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Abstract

Soft computing is a well-established paradigm consisting of artificial neural networks, fuzzy

inference systems, approximate reasoning and derivative free optimization techniques such as
evolutionary computation etc. Several adaptive hybrid soft computing architectures have in
recent years been developed for solving complicated real world problems. The hybridization
aims at overcoming limitations of individual techniques through fusion of different techniques.
Many of these approaches use the combination of different knowledge representation schemes,
decision-making models, learning strategies and optimization techniques to solve a
computational task. This thesis investigates the optimization of artificial neural networks and
fuzzy inference systems using a combination of evolutionary algorithms and local search

techniques.

We explored the performance of neural network supervised learning paradigms using first
order and second order error information of the three popular chaotic time series. We
implemented a Meta-Leaming Evolutionary Artificial Neural Network {MLEANN) algorithm
based on a hierarchical search process combining global search and local search procedures.
Performance evaluation was made with conventionally designed neural networks using
standard leaming algorithms, cutting angle method of global optimization, Mamdani and

Takagi-Sugeno neuro-fuzzy systems and multi variate adaptive regression splines.

We examined the different adaptation techniques for designing fuzzy inference systems. The
different adaptation techniques using neural nztwork learning algorithms and evolutionary
computation were presented. We also compared the performaice of some integrated neuro-
fuzzy models using Mackey Glass time series. We further illustrated how neuro-fuzzy systems
are implemented in practice. We used a concurrent nevro-fuzzy model for a stock market trend
prediction and used Mamdani and Takagi-Sugeno integrated neuro-fuzzy models for modeling
three real world problems. Performances of the neuro-fuzzy models were compared with

different neural network learning techniques using 1* order and 2" order error information.
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Finally, we present Evolutionary Neuro-Fuzzy Systems (EvoNF) - a framework for
optimization of fuzzy inference systems using neural network leaming and evolutionary
computation. Architecture of the evolutionary framework is presented and the representation
of each layer of the hierarchical search process is discussed. We evaluated the performance of
three different types of learning methods combining evolutionary algorithms and gradient
descent technique. Empirical results were compared with MLEANN approach and Takagi-

Sugeno neuro-fuzzy system.

Empirical results of the different optimized hybrid architectures clearly reveal the efficiency of

the proposed algorithms at the expense of some trade off in computational cost.
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Chapter 1:Introduction

1.0 Hybrid Intelligent Systems

When the computers first appeared in the early fifties, we admired 1t as an artificial brain, and
we thought that we were successful in creating a low level decision making cognitive machine.
Researchers coined the term artificial intelligence and waited for many potential applications
to evolve. In the sixties computers failed to pass the Turing test due to the low processing

speed of the computers.

However, in spite of the evolution in digital computers, after several years we realized that the
so-called artificial intelligence (A} was indeed very artificial in nature, It can be argued with
some conviction that an Al algorithm that cannot solve new problems in new ways is
emphasizing the, "artificial” and not the "intelligence”. The vast majority of the Al algorithms
have nothing to do with learning. Last few decades have seen a new era of Al on emulating
humans, either in their behavior or in their neurophysiotogy. Rather than viewing humans as
the premier example of intelligence, a broader and potentially more beneficial perspective
views this species simply as a product of evolution, a process that generally produces
organisms of increasing intellect. Recognizing the connection between evolution and
intelligence makes it possible to overcome the limitations of conventional artificial
intelligence techniques, and indeed to evolve such systems and create machine intelligence
[128].

Hybridization of different intelligent systems represents the most exciting fruit of artificial
intelligence to date. Such systems are starting to be employed in everyday life, and these
applications rank amongst the most complex computer systems ever built; never before has the
expertise of the human factors {13). The integration of different learning and adaptation

techniques, to overcome individual limitations and achieve synergetic effects through
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hybridization or fusion of these techniques, has in recent years contributed to a large number

of new intelligent system designs [12].

Soft computing introduced by Professor Lotfi Zadeh (University of California, Berkeley)
[255) 1s oriented towards the analysis and design of intelligent systems. It is a well-established
paradigm, where new theories with a sound biological understanding have been evolving to
construct computationally intelligent hybrid systems consisting of artificial neural network,
fuzzy logic, approximate reasoning and derivative free optimization methods such as
evolutionary computation etc. Nevertheless, hybrid intelligent system is an open instead of
conservative concept. That is, it is evolving those relevant techniques together with the

important advances in other new computing methods [76] [235].

Several adaptive hybrid intelligent systems have in recent years been developed for modelling
expertise, decision support, financial modeling, process control, mechatronics, robotics and
complicated automation tasks etc [127] [155] [231]. Many of these approaches use the
combination of different knowledge representation schemes, decision making models and
learning strategies to solve a computational task [129). This integration aims at overcoming
limitations of individual techniques through hybridization or fusion of various techniques. It is
well known that the intelligent systems, which can provide human like expertise such as
domain knowledge, uncertain reasoning, and adaptation to a noisy and time varying
environment, are important in tackling practical computing problems. In contrast with
conventional artificial intelligence techniques which only deal with precision, certainty and
rigor the guiding principle of hybrid soft computing is to exploit the tolerance for imprecision,
uncertainty, low solution cost, robustness, partial truth to achieve tractability, and better
rapport with reality. Table 1.1 summarizes the comparison of neural networks, fuzzy inference

system, evolutionary algorithms, symbolic artificial intelligence (Al) and control theory [11]
[93].

To realize intelligent systems in practice, a synthesis of various techniques is required. Figure

1.1 shows the synthesis of neural networks, fuzzy logic and evolutionary algorithms and their
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mutual interaction leading to different architectures. Each technique plays a very important
role in the development of hybrid intelligent systems. Experience has shown that it is crucial
for the design of hybrid intelligent systems to primarily focus on the integration and
interaction of different techniques rather than merge different methods to create ever-new
techniques. Techniques already well understood, should be applied to solve specific domain
problems within the system. Their weakness must be addressed by combining them with

complementary methods.

Table 1.1. Comparison of different intelligent systems with classical approaches”

Fuzzy Neural Evolutionary Symbelic Control

system network  algorithms Al theary

Mathematical model SG B B SB G -
Learning ability B G SG B B
Knowledge representation G B SB G SB
Expert knowledge G B B G SB
Nonlinearity G G G SB B
Optimization ability B SG G B SB
Fault tolerance G G G B B
Uncertainty tolerance G G G B B

Real time operation G $G SB B G

"Fuzzy terms used for grading are good (G), slightly good (SG), slightly bad (SB) and bad (B).

Artificial neural networks offer a highly structured architecture with learning and
generalization capabilities, which attempts to mimic the neurological mechanisms of the brain.
A neural network stores knowledge in a distributive manner within its weights; which have
been determined by learning with known samples. The generalization ability for new inputs is

then based on the inherent algebraic structure of the network. However, it is very difficult to
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incorporate human a priori knowledge into a neural network. This is mainly because the

connectionist paradigm gains most of its strength from a distributed knowledge representation.

[m.. mm]

Evolutionary
Neuro - Fuzzy

Evolutionary
Neural Network

Evolutionary
Fuzzy Systems

Figure 1.1 Genera! framework for hybrid intelligent systems

In contrast, fuzzy systems exhibit complementary characteristics, offering a very powerful
framework for approximate reasoning as it attempts to model the human reasoning process at a
cognitive Ievel. Fuzzy systems acquire knowledge from domain experts and this is encoded
within the algorithm in terms of the set of if-then rules. Fuzzy systems employ this rule based
approach and interpolative reasoning to respond to new inputs. The incorporation and
interpretation of knowledge is straight forward, whereas learning and adaptation constitute

major problems.

Usually grouped under the term evolutionary algorithms or evolutionary computation, we find
the domains of genetic algorithms, evolution strategies, evolutionary programming, genetic
programming and learning classifier systems. They all share a common conceptual base of
simulating the evolution of individual structures via processes of selection, genetic operators,
and reproduction. The processes depend on the perceived performance of the individual
structures as defined by the environment (problem). These methods are fundamentally

iterative generation and alteration processes operating on a set of candidate solutions that form
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a population. The entire population evolves towards better candidate solutions via the selection
operation and genetic operators such as crossover and mutation. The selection operator decides
which candidate solutions move on into the next generation, thus limits the search space.
Referring to Figure 1.1, several hybrid combinations of neural networks, fuzzy systems and

evolutionary computation could be explored.

1.1.Models Of Hybrid Systems

We broadly classify the various hybrid intelligent system architeciures into 4 different
categories based on the systems overall architecture: (a) Stand alone architectures (b)
Transformational architectures (c¢) Hierarchical hybrid architectures and (d) Integrated hybrid

architectures.
Stand Alone Architecture

Stand-alone models of hybrid systems consist of independent software components, which do
not interact in anyway. Developing stand-alune systems can have several purposes. First they
provide direct means of comparing the problem solving capabilities of different techniques
with reference to a certain application. Running different techniques in a paralle} environment
permits a loose approximation of integration, Stand-alor models are often used to deveiop a
quick initial prototype, while a more time-consuming application is developed. Figure 1.2

displays a stand-alone system where neural network and a fuzzy system are being used

mm

Figure 1.2. Stand —alone architecture

separately.

Some of the benefits are simp!izily and ease of development using commercially available
software packages. On the other hand, stand-alone techniques are not transferable; neither can

support the weakness of the other technique.




£
‘. -.
.

are T

AR

4]

i R,

L e ] L AR

Transformational Hybrid Architecture

In a transformational hybrid model, initizally the system begins as one type of system and end
up as the other. Determining which technique is used for development and which is used for
delivery is based on the desirable features that the technique offers. Figure 1.3 shows the
interaction between a neural network and an expert system in a transformational hybrid model
{172]. Obviously, either the expert system is incapable of adequately solving the problem, or
the speed, adaptability, and robustness of neural network is required. Knowledge from the

expert system is used to set the initial conditions and training set for artificial neural network.

——>
<{umn

Figure 1.3, Transformational hybrid architecture

Expert system

Transformational hybrid models are often guick to develop and ultimately require maintenance
on only one system. Models can be developed suited to the environment and offer many
operational benefits. Unfortunately, transformational models are significantly limited. Most of
the developed models are just application oriented. For a different application, a totally new
development effort might be required. A fully automated means of transforming an expert

system to neural network and vice versa is required.
Hierarchical Hybrid Architectures

The architecture is built in a hierarchical fashion, associating a different functionality with
each layer. The overall functioning of the model will depend on the correct functioning of all
the layers. Figure 1.4 demonstrates a hierarchical hybrid architecture involving a neural
network, evolutionary algorithm and a fuzzy system. Neural network uses an evolutionary
algorithm to optimize its performance and the network output acts as a pre-processor to a
fuzzy system, which then produces the final output. Poor performance in one of the layers will

directly affect the final output.
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Figure 1.4, Hierarchical hybrid architectures

Integrated Hybrid Architectures

These me .~ls include systems, which combine different techmniques into one single
computational model. They share data structures and knowledge representations. In a truly
integrated model the individual systems cannot be separated. This thesis deals with the various
different integrated hybrid systems using neural networks, fuzzy systems and evolutionary
algorithms. There are also several approaches to integrate hybrid systems. A simple approach
is to put the various techniques on a side-by-side basis and focus on their interaction in the
problem-solving task [124]. This method might allow integrating alternative technigues and
exploiting their mutuality. Further more the conceptual view of the agent allows one to
abstract from the individual techniques and focus on the global system behavior, as well as

study the individual contribution of each component.

The benefits of fused architecture include robustness, improved performance and increased
problem-solving capabilities. Finally, fully integrated models can provide a full range of
capabilities such as adaptation, generalization, noise tolerance and justification. Fused systems
have limitations caused by the increased complexity of the inter module interactions and

specifying, designing, and building fuily integiated models is complex.
1.3.Aim of the Thesis

The objective of this thesis is to investigate the representation of the various ntegrated hybrid
systems using neuial networks, fuzzy systems and evolutionary aigerithms. The main

contributions of this thesis are as follows:




1 Performance analysis of the different feedforward neural network supervised learning
] paradigms using first order and second order error information of the three popular
chaotic time series [15]. To overcome the limitations we introduced the concept of meta-

iearning in artificial neural networks designed by evolutionary algorithms.

2  Development and implementation of Meta - Learning Evolutionary Artificial Neural
Network (MLEANN) [15] [16] to optimize the neural network architecture, node transfer
function, connection weights, different leaming algorithms and its parameters. The
performance: of MLEANN is compared with another neural network giobal optimization
approach [35], neuro-fuzzy systems [131] and Multivariate Adaptive Regression Splines
(MARS) [17].

3 Performance analysis of different types of fuzzy inference systems to 1llustrate the role of
the shape and quantity of membership functions per /O variable, fuzzy operatois,

defuzzification method and the fuzzy inference method (eg. Mamdani, Takagi-Sugeno

type etc.) [10].

4 Performance evaluation and technical analysis of different integrated neuro-fuzzy models
[22].

4  To illustrate the cerebral quotient of neuro-fuzzy systems some practical applications of

different types of neuro-fuzzy models are presented:

i ' » A concurrent neuro-fuzzy model was used for stock market analysis (19]
o Integrated neuro-fuzzy model for the following practical applications

ii  Modeling electricity demand prediction in Victoria using a Mamdani fuzzy

inference system [14].

iil  Automation of reactive power contro} using Takagi Sugeno and Mamdani fuzzy

PR Sl R A e B S L L B Tl

inference system { 7).

g

iv Weather forecast models using Mamdani fuzzy inference system [21].

5 Proposed and implemented a framework for Evolutionary design of Neuro-Fuzzy

(EvoNF) systems, The proposed algorithm based con an adaptive evolutionary algorithm is
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capable of adapting the membership functions, rule base, fuzzy operators, leaming
parameters and the fuzzy inference system {11]. Three different leamning strategies for
designing neuro-fuzzy systems are investigated.

o Combination of evolutionary algorithm and gradient descent {global search +

local search)
e Pure evolutionary learning (equivalent to evolutionary fuzzy systems)

o Combination of evolutionary algoritim and gradient descent without fuzzy
funing
The developed three different meuro-fuzzy leaming algorithms are applied to three

chaotic tine series and performances are evaluated. Performance evaluation and

comparison with meta-leaming evolutionary neural networks are also presented.

6. Scientific importance of the results obtained and some future research directions are also

presented.

1.4.Organization of the Thesis

In Chapter 2, we present the fundamental theoretical aspects of artificial neural network
learning paradigms namely backpropagation, conjugate gradient, quazi-Newton and
Levenberg-Marquardt algorithms followed by some experimentations using three different
chaotic time series to demonstrate the performance of the different learning algorithms when

the architecture, node transfer functions etc. are changed.

Chapter 3 begins with the theoretical framework of the proposed meta-learning evolutionary
artificial neural network algorithm based on a hierarchical evolutionary search process. We
further illustrate the chromosome representation of the various layers and implementation
details of the algorithm. Experiments were carried out on the chaotic time series and
performance comparison was made with conventionally designed neural networks (pre-fixed
architectures and node transfer functions) using standard learning algorithms, cutting angle
method of global optimization of neural networks [35] and conventionally designed Mamdani
and Takagi-Sugeno neuro-fuzzy systemns and Multivariate Adaptive Regression Splines
(MARS).




In Chapter 4, we present the concepts of fuzzy inference systems emphasizing on Mamdani
and Takagi Sugeno fuzzy inference systems. A practical example was taken to demonstrate the
importance of the shape of the membership functions, number of membership functions per
input variable, fuzzy operators (T-norm and T-conorm) and the inference method itself.
Adaptive framework for automatic optimal design of fuzzy inference method using
evolutionary algorithms was also presented.

In Chapter S, we review the different types of neuro-fuzzy systems. We presented the different
types of cooperative neuro-fuzzy models followed by a concurrent neuro-fuzzy system with a
demonstration using a practical example. ‘We attempted to forecast the stock market trends
using a concurrent newro-fuzzy model implementing a Mamdani type neuro-fuzzy systein.
Differeni types of integrated neuro-fuzzy models were presented with some critical analysis
and some empirical comparison of different neuro-f1zzy models using Mackey Glass chaotic

time series are also presented towards the end of the chapter.

Chapter 6 focuses on 3 practica! applications of integrated neuro-fuzzy systems. Performance
of the neuro-fuzzy models are compared with different neural network learning techaiques

using 1™ order and 2™ order error information.

In Chapter 7, we present the theoretical frameworks for evolutionary design of neuro fuzzy
systems. Aichitecture of the evolutionary framework is presented and the functioning and
representation of each layer is discussed. Three differerit learning algorithms were developed
~ and experiments are carried out on the three chaotic lime series. Empirice! results were
compared with evolutionary neural networks and conveniionally designed neurc-fuzzy

systems,

Finally in Chapter 8, conclusions and a number of topics for the future research in this

direction are given.




Chapter 2: Neural Networks: Conventional
Design Limitations

2.0 Introduction

The strong interest in neural networks in the scientific community is fueled by the many
successful and promising applications especially to tasks of optimization [70], speech
recognition [50], pattern recognition [43], signal processing [171], financial modeling [211],
function approximation [242], control problems [4] [6] etc.

Even though artificial neural networks are capable of performing a wide variety of tasks, yet in
practice sometimes they deliver only marginal performance. Inappropriate topology selection
and learning algorithm are frequently blamed. There is little reason to expect that one can find
a uniformly best algorithm for selecting the weights in a feedforward artificial neural network
[237). It is an NP-complete problem to find a set of weights for a given neural work and set of
training examples to classify even two-thirds of them correctly [119] [134] [133]. In sum, one
should be skeptical of claims in the literature on training algorithms that one being proposed is
substantially better than most others. Such claims are often defended through some
simulations based on applications in which the proposed aigorithm performed better than some

familiar aiternative.

In this chapter, we review the state of art techniques of different neural network learning
paradigms followed by some experimentation to demonstrate the difficulties in designing

neural networks, which are smaller, faster and with a betier generalization performance.

2.1 Artificiai Neural Network Learning Algerithms

The artificial neural network (ANN) methodology enables us to design useful nonlinear
systems accepting large numbers of inputs, with the design based solely on instances of iaput-

output relationships. For a training set T consisting of # argument value pairs and given a d-




dimensional argument x, an associated target vaiue ¢ will be approximated by the neural
network output. The function approximation could be represented as

T ={xst)i=1:n}

In most applications the training set T is considered to be noisy and our goal is not to
reproduce it exactly but rather to construct a network function that generalizes well to new
function values. We will try to address the problem of selecting the weights to learn the
training set. The notion of closeness on the training set 7 is typically formalized through an

error function of the form
n 2
vr=2 bi -1l 2.1)
i=

where y; is the network output. Qur target is to find a neural network # such that the outpui y;
= 5 (x, w} is close to the desired output ¢ for the input x; (w = strengths of synaptic
connections). The error yr = wr (w) is a function of w because y = 5 depends upon the
parameters w defining the selected network 7. The objective function yr (w) for a neural
network with many parameters defines a highly irregular surface with many local minima,
large regions of little siope and symmetries. The common node functions (tanh, sigmoid,
logistic ¢tc) are differentiable to arbitrary order through the chain rule of differentiation, which
implies that the error is also differentiable to arbitrary order. Hence we are able to make a
Taylor's series expansion in w for wr. We shall first discuss the algorithms for minimizing
hy assuming that we can truncate a Taylor's series expansion about a point w” that is possibly a
local minimum {84], The gradient (first partial derivative) vector is represented by

= I:M] (2.2)

g(w) = Vyr e
I

The gradient vector peints in the direction of steepest increase of w7 and its negative points in
the direction of steepest decrease. The second partial derivative also known as Hessian matrix

is represented by H

2
f(w) = Hy(w) = Viyp(w) = %”%‘Q (2.3
! b
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The Taylor's series for wr, assumed twice continuously differentiable about »”, can now be

given as

vr(w) = wp(w') + g(w' T (w - w0 )T + -;—(w — WO THW J(w - W) 2

+ 0| w-w" )

where O (¢) denotes a term that is of zero-order in small § such that gfm _(_)_{3(_5'_)_ =0.
-0

If for example there is continuous derivative at w’, then the remainder term is of order
| w~w’ H3 and we can reduce (2.4) to the following quadratic model

m(w) = yr(w’) + g(w’ ) (w=w")+ %(w ~w )T HW )(w ~ W’ ) 2.5)
Taking the gradient in the quadratic model of (2.5) yields

Vm = g(w’ )+ H(w - w’) (2.6)
If we set the gradient g = 0 and solving for the minimizing w" yields

w =w’ - H g (2.7)

The model m can now be expressed in terms of minimum value of w” as

m(w' ) = m(w’) + ég(w")‘"ﬂ"’g(w")
2.8)

[}

m(w) m(w*)+—;-(w-w‘)TH(w‘)(w-w‘)

a result that follows from (2.5) by completing the square or recognizing that g(w’)=0. Hence
starting from any initial value of the weight vector, we can in the quadratic case move one step
to the minimizing value when it exists. This is known as Newton's approach and can be used

in the non-quadratic case where H is the Hessian and is positive definite [84].

Multipte Minima Problem in Neural Networks

A long recognized bane of analysis of the error surface and the performance of training

algorithms is the presence of multiple stationary points, including multiple minima. Analysis
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of the behavior of training algorithms generally use the Taylor's series expansions discussed
earlier, typically with the expansion abeut a local minimum w’. However, the multiplicity of
minima confuse the analysis because we need to be assured that we are converging to the same
local minimum as used in the expansion. How likely are we to encounter a sizable number of
focal minima? Empirical experience with training algorithm shswes that different initialization
yield different resulting networks. Hence the issue of many minima is a real one. According to

Auer et al [30], a single node network with # training pairs and R? inputs, could end up having

(4:;- )d local minima. Hence not only multiple minima exist, but there may be huge numbers of

them.

Different learning algorithms have their staunch proponents, who can always construct
instances in which their aigorithm performs better than most others. In practice, there are four
types of optimization algorithms that are used to minimize ¥r (w). The first three methods
gradient descent, conjugate gradients and quasi-Newton are general optimization methods
whose operation can be understood in the context of minimization of a quadratic error
function. Aithough the error surface is surely not quadratic, for differentiable node functions it
will be so in a sufficiently small neighborhood of a local minimum, and such an analysis
provides information about the behavior of the training algorithm over the span of a few
iterations and also as it approaches its 5>al. The fourth method of Levenberg and Marquardt
[68] is specifically adapted to minimization of an error function that arises from a squared
error criterion of the form we are assuming, Backpropagation calculation of gradient can be
adapted easily to provide the information about the Jacobian matrix J needed for this method.
A common feature of these training algorithms is the requirement of repeated efficient

calculation of gradients.
2.1.1 Backpropagation Algorithm

Backpropagation provides an effective method for evaluating the gradient vector needed to

implement the steepest descent, conjugate gradient, and quasi-Newton algorithms. BP differs

from straightforward gradient calculations using the chain rule for differentiation in the way it
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organizes efficiently the gradient caiculation for networks having more than one hidden Jayer.
BP iteratively selects a sequence of parameter vectors {wy, k =J:T} for a moderatz value of
running time T, with the goal of having {¥r(wy) = ¥ (k)} converge to a small neighborhood of
a good local minimum rather than the usually inaccessib'e global minimum.

yr = min, gy Wr(w) 2.9

The simplest steepest descent algorithm uses the following weight update in the direction of

dy=-g; with a learning rate or step size oy.

Wiry = Wy — 08, (2.10)
A good choice oy for the leaming rate a; for a given choice of descent direction d; is the one

that minimizes Y+l
ay = arg ming W(wi + dy ) 2.11)
To carry out the minimization we use

W(W+1) , o YO + ady)

=0 2.
oo a=ay da a=a; (212)
To evaluate this equation, note that
dy(wy + ady T
" = gh 2.13)

and conclude that for optima} learning rate we must satisfy the orthogonality condition

T
8 +1% =0 (2.14)

When the error function is not specified analytically, then its minimization along d can be
accomplished through a numerical line search for a; or through numerical difterentiation as
noted herein. The line search: avoids the probiem of setting a fixed step size. Analysis of such
algorithms often examine their behavior when the error function is truly a quadratic as given in

(2.5) and (2.6). In our current notation,
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8y — 8 = O Hd, (2.15)

Hence the optimality condition for the learning rate @ derived from the orthogonality
condition (2.14) becomes

T
o = %8k (2.16)
dl Hd,

When search directions are chosen via dy = -Mgy, with M, symmetric, then the optimal

learning rate is
T
" - M. e
gk M HM g,

In the case of steepest descent for 2 uadratic error function, M; is the identity and

T
ap = —BhEL 2.18)

8 Hg,
Cne can think of «; as the reciprocal of an expected value of the eigen values {A;} of the
Hessian with probabilities determined by the squares of the coefficients of the gradient vector
g: expanded in terms of the eigen vectc:s fe;} of the Hessian.
( g{ef)z

9iki, 9i = —%
1 g; &k

I M

1

- ; = , (2.19)
The algorithm, even in the context of a truly quadratic error surface and with line search,
suffers from greed. The successive directions do not generally support each other in that after
two steps; say, the gradient is usually no longer orthogonal to the direction taken in the first
step. In the quadratic case there exists a choice of learning rates that will drive the error to its
absolute minimum in no more than p+J steps where p is the number of parameters. To see
this, note that

vOw) = y(w' )+ 2w W' FHOw-w) =ww' )+ $8TH g @220




1t is easily verified that if g, = g(w) then

k
8y = [l’[ (1- tlf,'-lif)]gﬂ (2.21)

Hence for k = p, we can achicve g; = 0 simply by choosing a, ..., any permutation of 1/4,
..... 1725, the reciprocals of the eigen values of the Hessian H; the resulting product of matrices
is a matrix that annihilates each of the p eigen vectors and therefore any other vector that can
be represented as their weighted sum. Of course, in practice, we do not know the eigen values
and cannot implement this algorithm. However, this observation points out the distinction
between optimality when one looks ahead only one siep and optimality when one adopts a
more distant horizon. Traditionally the step size is held at a constant vaisc o = a. The
simplicity of this approach is belied by the need to carefully select the learning rate. If the
fixed step size is too large, then we leave ourselves open to overshooting the line search
minimum, we may engage in oscillatory or divergent behavior, and we loose guarantees of
monotone reduction of the error function g7 If the step size is too small, then we may need a
very large number of iterations T before we achieve a sufficiently small value of the error
function. A variation on the constant learning rate is to adopt a deterministic learning rate

schedule that varies the learning rate dependant on the iteration number.

