(buffer, "Z", NullString, temp, (int)sizeof(temp), "RefPtLISM.in

m_bGuide = false;
m_bEGTFS - false;
m_bEGTFSTurbo = false;
m_bPathDrive = false;
m_bMotocomDrive « false;
m_bTurboCorrThread = false;
for (int j=0; j<3;

for (int k=-0; k<3; k++)

if (j==k)

TransMat-six [j][k] = 1.0;
InvTMatrix[j][k] = 1.0;

else

TransMatrix[jl[k] = 0.0;
InvTMatrix[j][k] = 0.0;

LocationPointer = 0;
m_ctrlComboCS.Addstring("BASE");

m_ctrlComboCS.SetCurSel(0);
CS[0] = "BASE";
CS_Counter = 1 ;

CString empty;
GetPrivateProfileStringC'CSName", "Name", NullString, temp, (int)sizeof(temp), "TransMatrix

llSM.ini");
empty = temp;
if (empty !="")
{

CS[1] = temp;
m_ctrlComboCS.AddString("ROBOT");
//CS_Counter ~ 2;

MyRobot = new CRobotController(MRC);
CurrPt = 0;
CurrLine = 0;
RobotX = 0.0;
RobotY = 0.0;
RobotZ = 0.0;
RobotMovXEGTFSTurbo = 0.0;
RobotMovYEGTFSTurbo = 0.0;
RobotMovZEGTFSTurbo = 0.0;
aveVel = 0.0;

return TRUE; // return TRUE unless you set the focus to a control

[roid CTrackingClassDlg: :OnSysCommand(UINT nID, LPARAM lParam)

?f ((nID & OxFFFO) == IDM ABOUTBOX)

CAboutDlg dlgAbout;
dlgAbout.DoModal();

)
else
{

)
CDialog::OnSysCommand(nID, lParam);

\l If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

raid CTrackingClassDlg::OnPaint()

if (IsIcotiicO)
{

CPaintDC dc(this); // device context for painting

SendMessage(WMJECONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle
int cxlcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(Srect);
int x = (rect.Width() - cxlcon + 1) / 2;
int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon
dc.Draw!con(x, y, m_hlcon);

else

CDialog::OnPaint();

/ / The system call3 this to obtain the cursor to display while the user drags
/ / the minimized window.
HCURSOR CTrackingClassDlg::OnQueryDragIcon()

return (HCURSOR) m_hlcon;

void CTrackingClassDlg::OnButtonlnit()

X
\:

// TODO: Add your control notification handler code here
CString StatBuf;

m_sStatus = "Creating Log File...";
UpdateData(false);
if ((fp = fopen("tracking.txt", "w"))
{

puts("cannot open file");
exit(l);

NULL)

}
rewind(fp); / / set the cursor to the beginning of f i le
fprintf(fp, " PSD X PSD Y LASER DIST MICurrAngle M2CurrAngle \n");
m_sStatus += "Created\n";
m_bFileFlag = true;
UpdateData(false);

m_sStatus = "Initialising all sub-systems...An";
UpdateData(false);

//Initialise Motor Controller
m_sStatus += "Initialising Motor Controller...\n";
UpdateData(false);
Encoder.InitialiseMotor(SStatBuf, pACRAddress, pACRAddressZ);
m_sStatus += StatBuf;
UpdateData(false);

//Initialise ZYGO Laser Interferometer
m_sStatus += "Communicating with Zygo Laser...\n";
UpdateData(false);
Zygo.InitialiseLaser(m_bGPIBorRS232, &StatBuf);
m_sStatus += StatBuf;
UpdateData(false);

//Initialise DT303
m_sStatU3 += "Initialising DT303...\n";
UpdateData(false);
Psd.InitialisePSDSv(&StatBuf);
m_sStstus += StatBuf;
UpdateData(false);

//Start Display Timer
m_sStatus += "Starting Timer for Display.
UpdateData(false);
SetTimer(OxlO, 1000, NULL);

An*

An";
//ReadMotorStatusThread. Start thread
m_sStatus +>-= "Starting ReadMororStatusThread.
UpdateData(false);

mJbBncoderThread = true;
Encoder.StartThread();

m_tOataThread = true;
THREADPARAMS* pDataThread = new THREADPARAMS;
pDataThread->lParam = (LPARAM) this;
gjComputationThread = AfxBeginThread(ComputationThread, pDataThread, THREAD_PRIORITY_NORMA

NULL);
//SetTimer(0xll, 10, NULL);

m_bInitFlag - true;

m_ctrlUp. Enabl eWindow (1) ;
m_ctrlDown. EnableWi ndow (1) ;
m_ctrlLeft.EnableWindow(1);
m_ctrlRight.EnableWindow(1);
m_ctrlIncStepSize.EnableWindow(1);
m_ctrlDecStepSize. EnableX'findow (1);
m_ctrlSubSysteia.EnableXVindow(l) ;
m_ctrlStepSize.EnableWindow(1);
m_ctrllnit.EnableWindow(0) ;
m_sStatus += "IDLE";

UpdateData(false);

i4

/oid CTrackingClassDlg::OnTimer(UINT nIDEvent)

// TODO: Add your message handler code here and/or call default

\

//double PSDx, PSDy, LaserDiat;
//long pPosParameter[2];
//CMotor Ml, M2;
//double CosThetal, CosTheta2, SinThetal, SinTheta2;
//SYSTBMTIME s t ;
//double AngleDiff, CorrDistl, CorrDist2, MIDiff, M2Diff;
//char cmdline[256];
//long pReturn[3];
//float XYZ[3] ;

if (nIDEvent 0x10)

m_uiZYGOFreq
m_uiPSDFreq =
m uiENCFreq =

= Zygo.GetFreqO ;
Psd.GetFreqO ;
Encoder.GetFreq()

/*A8 BIN PEEK_L0NG(0x00, 1, pACRAddress2[0]+l, pReturn, 0)
" ~" ~ '" "" " pACRAddress2[0]+2, pReturn+1, 0)

pACRAddre332[0]+3, pReturn+2, 0)
pReturn[0]+l, XYZ, 0);
pReturn[l]+l, XYZ+1, 0);
pReturn[2]+l, XYZ+2, 0);

1,
1,
1,
1,
1,

A8_BIN_PEEK_L0NG(0x00
A8_BIN_PEEK_LCMJG (0x00
A8_BIN_PEEK_IEEE(0x01,
A8_BIN_PEEK_IEEE(0x01,
A8_BIN_PEEK_IEEE(0x01,
m_lfPosX2 = XYZ[0];
m_lfPosY2 = XYZ[1];
m_lfPosZ2 = XYZ[2];*/
UpdateData(fa l se) ;
m_uiTurboFreq = 0;
m_uiCompThreade'req = 0 ;
m_uiEGTFSFreq = 0 ;
m_uiGuidanceFreq = 0 ;

}
CDialog: rOnTimer(nlDEvent) ;

p i d CTrackingClassDlg: :0nButtonSub3ystem{)

/ / TODO: Add your c o n t r o l n o t i f i c a t i o n hand le r code here
if (!m_bSubSysteinRun)
{

m_b5ubSystemRun = t r u e ;
ra_ctrlSubSystein.SetWindowText ("STOP SUBSYSTEMS") ;

m_ctrlTrack.EnableWindow(1);

P s d . s t a r t T h r e a d () ;
m_bPsdThread = t r u e ;

Zygo.S ta r tThread() ;
m_bZygoThread = t r u e ;

if
{

(!m_bEncoderThread)

Encoder.StartThread();
m bEncoderThread = true;

/•AcroSendString("DAO(9)
AcroSendString("DAI (9) =
AcroSendString("DA2 (9) =
AcroSendString("DAO(8) =
AcroSendString("DAI(8) =
AcroSendString("DA2(8) =
AcroSendString("DAO(7) =
AcroSendString("DAI (7) =
AcroSendString("DA2(7) =
AcroSendString("DAO (6) =
AcroSendString("DAI'6) =
AcroSendString("DA2(6) =
AcrcSendString("DAO(5) =
AcroSendString("DAI(5) =
AcroSendString("DA2(5) =
AcroSendString("DAO (4) =
AcroSendString("DAI(4) =
AcroSendString("DA2(4) =
AcroSendString("DAO(3) =
AcroSendString{"DAI(3) =
AcroSendString("DA2(3) =
AcroSendString("DAO (2) =
AcroSendString("DAI(2) =
AcroSendString("DA2(2) =

= 0'
0 " ,
0 " ,
0 " ,
0 " ,
0 " ,
0 " ,
0 " ,
01

01

0"
0 '
0 '

/
/
/

0 " ,
0 " ,
0 " ,
0 " ,
0 " ,
0 " ,
0 " ,
0 " ,
0 " ,
0 " ,
0 ' /

' , 0) ;
0) ;
0) ;
0) ;
0) ;
0) ;
0) ;
0) ;
0) ;
0) ;
0) ;
0) ;
0) ;
0) ;
C) ;
0) ;
0) ;
0) ;
0) ;
0) ;
0) ;
0) ;
0) ;
0) ;

(!•(.

,,-V

AcroSendString("DAO(l) =
AcroSendString("DAl(l) =
AcroSendString("DA2(l) =
AcroSendString ("DAO (0) -
AcroSendString("DAl(0) =
Acr oS ends t ring ('"DA2 (0) =
AcroSendString("LV4 = 0"
/*AcroSendString("DA3(0)
AcroSendStrir.g(''DA3(l) =
AcroSendString("DA3(2) =
AcroSendString("DA4(0) =
Acro3endString("DA4(1) =
AcroSendString("DA4(2) =
Acro3endString("DA5(0) =
AcroSendString("DA5(1) =
AcroSendString("DA5(2) =

0"
0"
0"
0"
0"
0",

0);
0);
0);
0);
0);
0);

0);*/
= (DA0(0)
(DA1(O) -
(DA2(0) -
(DAO(O) -
(DA1(O) -
(DA2(0) -
DA3(0) *
DA3(1) *
DA3(2) *

- DAO(l))
DAl(l)) /
DA2(1)
2 *
2 *
2 *
0.03
0.03
0.03

DAO{1) •
DA1(1) •
DA2(1) •
+ 0.5 *
+ 0.5 *
+ 0.5 *

0.03
03
03
DAO (2))
DAI (2))
DA2(2))

DA4(0) *
DA4(1) *
DA4(2) *

(0.03
(0.03
(0
03
03

03
*

0.03

0,
0
0

0.03
0.03
0.03

03)
03)
03)
+ DAO(O)
+ DAl(0)
+ DA2(0)

else
{

m_bSubSystemRun = false;
m_ctrlSubSystem.SetWindowText("START SUBSYSTEMS");
//fclose(fp);
//ci_bFileFlag = false;

Psd.StopThread();
m_bPsdThread = false;

Zygo.stopThread();
m_bZygoTh.read = false;

Encoder.StopThread();
m bEncoderThread = false;

[roid CTrackingClassDlg:: OnButtonUp ()

// TODO: Add your control notification handler code here
m_sBeam = "UP";
UpdateDataifalse);
Motorl.DriveAngle = 0.0;
Motor2.DriveAngle = double(m_uiStepSize) / 80000.0;
DriveMotor(Motorl, Motor2);

(roid CTrackingClassDlg: :OnButtonDown()

/ / TODO: Add your control not i f ica t ion handler code here
m_sBeam = "DOWN";
UpdateData(false);
Motorl.DriveAngle = 0.0;
Motor2.DriveAngle = -1 * double(m_uiStepSize) / 80000.0;
DriveMotor(Motorl, Motor2);

«>id CTrackingClassDlg::OnButtonLeft()

// TODO: Add your control notification handler code here
m_sBeam = "LEFT";
UpdateData(false);
Motorl.DriveAngle = -1 * double(m_uiStepSize) / 614400.0;
Motor2.DriveAngle = 0.0;
DriveMotor(Motorl, Motor2);

roid CTrackingClassDlg::OnButtonRight()

// TODO: Add your control notification handler code here
m_sBeam = "RIGHT";
UpdateData(false);
Motorl.DriveAngle = double(m_uiStepSise) / 614400.0;
L'?tor2. DriveAngle = 0.0;
DriveMotor(Motorl, Motor2);

'oid CTrackingClasaDlg::DriveMotor(CMotor MotorDatal, CMotor MotorData2)

char andline [256];

//if (fabs(MotorDatal.. DriveAngle) < 0.5)
//{

MotorData2.DriveAngle = -1 * MotorData2.DriveAngle;
//Increment mode used in jogging
sprintf(cmdline, "JOG INC X%lf Y%lf", MotorDatal.DriveAngle, MotorData2.DriveAngle);
AcroSendstring(andline, 0);
return;

//)
//else
//{
// MessageBeep(0);
// Af xMessageBox("DANGER!! MOTOR 1 trajectory is out of range", MB_ICONEXCLAMATION);

foid CTrackingClassDlg: :OnChangeEditStepSize()

// TODO: If this is a RICHEDIT control, the control will not
// send this notification unless you override the CDialog::OnInitDialog()
// function and call CRichEditCtrl().SetEventMask()
// with the ENM_CHANGE flag ORed into the mask.

// TODO: Add your control notification handler code here
UpdateData(true);

[oid CTrackingClassDlg:: OnBUTTONRelNITZYGO ()

// TODO: Add your control notification handler code here
CString StatBuf;
Zygo.InitialiseLaser(m_bGPIBorRS232, SStatBuf);
m_sStatus = StatBuf;
UpdateData(false);

pINT CTrackingClassDlg::ComputationThread(LPVOID pParam)

THREADPARAMS* pThreadParams = (THREADPARAMS*) pParam;
CTrackingClassDlg* pWnd = (CTrackingClassDlg*) pThreadParams->lParam;
delete pThreadParams;
double PSDx, PSDy, LaserDist;
double SuraPSDx, SumPSDy, SumlaserDist, SumAnglel, SumAngle2, SumOffsetX, SumOffsetY;
double AvePSDx, AvePSDy, AveLaserDist, AveAnglel, AveAngle2, AveOffsetX, AveOffsetY;
//long pReturn[3];
//float XYZ[3];

double CosThetal, CosTheta2, SinThetal, SinTheta2, TanThetal, TanTheta2;
SYSTEMTIME St;
//double AngleDiff, CorrDistl, CorrDist2, MIDiff, M2Diff;
//char cmdline[256];
int NoOfPoints;
double PreviousX, PreviousY, PreviousZ;
double VelX, VelY, VelZ;
double PrevVX, PrevVY, PrevVZ;
double AceX, AccY, AccZ;
long PreviousTime;
double TimeDiff;
double OffsetX, OffsetY, L;

NoOfPoints = 0;
SumPSDx = 0.0;
SumPSDy = 0.0;
SumOffsetX = 0 . 0 ;
SumOffsetY = 0.0;
SumLaserDis'c = 0.0;
SuaAnglel = 0.0;
SumAngle2 = 0.0;
PreviousX = 0.0;
PreviousY = 0.0;
PreviousZ = 0.0;
PreviousTime = 0;
PrevVX = 0.0;
PrevVY = 0.0;
PrevVZ = 0.0;

while- (pWnd->m_bDataThread)

10

pWnd->Psd.GetSample{£PSDx, SPSDy);
pWnd->Encoder. Gets ample(&pWnd->Ml, 6pWnd->M2);
LaserDist = pWhd->Zygo.GetSaniple() ;
pWnd->m_lfLaserDist = LaserDist;
pWnd->m_lfPSDX = PSDx;
pWnd->m_lfPSDY - PSDy;
pWhd->m_lEncl = pWhd->Ml. enc;
pWnd->m_lEnc2 = pWnd->M2.enc;

/*A8_BIN_PEEK_LONG(0xO0,
A8_BIN_PEEK_LONG(0x00, 1
A8J3IN_PEEK_LONG(0x00,
A8_BIN_PEEK_IEEE(0x01,
A8_BIN_PEEK_IEEE(0x01,
A8_BTN_PEEK_IEEE(0x01,
pWnd->m_lfPosX = XYZ[O];
pWnd->m_lfPosY = XYZ[1]/
pWnd->m_lfPosZ = XYZ[2];

1, pACRAddre3s2[0]+l, pReturn, 0)
pACRAddress2[0]+2, pReturn+1, 0)
pACRAddress2 [0]-f3, pReturn+2, 0)

1, pReturn[O]+l, XYZ, 0);
1, pReturn[l]+l, XYZ+1, 0);
1, pRetuxn[2]+l, XYZ+2, 0);

CosThetal = cos(pWnd->Ml.CurrentAngle * 2 * pi);
SinThetal = sin(pWnd->Ml.CurrentAngle * 2 * pi);
CosTheta2 = cos(pWnd->M2.CurrentAngle * 4 * pi);
SinTheta2 = sin(pVtad->M2.CurrentAngle * 4 * pi);
TanThetal = SinThetal/CosThetal;
TanTheta2 = SinTheta2/CosTheta2;
OffsetX = -0.5 * (PSDx * CosThetal + PSDy * SinThetal);
OffsetY = 0.5 * (PSDx * -1 * SinThetal + PSDy * CosThetal);
L = LaserDist + OffsetX * TsnThetal - OffsetY * TanTheta2;

pWnd->m_lfPosX = -1.0 * L * CosTheta2 * SinThetal - OffsetX / CosThetal;//-I.0 * Laser
list * CosTheta2 * SinThetal;

pWnd->m_lfPosY = L * CosTheta2 * CosThetal;//LaserDist * CosTheta2 * CosThetal;
pWnd->m_lfPosZ = L * SinTheta2 + OffsetY / CosTheta2; //LaserDist * SinTheta2;

::GetSystemTime(&st);
pWnd->m_sTime.Format("%d", (st.wMinute * 60000 + st.wSecond * 1000 + st.wMilliseconds))

TimeDiff = atof(pWnd->m_sTime) - PreviousTime; //millisecond
PreviousTime = atol(pWnd->m_sTime);
VelX = (pWnd->m_lfPosX - PreviousX) / TimeDiff; //m/s
VelY = (pWnd->m_lfPosY - PreviousY) / TimeDiff;
VelZ " " . . .
AccX

AccZ

(pWnd->m_lfPosZ - PreviousZ) / TimeDiff;
(VelX - PrevVX) / TimeDiff;
(VelY - PreWY) / TimeDiff;
(VelZ - PrevVZ) / TimeDiff;

PreviousX = pWnd->m_lfPosX;
PreviousY = pWhd->m_lfPosY;
PreviousZ = pWnd->m_lfPosZ;
PrevVX = VelX;
PrevVY = VelY;
PrevVZ = VelZ;

if (pWnd">m_bDynamicSample)

::fprintf (pWnd->fp, "%s \t%lf\t %lf\t %lf\t%lf\t %lf\t %lf\t %lf\t %lf\t %lf\t\n",
pWnd->m_sTime, PSDx, PSDy, LaserDist, VelX, VelY, VelZ, AccX, AccY, Ace

if (pWhd->m_bSample)

if (NoOfPoints < 100)
{

SumPSDx += PSDx;
SumPSDy += PSDy;
SumOffsetX += OffsetX;
SumOffsetY += OffsetY;
SumLaserDist += LaserDist;
SumAnglel += pVftid->Ml.CurrentAngle*360.0;
SumAngle2 += pWnd->M2.CurrentAngle*720.0;
NoOfPoints++;

}
else
{

AvePSDx = SumPSDx / (NoOfPoints);
AvePSDy = SumPSDy / (NoOfPoints);
AveLaaerDist = SumLaserDist/ (NoCfPoints);
AveAnglel = SumAnglel / (NoOfPoints);
AveAngle2 «= SumAngle2 / (NoOfPoints);

11

AveOffsetX = SumOffsetX / (NoOfPoints);
AveOffsetY = SumOffsetY / (NoOfPoints) ;
: :GetSy3temTime(&3t) ;
pWnd->m_sTime.Format("%d", (st.wMinute * 60000 + st.wSecond * 1000 + st.wMiilis

:onds));
::fprintf(pWnd->fp, "%d \t%s \t%.31f\t %.31f\t %.31f\t %.31f\t %.31f\t %.31f\t

.31f\t \n\
NoOfPoints, pWnd->nt_sTime, AvePSDx, AvePSDy, AveOffsetX, AveOffsetY, Av

CsserDist, AveAnglel, AveAngle2);
NoOfPoints = 0;
SumPSDx = 0.0;
SumPSDy = 0.0;
SumlaserDist = 0.0;
SumAnglel = 0.0;
SumAngle2 » 0.0;
SumOffsetX = 0.0;
SumOffsetY = 0.0;
pWnd->OnButtonPointSainple () ;

if (pWnd->ia_ctrlComboCS. GetCurSel ())

PtRelToCSJO].x

PtRelToCS[0]

PtRelToCS[0]

}
else
{

PtRelToCS[0]
PtRelToCS[0]
PtRelToCS[0]

Tran3Matrix[0][0]
+ TransMatrix[0][1]
+ Tran3Matrix[0][2]
+ TransMatrix[0][3]

y = TransMatrix[l][0]
+ TransMatrix[l][1]
+ TransMatrixtl] [2]
+ TransMatrixtl][3]

z = TransMatrix[2][0]
+ TransMatrixt2][1]
+ TransMatrix[2][2]
+ TransMatrix[2][3]

x = pWnd->m_lfPosX;
y = pWnd->m_lfPosY;
z == pWnd->m_lfPosZ;

* pWnd->m_lfPosX
* pWnd->m_lfPosY
* pWhd->m_lfPosZ
;
* pWnd->m_lfPosX
* pWhd->m_lfPosY
* pWnd->m_.lfPosZ
;
* pWnd->m_lfPosX
* pWnd->m_lfPosY
* pWnd->m_lfPosZ

pWnd->m_lfPosX2 = PtRelToCS[0].x;
pWnd->m__lfPosY2 = PtRelToCS [0] .y;
pWnd->m_lfPosZ2 = PtRelToCS[0].z;

pWnd->m_uiCompThreadFreq++;
Sleep(50);

return 0;

foid CTrackingClassDlg::OnRadioGpib{)

// TODO: Add your control notification handler code here
m_ctrlRadioGPIB.SetCheck(l);
m._ctrlRadioRS232.SetCheck(0) ;
m bGPIBorRS232 = true;

pid CTrackingClassDlg::0nRadioRs232{)

// TODO: Add your control notification handler code here
m_ctrlRadioGPIB.SetCheck(0);
m_ctrlRadioRS232.SetCheck(l);
m bGPIBorRS232 = false;

pid CTrackingClassDlg::OnOK()

// TODO: Add extra validation here
if (m_bDataThread)

m_bDataThread = false;
CloseHandle(g_pComputationThread->m_hThread);

if (ia_bFileFlag)
fclose(fp);

12
<• ;&

if (m_bPsdThread)
Psd.StopThread();

if (m_bZygoThread)
Zygo.StopThread();

//MyRobot->UpdateStatus () ;
/ / if (MyRobot->IsServoOn())
/ / MyRobot->SetServo(OFF);
CDialog::OnOK();

aid CTrackingClassDlg:: OnButtonTrack ()

// TODO: Add your control notification handler code here
if (!m_bTrack)
{

m_sStatus = "TRACKING...";
m_ctrlTrack.SetBitmap (hlmageStop);
m_bTrack = t rue ;
AcroSendString("RUN", 0) ;

else
{

m_sStatus *= "POLLING...";
m_ctrlTrack.SetBitmap(hlmageStart);
m_bTrack = false;
AcroSendString("JOG OFF X Y", 0);
AcroSendString("HALT", 0);

|cid CTrackingClassDlg::OnButtonSetBb ()

// TODO: Add your control notification handler code here
AcroSendString{"res x", 0);
AcroSendString("res y", 0);
if (m_bAPRorCAT)

AcroSendString("P6160 = 1373", 0); //for APR on poles
//AcroSendString("P6160 = 1186", 0); // for APR on Leica Adatper

else
AcroSendString("P6160 = 1008", 0);

m_ctrlGoBB. EnableWindow (1) ;

pid CTrackingClassDlg::OnButtonGoBb()

// TODO: Add your control notification handler code here
AcroSendString("JOG VEL X0.1 Y0.1", 0);
AcroSendString("JOG ABS XO Y0",0);

foid CTrackingClassDlg::OnRadioApr()

// TODO: Add your control notification handler code here
m_ctrlRadioAPR.SetCheck(1);
m_ctrlRadioCAT.SetCheck(0);
m bAPRorCAT = true;

[roid CTrackingClassDlg: :OnRadioCat ()

// TODO: Add your control notification handler code here
m_ctrlRadioAPR.SetCheck(0);
m_ctrlRadioCAT.SetCheck(1);
m bAPRorCAT = false;

pid CTrackingClassDlg::OnButtonStaticSample()

/ / TODO: Add your control notification handler code here

CStaticPt StaticPt;
char buffer[100];
char temp[100];

if (StaticPt.DoModalO == IDOK)

if (bReplace)

PtRelToLISMCartesian[CurrLocationPointer].x. = m_lfPosX;

13

i PtRelToLISMCartesian[CurrLocationPointer].y = mJLfPosY;
• PtRelToLISMCartesian[CurrLocationPointer].z = m_lfPosZ;

sprintf(buffer, "RefPoint%d"/ CurrLocationPointer+1);
WritePrivateProfileString(buffer, "Name", PtRelToLISMCartesian[CurrLocationPointer]

name, "RefPtLISM.ini");
sprintf (temp, "%lf", PtRelToLISMCartesian[CurrLocatic- Pointei;' .x) ;
WritePrivateProfileString(buffer, "X", temp, "RefPtLISM.ini");
sprintf(temp, "%lf", PtRelToLISMCartesian[CurrLocationPointer].y);
WritePrivateProfileString(buffer, "Y", temp, "RefPtLISM.ini");
aprintf(temp, "%lf", PtRelToLISMCartesian[CurrLocationPointer].z);
WritePrivateProfileString(buffer, "Z", temp, "RefPtLISM.ini");
bReplace = false;

else

EcRelToLISMCartesian [LocationPointer] .x = m._lfPosX;
PtRelToLISMCartesian[LocationPointer].y = mJLfPosY;
PtRelToLISMCartesian[LocationPointer].2 = mJLfPosZ;

sprintf(buffer, "%d", LocationPointer+l);
WritePrivateProfileString("No", "Total pt Num", buffer, "RefPtLISM.ini");
sprintf(buffer, "RefPoint%d", LocationPointer+l);
WritePrivateProfileString(buffer, "Name", PtRelToLISMCartesian[LocationPointer].nam

|, "RefPtLISM.ini") ;
sprintf(temp, "%lf", PtRelToLISMCartesian[LocationPointer].x);
WritePrivateProfileString(buffer, "X", temp, "RefPtLISM.ini");
sprintf(temp, "%lf", PtRelToLISMCartesian[LocationPointer].y);
WritePrivateProfileString(buffer, "Y", temp, "RefPtLISM.ini");
sprintf(temp, "%lf", PtRelToLISMCartesian[LocationPointer].z);
WritePrivateProfileString(buffer, "Z", temp, "RefPtLISM.ini");
LocationPointer++;

|oid CTrackingClassDlg::OnButtonDynamicSaraple()

/ / TODO: Add your control no t i f i ca t ion handler code here
if (!m__bDynamicSample)

)
else

m_bDynamicSample = true;
m_ctrlDynamicSample.SetWindowText("STOP SAMPLE");

mJbDynamicSample = false;
m_ctrlDynamicSample.SetWindowText("DYNAMIC SAMPLE");

pid CTrackingClassDlg::OnButtonOpenPort()

// TODO: Add your control notification handler code here
if(!serial.IsOpened ())

if (serial.Open(2,19200))

m_ctrlOpenPort.SetWindowText("CLOSS PORT");
m_sstatus = "Port Opened";

else

}
else
{

m_sstatus = "Port Open FAILED

se r ia l .Close() ;
m_sStatus = "Port Closed";
m_ctrlOpenPort.SetWindowText("OPEN PORT");

UpdateData(false);

JINT CTrackingClassDlg: :TurboTryThread(LPVOID pParam)

THREADPARAMS* pThreadParams = (THREADPARAMS*) pParam;
CTrackingClassDlg* pTurbo = (CTrackingClassDlg*) pThreadParams->lParam;
delete pThreadParams;

14

// ** Set the number of charaters to send and receive
const int nNumSendChar = 1 2 ;
const int nNumRecvChar = 0 ;

// ** For sending array of short data - 2 Bytes x 6 = 12 Bytes ** //
char chSendData[nNumSendChar];
// ** Special sequence of characters to send to tell Turbo App to stop
const char chSendEnd[12] = {127,-128,0,0,0,0,0,0,0,0,127,-128 };
// ** For storing the movement data
short nMoveData[6];
short Tx, Ty, Tz;
// ** For sending one char * //
//char chSendData[nNumSendChar] = {'A'};

// ** For receiving data ** //
char chRecvData[nNumRecvChar+1];

// For display of received values
CString szRecvData;
pTurbo->m_lfTurboTryVel = 0.0;

while (pTurbo->m_bTurboTryThread)
{

//while (!pTurbo->m_bUpdateTurbo)
// ;
pTurbo->m_lfTurboTryVel += pTurbo->jn_lfTurboTryAcc * 0.015;
if (pTurbo->m_lfTurboTryVel > 10.0)

pTurbo->m_lfTurboTryVel = 10.0;
double m_dDist = pTurbo->m_lfTurboTryVel * 1000 * 0.015;

// ** Calculate which axis to move
//Tx = short(-l*pTurbo->m_bTx * m_dDist);
//Ty = short(pTurbo->m_bTy * m__dDist);
//Tz = short (-l*pTurbo->m_bTz * m_dDist);

Tx = short(pTurbo->m_bTy * m_dDist);
Ty = short(-l*pTurbo->m_bTx * m_dDist);
Tz = short(pTurbo->m_bTz * m_dDist);

// ** Get current Movement data and r.opy to Send Buffer
nMoveData[0] » Tx; //pTurbo->m_nTx;
nMoveData[1] = Ty; //pTurbo->m_nTy;

Tz; //pTurbo->m_nTz;
(short) 0.0; //pTurbo->m_nRx;
(short) 0.0; //pTurbo->m_nRy;
(short) 0.0; //pTurbo->m_nRz;

nMoveData[2]
nMoveData[3]
nMoveData[4]
nMoveData[5]
memcpy (chS endData, nMoveData.. nNumS endChar) ;

II ** Send Data
pTurbo->serial.SendData(chSendData, nNumSendChar);
//pTurbo->m_bUpdateTurbo = false;

II ** Wait for a confirmation character ** //
while (pTurbo->serial.ReadDataWaiting() < 1)

;
pTurbo->serial.ReadData(chRecvData, 1);

// ** If receiving data from MRC ** //
if(nNumRecvChar > C)
{

// ** Wait for data from MRC to arrive
while (pTurbo->serial.,ReadDataWaiting() < nNumRecvChar)
;
// ** Read the received data
pTurbo->serial.ReadData(chRecvData, nNumRecvChar);

// ** Mem copy the data to required data type
// ** For receiving XYZ Data - 3 x long (4 bytes) =
//memcpy(pTurbo->m_nXYZData, chRecvData, 12);
// ** For receiving XYZ Data - 3 x short (2 bytes) =
//memcpy(pTurbo->m_nRotData, (chRecvData + 12), 6);

)
// ** Increment the Frequency counter
pTurbo->m_uiTurboFreq++;

// ** update the current pitch of the tool
//pTurbo->m_dRotX += (nMoveData[3]/10O.0);
//pTurbo->m_bTurboTryThread = false;

12 Bytes

- 6 Bytes

15

}
return 0;

aid CTrackingvlassDlg:: OnButtonDriveRobot ()

// TODO: Add your control notification, handler code here
char buffer[256];t
if (m_bPathDrive)

if
{

}
else
{

(!m_bDriveRobot)

m_bDriveRobot = true;
m_ctrlDriveRobot.SetWj.ndowText("STOF ROBOP");
UpdateData(false);

AfxMessageBox("Make sure the other tracker start recording", MB_OK) ;

THREADPARAMS* pThreadParemsDriveRobot = new THftEADPARAMS;
pThreadParamaDriveRobot->lParam = (LPARAM) this;
gjpDriveRobotThread => AfxBeginThread(DriveRobotThread, pThreadParamsDriveRobot,

THREAD_PRIORITY_NORMAL, NULL);

m_bDriveRobot = false;
m_ctrlDriveRobot.SetWindowText("DRIVE ROBOT");
CloseHandle(g_pDriveRobotThread->m_hThread);

i f (m_bMotocoipDrive)

UpdateData(true);
double dPos[12] = {0,0,0,0,0,180,0,0,0,0,0,0};

//Send points to robot controller
//Send Move to Robot
CString szMovType = "MOVL";
CString szSpsedType = "V";
double dMovSpeed = 10;
CString szFrame = "UF5";
WORD wFonn = 0;
int nTool = 1;

dPos[0] = m_fDx;
dPos[1] = m_fDy;
dPos[2] = m_fDz;
MyRobot->SetMode(PLAY);
MyRobot->SetServo(ON);
/*MyRobot->GetCurrentPos(1, fipRobotCurrentPos);
m_lfRobotX = pRobotCurrentPos.X;
m_lfRobotY = pRobotCurrentPos.Y;
m_lfRobotZ = pRobotCurrentPos.Z;
UpdateData(false);*/
MyRobot->Move(szMovType, azSpetedType, dMovSpeed, szFrame, wForm, nToolf dPos);
MyRobot->UpdateStatus();
while (MyRobot->IsRobotOperating())

MyRobot->UpdateStatus();
MyRobot->GetCurrentPos(l, fipRobotCurrentPos);
m_lfRobotX = pRobotCurrentPos.X;
m_lfRobotY = pRobotCurrentPos.Y;
m_lfRobotZ = pRobotCurrentPos.Z;
if (m_bDriveRobotWrite)

sprintf(buffer, "%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t\n", m_lfRobotX, m IfRob
>tY, m_l£RobotZ, PtRelToCS[0].x, PtRelToCS[0].y, PtRelToCS[0].z);

fprintf(FileRobotDr, buffer);

UpdateData(false);

/oid CTrackingClassDlg::OnCheckTx()

// TODO: Add your control notification handler code here
if (!m_bTx)

m bTx a t r u e ;

16

else
m bTx = false/

sid CTrackingClassDlg: :OnCheckTy ()

/ / TODO: Add your control notif ication handler code here
i if (!m_bTy)

m_bTy = t rue;
else

m_bTy = false;

Did CTrackingClassDlg: :OnCheckTz ()

/ / TODO: Add your control notif ication handler code here
if (!m_bTz)

m_bTz = t rue;
else

m_bTz = false;

aid CTrackingClassDlg: :OnButtonReset ()

// TODO: Add your control notification handler code here
m_lfTurboTryVel = 0-0;
m_lfTurboTryAcc = 0.0;

?id CTrackingClassDlg::OnChangeEditAcc ()

// TODO: If this is a RICHEDIT control, the control will not
// send this notification unless you override the CDialog::OnInitDialog()
// function and call CRichEditCtrl().SetEventMaskO
// with the ENM_CHANGE flag ORed into the mask.

// TODO: Add your control notification handler code here
UpdateData(true);

|pid CTrackingClassDlg: :OnButtonTxansformation()

// TODO: Add your control notification handler code here
CTransformation Transformation;
char buffer[100];
if (Transformation.DoModal () == IDOK)
{

RefRelToLISMCartesian[0] = PtRelToLISMCartesianfOriginSelect];
RefRelToLISMCartesiantl] = PtRelToLISMCartesian[PosXSelect];
RefRelToLISMCartesian[2] = PtRelToLISMCartesian[PosYSelect];
m_sStatus * "Performing Transformation—";
UpdateData(false);
CTrackingClassDlg:^Transformation();
m_ctrlComboCS.AddString(CS[CS_Counter-l]);
sprintf(buffer, "CS%d", CS_Counter);
WritePrivateProfileString(buffer, "Name", CS[CS_Counter-l], "RefPtLISM.ini");
//sprintf(buffer, "%d", CS_Counter);
WritePrivateProfileString("CSName", "Name", CS[CS_Counter-l], "TransMatrixLISM.ini");

foid CTrackingClassDlg: :Transformation()

double distx, disty, distz, singamma, sinbeta, cosdelta, sindelta, dot23;
double R1X3, R1Y3;
REC_DATA_CARTESIAN RefRelToTrackerCartesian[3] ;
double alpha, beta, gamma; //Rotation angles for transformation

//calculation LISM->CS
double distl2, distl3; //distance data used for transformation

//calculation LISM->CS
char buffer[256], temp[256];

for (int i =0; i<3; i++)

RefRelToTrackerCartesian[i] = RefRelToLISMCartesian[i];

distl2 = sqrt(pow(RefRelToTrackerCartesian[0].x - RefRelToTrackerCartesian[l].x, 2) +

17

pow{RefRelToTrackerCartesiantO].y - RefRelToTrackerCartesiantl].y, 2) +
pow(RefRelToTrackerCartesian[0].z - RefRelToTrackerCartesiantl].z, 2)) ;

distl3 = sqrt(pow(RefRelToTrackerCartesiantO].x - RefRelToTrackerCartesian[2].x, 2) +
pow(RefRelToTrackerCartesiantO].y - RefRelToTrackerCartesian[2] .y, 2) +
pow{RefRelToTrackerCartesiantO].z - RefRelToTrackerCartesian[2].z, 2)) j

sinbeta = (RefRelToTrackerCartesiaii[0].z - RefRelToTrackerCartesian[l].z) / distl2;
if (sinbeta > 1.0)

sinbeta - 1.0;
if (sinbeta < -1.0)

sinbeta = -1.0;
beta = asin(sinbeta);
distx = RefRelToTrackerCartesian[l].x - RefRelToTrackerCartesian[0].x;
disty = RefRelToTrackerCartesiantl].y - RefRelToTrackerCartesiantO].y;
alpha = atan2(disty, distx);
distz = RefRelToTrackerCartesian[2].z - RefRelToTrackerCartesiantO].z;

(RefRelToTrackerC

(RefRelToTracke

dot23 = (RefRelToTrackerCartesiantl].x - RefRelToTrackerCartesiantO].x) *
tesian[2].x - RefRelToTrackerCartesiantO].x)

+ (RefRelToTrackerCartesiantl].y - RefRelToTrackerCartesiantO].y) *
:artesian[2] .y - RefRelToTrackerCartesiantO].y)

+ (RefRelToTrackerCartesiantl].2 - RefRelToTrackerCartesiantO].z) * (RefRelToTracke
:artesian[2] .z - RefRelToTrackerCartesiantO].z);

cosdelta = dot23 / distl2 / distl3;
sindelta = sqrt(1-pow(cosdelta,2));
R1X3 = distl3 * cosdelta;
R1Y3 = distl3 * sindelta;
singamma = (distz + sinbeta * R1X3) / (cos(beta) * R1Y3);
//singamma = distz / distl3 / cos(beta);
if (singamma > 1.0)

singamma - 1.0;
if (singarama < -1.0)

singamma = -1.0;
gamma = asin(singamma);
TransMatrix[0] [0]
TransMatrixtO][1]
TransMatrix[0] [2]
TransMatrixtO][3]

* cos(beta);
* cos(beta);

cos(alpha)
sin(alpha)
-1.0 * sin(beta);
-1.0 * (TransMatrixtO]t0] * RefRelToTrackerCartesiantO].x
+ TransMatrixtO][1] * RefRelToTrackerCartesiantO].y
+ TransMatrixtO][2] * RefRelToTrackerCartesian[0].z);

TransMatrix[l][0]
TransMatrixtl] tl]
TransMatrixtl][2]
TransMatrixjl][3]

TransMatrix[2][0]
TransMatrix[2][1]
TransMatrix[2][2]
TransMatrix[2][3]

sin(gamma) -
sin(gamma) +

sin(alpha)
cos(alpha)

cos(gamma);
cos(gamma);

cos(alpha) * sin(beta)
sin(alpha) * sin(beta)
cos(beta) * sin(gamma);
-1.0 * (TransMatrixtl][0] * RefRelToTrackerCartesiantO].x
+ TransMatrixtl][1] * RefRelToTreckerCartesian[0].y
+ TransMatrixtl][2] * RefRelToTrackerCartesiantO].z);

+ sin(alpha)
- cos(alpha)

cos(alpha) * sin(beta) * cos(gamma)
sin(alpha) * sin(beta) * cos(gamma)
cos(beta) * cos(gamma);
-1.0 * (TransMatrix[2][0] * RefRelToTrackerCartesiantO]
+ TransMatrix[2][1] * RefRelToTrackerCartesiantO].y
+ TransMatrix[2][2] * RefRelToTrackerCartesiantO].z);

sin(gamma);
sin(gamma);

InvTMatrix[0][0]
InvTMatrix[0][1]
InvTMatrixtO][2]
InvTMatrixfO][3]

InvTMatrixtl][0]
InvTMatrixtl][1]
InvTMatrixtl][2]
InvTMatrixtl][3]

= TransMatrixtO][0];
= TransMatrixtl][0];
= TransMatrix[2][0];
= RefRelToLISMCartesian[0].x;

= TransMatrixtO][1];
= TransMatrixtl][1]/
= TransMatrix[2][1];
= RefRelToLISMCartesian[0].y;

InvTMatrix[2][0] = TransMatrixtO][2];
InvTMatrixt2][1] = TransMatrixtl][2];
InvTMatrix[2]t2] = TransMatrix[2][2];
InvTMatrix[2][3] = RefRelToLISMCartesian[0].z;

for (int j=0; j<3; j++)

sprintf(buffer, "Row%d", j);
sprintf (temp, "%lf", TransMatr\x[j][0]);
WritePrivateProfileString(buffer, "ColO",temp, "TransMatrixLISM.ini");
sprintf(temp, "%lf", TransMatrixtj][1]);
WritePrivateProfileString(buffer, "Coll",temp, "TransMatrixLISM.ini");
sprintf(temp, n%lf", TransMatrixtj][2]);
WritePrivateProfileString(buffer, "Col2",temp, "TransMatrixLISM.ini");
sprintf(temp, n%lf", TransMatrixtj][3]);

18

i N 1

WritePrivateProfileString(buffer, "Col3",temp, "TransMatrixLISM.ini");
)
for (j=0; j<3;
{

sprintf(buffer, "InvRow%d", j);
sprintf(temp, "%lf", InvTMatrix[j][0]);
WritePrivateProfileString(buffer, "ColO",temp, "TransMatrixLISM.ini");
sprintf(temp, "%lf", InvTMatrix[j][1]);
WritePrivateProfileString(buffer, "Coll",temp, "TransMatrixLISM.ini");
sprintf(temp, "%lf", InvTMatrix[j][2]);
WritePrivateProfileString(buffer, "Col2",temp, "TransMatrixLISM.ini");
sprintf(temp, "%lf", InvTMatrix[j][3]);
WritePrivateProfileString (buffer, ftCol3", temp, "TransMatrixLISM. ini") ;

UpdateData(false);

|>id CTrackingClassDlg: :OnButtonPathGeneration()

// TODO: Add your control notification handler code here

CPath PathGen;
if ((FilePath = fopen("Path.txt", rw")) == MULL)

puts("cannot open file");
exit(l);

)
rewind(FilePath); // set the cursor to the beginning of file

fprintf(FilePath, "PathX\t PathY\t PathZ\t\n");

if (PathGen.DoModal() == IDOK)

fclose(FilePath);

aid CTrackingClassDlg::OnButtonEgtfs()

// TODO: Add your control notification handler code here
if (!m bEGTFS && !m bEGTFSTurbo)

if ((FileEgtfs = fopen("Egtfs.txt", "w"))

puts("cannot open file");
exit(l);

NULL)

rewind(FileEgtfs); // set the cursor to the beginning of file
fprintf(FileEgtfs, "RobotCurMXAt RobotCurMY\t RobotCurMZ\t\n");

if (m_ctrlRadioMotocom2. GetCheck{))

m_bEGTFS = true;
THREADPARAMS* pThreadParamsEGTFS = new THREADPARAMS;
pThreadParam3EGTFS->lParam = (LPARAM) this;
g_pEGTFSThread = AfxBeginThread(EGTFSThread, pThreadParamsEGTFS,

THREAD_PRIORITY_NORMAL, NULL);

if (m_ctrlRadioTurbo2.GetCheck())

m_bTurboCorrThread = true;
THREADPARAMS* pThreadParamsTurboCorr = new THREADPARAMS;
pThreadParamsTurboCorr->lParam = (LPARAM) this;
g_pTurboCorrThread = AfxBeginThreaa(TurboCorrectionThread, pThreadParamsTurboCorr,

THREAD_PRIORITY_NORMAL, NULL);
m_bEGTFSTurbo = true;
THREADPARAMS* pThreadParamsEGTFSTurbo = new THREADPARAMS;
pThreadParamsEGTFSTurbo->lParam = {LPARAM) this;
g__pEGTFSTurboThread = AfxBeginThread(EGTFSTurboThread, pThreadParamsEGTFSTurbo,

THREAD_PRIORITY_NORMAL, NULL);

m ctrlButtonEGTFS.SetWindowText("STOP EGTFS");

else
{

fclose(FileEgtfs);
if (m_bEGTFS)
{

m_bEGTFS = false;
CloseHandle(g_pEGTFSThread->m_hThread);

19

}
i f (m__bEGTFSTurbo)
{

m_bTurboCorrThread = f a l s e ;
CloseHandle (g__pTurboCorrThread->m_hThread) ;
mJbEGTFSTurbo = f a l s e ;
CloseHandle(g_pEGTFSTurboThread->m_hThread);
CurrPt = 0 ;
CurrLine = 0 ;

}
m_ctrlButtonEGTFS.SetWindowText("START EGTFS");

[>id CTrackingClassDlg:: OnButtonGuidance ()

/ / TODO: Add your c o n t r o l n o t i f i c a t i o n hand le r code h e r e
if (!m bGuide)

if
{

((FileGuidance = fopen("Guidance.txt", "w")) == NULL)

puts("cannot open file");
exit(l);

}
else
{

}
rewind(FileGuidance); // set the cursor to the beginning of file
fprintf(FileGuidance, "PathX\tPathY\tPathZ\tRobotCurX\t RobotCurY\t RobotCurZ\t\n");

//AcroSendString("HALT"/ 0);
AcroSendString("JOG VEL X0.5 Y4", 0);
AcroSendstring("JOG ACC X0.5 Y5", 0);
AcroSendstring("JOG DEC X0.5 Y5", 0) ;
OnButtonTrack();

if (m_ctrlRadioTurbo.GetCheck())
{

m_bTurboCorrThread = true;
THREADPARAMS* pThreadParamsTurboCorr = new THREADPARAMS;
pThreadParamsTurboCorr->lParam = (LPARAM) this;
g_pTurboCorrThread = AfxBeginThread(TurboCorrectionThread, pThreadParamsTurboCorr,

THREAD_PRIORITY_NORMAL, NULL);
)
m_bGuide - true;
THREADPARAMS* pThreadParamsGuidance = new THREADPARAMS;
pThreadParamsGuidance->lParam = (LPARAM) this;
g_pGuidanceThread = AfxBeginThread(GuidanceThread, pThreadParamsGuidance,

THREAD_PRIORITY_NORMAL, NULL);
m ctrlButtonGuidance.SetWindowText("STOP GUIDANCE");

fclose(FileGuidance);
//AcroSendStringC'RUN", 0);
AcroSendString("JOG VEL X2 Y4", 0);
AcroSendString("JOG ACC X3 Y5", 0);
AcroSendString("JCG DEC X3 Y5", 0);
OnButtonTrack();

if (m_bTurboCorrThread)

m_bTurboCorrThread = false;
CloseHandle(g_pTurboCorrThread->m_hThread);

m_bGuide = false;
CloseHandle(g_pGuidanceThread->m_hThread);
m ctrlButtonGuidance.SetWindowText("START GUIDANCE");

[INT CTrackingClassDlg: :GuidanceThread(LPVOID pParam)

THREADPARAMS* pThreadParams = (THREADPARAMS*) pParam;
CTrackingClassDlg* pGuide = (CTrackingClassDlg*) pThreadParams->lParam;
delete pThreadParams;
double DiffX, DiffY, DiffZ;
char buffer[256];
bool first = true;
while (pGuide->m_bGuide)

\ "

.*€

20

pGuide->m_uiGuidanceFreq++;
if (CurrLine < NumOfLine)

if (CurrPt < NumOfPt[CurrLine])

::sprintf(buffer, "%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t", p
lide->m_lfPSDX, pGuide->m_l£PSDY, PointList [CurrLine] [CurrPt] .x, PointList [CurrLine] [CurrPt] .y
[pointList[CurrLine][CurrPt].z, PtRelToCS[0].x, PtRelToCS[0].y, PtRelToCS[0].z);

::fprintf(FileGuidance, buffer);

pGuide->DriveBeam();
//if (first)

Sleep(300);
// first = false;

//else Sleep(100);
::sprintf(buffer, "%.31f\t%.31f\t \n", pGuide->m_lfPSDX, pGuide->m_lfPSDY);
::fprinvf(FileGuidance, buffer);
//::AfxMessageBox(buffer, IDOK, NULL);
if (pGuide->m_ctrlRadioMotocom.GetCheck())

pGuide->MotocomCorrection();
//else
// pGuide->TurboCorrection();
//Sleep(100);
CurrPt++;

else

::sprintf(buffer, "%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t \n"
|pGuide->m_lfPSDX, pGuide->m_lfPSDY, PointList[CurrLine][NumOfPt[CurrLine]-1].x, PointLiat[Cur
Line] [NumOfPt[CurrLine]-1].y, PointList[CurrLine] [NumOfPt[CurrLine]-1].z, PtRelToCS[0].x, PtRe
j:oCS[0].y, PtRelToCS[0] .z) ;

: rfprintf (FileGuidance, buffer);
DiffX = fabs(PointList[CurrLine][NumOfPt[CurrLine]-1].x
DiffY = fabs(PointList[CurrLine][NumOfPt[CurrLine]-1].y
DiffZ = fabs(PointList[CurrLine][NumOfPt[CurrLine]-1].z
if ((DiffX>0.1) I! (DiffY>0.1) || (DiffZ>0.1))

PtRelToCS[0].x);
PtRelToCS[0].y);
PtRelToCS[0].z);

//
//

}
else
{

if (pGuide->m_ctrlRadioMotocom. GetCheck())
pGuide->MotocomCorrection();

else
pGuide->Turbocorrection();

//Sleep(100);

CurrPt = 0;
CurrLine++;

else

:rsprintf(buffer, "%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t \n", pG
Lde->m_lfPSDX, pGuide->m_lfPSDY, PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].x, PointList[Cur
Line-1][NumOfPt[CurrLine-1]-1].y, PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].z, PtRelToCS[0]

PtRelToCS[0].y, PtRelToCS[0].z) ;
:rfprintf(FileGuidance, buffer);
DiffX = fabs(PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].x - PtRelToCS[0].x);
DiffY = fabs(PointList[CurrLine-1] [NumOfPt[CurrLine-1]-1].y - PtRelToCS[0].y);
DiffZ = fabs(PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].z - PtRelToCS[0].z);

' if ((DiffX>0.1) || (DiffY>0.1) || (DiffZ>0.1))

if (pGuide->m_ctrlRadioMotocom.GetCheck())
pGuide->MotocomCorrection();

//else
// pGuide->TurboCorrection();
//Sleep(100);

else

r:sprintf(buffer, "%. 31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t \n"
pGuide->m_lfP5DX, pGuide->m_lfPSDY, PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].x, PointList
CurrLine-1][NumOfPt[CurrLine-1]-1].y, PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].z, PtRelToC
|[0] .x, PtRelToCS [0] .y, PtRelToCS [0] .z) ; '

r:fprintf(FileGuidance, buffer);
pGuide->OnButtonGuidance();
CurrPt = 0;

21

CurrLine = 0;

}
return 0;

NT CTrackingClassDlg: :EGTFSThread(LPVOID pParam)

//double RobotCurrMX, RobotCurrMY, RobotCurrMZ; / /Robot cu r r en t p o s i t i o n recorded by cont ro
[er

double RobotMovX, RobotMovY, RobotMovZ; / /Robot increment t o move t o next con t ro l p o i n t
char bu f fe r [256] ;

THREADPARAMS* pThreadParams = (THREADPARAMS*) pParam;
CTrackingClassDlg* pE = (CTrackingClassDlg*) pThreadParams->lParam;
delete pThreadParams;

while (pE->m_bEGTFS)

if (!pE->MyRobot->IsRobotOperating())

pE->MyRobot->GetCurrentPos(1, &pE->pRobotCurrentPos);
pE->m_lfRobotX = pE->pRobotCurrentPos.X;
pE->m_lfRobotY = pE->pRobotCurrentPos-Y;
pE->m_lfRobotZ = pE->pRobotCurrentPos.Z;
//RobotCurX = PtRelToCS[0].x;
//RobotCurY = PtRelToCS[0].y;
//RobotCurZ = PtRelToCS[0].z;
::sprintf(buffer, "%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t \n", pE->m lfRobotX,

|;->in_lfRoboty, pE->m_lf Robot!?., PtRelToCS [0] .x, PtRelToCS [0] .y, PtRelToCSfO] . z) ;
: rfprintf (FileEgtrTs, buffer);

if (CurrLine < NumOfLine)

if (CurrPt < NumOfPt[CurrLine])

RobotMovX = (float) (PointList[CurrLine][CurrPt].x - PtRelToCS[0].x);
RobotMovY = (float) (PointList[CurrLine][CurrFt].y - PtRelToCS[0].y);
RobotMovZ = (float) (PointList[CurrLine][CurrPt].z - PtRelToCS[0].z);
CurrPt++;

}
else
{

RobotMovX = (float) (PointList[CurrLine][CurrPt-1].x - PtRelToCS[0].x);
RobotMovY = (float) (PointList[CurrLine][CurrPt-1].y - PtRelToCS[0].y);
RobotMovZ = (float) (PointList[CurrLine][CurrPt-1].z - PtRelToCS[0].z);
if (fabs(RobotMovX) < 0.1 && fabs(RobotMovY) < 0.1 && fabs(RobotMovZ) < 0.1

CurrPt = 0/
CurrLine++;

• y) ;

}
else
{

RobotMovX = (float) (PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].x - PtRelToCS

RobotMovY = (float) (PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].y - PtRelToCS

RobotMovZ = (float) (PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].z - PtRelToCS

if (fabs(RobotMovX) < 0.1 && fabs(RobotMovY) < 0.1 S& fabs(RobotMovZ) < 0.1)

CurrPt = 0;
CurrLine = 0;
pE->m_bEGTFS = false;

)
double dPos[12] = (0,0,0,0,0,0,0,0,0,0,0,0);

CString szMovType = "IMOV";
CString szSpeedType = "V";
double dMovSpeed = pE->m_lfVel;
CString szFrame = "UF5";
WORD wForm = 0;
int nTool = 1;

h i
i

%

22

}
else
{

}

dPostO] = RobotMovX;
dPos[l] = RobotMovY;
dPos[2] = RobotMovZ;

pE->MyRobot->Move(szMovType, szSpeedType, dMovSpeed, szFrame, wForm, nTool, dPos);
pE->MyRobot->UpdateStatus();

pE->MyRohot->UpdateStatus();

::Sleep(100); //wait for tracker to update positions
)
pE->m_ctrlButtonEGTFS.SetWindowText("START EGTFS");
for (int i =0; i<10; i)

::sprintf(buffer, "%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t \n", pE->m_lfRobotX, pE->
IlfRobotY, pE->m_lfRobotZ, PtRelToCS[0].x, PtRelToCS[0].y, PtRelToCS[0].z);

::fprintf(FileEgtfs, buffer);
: :Sleep (100);

: :fclose(FileEgtfs);
return 0;

|NT CTrackingClassDlg::EGTFSTurboThread(LPVOID pParam)

THREADPARAMS* pThreadParams = (THREADPARAMS*) pParam;
CTrackingClassDlg* pET = (CTrackingClassDlg*) pThreadParams->lParain;
delete pThreadParams;

char buffer[256];

//double RobotMovX, RobotMovY, RobotMovZ;

vfhile (pET->m_bEGTFSTurbo)

if (CurrLine < NumOf'Line)

if (CurrPt < NumOfPt[CurrLine])
::sprintf(buffer, "%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t \n", PointList[Cu

jrLine] [CurrPt] .x, PointList [CurrLine] [CurrPt] .y, PointList [CurrLine] [CurrPt] .z, PtRelToCS [0] .x
j PtRelToCS [0] .y, PtRelToCS[0].z);

::fprintf(FileEgtfs, buffer);
RobotMovXEGTFSTurbo = (float) (PointList[CurrLine][CurrPt].x - PtRelToCS[0].x);
RobotMovYEGTFSTurbo = (float) (PointList[CurrLine][CurrPt].y - PtRelToCS[0].y);
RobotMovZEGTFSTurbo = (float) (PointList[CurrLine][CurrPt].z - PtRelToCS[0].z);
CurrPt++;

else

::sprintf(buffer, "%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t \n", PointList[Cu
(:Line] [CurrPt-1] .x, PointList [CurrLine] [CurrPt-1] .y, PointList [CurrLine] [CurrPt-1] ,z, PtRelToC
[0].x, PtRelToCS[0].y, PtRelToCS[0].z);

::fprintf(FileEgtfs, buffer);
RobotMovXEGTFSTurbo = (float) (PointList[CurrLine][CurrPt-1].x - PtRelToCS[0] .x

RobotMovYEGTFSTurbo = (float) (PointList[CurrLine][CurrPt-1].y - PtRelToCS[0].y

RobotMovZEGTFSTurbo = (float) (PointList[CurrLine][CurrPt-1].z - PtRelToCS[0].z

if (faba(RobotMovXEGTFSTurbo) < 0.1 && fabs(RobotMovYEGTFSTurbo) < 0.1 && fabs(
pbotMovZEGTFSTurbo) < 0.1)

CurrPt = 0;
CurrLine++;

else
{

::sprintf(buffer, "%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t \nn, PointList[CurrLi
e-1] [NumOfPt[CurrLine-l]-l].x, PointList[CurrLine-1][NumOfPt[CurrLine-l]-1].y, PointList[CurrL
tie-l][NumOfPt[CurrLine-l]-l].z, PtRelToCS [0] .x, PtRelToCS [0] .y, PtRelToCS [0] .z) ;

