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SUMMARY

The thesis examines the function of group II metabotropic receptors for L-glutamate

(Glu) in brain using a range drugs acting at these receptors under normal and pathological

conditions, and employing experimental strategies allowing the investigation of neuronal injury

m vitro and epilepsy in viw.

Glu is the principal excitatory neurotransmitter of the central nervous system, and is

involved in numerous physiological functions including learning and memory, and motor

function. Disruption of Glu homeostasis is known to cause neurotoxicity and convulsive

seizures, thereby contributing to the neuropathology of many neurological disorders including

Alzheimer's disease, amyotrophic lateral sclerosis and epilepsy. Most of what is known

regarding the role of Glu in these disorders comes from research with agonists and antagonists

for the ligand-gated ion channels (NMDA, AMPA, KA). However, it has become evident that

a more subtle, and indirect approach to the pharmacological manipulation of glutamatergic

neurotransmission is required involving the newly developed ligands for the G protein-coupled

metabotropic glutamate (mGlu) receptors (groups I-IJI).

Since group II mGlu receptors inhibit Glu release they are a potential target for the

amelioration of neuronal injury. The ability of group II mGlu receptor agonists to attenuate

injury induced by various insults was evaluated in cortical, striatal and cerebellar granular pure

neuronal cultures. However, despite successful receptor coupling to intracellular signaling

cascades, and regardless of culture development, agonist concentration, extent and mode of

injury, group II mGlu receptor agonists were unable to protect against cellular death induced

in these neuronal cultures. Shortly after this study, the role of trophic factor release from
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astrocytes was demonstrated to mediate the neuroprotective actions of these group II mGlu

receptor agonists.

Despite such evidence demonstrating the important role of astrocytes, signal

transduction mechanisms of group II mGlu receptors remained a matter of some controversy.

Therefore, new insights were sought into group II mGlu receptor function by studying cAMP

production in cultured neurones and astrocytes, and by examining the inter-relationships of

intracellular signalling to cellular calcium. Under physiological concentrations of Ca2+ and

adenylate cydase stimulation, an elevation of cAMP production was found, contrary to

classical understanding of group II mGlu receptor function. This elevation of cAMP was

mediated by phospholipase C- and calmodulin kinase II-dependent pathways, and results from

the release of endogenous adenosine, which then acts at Gs protein-coupled A M receptors.

Such mechanisms could influence the functional phenotypy of astrocytes under physiological

and pathological conditions.

Finally, the ability of group II mGlu receptors to modulate excessive glutamatergic

neurotransmission was investigated in animal models where this dysfunction is understood to

contribute to the etiology of epilepsy. Sound-induced clonic seizures in DBA/2 mice were

transiently inhibited by group II mGlu receptor agonists administered intracerebroventricularly

or intraperitoneally (i.p.). The spike and wave discharge (SWD) duration of absence seizures in

Ib/lb mice was significantly reduced following infusion of the agonists while the electrically-

induced seizure score and SWD of amygdala-kindled rats was partially inhibited following i.p.

injection of the agonists. As a result of these experiments some group II mGlu receptor

agonists were shown to be systemically active and potent anti-convulsants.

In conclusion, potent and selective group II mGlu receptor agonists possess

neuroprotective activity via stimulation of astrocytes, which involves the release of trophic
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factors and possibly adenosine. Group II mGlu receptor agonists showed anti-seizure activity

in rodent models of human epilepsy and are understood to effect this outcome by inhibiting

Glu release from presynaptic glutamatergic terminals. Such agonists may prove useful in the

treatment of human neurological disorders that involve degenerative mechanisms and epilepsy.
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GIRK G protein-coupled inwardly rectifying K+ channel

GLAST glutamate/L-aspartate transporter (human: EAATl)
Gin L-glutamine

GLT1 Glu transporter 1 (human: EAAT2)
Glu L-glutamate

GluT glutamate transporter
GPCR G protein-coupled receptor

GST general seizure threshold
GTP guanine triphosphate

GYKI52466 l-^-aminophenylH-methyl-Z.S-methylenedioxy-SH^.Sbenzodiazepine
fi89 7^-(2-[p-bromocinnamylarnino]ethyl)-5-isoquinolinesulfonarnide

3-HPG S-3-hydroxyphenylglycine
5HT serotonin

IBMX 3-isobutyl-l-methylxanthine
IBO ibotenate

ic or i.e. intracollicular
icv or i.ev. intracerebroventricular

iGlu ionotropic glutamate (receptor)
i.p. intraperitoneally
IP inositol 5-phosphate

IP3 inositol 1,4,5-triphosphate
ISO isoprenaline
KA kainate

KN-62 (5)-isoquinolinesulphonic acid ester
Ib/lh lethargic (mice)
LTD long-term depression
LTP long-term potentiation

LY341495 2S-2-amino-2-(lS,2S-2-carboxycycloprop-l-yl)-3-(xanth-9-y^propanoicacid
LY354740 (15,2S,5^,65)-(+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid
LY379268 (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylic acid
LY3 89795 (-)-2-thia-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylic acid