An ad hoc departure from steepest descent is to add memory to the recursion through
momentum term. Now the change in parameter vector w depends not only on the current

gradient but also on the most recent change in parameter vector,
Byp = Wiy — Wy = Py ~ a8 forkz 0 2.22)

what we gain is a high frequency smoothing effect through the mumentum tert. The change
in parameter vector depends not only on the current gradient g;.; but also, in an exponentially
decaying fashion (provided that 0 < § < 1), on all previous gradients. If the succession of
recent gradients has tended to alternate directions, then ihe sum will be relatively small and we
will make only small changes in the parameter vector. This could occur if we are in the
vicinity of a local minimium, successive changes would just serve to bounce us back and forth

past the minimum. If, however, recent gradients tends to align, then we wiil make an even
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larger change in the parameter vector and thereby move more rapidly across a large region of
descent and possibly across over a small region of ascent that screened off a deeper local
minimum. Of course, if the leaming rate a is well chosen, then successive gradients will tend
1o be orthogonal and a weighted sum will not cancel itself out [214].

2.1.2 Conjugate Gradient Algorithm

The motivation behind the conjugate gradient algorithm is that we wish to iteratively select
search directions (d,) that are non-interfering in the sense that successive minimizations along
these directions do not undo the progress made by previous minimizations. The search
direction is selected in such a way that at each iteratively selected parameter value wy, the
current gradient g, is orthogonal to all previous search directions d,....d.;. Hence, at any
given step in the iteration, the error surface has a direction of steepest descent that is
orthogonal to the linear subspace of parameters spanned by the prior search directions.
Steepest descent merely assured us that the current gradient is orthogonal to the last search
direction. If the error function /¥y (w; }} is quadratic with positive definite Hessian H,
choosing the search directions (d;} to be H-conjugate and the a; to satisfy (2.16) is equivalent
to the orthogonality between the current gradient and the past search directions given by

(Vi<k < p)d?‘gk =0 (2.23)

it is easily verified that conjugate directions (d)) also form a linearly independent set of
directions in weight space. If weight space has, dimension p then of course there can be only p
linearly independent directions of vectors. Hence, it is possible to represent any point as a
linear combination of no more than p of the conjugate directions, and in particular if w' is the
sought location of the minimum of the error fuu. tion, then there exist coefficients such that
Wy = T ald, (224
i=0

Thus if the error surface is quadratic with a positive definite Hessian, then selecting H-
conjugate search directions and iearning rates according to (2.16) guarantees a minimum in no
more than p iterations. To be able to apply the method of conjugate gradients we must be able

to determine such a set of directions and then solve for the correct coefficients. Conventional
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conjugate gradient algorithms use a line search to find the minimizing step and are initialized
as follows

dy=go (2.25)
introducing a scaling £ to be determined, and then iterate with the simpie recursion

dies = ~8ieiefp Uk (2.26)
According to the conjugacy condition in (2.23) and the recursion of (2.26) yield

diHdy,; = 0 = d[ H(~8 411091 ) o @27)

Solving yields the necessary conditio” -aat

= dj Hey.y

T (2.28)
d, Hd,

By

Induction can be established that this recursive definition of conjugate gradient search
directions does indeed yield a fully conjugate set when the error function is guadratic,
although the derivation of (2.28) only established that 4 and 4., are conjugate. A version of
the conjugate gradient algorithm that does not require line searches was developed by Moller
and uses the finite difference method for estimating Hd,. To monitor the sign of the product

dl Hd,, define 5 by
8 = df Hd, (2.29)

Moller introduces two new variables, 4 and :?.-, to define an altered value of §, § . These
variables are charged with ensuring that § > 0. Although this does not affect the error
surface, and the Hessian with the quadratic approximation will still suggest there is a
maximum along the search direction, the method produces a step size that shows good results

in practice. & is defined as follows

5 =68+ (A-A)dld; (2.30)

The requirement for § > 0 gives a condition for A
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(2.31)

) to satisfy (2.31) and so ensures & > 0. Substituting this

Moller then sets 4 = 2(4 - =
dpdy

§=-6+Mdld, (2.32)

In order to get a good quadratic approximation of the error surface, 2 mechanism to raise or
lower A is needed when the Hessian is positive definite. Detailed step-by-step description can
be found in [186].

2.1.3 Quasi - Newton Algorithm

If the error surface is purely quadratic, as per (2.7) we can solve the minimizing weight vector
in a single step through Newton's method. This solution requires knowledge of the Hessian
and assumes it constant and positive definite. We need a solution method that can take into
account the variation of H(w)} with w, knowing the fact that the error function is at best only
approximately quadratic and removal from a local minimum the approximating quadratic
surface is likely to have a Hessian thet is not positive definite and the evalnation of true

Hessian is computationally top expensive.

The quasi- Newton method addresses themselves to these tasks by first generalizing the

iterative algorithm to the form
Wy = Wy ~0GMg, (2.33)
The choice of step size o, to use with a search direction d ¢ = Mrgyis determined by an

approximate line search, and use of line search is essential to the success of this method. The

quazi-Newton method iteratively tracks the inverse of the Hessian without ever computing it

directly. Let ¢, = gg41 — g4 .and consider the expansion for the gradient (quadratic case)




gy = Hy(wpoy ~w) = Hypy (2.34)

If we can evaluate the difference of gradients for p linearly independent increments py, ...pp.; in
the weight vectors, then we can solve for the Hessian (assumed constant). To do so, form the
matrices P with ith column the vector p,.; and @ with ith column the vector g;;. Then we have

the matrix equation

O=HP (235
which can be solved for the Hessian, when the columns of P are linearly independent, through
H=0P' (2.36)

Thus from the increments in the gradient induced by the increments in the weight vectors as
training proceeds, we have some hope of being able to track the Hessian. An approximation to
the inverse M of the Hessian is achieved by interchanging g, and p; in an approximation to the

Hessian itself
M=PQ’ (2.37)

Hence the information is available in the sequence of gradients that determine the g4, and the
sequence of search directions and learning rates that determine the py, to infer to the inverse of

the Hessian, particularly if it is only slowly varying.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi — Newton algorithm [68] implements
the update for the approximate inverse M of the Hessian by

r T T T
Mk-!-] = Mk + (] + i quk) pkp; - P4 Mk T+ qukpk (2.38)
9k Px  PiPx 9% Pk

This recursion is initialized by starting with a positive definite matrix such as the identity, M,
= J. The Determination of the learning rates is critical, as was the case for the method of
conjugate directions. Quasi-Newion methods enjoy asymptotically more rapid convergence

than that of steepest descent or conjugate gradient methods.




2.1.4 Levenberg-Marquardt algorithm

The Levenberg-Marquardt (LM) algorithm [68] exploits the fact that the error function is a
surn of squares as given in (2.1). Introduce the following notation for the error vector and its

Jacobian with respect to the network parameters w

.

- T =4 =1 s _ .
J—Jy-awi,l—}.p,j—].n (2.39)
The Jacobian matrix is a large p X n matrix, ait .. whose elements are calculated dirzctly by
backpropagation technique as puesented in Section 2.1.1. The p dimensional gradient g for the

quadratic error function can be expressed as

g(w} = ie,-Ve,-(w) = Je
i=]

and the Hessian matrix by

n
Hence defining D = ¥ ¢,V 7e,yields the expression

i=l
Hw)=JJS+D (2.41)

The key to the LM algorithm is to approximate this expression for the Hessian by replacing
the matrix D involving second derivatives by the much simpler positively scaled unit matrix

€ I.The LM is a descent algorithm using this approximation in the form

i
My = [’JT'*E 1]- JWhe1 = wp — o Mpg(wy )




Successful use of LM requires approximate line search to determine the rate ¢;. The matrix Jr
is automatically symmetric and non-negative definite. The typically large size of J may
necessitate careful memory management in evaluating the product JJ7. Hence any positive €

will ensure that M, is positive definite, as required by the descent condition. The performance

of the algorithm thus depends on the choice of €.

When the scalar € is zero, this is just Newton's method, using the approximate Hessian
matrix. When € is large, this becomes gradient descent with a small step size. As Newion's
method is more accurate, € is decreased after each successful step (reduction in performance
function) and is increased only when a tentative step would increase the performance function.
By doing this, the performance function will always be reduced at each iteration of the
algorithm {43].

2.2.Designing Artificial Neural Networks

The error surface of very small networks has been characterized previously. However,
practical networks often contain hundreds of weights and in general, theoretical and empirical
results on smal! networks do not scale up to large networks. To investigate the empirical
performance with the different leamning algorithms on different architectures and node transfer
functions, we have choosen 3 famous chaotic time series benchmarks so that a) we know the
best solution, b) can carefully control various parameters and ¢) know the effect of the
different learning algorithms namely backpropagation (BP), scaled conjugate gradient (SCG),
quasi-Newton algorithm (QNA) and Levenberg Marquardt algorithm (LM),

We also report some experimentation results related to convergence speed and generalization
performance of the four different neural network-learning algorithms discussed in Section 2.1.
Performances of the different learning algorithms were evaluated when the activation

functions and architectures were changed.

We used a feedforward neural network with 1 hidden layer and the numbers of hidden neurons

were varied (14,16,18,20,24) and the speed of convergence and generalization error for each




of the four learning algorithms was observed. The effect of node activation functions, log-
sigmoidal activation function (LSAF) and tanh-sigmoidal activation function (TSAF), keeping
24 hidden neurons for the four learning algorithms was also studied. Computational
complexities of the different learning algorithms were also noted during each event. The
experiments were replicated 3 times each with a different starting condition (random weights)
and the worst errors were reported. No stopping criterion, and no method of controlling
generalization is used other than the maximum number of updates (epochs). All networks were
trained for an identical number of stochastic updates (2500 epochs).We used the following

three chaotic time series:
a) Waste Water Flow Prediction

The problem is to predict the wastewater flow into a sewage plant [138]. The water flow was
measured every hour. It is important to be able to predict the volume of flow f{t+1) as the
collecting tank has a limited capacity and a sudden increase in flow will cause to overflow
excess water. The water flow prediction is to assist an adaptive online controller. The data set
is represented as [f{1), f1t-1), a(t), b@), fi1+1)] where f{1), f(t-1) and f{t+1) are the water flows at
time t,¢-1, and t+1 (hours) respectively. a(t) and b(1) are the moving averages for 12 hours and
24 hours. The time series consists of 475 data points. The first 240 data sets were used for
training and remaining data for testing.

b) Mackey-Glass Chaotic Time Series

The Mackey-Glass differential equation [167] is a chaotic time series for some values of the

parameters x(0) and 7.

dx(t) = 0.2x(t - )
d 14+ x"%¢t -1

~ 0.1 x(t). (2.43)

We used the value x(#-18), x(t-12), x(t-6), x(t) to predict x(#+6). Fourth order Runge-Kutta
method was used to generate 1000 data series. The time step used in the method is 0.1 and
initial condition were x(0)=1.2, 7=17, x(¢)=0 for +<0. First 500 data sets were used for training

and remaining data for testing.




¢) Gas Furnace Time Series Data

This time series was used to predict the CO, (carbon dioxide) concentration y (r+1) [51]. In a
gas furnace system, air and methane are combined to form a mixture of gases containing CO..
Air fed into the gas furnace is kept constant, while the methane feed rate u(s) can be varied in
any desired manner. After that, the resulting CO, concentration y(t) is measured in the exhaust
gases at the outlet of the furnace. Data is represented as [u(?), (1), y(t+1)}]. The time series
consists of 292 pairs of observation and 50% of data was used for training and remaining for

testing.
2.2.1 Simulation Results Using ANNs

Resulis for four different learning algorithms for different architectures, node transfer

functions for the three different time series are presented in the following sections.

2.2.1.1 Network Architecture

This section investigates the training and generalization behavior of the networks when the
architecture of the neural network was changed. The same architecture was used for the three
different time series for the four learning algorithms using same node transfer function (tan
sigmoidal). Tables 2.1 ~ 2.3 summarizes the empirical results of training and generalization.
Figures 2.1 - 2.6 graphically depict the training and generalization performance for the
different learning methods.
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Table 2.1, Training and test performance for Mackey Glass Series for different architectures

Mackey Glass Time Series
Learning algorithm Hidden Neurons Root Mean Squared Error
Training data Test data

14 0.0890 0.0880

16 0.0824 0.0860

BP i8 0.0764 0.0750
20 0.0452 0.0442

24 0.0439 0.0437

14 0.0040 0.0051

16 0.0053 0.0052

SCG i 18 0.0066 0.0067
20 0.0058 0.0058

24 0.0045 0.0045

14 0.0041 0.0040

16 0.0031 0.0030

QNA 18 0.0035 0.0036
20 0.0038 0.0038

24 0.0034 0.0036

14 0.0016 0.0016

16 0.0015 0.0015

LM 18 0.0015 0.0015
20 0.0010 0.0011

24 0.0009 0.0009
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Figure 2.1. Architecture variation: Mackey-Glass time series training performance for
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Table 2.2. Training and test performance for gas fumace time series for different architectures

Gas Furnace Time Series
Learning algorithm Hidden Neurons Root Mean Squared Error
Training data Test data
14 0.0760 0.1291
16 0.0835 0.1056
BP 18 0.0716 0.0766
20 0.0800 0.0950
24 0.0663 0.0970
14 0.0160 0.0331
16 0.0157 0.0330
SCG 18 0.0165 0.0330
_.; 20 0.0158 0.0361
_' 2% 0.0153 0.0367
'; 14 0.6137 ! 0.0529
16 0.0133 |~ 0.0465
QNA 18 0.0133 0.0376
2 T 0 0.0136 0.0410
¢ % 0.0128 0.0516
14 0.0118 0.0450
16 0.0140 0.0971
LM i8 0.0116 0.1080
20 0.0100 0.1880
24 0.0100 0.1856
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Table 2.3. Training and test performance for wastewater flow series for different architectures

Wastewater Time Series

Learning algorithm Hidden Neurons Root Mean Squared Error
Training data Test data
14 0.1269 0.1340
16 0.1184 0.1360
18 0.1182 0.1350
20 0.1221 0.1370
24 0.1169 0.1412
14 0.0459 0.0900
16 0.0428 0.1130
18 0.0425 0.1130
20 0.0423 0.1626
24 0.0400 0.0920
14 0.0423 0.1271
16 0.0367 0.1369
18 0.0363 0.1360
20 0.0339 0.1450
2 0.0316 0.3620
14 0.0364 0.0950
16 0.0303 0.1631
18 0.0314 0.1800
20 0.0259 0.1314
24 0.0244 0.1560
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2.2.1.2. Node transfer functions

This section investigates the effect of different node transfer functions on training and
generalization performance for the four learning algorithms. To compare empirically we
maintained the same architecture and only changing the node transfer functions and leaming
algorithms. All the networks were randomly initialized and trained for 2500 epochs. Tables
2.4 - 2.6 summarizes the empirical results of training and generalization for the two node
transfer functions, tanh-sigmoidal activation function (TSAF) and log-sigmoidal activation
function (LSAF), when the architecture was fixed with 24 hidden neurons. Figures 2.7 - 2.12
graphically depict the convergence characteristics of the four training algorithms for different
node transfer functions during 2500 epochs training.

Table 2.4. Mackey Glass time series: Training and generalization performance for different

activation functions

Root Mean Squared Error
. Learning - .
Time series . Activation function
algorithm Training Test
TSAF 0.0439 0.0437
BP
LSAF 0.0970 0.0950
TSAF 0.0045 0.0045
SCG
Mackey LSAF 0.0076 0.0074
Glass TSAF 0.0033 0.0034 |
QNA ]
LSAF 0.0029 0.0029 \
TSAF 0.0009 0.0009
LM
LSAF 0.0009 0.0010
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Table 2.5, Gas fum:zce series: Training and generalization performance for different activation

functions
Root Mean Squared Error
Time series "l'e"!:ll:' g Activation function
a'gonthm Training Test
TSAF 0.0663 0.0970
BP
LSAF 0.0940 0.1025
TSAF 0.0153 0.0367
SCG
Gas LSAF 0.0162 0.0367
furnace TSAF 0.0128 0.0516
QNA
LSAF 0.0137 0.0420
TSAF 0.0100 0.1856
LM
LSAF 0.0089 0.1009
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Table 2.6. Waste water time series: Training and generalization performance for different

activation functions
|
Root Mean Squared Error
. Learning s .
Time series . Activation function
algorithm Traising Test
TSAF 0.1169 0.1412
BP
LSAF 0.0156 0.1600
TSAF 0.0400 0.0920
SCG
LSAF 0.0420 0.0820
Wastewater
TSAF 0.0316 0.4600
OQNA
LSAF 0.0256 0.2110
TSAF 0.0244 0.1560
LM LSAF 0.2160 0.1770
f Sachpropageion 1 N Sceled conjugae gradient sigorthm N
- - - nrasr hadd I ) --o:uw - “:uom - ::ndn -

Figure 2.11. Wastewater time series: Convergence of training when node transfer function is

changed (a) backpropagation training (b) scaled conjugate gradient algorithm
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2.2.1.3 Computational Complexity of Learning algorithms

This section investigates the computational complexity of the different learning algorithms
when the architecture of the hidden layer is varied using tanh-sigmoidal activation function.
The networks were randomly initialized and trained for 2500 epochs using the different
learning algorithms. Table 2.7 summarizes the empirical values of the computational load for

the different learning methods for the three different time series.
2.3.Discussion of Results Obtained and Further Work

In this Section we would like to evaluate and summarize the results of the various

experimentations mentioned in Section 2.2.1.

For Mackey Glass series (Table 2.1) all the 4 learning algorithms tend to generalize well as the
hidden neurons were increased. However, the generalization was better when the hidden
neurons were using TSAF. LM showed the fastest convergence regardless of architecture and
node activation function. However, the computational complexity of LM algorithm is very
amazing as depicted in Table 2.7. For Mackey glass series (with 14 hidden neurons), when BP
was using 0.625 billion flops, LM technique required 29.4 billion flops. When the hidden
neurons were increased to 24, BP used 1.064 billion flops and LM's share jumped to 203.10
billion flops. LM gave the lowest generalization RMSE of 0.0009 with 24 hidden neurons.
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Table 2.7. Approximate computational load for the different time series using the different

training algorithms

Learning algorithm | Hidden Neurons Computational Load (billion flops)
Mackey Gas Waste

Glass Furnace water

14 0.625 0.142 0.301

16 0.713 0.305 0.645

BP 18 0.800 0.488 0.880
20 0.888 0.690 1.460

24 1.064 0.932 1.970

14 1.256 0.286 0.604

16 1.429 0.326 0.689

SCG 18 1.605 0.366 0.774
20 1.781 0.406 0.859

24 2.133 0.486 1.029

14 2.570 0.679 1.910

ONA 16 3.319 0.8899 2.582
I8 4.221 0.9000 3.388

20 5.313 1.131 4384

24 7.989 2.193 6.925

14 29.40 3.930 1246

16 57.51 8.355 2772

LM I8 93.29 14.03 93.79 ;
20 137.83 21.10 118.53 'i

24 203.10 31.83 175.22

As shown in Table 2.2, for gas furnace series the generalization performance were entirely

different for the different learning algorithms. BP gave the best generalization RMSE of
0.0766 with 18 hidden neurons. RMSE for SCG, QNA and LM were 0.0330 (16 neurons),
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0.0376 (18 neurons) and 0.045 (14 neurons) respectively. As depicted in Figures 2.9 and 2.10
the node transfer function also has an effect on the training speed and generalization
performance. LM algorithm converged much faster and gave a better generalization
performance when the node transfer function was changed to LSAF (Refer to Figure 2.10(b)).

Waste water prediction series also showed a different generalization performance when the
architecture was changed for the different learning algorithms (Refer to Table 2.3). BP's best
generalization RMSE was 0.135 with 18 hidden neurons using TSAF and that of SCG, QNA
and LM were 0.0900, 0.1271 and 0.095 with 14 neurons each respectively. LM algorithm
converged much faster and gave a better generalization performance when the node transfer
function was changed to LSAF (Refer to Figure 2.12(b)).

In spite of computational complexity, LM performed well for Mackey Glass series. For gas
furnace and waste water prediction SCG algorithm performed better. However, the speed of
convergence of LM in all the three cases is worth noting. This leads us to the following

questions:

o What is the optimal architecture (number of neurons and hidden layers) for a given
problem?

¢  What node transfer functions should one choose?

e  What is the optimal learning algorithm and its parameters?

From the above discussion it is clear that the selection of the topology of a network and the
best learning algorithm and its parameters is a tedious task for designing an optimal artificial
neural network, which is smaller, faster and with a beiter generalization performance.
Evolutionary algorithn is an adaptive search technique based on the principles and
mechanisms of natural selection and survival of the fittest from natural evolution [85]. The
interest in evolutionary search procedures for designing neural network topology has been
growing in recent years as they can evolve towards the optimal architecture without outside
interference, thus eliminating the tedious trial and error work of manually finding an optimal
network [15] [250]. In Chapter 3, we will introduce the evolutionary design of neural networks

and the concept of meta-learning in evolutionary artificial neural networks [15].
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Chapter 3: Meta-Learning in Evolutionary
Artificial Neural Networks

3.0 Introduction

At present, neural network design relies heavily on human experts who have sufficient
knowledge about the different aspects of the network and the problem domain. As the
complexity of the problem domain increases, manual design becomes more difficult and
unmanageable. Evolutionary artificial neural networks (EANNSs) refer to a special class of
artificial neural networks (ANNs) in which evolution is another fundamental form of
adaptation in addition to learning [5] [15]. Evolutionary algorithms (EA) are used to adapt the
connection weights, network architecture and leamning rules according to the problem
environment. A distinct feature of EANNS 1s their adaptability tc a dynamic environment. In
other words EANNs can adapt to an environment as well as shanges in the environment. The
two forms of adaptation: evolution and learning in EANNs make their adaptation to a dynamic
environment much more effective and efficient. In Section 3.1, we present the fundamental
concepts of EA's followed by state of the art design of EANNS in Section 3.2. In Section 3.3,
we then present our work on evolutionary neural networks based on meta-learning

(MLEANN) followed by experimentation results and discussions.

3.1 Evolutionary Algorithms

EAs are population based adaptive methods, which may be used 1o solve optimization
problems, based on the genetic processes of biological ¢igunisms [85] [86]. Over many
generations, natural populations evolve according to the principles of natural selection and
"Survival of the Fittest", first clearly stated by Charles Darwin in "On the Origin of Species".
By mimicking this process, EAs are able to "evolve” solutions to real world problems, if they

have been suitably encoded. The procedure may be written as the difference equation:

x(t +1] = s(v(xft])) (3.1)
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1. Generate the initial population P(@) at random and set i=0;

2. Repeat until the number of iterations or time has reached the
preset limit or the population has converged.

¢ Evaluate the fitness of each individual in P(i)
e Select parents from P(i) based on their fitness in P (i)
e Apply reproduction operators to the parents and produce

offspring, the next generation, P(i+1} is obtained from the
offspring and possibly parents.

Figure 3.1. Pseudo code of an evolutionary algorithm

3.2 Evolutionary Artificial Neural Networks

Many of the conventional ANNs now being designed are statistically quite accurate but they
still leave a bad taste with users who expect computers to solve their problems accurately. The
important drawback is that the designer has to specify the number of neurons, their distribution
over severa) layers and interconnection between them. Several methods have been proposed to
automatically construct ANNs for reduction in network complexity that is to determine the
appropriate number of hidden units, layers, ete. Topological optimization algorithms such as
Extentron [31], Upstart [90], Pruning [199] [223] and Cascade Correlation [82] etc. got its

own limitations.

The interest in evolutionary search procedures for designing ANN architecture has been
growing in recent years as they can evolve towards the optimal architecture without outside
interference, thus eliminating the tedious trial and error work of manually finding an optimal
network [5] [15] [28] [52] [53] [54] {55] [87] [96] [178] [234] [247] [248] [249] [251]. The
advantage of the automatic design over the manual design becomes clearer as the complexity
of ANN increases. EANNSs provide a general framework for investigating various aspects of
simulated evolution and learning [32] [45] [46] [152] [165].
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3.2.1 General Framework for EANNs

In EANN's evolution can be introduced at various levels. At the lowest level, evolution can be
introduced into weight training, where ANN weights are evolved. At the next higher level,
evolution can be introduced into neural network architecture adaptation, where the architecture
(number of hidden layers, no of hidden neurons and node transfer functions) is evolved. At the
highest level, evolution can be introduced into the learning mechanism. A general framework
of EANNs which includes the above three levels of evolution is given in Figure 3.2 [5] [15].

Slow
ﬂ Evolutionary Search of learning rules \
\' Evolutionary search of architectures and node transfer functions d @

Evolutionary search of connection weights

Fast

Figure 3.2. A General Framework for EANNs

From the design point of view, the decision on the level of evolution depends on what kind of
prior knowledge is available. If there is more prior knowledge about EANN's architectures
than that about their learning rules or a particular class of architectures is pursued, it is better
to implement the evolution of architectures at the highest level because such knowledge can be
used to reduce the search space and the lower level evolution of learning rules can be more
biased towards this kind of architectures. On the other hand, the evolution of learning rules
shouid be at the highest level if there is more prior knowledge about them available or there is

a special interest in certain type of learning rules.

3.2.1.1 Evolutionary Search of Connection weights

The shortcomings of the BP algorithm mentioned in Section 2.1 could be overcome if the
training process is formulated as a global search of connection weights towards an optimal set

defined by the evolutionary algorithm. Optimal connection weights can be formulated as a
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global search problem wherein the architecture of the neural network is pre-defined and fixed
during the evolution.

Connection weights may be represented as binary strings representcd by a certain length. The
whole network is encoded by concatenation of all the connection weights of the network in the
chromosome. A heuristic concerning the order of the concatenation is to put connection
weights to the same node together. Fig 3.3 illustrates the binary representation of connection
weights wherein each weight is represented by 4 bits.