::fprintf(FileEgtfs, buffer);
RobotMovXEGTFSTurbo = (float) (PointList[CurrLine-1][NumOfPt[CurrLine-l]-l].x - PtR

lToCS[0].x);
RobotMovYEGTFSTurbo = (float) (PointList[CurrLine-1][NumOfPt[CurrLine-1]-l].y - PtR

LToCS[0].y);

V

23

RobotMovZEGTFSTurbo = (float) (PointList[CurrLine-1][NumOfPt[CurrLine-l]-l].z - PtR
ITOCS[0].Z);

if (fahs(RobotMovXEGTFSTurbo) < 0.1 && fabs(RobotMovYEGTFSTurbo) < 0.1 && fabs(Robo
fcovZEGTFSTurbo) < 0.1)

0.0;
0.0/
0.0;

RobotMovXEGTFSTurbo =
RobotMovYEGTFSTurbo >
RobotMovZEGTFSTurbo =

for (int i =0; i<10;

::sprintf(buffer, "%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t \n", PointList[Cu
h.ine-1][NumOfPt[CurrLine-1]-1].x, PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].y, PointList[C
frLine-1][NumOfPt[CurrLine-1]-1].z, PtRelToCS[0].x, PtRelToCS[0].y, PtRelToCS[0].2);

::fprintf(FileEgtfs, buffer);
::Sleep(100);

//::f close(FileEgtfs);
pET->OnButtonEgtfs();

::Sleep(15); //wait for tracker to update positions

return 0;

pid CTrackingClassDlg: :DriveBeam()

double XYLength;
//char buffer[256];

//RobotCurX = PtRelToCS[0].x;
//RobotCurY = PtRelToCS[0] .y;
//RobotCurZ = PtRelToCS[0].z;
RobotDesX = PointList[CurrLine][CurrPt].x;
RobotDesY = PointList[CurrLine][CurrPt]. y;
RobotDesZ = PointList [CurrLin'?] [CurrPt] . z;

LISMDesX = InvTMatrix[0] [0] * RobotDesX
+ InvTMatrix[0][1] * RobotDesY
+ InvTMatrix[0][2] * RobotDesZ
+ InvTMatrix[0][3];

LISMDesY = InvTMatrix[l][0] * RobotDesX
+ InvTMatrix[l][1] * RobotDesY
+ InvTMatrixjl][2] * RobotDesZ
+ InvTMatrix[l][3];

LISMDesZ = InvTMatrix[2][0] * RobotDesX
+ InvTMatrix[2][1] * RobotDesY
+ InvTMatrix[2][2] * RobotDesZ
+ InvTMatrix[2][3];

XYLength = pow((pow(LISMDesX,2) + pow(LISMDesY,2)), 0.5);
Ml.DriveAngle = (float) RadianToDegree(atan2(-l*LISMDesX, LISMDesY)}/360.0 - Ml.CurrentAngl

M2.DriveAngle = (float) 0.5 * RadianToDegree(atan2(LISMDesZ, XYLength))/360.0 - M2.CurrentA

//sprintf(buffer, "%.51f\t%.51f\t\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t\n", Ml.DoiveA
|gle*360.0, M2.DriveAngle*360.0, PointListtCurrLine][CurrPt].x, PointList[CurrLine][CurrPt^.y,
JointListLCurrLine][CurrPt].z, PtRelToCS[0].x, PtRelToCS[0].y, PtRelToCS[0].z);

//m_sStatus = buffer;
//UpdateData(false);
//fprintf(FileGuidance, buffer);
DriveMotor(Ml, M2);

loid CTrackingClassDlg: :MotocomCorrection()

double RobotMovX, RobotMovY, RobotMovZ;
if (CurrLine < NumOfLine)

if (CurrPt < NumOfPt[CurrLine])

}
else
(

RobotMovX
RobotMovY
RobotMovZ

RobotMovX
RobotMovY

(float)
(float)
(float)

(float)
(float)

(PointList[CurrLine][CurrPt].x
(PointList[CurrLine][CurrPt].y
(PointList[CurrLine][CurrPt] z -

PtRelToCS[0].x);
PtRelToCS[0].y);
PtRelToCS[0].z);

(PointList[CurrLine][CurrPt-1].x - PtRelToCS[0].x);
(PointList[CurrLine][CurrPt-1].y - PtRelToCS[0].y);

24

RobotMovZ = (float) (PointList[CurrLine][CurrPt-1].z - PtRelToCS[0].z);

else

RobotMovX = (f loa t) (Poin tLis t [CurrLine-1] [NumOfPt [CurrLine- l] - l] .x
RobotMovY = (f loa t) (PointLis t [CurrLine-1][NumOfPt[CurrLine-1]-1] .y
RobotMovZ - (f loa t) (PointLis t [CurrLine-1][NumOfPt[CurrLine-1]-1] .z

PtRelToCS[0].x);
PtRelToCS[0].y);
PtRelToCS[0] .z) ;

double dPos[12] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
CString szMovType = "IMOV";
CString szSpeedType = "V";
double dMovSpeed = 1 ;
CString szFrame = "UF5";
WORD wForm. = 0 ;
int nTool = 1;

dPos[0] = RobotMovX;
dPos[l] = RobotMovY;
dPos[2] = RobotMovZ;

MyRobot->Move(szMovType, 3zSpeedType, dMovSpeed, szFrame, wForm, nTool, dPos) ;
do
{

MyRobot->UpdateStatus();
)
while (MyRobot->IsRobotOperating());

d CTrackingClassDlg::TurboCorrection()

double RobotMovX, RobotMovY, RobotMovZ;
//double RobotCurX, RobotCurY, RobotCurZ;
//char buffer[256];
// ** Set the number of charaters to send and receive
const int nNumSendChar = 1 2 ;
const int nNuniRecvChar = 0;

// ** For sending array of short data - 2 Bytes x 6 = 12 Bytes ** //
char chSendData[nNumSendChar] ;
// ** Special sequence of characters to send to tell Turbo App to stop
const char chSendEnd[12] = {127,-128,0,0,0,0,0,0,0,0,127,-128 };
// ** For storing the movement data
short nMoveData[6] ;

// ** For receiving data ** //
char chRecvData[nNumRecvChar+l];

// For display of received values
CString szRecvData;

if
{

(CurrLine < NumOfLine)

if
{

}
else
{

(CurrPt < NumOfPt [CurrLine])

RobotMovX = (float) (PointList[CurrLine][CurrPt].x
RobotMovY = (float) (PointList[CurrLine][CurrPt].y
RobotMovZ = (float) (PointList[CurrLine][CurrPt].z
RobotDesX = PointList[CurrLine][CurrPt].x;
RobotDesY = PointList[CurrLine][CurrPt].y;
RobotDesZ = PointList[CurrLine][CurrPt].z;

PtRelToCS[0].x);
PtRelToCS[0].y);
PtRelToCS[0].2);

RobotMovX = (float) (PointList[CurrLine][CurrPt-1]
RobotMovY = (float) {PointList[CurrLine][CurrPt-1]
RobotMovZ = (float) (PointList[CurrLine][CurrPt-1]
RobotDesX = PointList[CurrLine][CurrPt-1].x;
RobotDesY = PointList[CurrLine][CurrPt-1].y;
RobotDesZ = PointList[CurrLine][CurrPt-1].z;

- PtRelToCS[0].x);
- PtRelToCS[0].y);
- PtRelToCS[0].z);

else
{

RobotMovX = (float) {PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].x - PtRelToCS[0].x);
RobotMovY = (float) {PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].y - PtRelToCS[0].y);
RobotMovZ = (float) (PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].z - PtRelToCS[0].z);
RobotDesX = PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].x; \

25

RobotDesY = PointList[CurrLine-l][NumOfPt[CurrLine-l]-l].y;
RobotDesZ = PointList[CurrLine~l][NumOfPt[CurrLine-l]-l]. z;

//Check this
RobotX = -1.0 * RobotMovX * 400.0;
RobotY = RobotMovY * 400.0;
RobotZ = -1.0 * RobotMovZ * 400.0;

if (fabs(RobotX) > 1000.0)
RobotX = 1000.0;

if (fabs(RobotY) > 1000.0)
RobotY = 1000.0;

if (fabs(RobotZ) > 1000.0)
RobotZ = 1000.0;

// ** Get current Movement data and copy to Send Buffer
nMoveData[0] = (short) RobotX; //pTurbo->m_nTx;

(short) RobotY; //pTurbo->m_nTy;
(short) RobotZ; //pTurbo->m_nTz;
(short) 0.0; //pTurbo->m_nRx;
(short) 0.0; //pTurbo->m_nRy;
(short) 0.0; //pTurbo->m_nRz;

nMoveData[l]
nMoveData[2]
nMoveData[3]
nMoveData[4]
nMoveData[5]
memcpy (chSendData, nMoveData, nNumSendChar);

/ / ** Send Data
serial .SendData (chSendData, nNvunSendChar) ;

/ / ** Wait for a confirmation character ** / /
while (serial.ReadDataWaiting() < 1)

;
serial.ReadData(chRecvData, 1);

/ / ** If receiving data from MRC ** / /
if(nNumRecvChar > 0>
{

// ** Wait for ,ta from MRC to arrive
while (serial.ReadDataWaiting() < nNumRecvChar)
;
// ** Read the received data
serial.ReadData(chRecvData, nNumRecvChar);

// ** Mem copy the data to required data type
// ** For receiving XYZ Data - 3 x long (4 bytes) = 12 3ytes
//memcpy(pTurbo->m_nXYZData, chRecvData, 12);
// ** For receiving XYZ Data - 3 x short (2 bytes) = 6 Bytes
//memcpy(pTurbo->m_nRotData, (chRecvData + 1 2) , 6);

}
// ** Increment the Frequency counter
//RobotCurX = PtRelToCS[0].x;
//RobotCurY = PtRelToCS [0].y;
//RobotCurZ = PtRelToCS[0].z;
//sprintf(buffer, "%.51f\t%.51f\t%.51f\t\n", RobotCurX, RobotCurY, RobotCurZ);
//fprintf(FileGuidance, buffer);
m_uiTurboFreq++;

[NT CTrackingClassDlg:: TurboCorrectionThread (LPVOID pParam)

THREADPARAMS* pThreadParams = (THREADPARAMS*) pParam;
CTrackingClassDlg* pT = (CTrackingClassDlg*) pThreadParams->lParam;
delete pThreadParams;

double RobotMovX, RobotMovY, RobotMovZ;
//double RobotCurX, RobotCurY, RobotCurZ;
//char buffer[256];
// ** Set the number of charaters to send and receive
const int nNumSendChar = 12;
const int nNumRecvChar = 0;

// ** For sending array of short data - 2 Bytes x 6 = 12 Bytes ** //
char chSendData [nNumSendChar] ;
// ** special sequence of characters to send to tell Turbo App to stop
const char chSendEnd[12] = {127,-128,0,0,0,0,0,0,0,0,127,-128 };
// ** For storing the movement data
short nMoveData[6];

// ** For receiving data ** //
char chRecvData [nNumRecvChar+l];

V1

// For display of received values
CString szRecvData;
char buffer[256];

while (pT->m_bTurboCorrThread)

if
{

(CurrLine < NumOfLine)

if
{

}
else
{

(CurrPt < NumOfPt[CurrLine])

RobotMovX = (float) (PointList[CurrLine][CurrPt].x -
RobotMovY = (float) (PointList[CurrLine][CurrPt].y -
RobotMovZ = (float) (PointList[CurrLine][CurrPt].z -
RobotDesX = PointList[CurrLine][CurrPt].x;
RobotDesY = PointList[CurrLine][CurrPt].y;
RobotDesZ = PointList[CurrLine][CurrPt].z;

PtRelToCS[0].x);
PtRelToCS[0].y);
PtRelToCS[0].z);

RobotMovX = (float) (PointList[CurrLine][CurrPt-1].x
RobotMovY = (float) (PointList[CurrLine][CurrPt-1].y
RobotMovZ = (float) (PointList[CurrLine][CurrPt-1].z
RobotDesX - PointList[CurrLine][CurrPt-1].x;
RobotDesY = PointList[CurrLine][CurrPt-1].y;
RobotDesZ = PointList[CurrLine][CurrPt-1].z;

- PtRelToCS[0].x);
- PtRelToCS[0].y);
- PtRelToCS[0].z);

}
else
{

}

RobotMovX = (float) (PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].x - PtRelToCSfO]

RobotMovY = (float) (PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].y - PtRelToCS[0]

RobotMovZ = (float) (PointList[CurrLine-1][NumOfPt[CurrLine-1]-1] .z - PtRelToCS[0]

RobotDesX = PointList[CurrLine-1][NumOfPt[CurrLine-1]-1]. x;
RobotDesY = PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].y;
RobotDesZ = PointList[CurrLine-1][NumOfPt[CurrLine-1]-1].z;

if (pT->m_bGuide)
{

//Check this
RobotX = -1.0 * RobotMovX / 0.4 * 0.015 * 1000.0;
RobotY = RobotMovY / 0.4 * 0.015 * 1000.0;
RobotZ = -1.0 * RobotMovZ /0.4 * 0.015 * 1000.0;

}
if (pT->m_bEGTFSTurbo)
{

RobotX = -1.0 * RobotMovXEGTFSTurbo *0.015 * 1000.0;
RobotY = RobotMovYEGTFSTurbo * 0.015 * 1000.0;
RobotZ = -1.0 * RobotMovZEGTFSTurbo * 0.015 * 1000.0;
//RobotX = RobotMovYEGTFSTurbo / 0.4 * 0.015 * 1000.0;
//RobotY = -1.0 * RobotMovXEGTFSTurbo / 0.4 * 0.015 * 1000.0;
//RobotZ = RobotMovZEGTFSTurbo /0.4 * 0.015 * 1000.0;

}

if (fabs(RobotX) > 1000.0)
{

if (RobotX > 0.0)
RobotX = 1000.0;

if (RobotX < 0.0)
RobotX = -1000.0;

}
if (fabs(RobotY) > 1000.0)
{

if (RobotY > 0.0)
RobotY = 1000.0;

if (RobotY < 0.0)
RobotY = -1000.0;

}
if (fabs(RobotZ) > 1000.0)
{

if (RobotZ > 0.0)
RobotZ = 1000.0;

if (RobotZ < 0.0)
RobotZ = -1000.0;

// ** Get current Movement data and copy to Send Buffer

27

nMoveData[0]
nMoveData[l]
nMoveData[2]
nMoveData[3]
nMoveData[4]
nMoveData[5]

(short) RobotX; //pTurbo->m_nTx/
(short) RobotY; //pTurbo->m_nTy;
(short) RobotZ; //pTurbo->m~nTz;
(short) 0.0; //pTurbo->m_nRx;
(short) 0.0/ //pTurbo->m_nRy;
(short) 0.0; //pTurbo->m_nRz;

memcpy(chSendData, nMoveData, nNumSendChar);

// ** Send Data
pT->serial.SendData(chSendData, nNumSendChar);

// ** Wait for a confirmation character ** //
while (pT->serial.ReadDataWaiting() < 1)

pT->serial.ReadData(chRecvData, 1);

// ** If receiving data from MRC ** //
if(nNumRecvChar > 0)

// ** Wait for data from MRC to arrive
while (pT->serial.ReadDataWaiting() < nNumRecvChar)

II ** Read the received data
pT->serial.ReadData(chRecvData, nNumRecvChar);

II ** Mem copy the data to required data type
// ** For receiving XYZ Data - 3 x long (4 bytes) =
//memcpy(pTurbo->m_nXYZData, chRecvData, 12);
// ** For receiving XYZ Data - 3 x short (2 bytes) =
//memcpy(pTurbo->m_nRotData, (chRecvData + 12), 6);

12 Bytes

- 6 Bytes

// ** Increment the Frequency counter
//RobocCurX = PtRelToCS[0].x;
//RobotCurY = PtRelToCS[0].y;
//RobotCurZ = PtRelToCS[0].z;
//sprintf(buffer, "%.51f\t%.51f\t%.51f\t\n", RobotCurX, RobotCurY, RobotCurZ);
lit printf(FileGuidance, buffer);
pT->m_uiTurboFreq++;

return 0;

d CTrackingClassDlg:: OnRadioTurboCorr ()

// TODO: Add your control notification handler code here
m_ctrlRadioTurbo.SetCheck(l);
m ctrlRadicMotocom.SetCheck(O);

|id CTrackingClassDlg::OnRadioMotocomCorr()

// TODO: Add your control notification handler code here
m_ctrlRadioTurbo.SetCheck(0);
m_ctrlRadioMotocom.SetCheck(1);

INT CTrackingClassDlg::DriveRobotThread(LPVOID pParam)

double RobotMovX, RobotMovY, RobotMovZ;
char buffer[256];

//Robot increment to move to next control point

THREADPARAMS* pThreadParams = (THREADPARAMS*) pParam;
CTrackingClassDlg* pDR = (CTrackingClassDlg*) pThreadParams->lParam;
delete pThreadParams;

while (pDR->m_bDriveRobot)

if (CurrLine < NumOfLine)

if (CurrPt < NumOfPt[CurrLine])

RobotMovX = PointList[CurrLine][CurrPt].x;
RobotMovY = PointList[CurrLine][CurrPt].y;
RobotMovZ = PointList[CurrLine][CurrPt].z;

double dPos[12] = {0,0,0,0,0,180,0,0,0,0,0,0);

//Send points to ronot: controller
//Send Move to Robot

28
fc*kti

»);

CString szMovType = "MOVL";
CString szSpeedType = "V";
double dtfovSpeed = 10.0;
CString szFrame = "UF5";
WORD wForm = 0;
int nTool =• 1;

dPos[0] = RobotMovX;
dPos[l] = RobotMovY;
dPos[2] = RobotMovZ;
pDR->MyRobot->SetMode(PLAY);
pDR->MyRobot->SetServo(ON);
pDR->MyRobot->Move(szMovType, szSpeedType, dMovSpeed, szFrame, wForm, nTool, d

do

pDR->MyRobot->UpdateStatus();

while (pDR->MyRobot->IsRobotOperating());
pDR->MyRobot->GetCurrentPos(1, &pDR->pRobotCurrentPos);
pDR->m_lfRobotX = pDR->pRobotCurrentPos.X;
pDR->m_lfRobotY = pDR->pRobotCurrentPos.Y;
pDR->m_lfRobotZ = pDR->pRobotCurrentPos.Z;
::Sleep(100);
if (pDR->m_bDriveRobotWrite)

::sprintf(buffer, "%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t%.31f\t\n", pDR->m_lf
aotX, pDR->m_lfRobotY, pDR->m_lfRobotZ, PtRelToCS[0].x, PtRelToCS[0].y, PtRelToCS[0].z);

::fprintf(FileRobotDr, buffer);
}
CurrPt++;

}
else
{

CurrPt = 0;
CurrLine++;

}
else
{

CurrPt = 0;
CurrLine = 0;
pDR->OnButtonDriveRobot

return 0;

[id CTrackingClassDlg::OnButtonTurbotry()

/ / TODO: Add your control notification handler code here
if (!m_bTurboTryThread)
{

mJbTurboTryThread = true;
THREADPARAMS* pThreadTurboTry = new THREADPARAMS;
pThreadTurboTry->lParam = (LPARAM) this;
g_pTurboTryThread = AfxBeginThread(TurboTryThread, pThreadTurboTry,

THREAD_PRIORITY_NORMAL, NULL);
m_ctrlTurboTry.SetWindowText("STOP TURBO");

}
else
{

m_bTurboTryThread = false;
CloseHandle (g_pTurboTryThread->ni_hThread) ;
m_ctrlTurboTry.SetWindowText("TURBO TRY");

[id CTrackingClassDlg::OnRadioMoUocomDrive()

/ / TODO: Add your control not i f icat ion handler code here
m_bPathDrive = fa lse ;
m_bMotocomDrive = t rue ;
m_ctrlRadioMotocomDrive.SetCheck(l) ;
m_ctrlRadioPathDrive.SetCheck(0);
m_ctrlDx.EnableWindow(l) ;
m_ctrlDy. BnableWindow (1) ;
m_ctrlDz.EnableWindow(l);

L '

29

Id CTrackingClassDlg: :OnRadioPathDrive()

// TODO: Add your control notification handler code here
m_bPathDrive = true;
nTbMotocomDrive = false;
m_ctrlRadioMotocomDrive. SetCheck (0) ;
m_ctrlRadioPathDrive.SetCheck(l) ;
m_ctrlDx.EnableWindow(0) ;
m_ctrlDy.EnableWindow(0) ;
m_ctrlDz.EnableWindow(0) ;

id CTrackingClassDlg::OnChangeDx ()

// TODO: If this is a RICHEDIT control, the control will not
// send this notification unless you override the CDialog::OnInitDialog()
// function and call CRichEditCtrl().SetSventMaskO
// with the ENM_CHANGE flag ORed into the mask.

// TODO: Add your control notification handler code here
UpdateData(true);

id CTrackingClassDlg::OnChangeDy ()

// TODO: If this is a RICHEDIT control, the control will not
// send this notification unless you override the CDialog::OnInitDialog()
// function and call CRichEditCtrl().SetEventMask()
// with the ENM_CHANGE flag ORed into the mask.

// TODO: Add your control notification handler code here
UpdateData (true);

id CTrackingClassDlg:: OnChangeDz ()

// TODO: If this is a RICHEDIT control, the control will not
// send this notification unless you override the CDialog::OnInitDialog()
// function and call CRichEditCtrl().SetEventMask()
// with the ENM_CHANGE flag ORed into the mask.

// TODO: Add your control notification handler code here
UpdateData(true);

jid CTrackingClassDlg:: OnSelchangeComboCs ()

/ / TODO: Add your control not i f ica t ion handler code here
char buffer[256], temp[256];

int j ;
switch (m_ctrlComboCS.GetCurSel())

case 0:

for (j=0; j<3; j++)

for (int k=0; k<3; k++)

if (j—k)
TransMatrix[j][k] = 1.0;
InvTMatrixfj][k] = 1.0;

else

TransMatrix[j][k] = 0.0;
InvTMatrix[j][k] = 0.0;

break;
case 1:

for (j=0; j<3;
{

sprintf(buffer, "Row%dn, j) ;
GetPrivateProfileString(buffer, "ColO", NullString, temp, (int)sizeof(temp), "Trans

|trixLISM.ini");

\

30

TransMatrix[j][0] = atof(temp);
GetPrivateProfileString(buffer,

trixLISM.ini");
TransMatrix[j][1] = atof(temp);
GetPrivateProfileString(buffer,

trixLISM.ini");
TransMatrix[j][2] = atof(temp);
GetPrivateProfileString(buffer,

trixLISM.ini");
TransMatrix[j][3] = atof(temp);

}
for (j=0; j<3;

sprintf(buffer, "InvRow%d", j) ;
GetPrivateProfileString(buffer,

trixLISM.ini");
InvTMatrixfj][0] = atof(temp);
GetPrivateProfileString(buffer,

trixLISM.ini");
InvTMatrix[j][1] = atof(temp);
GetPrivateProfileString(buffer,

trixLISM.ini");
InvTMatrix[j][2] = atof(temp);
GetPrivateProfileString(buffer,

trixLISM.ini");
InvTMatrix[j][3] = atof(temp);

break;

UpdateData(false);

"Coll", NullString, temp, (int)sizeof (temp), pl'rans

'Col2", NullString, temp, (int)3izeof(temp), "Trans

"Col3", NullString, temp, (int)sizeof(temp), "Trans

"ColO", NullString, temp, (int)sizeof(temp), "Trans

"Coll", NullString, temp, (int)sizeof(temp), "Trans

"Col2", NullString, temp, (int)sizeof(temp), "Trans

"Col3", NullString, temp, (int)sizeof(temp), "Trans

[id CTrackingClassDlg: :OnButtonWriteFile ()

// TODO: Add your control notification handler code here
if (!m_bDriveRobotWrite)

if ((FileRobotDr = fopenCRobotDrive.txt", "w")) == NULL)

puts("cannot open file");
exit(l);

It\n");

)
rewind(FileRobotDr); / / set the cursor to the beginning of f i le
fprintf(FileRobotDr, "RobotCurMX\t RobotCurMY\t RobotCurMZ\tRobotCSX\tRobotCSY\tRobotCS

m_ctrlWriteFile.SetWindowText("Close File");
m bDriveRobotWrite = true;

)
else
{

fclose(FileRobotDr);
m_ctrlWriteFile.SetWindowText("WriteToFile");
m bDriveRobotWrite = false;

jid CTrackingClassDlg: :OnChangeEditVel ()

// TODO: If this is a RICHEDIT control, the control will not
// send this notification unless you override the CDialog::OnInitDialog(]
// function and call CRichEditCtrl () .SetEventMaskO
// with the ENM_CHANGE flag ORed into the mask.

// TODO: Add your control notification handler code here
UpdateData(true);

[id CTrackingClassDlg: :OnButtonDriveBeam()

// TODO: Add your control notification handler code here
DriveBeamO ;

[id CTrackingClassDlg::OnButtonCorrect ()

// TODO: Add your control notification handler code here
if (CurrLine < NumOfLine)

31

if (CurrPt < NumOfPt[CurrLine])
{

if (ra_ctrlRadioMotocoin. GetCheck ())
MotocomCorrection() ;

else
TurboCorrectionO ;

CurrPt++;

else

if (m_ctrlRadioMotocom.GetCheck())
MotocomCorrection();

else
TurboCorrection();

CurrPt = 0;
CurrLine++;

)
else
{

if (m_ctrlRadioMotocom.GetCheck{))
MotocomCorrection();

else
TurboCorrection();

CurrPt = 0;
CurrLine = 0;

Id CTrackingClassDlg::OnButtonZero()

/ / TODO: Add your control notification handler code here
MotocomCorrection ();

Ld CTrackingClassDlg::kinematics(CMotor Motl, CMotor Mot2, double psdx, double psdy, double 1

PiTRIX *R)

float al, a2;//, a3;

MATRIX *L1, *L2, *L0;
MATRIX *M;
MATRIX *A1, *A2, *Scratchl, *Scratch2;
float ql, q2;
ql = Motl.CurrentAngle * 2 * pi;
q2 = Mot2.CurrentAngle * 2 * pi;
LO = matrix_allocate (4, 4);
LI = matrix_allocate(4, 4);
L2 = matrix_allocate (4, 4);
M = matrix_allocate(4, 4);
Al = matrix_allocate (4, 4);
A2 = matrix_allocate (4/ 4);
Scratchl = matrix_allocate (4, 4);
Scratch2 = matrix_allocate{4/ 4);

transRPY(xL, yL, zL, alphaL, betaL, gaannaL, LO);

/*World CS to Ml Transform*/

mirr(alphal, betal, zedl, Al);
trans (xml, yml, zml, A2);
matrix_mult (A2, Al, M); / / Mirrorl Transform

refl(M, LO, Al) ;
GETVALJMAT (2,3, a l , Al) ;
matrix_mult(LO, Al, LI) ;

//Ml to M2 Transform
mirr(alpha3, beta3, zed3, Al) ;
rotx(q2, A2) ;
matrix_mult(A2, Al, Scratchl);
trans(dxm3, dym3, dzmS, Al);
matrix_mult(Al, Scratchl, Scratch2);
rotz(ql, Al);
matrix_mult(Al, Scratch2, Scratchl);
trans (xm2, ym2, zm2, Al);
matrix_mult(Al, Scratchl, M); //Mirror2 Transform

32

refl(M, LI, Al) ;
GETVALJMAT (2 , 3 , a2,Al) ;
matrix_mul t (LI, Al , L2) ;

,'/M2 to R e t r o r e f l e c t o r Transform
trans(psdx, psdy, 1, A2);
matrix mult(L2, A2, R) ;

Id CTrackingClassDlg::transRPY(float px, f l o a t py, f l o a t pz , f l o a t rx , f l o a t ry , f l o a t r z , MA
JX *TRPY)

MATRIX *RX, *RY, *RZ, *T, *M1, *M2;

Ml = m a t r i x _ a l l o c a t e (4 , 4) /
M2 = m a t r i x _ a l l o c a t e (4 , 4) ;
RX = m a t r i x _ a l l o c a t e (4 , 4) ;
RY = m a t r i x _ a l l o c a t e (4 , 4) ;
RZ = m a t r i x _ a l l o c a t e (4 , 4) ;
T = m a t r i x _ a l l o c a t e (4 , 4) ;

rotx{rx, RX);
roty(ry, RY);
ro tz (rz , RZ);
trans(px, py, pz , T) ;
matrix_mult (RY, RX, Ml);
matrix_mult(RZ, Ml, M2);
matrix mult (T, M2, TRPY) ;

matrix_
matrix_
matrix_
matrix_
matrix_
matrix

f ree(Ml) ;
"free (M2) ;
"free (RX) ;
free(RY);
free(RZ);
f r e e (T) ;

rRIX *CTrackingClassDlg : :mat r ix_a l loca te (in t rows, i n t co ls)

int i;
MATRIX *A;

A= (MATRIX*) c a l l o c d , s i z e o f (MATRIX)) ;
if (!A)
{

AfxMessageBox("Error in Matrix Allocation", IDOK, NULL);
exit(l);

}
A->rows = rows;
A->cols = cols;

float **double_matrix;
double_matrix = (float **) calloc(rows, sizeof(float *));
for (i=0; i<rows; i

double_matrix[i] = (float*) calloc(cols, sizeof(float));

A->ptr = (char**)double_matrix;
return A;

jid CTrackingClassDlg: :matrix_eye (MATRIX *I)

unsigned int i , j ;
float **lptr;

Iptr = (float **)I->ptr;
for (i=0; i<I->rows; i

for (j=0;
Iptr[i][j] = (i==j) ? 1.0 : 0.0;

[id CTrackingClassDlg::rotx(float rx, MATRIX* RX)

float **RXptr;
RXptr = (float **)RX->ptr;

33

matrix_eye(RX);
RXptr[l][l] = cos(rx);
RXptr[l][2] = -s in(rx) ;
RXptr[2][l] = -RXptr[l] [2] ;
RXptr[2][2] = RXptr[l][1];

Id CTrackingClassDlg::roty(float ry, MATRIX* RY)

float **RYptr;
RYptr = (float **)RY->ptr;
matrix_eye(RY);
RYptr[0][0] = cos(ry);
RYptr[0][2] = sin(ry);
RYptr[2][0] = -RYptr[0][2];
RYptr[2][2] = RYptr[0][0];

1
i

Id CTrackingClassDlg::rotz(float rz , MATRIX* RZ)

float **RZptr;
RZptr = (float **)RZ->ptr;
matrix_eye(RZ)/
RZptr[0][0] = cos(rz) ;
RZptr[0][1] = - s i n (r z) ;
RZptr[1][0] = -RZptr[0] [1] ;
RZptr[l][l] = RZptr[0][0],•

id CTrackingClassDlg::trans(float dx, f loa t dy, f loa t dz, MATRIX* TXYZ)

float **TXYZptr;

TXYZptr = (float **)TXYZ->ptr;
matrix_eye(TXYZ);

TXYZptr[0] [3] = dx;
TXYZptr[1][3] = dy;
TXYZptr[2][3] = dz;

Id CTrackingClassDlg::matrix_f ree (MATRIX *A)

unsigned in t i ;
char **a;

i f !A->ptr !A->rows !A->cols)

AfxMessageBox("invalid matrix free", IDOK, 0);
e x i t (l) ;

a = A->ptr;
for (i=0; i<A->rows;

f r ee (a [i]) ;
free((char*)a);
a=NULL;
free((char *)A);

id CTrackingClassDlg: :mirr (float rx, float ry, float dz, MATRIX *H)

MATRIX *FA1, *FA2, *FScratchl;

FA1 = matrix_allocate(4, 4);
FA2 = matrix_allocate(4, 4) ;
FScratchl = matrix_allocate (4, 4);
roty(ry, FA1);
trans(0,0,dz,FA2);
matrix_mult(FAl, FA2, FScratchl);
rotx(rx, FA1);
matrix_mult(FAl, FScratchl, H) ;
matrix_free(FAl);
matrix_free(FA2);
matrix_free(FScratchl);

i-d CTrackingClassDlg: :matrix_mult (MATRIX *A, MATRIX *B, MATRIX *C)

34

int a_r, a_c, b_c;

if (B->rows != A->cola)
{

AfxMessageBox("Error in Matrix Multiplication", IDOK, 0);
exi t (l) ;

}

a_r = A->rowa;
a_c = A->cols;
b__c = B->cols;

MULT_MAT(A, B, C, a_r, a_c, b_c) ;

[d CTrackingClassDlg::refl(MATRIX *H, MATRIX *L, MATRIX *B)

/* H - mirror CS * /
/* L - laser CS * /
/* B - new CS our from mirror*/

float n, d, a, v, c, v_m, nLCl, nLC2;
float **Hptr, **Lptr, **Bptr;

Hptr = (float **) H->ptr;
Lptr = (float **) L->ptr;
Bptr = (float **) B->ptr;

n = Hptr[0][3]*Hptr[0][2] + Hptr[1][3]*Hptr[l][2] + Hptr[2][3]*Hptr[2][2] - Hptr[0][2]*Lptr
[3] - Hptz[l][2]*Lptr[l][3] - Hptr[2][2]*Lptr[2][3];
d = Hptr[0][2]*Lptr[0][2] + Hptr[1][2]*Lptr[l][2] + Hptr[2][2]*Lptr[2][2];

a = n/d;
nLCl = Lptr[0][0]*Hptr[O][2] + Lptr[1][0]*Hptr[l][2] + Lptr[2][0]*Hptr[2][2];
nLC2 = Lptr[0][l]*Hptr[0][2] + Lptr[1][1]*Hptr[l][2] + Lptr[2][1]*Hptr[2][2];

v = 2*d*d;
c = 1-v;

v_m = v/(l-d*d);

matrix_eye(B)/

Bptr[0][0] = nLC2*nLC2*v_m + c;
Bptr[0][l] = -nLC2*nLCl*v_m;
Bptr[0][2] = -nLCl*2*d;
Bptr[l][0] = Bptr[0] [1];
Bptrtl] [1] = nIiCl*nLCl*v_m + c;
Bptr[l][2] = -nLC2*2*d;
Bptr[2][0] = -Bptr[0][2];
Bptr[2][l] = -Bptr[l][2];
Bptr[2][2] = c;
Bptr [2] [3] = a;

1

Ld CTrackingClassDlg: :OnButtonTry ()

// TODO: Add your control notification handler code here
MATRIX *R;//, *Q, *A;
char buffer[256];
float **Aptr;//, **Rptr, **Qptr;

R = matrix_allocate(4,4) /
//Q = matrix_allocate(4,4);
//A = matrix_allocate(4/4);
/*matrix_eye (R);
rotx(pi/2, R);
matrix_eye(Q)/
•roty(pi/2/ Q);
matrix_eye (A);
matrix_mult (R, Q, A) ;
Aptr = (float**)A->ptr;*/

//Qptr = (float**)Q->ptr;
Ml.CurrentAngle = 0.O;
M2.CurrentAngle = -0.034325;
kinematics(Ml, M2, 0.0, 0.0, 332.175, R) ;
Aptr = (float**)R->ptr;

35
t'^.'£Y'4''$i''%is-

sprintf(buffer, "%.31f\t*.31f\t%.31f\t%.31f\t\n%.31f\t%.31f\t%.31f\t%.31f\t\n%.31f\t%.31f\t
}lf\t%.31f\t\n%.31f\t%.31f\t%.31f\t%.31f\t\n", Aptr[0][O], Aptr[O][l], Aptr[0][2], AptrtO][3]
otr[l][O], Aptr[l][l], Aptr[l][2], Aptr[l][3], Aptr[2][0], Aptrt2][l], Aptr[2][2], Aptr[2] [3

[Aptr[3] [0], Aptr[3][l], Aptr[3][2], Aptr[3][3]);
m sStatus = buffer;
sprintf(buffer, "%.31f\t%.31f\t%.31f\t", Aptr[0][3], Aptr[l][3]-465.13, Aptr[2][3]-548.37);
m sStatus += buffer;
UpdateData(false);
matrix_free(R) ;
//matrix_free(Q);
//matrix_f ree (A) ;

j.d CTrackingClassDlg: :OnChangeEditAcc2 ()

// TODO: If this ±3 a RICHEDIT control, the control will not
// send this notification unless you override the CDialog::OnInitDialog()
// function and call CRichEditCtrl().SetEventMask()
// with the ENM_CHANGE flag ORed into the mask.

// TODO: Add your control notification handler code here
UpdateData(true);

J.d CTrackingClassDlg: :OnButtonPointSample ()

// TODO: Add your control notification handler code here
if (!m_bSample)

}
else
{

m_bSample = t rue ;
m_ctrlPointSample.SetWindowText("STOP SAMPLE");

m_bSample = fa lse ;
m_ctrlPointSample.SetWindowText("POINT SAMPLE");

id CTrackingClassDlg::OnRadioMotocomCorr2 ()

/ / TODO: Add your control no t i f ica t ion handler code here
m_ctrlRadioTurbo2.SetCheck (0);
m ctrlRadioMotocom2.SetCheck(1);

id CTrackingClassDlg::OnRadioTurboCorr2()

/ / TODO: Add your control no t i f ica t ion handler code here
m_ctrlRadioTurbo2.SetCheck(1);
m_ctrlRadioMotocom2.SetCheck(0);

\

36

rrackingClassDlg.h : header f i le

!defined (AFX_TRACKINGCLASSDLG_H__4O3883F7_2D41_11D7 8A8B_000102C2E8E7 INCLUDED_)
|fine AFXJTRACKINGCIASSULG_H_4O3883F7_2D41_llD7_8A8Bj)O0102C2E8E7 INCLUDED_

MSC_VBR > 1000
lagma once
Idif / / _MSC_VER > 1000

Iclude "ZygoClass.h"
[elude "PSDClass.h"
[elude "BncoderClass.h"
[elude "RobotControl ler . h"

iedef s t r u c t

CString name;
double x;
double y;
double z;

EC_DATA_CARTES IAN ;

|>edef s t r u c t

/ / int element_size;
unsigned int rows;
unsigned int cols;
char **ptr;
TRIX;

^fine MULT_MAT(a,b,c,rowsa,colsa,colsb) {\

i
3
i

1

(float **)a->ptr;
(float **)b->ptr;
(float **)c->ptr;

{ \

float **_AMX
float **_BMX
float **_CMX
float *_PTA; \
float *_PTB; \
float *_PTC; \
int _IX, _JX, _KX; \
for (_IX=0; _IX<rowsa;

_PTC = _CMX[_IX]; \
_PTB = _BMX[0]; \
for (_JX = 0; _JX < colsb; _JX++)

_PTA = _AMX [_IX] ; \
*_PTC = (*_PTA++) * (*_PTB++); \
for (_KX = 1; __KX < colsa; _KX++) \

*_PTC += (*_PTA++) * BMX [_KX.3 [_JX]; \
PTC++; \

~

{ \

} \
\

Jefine GETVAL_MAT (row, col, value, A) { value = ((float**)A->ptr) [row] [col] ; }

nst float xL = 0.0;
tist float yL = 0.0;
nst float zL = 162.0;
nst float alphal = (float)-2.35 62;
ist float betal = 0.0;

|nst float zedl = 0.0;
: float alpha3 = (float)0.7854;

ist float beta3 = 0.0;
Inst float zed3 = 0.0;
|nst float xml = 0.0;
ist float yml = (float)465.13;

Inst float zml = 162.0;
Inst float xm2 = 0.0;
Inst float ym2 = (float)465.13;
Inst float zm2 = (float)548.37;
Inst float dxm3 = 0.0;
Inst float dym3 = 0.0;
Inst float dzm3 = 0 . 0 ;
Inst float alphaL = (float)-1.5708;
Inst float betaL = 0.0;
|nst float gammaL = 0.0;

CTrackingClassDlg dialog V.'

M v-J

3s CTrackingClaasDlg : public CDialog

:onstruction
lie:
CTrackingClassDlg (CWnd* pParent = NULL);
void Transformation () ;
void DriveMotor(CMotor, CMotor);
bool m_bTrack;
bool m_bInitFlag;
bool m_bSubSystemRun;
bool m_bDataThread;
bool m_bFileFlag;
bool m_bSample;
bool m_bDynamicSample;
bool m_bTurboTryThread;
bool m_bUpdateTurbo;

// standard constructor

FILE* fp;
CEncoder Encoder;
CPSD Psd;
CZygo Zygo;
CBitmap hlmageStar t , hlmageStop;
CMotor Ml, M2;

CMotor Motorl, Motor2;
bool m_bEncoderThread;
bool m_bPsdThread;
bool m_bZygoThread;

oool m_bGPIBorRS232;

CString m_sTime;
CRobotController* MyRobot;
CSerial s e r i a l ;
s t a t i c UINT TurboTryThread(LPVOID);

bool m^bTx, m_bTy, m_bTz;
bool m_bGuide;
bool ni_bEGTFS;
bool io_bEGTFSTurbo;
bool m_bDriveRobot;
bool m_bMotocomDrive;
bool ni_bPathDrive;
bool n_bDriveRobotWrite;
bool m_bTurboCorrThread;
float m_fAzimuthTarget;
float n^fElevationTarge'c;
static UINT GuidanceThread(LPVOID);
static UINT EGTFSThread(LPVOID);
static UINT EGTFSTurboT-.read(LPVOID) ;
static UINT DrivaRobotThread(LPVOID);
static UINT TurboCorrectionThread(LPVOID) ;
void DriveBeam() ;
void MotocomCorrection();
void TurboCorrection();
RobotPos pRobotCurrentPos;

void kinenatics{CMotor, CMotor, double, double, double, MATRIX*);
void rotx(float, MATRIX*);
void roty(float, MATRIX*);
void rotz(float, MATRIX*);
void mirr(float, float, float, MATRIX*);
void trans(float, float, float, MATRIX*);
void matrix_eye(?£VTRIX*) ;
void refl (MATRIX*, MATRIX*, MATRIX*);
MATRIX *matrix_allocate(int, int);
void mati:ix_f ree (MATRIX *) ;
void matrix_mult(MATRIX*, MATRIX*, MATRIX*);
void transRPY(float, float, float, float, float, float, MATRIX*);
Dialog Data
// {{AFX_DATA (CTrackingClassDlg)
enum { IDD = IDD_TRACKINGCLASS_DIALOG };
CButton m._ctrlPointSample;
CButton m_ctrlRadioTurbo2;
CButton m_ctrlRadioMotocom2;
CButton m_ctrlWriteFile;
CEdit ta_ctrlDz;
CEdit m_ctrlDy; ilj

iCEdit m_ctrlDx;
j CButton nw-.tilRadioPathDrive;
| CButton m_ctrlRadioMotocomDrive;
CButton m_ctrlTurboTry;
CButton m_ctrlRadioTurbo;
CButton m_ctrlRadioMotocom;
CButton m_ctrlButtonGuidarice;
CButton m_ctrlButtonEGTFS;
CCoinboBox m_ctrlComboCS;
CButton m_ctrlDriveRobot;
CButton m_ctrlOpenPort;
CButton m_ctrlDynamicSample;
CButton m_ctrlSample;
CButton m_ctrlRadioCATj
CButton m_ctrlRadioAPR;
CButton m_ctrlGoBB;
CButton m_ctrlTrack;
CButton m_ctrlCheckDisplay;
CButton m_ctrlRadioRS232;
CButton m_ctrlRadioGPIB;
CButton m_ctrlUp;
CButton m_ctrllnit;
CEdit m_ctrlStepSize;
CButton m_ctrlSubSystem;
CButton m_ctrlDecStepSize;
CButton m_ctrlIncStepSize;
CButton m_ctrlRight;
CButton r_JtrlLeft;
CButton m_ctrlDown;
CString m_sStatus;
UINT m_uiPSDFreq;
UINT m_uiENCFreq;
int m_uiZYGOFreq;
long m_lEncl;
long m_lEnc2/
double m_lfPSDX;
double m_lfPSDY;
double m_lfLaserDist;
UINT m_uiStepSize;
CString m_sBeam;
UINT m_uiCompThreadFreq;
double m_lfPosX;
double m_lfPosY;
double m_lfPosZ;
double m_lfPosX2;
double m_lfPosY2;
double in_lfPosZ2;
UINT m_uiTurboFreq;
UINT ia_uiEGTFSFreq;
UINT m_uiGuidanceFreq;
double m_lfVel;
double mJLfRobotX;
double m_lfRobotY;
double m_lfRobotZ;
double m_lfTurboTryAcc;
double m_lfTurboTryVel;
float m_fDx;
float ra_fDy;
float m_fDz;
//}}AFX_DATA

// ClassWizard generated virtual function overrides
// {{AFX_VTRTUAI. (CTrackingClassDlg)
protected:
v i r t u a l void DoDataExchange(CDataExchange* pDX); / / DDX/DDV support
//}}AFX_VIRTUAL

Implementation
Jotected:

HICON m_hlcon;

// Generated message map functions
// {{AFX_MSG(CTrackingClassDlg)
virtual BOOL OnlnitDialogO ;
af xjnsg void OnSysCommand (UINT nID, LPARAM IParam) ;
afx_msg void OnPaint{);
afx_msg HCURSOR OnQueryDraglconO ;
afx_msg void OnButtonlnit()/
afx_msg void OnTimer(UINT nIDEvent); \

afx msg void OnButtonSubsystemO ;
afxjnag void OnButtonUp ();
afxjnsg void OnButtonDown () ;
afx msg void OnButtonLeft();
afx""msg void OnButtonRight();
afx~"msg void OnChangeEditStepSize();
afxjnsg void OnBUTTONReINITZYGO() ;
afx msg void OnRadioGpib () ;
afxjnsg void 0nRadioRs232();
virtual void OnOK() ;
afxjnsg void OnButtonTrack{);
afxjnsg void OnButtonSetBb();
afxjnsg void OnButtonGoBb()/
afxjnsg void OnRadioAprO ;
afxjnsg void OnRadioCat () ;
afxjnsg void OnButtonStaticSample();
afxjnsg void OnButtonDynamicSample();
afxjnsg void OnButtonOpenPort();
afxjnsg void OnButtonDriveRobot();
afxjnsg void OnCheckTx();
afxjnsg void OnCheckTyO;
afxjnsg void OnCheckTz();
afxjnsg void OnButtonReset();
afxjnsg void OnChangeEditAcc ();
afxjnsg void OnButtonTransformation();
afxjnsg void OnButtonPathGe.neration();
afxjnsg void OnButtonEgtfs();
afxjnsg void OnButtonGuidance();
afxjnsg void OnRadioTurboCorr();
afxjnsg void OnRadioMotocomCorr();
afxjnsg void OnButtonTurbotry();
afxjnsg void OnRadioMotocomDrive () ;
afxjnsg void OnRadioPathDrive();
afxjnsg void OnChangeDx();
afxjnsg void OnChangeDy();
afxjnsg void OnChangeDz()/
afxjnsg void OnSelchangeComboCs();
afxjnsg void OnButtonWriteFile();
afxjnsg void OnChangeEditVel();
afxjnsg void OnButtonDriveBeamO ;
afxjnsg void OnButtonCorrect();
afxjnsg void OnButtonZero();
afxjnsg void OnButtonTry();
afxjnsg void OnChangeEditAcc2();
afxjnsg void OnButtonPointSample();
afxjnsg void OnRadioMotocomCorr2();
afxjnsg void OnRadioTurboCorr2{);
//}}AFX_MSG
DECLARE_MESSAGE_MAP ()

ivate:
static UINT ComputationThread(LPVOID);

{{AFX_INSERT__LO<~ATION} }
Microsoft Visual C++ will insert additional declarations immediately before the previous lin

adif // !defined(AF:i_TRACKINGCLASSDLG_H__403883F7_2D41_llD7_8A8B_000102C2E8E7 INCLUDED^)

\

|TrackingClass.cpp : Defines the class behaviors for the application.

[elude "s tdafx .h"
tclude "TrackingClass.h"
jiclude "TrackingClaasDlg.h"

fcdef _DEBUG
[fine new DEBUG_NEW
hdef THIS_FILE
fctic char THIS_FILE[] = FILL__;
fdif

Will II l/lll H://1 III/1IIIIIII I/I I/I/I I/I I f III It I/I I/I nil III I lll/l II Hill
j. CTrackingClassApp
i
;iN_MESSAGE_MAP (CTrackingClassApp, CWinApp)
// {(AFX_MSG_MAP (CTrackingClassApp)

// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

//}}AFX_MSG
ON_COMMAND (ID_HELP, CWinApp:: OnHelp)
_MESSAGE_MAP ()

n n n iiiiiiii/i// u ii/iiii/iiii//i/ii/i//iiii t iiiiii/ n /iiii/iiii//iii n ii

CTrackingClassApp construction

rackingClassApp: : CTrackingClassApp ()

// TODO: add construction code here,
// Place all significant initialization in Initlnstance

nun IIIIIII 111 iiiiii/i/n/i in/1I/I n[i/iI/I ii II iin•/////'//inin'ii inII /1

The one and only CTrackingClassApp object

cackingClassApp theApp;
' i ii ii n i /1111 /1111 ii i /11111 n /j; /1111 /1111 /11 n /11 /1 /11 /1111 /11111 /1 /1111 /

CTrackingClassApp initialization

3L CTrackingClassApp::Initlnscance()

AfxEnableControlContainer();

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

// Call this when using MFC in a shared DLL
Ifdef _AFXDLL

Enable3dControls();
Use

Enable3dControlsStatic(); // Call this when linking to MFC statically
Indif

CTrackingClassDlg dig;
m_pMainWnd = &dlg;
int nResponse = dlg.DoModal ();
if (nResponse == JDOK)

// TODO: Place code here to handle when the dialog is
// dismissed with OK

else if (nResponse == IDCANCEL)
{

// TODO: Place code here to handle when the dialog is
// dismissed with Cancel

// Since the dialog has been closed, return FALSE so that we exit the
// application, rather than start the application's message pump,
return FALSE;

TrackingClass.h : main header f i l e for the TRACKINGCLASS a p p l i c a t i o n

! defined (AFX_TRACKINGCLASS_H 403883F5_2D41_11D7_8A8B_000102C2E8E7 INCLUDED_)
Jfine AFX_TRACKINGCLASS_H 403883E5_2D41_11D7_8A8B_000102C2E8E7 INCLUDED_

MSC_VER > 1000
|agma once
|dif / / _MSC_VER > 1000

Indef _AFXWIN_H_
#error include 'stdafx.h' before including this file for PCH

Idif

delude "resource.h" // main symbols
Lclude "serial.h"
\l 11111111111111111111 /1 /11 /1111 /111111111111 /11111 /1111 /111111111111 /1111 /
CTrackingClassApp:
See TrackingClass.cpp for the implementation of this class

ass CTrackingClassApp : public CWinApp

blic:
CTrackingClassApp () ;

!Overrides
// ClassWizard generated virtual function overrides
//{(AFX_VIRTUAL (CTrackingClassApp)
public:
virtual BOOL Initlnstance ();
//}]AFX_VIRTUAL

Implementation

// {{AFX_MSG (CTrackingClassApp)
// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !

//}}AFX_MSG
DECLARE MESSAGE MAP()

'/V///////////////7//////////'//HI//I/11/IIII i 1111 /11 /111 i /11 /111II11/1 /11

{(AFX_INSERT_LOCATION) }
Microsoft Visual C++ will i additional declarations immediately before the previous lin

idif // ! defined (AFX_TR^.CKINGCLASS_H 403883F5_2D41_llD7_8A8B_O0O102C2E8E7 INCLUDED_)

\

k

[ZygoClass.cpp: implementation of the CZygo c l a s s .

hclude "stdafx.h"
jiclude "ZygoClass.h"
hclude "SSClass.h"
nclude "decl-32.h"
hclude "acrolib.h"

fedef _DEBUG
ndef THIS_FILE
atic char THIS_FILE[]<
efine new DEBUG_NEW
kdif

FILE

prt ZmilOOO;
brt GpibBoard;

Device = 0 ;
tern unsigned long pACRAddress [1] ;
tern bool m_bAPRorCAT;
u 11111 / u 1111111,' 1111 /1 / m 1111111 /11 /11 n /1 n i /11 /1 /11 /1111 / n 1111
1 Construction/Destruction

ii 111111111111 n i /111 u f i /1 m i n 11 /11 m 11 /1 n i /11 / n 11 n m / n ? i /1
ygo::C2,ygo()

/ / Ini t ia l ise Laser parameters
m_uiLaserFreq = 0;
if (m_bAPRorCAT)

LaserDist = 332.175; //323.994;

else
LaserDist = 317.79;

hCommPort = NULL;
m_bThread = false;
g_pZygoThread = NULL;

/* 332.175 for APR on poles
/* 323.994 for APR on Leica adapter*/

|ygo::-CZygo ()

if (g_pZygoThread)
(

m_bThread = fa l se ;
CloseHandle (g__pZygoThread->m_hThread) ;

Bid CZygo: : Ini t ia l i seLaser(bool Zygolnterface, CString* Status)

char buffer[256] ;
char Wbuf f er [80] ;
char Lbuffer[80];
char portcmd[25 6] ;

m_bGPIB_RS232 = Zygolnterface;
//LaserDist = BBLaserDist;
if (m_bAPRorCAT)

LaserDist = 332.175; / /323.994;
else

LaserDist = 317.79;
if (m_bGPIB_RS232)

Device = ibfind("DEVl");
sp r in t f (bu f fe r , "Zygo desc r ip to r = %d\n",Device);
m sStatus = buf fe r ;
GpibBoard = ibfind("GPIB0") ;
sprintf(buffer, "GPIB board descriptor = %d\n",GpibBoard);
m_sStatus.Insert(m_sStatus.GetLength(), buffer);
ibonl(Device, 1) ;
SendlFC(O);
ibconfig(Device, IbcEOSrd, 1);
ibclr(Device);
ibwrt(Device, "FORMAT A\n"; 9);
ibwrt(Device, "*ESE 60\n", 8) ;
ibwrt(Device, "*SRE 32\n", 8);
ibwrt(Device, "*SRE l\n", 7);
ibtmo(Device, TlOs);
ibtmo(GpibBoard, TlOs);

ibwrt(Device
ibrd(Device,
ibwrt(Device
ibrd(Device,
ibwrt(Device
ibrd(Device,
ibwrt(Device
ibrd (Device,
ibwrt (Device
ibwrt(Device
ibrd(Device,
ibwrt(Device
ibrd(Device,

, "*IDN?\n", 6);
ZygolD, 80);
, "*0PT?\n", 5);
ZygoOp, 80);
, "WGET? #H2D,#H100\n", 17);
Wbuffer, 80);
, "LGET? #H2D,#H10C\n", 17);
Lbuffer, 80) ;
, "WPUT #H2D,#H104,#H2\n", 20);
, "WGET? #H2D,#H100\n", 17);
Wbuffer, 80);
, "LGET? #H2D,#H10C\n", 17);
Lbuffer, 80);

else

i f (hCommPort != NULL)
{

ClosePor tO ;
OpenPort() ;

)
else

OpenPort();
sprintf(portcmd, "*CLS\n");
WriteToPort(portcmd, strlen(portcmd)),
sprintf(portcmd, "*RST\n");
WriteToPort(portcmd, 3trlen(portcmd));
sprintf (portcmd, "FORMAT A\r>") ;
WriteToPort(portcmd, strlen(portcmd));
sprintf(portcmd, "*ESE 60\n");
WriteToPort(portcmd, strlen(portcmd));
sprintf(portcmd, "*SRE 32\n");
WriteToPort(portcmd, strlen(portcmd));
sprintf(portcmd, "*SRE l\n");
WriteToPort(portcmd, s t r l e n (p o r t c m d)) ;
s p r i n t f (b u f f e r , "RS_232 COM PORT 1 \ n ") ;
m_s S t a t u s = buf fe r ;

}
•Status = m s S t a t u s ;

!IDLE CZygo: : OpenPort ()

DCB deb;
char lpPort[10]="COMl";
hCommPort = C r e a t e F i l e (l p P o r t ,

GENERIC_READ ! GENERIC_WRITE,
0,
NULL,
OPEN_EXISTING,
NULL,
NULL);

if (hCommPort INVALID HANDLE VALUE)

Af xMessageBox("Cannot open port.", MB_OK);
return 0;

FillMemory(&dcb, sizeof(dcb), 0);
deb.DCBlength=sizeof(deb);
if (iBuildCommDCB("19200, n, 8, 1", Sdcb))

Af xMessageBox("Cannot build deb.", MB_OK);
return 0;

GetCcjimState (hCommPort, Sdcb);
dcb.fOutxCtsFlow = 0;
dcb.fOutxDsrFlow » 0;
//dcb.BaudRate = CBR_9600;
//dcb.ByteSize = 8;
//deb.Parity = NOPARITY;
//dcb.StopBits = ONESTOPBIT;
SetCommState(hCommPort, 6dcb);
return (hCommPort) ;

d CZygo: :ClosePortO

CloseHandle (hCommPort) ;

I-/ J v i

CZygo: :ReadFromPort(char *lpReadBuf, DWORD ByteaToRead)

DWORD dwRead;
//char *lpReadBuf;

if (!ReadFile(hCommPort, lpReadBuf, BytesToRead, SdwRead, NULL))
(

AfxMessageBox("ReadFile ERROR", MB_OK);
return 0;

else

//AfxMessageBox("ReadFile OK", ML_0K) ;
return (dwRead);

CZygo: :WriteToPort{char *lpWriteBuf, DWORD BytesToWrite)

DWORD dwWrite;
//char *lpWriteBuf;

if (!WriteFile(hConnaPort, ipWriteBuf, BytesToWrite, sdwWrite, NULL))
{

A£xMessageBox("WriteFile Er ro r" , MB_OK) ;
return 0;

else
{

//AfxMessageBoxC'WriteFile OK", MB_OK) ;
re turn (dwWrite);

|NT CZygo: :SampleZygoThread(LPV03:D pParam)

THREADPARAMS* pThreadParamu = (THREADPARAMS*) pParam;
CZygo* pZygoWnd = {CZygo*) pThreadParams->lParam;
delete pThreadParams;

char portcnid[25 6] ;
char portdata[256] = {0};
double ZValue;
unsigned long byteread;
char *pPortData;
char Lbuffer[80];
long L;
unsigned long L2;
char* pChar;
DWORD dwErrorFlags;
float pSendIEEEZygo[l];

/ / Ini t ial izeCrit icalSection(&ZygoCS);
while (pZygoWnd->m_bThread)

//GPIB Sampling
if (pZygoWnd->m_bGPIB_RS232)

ibwrt(Device, "LGET? #H2D,#H10C\n", 17);
ibrd(Device, Lbuffer, 80);
Lbuffer[0] = ' 0 1 ;
Lbuffer[1] = "x1 ;
i f (Lbuffer[2] >= ' 8 ')
i

L2 = strtoul(Lbuffer, fipChar, 16);
L = L2 - 2147483648 - 2147483648;

else

L = strtol(Lbuffer, fipChar, 16);

//RS232 S a i l i n g
else

// Send command to read Interferometer data

3

::sprintf(portcmd, "READ? l,M\n");
pZygoWnd->WriteToPort(portcmd, strlen{portcmd));
//ClearConunError(pZygoWhd->hCommPort, sdwErrorFlaga, &pZygoWhd->ComStat)
//byteread = pZygoWnd->ComStat.cbInQue;
//pZygoWnd->ReadFromPort(Lbuffer, byteread);

// Use pointer to point to the array of char, improve efficiency
pPortData = portdata;
// Start polling until receiving character 10
while (true)
{

byteread += pZygoWhd->ReadFromPort(pPortData, 1);
if (*pPortData == 10)

break;
if (byteread)

pPortData++;
}
L = atoi(por tdata) ;

//Data Conversion
ZValue = L * Resolution * 1000;
if (m_bAPRorCAT)

pZygoWnd->LaserDist = BBLaserDistAPR + ZValue;
else

pZygoWnd->LaserDist = BBLaserDistCAT + ZValue;
if (pZygoWnd->LaserDist < 0.0)
{

AcroSendString("JOG OFF X Y", 0) ;
AcroSendString("HALT",0);
return 0;

}
pSendIEEEZygo[0] = (f loa t) pZygoWhd->LaserDist;
A8_BIN_POICE_IEEE(0xOl, 1, pACRAddress [0] + 5, pSendlEEEZygo, 0) ;
byteread = 0;
pZygoWnd->m_uiLaserFreq++;

}
return 0;

|id CZygo::StartThread()

m_bThread = t r u e ;
THREADPARAMS* pZygoThread = new THREADPARAMS;
pZygoThread->lParam = (LPARAM) t h i s ;
g_pZygoThread = AfxBeginThread(SampleZygoThread, pZygoThread, THREAD_PRIORITY_HIGHEST, NULL

[id CZygo: :StopThread()

m_bThread = fa lse ;
CloseHandle (g_j>ZygoThread->m_hThread) ;

|uble CZygo: :GetSample()

return LaserDist;

INT CZygo::GetFreq()

UINT temp;
temp = m_uiLaserFreq;
m_uiLaserFreq = 0;
return temp;

IZygoClass.h: i n t e r f ace for the CZygo c l a s s .