MAP-2 microtubule associated protein-2
MAP4 5-a-methyl-2-amino-4-phosphonobutanoic acid
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MAPK
MCCG

t-MCG-I
ris-MCG-I

MCPA
MCPG

5-4-MeG
25,45-4-MG

mGlu
MK-801

MPEP
MPP+

MPPG
mRNA
MSOP
MTT

NAAG
NAc

NECA
NGF

NMDA
N O
NR

NTS
PAG
PDE
PDZ
PIC

PICK
PI3K
PIP2

PKA/B/C
PLC/D

(RS)-PPG
PSD-95

PTX
PTZ
Quis

RNA
Ser
SN

L-SOP
SWD
TCA
TGF

Thr
TMD

mitogen-activated protein kinase
(25,r5,2'5)-2-methyl-2-(2-carboxycydopropyl)glycine
trans- (25,1 '5,27?>3'5)-2-(2-carboxy-3-methoxymethylcyclopropyl)glycine
(254'5,27?,37?)-2-(2-carboxyO-metiioxymet^lcyclopropyl)glycine
5-a-rnethyl-3-carboxyphenylalanine
5-a-metiiylcarboxyphenylglycine
5-4-methyleneglutamic acid
(25,45) -4-metKlyglutamate
metabotropic glutamate (receptor)
(55,10/?)-(+)-5-methyl-10,ll-diliydro-5//-dibenzo[a,d]cyclohepten-5,10-irnine
maleate (or dizodipine)
2-methyl-6-(phenylethynl)pyridine
1 -methyl-4-phenylpyridinium
(7?,5)-a-methyl-4-phosphonophenylglycine
messenger ribonucleic acid
(i?5)-a-methylserine-O-phosphate
3-(4)5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide
A/-acetylaspartylglutamate
nucleus accumbens
5 '-7V-ethyl-carboxamidoadenosine
nerve growth factor
TV-methyl-D-aspartate
nitric oxide
NMDA receptor subunit
nucleus tractus solitarii
periaquedurtal gray
phosphodiesterase
PSD-95 disc-large zona occludens 1
picrotoxin
protein-interacting c-kinase-I
phosphatidylinositol-3-kinase
phosphatidylinositol 4,5-biphosphate
protein kinase A/B/C
phospholipase C/D
(ft,5)-4-phosphonophenylglycine
post-synaptic density protein-95
pertusis toxin
pentylenetetrazol
Quisqualate
ribonucleic acid

senne
substantia nigra
L-serine-O-phosphate
spike wave discharge
tricarboxylic acid cycle
transforming growth factor
threonine
transmembrane domain
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TUNEL terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin end labelling
U73122 (l-[6-([(17b)-3-methoxyestra-l,3,5(10)-trien-17-yl]amino)hexyl>lH-pyrrole-2,5-

dione
UBP1 111 a-methyl-3-chloro-4-phosphonophenylgylcine

ZM241385 4-(2-[7-amino-2-(2-furyl)[l,2,4]tTiazolo[23-a][l,3,5]tTiazb-5-ylamino]ethyl)phenol
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1.1 L-GLUTAMATE AND T H E CENTRAL NERVOUS SYSTEM

1.1.1 L-Glutamate

L-Glutamate (Glu) or L-glutamic acid is an amino acid that was discovered nearly fifty

years ago to have excitatory actions on neurones of the central nervous system (CNS)

(Hayashi, 1954; Curtis and Watkins, 1960). Although identified as a neuroexcitant, Glu was

only considered important as a non-essential amino acid in nitrogen metabolism (Curtis and

Johnston, 1974; Erecinska and Silver, 1990). Furthermore, Glu mediates various biochemical

functions, including fatty acid and protein synthesis, energy metabolism, and is a precursor for

various endogenous small molecules sudi as folic acid, and for the inhibitory neurotransmitter

y-aminobutyric &cid (GABA) (Erecimka and Silver, 1990). Despite being present in high

concentrations and exhibiting an ubiquitous distribution throughout the brain, only some

twenty years later was it accepted that Glu satisfied the four main criteria for classification as a

neurotransmkter (Fonnuni, 1991); (i) presynaptic localisation, (2) release by physiological

stimuli (including vesicular storage (Storm-Mathisen et al., 1995)), (3) identical action with a

known, nattirally occurring transmitter, and (4) association with a mechanism for rapid

termination of transmitter action (e.g. Glu uptake systems; Balcar and Johnston, 1972). Now,

Glu is understood to be the Diincipal excitatory amino acid (EAA) neurotransmitter in the

mammalian CNS where it plays roles in numerous physiological functions including synaptic

plasticity» learning and memory, sensation (Broman et al., 2000) and cardiovascular regulation

(Collingridge and Singer, 1990).

1.1.2 Glutamate Synthesis and Metabolism

Glu is a non-essential amino acid that is readily synthesised by the body. Under

physiological conditions Glu is not able to cross the blood-brain barrier, and therefore plasma
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levels do not reflect those levels found in the CNS (Fonnum, 1984). Glu that is required for

neurological functions is synthesised within the CNS (Fonnum, 1984) and remains at a

relatively constant concentration (Erecinska and Silver, 1990). In general, Glu concentrations

in the CNS measure around 1 fM in the extracellular fluid and up to 10,000-fold higher in the

cytosol (Schousboe, 1981; Fonnum, 1984), and up to 100 mM in the vesicles of nerve

terminals (Burger et al., 1989; Shupliakov et al., 1992).

While Glu synthesis can occur through various pathways, it seems that Glu is mainly

synthesised from glucose by the process of glycolysis such that glucose is the most important

precursor of Glu (Minchin and Beart, 1975). Glucose enters the brain by crossing the blood-

brain barrier and is taken up into astrocytes via glucose transporters. Here, glucose is broken

down to pyruvate, which in turn enters the tricarboxylic acid cycle (TCA) where finally Glu is

produced from a-ketoglutarate (see Figure 1.1). L-Glutamine (Gin) too can be converted to

Glu by phospho-activated glutaminase, an action that largely depends upon glial cells (such as

astrocytes). Glu is also taken up by glial cells and converted to Gin, in an adenosine

triphosphate (ATP)-dependent manner, which is released into the extracellular space and

rapidly taken up by neurones. Neurones then convert the Gin to Glu in the synaptic terminals

(Erecinska and Silver, 1990; Nicholls and Attwell, 1990) and Glu is transported into vesicles

for storage (Naito and Ueda, 1985). Glu release is believed to be via a classical exocytotic,

calcium-dependent pathway utilising synaptic vesicles and requiring membrane depolarisation

(Nicholls and Attwell, 1990). Figure 1.1 outlines some of the key metabolic processes involved

in the biochemistry of Glu.
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NEURONAL
SYNAPSE

ASTROCYTE

glucose

B

L-aspartate

pyruvate
+ CO2

oxaloacetate a-ketoglutarate

(astrocytes)

L-glutamine

t
L-glutamate

I
GABA

(GABAergic
neurons)

Figure 1.1 Schematic representation of key pathways in Glu synthesis and
metabolism: between neurons and glia (A) and involving the tricarboxylic acid cycle
(TCA) (B).
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1.1.3 Glutamate Uptake Systems

Early investigations with the use of various enzyme inhibitors had failed to provide

evidence for the augmentation of excitatory responses to EAAs, implying that Glu was not

degraded after release (Curtis and Watkins, 1960). However, Curtis and colleagues later

demonstrated that Glu responses were enhanced by the addition of the membrane transport

inhibitor p-chloromercuriphenylsulphonate in feline Renshaw cells (McCulloch et al., 1974).