Genctype: 0100 1000 0111 0011 0001 0101

Figure 3.2. Connection weight chromosome encoding using binary representation

Real numbers have been proposed to represent connection weights directly [209]. A
representation of the ANN could be (2.0, 6.0, 5.0, 1.0, 4.0, 10.0). However proper genetic

operators are to be chosen depending upon the representation used.
Evolutionary Search of connection weights can be formulated as follows:

1) Generate an initial population of N weight chromosomes. Evaluate the fitness of each
EANN depending on the problem.

2) Depending on the fitness and using suitable selection methods reproduce a number of
children for each individual in the current generation,

3) Apply genetic operators to each child individual generated above and obtain the next
generation,

4) Check whether the network has achieved the required error rate or the specified
number of generations has been reached. Go to Step 2.

5) End

While gradient based techniques are very much dependant on the initial setting of weights, the
proposed algorithm can be considered generally much less sensitive to initial conditions. They

always search for a global optimal solution, while any gradient descent or second order
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optimization technique can only find iocal optimum in a neighborhood of the initial solution.
Performance by using the above approach will directly depend oa the problem.

3.2.1.2 Evolutionary Search of Architectures

Evolutionary architecture adaptation can be achieved by constructive and destructive
algorithms. Constructive algorithms, which add complexity to the network starting from a very
simple architecture until the entire network is able to learn the task {90] [177] [!70].
Destructive algorithms start with large architectures and remove nodes and interconnections
until the ANN is no longer able to perform its task [199] [223]. Then the last removal is
undone. Figure 3.3 demonstrates how typical neural network architecture could be directly
encoded and how the genotype is represented. For an optimal network, the required node
transfer function (gaussian, sigmoidal, etc.) can be formulated as a global search problem,
which is evolved simuitaneously with the search for architectures [164].

To minimize the size of the genotype string and improve scalability, when priori knowledge of
the architecture is known it will be efficient to use some indirect coding (high level) schemes.
For example, if two neighboring layers are fully connected then the architecture can be coded
by simply using the number of layers and nodes. The blueprint representation is a popular
indirect coding scheme where it assumes architecture consists of various segments or areas.
Each segment or area will define a set of neurons, their spatial arrangement and their efferent
connectivity. Several high level coding schemes like graph generation system [151],
Symbiotic Adaptive Neuro-Evolution (SANE) [208] [187], marker based genetic coding [95],
L-systems [44], cellular encoding [102], fractal representation [174] etc are some of the
rugged techniques.
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Figure 3.3, Architecture chromosome using binary coding

Global search of transfer function and the connectivity of the ANN using evolutionary
algorithms can be formulated as follows
1} The evolution of architectures has to be implemented such that the evolution of weight
chromosomes are evolved at a faster rate i.e. for every architecture chromosome, there
will be several weight chromosomes evolving at a faster time scale
2) Generate an initial population of N architecture chromosomes. Evaluate the fitness of
each EANN depending on the problem.
3) Depending on the fitmess and using suitable selection methods reproduce a number of
children for each individual in the current generation.
4) Apply genetic operators to each child individual generated above and obtain the next
generation.
5} Check whether the network has achieved the required error rate or the specified
number of generations has been reached. Go to Step 3.
6) End

3.2.1.3 Evolutionary Search of Learning Rules

For the neural network to be fully optimal the learning rules are to be adapted dynamically

according to its architecture and the given problem. Deciding the learning rate and momentum
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can be considered as the first attempt of learning rules [150]. The basic learning rule can be
generalized by the function

n k
i) = % z (G _I'[ng( i=1) 3.2)
j=

k=1, ; =
l},lz,....i}c =}

Where ¢ is the time, Aw is the weight change, x;, x;,..... x, are local variables and the 8’s are
the real values coefficients which will be determined by the global search algorithm. In the
above equation different values of 8's determine different learning rules. The above equation
is arrived based on the assumption that the same rule is applicable at every node of the
network and the weight updating is only dependent on the input/output activations and the
connection weights on a particular node. Genotypes (8's) can be encoded as real-valued
coefficients and the global search for learning rules using the hybrid algorithm can be
formulated as follows:

1. The evolution of learning rules has to be implemented such that the evolution of
architecture chromosomes are evolved at a faster rate ie. for every learning rule
chromosome, there will be several architecture chromosomes evolving at a faster time
scale

2.  Generate an initial population of N learning rules. Evaluate the fitness of each EANN
depending on the problem.

3.  Depending on the fitness and using suitable selection methods reproduce a number of
children for each individual in the current generation.

4. Apply genetic operators to each child individual generated above and obtain the next
generation.

5. Check whether the network has achieved the required error rate or the specified number
of generations has been reached. Go to Step 3.

6. End

Several researches have been going on about how to formulate different optimal learning rules
{151 [34] (88] [247]. The adaptive adjustment of BP aigorithm's parameters, such as the

learning rate and momentum, through evolution could be considered as the first attempt of the
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evolution of learning rules [111]. Chalmers [66] defined the form of learning rules as a linear
function of four local vaniables and their six pair wise products [88] {34].

Global optimization of neural network has been widely addressed using several other
techniques [64] [78] [89] [206] [217] [216] [218] [219] [257]. Sexton et al [217] used
simulated annealing algorithm for optimization of learning. For optimization of the neural
network learning, in many cases, a pre-defined architecture was used and in a few cases
architectures were evolved together. No work has been reported to the best of our knowledge,
where the network is fully automated (interaction of the different evolutionary search
mechanisms) using the generic framework mentioned in Section 3.2. Many a times, the search
space is narrowed down by pre-defined architecture, node transfer functions and leaming

riles.

3.3 Meta Learning Evolutionary Artificial Neural Networks
(MLEANN)

One major problem of evolutionary algorithm is their inefficiency in fine tuning locai search
although they are good at global search. The efficiency of evolutionary fraining can be
improved significantly by incorporating a local search procedure into the evolution.
Evolutionary algorithms are used to first locate a good region in the space and then a local
search procedure is used to find a near optimal solution in this region. It is interesting to
consider finding good initial weights as locating a good region in the space. Defining that the
basin of attraction of a local minimum is composed of all the points, sets of weights in this
case, which can converge to the local minimum through a Jocal search algorithm, then a global
minimum can easily be found by the local search algorithm if the evolutionary algorithm can
locate any point, i.e, a set of initial weights, in the basin of attraction of the global minimum.
Referring to Figure 3.4, G, and G, could be considered as the initial weights as located by the
evolutionary search and W, and Wj the corresponding final weights fine-tuned by the meta-

learning technique.
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Figure 3.4. Fine tuning of weights using meta-learning

Figure 2.5 illustrates the general interaction mechanism with the learning mechanism of the
EANN evolving at the highest level on the slowest time scale. All the randomly generated
architecture of the initial population are trained by four different learning algorithms
(backpropagation-BP, scaled conjugate gradient-SCG, quasi-Newton algerithm-QNA and
Levenberg-Marquardt-LM) and evolved in a parallel environment. Parameters controlling the
performance of the learning algorithm will be adapted (example, learning rate and momentum
for BP) according to the problem. Figure 3.6 depicts the basic algorithm of proposed meta-
learning EANN. Architecture of the chromosome is depicted in Figure 3.7.

Evolutionary search of lsarning algorihms and its paramaters

)
SIS

Evohtbnuym of uchl_mm and node tranafer funcions

Evolutionary search of connection weights

Figure 3.5, Interaction of various evolutionary search mechanisms
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. Set t=0 and randomly generate an initial population of neural networks with
architectures, node transfer functions and connection weights assigned at
random.

2. In a parallel mode, evaluate fitness of each ANN using BP/SCG/QNA and LM
3. Based on fitness value, select parents for reproduction

4. Apply mutation to the parents and produce offspring (s) for next generation.
Refill the population back to the defined size.

5. Repeat step 2

6. STOP when the required solution is found or number of iterations has
reached the required limit.

Figure 3.6. Meta-iearning algorithm for EANNs
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Figure 3.7. Chromosome representation of the proposed EANN

3.3.1 MLEANN: Experimentation Setup

We have applied the proposed technique to the three-time series prediction problems discussed
in Chapter 2. For performance comparison, we used the same set of training and test data that
were used for experimentations with neural networks. For performance evaluation, the
parameters used in our experiments were set to be the same for all the 3 problems. Fitness
value is calculated based on the RMSE achieved on the test set. In this experiment, we have
considered the best-evolved neural network as the best individual of the last generation. As the
learning process is evolved separately, user has the option to pick the best neural network (e.g.
less RMSE or less computational expensive etc.) among the four learning algorithms, All the

genotypes were represented using binary coding and the initial populations were rzr:domly
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generated based on the following parameters shown in Table 3.1. The pararieter settings,
which were evolved for the different learning algorithms, are illustrated in Table 3.2. We also
investigated the performance of the proposed method with a restriction of architecture (no of
hidden neurons). We set a maximum number of 4 hidden neurons and evaluated the learning
performance. The experiments were repeated three times and the worst RMSE values are

reported.

3.3.2 MLEANN: Experimentation Results
Table 3.3 displays empirical values of RMSE on test data for the three time series problems

without architecture restriction. For comparison purposes, test set RMSE values using
conventional design techniques are also presented in Table 3.3 (adapted from Chapter2). Table
3.4 illustrates the RMSE values on training/test set data using the meta-learning technique
when the architecture restriction was imposed. Run times for the two different
experimentations are also presented. Figures 3.8, 3.9 and 3.10 illustrates the test results of the
three data sets using the meta-learning approach (using BP algorithm). Figures 3.11, 3.12 and
3.13 displays the convergence of the meta-learning algorithm during the 40 generations for the
three data sets.

Table 3.1. Parameters used for evolutionary design of artificial neural networks

Population size 40
Maximum no of generations 40
Number of hidden nodes ¢ Experiment 1. 5-16 hidden nodes
¢ Experiment 2: maximum 4 neurons
Activation functions | tanh (7), logistic (L), sigmoidal (S), tanh-
sigmoidal (T*), log-sigmoidal (L*)
Qutput neuron linear
Training epochs 500
Initialization of weights +/-0.3
Ranked based selection 0.50
Elitism 5%
Mutation rate 0.40
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Table 3.2. Parameters settings of the learning algorithms

Learning algorithm Parameter Setting
Learning rate 0.25-0.05
Backpropagation
Momentum 0.25-0.05
Change i ight for second
derivative spproximation | 0~ 9000!
Scaled conjugate 2P
gradient algorithm Regulating the indefiniteness of
: 0-1.0 E-06
the Hessian
Step lengths 1.0E-06 - 100
Limits on step sizes 0.1-0.6
Quasi-Newton Scale factor to determine
algorithm performance 0.001 -0.003 1
S_cale factor to determine step 0.1-0.4
size. 1
Levenberg Marquardt | Learning rate 0.001 - 0.02
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Figure 3. 8. Test results using 500 epochs BP meta-learning for Mackey Glass series
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Figure 3.13. Wastewater time series: Average test set RSME values during the 40 generations

and meta-learning

Table 3.3. Performance comparison between MLEANN (without architecture restriction) and

ANN
MLEANN . ANN
Time Learn -
series | Algo. Architecture | RMSE | Architecture
Training | Test

BP |0.0072 |0.0077 |7T,3L 0.0437 24 T

Mackey | SCG 10.0030 |0.0031 | 11T 0.0045 24 T

Glass QNA [0.0024 }0.0027 | 6T,4T* 0.0034 24 T

LM |[0.0004 |%0.0004 [8T,2T*1L* [0.0009 24 T*

BP [0.0159 {00358 |8T 0.0766 18T+

Gas SCG {06.0110 |%.0210 |8T,2T* 0.0330 |16T*

Furnace | onA 00115 |0.0256 | 7T,2L* 0.0376 18 T*

LM 06120 | 00223 [ 6T,1L,1T* 0.0451 14 T*

BP |0.0441 |[0£547 |6T,5T*I1L 0.1360 16 T*

Waste | SCG | 0.0457 | 00579 | 6T,4L* 0.0820 14 T*

Water | ONA {0.0673 |0.0823 | 5T,5TS 0.1276 14 T*

LM {0.0425 |'0.0521{8T,1LS 0.0951 14 T*
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Table 3.4. Performance results and run time comparison of MLEANN (architecture

restriction- maximum 4 hidden nodes) and ANN.

MLEANN
. c e
Time Lesarn — Run time in minutes
ries Algo. .
s¢ Architecture
Traiming | Test ™A B
BP |0.0166 |0.0168 |4T 1181 288
MG'lckey SCG | 0.0062 |0.0067 |3T, 1T 2066 504
ass
QNA | 0.0059 |[0.0058 |3T* 1L 2169 528
LM |0.0056 |'0.0061 |2L*%2T* 2463 602
Br [0.0189 |00371 [3L 305 62
Gas SCG |0.0179 |0.0295 [1T%2L 629 121
Furnace
QNA [0.0156 [0.0295 [2T* 1L* 1L 661 128
LM |00181 !%.02900|1T,1L,1T* 696 132
BP |0.0647 | 0.0639 | 2T,2T* 702 146
Waste | 506 10.0580 [0.0600 [2T1T1L 1254 267
Water
QNA | 0.0590 |0.0596 |3 T* 1L* 1291 279
LM |[0.0567 |'0.0591 |2L,1T,1T* 1176 294

** without architecture restriction, * with architecture restriction

' Lowest RMSE error, * On a P 11, 450 MHz, 256 MB RAM machine

3.3.3 Comparison with Neuro-Fuzzy Systems and Other Intelligent
Techniques

In this Section, we compare the performance of MLEANN (RMSE values on training and test
sets) with two popular neuro-fuzzy models, global optimization technique using cutting angle
method [35] and multivariate adaptive regression splines (MARS) [17). The neuro-fuzzy
models considered were Dynamic Evolving Fuzzy Neural Networks (dmEFuNN) [139]

implementing a Mamdani fuzzy inference system [169] and an Adaptive Neuro-Fuzzy




Inference System (ANFIS) [130] implementing a Takagi-Sugeno fuzzy inference system
[224]. The same training and test sets of the three time series were used to compare the
performance of the different intelligent systems. Training and test results for neuro-fuzzy

systems are depicted in Table 3.5.

Table 3.6 shows performance comparison of MLEANN and the recently developed Cutting
Angle Method (CAM) of deterministic global optimization [35]. Table 3.7 compares
MLEANN with multivariate adaptive regression spiines (MARS), a popular regression based
approach, which was the winner of the famous KDD 2000 data mining competition.

Table 3.8. Performance comparison between MLEANN and Neuro-Fuzzy Systems

RMSE

Time EANN Mamdani -NE | Takagi Sugeno - NF
Sertes

Training [ Test Training Test | Training Test

ey | 00004 | 00004 [0.0023 | 00042 |00019 0008

Gas 0.0110 0.0210 | 0.0140 0.0490 0.0137 0.0570
Furnace

Waste 0.0425 | 0.0521 | 0.0019 0.0750 | 0.0530 0.0810
Water

Table 3.6. Performance comparison between MLEANN and CAM

MLEANN CAM

Data set | RMSE | RMSE RMSE | RMSE

(train) (test) Architecture (train) | (test) Architecture
Mackey- | 50056 |00061 |27,27* 00085 | 0.0091 |45
Glass ' ' ,
Gas 0.0181 | 00200 |1T, L, 1T* |00173 |0.0384 |38
Furnace P
Waste | 0567 00591 |20 1T, 17T+ | 0057 [0066 |48
water
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Table 3.7. Performance comparison between MLEANN and MARS

MLEANN MARS
Dataset | RMSE | RMSE RMSE | Rmsg | ATchitecture
: (basis
(train) | (test) | ATMHMEUTE | eriny | (tesd) | unctions)
Gas 00110 {00210 |8T.2T*  |0.0185 | 00413 |5
Furnace

3.4 Discussions and Conclusions

Table 3.3 shows comparative performance between MLEANN and a conventional ANN
without any architecture restriction. For Mackey glass series, using 500 epochs of BP learning,
RMSE on test set was reduced by 82% (BP), 31% (SCG), 29% (QNA) and 56% (LM). At the
same time, number of hidden neurons got reduced by approximately 58% (BP), 54% (SCQG),
58% (QNA) and 55% for LM. LM algorithm gave the best RMSE error on test set (0.0004)
even though it is highly computational expensive as demonstrated in Table 2.7.

For the gas furnace time series, RMSE on test set was reduced by 53%% (BP), 36% (SCG),
69% (QNA) and 73% (LM). Savings in hidden neurons amounted to 55% (BP), 37% (SCQ),
50% (QNA) and 55% (LM). SCG training gave the best RMSE value (0.0210) for gas furnace

series.

For the wastewater time series, RMSE on test set was reduced by 60% (BP), 29% (SCG), 35%
(QNA) and 45% (LM). Savings in hidden neurons amounted to 25% (BP), 29% (SCG), 29%
(QNA) and 36% (LM). LM learning gave the best RMSE value (0.0521) for wastewater series.

To have an empirical comparison, we deliberately terminated the training afier 500 epochs
(regardless of early stopping in some cases). In some cases the generalization performance
could have been further improved. As depicted in Table 3.4, our experimentations with limited
architecture also reveal the efficiency of MLEANN technique. The gas furnace time series and

wastewater series could be learned just with 4 hidden neurons using LM algorithm. However,
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for Mackey glass series the results were not that encouraging when compared with the
conventional design using 24 hidden neurons. Perhaps Mackey Glass series requires more

hidden neurons to learn the problem within the required accuracy.

Table 3.5 ~ 3.7 depicts empirical comparison between MLEANN and some popular intelligent
systems. As evident, MLEANN has outperformed all the intelligent systems in terms of the

lowest RMSE values on test set for the time series considered.

Selection of the architecture (number of layers, hidden neurons, activation functions and
connection weights) of a network and correct learning algorithm is a tedious task for designing
an optimal artificial neural network. Moreover, for critical applications and hardware
implementations optimal design often becomes a necessity. In this paper, we have formulated
and explored; MLEANN: an adaptive computational framework based on evolutionary
computation for automatic design of optimal artificial neural networks. Empirical results are

promising and show the importance and efficacy of the technique.

In MLEANN, our work was mostly concentrated on the evolutionary search of optimal
learning algorithms. For the evolutionary search of architectures, it will be interesting to model
as co-evolving [75] sub-networks [246] instead of evolving the whole network [232]. Further,
it will be worthwhile to explore the whole population information of the final generation for
deciding the best solution. We used a fixed chromosome structure (direct encoding technique)
to represent the connection weights, architecture, learning algorithms and its parameters. As
size of the network increases, the chromosome size grows. Moreover, implementation of
crossover is often difficult due to production of non-functional offspring's. Parameterized
encoding overcomes the problems with direct encoding but the search of architectures is
restricted to layers. In the grammatical encoding rewriting grammar is encoded. So the success
will depend on the coding of grammar (rules). Cellular configuration might be helpful to
explore the architecture of neural networks more efficiently. Gutierrez et al [107] has shown

that their cellular automata technique performed better than direct coding.

In the Chapter 4, we will investigate how fuzzy inference systems could be used for modeting

uncertainty and to make decisions from imprecise data.
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Chapter 4: The Need for Adaptation of Fuzzy
Inference Systems

4.0 Introduction

The human brain interprets imprecise and incomplete sensory information provided by the
various perceptive organs[138}. Fuzzy set theory {254] provides a systematic calculus to deal
with such vague information linguistically, and it performs numenical computation by using
linguistic labels stipulated by membership functions [79] [146] [154] [183] [204]). Some works
have also demonstrated the equivalence of fuzzy logic system and feedforward neural
networks [67] [159]. Even though a fuzzy inference system is highly interpretable (if~then
rules), it lacks the adaptability to deal with changing external environments [238].

This chapter begins with some fundamental theoretical aspects of fuzzy modeling {126] and
how fuzzy inference systems [67] could be designed for solving practical problems. To
demonstrate the difficulties in modeling fuzzy inference systems, we consider the reactive
power prediction problem for automating the power flow contro] to a plant [7]. The effect of
different membership functions (shape and quantity), fuzzy inference method, reasoning
mechanism, defuzzification method etc are studied and demonstrated by modeling this
problem. We further illustrate how this could be overcome by adaptation of fuzzy inference

systems using evolutionary search procedures.
4.1 Fuzzy Sets and If-Then Rules

The world of information is surrounded by uncertainty and imprecision. The human reasoning
process can handle inexact, uncertain and vague concepts in an appropriate manner. Usually,
the human thinking, reasoning and perception process cannot be expressed precisely. These
types of experiences can rarely be expressed or measured using statistical or probability
theory. Fuzzy logic provides a framework to model uncertainty, human way of thinking,

reasoning and the perception process [176] [204]. Fuzzy systems was first introduced by Lotfi
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A Zadeh, a professor at the University of California at Berkeley, in his seminal paper
published in 1965 [253].

Let X be a space of objects and x be a generic element of X. A classical set 4, 4 € X, is

defined as a collection of elements or objects x € X, such that x can either belong or not
belong to the set 4. A fuzzy set 4 in X is defined as a set of ordered pairs

A= {(x, pa(x)| x € X} (@.1)

Where i 4(x) is called the membership function (MF) for the fuzzy set 4. The MF maps

each element of X to a membership grade (or membership value) between 0 and 1. Obviously,

(4.1) is a simple extension of the definition of a classical set in which the characteristic

function is permitted to have any values between 0 and 1. Corresponding to the ordinary set

operations of union and intersection, fuzzy sets have similar operations as illustrated in

Figures 4.1 (a - ¢).
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Figure 4.1. (3) Fuzzy sets Aand B (b) AuB (c)An B

The intersection of two fuzzy sets 4 and B is a fuzzy set C, denotedbyC= 4 N B,orC=4
AND B, whose MF is related to those of 4 and B by

Hc(x) = min(fiq(x), Hp(x)) = fa(x) A p(x) (4.2)

The intersection of two fuzzy sets 4 and B is specified in general by a function 7: [0,1] X
[0,1]— [0,1], which aggregates two membership grades as follows: i

HAAB(X) = T(Ra(x), fHp(x)) = f4(x)* up(x) (4.3)
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where * isa binary operator for the function 7. This class of fuzzy intersection operators are

usually referred to as T-norm (iriangular norm) operators [106] [131]. Four of the most
frequently used T-norm operators are

Minimum: Tyin(a,b) = min(a,b) = a A b (4.4)

Alge 5raic product: Tgp(a,b) = ab (4.5)

Bounded product: Tpp(a,b) = 0 v (a+b - 1) (4.6
aifb=1

Drastic product: Tgy(a.b) = bif a=1 (4.7)
0,if a,b < 1

The union of two fuzzy sets A and B is a fuzzy set C, denotedby C= 4 u B,or C=AGR B,
whose MF is related to those of 4 and B by

He(x) = max(ig(x), up(x)) = H4(x) v Up(x) (4.8)

Like intersection the fuzzy union operator is specified in general by a function $: {0,1] x [0,1]
- [0,1], which aggregates two membership grades as follows:

HAUB(X) = S(U4(x), 4p(x) = ts(x)+ tp(x) (4.9)

where + is the binary operator for the function S. This class of fuzzy union operators are often

referred to as T-conorm (or S-norm) operators. Four of the most frequently used T-conorm
operators are

Maximum: Spo.(6, b) = max(a, b) = av b (4.10)
Algebraic sum: Sae(a,b) = a+ b ~ ab 4.11)

Bounded sum: Spe(a, b) = 1 A (a+b) ' (4.12)
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a,ifb=10 _
Drastic sum: Sg;(a,b) = b,if a=0 (4.13)
Lifab>0

Both the intersection and union operators retain some properties of the classical set operation.

In particular, they are associative and commutative.

A more general concept, which plays an important role is the fuzzy conditional statements or
the fuzzy if-then rules. They are expressions of the form "If x is 4 then p is B", where 4 and B
are linguistic values defined by fuzzy sets on universe of discourse X and Y respectively. Often
x is A is calied the antecedent or premise, while y is B is called the consequence or conclusion.
Due to their concise form, they are often employed to capture the imprecise mode of reasoning
which plays an essential role in the human ability to make decision in an environment of
uncertainty and imprecision. The compositional rule of inference plays a key role in fuzzy
reasoning. The basic rule of inference in traditional two-valued logic is modus ponens,
according to which we can infer the truth of a proposition B from the truth of 4 and the
implication 4 — B.

Let A, A', and B be fuzzy sets of X, X', and Y respectively. Assume that the fuzzy implication
A — B is expressed as a fuzzy relation R on X X Y. Then the fuzzy set induced by "» is 4"
and the fuzzy rule "If x is 4 then y is B" is defined by

HB() = maxyminfu A'(x). HROG W] = vylu 4 ) Aupxyy] (4.14)

Fuzzy if-then rules and fuzzy reasoning are the backbone of fuzzy inference systems, which
are the most important modeling tools based on fuzzy set theory. Figure 4.1 shows a basic
configuration of a fuzzy inference system. They are a fuzzification interface, a fuzzy rule base

(knowledge base), an inference engine (decision-making logic), and a defuzzification

interface.
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Figure 4.2, Basic architecture of a fuzzy inference system

The fuzzy rule base is characterized in the form of if-then rules in which preconditions and
consequents involve linguistic variables. The collection of these fuzzy rules forms the rule
base for the fuzzy logic system. The basic fuzzy inference system can take either fuzzy inputs
or crisp inputs, but the outputs it produces are always fuzzy sets. The defuzzification task
extracts the crisp output that best represents the fuzzy set. With crisp inputs and outputs, a
fuzzy inference system implements a nonlinear mapping from its input space to output space
through a number of fuzzy if-then rules. In what follow, we shall introduce the two mgcst
popular fuzzy inference systems that have been widely deployed in various applications. The
differences between these two fuzzy inference systems lie in the consequents of their fuzzy

rales, and thus their aggregation and defuzzification procedures differ accordingly.
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Figure 4.3, Mamdani fuzzy inference system using min and max for T-norm and T-conorm

operators

Most fuzzy systems employ the inference method proposed by Mamdani [169] in which the

rule consequence is defined by fuzzy sets (Figure 4.3) and has the following structure:

J

f xis Ay and y is B then 25 = C (4.15}
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There are several defuzzification techniques. However, the most widely used defuzzification
technique uses the centroid of area method as foliows

dz
Centroid of area Z¢py4 = Iz #a(z) 2 (4.16)

[z04(2)d2

where f 4(z) is the aggregated output MF.
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Figure 4.4. Takagi-Sugeno fuzzy inference system using a min or product as T-norm operator.,

Takagi, Sugeno and Kang (TSK) proposed an inference scheme in which the conclusion of a
fuzzy rule is constituted by a weighted lineer combination of the crisp inputs rather than a
fuzzy set [224]. A basic Takagi-Sugeno fuzzy inference system is illustrated in Figure 4.4 and

the rules has the following structure

if xisAyand y is By, thenzy= px+ gy + 1y (4.17)
where p;, q; and r; are linear parameters. TSK fuzzy controller usually needs a smaller number

of rules, because their output is already a linear function of the inputs rather than a constant

fuzzy set.