! defined (AFX_ZYGOCLASS_H__FB37 8 66F_DF2E_11D6_8A3A_000102C2E8E7 INCLUDEDj
Bfine AFX_ZYGOCLASS_H_FB37866F_DF2E_11D6_8A3A_000102C2E8E7 INCLUDED_

_MSC_VER > 1000
fcagma once
hdif / / _MSC_VER > 1000

CWinThread* g_pZygoThread;

b double N = 1.000271296;
pst double Lambda = 0.000000632991528;
î double Resolution = Lambda / (N * 25 6) ;

nst double BBLaserDistAPR = 332.175;;
nst double BBLaserDistCAT = 317 .79 ; / / 333.8S95;

ass CZygo

ivate:
unsigned in t m_uiLaserFreq;
int WriteToPort(char *lpReadBuf, DWORD BytesToRead);
int ReadFromPort(char *lpReadBuf, DWORD BytesToRead);
void ClosePort () ;
HANDLE OpenPort();

HANDLE hCommPort;
COMSTAT ComStat;
BYTE hPort, bByteSize, bPar i ty , bStopBits;
DWORD dwBaudRate;
COMMTIMEOUTS timeout;
s tat ic UINT Sample ZygoThread (LPVOID) ;

//double InterferometerDist ;
double LaserDist;
//double BBLaserDist;
//unsigned i n t f req;
double time;
bool m_bThread;

char ZygoID[80];
char ZygoOp[80];

blic:
CString m_sStatus;
bool m_bGPIB_RS232;
UINT GetFreq();
double GetSample () ;
void StopThread () ;
void Star tThreadO;
void In i t i a l i s eLase r (boo l , CString*);

CZygo () ;
virtual ~CZygo();

//double GetSample () ;
//void Star tThreadO;
//void StopThread();

fndif / / !defined(AFX_H\'GOCLASS_H FB37866F_DF2E_11D6__8A3A_000102C2E8E7 INCLUDEDJ

4 " ^

I PSDClass.cpp: implementation of the CPSD c lass .

)l 11IIIfIIII','1/7IIIII,>l11V7•/7//1111/II/II11IIIII111/111111II1111/11/
!
sic.Uv.vs "s tdafx .h"
n-lude "'PSDClass.h"
sclr.de rSSClass.h"
nclude "ac ro l ib -h"
aclu.de "matb-h"

fd«sf D2MJG
r.cet TK'IO_6*IIJE
atic char THIS_FILE
efine new DEBUG_NEW
ndif

! = FILE

tern unsigned long pACRAddress [1] ;

\IIIIIIIIIII ii i/i in//in ill u m ii ui i/I i/in in III/II/in I ii nun/
Construction/Destruction

\ii 1111 n 11 /11111 n 11 /1 / f i n n n 11 n'/11 / n / n /1 n 111 /1 n n i ii i n i /11 /
I
|SD::CPSD()

// Initialise PSD parameters
m_uiPSDFreq = 0;
x_PSD = 0.0;
y_PSD = 0.0;
channel = 12;

psd = new PSDStruct;
psd->x = 0.0;
psd->y =0.0;

p_Begin = psd;
p_Current = psd;
Mov_Count = 1;
x_MovAvg = 0.0;
y_MovAvg = 0.0;

m_bThread = false;
g_pPSDSvThread = NULL;

PSD::~CPSD()

if (g_pPSDSvThread)

m_bThread = f a l s e ;

CloseHandle(g_pPSDSvThread->m_hThread);
)

pOL CALLBACK GetDriver (LPSTR lpszName, LPSTR IpszEntry, LPARAM lParam)

LPBOARD lpboard »• (LPBOARD)(LPVOID)lParam;
/* fill in board strings */
lstrcpyn (lpboard->name, lpszName, STRLEN) ;
lstrcpyn (lpboard->entry, IpszEntry, STRLEN) ;
/* try to open board */
lpboard->status = olDalnitialize(lpszName,(LPHDEV)&lpboard->hdrvr);
if (lpboard->hdrvr != NULL)

return FALSE; /* false to stop enumerating */
else

return TRUE; /* true to continue */

|>ol CPSD::initialisePSDSv(CString* Status)

pis is a callback function of olDaEnumBoards, it gets the strings of the Open the board.
t succv>ssful, enumeration is halted,
jiyers board and attempts to initialize

char buffer[80]/

/* Get first available Open Layers board */
board, hdrvr = NULL;
CHECKERROR (olDaEnumBoards(GetDriver,(LPARAM)(LPBOARD)&board));

,r >.
i^P'

/* check for error within callback function */
CHECKERROR (board, status) ;

/* check for NULL driver handle-means no boards */
if (board.hdrvr == NULL)
{

AfxMes3ageBox("No Open Layer b o a r d s ! ! ! " ,
MB_ICONEXCLAMATION | MB_OK);

re tu rn ((UINT) NULL);

/* get handle t o ADC sub system * /
CHECKERROR (olDaGetDASS((HDEV)board.hdrvr,OLSS_AD,0,Sboard.hdass))

/*Set subsystem for s ing le value operat ion * /
CHECKERROR (olDaSetDataFlow(board.hdass, OL_DF_SINGLEVALUE));
CHECKERROR (olDaSetChannelType(board.hdass, OL_CHNT_SINGLEENDED));
olDaSetRange (board, hdass , 10 .0 , -10 .0) ;
olDaSetEncoding(board.hdass, OLJENC_BINARY) ;
CHECKERROR (olDaConfig(board.hdass));

/* get sub systam information for code/vol ts conversion * /
olDaGetRange (board.hdass, &max, Smin) ;
olDaGetEncoding(board.hdass, &encoding) ;
olDaGetResolution (board,hdass, Sresolution) ;
sprintf (buffer, "PSD I n i t i a l i s e d \ n ") ;
•Status = buffer;
return t rue ;

jid CPSD::FtaitThread()

m_bThread = t r u e ;
THREADPARAMS* pPSDThread = new THREADPARAMS ;
pPSDThread->lParam = (LPARAM) t h i s ;
gjpPSDSvThread = AfxBeginThread(SamplePSDSvThread, pPSDThread, THREAD_PRIORITY_NORMAL, NULL

|id CPSD: :StopThread()

ra_bThread = false;
CloseHandle (g_pPSDSvThread->m_hThread) ;

|NT CPSD: :SamplePSDSvThread(LPVOID pParam)

THREADPARAMS* pThreadParams = (THREADPARAMS*) pParam;
CPSD* pPSDWnd = (CPSD*) pThreadParaitis->lParam;
delete pThreadParams;

float voltsl5, voltsl4, voltsl3, voltsl2;
//float volts7, volts6, volts5, volts4;
//float volts3, volts2, voltsl, voltsO;
long valuel5, valuel4, value!3, valuel2;
//long value7, value6, value5, value4;
//long value3, value2, valuel, valueO;
double RatioX, RatioY;
float DevXy, DevYx;
float pSendIE8SPSD[2];

while (pPSDV7nd->m bThread)
{

/* get single value */
olDaGetSingleValue(board.hdass,&valuel5, 15, gain);
olDaGetSingleValue(board.hdass,&valuel4, 14, gain);
olDaGetSingleValue(board.hdass, svalue13, 13, gain);
olDaGetSingleValue(board.hdass,&valuel2, 12, gain);

//PSD 2 on Gimbal
/•olDaGetSingleValue(board.hdass,&value3, 3, gain);
olDaGetSingleValue(board.hdass,&value2, 2, gain);
olDaGetSingleValue(hoard.hdass,&valuel, 1, gain);
olDaGetSingleValue(board.hdass,&value0, 0, gain);

//PSD 3 on Gimbal
olDaGetSingleValue(board.hdass,6value7, 7, gain);

olDaGetSingleValue(board.hdass,&value6, 6, gain);
olDaGetSingleValue(board.hdass,&value5, 5, gain);
olDaGetSingleValue(board.hdass,&value4, 4, gain);
*/

//voltsl = (10.0)/(4096) * valuel + 0.01;
//volts2 = (10.0)/(4096) * value2 + 0.01;
//volts3 = (10.))/(4O96) * value3 + 0.01;
//volts4 = (10.0)/(4096) * value4 + 0.01;

//With interference filter
voltsl5 = ((float)pPSDWnd->max- (float)p?5DWhd->min)

(float) pPSDWnd->min +0.234-0.257+0.0695;
voltsl4 = ((float)pPSDWnd->max-(float)pPSDWnd->min)

(float)pPSDWnd->min -0.299-0.205+0.044 4;
voltsl3 = ((float)pPSDWnd->max- (float) pPSDWnd->min)

(float) pPSDWnd->mi;i -0.098-0.203+0. 0260;
voltsl2 = ((float)pPSDWnd->.Ttiax- (float) pPSDWnd->min)

(float) pPSDWnd->min +0.081-0.266+0. 0583;
/*
//PSD 2 on Gimbal
voltsl - ((float) pPSDWnd->max- (float) pPSDWnd->min) /

float) pPSDWnd->min +0.234-0.257+0.0695;
volts6 = ((float) pPSDWnd->max- (float)pPSDWnd->min) /

Qoat)pPSDWnd->min -0.299-0.205+0.0444;
volts5 = ((float)pPSDWnd->max-(float)pPSDWnd->min)/

Eloat)pPSDWnd->min -0.098-0.203+0.0260;
volts4 = ((float) pPSDWnd->max-(float)pPSDWnd->min)/

float)pPSDWnd->min +0.081-0.266+0.0583;

/ (lL«pPSDWnd->resolution)

/(lL«pPSDWnd->resolution)

/ (lL«pPSDWnd->resolution)

/ (lL«pPSDWnd->resolution)

(lL«pPSDWnd->resolution)

(lL«pPSDWnd->resolution)

(lL«pPSDWnd->resolution)

(lL«pPSDWnd->resolution)

//PSD 3
volts3

loat)pPSDWnd
volts2

loat)pPSDWnd
vo l t s l

[float)pPSDWnd
voltsO

:float)pPSDWnd
V

on Gimbal
• ((float) pPSDWnd->max-(float)pPSDWnd->min)/(lL«pPSDWnd->resolution) * value3 +
>min +0.234-0.257+0.0695;
: ((float)pPSDWnd->max-(float)pPSDWnd->min)/(lL«pPSDWnd->resoluticn) * value2 +
>min -0.299-0.205+0.0444;
• ((float) pPSDWnd->max-(float) pPSDWnd->min)/(lL«pPSDWnd->resolution) * valuel +
>min -0.098-0.203+0.0260;
= ((float)pPSDWnd->roax-(float)pPSDWnd->min)/(lL«pPSDWnd->resolution) * valueO +
>min +0.081-0.266+0.0583;

if (pPSDWnd->Mov_Count < 5) //Moving Average period 5

//Lateral Effect Detector
if ((voltsl3 == 0.0) && (voltsl5 == 0.0))

RatioX = 0.0;
)
else
{

)
RatioX = ((voltsl3 - voltsl5) / (voltsl3 + voltslS));

if ((voltsl2 == 0.0) && (voltsl4 == 0.0))
(

RatioY = 0.0;
)
else
{

RatioY = ((voltsl4 - voltsl2) / (voltsl4 + voltsl2));

//Second Order using Corner Cube
if (RatioX >=0.0)

pPSDWnd->p_Current->x = 1.519*RatioX*RatioX + 7.4715*RatioX;
else

pPSDWnd->p_Current->x = -1.2825*RatioX*RatioX + 7.3906*RatioX;
if (RatioY >=0.0)

pPSDWnd->p_Current->y = 1.7685*RatioY*RatioY + 7.3441*RatioY;
else

pPSDWnd->p_Currcnt->y = -1.3512*RatioY*RatioY + 7.834*RatioY;

pPSDWnd->x_MovAvg += pPSDWnd->p_Current->x;
pPSDWnd->y_MovAvg += pPSDWnd->p_Current->y;
pPSDWnd->p_Current->next = new PSDStruct;
pPSDWnd->p_Current = pPSDX?nd->p_Current->next;
pPSDWnd->Mov_Count++;

else

k

if ((voltsl3 == 0.0) && (voltsl5 == 0.0))

RatioX = 0.0;

else

RatioX = ((voltsl3 - voltsl5) / (voltsl3 + voltsl5));
)

if ((voltsl2 == 0.0) && (voltsl4 == 0.0))

RatioY = 0.0;

else

RatioY = ((voltsl4 - voltsl2) / (voltsl4 + voltsl2));

//Second Order using Corner Cube
if (RatioX >=0.0)

pPSDWnd->p_Current->x = 1.519*RatioX*RatioX + 7.4715*RatioX;
else

pPSDWnd->p_Current->x = -1.2825*RatioX*RatioX + 7.3906*RatioX;
if (RatioY >=0.0)

pPSDWnd->p_Current->y = 1.7685*RatioY*RatioY + 7.3441*RatioY;
else

pPSDWnd->p_Current->y = -1.3512*RatioY*RatioY + 7.834*RatioY;

pPSDWnd->x_MovAvg += pPSDWnd->p_Cu.rrent->x;
pPSDWnd->y_MovAvg += pPSDWnd->p_Current->y;
pPSDWnd->x_PSD - pPSDWnd->x_MovAvg / pPSDWnd->Mov_Count;
pPSDWnd->y_PSD •- pPSDWnd->y_MovAvg / pPSDWnd->Mov_Count;

DevXy = -0.0021 * pP:>DWnd->y_PSD * pPSDWnd->y_PSD - 0.0117 * pPSDWnd->y_PSD;
DevYx = 0.0081 * pPSDWnd->x_PSD * pPSDWnd->x_PSD + 0.0219 * pPSDWnd->x_PSD;

pPSDWnd->x_PSD -= DevXy;
pPSDWnd->y_PSD -= DevYx;

0.1)/*if (fabs(pPSDWnd->x_PSD)
pPSDWnd->x_PSD = 0.0;

if (fabs(pPSDWnd->y_PSD) < 0.1)
pPSDWnd->y_PSD = 0.0;*/

pSendISEEPSD[OJ = pPSDWnd->x_PSD;
pSendIEEEPSD[l] = pPSDWnd->y_PSD;
A8_BIN_POKE_IEEE(0x01, 2, pACRAddress[0] + 1, pSendlEEEPSD, 0);

pPSDWnd->x_MovAvg -= pPSDWnd->p_Begin->x;
pP5DWnd->y_MovAvg -= pPSDWnd->p_Begin->y;
pPSDWnd->p_delete = pPSDWnd->p_Begin;
pPSDWnd->p_Begin = pPSDWnd->p_Begin->next;
delete pPSDWnd->p_delete; ~
pPSDWnd->p_Current->next = new PSDStruct;
pPSDWnd->p_Current = pPSDWnd->p_Current->next;

//x_PSD = ((V4 - V2) / (V4 + V2)) * 7.3874;
//y_PSD = ((V3 - VI) / (V3 + VI)) * 6.4v">05;
//pPSDWnd->channel = 0;
pPSDWnd->m_uiPSDFreq++;
//::Sleep(1);

//Sleep(1);

return 0;

[id CPSD::GetSample(double *pX, double *pY)

*pX = x_PSD;
*pY = y_PSD;

INT CPSD: :GetFreq()

UINT temp;
temp = m_uiPSDFreq;
m_uiPSDFreq = 0; X

return temp;

IpSDClass.h: interface for the CPSD c l a s s .

\lll!!lllII1/1111/1111111111/1IIIII If 11/1/11/1111111/1111/1 IN III/II

! defined (AFX_PSDCLASS_H FB378 680_DF2E_11D6_8A3A_000102C2E8E7 INCLUDEDJ
AFX_PSDCLASS_H FB378680_DF2E_llD6_8A3A__000102C2E8E7 INCLUDED

MSC_VER > 1000
iragma once
hdif / / _MSC_VER > 1000
hclude <olmem.h>
kclude <oler rors .h>
hclude <oldaapi.h>

Error handling macros * /
fefine STRLEN 80 / * s t r ing size for general text manipulation */
ktic char str[STRLEN]; / * global s t r ing for general t ex t manipulation * /

Bfine SHOW_ERROR(ecode) AfxMessageBox(olDaGetErrorString(ecode,\
str,STRLEN), MB_ICONEXCLAMATION | MBJ5K) ;

Bfine CHECKERROR(ecode) i f ((board.status = (ecode)) != OLNOERROR)\
l\
SHOW_ERROR(board.status);\
olDaReleaseDASS(board.hdass);\
olDaTerminate((HDEV)board.hdrvr);\
return ((UINT)NULL);}

Bfine CLOSEONERROR(ecode) if ((board.status = (ecode)) != OLNOERROR)\
{\
SHOW_ERROR(board.status);\
olDaReleaseDASS(board.hdass);\
oir.aTerminate ((HDEV) board.hdrvr); \
EndDialog(hDlg, TRUE);\
return (TRUE);}

Jefine CLOSEONERROR1(ecode, h) if ((board.status = (ecode)) != OLNOERROR)\
<\
SHOW_ERROR(board.status);\
olDaReieaseDASS (board, hdrtss) ;\
olDaTerminate((HDEV)board.hdrvr);\
EndDialog(h, TRUE);\
return (TRUE);)

Jefine CHECKF.RROR1 (ecode) if ((board, status = (ecode)) != OLNOERROR) \
{\
SHOW_ERROR(board.status);\
olDaReleaseDASS(board.hdass);\

olDaTerminate((HDEV)board.hdrvr) ;\
return ((UINT)NULL);}

oedef s t r u c t tag__Board

HDEV hd rv r ;
MASS h d a s s ;
ECODE s t a t u s ;
HBUF hbuf;
WORD FAR* lpbuf ;
char name[STRLEN];
char entry[STRLEN];

lOARD;

*/
*/
*/

/* driver handle
/* sub system handle
/* board error status
/* sub system buffer handle */
/* buffer pointer */
/* string for board name
/* string for board name

* /
* /

bedef BOARD FAR* LPBOARD;
latic BOARD board;

|nst DBL gain = 1.0;

lat ic CWinThread* g_pPSDSvThread;

[ass PSDStruct

blic:
double x;
double y;
PSDStruct* nex t ;

lass CPSD

Ilic:
UINT GetFreq();
void GetSample (double*, doub le*) ;
CPSDO;
vir tual ~CPSD();
void StopThreadO ;
void Star tThreadO ;
bool ln i t ia l iaePSDSv{CStr ing*) ;

Ivate:
unsigned i n t m_uiPSDFreq;
float m_fVl;
float m_fV2;
float m_fV3;
n«-at m_fV4;
s ta t i c UINT SamplePSDSvThread (LPVOID) ;
bool m_bThread;
DBL min, max;
UINT encoding, r e s o l u t i o n ;
UINT channel;
PSDStruct* psd;
PSDStruct* p_Begin;
PSDStruct* p_Current ;
PSDStruct* p _ d e l e t e ;
doub.Te x_MovAvg, yJMovAvg;
double x_PSD, y_PSD;
int Mov_Count;
double temp_x, temp_y;
//BOOL CALLBACK GetDriver (LPSTR , LPSTR LPARAM) ;

ndif / / !defined(AFX_PSDCLASS_H FB378680_DF2E_11D6_8A3A_000102C2E8E7 INCLUDEDJ

11 ••_' *S! .V- - -> ' i - ••'•«!

HEncoderClass.cpp: implementation of the CEncoder class.

§////////!//mm m m//////i i in///mi in///////mm/mm///
Bclude "stdafx.h"
Hclude "EncoderClass.h"
Hclude "acrolib.h"
Rclude "SSClass.h"

1
Hdef _DEBUG
Bhdef THIS_FILE
S t i c char THIS_FILE[] = FILE ;
Kfine new DEBUG_NEW
Bdif
1/17171111II11171 /1111'//111II711111111111 /111111111II111111111111 /11
fa Construction/Destruction
mi i /1 /1111 / /1 / / / / / /1111111 /11 /11 J i /111 /11 /11111111 /11 /1111111 / / /1 / /1
i
ftcoder:: CEncoder ()I
9 Motorl.enc = 0;
i Motorl.bb_enc = 0;
i Motorl.CurrentAngle = 0 . 0 ;
I Motor2.enc = 0;
I Motor2.bb_enc = 0;
1 Motor2. CurrentAngle = 0 .0 ;
1
g m_uiEncFreq = 0 ;
5 g_pMotorStatusThread = NULL;
i m_bThread = f a l s e ;

I
Bicoder: : ~CEncoder ()I
I if (c_pMotorStatusThread)
I m_bThread = false;
1 CloseHandle(gjpMotorStatusThread->m_hThread);

I char buffer[80] ;

1
I Acrolnatialize(0>;
1 if (AcroGetErrorO !=ACRO_SUCCESS)
I MessageBeep(0);
I AfxMessageBox("Card Driver Not S ta r ted" , MB_ICONEXCLAMATION);
I ex i t (0) ;

I A8 BIN_ADD ESS(0, 0x00, pACRAdd, 0) ;
1 A8~BIN_ADDRESS(0, 0x01, pACRAdd2, 0) ;
I sprintf (buffer, "%ld\t%ld\n", pACRAdd, pACRAdd2) ;
I * Status = buffer;

Bid CEncoder: :StartThr«»ad()

I m_bThread = t r u e ;
I THREADPARAMS* pMotorStatusThread = new THREADPARAMS;
I pMotorStatusThread->lParam = (LPARAM) t h i s ;
3 g_pMotorStatusThread = AfxBeginThread(ReadMotorStatusThread, pMotorStatusThread, THREAD_PRI
|ITY_NORMAL/ NULL) ;

[id CEncoder: :StopThread()

m_bThread = f a l s e ;
CloseHandle (g_pMotorStatusThread->ir :L_hThread) ;

|NT CEncoder: :ReadMotorStatusThread(LPVOID pParam)

THREADPARAMS* pThreadParams = (THREADPARAMS*) pParam;
CEncoder* pMotoirStatusWnd = (CEncoder*) pThreadParams->lParam;
delete pThreadParams;
long pPosParaiaeter[2] ;

while (pMotorStatu3Wnd->m_bThread)

A8 BIN_GROUP_GETLONG(0xl8, OxOO, 0x03, pPosParameter, 0) ;
pMotorStatusWnd->Motorl.enc = pPosParameter[0] ;
pMotorStatusWnd->Motor2.enc = - 1 * pPosParameter[1] ;
pMotorStatusWnd->Motorl.CurrentAngle = (float(pMotorStatusWnd->Motorl.enc) /614400.0) ;

//Angle i n Revolut ion
pMotorStatusWnd->Motor2.CurrentAngle = (float(pMotorStatusWnd->MDtor2.enc) / 40000 .0) ;

//Angle in Revolut ion
pMotorStatusWnd->m_uiEncFreq++;
/7:v Sleep (10) ;

)
return 0;

\d CEncoder:: GetSample (CMotor *M1, CMotor *M2)

*M1 = Motorl;
*M2 = Motor2;

CEncoder:: GetFreg ()

UINT Temp;
Temp = m_uiEncFreq;
m_uiEncFreq = 0;
return Temp;

SEncoderClass.h: i n t e r f a c e fo r the CEncoder c l a s s .

! defined (AFX_ENCODERCLASS_H C893BC80_EOOF_11D6_8A3A__000102C2E8E7 INCLUDEDj
Jfine AFX_ENCODERCLASS_H C893BC80_EOOF_11D6_8A3A_000102C2E8E7 INCLUDED_

MSC_VER > 1000
fagma once
Idif / / _MSC_VER > 1000

[tic CWinThread* g j p M o t o r S t a t u s T h r e a d ;

iss CMotor

[lie:
double DriveAngle;
double CurrentAngle;
long enc;
long bb_enc;

Iss CEncoder

ilic:
//unsigned long pAddress [3] ;
UINT GetFreq () ;
void GetSample(CMotor*, CMotor*);
void StopThread{);
void S t a r tThread () ;
void In i t i a l i s eMoto r (CS t r ing* , unsigned long*, unsigned long*) ;

CEncoder () ;
virtual -CEncoder{);

ivate:
UINT m_uiEncFreq;
stat ic UINT ReadMotorStatusThread(LPVOID);
bool m_bThread;
CMotor Motor1;
CMotor Motor2;

dif / / !defined(AFX_ENCODERCLASS_H C893BC80_EOOF_11D6_8A3A_°00102C2E8E7 INCLUDEDJ

• : • • - •

Path.cpp : implementation f i l e

nclude "stdafx.h"
hclude "TrackingClass.h"
[elude "Path.h"
Hclude "TracJcingClassDlg.h"
hclude "math.h"

fedef _DEBUG
[fine new DEBUG_NEW
kdef THIS_FILE
Ltic char THIS_FILE[] = FILE ;
hdif

tern in t SelPathType;
bxtern RECJDATA_CARTESIAN S t a r t P o i n t [1] ;
extern REC_DATA_CARTESIAN L a s t P o i n t [1] ;
tern REC_DATA_CARTESIAN PointList[Max_Line] [Max_ViaPoint] ;
tern int Num0fPt[4];
tern in t NumOfLine;

LineNum;
tern FILE* F i l ePa th ;
tern REC_DATA_CARTESIAN PtRelToCS[1];
tern f loat aveVel;
Ullllllllllll I III/Nil II HI IIIHI/II/I lit 111/11/11/III li/I/IU III III tll/ll
: CPath dialog

ath:: CPath (CWnd* pParant /*=NULL*/)
: CDialog(CPath::IDD, pParent)

//{(AFX_DATA_INIT {CPath)
mjsStaticViaPtDistNum = _ T (" ") ;
m_sViaPtDistNum = _T{"") ;
m_fPathStartX = O.Of;
m_fPathStartY = O.Of;
m_fPathStartZ = O.Of;
m_fPathLastX = O.Of;
m_fPathIiastY = O.Of;
m_fPathLastZ = O.Of;
m_fVel = O.Of;
//)}AFX DATA INIT

jid CPath::DoDataExchange(CDataExchange* pDX)

CDialog::DoDataExchange(pDX);
/ / {{AFX_DATA_MAP (CPath)
DDX_Control(pDX, IDC_RADIO_VIA_PT_VEL, m_ctrlRadioViaPtVel) ;
DDX~Control (pDX, IDC_COMBO_LINE_NUMBER, m_ctrlComboLineNuin) ;
DDX_Control(pDX, IDC_RADIO_VIA_PT_NUM, m_ctrlRadioViaPtNuin) ;
DDX~Control(pDX, IDC_RADIO_VIA_PT_DIST, m_ctr lRadioViaPtDis t) ;
DDX~Control (pDX, IDC_STATIC_LP, m_ctr lLa3tPtText) ;
DDX Control (pDX, IDC_LIST_VIA_POINTS, m_ct r lL is tViaPoin t s) ;
DDX~Control (pDX, IDC COMBO_PATHTYPE, m_ctrlComboPathType) ;
DDX~Control (pDX, IDC^EDIT_VIA_PT_DISTNUM, m_ctrlViaPtDistNum) ;
DDX~Control (pDX, IDC_BUTTON_GENERATE_VIA__POINTS, m c t r lGenera teViaPt) ;
DDX_Control(pDX, IDC_EDIT_PATH_RADIUS, m_ctrlPathRadius) ;
DDX_Control (pDX, IDC_STATIC_PATH_RADIUS, m_ct r lS ta t icPa thRadius) ;
DDX_Control (pDX, IDC BUTTON FILE_BROWSE, m_ctrlPathFileBrowse) ;
DDX~Text (pDX*, IDC_STATIC_VIA_PT_DISTNUM, m_s5taticViaPtDistNum) ;
DDX_Text(pDX, IDC_EDIT_VIA_PT_DISTN7JM, m_sViaPtDistNum) ;
DDX~Text(pDX, IDC_EDIT_PATH_START_X, m_f PathStartX) ;
DDX_Text(pDX, IDC_EDIT_PATH START_Y, m_f PathStartY) ;
DDX_Text(pDX, IDC_EDIT_PATH~START_Z, ra_fPathStartZ) ;
DDX_Text(pDX, IDC_EDIT_PATH~LAST_X, m_f PathLastX) ;
DDX_Text(pDX, IDC_EDIT_PATH_LAST__Y, m_f PathLastY) ;
DDX_Text(pDX, IDC_EDIT_PATH_LAST_Z, m_fPathLastZ) ;
DDX_Text(pDX, IDC_EDIT_PATH VEL, m_fVel);
//})AFX DATA MAP

|GIN_MESSAGE_MAP (CPath, CDialog)
/ / {{AFX__MSG_MAP (CPath)
ON__CBN_SELCHANGE (IDC_COMBO_PATHTYPE, OnSelchangeComboPathtype)
0N_BN_CLICKED(IDC_RADIO_VIA_PT NUM, OnRadioViaPtNum)

i; vi. t ,"

ON BN_CLICKED(IDC_RADIO_VIA_PT_DIST, OnRad ioViaP tDi s t)
0N~BN CLICKED(IDC_BUTTON_GENERATE_VIA_POINTS, O n B u t t o n G e n e r a t e V i a P o i n t s }
0N~CBN SELCHANGE(IDC_COMBO_LINE_NUMBER, OnSelchangeCoraboLineNumber)
ON~"BN_CLICKED (IDC_BUTTON_GET_CUR_FOS, OnButtonGetCurPos)
ON~BN_CLICKED (IDC_RADIO_VIA_PT_VEL, OnRadioViaPtVel)
/ /T} AFX_MS G_MAP
MESSAGE_MAP ()

J///////////////////V///////////7//
jCPath message handle rs
\
d CPath: :OnSelchangeComboPathtype ()
// TODO: Add your c o n t r o l n o t i f i c a t i o n handler code here
switch (m ctrlComboPath'rype.GetCurSel ())
{
case 0:

m_ctrlPathFileBrowse.EnableWindow (0) ;
nTctrlPathRadius.ShowWindow(0);
m_ctrlStaticPathRadius. ShowWindow (0) ;
m_ctrlMadioViaPtNum. EnableWindow (1) ;
m_ctURadioViaPtDist.EnableWindow (1);
m_ctiIGenerateViaPt.EnableWindow(1);
m_ctrlViaPtDistNum.EnableWindow (1) ;
break;

case 1:
m_ctrlPathFileBrowse.EnableWindow (0) ;
m_ctrlPathRadius. ShowWindow (1) ;
m_ctrlStaticPathRadius.ShowWindow(1);
m_ctrlRadioViaPtNum.EnableWindow (1) ;
m_ctrlRadioViaPtDist. EnableWindow (T) ;
m_ctrlGenerateViaPt.EnableWindow (1) ;
m_ctrlViaPtDistNum. EnableWindow (1) ;
break;

case 2:
m_ctrlPathFileBrowse .EnableWindow (1) ;
m_ctrlPathRadi".s.ShowWindow(0) ;
m_ctrlStaticPathRadius.ShowWindow{0);
m_ctrlRadioViaPtNum. EnableWindow (0) ;
m_ctrlRadioViaPtDist.EnableWindow(0);
m_ctrlGenerateViaPt.EnableWindow(0) ;
m_ctrlViaPtDistNum.EnableWindow (0) ;
break;

DL CPath: :OnInitDialog()

CDialog: :OnInitDialog () ;

// TODO: Add ex t r a i n i t i a l i z a t i o n here
m_ctrlRadioViaPtNuiti.SetCheck(l) ;
nTctrlRadioViaPtDist.SetCheck(O) ;
nTsStaticViaPtDistNum = "No. of Via P o i n t 3 " ;
LineNum = 1;

m_ctrlComboPathType.SetCurSel (SelPathType) ;
if (SelPathType == 2)

m_ctrlPathFileBrowse.EnableWindow(1);
m_ctrlPathRadius. ShowWindow (1) ;
m_ctrlStaticPathRadius.ShowWindow(1);
m_ctrlRadioViaPtNum. EnableWindow (0) ;
ni_ctrlRadioViaPtDist.EnableWindow(0) ;
m_ctrlGenera.teViaPt. EnableWindow (0) ;
m ctriViaPtDistNum.EnableTtfindow(O) ;

}
else
{

ra_ctrlPathFileBrowse.EnableWindow(0);
m_ctrlPathRadius. ShowWindow (0) ;
m_ctrlStaticPathRadius.ShowWindow(0);
m_ctrlRadioViaPtNum. EnableWindow (1) ;
Ti_ctrlRadioViaPtDist. EnableWindow (1) ;
tn_ctrlGenerateViaPt. EnableWindow {1) ;
m_r-trlViaPtDistNum.EnableWindow (1) ;

UpdateData (f a l s e) ;

return TRUE; // return TRUE unless you set the focus to a control
// EXCEPTION: OCX Property Pages should return FALSE

Id CPath: :OnRadioViaPtNum()

// TODO: Add your control notification handler code here
m ctrlRadioViaPtVel.SetCheck(O) ;
nTctrlRadioViaPtNum. SetCheck (1) /
nfctrlRadioViaPtDist. SetCheck (0) ;
m sStaiicViaPtDistNum = "No. of Via Points";
Update.Data (false) ;

CPath: :OnRadioViaPtDist ()

// TODO: Add your control notification handler code here
m_ctrlRadioViaPtVel. SetCheck (0) ;
m ctrlRadioViaPtNum. SetCheck (0) ;
nfctrlRadioViaPtDist. SetCheck (1) ;
m_sStaticViaPtDistNum = "Via Points Distance Interval";
UpdateData(false);

\d CPath: :OnOK()

/ / TODO: Add extra val idat ion here
SelPathTyps = m_ctrlComboPathType.GetCurSel();
CDialog::OnOK() ;

id CPath: lOnButtonGenerate/ViaPoints {)

/ / TODO: Add your control not i f icat ion handler code here
double xlnterval, ylnterval , z lnterval ;
char buffer[256];
double TotalDist;
float FacY, FacZ;
double DeltaX, DeltaY, DeltaZ;
int Num, Den;
float remainder;

UpdateData(true);

if (m_ctrlRadioViaPtNum. GetCheck ())

NumOfPt[LineNum-1] = atoi(m_sViaPtDistNum) + 2;
PointList[LineNum-1][0].x = m_fPathStartX;
PointList[LintNum-1][0].y = m_fPathStartY;
PointList [LineNum-1] [0] .z = m_fPathSta,tZ;
PointList[LineNuia-l][NumOfPt[LineNum-1]-1].x = m_fPathLastX;
PointList[LineNum-1][NumOfPt[LineNum-1]-1].y = m_fPathLastY;
PointList[LineNum-1][NumOfPt[LineNum-1j-1].z = m_fPathLastZ;

xlnterval = sqrt(pow((m_fPathStartX - m_fPathLastX),2)) / (atof(m_sViaPtDistNum) +1.0)

ylnterval = sqrt(pow((m_fPathStartY - m_fPathLastY),2)) / (atof(m_sViaPtDistNum) + 1.0)

zlnterval = sqrt(pow((m_fPathStartZ - ra_fPathLastZ),2)) / (atof(m_sViaPtDistNum) + 1.0)

for (int i = 0; i < NumOfPt[LineNum-1]; i++)

sprintf(buffer, "%.31f\t%.31f\t%.31f", PointList[LineNum-1][i].x, PointList[LineNum
i [i] -y, PointList[LineNum-1][i].z);

m ctrlListViaPoints.AddString(buffer);
PointLisc[LineNum-1][i+1].x = PointList[LineNum-1][i].x + xlnterval;
PointList[LineNum-1][i+1].y = PointList[LineNum-1][i],y + ylnterval;
FointList[LineNum-1][i+1].z = PointList[LineNum-1][i].z + zlnterval;

//Get distance btw start and end points
//divide distance by no of points, get interval
//square interval, divide by 3, square root again-> get interval for individual x y and

//interative add intervals to points

if (w_ctrlRadioViaPtDist.GetCheckO II m_ctrlRadioViaPtVel.GetChecki))

//square interval, divide by 3, square root again-> get interval for individual x y and

3

P))

//interative add. intervals to points
//Check if current point greater than end point, if yes->last point is end point
7 if not-> keep adding
if (m_ctrlRadioViaPtVel.GetCheck())
{

m_sViaPtDi3tNum.Format("%.3f", m_fVel * 0.4);
UpdateData(false);
aveVel = m_fVel;

}

TotalDist = sqrt(pow((m_fPathStartX - m_fPathLastX),2) + pow((m_fPathstartY - m_fPathLa
+ pow((n_fPathStartZ - m_fPathLastZ),2));
Num = TotalDist * 1000.0;
Den = atof(m_sViaPtDistNum) * 1000.0;
remainder = Num % Den;
if (remainder == 0)

NumOfPt[LinaNum-l] = TotalDist / atof(m_sViaPtDistNum) + 1;
else

NumOfPt[LineNum-l] = TotalDist / atof(m_sViaPtDistNum) + 2;
PointList[LineNum-1][0].x = m_fPathStartX;
PointList[LineNum-1][0].y = m_fPathStartY;
PointList[LineNum-1][0].2 = m_fPathStart2;
PointList[LineNum-1][NuxnOfPt[LineNum-1]-1].x = m_fPathLastX;
PointList[LineNum-1][NumOfPt[LineNum-1]-1].y = m__fPathLastY;
PointList[LineNum-1][NumOfPt[LineNum-1]-1].z = m_fPathLastZ;
DeltaX = m_fPathLastX - m_fPathStartX;
DeltaY = m_fPathLastY - m_fPathStartY;
DeltaZ = m_fPathLastZ - m_fPathstartZ;
if (DeltaX !=0.0)
{

FacY = fabs(DeltaY / DeltaX);
FacZ = fabs(DeltaZ / DeltaX);
if (DeltaX >= 0.0)

xlnterval = sqrt(pow(atof(m_sViaPtDistNum) , 2) / (pow(FacY, 2) + pow(FacZ, 2) +

else
xlnterval = -1.0 * sqrt(pow(atof(m_sViaPtDistNum),2) / (pow(FacY, 2) + pow(FacZ

1.0)j;
if (DeltaY >= 0.0)

ylnterval = FacY * fabs(xlnterval);
else

ylnterval = -1.0 * FacY * fab<3 (xlnterval) ;
if (DeltaZ >= 0.0)

zlnterval = FacZ * fabs(xlnterval);
else

zlntervai = -1.0 * FacZ * fabs(xlnttrval);
}
else if (DeltaY == 0)
{

//FacY = 0.0;
//FacZ = 1.0;
xlnterval = 0.0;
ylnterval = 0.0;
if (DeltaZ >=0.0)

zlnterval = atof(m_sViaPtDistNum) ;
else

zlnterval = -1.0 * atof(m sViaPtDistNum) ;

else

xlnterval = 0.0;
if (DeltaY >=0.0)

ylnterval = atof(m_sViaPtDistNum) ;
else

ylnterval = -1.0 * atof (in_sViaPtDistNum) ;
zlnterval = 0.0;

sprintf(buffer, "%.31f\t%.31f\t%.31f\n", PointList[LineNum-1][0].x, PointList[LineNum-1
•y, PointList[LineNum-1][0].z);

m_ctrlL.istViaPoints .AddString (buffer) ;
fprintf(FilePath, buffer);
for (int i = 0; i < NumOfPt[LineNum-1]-2; i++)
(

PointList[LineNum-1][i+1].x = PointList[LineNum-1][i].x + xlnterval;
PointList[LineNum-1][i+1].y = PointList[LineNum-1][i].y + ylnterval;
PointList[LineNum-1][i+1].z = PointList[LineNum-1][i].z + zlnterval;
sprintf(buffer, "%.31f\t%.31f\t%.31f\n", PointLiat[LineNum-1][i+1].x, PointList[Lin

L .•

n-1] -Yf PointList[LineNum-1] [i+1]. z) .;
m_ctrlListViaPoints.AddString(buffer);
fprintf(FilePath, buffer);

sp r in t f (bu f fe r , "%.31f\ t%.31f\ t%.31f\n", PointList[LineNum-1][NumOfPt[LineNum-1]-1].x,
IntList [LineNum-1] [NumOfPt [LineNum-1]-1] .y, Po in tL i s t [LineNum-1] [NumOfPt [LineNum-1]-1] .z) ;

m_ct r lL is tViaPoin t s .AddSt r ing(buf fe r) ;
fprintf(FilePath, buffer);

if (LineNum < NumOfLine)
1

m_fPathStartX = PointList[LineNum-1][NumOfPt[LineNum-1] - l].x;
m_fPathscartY - PointList[LineNum-1][NumOfPt[LineNum-1] - l].y;
m_fPathstartZ - PointList[LineNura-1][NumOfPt[LineNum-1] - l].z;
LineNum ++;
sprintf(buffer, "Line %d !! -> Enter the las t point and press GENERATE", LineNum);
m_ctrlLastPtText.SetWindowText(buffer);

else
m_ctrlGenerateViaPt.EnableWindow(0);

UpdateData(false) ;

d CPath: :OnSelchangeComboLineNumber()

// TODO: Add your control notification handler code here
switch (m_ctrlComboLineNum. GetCurSel ())

case 0:
NumOfLine = 1;
break;

case 1:
NumOfLine = 2;
break;

case 2:
NumOfLine = 3;
break;

case 3:
NumOfLine = 4 ;
break;

CPath: : OnButtonGetCurPos ()

/ / TODO: Add your c o n t r o l n o t i f i c a t i o n handler code here
m_ fPathStartX = PtRelToCS [0] . x ;
nf'fPathStartY = PtRelToCS[0] .y ;
m~fPathStartZ = PtRelToCS [0] . z ;
UpdateData(false) ;

id CPath: :OnRadioViaPtVel ()

/ / TODO: Add your c o n t r o l n o t i f i c a t i o n handler code here
m_ctrlRadioViaPtNum.SetCheck(0) ;
m_ctrlRadioViaPtDist.SetCheck(0) ;
m_ctrlRadioViaPtVel.SetCheck(l) ;
m_sStaticViaPt.DistNum = "Via Poin ts Dis tance I n t e r v a l " ;
UpdateData(false) ;

jpath.h : header f i l e

!defined(AFX_PATH_H__D2F54A54_2367_45AC_B876_88EA34C58E7D INCLUDED_)
i AFX_PATH_H__D2F54A54_2367_45AC_B876_88EA34C58E7DINCLUDED

MSC_VER > 1000
tagma once
fcdif / / _MSC_VER > 1000

\lillllh[I/I II'I'ItIII'It'III1111/1IfIIIIIIII1ItIIIII7IIIIIItIIIUll'////IIII/II
IcPath dialog
[
iss CPath : publ ic CDialog

Construction
blic:

CPath(CWnd* pParent = NULL); / / standard constructor

[Dialog Data
//{{AFX_DATA(CPath)
enum { IDD = IDD_DIALOG_PATH_GENERATION) ;
CButton m_ctrlRadioViaPtVel;
CComboBox m_ctrlComboLineNum;
CButton m_ctrlRadioViaPtNum;
CButton m_ctrlRadioViaPtDist;
CStatic m_ctrlLastPtText;
CListBox ra_ctrlListViaPoints;
CComboBox m_ctrlConiboPathType;
CEdit m_ctrlViaPtDistNum;
CButton m_ctrlGer.erateViaPt;
CEdit m_ctrlPathRadius;
CStatic m_ctrlStat icPathRadius;
CButton m_ctrlPathFileBrowse;
CString m_sStaticViaPtDistNum;
CString m_sViaPtDistNum;
float m_fPathStartX;
float m_fPathStartY;
float m_fPathstartZ;
float m_fPathLastX;
float m_fPathLastY;
float m_fPathLastZ;
float m_fVel;
//})AFX_DATA

!Overrides
/ / ClassWizard generated v i r t u a l function overrides
//{(AFX_VIRTUAL (CPath)
protected:
virtual void DoDataExchange(CDataExchange* pDX); / / DDX/DDV support
//}}AFX_VIRTUAL

Implementation
Dtected:

/ / Generated message map functions
//{(AFX_MSG (CPath)
afx_msg void OnSelchangeComboPathtype();
virtual BOOL OnlnitDialog () ;
afxjnsg void OnRadioViaPtNumO ;
afx_msg void OnRadioViaPtDist () ;
virtual void OnOK() ;
afx_msg void OnButtonGenerateViaPoints();
afxjnsg void OnSelch=>ngeComboLineNuraber () ;
afxjnsg void OnButtonGetCurPos () ;
afxjnsg void OnRadioViaPtVel () ;
//)}AFX_MSG
DECLARE_MESSAGE_1-IAP ()

1(AFX_INSERT_LOCATION)}
i Microsoft Visua l C++ w i l l i n s e r t a d d i t i o n a l d e c l a r a t i o n s immediately before the p rev ious l i n

/ / [defined(AFX_PATH_H__D2F54A54_2367_45AC_B876_88EA34C58E7D INCLUDEDJ

JRobotController.cpp: implementation of the CRobotController class,

i///
iclude "stdafx.h"
Sclude "RobotController.h"
iclude "motocom.h"
[elude <direct.h>

idef _DSBUG
idef THIS_FILE
j t i c char THIS_FILE[]=
[fine new DEBUG_NEW
Idif

FILE

\i 111111111111 n i u 111 it i /11 /11111 /1 m /111111111 /11 /1111 n 11 n 11 / f i
[construction/Destruction

JbotController:: CRobotController (int ControllerType, LPCTSTR FilePath) :
m_nControllerType (ControllerType)

/ / ** Setup int ial default parameters
if(FilePath == "")
{

_getcwd(m_szFilePath.GetBuffer(100), 100);
m_szFilePath.ReleaseBuffer();

)

mjiCommType = RS232;
m_nCommPort = 2;
m_nBaudRate = 9600;
m_nParity = 2;
m_nDataLength = 8;
m_nStopBits = 0;

m_szIPAddress = "196.168.10.10";

m_nControlGroup = m_nMode = m_nCycle =
m_nHold = m_nErrorCode = m_nAlarmCode = 0;

m_bCommOpen = m_bConnected = m_bServoOn = m_bAlarmed =
m_bErrored = m_bRemoteOn = m_bOperating = m_bSafeOperating = FALSE;

// ** Set SK120 Robot's joints PPR
long lRobotPPR[12] = {669570, 564000, 564000, 473140, 469330, 285120, 1,1,1,1,1,1);
SetRobotPPR(lRobotPPR) ;

m szCurrentJobName = "";

PbotController: : CRobotController ()

pbotController: : ~CRobotController ()

CloseCommO ;

CRobotController: :SendFile (CString szFileName)

int re = - 1 ;

/ / File name check
if(szFileName. IsEmptyO I I (szFileName. GetLength () > 12))

AfxMessageBox ("Error with File Name - Empty or too long!");
return - 1 ;

/ / Make Job Name Uppercase
szFileName.MakeUpper() ;

/ / Connect to Controller

t

if (connect() != 1)
return -1;

m bConnected

// Download File
char* pchTemp = (char *)(LPCTSTR)szFileName;

re = BscDownLoad(m_nCommID, pchTemp);
Disconnect () ;

// Check return value
if(re == 0)

AfxMessageBox ("File Sent Successfully");
return re;

)
else

AfxMessageBox ("Error Sending File");
return - 1 ;

return re;

CRobotController: :ReceiveFile (CString szFileName)

int re = - 1 ;

/ / File name check
if (szFileName..TsEmptyO I I (szFileName.GetLengthO > 12))
(

AfxMessageBox ("Error with File Name - Empty or too long!");
return -1;

//CString szTemp;

//szTemp = szFileName.Right(4) ;
//szTemp = szFileName.Right(3);
//szTemp = szFileName. Insert (szFileName.GetLengthO , ".JBI");

//Add ".jbi" if required
if((szFileName.Right(4) !=".jbi") || (szFileName.Right(4) !=".JBI")

//szFileName.Insert(szFileName.GetLengthO, ".JBI");
szFileName += ".JBI";

// Connect to Controller
if(Connect() != 1)

return -1;

if(m_bConnected)
(

// Upload File
re = BscUpLoad(mjiComnlD, (char *)(LPCTSTR)szFileName);
Disconnect ();
// Check return value
if(re == 0)

)
else

AfxMessageBox ("File Received Successfully"
return re;

AfxMessageBox ("Error Receiving Fi le") ;
return - 1 ;

return re;

CRobotController:: OpenComm ()

kJ>

/•parity Parity 0: None, 1: Odd, 2: Even
Clen Data length 7: 7 bi ts , 8: 8 bi ts
Stp Stop bit 0: 1 b i t , 1: 1.5 b i t s , 2: 2 bi ts
*/

int re = - 1 ;

if (m bCommOpen) return 1;

if(m_nCommType == RS232)
(

// Open the COM port
m_nCommID = 3sc0pen((char *)(LPCTSTR)m_szFilePath, PACKETCOM);

m_nComr.iID < 0)

mbCommOpen = FALSE;
return (m nCornmlD)/

// Parameter set for serial communication
re = BscSetCom{ m_nCommID, m_nCommPort, m_nBaudRate,

m_nParity, m_nDataLength, m_nStopBits)/
if(re != 1)
{

re = BscClose(m_nCommID) ;
m_bCommOpen = FALSE;
re tu rn (- 1) ;

// ** Ethernet communcations op t ion :
else

// Open the Ethernet port
m_nCommID = BscOpen((char *)(LPCTSTR)in_szFilePath, PACKETETHERNET);
if (m_nCommID < 0)
{

m_bCommOpen = FALSE;
return(m_nCommID);

}

// Parameter set for Ethernet communication
re = BscSetEther(m_nCoinmID, (char *) (LPCTSTR)m_szIPAddress, 0,

AfxGetMainWnd()->GetSafeHwnd()); //Last parameter was garbled in sample code
S'C-etSafeHwnd1 .

if(re != 1)
{

re = BscClose(m_nCommID) ;
m__bCommOpen = FALSE;
re turn(- 1) ;

}
}
m_bCommOpen = TRUE;
return r e ;

- che

CRobotController: : ReadPos ()

int re;
m_nControlGroup = 1;
CString szFrameName = "UF5"; //"ROBOT";
//short nlsPulse = 1;
int nlsExt = 1;
WORD wForm;
WORD wTool;
double dPosit ion[12] ;

iff Connect () > 0)

//if(m_nControlGroup = 0)
/ / m_nControlGroup = GetControlGroup();

//BselsLoc funct ion generates an e r r o r when cal led with n l sPu l se
//Only seems to work i n Pulse mode!!

0! ! !

ion);

//re = BscIsLoc(nCid, nlsPulse, swForm, dPosition);

re = BscIsRobotPos(m_nCommID, (char *)(LPCTSTR)szFrameName, nlsExt, swForm, &wTool, dPo

// Disconnect from Controller - Optional
Disconnect () ;

if (re == 0)

m_RobotPos.X = dPosition[0];
m_RobotPos.Y = dPosition[l];
m_RobotPos.Z = dPosition[2];
m_RobotPos.Roll = dPosition[3];
m_RobotPos.Pitch = dPosition[4];
m_RobotPos.Yaw = dPosition[5];
m_RobotPos.Base = dPosition[6];

m_RobotPos.Form = wForm;
m_RobotPos.Tool = wTool;
m_RobotPos. Frame = szFrameName;

if(nlsExt)
(

for(int i = 0; i < 6; i++)

m_lExtAxis[i] = (long)dPosition[i+6];

return re;

else

AfxMessageBox("Error Reading Posit ion");
return - 1 ;

else

AfxMessageBox("Not Open!");
return - 1 ;

return re;

|ring CRobotController::GetPosAsString()

CString szPosition;

if (ReadPosO < 0)

szPosition = "Error get t ing posi t ion";
return szPosition;

)

szPosi t ion.Formats: %.2f, Y: %.2f, Z: %.2f, R: %.2f, P: %.2f, Y: %.2f, B: %.2f",
m_RobotPos.X,
m_RobotPos.Y,
m_RobotPos.Z,
m_RobotPos.Roll,
m_RobotPos.Pitch,
m_RobotPos.Yaw,
m_RobotPos.Base) ;

return szPosition;

Id CRobotController: :SetComm(int nCommType, in t nCoiranPort, in t nBaudRate,
i n t nPari ty, in t nDataLength, i n t nStopBits)

m_nCommType = nCommType;
m_nCommPort = nCommPort;
m_nBaudRate = nBaudRate;
m_nParity = nParity;
m_nDataLength = nDataLength;

nStopBits = nStopBits;

|d CRobotController: :SetComm(int nConmiType, LPCTSTR szIPAddres3

m nCommType = nCommType;
nfszIPAddress = szIPAddress;

CRobotController::GetConunType ()

return m_nCommType;

Jd CRobotController::SetControllerType(int nControllerType)

m_nControllerType = nControllerType;

CRobotController: :GetControllerType ()

return m_nControllerType;

CRobotController: :GetControlGroup ()

unsigned she: t nControlGroup, nTasklnfo;

if (Connect () < 0)
return - 1 ;

BscGetCtrlGroup (m_nCommID, fcnControlGroup, finTasklnfo);

Disconnect () ;

m_nControlGroup = i n t {nControlGroup) ;
m_nTaskInfo = int(nTasklnfo);

return m_nControlGroup;

id CRobotController: :CloseComm()

if (m_bConnected == TRUE)
Disconnect();

if (m_bCommOpen = TRUE)
{

BscClose(m_nCommID);
m_bCommOpen = FALSE;

** Connect makes a connection to the controller.
** It will open the comm port if neccessary.
** Returns 1 if successful, 0 if Not successful
** If there is already a connection then it will return
** Unsuccessful (0) so that two commands are not sent
** to the controller at once which would result in a freeze
CRobotController: :Connect {)

int re = 0;

if(m_bConnected == TRUE)
return 0;

// Check Comm is Open if not Open and return error if unsuccessful
if (!m_bCommOpen)

if (OpenCommO < 0)
return 0;

// Connect to communication port
re = BscConnect (m_nCommID) ;

if(re != l)

m_bConnected = FALSE;
return(re);

L

unconnected = TRUE;

return(re) ;

CRobotController: : Disconnect ()

if (m_bCommOpen = TRUE)
(

m_bConnected = FALSE;
return BscDisConnect (m_nCommID) ;

else

m_bConnected = FALSE;
return - 1 ;

CRobotController: : SelectJob (CString szJobName)

int re = - 1 ;

/ / File name check
if(szJobName.IsEmptyO I I (szJobName.GetLength() > 12))
{

AfxMessageBox ("Error with Fi le Name - Empty or too long!
return - 1 ;

/ / Make Job Name Uppercase
szJobName.MakeUpper () ;

/ / Connect to Controller
if(Connect() != 1)

return - 1 ;

if(m_bConnected)
(

/ / Select the Job as Active Job
re = BscSelectJob{ m_nCommID, (char *)(LPCTSTR)szJobName);
if{rc == 0)

re = BscSetMasterJob(m_nCommID) ;

Disconnect();

/ / Check return value
if(re == 0)

}
else
{

AfxMessageBox("Job Selected") ;
return re ;

AfxMessageBox ("Couldnt Select Job") ;
return re ;

return re;

| t CRobotController: :SetMode (int nMode)

int re ~ - l ;

if (Connect() < 0)
return - 1 ;

re = BscSelectMode(in_nCoinmID, nMode);
Disconnect ();
if(rc != 0)

return re;

m_nMode = nMode;

return mjnMode;

CRobotController: :GetMode ()

/•

//Following code gets current value from controller.
//Code is not needed if Update Status is called before this.

int re = -1;

if(Connect () < 0)
return - 1 ;

re = BscIsTeachMode(jn_nCommID) ;
Disconnect () ;

if(re < 0)
return re ;

else
mjiMode = re + 1; / / ** TEACH i s 1, PLAY i s 2 - but BscIsTeachMode re turn 0 for Teach a

12 for Play
*/

return m_nMode;

CRobotController: :GetHold()

return m nHold;

CRobotController: :GetCycle()

return m_nCycle;

CRobotController: : Update Jobs ta tus ()

int re;

char ••-•iName[32j ;

if (Connect() == 1)
i

re = BscIsJobName(m_nCommID, chName, 32);
m_nJobLine = BscIsJ>jbLine(m_nCominID) ;
m_nJobStep = BscIsJobStep(m_nCommID);

m_szCurrentJobName = (CString)chName;
//BscFindFirst(short nCid,char *fname,5hort s i z e) ;
//BscFindNext(short nCid,char *fname,short s i z e) ;

/ /re = BscFindFirstMaster(m_nCommID, (const char *)m_szMasterJobName, 32);
//BscFindNextMaster (short nCid, char *fname, sh_«rt size) ;

Disconnect () ;
return re;

else
return - 1 ;

CRobotController: : Updates ta tus ()

/*
Data 1

Data 1 are represented by b i t data in decimals.