Since then a family of Glu transporters (GluTs) has since been cloned and characterised

pharmacologically (Vandenberg, 1998; Danbolt, 2001).

Once Glu is released from nerve terminals it is quickly removed from the extracellular

space by GluTs. At present five Glu transporters have been characterised in rodent brain: the

Glu/L-aspartate transporter (GLAST), Glu transporter 1 (GLTl), excitatory amino acid carrier

1 (EAAC1) and excitatory amino acid carrier 4 (EAAC4) and excitatory amino acid transporter

5 (EAAT5) (Vandenberg, 1998). In the human brain five GluT homologues have been cloned

and are termed excitatory amino acid transporter 1-5 (EAATl-5) (Sims and Robinson, 1999).

Other members and splice variants of this family are likely to be discovered as the transporters

cloned thus far are predominantly localised on glia or postsynaptic neurones, and early

evidence suggests that some component of Glu transport occurs into presynaptic nerve

terminals (Beart, 1976). For example, recently, glial GluT splice variants (GLTlb and GLTlv)

has been reported to be localised to nerve terminals (Chen et al., 2002; Schmitt et al., 2002).

Table 1.1 provides an overview of the tissue distribution, cellular localisation and the relative

affinities of the transporters for Glu.

As Glu is a potent neurotoxin (Meldrum and Garthwaite, 1990), rapid removal of Glu

from the extracellular space is required to avoid neuronal damage, so much so that various

disease states may be linked to abnormal functioning of various GluTs (Vandenberg, 1998;
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Table 1.1 Characteristics of Glu transporters

Glu Transporter

CNS Cellular
Localisation

Tissue Distribution

Affinity for Glu (Km)

GUST
(EAAT1)

Glia

Brain
Heart
Lung

Placenta
Skeletal muscle

18-20 uM

GLT1
(EAAT2)

Glia

Brain
Liver

18 nM

EAAC1
(EAAT3)

Neurons

Brain
Intestine
Kidney
Liver
Heart

30 uM

EAAC4
(EAAT4)

Neurons

Cerebellum
Hippocampus

Placenta

2.5 nM

EAAT5

Neurons

Retina

64 uM

Where different, human Glu transporter names appear in brackets.
(Adapted from Kanai et al., 1997; Vandenberg, 1998; Pow and Barnett, 2000).
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Danbolt, 2001). For example, while significant changes in GLAST or GLTl expression are not

evident in post-mortem Alzheimer's disease brain when compared to aged matched controls,

uptake studies have demonstrated a decrease in GLTl activity in Alzheimer's patients by

approximately 34% (Scott et al., 1995; Masliah et al, 1996). There is also evidence to suggest

that in post-mortem brains of Alzheimer's patients some GluTs are differentially regulated due

to a lower ratio of N-terminal immunoreactivity when compared to that of central

immunoreactivity of GLTl (Beckstrom et al., 1999). The human glial transporter EAAT2 is

down-regulated by up to 95% in the motor cortex and spinal cord of patients suffering

amyotrophic lateral sclerosis, possibly due to aberrant RNA splicing (Lin et al., 1998). Studies

employing antisense oligonucleotides and the production of knockout mice have demonstrated

the importance of GLAST, GLTl and EAAC1 in synaptic transmission since these animals

develop seizures (reviewed in: Meldrum et al., 1999). Therefore, atypical functioning of Glu

uptake mechanisms may be a common attribute in neurodegenerative diseases, whereby excess

Glu remains in the extracellular space and receptor overstimulation causes neuronal injury.

1.1.4 Glutamatergic Pathways

Until recently, identification of pathways that utilise Glu as a neurotransmitter has been

difficult since Glu is also a metabolic intermediate (as described in section 1.1.2), consequently

immunohistochemistry could not always be correlated with neurotransmitter levels.

Identification of glutamatergic pathways finally came from studies involving high affinity

uptake, selective lesioning of neurones, monitoring endogenous release and retrograde

transport (Fagg and Foster, 1983; Fonnum et al., 1981). More recently glutamatergic neurones

have been mapped by retrograde transport of [3H]-D-aspaitate (Beart et al., 1994) and by

irnmunocytochemistry with Glu antibodies (Storm-Mathisen et al., 1995). Numerous pathways
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employ Glu as their neurotransmitter, including those originating from neocortical pyramidal

cells, several intrahippocampal pathways and parallel fibres of the cerebellum (Feldman et al,

1997; Fonnum, 1984; Storm-Mathisen et al., 1995). Glutamatergic efferents from various areas

of the neocortex projea to many regions of the brain including to the nucleus accumbens

(Walaas, 1981), the amygdala and thalamus (Walker and Fonnum, 1983). In one of the few

studies combining neurochemical mapping and in vivo electrophysiology, a glutamatergic

pathway was found to link the ventromedial hypothalamus to the periaqueductal gray (Christie

et al., 1985; Christie et al., 1986). Efferent pathways also exist that originate in the cerebellum

and projea to the inferior olive, while within the cerebellum parallel fibres arise from the

granule cells (Storm-Mathisen et al., 1987).