4.2 Fuzzy Modeling

Fuzzy modeling can be pursued using the following steps. 1
¢  Select relevant input and output variables. Determine the number of linguistic terms 3
associated with each I/O variables. Also choose the appropriate family of |

parameterized MF's, fuzzy operators, reasoning mechanism etc.
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» Choose a specific type of fuzzy inference system
o Design a collection of fuzzy if~then rules (knowledge base)

It is typically advantageous if the fuzzy rule base is adaptive to a certain application. In the
. following section we will try to demonstrate the difficulties to design fuzzy inference system s

for solving practical problems.

4.2.1 Designing Fuzzy Inference Systems in Practice

We attempted to develop a power factor forecast model using Mamdani and TSK fuzzy
inference systems for automating the control of reactive power flow [7). Utility companies
base their tariffs upon the total amount of power provided, including kilowatts (KW) and kilo
volt-amperes reactive (KVAR), though in most cases KW is the only utilized energy. By
providing appropriate reactive power compensation methods, using power capacitors, to
increase power factor ratings, the utility customer is able to substantially reduce these charges,
improve the utilization of electrical power and decrease the risk of downtime within the plant.
Usually power capacitors are turned on manually by human operators or by timer controlied
switching relays [1791. The load consumption of manufacturing plants follow a similar pattern
every day as long as the production capacity is unaltered. By knowing the load at a particvlar
time instant, if we are able to forecast the reactive power requirement at the next time instant
we will be able to switch on the required quantity of power capacitors and thereby avoid
inefficient (using operators or timer controlled) switching of power capacitors. The developed
model would forecast the reactive power at time r+1 just by knowing the load current at time 7.
The prediction models were trained with a 24-hour load demand pattern of a heavy automobile

manufacturing plant and performance of the proposed method is evaluated by comparing the

test results with the known values of reactive power [8].
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Figure. 4.5. Testing data (a) input voltage {b) load current

The experimental system consists of two stages: Developing the fuzzy inference system and
performance evaluation using the test data. A heavy automobile manufacwuring plant was
considered for the prediction of reactive power. The dataset comprises of 24-hour ioad flow
patterns (1440 data sets) representing the 24-hour period. The input parameters considered are
the phase voltage (¥) and current (/). The normal value of input parameter veltage (V) was
fluctuated with +/- 2.5% of the normal value. All the data sets were scaled to (0-1). The inpw
voltage was fluctuated to test the modeling capability and robustness of the iuzzy inference
system. As shown in Figure 4.5, fluctuated voltage appears to be a heavy noise to the FIS. ‘ihis
also ensures that the developed FIS could predict the reactive power accurately even during
worst conditions in the grid voltage regardless of the plant load. Training and testing data sets
were extracted randomly from the complete dataset. 60% of data was used for training and
remaining 40% for testing.

4.2.1.1 Design and Experimentations: Fuzzy Inference Systems

In this section we will analyze the effects (a) shape and quantity of membership functions (b)
T-norm and T-conorm operators (c) defuzzification methods and () inference method for
designing the FIS. Experimentations were carried out using 4 different settings using the same

rule base and are reported as follows:

Experiment 1 (To evaluate the effect on the number of MFs)

We used the following setting for designing the FIS:




1. 2 triangular MF's for each input variable and 4 triangular MF's for the output variable
(power). The rule base consisted of 4 if-then rules.

2. 3 triangular MF's for each input variable and 9 triangular MF's for the output variable
(power). The rule base consisted of 9 if~then rules.

We used "min" and "max" as T-norm and T-conorm operators and the centroid method of
defuzzification for Mamdani FIS and weighted average defuzzification method for Takagi-
Sugeno FIS. The developed fuzzy inference systems using Mamdani and Takagi-Sugeno
models are depicted :n Figures 4.6 - 4.9. Table 4.1 summarizes the training and testing RMSE

values.

Table 4.1. Empirical comparison of fuzzy inference systems and quantity of MFs

Mamdani FIS Takagi -~ Sugeno FIS
Ne. of MF's RMSE RMSE
Training Test Training Test
é 2 0.401 0.397 0.024 0.023
: 3 0.348 0.334 0.017 0.016

-
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Figure 4.6. Mamdani fuzzy inference system using two triangular MF's for input variables
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Figure 4.9. Takagi-Sugeno fuzzy inference system using 3 triangular MF's for input variables




Experiment 2 (To evaluate the effect of shape of MFs)

We used 3 Gaussian MF's for each input variable and 9 Gaussian MF's for the output variable.
The rule base consisted of 9 if-zhen rules. We used "min" and "max" as T-norm and T-conorm
operators and the centroid method of defuzzification for Mamdani FIS and weighted average
defuzzification method for Takagi-Sugeno FIS. The developed fu.zy inference systems using
Mamdani and Takagi-Sugeno models are depicted in Figures 4.10 — 4.11. Table 4.2
summarizes the training and testing RMSE values.

Table 4.2, Empirical comparison of fuzzy inference systems using Gaussian MF's

Mamdani FIS Takagi - Sugeno FIS
No. of MF's RMSE RMSE
Training Test Training Test
3 0.243 0.240 0.021 0.019

Figure 4.10. Mamdani fuzzy inference system using 3 Gaussian MF's for input variables
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Figure 4.11. Takagi-Sugeno fuzzy inference system using 3 Gaussian MF's for input variables
Experiment 3 (To evaluate the effect of fuzzy operators)

We used 3 Gaussian MF's for each input variable and 9 Gaussian MF's for the output variable.
The rule base consisted of 9 if-then rules. We used "product” and "sum" as T-norm and T-
conorm operators and the centroid method of defuzzification for Mamdani FIS and weighted
average defuzzification method for Takagi-Sugeno FIS. Table 4.3 summarizes the training and
testing RMSE values.

Table 4.3. Empirical comparison of fuzzy inference systems for different fuzzy operators

Mamdani FIS Takagi - Sugeno FIS
No. of MF's RMSE RMSE
Training Test Training Test
3 0.221 0.219 0.019 0.018

Experiment 4 (To evaluate the effect of defuzzification operators)

We used 3 Gaussian MF's for each input variable and 9 Gaussian MF's for the output variable.
The rule base consisted of 9 if~then rules, We usec "product” and "sum” as T-norm and T-

conorm opeiators and the following defuzzification operators for Mamdani FIS.
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- Centroid
- Bisector of Area (BOA)
- Mean of Maximum (MOM)

- Smallest of Maximum (SOM)

For Takagi-Sugeno FIS, the weighted sum and weighted average defuzzification method were
used. Table 4.4 summarizes the training and testing RMSE values.

Table 4.4. Empirical comparison of fuzzy inference systems for different defuzzification

operators.
Mamdani FIS Takagi - Sugeno FIS
RMSE RMSE
Defuzzification Defuzzification
Training | Test Training Test
Centroid 0.221 0.0219 | Weighted sum 0.019 0.018
Weighted
MOM 0.230 0.232 0.085 0.084
average
BOA 0218 | 0216
SOM 0.229 0.232

4.2.1.2 Discussions of Results and Problem Solution

In this section we would like to evaluate and summarize the various experimentation results
reported in Section 4.2.1.1. As depicted in Table 4.1, when the number of input MFs were
increased from 2 to 3, the RMSE values reduced regardless of the inference system used.
However, when the shape of the MF was changed to Gaussian, Mamdani FIS improved the
RMSE but the RMSE values increased for Takagi-Sugeno FIS (Table 4.2). Using Gaussian
MFs, when the T-norm and T-Conorm operators were changed to “product" and “sum”

(instead of "min" and "max") both the inference methods performed better. This is reported in
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Experimentation 3 (Table 4.3). Finally the selection of an ideal defuzzification operator also
has a direct influence in the performance of FIS as shown in Table 4.4. BOA defuzzification
method gave the lowest RMSE value while the weighted sum seems to work well for Takagi
Sugeno FIS.

The design of the rule base (number of rules and how the inputs and outputs are related) is also
very important for the good performance of FIS. For this problem, the rule base was created
based on author's previous knowledge. When expert knowledge is not available, initial rule
base could be created with the assistance of some imput space-partitioning or clustering
algorithm. The role of weighting factors emphasizing the importance of certain rules also bear

a prominent role for the overall performance.

We have considered only two most popular fuzzy inference methods. The prokblem would

become more complicated when we have t¢ consider other FIS models [233].

We have demonstrated the difficulties in designing a fuzzy inference system for a funcaon
approximation problem involving just 2 inputs and 1 ouiput. When the inpui / output
dimensions becomes larger, manual design becomes tedious and sometimes could even lead to

poor design and implementation. This leads us to the following questions:

e  What is the be.t shape and number of membership functions for each 1/0 variable?

¢  How to design the knowledge base (size and optimal combination of if~then rules)?

¢ What are best combinations of fuzzy operators (implication/aggregators) and
defuzzification operators?

*  Which inference system will give the best results?

In section 4.3, we will focus on how the various component/parameter design process could be
adapted according to the problem environment in order to automate the FIS design faster and

efficient,

4.3 Adaptation in Fuzzy Inference Systems

A conventional fuzzy controller makes use of a model of the expert who is in a position to

specify the most important properties of the process. Expert knowledge is.often the main
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source to design the fuzzy inference systems. Figure 4.12 shows the architecture of the fuzzy
inference system controlling a process. According to the performance measure of the problem

environment, the MFs, rule bases and the inference mechanism are to be adapted.

Adaptation of hzzy { Performance "_
inference system messure

; F 3
L 4
: membership functions
—— -
- fuzzy oparstors
Knowledge bass Y
 Fugzy inference System

Figure 4,12, Architecture of adaptive fuzzy inference systems

Several research works are going on exploring the adaptation of fuzzy inference systems {1]
[21 [24] [47) [65] [104] [162] [166] [196] [212] [229] [239] . These include the adaptation of

membership functions, rule bases, aggregation operator etc. These techniques include but are
not limited to:

e Self-organizing process controlier by Procyk et al [210}, which considered the issue of

rule generation and adaptation.

¢ Gradient descent and its variants have been applied to fine-ture the parameters of the
input and output membership functions [197] [240].

¢ Pruning the quantity and adapting the shape of input/output membership functions
f241].

¢ Tools to identify the structure of fuzzy models [225].

¢ Fuzzy discretization and clustering techniques [252].

¢ In most cases the inference of the fuzzy rules is carried out using the 'min' and 'max

operators for fuzzy intersection and unior. If the T-norm and T-conorm cperators are
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parameterized then gradient descent technique could be used in a supervised learning
environment to fine-tune the fuzzy operators.

To formulate the initial rule base, the input space is divided into multi-dimensional partitions
and then assign actions to each of the partitions. In most applications, the partitioning is
achieved using one dimensional membership functions using fuzzy if~then rules as illustrated
in Figure 4.13. The consequent parts of the rule represent the actions associated with each
partition. It is evident that the MFs and the number of rules are tightly related to the

partitioning.
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Figure 4.13. Example showing how the 2 dimensional spaces are partitioned using 3
trapezoidal membership functions per input dimension. A simple if-then rule will

appear as If input-1 is medium and input 2 is large then rule Ry is fired.

Adaptation of fuzzy inference systems using evolutionary computation techniques has been
widely explored [72) [175] [202] [213]. We proposed an adaptive framework based on
evolut: "nary computation wherein the membership functions, rule base and fuzzy operators
are adapted according to the problem [10]. The evolutionary search of MFs, rule base, fuzzy
operators etc would progress on different time scales to adapt the fuzzy inference system
according to the problem environment. Figure 4.14 illustrates the gencral interaction
mechanism of the proposed framework with the evolutionary search of fuzzy inference system

{Mamdani, Takag -Sugeno etc) evolving at the highest level on the slowest time scale. For
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each evolutionary search of fuzzy operators (best combination of T-nrorm and T-conorm,
defuzzification strategy etc), the search for the fuzzy rule base progresses at a faster time scale
in an environment decided by the problem. In a similar manner, evolutionary search of
membership functions proceeds at a faster time scale (for every rule base) in the environment

decided by the problem. The problem representation (genetic coding) is illustrated in Figure

4.15.
Slow
Evolutionary search of fuzzy inlsrence system
' ==
Evoiutionary search of fuzzy operstors
Evolutionary search of fuzzy rules
Evolutionary search of membership functions T
Fast

Figure 4.14. Interaction of evolutionary search mechanisms in the adaptation of fuzzy

inference system

-

FIS, | FIS; FIS, FiS, FISs FIS¢ | FIS, Q?;‘:E

LB
/ Fuzzy inference system -
-OP, I OP; 093 0’4 OP; OPg && =| jp

Fuzzy operators

Fuzay rules
MF; "Fg "F’ "F‘ %
Fuzzy membership functions

Figure 4.15, Chromosome representation of the adaptive fuzzy inference system using

evolutionary computation
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Automatic adaptation of membership functions is popularly known as self tuning and the
genome encodes parameters of trapezoidal, triangle, logistic, hyperbolic-tangent, Gaussian
membership functions etc.[33] [48] [72] {115] [136]) [197] [200].

Evolutionary search of fuzzy rules [23] [25] [97] [98] [116] [117] {118] {157] [185] can be
carried out using three approaches. In the first method (Michigan approach) the fuzzy
knowledge base is adapted as a result of antagonistic roles of competition and cooperation of
fuzzy rules. Each genotype represents a single fuzzy rule and the entire population represents a
solution. A classifier rule triggers whenever its condition part matches the current input, in
which case the proposed action is sent to the process to be controlled. The global search
algorithm will generate new classifier rules based on the rule strengths acquired during the
entire process. The fuzzy behavior is created by an activation sequence of mutually
collaborating fuzzy rules. The entire knowledge base is build up by a cooperation of
competing multiple fuzzy rules [49].

The second method (Pittsburgh approach) evolves a population of knowledge bases rather than
individual fuzzy rules [103]. Genetic operators serve to provide 2 new combination of rules
and new rules. In some cases, variable length rule bases are used; empioying modified genetic
operators for dealing with these variable length and position independent genomes. The
disadvantage is the increased complexity of search space and additional computational burden

especially for online learning.

The third method (iterative rule learning approach) is very much similar to the first method
with each chromosome representing a single rule, but contrary to the Michigan approach, only
the best individual is considered to form part of the solution, discarding the remaining
chromosomes in the population. The evolutionary learning process builds up the complete rule

base through a iterative learning process [100].

4.4 Conclusions

In this Chapter, we have presented the fundamental concepts of fuzzy modeling and
demonstrated the difficulties to design optimal fuzzy inference systems for solving practical

problems. Empirical results clearly reveal the importance of the shape and quantity of
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membership functions for each input variable, fuzzy operators, inference method, knowledge
base etc. for designing optimal fuzzy systems. In Section 4.3, we have presented the different
adaptation techniques for designing fuzzy systems focusing evolutionary approach. We also
presented a framework for optimal design of fuzzy inference systems based on a hierarchical

evolutionary approach, which is also similar to MLEANN architecture discussed in Chapter 3.

In Chapter S, we will present hybrid combinations of neural networks and fuzzy systems with
some practical applications. We will focus on the different types of integrated neuro-fuzzy
systems that has evolved during the last decade with some empirical comparison towards the

end.

In Chapter 7, we will demonstrate how fuzzy inference systems could be adapted and
optimized using a hybrid approach involving neural network learning algorithms and

evolutionary computation techniques.
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Chapter 5: Integration of Neural Networks

and Fuzzy Inference Systems

5.0 Introduction

Hayasly <t al [113] showed that a feedforward neurai network could approximate any fuzzy
rule based system and any feedferward neural network may be approximated by a rule based
fuzzy interence system [36]. Fusion of artificial neural networks and fuzzy inference systems
have atiracted the growing interest of researchers in various scientific and engineering areas
due to the growing need of adaptive intelligent systems to solve the real world problems [27]
[29] [40] [57] [59] {60] [63] [74] [80] [81] [91] [94] [99] [101] [104] [105] {1091 {110] {112]
[114] [222]. A neural network learns from scratch by adjusting the interconnections between
layers. Fuzzy inference system [67] is a popuiar computing framework based on the concept of
fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The advantages of a combination of
neural networks and fuzzy inference systems are obvious [58] [61] [131] [162] [255]). An
analysis reveals that the drawbacks pertaining to these approaches seem complementary and
therefore it is natural to consider building an integrated system combining the concepts [143]
[180]. While the learning capability is an advantage from the viewpoint of fuzzy inference
system, the automatic formation of linguistic rule base will be advantage from the viewpoint
of neural network. There are several works related to the integration of neural networks and
fuzzy iference systems [77] [120] [122] [123] {125] [138] [148] [149] [158] [161] [181]
[188] [201][205][220] [221] [227] (228] [236] [243] [245].

In this Chapter, we discuss the integration of neural networks and fuzzy inference systems into
three main categories: Cooperative, concurrent and integrated neuro-fuzzy models [196]. We
present 3 different types of cooperative neuro-fuzzy models namely fuzzy associative
memories, fuzzy rule extraction using self-organizing maps and systems capable of learning
fuzzy set parameters. We also illustrate a concwrrent neuro-fuzzy system and a practical

application on stock market analysis. Different Mamdani [169) and Takagi-Sugeno [224] type
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integrated neuro-fuzzy systems are further introduced with a focus on some of the salient
features and advantages of the different types of neuro-fuzzy models that have been evelved
during the last decade {61]. Some discussions and conclusions are also provided towards the

end of the chapter.
5.1 Cooperative Neuro-Fuzzy Systems

In the simplest way, a cooperative model can be considered as a preprocessor wherein
artificial neural network (ANN) learning mechanism determines the fuzzy inference system
(FIS) membership functions or fuzzy rules from the training data. Once the FIS parameters are
determined, ANN goes to the background.

Fuzzy Associative Memories (FAM) by Kosko [153], fuzzy rule extraction using self
organizing maps by Pedrycz ei al [203] and the systems capable of leaming of fuzzy set
parameters by Nomura et al [197] are some good examples of cooperative neuro-fuzzy

systems.

5.1.1 Fuzzy Associative memories

Kosko interprets a fuzzy rule as an association between antecedent and consequent parts [153].
If a fuzzy set is seen as a point in the unit hypercube and rules are associations, then it is
possible to use neural associative memories to store fuzzy rules. A neural associative memory
can be represented by its connection matrix. Associative recall is equivalent to multiplying a
key factor with this matrix. The weights store the correlations between the features of the key
k and the information part i Due to the restricted capacity of associative memories and
because of the combination of multiple connection matrices into a single matrix is not
recommended due to severe loss of information, it is necessary to store each fuzzy rule in a
single FAM. Rules with » conjunctively combined variables in their antecedents can be
represented by n FAMs, where each stores a single rule. The FAMs are completed by
aggregating all the individual outputs (maximum operator in the case of Mamdani fuzzy

system) and a defuzzification component.

Learning could be incorporated in FAM, as learning the weights associated with FAMs output

or to create FAMs completely by learning. A neural network-learning algorithm determines
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the rule weights for the fuzzy rules. Such factors are often interpreted as the influence of a rule
and are multiplied with the rule outputs. Rule weights can be replaced eguivalently by
modifying the membership functions. However, this could result in misinterpretation of fuzzy
sets and identical linguistic values might be represented differently in different rules. Kosko
suggests a form of adaptive vector quantization technique to learn the FAMs. This approach is

termed as differential competitive learning and is very similar to the learning in self-

organizing maps.

Fuzzy Inference system

. 0)

Fuzzy sets

Figure §.1. Cooperative neuro-fuzzy model

Figure 5.1 depicts a cooperative neuro-fuzzy model where the neural network learning
mechanism is used to determine the fuzzy rules, parameters of fuzzy sets, rule weights etc.
Kosko's adaptive FAM is a cooperative neuro-fuzzy model because it uses a learning
technique to determine the rules and its weights. The main disadvantage of FAM is the
weighting of rules. Just because certain rules, doesn’t have much influence doesn’t mean that
they are totally unimportant. Hence the reliability of FAMs for certain applications is

questionable. Due to implementation simplicity FAMs are used in many applications.

5.1.2 Fuzzy Rule Extraction Using Self Organizing Maps

Pedryz et al [203] used self-organizing maps with a planar competition layer to cluster training
data, and they provide means to interpret the learning results. The leaming results could show
whether two input vectors are similar to each other or belong to the same class. However, in

the case of high-dimensional input vectors, the structure of the learning problem can rarely be
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detected in the two dimensional map. Pedryz et al provides a procedure for interpreting the
leamning results usirg linguistic variables.

After the learning process, the weight matrix W represents the weight of each feature of the
input patterns to the output. Such a matrix defines a map for a single feature only. For each
feature of the input patterns, fuzzy sets are specified by a linguistic description B (one fuzzy
set for each variable). They are applied to the weight matrix W to obtain a number of
transformed matrices. Each combination of linguistic terms is a possible description of a
pattern subset or cluster. To check a linguistic description B for validity, the transformed maps
are intersected and a matrix [ is obtained. Matrix D determines the compatibility of the

learning result with the linguistic description B. D® is a fuzzy relation, and 4 ® is interpreted

as the degree of support of B. By describing D® by its a-cuts Dg {204] one obtains subsets of

output nodes, whose degree of membership is at least a such that the confidence of all patterns

X, belong 10 the class described by B vanishes with decreasing a. Each B is a valid description

of a cluster if D® has a non-empty a-cut Dg. If the features are separated into input and

output features according to the application considered, then each B represents a linguistic
rule, and by examining each combination of linguistic values a complete fuzzy rule base can
be created. This method also shows which patterns belong to a fuzzy rule, because they are not
contained in any subset X;. An important advantage when compared to FAMs is that the rules
are not weighted. The problem is with the determination of the number of cutput neurons and
the a values for each learning problem. Compared to FAM, since the form of the membership
function determines a crucial role in the performance the data could be better exploited. Since
Koska's learning procedure doesn’t take into account of the neighborhood relation between the
output neurons, perfect topological mapping from the input patterns to the output patterns
might not be obtained sometimes. Thus the FAM learning procedure is more dependent on the

sequence of the training data than Pedryz et al procedure.

Pedryz et al initially determines the structure of the feature space and then the linguistic
descriptions best matching the learning results by using the available fuzzy partitions are
obtained. If a large number of patterns fit none of the descriptions, this may be due to an

insufficient choice of membership functions and they can be determined anew. Hence for
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learning the fuzzy rules this approach is preferable compared to FAM [42] Performance of
this method still depends on the learning rate and the neighborhood size for weight
modification, which is problem dependant and could be determined heuristically. Fuzzy c-
means algorithm also has been explored to determine the learning rate and neighborhood size
by Bezdek et al {42] and Hopprer et al [121].

5.1.3. Systems Capable of Learning Fuzzy Set Parameters

Nomura et al {197] proposed a supervised learning technique to fine-tune the fuzzy sets of an
existing Sugeno type fuzzy system. Parameterized triangular membership functions were used
for the antecedent part of the fuzzy rules. The learning algorithm is a gradient descent
procedure that uses an error measure E (difference between the actual and target outputs) to
fine-tune the parameters of the MF. Because the underlying fuzzy system uses neither a
defuzzification procedure nor a non-differentiable t-norm to determine the fulfillment of rules,
the calculation of the modifications of the MF parameters. The procedure is very similar to the
delta rule for multilayer perceptrons. The learning takes place in an offline mode. For the input
vector, the resulting error E is calculated and based on that the consequent parts {(a real value)
are updated. Then the same patterns are propagated again and only the parameters f the MFs
are updated. This is done to take the changes in the consequents into account when the
antecedents are modified. A severe drawback of this approach is that the representation of the
linguistic values of the input variables depends on the rules they appear in. Initially ideni:al
linguistic terms are represented by identical membership functions. During the learning
process, they may be developed differently, so that identical linguistic terms are represented
by different fuzzy sets. The proposed approach is applicable only to Sugeno type fuzzy
inference system. Using a similar approach, Miyoshi et al [182] adapted fuzzy T-norm and T-
conorm operatess [73}] while Yager et al [244] adapted the defuzzification operator using a

supervised learning algorithm.

5.2.Concurrent Neuro-Fuzzy System
In a concurrent model, neural network assists the fuzzy system continuously (or vice versa) to
determine the required parameters especially if the input variables of the controller cannot be

measured directly. Such combinations do not optimize the fuzzy system but only aids to
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improve the performance of the overall system. Leaming takes place only in the neural
network and the fuzzy system remains unchanged during this phase. In some cases the fuzzy
outputs might not be directly applicable to the process. In that case neural network can act as a
postprocessor of fuzzy outputs. Figure 5.2 depicts a concurrent neuro-fuzzy model where in
the input data is fed to a neural network and the output of the neural network is further
processed by the fuzzy system.

Neural Network Fuzzy inference system

Figure 5.3. Block diagram showing a concurrent neuro-fuzzy model for stock market analysis

5.2.1. Nasdaq Stock Market Analysis Using Concurrent Neuro-Fuzzy
System

During the last decade, stocks and futures traders have come to rely upon various types of
intelligent systems to make trading decisions. Several hybrid intelligent systems have in recent

years been developed for modeling expertise, decision support, complicated automation tasks
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etc. We present a copcurrent peuro-fuzzy system for predicting the stock value and the
collective trend [19].