DO;Step
Dl:l-cycle
D2:Auto operation
D3:Operating

D4:Operation at safe speed
D5:Teach *
D6:Play *
D7:Command remote -'

*: Effective only for XRC and MRC.

Data 2

Data 2 are represented by bit data in decimals.

DO:Hold (XRC/MRC: Playback box hold, ERC:Panel hold)
Dl:Hold (XRC/MRC: Programming pendant hold, ERC: T-BOX hold)
D2:Hold (External hold)
D3:Hold(Command hold)
D4:Alarm occurred
D5:Error occurred
D6:Servo ON

*/

WORD wStatusl, wStatus2;
int re;

if (Connect () == 1)
{

re = BscGetStatus(m_nCommID, SwStatusl, SwStatusZ);
Disconnect() ;

)
else

return - 1 ;

/ / ** Interpret response from Control ler
if (wStatusl & 0x01)

m_nCycle = STEP;
if (wStatusl & 0x02)

m_nCycle = CYCLE;
if (wStatusl & 0x04)

m_nCycle = AUTO;

m_bOperating = (wStatusl & 0x08) != 0;
m_bSafeOperating = (wStatusl & 0x10) != 0;

if (wStatusl & 0x20)
m_nMode = TEACH;

if (wStatusl & 0x40)
m_nMode = PLAY;

m_bRemoteOn = (wSta tus l & 0x80) != 0;

m_nHold = 0;
if(wStatus2 & 0x01)

m_nHold = HOLD_PANEL;
if(wStatus2 & 0x02)

m_nHold = HOLD_PENDANT ;
if(wStatus2 & 0x04)

m_nHold = HOLD_EXTERNAL;
/ / ** Hold by PC Command does no t seems t o r e g i s t e r i n t h e S t a t u s Data r e t u r n e d - i t i s alw
zero.
if(wStatus2 & 0x08)

m_nHold = HOLD_PC;

if(m_nHold != 0)
m_bHoldOn = TRUE;

else
m_bHoldOn = FALSE;

m_bAlarmed = (wStatus2 & 0x10) != 0;
m_bErrored = (wStatus2 & 0x20) != 0;
m_bServoOn = (wStatus2 & 0x40) != 0;

if (m_bErrored I I m bAlarmed)
(

GetErrorAlarmO :
}

return 0;

CRobotController:: GetErrorCode ()

return m nErrorCode;

1 5

|t CRobotController: :GetAlarm(int &nAlarmCode, WORD swAlarmData)

if (m_bAlarmed)

nAlarmCode = ai_nAlarmCode;

8

wAlarmData = m_wAlarmData;
}
else

return - 1 ;

return 0;

CRobotController: :GetErrorAlarm()

int re = - 1 ;
WORD wAlarmData;

if (Connect () == 1)
(

switch (m_nControllerType)
i
case MRC:

re = BscGetError(m_nCommID);
break;

case XRC:
re = BscGetError2(m_nCommID);
break;

if(m_bErrored)
m_nErrorCode = r e ;

if(m bAlarmed)
{

re = Bsc.GetFirstAlarm(m_nComniID/ swAlarmData) ;
m_nAlarmCode = r e -
in wAlarmData = wAlarmData;

Disconnect ();

return re;

CRobotController::StartJob(CString szJobName)

int re = - 1 ;

// ** Select this as master job
if(SelectJob{szJobName) < 0)

return - 1 ;

// ** Check current status of Controller
UpdateStatus() ;

// ** Check Mode and change if necessary
if(m_nMode != PLAY)
(

re = SetMcde(PLAY);
if(re < 0)

return re ;

// ** Turn Servo On if necessary
if (!m bServoOn)
(

re = SetServo (ON) ;
if(re < 0)

return re ;

// ** if any of the following are true then return
if(m_bAlarmed I I m_bErrored I I m_bOperating I I m_nHold)

return - 1 ;

// ** StartJob
if (Connect () < 0)

return - 1 ;

= BscStartJob (m nCommlD) ;

Disconnect () ;

return re;

CL CRobotController: :SetServo(int nState)

int re = - 1 ;

if(Connect () < 0)
return - 1 ;

I/ ** Turn Servo On
if(nState == ON)
{

re = BscServoOn(m_nCoimnID) ;
Disconnect();
if(re != 0)

return re ;
m bServoOn = TRUE;

/ / ** Turn Servo Off
else
{

re = BscServoOff (in__nCommID) ;
Disconnect () ;
if(re != 0)

return re ;
m bServoOn = FALSE;

return m_bServoOn;

DL CRobotController: :SetHold(int nState)

int re = - 1 ;

iff Connect () < 0)
return - 1 ;

/ / ** Turn Hold On
if (nState == ON)
f

re = BscHoldOn{m_nCoiranID) ;
Disconnect();
if(re != 0)

return re-
in bHoldOn = TRUE;

/ / ** Turn Servo Off
else
{

re = BscHoldOff(m_nCommID);
Disconnect();
if(re != 0)

return re ;
m bHoldOn = FALSE;

return ra_bHoldOn;

tring CRobotController: :ReadJobList ()

int re = - 1 ;
char* JobName = new char [30];
CString szJobList;

if (Connect () < 0)
return - 1 ;

re = BscFindFirst(m_nCo!t!mID, JobName, 30);

if(re != 0)

10

Disconnect () ;
return r e ;

)

while (re == 0)

szJobList += JobName;
szJobList += " \ r \ n " ;szJobList += " \ r \ n " ;
re = BscFindNext(m_nCommID, JobName, 30);

Disconnect () ;

return szJobList;

CRobotController:: DeleteJob (CString szJobName)

int re = - 1 ;

if (Connect () < 0)
return - 1 ;

if(m_bConnected)
{

// Select Job First
re = BscSelectJob(mjnCommlD, (char *)(LPCTSTR)szJobName);
// Delete if Selection was successful
if(re != 0)
{

/ / Couldnt select Job
Disconnect();
return re;

re = BscDeleteJob(m_nCommID);
Disconnect();

if(re == 1)
{

AfxMessageBox ("Cannot Delete Job!");
return re;

)
else if(re ! = 0)

CString szMessage;
szMessage.Format("Error: %d when trying to Delete File!", re);
AfxMessageBox (szMessage);
return re;

AfxMessageBox ("Job Deleted!!");

return re;
1

return re ;

CRobotController::SetCycle(int nCycle)

int re = - l ;

if (Connect {) < 0)
return - 1 ;

switch(nCycle)

case STEP :
re = BscSelStepCycle (m_nConimID) ;
break;

case CYCLE :
re = BscSelOneCycle(m_nConimID) ;
break;

case AUTO:
re = BscSelLoopCycle(m_nCommID);
break;

11

default:
return - 1 ;

Disconnect () ;
if(re == 0)

m_nCycle = nCycle;
return m_nCycle;

return r e ;

CRobotController: : Continue Job ()

int re = - 1 ;

if(Connect () < 0)
return r e ;

re = BscContinueJob(m_nCoinmID) ;
Disconnect();

return re ;

PL CRobotController:: IsAlarmed ()

return m_bAlarmed;

[)L CRobotController: : I s E r r o r e d O

return m_bErrored;

|)L CRobotController:: IsRobotOperat ingO

return m_bOperating;

j)L CRobotController: : IsSaf eOperat ing ()

return m_bSafeOperating;

|>L CRobotController: :IsServoOn()

return m_bServoOn;

|)L CRobotController: :IsHoldOn()

return m_bHoldOn;

L CRobotController: : IsRemoteOnO

return m_bRemoteOn;

CRobotController: :GetCurrentPos(int nControlGroup, RobotPos* pRobotPos)

ReadPos () ;
memcpy(pRobotPos, &m_RobotPos, s i zeof (m_RobotPos)) ;

return 0;

CRobotController: :GetRobotAxisPulse {long* p lPu l se)

int re = - l ;

12

if (Connect () < 0)
return re;

r c = UpdateRobotPosition("PULSE", " " , 1);

if(re == 0)

memepy(plPulse, m_lRobotPulse, sizeof(long) * 6);

Disconnect () ;

return rc;

CRobotController: :GetExtAxisPulse(long* plPulse)

int rc = - 1 ;

if (Connect () < 0)
return rc ;

rc = UpdateRobotPosition("PULSE", " " , 1);

if(rc == 0)

memepy (plPulse, m_lExtAxis, sizeof(long) * 6) ;

Disconnect () ;

return rc;

CRobotController::GetRobotPos(LPCTSTR szPosType, LPCTSTR szFrameName, in t nlsExt,
RobotPos* pRobotPos)

int rc = - 1 ;

if (Connect () < 0)
return rc;

rc = UpdateRobotPosition ("RECTAN", szFrameName, 1) ;

if(rc =•- 0)

*pRobotPos = m_RobotPos;

Disconnect () ;

return rc;

CRobotController::MonitorRobotPos(LPCTSTR szPosType, LPCTSTR szFrameName, in t nlsExt,
RobotPos* pRobotPos)

int rc = - 1 ;

/ / ** Connect if not connected
if (!m_bConnected)

if(Connect() < 0)
return rc ;

rc = UpdateRobotPosition("RECTAN", szFrameName, 1) ;

if(rc == 0)

*pRobotPos = m_RobotPos;

/ / ** No disconnection from control ler

return rc;

CRobotController::UpdateRobotPosition(LPCTSTR szPosType, LPCTSTR szFrameName, in t nlsExt)

int rc;
WORD wForm;
WORD wTool;
double d P o s i t i o n [1 2] ;

13

//BscIsLoc function generates an error when called with nlsPulse
//Only seems to work in Pulse mode! !

if(szPosType == "PULSE")

re = BscIsLoc (m_nConunID, 1, swForxn, dPosition) /

if (re == 0)
{

for(int i=0; i < 6;

= 0! ! !

m_lRobotPulse[i] = (long)dPosition[i];
m_lExtAxis[i] = (long)dPosition[i+6];

if(szPosType == "RECTAN")
(

re = BscIsRobotPos(m_nCommID, (char *)(LPCTSTR)szFrameName, n l sEx t , fiwForm, swTool, dPo
lion);

if(re == 0)
{

m_RobotPos.X
m_RobotPos.Y
ra_RobotPos.Z
m_RobotPos.Roll
m_RobotPos.Pitch
m_RobotPos.Yaw
m RobotPos.Base

= dPosition[0];
= dPosition[1] ;
= dPosition[2];
= dPosition[3] /
••= dPosition[4];
= dPosition[5];
= dPosition[6];

mJRobotPos. Form = wForrn;
m_RobotPos.Tool = wTool;
//** Crashes here???
m_ftobotPos.Frame = szFrameName;

if(nlsExt)

for(int i = 0; i < 6; i++)

m_lExtAxis[i] = (long)dPosition[i+6];
}

}
)

]

return re;

CRobotController::SetControlGroup(int nControlGroupl, in t nControlGroup2)

// ** Sets the control croup on the controller - XRC command can set two groups

int re;

if (Connect () < 0)
return - 1 ;

switch (m_nControllerType)

case MRC:

re = BscSetCtrlGroup(m_nCommID, nControlGroupl);

break;

case XRC:

re = BscSetCtrlGroupXrc(m_nCommID, nControlGroupl, nControlGroup2);

break;

if(rc != 0)

return re ;

14

// •* Need to add s t u f f fo r XRC twin groups
m nControlGroup = nControlGroupl ;

return r e ;

CRobotCont.roller: : IsControlGroup ()

if (Connect () < 0)
return - 1 ;

m nControlGroup = BscIsCtrlGroup(m_nCommID) ;

Disconnect () ;

return m_nControlGroup;

CRobotController: :Tes t ()

int re;
short axisno = 1;

long abso;

re = BscGetAbso (m_nCommID, ax isno , &abso);

return abso;

CRobotController: :Move(LPCTSTR szMoveType, LPCTSTR szSpeedType, double dSpeed,
CString szFrame, i n t nForm, i n t nTool, double* pdPos)

int re = - 1 ;
// ** MoveType can be e i t h e r - MOVJ, MOVL, or IMOV

if(Connect () > 0)
(

re = BscMov(m_nCommID, (char *)(LPCTSTR)szMoveType, (char *)(LPCTSTR)szSpeedType, dSpee

(char *)(LPCTSTR)szFrame, (short)nForm, (shor t)nTool , pdPos) ;

Disconnect () ;
)

return r e ;

CRobotController::PMove(LPCTSTR szMoveType, LPCTSTR szSpeedType,
double dSpeed, int nTool, double* pdPos)

int re = - 1 ;
// ** MoveType can be e i t h e r - MOVJ, or MOVL

if(Connect () > 0)
f

re = BscPMov(m_nComniID, (char •)(LPCTSTR)szMoveType, (char *)(LPCTSTR)szSpeedType,
dSpeed, (shor t)nTool , pdPos);

Disconnect () ;
i

return r e ;

CRobotController: :ReadPosStream()

int r e ;
int count = 0;
WORD wForm;
WORD wTool;
double d P o s i t i o n [1 2] ;
CString szFrameName = "ROBOT";
int nlsExt = 0;

if(Connect () > o)

15

lion) ;

for(int i=O; i

//BscIsLoc function generates an error when called with nlsPulse = 0 ! ! !
//Only seems to work in Pulse mode!!
//re = BscIsLoc(nCid, nlsPulse, swForm, dPosition);

re = BscIsRobotPos(m_nCoitunID, (char *) (LPCTSTR) szFrameName, nlsExt, swForm, SwTool, dPo

if(re == 0)
(

/*
m_RobotPos.X = dPosition[0];
m_RobotPos.Y = dPosition[l];
m_RobotPos.Z = dPosition[2];
m_RobotPos.Roll = dPosition[3];
m_RobotPos.Pitch = dPosition[4];
m_RobotPos.Yaw = dPosition[5];
m_Robot?os.Base = dPosition[6];

m_RobotPos. Form = wForm;
m_RobotPos.Tool = wTool;
m_RobotPos.Frame = szFrameName;

if(nlsExt)
{

for(int i = 0/ i < 6; i++)
{

m_nExtAxis[i] = (long)dPosition[i+6];
)

else

*/
count++;

AfxMessageBox("Error Reading Posi t ion") ;

// Disconnect from Controller - Optional
Disconnect () ;

return count;

CRobotController: :IMove()

//re = BscImov(m_nCommID, chVtype, dSpeed, chFrameName, (short)nTool, dPosit ion);

return 1;

CRobotController: :MoveJointRelative (double dJointAngles [6])

int re = - 1 ;
double dNewPulse[12] = {0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0} ;

UpdateRobotPosition("PULSE", " " , 1);

for (int i=0; i < 6; i
I

dNewPulse[i] = m_lRobotPulseti] ;
dNewPulsefi] += (dJointAngles[i] * m_lRobotJointPPR[i] / 360);

».c = PMove ("MOVJ", "V", 5, 0, dNewPulse) ;

return re;

[d CRobotController::SetRobotPPR(long lRobotPPR[])

for (int i=0; i<12; i)
m_lRobotJointPPR[i] = lRobotPPR[i] ;

16

CRobotController::GetRobotAxisDegrees(double dDegrees[12])

int re = - 1 ;
long lRobotPulse[6], lExtPulse[6], lTemp;

re = GetRobotAxisPulse(lRobotPulse);
r c = GetExtAxisPulse(lExtPulse) ;

if(re != 0)
return rc;

for (int i=0; i<6; i++)
{

dDegreesfi] = (lRobotPulse[i] / (m_lRobotJointPPR[i]/360.0));
dDegrees[i+6] = (lExtPulse[i] / (m_lRobotJointPPR[i+6]/360.0));

// ** Round off the values to the nearest 0.001 degrees
for(i=0; i

ITemp = long(dDegrees[ij * 1000);
dDegrees[i] = (double)ITemp / 1000.0;

return r c ;

CRobotController:: ResetAlarm ()

int rc;

if (Connect() == 1)
{

rc = BscReset (rti_nCommID) ;
Disconnect() ;

else rc = - 1 ;

return r c ;

CRobotController: : CancelError ()

int r c ;

if (Connect () == 1)

rc = BscCancel (m_nCommID) ;
Disconnect () ;

else rc = - 1 ;

return r c ;

\>l CRobotController: : IsConnectedO

return m_bConnected;

L CRobotController: : IsCommOpen()

return m_bCoinmOpen;

CRobotController:: Get JobLine ()

return m_nJobLine;

CRobotController:: Get Jobs t ep ()

return m_nJobStep;

17

ring CRobotController: : GetCurrent JobName ()

return m_szCurrentJobName;

CRobotController: :GetTaskInfo ()

return m_nTaskInfo;

[ring CRobotController: :GetFilePath()

return m szFilePath;

^

18

iRobotConttoller.h: i n t e r f a c e for the CRobotController c l a s s .

!defined(AFX_ROBCICONTROLLER_H__BE86056E_C7E4_48F2_A51A_DDAlCF4EAD16 INCLUDED_)
Sfine AFX_ROBOTCONTROLLER_H__BE8605 6E_C7E4_40F2_A51A_DDA1CF4EAD16 INCLUDED_

MSC_VER > 1000
lagma once
dif / / _MSC_VER > 1000

Ifine ETHERNET 0
fine RS232 1

Ifine MRC 0
Sfine XRC 1

[fine OFF 0
if ine ON 1

Ifine TEACH 1
If ine PLAY 2

If ine STEP 1
i f ine CYCLE 2
i f ine AUTO 2

ifine HOLD_PANEL
Ifine HOLD_PENDANT
Ifine HOLD_EXTERNAL
Ifine HOLD_PC

uct RobotPos

BOOL
CString
int
int
double
double
double
double
double
double
double

I sPu l se ;
Frame;
Form;
Tool ;
X;
Y;
Z;
Roll ;
Pi tch;
Yaw;
Base;

1
2
3
4

BSS CRobotController

ilic:
CString GetFilePathf) ;
int GetTasklnfoO ;
CString GetCurrent JobName () ;
int Get-JobStepf);
int Get JobLine () ;
BOOL IsCommOpenO ;
BOOL IsConnectedO ;
//szJobList szl is tMasterJobList ;

/ / ** Job s ta tus var iables
CString m_szCurrentJobName;
CString m_szMasterJobName;
CString m_szMasterJobName2;

int UpdateJobStatus () ;
int CancelError();
int ResetAlarmO;
int GetAlarm(int& nAlarmCode, WORDS wAlarmData) ;
int GetErrorCode();
BOOL IsErrored();
SOOL IsAlarmedO;
int GetHold();
DOOL IsSafeOperatingO;
BOOL IsRobotOperating();
BOOL IsRemoteOnO ;
/ / ** Use th is to cont inual ly monitor Robot Posit ion
int MonitorRobotPos(IPCTSTR szPosType, LPCTSTR szFrameName, i n t nlsExt,

RobotPos* pRobotPos);

/ / ** These are Pulse Per Rev values for the Robot used
long m_lRobotJointPPRI12] ;

I void setRobotPPRdong lRobotPPR[12]) ;

int KoveJointRelative (double dJointAngles[12]) ;

int IMove();
int ReadPosStream();
int Test() ;
int IsControlGroupO ;
int setControlGroup(int nControlGroup, int nControlGroup2 = -1) ;

II *** / /
/ / *+ Job Management Actions ** / /

, ii +*** / /

// +* Read from the controller the complete l i s t of jobs
// ** Job names will be returned as a CString with each job on a separate line
CString ReadJobListO ;

// ** Sends a file to the Controller - will not replace existing files
int StndFile(CString szFileName);
// +* Receives a File to the path directory - Replaces current file if i t exists!
int ReceiveFile (CString szFileName);

/ / ** Selects the specified Job
int Select Job (CString szJobName);

// ** Delete the specified job from the controller
int DeleteJob (CString szJobName) ;

// ** Job Playback Related
/ /
/ /
/ /

// ** Starts the currently selected job or the specified job
int StartJob(CString szJobName = " ") ;

// ** Re-Starts job - Execution starts from the current line of the current job.
// ** Use this to continue Playback after Hold, Stop, or Pause.
int ContinueJob();

// •* Motion Related Actions ** //

// ** Get the RobotPos info for specified control group
int GetCurrentPos(int nControlGroup, RobotPos* pRobotPos);

int GetRobotPos(LPCTSTR szPosType, LPCTSTR szFrameName, int nlsExt, RobotPos* pRobotPos);
int GetRobotAxisPulse(long *plPulse);
int GetExtAxisPulsedong* plPulse) ;
int GetRobotAxisDegrees (double dDegreeo i.12]) /

int ReadPos () ;

CString GetPosAsStringO ;

int Move (LPCTSTR s zMo^-eType r LPCTSTR szSpeedType, double dSpeed,
CString szFrame, int nForm, int nTool, double* pdPos);

int PMove(LPCTSTR szMoveType, LPCTSTR szSpeedType,
double dSpeed, int nTool, double* pdPos);

// ** Get the currently selected Control Group
int GetControlGroup();

// ** Controller Status Actions ** //
' / /

// *• Update the current status info for the controller
int Updatestatus {) ;

** Following Get functions only return values from last controller status update.
** Always refresh the values from the controller with - UpdateStatus()

int GetMode () ;
int GetCycle();

BOOL IsHoldOnO;
I BOOL IsServoOnO ;

I / / •* Following Set func t ions ac t immediately once c a l l e d
i
r

I// ** Change the Playback Cycle mode - Step, Cycle, Auto (1,2,3)
tint SetCycle(int nCycle) ;
[// ** Set the Con t ro l l e r mode - Teach, Play (1,2)
lint SetMode(int nMode) ;
i / / ** Turn Servo ON or OFF
[BOOL SetServo(int n S t a t e = ON) ;
\ II ** Turn Hold ON or OFF - Pauses Playback - Hold off does not r e s t a r t
[BOOL SetHold(int n S t a t e = ON);

/ / if

If ** communication Related Actions ** / /
/ / / '

/ / *• Open the Communications Port - returns an integer
int OpenCommO ;
/ / *+ Close the Communications Port

i void CloseCoicmO ;

/ / ** Makes a connection to the Robot controller (Open Port f i r s t)
int Connect () ;
// ** Disconnects from the Robot Controller
int Disconnect () ;

// ** Set the Communication Parameters for RS232 type
// * Communication port number 1: C0M1, 2: COM2, 3: COM3, 4: COM4
// * Baud rate 300, 600, 1200, 2400, 4800, 9600
// * Parity 0: None, 1: Odd, 2: Even
// * Data length 7: 7 bits, 8: 8 bits
// * Stop bit 0: 1 bit, 1: 1.5 bits, 2: 2 bits
void SetComm(int nCommType, int nCommPort, int nBaudRate = 9600,

int nParity = 2, int nDataLength = 8, int nStopBits = 0);

// ** Set the Communication Parameters for Ethernet type
void SetComm(int nCommType, LPCTSTR szIPAddress);

// ** Get which Comm type is currently set
int GetCommType () ;

// ** Set/Get the Motoman Controller Type - MRC or XRC (0 or 1)
void SetControllerType(int nControllerType);
int GetControllerType();

// ** Constuctors
CRobotController (int Cor.trollerType, LPCTSTR FilePath = " ") ;
CRobotController () ;

virtual -CRobotController{);

vate:
int m_nStopBits;
int m_nDataLength;
int m_nParity;

int m_nJobStep;
int m_nJobLine;

WORD m_wAlarmData;
int m_nTaskInfo;

long m_lRobotPulse[6];
/ / ** Array t o s t o r e pu l se va lues of e x t e r n a l ax is - Set t o 6 max c u r r e n t l y
long m_lExtAxis[6];

BOOL m_bHoldOn;
BOOL m_bServoOn;
int m_nHold;
BOOL mJbAlarmed;
BOOL m_bErrored;
int m_nErrorCode;
int m_nAlarmCode;

/ / ** IsSafeOperating indicates if "Safety Speed" i s set in "Special Play Options'
BOOL m_bSafeOperating;

// •* isOperating indicates if the Robot/Groups are currently moving
BOOL m_bOperating;
// ** Specifies if Remote Mode is On or Off - TRUE or FALSE
BOOL m_bRemoteOn;
// ** The currently selected Mode - TEACH (1) or PLAY (2)
int m_nMode;
// +* The currently selcted Cycle - STEP (1 step at a time), CYCLE (1 Job), AUTO
int m_nCycle;
/ / ** Indicates i f a connection between the PC and Controller i s active
BOOL m_bConnected;
/ / ** Robot Position storage var iables
RobotPos m_RobotPos;

/ / ** Communication port number 1: COM1, 2: COM2, 3: COM3, 4: COM4
int m_nCommPort;
/ / ** Baud rate 300, 600, 1200, 2400, 4800, 9600
int m_nBaudRate;
/ / ** The IP Address of the Controller (For Ethernet Option)
LPCTSTR m_szIPAddress;
/ / ** Communcications handler ID to identify the cont ro l ler
int mjnCommlD;
/ / +* Comtnmunication type between PC and Controller: RS232 or ETHERNET
int m_nCommType;
/ / ** Comm Open: TRUE or FALSE
BOOL m _ b C o m m O p e n ;
/ / ** Controller Type: XRC or MRC
int m_nControllerType;
/ / ** Path where Files are loaded to/from
CString m_szFilePath;
/ / ** Active Control Group
int m_nControlGroup;

// ** Private Functions:* //

// ** Update the robot position info.
// ** Must connect/disconnect before and after calling this
int UpdateRobotPosition(LPCTSTR szPosType, LPCTSTR szFrameName, int nlsExt);
int GetErrorAlarm () ;

!** Motocom32.dll a l l commands available

[File Management
IscDownLoad (short nCid, char *fname) ;
lscUpLoad(short nCid,char *fname);
|DownLoadEx(short nCid, char *fname, char *srcPath, BOOL nFlg) ;
SUpLoadEx(short nCid, char *fname, char *desPath, BOOL nFlg);
|scDeleteJob(short nCid) ;

IStatus Queries
pcGetStatus (short nCid,WORD *dl,WORD *d2) ;
|IsHold(short nCid);
ilsCycle (short nCid) ;
ilsPlayMode (short nCid) ;
IscIsTeachMode (short nCid) ;
llsRemoteMode (short nCid) ;
llsServo (short nCid) ;
IscIsCtrlGroup(short nCid),•
|IsTaskInf (short nCid) ;
IscGetCtrlGroup (short nCid,WORD *groupinf ,WORD *taskinf) ;
I—> XRC CE" 'I6ni'n<<> '—'Ifc2
ClsCtrlGroupXrc(short nCid, WORD *robtask,WORD *s ta t t a sk) ;
|IsTaskInfXrc(short nCid) ;
tGetCtrlGroupXrc (short nCid,WORD *robtask,WORD *stattask,WORD *taskinf) ;
!<—

IStatus Setting
[scSelectMode (short nCid, short mode) ;
tselstepcycle (short nCid) ;
ISelOneCycle (short nCid) ;
ISelLoopCycle (short nCid) ;
pcSetCtrlGroup(short nCid,WORD groupno)/
I—> XRC CE' '6Qi»n"^ *-'£•*$.
IscSetCtrlGroupXrc(short nCid,WORD groupnol, WORD groupno2) ;

icHoldOn(short nCid) ;
scHoldOff (short nCid);
scServoOn (short nCid) ;
scServoOff (short nCid);

Robot Position
isLoc(short nCid,short ispulse,WORD *rconf,double *p) ;

[sdsRobotPos (short nCid,char *framename,short isex,WORD *rconf,WORD *toolno,double *p)/

Robot Move Commands
Hovj (short nCid,double spd,char *framename,short rconf,short toolno,double *p);
Kovl (short nCid,char *vtype,double spd,char *framename,short rconf,short toolno,double *p);
Imov(short nCid,char *vtype,double spd,char *framename,short toolno,double *p);
scMov(short nCid,char *movtype,char *vtype,double spd,char *framename,short rconf,short tool
double *p);

JPHOVJ (short nCid, double spd, short toolno, double *p) ;
PMovl(short nCid,char *vtype,doubla spd,short toolno,double *p);
PMov(short nCid,char *movtype,char *vtype,double spd,short toolno,double *p) ;

Robot Errors Alarms
IsError (short nCid);
IsAlarmishort nCid) ;

I** BUG ** - IsErrorCode doesnt seen to work
•IsErrorCode (short nCid) ;

- i t returns 0 always

IscGetError (short nCid) ;
IscGetError2 (short nCid);//990224 Sakasegawa for XRC
|scGetFirstAlann(short nCid,WORD *data) ;
GetNextAlarm (short nCid, WORD *data) ;

IscReset (short nCid) ;
|scCancel(short nCid)/

|job Queries
llsJobName (short nCid,char *jobnarae, short size) ;
llsJobLine (short nCid) ;
IlsJobStep (short nCid) ;
SscFindFirst (short nCid,char *fname, short size) ;
jscFindNext (short nCid, char *fname, short size) ;
FindFirstMaster (short nCid, char *f name, short s i z e) ;
FindNextMaster (short nCid.char *fname, short size) ;

|job Playback
IscSelect Job (short nCid,char *name) ;
|scSetKaster Job (short nCid) ;
SetLineNumber (short nCid, short l ine) ;

lscStartJob{ short nCid) ;
[scContinueJob (short nCid) ;
JobWait (short nCid, short time) ;
ChangeTask(short nCid, short t a sk) ;

Jother Job Commands
ConvertJobR2P(short nCid, char *name, short cv_type,char *var_no) ;
stVarData(short nCid,short type,short varno,double *pos);

fcPutVarData(short nCid,short type,short varno,double *dat) ;
|GetUFrame (short nCid,char *ufname, double *p) ;
iPutUFrame (short nCid,char *ufname, double *p) ;
|ConvertJobP2R(short nCid,char *name,char *framename) ;

[10 Commands
|ReadIO(short nCid,W0RD startadd,WORD ionum,WORD *stat) ;
IWritelO(short nCid,WORD startadd,WORD ionum,WORD * s t a t) ;

I
[Robot Interlocking
tOPLockf short nCid) ;
tOPUnLock(short nCid) ;

[Data Transmission Basic Command Sending
fCommand (short nCid,char *h_buf,char *d_buf, short fforever) ;
ptatus (short nCid,char *hpt,char *dpt,unsigned short sz,char *rbuf);

| Commands
pciLoadSave(short nCid, short timec) ;
":iLoadSaveOnce (short nCid) ;
HGetPos(short nCid,W0RD *type,W0RD *rconf,double *p);

DCIPutPos (short nCid,W0RD type,WORD rconf,double *p) ;

[Basic Serial Comm Commands
|scopen(char *path, short mode);
fscciose (short nCid);

5cSetCom(short nCid,short port,DWORD baud,short par i ty , shor t clen,short stp) ;
btHSL(short nCid,LPCTSTR strName,short po r t) ;
scConnect (short nCid);
scDisConnect (short nCid) ;
jts(short nCid,char *bufptr,WORD length);
ets(short nCid,char *bufptr,WORD bsize,WORD *plengets);

InBytes (short nCid) ;
OutBytes (short nCid) ;
scDelay(short nCid,DWORD a) ;
SetCondBSC(short nCid,short timerA,short timerB,short rtyR,short rtyW);
SetBreak(short nCid,short f i g) ;
SetEther(short nCid, char FAR *IPaddr, short mode, HWND hWnd);

Hisc
DSP (short nCid,char *p t r) ;

DiskFreeSizeGet (shor t nCid, s h o r t dno , long *dsize) ;

70909
EetAbso (short nCid, s h o r t a x i s n o , l o n g *abso) ;
SetAbso (short n C i d , s h o r t a x i s n o , l o n g a b s o) ;

iif / / Jdefined (AFX_ROBOTCONTROLLER_H__BE86056E_C7E4_48F2_A51A_DDA1CF4BAD16 INCLUDED_)

Serial, cpp

elude "stdafx.h"
elude "Serial .h"

rial::CSerial()

'memset(&m_OverlappedRead, 0, s izeof (OVERLAPPED)) ;
imemsetj &m_OverlappedWrite, 0, s izeof(OVERLAPPED)) ;
\ m hlDComDev = NULL;
! nfbOpened = FALSE;

rial::-CSerial()

Close!) ;

CSerial: :0pen(i n t nPor t , i n t nBaud)

if (m_bOpened) r e tu rn (TRUE) ;

char szPort[15] ;
char szComParams[50];
DCB deb;

wsprintf(szPort , "COM%d", nPort) ;
m_hIDComDev = Crea teF i le (szPort , GENERIC_READ

TTRIBUTE_NORMAL I FILE_FLAG_OVERLAPPED, NULL) ;
if(m hlDComDev == NULL) r e t u r n { FALSE) ;

I GENERIC_WRITE, 0, NULL, OPEN_EXISTING, FIL

memset(&m_OverlappedRead, 0, s i zeof (OVERLAPPED)) ;
memsetj &m_OverlappedWrite, 0, s i z e o f (OVERLAPPED)) ;

COMMTIMEOUTS CommTimeOuts;
CommTimeOuts. ReadlntervalTimeout = OxFFFFFFFF;
CommTimeOuts. ReadTotalTimeoutMult ipl ier = 0;
CommTimeOuts. ReadTotalTimeoutConstant = 0;
CommTimeOuts. WriteTotalTimeoutMult ipl i e r = 0;
CommTimeOuts .WriteTotalTimeoutConstant = 5000;
SetCommTimeouts (m_hIDComDev, SCommTimeOuts) ;

wsprintf(szComParams, "COM%d:%d,n,8,1", n P o r t , nBaud) ;

m_OverlappedRead.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL) ;
m_OverlappedWrite.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL) ;

dcb.DCBlength = s i zeo f (DCB) ;
GetCommState (m_hIDComDev, &dcb) ;
dcb.BaudRate = nBaud;
dcb.ByteSize = 8;
unsigned char ucSe t ;
ucSet = (unsigned char) ((FC_RTSCTS & FC_DTRDSR) != 0) ;
ucSet = (unsigned char) ((FC_RTSCTS & FC_RTSCTS) != 0) ;
ucSet = (unsigned char) ((FC_RTSCTS & FC_XONXOFF) != 0) ;
if(!SetCommState(m_hIDComDev7 &dcb) II

!SetupCoiran(m_hIDComDev, 10000, 10000) I I
. m_OverlappedRead.hEvent == NULL I I

m_OverlappedWrite.hEvent -== NULL) {
DWORD dwError = GetLas tEr ror () ;
i f (m_OverlappedRead.hEvent != NULL) CloseHandle(m_OverlappedRead.hEvent) ;
i f(m_OverlappedWrite.hEvent != NULL) CloseHandle(m_OverlappedWrite.hEvent) ;
CloseHandle (m_hIDComDev) ;
return(FALSE) ;

)

m_bOpened = TRUE;

return (m_bOpened) ;

CSerial:: Close (vo id)

lif(!m_bOpened I I m_hIDComDev == NULL) r e t u r n (TRUE) ;

| if(m OverlappedRead.hEvent != NULL) CloseHandle(m_OverlappedRead.hEvent) ;
if(aToverlappedWrite.hEvent != NULL) CloseHandle(m_OverlappedWrite.hEvent) ;
CloseHandle (mJiIDComDev) ;
m_bOpened = FALSE;
m_hIDComDev = NULL;

i return (TRUE) ;

CSerial: :.WriteCommByte (unsigned char ucByte }
i
|BOOL b W r i t e S t a t ;
I DWORD d w B y t e s W r i t t e n ;
i

•bWriteStat = W r i t e F i l e { m_hIDComDev, (LPSTR) sucByte, %, tdwBytesWritten, &m_OverlappedWrit

'if! IbWriteStat &S (GetLastError() == ERROR_IO_PENDING }){
i f (WaitForSingleObject(m_OverlappedWrite.hEvent, 1000)) dwBytesWritten = 0;
else{

GetOverlappedRe: ...I.; (m_hIDCoinDev, 6m_OverlappedWrite, &dwBytesWritten, FALSE) ;
m_OverlappedWrite.Offset += dwBytesWritten;

return(TRUE) ;

CSerial: :SendData(cons t char *buffer , i n t s i ze)

if(!m_bOpened I I m_hIDComDev == NULL) r e t u r n ! 0) ;

DWORD dwBytesWritten = 0;
int i ;
for(i=0; i < s i z e ; i++){

WriteCommByte(b u f f e r [i]) ;
dwBytesWritten++;

return! (int) dwBytesWritten) ;

CSerial: :ReadDataWaiting(void)

iff !m_bOpened | | m_hIDComDev == NULL) r e t u r n ! 0) ;

DWORD dwErrorFlags;
COMSTAT ComStat;

ClearCommError (it^hlDComDev, SidwErrorFlags, SComStat) ;

return) (in t) ComStat. cblnQue) ;

CSerial: :ReadData(void *buffer , i n t l i m i t)

if(!m_bOpened II m_hIDComDev == NULL) r e t u r n ! 0) ;

BOOL bReadStatus;
DWORD dwBytesRead, dwErrorFlags;
COMSTAT ComStat;

ClearCommError! m_hIDComDev, &dwErrorFlags, &ComStat) ;
if(!ComStat.cblnQue) r e t u r n ! 0) ;

dwBytesRead = (DWORD) ComStat.cblnQue;
iff l imit < (in t) dwBytesRead) dwBytesRead = (DWORD) l i m i t ;

bReadStatus = ReadFi le! m_hIDComDev, bu f fe r , dwBytesRead, SdwBytesRead, &m_OverlappedRead)

jif (ibReadStatus) {
if(GetI,astError() == ERROR_IO_PENDING){

WaitForSingleObject(m_OvorlappedRead.hEvent, 2000) ;
return((int) dwBytesRead) ;

return(0);

I return((int) dwBytesRead) ;

Serial.h

f SERIAL_H__
e SERIAL_H

•fine FC_DTRDSR 0x01
line FC_RTSCTS 0x02
fine FC_XONXOFF 0x04
fine ASCII_BEL 0x07
fine ASCII_BS 0x08
fine ASCII_LF OxOA
[fine ASCII_CR OxOD
fine ASCII_XON O x l l
fine ASCII_XOFF 0x13

ss CSerial

llic:
CSerial() ;
-CSerial () ;

BOOL Open(i n t nPor t = 1, i n t nBaud = 19200) ;
BOOL Close (void) ;

int ReadData(void *, i n t) ;
int SendDataj cons t char *, i n t) ;
int ReadDataWaiting(v o i d) ;

BOOL IsOpened(vo id){ r e t u r n (m_bOpened) ; }

Jtected:
BOOL WriteCoiranByte { unsigned char) ;

HANDLE m_hIDComDev;
OVERLAPPED m_OverlappedRead, m_OverlappedWrite;
BOOL m_bOpened;

Idif

JSISf
MSim

StaticPt.cpp : implementation file

elude "stdafx.h"
elude "TrackingClass.h"
blude "S ta t i cP t . h "
elude "TrackingClassDlg.h"

kef _DEBUG
fine new DEBUG_NEW
def THIS_FILE

char THIS_FILE[] = FILE ;
if

am char* pPointLocat ions [Max__Point] ;
srn int Point lndex;
em in t Loca t ionPoin te r ;
ern int CurrLocat ionPointer ;
ern REC_DATA_CARTESIAN PtRelToLISMCartesian [Max_Point] /
srn bool bReplace;

CStaticPt d ia log

|aticPt::CStaticPt(CWnd* pParent /*=NULL*/)
: CDialog(CStaticPt: :IDD, pParent)

//{{AFXJTTA_INIT (CStat icPt)
m_sStaticPtName = _ T (" ") ;
//))AFX DATA INIT

|d CStaticPt: :DoDataExchange (CDataExchange* pDX)

CDialog::DoDataExchange (pDX) ;
// ({AFX_DATA_MAP (CSta t icPt)
DDX_Control (pDX, IDC_LIST_STATIC_POINT, m _ c t r l L i s t S t a t i c P t) ;
DDX_Text(pDX, IDC_EDIT_STATIC_POINT_NAME, m_sStaticPtName);
//}}AFX_DATA_MAP

SlN_MESSAGE_MAP (CSta t i cP t , CDialog)
//{{AFX_MSG_MAP (CStat icPt)
//)}AFX_MSG_MAP

_MESSAGE_MAP ()

uiiiiiiiiiiii/nm/iiini/f i/i iti iii/ut /111 iii/inu/iii ii IIII/I III/II/

CStaticPt message handlers

L CStaticPt: :OnInitDialog()

CDialog: :OnInitDialog () ;
// TODO: Add extra initialization here
char LocationString[256], buffer[256] ,•
m_ctrlListStaticPt.SetHorizontalExtent(400);
::strcpy(LocationString, "Point Name X Co-ordinate Y Co-ordinate Z Co-ordinate

m_ctrlListStaticPt .AddString (LocationString) ;

for (int index=0; index<Max Point; index++)
{

if (PtRelToLISMCartesian[index].name != "\0")
{

:strcpy(LocationString, PtRelToLISMCartesian[index].name);
:strcat(LocationString, "\t") ;
:sprintf(buffer, "%15.3f", PtRelToLISMCartesian[index].x);
:strcat(LocationString, buffer);
:strcat(LocationString, "\t");
: sprintf (buff e.r, "%15.3f", PtRelToLISMCartesian [index] .y) ;
:strcat(LocaticnString, buffer);
:strcat(LocationString, "\t");
:sprintf(buffer, "%15.3f", PtRelTcLISMCartesian[index].z);
:strcat(LocationString, buffer);

m_ctrlListStaticPt .AddString(LocationString);

CDialog: :0n0K() ;

!return TRUE; / / r e t u r n TRUE u n l e s s you s e t the focus t o a c o n t r o l
. 7 EXCEPTION: OCX Proper ty Pages should r e t u r n FALSE

CStaticPt: :OnOK()

I// TODO: Add extra validation here
lint re;
[UpdateData(true) ;
jif (m_sStaticPtName.IsEmpty())

AfxMessageBoxC'You need to type the name of the point");
return;

[for (int i=0; i<LocationPointer; i++)
' {

if (m_sStaticPtName.GetBuffer(m_sStaticPtName.GetLength()) == PtRelToLISMCartesian[i] .n

re = AfxMessageBox("Point exis t . Do you want to overwrite?", IDOK);
switch (re)
{
case IDOK:

CurrLocationPointer = i ;
bReplace = true;
CDialog::OnOK();

case IDCANCEL:
return;

}
)
if (LocationPointer == Max_Point)

LocationPointer = 0;
I lit (P'cRelToLeica [LocationPointer] .name != "\0")
PtRelToLISMCartesian[LocationPointer] .name = m_sStaticPtName.GetBuffer (m_sStaticPtName.Get7i

baticPt.h : header file

)w 11111111111111111 u n f n u ii 1111 m 1111111 /11111 m 11 m i n 11,' i u i /1 u

!defined(AFX_STATICPT_H 91B0747C_B88A_4D12_98F6_044 9F02FB4B9 INCLUDED_)
fine AFX_STATICPT_H 91B0747C_B88A_4D12_98F6_0449F02FB4B9 INCLUDED_

MSC_VER > 1000
agma once

/ / MSC_VER > 1000

CStaticPt d ia log

ES CStaticPt : p u b l i c CDialog

Construction
lie:
> CStaticPt (CWnd* pParen t NULL); // standard constructor

Dialog Data
//({AFX_DATA(CStaticPt)
enum (IDD = IDD_DIALOG_STATIC),
CListBox m _ c t r l L i s t S t a t i c P t ;
CString m_sStaticPtName;

') }AFX_DATA

Overrides
/ / classWizard generated v i r t u a l function overrides
//{{AFX_VIRTUAL (CStaticPt)

• protected:
virtual void DoDataExchange(CDataExchange* pDX); / / DDX/DDV support
//))AFX_VIRTUAL

Implementation
Itected:

/ / Generated message map functions
//({AFX_MSG iCStaticPt)
virtual BOOL OnlnitDialogO ;
virtual void OnOK();
//})AFX_MSG
DECLARE_MESSAGE_MAP ()

X_INSERT_LOCATION))
licrosoft Visual C++ will inser t additional declarations immediately before the previous l in

|dif / / !defined(AFX_STATICPT_H__91B0747C_B88A_4D12_98F6_0449F02FB4B9 INCLUDED_)

transformation, cpp : implementation f i le

,e "stdafx.h"
lude "TrackingClass.h"

blude "Transformation.h"
blude "TrackingClassDlg.h"

def DEBUG
new DEBUG_NEW

ef THIS_FILE
ic char THIS_FILE[] =
if

FILE

char* pPointLocations ^Max_Point] ;
fern int Pointlndex;
fern int LocationPointer, OriginSelect, PosXSelect, PosYSelect;
em REC_DATA_CARTESIAN PtRelToLISMCartesianfMaxJPoint];
ern CString CS[10] /
em int CS_Counter;
1111111111111111111 / /1 / /1 / / / /1 /11 /11 /11 /1 / / / /111111111 / /1111 /11 /1 / /1 / / / /1 /
CTransformation d i a l o g

nsformation: :CTransformation(CWnd* pParent /*=NULL*/)
CDialog(CTransformation: :IDD, pParent)

//{{AFX_DATA_INIT (CTransf ormation)
!m_sCSName = _ T (" ") ;
//}}AFX DATA INIT

|d CTransf ormation: : DoDataExchange (CDataExchange* pDX)

CDialog::DoDataExchange (pDX) ;
//{(AFX_DATA_MAP (CTransf ormation)
DDX_Control (pDX., IDC_COMBO_AXISl_RefPt, m_ctrlComboAxislRefPt);
DDX_Control (pDX, IDC_COMBO_PLANE12_RefPt, m_ctrlComboPlanel2Ref Pt) ;
DDX_Control (pDX, IDC_COMBO_ORIGIN_RefPt, m_ctrlComboOriginRef?t) ;
DDX_Text (pDX, IDC_EDIT_CSName, m_sCSName) ;
//}}AFX DATA MAP

IN_MESSAGE_MAP (CTr;:nsformation, CDialog)
//{{AFX_MSG_MAP (CTransf ormation)

) }AFX_MSG_MAP
_MESSAGS_MAP ()

\llllllllII I/I 1/11/I/I I/Ill I/I I/I III III/II/I//I/IIII I/I/I III I/I/I I/Il/lltI
jCTransformation message handlers

|L CTransf ormation: :OnInitDialog()

CDialog: :OnInitDialog () ;

/ / TODO: Add extra in i t ia l iza t ion here
char LocationString[256];
for (int index=0; index<Max_Point; index++)

if (PtRelToLISMCartesian[index].name != "\0")

::strcpy(LocationString, PtRelToLISMCartesian[index].name);
m_ctrlComboOriginRefPt.AddString(LocationStrin:j) ;
m_ctrlComboAxislRefPt.AddString(LocationString);
m_ctrlComboPlanel2RefPt.AddString(LocationString);

CheckRadioButton(IDC_RADIO_AlPosX, IDC_RADIO_AlNegZ, IDC_RADIO_AlPosX)
CheckRadioButton(IDC_RADIO_A2PosX, IDC_RADI0_A2NegZ, IDC~RADI0_A2PosY)
return TRUE; / / r e t u r n TRUE unless you s e t the focus t o a con t ro l

/ / EXCEPTION: OCX Property Pages should r e tu rn FALSE

|d CTransf ormation ::OnOK()

// TODO: Add ex t r a v a l i d a t i o n here

SupdateData(true) ;
[if (m_sCSName.l3E'upty())

AfxMes3ageBox("You need to type the name of the point") ;
return;

fcs[CS_Counter++] - m_sCSName;
OriginSelect = m_ctrlComboOriginRefPt.GetCurSel () ;
PosXSelect = m_ctrlComboAxislRefPt.GetCurSel (> ;

UosYSelect « m_ctrlComboPlanel2RefPt.GetCu'-Sei () ;
|cDialog::OnOK();

v - . • • * - . *

• . .> . - • . " • • • .

mmm

transformation.h : header f i l e

| [defined(AFX_TRANSFORMATION_H__95953425 3377_4DB2_A94E_EDF7561673DE INCLUDED)
^ine AFX_TRANSFORMATION_H_95953425_3377~4DB2_A94E_EDF7561673DE If!CLUDED_

MSC_VER > 1000
kgma once
dif / / MSC VER > 1000

CTransformation d i a l o g
1

CTransformation : public CDialog

Construction
lie:
CTransformation {CWnd* pParent NULL); // standard constructor

Dialog Data
I //{{AFX_DATA(CTransf ormation)
jenum { IDD = IDD_DIALOG_TRANSFORMATION };
jCComboBox m_ctrlComboAxislRefPt;
ICComboBox m_ctrlComboPlanel2RefPt;
I CComboBox m_ctrl^oinboOriginRe£Pt;
[CSti' ng m_sCSName;
|//}}AFX_DATA

rerrides
/ / ClassWizard generated v i r t u a l funct ion overr ides
//{{AFX_VIRTUAL (CTransformation)

| protected:
I virtual void DoDataExchange(CDataExchange* pDX); / / DDX/DDV support

)AFX_VIRTUAL

Implementation
tected:

• / / Generated message map funct ions
| //{{AFX_MSG (CTransformation)
I virtual BOOL Onln i tDia log() ;
| virtual void OnOK();
! //})AFX_MSG
DECLARE_MESSAGE_MAP ()

|{AFX__INSERT_LOCATION}}
Microsoft Visual C++ will insert additional declarations immediately before the previous lin

dif / / !defined (AFX_TRANSFORMATION_H__95953425_3377_4DB2_A94E_EDF7561673DE INCLUDEDJ

SSClass.h : header f i le

edef s t r u c t tagTHREADPARAMS

1LPARAM l P a r a m ;
RFADPARAMS;

SmJMM

t̂dafx.cpp : source file that includes just the standard includes
JTrackingClass.pch will be the pre-compiled header
Istdafx.obj will contain the pre-compiled type information

lude "stdafx.h"

jstdafx.h : include f i l e for standard system include f i l e s ,
for project spec i f ic include f i l e s tha t are used frequently, but

are changed infrequent ly

!defined(AFX_STDAFX_H__403883F9_2D41_llD7_8A8B_000102C2E8E7 INCLUDED_)
ffine AFX_STDAFX_H_403883F9_2D41_11D7_8A8B_000102C2E8E7 INCLUDED_

MSC_VER > 1000
agma once
dif / / _MSC_VER > 1000

fine VC_EXTRALEAN / / Exclude r a r e l y - u s e d s t u f f from Windows headers

elude <afxwin.h> / / MFC core e^id s t anda rd components
elude <afxext.h> / / MFC e x t e n s i o n s
elude <afxdisp.h> / / MFC Automation c l a s s e s

Iclude <afxd tc t l .h> / / MFC suppor t fo r I n t e r n e t Exp lo re r 4 Common Contro ls
hdef _AFX_N0_AFXCMN_SUPPORT
elude <afxcmn.h> / / MFC suppor t for Windows Common Cont ro ls
dif / / _AFX_NO_AFXCMN_SUPPORT

|fine RadianToDegree(radian) (57.29577951308 * rad ian)
fine DegreeToRadian(degree) (0.017453292 * degree)
fine pi 3.141592654
fine Max_Point 128

Ifine NullStrincf " \0"
fine Max_Line 4
fine Max ViaPoint 4000

itic CWinThread*
Itic CWinThread*
Itic CWinThread*
itic CWinThread*
Stic CWinThread*
Itic CWinThread*
Itic CWinThread*

g_pComputationThread;
g_pTurboTryThread;
g_pGuidanceThread;
g_pEGTFSThread;
gjpEGTFSTurboThread;
g_pDriveRobotThread;
gjpTurboCorrThread;

J{AFX_INSERT_LOCATION)}
^Microsoft Visua l C++ w i l l i n s e r t a d d i t i o n a l d e c l a r a t i o n s immediately before the prev ious l i n

dif / / idefined(AFX_STDAFX_H 403883F9_2D41_11D7_8A8B_000102C2E8E7 INCLUDED_)

i
HI

> - ' • • • , - • • I I

Resource.h

i//
..̂ DEPENDENCIES}}
jcrosoft Developer Studio generated include f i l e .
jjsed by TrackingClass.rc

I

tine
line
fine
fine
fine
fine
fine
jfine
fine
JEine
JEine
fine
jfine
fine
fine
tine
jEine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine
fine

Jfine
Ifine
Jfine
Ifine
Ifine
Jfine
Ifine
fine
fine
fine
fine
fine

fine
fine
fine
fine

Ifine
[fine
Ifine
[fine
jfine
Ifine

IDM_ABOUTBOX 0x0010
IDD_ABOUTBOX 100
IDS_ABOUTBOX 101
IDD_TRACKINGCLASS_DIALOG 102
IDR_MAIHFRAME 128
IDB_STOP 129
IDB_START 130
IDD_DIA1A. i_STATIC 132
IDD_DIAL0G_TRANSF0RMATION 134
IDD_DIALOG_PATH_GSNERATION 135
IDC_CHECK_DI SPLAY 1000
IDC_STATIC_STATUS 1001
IDC EDIT_PSDX 1002
IDC~EDIT_PSDY 1003
IDC_EDIT_PSD_FREQ 1004
IDC_EDIT_ENC1 1005
IDC_EDIT_ENC2 1006
IDC_EDIT_ENC_FREQ 1007
IDC_EDIT_ZYGO 1008
IDC_EDIT_ZYGO_FREQ 1009
IDC_EDIT_TIME 1010
IDC_EDIT_COMPTHREAD_FREQ 1011
IDC_EDIT_PATH_LAST_X 1011
IDC_EDIT_STEP_SIZE 1012
IDC_COMBO_ORIGIN_RefPt 1012
IDC_BUTTON_INC_STEPSIZE 1013
IDC_COMBO_AXISl_RefPt 1013
IDC_BUTTON_DEC_STEPSIZE 1014
IDC_COMBO_PLANE12_RefPt 1014
IDC_EDIT_PATH_LAST_Y 1014
IDC_RADIO_GPIB 1015
IDC_RADIO_AlPosX 1015
IDC_EDIT_PATH_LAST_Z 1015
IDC_RADIO RS232 1016
IDC_RADIO~AlPosY 1016
IDC_RADIO_AlPosZ 1017
IDC_RADIO_APR 1017
IDC_RADIO_AlNegX 1018
IDC_RADIO_CAT 1018
IDC_RADIO_AlNegY 1019
IDC_BUTTON_UP 1019
IDC_RADIO_AlNegZ 1020
IDC_BUTTON_LEFT 1020
IDC_RADIO_A2PosX 1021
IDC_BUTTON_RIGHT 1021
IDC_RADIO_A2PosY 1022
IDC_BUTTON_DOWN 1022
IDC_RADIO_A2PosZ 1023
IDC_BUTTON_SHOW_PSD 1023
IDC_RADIO_A2NegX 1024
IDC_BUTTON_SET_HOME 1024
IDC_RADIO A2NegY 1025
IDC_BUTTON_HOME 1025
IDC_RADIO_A2NegZ 1026
IDC_BUTTON_SET_BB 1026
IDC BUTTON_GO_BB 1027
IDC~EDIT_CSName 1027
IDC_BUTTON_STATIC SAMPLE 1028
IDC POSX " 1029
IDC~EDIT_STATIC_POINT_NAME 1029
IDCJPOSY 030
IDC~LIST_STATIC_POINT I03O
IDC~BUTTON_ReINIT_ZYGO 1031
IDC~BUTTON_INIT 1032
IDC BUTTON SUBSYSTEM 1033
IDC~POSZ "" 1034
IDC EDIT_PATH_START_X 1034
IDC~POSX2 1035
IDC~EDIT_PATH_START_Y 1035
IDC~POSY2 1036
IDC~EDIT PATH START Z 1036

Ifine IDC_STATIC_BEAM
ifine IDC LIST_VIA_POINTS
Ifine IDC~BUTTON_TRACK
fine IDC~COMBO_PATHTYPE

Ifine IDC_P0SZ2
ifine IDC_EDIT_PATH_VEL
Ifine IDC_BUTTON_DYNAMIC_SAMPLE
ifine IDC_EDIT_PATH_ACC