In the basal ganglia circuitry, glutamatergic afferents from the cortex projea to

medium spiny GABAergic neurones of the striatum (Bellomo et al., 1998) and the subthalamic

nucleus, and efferents innervate the cortex from the thalamus. These pathways are often

exploited to induce animal models of Parkinson's disease or to prevent Parkinson-like

symptoms thought to arise from the basal ganglia circuitry.

Within the hippocampus, granule ceils of the dentate gyms send axons (mossy fibres)

which terminate on pyramidal neurones in the CA3 region. These neurones in turn projea to

the fibre traa, the fornix, which is a major efferent of the hippocampus to the septal area,

while collateral branches (Schaffer collaterals) project from the CA3 to the CA1. Many of these

pathways have been shown to be involved in Glu receptor-mediated long-term potentiation

(Bortolotto et al., 1999).
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1.2 GLUTAMATE RECEPTORS

1.2.1 History of glutamate receptors

Since neurones were almost universally excited by Glu, receptors for Glu were thought

to be widely distributed throughout the brain and spinal cord (Hayashi, 1954). Later, potency

differences were found across various brain regions which suggested the presence of different

subtypes of Glu receptor (Duggan, 1974). Initially, receptor subtypes were classified by their

differential sensitivities to EAAs, with greater definition coming from early antagonists.

Finally, through cloning, sequencing and expression a fuller understanding of the differences in

Glu receptor subtypes has emerged.

1.2.2 Classification of glutamate receptors

Mammalian CNS Glu receptors fall into two broad categories, chiefly distinguished by

their mechanism of action: ionotropic (iGlu) and metabotropic (mGlu) Glu receptors.

Ionotropic Glu receptors are pentomeric ligand-gated ion channels of four transmembrane

domains (TMD) (with the exception of NMDA receptors which have two re-entrant domains;

Bettler and Mulle, 1995; Dingledine et al., 1999). Activation of iGlu receptors initiates a cation

influx and results in a rapid membrane depoiarisation. These receptors can be subdivided into

three receptor groups based on their activation by the agonists JV-methyl-D-aspartate

(NMDA), a-amino-3-hvdroxy-5-methylisoxazole-4-propionate (AMPA) and kainate (KA).

Each of these three groups consist of distinct receptor subunits that assemble in homomeric or

heteromeric complexes. Unlike iGlu receptors, mGlu receptors activate signal transduction

mechanisms through G proteins coupled to the intracellular terminus of the receptor (mGlu

receptors are discussed in more detail later). Figure 1.2 demonstrates the relationship between

the family of Glu receptors.
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Figure 1.2 Cloned glutamate receptors.

KA-1
KA-2

ionotropic

GluR2
GiuR3
GluR4

GluR5
GluR6
GluR7

Glutamate
receptors

Kainate AMPA NMDA

NR-1

NR-2A
NR-2B
NR-2C
NR-2D

Metabotropic

Group I Group li Group III

mGlu2
mGlu3

mGlui
mGlu5

mGlu4
mGlu6

mGlu7

mGlus

Phylogenic tree demonstrating the relationship between the Glu receptors and their subunits. The nomeclature

of iGlu receptors is currently under review.
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1.2.3 iGlu receptors

Pharmacological advances have preceded the molecular biology of iGlu receptors and

in the 1970s and 1980s they were simply classified as NMDA and non-NMDA receptors. With

the knowledge that iGlu receptors were likely to mediate neuronal injury in many acute and

chronic neurological conditions (Lipton and Rosenberg, 1994; Meldrum and Gaithwaite,

1990), there have been many developments in the medicinal chemistry and structure-activity

relationships of NMDA receptor agonists and antagonists (Rogawski, 1993; Speliotes et al.,

1994; Small and Buchan, 1997). Subsequently in trials, many competitive and non-competitive

NMDA receptor antagonists were found to have psychomimetic side effects and/or caused

morphological changes in the brain (Olney et al., 1990; Schmutz et al., 1997). Interest in iGlu

receptors as therapeutic targets for the management of neuronal injury continues, but has

concentrated more recently on non-NMDA receptors (namely, AMPA and KA receptors). A

I small number of research groups continue to investigate the possible clinical roles of slow-

!

| channel NMDA receptor blockers (Monyer et al., 1994; Reith and Sillar, 1998; Vicini and

I Rumbaugh, 2000) and glycine-NMDA receptor antagonists (Sareen, 2002; Chenard and

Menniti, 1999). Regardless, the pharmacological industry has long recognised the large financial

1 gain that could be achieved by successful management of neurodegenerative conditions

through the glutamatergic system, and due to the limited success of targeting iGlu receptors,

much attention now focuses on mGlu receptors.

1.2.4 mGlu receptors

Metabotropic Glu receptors are guanine nucleotide or GTP-binding (G protein)-

coupled receptors (GPCR), and have a monomeric structure consisting of seven TMDs. They

belong to family 3 GPCRs, along with GABAB, pheromone and Ca2+-sensing receptors
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(Bockaert and Pin, 1999), since they share little sequence similarity with the family of

rhodopsin-like GPCRs (referred to as family 1) and large-peptide GPCRs (e.g. vasoactive

intestinal polypeptide receptors; family 2). G proteins consist of three subunits a, p and y

(Selbie and Hill, 1998; Antoni, 2000). The a subunit is generally responsible for activating the

second messenger associated with the relative mGlu receptor (i.e. PLC or AC). The p and y

subunits generally act as a dimer (Py) although their exact function is unclear at present.

Emerging roles for the py subunit will be discussed in more detail in Chapter 3.

Metabotropic Glu receptors have been classified into three groups (I, II and III) based

on the signal transduction pathway to which they couple (Table 1.2), amino acid sequence

homology (Table 1.3) and agonist pharmacology (se^ion 1.5). These signal transduction

pathways can include artivation of phospholipase C (PLC), adenylate cyclase (AC) and

phospholipase D (PLD), and result in the regulation of protein and enzyme activity, and

calcium homeostasis.