Nasdag-100 index reflects Nasdaq's largest companies across major industry groups, including
computer hardware and software, telecommunications, retail/wholesale trade and
biotechnology [189]. The Nasdag-100 index is a modified capitalization-weighted index,
which is designed to limit dominatien of the Index by a few large stocks while generally
retaining the capitalization ranking of companies. Through an investment in Nasdag-100 index
tracking stock, investors can participate in the collective performance of many of the Nasdag
stocks that are often in the news or have become household names. In this experiment, we
attempt to forecast the values of six individual stocks and group index (using neural networks)
as well as the trend analysis of the different stocks (using fuzzy inference system). Individual
stock forecasts and grcup trend analysis might give some insights of the actual performance of
the whole index in detail. To demunstrate the efficiency of the proposed hybrid sysiem we
considered the two years stock chart information (ending 20 March 2001) of six major
industry groups listed on the wational market tier of the Nasdaq Stock Market™ (Nasdag-100
index).

For the stock forecasting purpose, we made use of a neural network trained using scaled
conjugate gradient algorithm. However, the forecasted stock values might deviate from the
actual values. We modeled the deviation of the predicted value from the required value as a
fuzzy variable and used a fuzzy inference system to account for the uncertainty and decision-
making. Figure 5.3 depicts the concurrent neuro-fuzzy model for stock market analysis. We
start with data preprocessing, which consists of all the actions taken before the actual data
analysis process starts. The preprocessed data is fed into the neural network trained using a
scaled conjugate gradient algorithm for forecasting the stock outputs.

The forecasted outputs by the neural network are further analyzed using the fuzzy inference
system. This time our aim is to analyze the upward and downward trends of the different
forecasted stocks. Since the forecasted values will deviate from the desired value (depending
upon the prediction efiiciency of the neural network), we propose to make use of the

uncertainty modeling capability of fuzzy inference system. The developed fuzzy inference
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system is trained using the trend patterns of the different stock values. The difference between
the day's stock value and the previous day was calculated and used for training the fuzzy
inference system. If all the stock values were increasing we classified it as positive trend "1"
and "0" otherwise. The proposed fuzzy inference system is capable of providing detailed trend
analysis of individual stocks and also interdependencies of various stocks and how they affect

the overall index.

5.2.1.1. Experimentation setup and test results

We considered 24 months stock data for training and analyzing the efficiency of the proposed
concurrent neuro-fuzzy system. We used Nasdag-100 main index values and six other
companies listed in the Nasdag-100 index. Apart from the Nasdaq-100 index (IXNDX); the
other companies considered were Microsoft Corporation (MSFT), Yahoo! Inc. (YHOQ), Cisco
Systems Inc. (CSCOQ), Sun Microsystems Inc. (SUNW), Oracle Corporation (ORCL) and Intel
Corporation (INTC). Figures 5.4 and 5.5 depict the variation of stock values for a 24 months
period from 22 March 1999 to 20 March 2001.

For each 7, the stock values x (1} were first scaled by the data preprocessor. 80% of the data
was used for training and remaining was used for testing and validation. The same set of data
was used for training and testing the fuzzy inference system. Test data was presented to the
network and the output from the network was compared with the actual stock values in the

time series.
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Figure 5.4, 24 months data of Nasdag-108 index adapted from [189]
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Figure §.5. 24 months data of 6 companies adapted from [189]

¢ Training the neural network

We used a feedforward neural network with 8 input nodes and two hidden layers consisting of
20 neurons each. We used tanh-sigmoida! activation function for the hidden neurons. The
training was terminated after 2000 epochs. The test data was passed through the network after

the training was completed.

¢ Building and training the fuzzy inference system

Each of the input variables consists of the difference in the stock value (for «xample, today's
value — yesterday's value). For building the fuzzy inference system, we had 8 input variables
(the scaled stock value differences and the time factor). We used 4 membership functions for
each of the 8 input varicble and we used a neural network learning method to build up the
knowledge base automatically {139]. We report only the collective trend of all the seven stock

values. If all the trends were increasing we classified it as "I" and "0" otherwise.

¢ Performance and Resulis Achieved

Table 5.1 summarizes the training and test results achieved for the different stock values.
Figure 5.6 and 5.7 depicts the test results for the prediction of Nasdag-100 index and other
company stock values. Table 5.2 summarizes the trend prediction results and Figure 5.8

illustrates the trend classification test results using the fuzzy inference system.
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Table 5.1. Training and testing results using neural network

Nasdaq | Microsoft | Sun | Cisco | Yahoo | Oracle | Intel

Testing error (RMSE) | 0.028 0.034 0.023 1 0.030 | 0.021 [0.026 | 0.034

Learning epochs 2000

Training error (RMSE) 0.0256

Table 5.2. Test resulis of trend classification using fuzzy inference system

Fuzzy system o
Actual q“anﬁty classification Suc:ess
Positive trends 22 22 100
Non-positive trends 78 78 100
o ™\

Nandaq-100 index forecasting
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Figure 5.6, Forecast test results for Nasdag-100 index
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Figure 5.8. Test results for the collective trend prediction of Nasdaqg-100 index and the six 6

company stock values using fuzzy inference system.
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For forecasting stocks, the RMSE on test data are comparatively small showing the reliability
of the developed prediction model. The fuzzy inference system also gave 100% trend
prediction showing the efficiency of the technique. From the viewpoint of the stock exchange
owner, participating companies, traders and investors the technique might help for better
understanding of the day-to-day stock market performance. The stock forecast error could
have been improved by providing more input variable information (stock volume etc) and if
individual neural networks were used rather than a single network. Various trend analyses
could have been done using the proposed fuzzy inference system. Some of the possible
analyses are individual stock trend predictions, interdependency of different stocks with
respect to the main index as well as individual companies. More details about the model and
results could be obtained from [19].

5.3.Integrated Neuro-Fuzzy Systems

In an integrated model, neural network learning algorithms are used to determine the
parameters of fuzzy inference systems. Integrated neuro-fuzzy systems share data structures
and knowledge representations. A fuzzy inference system can utilize human expertise by
storing its essential components in rule base and database, and perform fuzzy reasoning to
infer the overall output value. The derivation of if-then rules and corresponding membership
functions depends heavily on the a priori knowledge about the system under consideration.
Howevur there is no systematic way to transform experiences of knowledge of human experts
to the knowledge base of a fuzzy inference system. There is also a need for adaptability or
some Jearning algorithms to produce outputs within the required error rate. On the other hand,
neural network leamning mechanism does not rely on human expertise. Due to the homogenous
structure of neural network, it is hard to extract structured knowledge from either the weights
or the configuration of the network. The weights of the neural network represent the
coefficients of the hyper-plane that partition the input space into two regions with different
output values. If we can visualize this hyper-plane structure from the training data then the
subsequent learning procedures in a neural network can be reduced. However, in reality, the a
priori knowledge is usually obtained from human experts and it is most appropriate to exﬁress

the knowledge as a set of fuzzy if-then rules and it is very difficult to encode into an neural
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network. Table 5.3 summarizes the comparison between neural networks and fuzzy inference

system [26].

Table §.3. Comparison between neural networks and fuzzy inference systems

Artificial Neural Networks Fuzzy Inference System

Prior rule-based knowledge cannot be used Prior rule-base can be incorporated
Learning from scratch Cannot learn (use linguistic knowledge)
Biack box Interpretable (1f-then rules)
Complicated learning algorithms 151;1’35 ;ir:]t;?;;ﬁtation and

Difficult to extract knowledge Knowledge must be available

To a large extent, the drawbacks pertaining to these two approaches seem complementary.
Therefore, it seems natural to consider building an integrated system combining the concepts
of FIS and ANN modeling. A common way to apply a learning algorithm to a fuzzy system is
to represent it in a special neural network like architecture. However the conventional neural
network learning algorithms (gradient descent) cannot be applied directly to such a system as
the functions used in the inference process are usually non differentiable. This problem can be
tackled by using differentiable functions in the inference system or by not using the standard
neural learning algorithm. In Section 5.3.1 ~5.3.2, we will discuss how to model integrated

neuro-fuzzy systems implementing Mamdani and Takagi - Sugeno FIS.

53.1. Integrated Neuro-Fuzzy System (Mamdani FIS)

A Mamdani neuro-fuzzy system uses a supervised learning technique (backpropagation
learning) to learn the parameters of the membership functions. The detailed function of each

layer (as depicted in Figure 5.9) is as follows:

o Layer -1(input layer): No computation is done in this layer. Each node in this layer,
which corresponds to one input variable, only transmits input values to the next layer

directly. The link weight in layer 1 is unity.
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Layer-2 (fuzzification layer): Each node in this Jayer corresponds to one linguistic label
(excellent, good, etc.) to one of the input variables in layer 1. In other words, the output
link represent the membership value, which specifies the degree to which an input value
belongs to a fuzzy set, is calculated in layer 2. A clustering algorithm will decide the
initial number and type of membership functions to be allocated to each of the input
variable. The final shapes of the MFs will be fine tuned during network learning.

Layer-3 (rule antecedent layer): A node in this layer represents the antecedent part of a
rule. Usually a T-norm operator is used in this node. The output of a layer 3 node

represents the firing strength of the corresponding fuzzy rule.

Layer-4 (rule consequent layer): This node basically has two tasks. To combine the
incoming rule antecedents and determine the degree to which they belong to the output
linguistic label (high, medium, low, etc.). The number of nodes in this layer will be

equal to the number of rules.

Layer-5 (Combination and defuzzification layer): This node does the combination of
all the rules consequents using a T-conorm operator and finally computes the crisp

output after defuzzification.

Figure §.9. Mamdani neuro-fuzzy system
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5.3.2 Integrated Neuro-fuzzy system (Takagi-Sugeno FIS)

Takagi Sugeno neuro-fuzzy systems make use of a mixture of back propagation to learn the
membership functions and least mean square estimation to determine the coefficients of the
linear combinations in the rule’s conclusions. A step in the learning procedure got two parts:
In the first part the input patterns are propagated, and the optimal conclusion parameters are
estimated by an iterative least mean square procedure, while the antecedent parameters
(membership functions) are assumed to be fixed for the current cycle through the training set.
In the second part the patterns are propagated again, and in this epoch, back propagation is
used to modify the antecedent parameters, while the conclusion parameters remain fixed. This
procedure is then iterated. The detailed functioning of each layer (as depicted in Figure 5.10)

is as follows:
e Layers 1,2 and 3 functions the same way as Mamdani F!S.

e Layer 4 (rule strength normalization): Every node in this layer calculates the ratio of

the i-th rule’s firing strength to the sum of alf rules firing strength

— w- .
Wy = =120
‘H’] + W2

¢ Layer-5 (rule consequent layer): Every node i in this layer is with a node function
wifi = E(P:‘xl +gixy 1),

where w; is the output of layer 4, and {pi, qi, ;}is the parameter set. A well-

established way is to determine the consequent parameters using the least means

squares algorithm.

o Layer-6 (rule inference layer) The single node in this layer computes the overall output

2wifi

as the summation of all incoming signals: Overall output = ¥ w; f; = 5
i Wi
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Figure §.10. Takagi Sugeno neuro-fuzzy system

In the following sections we briefly discuss the different integrated neuro-fuzzy models that
make use of the complementarities of neural networks and fuzzy inference systems
implementing a Mamdani or Takagi Sugeno fuzzy inference system. Some of the major woks
in this area are GARIC [39], FALCON [160], ANFIS {130], NEFCON [191], NEFCLASS
193], NEFPROX [196], FUN [226], SONFIN ([83], FINEST [230], EFuNN [142],
dmEFuNN[ 142], evolutionary design of neuro fuzzy systems [147], and many others [108]
[137] [184] [256] [258].

5.3.3. Adaptive Network Based Fuzzy Inference System (ANFIS)

ANFIS [130] is nerhaps the first integrated hybrid neuro-fuzzy model. ANFIS structure as
shown in Figure 5.1} is capable of implementing the Takagi and Sugeno FIS. A modified
version of ANFIS as shown in Figure 5.13 is capable of implementing the Tsukamoto fuzzy
model (Figure 5.12). Ia the Tsukamoto FIS, the overall output is the weighted average of each
rule’s crisp output induced by the rule’s firing strength (the product or minimum of the
degrees of match with the premise part) and output membership functions. The output
membership functions used in this scheme must be monotonically non-decreasing. ANFIS

functions exactly as discussed in Section 5.3.2. The first hidden layer is for fuzzification of the
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input variables and T-norm operators are deployed in the second hidden Jayer to compute the
rule antecedent part. The third hidden layer normalizes the rule strengths followed by the
fourth hidden layer where the consequent parameters of the rule are determined. Output layer

computes the overall input as the summation of all incoming signals.
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Figure.5.11. Architecture of ANFIS implementing a Takagi Sugeno fuzzy inference system
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Figure 5.12. Tsukamoto fuzzy reasoning

Figure 5.13. Architecture of ANFIS implementing Tsukamoto fuzzy inference system

in ANFIS the adaptation (learning) process is only concerned with parameter level adaptation
within fixed structures. For large-scale problems, it will be too complicated to determine the
optimal premise-consequent structures, nile numbers etc. The structure of ANFIS ensures that
each linguistic term is represented by only one fuzzy set. However, the leaming procedure of

ANFIS does not provide the means to apply constraints that restrict the kind of modifications
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applied to the membership functions. When using Gaussizu membership functions,
operationally ANFIS can be compared with a radial basis function network.

Figure 5.14. Architecture of FALCON Figure 5.15. ASN of GARIC

5.3.4 Fuzzy Adaptive learning Control Network (FALCON)

FALCON [160} has a five-layered architecture as shown in Figure 5.14 and implements a
Mamdani type FIS. There are two linguistic nodes for each output variable. One is for training
data (desired output) and the other is for the actual output of FALCON. The first hidden layer
is responsible for the fuzzification of each input variable. Each node can be a single node
representing a simple membership function (MF) or composed of multilayer nodes that
compute a complex MF. The Second hidden layer defines the precoaditions of the rule
fellowed by rule consequenis in the third hidden layer. FALCON uses a hybrid-learming
algorithm comprising of unsupervised learning and a gradient descent learning to optimally
adjv«t the parameters to produce the desired outputs. The hybrid learning occurs in two
differen: phases. In the initial phase, the centres and width of the membership functions are
determined by self-organized learning techniques analogous to statistical clustering
techniques. Once the initial parameters are determined, it is easy to formulate the rule
antecedents. A competitive learning algorithm is used to determine the correct rule consequent
links of each rule node. After the fuzzy rule base is established, the whole n%%work structure is
established. The network then enters the second learning phase to adjust the parameters of the
(input and output) membership functions optimaily. The backpropagation algorithm is used for




the supervised learning. Hence FALLCON algorithm provides a framework for structure and
parameter adaptation for designing neuro-fuzzy systems [162].

5.3.5. Generalized Approximate Reasoning based Intelligent Control
(GARIC)

GARIC [39] is an extended version of Berenji's Approximate Reasoning based Intelligent
Control (ARIC) that implements a fuzzy controller by using several specialized feedforward
neural networks{38]. Like ARIC, it consists of an Action state Evaluation Network (AEN) and
an Action Selection Network (ASN). The AEN is an adaptive critic that evaluates the actions
of the ASN. The ASN does not use any weighted connections, but the learning process
meodifies parameters stored within the units of the network. Aschitecture of the GARIC — ASN
is depicted in Figure 5.15. ASN of GARIC is txcdforward network with five layers. The first
hidden layer stores the linguistic values of all the input variables. Each input unit is only
connected to those units of the first hidden layer, which represent its associated linguistic
values. The second hidden layer represents the fuzzy rules nodes, which determine the degree
of fulfiliment of a rule using a soffmin operation. The third hidden layer represents the
linguistic values of the control output variable # Conclusions of the rule are computed
depending on the strength of the rule antecedents computed by the rule node layer. GARIC
makes use of local mean-of-maximum method for computing the rule outputs. This method
needs a crisp output value from each rule. Therefore, the conclusions must be defuzzified
before they are accumulated to the final output value of the controller. The learning algorithm
of the AEN of GARIC is equivalent to that of its predecessor ARIC[37]. However, the ASN
learing procedure is different from the procedure used in ARIC. GARIC uses a mixture of
gradient descent and reinforcement learning to fine-tune the node parameters. The hybrid
learning stops if the output of the AEN ceases to change. The interpretation of GARIC is
improved compared to GARIC. The relatively complex learning procedure and the
architecture of GARIC can be seen as a main disadvantage of GARIC.

5.3.6. Neuro-Fuzzy Controller (NEFCON)

The learning algorithm defined for NEFCON is able to learn fuzzy sets as well as fuzzy rules

implementing a Mamdani type FIS [191]. This method can be considered as an extension to
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GARIC that also use reinforcement learning but need a previously defined rule base. Figure
5.16(a) illustrates the basic NEFCON architecture with 2 inputs and five fuzzy rules [192].
The inner nodes R;, ....R: rcpresent the rules, the nodes &;, ¢, and 5 the input and output
values, and y4,, V, the fuzzy sets describing the antecedents and consequents. In contrast to
neural networks, the connections in NEFCON are weighted with fuzzy sets instead of real
numbers. Rules with the same antecedent use so-called shared weights, which are represented
by ellipses drawn around the connections as shown in the figure. They ensure the integrity of
the rule base. The knowledgr: base of the fuzzy system is implicitly given by the network
structure. The input units assume the task of fuzzification interface, the inference logic is
represented by the propagation functions, and the output unit is the defuzzification interface.
The learning process of the NEFCON model can be divided into two main phases. The first
phase is designed to learn the rule base and the second phase optimizes the rules by shifting or
modifying the fuzzy sets of the rules. Two methods are available for learning the rule base.
Incremental rule learning is used when the correct out put is not known and rules are created
based on estimated output values. As the learning progresses more rules are added according
to the requirement. For decremental rule learning, initially rules are created due to fuzzy
partitions of process variables and unnecessary rules are eliminated in the course of learning.
Decremental rule learning is less efficient compared to it.cremental approach. However it can
be applied to unknown processes without difficulty, and there is no need to know or to guess
an optimal output value. Both phases use a fuzzy error E, which describes the quality of the
current system state, to learn or to optimize the rule base. To obtain a good rule base it must be
ensured that the state space of the process is sufficiently covered during the learning process.
Due to the complexity of the calculations required, the decremental learning rule can only be
used, if there are only a few input variables with not too many fuzzy sets. For larger systems,
the incremental Jearning rule will be optimal. Prior knowledge whenever available could be
incorporated to reduce the complexity of the learning [ 198]. Membership functions of the rule
base are modified according to the Fuzzy Error Backpropagation (FEBP) algorithm, The
FEBP algorithm can adapt the membership functions, and can be applied only if there is
already a rule base of fuzzy rules. The idea of the learning algorithm is identical: increase the

influence of a rule if its action goes in the right direction (rewarding), and decrease its
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influence if a rule behaves counter productively (punishing). If there is absolutely no
knowledge about initial membership function, a uniform fuzzy partition of the variables
should be used.

Figure 5.16. (a) NEFCON (b) NEFCLASS (C) NEFPROX.

5.3.7 Neuro-Fuzzy Classification (NEFCLASS)

NEFCLASS is used to derive fuzzy rules from a set of data that can be separated in different
crisp classes [193]. The rule base of a NEFCLASS system approximates an (unknown)
function ¢ that represents the classification problem and maps an input pattern x to its class C;:

lif e C;

9 : R" = {01)", 0(x) = (c},.....C . With ¢; = .
0 otherwise.

Because of the propagation procedures used in NEFCLASS the rule base actually does not
approximate ¢ but a function ¢° : R" — 70,1 /", We obtain ¢ (x) from the equality ¢ (x) =¢
(¢ (x)), where ¢ reflects the interpretation of the classification result obtained from a
NEFCLASS system [194]. Figure 5.16 (b) illustraies the NEFCLASS system that maps
patterns with two features into two distinct classes by using five linguistic rules, The
NEFCLASS very much resemble the NEFCON system except the slight variation in the
learning algorithm and the interpretation of the rules. As in NEFCON system in NEFCLASS
identical linguistic values of an input variable are represented by the same fuzzy set. As
classification is the primary task of NEFCLASS, there should be two rules with identical
antecedents and each rule unit must be connected to only one output unit. The weights

between rule layer and the output layer only connect the units. A NEFCLASS system can be
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built from partial knowledge about the patterns, and can then be refined by leaming, or it can
be created from scratch by learning. A user must define a number of initial fuzzy sets that
partition the domains of the input features, and specify a value for £, i.e. the maximum number
of rule nodes that may be created in the hidden layer. NEFCLASS makes use of tnangular
membership functions and the learning algorithm of the membership functions uses an error
measure that tells whether the degree of fulfillment of a rule has to be higher or lower. This
information is used to change the input fuzzy sets. Being a classification system, we are not
much interested in the exact output values. In addition, we take a winner-takes-all
interpretation for the output, and we are mainly interested in the correct classification result.
The incremental rule learning in NEFCLASS is much less expensive than decremental rule
learning in NEFCON. It is possible to build up a rule base in a single sweep through the
training set. Even for higher dimensional problems, the rule base is completed after at most
three cycles. Compared to neural networks, NEFCLASS uses a much simpler learning
strategy. There is no vector quantization involved in finding the rules (clusters, and there is no
gradient information needed to train the membership functions. Some other advantages are
interpretability, possibility of initialization (incorporating prior knowledge) and its simplicity.
5.3.8. Neuro-Fuzzy Function Approximation (NEFPROX)

NEFPROX system is based on plain supervised learning (fixed learning problem) and it is
used for function approximation [195]. It is a modified version of the NEFCON model without
the reinforcement learning. The advantage of neuro-fuzzy models is that we can incorporate
prior knowledge; where as conventional neural networks have to learn from scratch.
NEFPROX is very much similar to NEFCON and NEFCLASS except the fact that NEFCON
have only a single output node, and NEFCLASS systems do not use membership functions on
the conclusion side [196]. We can initialize the NEFPROX system if we already know suitable
rules or else the system is capable to incrementally learn all rules. NEFPROX architecture is
as shown in Figure 5.16(c). While ANFIS is capable to implement only Sugeno models with
differentiable functions, NEFPROX can learn common Mamdani type of fuzzy system from
data. Further NEFPROX is much faster compared to ANFIS to yield resuits. However ANFIS

yields better approximation results.
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5.3.9. Fuzzy Inference Environment Software with Tuning (FINEST)

FINEST 1is designed to tune the fuzzy inference itself. FINEST is capable of two kinds of
tuning process, the tuning of fuzzy predicates, combination functions and the tuning of an
implication function [230]. The three important features of the system are:

«  The generalized modus ponens is improved in the following four ways (1) Aggregation
operators that have synergy and cancellation nature (2) A parameterized implication
function (3) A combination function, which can reduce fuzziness (4) Backward chaining
based on generalized modus porens.

*  Aggregation operators with synergy and cancellation nature are defined using some
parameters, indicating the strength of the synergic affect, the area influenced by the
effect, etc., and the tuning mechanism is designed to tune also these parameters. In the

same way the tuning mechanism can also tune the implication function and combination
function.

«  The software environment and the algorithms are designed for carrying out forward and

backward chaining based on the improved generalized modus ponens and for tuning

various parameters of a system.

FINEST make use of a backpropagation algorithm for the fine-tuning of the parameters.
Figure 16 shows the layered architecture of FINEST and the calculation process of the fuzzy
inference. The input values (x;) are the facts and the output value (p) is the conclusion of the
fuzzy inference. Layer 1 is a fuzzification layer and layer 2 aggregates the truth-values of the
conditions of Rule i. Layer 3 deduces the conclusion from Rule 7 and the combination of all
the rules is done in Layer 4. Referring to Figure 5.17, the function and, I, and comb
respectively represent the function characterizing the aggregation operator of rule i, the
implication function of rule J, and the global combination function. The functions ard), I,

comb and membership functions of each fuzzy predicate are defined with some parameters.
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Figure 5.17. Architecture of FINEST
Back-propagation method is used to tune the network parameters. It is possible to tune any
parameter, which appears in the nodes of the network representing the caiculation process of

the fuzzy data if the derivative function with respect to the parameters is given.

Thus FINEST framework provides a mechanism based on the improved generalized modus
ponens for fine tuning of fuzzy predicates and combination functions and tuning of the
implication function. Parameterization of the inference procedure is very much <-sential for
proper application of the tuning algorithm.

5.3.10. Self Constructing Neural Fuzzy Inference Network (SONFIN)
SONFIN implements a Takagi-Sugeno type fuzzy inference system. Fuzzy rules are created
and adapted as online learning proceeds via a simultaneous structure and parameter
identification [83]. In the structure identification of the precondition part, the input space is
partitioned in a flexible way according to an aligned clustering based algorithm. As to the
structure identification of the consequent part, only a singleton value selected by a clustering
method is assigned to each rule initially. Afterwards, some additional significant terms (input
variables) selected via a projection-based correlation measure for each rule will be added to
the consequent part (forming a linear equation of input variables) incrementally as learning
proceeds. For parameter identification, the consequent parameters are tuned optimally by
either Least Mean Squares [LMS] or Recursive Least Squares [RLS] algorithms and the
precondition parameters are tuned by back propagation algorithm. To enhance knowledge

representation ability of SONFIN, a linear transformation for each input variable can be
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incorporated into the network so that much fewer rules are needed or higher accuracy can be
achieved. Proper linear transformations are also learned dynamically in the parameter
identification phase of SONFIN. Figure 5.18 illustrates the 6-layer structure of SONFIN.