= IDC EDIT_TURBO_FREQ
Ifine IDC~EDIT_PATH_DEC
Ifine IDC~CHECK_TX
Ifine IDC_EDIT_PATH_RADIUS
Ifine IDC_CKTrK__TY
Ifine IDC STATIC_PATH_RADIUS
Ifine IDC~CHECK_TZ
Ifine IDC BUTTON_FILE_BROWSE
Ifine IDC~EDIT_VEL
Ifine IDC~STATIC_PATH_RADIUS2
[fine IDC~EDIT_ACC
[fine IDC DX
Ifine IDC~BUTTON_RESET
[fine IDC BUTT0N_TRANSFORMATI0N
[fine 1DC~RADIO__VIA PT_NUM
ifine IDC_COMBO_CS
ifine IDC_RADIO__VTA_PT_DIST
Ifine IDC_BUTTON_PATH_GENERATION
Ifine IDC_BUTTON_GENERATE_VIA_POINTS
[fine IDC_EDIT_VIA_PT_DISTNUM
[fine IDC BUTTON_EGTFS
Ifine IDC~BUTTON_GUIDANCE
Ifine IDC RAD10_VIA_PT VEL
Ifine IDC~EDIT_GUIDANC-i_FREQ
fefine IDC_EDIT_EGTFS_FREQ
fefine IDC_RADIO_MOTOCCM_CORR
fefine IDC_RADIOJTURBO_CORR
Ifine IDC_EDIT_VEL2
fefine IDC_STATIC_VIA_PT_DISTNUM
fefine IDC_EDIT_ACC2
fefine IDC_EDIT_ROBOT_CUR_X
fefine IDC_EDIT_ROBOT_CUR Y
fefine IDC_EDIT_ROBOT_CUR~Z
fefine IDC_BUTTON_TURBOTRY
fefine IDC_RADIO_MOTOCOM_DRIVE
fefine ir:_RADIO_PATH DRIVE
fefine IDC STATIC_DRIVE_ROBOT
fefine IDC~DY
pfine IDC_DZ
fefine IDC_BUTTON_WRITE_FILE
fefine IDC_BUTTON_DRIVE_BEAM
fefine IDC_BUTTON_GET_CUR_P0S
Efine IDC_BUTTON_C0RRECT
Rfine IDC ~\UTTON_ZERO
pine IDC^_BUTTON_TRY
Bfine IDC_BUTTON POINT_SAMPLE
fefine IDC_RADI0_M0T0C0M_C0RR2
fefine IDC_RADIO_TURB0_C0RR2
fefine IDC_COMBO_LINE_NUMBER
bfine IDC_STATIC_LP
fefine IDC_BUTTON_OPEN_P0RT
jefine IDC_BUTTON_DRIVE_ROBOT

|Next d e f a u l t v a l u e s f o r new o b j e c t s

fdef APSTUDIO_INVOKED
tedef APSTUDIO__READONLY_SYMBOLS
efine _APS_NEXT_RESOURCE_VALUE

_APS_NEXT_COMMAND_V.ALUE
efine _APS_NEXT_CONTROL_VALUE
efine _APS_NEXT SYMED VALUE
ndif "" ~
ndif

1037
1037
1038
1038
1039
1039
1040
1040
1041
1041
1042
1042
1043
1043
1044
1044
1045
1045
1046
1046
1047
1048
1048
1049
1049
1050
1050
1051
1051
1052
1052
1053
1054
1055
1056
1057
1058
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1088
1089
1092
1093

137
32771
1074
101

• TFCAP05.txt
!**Acroloop Program for Target Following Control Algorithmt Position Mode

SYS
HALT ALL
DETACH A L L
CONFIG ENC4 STEPPER4 STEPPER4 NONE

PROGO
ATTACH MASTERO
ATTACH SLAVEO A X I S O " X "
ATTACH SLAVE1 A X I S l " Y "
ATTACH AXISO ENCO STEPPERO
ATTACH A X I S l STEPPERl STEPPERl
AXIS2 OFF
AXIS3 OFF
AXIS4 OFF
AXIS5 OFF
AXIS6 OFF

1AXIS7 OFF

i AXISO PGAIN 0 .00017
i AXISO IGAIN 0 .005
I AXISO I L I M I T 0 . 0 1
AXISO DGAIN 0 . 000001

| AXISl PGAIN 0 .0025
AXISl IGAIN 0 . 0
AXISl I L I M I T 0 . 0
PPU X6144O0 Y80000
ENCO MULT - 4
ENC1 MULT 4
RES X
RES Y

pcei6o=ooooooooo
PERIOD 0 . 0 0 1
VEL 0 . 1 ACC 5
JOG VEL X2 Y3
30G ACC X3 Y5
30G DEC X3 Y5
SET 32
SET 33
10 LVO
20 DVO
30 DV1
40 DV2
50 DV3
60 DV4
70 DV5
80 DV6

DEC 5 STP 5

P6916
DVO
DVl
DV2
P6144
-1 * P6160
DV3 / 614400 *36G
DV4 / 40000 *720

90 DV7 = -0.5 * (DVO * cos(DV5) +
100 DV8 = 0.5 * (DVO * -1* sin(DV5)
110 DV10 *• - 1 * DV5
120 DV9 = DV2 - DV7 * tan(DVlO) - DV8 *
130 DAO(O) = DV9 * cos(DV6] " " ' "

* sin(DVS))
+ DVl * cos(DV5))

tan(DV6)
7 /

) ()
O () V9 cos(D6) * sin(DVlO) + DV7 / cos(DVlO)

140 DA1(O) = DV9 * COSCDV6) * COS(DVlO)
150 DA2(0) = DV9 * sinfDV6) + DV8 / cos(DV6)
160 DV11 a ATAN(DV7/DV2/cos(DV6)) / 360 + DV5 / 360
170 DV12 = 0.5 * ATAN(DV8/DV2) / 360
180 LV2 = LV2 + 1
190 306 ABS XfDVll)
200 JOG INC Y (- l * DV12)
210 l VI = P6916
220 IF ((LV1-LV0) >= 1000) THEN LV3 - LV2
230 IF ((LV1-L;'O) >= 1000) THEN LV2 = 0
240 IF (LV2 = 0) THEN LVO • LVl
250 GOTO 20
DIM DV(13)

Page 1

'*•: srf'.i'i

DIM LV(4)
DIM DA(3)
DIM DA0(3)
DIM DA1C3)
DIM DA2(3)

TFCAPOS.tXt

Page 2 v#i:!

v^Sfit.̂

TFCAVel.txt
**Acro1oop program for Target Following Control Algorithm, Velocity Mode
SYS
HALT ALL
DETACH A L L
CONFIG ENC4 STEPPER4 STEPPER4 NONE

PROGO
ATTACH MASTERO
ATTACH SLAVEO AXISO "X"
ATTACH SLAVEl A X I S l "Y"
ATTACH AXISO ENCO STEPPERO
ATTACH AXISl STEPPERl STEPPERl
AXIS2 OFF
AXIS3 OFF
AXIS4 OFF
AXIS5 OFF
AXIS6 OFF
AXIS7 OFF

AXISO PGAIN 0 .00017
AXISO IGAIN 0 .005
AXISO I L I M I T 0 . 0 1
AXISO DGAIN 0 . 0 0 0 0 0 1

AXISl PGAIN 0 .0025
!AXISl IGAIN 0 . 0
i AXISl I L I M I T 0 . 0
PPU X614400 Y80000
ENCO MULT - 4
ENC1 MULT - 4
RES X
RES Y
P0616O=OOOOOOOOO

PERIOD 0 . 0 0 1
! VEL 0 . 1 ACC 5 DEC 5 STP 5
JOG VEL X0.02 Y0 .03
JOG ACC X3 Y5
JOG DEC X 3 Y5
SET 32
SET 33
10 LVO a ; 6?16
20 DVO = DVO
30 D V l = D V l
40 DV2 = DV2
50 DV3 = P6144
60 DV4 = - 1 * P6160
70 DV5 = DV3 / 614400 *36O
80 DV6 = DV4 / 40000 *720
90 nv7 = - 0 . 5 * (DVO * cos(DV5) + DVl * s i n (D V 5))
100 DV8 = 0 .5 * (DVO * - 1 * s in (DV5) + DVl * cos(DV5))
110 DV10 = - 1 * DV5
120 DV9 » DV2 - DV7 * tan(DVlO) - DV8 * tan(DV6)
130 DA0(0) = DV9 * cos(DV6) * sin(DVlO) - DV7 / cos(DVlO)
140 DAl(O) = DV9 * cos(DV6) * cos(DVlO)
150 DA2(0) = DV9 * sinCDV6) + DV8 / cos(DV6)
160 DV11 = -1*ATAN(DAO(0) / DAl(0)) / 360 - DV3/614400
170 DV12 = 0.5 * ATAN(DA2(0)/SQRT(DAO(0) * DA0(0) + DAl(O) * DAl(O))) / 360 - DV4
/40000
180 LV2 = LV2 + 1
190 DV13 = S Q R T (D V l l * D V l l V 0 . 0 4 0
200 DV14 = SQRT(DV12*DV12)/0.040
210 DV15 m DV13 * 1000
220 DV16 = DV14 * 1000
230 IF (DV13 > 1 . 5) THEN DV13 = 1.5
240 IF (DV13 <= 0 . 0 0 0 7) THEN DV13 = 0 . 0
250 IF (DV14 > 6 . 0) THEN DV14 = 6 . 0

Page 1

|

TFCAVel.tXt
DV14 <=0.0004) THEN DV14 =0.0
DV15 >3.0) THEN DV15 =3.0
DV16 > 5.0) THEN DV16 =5.0

YCDV14)
YCDV16)
YCDV16)

DVll >= 0.0) THEN JOG FWD X
DVll < 0.0) THEN JOG REV X
DV12 >= 0.0) THEN JOG REV Y

1260 IF
1270 IF
1280 IF (DV16 > 5 . 0
290 JOG VEL XCDV13
] 300 JOG ACC XCDV15
310 JOG DEC XCDV15
1320 IF "
330 IF
340 IF

1350 IF DV12 < 0 . 0) THEN 3OG FWD Y
360 LV1"= P6916
370 IF ((LV1-LV0) >= 1000) THEN LV3 = LV2
380 IF ((LV1-LV0) >= 1000) THEN LV2 - O

! 390 IF (LV2 = 0) THEN LVO = L V l
I 400 GOTO 20
! DIM DV(17)
i DIM LVC4)
! DIM DA(3)
IDIM DA0(3)
DIM DA1(3)
DIM DA2(3)

Page 2

Predictive Position.txt
|**Acroloop Program for Target Following control Algorithm, Predictive Position
[Mode

SYS
HALT ALL
DETACH ALL
CONFIG ENC4 STEPPER4 STEPPER4 NONE

"X"

! PROGO
(ATTACH MASTERO
ATTACH SLAVEO A X I S O
ATTACH SLAVE1 A X I S l "Y"
ATTACH AXISO ENCO STEPPERO

I ATTACH A X I S l STEPPERl STEPPERl
[AXIS2 OFF
AXIS3 OFF
AXIS4 OFF
AXIS5 OFF
AXIS6 OFF
AXIS7 OFF

!AXISO PGAIN 0 .00017
AXISO IGAIN 0 .005
AXISO ILIMIT 0 . 0 1

I AXISO DGAIN 0 . 0 0 0 0 0 1

i AXISl PGAIN 0 .0025
AXISl IGAIN 0 . 0

! AXISl ILIMIT 0 .0
PPU X614400 Y80000
ENCO MULT - 4
ENCl MULT - 4
RES X
RES Y
P0616O=OOOOOOOOO

PERIOD 0 . 0 0 1
I VEL 0 . 1 ACC 5
, 30G VEL X2 Y3
j 30G ACC X3 Y5
30G DtC X3 Y5
SET 32
SET 33

I 10 LVO
20 DVO
30 DVl
40 DV2
50 DV3
60 DV4
70 DV5
80 DV6

DEC 5 STP 5

P6916
DVO
DVl
DV2
P6144
- 1 * P6160
DV3 / 614400 *360
DV4 / 40000 *720

i 90 DV7 = -0 .5 * (DVO * cos(DV5) + DVl * sin(DV5))
100 DV8 = 0.5 * (DVO * - 1 * sin(DV5) + DVl * cos(DV5))
HO DV1O = - 1 * DV5
120 DV9 = DV2 - DV7 * tan(DVlO) - DV8 * tan(DV6)
130 DA0(2
140 DA1(2
150 DA2(2
160 DA0C1
170 DA1(1
180 DA2
190 DAO
200 DAI
210 DA2
220 DA3
230 DA3 _
240 DA3(2
250 DA4(0

= DAI
= DA2(O
= DV9 * ,
= DV9 * COSCDV6
= DV9 * sin(DV6)
= (DAO(O) - DAOC1
= (DAl(O) - DAIQ
= (DA2CO) - DA2

* sin(DVlO)
* COS(DVlO)

8 /

- DV7 / COS(DVlO)
(O)

DV8 / COS(DV6)
/ 0.03
/ 0.03
/ 0.03

= (DA0(0) - 2 * DA0(l) + DA0(2)) / (0.03 * 0.03)

Page 1

. > , -. $

260 DA4
270 DA4
260 DA5
270 DA5
280 DA5

(DAl(O) - 2
(DA2(O) -
0.25 * (3
0.25 * CDA3
0.25 * (DA3

Predi ctive Posi ti on.txt
'0.03 * 0.03)
0.03 * 0.03)

0.03 * 0
0.03
0.03

03: + DAOCO}
+ DA1CO,
+ DA2C0

290 DVll = ATAN(DA5(O) / DA5C1)) / 360
300 DV12 = 0.5 * ATAN(DA5(2)/SQRT(DA5(O) * DA5(O) + DA5(1) * DA5(1) / 360 - DV4
/40000
310 LV2 = LV2 +1
320 DVB = SQRT((DV11 - DV3/614400) * (DVll - DV3/614400)) / 0 .066
330 DV14 = SQRTQDV12 * DV12) / 0 . 0 6 6
REM 340 DOG VEL X(1*DV13) Y(l*DVl4)

370 3OG AB5
380 3OG

1390 LV1
400

REM 350 3OG ACC X(100*DVl3)
REM 360 JOG DEC X(100*DVl3)

X(-1*DV11)
INC Y (- l * DV12)
» P6916
(LV1-LV0) >= 1000) THEN
(LV1-LV0) >= 1000) THEN
LV2 = 0) THEN LVO = L V l

430 GOTO 20
DIM DV(15)
DIM LV(4)
DIM DA(6)
DIM DA0(3)
DIM DA1(3)
DIM DA2(3)
DIM DA3(3)
DIM DA4C3)
DIM DA r

v3)

V(io6*bvi4)
Y(1OO*DV14)

LV3 =
LV2 =

LV2
0

Page 2

Predictive Veloci ty. txt
**Acroloop Program for Target Following Control Algorithm, Predictive velocity
Mode

SYS
HALT A L L
DETACH A L L

I CONFIG ENC4 STEPPER4 STEPPER4 NONE

"X"

PROGO
ATTACH MASTERO
ATTACH SLAVEO AX ISO n
AnACH SLAVE1 A X I S l " Y "
ATTACH AXISO ENCO STEPPERO
ATTACH A X I S l STEPPER1 S T E P P E R l
AXIS2 OFF
AXIS3 OFF
AXIS4 OFF
AXI:5 OFF
AXIS6 OFF

IAXIS7 OFF

AXISO PGAIN 0 .00017
AXISO IGAIN 0 .005

I AXISO I L I M I T 0 . 0 1
i AXISO DGAIN 0 . 0 0 0 0 0 1

AXISl PGAIN 0 .0025
AXISl IGAIN 0 . 0

! AXISl I L I M I T 0 . 0
! PPU X614400 Y80000
ENCO MULT - 4
ENCl MULT - 4
RES X
RES Y
P0616O=OOOOOOOOO

PERIOD 0 . 0 0 1
VEL 0 . 1 ACC 5
JOG VEL X2 Y3
JOG ACC X3 Y5
JOG DEC X 3 Y5
SET 32

! SET 33
10 LVO
20 DVO
30 DVl
40 DV2
50 DV3
60 DV4
70 DV5
80 DV6
90 DV7
100 DV8 = O . 5 *
110 DV10 = - 1 *

DEC 5 STP 5

1

P6916
DVO
DVl
DV2
P6144
- 1 * P516O
DV3 / 614400 *360
DV4 / 40000 *720= -0 .5

O DV1
120 DV9
130 DAO
140 DAI
ISO DA2
160 DAO
170 DAI
180 DA2(1
190 DAO
200 DAI
2

(DVO * cos(DV5) + DVl * s in(DV5))
(DVO * - 1 * sin(DV5) + DVl * cos(DV5))
DV5 , _

= DV2 - DV7 * tan(DVlO) - DV8 * tan(DV6)

00 DAI
210 DA2
220 DA3
2

!O3 -

:o)230 DA3V
240 DA3(^ -
250 DA4(0) =

= DAI
« DA2
= DAO
= DAl
= DA2
= DV9

DV9
DV9
(DAO

1) - (DA1(O
2) = (DA2C0

:65
* COS(DV6
* COSCDV6
* sin(DV6
:o) - DAO3

- DA1(1
- DA2(l

* sin(DVlO) - DV7 / cos(DVlO)
* COS(DVIO)
+ DV8 / cos(DV6)

/ 0.03
0.03
0.03

/ (0.03 * 0.03)

Page 1

260 DA4
270 DA4
260 DA5
270 DA5
280 DA5 I CDA1CO) - 2

(DA2(0) - 2
0.25 * (DA3(0) * O.O3 +
0.25 * CDA3C1) * 0.03 +
0.25 * (DA3(2) * 0.03 +

Predictive Veloci ty. txt
0.03* DA1C1) + DAI

DA2C1) + DA2
0.5
0.5
0.5

0.03

DA4(

0.03}
0.03)

0.03 * 0.03
0.03 * 0.03
0.03 * 0.03

290 DVll = -1*ATAN(DA5(O) / D A 5 (D) / 360 - DV3/614400
300 DV12 = 0.5 * ATAN(DA5(2)/SQRT(DA5(O) * DA5(0) + DA5(1) * D A 5 (1))) / 360 - DV4
/40000
310 DV13 = SQRTfDVll * D V l l) / O . I
320 DV14 = SQRT(DV12 * DV12) / O . I
330 LV2 = LV2 + 1
340 3OG VEL X(DV13) Y(DV14)
350 3OG ACC X(1OOO*DV13) Y(1OOO*DV14)
360 JOG DEC X(1OOO*DV13) Y(1OOO*DV14)
370 IF (D V l l >= 0 . 0) THEN 3OG FWD X
380 IF (D V l l < 0 . 0) THEN JOG REV X
390 IF (DV12 >= O.O) THEN JOG REV Y
400 IF (DV12 < 0 . 0) THEN JOG FWD Y
410 LVl = P6916
420 IF C(LVl-LVO) >= 1OOO) THEN LV3 = LV2
430 IF ((LVl-LVO) >= 1OOO) THEN LV2 • 0
440 IF (LV2 = O) THEN !.VO » L V l
450 GOTO 20
DIM DV(15)
DIM LV(4)
DIM DA(6)
DIM DA0(3
DIM DAI (3
DIM DA2(3
DIM DA3(3
DIM DA4(3
DIM DA5(3

Page 2

J&fei-^;1*1

Appendix F

Control programs created for the orientation measurement sub-system

:

IHH

OrientationCl^ cpp : implementat ion f i l e

Llude "stdafx.h"
Idude "Orientation.h"
jiclude "OrientationDlg.h"
jclude <olmem.h>
Llude <olerrors.h>
fcdude <oldaapi.h>
Idude "acrolib.h"
[dude "math.h"

fcdef DEBUG
^fine'new DEBUG_NEW
def THIS_FILE
tic char THIS_FILE[] = FILE ;
dif

I Error handl ing macros * /

>jj

Jefine STRLEN 80
fer str[STRLEN] ;

/* s t r i n g s ize for general text, manipulation */
/ * global s t r i n g for general t ex t manipulation */

fefine SHOW_ERROR(ecode) AfxMessageBox(olDaGetErrorSt r ing(ecode , \
Str,STRLEN), M3_0K, NULL);

lefine CHECKERROR(ecode) i f ((board, s t a t u s = (ecode)) != OLNOERROR) \
{\
SHOW_ERROR(board.status);\
olDaReleaseDASS(board.hdass);\
olDaTenninate(board.hdrvr);\
exi t (l) ;}

simple structure used with board */

ief struct tag_board {
IHDEV hdrvr; / * d r ive r handle */

/* sub system handle */
/* board error status */
/* sub system buffer handle */
/* buffer pointer */
/* string for board name */

char entry[STRLEN]; /* string for board name */
I O A R D ;

[HDASS h d a s s ;
t ECODE s t a t u s ;
;HBUF h b u f ;
PWORD l p b u f ;
char name [STRLEN] ;

pedef BOARD* LPBOARD;

latic BOARD b o a r d ;
* FileOCA;

igned long pACRAddress [1] ;
/ / / / / /
CAboutDlg dialog used for App About

Jass CAboutDlg : publ ic CDialog

blic:
CAboutDlg () ;

Dialog Data
//{(AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX };
//)}AFX_DATA

// ClassWizard generated v i r t u a l function overr ides
// {{AFX_VIRTUAL (CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); / / DDX/DDV support
//}}AFX_VIRTUAL

Implementation
fotected:

// {(AFX_MSG (CAboutDlg)
//}}AFX_MSG
DECLARE_MESSAGEMAP ()

boutDlg:: CAboutDlg () : CDialog (CAboutDlg: : IDD)

// ((AFX_DATA_INIT (CAboutDlg)

//)} AFX_DATA_INIT

[id CAboutDlg: :DoDataExchange (CDataExchange* pDX)

CDialog::DoDataExchange (pDX) ;
// {{AFX_DATA_MAP (CAboutDlg)
//)}AFX_DATA_MAP

IN MESSAGE_MAP (CAboutDlg, CDialog)
/7((AFX_MSG_MAP (CAboutDlg)

/ / No message h a n d l e r s .
//)}AFX_MSG_MAP

i HESSAGE_MAP ()

llll 1111111111111111111 III 111II111111111 III I III III 1111 III 11 III III III 11 III 11
[COrientationDlg d i a l o g

jrientationDlg::COrientationDlg (CWnd* pParent /*=NULL*/)
: CDialog (COrientat ionDlg: :IDD, pParent)

//{{AFX_DATA_INIT (COrientationDlg)
m uiFreq = 0;
ifsMax = _T(" I f) ;
m_sMin = _•£{"");
m_sAveX2 = _T("") ;
m sAveX3 = _T (" ") ;
nfsAveYl' - _ T (" ") ;
m_sAveYS = _T("") ;
m_sPx2 = _T("") ;
m_sPx3 = _T (" ") ;
m~sPy2 = _T("") ;
m_sPy3 = _T (" ") ;
m_sTime = _T (" ") !
m sVO = _T("") ;
nfsVl = _T("") ;
m_sV2 = _T (" ") ;
m_sV3 = _T("") ;
m_sV4 = _T (" ") ;
m_sV5 = _T (" ") ;
m_sV6 = _T (" ") ;
m_sV7 = _T (" ") /
m_sPitch = _T("") ;
m_sYaw = _T("") /
m_sRoll = __T (" ") ;
ffi_uiStepSize3 = 0 ;
a_uiStepSize4 = 0 ;
m_uiEncFreq = 0 ;
m_lEnc3 = 0;
m_lEnc4 = 0 ;
m_sAveYaw = _T {" ") ;
m_sAvePitch = _ T (" ") ;
/ /))AFX_DATA_INIT
// Note t h a t Load lcon does n o t r e q u i r e a s u b s e q u e n t D e s t r o y l c o n i n Win32
mjilcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

Jid COrientationDlg: : DoDataExchange {CDataExchange* pDX)

CDialog::DoDataExchange (pDX) ;
//({AFX_DATA_MAP (COrientationDlg)
DDX_Control(pDX, IDC_BUTTON_OCA, m_ctrlButtonOCA);
DDX_Control(pDX, IDC_BUTTON_WRITE_FILE, m_c t r lWr i t eF i l e)
DDX_Control(pDX, IDC_BUTTON_START_STOP, m_c t r lS t a r tS top)
DDX_Text(pDX, IDC_EDIT_Freq, m uiFreq) ;
DD IDC_EDIT_MAX, m_sMax) ',

IDC_EDIT_jMIN, m_sMin) ;
IDC_EDIT_AVE_X2, m_sAveX2);
IDC_EDIT_AVE_X3, m_sAveX3);
IDC_EDIT_AVE_Y2, m_sAveY2) ;
IDC_EDIT_AVE_Y3, m_sAveY3) ;
IDC_EDIT_PSDX2, m_sPx2) ;
IDC_EDIT_PSDX3, m_sPx3);
IDC_EDIT_PSDY2, m_sPy2) ;
IDC_EDIT_PSDY3, ia_3Py3) ;

j (p , IDC_EDIT_TIME, m_sTime) ;
DDX_Text(pDX, inC_EDIT_VO, m sVO) ;
DDX_Text(pDX, IDC_EDIT_V1, m~sVl) /

_ (p D X ,
DDX_Text(pDX,
DDX_Text(pDX,
DDX_Text(pDX,
DDX_Text(pDX,
DDXJText (pDX,
DDX_Text(pDX,
DDX_Text (pDX,
DDXJTextfpDX,
DDX_Text(pDX,
DDX_Text (pDX,
DDXjText (pDX,
DDX

DDX Text (pDX, IDC_EDIT
DDX.'Text (pDX, IDC_EDIT
DDX~Text{pDX, IDC_EDIT
DDX'Text (pDX, IDC_EDIT
DDX~Text(pDX, IDC_EDIT
DDX"To:'.t(pDX, IDC_EDIT
DDX'Text (pDX, IDC_EDIT
DDX'Text (pDX, IDC_EDIT
DDX"Teit(pDX, IDC_EDIT
DDX~Text(pDX, IDC_EDIT
DDX~Text (pDX, IDC_EDIT
DDX~Text(pDX, IDC_EDIT
DDX~Text(pDX, IDC_EDIT
DDX~Text (pDX, IDC_EDIT
BDX~Text (pDX, IDC_ED1T
DD?"Toxt(pDX, IDC ZDIT
//)TAFX_DATA_MAP "'

V2, m_sV2);
"V3, m_sV3);
~V4, m_sV4);
"V5, m_sV5);
~V6, m_sV6);
~V7, m_sV7);
"PITCH, ro_sPitch);
"YAW, m_3Yaw);
"ROLL, m_sRol l) ;
~M3_STEPSIZE, m u i S t e p S i z e 3) ;
J14..STEPSIZE, nTuiStepS:Lze4) ;
ENC_FREQ, m_uiEncFreq);
~ENC:, m_lEnc3);
"ENC4, :o_lEnc4);
~AVE_YAW, m_sAveYaw);
'AVE_PITCH, m_sAvePitch) ;

g)
0nButtonM4Positiv€;)
OnButtonM4Negative)

OnButtonlnitMotor)
OnSetfocusEditM3Stepsize)

GIN_MESSAGE_MAP (C O r i e n t a t i o n D l g , C D i a l o g)
// {{AFX_MSG_MAP (C O r i e n t a t i o n D l g)
0N_WM_SYSCOMMAND ()
ON_WM_PAINT ()
0N_WM_QUERYDRAGICON {)
ON_WM_TIMER {)
ON_BN_CLICKED (IDC_BUTTON_INIT, O n B u t t o n l n i t)
ON_BN_CLICKED(IDC_BUTTON_START_STOP, O n B u t t o n S t a r t S t o p)
ON_BN_CLICKED(IDC_BUTTON_M3_POSITIVE, 0 n B u t t o n M 3 P o s i t i v e)
ON_BN_CLICKED(IDC_BUTTON_M3_NEGATIVE, O n B u t t o n M 3 N e g a t i v e)
ON_BN_CLICKED (IDC_BUTTON_M4_POSITIVEj
ON_BN_CLICKED (IDC_BUTTON_M4_NEGATIVE,
ON_BN_CLICKED(IDC_BUTTON_INIT_MOTOR,
0N_EN_SETFOCUS(IDC_EDIT_M3_STEPSIZE,
0N_SN_SETFOCUS(IDC_EDIT_M4_STEPSIZE, O n S e t f o c u s E d i t M 4 S t e p s i z e)
0N_EN_KILLFOCUS(IDC_EDIT_M3_STEPSIZS, O n K i l l x o c u s E d i t M 3 S t e p s i z e)
0N_EN_KILLFOCUS (IDC_EDIT_M4_STEPSIZE, O n K i l l f o c u s E d i t M 4 S t e p s i z e)
ON_BN_CLICKED(IDC_BUTTON_RESET, O n B u t t o n R e s e t)
ON_BN_CLICKED (IDC_BUTi'ON_ZERO, O n B u t t o n Z e r o)
ON BN_CLICKED(IDC_BUTTON_WRITE_FILE, O n B u t t o n W r i t e F i l e)
ON~BM_CLICKED {IDC_BUTTON_OCA, O n B u t t o n O c a)
0-~BN_CLICKED (IDC_BUTTON_HOME, OnButtonHome)
//T)AFX_MSG_MAP

_MESSAGE_MAP ()

\ui 11111 /1111 /11 / u; i u i /11 /11 /1 u 11 /111 u m i i u 111 / u i / /11111 n /1 /11 /111
1 COrientationDlg message handlers

i

JOL COrientationDlg: :OnIni tDia log()

CDialog: :OnIni tDialog() ;

/ / Add "About. . . " menu i t em t o system menu.

/ / IDM_ABOUTBOX mu3t be i n t h e system command range .
ASSERT ((IDM_ABOUTBOX & OxFFFO) == IDM ABOUTBOX);
ASSERT (IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)
{

CString strAboutMenu;
strAboutMenu.LoadString (IDS_ABOUTBOX) ;
if (! strAboutMenu.IftEmpty())

pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu)/

// Set the icon for t h i s dialog. The framework does t h i s automatically
//' when the appl ica t ion ' s main window i s not a dialog
Setlcon(;i_hlcon, TRUE); / / Set big icon
Setlcon(ia_hlcon, FALSE)-* / / Set small icon

// TODO: Add extra i n i t i a l i z a t i o n here
m_bInitFlag = false,-
m_bsaniple = fa lse ;
m_bEncoHe>r = fa l se ;
n_bWritetia.e = fa l se ;

B bZero = f a l s e ;
nfbStartOCA = f a l s e ;
n bOCASampleThread = f a l s e ;
Num = 0;
SianX2 = 0.0;
SumY2 = 0.0;
SumX3 = 0.0;
SumY3 = 0.0;
//x_PSD = 0.0;
//y_PSD = 0 .0 ;

Hotor3.enc = 0;
Motor3. CurrentAngle = 0 .0 ;

Motor4.enc = 0;
Motor4.CuirentAngle = 0 .0 ;

if ((fp = f o p e n (" O r i e n t a t i o n . t x t " , "w"))
{

puts ("cannot open f i l e ") ;
exit(l);

NULL)

rewind(fp); / / set the cursor to the beginning of fi le
fprintf(fp, "V5\t V6\t V7\t V8\t X2\t Y2\t V9\t V10\t Vll\t V12\t X3\t Y3\n")

SetTimer(0xll, 1000, NULL);
return TRUE; / / return TRUE unless you set the focus to a control

id COrienta t ionDlg: : OnSysCommand (UINT nID, LPARAM lParam)

if ((nID & OxFFFO) == IDM_ABOUTBOX)
(

CAboutDlg d l g A b o u t ;
dlgAbout . DoModal () ;

else

CDialog: : OnSysCommand (nID, lParam);

If you add a minimize button to your dialog, you will need the code below
to draw the icon. For MFC applications using the document/view model,
this is automatically dons for you by the framework.

|id COrientationDlg: : OnPaint ()

if (Islconic())
(

CPaintDC dc(this); // device context for padnting

SendMessage (WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc() , 0) ;

// centar icon in client rectangle
int cxlcon = GetSystemMerrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(srect);
int x = (rect.Width() - cxlcon + 1) / 2;
int y = (rect.Height() - cylcon + 1) / 2;

}
else

/ / Draw the icon
dc.Drawlcon(x, y, m_hlcon);

CDialog::OnPaint();

Tha system ca l l s t h i s to obtain the cursor to display while the user drags
the minimized window.

pRSOR COrientationDlg: jOnQueryDraglconi)

return (HCURSOR) m hlcon;

0L CALLBACK GetDriver(LPSTR lpszName, LPSTR lpszEntry, LPARAM lParam)

4

Is is a callback function of olDaEnvunBoards, i t gets the
tings of the Open Layers board and attempts to i n i t i a l i z e

board. If successful, enumeration i s halted.

IPBOARD lpboard = (LPBOARD) (LPVOID)lParam;

'/• f i l l in board s tr ings * /
i

lstrcpyn(lpboard->name, lpszName,STRLEN) ;
lstrcpyn(lpboard->entry, lpszEntry, STRLEN);

!/• try to open board * /

j lpboard->status = olDalnitialize(lpszName,&lpboard->hdrvr);
| if (lpboard->hdrvr != NULL)

return FALSE; / * false to stop enumerating * /
;else

return TRUE; / * true to continue * /

U COrientationDlg: :OnTimer (UINT nIDEvent)

/ / TODO: Add your message handler code here and/or ca l l default
if (nIDEvent == Oxll)
f

UpdateData(false);
m_uiFreq = 0;
ra_uiEnc;Freq = 0;
/*if (rr._bSample)
{

m_ctrlStartStop.SetWindowText("START");
m_bSample = false;
//CloseHandle(gjpPSDThread->m_hThread);

)*/
)
CDialog: :0nTimer (nIDEvent) ;

|ii COrientationDlg: :OnButtonInit ()

/ / TODO: Add your control not i f ica t ion handler code here
m_bInitFlag = t rue ;
board, hdrvr = NULL;
CHECKSRROR (olDaEnumBoards(GetDriver,(LPARAM)(LPBOARD)sboard));

/* check for error within callback function * /

CHECKERROR (board, status) ;

/* check for NULL driver handle - means no boards * /

if (board.hdrvr == NULL) {
AfxMessageBox(" No Open Layer boards!!!",MB_0K, NULL);
exit(l);

}

/* get handle t o A/D sub system * /
CHECKERROR (olDaGetDASS(board.hdrvr,OLSS_AD,0,fiboard.hdass));

/* set subsystem for s ing le value opera t ion * /
CHECKERROR (olDaSetDataFlow(board.hdass,OL_DF SINGLEVALUE));
CHECKERROR (olDaSetChannelType(board.hdass, OL_CHNT_SINGLEENDED)
olDaSetRange(board.hdass,10.0,-10.0);
CHECKERROR (olDaConfig (board.hdass)) ;

CHECKERROR (olDaGetRange (board.hdass, &max, &min)) ;
a_sMax. Format ("%. 3f " , max) ; .
m_sMin.Format ("%.3f",min) ;
UpdateData (f a l s e) ;
CHECKERROR (olDaGetEncoding (board.hdass, {.encoding));
CHECKERROR (olDaGetResolut ion(board.hdass ,^resolut ion)) ;

|>id COrientationDlg: :0n0K()

/ / TODO: Add ext ra v a l i d a t i o n here

if (m_bInitFlag)

KillTimer(Oxll);
/* release the subsystem and the board */
CHECKERROR (olDaReleaseDASS(board.hdass}J;
CHECKERROR (olDaTerminate(board.hdrvr));

)
else
{

KillTimer(Oxll);

CDialog: :OnOK() ;

d COrientationDlg: :OnButtonStartStop()

// TODO: Add your control n o t i f i c a t i o n handler code here
if (!m_bSample)
(

m_ctrlStartStop. SetWindowText ("STOP") ;
m_bSample = t r u e ;
THREADPARAMS* pPSDThread = new THREADPARAMS;
pPSDThread->lParam = (LPARAM) t h i s ;
g_pPSDThread = AfxBeginThread(SamplePSDThread, pPSDThread, THREAD_PRIORITY_NORMAL, NULL

m_wEncoder = t r u e ;
THREADPARAMS* pEncoderThread = new THREADPARAMS;
pEncoderThread->lParam = (LPARAM) t h i s ;
g_pEncoderThread = AfxBeginThread(SampleEncoderThread, pEncoderThread, TKREAD_PRIORITY_

I, NULL);

else

m_ctrlStartStop.SetWindowText ("START") ;
m_bSample = f a l s e ;
CloseHandle(g_pPSDThread->m_hThread);
m_bEncoder = f a l s e ;
CloseHandle(g_j?EncoderThread->m_hThread);

COrientationDlg: :SamplePSDThread(LPVOID pParam)

THRFADPARAMS* pThreadParams = (THREADPARAMS*) pParam;
COrientationDlg* pPSDWnd = (COrientationDlg*) pThreadPar£ms->lParam;
delete pThreadParejas;

float voltsO, v o l t s l , vo l t s2 , v o l t s 3 ;
float volts4, v o l t s 5 , vo l t s6 , v o l t s 7 ;
float RatioX2, RatioY2;
float RatioX3, KatioY3;
float AvcX2, AveY2;
float AveX3, AveY3;
long valueO, va lue l , value2, value3;
long value4, value5, value6, value7;
char buffer [256] ;
double nuiaerator2, numerator3;
double denominator2, denominator3;
SYSTEMTIME s t ;
float OffsetX2, OffsetY2;
float OffsetX3, OffsetY3;
int DataNo;
float SumYaw, SumPitch, SumRoll;
int AveNo;
float bly, b i z , b2y, b2z;
float blx, b2x;

0ffsetX2 = 0 .0 ;
0ffsetY2 = 0 .0 ; *'
0ffsetX3 = 0 .0 ;
0ffsetY3 = 0 . 0 ;
DataNo = 0;
AveNo = 0;
SumYaw = 0;
SumPitch = 0;
SumRoll = 0;
while (pPSDWnd->m bSample)
i

/* get single value */

//Temperorary using 12-15
olDaGetSingleValue (board.hdass, &value3, 15, gain);
olDaGetSingleValue (board.hdass, &value2, 14, gain);
olDaGetSingleValue (board.hdass, frvaluel, 13, gain) ;
olDaGetSingleValue (board.hdass, fivalueO, 12, gain);

//With interference f i l t e r
volts3 = ((float)pPSDWhd->max- (float)pPSDWnd->min) / (lL«pPSDWnd-

|loat)pPSDWnd->min + 0.31325-0.073493+0.00142;
volts2 = ((float)pPSDWnd->max-(float)pPSDWnd->min)

|loat)pPSDWnd->min - 0.09384+0.02012-0.00504-0.228445-0.
voltsl = ((float)pPSDWnd->max-(float)pPSDWnd->min)

l̂oat)pPSDWnd->min + 0.05239-0.014153+0.00294-0.111235+0
voltsO = ((float)pPSDWnd->max-(float)pPSDWnd->min)

hoat)pPSDWnd->min - 0.259835+0.02099-0.00413+0.33484-0.

i/(lL«pPSDWnd-
.001586;
I / (lL«pPSDWnd-
1.00123;
I / (lL«pPSDWnd-
.001442;

>resolution) * value3 +

>resolution) * value2 +

>resolution) * valuel +

>resolution) * valueO +

/* get single value * /
olDaGetSingleValue (board.hdass, &value7, 7, gain) ;
olDaGetSingleValue (board, hdass, &value6, 6, gain) ;
olDaGetSingleValue (board.hdass, &value5, 5, gain) ;
olDaGetSingleValue (board.hdass, &value4, 4, gain) ;

//With interference f i l t e r
volts7 = ((float)pPSDWnd->max-(float)pPSDWnd->min)/(lL«pPSDWnd-

|loat)pPSDWnd->min +0.1795-0.00406-0.001931;
volts6 = ((float)pPSDWnd->max- (float)pPSDWnd->min) / (lL«pPSDWnd-

£loat)pPSDWnd->min -0.116395+0.02185-0.008029;
volts5 = ((float) pPSDWnd->max- (float) pPSDWnd->min) / (lL«pPSDWnd-

JEloat)pPSDWnd->min -0.1225-0.005702+0.00108;
volts4 = ((float) pPSDWnd->max- (float)pPSDWnd->tdn) / (lL«pPSDWnd-

J£loat)pPSDWnd->min +0.04787+0.00376-0.004403;

if ((vol ts l == 0.0) &s (volts3 == 0.0))

RatioY2 = 0.0;

else

RatioY2 = (voltsl - volts3) / (voltsl + volts3);

if ((volts2 == 0.0) && (voltsO == 0.0))

RatioX2 = 0.0;

else

RatioX2 = (volts2 - voltsO) / (volts2 + voltsO);

>resolution) * value7

>resolution) * value6

>resolution) * value5

>resolution) * value4

)
pPSDWnd->x_PSD2 = 3.6791 * RatioX2 * RatioX2 * RatioX2 + 0.1048 * RatioX2 * RatioX2 + 5

* RatioY2 * RatioY2 + 6
S82 * RatioX2 - OffsetX2;

pPSDWnd->y_PSD2 = 3.2779 * RatioY2 * RatioY2 * RatioY2 + 0.2419
|109 * RatioY2 - OffsetY2;

pPSDWnd->m_sPx2.Format("%.3f", pPSDWnd->x_PSD2);
pPSDWnd->m_sPy2.Format("%.3f", pPSDWnd->y_PSD2);
pPSDWnd->m_sV0.Format ("%.3flf, voltsO) ;
pPSDWnd->m_sVl.Format("%.3f", v o l t s l) ;
pPSDWnd->m_sV2.Format("%.3f", vo l t s2) ;
pPSDWnd->m sV3.Format("%.3f", vo l t s3) ;

if ((voltsS
(

RatioY3
}
else

= 0.0) &fi (volts7 =- 0.0))

0.0;

(volts5 + vo l t s7) ;RatioY3 = -1.0 * (volts5 - volts7)

if ((volts6 ==.0.0) 6& (volts4 == 0.0))

RatioX3 = 0.0;
}
else
(

RatioX3 = -1.0 * (volts6 - volts4) / (volts6 + volts4);

pPSDWnd->x_PSD3 = 2.6272 * RatioX3 * RatioX3 * l\atioX3 + 0.1193
* RatioX3 - OffsetX3;

pPSDWnd->y_PSD3 = 2.5995 * RatioY3 * RatioY3 * RatioY3 + 0.0682
I592 * RatioY3 -)ffsetY3;

* RatioX3 * RatioX3 + 6

* RatioY3 * RatioY3 + 6

pPSDWnd->m_sPx3.Format("%.3f", pPSDWnd->x_PSD3);
pPSDWnd->m_sPy3.Format("%.3f", pPSDWnd->y_PSD3) ;
pPSDWnd->m_sV4.Format ("%.3f", volts4) ;
pPSDWnd->m_sV5.Format ("%.3f ", volts5) ;
pPSDWnd->m_sV6. Format ("%.3f", volts6) ;
pPSDWnd->m_sV7.Format("%.3f", volts7);

: :GetSystemTime (fist) ;
pPSDWnd->m_sTime. Format I"%d", (st.wMinute * 60000 + st.wSecond * 1000 + st.wMillisecond

if (pPSDWnd->Num < 2000)

pPSDWnd->SumX2 += pPSDWnd->x_PSD2;
pPSDWnd->SumY2 += pPSDWnd->y_PSD2;
pPSDWnd->SumX3 += pPSDWnd->x_PSD3;
pFSDWnd->SumY3 += pPSDWnd->y_PSD3;
pPSDWnd->Num++;

)
else

AveX2 = pPSDWnd->SumX2 / pPSDWnd->Num;
AveY2 = pPSDWnd->SumY2 / pPSDWnd->Num;
pPSDWnd->m_sAveX2.Format("%.3f", AveX2);
pPSDWnd->m_sAveY2.Format{"%.3f", AveY2);
AveX3 = pPSDWnd->SumX3 / pPSDWhd->Num;
AveY3 = pP3DWnd->SumY3 / pPSDWnd->Num;
pPSDWnd->m_sAveX3. Format (r' %. 3f ", AveX3) ;
pPSDWnd->m_sAveY3.Format("%.3f", AveY3);

pPSDWnd->Num = 0;
pPSDWnd->SumX2 = 0.0/
pPSDWnd->SumY2 = 0.0;
pPSDWnd->SvimX3 = 0.0;
pPSDWnd->SiomY3 = 0.0;

if (pPSDWnd->m_bZero)
{

OffsetX2 = 0.0;//AveX2;
0ff3etX3 = 0.0;//AveX3;
OffsetY2 = AveY2;
OffsetY3 = AveY3;
pPSDWnd->m bZero = false;

numerator2 = 1.2114 * (pPSDWnd->x_PSD2 - pPSDWnd->x_PSD3);
denominator = 13 -12 - 2.0 * lc;
pPSDWnd->yaw = atan(numerator2 / denominator2);

numerators = 1.217 * (pPSDWnd->y_PSD2 + pPSDWnd->y_PSD3) * cos(pPSDWnd->yaw);
denominator3 = 13 -12 - 2.0 * lc;
pPSDWnd->pitch = atan(nvuaerator3 / denominators);

blx = -1.0 * AveX2 + (12-lc) * tan(pPSDWnd->yaw);
bly = 0.0;
biz = AveY2 - (12-lc) * tan(p?SDWnd->pitch) / cos(pPSDWnd->yaw);
b2x = blx * cos(pPSDWhd->yaw) + biz * sin(pPSDWnd->yaw) * sin(pPSDWnd->pitch) ;
b2y = 0.0; //sin(pPSDWhd->yaw) * cos(pPSDWnd->pitch) * blx + cos(pPSDWnd->yaw) * bly +

i(pPSDWnd->yaw) * sin(pPSDWnd->pitch) * biz;
b2z = cos(pPSDTOid->pitch) * biz;
pPSDWnd->roll = atan(b2z/b2x);

if (AveNo < 100)
{

SumYaw += pPSDWhd->yaw;
SumPitch += pP^DWnd->pitch;
SvimRoll += pPSDWnd->roll;
AveNo ++;

else
{

pPSDWnd->AveYaw = SumYaw / AveNo;
pPSDWnd->AvePitch = SumPitch / AveNo;
pPSDWid->AveRoll = SumRoll / AveNo;
AveNo = 0;
SumYaw = 0.0;
SumPitch = 0.0;

8

SumRoll = 0.0;

pPSDWnd->m_sYaw.Format ("%.3f", pPSDWnd->yaw / p i * 180.0);
pPSDWnd->m_sPitch.Format("%.3f", pPSDWnd->pitch / p i * 180.0);
pPSDWnd->m_sRoll.Format("%.3f", pPSDWnd->roll /pi * 180.0);
pPSDWnd->m_sAveYaw.Format("%.3f", pPSDWnd->AveYaw / p i * 180.0);
pPSDWnd->m_sAvePitch.Format("%.3f", pPSDWnd->AvePitch / p i * 180.0);

if (pPSDWnd->m_bWriteFile)

::sprintf(buffer, "%i\t %s\t %.3f\t %.3f\t %.3f\t %.3f\t %.3f\t %.3f\t %.3f\t %.3f\
|.3f\t %.3f\t %.3f\t%.3f\t %.3f\t %.3f\t %.3f\t %.31f\t %.31f\n", DataNo, pPSDWnd->m_sTime, v

voltsl, volts2, volts3, pPSDWnd->x_PSD2, pPSDWnd->y_PSD2, volts4, voltsS, volts6, volts7
SpSDWnd->x_PSD3, pPSDWnd->y_PSD3, pPSDWnd->yaw/ pi * 180.0, pPSDWnd->pitch/ pi * 180.0, pPSDW
|>roll/ pi * 180.0, pPSDWnd->Motor3.CurrentAngle, pPSDWnd->Motor4.CurrentAngle);

::fprintf(pPSDWnd->fp, buffer);
//::sprintf(buffer, "%s\t %.3f\t %.3f\t %.31f\t %.31f\n", pPSDWnd->m_sTime, AveYaw/

180.0, AvePitch/ pi * 180.0, pPSDWnd->Motor3.CurrentAngle, pPSDWnd->Motor4.CurrentAngle) ;
//::fprintf(pPSDWnd->fp, buffer);
DataNo++;
if (DataNo>100)

pPSDWnd->m_bWriteFile = false;
DataNo = 0;
pPSDWnd->m_ctrlWriteFile.SetWindowText("WriteToFile");

pP S DWnd->m_uiFreq++;
}
return 0;

COrientationDlg:: SampleEncoderThread (LPVOID pParam)

THREADPARAMS* pThreadParams = (THREADPARAMS*) pParam;
COrientationDlg* pEncoderWnd = (COrientationDlg*) pThreadParam3->lParam;
delete pThreadParams;
long pPosParameter[2];

while (pEncoderWnd->m_bEncoder)
(

A8_BIN_GROUP_GETLONG(0xl8, 0x00, OxOC, pPosParameter, 0) ;
//A8_BIN_GROUP_GETLONG(0x30, 0x09, 0x03, pPosParameter, 0) ;
pEncoderWnd->Motor3. enc = pPosParameter [0] ;
pEncoderWnd->Motor4.enc = pPosParameter [1] ;
pEncoderWnd->Motor3.CurrentAngle = (float(pEncoderWnd->Motor3.enc) /4000.0 / 45.0 * 360

; //Angle i n Degree
pEncoderWnd->M(tor4.CurrentAngle = (float(pEncoderWnd->Motor4.enc) /2000.0 * 360 .0) ;

//Angle i n Degree
pEncoderWnd->m_lEnc3 = pEncoderWnd->Motor3.enc;
pEncoderWnd->m_lEnc4 = pEncoderWnd->Motor4.enc;
pEncoderWnd->m uiEncFreq++;

1
return 0;

id COrientationDlg: :OnButtonM3Positive ()

// TODO: Add your con t ro l n o t i f i c a t i o n handler code he re
Motor3.DriveAngle = - 1 . 0 * double(m_uiStepSize3);
Motor4.DriveAngle = 0 . 0 ;
DriveMotor (Motor3, Motor4) ;

[id COrientationDlg: :OnButtonM3Negative()

// TODO: Add your c o n t r o l n o t i f i c a t i o n handler code he re
Motor3.DriveAngle = double(m_uiStepSize3) ;
Motor4. DriveAngle = 0 . 0 ;
DriveMotor(Motor3, Motor4); f

|id COrientationDlg: :OnButtonM4Positive ()

// TODO: Add your c o n t r o l n o t i f i c a t i o n hand le r code he re
Motor3.DriveAngle <•» 0 . 0 ;
Motor4.DriveAngle = double(m_uiStepSize4);
DriveMotor (Motor3, Motor4) ;

id COrientationDlg: :OnButtonM4Negative()

/ / TODO: Add your control no t i f i ca t ion handler code here
Motor3. DriveAngle = 0.0;
Motor4.DriveAngle = -1.0 * double(m_uiStepSize4);
DriveMotor (Motor3, Motor4) ;

d̂ COrientationDlg: :DriveMotor (CMotor MotorData3, CMotor MotorData4)

char cmdline[256] ;

//if (fabs(MotorData3.DriveAngle) < 25600)

//MotorPata2.DriveAngle = -1 * MotorData2.DriveAngle;
//Increment mode used in jogging
sprintf (ondline, "JOG INC Z%lf A%lf", MotorData3.DriveAngle, MotorData4.DriveAngle) ;
AcroSentiString(cmdline, 0) ;
return;

//else

// MessageBeep(O);
/ / AfxMessageBox("DANGER!! MOTOR 1 t ra jectory i s out of range", MB_ICONEXCLAMATION);

i
IS

id COrientationDlg: :OnButtonInitMotor ()

/ / TODO: Add your control no t i f ica t ion handler code here

AcroImtialize(O);
if (AcioGetErrorO !=ACRO_SUCCESS)
{

MessageBeep(O) ;
AfxMessageBox("Card Driver Not Started", MB_ICONEXCLAMATION);
exit(0);

}
AcroSendString("P06176 = 0", 0);
AcroSendString("P06192 = 0", 0) ;
A8_BIN_ADDRESS(0, 0x00, pACRAddress, 0);

id COrientationDlg::OnSetf ocusEditM3Stepsize()

/ / TODO: Add your control no t i f ica t ion handler code here
Kill/Timer (Oxll);

id COrientationDlg::OnSetfocusEditM4Stepsize()

/ / TODO: Add your control no t i f ica t ion handler code here
KillTimer(Oxll);

Jid COrientationDlg::OnKillfocusEditM3Stepsize ()

/ / TODO: Add your control no t i f ica t ion handler code here
UpdateData(true) ;
SetTimer(0xll, 1000,

[id COrientationDlg:: OnKillf ocusEdi tM4Stepsize ()

/ / TODO: Add your control no t i f ica t ion handler code here
UpdateData(true);
SetTimer(0xll, 1000, NULL) ;

|id COrientationDlg: :OnButtonReset ()

/ / TODO: Add your control no t i f ica t ion handler code here
AcroSendString("P06176 = 0", 0) ;
AcroSendString("P06192 = 0", 0) ;
AcroSendStringCRES Z", 0) ;

10

AcroSendStringC'RES A", .0);

|d cOrientationDlg::OnButtonZero ()

// TODO: Add your control notification handler code here
m bZero = true;

id COrientationDlg: :OnButtonWriteFile()

// TODO: Add your control notification handler code here
if (!m_bWriteFile)
(

m_ctrlWriteFile.SetWindowText("Stop Write") ;
m bWriteFile = t rue;

else

m ctrlWriteFile. SetWindowText ("WriteToFile") ;
nTbWriteFile = false;

Id COrientationDlg: :OnButtonOca ()

// TODO: Add your control no t i f i c a t i on handler code here
char buffer[256];
float pSendIEEEOCA[2];
if (!m_bStartOCA)
(

if ((FileOCA = fopen("OCA.txt", "w")) == NULL)

puts("cannot open f i l e ") ;
ex i t (l) ;

rewind(FileOCA); / / set the cursor to the beginning of f i l e
fprintf (FileOCA, "Time\tRoll\tPitch\tYaw\t\n") ;
sprintf(buffer, "%s\t%.31f\t%.31f\t%.31f\t\n", m_sTime, RadianToDegree(AveRoll), Radian

Degree (AvePitch) , RadianToDegree (AveYaw)) ;
fprintf(FileOCA, buffer);
m_bStartOCA = t rue;
m_ctrlButtonOCA. SetWindowText ("STOP OCA") ;

AcroSendString ("RU*•"•'.. 0) ;
m_b0CASaiapleThread •-- t rue;
THREADPARAMS* pOCASampleThread = new THREADPARAMS;
pOCASampleThread->lParam = (LPARAM) t h i s ;
g_pOCASampleThread = AfxBeginThread(OCASampleThread, pOCASampleThread, THREAD_PRIORITY_

[., f̂ULL);
Motor3.DriveAnale = - 1 . 0 * (AveYaw / p i * 180.0) / 360.0 * 50800.0 * 45 .0 ;
Motor4.DriveAngle = - 1 . 0 * (AvePitch / p i * 180.0) / 360.0 * 51200.0;
//DriveMotor (Motor3, Motor4);
pSendIEEEOCA[0] = Motor3.DriveAngle;
pSendIEEEOCA[l] = Motor4.DriveAngle;
A8__BIN_POKE_IEEE(0x01, 2, pACRAddress [0] + 1, pSendlEEEOCA, 0) ;
//AcroSendString("RUN", 0) ;

else

AcroSendString ("HALT", 0) ;
m_bOCASampleThread = false;
CloseHandle(g_pOCASampleThread->m_hThread);
m_bStartOCA « false;
m_ctrlButtonOCA. SetWindowText {"START OCA") ;
f c l o s e ^

COrientationDlg: :OCASampleThread(LPVOID pParam)

THREADPARAMS* pThreadParams = (THREADPARAMS*) pParam;
COrientationDlg* pOCAWnd = (COrientationDlg*) pThreadParams->lParan;
delete pThreadParams;
char buffer [256] ;
float pSendIEEEOCA[2] ;

while (pOCAWnd->m bOCASampleThread)

11

3 p r i n t f (b u f f e r , "%s\ t%.31f \ t%.31f \ t%.31f \ t \n" , pOCAWnd->m_sTime, RadianToDegiee(pOCAWnd
jweRoll), RadianToDegree (pOCAWnd->AvePitch), RadianToDegree (pOCAWnd->AveYaw)) ;

fprintf(FileOCA, b u f f e r) ;
pOCAV7nd->Motor3. DriveAngle = - 1 . 0 * (pOCAWnd->AveYaw / p i * 180.0) / 360.0 * 50800.0 *

LO?
pOCAWnd->Motor4. DriveAngle = - 1 . 0 * (pOCAWnd->AvePitch / p i * 180.0) / 360.0 * 51200.0;
pSendIEEEOCA[0] = pOCAWnd->Mot or 3 . DriveAngle;
pSendIEEEOCA[lj = pOCAWnd->Motor4 .DriveAngle;
A8_BIN_POKE_IEEE(0x01, 2, pACRAddress[0] + 1, pSendlEEEOCA, 0) ;
: :S leep(300) ;

return 0;

d COrientationDlg::OnButtonHome ()

//TODO: Add your c o n t r o l n o t i f i c a t i o n hand le r code here
AcroSendStringC'JOG ABS Z0 A0", 0) ;

I

12

[OrientationDlg.h : header f i l e

'defined(AFX_ORIENTATIONDLG_H__249B3157_A707_11D7_9C89_000021CC063C INCLUDED)
[.fine AFXJ>RIENTATIONDLG_H_249B3157_A707_11D7_9C89_000021CC063C INCLUDED_

MSC_VER > 1000
jragma once
fedif / / _MSC_VER > 1000

kss CMotor
I
blic:

double DriveAngle;
double CurrentAngle;
long enc;
long bb_enc;

fast double 12
hst double 13
pst double l c
hst double p i

56.1392;
56.1392;
60.0;
3.1415926535;

COrientationDlg d ia log

kss COrientationDlg : pub l i c CDialog

I Construction
blic:

COrientationDlg(CWnd* pParent = NULL); / / s tandard cons t ruc to r
static UINT SamplePSDThread (LPVOID) ;
static UINT SampleEncoderThread(LPVOID);
static UINT OCASampleThread (LPVOID) ;
FILE* fp;
double min,max;
UINT encoding, r e s o l u t i o n ;
bool m_bInitFlag;
bool m_bSample;
double x_PSD2, y_PSD2;
double x_PSD3, y_PSD3;
bool m_bWriteFile;

int Num;
float SumX2, SumY2;
float SumX3, SumY3;

void DriveMotor(CMotor, CMotor);
CMotor Motor3, Motor4;
bool m_bEncoder;
bool m_bZero;
bool m_bStartOCA;
bool m_bOCASampleThread;
double r o l l , yaw, p i t c h ;
float AveRcll, AveYaw, Avet^tch;

Dialog Data
// ({AFX_DATA (COrientationDlg)
enum { IDD = IDD_0RIENTATION_DIALOG };
CButton m_ctrlButtonOCA;
CButton m_ctr lWri teFi le ;
CButton m _ c t r l s t a r t s t o p ;
UINT m_uiFreq;
CString m_sMax;
CString m_sMin;
CString m_sAveX2;
CString m_sAveX3;
CString m_sAveY2;
CString m_sAveY3;
CString m_spx2;
CString m._sPx3;
CString m_sPy2;
CString m_sPy3;
CString ni_sTime;
CString m_sV0;
CString m_sVl;
CString m_sV2;
CString m_sV3;
CString m_sV4;
CString m sV5;

cstring m_sV6;
CString m_sV7;
cstring m_sPitch;
CString m_sYaw;
CString m_sRoll;
UINT m_uiStepSize3;
UINT m_uiStepSize4;
UINT m_uiEncFreq;
long m_lEnc3;
long m_lEnc4;
CString m_sAveYaw;
CString m_sAvePitch;
//} }AFX_DATA

// classWizard generated v i r t u a l function overr ides
//{{AFX_VIRTUAL (COrientationDlg)
protected:
virtual void DoDataExchange (CDataExchange* pDX) ;
//}}AFX_VIRTUAL

Implementation
Jotected:

HICON mjilcon;

// Generated message map funct ions
// ({AFX_MSG (COrientationDlg)
virtual BOOL OnlnitDialogO ;
afx_msg void OnSysCommand(UINT nID, LPARAM J.Param)/
afx_msg void OnPaint () ;
afxjnsg HCURSOR OnQueryDrag.TconO ;
afxjnsg void OnTimer (UINT nIDEvent) ;
afx_msg void OnButtonlnit () ;
virtual void OnOK();
afx_msg void OnButtonStartStop () /
afxjnsg void 0nButtonM3Positive () ;
afx_msg void 0nButtonM3Negative () ;
afx_msg void 0nButtonM4Positive() ;
afx_msg void 0nButtonH4Negative () ;
afxjnsg void OnButtonlnitMotor () ;
afxjnsg void OnSetf ocusEditM3Stepsize () ;
afxjnsg void OnSetfocusEditM4Stepsize(};
afxjnsg void OnKillf ocusEditM3Stepsize () ;
afxjnsg void OnKillfocusEditM4Stepsize () ;
afxjnsg void OnButtonReset () ;
afxjnsg void OnButtonZero () ;
afxjnsg void OnButtonWriteFile () ;
afxjnsg void OnButtonOca () ;
afxjnsg void OnButtonHome () ;
//}}AFX_MSG
DECLARE MESSAGE MAP()

// DDX/DDV support

^ ^ } }
'Microsoft Visual C++ will insert additional declarations immediately before the previous lin

ndif // [defined<AFX_ORIENTATIONDLG_H_249B3157_A707_11D7_9C89_000021CC063C INCLUDED_)

iorientation.cpp : Defines t he c l a s s behaviors for the a p p l i c a t i o n .