Group I mGlu receptors, which consist of splice variants of the subtypes mGlu! and

mGlu5, are generally made up of about 1100 amino acids and share approximately 60%

homology within the group, and approximately 40% homology with groups II and III

(Stephan et al., 1996). Group II mGlu receptors consist of mGlu2 and mGlu3 subtypes which

share a 66% homology: they are made up of approximately 870 amino acids and are unique in

that no splice variants have yet been identified (Flor et al., 1995a; Makoff et al., 1996a; Emile et

al., 1996). Group III mGlu receptors range from 850 - 970 amino acids, consist of the

subtypes mGlu4, mGlu6) mGlu7and mGlu8, and share 65 - 70% amino acid homology (Flor et

al., 1995b; Makoff et al., 1996b,c; Wu et al., 1998). In general, rodent mGlu receptors share

approximately 96% homology with their human counterparts (Emile et al., 1996; Hashimoto et

al., 1997; Wu et al., 1998).
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Table 1.2 Classification and transduction mechanisms of mGIu
receptors in rat Similar splice variants exist for human mGIu receptors.

Group

I

II

Ml

Subtypes

mGIUi

mGlus

mGlu3

mGlu2

mGlu4

mGlu6

mGlu7

mGlu8

mGIu?

Splice Variants

a.b

a, b, c, e

a, b

a.b

a.b

?

Transduction

T PLC, t Ca2+, i\C,i VOCC, t L-VOCC

1 AC. 4 VOCC

i AC, I VOCC, t K+

t PLD

Key to symbols: t , stimulation; 4. inhibition; AC, adenylate cyclase; Ca2*, intracellular calcium
concentration; K+, intracellular potassium concentration; VOCC, voltage operated calcium
channels; L-VOCC, L-type voltage operated calcium channels; PLC/D, phospholipase C/D.
(Pin etal., 1999)

Table 1.3 Percentage amino acid homology between mGIu
receptors in rat.

mGIu

1

2

3

4

5

6

7

2

43.1

3

41.

66.

2

9

4

39.0

45.3

44.1

5

60.8

42.5

41.5

39.8

' • !<

40.3

46.0

44.8

68.6

39.3

7

38.1

44.0

43.1

67.4

37.8

64.3

8

-43*

-46*

-46*

70

-43*

70

74

* Approximate values based on mGlu8 homology to the mGIu receptor group.
(Duvoisin et al., 1995)



Chapter 1: General Introduction
14

Group I mGlu receptors are coupled to a stimulatory G protein (G,) and activate

inositol phosphate (IP) hydrolysis. G protein activation of PLC will generate inositol 1,4,5-

triphosphate (IP3) and diacylglycerol (DAG) from phosphatidylinositol 4,5-biphosphate (PIPJ.

IP3 then activates protein kinase C (PKC). Inositol phosphates are known to regulate

membrane trafficking, glucose metabolism, cytoskeletal organisation, and most importantly,

regulation of intracellular Ca2+ homeostasis - particularly the release, of stored Ca2+ via IPj-

sensitive receptors (Chavis et al., 1995; Chavis et al., 1996). Secondary activity induced by

these pathways includes activation of plasma membrane voltage operated Ca2+ channels

(VOCC) and the induction of K+ efflux via Ca2+-sensitive K+ channels (Fagni et al., 2000;

Table 1.2).

Group II and III mGlu receptors act via an inhibitory G protein (G;) to inhibit AC

activity and prevent the formation of cyclic adenosine monophosphate (cAMP), which can

result in the inhibition of VOCCs (Table 1.2). Ontogenetic and pharmacological studies show

that some mGlu receptor agonists activate PLD (e.g. £-ADA), however debate exists over

which group such receptors belong to (Pellegrino-Giampietro et al., 1996; Klein et al.,

1997a,b).

Cyclic AMP is synthesised from ATP by AC and is broken down by

phosphodiesterases (PDEs). Different AC isozym»s mediate different cAMP responses

according to the input given, and moreover, the same isozyme can produce opposite cAMP

responses. In general, Gs« proteins stimulate AC production of cAMP, while G; proteins

inhibit production of cAMP (see reviews: Tesmer and Sprang, 1998; Antoni, 2000). However,

the activity of AC is regulated by a number of factors including Ca2+, calmodulin, calcineurin

and GPy proteins. For example, G^ protein activation of AC isozyme I (AC I) generally

stimulates cAMP production in neurones, thereby activating PKC, however a GPy protein
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input (from either Gsfl or Gi(1) could inhibit AC I. Isozymes V and VI are sensitive to Ca2+,

which inhibits the inhibitory or stimulatory response of these isozymes to Gioc or G^,

respectively. Figure 1.3 and Table 1.4 describe some of the regulatory components of the AC

catalytic process.

Protein kinase A (PKA) is the classical intracellular target of cAMP. Upon binding of

cAMP to the R subunit of PKA the C subunit. dissociates and phosphorylates it substrates,

which include nuclear proteins, enzymes and transcription factors (Taylor et al., 1990).

Another key target of cAMP are cyclic nudeotide gated ion channels, which control the flux of

Ca2+, Na+ and K+. Activation of the latter two channel types is thought to be responsible for

the depolarising effects mediated by GPCRs associated with cAMP signalling (Tesmer and

Sprang, 1998; Antoni, 2000). Another, novel group of cAMP targets include guanine

triphosphate (GTP) exchange proteins. Recently it was found that activation of the small

GTPase, Rapl, was enhanced by an 'exchange protein activated by cAMP' (Epac) which leads

to protein kinase B activation - a key mediator of cell survival and differentiation (Mei et al.,

2002).