Figure 5.18. Six layered architecture of SONFIN
Learning progresses concurrently in two stages for the construction of SONFIN. The structure
learning includes both the precondition and consequent structure identification of a fuzzy if-
then rule. The parameter learning is based on supervised learning algorithms, the parameters
of the linear equations in the consequent parts are adjusted by either LMS or RLS algorithms
and the parameters in the precondition part are adjusted by the backpropagation algorithm.
SONFIN can be used for normal operation at anytime during the learning process without
repeated training on the input-output pattern when online operation is required. In SONFIN
rule base is dynamically created as the learning progresses by performing the following

learning processes:
s Input-output space partitioning

The way the input space is partitioned determines the number of rules extracted from the
training data as well as the number of fuzzy sets on the universal of discourse of each input
variable. For each incoming pattern x the strength a rule is fired can be interpreted as the
degree the incoming pattern belongs to the corresponding cluster. The center and width of the

corresponding membership functions (of the newly formed fuzzy rules) are assigned according




to the first-neighbor heuristic. For each rule generated, the next step is to decompose the
multidimensional membership function to corresponding /-D membership function for each
input variable. For the output space partitioning, almost a similar measure is adopted.
Performance of SONFIN can be enhanced by incorporating a transformation matrix R into the

structure, which accomrmodates all the a priori knowledge of the data set.

o Construction of fuzzy rule base

Generation of new input cluster corresponds to the generation of a new fuzzy rule, with its
precondition part constructed by the leamning algorithm in process. At the same time we have
to decide the consequent part of the generated rule. This is done using a algorithm based on
the fact that different preconditions of rules may be mapped to the same consequent fuzzy set.
Since only the center of each output membership function is used for defuzzification, the
consequent part of each rule may simply be regarded as a singleton. Compared to the general
fuzzy rule based models with singieton output where each rule has its own singleton value,
fewer parameters are needed in the consequent part of the SONFIN, especially for complicated

systems with a large number of rules.
¢ Optimal consequent structure identification

TSK model can model a sophisticated system with a few rules. In SONFIN, instead of using
the linear combination of all input variables as the consequent part, only the most significant
input variables are used as the consequent terms of the SONFIN. The significant terms will be
chosen and added to the network incrementally any time when the parameter/ learning cannot
improve the network output accuracy anymore during the online learning process. The
consequent structure identification scheme in SONFIN is a kind of node growing method in
ANNs. When the effect of the parameter learning diminished (output error 1s not decreasing),

additional terms are added to the consequent part.

¢  Parameter identification,

After the network structure is adjusted according to the current training pattern, the network
then enters the parameter identification phase to adjust the parameters of the network

optimally based on the same training pattern. Parameter learning is performed on the whole
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network after structure learning, no matter whether the nodes (links) are newly added or are
existent originally. Backpropagation algorithm is used for this supervised iearning. For each
training data set, starting at the input nodes, a forward pass is used to compute the activity
levels of all the nodes in the network to obtain the current output. Then starting at the output

nodes, a backward pass is used to compute %-E for all the hidden nodes of all the layers. If w

-

is the adjustable parameter in a iiode, the general rule used is:

Wit +1) =wi)+7 [- —g%] , where 1 is the learning rate.

SONFIN is perhaps one of the most computational expensive among all neuro-fuzzy models.

The network is adaptable to the users specification of required accuracy.

5.3.11. FUzzy Net {[FUN]
In FUN inorder to enable an unequivocal translation of fuzzy rules and membership functions
into the network, special neurons have been defined, which, through their activation functions,
can evaluate logic expressions [226]. The network consists of an input, an output and three
hidden layers. The neurons of each layer have different activation functions representing the
different stages in the calculation of fuzzy inference. The activation function can be
individually chosen for problems. The network is initialized with a fuzzy rule base and the
corresponding membership functions. Figure 5.19 illustrates the FUN network. The input
variables are stored in the input neurons. The neurons in the first hidden layer contain the
membership functions and this performs a fuzzification of the input values. In the second
hidden layer, the conjunctions (fuzzy-AND) are calculated. Membership functions of the
output variables are stored in the third hidden layer. Their activation function is a fuzzy-OR.

Finally the output neurons contain the ouiput variables and have a defuzzification activation

function.
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Rule: IF (Goal IS forward AND Sensor IS near) OR (goal IS right AND sensor IS far) THEN
steering = forward

Figure 5.19. Architecture of the FUN showing the implementation of a sample rule
The rules and the membership functions are used to construct an initial FUN network. The rule
base can then be optimized by changing the structure of the net or the data in the neurons. To
learn the rules, the connections between the rules and the fuzzy values are changed. To learn
the membership functions, the data of the nodes in the first and three hidden layers are
charged. FUN can be trained with the standard neural network training strategies such as

reinforcement or supervised learning,

¢ Learning of the rules and membership functions

The rules are represented in the net through the connections between the layers. The learning
of the rules is implemented as a stochastic search in the rule space: a randomly chosen
connection is changed and the new network performance is verified with a cost function. If the
performance is worse, the change is undene, otherwise it is kept and some other changes are
tested, until the desired output is achieved. As the learning algorithm should preserve the
semantic of the rules, it has to be controlled in such a way that no two values of the same
variable appear in the same rule. This is achieved by swapping connections between the

values of the same variable. FUN uses a mixture of gradient descent and stochastic search for
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updating the membership functions. A maximum change in a random direction is initially
assigned to all Membership function Descripters (MFDs). In a random fashion one MFD of
one linguistic variable is selected, and the network performance is tested with this MFD
altered according to the allowable change for this MFD. If the network performs better
according to the given cost function, the new value is accepted and next time another change is
tried in the same direction. Contrary if the network performs worse, the change is reversed. To
guarantee convergence, the changes are reduced after each training step and shrink
asymptotically towards zero according to the learning rate. As evident, FUN system is
initialized by specifying a fixed number of rules and a fixed number of initial fuzzy sets for
each variable and the network learns through a stochastic procedure that randomly changes
parameters of membership functions and connections within the network structure Since no

formal neural network learning technique is used it is questionable to call FUN a neuro-fuzzy
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Figure £. 20(a) Architecture of EFUNN {(b) Architecture of dmEFuNN

5.3.12. Evolving Fuzzy Neural Networks (EFuNNs and mEFuNN5s;
EFuNNs [139] and dmEFuNNs [142] are based on the ECOS (Evolving COnnectionist

Systems) framework [141] for adaptive intelligent systems formed because of evolution and ]

incremental, hybrid (supervised / unsupervised), online learning. They can accommodate new

input data, including new features, new classes, and etc. through local element tuning [140]. ;
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In EFuNNs all nodes are created during learning. EFuNN has a five-layer architecture as
shown in Figure 5.20(a). The input layer is a buffer layer representing the input variables. The
second layer of nodes represents fuzzy quantification of each input variable space. Each input
variable is represented here by a group of spatially arranged neurons to represent a fuzzy
quantization of this variable. The nodes representing membership functions (triangular,
Gaussian, etc) can be modified during leamning. The third layer contains rule nodes that evolve
through hybrid supervised/unsupervised learning. The rule nodes represent prototypes of
input-output data associations, graphically represented as an association of hyper~spheres from
the fuzzy input and fuzzy output spaces. Each rule node r is defined by two vectors of
connection weights: W, (r) and W, (r), the latter being adjusted through supervised learning
based on the output error, and the former being adjusted through unsupervised learning based
on similarity measure within a local area of the input problem space [144)]. The fourth layer of
neurons represents fuzzy quantification for the output variables. The fifth layer represents the
real values for the output variables. In the case of "one-of-n" EFuNNs, the maximum
activation of the rule node is propagated to the next level. In the case of "many-of-n" mode, all
the activation values of rule nodes that are above an activation threshold are propagated

further in the connectionist structure.

5.3.12.1 Dynamic Evolving Fuzzy Neural Networks (dmEFuNNs)
Dynamic Evolving Fuzzy Neural Networks (dmEFuNN) mode! is developed with the idea that
not just the winning rule node's activation is propagated bui a group of rule nedes is
dynamically selected for every new input vector and their activation values are used to
calculate the dynamical parameters of the output function. While EFuNN make use of the
weighted fuzzy rules of Mamdani type, dmEFuNN uses the Takagi-Sugeno fuzzy ruies.

The first, second and third layers of dmEFuNN have exactly the same structures and functions
as the EFuNN. The fourth layer, the fuzzy inference layer, selects m rule nodes from the third
layer which have the closest fuzzy normalised local distance to the fuzzy input vector, and

then, a Takagi-Sugeno fuzzy rule will be formed using the weighted ieast square estimator.
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The last layer calculates the output of dmEFuNN. Please refer to Figure 20(b) for details about
the dmEFuNN architecture.

The number m of activated nodes used to calculate the output values for a dmEFuNN is not
less than the number of the input nodes plus one. Like the EFuNNs, the dmEFuNNs can be
used for both off-line learning and online learning thus optimising global generalization error,
or a local generalization error. In dmEFuNNs, for a new input vector (for which the output
vector is not known), & subspace consisted of m rule nodes are found and a first order
Takagi-Sugeno fuzzy rule is formed using the least square estimator method. This rule is used
to calculate the dmEFuNN output value. In this way a dmEFuNN acts as a universal function
approximator using m linear functions in a small m-dimensional node subspace. The accuracy
of approximation depends on the size of the node subspaces, the smaller the subspace is, the
higher the accuracy. It means that if there are sufficient training data vectors and sufficient

rule nodes are created, a satisfying accuracy can be obtained.

5.4.Discussions Related to Neuro-Fuzzy Models

As evident, both cooperative and concurrent models are not fuily interpretable due to the
presence of neural network (black box concept). Whereas an integrated neuro-fuzzy medel is
interpretable and capable of learning in a supervised mode (or even reinforcement learning
like NEFCON). In FALCON, GARIC, ANFIS, NEFCON, SONFIN, FINEST and FUN the
learning process is only concerned with parameter level adaptation within fixed structures. For
large-scale problems, it will be too complicated to determine the optimal premise-consequent
structures, rule numbers etc. User has to provide the architecture detai's (type and quantity of
MF's for input and output variables), type of fuzzy operators etc. FINEST provides a
mechanism based on the improved generalized modus ponens for fine tuning of fuzzy
predicates and combination functions and tuning of an implication finciion. An important
feature of EFuNN and dmEFuNN is the one pass (epoch) training, which is highly capable of
online learning. Table 5.4 provides a comparative performance of some neuro fuzzy systems
for predicting the Mackey-Glass chaotic time series [167]. Training was done using 500 data
sets and NF models were tested with another 500 data sets [9].
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Table 5.4. Performance of neuro-fuzzy systems

System Epechs Test RMSE
ANFIS 75 0.6017
NEFPROX 216 0.0332
EFuNN 1 0.0140
dmEFuNN I 0.0042
SONFIN 1 0.0180

Among NF models ANFIS bas the lowest Root Mean Square Error (RMSE) and NEPROX the
highest. This is probably due to Takagi-Sugeno rules implementation in ANFIS compared to
the Mamdani-type fuzzy system in NEFPROX. However NEFPROX outperformed ANFIS in
terms of computational time. Due to fewer numbers of rules SONFIN, EFuNN and dmEFuNN
are also able to perform faster than ANFIS. Hence, there is a tradeoff between interpretability
and accuracy. Takagi Sugeno type inference systems are more accurate but require more
computational effort. While Mamdani type inference, systems are more interpretable and

required less computational load but often the accuracy is not that high.

As the prcbiem become, more complicated maznual definition of NF architecture/parameters

becomzs complicated. The following questions remain unanswered:
s What is the optimal quantity of membership functions and their shape?
«  What is the optimal structure (rule base) and fuzzy operators?
¢ What are the optimal Jearning parameters?

e  Which fuzzy inference system will work the best for a given problem?

We will try to address the above questions in Chapter 7. In that Chapter, we will show how the

integrated neuro-fuzzy systems are implemented in practice.
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Chapter 6: Integrated Neuro-Fuzzy Systems
in Practice

6.0 Introduction

Neuro-fuzzy computing is a popular framework for solving complex problems. When
knowledlge is expressed in linguistic rules, we can build a fuzzy inference system, and if we
have data, or can learn from a simulation (training) then we can use neural networks. For
building a fuzzy inference system, we have to specify the fuzzy sets, fuzzy operators and the
rule base. Similarly, for constructing a neural network for an application, the user needs to
specify the architecture, learning algorithm and several parameters. An integrated neuro-fuzzy
system is a combination of neural network and fuzzy inference system in that neural network
learning algorithms are used to determine the parameters of the fuzzy inference system. An
even more important aspect is that the system should always be interpretable in terms of fuzzy

if-then rules, because it is based on the fuzzy system reflecting vague knowledge.

In this chapter we present 3 real life applications of integrated neuro-fuzzy systems. We begin
with an introduction of learning in neuro-fuzzy systems emphasizing Takagi Sugeno and
Mamdani fuzzy inference systems. The three applications are (1) modeling electricity demand
in Victoria (2) automation of reactive power control and (3) developing rainfall prediction
models.

6.1.Learning in Adaptive Neuro-Fuzzy Inference Systems

The basic architecture and functioning of the different layers of Adaptive Neuro-Fuzzy
Inference System (ANFIS) was presented in Chapter 5, Section 5.3.3. In this section we will
present the learning mechanism in ANFIS to learn the fuzzy inference system automatically.

ANFIS uses a hybrid learning rule with a combination of gradient descent and least squares
estimate [130]. Assuming a single output ANFIS represented by

output = F(1,5) (6.1)
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where 1 is the set of input variables and S is the set of parameters, if there exist a function H
such that the composite function H o F is linear in some of the elements of S, then these
elements can be identified by the least squares method [132]. More formally, the parameter set
S can be decomposed into two sets:

S =8; &5, (where ® represents direct sum), (6.2)

such that H o F is linear in the elements of S,. Then upon applying H to equation (6.1), we
have:

H(output) = H o F(1,5) (6.3)
which is linear in the elements of §, . Now the given values of elements of S, we can plug P
training data sets into (6.3), and obtain a matrix equation:

AX = B (X = unknown vector whose elements are parameters in S, ) (6.4)

If |$,|=M, (M= number of linear parameters) then the dimensions of 4, X and B are P x M, M

x I and P x I respectively. Since P is always greater than M, there is no exact solution to
equation (6.4). Instead 2 Least Square Estimate (LSE) of X, X', is sought to minimize the

squared error |4X - B|" . X" is computed using the pseudo-inverse of X:
X =44 4"B (6.5)

where 47 is the transpose of A and (47 4)™' 47 is the pseudo-inverse of 4 where A7 4 is non-

singular. Due to computational complexity, in ANFIS a sequential method is deployed as

follows;

Let the i-th row vector of matrix A defined in equation 6.4 be a/ and i-th element of matrix B

defined be 47, then X can be calculated iteratively using the following sequential formulae:

X = X, +Siga, 0], ~al, X))

518,481 S (6.6)

S“_] = S.: - s i = 0,1,........, P-1

T
1+ v S,-a“_l
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where §; is often called the covariance matrix and the least squares estimate X is equal to Xp.
The initial condition to bootstrap (6.6) are Xp=0 and So=y I, where y is a positive large
number and I is the identity matrix of dimension M x M. For a multi output ANFIS, (6.6) is
still applicable except the ourpur =F(}, S)will become a column vector. Each epoch of this
hybrid leamning procedure is composed of a forward pass and a backward pass. In the forward
pass, we have to supply the input data and functional signals go forward to calculate each node
output until the matrices 4 and B in (6.4) are obtained, and the parameters in §, are identified
by the sequential least squares formulae given in (6.6). After identifying parameters in S,, the
functional signals keep going forward till the error measure is calculated. In the backward
pass, the error rates propagate from the output layer to the input layers, and the parameters in

8, are updated by the gradient method given by

Ao = - %E (6.7)
da

where o is the generic parameter, 7 is a leamning rate and E the error measure. For given
fixed values of parameters in S;, the parameters in S, thus found are guaranteed to be the
global optimum point in the §, parameter space due 1o the choice of the squared error

measure [131][132].

The procedure mentioned above is mainly for offline learning version. However, the
procedure can be modified for an online version by formulating the squared error measure as a
weighted version that gives higher weighting factors to more recent data pairs. This amounts

to the addition of a forgetting factor A to (6.6).

Xivr = Xi + Sie 042087, = al, ,X;)

, T ¢ 6.8)
Sia., ai, 1S (
Siv1 = -i- §; = — "'; 2 = 0L P =1

A+ ap, Siap, g

The value of 4 is between 0 and 1. The smaller the 1 is, faster the effects of old data decay.

However, a smaller A sometimes causes numerical instability and should be avoided.




6.2.Learning in Evolving Fuzzy Neural Network

We have presented the architecture of the Evolving Fuzzy Neural Network (EFuNN) in
Chapter 5, Section 5.3.12. In this section, we will discuss thz online learning process in
EFuNN. A short description of the different layers in EFuNN is shown in Figure 5.20(a). The
third layer contains rule nodes that evolve through hybrid supervised/unsupervised learning.
The rule nodes represent prototypes of input-output data associations, graphically represented
as an association of hyper-spheres from the fuzzy input and fuzzy output spaces. Each rule
node, e.g. r;, represents an association between a hyper-sphere from the fuzzy input space and
a hyper-sphere from the fuzzy output space; W,(r;) connection weights representing the co-
ordinates of the center of the sphere in the fuzzy input space, and ¥, (7,) — the co-ordinates in
the fuzzy output space. The radius of an input Ihypcr-sphere of a rule node is defined as (1-
Sthr), where Sthr is the sensitivity threshold parameter defining the minimum activation of a
rule node (e.g., r;, previously evolved to represent a data point (X, Yay)) to an input vector
(e.g., (X2 Yar)) in order for the new input vector to be associated with this rule node. Two
pairs of fuzzy input-output data vectors di=(Xu;, Yay) and dr=(Xg, Yaz) will be allocated to the
first rule node r; if they fall into the r; input sphere and in the r; output sphere, i.e. the local
normalised fuzzy difference between X, and X, is smaller than the radius » and the local
normalised fuzzy difference between Yy and Y is smaller than an error threshold Errthr. The
local normalised fuzzy difference between two fuzzy membership vectors dir and dy¢ that
represent the membership degrees to which two real values d; and 4> data belong to the pre-
defined MF, are calculated as D(d;d>) = sumfabs(dys- dy))/sum(dy + dy).

If data example d) = (Xy, Ya), where Xy and X;;; are correspondingly the input and the output

fuzzy membership degree vectors, and the data example is associated with a rule node r, with
a centre r‘,’l , then a new data point d,=(Xy, Yay), will also be associated with this rule node

through the process of associating (learning) new data points to a rule node. The centres of this
node hyper-spheres adjust in the fuzzy input space depending on a learning rate /r,, and in the
fuzzy output space depending on a learning rate /r,, on the two data point's d) and d;. The
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adjustment of the centre rf" to its new position rf can be represented mathematically by the

change in the connection weights of the rule nede r; from Wi( rj" J)and Wy( r‘,] ) to Wi( ,}2 } and
Wi rf J according to the following vector operations:

Wy (rf) = Wor]) +lrs. Em(Ya, Ya) . Ax(r]) (6.9)
Wi(rf )=W1 (r}) + Ir,. Ds (Xa1, X2 (6.10)

where Err(Ya, Ya)= Ds(Ya,Ya)=Y4-Y4: is the signed value rather than the absolute value of
the fuzzy difference vector; A;( rf ) is the activation of the rule node r}] for the input vector

Xz

While the connection weights from W, and W, capture spatial characteristics of the learned
data (centres of hyper-spheres), the temporal layer of connection weights W; captures
temporal dependencies between consecutive data examples. If the winning rule node at the
moment (-1) (to which the input data vector at the moment (1-7) was associated) was
rr=inda,(t-1), and the winning node at the moment ¢ is r,=inda,(t), then a link between the two

nodes is established as follows:
Wirir) @ = Watr,r) 0 +lrs. Airy) @V 4,00)) (6.11)

where: A;(r) ¥ denotes the activation of a rule node » at a time moment (#); Ir; defines the
degree to which the EFuNN associates links between rules (clusters, prototypes) that include
consecutive data examples (if /rs=0, no temporal associations are learned in an EFuNN
structure).

The learned temporal associations can be used to support the activation of rule nodes based on
temporal, pattern similarity. Here, temporal dependencies are learned through establishing
structural links, The ratio spatial-similarity/temporal-correlation can be balanced for different
applications through two parameters S, and 7, such that the activation of a rule node » for a

new data example d,..is defined as the following vector operations:

A (1) =f(S;. Dfr, dyo) + T, Ws(r ¥, 1) (6.12)
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where fis the activation function of the rule node r, D(r, d,/) is the normalised fuzzy distance

value and » *” is the winning neuron at the previous time moment. The fourth layer of neurons

represents fuzzy quantification for the output variables. The fifth layer represents the real

values for the output variables.

EFuNN evolving algorithm is given as a procedure of consecutive ste »s [139].

1.

Initialize an EFuNN structure with a maximum number of neurons and zero value
connections. If initially there are no rule nodes connected to the fuzzy input and fuzzy
output neurons, then create the first node =1 to represent the first data example EX=
(Xa1, Y41) and set its input W (r;) and output W, (r;) connection weights as follows:
<Create a new rule node rj> to represent a data sample EX: W; (r=EX: W, ()= TE,
where TE is the fuzzy output vector for the (fuzzy) example EX.

While <there are data examples> Do

Enter the current, example (X4 Y4), EX being the fuzzy input vector (the vector of the
degrees to which the input values belong to the input membership functions). If there are
new variables that appear in this example and have not been used in previous examples,
create new input and/or output nodes with their corresponding membership functions.
Find the normalized fuzzy similarity between the new example EX (fuzzy input vector)
and the already stored patterns in the case nodes ;= r), r5,.....7,

D(EXr;) = sum (abs (EX - Wi(r;))} / sum (Wi(r;) + EX)

Find the activation 4, (r;) of the rule nodes »= ry, ry....,7,. Here radial basis activation
(radbas) function, or a saturated linear (sa#lin) one, can be used, i.c.

A (v) = radbas (S; D(EX, r;~ T, W3), or A, (r;) = satlin (1- S; D(EX, r; + T, W3)).

Update the pruning parameter values for the rule nodes, e.g. age, average activation as
pre-defined.

Find m case nodes r; with an activation value 4, (#; ) above a predefined sensitivity
threshold Sthr. |

From the m case nodes, find one rule node inda; that has the maximum activation value
maxa;.

If maxa; < Sthr, then, <create a new rule node> using the procedure from step 1.
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10.

1L
12.

13.

14.

15.

Else
Propagate the activation of the chosen set of m rule nodes (1;,...,Tjm) to the fuzzy output

neurons: A; = satlin (Ai(r;,....t.m) . W)

Calculate the fuzzy output error vector

Err=A,-TE

If (D(A,TE) > Errthr) <create a new rule node> using the procedure from step 1.

Update (a) the input, and (b) the output of the m-/ rule nodes k=2 . j,, in case of a new
node was created, or m rule nodes k=j; . j,, in case of no new rule was created:
Ds(EX-Wy(ry)) = EX - Wilry); Wiry) = Wiry) + Iry Ds(EX-Wi(r}), where Ir; is the
learning rate for the first layer;

Az () = satlin (Ws(ry). Ay(ri)): Err(rk) = TE-Axry);

Wiry) = Wifry) +Irs. Err (ry) A, (ry) , where Ir; is the leamning rate for the second layer.
Prune rule nodes r; and their connections that satisfy the following fuzzy pruning rule to a
pre-defined level representing the current need of pruning:

IF (a rule node r; is OLD) and (average activation 4,av(r) is LOW) and (the density of
the neighboring area of neurons is HIGH or MODERATE) (i.e. there zre other
prototypical nodes that overlap with j in the input-output space; this condition apply only
f:; some strategies of inserting rule nodes as explained below) THEN the probability of
pruning node (r;) is HIGH. The above pruning rule is fuzzy and it requires that the fuzzy
concepts as OLD, HIGH, etc. are predefined.

Aggregate rule nodes, if necessary, into a smaller number of nodes. A C-means clustering
algorithm can be used for this purpose.

End of the while loop and the algorithm

The rules that represent the rule nodes need to be aggregated in clusters of rules. The degree of
aggregation can vary depending on the level of granularity needed. At any time (phase) of the
evolving (learning) process, fuzzy, or exact rules can be inserted and extracted [ 145]. Insertion
of fuzzy rules is achieved through setting a new rule node for each new rule, such as the
connection weights W; and W, of the rule node represent the fuzzy or the exact rule. The

process of rule extraction can be performed as aggregation of several rule nodes into larger
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hyper-spheres. For the aggregation of two-rule nodes r; and r,, the following aggregation rule

is used

If (DOW,(r), Wifr) < = Thr;) and (D(Wsfr ), Wafr2)) <= Thr;) (6.17
then aggregate r; and 1, into 7., and caiculate the centres of the new rule node as
Wi(rage) = average (Wir ), W(r2)), Wilrag) = average (Wilr,), Wiiry) (6.14)

Here the geometrical center between two points in a fuzzy probiem space is calculated with
the use of an average vector operation over the two fuzzy vectors. This is based on a presumed
piece-wise linear function between two points from the defined through the parameters Sthr
and Errt/ir input and output fuzzy hyper-spheres.

6.3.Neuro-Fuzzy Applications

6.3.1 Modeling Electricity Demand Prediction in Victoria {Australia)

The prediction of electricity demand has been of much interest to the electricity supply
industry for some years, both to aid long term: planning strategies, involving the forecasting of
seasonal peak demands, and for use in the short term (up to 24 hours) operation of generating
plant. The nature of electricity market is changing very rapidly with a widespread international
movement towards competitiveness. Traditionally, the energy sector, and particularly the
electricity sector, has been dominated by monopoly or near monopoly enterprises, typically
either owned or regulated by government. The recent privatization of the electricity supply

industry has brought a renewed interest in this subject.