..dude "stdafx.h"
include " Ori ent a t i on. h "
include "Orientat ionDlg.h"

|fdef _DEBUG
iefine new DEBUG_NEW
jn THIS_FILE
atic char THIS_FILE[] = FILE ;
iif

\WIII 1111 /111 u m ti n 11111111111111 /11 /1111 /11 /11 n 111111 /111 m n i /< i u f i
I COrientationApp

iN MESSAGE_MA* (COrientationApp, CWinApp)
/7{ {AFX_MSG_MAF (COrientationApp)

/ / NOTE - the ClassWizard w i l l add and remove mapping macros h e r e .
/ / DO NOT EDIT what you see i n these blocks of generated code!

//}}AFX_MSG
0N_COMMAND(ID_HELP. CWinApp: :OnHelp)

_MESSAGE_MAP ()

L//////7////////////////7///
' ccrientaticnApp construction

fcrientationApp::COrientationApp ()

// TODO: add construction code here,
// Place all significant initialization in lnitlnstan.ee

\ilill ////111111111111II /111111111111 f 1111111111111111111111 f 111111111 //1111
The one and only COrientationApp object

fcrientationApp theApp;

\\iii 11111.' 11 /1111 i i it 11 u i /1 n i /111111 ti 11 /11 /1111 /111 /11 n / /111111 /1111111
1 COrientaticnApp initialization

X)L COrientationApp: :lnitlnstance()

AfxEnableControlContainer () ;

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

[ifdef _AFXDLL
Enable3dControls () ;

Use
Enable3dControlsStatic (

fldif

// Call this when usinq MFC in a shared DLL

// Call this when linking So MFC statically

COrientationDlg dig;
ffljpMainWnd = sdlg;
int nResponse = dlg.DoModal () ;
if (nResponse == IDOK)

// TODO: Place code here to handle when the dialog is
// dismissed with OK

)
else if (nResponse == IDCANCEL)

// TODO: Place code here to handle when the dialog is
// dismissed with Cancel

II Since the dialog has been closed, return FALSE so that we exit the
// application, rather than start the application's message pump.
return FALSE;

i Orientation.h : main header f i l e for the ORIENTATION a p p l i c a t i o n

!defined(AFX_ORIENTATION_H _249B3155_A707_11D7_9C89_000021CC063C INCLUDED)
.fine AFX_ORIENTATION_H_-249B3155_A707_1ID7_9C89_000021CC063C INCLUDED_

h MSC_VER > 1000
pragma once
sndif / / _MSC_VER > 1000

ifndef _AFXWIN_H__
terror include ' s tdafx .h 1 before including t h i s f i l e for PCH
if

nclude "resource.h" / / main symbols

I///
I COrientationApp:
f See Orientation.cpp for the implementation of t h i s c l a s s
/

lass COrientationApp : publ ic CWinApp

iblic:
COrientationApp () ;

Overrides
// ClassWizard generated v i r t u a l function overrides
//({AFX_VIRTUAL (COrientationApp)
public:
virtual BOOL In i t lns tance () ;
//(}AFX_VIRTUAL

Implementation

//{{AFX_MSG(COrientationApp)
/ / NOTE - the ClassWizard w i l l add and remove member functions here.
/ / DO NOT EDIT what you see i n these blocks of generated code !

//)}AFX_MSG
DECLARE MESSAGE MAP()

I///
|/({AFX_INSERT_LOCATION} }

Microsoft Visual C++ w i l l i n s e r t a d d i t i o n a l d e c l a r a t i o n s immediately before the previous l i n

ndif / / !defined(AFX_ORIENTATION_H_249B3155_A707_11D7_9C89_000021CC063C INCLUDED_)

ijtdafx.cpp : source file that includes just the standard includes
orientation.pch will be the pre-compiled header
stdafx.obj will contain the pre-compiled type information

Llude "stdafx.h"

stdafx.h : include file for standard system include files,
or project specific include files that are used frequently, but

are changed infrequently
§

|f (defined(AFX_STDAFX_H__249B3159_A707_11D7_9C89_000021CC063C INCLUDED_)
feefine AFX_STDAFX_H_249B3159_A707_llD7_9C89_000021CC063C INCLUDED_

[f MSC_VER > 1000
i once

if / / _MSC_VER > 1000

feefine VC_EXTRALEAN / / Exclude rarely-used stuff from Windows headers

nclude <afxwin.h> / / MFC core and standard components
elude <afxext.h> / / MFC extensions

nclude <afxdisp.h> / / MFC Automation classes
nclude <afxdtctl.h> / / MFC support for Internet Explorer 4 Common Controls

Ifndef _AFX_NO_AFXCMN_SUPPORT
nclude <afxcmn.h> / / MFC support f o r Windows Common Controls
adif / / _AFX_NO_AFXCMN_SUPPORT

ost gain = 1;
latic CWinThread* g_pPSDThread;
latic CWinThread* g_pEncoderThread;
[atic CWinThread* g_pOCASampleThread;
iefine RadianToDegree (radian) (57.29577951308 * rad ian)
^Structure t o s t o r e parameter f o r th read func t ion
pedef s t ruc t tagTHREADPARAMS

LPARAM lParam;
IIHREADPARAMS;
}((AFX_INSERT_L0CATION} }
1 Microsoft Visual C++ will insert additional declarations immediately before the previous lin

if"':'
? • • - ' l

$1

adif / / !defined(AFX_STDAFX_H__249B3159_A707_11D7_9C89_000021CC063C INCLUDED_
E v :•

|((N0 DEPENDENCIES))
(Microsoft Developer S tud io genera ted i n c l u d e f i l e .
(Used by O r i e n t a t i o n . r e

|efine IDM_AB0UTBOX 0x0010
lefine IDD_AB0UTBOX 100
lefine IDS_ABOUTBOX 101

e IDD_ORIEMTATION_DIALOG 102
feefine IDR_MAINFRAME 128
lefine IDC_EDIT_V0 1000
iefine IDC_EDIT_Freq 1001
lefine IDC_EDIT_V1 1002

e IDC_EDIT_V2 1003
feefine IDC_EDIT_V3 1004
Eefine IDC_EDIT_MIN 1005
jlefine IDC_EDIT_MAX 1006
lefine IDC_EDIT_PSDX2 1007

lefine IDC_EDIT_PSDY2 1008
lefine IDC_BUTTON_INIT 1009
lefine IDC_BUTTON_START_STOP 1010
Befine IDC_EDIT_TIME 1011
Befine IDC_EDIT_V4 1012
lefine IDC_EDIT_AVE_X2 1013
lefine IDC_EDIT_AVE_Y2 1014
Befine IDC_EDIT_V5 1015
lefine IDC_EDIT_V6 1016
iefine IDC_EDIT_V7 1017

[lefine IDC_STATIC_Ch0 1018
Befine IDC_STATIC_Chl 1019
fefine IDC_STATIC_Ch2 1020
iefine IDC_STATIC_Ch3 1021
£;fine IDC_STATIC_Ch4 1022
iefine IDC_STATIC_Ch5 1023
lefine IDC_STATIC_Ch6 1024
lefine IDC_STATIC_Ch7 1025

[lefine IDC_EDIT_PSDX3 1026
feefine IDC_EDIT_PSDY3 1027
Befine IDC_EDIT_AVE_X3 1028
(lefine IDC_EDIT_AVE_Y3 1029
lefine IDC_EDIT_YAW 1030

Befine IDC_EDIT_PITCH 1031
lefine IDC_EDIT_ROLL 1032

Befine IDC_BUTTON_M3_POSITIVE 1033
Befine IDC_BUTTON_M3_NEGATIVE 1034
jiefine IDC_BUTTON_M4_POSITIVE 1035
feefine IDC_BUTTON_M4_NEGATIVE 1036
feefine IDC EDIT_M3_STEPSIZE 1037
feefine IDCJEDIT_M4_STEPSIZE 1038
Befine IDC_EDIT_ENC3 1039
feefine IDC_EDIT_ENC4 1040
lefine IDC_BUTTON_INIT_MOTOR 1041
lefine IDC EDIT_ENC_FREQ 1042
lefine IDC~BUTTON_RESET 1043

[iefine IDC BUTTON_ZERO 1044
Befine IDCJ3LTTON_WRITE_FILE 1045
Kefine IDC_EDIT_AVE_YAW 1046
pfine IDC EDIT_AVE_PITCH 1047
pefine IDCJ3DIT_AVE_ROLL 1048
lefine IDCJBUTTON_OCA 1049

Befine IDC_BUTTON_HOME 1050

'Next d e f a u l t v a l u e s f o r new o b j e c t s

tfdef APSTUDIO_INVOKED
ffndef APSTUDIO_READONLY_SYMBOLS
efine _APS_NEXT_RESOURCE_VALUE 129
iefine _APS_NEXT_COMMAND_VALUE 32771
lefine _APS_NEXT_CONTROL_VALUE 1051

e APS NEXT SYMED VALUE 101
dif ~ -
dif

"A"

Gimba1_Acro1oop.txt
**Acrolocp Program for orientation compensation Algorithm

HALT ALL
DETACH ALL
CONFIG ENC4 STEPPER4 STEPPER4 NONE

PROGO
ATTACH MASTER©
ATTACH SLAVEO AXISO

| ATTACH SLAVEl A X I S l
! ATTACH AXISO STEPPER2 STEPPER2
| ATTACH A X I S l STEPPER3 STEPPER3
AXIS4 OFF
AXIS5 OFF
AXIS6 OFF
AXIS7 OFF

! AXISO PGAIN 0.0025
AXISl PGAIN 0.0025
AXISO I G A I N 0
AXISl IGAIN 0
AXISO I L I M I T 0
AXISl I L I M I T 0
PPU Z l A l
ENC2 MULT - 4
ENC3 MULT - 4
VEL 100000 ACC100000 DEC100O00 STP100000
JOG VEL Z 1 0 0 0 0 0 A 3000
JOG ACC Z 1 0 0 0 0 0 A 3000
JOG DEC Z 1 0 0 0 0 0 A 3000

10 DVO = DVO
20 DVl = D V l
30 JOG INC Z(DVO) A (D V l)
REM 40 DVO = 0
REM 50 D V l m 0
60 GOTO 1 0
DIM DV(2)

Page 1

^i^l^i^^P

Appendix G
l\ 3

Publications

I

I
I

1
I

B, Shirinzadeh, P. L. Teoh, C. W. Foong, "Orientation measurement using vision and non-

vision based techniques in laser tracking system", 30th International Symposium on

Robotics, Tokyo, Japan, pp. 317-324,1999.

Orientation Measurement Using Vision and Non-Vision Based Techniques in
Laser Tracking System

Bijan SHIRINZADEH, Pek Loo TEOH and Chee Wei FOONG

Department of Mechanical Engineering
Monash University
Clayton, VIC 3168

Australia
Email: biiap.sMrinzadeh@eng.monash.edu.au

Abstract:
Most applications of robots involve the interaction between the robot's end-effector and the objects in

the physical environment. These require accurate placement of robot's end-effector along a specific path. To
accurately define a pose (position and orientation) of a manipulator's end-effector, measurement of six
parameters is required - three for position and three for orientation. Different approaches have been studied
over the last few years to measure the orientation of the end-effector dynamically and precisely. However, there
are still some difficulties in determining the orientation of the end-effector in real time. In this paper, two
methods of orientation measurement in Laser Interferometry-based Tracking System (LITS) will be described.
These include vision and non-vision based techniques to measure the orientation. The algorithms of both
approaches will be presented. Both techniques will be compared to determine their efficiencies and limitations.

Keywords: Laser Interferometry-based Tracking, Orientation measurement

1. INTRODUCTION

The application areas for robots in manufacturing and
service industries are increasing. These application
areas are generally more complex, requiring higher
robot accuracy and advanced flexible programming
techniques. Laser interferometry-based tracking
system (LITS) can be used in dynamic performance
measurements of position and orientation as well as
providing measurements for robot calibration. As the
traditional methods of pose measurement are very
time-consuming and expensive, a measurement tool
with high accuracy, a large working space, a high
sampling rate and automatic target tracking is
desirable. These specifications are currently only met
by a LITS [1].

The performance of a LITS depends on various
factors. These include the sampling rate of the sub-
system responsible for offset error measurement, the
sampling rate of the motion controller card, the
accuracy or resolution of different sub-systems and
also the laser beam power. The inefficiency of one of
these factors will consequently become the limiting

factor to the system and thus reduces the
performance.

In this paper, the sub-system being studied is the
orientation measurement sub-system. Two methods
of orientation measurement will be described [2, 3,
4]. These include vision and non-vision based
techniques to measure the orientation in real time.
The experimental setup and the algorithm for both
techniques will also be presented. Both techniques
will be compared in terms of the performance and
efficiency by looking at the accuracy of these
techniques and their limitations.

2. PRINCIPLE OF LASER
INTERFEROMETRY- BASED
TRACKING SYSTEM FOR
POSITION MEASUREMENT

The LITS developed for this study is shown in Figure
1 [5]. The laser beam emitted from the HeNe laser
passes through an interferometer and is spiit into a

Scorbat CR VI
5-axis robot
nonipuia"tor

Mo"t or in de x er

-o r e f I cc "to r
Stepper
Motor l
vlth Encoder

CCD Canera

5D-5D
Bean EP Dris putter
S-teering

s\ Mechanism

Stepper
Motor 2
vith Encoder Inttrferonft'

Becrnisplitner
Reformer
RctrDreFtec

ustnerrt
f or no tor

Irvterf eranete

Corrtrnt umt
Par US

Encoder
Signal

Jrrte rf cranei er
Meosyrentnt

p

Figure 1: Setup of Laser Interferometry-based Tracking System

reference beam and a measurement beam. The
reference beam will be picked up by a fibre optic
cable and be transmitted to the measurement board on
the laser controller.. The measurement beam passes
through a 70-30 beamsplitter before being directed by
the beam steering mechanism onto the retroreflector
mounted on the end-effector of the robot manipulator.
This beam is referred to as the incident beam.

The retroreflector is designed in such a way that the
reflected beam is always parallel to the incident
beam. This reflected beam is again directed by the
beam steering mechanism back to the 70-30
beamsplitter. 70% of the reflected beam will pass
through the beamsplitter and travel to the
interferometer before being picked up by the fibre
optic cable. It is then transmitted and combined with
the reference beam to determine the displacement of
the laser beam (i.e. the distance of the centre of
retroreflector from the interferometer) using Doppler
Shift. The remaining 30% of the reflected beam is

directed perpendicularly to the measurement beam
and travels through a 50-50 beamsplitter. 50% of this
beam is being incident onto a position sensitive diode
(PSD), which determines the tracking error of the
beam from the centre position of the retroreflector.
The other 50% will be transmitted to a CCD
(Charged-Coupled Device) camera for orientation
measurement.

The beam steering mechanism consists of three 45°
beam-steers, with one being stationary, and the other
two driven by two stepper motors - one for vertical
axis and the other for horizontal axis. Continuos
tracking of the retroreflector are possible by
controlling the motors to rotate by the corrective
angles determined from the kinematics of the system
using tracking error obtained from the PSD. This
provides continuos tracking and update of the end-
effector's pose in real time.

t
S

• ' !

I I

3. VISION BASED ORIENTATION
MEASUREMENT

Originally, the vision based orientation measurement
was proposed by Vincze, et. al. [3]. As mentioned in
the previous section, part of the reflected
measurement beam from the retroreflector is directed
to the CCD camera. The camera will capture the
image of the diffraction pattern of the retroreflector
and a high-acquisition-rate frame grabber will acquire
this signal to perform image digitisation. Figure 2
shows the image of the diffraction as displayed on a
computer screen. It consists of a white circle on a
dark background, with 3 dark lines intersecting each
other. The intersection point is the centre point of the
retroreflector and the dark lines are caused by the
edges of the three mirrors on the retroreflector. The
image can be simplified as shown in Figure 3. The
vectors V; (i = 1,2, 3) are the projected edge vectors
of the diffraction pattern. Blob analysis is performed
on the digitised image before Vectors Detection
process can be carried out.

3.1 Blob Analysis and Vectors Detection

The vectors Vj in Figure 2 are noticeable to the
human eyes but the software program does not
readily recognise these. Additional steps are required
to inform the control software about the presence of
the vectors. Figure 4 shows the schematic diagram of
the strategy of the analysis.

Ax
is

v2

P f\L

r

X-Axis

a
P
Y
8

V

= angle between V1 and V2
= angle between V? and V3
= angle between V1 and V3
= angle between V1 and the

dotted horizontal line

1
\

8

Figure 2: Diffraction pattern of the reflected beam from the
retroreflector

Figure 3: Projected edge vectors of the diffraction pattern

The diffraction pattern captured consists of a
significant amount of noise indicated by the
distribution of white pixels along the dark regions
within the circle, as shown in Figure 2. Therefore,
the digitised image has to be first filtered to remove
noise. Three regions of interest (ROI) are then created
such that the vectors are embedded in these regions.
It must be noted that the vectors Vj in the image could
not be distinguished from one another. Therefore,
each vector must be recognised once and followed.
The recognition can be achieved by specifying a
home position with a known home orientation (to be
set to zero). The first set of ROI will always be
applied to this diffraction pattern at home position.
Application software has been developed to detect the
vectors representing the diffraction pattern. This
software utilises the library routines provided by the
frame grabber and its image processing capabilities.
The angle between the head of the vector and the x-
axis can thus be determined.

When the new image is being captured, the vectors V;
will be rotated by a certain amount due to the roll
angle rotation of the retroreflector. It is assumed that
the rotation angle is small enough c. that the vector
lines would still be covered by the previous ROI. The
new vectors can then be detected as well as the new
set of angles. The centre of the retroreflector (i.e. the
intersection points of the three vector lines) might
have moved away from the previous position due to
changes of the pitch and yaw angles. Therefore, it has
to be calculated again using the new vectors. With the
new centre found, the ROI is rotated by the difference
between the old angle sets and the new angle sets,
about the new centre point. The process is repeated
until the angle change is negligibly small.

i \

; 1

t::S

ROI

Centre

\ \

V- >
*''x ***

' * • ' :

HomeF

e:
•V'.
: \V'.
• • % * •

'osition

Previous RO

New
Centre

Vj
V

1

New Position

RotateRO!about l _ N o

the centre | °

New ROI

New
Centre

\ , \ :

C BEGIN ^)

Filter the image using
Median filter.

t

Create three ROI

f

Lines detected in the
ROI. Angles from x-

axis can be
calculated

New image captured.

New lines detected in
previous ROI. New
angles from x-axis

calculated.

The intersection point
of three lines is

calculated. This will
be the new centre of

the pattern

y

/
v,2

r

\ j

v,

v2 ' v3

. a = 82~ei
A

/ \ p = 360-82+83

f 1 E . - E ^ c*rrr\r O X
V |&ni G l - «="WI */ Y = e1-s3

Y«

f END j

Figure 4: Flowchart for vision-based orientation measurement

3.2 Orientation Calculation

When the angles a, P, y, and 8 have been established,
the orientation (roll <}>, pitch 0 and yaw cp) of the
retroreflector relative to the laser beam can be
determined by using the following equations [3]:

= -arcsin(
\3tanatany \

- 1

3tanatany

)

(1)

• (l { sm5 F 2 c
afCS1 cos0 \ 3 si

- 2cos(> + a)

cosr

6sinasin(a +
(2)

-sia(S-y)
COSc*

p=arcsin(-,/•
y v cos#V

-1

1

2tan(a + 7')tana

)

(3)
- 1

cos 9 V 2 tin y tan(a + y)

It must be emphasised that these angles are relative
orientation from home (zero) orientation.

4. NON-VISION BASED
ORIENTATION MEASUREMENT

Another approach to orientation measurement in
L1TS is the non-vision basH orientation
measurement [2]. The approach utilises two position
sensitive diodes (PSDs), a beamsplitter, and a
retroreflector mounted on a specially designed
Gimbal unit as shown in Figure 5.

When the laser beam from the beam steering
mechanism passes through the 70-30 beamsplitter, it
splits into two beams. 30% of the beam is incident on
the first PSD and the remaining will be directed
towards the retroreflector. The reflected beam will
travel back to the beamsplitter, parallel to the incident
beam. At the beamsplitter, 30% of the laser beam will
again be directed to the second PSD and the
remaining laser beam will return to the beam steering
mechanism.

A flowchart for the non-vision based orientation
measurement algorithm is provided in Figure 6. From
the flowchart, it can be observed that the orientation
of the retroreflector is determined from the readings
along the x and z axes on the PSDs.

Figure 7 shows a top view of the optical arrangement
on the Gimbal unit. In the current experimental set-
up, the gimbal unit is designed as shown in Figure 5.
However, due to different approach in calculation,
modification had been performed on the equations
that were presented in [2],

f

YCB

ZcB

i

5\

PSD 2^

' Retroreflector

Beo

tfsCvr) PSD3

;>^ / Laser
\ • Bean
\ \>
nsplitter

Figure 5: Gimbal unit assembly

BEGIN

Sample voltages from
PSD 2 and PSD 3 at

2kHz

PSD 2 (left)
Determine offset D^ and

V& from the centre of PSD
using calibration graph

PSD 3 (right)
Determine offset D^ and

Dfc from the centre of PSD
using calibration graph

Determine the orientation- roll
ipitch8 ,andyaw9 .using

D D D D
I

v
I
I

Figure 6: Flowchart for non-vision baaed orientation
measurement

j = —

M

._ (<2sina>1+£)2icosa>i -

Figure 7: Top view of Gimbal unit

The governing equations to determine the orientation
of the retroreflector (co-ordinate system CR) relative
to the laser beam (co-ordinate system CL) are thus as
follow:

% - (5)

From Figure 7, it can be seen from the properties of
hiangle that:

i = arctan- (6)

With similar method in evaluating a>i,

= arctan-
21,-1,+lq

(7)

where h is the distance between the centres of the
beamsplitter and the retroreflector. 12 and 13 are
distances between the centres of the beamsplitter and
PSD2 and PSD3 respectively. D^ and D3x are the
detection positions of laser beam on PSD2 and PSD3
along the x-axis, respectively. D2z and D3z are the
detection positions of laser beam on PSD2 and PSD3
along the z-axis, respectively.

©3 can be calculated from the point of intersection
between the laser beam and the yz plane of co-
ordinate system CB which is a stationary base of the
gimbal unit in Figure 5.

5. COMPARISON BETWEEN
VISION BASED AND NON-
VISION BASED MEASUREMENT
TECHNIQUES

5.1 Accuracy of orientation measurement

Generally, the accuracy of determining the
orientation angles of the retroreflector, regardless of
the orientation measurement techniques used,
depends on a number of factors [6]:

• Geometric errors of the laser interferometry-
based tracking system;

• Sensitivity of the laser beam due to the changes
in environmental conditions. These include
temperature, pressure, humidity, etc;

• Accuracy of other sub-components of the laser
interferometry-based tracking system

In this paper, we are only interested in the
comparison between the two techniques proposed.
Therefore, only the accuracy of the equipment used in
the measurement is being considered, without having
to take into account the above errors.

Vision-based orientation measurement technique uses
a CCD camera. The accuracy of this technique relies
heavily on the capability of the software program to
determine the vector lines projected onto the CCD
camera. Experiments have shown that the accuracy
for the current set-up is of the order of ±0.2 degrees.
The current set-up consists of a DT3152 frame
grabber board, a Pulnix TM6CN CCD camera and
EasyLib image processing software.

Non-vision based orientation measurement technique
-:ses a PSD sub-system on the Gimbai unit to
determine the orientation angles, as described
previously. The PSD sub-system consists of two
PSDs with special circuit and a data acquisition card.
These PSDs are of lateral effect detector type - i.e.
two electrodes opposite to each other are used to
determine the position of laser beam along a
particular axis on the detector. The offset of the laser

S I

!
It
p

beam from the centre of the detector on a particular
axis will be represented by a difference in voltage
values between the two electrodes for that axis.
Calibration has to be carried out to obtain a
relationship between the voltage and displacement.
This has to be carefully performed as the
performance of non-vision based orientation
measurement is heavily dependent on the sampling
rate and accuracy of the PSDs. The software program
for orientation measurement will refer to the
calibration graph when the voltage values are
detected to convert these into corresponding
displacements.

The accuracy of the PSD used is 7 urn, which is half
of its resolution plus the accuracy of the calibrator.
Furthermore, the design tolerance of the Gimbal unit
is in the order of 5 \xm. Therefore, the accuracy was
found to be in the order of ±0.012 degrees.

5.2 Limitations on Orientation Measurement

One major limitation to both vision and non-vision
based orientation measurement is the rotational range
of tracking. This tracking range is generally small
(about ±30 degrees for pitch and yaw angles but no
limitation for roll angle) due to the limited rotation
angle of the retroreflector with respect to the laser
beam. That is, the retroreflector will gradually turn
away from the incoming laser beam until the system
loses track of the signal. As a result, measurement
cannot be performed.

However, for non-vision based measurement, this
limitation can be overcome by rotating motors
mounted on the Gimbal unit. The rotation angle will
be equal to the calculated orientation angles. In this
approach, the motors will turn the Gimbal unit (and
thus the retroreflector) in such a way that the
retroreflector will always face the direction of the
incoming laser beam, contributing to zero roll, pitch
and yaw angles relative to the laser beam. This
method gives more flexibility to the orientation
measurement.

For vision-based measurement, the sampling rate of
the CCD camera is only 30 Hz. If an angle change of
1 degree is being measured in each cycle, the system
's capable of providing a measurement for
retroreflector rotating at up to 30 degrees/s. However,
in the case of non-vision based measurement, the
sampling rate of the PSDs is 2000 Hz. With the same

angle change being measured «\t each cycle, the
system is capable of measuring a rotational speed of
2000 degrees/s. This is about 66 times faster.

6. CONCLUSION
WORK

AND FUTURE

Laser tracking system has the ability to accurately
provide measurements for position and orientation of
robot's end-effector. Two methods of orientation
measurements and their algorithms have been
described. The techniques were compared and the
limitations of each method were outlined. Due to low
laser beam power, full experimental data could not be
collected for this paper. However, from the
preliminary calculations and feasibility experiments,
it can be observed that the non-vision based
measurement technique is more precise and faster
than the vision based measurement technique.

Future development will involve the full
incorporation of orientation measurement into LITS.
The laser interferometer is to be replaced by another
higher power laser interferometer. Predictive control
algorithm will also be incorporated to improve the
speed of measurement for both techniques.

ACKNOWLEDGEMENT

This research project was partly funded by grants
from the Australian Research Council (ARC) and the
Harold Armstrong Research Fund. The authors wish
to thank H. C. CHONG and K. C. LEE for their work
on the research project.

REFERENCES

[1] S. Spiess, M. Vincze, P. Krautgartner, K. Filz,
"On modelling the kinematics and optics of a
laser tracking system for contactless robot
measurement", Institute of Flexible Automation.
Technical University of Vienna, Austria, 1996.

[2] Y. Bao, N. Fujiwara, "Dynamic Measurement
Orientation by LTS", Japan/USA Symposium on
Flexible Automation, Vol. 1, pp 545-548,1996.

1JJ

[4]

[5]

[6]

M. Vincze, J. P. Prenninger, H. Gander, "A
Laser Tracking System to Measure Position and
Orientation of Robot End Effectors Under
Motion", The International Journal of Robotics
Research, Vol. 13, No. 4, pp 305-314,1994.

B. Shirinzadeh, H. C. Chong, K. C. Lee, P. L.
Teoh, "Issues and Techniques for
Interferometry-Based Laser Guidance of a
Manipulator" Tne Fifth International
Conference on Control, Automation, Robotics
and Vision, Singapore, Vol. 1, pp. 271-275,
1998.

B. Shirinzadeh, "Laser interferometry-based
tracking for dynamic measurements", Industrial
Robot, Vol. 25. No. 1, pp. 35-41,1998.

K. M. Filz, M. Vincze, J. P. Prenninger,
"Camera system to detect the orientation of a
corner cube in real time", IEEE International
Conference on Robotics and Automation, pp
1713-1719, 1995.

B. Shirinzadeh, P. L. Teoh, C. W. Foong, Y. D. Liu, "Orientation measurement technique

in laser interferometry based tracking system for robot manipulator calibration",

Proceedings of Pacific Conference on Manufacturing (PCM2000), Detroit, USA, Vol. 2,

pp. 788-793, September 2000.

Orientation Measurement Technique in Laser Interferometry Based
Tracking System for Robot Manipulator Calibration

*P. L. Teoh, *B. Shirinzadeh, *C. W. Foong, +Y. D. LIU

* Department of Mechanical Engineering
Monash University
Clayton, VIC 3168

AUSTRALIA
TEL: 61 3 9905 1565
FAX: 61 3 9905 1825

Email: biian.shirinzadeh@eng.monash.edu.au

+ State Key Laboratory of Precision Measurement Technology and Instruments
TsingHua University

Beijing 100084
China

Abstract:

Laser Interferometry-based Tracking System (LITS) has been proposed as an advanced calibration technique
that measures the robot position and orientation (pose). This technique can provide dynamic robot pose
measurement in real time and has high accuracy, a large working space, a high sampling rate and automatic
target tracking. The performance of LITS is dependent on the sub-systems. In this paper, the sub-system being
investigated is the orientation measurement sub-system. Two measurement techniques; namely the vision and
non-vision based techniques will be described. The principles and algorithms in obtaining the orientation of the
robot's end-effector for both techniques will be presented. In particular, the emphasis is placed on the
establishment of the non-vision based technique and investigating the feasibility of this technique for the
measurement of orientation about a single axis. Comparison will be made between the vision and non-vision
based measurement techniques in terms of efficiencies and limitations for orientation measurement.

Keywords: Laser interferometry based tracking system (LITS), Orientation measurement, Vision and non-
vision based measurement techniques

1. INTRODUCTION

In the last two decades, there has been an
increase in robot application in manufacturing
and service industries. The robots are required
to perform more complex assembly operation
and high precision path following operations.
These operations generally require higher robot
accuracy and advanced flexible programming
technique;;. Calibration techniques that involves
position and orientation (pose) measurement are
required to improve the performance of robots.
As the traditional methods of pose measurement
are very time-consuming and expensive, a
measurement tool with high accuracy, a large
working space, a high sampling rate and
automatic target tracking is desirable [1]. Laser
interferometry-based tracking system (LITS)
can be used in dynamic measurements of

position and orientation thus providing
measurements for robot calibration.

LITS comprises of various measuring sub-
systems. The performance of a LITS depends on
the performance of these sub-systems. These
include the sampling rate of the sub-system
responsible for offset error measurement, the
sampling rate of the motion controller card, the
accuracy or resolution of different sub-systems
and the laser beam used. An ineffective sub-
system will limit the performance of the LITS.

In this paper, the sub-system being studied is
the orientation measurement sub-system. Two
methods of orientation measurement will be
described. These include vision (VBT) and
non-vision based techniques (NVBT) to

If

measure the orientation in real time. The
principle and the algorithm for both techniques
will be presented. Experiments on NVBT have
been carried out to determine the feasibility of
this technique for the measurement of
orientation about a single axis, which includes
accuracy and range of measurement. Both
techniques will be compared in terms of the
performance and efficiency by examining the
accuracy of these techniques and their
limitations.

2. PRINCIPLE OF LASER
INTERFEROMETRY- BASED TRACKING
SYSTEM FOR POSITION
MEASUREMENT

The LITS developed for this study is shown
in Figure 1 [2]. As shown, the laser beam
emitted from the HeNe laser passes through an
interferometer and is split into a reference beam
and a measurement beam. The reference beam
will be picked up by a fibre optic cable and be
transmitted to the measurement board on the
laser controller. The measurement beam passes
through a 70-30 beamsplitter before being
directed by the beam steering mechanism onto
the retroreflector mounted on the end-effector of
the robot manipulator. This beam is referred to
as the incident beam.

Figure 1: Setup of Laser Interferometry-based Tracking
System

The retroreflector is designed in such a way
that the reflected beam is always parallel to the
incident beam, regardless of the incident angle
of the beam. This reflected beam is again

directed by the beam steering mechanism back
to the 70-30 beamsplitter. 70% of the reflected
beam will pass through the beamsplitter and
travel to the interferometer before being picked
up by the fibre optic cable. It is then transmitted
and combined with the reference beam to
determine the displacement of the laser beam
(i.e. the distance of the centre of retroreflector
from the interferometer) using Doppler Shift.
The remaining 30% of the reflected beam is
directed perpendicularly to the measurement
beam and travels through a 50-50 beamsplitter.
The beam is being split further with 50% of this
beam is being incident onto a position sensitive
diode (PSD), which determines the offset of the
beam from the centre position of the
retroreflector. The other 50% will be transmitted
to a CCD (Charged-Coupled Device) camera for
orientation measurement, which will be
discussed in the next section.

The beam steering mechanism consists of
three 45° beam-steers, with one being
stationary, and the other two driven by two
stepper motors - one for vertical axis and the
other for horizontal axis. Continuos tracking of
the retroreflector are possible by controlling the
motors to rotate by the corrective angles
determined from the kinematics of the LITS
using displacement of the laser beam and the
tracking error obtained from the PSD. This
provides continuos tracking and update of the
end-effector's pose in real time.

3. VISION BASED ORIENTATION
MEASUREMENT

The vision based orientation measurement
technique (VBT) was initially proposed by
Vincze, et. al. [3, 4]. As mentioned in the
previous section, part of the reflected
measurement beam from the retroreflector is
directed to the CCD camera. The current set-up
consists of a Pulnix TM6CN CCD camera,
DT3152 frame grabber board, and EasyLib
image processing software [5]. The camera will
capture the image of the diffraction pattern of
the retroreflector and a high-acquisition-rate

frame grabber will acquire this signal to perform
image digitisation using image processing
software. Figure 2 shows the image of the
diffraction pattern as displayed on a computer
screen. It consists of a white circle on a dark
background, with 3 dark lines intersecting each
other. The intersection point is the centre point
of the retroreflector and the dark lines are
caused by the edges of the three mirrors on the
retroreflector. The image can be simplified as
shown in Figure 3. The vectors Vj (i = 1, 2, 3)
are the projected edge vectors of the diffraction
pattern. Application software has been
developed to enhance the captui sd image and to
detect the vectors representing the diffraction
pattern. This software utilises the library
routines provided by the frame grabber and its
image processing capabilities. The angle
between the head of the vector and the x-axis
can thus be determined.

When the angles a, P, y, and 8 have been
established, the orientation (roll <j), pitch 9 and
yaw (p) of the retroreflector relative to the laser
beam can be determined by using the following
equations [3]:

The process is repeated until the angle change is
negligibly small.

Preliminary experiments have shown that the
accuracy for the current set-up is of the order of
±3 degrees. Further, real time, automated
measurement is not possible at the current stage.
This is due to low laser power and unstable laser
beam. Diffraction patterns with clear distinction
between the dark and light regions cannot be
obtained automatically.

I 2 /
= -arcsin(I- I

ptancxtany y

- 1

Figure 2: Diffraction pattern of the reflected beam from
the retroreflector

6tan(a + y)tana

- 1
(1)

6tanytan(a + y)

= arcsin
. t 1 / . _ |-2cos(y
in((sin 5 —

cos0 \ 3sinasi

-2cos(y + a)
— -

3sinasiny

-sin(6 + a)

-sin(5-y)

C 0 S I
6sinasin(a

(2)

osinysin(a + y)

•P-arcsinf /•
v cose^l

- l

a = angle between V I and V2
(J= angle between V2 and V3
Y = angle between V I and V3
5 = angle between Viand the

dotted horizontal line

X-Axis

I2tan(a + y)tana

l
(3)

-1
coseptanytanCa + y)

Figure 3: Projected edge vectors of the diffraction pattern

4. NON-VISION BASED ORIENTATION
MEASUREMENT

It must be emphasised that these angles are The next approach to orientation
relative orientation from home (zero) measurement in LITS is the dual PSD non-
orientation. A new set of vectors as well as the vision based orientation measurement technique
new set of angles can be detected when there is (NVBT) [6]. This approach utilises two position
a change in the orientation of the retroreflector. sensitive diodes (PSDs), a beamsplitter, and a

retroreflector mounted on a specially designed beamsplitter, parallel to the incident beam. At
Gimbal unit as shown in Figure 4. This Gimbal the beamsplitter, 30% of the laser beam will
unit will replace the target retroreflector again be directed to the second PSD and the
originally mounted on the robot end-effector as remaining laser beam will return to the beam
described in section 2.

Zc>

if* Re-troreflec-tor

Laser
Bean

Beansplitter

Figure 4: Gimbal unit assembly

(B E G I N)

Sample voltages from
PSD 2 and PSD 3 at

2kHz

PSD 2 (toft)
Determine offset Dj, and

Da from the centre of PSD
using calibration graph

PSD 3 (right)
Determine offset Dy and

Djr from the centre of PSD
using calibration graph

Determine the orientation- roll
•, pitch 6 . and yaw 9 , using

D D D D

Figure 5: Flowchart for non-vision based orientation
measurement

A flowchart for the non-vision based
orientation measurement algorithm is provided
in Figure 5. As shown, the laser beam emerges
from the beam steering mechanism passes
through the 70-30 beamsplitter on the Gimbal
and splits into two beams. 30% of the beam is
incident on the first PSD and the remaining will
be directed towards the retroreflector. The
reflected beam will travel back to the

steering mechanism. Both PSDs can detect the
beam offset from the centre along the x and z
axes on the PSDs. These offset readings are
used for the calculation of the orientation of the
retroreflector.

Figure 6: Optical arrangement of Gimbal unit with beam
path

The governing equations to determine the
orientation of the retroreflector (co-ordinate
system CR) relative to the laser beam (co-
ordinate system CL) are thus as follow. Due to a
different approach in calculation, modification
has been performed on the equations that were
presented in [6].:

TQR = Rot(z,G)\)Rot(y,-a>2)Rot(x,a)3) (5)

From Figure 6, it can be seen from the
properties of triangle that:

(6)= arctan;

With similar method in evaluating

©2 = arctan^ 2 ? |
+ : (7)

where li is the distance between the centres of
the beamsplitter and the retroreflector. I2 and I3
are distances between the centres of the
beamsplitter and PSD2 and PSD3 respectively.
D2x and D3X are the detection positions of the
laser beam on PSD2 and PSD3 along the x-axis,

i

1 !•
\ r

t SH

HI
il

respectively. D2z and D32 are the detection 2286000 steps per revolution, and a HeNe laser
positions of the laser beam on PSD2 and PSD3 interferometer.
along the z-axis, respectively.

4.2 Results and Discussion

(o3 can be calculated from the point of
intersection between the laser beam and the yz-
plane of co-ordinate system CB which is a
stationary base of the gimbal unit in Figure 4.

4.1 Experimental setup

As shown in Figure 5, the PSDs used
samples voltages at 2000Hz. These PSDs are of
lateral effect detector type - i.e. two electrodes
opposite to each other are used to determine the
position of laser beam along a particular axis on
the detector. The offset of the laser beam from
the centre of the detector on a particular axis
will be represented by a difference in voltage
values between the two electrodes for that axis.
Proper calibration has to be carried out to
determine the relationship between the voltages
sampled and the actual position offset of the
beam on the PSDs surface. The PSDs were
calibrated by directing the laser beam onto the
centre of each PSD mounted on a linear
positioning table. The voltage difference
between the electrodes and the corresponding
beam displacement was recorded while micro-
stepping the PSD in one direction. Due to non-
linearity of the PSD, the results were linearised
with linearisation algorithm and a calibration
graph of relationship between the voltage
difference and the displacement can then be
obtained. The software program for orientation
measurement will refer to the calibration graph
when the voltage values are detected to convert
these into corresponding displacements.

Experiments were performed in order to
observe the performance of the dual PSD offsets
NVBT in determining the Gimbal rotation about
a single axis (i.e. the z-axis). The equipment
used for this experiment included two PSDs
mounted on the Gimbal unit, a micro-stepping
rotational table with a maximum resolution of

The Gimbal unit was first mounted onto a
rotational table stage. The resolution of the
rotational table was set at 18O0O steps per
revolution. The stage was then stepped through
from 0 to 200 steps with 5 steps increment. The
PSD offsets were recorded. The results are
shown in Figure 7.

Figure 7: Comparison between measured and actual angle

The graph in Figure 7 shows that at small
rotations (from 0 to 25 steps), the measured
angular rotation about the z axis using the
Gimbal unit agrees closely with the actual
angular rotation with a deviation of 2.5%. The
deviation increases to 24% with larger rotation
angle. The main reason for the deviation is due
to the low laser power. As voltage is directly
proportional to power, reduction in power will
reduce the maximum voltage sampled. A
change in beam displacement will cause a small
voltage change. This increases the sensitivity of
the PSDs to ambient environment. In this setup,
only 30% and 21% of the beam power directed
to the Gimbal unit will be projected to PSD1
and PSD2 respectively. The other reason is the
simple linearisation algorithm used. More
complex algorithm is required.

It can be observed in Figure 7 that the
measured angle reached a maximum value of
170 steps and then started to decrease. This is

due to the beam is out of the PSDs range. The
measurement range is thus ±3.4°.
5. COMPARISON BETWEEN VISION
BASED AND NON-VISION BASED
MEASUREMENT TECHNIQUES

^Accuracy of orientation measurement

The accuracy of VBT orientation
measurement relies heavily on the capability of
the software program to determine the vector
lines projected onto the CCD camera.
Experiments have shown that the accuracy for
the current set-up is of the order of ±0.2
degrees.

NVBT orientation measurement uses PSDs
to determine the orientation angles, as described
previously. The accuracy of NVBT is heavily
dependent on the accuracy of the calibration
graph of the PSDs. Experiments have shown
that the current set-up has a deviation of ±2.5%
for small rotation angles and ±24% for larger
rotation angles.

5.1 Limitations on Orientation Measurement

The major limitation experienced by both
VBT and NVBT orientation measurement is the
rotational range of measurement. There is no
range limitation for roll angle. The measurement
range of about ±30 degrees for pitch and yaw
angles is due to the rotation of the retroreflector,
gradually turning away from the incoming laser
beam until the system loses track of the signal.
As a result, measurement cannot be performed.

The measurement range of current NVBT
set-up as mentioned above is about ±3.5
degrees. However, this limitation can be
overcome during actual operation with the
Gimbal mounted on the robot end-effector by
rotating motors connected to the Gimbal unit.
The rotation angle will be equal to the
calculated orientation angles. In this approach,
the motors will turn the Gimbal unit (and thus
the retroreflector) in such a way that the

retroreflector will always face the direction of
the incoming laser beam. This method gives
more flexibility to the orientation measurement.

6. CONCLUSION AND FUTURE WORK

Two methods of orientation measurements
and their algorithms have been described.
Experiment verified that NVBT is feasible in
making orientation measurement. Better results
could be obtained with better equipment such as
higher laser power. The techniques were
compared and it can be observed that the NVBT
has more flexibility compare to the VBT.

Further experiments will be performed to
improve the technique.

7. ACKNOWLEDGEMENT

This research project was partly funded by
grants from the Australian Research Council
(ARC) and the Harold Armstrong Research Fund.

8. REFERENCES

[1] S. Spiess, M. Vincze, P. Krautgartner, K. Filz,
"On modelling the kinematics and optics of a
laser tracking system for contactless robot
measurement", Institute of Flexible Automation.
Technical University of Vienna, Austria, 1996.

[2] B. Shirinzadeh, "Laser interferometry-based
tracking for dynamic measurements", Industrial
Robot, Vol. 25. No. 1, pp. 35-41, 1998.

[3] M. Vincze, J. P. Prenninger, H. Gander, "A
Laser Tracking System to Measure Position and
Orientation of Robot End Effectors Under
Motion", The Int. Journal of Robotics
Research, Vol. 13, No. 4, pp 305-314, 1994.

[4] K. M. Filz, M. Vincze, J. P. Prenninger,
"Camera system to detect the orientation of a
corner cube in real time", IEEE Int. Conf. on
Robotics and Automation, pp 1713-1719,1995.

[5] B.Shirinzadeh, P. L. Teoh, C. W. Foong,
"Orientation measurement using vision and
non-vision based techniques in laser tracking
system", 3(fh Me. Symp. on Robotics, Tokyo,
Japan, pp. 317-324,1999.

[6] Y. Bao, N. Fujiwara, "Dynamic Measurement
Orientation by LTS", Japan/USA Symp. on
Flexible Automation, Vol. 1, pp 545-548,1996.

}

r

h

nn

P. L. Teoh, B. Shirinzadeh, "Dual position sensitive diode-based orientation measurement

in laser interferometry-based sensing and measurement technique", Proceedings of SPIE-

The International Society for Optical Engineering, Vol. 4564, pp. 98-106, October 2001.

i :

!f

J t

' f

Dual Position Sensitive Diode-based Orientation Measurement in
Laser Interferometry-based Sensing and Measurement Technique

B. Shirinzadeh, P. L. Teoh
Department of Mechanical Engineering

Monash University
Clayton, VIC 5168

Australia
Email: biian.shirinzadeh@,eng.monash.edu.au

pek.teoh(S),eng.monash.edu.au

ABSTRACT

The accurate measurement of the position and orientation (pose) of a robot manipulator's end-effector is th». most
critical issue for calibration of the robotic, devices. To acorately define a position and orientation of a robot
manipulator's end-effector, measurement of six parameters is required - three for position and three for orientation.
Different approaches have been studied over the last few years to measure the orientation of the end-effjctor
dynamically and precisely. However, there are still some difficulties in determining the orientation of the end-effector
in real time. In this paper, an orientation measurement methodology based on Position Sensitive Diode (PSD)
me?surement in Laser Interferometry-based Sensing and Measurement (LISM) technique will be described. The
principle and algorithms of this approach will be presented. The experimental set-up will also be described. The
efficiencies and limitations of such approach will be examined.

Keywords: Laser interferometry based sensing and measurement technique (LISM), orientation measurement, dual
PSD based orientation measurement, gimbal unit

1. INTRODUCTION

The application areas for robots in manufacturing and service industries are increasing in recent years. These
application areas are generally more complex, requiring higher robot accuracy and advanced flexible programming
techniques. Due to these requirements, a more accurate placement of robot's end-effector along a desired path Is
required. However, current industrial robots have much lower accuracy compared to their repeatability [1]. Therefore,
an advanced calibration technique that involves an accurate measurement of robot position and orientation (pose) will
be required to greatly improve the absolute positioning accuracy of robot manipulators.

The pose of the robot manipulator's end-effector is defined by six parameters- three for position and three for
orientation. Traditional methods of pose measurement (such as ball bar, CMM) are very time-consuming and many do
not provide for real time dynamic measurement. Laser Interferometry-based Sensing and Measurement (LISM)
technique has been proposed to perform dynamic performance measurements of position and orientation as well as
providing measurements for robot calibration. This technique can provide high accuracy measurements within a large
working space with a high sampling rate and automatic target tracking capability in real time [2]. It has been shown that
a number of different sub-systems are responsible for position and orientation measurement in LISM technique. The
performance of LISM technique is dependent on ths measurement methodology employed by these sub-systems. In this
paper, the sub-system being investigated is the orientation measurement sub-system.

Different methodologies have been proposed to perform orientation measurements of robot's end-effector dynamically
and precisely in LISM. These include the use jf CCD cameras and arrays [2, 3,4]. These measurement methodologies
suffer similar limitation of low speed and/cr accuracy. This paper describes an alternative method that can be used in
orientation measurement; namely the dual Position Sensitive Diode (PSD) based orientation measurement technique.

£

V

i

This method consists of a Gimbal unit mounted on the robot's end-effector. It utilises geometric parameters of Gimbal
unit and laser beam offset error measurements from the PSDs on the Gimbal unit to perform orientation measurements
in real time. The principles and algorithms in obtaining the orientation of the robot's end-effector using this method will
be presented. The preliminary experimental set-up will also be described. The efficiency and limitation of this
methodology in providing orientation measurement in LISM measurement technique will be examined.

2. PRINCIPLE OF LASER INTERFEROMETRY-BACED SENSING AND TRACKING
TECHNIQUE

Laser Interferometry-based Sensing and Measurement (LISM) technique generally involves the dynamic acquisition of
the three dimensional position of an end-effector in its workspace [2, 5]. It can also be modified to measure the
orientation of robot end-effector [1, 3, 6, 7]. The LISM technique uses the angular and distance data, obtained from the
beam steering mechanism and the interferometer, respectively, to provide the position of the target retroreflector
attached to the end-effector of the manipulator. It maintains tracking of the target by sensing the offset of the incident
and reflected beam. The tracking is carried out by adjusting the angles of a beam steering mechanism. A LISM
apparatus was developed for this study. A functional layout of the overall design of the LISM apparatus is provided in
Figure 1.

In this layout, the laser beam generated by the HeNe laser head travels to the interferometer where it is split into a
reference beam and a measurement beam. The reference beam is directed to the measurement board in the laser
interferometer controller via the fibre optic pickup. This beam will later be compared with the returning measurement
beam, whose frequency will be Doppler-shifted, to determine the distance between the target (i.e. a retroreflector
mounted on the robot end-effector) and the laser head. The measurement beam travels through a 70-30 percent beam
splitter before entering the two-axis beam steering mechanism. The beam steering mechanism consists of three 45°
beam-steer mirrors, with one being stationary and the other two driven by two stepper motors - one rotate about the
vertical axis and the other about the horizontal axis. Two high-resolution optical encoders are attached to the stepper
motors to provide the angular displacement of the stepper motors and thus the rotational angles of the beam-steer
mirrors. The beam is directed to the target retroreflector by rotating the stepper motors attached to the appropriate
beam-steer mirrors. Once the beam ^its the target retroreflector, the beam is reflected through 180° and it travels back
parallel with the incident beam. There will exist an offset between the incident and the reflected measurement beam if
the beam does not hit the centre of the retroreflector.

Piie reflected beam then travels through the beam-steer mirrors in the beam steering mechanism and back to the 70-30
percent beam splitter. 30 percent of the beam power is diverted through a 50-50 percent beam splitter^ where it is split
equally and directed to a Charged Coupled Device (CCD) camera and a Position Sensitive Diode (PSD). The CCD
camera, which is connected to a high-data-acquisition-rate frame grabber board, captures the diffraction pattern of the
retrorefcector, so that analysis can be performed to determine the orientation of the target retroreflector. The PSD is
attached to a data acquisition card and it detects the offset of the beam from the centre of the PSD sensor. The reflected
beam position from the centre of the PSD will be acquired by the card and the offset, referred to as the tracking error
will be stored in the LISM control unit. The remaining 70 percent of the beam power will be combined with the
reference beam via the interferometer and the fibre optic pickup. The Doppler shift of the reflected beam can be
detected and used by the processing electronics within the laser interferometer controller to determine the displacement
of the beam and the velocity.

The LISM control system minimises the tracking error obtained from the PSD acquisition system by signaling the
motor controller which in turn rotates the axes of the beam steering mechanism by a corrective angles calculated using
the tracking error, thus following the arbitrary movements of the target. Measurement of the position of the target in
space is obtained from the interferometer measurement, tracking errors, angular displacements of the axes of the beam
steering mechanism, and the kinematics of the LISM apparatus. The tracking algorithm utilises a predictive control
algorithm that allows estimation of future position of the target from the previous position, velocity and acceleration
values [8].

Scorbot ER VI
5-QXIS robot
manipulator

Motor lnd«x*r>

Retroreflector
Stepper
Motor 1
with Encoder

CCD Canera

50-30
Steering
Mechonisn

Sttpper
Motor 2
with Encoder Laser

Interferome
ontrollerBcanspUtter

Reference
R»trorefl

Control unit
for LIS

Interf«ronet«r
M*asur«n*nt

PSD
Signal

Diffraction
P<vtt«m

Figure 1: Functional layout of LISM apparatus

3. PRINCIPLE OF DUAL PSD-BASED ORIENTATION MEASUREMENT METHODOLOGY

There are a few methods of orientation measurement in laser interferometry-based measurement including the CCD
camera and the CCD array based methods [2, 3, 4]. Another approach includes multi-laser interferometry-based
technique that utilizes triangulation. All these methods can provide real time orientation measurement. However, for the
CCD camera and CCD array based methids, the range of measurement is limited due to the small incident angle range
of the retroreflector. Moreover, the center of the retroreflector has to be covered by the laser beam for a valid
measurement to be made. For the case of the multi-laser interferometry-based technique, the set-up cost will be
expensive compared to the single laser-interferometry based technique. Another approach to orientation measurement in
LISM is the dual PSD-based orientation measurement [9]. This method is proposed to dynamically measure the
orientation of a mobile vehicle with a specially designed GimbaJ unit mounted on top of the vehicle.

3.1 Gimbal unit
The layout of the Gimbal unit is provided in Figure 2. The Gimbal unit consists nf two position sensitive diodes (PSDs),
a beamsplitter, and a retroreflector mounted on the intersection of the axss of rotations. When the laser beam from the
beam steering mechanism passes through the 70-30 beamsplitter on the Gimbal unit, it splits into two beams. 30% of
the beam is incident on the first PSD and the remaining will be directed towards the retroreflector. The reflected beam
will travel back to the beamsplitter, parallel to the incident beam. At the beamsplitter, 30% of the laser beam will again
be directed to the second PSD and the remaining laser beam will return to the beam steering mechanism. Orientation of
the retroreflector with respect to the laser beam is calculated from the beam positions measurement along the x and y
axes of the two PSDs and the geometry of the Gimbal unit A flowchart for the non-vision based orientation
measurement algorithm is provided in Figure 3.

YCB

ZcB

••-ft, -

IN
PSDE1^

Retroref lector

^ X ^ Laser
U ^ \ x- Bean

\ \ ^
Beansplitter

Figure 2: Gimbal unit assembly

BEGIN

Sample voltages from
PSD 2 and PSD 3 at

2kHz

PSD 2 (left)
Determine offset D^and

D2z from the centre of PSD
using calibration graph

PSD 3 fright)
Determine offset D^and

Da, from the centre of PSD
using calibration graph

L

Determine the orientation- roll
<)>, pitch 9 , and yaw q>, using

-No-
Process x

\Completed?, •

END

Figure 3: Flowchart for non-vision based orientation measurement

t
t

r ''

3.2 Position Sensitive Diode
The PSDs used are of lateral effect detector type as shown in Figure 4. It has four electrodes connected equidistant
around its perimeter. The electrodes yield photo-current corresponding to the displacement of the beam from the centre
ot the PSD [10]. Photo-currents are converted to voltages by special electronics before being sampled by the controller.
Calibration has to be carried out to obtain a relationship between the voltage difference of the opposite electrode pair
and the displacement of the laser beam in the X and Y direction from the centre of the PSDs. This has to be carefully
performed as the performance of non-vision based orientation measurement is heavily dependent on the accuracy of the
PSDs. Due to only 30% and 21% of the original laser beam power is directed to PSD2 and PSD3 respectively,
calibration have to be performed with the correct laser beam power. Moreover, it was observed that there is significant
amount of reflection from the surface of the PSDs. The reflections from PSD2 will cause corruption to the data sampled
by PSD3 and vice versa. A quarter wave plate is placed in front of both PSDs to minimize reflection. This again has to
be taken into account during the calibration process. The software program for orientation measurement will refer to the
calibration graph when the voltage values are detected to convert these into corresponding displacements. Figure 5
shows a graphical relationship between the position of the laser beam and the voltage difference detected by the PSD.
The range of the PSD is ±6mm from the center as beyond this range the laser beam will be out of the PSD detection
area.

3.3 Formulation
Figure 6 shows a top view of the optical arrangement on the Gimbal unit. In the current set-up, the gimbal unit is
designed as shown in figure 2. However, due to different approach in calculation, modification had been performed on
the equations that were presented in [9].

The governing equations to determine the orientation of the retroreflector (co-ordinate system
beam (co-ordinate system Q) are thus as follow:

CLTCR = RotfradRotfo-a

From Figure 6, it can be seen from the properties of triangle that:

relative to the laser

(1)

= arctan- (2)

With similar method in evaluating <au

(02 = arctan
(P2z

21,-12 + 13

(3) I
where /; is the distance between the centres jf the beamsplitter and the retroreflector. l2 and l3 are distances
between the centres of the beamsplitter and PSD2 and PSD3 respectively. D& and Dix are the detection positions of
laser beam on PSD2 and PSDS along the x-axis, respectively. D2z and D3z are the detection positions of laser beam on
PSD2 and PSD3 along the z-axis, respectively.