1.3 mGlu RECEPTOR STRUCTURE AND FUNCTION

Glutamate was first thought to art via three EAA receptors: NMDA, KA and

Quisqualate (Quis) receptors. Through such receptors, Glu had been shown to cause an influx

of Na+ and Ca2+ to produce excitatory postsynaptic potentials (EPSP) - required for neuronal

action potentials (Dudel, 1975; Kimura et al., 1985a,b; Mori-Okamoto and Ikeda, 1986). The

formation of inositol phosphates had also been reported to be associated with Glu activity, and

their formation in striatal neurones was shown to be induced according to the following order

of potency: Quis > Glu > NMDA > KA (Sladeczek et al., 1985; Nicoletti et al., 1986).
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Figure 1.3 Schematic representation of adenylate cyclase showing points of
regulation.

Gsa or
forskolin

Adenylate cyclase (AC) consists of an N-terminal region (N), two transmembrane domains
(M1, M2) and catalytic domains (C1a, C1b, C2a, C2b). Sites of AC regulation are indicated
by the callouts. Activation of AC by Gsa or forskolin induces the closing of C1a and C2a
domains to form the catalytic core for the ATP binding site. Adapted from Antoni, 2000.

Table 1.4 Regulation of adenylate cyclase (AC) isozyme activity in the mammalian
CNS by calcium, G proteins and protein kinases.

AC isozyme

1
II
III
IV
V
VI
VII
VIII

IX

f Gja

tGsa

tG s a

tGsa

tG s a

tG s a

tGsa

G protein

*• G b

4- Gia

4- G|a

iGia?

IGPT

tGP r?

tGP r?

t

I
I

t
I

Ca2+ f

CaMa

>

*
\

(< i pM)
(> 1 MM)

1
CaMa

calcineurina

jrotein

PKC,

rPKC
rPKC,
I PKC

PKC,
I PKC

I1 PKC

f

kinase

i CaMK-IV

I CaMK-ll

4-PKA
&PKA

Key to symbols- t stimulation of AC activity; I, inhibition of AC activity; CaM, calmodulin;
CaMK, calmodulin kinase; PKC/A, protein kinase C/A; ?, activity+unknown or indefinite.
a Stimulation by CaM or calcineurin is entirely dependent on Ca .
Adapted from Antoni, 2000.
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Following this discovery, further work showed that the Quis-induced response was mediated

via PLC through the group I mGlu receptor (Recasens et al., 1987; Manzoni et al., 1990).

Around this time, the compound L-AP4 was shown to inhibit excitatory inputs iniitro

(Hearn et al., 1986; Cotman et al., 1986), and its action was insensitive to NMDA receptor

antagonists (Sheardown, 1988) and distinguishable from Quis responses (Whittemore and

Koerner, 1989a). Later, it was found that L-AP4 acted to inhibit Glu release (Jones and

Roberts, 1990; Adamson et al., 1990; Forsythe and Clements, 1990) and is now lmown to be a

group III mGlu receptor agonist (Pook et al., 1993; Akazawa et al., 1994). In other studies, the

regional content of the endogenous, putative neurotransmitter NAAG had been described in

rat brain (Roller et al., 1984; Anderson et al., 1986; Forloni et al., 1987), and its rudimentary

pharmacology mapped (Westbrook et al., 1986; Mori-Okamoto et al., 1987; Joels et al., 1987;

Sekiguchi et al., 1987; Whittemore and Koerner, 1989b). Amongst mGlu receptors, NAAG is

now regarded as a selective agonist of mGlu3 (Wroblewska et al., 1997).

Metabotropic Glu receptors have a large extracellular domain of approximately 560

amino acids, which includes the amino (N)-terminus, while their seven TMDs are linked by

three short intracellular loops and three extracellular loops. Highly conserved regions amongst

the mGlu receptors include the first and third intracellular loops and the TMDs. The

intracellular carboxy (C)-terminus can vary in length, and alternative splicing of this region

results in splice variants (a-e) of mGlu15 and (a-b) of mGlu4, mGlu5, mGlu7 and mGlug (Pin et

al., 1999).

Metabotropic Glu receptor ligand binding domains share a structural similarity with

bacterial periplasmic binding proteins (Figure 1.4; O'Hara et al., 1993). Mutagenesis studies

have shown that the extracellular N-terminus confers glutamate binding, agonist activation,

and subtype specificity for selective agonists (O'Hara et al., 1993; Takahashi et al., 1993; Tones
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et al., 1995). For example, the splice variant mGlu, with a truncated N-terminus results in

differential agonist potency compared to its full-length receptor (Han and Hampson, 1999).

From the extensive work by Pin and colleagues an hypothesis has emerged to explain how the

binding of the agonist in the extracellular domain accounts for the activation of the seventh

TMD (Pin and Duvoisin, 1995; Bockaert et al., 1993; Gomeza et al., 1996a,b; Prezeau et al.,

1996; Flor et al., 1996). The extracellular domain of mGlu receptors is generally accepted to be

composed of two globular lobes with a hinge region where ligands are thought to bind (Figure

1.4B; Takahashi et al., 1993). The binding of an agonist in the large extracellular domain

induces the closure of the two lobes. Originally it was thought that the agonist was transported

to a second site in the seventh TMD where the agonist stabilises the active conformation of

this region. However, functional studies utilising chimeric forms of mGlu receptors in the

presence of Glu and Ca2+ do not support this hypothesis (Tones et al., 1995). Instead, a

second, more probable hypothesis has been proposed. In this second hypothesis, the closed

form of the extracellular binding domain, following agonist binding, activates the seventh

TMD without relocating the agonist (Parmentier et al., 1998).

Homology and mutagenesis studies indicate that the amino acids Ser165 and Thr188 are

conserved throughout the entire mGlu receptor family, including those mGlu receptors of the

Dmsophilia and Caenotbabditis elegans; these two residues are thought to form hydrogen bonds

with the a-carboxylic and a-amino groups of Glu ligands respectively (O'Hara et al., 1993).