Some countries, such as Norway, Chile, Japan, UK and the United States have commonly
been supplied electricity by a large number of different regional Generators and have
developed a variety of mechanisms to allow some form of trade betwezn them. In 1994
Victoria started the process of privatization and restructuring electricity industry to generate
competition. The objective was to promote a more flexible, cost-effective and efficient
electricity industry with the aim of delivering cheaper electricity to business and the general
community. Following success of this operation, Australia started the process of implementing
a unified National Electricity Market in December 1998 [14].
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To meet the electricity market demands a highly reliable supply and delivery system is
required. Additionally, in order to gain a competitive advantage in this market through the
compefitive spot-market pricing an accurate forecast of electricity demand at regular time
intervals is essential. Until 1996, Victorian Power Exchange (VPX) the body responsible for
the secure operations of the power system, generated electricity demand forecasts based on
weather forecasts and historical demand patterns. Our research is focused on developing more
accurate and reliable forecasting models that improve the current forecasting methods. Our
approach is to develop reliable and accurate prediction models predicting 96 half-hourly (two
days ahead) demands for electricity, and compares their performance with forecasts used by
VPX. We considered an integrated neuro-fuzzy system and a feedforward artificial neural
network trained using the scaled gradient conjugate algorithin and backpropagation algorithm.
For developing the forecasting models, we used the energy demand data for ten months period
from 27" January to 30" November 1995 in the State of Victoria. We also made use of the
associated data stating the minimum and maximum temperature of the day, time of day,
season and the day of week. The forecasting models were trained using 3 randomly selected
samples containing 20% of the data during the period 27" January 1995 to 28 November 1995.
To ascertain the forecasting accuracy the developed models were tested to predict the demand
for the period (29-30) November 1995.

( ™

Etciriciy demand (WWh)
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Figure 6.1. Typical weekly demand vanations
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The data for our study were the recorded half-hourly actual electricity demand for the ten
months period from January to November 1995 in the State of Victoria. Figure 6.1 shows a
typical weekly cycle of electricity demand during three different months of the year.
Fluctuations in daily demand 2re prevalent with peaks occurring around midday. Extreme
weather conditions in winter and summer months accentuate peaks in electricity demand due
to the widespread use of electricity for heating and cooling. Other times, electricity demand is
dominated primarily by ambient temperature, time of day, working or non-working day and
the day of week.

The experimental system consists of two stages: medeling the prediction systems (training in
the case of soft computing models) and performance evaluation. For network training, the six
selected input descriptor variables were: the minimum and maximum recorded temperatures,
previous day's demand, a value expressing the half-hour period of the day, season, and the day
of week. To evaluate the learning capability of the soft computing models, the network was
trained only on 20% of the randomly selected data. We created 3 different samples of training
data to study the effect of random sampling and periodicity. Each training sample consisted of
2937 data sets representing 20% random data.

Our objective is to develop an efficient forecasting model capable of producing a short-term
forecast of demand for electricity. The required time-resolution of the forecast is half-hourly,
and the required time-span of the forecast is 2 days. This means that the system should be able
to produce a forecast of electricity demand for the next 96 time periods. The training was
replicated three times using three different samples of training data and different combinations
of network parameters.

« Neuro-Fuzzy Training

We used 4 Gaussian membership functions for each input variable and the following evolving
parameters: sensitivity threshold Sthr=0.99, eiror threshold Errthy=0.001 and learning rates
for first and second layer = 0.05. EFuNN uses a one pass training approach. The network
parameters were determined using a trial and error approach. The training was repeated three

times after reinitializing the network and the worst errors were reported. Online learning in
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EFuNN resulted in creating 2122 ruie nodes. Training results and test results are summarized
in Table 6.1.
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Figure 6.2. Convergence of neural network training
o Neural Network training

Our preliminary experiments helped us to formulate a feedforward neural network with 1 input
layer, 2 hidden layers and an output layer [6-40-40-1]. Input layer consists of 6 neurons
corresponding to the input variables. The first and second hidden layers consist of 40 neuions
respectively using tanh-sigmoidal activation functions. To illustrate the convergence feature of
Scaled Conjugate Gradient Algorithm (SCGA) we also trained a neural network (with same
architecture) using backpropagation (BP) algorithm. To evaluate the neural network
performance, training was terminated after 2500 epochs. Training and testing errors are
summarized in Table 6.1. Figure 6.2 shows the convergence of SCGA with respect to BP
algorithm. Figure 6.3 depicts the test results for the different prediction models considered. To
have a performance evaluation the actual energy demand and the forecasts used by VHP and
Box - Jenkins ARIMA model [51] are also plotted in Figure 6.3.
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Compared to neural networks, an important advantage of neuro-fuzzy systems is its reasoning
ability (if~then tules) of any particular state. A fully trained EFuNN could be replaced by a set
of if-then rules [145]. A simple example of ». learned EFuNN learned rule is illustrated below.

"If the maximum temperature of the day is HIGH and minimum temperature of the day 1s
LOW and previous days demand is MEDIUM and it is summer (HIGH) and 9.00 AM

(HIGH) and a Monday (HIGH) then the electricity demand is MEDIUM."
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Figure 6.3. Test results and performance comparison of demand forecasts (2 days)

As EFuNN adopts a single pass training (1 epoch) it is more adaptable and easy for further

online training which might be highly useful for ¢niine forecasting and bidding. Another

important feature of EFUNN is that the user has the flexibility to construct the network (by

selecting the parameters). Hence, for applications where speed is more important than the

accuracy a faster network can be selected. However, an important disadvantage of EFuNN is

the determination of the network parameters like number and type of membership functions

for each input variable, sensitivity thrzshold, error threshold and the learning rates. Even
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though a trial and etror approach is practical, when the problem becomes complicated (large

number of input variables) determining the optimal parameters will be a tedious task.

Table 6.1. Test results and performance comparison of demand forecasting

ANN ANN
EFuNN ARIMA
(BP) (SCGA)
Learning epochs 1 2500 2500 -
Training error (RMSE) 0.0013 0.116 0.0304 -
Testing error (RMSE) 0.0092  0.118 0.0323 "0.0423
Computational load (in billion flops) 0.536 872 175.0 -

" results adapted from [190}

Our experiments on three separate data samples reveal that the results are not dependent on the
data sample. We used only 20% of the total data to evaluate the learning capability of the soft
computing models. Network performance could have been further improved by providing
more training data. Another interesting fact about the considered soft computing models is
their robustness and capability to handle noisy and approximate data that are typical in power

systems, and therefore should be more reliable in worst situations.

6.3.2 Automation of Reactive Power Control

In this experiment, we present a comparative performance of two neuro-fuzzy models and an
artificial neural network for automating the contro} of reactive power flow, which we had
discussed in Chapter 4, Section 4.2.1. It is a well-established fact that improvement of the
power factor and the addition of reactive power devices to the system can reduce the costs and
release electrical capacity of the power distribution system. Most of the utility companies use a
complex set of formulas, rewards/penalties etc. to receive an adequate retirn for their
considerable investment in the larger capacity generators, transformers, cables and switchgear
required i» proviGe necessary KVA service to their customers. These formulas are generally
referred to as power factor adjustments or KVAR reactive demand charges. In recent years,

increased attention has been given to plant automation to reduce operational costs. Many
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manufacturing industries use human operators or timer controlled switching relays to turn on
the power capacitors to compensate the reactive power requirement. Operational costs could
be reduced and utilization efficiency improved if the power capacitor switching on/off process
is automated using some intelligent techniques. We proposed a neuro-fuzzy approach to
predict the reactive power trend (at time 7+7) just by knowing the load current (at time /).
Efficient usage of the VA loading will not only improve the overall grid condition but also
reduce the consumer’s industrial tariffs. Depending on the predicted reactive power demand,
power factor corrective measures could be tumed on or off to control the VA inflow into the
plant. The developed prediction system will be extremely useful for automated control of
power inflow, especially in the countries where there are limitations on the usage of

consumers’ peak VA maximum demand [3].

e Importanc: of Reactive Power Control
The ratio of active power (P) measured in watts to the apparent power (S) in volt-amperes is

termed the power factor:

Power factor= cos(¢@) = g- - resistanceR (6.15)

impedance Z

It has become a normal practice to say that the power factor is lagging when the current lags
the supply voltage and leading when the current leads the supply voltage. This means that the
supply voltage is regarded as the reference quantity. A majority of loads served by a power
utility draw current at a lagging power factor. When the power factor of the load is unity,
active power equals apparent power (P = S). But, when the power factor of the load is less
than unit+, say 0.6, the power utilized is only 60%. This means that 40% of the apparent power
is being utilized to supply the reactive power, VAR, demand of the system. It is therefore clear
that the higher the power factor of the load, the greater the utilization of the apparent power.
For the generating and transmission stations, lower the power factor the larger must be the size
of the source to generate that power, and greater must be the cross-sectional area of the
conductor to transmit it. In other words, the greater is the cost of generation and transmission
of the power. Moreover, lower power factor will also increase the FR (I denotes current)

Josses in lines/equipment as well as result in poor voltage regulation.
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Figure 6.4. Reactive power demand variations during peak hours

We considered 2 heavy automobile manufacturing industry that works on 3 shifts of 8 hours
duration for studying the load demand patterns. Observed data for a 24 hour period shows that
the maximum and minimum VAR reqguirements are 2.96 MVAR and 0.014 MVAR,
respectively. If suitable power factor compensation was made when the reactive power
demand was increasing, the plant might not have drawn much apparent power from the grid.
The task is to predict the upward and downward trend of the reactive power demand and
provide required reactive power compensation. Load flow analysis of the captioned plant
reveals that the demand patterns are very similar every day (as long as the production of
automobiles remain fixed). Neuro-fuzzy systems and neural networks are perhaps the best
techniques for learning relationships amongst variables (function approximation). For this
problem we used two neuro-fuzzy models implementing a Takagi-Sugeno fuzzy inference
system and a Mamdani fuzzy inference system. We used the adaptive network based fuzzy
inference system to implement the Takagi-Sugeno fuzzy inference system and the evolving
fuzzy neural network to implement the Mamdani fuzzy inference system. For comparison
purposes, we also trained a feedforward actificial neural netweik using the backpropagation

algorithm. The proposed neuro-fiizzy models and neural network were trained on the data
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taken at every minute for a 24-hour period to predict the reactive power demand, and tested to
evaluate the prediction accuracy. To evaluate the efficiency of the prediction models, three
different training and testing data sets were extracted and the experiments were performed

three times.

Experimentation setup and test results

The experimental system consists of two stages: network (connectionist model) training and
performance evaluation. A heavy automobile manufacturing plant was considered for the
prediction of reactive power. 24-hour load flow patterns were used to train the neuro-fuzzy
models and neural network. The training data comprises of 1440 data sets representing the 24-
hour period. The input parameters considered are the phase voltage (V) and current (/). The
norma! value of input parameter voltage (V) was fluctuated with +/- 2.5% of the normal value.
All the data sets were scaled to (0-1). The input voltage was fluctuated to test the learning
capability and robustness of the considered connectionist models. As shown in Figure 4.5(a),
fluctuated voltage appears to be a heavy noise to the network. This also ensures that the
proposed models could predict the reactive power accurately even during worst conditions in
the grid voltage regardiess of the plant load. Training and testing data sets were extracted
randomly from the complete dataset. 60% of data was used for training and remaining 40% for
testing. To ensure that the data sanip]e does not have any bias, we created 3 sets of data for
training and testing (random extraction). Experiments with all 3 data sets were repeated 3
times for all the connectionist models.

¢ Neural network training

We used a feedforward neural network with 2 hidden layers and trained using the
backpropagation algorithm. The 2 input neurons correspond to the input variables and 1 output
neuron for predicting reactive power. Initial weights, learning rate and momentum used were

0.3,0.1 and 0.1, respectively. The training was terminated after 700 epochs.

e ANFIS training
In the ANFIS network, we used 3 Gaussian membership functions for each input parameter
variable for predicting the reactive power demand. Nine rules were leamed based on the

training data. The training was terminated after 50 epochs.
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¢ EFuNN training

We used 3 Gaussian membership functions and the following evolving parameters: sensitivity
threshold Str=0.95, error threshold Errthr=0.05 and 544 rule nodes were created during
training.
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Figure 6.5. Test results showing the predicted reactive power using different models during
the peak hours of shift 1.

Table 6.2. Reactive power prediction —comparative performance

ANFIS EFuNN ANN
Learning epochs 50 1 700
Training time (seconds) 36 25 188
Training error (RMSE) 0.0103 0.0116 0.0142
Testing error (RMSE) 0.0102 0.0120 0.0130

¢  Performance and results achieved

Test data (input parameters) is passed through the trained connectionist models and the

predicted output value is compared with the observed reactive power value to calculate the
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RMSE. Figures 6.5 illustrates the test results for predicted outputs using ANFIS, EFuNN and
ANN. Table 6.2 shows an empirical comparative performance of the different connectionist
models for the reactive power prediction problem. The empirical values shown in Table 6.2
are the worst values of the three trials with the three data sets for each model.

Among all the connectionist models neuro-fuzzy systems performed better than artificial
neural network in terms of performance error achieved and training time. ANFIS performed
marginaily better than EFUNN in terms of low error. However ANFIS took more training time
than EFuNN, Hence, there is a compromise between performance error and training time. An
important advantage of the EFuNN network is its oniine learning capability. Hence future
training would be much easier. The predicted RMSE values are within acceptable rates and
hence the developed models are reliable. The prediction accuracy could have been improved if
we had not used the noisy input parameter (voltage) or if the actual voltage values were used.
The results also show that the considered connectionist models are very robust, capable of
handling the noisy and approximate data that are typical in power systems, and therefore
should be more reliable during worst conditions. By implementing the proposed technique,
reactive power flow could be managed more efficiently by avoiding the use of operators and

timer controlled switching relays (which could be inefficient sometimes).

6.3.3 Weather Forecast Models Using Neuro-Fuzzy Systems

Rain is one of the nature's greatest gifts and in third world countries like India; the entire
agricuiture depends upon rain. It is thus a major concera 1o identify any trends for rainfall to
deviate from its periodicity, which would disrupt the economy of the country. This fear has
been aggravated due to threat by the global warming and green house effect. The geographical
configuration of India with the three oceans, namely Indian Ocean, Bay of Bengal and the
Arabian Sea bordering the perinsula gives her a climate system with two monsoon seasons
and two cyclones interspersed with hot and cold weather seasons. The parameters that are
required to predict the rainfall are enormously complex and subtle so that the uncertainty in a
prediction using ail these parameters even for a short period. The period over which a
prediction may be made is generally termed the event horizon and in best results, this is not

more than a week's time. Thus it is generally said that the fluttering wings of a butterfly at one
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comer of the globe may cause it to produce a tornado at another place geographically far
away. Edward Lorenz (meteorologist at MIT) discovered this phenomenon in 1961 and is
popularly known as the butterfly effect. In our research, we aim to find out how well the
proposed soft computing models are able to understand the periodicity in these patierns so that
long-term predictions can be made. This would help one to anticipate with some degree of
confidence the general pattern of rainfall to be expected in the coming years. In pace with the
global interest in climatology, there has been a rapid updating of resources in India also to
access and process climatological database. There are various data acquisition centres in the
country that record daily rainfall along with other measures such as sea surface pressure,
temperature etc. that are of interest to climatological processing. These centres are also
associated with the World Meteorological Organization (WMO) [21].

Long-term rainfall prediction is very important to countries thriving on agro-based economy.
The parameters that are required to predict the rainfall are enormously complex and subtle so
that uncertainty in a prediction using all these parameters is enormous even for a short period.
In this research, we analysed 87 years of rainfall data in Kerala state, the southern part of
Indian Peninsula situated at latitude-longitude pairs (8°29' N - 76°57' E). We attempted to train
5 soft computing based prediction models with 40 years of rainfall data. For performance
evaluation, network predicted outputs were compared with the actual rainfall data.

We used an artificial neural network using backpropagation (variable learning rate), adaptive
basis functivn neural network [207], neural network using scaled conjugate gradient algorithm
and an Evolving Fuzzy Neural Network for predicting the rainfall time series. The soft
computing models described above were trained on the rainfall data correspording to a certain
period in the past and cross validate the prediction made by the network over some other

period.

¢ Neural Networks with Variable Learning Rates

With standard steepest descent, the learning rate is held constant throughout the training. If the
learning rate is too high, the algorithm may oscillate and become unstable. If the learning rate
is too small, the algorithm will take too long to converge. It is not practical to determine the

optimal setting for the learning rate before training, and, in fact, the optimal learning rate
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changes during the training process, as the algorithm moves across the performance surface.
The performance of the steepest descent algorithm can be improved by using an adaptive
learning rate, which wiil keep the learning step size as large as possible while keeping learning
stable. The learning rate is made adaptive to the comple=itv of the local error surface. If the
new error exceeds the old error by more than a predefined ratio (typically 1.04), the new
weights are discarded. In addition, the learning rate is decreased (typically by 70%). Otherwise
the new weights are kept. If the new error is less than the old error, the leaming rate is
increased (typically by 5%). Thus a near optimal learning rate is obtained for the local terrain.
When a larger learning rate could result in stable learning, the leaming rate is also increased.
When the learning rate is too high to guarantee a decrease in error, it gets decreased until

stable learning resumes.

Adaptive Basis Function Neural Network (ABFNN) performs better than the standard BP
networks in complex problems {207). The ABFNN works on the principle that the neural
network always attempt to map the target space in terms of its basis functions or node
functions. In standard BP networks, this function is a fixed sigmoid function that can map
between zero and plus one (or between minus one and plus one) the input applied to it from
minus infinity to plus infinity. It has many attractive properties that made the BP an efficient
tool in a wide verity of applications. However some studies conducted on the BP algorithm
have shown that in spite of its wide spread acceptance, they systematically outperform other
classification procedures only when the targeted space has a sigmoidal shape. This implies that
one should choose a basis function such that the network may represent the target space as a
nested sum of products of the input parameters in terms of the basis function. The ABFNN
thus starts with the standard sigmoid basis function and alters its non-linearity by an algorithm
simnar to the weight update algorithm used in BP. Instead of the standard sigmoid function,
ABFNN uses a vanable sigmoid function defined as:

a + tanh(x)

Or =
f I+ a

(6.16)

where a is the control parameter that is initially set to unity and is modified along with the

connection weights along the negative gradient of the error function. Such a modification




could improve the speed of convergence and accuracy with which the network could

approximate the target space.
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Figure 6.6. Complexity of the rainfall database: Average monthly rainfall from (1893-1933)
AD (training data)
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Figure 6.7. Complexity of the rainfall database: Average monthly rainfall from (1934-1980)
AD (test data)
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e Experimentation Setup for Training and Performance Evaluation

Tie rainfall data was scaled (0-1) and we divided the data from 1893-1933 as training set and
data from 1934-1980 as test set. While the proposed neuro-fuzzy system is capable of adapting
the a' hitecture according to the problem we had to perform some initial experiments to
decide .ae architecture of the neura) network. Since rainfall has a yearly periodicity, we started
with a network having 12 input nodes. Further experimentation showed that it was not
necessary to include information corresponding to the whole year, but 3-month information
centered over the predicted month of the fifth year in each of the 4 previous years would give
good generalization properties. Thus, based on the information from the four previous years,
the network would predict the amount of rain to be expected in each month of the fifth year.
We used the same architecture for all the three learning neural network learning algorithms.
To have a performance comparison of the different learning techniques, the training was
terminated after 1000 epochs. The training was repeated three times after re-initializing the
networks. Test data was presented to the network and the output from the network was
compared with the actual data in the time series. The worst observed errors are reported.
Following are the details of network training:

Neuro-fuzzy training

We used 5 membership functions for each input variable and the following evolving
parameters: sensitivity threshold Sthr=0.999, error threshold Errthr=0.001.

ANN Training

For neural networks using BP, backpropagation with variable learning rate (BP-VLR) and
SCGA, we used 1 input layer, 2 hidden layers and an output layer [12-12-12-1]. Input layer
congists of 12 neurons corresponding to the input variables. The first and second hidden layer
consists of 12 neurons. For the ABFNN network, we used only I hidden layer with 7 neurons.
Training errors (RMSE) achieved are reported in Table 6.3. To have a performance evaluation
between the 4 learning algorithms, we also trained a neural network (12-7-1) with one hidden

layer containing 7 neurons and the training was terminated after 1000 epochs for all the four
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leaming methods. Figure 6.8 shows the training performance and convergence of the four
neural network algorithms.

Test Results

Table 6.3 summarizes the comparative performance of EFuUNN and ANN learning algorithms.
Figure 6.9 depicts the comparative performance between the different soft computing models.

Table 6.3. Test results and performance comparison of rainfall forecasting

ANN ANN ANN ANN
EFuNN

BP) (VLR) (SCGA) (ABK)

Learning epochs ] 10000 10000 600 1000

Training error (RMSE) 0.0006 00954 00875 0.0780  0.0800
Testing error (RMSE) 0.0901  (.0948 0.0936 0.0923  0.0930
Computational load (in billion flops)  0.065 8.82 8.75 1.26 -
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Figure 6.8. Convergence of neural network learning algorithms (for 1000 epochs).




As thz RMSE values on test data are comparatively less, the prediction models are reliable. As
evident from Figure 6.9, there have been few deviations of the predicted rainfall value from
the actual. In some cases it is due to delay in the actual commencement of monsoon, EI-Nino
Southern Oscillations (ENSQO) resulting from the pressure oscillations between the tropical
Indian Ocean and the tropical Pacific Ocean and their quasi periodic oscillations {69]. The
integrated peuro-fuzzy technique outperformed neurocomputing techniques with the lowest
RMSE test error and performance time. Compared to pure BP and BP-VLR, ABFNN and
SCGA converged i3 <h faster. Alternatively, BP training needs more epochs (longer training
time), to achieve better performance. Compared to ANN, an important advantage of neuro-
fuzzy model is its reasoning ability (i/~then rules) of any particular state. As climate and
rainfall prediction involves tremendous amount of imprecision and uncertainty, neuro-fuzzy
technigue might warrant the ideal prediction model.
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Figure 6.9, Test results showing monthly prediction of rainfall for 10 years using the different

connectionist models

The proposed prediction models based on soft computing on the other hand are easy to
implement and produces desirable mapping function by training on the given data set. A
network requires information only on the input variables for generating forecasts. In our

experiments, we used only 40 years training data to evaluate the leaming capability. Network




performance could have been further improved by providing more training data. Moreover, the
considered connectionist models are very robust, capable of handling the noisy and
approximate data that are typical in weather data, and therefore should be more reliable in

worst situations.

6.4.Conclusions

In this Chapter, we have presented the leaming mechanisms of ANFIS and EFUNN. We have
also demonstrated how integrated neuro-fuzzy systems could be used for solving practical
problems. In all the 3 applications presented, neuro-fuzzy systems have outperformed neural

networks using different learning alzorithms.

However, an important disadvantage of integrated neuro-fuzzy system is the careful
determination of the network parameters like number and shz2pe of membership functions for
each input variable, learning rates and an efficient technique to determine the imtial rule base,
fuzzy operators ¢tc. Even though EFuNN constructs the rule base automatically, the
performance of the network still depends on the careful selection of sensttivity threshold, error
threshold learning rates etc. Even though a trial and error approach is practical, when the
problem becomes complicated (large number of input variables) determining the optimal

parameters to build an optimal network will be a difficult task.

In Chapter 7, we wili discuss the issues related to modeling neuro-fuzzy systems and how it

could be overcomed using ¢volutionary computation.
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Chapter 7: Evolutionary Design of Neuro-
Fuzzy Systems

7.0 Introduction

As described in Section 5.3, an integrated neuro-fuzzy system is a combination of artificial
neural network and fuzzy inference system in such a way that neural network learning
algorithms are used to determine the parameters of fuzzy inference system. A wide variety of
neural network learning algorithms and different types of fuzzy inference systems are
available and it might be a puzzling task to determine which combination might be the optimal

for solving a particular problem.

Potential interactions between connectionist learning systems, fuzzy inference systems and
evolutionary search procedures have attracted considerable research work recently [12] [9]
[10]. We have already discussed evolutionary neurai networks and evolutionary fuzzy systems
in Chapter 3 and Chapter 4 respectively. In an integrated neuro-fuzzy model there is no
guarantee that the neural network-learning algorithm converges and the tuning of fuzzy
inference system will be successful. Success of evolutionary search procedures for optimal
design of neural networks and fuzzy inference system are well proven and established in many
application areas. In this chapter, we will explore how the integration of neural networks and
fuzzy inference systems could be optimized using evolutionary search procedures. We present
the theoretical frameworks and some experimental results to demonstrate the efficiency of the

proposed technique.

7.1.Integration of Neural networks, Fuzzy Inference systems and
Evolutionary Computation

Ariificial neural networks and fuzzy inference systems are both very powerful soft computing
tools for solving a problem without having to analyze the problem itself in detail. Natural
intelligence is a product of evolution. Therefore, by mimicking biological evolution, we could

also simulate high-level intelligence. The evolutionary approach to artificial intelligence is
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based on the computational models of natural selection and genetics. Evolutionary
computation works by simulating a population of individuals, evaluating their performance,
and evolving the population 2 number of times until the required solution is obtained.

The drawbacks pertaining to neural networks and fuzzy inference systems seem
complementary and evolutionary computation could be used to optimize the integration to
produce the best possible synergetic behavior to form a single system. The integrated
architecture share data structures and knowledge representations. The parameters of the fuzzy
inference system will be fine-tuned using evolutionary algorithms and neurai network learning
techniques. In such an integrated learning occurs at two levels: evolutionary learning (global
optimization) and a local search by conventional neural network algorithm (gradient descent).
Evolutionary algorithms could also be used to determine the optimal learning parameters of

the gradient descent technique.

Why Optimize Neuro-Fuzzy Systems?

Mamdani type fuzzy inference system possess a high degree of freedom to select the most
suitable fuzzification and defuzzification interface components as well as the inference
mechanism itself. Mamdani type FIS provides a highly flexible means to formulate
knowledge, while at the same it remains interpretable. Some disadvantages of Mamdani type

fuzzy inference system are the following:

o Lack of flexibility (rigid partitioning of input-output spaces). When the input
variables are mutually dependent it becomes very difficult to form a good partition
of the input space. Sometimes uniform partitioning (usually adopted method) is
inefficient and does not scale well.

e The size of the rule base increases rapidly with the number of variables and

linguistic terms in the system.

To accommaodate the deficiencies mentioned above, researchers have proposed variants of the

Mamdani inference system [168].
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The main advantage of Takagi-Sugeno type fuzzy inference method is that it presents a set of
compact system equations that allows the rule consequent parameters (4.17) to be estimated
using classical methods, which facilitates the design process. This could be also interpreted as
a main drawback as this inference system does not provide a natural framework for
representing expert knowledge that is afflicted with uncertainty and thus not able to fully
utilize the fuzzy logic capability. Due to the rule consequents, incorporating expert knowledge
often becomes very difficult. Takagi-Sugeno fuzzy systems are more difficult to interpret since
+ue overall output depends on the simultanecus activation of the rule antecedents, and on the
function in the rule consequent that depends on the crisp inputs as well rather than being a
constant.