©3 can be calculated from the point of intersection between the laser beam and the yz-plane of the co-ordinate system of
the base of the Gimbal unit, CB-

I

Electrode

Sensor
Surface

Lateral Effect
Detector

Figure 4: Dual axis lateral effect detector

Position vs Average Voltage Difference for PSD

0.2 0.3

Voltage DHtaranca (voH)

0.4 0.5 0.6

.'• I

s; ;

Figure 5: Calibration graph for PSD

Retroreflector

'1

tancoj = —

sin &i + Dix cos c»i — 1-$ sin a>\ + cos tt>j)

Figure 6: Top view of Gimbal unit

4. PRELIMINARY EXPERIMENTAL SET-UP AND RESULTS

The experimental set-up consists of the Gunbal unit described above, a HeNe laser interferometer and a micro stepping
rotary table with a resolution of 0.02° and a maximum resolution of 2286000 steps per revolution. The Gimbal unit is
mounted on the rotary table with the x-axis of the Gimbal unit co-ordinate system coincide with die rotating axis of the
rotary table. The experiments conducted dealt with the orientation measuring performance of the LISM. The
experiments focused on determining the accuracy, range of orientation measurement about a single axis (i.e. the x-axis
of the Gimbal unit co-ordinate system).

During the experiment, the rotary table is commanded to step through from 0 to 200 steps with 5 steps increment. The
positions of the laser beam from the center of both PSDs are recorded at the same time. Equations 1 is then used to
calculated the orientation of the retroreflector. The results are compared with the theoretical value calculated using the
commanded step size and velocity. A graphical representation of the comparison is shown in Figure 7.

4.50

4.00 -

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

-0.50

50 100 150 200

• measured angle

• Actual angle

Step*

Figure 7: Comparison between actual and measured angle

5. DISCUSSION

The graph in Figure 7 shows the measured angular rotation about the z-axis using the Gimbal unit agrees closely with
the actual angular rotation up to 50 steps. The deviation increases with larger rotation angle. The main reason for the
deviation is due to the low laser power. As voltage is directly proportional to power, reduction in power will reduce the
maximum voltage sampled. A change in beam displacement will cause a small voltage change. This increases the
sensitivity of the PSDs to ambient environment. In this setup, only 30% and 21% of the beam power directed to the
Gimbal unit will be projected to PSD1 and PSD2 respectively. The other reason is the simple linearisation algorithm
used to determine the relationship between the position of the beam and the voltage difference. A better algorithm
maybe used to obtain a more accurate relationship. Other sources of errors include noise and geometric uncertainties of
the Gimbal unit.

One major limitation to this methodology is the rotational range of tracking. It can be observed in Figure 7 that the
measured angle reached a maximum value of 150 steps and then started to decrease. This is due to the beam is out of
the PSDs range. The measurement range is thus ±3°. However, this limitation can be overcome by rotating motors
mounted on the Gimbal unit. The rotation angle will be equal to the calculated orientation angles. In this approach, the
motors will turn the Gimbal unit (and thus the retrorefiector) in such a way that the retroreflector will always face the
direction of the incoming laser beam, contributing to zero roll, pitch and yaw angles relative to the laser beam. This
method gives more flexibility to the orientation measurement.

6. CONCLUSIONS AND FUTURE WORK

Dual PSD-based orientation measurements methodology and its principle have been descrilsd. Experiment verified that
this methodology is feasible in making orientation measurement. Better results could be obtained with better equipment
such as higher laser power. Further experiments will be performed to measure orientation of target about the other two
axes. Moreover, experiments to determine the efficiency of the method in determining the orientation of target running
at different will also be established.

T
The sampling rate of the PSDs is 2000 Hz. This is faster than all other methods and therefore this method is capable of
real time dynamic orientation measurement.

As this method has only been apply on the tracking of a mobile vehicle, the weight of the Gimbal does not affect the
measurement obtained. However, in normal robot manipulator operation, the payload of the manipulator will affect the
performance of the manipulator. To minimise payload due to the weight of the Gimbal unit on the robot manipulator,
the Gimbal unit shown in Figure 2 has to be redesigned.

ACKNOWLEDGEMENTS

This project is partly funded by Australian Research Council (ARC) and Harold Armstrong Fund.

REFERENCES

1. H. Gander, M. Vincze, J.P. Prenninger, "An external 6-D-sensor for industrial robots," Proceedings IEEE/RSJ
International Conference on Intelligent Robots and Systems, Yokohama, Japan, pp. 975-978, 1993.

2. M. Vincze, J.P. Prenninger, H. Gander, "A laser tracking system to measure position and orientation of robot end
effectors under motion," The International Journal of Robotics Research 13(4), pp. 305-314, 1994.

3. K.M. Filz, M. Vincze, J.P. Preminger, "Camera system to detect the orientation of a corner cube in real time,"
Proceedings IEEE International Conference on Robotics and Automation 6, pp.1713-1718, 1995.

4. J.P. Prenninger, H. Gander, M. Vincze, "Contactless position and orientation measurement of robot end-effectors,"
IEEE Conference on Robotics and Automation 1, pp. 180-185, 1993.

5. B. Shirinzadeh, "Laser interfercmetry-based tracking for dynamic measurements," Industrial Robot 25(1), pp. 35-
41,1998.

6. B. Shirinzadeh, P. L. Teoh, C. W. Foong, "Orientation measurement using vision and non-vision based techniques
in laser tracking system," 3(fh International Symposium on Robotics, Tokyo, Japan, pp. 317-324, 1999.

7. B. Shirinzadeh, P. L. Teoh, C. W. Foong, Y. D. Liu, "Orientation measurement technique in laser interferometry
based tracking system for robot manipulator calibration," Proceedings of Pacific Conference on Manufacturing
(PCM2000), Detroit, USA 2, pp. 788-793, 2000.

8. B. Shirinzadeh, P. L. Teoh, "A study of predictive control for laser tracking of robots," Proceedings of Pacific
Conference on Manufacturing (PCM98), Brisbane, Australia, pp. 328-333, 1998.

9. Y. Bao, N. Fujiwara, "Dynamic measurement orientation by LTS." Proceedings of the Japan/USA Symposium on
Flexible Automation 1, pp. 545-548,1996.

10. Melles Giiot, Melles Griot 1995/96 Catalogue, Melles GriotUSA, 1996.

P. L. T^oh, B. Shirinzadeh, C. W. Foong, G, Alici, "The measurement uncertainties in

laser interferometry-based sensing and tracking technique", Journal of Measurement, Vol.

32 No. 2, pp 135-150, September 2002.

f!

I

ELSEVIER Measurement 32 (2002) 135-150

Measurement

www.elsevier.com/locatc/mcasnijfflent

The measiirement uncertainties in the laser interferometry-based
sensing and tracking technique

Pek Loo Teoh, Bijan Shirinzadeh*, Chec Wei Foong, Giirsel Alici
Robotics and Mechatronics Research Laboratory, Department of Mechanical Engineering, Monash University, Clayton, Vic. 3800,

Australia

Received 5 June 2001; received in revised form 30 November 2001; accepted 7 February 2002

Abstract

The laser interferometry-based sensing and tracking (LIST) technique can be used to perform real time position
measurements of dynamic systems such as robot manipulators. These measurements are necessary to provide accurate
calibration and performance measures of robot manipulators. Therefore, it is important that the LIST technique is highly
accurate. However, due to the dependence of LIST technique on different sensors and transducer sub-systems, there exists
some degree of uncertainty in the measurements obtained. This paper presents the measurement uncertainties associated with
the LIST technique. The uncertainties contributed by different sub-systems within the LIST apparatus are analysed. A
general expression for uncertainty estimation is also developed. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Laser interferometry; Laser-based sensing and tracking; Unceitainty; Robot manipulators

1. Introduction

The increase in the number of complex applica-
tions of robots in manufacturing and service indus-
tries has emphasised the need for improved position-
ing accuracy of robot manipulators. It is well known
that the repeatability of today's industrial robots is at
least an order of magnitude better than th îr absolute
accuracy [1]. Therefore, accurate robot position and
orientation measurement (pose), as well as calibra-
tion techniques are required to improve robot accura-
cy. The laser interferometry-based sensing and track-
ing (LIST) technique has been proposed [1] to
provide dynamic measurements of position and

*Cor«sponding author. Tel.: +61-3-9905-1565.
E-mail address: bijan.shirinzadeh@eng.monash.edu.au

Shirinzadeh).
(B.

orientation of the robot's end-effector for robot
calibration. This technique can be further developed
to precisely guide the robot tool centre point to a
desired location or along a specific path. This
technique is expected to provide high accuracy pose
measurements in real time within a large working
space at high sampling rate and with automatic target
tracking capability [2].

It must be emphasised that any technique based on
one or more measurements from other sub-systems
involves some degree of uncertainties. Measurements
made by the LIST technique rely heavily on the use
of other sensors and transducers. These sensors and
transducers have certain errors associated with them.
Such errors may be caused by individual inaccuracy
of sensors, random variations in measurands (i.e. a
particular quantity to be measured a? a particular
condition), calibration techniques, vibration and in-

0263-2241 /02/S - see fiont matter © 2002 Elsevier Science Ltd. All rights reserved.
PI1: S0263-2241(02)00006-4

136 PL. Teoh et al. I Measurement 32 (2002) 135-150

complete knowledge of the effect of environmental
conditions. Therefore, the errors of these components
contribute to the overall uncertainly of the measure-
ment taken by the LIST technique. An analysis is
needed to identify the contribution of each source of
error to the overall measurement uncertainty of the
whole system. Depending on the accuracy required,
appropriate corrections in the calibration of the
sensors and transducers are necessary to reduce the
uncertainty, and thus to improve the accuracy and
repeatability of the measurements.

This paper describes the uncertainties associated
with the LIST technique. The principle of LIST and
the arrangement of sub-systems are first described.
The source and magnitude of errors associated with
each sub-system are then analysed. An uncertainty
analysis approach is introduced and the overall
measurement uncertainty of the LIST technique is
presented.

2. Principle of laser interferometry-based
sensing and tracking

Laser interferometry-based sensing and tracking of
robot motion generally involves the dynamic acquisi-
tion of the positions of a robot end-effector in its
workspace. It can also be used to provide orientation
measurements of robot end-effector. The LIST tech-
nique uses the linear and angular displacement data,
obtained from the interferometer and beam steering
mechanism, respectively, to provide the position of
the target retroreflector attached to the end-effector
of a robot manipulator. It maintains tracking of the
target retroreflector by sensing the offset of the
incident and reflected laser beam from the target. It
subsequently performs offset corrections by adjusting
the angles of the beam steering mechanism. The
functional layout of the LIST technique developed
for this study [2,3] is shown in Fig. 1.

The laser interferometer used in this technique is a
special variant of the Michelson laser interferometer
employing the Zeeman split. A heterodyne laser
beam consisting of two orthogonally polarised fre-
quency components Fx and F2, offset by 20 MHz, is
emitted fr>-i the laser head. The laser beam passes
through a polarisation beamsplitter in the inter-
ferometer, where it is split into a reference beam

with frequency Fx and a measurement beam with
freq.1'- y Fr The reference beam is directed to the
reference retroreflector where it is reflected and
directed to the fibre optic pick-up. It is then trans-
mitted to the measurement board on the laser inter-
ferometer controller. The measurement beam passes
through a 70-30 beamsplitter before being directed
to a retroreflector by the beam steering mechanism.
The retroreflector is generally mounted on a target
(e.g. robot's end-effector). The retroreflector is de-
signed in such a way that the incident beam is
reflected through 180° and travels back parallel to the
incident beam. If the incident beam does not hit the
centre of the retroreflector, there will be an offset
between the incident and the reflected measurement
beams.

This reflected beam follows the same path back to
the 70-30 beamsplitter; 70% of this beam power is
directed to the interferometer before being deflected
by the polarisation beamsplitter in the interferometer
and picked up by the fibre optic cable. It is then
transmitted and combined with the reference beam at
the laser interferometer controller. As the end-effec-
tor carrying the retroreflector is moved, the fre-
quency F2 of the measurement beam shifts from the
frequency of the previous measurement beam based
on the Doppler principle [4], yielding a frequency
change of AF2. In the interferometer controller, /",
and F2 are recombined to give an interference signal
with a frequency of Fx — (F2±AF2). Electronics in
the laser head generates a refoence signal with
frequency equal to Fx ~F2. The interference and
reference signal are combined to determine the
frequency change AF2, which gives the rate of
change in target displacement. This rate is then
integrated to provide the rebiive displacemenv of the
target. The remaining 30% of the reflected beam
power is directed by the 70-30 beamsplitter perpen-
dicular to the original laser path and travels to a
50-50 beamsplitter. This beam is further split where
50% of this beam power is incident onto a position
sensitive diode (PSD), which determines the offset
error of the reflected laser beam from the centre of
the retroreflector. This offset error is referred to as
the tracking error. The other 50% is transmitted to a
CCD (Charged-Coupled Device) earner?. The CCD
camera connected to a frame grabber board captures
the diffraction pattern of the reflected beam, which

P±. Teoh ?.t al. I Measurement 32 (2002) 135-150 137

Scorbot ER
5-axis robot
nanipulator

Motor Indexer

Retroreflector
Stepper
Motor 1
with Encoder

CCD Camera

Stepper
Motor 2
•ith

Laser
Irvterferone
oirtroller

* r * O p t l ^ ^

Beonsptitter
R*f*r*nct
R»tror«H

Control unit
for LJS

Cncodcr
Signal

inttrf*ronrttr
Htasur*n*nt

Patttrn

Fig. 1. Functional layout of the LIST technique.

allows the determination of the orientation of the
retroreflector.

The LIST control system minimises the tracking
error obtained from the PSD acquisition system in
rea1 time by signalling the motor controller which in
turn rotates the axes of the beam steering mecha-
nism, thus following the arbitrary movements of the
target. Measurement of the position of the target in
space is obtained from the displacement oi the beam,
tracking errors, and angular displacements of the
wes of the beam steering mechanism. All these data
ai? utilised within the equations describing the
kinematics of the LIST apparatus. A predictive
control algorithm that allows estimauon of the future
position of the target from the previous position,
velocity and acceleration values [5] has been em-

ployed to improve the speed of tracking, and thus
increase the speed of measurement.

3. Expression of uncertainty

The objective of any measurement technique is to
determine the value of the measurand. In general, the
result of a measurement technique is only an esti-
mate of the true value of the measurand and is only
complete when stated with the uncertainty of that
estimate. The uncertainty, therefore, indicates the
dispersion of the values of the measurand [6]. Some
of the possible sources of uncertainty in a measure-
ment by LIST technique include:

R!

138 P.L. Teoh et al. I Measurement 32 (2002) 135-150

• unknown effects of the environment conditions on
the measurement;

• error in measurement acquisition from various
instruments;

• resolution of various instruments;
• approximations and averaging steps (where ap-

plicable) made in the measurement process;
• inexact values of reference materials (e.g. for

calibration purposes).

The total uncertainty comprises uncertainties of
many components, which may be obtained from
either the results of a series of measurements or
experience/other information. The former is termed
Type A Uncertainty, and the latter Type B Uncer-
tainty [6], In order to develop a formulation for the
uncertainties, it is important to establish the formula-
tion for correlated and uncorrelated inputs. For a
measurement m, whose results depend on uncorre-
lated input estimates xv x-,...xN, the standard
uncertainty of the measurement is obtained by
appropriately combining the standard uncertainties of
these input estimates. The combined standard uncer-
tainty of the estimate m denoted by Mc(m) is calcu-
lated from the following equations [6]:

(2)

where / is the function of m in terms of input
estimates xx, x2,...xN, and each u{x() is a standard
uncertainty which may be evaluated either from
Type A Uncertainty or from Type B Uncertainty.
When the input estimates are correlated, the com-
bined variance u\{tn) associated with the results of a
measurement is determined by the following equa-
tion:

N—l N

where w(x(, JC,) denotes the estimated covariance
associated with x(and *..

4. Analysis of uncertainties

The LIST technique described in this paper con-
sists of four different sub-systems. These sub-sys-
tems are the laser interferometer sub-system, motors
and angular encoders sub-system, position sensitive
diode (PSD) sub-system, and finally the orientation
measurement sub-system. In this section, the un-
certainties within each of these sub-systems as well
as uncertainties contributed by other sources are
described.

4.1. Laser interferometer

The overall accuracy of any laser interferometry
apparatus is affected by a number of different factors
including [7,8]:

• Environmental errors;
• Geometric errors;
• Instrument errors.

4.1.1. Environmental errors
The refractive index of the laser beam is affected

by the deviations in the environmental conditions
such as ambient temperature, air pressure, and
humidity. A variation in the index of refraction
introduces an error in the wavelength and changes
the displacement measured. An error of approximate-
ly one part per million (ppm) occurs in the index of
the laser used due to each of the following en-
vironmental changes [7]:

• 1 °C change in the air temperature
• 2.8 mmHg change in air pressure
• 90% change in the relative humidity

Controlling the climate will minimise the environ-
mental sources of error.

A uniform change in temperature causes expan-
sion or contraction of the interferometer components
and introduce; an error in the displacement mea-
sured. The linear interferometer used within this
LIST apparatus has a temperature coefficient of less
than 0.022 jtm/°C [7].

i K i

PI. Teoh et al. I Measuremeit 32 (2002) 135-150 139

4.1.2. Geometric errors
Misalignment of the optics induces errors such as

cosine error, Abbe offset error and polarisation
mixing error. Cosine error is a measurement error
caused by an angular misalignment between the laser
beam and -he axis of motion of the displacement
being measured. Cosine error degrades the signal
received by the receiver and more importantly,
reduces the accuracy of measurement because of not
measuring the actual target displacement.

Abbe offset is a result of an offset between the
measurement laser beam and the axis of motion of
the target Positioning the beam as close as possible
to the axis of motion will reduce the Abbe offset.

Polarisation mixing error is due to the misalign-
ment of the laser head relative to the interferometer
and the imperfections in the polarisation beamsplit-
ter. This produces a leakage of undesired polarisation
state into the two polarised frequencies. Polarisation
mixing will introduce distortion in the interference
signal which will produce a non-linearity between
the measured displacement and the actual displace-
ment and thus affect accuracy of measurement. Fig.
2 shows a properly aligned polarising system. The
transmitted and reflected beams each contain only
one frequency, F2 and Flt respectively. For the
polarisation mixing as shown in Fig. 3, the trans-
mitted and reflected beams contain not only the
frequency F2 and F, , respectively, but also a small
poison of the each other's beam frequency. Polarisa-
tion mixing error is cyclic with a period of 360°
occurring approximately every 158 nm (a quarter of
the wavelength) of displacement for a double pass

B«in> SpMtf' In
InUrttwiuttr

Later Hum

l«wr Boam

Seam Selitur in

>

I F l

F2

, ;>

Fig. 2. Proper polarisation alignment.

Fig. 3. Polarisation mixing.

interferometer [7]. This cyclic error is non-cumula-
tive.

4.1.3. Instrument errors
The laser interferometer used has a maximum

electronic error of 1.3 counts. The contribution of
this error to the uncertainty analysis is a product of
the electronic accuracy and the optical resolution of
the interferometer used. In this case, the uncertainty
is 3.25 nm [7].

Due to the imperfections of the optical com-
ponents and their coatings, there will again be a
leakage of undesired polarisation state. This will
cause polarisation mixing error of the beams within
the interferometer. For a linear interferometer, this
error is ±0.8 nm [7].

4.2. Motors and angular encoders

This sub-system consists of two stepper motors,
two optical encoders and a motion controller card.
The stepper motors provide the horizontal and
vertical rotations of the beam steering mechanism,
allowing the laser beam to be directed towards the
centre of the retroreflcctor in order to minimise the
tracking error determined by the PSD.

The vertical axis has an increment of 0.02°, using
a stepper motor rate of 400 steps per revolution LUid a
precision rotary table with a 45:1 gear ratio. The
horizontal axis is direct driv-3 and it has an increment
of 0.007° using a step rate of 51 200 steps per
revolution. For the vertical axis, a 500-line encoder
with a maximum resolution of 0.72° is used. The

I I

f: •

140 P±. Teoh et al. I Measurement 32 (2002) 135-150

encoder used for the horizontal axis is a 1000-line
encoder with a maximum resolution of 0.36°.

Possible sources of errors are backlash due to
gearing, heat generated, friction between the moving
parts, shaft alignment between the stepper motors
and the encoders, ths weight of the mirrors causing
bending and tumbling of motors [9].

4.3. Position sensitive diode (PSD)

The PSD used is of lateral effect detector type. It
has four electrodes connected equidistant around its
perimeter. The electrode" yield photo-currents corre-
sponding to the displacement of the beam from the
centre of the PSD [10]. Photo-currents from opposite
pairs are converted to voltages and are processed to
give the displacement of the beam in the X and Y
directions from the centre of the PSD. Fig. 4 shows
the schematic diagram of this detector type. Voltages
sampled from each electrode are labelled K, through
VA as shown in the diagram.

The photo-currents are converted to voltages and
sampled by the LIST controller. Calibration had been
carried out to obtain a relationship between the
voltage difference of the opposite electrode pair and
the displacement of the laser beam from the centre of
the PSD. The experiment was conducted by mount-
ing the PSD onto a rotational stage and then onto a

Electrode

v3
Lateral Effect

Sensor Detector
Surface

Fig. 4. Dual axis lateral effect detector.

three-axis translational stage. The rotational stage is
to ensure the elimination of cosine error. Fig. 5
shows an example of the calibration graph.

As Jhe beam is displaced from the centre of the
PSD, the voltage difference between opposite elec-
trode pairs V2 — V4 and/or Vx — Vi increases. When the
beam is at the centre, the voltage difference between
those electrode pairs is the same, thus giving zero
displacement (i.e. zero tracking error). The PSD has
a sampling rate of 2 kHz and a range of ±6 mm in
both X and Y directions. This range is determined
from the maximum allowable range between the
laser beam and the centre of PSD before the change
in voltage difference becomes non-linear or negli-
gible.

The main sources of error include the resolution of
the PSD and the calibration technique used. The
maximum error is 16.6 u,m that is calculated from
the deviation of the calibrated results from the
known reference.

4.4. Orientation measurement

There are two different approaches to orientation
measurement in the LIST technique. These are the
CCD camera-based approach and the dual PSD-
based approach. Sources of errors for both ap-
proaches are described below.

4.4.1. CCD camera-based approach
As mentioned in the previous section, part of the

measurement beam reflected from the retroreflector
is directed to the CCD camera. The camera cap'nres
the image of the diffraction pattern of tb_ i tfrornx!yc-
tor and a high-acquisition-rate frame rabber ac-
quires this signal to perform image digitisation. Fig.
6 shows the image of the diffraction captured and
displayed on a computer screen. It consists of a
white circle on a dark background, with three dark
lines intersecting each other. The intersection point is
the centre point of the retroreflector and the dark
lines are caused by the edges of the three mirrors on
the retroreflector. The image can be simplified as
shown in Fig. 7. The vectors Vi (i = 1, 2, 3) are the
projected edge vectors of the diffraction pattern. The
process of blob analysis is performed on the digitised
image before the vector detection process described
in Ref. [11] can be carried out using the appropriate

!;. i

• t

P±. Teoh et al. I Measurement 32 (2002) 135-150

Displacement of beam from centre of PSD in x direction vs
voltage difference

141

Voltage difference (V)
Fig. 5. Calibration graph for PSD.

Fig. 6. Diffraction pattern of the reflected beam from the re-
tro.eflector.

algorithm. Using the algorithm, the angle between
the head of the vectors and the x-axis can thus be
determined.

When the angles a, /?, y, and 5 as shown in Fig. 7
have been established, the orientation (roll tj>, pitch 8

and yaw <p) of the retroreflector relative to the laser
beam can be determined using the following equa-
tions [1,12]:

0 = — arcsin
3 tan a tan 7

- 1
6 tan(a + y) tan a y 6 tan y tan(a + y)

- 1

(4)

— 2 cos(y + a)
3 sin a sin y

cos y

-y)
cos a

6 sin y sin(a + y), (5)

cp = arcsin I -
1 - 1

\ cos 6 V 2 tan(a + y) tan a

-L.W
cos0y 2tany tan(or + y)

(6)

It must be emphasised that these angles are relative
to home (i.e. zero) orientation. Possible sources of

142 P±. Teoh et al. I Measurement 32 (2002) 135-150

= angle between V1 and V2
= angle between V2 and V3
= angle between V1 and V3

5 = angle between V1 and the
dotted horizontal line

X-Axis
Fig. 7. Projected edge vectors of the diffraction pattern.

errors are the orthogonality of the CCD camera to
the laser beam, and the capability of the application
software in detecting the vector lines and determin-
ing the angles.

4.4.2. Dual PSD-based approach
Another approach to orientation measurement in

LIST is the dual PSD-based orientation measurement
[11,13]. This approach utilises two position sensitive
diodes (PSDs), a beamsplitter, and a retroreflector
mounted on a specially designed Gimbal unit as
shown in Fig. 8. In the CCD camera-based approach,
the laser beam is pointed directly at the retroreflector
mounted on the robot end-effector. However, in this
case, the laser beam is directed by the beam steering

Rcttorcflcctof

mechanism at a 70-30 beamsplitter mounted on the
Gimbal unit. This beam is then split into two beams;
30% of the beam power is incident on the first PSD
and the remaining part is directed towards the
retroreflector. The reflected beam travels back to the
beamsplitter, parallel to the incident beam. At the
beamsplitter, 30% of the laser beam power is again
directed to the second PSD and the remaining laser
beam returns to the beam steering mechanism.

A flowchart for the dual PSD-based orientation
measurement algorithm is provided in Fig. 9. From
the flowchart, it can be observed that the orientation
of the retroreflector is determined from the measure-
ments obtained along the x and y axes on the PSDs.
The governing equations to determine the orientation
of the retroreflector (co-ordinate system CR) relative
to the laser beam (co-ordinate system CL) are thus as
follows:

(7)

where Rotz(fix), Roty(62), and Rotx^) are rotational
matrices [14], about axis z, y, and * with angles #,,
92, and 63, respectively.

Fig. 10 shows a top view of the optical com-
ponents mounted on the gimbal unit. From Fig. 10, it
can be seen from the properties of a triangle that:

BwmSpltaer

Fig. 8. Gimbal unit assembly.
= arctan (8)

£i

PL. Teoh et al. I Measurement 32 (2002) 135-ISO 143

r BEGIN

Sample voltages from
PSD 2 and PSD 3 at

£
PSD 2 (lettt

Determine offset D2l and D2z

from the centre of PSD2
using calibration graph

PSD 3 (right)
Determine offset Da and D3 l

from the centre of PSD3
using calibration graph

Determine the orientation- roll
if, pitch e, and yaw <p, using D2l,

D2 2 ,D3 landD3 l

—No

Fig. 9. Flowchart for non-vision-based orientation measurement

With similar method in evaluating &2,

(D2z
(9)

where /, is the distance between the centres of the
beamsplitter and the retroreflector. l2 and 13 are the
distances between the centre of the beamsplitter and
PSD2 and PSD3, respectively. D2x and Dix are the
detection positions of the laser beam on PSD2 and
PSD3 along the x-axis, respectively. D2z and Dit are
the detection positions of the laser beam on PSD2
and PSD3 along the z-axis, respectively.

63 can be calculated from the point of intersection
between the laser beam and the yz plane of co-
ordinate system CB, which is a stationary base of the
gimbal unit in Fig. 8. The main source of error is the
error inherent in the PSD. Another source of error

tan0, =j

Fig. 10. Top view of Gimbal unit

might be the errors due to the manufacturing of the
gimbal unit.

4.5. Reflecting target

The reflecting target is the most commonly used
air-path type retroreflector. Fig. 11 shows a diagram
of this retroreflector. It is made up of three mirrors
with high reflective indices assercbled in such a way
that they are orthogonal to each other. The intersec-
tion point of the three mirrors will be the centre of
the retroreflector. An iderl retroreflector has the
properties to ensure that t light beam incident onto
any point on the retroreflector, regardless of its
orientation, is reflected through 180° and the re-
flected beam travels back parallel to the incident
beam. The centre of the retroreflector is always
exactly, centred between the inciden* and the re-
flected beams.

Possible errors in a retroreflector are associated
with the construction of the retroreflector. The
mirrors are joined together usually with adhesive.
There could be a position error in joining the
mirrors, and the three mirrors used might not inter-

144 P±. Teoh et al. I Measurement 32 (2002) 135-150

Rctrorcflcctor

Fig. 11. Air-path type retrorcflector.

sect each other at a single point. This causes an
offset error so that the centre of the retroreflector is
not exactly centred between the incident and the
reflected beams. This contributes to the uncertainty
of the x, y measurement in LIST, as the offset
recorded by the PSD is not the real offset due to this
error. Further, there may exist an error associated
with the orthogonality of the mirrors. Therefore, the
beam may not be reflected through an angle of 180°,
rather with a slight angular deviation. The angular
deviation is specified as 5 arc seconds in this case as
stated in Ref. [10]. Therefore, the reflected beam
may not be parallel to the incident beam and there
could be a slight change in displacement of the
beam. Fig. 12 shows the error due to the imperfec-
tion in the construction of the retroreflector.

4.6. Measurement platform geometry and
environmental effect

All the sub-systems including the laser inter-
ferometer and the other optics are located on an
optical breadboard with M6 holes on 25-mm centres.
The flatness of the breadboard will affect the accura-
cy of the LIST by contributing to the cosine error.
Furthermore, the error between the mounting holes
contributes further to the uncertainty of the results.
The assembly of the beam steering mechanism also

Rotroreilector

Incident Beam

Reflected Beam
deviated by 0

Fig. 12. Angular deviation of beam caused by retrorcflector.

affects the accuracy due to the imperfection in the
construction process. Environmental conditions may
also affect the properties of materials used in the
beam steering mechanism.

5. Estimation of uncertainties

The uncertainties in position measurement and
orientation measurement can be estimated, provided
that these measurements are independent.

5. /. Uncertainties in position measurement

The errors of the sub-systems contributing to the
uncertainty of the measurement obtained using the
LIST technique can be further divided into geometric
and non-geometric errors. Geometric errors include
mirror-positioning error, motor offset, retroreflector
deviation, laser interferometer error, and PSD error.
These errors can be compensated through calibration.
Non-geometric errors comprise tumbling motion,
motor backlash, sensitivity of the material to tem-
perature, encoder coupling and noise. These errors
are random, and thus cannot be determined.

Geometric errors can be modelled into a kinematic
model for the LIST technique. The kinematic model

I
\f

i1^

PX. Teoh et al. I Measurement 32 (2002) 135-150 145

provides a mathematical description of the path of
the laser beam to the retroreflector on the robot
end-effector and makes use of the coordinate systems
(CS) shown in Fig. 13. To account for the geometric
errors, every transformation parameter p in the
kinematic model of the LIST technique consists of
the ideal value given in the design specifications plus
an error value, which represents the geometric error
associated with that parameter. This gives:

, = [2Transl(x2,y2^2)][lnRctx(q,))

P = P (10)

By using techniques described in Ref. [1], a co-
ordinate frame is placed on each of the three mirrors
with the xy-plane describing the mirror surface and
the z-axis directed to the blind side of the mirror.
This gives the description of the mirrors relative to
the reference co-ordinate frame as follows:

Mx =

M2 =

(11)

02)

Retroreflector on robot
end-effector

Minor 2

Beam steering
mechanism User Head

Fig. 13. Kinematic model for LIST.

J (13)

where Rx.y.x- is the rotation with respect to the
translated frame to place the jcy-plane on the mirror-
ing surface and the z-axis towards the blind side of
the mirror, Rotx(qx) and Roty{q2) are rotations due
to the vertical and horizontal motors and

Amin - (14)

which represents the error associated with the posi-
tioning of the mirrors. It is assumed that on a
perfectly plane mirror surface, the rotation about the
z-axis and translation along the xy-plane will not
alter the reflected beam.

Another co-ordinate frame is placed on the source
of the laser beam with the z-axis aligned with the
beam. This frame is translated to each mirror in turn
and reflected according to the physical positions of
each mirror described by the co-ordinate frame Mx,
M2, and M3. If LN denotes the laser frame, the
reflected laser frame LN+l with its origin on the
mirror plane when leaving mirror N + 1 (N=Q, 1,2)
can be described as follows:

c, 180° - 2a)]

= 0,1,2) (15)

where Lo — Transl(xL0, yL0, zL0) with respect to the
reference co-ordinate frame, k is the axis about
which the rotation is made and can be derived from
the vector product of the z-axis of the laser frame to
the z-axis of the mirror frame, and a is the angle
between the z-axis of the laser frame and the z-axis
of the mirror frame calculated from the scalar
product of the two axes.

After reflection from the third mirror, the beam is
directed towards the target retroreflector. This is a
simple translation along the beam and can be de-
scribed as follows:

w=\ 'interferometer

~P\i»tr) J

where Xp*n and YP<n is the measurement -scorded
PSDPSD P S D

on the PSD when the beam does not hit the centre of

i
4

II
I

" t l

146 PA. Teoh et al. 1 Measurement 32 (2002) 135-150

the retroreflector, /in,erferon,eter is the beam displace-
ment measured by the laser interferometer and .p,aser

is the length of the laser path from the source to the
third mirror.

The complete model consists of parameters with
corresponding geometric errors. These errors can be
compensated through calibration by comparing the
position found using the model with those obtained
from a known reference. The difference in position
can be related to the system parameters by J, the
Jacobian matrix, which represents a differential
change in position of the modelled transformation
WLR with respect to differential change in parameter

(17)

where Ar is the differential change in position and
orientation between the measured and the calculated
value using the modelled transformation WXR, and Ap
is the differential change in parameters p.

From Eq. (17), the generalised inverse of J can be
found and by using the linear least squares method,
and thus Ap can be found by the following formula-
tion [1,151:

= J+ Ax (18)

where / + is the generalised inverse or commonly
known as the Moore-Penrose inverse of the Jacobian
matrix. With Lp determined for every parameter, the
geometric errors can be reduced or eliminated.

With the geometric errors calibrated out, the
uncertainty of the measurements obtained using the
LIST technique can be determined by the following
two approaches.

5.1.1. Uncertainties based on experimentation
The uncertainty in position measurement caused

by the non-geometric errors can be obtained by first
comparing the position measured in n repeated
measurements of the positions of known references
(generally n>100) using the calibrated kinematic
model to the reference values. The difference be-
tween the measured and the reference values is given
by:

8 .. = X , , - X r
position "model reference

where Xmoie} is the positions determined by the

kinematic model, Xnfmnee is the reference positions
and 5position is the differences between the positions
determined by the kinematic model and the reference
positions. From Ref. [6]

= ""2(*n.odel) = "Preference) (20)

where u(XmoM) is the uncertainty of the position
determined by the kinematic model, u(Xte(mnQe) is
the uncertainty of the reference position and
s2(Bp0iition) is called the experimental variance of the
mean.

For a reference with resolution r, the uncertainty
of the reference is given by:

"(Reference) = (21)

To find /(5p o s i t i o n) , the differences <5position obtained
from Eq. (19) are tabulated in a distribution graph.
The variance of the distribution is given by:

1
~ position)2 (22)

where 5k is the individual observation of the differ-
ence and n is the number of individual observations.
s2(Sk) is called the experimental variance of the n
observations and position represents the average of
the n observations and is given by the following
equation:

1 "
p̂osition ~~2J (Pk) (23)

The experimental variance of the mean, s (5position)
is given by:

s v°position/ (24)

The standard uncertainty of position measurement,
M(A'model) is given by the following equation:

KC*»od.l) =

5.1.2. Uncertainties based on model verification
Another approach to uncertainty calculation is

based on assuming that all the geometrical errors are
compensated in the calculations. With this assump-
tion, the position of the retroreflector can be de-
termined by translating the co-ordinate frame of the
laser beam to each mirror in turn and rotating the

PA. Teoh et at. ! Measursment 32 (2002) 135-150 147

frame about a particular axis by appropriate angles.
This is shown in Fig. 14.

With this method, the position of the retroreflector
with respect to the world reference can be written as:

A A
l - r t2'x3 / (26)

where

At - transI(xxo,yYOjzo)

Ax = [transKz0;azl)][Roty(90°)]
A2 = [transl(zi;aZ2)][Rol.K(90o)][Roty(-ql)]
A3 = [transl(z2',aZ3)][Rotx(90°)][Roty(q2))

AR =

aXK and aYR are deviations from the centre of the
retroreflector when the laser beam does not hit the
centre of the retroreflector. Both can be determined
from the error offset detected by the PSD, as follows:

(27)

x»

KclroreflcckK on robot
end-effector

Mirror: 1

Mirror!

Beam steering
mcchtnism UwHad

Fig. 14. Kinematic model of LIST showing path of laser beam.

"PSD
(28)

where XfSD and YPSD are the laser beam offset error
detected by the PSD along the PSD's X ana Y
directions, respectively. aZR is the displacement of
the beam from the third mirror to the retroreflector
and can be calculated from the following equation:

ZR interferometer P\zser (29)

where /inl(.rferome,cl. is the interferometer reading and
;?laser is the path of the laser from the laser head to
the third mirror.

wFrom the AR matrix given by Eq. (26), the JC, y
and z positions of the retroreflector are:

x = - az2 + ax0 (30)

a^R + .sin(^,) sin(?2)aZR

cos(ql)aYR+cos(qi)az3+aY0 (31)

z = - cos(g,) cos(?2)aA.R - cosiqj sin(q2)aZR

+ sw(qx)aYR + sin(9,)az3 + azl + azo (32)

where axo, aY0, az0 are the x, y, and z positions of
the laser head co-ordinate frame with respect to the
reference co-ordinate frame.

By making use of Eq. (2), the variance of the
position of the retroreflector can be calculated by the
following equations:

-x,PSD
COS(qx)

- Cfa«wfer.«.«er ,]V
- | s i n (g 2) J u2(XPSD)

]2«2[cos(92)]2«2(/ i n t e r f e r o m e l e r) (33)

ill

148 PJL. Teoh et al. I Measurement 32 (2002) 135-150

2

r -

rsp .

2

sured values must be compared to a known refer-
ence.

''orientation "measure °ref (37)

nterferometer

) J u'

where 0meagure is the angle determined by Eqs. (4)-
(6). Orientation ^s m e recorded angular difference, and
9ttt is the reference angle of the known reference.

The uncertainty of the vision-based orientation
measurement, «(0mea,ure) is given by:

«"£:) =

,) s in(? 2)]2u2(/ i n t e r r e r o m e I e r)

cos(«,)

(34)
"(M e) =VWorientation) + (38)

where s\e,>orientation)

T,
*(?i)J

«OS(?I) *«>(?!) - Ch.Ur.'i,.m«er ~ P|U«) 'Mix) COSfa,) J U3(?v

[1
- - c

) is calculated using Eqs. (22)-
(24) by replacing 8k with Gk and 5positionwith
Orientation- M(^ref) i s determined from Eq. (21), by
replacing Jfreference wit' 0ref.

For the dua! PSD-based orientation measurement
approach, the uncertainty can be estimated by the
method described above or it can be calculated using
the methods described in Section 3 on Eqs. (8) and
(9) as follows:

From Eq. (8), assume
(35)

where u(qx) and u(q2) are uncertainties of the nx — tan#, = ^ _ / +j
encoder readings u(X) and u(Y) are uncertain ' 2 3encoder readings, u(XPSD) and u(YPSD) are uncertain-
ties of the error offset measured by the PPD that take
into account the uncertainties caused by the PSD
error and the retroreflector error, and «(^n,erferonieter)
is the uncertainty of the laser interferometer.

The standard uncertainty of x, y , and z measure-
ments can be determined by the square root of Eqs.
(33)-(3S) as follows:

«(0=V?(0 (<=*>. (36)

£ «2(>2)
It must be noted that all the uncertainties of

position determined using this approach are depen-
dent on the instantaneous rotation of the motors and
the displacement of the laser beam.

5.2. Uncertainties in orientation measurement

To determine the uncertainty of the CCD camera-
based orientation measurement approach, the mea-

+

From Eq. (9), assume

n _ t a n g _ Jz2L 3Z
 c o s

2 2 2/ , —12 +13

(39)

I1

PL. Teoh et al. I Measurement 32 (2002) 135-150 149

COS (9,

(4 0)

Tlie uncertainty of the angles can be found from
the arctan of the square root of the variances given
by Eqs. (39) and (40):

««?,) = (/=1,2) (41)

It must be noted that the uncertainty in #,, which
is the rotation of the gimbal about the z-axis in Fig.
8, is dependent only on the geometry of the gimbal
and the PSD measurements. However, the uncertain-
ty in 02, which is the rotation of the gimbal about the
>-axis in Fig. 8, is dependent on 0, as well as the
uncertainty in 0x.

6. Conclusions and future work

In this paper, the sources of errors associated with
the LIST technique have been identified. An ap-
proach to analyse the overall uncertainties of the
measurement made by the LIST technique has also
been presented. It is desirable that measurements
obtained using the LIST technique have a very high
accuracy, at least better than the accuracy of the
dynamic systems to be measured in order to carry
out calibration. This requires that the uncertainty of
the measurements made by the LIST technique due
to geometric and non-geometric or any other errors
to be less than the accuracy desired. This knowledge
of uncertainty and the analysis m :thod allow the
correct selection of individual sub-system devices for

the LIST technique in order to improve or maintain
the required accuracy.

From Eqs. (25) and (38), it can be seen that the
uncervainty in position as well as in orientation
measurements depends on the uncertainty in the
reference used in the calibration of the LIST ap-
paratus. Therefore, it is vital that the reference
position measurement device has a high resolution.
Further, the dependency on 5position and 0orientation,
which represent the difference between tlie measured
and reference value, emphasises the importance of
the repeatability of the measurement made by the
LIST technique. Therefore, the apparatus has to have
an acceptable repeatability that is lower than the
average of 5posi;ion and 0orien,atiOn-

Future work includes the calibration of the LIST
apparatus using a coordinate measuring machine in
order to verify the uncertainties determined from the
analysis presented above.

Acknowledgements

This project is partly funded by Australian Re-
search Council (ARC), and Harold Armstrong Fund.

References

[1] M. Vinczc, J.P. Prenninger, K Gander, A laser tracking
system to measure position and orientation of robot end
effectors under motion, Int J. Robotics Res. 13 (4) (1994)
305-314.

[2] B. Shirinzadeh, P.L. Teoh, C.W. Foong, Y.D. Liu, A strategy
for accurate guidance of a manipulator using laser intcr-
ferorfletry-based sensing technique, Sensor Rev. 19 (4)
(1999) 292-299.

[3] B. Shirinzadeh, Laser interferometry-based tracking for
dynamic measurements, IndL Robot 25 (1) (1998) 35-41.

[4] F. Demarest, High-resolution, high-speed, low data age
uncertainty, heterodyne displacement measuring interferome-
ter electrontcs, Meas. Sci. Technol. 9 (7) (1998) 1024-1030.

[5] B. Shirinzadeh, P.L. Teoh, A study of predictive control for
laser tracking of robots, in: Proceedings of Pacific Confer-
ence on Manufacturing (PCM98), Brisbane, Australia, 1998,
pp. 328-333.

[6] ISO, Guide to Expression of Uncertainty in Measurement,
International Organisation for Standardisation, Switzerland,
1993.

[7] Zygo Corporation, ZMI Optics Guide OMP-0326L, Zygo
Corporation, USA, 2000.

»

150 P±. Teoh et al. I Measurement 32 (2002) 135-150

[8] W. Augustyn, P. Davis, An analysis of polarisation mixing
errors in distance measuring interferometers, J. Vac. Sci.
TechnoL B 8 (6) (1990) 2032-2036.

St9] M. Vincze, J. Prenninger, H. Gander, A model of tumbling to
improve robot accuracy, J. Mech. Machine Theory 30 (6)
(1995) 849-859.

[10] Melles Griot, Melles Griot 1995/96 Catalogue, Melles Griot,
USA, 1996.

[11] B. Shirinzadeh, P.L. Teoh, C.W. Foong, Orientation measure-
ment using vision and non-vision based techniques in laser
tracking system, in: 30th International Symposium on
Robotics, Tokyo, Japan, 1999, pp. 317-324.

[12] J. Prenninger, H. Gander, M. Vincze, Contactless position
and orientation measurement of robot end-effectors, IEEE
Conf. Robotics Autonx 1 (<993) 180-185.

[13] Y. Bao, N. Fiyiwarc, Dynamic measurement orientation by
LTS, La: Proceedings of the Japan/USA Symposium on
Flexible Automation, VoL 1, 1996, pp. 545-548.

[14] J. Craig, Introduction to Robotics, 2nd Edition, Addison-
Wesley, 1991, pp. 391.

[15] A. Ben-Israel, T.N.E. Greville, Generalised Inverses: Theory
and Applications, Wiley-Intersciencc, 1974, pp. 7-3«.

P. L. Teoh, B. Shirinzadeh, G. Alici, "Experimental analysis of laser interferometry-based

sensing and measuring technique for a 3D dynamic positioning system", Proceedings of

Pacific Conference on Manufacturing (PCM2002), Vol. 2, pp. 882-887, November 2002.

I

\ i

Experimental Analysis of Laser Interferometry-based Sensing and
Measuring Technique for a 3D Dynamic Positioning System

P.LTEOH,B.SHIRINZADEHandGiirselALICI
Robotics and Mechatronics Research Laboratory

Department of Mechanical Engineering
Monash University
Clayton, VIC 3800

Australia
Email: bijan.shirinzadeh@eng.monash.edu.au

ABSTRACT

Kinematic model is generally used in the operation of robotic devices such as a robot manipulator
to accurately position the end-effector onto a commanded position. However, the accuracy of this
model is generally low, as it is dependent on the accuracy of the parameters used in the model.
Different methods of calibration have been developed to improve the accuracy of the model. Laser
Interferometry-based Sensing and Measuring (LISM) Technique was originally proposed for this
purpose. In this paper, a closed-loop control of robotic device using LISM technique is presented.
Feedback from the LISM unit is used to provide a position compensation specification to the
robotic device used to ensure high accuracy positioning. Experimental implementation of the
strategy on a 3D positioning system is presented and the results are analysed to examine the
effectiveness of the strategy.

1. INTRODUCTION

In the past two decades, there have been significant increases in the automation of operations
using programmable robotic devices such as robot manipulators in the manufacturing and service
industries. These devices are used to perform high precision and complex operations. The increase
in complexity of these operations has emphasised the need for improved positioning accuracy of
the robotic devices used. This is especially true in high-tech manufacturing industries where higher
accuracy in the manufacturing process will provide a better competitive advantage.

Robotic devices consist of rigid links that are connected to each other with joints (revolute or
prismatic). Actuators are attached to these joints to provide relative motion of neighbouring links
by changing the joint angles for revolute joint and joint offset for prismatic joint. These motions
move the end-effector to a desired location in space. Sensors such as encoders are usually
instrumented to each joint to allow the actual joint motion to be measured [1]. In normal robotic
operation, the end-effector (i.e. the free end) of the robotic device is required to be positioned
accurately at a desired location in space or along a specific path with respect to a reference point in
the work cell. The desired locations in space are usually specified in Cartesian co-ordinates (i.e. x,
y, and z). This leads to the use of kinematic models in the robotic control system to convert the
user-input Cartesian units into a set of joint angles. The kinematic model uses the joint positions
deterrrined from the axes encoders to provide the three dimensional Cartesian co-ordinates of the
manipulator. The accuracy of such a model relies heavily on the accuracy of the parameters used
such as link lengths. The accuracy is also affected by the geometric (e.g. bending) and non-
geometric (e.g. temperature) errors. Further, joint backlash can also play an important role in such
errors. Therefore, it is well known that, in general, the absolute accuracy of today's robots is at
least a magnitude lower than its repeatability [2]. Accurate position measurements and calibration
techniques are often required to improve the accuracy. Laser Interferomeiry-based Sensing and
Measurement (LISM) technique has been proposed for this purpose. This technique can provide

dynamic position measurement in real time and has high accuracy, a large operation range, a high
sampling rate and automatic target tracking [3,4].

However, only some geometric errors can be calibrated, as these are the errors that can be
measured and modeled into the kinematic model. Non-geometric errors such as joint backlash,
tumbling, and effect of environmental conditions on material properties as well as geometric error
such as bending are not known or difficult to model. An external sensing unit with high accuracy
is, therefore, required to provide the end-effector's position data with a closed-loop position control
system in order to improve the positioning accuracy of the robotic devices.

In this paper, a closed-loop control methodology using LISM technique is presented. An
experimental implementation of the strategy on a 3D positioning system is provided and the results
are analysed to examine the effectiveness of the strategy.

2. PRINCIPLE OF LISM TECHNIQUE

LISM technique generally involves the dynamic acquisition of the three dimensional position of
an end-effector in its workspace relative to a world reference [3, 4, 5, 6, 7]. The LISM technique
uses the angular and beam displacement data, obtained from the beam steering mechanism and the
interferometer, respectively, to provide the position of the target retroreflector attached to the end-
effector of the manipulator, It maintains tracking of the target by sensing the offset of the incident
and reflected beam. The tracking is carried out by adjusting the angles of a beam steering
mechanism. The LISM apparatus used in this study is a Leica LT500 Laser Tracker. A functional
layout of the tracker is provided in Figure 1.

In this layout, the laser beam (heterodyne type) generated by the HeNe laser head is split into a
reference beam and a measurement beam. The reference beam is directed to the measurement board
in the laser interferometer controller via the receiver. This beam will later be compared with the
returning measurement beam, whose frequency will be Doppler-shifted, to determine the distance
between the target (i.e.. a retroreflector mounted on the robot end-effector) and the laser head. The
measurement beam emitted from the interferometer travels through a main beam splitter before
entering the two-axes beam steering mechanism. The beam steering mechanism consists of a
rotating mirror, which is driven by two motors — one rotate about the vertical axis and the other
about the horizontal y/As. Encoders are attached to the motors to provide the angular displacement
of the motors. The beam is directed to the target retroreflector by rotating the appropriate motors.
Once the beam hits the target retroreflector, the beam is reflected through 180° and it travels back
parallel with the incident beam. There will exist an offset between the incident and the reflected
measurement beam if the beam does not hit the centre of the retroreflector.

The reflected beam then travels through the mirrors and back to the main beam splitter. Part of
the beam power is diverted to a two-axes photosensor (PSD). The reflected beam position from the
centre of the PSD is acquired and the offset, referred to as the tracking error, is recorded. The
remaining portion of the beam power will be combined with the reference beam in the
interferometer and the displacement of the beam can be determined. The Leica control system
minimises the tracking error by rotating the mirror by corrective angles calculated using the
tracking error and the beam displacement, thus following the arbitrary movements of the target.
Measurement of the position of the target in 3D space is obtained from the interferometer
measurement, tracking errors, angular displacements of the two motors, and the kinematics of the
LISM apparatus. The tracker is capable of position measurement of target moving up to 6m/s at an
accuracy of ±10|im/m in real time [8].

Moving
Retroreflector

1 Beam Splitter
2 Minor

y^ Measurement Beam

Reference Beam

INTERFEROMETER

Main Beam
Splitter

Rotating
Mirror

Figure 1: Functional layout of Leica LT500 Laser Tracker

3. CLOSED-LOOP CONTROL OF ROBOTIC DEVICES

3.1 Principle
The closed-loop control proposed is a control methodology where the LISM apparatus is used as

a position sensor to measure the Cartesian-based position of the end-effector in real time. The LISM
apparatus will maintain tracking of the robot end-effector until it reaches the final position or via
points along a path. There may be discrepancy between this final position commanded by the robot
controller and the desired position. Moreover, there may be vibration along the path of motion,
which deviates the position of the end-effector from the via points. The LISM apparatus is
implemented as a processing unit to determine the offset error and a signal will be sent to the robot
controller to move the robot by the calculated amount. This can ensure that the position of the end-
effector is within a certain error-limit and thus can improve the positioning accuracy of the robotic
device. A flowchart of the control algorithm is provided in Figure 2.

3.2 Control Algorithm
In this methodology, the robotic device will first be commanded to the home position. The

current robot position measured by the LISM control unit will be initialised to be the zero reference.
The LISM control unit will then be provided the desired position PD for the manipulator. The
current position Pc of the robot manipulator will be compared with the desired position to determine
the absolute offset error |(PD-PC)|. When the offset error is more than a predefined error-limit, the
LISM control unit will send the offset error to the robot controller. The robot controller will
calculate the necessary control signals for the actuators in order to position the end-effector to the
desired location. When the robot has moved, the LISM control unit will maintain tracking of the
robot end-effector. The current position Pc is updated through the measurements made by the LISM
apparatus and the process is repeated until user intervention

Another feature of the control algorithm is to check the motion status of the robotic device
continuously. This is called the motion status detection processes. A shown in Figure 2, there are
two status that this process is monitoring. There are whether the robot has stopped or whether a via
point has been reached. In both cases, an interruption signal wili be sent to the LISM control unit to
update the current position Pc- If the robot has stopped, the offset error represents the discrepancy
between the robot final position PFP and the desired position PD. This offset error will be sent to the
robot controller for position correction if it is greater than a predefined error-limit. This is repeated
until the robot stops at the position where the offset error is less than the predefined error-limit. This

follows that any steady-state error in the end-effector for position is eliminated. If a via point has
been reached, the offset error will then represent the discrepancy between the via points' position
Pvp and the robot current position Pc. If this error is greater than a predefined error-limit, this offset
error will be sent to the robot controller and correction is made while the robot is moving to the next
via point. This is to minimize deviation of the end-efifector from the desired path due to vibration or
bending of the link.

The tracking process will maintain tracking of the robot manipulator even when the robot has
stop at position within the predefined error-limit. This is to account for subsequent environmental
effect on the robot that will move the end-effector away from the desired position.

!1
,i

I

Robot Motion Status
Detection Process

Main Robot Position
Measurement Process

Interrupt request
generation to

up*j'.a current

NO

Generate robot
motion request to
correct offset error

Initialise current
position P c to zero

Send Pd to robot control
unit and generate robot

motion request

Start motion status
detrction process

jfc
Track robot

Update current
position P c

i r I

Figure 2: Flowchart of closed-loop control algorithm using LISM technique

Co-ordinate
Frame L

ZL

Co-ordinate XR

Frame R

Co-ordinate
Frame PT

Leica LT500 Laser Tracker
3 axes Positioning Table

Figure 3: Experimental setup showing the co-ordinate frames

4. EXPERIMENTAL SETUP AND RESULTS

Experiments have been performed to determine the capability of the control algorithm for
closed-loop control of robotic devices. The experimental set-up, shown in Figure 3, consists of the
mentioned Leica LT500 Laser Tracker and a 3D positioning table that resembles a gantry robot
manipulator. Position data in spherical co-ordinates can be sampled into the control program via
the parallel interface provided by the Leica controller at a maximum sampling rate of 1000 Hz. The
positioning table consists of 3 leadscrew-driven axes driven by servo motors. The resolution of
each axis is 0.125 um.

4,1 Experimental Results

Position Y of Mroraftetor wrt cootfnsta m m PT vs Tlmt

Tiim(lnsacond)

Petition X of Mronfltcter vtr.t CCHXAKH fnura PT vi TVn»

X

I-

Tbm(inMcond)

(A) (B)
Figure 4: Retroreflector position with respect to co-ordinate frame PT without closed-loop control

Position Y of Rttrortfiactor w.r.t co-ordlnit* frame PT vs Tlnw

s i " : i t s

Time (hi second)

Position X of Ratioraflcctor wj'.t co-ordlnat* (run* PT vs Tim*

s

Tlm» (in second)

(A) (B)
Figure 5: Retroreflector position with respect to co-ordinate frame PT with closed-loop control

During the experiment, a co-ordinate frame PT is first setup on the positioning table as shown in
Figure 3 so that subsequent movement of the end-effector is recorded with respect to the origin of
and the motion is parallel to the principle axes of this co-ordinate frame. The end-effector is
commanded to move only along the x- or y-axis separately and the Cartesian co-ordinates of the
end-effector are recorded. Two different sets of results are recorded for motion along each axis, one
with the application of the tracker closed-loop control and the other without. Figure 4 and 5 show
the results of the motion.

From Figure 4A and 4B, it can be observed that the normal motion of the end-effector along the
x-axis produces a considerable amount of fluctuation in the y co-ordinates. This is due to the
vibration of the end-effector while in motion. The mean of the fluctuation is increasing with time
which represents a deviation of the end-effector away from the desired path. The increase in the
mean value are due to twisting and bending of the moving link under the load of the end-effector
and this introduced a final steady state error of Ax = 0.01mm and Ay = 0.10mm. With the
implementation of closed-loop control algorithm, it can be seen from Figure 5A and 5B that the

steady state error along the y-axis has been reduced to 0.01mm while Ax remain unchanged as it is
ah-eady at the maximum accuracy that can be sampled by the Leica Tracker. The mean value of the
fluctuation can be observed to be close to zero, which shows that the path end-effector is within a
limit of ±0.15mm off the desired path. The small fluctuations at the beginning of the motion and at
steady state are due to the noise in the environment.

5. CONCLUSION AND FUTURE WORK

From the experimental results, it can be concluded that the closed-loop control algorithm using
LISM technique can improve positioning accuracy of a robotic device. This is accomplished by
compensating the position offset error caused by the deviation of the end-effector from the desired
path mainly due to vibration and bending. The final stead}' state error is close to the predefined error
limit that is the maximum accuracy that can be measured by the Leica Tracker.

Future work includes the experimentation involving the third axis. Experiments will also be
conducted based on the via points approach with all three axes running at the same time. Moreover,
the algorithm will be tested on more complex manipulator such a* the long-reach manipulator,
which generally has significant amount of bending and vibration due to long link length.

ACKNOWLEDGEMENT

This project is partly funded by Australian Research Council (ARC) and Harold Armstrong
Fund.