The residues Arg57 and Ser167, which are not uniformly conserved, may play a role in selective

ligand recognition at group II mGlu receptors rather than participate in Glu binding (Pin et al.,

1999). While the extracellular domain plays a role in the pharmacological profile of the

receptor, but does not modify the G-protein coupling mechanism (Parmentier et al., 1998). A

schematic of the mGlu receptor is shown in Figure 1.4.



Figure 1.4 Structure of cloned mGlu receptors.

Three dimensional 'Ribbon' (A) and module (B) diagrams representing key aspects of

the structure of mGlu receptors. Diagrams are constructed according to predicted folding

patterns based on probabilities from what is known about amino acid residue assembly

and hydrophilic and hydrophobic regions.

A. The seven TMD is represented in blue and the extracellular ligand binding

domains are represented in yellow.

B. A similar construction of mGlu receptors shows where Glu binds to the

receptor and where the G protein units positively couple.

Images courtesy of J.P. Pin, Montpellier, France.
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Studies of the molecular determinants involved in the coupling of family 1 GPCRs and

G proteins indicate that the cavities in the second and diird intracellular loops of the receptors

come into contact with both the a- and Py-subunits of the G protein. Chimeric studies have

demonstrated that, like family 1 GPCRs, the second intracellular loop is critical for the

transduction mechanism and G protein specificity of mGlu receptors (Gomeza et al., 1996b;

Prezeau et al., 1996). For example, it is known that the G protein subunit isoforms Ga]5 and

Gcc]6 activate PLC of a number of GPCRs, including group I mGlu receptors. However, when

these subunits are co-transfected with mGlu2 or mGlu4 (which normally activate AC) a PLC-

mediated response is produced upon agonist activation of the receptors (Gomeza et al.,

1996b). Considerably more research has been devoted to the interaction of the receptor with

the C-terminus of the Ga-subunit than the N-terminus or the oc4—»P6 loop of the G protein.

Consequently a number of residues in the C-terminus of the a-subunit have been identified as

influencing G protein coupling to the receptor. One particular study identified that cysteine at

the residue position Cys" of the C-terminus of the a-subunit was compatible with coupling of

Gaq! and GQqo to either mGlu2 or mGlu4, however replacing this residue with isoleucine

favoured coupling of these subunits to mGlu4 but not mGlu2 (Blahos et al., 1998). It is evident

from such research that (1) binding of a ligand in the extracellular N-terminus lobes of mGlu

receptors does not influence G protein coupling or transduction pathways, (2) the Ga-subunit

coupled to the mGlu receptors can influence the type of second messenger aaivated in the

transduction pathway, and (3) residues in the C-terminus of the a-subunit influence G protein

coupling to the receptor. Finally, while mGlu5 has been shown to assemble into homodimers

(Romano et al., 1996), the dimerisation of other mGlu receptors is at present unclear, with
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some evidence demonstrating dimerisation involving group II mGlu receptors (Copani et al.,

2000).

Recent focus on mGlu receptor function has come from the discovery of a number of

functionally interacting intracellular proteins such as post-synaptic density (PSD) proteins (e.g.

PSD-95), Homer, PICK and calmodulin. The structure of PSD-95 revealed a new protein

motif, the PSD-95 disc-large zona occludens 1 (PDZ) domain, that plays an important role in

the assembly of signal transduction complexes at intercellular junctions (Kennedy, 1998). In

fact, tamalin (or GRPl-associated scaffold protein (GRASP)), is a PSD protein containing the

PDZ domain which has been found to directly link mGluj to guanine nucleotide exchange

factors in yeast expression systems, and is co-localised with mGluj in the telencephalon

(Kitano et al., 2002).

Homer proteins (Homer la, b and c, Homer 2 and Homer 3) are members of the PDZ

protein family and have been cloned from mouse, Dmsophila and human. Homer specifically

binds to mGlu receptors (Kato et al., 1998; Sun et al., 1998; Brakeman et al., 1997),.and current

understanding is that Homer protein dimers are formed that create physical links between

mGluia, mGlu5a or mGlu5b to IP3 receptors, probably via Shank proteins, inducing Ca2+ release

from intracellular stores (Fagni et al., 2000; Xiao et al., 1998; Tu et al., 1998; Ciruela et al.,

2000). Shank is also thought to act with Homer to couple group I mGlu receptors to NMDA

receptors (Lim et al., 1999; Sala et al., 2001).

Metabotropic glutamate receptors have also been associated with coupling to protein

kinase C substrates, for example with mGlu7 and "protein interacting c-kinase"-I (PICK1) (El

Far et al., 2000; Boudin et al., 2000; Dev et al., 2000; Boudin and Craig, 2001; Dev et al., 2001).

This interaction is specifically mediated by the distal C-terminal ammo acids of the mGlu7, and

PICK1 is required for specific inhibition of P/Q-type Ca2+ channels in cultured cerebellar
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granule cells, which may explain observations whereby PICKl regulates the presynaptic

function of mGlu7a to inhibit neurotransmission (Perroy et al, 2002).

Calmodulin (CaM) interacts with the C-terminal tail of mGluu, mGlu5 and mGlu7 in a

Ca2+-dependent manner (O'Connor et al., 1999; Minakami et al., 1997). Binding of CaM is

thought to disrupt G protein coupling by inducing release of the Py subunit and possibly

stimulating atypical signal transduction (O'Connor et al., 1999). In the case of mGlu5 and

mGlu7) this interaction is prevented by PKC-induced receptor phosphorylation.

Although it is well known that the PKA activity is regulated by mGlu receptor

function, recent studies have shown that PKA is capable of modulating mGlu receptor

function via direct phosphorylation of serine sites in the C-terminus (Schaffhauser et al., 2000;

Cai et al., 2001; Sorensen et al., 2002). The role of PKA and cAMP is dealt with in more detail

in Chapter 3.