It is interesting to note that Takagi-Sugeno-type fuzzy systems are high performers (more
accuracy) but often requires complicated learning procedures and computational expensive.
On the other hand, Mamdani-type fuzzy systems can be modeled using faster heuristics but
with a compromise on thc performance (high RMSE). Hence, there is always a compromise
between performance and computational time. Most of the integrated neuro-fuzzy systems
currently available are based on either Mamdani-type or Takagi-Sugeno-fuzzy inference
system. Hence selection of a good inference system itself becomes complicated when the
dimensionality and complexity of the input-output rnapping increases. As evident from
Chapter 6, for a successful design of a neuro-fuzzy design, the user has to specify the shape
and quantity of the membership function for each input/output variable, fuzzy operators,
defuzzification method, fuzzy inference mechanism etc. The user also has to specify the rule
base (except EFuNN and NEFCON) and the learning techrnique that will fine-tune the
membership functions and other tunable parameters. We are familiar with "trapped in local
minima"” whenever we refer to local search techniques. Since the neuro-fuzzy systems use
gradient descent method, there is no guarantee that global optima would be obtained and the
parameters are fine-tuned. Evolutionary algorithms are popular for obtaining a global optimal
solution but not often well in local searches. Integrating evolutionary computation (a global

optimization technique) with a local search technique might help to explore the solution space

more effectively.
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7.2.Generic Architecture of Evolving Neuro-Fuzzy Systems (EvoNF)

In this section, we define the architecture of EvoNF, a computational framework to optimize
fuzzy inference systems using evolutionary computation and neural network leaming
algorithms. The proposed framework could adapt to Mamdani, Takagi-Sugeno or other fuzzy
inference systems. The architecture and the evolving mechanism can be considered as general
framework for adaptive neuro-fuzzy systems, that is an integrated neuro-fuzzy model that can
change their membership functions (quantity and shape), rule base (architecture), fuzzy
operators and learning parameters according to different environments without human

intervention.

Figure 7.1 shows how a Mamdani or Takagi-Sugeno fuzzy inference system could be adapted
in an integrated framework. Architecture detfails of Mamdani and Takagi-Sugeno fuzzy
inference system have been provided earlier in Sections 5.3.1 and 5.3.2. Solving
multiobjective scientific and engineering problems is, generally, a very difficult goal. In these
particular optimization problems, the objectives often conflict across a high-dimension
problem space and may also requite extensive comnutational resources. We propose a S-tier
evolutionary search precedure wherein the membership functions, rule base (architecture),
fuzzy inference mechanism (T-norm and T-conorm operators), learning parameters and finally
the type of inference system (Mamdani, Takagi-Sugeno etc.) are adapted according to the

environment.

Figure 7.2 illustrates the interaction of various evolutionary search procedures. Referring to
Figure 7.2, for every fuzzy inference system, there exist a global search of learning algorithm,
inference mechanism, rule base and membership functions in an environment decided by the
problem. Thus the evolution of the fuzzy inference system will evolve at the slowest time
scale while the evolution of the quantity and type of membership functions will evolve at the

fastest rate. This hierarchical evolution is very much similar to the MLEANN framework

proposed in Section 3.3.
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The function of the other layers could be derived similarly. For every learning algorithm
(parameter), there is the global search of inference mechanisms, rule base and membership
functions that proceed on a faster time scale in an environment decided by the fuzzy inference
system and the problem. For every inference mechanism (fuzzy operators) there is the gicoat
search of rule base and membership functions that proceeds on a faster time scale in an
environment decided by the learning algorithm, fuzzy inference system and the problem.
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ruls irferences layer

Luywr S 5
rule conssguent layer °
Xz :

Layer 4
bl . ruls etrength normalizetion

| Luyer3
Layer3 I rule artecedent layer
nale antscedent leyer
2 Takagl-Sugeno typs fixly inference system
[fuzxiication layer)
wert (YUY e
linput laywr)

Giobal search of fuzzy ruies (architectures)
(antecedeonts and consequents)

Global search of mambership functions
{optima! quantity snd vhape)

NV

Time scale

Figure 7.2, General framework for EvoNF
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Likewise for every architecture, evolution of membership function parameters proceeds at the
faster time scale in an environment decided by the inference mechanism, learning algorithm,
type of fuzzy inference sysiem and the problem. Hierarchy of :he different adaptation layers
(procedures) will rely on the prior knowledge. For example, if there 15 more prior knowledge
about the architecture than the inference mechanism then it is better to implement the
architecture at a higher level. If we know that a particular fuzzy inference system will suit best

for the problem, we reduce the computational task by minimizing the search space.

7.3.Parameterization of the Inference System

For fine-tuning the integrated neuro-fuzzy model all the nodes functions are to be
parameterized. Evolutionary search of optimal inference procedure could only be formulated if
all the node functions are parameterized. The parameters could be further fine tuned by

evolutionary learning or any neural network learning algorithm or a combination of both.
. Parameterization of Membership Functions

Fuzzy inference system is completely characterized by its membership function. A generalized

bell MF is specified by three parameters (p, g, r) and is given by:

Bell (x, p,q.¥) = ---—’-—7-
x - |9

P

I+

Figures 7.3 (a-d) shows the effecis of changing p, ¢ and r in a bell membership function.

Similar parameterization can be done with most of the other membership functions.
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. Parameterization of T-norm and T-conorm eperators

T-norm is a fizzy intersection operator, which aggregates the intersection of two fuzzy sets A
and B while T-conorm operators compute fuzzy union of two fuzzy sets A and B. The
Schweizer and Sklar's T-norm and T-conorm operator can be expressed as:

T(ab, p) = [rnax{) (@ P + 4P - 1)}] _f;" (7.1)

1

——

S(a,b,p) =1- Lnax{O, (1-aP)+(1-b7P)-1) }] p (72)
It is observed that

limp_50T(a,b,p)=ab
(7.3)

limp 500 T(a, b,p)=minfa b}

which correspond to two of the most frequently used T-norms in combining the membership
values on the premise part of a fuzzy if-then rule [215]. To give a general idea of how the
parameter p affects the T-norm and T-conorm operators, Figure 7.4 (a) shows two fuzzy sets A
and B and Figure 7.4 (b) and Figure 7.4 (c) are Typp)and Sgpp) respectively.

Figure 7. 4(a). Bell Membership functions for fuzzy set 4 and B

e H 1 T 1 Bl

| I S

Figure 7. 4(b). Effects of changing parameters of T-norm operators
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Figare 7. 4(c). Effects of changing parameters of T-conorm operators

7.4.Chromosome Modeling and Representation Issues

The antecedent of a fuzzy rvle defines a local region, while the consequent describes the
behavior within the region via various constituents. Basically, the antecedent part remains the
same regardless of the inference system used. Different consequent constituents result in
different fuzzy inference systems. For applying evolutionary algorithms, problem
representation (chromosome) is very important as it directly affects the proposed algorithm.
Referring to Figure 7.2, each layer (from fastest to slowest) of the hierarchical evolutionary
search process has to be represented in a chromosome for successful modeling of an integrated
neuro-fuzzy system using evolutionary computation. A iypical chromosome of the EvoNF
mode! would appear as shown in Figure 7.5 and the detailed modeling process (refer to Figure

7.2) is as follows.

Layer 1: The simplest way is to encode the number of membership functions per input
variable and the parameters of the membership functions. Figure 7.7 depicts the chromysome
representation of n bell membership functions specified by its parameters p, ¢ and r. The
optimal parameters of the membership functions located by the evolutionary algorithm will be
later fine tuned by the neural network-learning algorithm. Similar strategy could be used for
the output membership functions in the case of a Mamdani fuzzy inference system. Experts
may be consulted to estimate the MF shape forming parameters to estimate the search space of
the MF parameters. Ascold et al defined a second order fuzzy set [173] to determine the upper

and the lower boundaries of the MF parameters.
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We used the angular coding method proposed by Herrera et al [71] for representing the rule
consequent parameters of the Takagi-Sugeno inference system. Rather than directly coding the
consequent parameters, the "transformed" parameters represent the direction of the tangent ¢;
= arctan p;. The range for the parameters o; is the interval (-90°% +90%), such that the
parameters p; can assume any real value. A single input Takagi-Sugeno system Y = p; X + py
defines a straight line. The real value p; is simply the gradient between this line and the X-axis.
Parameter p, determines the offset of the straight line (intercept) along the Y-axis. Angular
coding is advantageous, since the value of p, varies between different rules and it is difficult to

use some fixed interval to exploit the search space. The procedure is illustrated in Figure 7.6.

Layer 2. This layer s responsible for the optimization of the rule base. This includes deciding
the total number of rules, representation of the antecedent and consequent parts. The number
of rules grow rapidly with an increasing number of variables and fuzzy sets. The simplest way
is that each gene represents one rule, and "1" stands for a selected and "0" for a non-selected
rule. Figure 7.8 displays such a chromosome structure representation. To represent a single
rule a position dependent code with as many elements as the number of variables of the system
is used. Each element is a binary string with a bit per fuzzy set in the fuzzy partition of the
variable, meaning the absence or presence of the corresponding linguistic label in the rule. For

a three input and one output variable, with fuzzy partitions composed of 3,2,2 fuzzy sets for
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input variables and 3 fuzzy sets for output variable, the fuzzy rule will have a representation as
shown in Figure 7.9,

4  pym 4

“\py=76°
4
-
'
& P 56°

Py=-3

Y
Figure 7.6. Angular coding technique of rule consequent parameters of Takagi Sugeno

inference system

MF, MF,
pl q_l rl resranes Pﬂ % rﬂ

Figure 7.7. Chromosome representing » membership functions for every input/output variable

coding the parameters of a bell shape MF

Figure 7.8, Chromosome representing the entire rule base consisting of m fuzzy rules

input variables output variable
et > i >

'1[9‘11101101

Figure 7.9. Chromosome representing an individual fuzzy rule (3 input variables and | output
variable)

Layer 3. In this layer, a chromosome represents the different parameters of the T-norm and T-
conorm operators. Real number representation is adequate to represent the fuzzy operator
parameters. The parameters of the operators could be even fine- tuned using gradient descent

techniques.
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Layer 4. This layer is responsible for the selection of optimal leaming parameters.
Performance of the gradient descent algorithm directly depends on the learning rate according
to the error surface. We used real number representation to represent the learning parameters.
The optimal learning parameters decided by the evolutionary algorithm will be used to tune

the membership functions and the inference mechanism.

Layer S. This layer basically interacts with the environment and decides which fuzzy
inference system (Mamdani type and its variants, Takagi-Sugeno type, Tsukamoto type etc.)

will be the optimal according to the environment.

Once the chromosome representation, C, of the entire neuro-fuzzy model is done, the

evolutionary search procedure could be initiated as follows:

7)  Generate an initial population of N numbers of C chromosomes. Evaluate the fitness of
each EvoNF depending on the problem.

8) Depending on the fitmess and using suitable selection methods reproduce a number of
children for each individual in the current generation.

9) Apply genetic operators to each child individual generated above and obtain the next
generation.

10) Check whether the current model has achieved the required error rate or the specified

number of generations has been reached. Go to Step 2.
End
7.5.Experimentation Setup Using EvoNF

We have applied the proposed technique to the three time series mentioned in Section 2.2.
Fitness value is calculated based on the RMSE achieved on the test set. We have considered
the best-evolved neuro-fuzzy model as the best individual of the last generation. We also

explored three different learing methods:

Type 1: Evolutionary learning of membership functions, T-norm and T- conorm operators,

rule base, consequent parameters and fine tuning of the membership functions using gradient
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descent method. The evolutionary algorithm further optimizes the learning rates of the
gradient descent technique. This method could be considered as a meta leaming approach.

Type 2: Evolutionary leaming of membership functions, T-norm operator, rule base and
consequent parameters. No gradient descent learning is used. This is equivalent to pure
evolutionary design of fuzzy inference systems.

Type 3: Evolutionary leamming of membership functions, rule base and consequent parameters
with fixed T-norm (min) operator. The MFs are fine-tuned using gradient descent method and
the evolutionary algorithm is used to further optimize the learning rates. This experiment is to

demonstrate how important is the tuning of fuzzy operators.
We reduced the search space by incorporating the following priori knowledge

e  Takagi-Sugeno fuzzy inference system was selected

s The initial rule base was generated using a grid partitioning method and the rule base
was further optimized using the evolutionary algorithm. This approach seems to work
faster than building up the rule base from scratch.

e only Gaussian and Bell shaped MF's was used.

The genotypes were represented by real coding using floating-point numbers and the initial
populations were randomly created based on the parameters shown in Table 7.1. We used a
special mutation operator, which decreases the mutation rate as the algorithm greedily

proceeds in the search space. If the allelic value x; of the i~th gene ranges over the domain &

and b; the mutated gene x; is drawn randomly uniformly from the interval {a;, ] [72]).

(7.4}

X; =

' x;j + A(t, b - x; ) if w =0
T+ AL - xi)if =1

where @ represents an unbiased coin flip p(w =0) = p(w =1} = 0.5, and
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At x) = x

defines the mutation step, where y is the random number from the interval [0,1] and ¢ is the

current generation and £, is the maximum number of generations. The function 4 computes
a value in the range [0,x] such that the probability of returning 2 number close to zero
increases as the algorithin proceeds with the search. The parameter b determines the impact of
time on the probability distribution 4 over [0,x]. Large values of b decrease the likelihood of

large mutations in a small number of generations.

The parameters mentioned in Table 7.1 were decided afier a few trial and error approaches.
Experiments were repeated 3 times for the three time series and the worst performance

measures are reported.

Table 7.2 summarizes the quantity of membership functions and the rule base before and after
Type 1 learning. Test resuits showing the RMSE for the three time series are pr2sented in
Table 7.3. Figures 7.10 and 7.11 depicts of the different learning methods for gas fumace

series. Learning convergence for waster water series and Mackey glass time sefies are plotied
in Figures 7.12 - 7.15.
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Table 7.1. Parameters used for evolutionary design of neuro-fuzzy systems

Population size 30
Fuzzy inference system Takagi Sugeno
Rule antecedent membership functions 2 - 4 membership functions per input variable
parameterized Gaussian
Rule consequent parameters angular coding
T-norm operators Parameterized Schweizer and Sklar's operator
Learning rate 0.05-0.20
Learning epochs 100 epochs of gradient descent algorithm for
all the 3 time series
Ranked based selection 0.50
Elitism 5%
Starting mutation rate 0.70
Iterations
Mackey Gas Waste
Glass Typel | 60 Furnace Typel |60 Water Typel |63
Type2 | 90 Type2 | 135 Type2 | 180
Type3 | 60 Type3 | 60 Type3 | 65

Table 7.2. Comparison of membership functions and fuzzy rules before and after learning

(Type 1)
Befor¢ learning After Jearning
MFs MFs
[nput Qutput erl' ecs’f Input Qutput P::].ezf
L 1L (L |1 |0 Ll L |L|O

Mackey Glass |4 (4 |4 |4 | lincar | 256 3 (3|43 |linear |94

GasFumace |3 {3 |- [- |linear |9 314 ]|- |- |linear {12

Waste Water |4 |4 |4 |4 | linear | 256 4 1314 |3 {linear | 112
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Table 7.3. Comparison of EvoNF, ANFIS and MLEANN

Neuro-fuzzy
Time Learning EvoNF ANFIS
series algorithm RMSE RMSE RMSE

Training | Test | Training | Test | Training | Test

MLEANN

L
| Mackey | T¥Pe! | 0.0007 | 0.0008
Type 2 0.0000 | 0.0000 | 00019 |[0.0018 |0.0004* | 0.0004*
Type 3 0.0009 | 0.0009
Gas Type i 0.0093* | 0.0110*
Type 2 0.0111 00154 | 900137 |0.0570 ] 0.0110 0.0210
Type 3 0.0101 [ 0.0256
Waste L1yPel 0.0150* | 0.0310*
Type 2 0.0190 | 00342 |0.0530 |0.0810 |0.0425 |0.052!

Glass

Fumace

Water
Type 3 0.0180 | 0.0330

*Lowest RMSE values

4 ™
Convergence of learning in integrated neurofuzzy systems
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Figure 7.10. Gas furnace series: convergence of the different learning methods after 60

generations
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Figure 7.11. Gas furnace series: convergence of the evolutionary algorithm after 135

generations

[ Convergence of learning in integrated neurefuz:y systems

° LJNMLUNL I I A D DL D A D R DN I R DR D D N LD N BN N L DN DN N N BN DN BN BN NN DN BN N DNL DA DND DN BN JNN DN NN N BN D DN A DN D N DN NN NN BN DR LML BN B
rTm 222 2 43 885 3Bk TS R S e 3
Generstions
L —— Type 1 losming —--Type 2 loaming ~—— Type 3 leaming J

Figure 7.12. Waste water series: convergence of the different learning methods after 65

generations
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Figure 7.13. Waste water series: convergence of the evolutionary algorithm after 180

generations
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Figure 7.14. Mackey Glass series: convergence of the different learning methods after 60
generations
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Figure 7.15. Mackey Glass series: convergence of the evolutionary algorithm after 90
. generations

Figure 7.16. Gas furnace time series: membership functions for input variable 1 and 2 (before

Type 1 learning)

Figere 7.17. Gas furnace time series: membership functions for input variable 1 and 2 (after

Type 1 leamning)
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7.6.Discussions and Conclusions

We have explored the three different learning mechanisms on an integrated neuro-fuzzy
system implementing a Takagi-Sugeno fuzzy inference system. In the Type i learning an
evolutionary learning method and gradient descent method was used to fine tune the
performance. The fuzzy operators were also learned in the Type 1 method. Type 3 method is
similar to Type 1 except the fuzzy operators. The fuzzy operators were fixed for the Type 3
learning. Type 2 learning does not use the gradient descent method and all the parameterized

node functions are learned using evolutionary computation.

As evident from Table 7.3, in tertos of RMSE error, the evolutionary design of neuro-fuzzy
systems could outperform the conventional design of neuro-fuzzy systems using deterministic
techniques. For interest empirical results of EvoNF was compared with ANFIS (Adaptive
Neuro-Fuzzy Inference System) implementing a Takagi-Sugeno fuzzy inference system. For
all the three time series considered, the evolutionary design approach gave the best results on
training and test sets.

0 0.006 801 0.01% 0.02 0.02¢ 0403 0.038

\ RMSE p

Figure 7.18. Comparison of EvoNF, popular neuro-fuzzy models and neural network

Our experiments using the three different learning strategies also reveal the importance of

fine-tuning the global search method using a local search method (integrated learning). Type-2
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learning method tock longer time for the convergence and the final RMSE values obtained
were higher than the integrated learning approach. The empirical results obtained from Type 1
and Type 3 learning clearly illustrates the role of fuzzy operator tuning. For the gas furnace
series, the test results obtained using the Type ! learning were almost 100% less than that of
Type 3 leaming.

We have also compared the empirical results of EvoNF model with MLEANN. While EvoNF
could outperform MLEANN for gas furnace and waste water series, for Mackey glass series
MLEANN performed marginally better. Perhaps the chaotic behavior of the Mackey Gilass
series could not be well represented using a Takagi Sugeno fuzzy inference system. Neuro-
fuzzy performance could have been improved if we used a first order Takagi-Sugeno model or
other learning methods. Figure 7.18 illustrates the comparison of EvoNF with different
infegrated neuro-fuzzy models and an artificial neural network trained using the
backpropagation algorithm for predicting the Mackey Glass time series.

In this Chapter we have presented how the optimal design of integrated neuro-fuzzy systems
could be achieved using a 5-tier evolutionary search process. However, the real success in
modeling such systems will directly depend on the genotype representation of the different
layers. All prior knowledge available about the problem domain / system design are to be

encoded into the system to minimize the search space by the evolutionary algorithms.

Hierarchical evolutionary search processes attract considerable computational effort.
Fortunately, evolutionary algorithms work with a population of independent solutions, which
makes it easy to distribute the computational load among several processors using parallel
algorithms. Hence, for complicated problems, parallel evolutionary algorithms might prove to
be very useful [62]. As a guideline, for NF systems to be highly intelligent some of the major
requirements are fast learning (memory based - efficient storage and retrieval capacities), on-
line adaptability (accommodating new features like inputs, outputs, nodes, connections etc),
achieve a global error rate and robust. The data acquisition and preprocessing training data is

also quite important for the success of optimization of fuzzy inference systems.
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Chapter 8: Conclusions

8.0.Introduction

The integration of different intelligent technologies is an active area of research in artificial
intelligence. While James Bezdek [41] defines intelligent systems in a frame called
computational intelligence, Lotfi Zadeh [255] explains the same using the soft computing
framework. Integration issues range from the different types of techniques, theories of
computation to problems of exactly how best to implement hybrid systems [12].

In this thesis, we explored the hybrid integration of neural networks - evolutionary algorithms,
fuzzy systems - evolutionary algorithms, neural networks — fuzzy systems and neural networks
- fuzzy systems - evolutionary algorithms. We have applied the different hybrid combinations
to some practical applications and some popular chaotic time series, which has been widely
used by several researchers working with connectionist models. In this Chapter, we summarize
the main results obtained in the thesis. The scientific importance of the research work is
pointed out on theoretical and application study parts. In addition, the topics for future
research are discussed.

8.1.Main Results

For designing artificial neural networks, our experimentations using 4 different learning
algorithms on three different chaotic time series clearly demonstrates that there is no best
algorithm that will give optimal performance for all the problems. The initialization of
weights, node transfer functions, architecture of the neural network, learning algorithm
parameters etc play an equal role in optimization of the network performance. MLEANN
framework is able to adapt the architecture (connectivity, number of neurons and node transfer

functions), connection weights and learning algorithms and its parameters according to the

problem.
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Empirical results clearly demonstrate the efficiency of the proposed technique when compared
to the best possible design using conventional approaches. The Evolutionary approach also
shows superior performance when compared to a deterministic hybrid search technique using
cutting angle method. In MLEANN, our work was mostly concentrated on the evolutionary
search of optimal learning algorithms.

We have applied neuro-fuzzy systems to three practical applications and the empirical results
clearly demonstrate the efficiency of the hybrid approach. Performance of neuro-fuzzy
systems will depend on the careful selection of quantity and shape of membership functions
for each input/out variable, an algorithm to determine the rule base and other network
parameters etc. As demonstrated in Chapter 4, our various experiments also point out the need
for adaptation of the various components (membership functions and parameters, knowledge

base, fuzzy operators, inference system efc.) of a fuzzy inference system.

In Chapter 7, we presented the integration of neural networks, fuzzy inference systems and
evolutionary algorithms. This could be viewed as an adaptive computational framework for
automatic learning and optimization of fuzzy inference systems. In terms of RMSE error, the
EvoNF could outperform the conventional design of neuro-fuzzy systems using deterministic
techniques. For comparison purposes the empirical results of conventional design of neuro-
fuzzy systems was compared with ANFIS (Adaptive Neuro-Fuzzy Inference System)
implementing a Takagi-Sugeno fuzzy inference system. For all the three time series
considered, the evolutionary design approach gave the best results on training and test sets.
Experiment results also reveal the importance of evolutionary learning and fine-tuning by a
local search method. Using a pure evolutionary learning method, the algorithm requires more
iteration to converge. In spite of more iteration using a pure EA, very often the results are not
as good as the integrated learning approach (type 1). Fuzzy operator funing also plays a major

role to optimize the performance of the integrated system.

Referring to the empirical results of the EvoNF approach, for Mackey glass series
evolutionary neural networks performed marginally better. Perhaps the chaotic behavior of the
Mackey Glass series could not be well represented using a Takagi Sugeno fuzzy inference

system. Neuro-fuzzy performance might be improved if we used a higher order Takagi-
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Sugeno model or more efficient learning methods. This also agrees with the equivalence
between fuzzy inference systems and neural networks as defined by Hayashi et al [113].

8.2.Future Research Directions

We used a fixed chromosome structure (direct encoding technique) to represent the various
layers in the connectionist models. As size of the chromosome grows, computational
complexity also increases. Cellular configuration might be helpful to explore the
representation more efficiently. For evolutionary neural networks, Gutierrez et al {107] has
shown that their cellular automata technique performed better than direct coding. For the
evolutionary search of architectures (layers/connectivity for neural networks and rule base for
fuzzy inference system), it will be interesting to model as co-evolving [75]) sub-networks
instead of evolving the whole network. Further, it will be worthwhile to explore the whole

population information of the final generation for deciding the best solution.

Hierarchical evolutionary search process attracts enormous computational complexity.
Fortunately, evolvtionary algorithms work with a population of independent solutions, which
makes it easy to distribute the computational load among several processors. As we all know,
the problems of the future will be more complicated in terms of complexity and data volume
aftracting more computational {oad. Hence, more research is to be diverted to design suitable
message passing interfaces and implement the different hybrid algorithms in a parallel
environment [18]. The design of parallel evolutionary algorithms involves choices such as
using one population or multiple populations. In both cases, the size of population or
populations must be determined carefully, and when multiple populations are used, one must
decide how many to use. In addition, the populations may remain isolated or they may
communicate by exchanging individuals. Communication involves extra costs and additional
decision on topologies, on how many individuals are exchanged, and on the frequency of

communications {62].
The use of fuzzy logic to translate and improve heuristic rules has also been applied to manage

the resource of evolutionary algorithms (population size, selection pressure etc.) as the

algorithm greedily explores and exploits the search space. The technique proposed by Lee
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[156] to perform a run-time tuning of population size and reproduction operators based on the
fitness measures might be helpful to improve the computational run-time efficiency of the

evolutionary search process.

In this thesis, we have investigated only the hybrid combinations involving neural networks,
fuzzy systems and evolutionary algorithms. It will be interesting to investigate hybrid
combinations of other intelligent techniques like support vector machines [235], artificial
immune systems [76], Bayesian methods [135], rough sets [163] and popular hard computing
techniques like CART [56], MARS [92] eic.
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