REFERENCES

[1] John J. Craig, Introduction to Robotics 2nd edition, Addison Wesley, pp. 391.1991
[2] B. Shirinzadeh, P. L. Teoh, C. W. Foong, Y. D. Liu, "A strategy for accurate guidance of a

manipulator using laser interferometry-based sensing technique", Sensor Review, Vol. 19, No.
4, pp. 292-299, 1999.

[3] M. Vincze, J.P. Prenninger, H. Gander, "A laser tracking system to measure position and
orientation of robot end effectors under motion", The International Journal of Robotics
Research 13(4), pp. 305-314.1994.

[4] B. Shirinzadeh, "Laser interferometry-based tracking for dynamic measurements", Industrial
Robot, Vol. 25. No. 1, pp. 35-41,1998.

[5] B. Shirinzadeh, P. L. TEOH, "A study of predictive control for laser tracking of robots",
Proceedings of Pacific Conference on Manufacturing (PCM98), Brisbane, Australia, pp. 328-
333, August 1998.

[6] J.P. Prenninger, H. Gander, M. Vincze, "Contactless position and orientation measurement of
robot end-effectors." IEEE Conference on Robotics and Automation. Vol. 1 pp. 180-185, 1993.

[7] P. L. Teoh, B. Shirinzadeh, C. W. Foong, G, Alici, "The measurement.uncertainties in laser
interferometry-based sensing and tracking technique", Journal of Measurement, in press.

[8] Leica Geosystems AG, Leica Laser tracker system, Leica Geosystems AG Switzerland,
1999.

P. L. Teoh, B. Shirinzadeh, "3D external ground truth feedback sensing for robot

manipulators using laser interferometer-based sensing and measurement technique",

Proceedings of the 8th IEEE Conference on Mechatronics and Machine Vision in Practice

(M2VIP), Hong Kong, pp. 261-265, August 2001.

8th IEEE Conference on Mechairinlcs and Machine Vision in Practice
Hong Kong 2001

3D External Ground Truth Feedback Sensing
for Robot Manipulators using Laser

Interferometer-based Sensing and Measurement
Technique

P. L. Teoh and B. Shirinzadeh
Department of Mechanical Engineering

Monash University
Clayton, VIC 3800

Australia
TEL: 613 9905 3510

k -nail: pek.teoh@eng.monash.edu.au or bijan.shirinzadeh@eng.monash.edu.au

Abstract— Ro^* < nipulators have been used in many
manufacturing industries. In many cases, the use of
manipulator involves the interaction between the robot's
end-effector and the objects in the physical environment.
Due to an increase in complexity and higher quality
requirements in production operations, a more accurate
positioning of robot's end-effector along a desired path is
required. However, due to the geometric and non-
geometric errors associated with the robot position and
orientation (pose) control, the repeatability of today's
industrial robots is at least an order of magnitude better
than their absolute accuracy. Laser Interfcrometry-based
Sensing and Measurement (LISM) technique has been
proposed to track and perform position measurements of
dynamic systems such as robot manipulators. These
measurements can be used to perform accurate
calibration and to develop performance measures. The
technique can provide dynamic robot position
measurements in real time, has high accuracy, a large
working space, a high sampling rate and automatic target
tracking. LISM technique can be further modified to
provide a closed-loop control of the robot manipulator to
improve accuracy. In this paper, an external ground truth
feedback sensing control methodology using the LISM
technique will be presented. . This is a control strategy
where an external position-sensing unit is used to perform
dynamic measurements of the robot manipulator during
robot manipulation to perform compensation or error
adjustment on-line. The physical make-up, measurement
and analysis techniques, together with the control
algorithm for the above control methodology will be
described.

Keywords— Laser Interferomefty-based Sensing and
Measurement technique (LISM), external ground truth
feedback sensing, closed loop control, cartesian-bised
position measiiremen, position sensing unit

I. INTRODUCTION

Manipulators consist of rigid links that are connected
to each othei with joints (revolute or prismatic).
Actuators are attached to these joints to provide
relative ro vtion of neighbouring links by changing the

joint fir.'gles for revolute joint and joint offset for
prismatic joint. These motions move the end-effector,
which is the free end of the manipulator, to a desired
location in space. Sensors such as encoders are usually
instrumented to each joint to allow the actual joint
motion to be measured [I]. However, in normal robotic
operation, the desired locations in space are usually
specified in Cartesian co-ordinates (i.e. x, y, and z).
This leads to the use of kinematic models in the robotic
control system to convert the user-input Cartesian units
into a set of joint angles. The kinematic model uses the
joint positions determined from the axes encoders to
provide the three dimensional Cartesian co-ordinates of
the manipulator. The accuracy of such a model relies
heavily on the accuracy of the parameters used such as
link lengths. The accuracy is also affected by the
geometric (e.g. bending) and non-geometric (e.g.
temperature) errors. Further, joint backlash can also
play an important role in such errors. Therefore, it is
well known that, in general, the absolute accuracy of
today's robots is at least a magnitude lower than its
repeatability [2]. Accurate robot position
measurements and calibration techniques are often
required to improve the robot accuracy.

Laser Interferometry-based Sensing and Measurement
(LISM) technique has been proposed for this purpose.
This technique can provide dynamic robot position
measurement in real time and has high accuracy, a
large working space, a high sampling rate and
automatic target tracking [3,4]. However, only
geometric errors can be calibrated, as these are the
known error that can be modeled into the kinematic
model. Non-geometric errors such as joint backlash,
tumbling, and effect of environmental conditions on
material properties and laser are net known or difficult
to model. High accuracy external sensing unit is
required to provide a closed-loop control. LISM
^•hnique can be modified to provide a closed-loop
control of the robot manipulator to improve accuracy

ISBN 962-442491-9 © M2V1P 2001 261

8th IEEE Conference on Mechatrintes and Machine Vision in Practice
Hong Kong 2001

Scorbot ER VI
5-cixls robot
manipulator

Motor

Stepper
Motor I
with Encoder

Laser
Enterferarae

orrtraUer

PSD
Signal

Diffraction
Pcrttern

Figure I: Functional layout of LISM Technique

[2, 5]. This is a control methodology where an external
position-sensing unit is used to perform dynamic
measurements of the robot manipulator during robot
manipulation. Feedback from the measuring unit will
provide true Cartesian-based position measurement for
robot control. When there is a discrepancy between the
desired and the actual position detected by the LISM
apparatus, a signal will be sent to the robot controller to
move the robot manipulator by the calculated amount.
This will ensure high accuracy robot positioning in
complex manipulator operation.

In this paper, an external ground truth feedback sensing
control methodology using LISM technique; will be
proposed. This approach will provide accurate control
of the robotic devices without modification to the
mechanical unit or its con'ro) architecture.

II. LASER INTERFEROMETRY-BASED SENSING
AND MEASUREMENT PRINCIPLE

Laser Interferometry-based Sensing and Measurement
(LISM) technique generally involves the dynamic
acquisition of the three dimensional position of an end-
effector in its workspace [1,4, 6]. It can also be used to
measure the orientation of robot end-effector [7, 8, 9,
10]. The LISM technique uses the angular and distance

data, obtained from the beam steering mechanism and
the interferometer, respectively, to provide the position
of the target retroreflector attached to the end-effector
of the manipulator. It maintains tracking of the target
by sensing the offset of the incident and reflected
beam. The tracking is carried out by adjusting the
angles of a beam steering mechanism. A LISM
apparatus was developed for this study. A functional
layout of the overall design of the LISM apparatus is
provided in Figure 1.

In this layout, the laser beam generated by the HeNe
laser head travels to the interferometer where it is split
into a reference beam and a measurement beam. The
reference beam is directed to the measurement board in
the laser interferometer controller via the fibre optic
pickup. This beam will later be compared with the
returning measurement beam, whose frequency will be
Doppler-shifted, to determine the distance between the
target (i.e. a retroreflector mounted on the robot end-
effector) and the laser head. The measurement beam
travels through a 7C-30 percent beam splitter before
entering the two-axis beam steering mechanism. The
beam steering mechanism consists of three 45° beam-
steer mirrors, with one being stationary and the other
two driven by two stepper motors - ane rotate about
the vertical axis and the other about the horizontal axis.

ISBN 962442-191-9 © M2YI? 2001 262

8th !KeE Conference on Mechatrinics and Machlnu Vision in Practice
Hong Kong 2001

Two high-resolution optical encoders are attached to
the stepper motors to provide the angular displacement
of the stepper motors and thus the rotational angles of
the beam-steer mirrors. The beam is directed to the
target retroreflector by rotating the stepper motors
attached to the appropriate beam-steer mirrors. Once
the beam hits the target retroreflector, the beam is
reflected through 180° and it travels back parallel with
the incident beam. There will exist an offset between
the incjdeut and the reflected measurement beam if the
beam does not hit the centre of the retroreflector.

The reflected beam then travels through the beam-steer
mirrors in the beam steering mechanism and back to
the 70-30 percent beam splitter. 30 percent of the beam
power is diverted through a 50-50 percent beam
splitter, where it is split equally and directed to a
Charged Coupled Device (CCD) camera and a Position
Sensitive Diode (PSD). The CCD camera, which is
connected to a high-data-acquisition-rate frame grabber
board, captures the- diffraction pattern of the
retroreflector, so that analysis can be performed to
determine the orientation of the target retroreflector.
The PSD is attached to a data acquisition card and it
detects the offset of the beam from the centre of the
PSD sensor. The reflected beam position from the
centre of the PSD will be acquired by the card and the
offset, referred to as the tracking error will be stored in
the LISM control unit. The remaining 70 percent of the
beam power will be combined with the reference beam
via the interferometer and the fibre optic pickup. Thfc
Doppler shift of the reflected beam can be detected and
used by the processing electronics within the laser
interferometer controller to determine the displacement
of the beam and the velocity.

The LISM control system minimises the tracking error
obtained from the PSD acquisition system by signaling
the motor controller which in tum rotates the axes of
the beam steering mechanism by a corrective angles
calculated using the tracking error, thus following the
arbitrary movements of the target. Measurement of the
position of the target in space is obtained from the
interferometer measurement, tracking errors, angular
displacements of the axes of the beam steering
mechanism, and the kinematics of the LISM apparatus.
The tracking algorithm utilises a predictive control
algorithm that allows estimation of future position of
the target from the previous position, velocity and
acceleration values [6].

III. EXTERNAL GROUND TRUTH FEEDBACK
SENSING

External ground truth feedback sensing is proposed to
ensure high accuracy robot positioning. It is a control
methodology where t ie LISM apparatus is used as a
position sensor to measure the position of the end-
effector in real time. The LISM apparatus will maintain
tracking of the robot end-effector until it reaches the

final position calculated by the robot controller.
However, there may be discrepancy between this final
position commanded by the robot controller and the
desired position. The LISM apparatus will then acts as
a processing unit to determine the offset error and a
signal will be sent to the robot controller to move the
robot by the calculated amount. This will improve the
positioning accuracy of a robot manipulator. A flow
chart of the control algorithm is provided in Figure 2.

A. Control Algorithm

In this methodology, the robot manipulator will first b?
commanded to the home position. The laser will be
pointed to the center of the retroreflector attached to
the end-effector of the manipulator by manually
rotating the motors on the beam steering mechanism.
When the laser is in position, the current robot position
measured by the LISM control unit will be initialised to
be tht zero reference. The LISM control unit will then
be provided the desired position PD for the
manipulator. The current position Pc of the robot
manipulator will be compared with the desired position
to determine the offset error (PD-PC)- When the offset
error is more than a predefined error-limil, the LISM
control unit will send the offset error to the robot
controller. The robot controller will calculate the
required rotations of each actuator. Motion of these
motors will be initiated to position the end-effector to
the desired location.

When the robot has moved, there will be tracking error
in the reflected beam from the centre of the
retroreflector. This tracking error will be detected by
the PSD acquisition sub-system. The LISM control unit
will maintain tracking of the robot end-effector by
rotating the beam steering mechanism to correct the
tracking error. The current position is also updated
through the measurements from the PSD acquisition
sub-system, angular displacements of the axes of the
beam steering mechanism, the interferometer
measurements and the kinematics of LISM. A new
offset error is calculated from the updated P c and the
process is repeated until user intervention or interrupts
from the two other concurrent processes that will be
described in the following paragraphs.

Two other processes are running concurrently during
the tracking of the robot manipulator. There are the
motion detection and motion direction detection
processes. In the motion detection process, the LISM
controller will conti auously check for the motion status
of the robot manipulator. When the robot has stopped
as the encoders attached to each robot actuator
recorded the target joint angles, an interrupt will be
sent to the LISM control unit to stop the tracking
process. The current position Pc will be updated and
the offset error recalculated. When the offset error,
which now represents the discrepancy between the
robot final position PRF and the desired position Pp is
greater than a predefined error-limit, the LISM control

ISBN 962-442-191-9 © M2VIP 2001 263

8lh IEEE Conference on Mechanics and Machine Vision in Practice
Hong Kong 2001

(BEGIN ")

Home Robot

Robot Motion Detection
Process

Acquire robot
motion status

YES
Interrupt request

generation to stop
tracking process

Update current
position Pc

NO

Calculate joint
angles using

inverse kinematics

Generate robot
motion request to

move by the
calculated joint

angles

Track robot

Point laser to
retroreflector

centre
Motion Derection Change

Detection Process

Determine offset
. |(PD-Pc)|<e

YESi

Initialise current
position Pt to zero

1.
r r ~

Provide desired
position Pd

YES
Determine offset

error. |(PD-Pc)|<e?

NO
Send Pd to robot

control unit

Track robot

Update current
position Pc

Store in
. -database- -

Compare new
offset error to
previous one

Change inN^ NO
the sign of offset

error?

\
YES,

Interrupt request
generation to stop
tracking process

Decelerate and
stop robot

• — — — — —» — III. I I — . .1 • • • • • III. I." M l . I . . I

Extract from
database

Figure 2: Flowchait of external ground truth feedback sensing control algorithm

unit will calculate the required rotations of each
actuator using the robot kinematics. These calculated
angles will then be sent to the robot controller to
further correct the offset error. The new offset error is
again updated and the process is repeated until the
robot stops at the position where the offset error is less
that the predefined error-limit. The tracking process
will be resumed when this occurs. This process is to

eliminate error due to the inaccuracy of the robot
controller in positioning the end-effector of the robot.

The motion direction detection process is to prevent the
overshooting of the robot manipulator. Overshooting
can occur due to several factors such as inherent
oscillation of long reach manipulator. It can also occur
in high load condition due to high inertia. This process
is aimed to damp the oscillation and reduce settling

ISBN 962-442-191-9 © M2VIP 2001 264

8th IEEE Conference or. Mechatrinks and Machine Vision in Practice
Hong Kong 2001

time of the robot end-effector. This can be done by
comparing the motion direction of the current offset
error to the previous one from the database. The robot
has overshot if there is a change in motion direction
represented by the change of sign in the offset error.
When this occurs, another interrupt will be sent to the
LISM control unit to decelerate the robot to a halt
immediately. The motion detection process will then be
activated.

The tracking process will maintain tracking of the
robot manipulator even when the robot has stop at
position within the predefined error-limit. This is to
account for subsequent environmental effect on the
robot that will move the end-effector away from the
desired position.

IV. CONCLUSION AND FUTURE WORK
In this paper, the principle of external ground truth
feedback sensing of dynamic system using LISM
technique has been presented. The control algorithm of
such approach was described. The above algorithm has
to be performed in real time and thus, the speed of the
LISM apparatus in tracking of the robot end-effector
and updating the position of the robot is the most
important factor. The LISM apparatus presented in this
paper is now capable of position measurements at
speeds of about 0.5m/s with accuracy of better then
±0.005mm.

The proposed closed-loop control using LISM
technique is aimed to provide for improvement of
accuracy in the control of robot manipulators and other
dynamic systems. The positioning of the end-effector
of robotic systems such as long reach manipulator,
where their accuracy is affected by vibration and
bending can be benefit from this approach. Further, this
control methodology can be used as a basis for the
development of laser interferometry-based guidance
technique. In this approach, dynamic measurements are
obtained and the robot is guided to position the target
retroreflector precisely to a desired location or along a
desired path based on these measurements, thus
improving accuracy and repeatability.

However, there are limitations on the proposed
methodology such as small working range due to the
small incident angle range of target retroreflector. Only
laser bea.ns that are incident at an angle of ±30° with
respect to the vertical picne of the retroreflector will be
reflected. Second limitations are the incapability of
performing orientation sensing. Thus, orientation offset
error compensation cannot be performed.

Future work includes the incorporation of orientation
sensing into the control algorithm to provide 6D
position and orientation (pose) offset determination and
compensation. A cat-eye retroreflector with an incident
angle range of ±65° will also be used to increase

working range. An upgrade of the hardware such as
data acquisition card and the motor controller card will
also being considered to improve the tracking speed.
Further, experimentation of the proposed control
methodology on a long reach manipulator will be
established.

V. ACKNOWLEDGEMENT

This project is partly funded by Australian Research
Council (ARC) and Harold Armstrong Fund.

VI. REFERENCES
[1] John J. Craig, Introduction to Robotics 2nd edition, Addison

Wesley, pp. 391.1991
[2] B. Shirinzadeh, P. L. Teoh, C. W. Foong, Y. D. Liu, "A

strategy for accurate guidance of a manipulator using laser
interferometry-based sensing technique", Sensor Review, Vol.
19, No. 4, pp. 292-299,1999.

[3] M. Vincze, J.P. Prenninger, H. Gander, "A laser tracking
system to measure position and orientation of robot end
effectors under motion.", The International Journal of Robotics
Research 13(4), pp. 305-314. 1994.

[4] B. Shirinzadeh, "Laser interferometry-based tracking for
dynamic measurements", Industrial Robot, Vol. 25. No. 1, pp.
35-41,1998.

[5] B. Shirinzadeh, H. C. Chong, K. C. Lee, P. L. Teoh, "Issues
and Techniques for Interferometry-Based Laser Guidance of a
Manipulator" The Fifth International Conference on Control,
Automation, Robotics and Vision, Singapore, Vol. 1, pp. 271-
275,1998.

[6] B. Shirinzadeh, P. L. TEOH, "A study of predictive control
for laser tracking of robots", Proceedings of Pacific Conference
on Manufacturing (PCM98), Brisbane, Australia, pp. 328-333,
August 1998.

[7] J.P. Prenninger, H. Gander, M. Vincze, "Contactless
position and orientation measurement of robot end-effectors."
IEEE Conference on Robotics and Automation. Vol. 1 pp. 180-
185,1993.

[8] B. Shirinzadeh, P. L. Teoh, C. W. Foong, "Orientation
measurement using vision and non-vision based techniques in
laser tracking system", 30th International Symposium on
Robotics, Tokyo, Japan, pp. 317-324,1999.

[9] Y. Bao, N. Fujiwara, "Dynamic measurement orientation by
LTS." Proceedings of the Japan/USA Symposium on Flexible
Automation. Vol. l.pp. 545-548,1996.

[10] B. Shirinzadeh, P. L Teoh, C. W. Foong, Y. D. Liu
"Orientation measurement technique in laser interferometry
based tracking system for robot manipulator calibration",
Proceedings of Pacific Conference on Manufacturing
(PCM2000), Detroit, USA, Vol. 2, pp. 788-793, September
2000.

ISBN 962-442-191-9 © W2V1P 2001 265

B. Shirinzadeh, P. L. Teoh, C. W. Foong, Y. D. Liu, "A strategy for accurate guidance of a

manipulator using laser interferometry-based sensing technique", Sensor Review, Vol. 19

No. 4, pp. 292-299, 1999.

Research articles
A strategy for accurate
guidance of a
manipulator using laser
interferometry-based
sensing technique
Bijan Shirinzadeh
Pek Loo Teoh
Chee Wei Foong
YongDong Liu

The duthois

Bijan Shirinzadeh, Pek Loo Teoh and Chee Wei Foong

are in the Department of Mechanical Engineering,

Monash University, Clayton, Au'tralia.

YongDong Liu is at the State Key Laboratory of Predsion

Measurement Technology and Instruments, TsingHua

University, Beijing, China.

KeyvvotcK

Lasers, Robots, Position measurement

Abstract

Laser interferometry-based sensing (US) technique has

been proposed and established recently to track and

perform dynamic measurements on a moving end-effector

of a robot manipulator. In this paper, a technique using

LIS system to perform guidance of a manipulator is

proposed. The LIS system is used as a sensor to guide the

end-effector of a robot manipulator. This is to be

accomplished through the implementation of guidance

error determination and compensation, and path gen-

eration in the control algorithm. This technique can be

used to accurately guide the manipulator's end-effector to

a specified location or along a specified path with a high

level of accuracy. The structure and various components

within the system and the control strategy are also

presented.

The research register for this journal is available at
http://vvww2.tncb.eo.uk/mcbiT/sr.asp

The current issue and full text archive cf this journal is

available at http://www.emerald-library.com

Sensor Review
Volume 19 • Number 4 • 1999 • pp. 292-299
© MCB University Press • ISSN 026O-2288

Intioduction

The increase in the number of complex
application0 of robots in manufacturing and
service indi ties has emphasised the need for
higher level* of positioning accuracy from
robot manipulators. It is well-known that the
repeatability of today's industrial robot is at
least an order of magnitude better than its
absolute accuracy (Vincze et aL, 1994). This
is due to the fact mat the position and
orientation (i.e. pose) of a robot manipulator
are described using a kinematic model. This
kinematic model uses die joint positions
determined from the axes encoders to provide
the three-dimensional co-ordinates of the
manipulator. The accuracy of such a model
relies heavily on the accuracy of the para-
meters used (e.g. link lengtfis). The accuracy
is also affected by the geometric (e.g. bend-
ing) and non-geometric (e.g. temperature)
errors. Further, joint backlash can also play an
important role in such errors. Therefore,
accurate robot pose measurement and cali-
bration techniques are required to improve
the robot accuracy.

Recently, a single beam laser interfer-
ometry-based sensing (LIS) technique,
capable of performing dynamic measure-
ments of robot end effector's pose, has been
proposed and established for such purposes
(Parker and Gilby, 1982/3; Gander et aL,
1993). This technique provides high accur-
acy, a large working space, a high sampling
rate, and automatic target sensing capability
in real time (Spiess et aL, 1996). In this paper,
a technique using the LIS as the pose sensor
to accurately guide the manipulator's end-
effector to a specified point or along a
specified path is proposed. This approach is
expected to provide accurate laser-based
remote control of fixed based robots, mobile
robots, and long reach manipulators. The
physical make-up, measurement and analysis
techniques, together with the control algo-
rithm for the above technique will be
described. Preliminary results of such an
approach will also be presented.

This research project was partly funded by grants
from the Australian Research Council (ARC) and
the Harold Armstrong Research Fund. The
authors wish to thank H.C. Chong and K.C. Lee
for their work on the research project.

I

292

Accurate guidance of manipulator using laser interferometry
Bijan Shlrtnzadeh, Pek Loo Teoh, Chee Wei Foong and YongDong Liu

Sensor Review
Volume 19 • Number 4 • 1999 • 292-299

Laser interferometry-based sensing
principle

Laser interferometry-based sensing (LJS)
generally involves the dynamic acquisition of
the 3D pose of an end-effector in its work-
space. The LJS system uses the angular and
distance data, obtained from the beam steer-
ing mechanism and the interferometer,
respectively, to provide the pose of the target
retroreflector attached to the end-effector of
the manipulator. It maintains tracking of the
target by sensing the offset of the incident and
reflected beam. It subsequently performs
offset corrections by adjusting the angles of
the beam steering mechanism. A US system
was developed for this study. A functional
layout of the overall design of the LJS is
provided in Figure 1.

In this layout, the laser beam generated by
die HeNe laser travels to the interferometer
where it is split into a reference beam and a
measurement beam. The reference beam is
directed to the measurement board in the
laser interferometer controller via the fibre
optic pickup. This beam will later be com-
pared with the returning measurement beam,
whose frequency will be Doppler-shiftedj to
determine the distance between the target
(i.e. a retroreflector mounted on the robot

Figure 1 Set-up of the laser interferometry-based system

end-effector) and the laser head. The
measurement beam travels through a
70-30 per cent beam splitter and is directed to
the target by the beam steering mechanism.
Once the beam hits the target, the beam is
reflected through 180° and it travels back
parallel widi the incident beam. There will
exist an offset between the incident and the
reflected measurement beam if die beam does
not hit the centre of die retroreflector.

The reflected beam then travels through die
mirror assembly and back to die 70-30 per
cent beam splitter. Of the beam power, 30 per
cent is diverted through a 50-50 per cent
beam splitter, where it is split equally and
directed to a charged coupled device (CCD)
camera and a position sensitive diode (PSD).
The CCD camera, which is connected to a
high-data-acquisition-rate frame grabber
board, captures the diffraction pattern of die
retroreflector, so that analysis can be per-
formed to determine die orientation of the
retroreflector. The PSD detects die offset of
die beam from die centre of the PSD sensor.
This offset error is referred to as die tracking
error. The remaining 70 per cent of die beam
power will be combined widi die reference
beam via the interferometer and the fibre
optic pickup. The Doppler shift of the
reflected beam can be detected and used by

ScorbotERVll '
5-axis robot
manipulator

Motor I n d B x e r ^ ^ ^

Angle adjustmenK
for motors

\ ^ ^ . Retroreflector

*f Stepper tyAK h
2 Motor2 U ^BJ
"T with Encoder i f ^

Stepper
Motor 1

r> whh Encoder

packing _ C ^ e r a

'Mirror «W0 X ^
Assembly Beamsplittep^i^ >.

>^Rbre OpticV> Laser \
r PickupxO ̂ - ^ Interferometer \ .
L . J&C ^S^ontroNer ^ \

^ s . Beamsplitter̂ NQ^ 1?^ ^ \ ' s \\ ^ Reference J ^ L I T S s ^ C ' ^ ^ >
\Retror8flectc^^^^^sv^^Os/X/'^ ^>v^ S^

\ OJlnterferomete?RO>0* V. \ ^ ^ ^

^^ ̂ ^ T n T ^ ^ ^ ^̂ Head ^^^
Control unit r ^ J J ^ n ^ \ ^ ^ O ^ ^
for US ^ ^ ^ P K ^ Encoder \ . ^ ^ > ^

Measurement > ^ v - ^
PSD ^ ^ > ^
Signal ^ s<^

Diffraction ^~*C^
Pattern ^c: ^ / ^

293

Accurate guidance of manipulator using laser interferometry

8i]an Shirinadeh, Pek Loo Teoh, Chee Wei Foong and YongDong Uu

the processing electronics within the laser
interferometer controller to determine the
distance travelled and the velocity.

The LJS control system minimises the
tracking error obtained from the PSD acqui-
sition system by signalling the motor
controller which in turn rotates the axes of the
beam steering mechanism, thus following the
arbitrary movements of the target. Measure-
ment of the position of the target in space is
obtained from the interferometer measure-
ment, tracking errors, angular displacements
of the axes of the beam steering mechanism,
and the kinematics of O S . The tracking
algorithm utilises a predictive control algo-
rithm that allows estimation of future position
of the target from the previous position,
velocity and acceleration values (Shirinzadeh
and Teoh, 1998).

Laser interferometry-based guidance
technique

Laser interferometry-based guidance (JUG) is
the technique of positioning the end-effector
of a robot manipulator accurately to a desired
point in Cartesian space along a predefined
trajectory by steering the laser beam. In this
technique, the O S system is used as a pose
sensor to measure the dynamic pose of the
end-effector. It also acts as a processing unit
for path generation and guidance error
compensation in the control algorithm. When
the beam steering mechanism has directed the
laser beam to a new desired pose, the offset
will be detected by the O S system. It
subsequently performs offset corrections by
adjusting the joint angles of the robot
manipulator.

Control algorithm
A flow chart of the control algorithm is
provided in Figure 2. The control software is
designed to have two modes of operations:
(1) a jog mode; and
(2) an auto mode.

In the jog mode, the operator will manually
control the rotation of the axes of the beam
steering mechanism using the keyboard or an
input device (e.g. joystick). The laser beam
direction will be displaced by a predefined
distance and thus generate the guidance error.
The robot controller will be automatically
commanded to move in the required direction

Sensor Review

Volume 19 • Number 4 • 1999 • 292-299

Figure 2 Flowchart of the control software

Jog Mods Auto Moda

Move laser
using curara

Key In Desired
Pose or

Manipulator P,

Calculate
length o(Ineor
path from Pc to

P..

Generate k
number or

target points
along the path

Determine
current pose of

robot, P.

Determine the Joint
angles 0, of the
tracking mirror for
the target points

using Inverse
kinematics

Initialise.! a 1,
wherej Is a

counter for the
number of

target points

Plot target
points R. on

the pom,
where)-1 tot:

Movo laser to
P . Using the

lalculcted
angles

Offset detected.
calculate

guidance error

Send signal to
control unrt of
manipulator to

correct the error

to reduce this error (this will be described in
detail later).

In the auto mode, the system will first
prompt the operator to enter the desired pose
for the manipulator. The control software will
determine the total offset of the desired pose
with respect to the current pose. An appro-
priate path with multiple target points, which
is to be followed by the laser beam, is
generated. This will be discussed further in
the path generation section. The control
software will command the motors to direct
the beam to the required pose, increment by
increment, following the target points along
the path. There will be a guidance error when
the laser beam has moved at each increment.
This methodology can be seen in Figure 3.

294

Accurate guidance of manipulator using laser interferomeby
Bijan Shirinzadeh, Pek Loo Teoh, Chee Wei Foong and YongDong Uu

Figure 3 Robot following a path

Sensor Review
Volume 19 • Number 4 • 19S9 • 292-299

Robot
Manipulator
with a
retroreflector
mounted
at the end

Path generated with multiple
discrete target points

Laser Interferometry Based
Sensing Assembly

Controller unit
for Long Reach
Manipulator

Serial connection
(RS2S2) between
two control units

Guidance error determination and
compensation
Two different sub-systems are used to deter-
mine the guidance error of the manipulator.
This section describes these sub-systems and
the method of compensation.

Position-sensitive diode (PSD) acquisition

sub-system

To detect the guidance error in the plane
perpendicular to the laser beam, the PSD
acquisition sub-system in the US system
(Shirinzadeh, 1998) is the focus of attention.
There are two main types of PSDs, the
quadrant detector and the lateral effect
detector. The detector used in this study is
the Melles Griof 13PSL001 Lateral Effect
Detector System (Melles Griot, 1999). It has
four electrodes connected equidistant around
its perimeter, as shown in Figure 4. The
electrodes are connected such that opposite
pairs yield photo currents that are processed
to give the displacement of the beam in the
x andy directions. It can accurately measure
beam position with a position resolution of

Figure 4 Quadrant and lateral effect detector

Electrode

8 —

6 —

4 —

Quadrant Detector

Centering

Vs

i l l
2 4

>

1
6

1 *
X

Measuring

"n
8

B —

4 —

2 —

Lateral Effect
Detector

^ v Measuring

\

1 1 1 1
2 4 8 8

295

li-i

Accurate guidance of manipulator using laser interferometry
Bijan Shkituadeh. Pek Loo Teoh, Chee Wei Foong and YongDong Uu

± 1/im across its entire surface due to
software controlled calibration algorithm.
This algorithm linearises the detector's photo
currents; thus it is possible to accurately
determine the magnitude of the offset error of
a beam. The initial data update rate was
lOHz. However, that has been modified to
the current update rate of I8H2.

When the laser beam has moved by one
increment, there v ;U be an offset error in vhe
reflected beam. This offset error will be
detected by uie PSD acquisition sub-systian,
and the guidance error of the laser beam from
tLv. centre of the PSD can be determined. The
controller will minimise the guidance error by
signalling the control unit of the manipulator,
allowing the manipulator control unit to
calculate appropriate joint angle rotation
using inverse kinematics. It will then position
the end-effector to the target point. Dynamic
measurements are still acquired to update the
PSD readings. A new offset will be detected
when the robot has moved and the process is
repeated until the guidance error detected is
within the acceptable zero-limit range.

Loser interferometer sub-system
To determine the guidance error of the end-
effector in the plane parallel to the direction
of the laser beam, the laser interferometer
(Shirinzadeh, 1998) is the focus of attention.
The laser interferometer currently being used
is the Zygo ZMI1000 high-velocity inter-
ferometer system. This laser interferometer
is based on a He-Ne heterodyne (dual
frequency) laser with a beam diameter of
6mm. It employs the Zeeman split to generate
two frequency components separated by
20MHz. Each component has an opposite
circular polarisation that allows each
frequency to be separated by optical polar-
isers. It relies on Doppler shifts caused by the
movement of the target retroreflector to
generate interference fringes. The structure
of the sub-system is provided in Figure 5.
The laser beam consists of two separated
frequencies^ Fj and F2 , which are polarised at
right angles to one another. As the beam
passes through the interferometer, F2 is
directed to the reference retroreflector while
F] passes through the polarising beam splitter
to the target retroreflector. As the target
retroreflector moves, the frequency Fi will be
shifted based on the Doppler principle. Fj
will increase or decrease by A Fj as the target
retroreflector moves towards or away from the

Sensor Review
Volume 19 • Number 4 • 1939 • 292-299

interferometer respectively. Fj and F2 are
recombined in the laser interferometer to give
the measurement signal of:

F2 - (Fx ± AFO (1)

A reference signal of F 2 - F! is created by the
laser head and combined with the measure-
ment signal, leaving only A F5, the rate of
change of position of the target retroreflector.
This can then be integrated to yield the
relative motion of the target retroreflector.
The HeNe heterodyne laser interferometer
has a resolution of 0.16/on.

Using the above sub-system, the offset of
the next target point from the current one is
calculated. The offset is sent to the control
unit of the manipulator to calculate the
required joint angle rotation using inverse
kinsmatics to position the retroreflector at the
desired point. Dynamic measurements are
acquired at the same time to update the
Doppler shift readings. When the robot has
moved, the new offset is detected and the
process is repeated until the desired point is
reached.

Path generation
In order to guide the retroreflector to the
desired pcse in the auto mode described
above, the jmth of the guiding laser has to be
first detenrdned. Linear or non-liner\r path
can be used. For the purpose of this study a
linear path is used. Further, it is also assumed
that there are no obstacles within the working
space of the robot.

When a desired pose is selected through the
computer software, a linear path between the
desired pose, P d (x*, ya> Zj, (p<u 8a, <t>a)j and
the current pose, Pc (xc y o z o q>c 0C, 40) is
generated. A discrete number of target points,
that are to be followed by the laser beam, are
generated and plotted along the path. The
distance between any two adjacent target
points is defined to be less than the PSD's
range. This is to ensure that the laser beam
will not be out of the PSD's range to maintain
dynamic measurement of the retroreflector.
The pose of each target point in polar
configuration for the beam steering mechan-
ism can be determined using inverse
kinematics. A plot of the angles for both axes
of the beam steering mechanism, 6, and 4>i
(wheie i is the target point number), for every
target point can then be constructed against
time. Figure 6 shows a sample plot for one of
the axes.

296

Accurate guidance of manipulator using laser interferortwtry
Bijan Shlrinzadeh, Pek Loo Teoh, Chee Wei Fomg and YongDong Liu

Figure 5 Structure of laser interferometer

Sensor Review
Volume 19 • Number 4 • 1999 • 292-299

H

Reference
Retroreflector

. Laser Head

Detector

• • •

Output
Beam

f
" • 1 .

I

Return
Beam

Measurement
Retroreflector

I
•s
•VI

s

Another important issue that must be con- velocity can be implemented. The time step,
sidered is the sudden changes in direction and At, between two joint angles (the desired and
angular velocity. These will in time damage
the motors and affect the accuracy. There-
fore, a parabolic blend between changes in

the current joint angles) can be determined
from the desired average velocity of the
manipulator and the distance between the

Figure 6 Plot of joint angle versus time

4?.

fc

ifr-

i

297

Accurate guidance of manipulator using laser interferometry
Bijan Shirinzadeh, Pek Loo Teoh, C/iee We! Foong and YongDong Liu

adjacent target points. The blend time, t^ can
be calculated with the known values of Gj and
(j>j, and the desired values of acceleration at
the target point angles, fy and <fo. The
equations are as follows (Craig, 1991):

Sensor Review

.+1 = (2)

(3)

The first and the last segments are handled
differently since the blend time must be
included in the time step. The first and the last
blend times t ^ where m = l orm = n = last
target point, can bo calculated by equating the
velocities in the linear phase segment. The
initial and final angular velocities can be easily
calculated using the blend times. The follow-
ing relationships are utilised (Craig, 1991):

(4)
tbm

0m

it—1, m — '

(5)

(6)

Preliminary experiment

Preliminary experiments have been per-
formed to determine the capability of the
apparatus for LIG. The experimental set-up
consists of the mentioned LJS system and a
Scorbot ER VI robot manipulator. The
properties of interest are the response time of
the O S system and the response time of the
communication between the LJS system and
the robot manipulator. This leads to the
following equation that represents the total
response time for the LIG technique:

— Trobot + TjJS (?)

where Trobot is the response time of the robot
to move and acknowledge the command
given by the I I S system, and T u s is the
response time of the O S system to perform
dynamic measurements as well as controlling
the axes of the beam steering mechanism.

In the current set-up, the response time of
the LJS system is found to be in the order of
0.4 seconds (Shirinzadeh et aL, 1998). The
accuracy of pose sensing is ± 5/im. It must be
emphasised that the laser interferometer
sub-system provides for distance measure-

Volume 19 • Number 4 • 1999 • 292-299

ment with an accuracy of 0.16/im and the
PSD acquisition sub-system provides for off-
set error measurement in the order of 1/un.
The beam steering mechanism makes use of
three 45° beam steers to direct the beam
towards the target retroreflector. Both axes of
the steering mechanism currently have a
maximum rotational velocity around 1 rev./
second. The vertical axis has a resolution of
around 0.02°, using a motor step rate of 400
steps/rev, and a precision rotary table with a
45:1 gear ratio - i.e. one revolution of the
vertical axis requires 18,000 steps. Further,
the resolution can be improved by using the
micro-stepping capability of the drive system
(up to 50,000 steps/rev.). However, this
reduces the maximum speed. There is a
negligible amount of backlash in the precision
rotary table utilised for the vertical axis. The
horizontal axis has a direct drive and currently
has a resolution of 0.007° using a step rate of
51,200 steps/rev. The stepper motors on each
axis have rotary shaft encoders mounted on
the rear shaft. A 500-line DRC encoder is
mounted on the rear shaft of the motor
responsible for rotating the beam about the
vertical axis. This encoder has a maximum
resolution of 0.18°. Further, the gearing used
increases the resolution of this sensing device
to 0.004°. The other encoder used is the
1,000-line E57 encoder that is mounted on
the rear shaft of the motor responsible for
rotating the beam about the horizontal axis. It
has a maximum resolution of 0.09°.

The communication between the O S and
the robot controller requires 1.3 seconds to
send the signal and acknowledge a new
command. Including the O S system response
time, this leads to a total of 1.7 seconds. This
is considered to be too slow for O G
technique. The impediments to a faster
response include the following:
(1) Slow PSD acquisition sub-system

(I8H2).
(2) Slow motor controller.
(3) Long delays in communication between

robot and O S system.

Steps are being taken to remedy the short-
comings of the system. These will be
described in the next section.

Conclusion and future work

In this paper, the principle and strategy of the
laser interferometry-based guidance

298

Accurate guidance of manipulator using laser interferometry
Bijan Shirinzadeh, Pek Loo Teoh, Chee Wei Foong and YongDong Uu

technique have been proposed. The overall
structure and the required sub-systems for
such an approach were presented. The path
generation for literally painting the way using
a laser was described. The laser interfero-
meter-based guidance apparatus developed
has currently a poor response time of 1.7
seconds but with an excellent accuracy of
±5/im.

The initial results are promising. However,
some major modifications to the system must
be carried out to improve the response time
and thus the guidance speed. A faster PSD
acquisition sub-system capable of 2,00OHz is
currendy being developed. Further, a high
speed motor controller is also being incorpo-
rated into the system. Therefore, the U S
system is expected to achieve a response time
in th<r order of 0.004 seconds. Further, an
open-architecture controller is being devel-
oped for die robot. This open-architecture
controller v*" be directly integrated witliin
the LJS sycv , thus removing the commu-
nication delay associated with external linking
of these systems. A predictive algorithm for
the robot manipulator to determine its future
position from the pust positions, estimated
velocity and estimated acceleration values is
also being investigated. Further, die laser
beam used has a low power (i.e. lmW). This
limits the range of the technique to a
maximum of 10m. The beam power detected
by die PSD acquisition sub-system when die
target is further man 10m will be the same as
the average ambient light power. This will
result in me disruption of PSD measurements
in the LJS system. A laser interferometer with
higher laser power is also being considered.

Sensor Review
Volume 19 • Number 4 • 1999 • 292-299

The above technique is developed based on a
linear padi generation. Non-linear path gen-
eration method will be investigated to account
for obstacles in die workspace.

References

Craig, J.J, (1991), Introduction to Robotics: Mechanics and
Control, 2nd ed, Addison-Wesley, Reading, MA.

Gander. H., Vinae. M. and Prenninger, J.P. (1993), "An
external 6D-sensor for industrial robot", IEEE
Proceedings International Conference on Intelligent
Robots and Systems, pp. 974-8.

Melles Griot (1992), Optical Beam Position Measurement
System, Melles Griot, USA.

Parker, G A and Gilby, J.H. (1982/3), "An investigation of
robot arm position measurement using laser
tracking techniques system to measure robot arm
performance", Sensor Review, October, pp. 180-4.

Shirinzadeh, B. (1998), "Laser-interferornetry-based
tracking for dynamic measurements", Industrial
Robot, Vol. 25 No. 1. pp. 35-41.

Shirinzadeh, B. and Teoh, P.L (1998). "A study of
predictive control for laser tracking of robots",
Proceedings Pacific Conference on Manufacturing,
Brisbane, Australia, pp. 328-33.

Shirinzadeh, B., Chong, H.C., lee, K.C. and Teoh, P.L
(1998), "Issues and techniques for interferometry-
based laser guidance of a manipulator",
International Conference on Control, Automation,
Robotics and Vision, Singapore, Vol. 1, pp. 271-5.

Spiess, S., vinae, M., Krautgartner. P. and Fib, K. (1996),
"On modelling the kinematics and optics of a laser
tracking system for contactless robot measure-
ment", Institute of Flexible Automation, Technical
University of Vienna, Austria.

Vinae, M.. Prenninger, J.P. and Gander. H. (1994), "A
laser tracking system to measure position and
orientation of robot end effectors under motion".
Robotics Research, Vol. 13 No. 4, pp. 305-14.

299

P. L. Teoh, PhD Professional Disputation Thesis, Department of Mechanical Engineering,

Monash University, Australia, August 2002.

s

Thesis
In a point-to-point operation, the addition of Cartesian position feedback from a Laser interferometry-based sensing
and measurement (LISM) technique into a joint-based PID controller improves the static positioning accuracy of
robotic devices (e.g. manipulators) based on a joint based PID controller alone.

Introduction
In robot control, the main objective is to allow the end-effector's position to be controlled so that a desired position
can be reached or a desired trajectory can be followed with high accuracy and stability (John J. Craig, 1991, L.
Sciavicco, 2000, C. H. An et. al. 1988). A general control architecture is shown in Figure 1. This prospectus
focuses on the establishment of the proposed Cartesian position feedback control using the LISM technique to
improve static positioning accuracy of manipulators controlled by a joint-based PID controller. The following
outlines the limitation of the existing joint-based PID controller and the development of the proposed control
architecture based on feedback from LISM apparatus.

Arguments for Thesis
1. The current application of joint-based PID control scheme is simple but has low accuracy, as it does not take into

account the dynamic model of manipulator and the real position of the manipulator's end-effector.
2. More computation power is needed for more complicated model-based control scheme and it is very difficult, in

some cases impossible, to obtain an accurate model. The model inaccuracy creates high uncertainty, which
makes the analysis of the control scheme more difficult and time consuming. The uncertainty may also nullify
the benefit of such approach.

3. The proposed LISM technique can provide a real time, non-contact, dynamic measurement of Cartesian position
with high accuracy. It has a large working rrnge, high sampling rate and automatic target tracking capability.
The use of feedback from LISM apparatus maintains the simplicity and improves the positioning accuracy of a
PID controller.

Background
In Figure 1, the control system is used to compute appropriate actuators command to realise desired motion. The
actual output is fed back into the control system to reduce disturbance and improve stability. The task specification
(end-effector motion) is usually performed in Cartesian space whereas control actions are performed in joint space.

Problem with Joint space control
A general joint space control scheme is as shown in Figure 1. In this scheme, the manipulator's trajectory generally
specified in Cartesian space is fust converted into joint space. This is then followed by a joint space control
scheme.

The simplest joint space control scheme is a Proportional, Integral, Derivative (PID) type controller shown in
Figure 2. The actuator torque needed can be calculated from:

r = 3d+KvE + KpE + K, JEdt

where E = &d-S and E = 3d-$. Kp, Kv, and K, are the proportional, derivative and integral gain, respectively.

It must be noted that this controller is completely error driven. No model of the manipulator is used at all. Each
joint can be controlled as a separate control system. The gains can be selected to critically damp the response and
stabilise the system. This simple controller is the most common controller used in the present-day manipulator
(John J. Craig, 1991). However, the performance of a manipulator controlled in this way is dependent on the
mechanical design of the robot. Since no decoupling is being done, the motion of each joint may affect the other
joints. These interactions cause errors that are then suppressed by the error driven controller. These errors change
with the configuration and only by the increase of the gains in the feedback loop can the errors be suppressed
subsequently. However, there are practical limits to how I igh gains can be set (John J. Craig, 1991, C. H. An et. al.
1988) due to actuator saturation and stability problems. Moreover, there is no single set of gain values which will
critically damp the response in various configurations. An average value is usually chosen and this will cause
overdamped or underdamped in various extreme configurations.

One way of overcoming the above drawbacks is the use of the dynamic model of the robot in the controller to
evaluate the necessary torque output. The inertial parameters of the links and load, the interaction between the links

as well as the effect of friction and gravity can be included in the dynamic model. This dynamic model is expected
to represent the actual robot dynamics accurately under different loads and positions configurations so that only the
small unmodeled dynamics are being corrected by the feedback controller. A complete model-based controller is
shown in Figure 3. The actuator torque output can be calculated as:

r = M(I9)I9' + V($, i9) + G(i9) + F(&, S)

&'=3d+KvE + KpE

where M(&) is the inertia matrix of the manipulator, ^($,3) is a vector of centrifugal and Coriolis terms, G(i9) is

a vector of gravity terms and F(3,3) is the friction model. Each element in these models is complicated functions

depending on & and 3 , which ^present the current joint angle and joint velocity.

The entire dynamic equations must be computed within the loop of this controller. These computations are quite
complex which require higher computational power. The resulting system may run at a lower sampling frequency
which in general, would degrade the stability and disturbance-rejection capabilities of the system. (John J. Craig,
1991, C. H. An et. al 1988, G. Alici et. al 1993). With the reduction in cost of computer power, this drawback can
be eliminated as shown in F. Reyes, 2001. Since joint space controller does not influence the real position of the
manipulator's end-effector directly, more emphasis is placed on the accuracy and completeness of the dynamic
model. However, the complete and accurate dynamic model in this control scheme is not often known exactly.
Uncertainty of structure such as design error, poor calibration, gear backlash, elasticity, friction and etc. are
difficult if not impossible to model accurately. Moreover, most robots will be US-J to pickup various parts and
tools. The inertia parameter of the tools changes the dynamics of the manipulator. All these will cause a loss of
end-effector position accuracy and thus nullify the extra computations necessary.

Closed loop control using LISM
Recently, laser interferometry-based sensing technique has been proposed for measurement of robot's position in
real time (H. Gander et. al. 1993; J. P. Prenninger et. al 1993; M. Vincze et. al 1994; Shirinzadeh et. al 1997).
Figure 4 shows a diagram of the set-up of LISM apparatus. In this method, reflected laser beam is detected by
sensors and the resulting data are used to maintain automatic tracking of the target by adjusting the beam steering
mechanism. The LISM technique utilises real time angular and distance data obtained from the high-resolution
encoders and the interferometer respectively to provide the position of the target by direct kinematics.

The simple mechanism of a LISM technique allows a simple kinematic model to be used to convert the angular and
distance data obtained from the encoders and interferometer, respectively, into Cartesian position of the target. (S.
Spiess et. al. 1996, 1998). The high coherence of laser beam and the nature of light to ravel in straight line
eliminate the elasticity problem in mechanical measuring device and can accommodate a large measuring volume.
With a proper design and inertia balancing, there will be close to zero effective inertial seen by the actuators and
thus minimum amount of actuator uncertainty. These have led to low uncertainty in the position data obtained using
the LISM technique (P. L. Tech et. al. Sept. 2002). The retroreflector weights only about 150g and the LISM
apparatus has no contact with the robot. Therefore, no constraints are being placed on the robot. Accuracy higher
than 50um can also be achieved as all the equipment used has accuracy in the order of a tenth of a micron. The
sampling rate of equipment can reach more than 1000 samples per second. Therefore, real-time dynamic
measurements can be achieved. Further, the measurement process is automated with the target tracking capability.
As a result, real-time dynamic Cartesian position of the target can be measured at high accuracy.

By adding a feedback loop using the position sampled by the LISM apparatus, a closed-loop control methodology
where the LISM apparatus is used as a real time Cartesian position sensor can be established (P. L. Teoh et. al,
2002). The LISM apparatus will maintain tracking of the robot end-effector until it reaches tta final position. When
there is a discrepancy between the position commanded by the robot controller and the position measured using
LISM apparatus, a centre processing unit will be used to determine the offset error. This offset error can be
converted to compensation joint angles and fed into the joint space controller as shown in Figure 5. This feedback
loop will ensure a higher positioning accuracy as the uncertainty of the structure of the robot can now be detected
accurately using LISM apparatus.

Experimental Verification
Experiments have been performed to determine the capability of the LISM technique for closed-loop control of
robotic devices. The experimental set-up, shown in Figure 6, consists of the mentioned LISM apparatus and a 3D
positioning table. The resolution of each axis of the positioning table is O.125jim per encoder count. During the
experiment, a co-ordinate frame is first setup on the positioning table so that subsequent movement of the end-
effector is recorded with respect to the origin and the motion is parallel to the principle axes of this co-ordinate
frame. The co-ordinate frames are given in Figure 3. The end-effector is commanded to move along a single axis
and the Cartesian co-ordinates of the end-effector are recorded. Two different sets of results are recorded for
motion along each axis, one with the application of the LISM closed-loop control and the other without. Figure 7
and 8 show the results of a particular motion. The thicker line in the graphs shows the desired position. Table 1
shows the tabulated results obtained at different configurations and along different path. The results of only two
axes are shown as the servomotor controlling the third-axis (i.e. x) is not functioning at the moment.

From Figure 7A and 7B, it can be observed that the normal motion of the end-effector along the z-axis produces a
considerable amount of fluctuation in the y co-ordinates. This is due to the vibration of the end-effector while in
motion. The mean of the fluctuation is increasing with time which represents a deviation of the end-effector away
from the desired path. The increase in the mean value is due to twisting and bending of the moving link under the
uneven load of the end-effector and this introduced a final steady state error of 0.06mm in the z-axis and -0.07mm
in the y-axis. From Table 1, it can be observed that the steady state error varies with the configuration and th«? path
taken. It is also noted from experimentation that the error is random. A constant offset value cannot be used to
minimise the error. The encoder's reading at steady state shows the desired joint rotations commanded, which
indicate that it is the structural uncertainty that is causing the error. Since the encoders do not observe the steady
state error, a higher gain values will not eliminate the error in this error-driven controller.

With the implementation of closed-loop control algorithm, it can be seen from Table 1 and Figure 8 that the steady
state error along the x and y axes has been reduced to O.Olimd, which is the maximum accuracy that can be
sampled by the LISM apparatus. The small fluctuations at the beginning of the motion and at steady state are due to
the noise in the signal.

Conclusion and Future Work
From the experimental results, it can be concluded that the closed-loop control algorithm using LISM technique
improves the static positioning accuracy of a robotic device compare to a joint-based PID controller in a point-to-
point operation. This is accomplished by compensating the position offset error caused by the deviation of the end-
effector from the desired position due to structural uncertainty such as uneven loading and bending. The final
steady state error is close to the maximum accuracy that can be measured by the LISM apparatus. In this approach,
high positioning accuracy can be achieved in the simple joint-based PID controller.

Future work includes the study of the performance of the control scheme at various velocities and accelerations.
Experimentation of the control scheme will also be performed on more complex manipulator such as the long-reach
manipulator, which generally has significant amount of bending and vibration due to long link length and a 6-axis
Motoman robot manipulator. Due to the limitation of the controller of the positioning table, compensation can only
be performed on non-moving axes. By using a controller where an offset can be added into the control loop of the
moving axes, this study can be extended to include a proposed real time LISM trajectory generating technique
where via points are generated along the desired path. In this approach, the position offset of the via points are
compensated while the manipulator is in motion to improve the trajectory following capability.

References
[1] John J. Craig, Introduction to Robotics 2nd edition, Addison Wesley, pp. 299-360.1991
[2] M. Vincze, el ah, A laser tracking system to measure position and orientation of robot end effectors under

motion, The InternationalJournal of Robotics Research Vol. 13 No. 4, pp. 305-314.1994.
[3] B. Shirinzadeh, "Laser interferometry-based tracking for dynamic measurements", Industrial Robot, Vol. 25

No. 1, pp. 35-41,1998.
[4] J.P. Prenninger, H. Gander, M. Vincze, Contactless position and orientation measurement of robot end-

effectors, IEEE Conference on Robotics and Automation, Vol. 1 pp. 180-185, 1993.
[5] P. L. Teoh, B. Shirinzadeh, C. W. Foong, G, Alici, The measurement uncertainties in laser interferometry-

based sensing and tracking technique, Journal of Measurement, Vol. 32 No. 2, pp. 135-150. September, 2002.

[6] S. Spiess, M. Vincze, P. Krautgartner, K. Filz, On modelling the kinematics and optics of a laser tracking
system for contactless robot measurements. Institute of Flexible Automation, Technical University of Vienna,
1996.

[7] S. Spiess, M. Vincze, M. Ayromlou, On the calibration of 6-D laser tracking system for dynamic robot
measurements, IEEE transactions on instrumentation and measurement, Vol. 47 No. 1, February 1998.

[8] H. Gander, M. Vincze, J. P. Prenninger, An external 6D-sensor for industrial robots, Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, pp. 974-997, July
1993.

[9] B. Shirinzadeh, Alvin Y.L. KOH, Laser tracking and robot dynamic measurements, Proceedings of
ISPE/IEE International Conference, on Robotics & Factories of Futures, Vol. 2, pp. 886-891, 1997.

[10] L. Scivicco and B. Siciliano, Modelling and control of robot manipulators, Springer, pp. 213-268, 2000.
[11] C. H. An, C. Atkeson, J. Hollerbach, Model-based control of a robot manipulator, MIT Press, pp. 1-110,

1988.
[12] G. Alici and R. Daniel, Experimental comparison of model-based robot position control strategies,

Proceedings of the 1993 IEEE/RJS International Conference on Intelligent Robots and Systems, Yokohama,
Japan, pp. 76-83, July 1993.

[13] F. Reyes and R. Kelly, Experimental evaluation of model-based controllers on a direct-drive robot arm,
Journal of Mechatronics, Vol. 11 No. 3, pp. 267-282,2001.

[14] P. L. Teoh, B. Shirinzadeh, G. Alici, Experimental Analysis of Laser Interferometry-based Sensing and
Measuring Technique for a 3D Dynamic Positioning System, Proceedings of Pacific Conference on
Manufacturing (PCM2002), In Print.

Trajectory
Generator

xd

Inverse
Kinematics

0d Control
System

" t F̂ pHhnrlf

0

0

Figure 1: Block diagram of a general joint space position controller Figure 2: PID position controller

Trajectory
Conversion

Actuator

Figure 3: Computed Torque position controller Figure 5: Joint space PID controller with LISM feedback

Moving
Retrorefleclor

1 Beam Splitter
2 Minor

yy Measurement Beam

Reference Beam

INTERFEROMETER

Main Beam
Splitter

Rotating
Minor

• "tu.™ > ram v
i Beam
!expander

i

Co-ordinate
Frame L Co-ordin;

Fi

YR

LISM

Co-oi dihajc
Frami

3 axes Posi tii in ng Table

Figure 4: Set-up of LISM apparatus Figure 6: Experimental set-up showing the appropriate
Co-ordinate frame

Poiltlon V of RttnMiftector w.r.t i»f, co-ordinat* franw PT vt Tim*

£ o
«
o

Q.-0.09

-01

1
1 • 'kdn

il

hi I,
i\ \ _
1

2S

-AM

30 39 *0 '

Tlmi (In Mconcl)

1
N

O. 117.4

II7J

1

PoirHon Z of R«ror»ft«cti)r w.r.t ref. co-ordkurt* fnm* MT v» Thm

* 1 f " Thm (In Miend) » »

(A) (B)
Figure 7: Retroreflector position with respect to Co-ordinate frame PT witliout closed-loop control

Position Y of RMror»n«tor w. r.t. raf. co-ordlnait frmm< PT v* Tim*

30 » «

Tlnw (In Mcond)

PoiKlon Z of RMromflKtor w.r.t nt. co-onilnaH fnun* PT vs Tkn*

117.7

1173

1I7J

ll-.t

117

' — •

Time (In s4Kond)

(A) (B)
Figure 8: Retroreflector position with respect to Co-ordinate frame PT with closed-loop control

Table 1

Current

Position

y = 0

z = 0

y = 0

z = 337.5

y = 0

z = 0

y = 0

z = 250

: Steady state error c

Commanded

Position Increment

Dy = 0

Dz= 187.5

Dy = 0

Dz =-187.5

Dy= 187.5

Dz = 0

Dy= 187.5

Dz = 0

>f the manipulator at different configurations moved along different axis

Without LISM

Steady State error

y-axis

-0.19

-0.07

-0.49

-0.32

z-axis

-0.04

0.06

0

0

Y- Encoder

at steady state

0

0

-150000

-150000

Z-Encoder

&t steady state

-150000

-120000

0

-200000

With LISM

Steady State error

y-axis

0

0.01

0.01

0

z-axis

0.01

-0.01

0.01

0