G protein-coupled inwardly rectifying K+ channel (GIRK) currents are characterised

by rapid activation and deactivation upon agonist application and removal, G protein

dependence, strong inward rectification, Cs+ and Ba2+ sensitivity, and K4 selectivity. Previously,

GIRK currents have been associated with dopamine D2 receptors and have only recently been

shown to be associated with mGlu receptors, at first in Xenpus Oocytes (Saugstad et al., 1996;

Sharon et al., 1997) and then in hippocampal neurones (Luscher et al., 1997). GIRK currents

have been demonstrated for all three groups of mGlu receptor-, (Saugstad et al., 1996; Luscher

et al., 1997; Dutar et al., 1999; Dutar et al., 2000; Sorensen et al., 2002). For example in

unipolar brush cells group II mGlu receptors can functionally couple to activation of GIRK

currents (Knoflach and Kemp, 1998). However, in Golgi cells of the cerebellum and

interaeurones of the accessory olfactory bulb, which also express group II mGlu receptors,

agonists have not been shown to induce GIRK current activation despite inhibiting voltage-
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gated Ca2+ channel currents (Knoflach and Kemp, 1998). A more comprehensive review of

mGlu receptor interactions with ion channels has been published (Anwyl, 1999).

1.4 mGlu RECEPTOR EXPRESSION

Metabotropic glutamate receptors, like iGlu receptors, are widely distributed

throughout the CNS. However, there appears to be less variable expression between the splice

variants of mGlu receptor subtypes w'thin most brain regions, when compared with the

expression seen amongst iGlu receptor subtype splice variants (Wisden et al., 2000; Petralia et

al., 2000; Shigemoto and Misuno, 2000). Table 1.5 and Table 1.6 describe the level of mGlu

receptor mRNA and protein expression, respectively, in selected brain regions.

1.4.1 In vivo

Distribution of mGlu, mRNA has been extensively mapped using in situ hybridisation

histochemistry (Kerner et al., 1997; Masu et al., 1991; Shigemoto et al., 1992; Fotuhi et al.,

1994). High mGlu, mRNA expression was shown in Purkinje cells of the cerebellum, the

olfactory bulb, neocortex and various nuclei of the midbrain, thalamus and lirnbic cortex. High

mGlu, protein expression was found in the molecular layer of the cerebellum, the glomerular

layer of the main olfactory bulb and the islands of Calleja complex.

Developmental expression has been characterised for mGlu5 (Romano et al., 1996). A

decrease in mGlu5 was found to occur either gradually or from postnatal day 18 in the

brabstem, cerebellum, hypothalamus and the midbrain, while expression in the forebrain

remained high. This decrease may be attributable to the loss of expression of the mGlu5a splice

variant. Measurements of mGlu, and mGlu5 immunolabeliing reveal a decrease in expression

with increasing distance from synaptic junctions and that the receptors tend to be found within



Table 1.5 Distribution of mGlu receptor mRNA in the adult rat CNS

Relative grain densities on neuronal cell bodies

Olfactory system: Main olfactory bulb
Accessory olfactory bulb

Neocortex
Limbic cortex:

Hippocampus
Dentate granule cells

Septal and basal forebrain regions
Amygdala
Basal ganglia: Striatum

Nucleus accumbens
Substantia nigra

Thalamus
Reticular nucleus

Hypothalamus
Midbrain
Pons and Medulla oblongata
Cerebellum: Cerebellar cortex

Golgi cells

Spinal cord: Dorsal horn
Ventral horn - Motor neurons
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A summary of the expression of the mGlu receptor subtype in each brain region is made, and particular nuclei of contrasting expression or those of
interest have been included.
Relative grain densities: ++++ = very high; +++ = high; ++ = moderate; + = low; - = background level. (S) indicates that labelled cells are scattered in
that region. - indicates varying labelling, e.g. +-+++ = low to high.
Abridged from Shlgemoto and Mizuno, 2000.
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Table 1.6 Distribution of mGIu receptor-like immunoreactivity in CNS

Density of immunoreactivity in neuropii
mGIu

Olfactory system ++-+
Main olfactory bulb ++-+
Accessory olfactory bulb +-++

Neocortex: Layer I-VI +-++
Limbic cortex +

Hippocampus -/+
Dentate gyrus ++

Septal and basal forebrain regions +
Amygdala +
Basal ganglia: Striatum +-++

Nucleus accumbens +
Substantia nigra +~++

Thalamus- ++
Hypothalamus +
Midbrain ++
Pons and Medulla oblongata +~++
Cerebellum: Molecular layer ++++

Purkinje cell layer +++
Granule cell layer +

Cerebellar nuclei ++
Spinal cord: Dorsal horn ++

Ventral horn +

i, mGlu5
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A summary of the expression of the mGIu receptor subtype in each brain region is made, and particular nuclei of contrasting expression or those of interest have
been included.
Relative grain densities: ++++ = very high; +++ = high; ++ = moderate; + = low; - = background level. - Indicates varying labelling, e.g. +-+++ = low to high.
For mGlu7 expression, (a) or (b) represents the expression for that particular isofbrm only. When the aitemative Isofbrm Is not noted there was no receptor
expression. When neither isoforms are given then the expression level applies to both isoforms.
Abridged from Shigemoto and Mizuno, 2000.
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the PSD (Lujan et al., 1996). Of the group I mGlu receptors, only mGlu5 appears to be

expressed on astrocytes miko (van den Pol et al., 1994; van den Pol et al., 1995).

Group II mGlu receptors are generally distributed throughout the forebrain and

cerebellar cortex with both pre- and post-synaptic localisation (Neki et al., 1996a). While

mG!u2 immunoreactivity is extensive throughout the olfactory bulb, cerebral cortex and

caudate-putamen, this receptor subtype appears to be only expressed in the Golgi cells of the

cerebellum (Genazzani et al., 1993; Ohishi et al., 1993b). Interestingly, mGlu2 and mGlu5 are

expressed in two separate populations of Golgi cells, approximately 90% of which were found

to be mGlii2 immunoreactive and 10% mGlu5 imrnunoreactive (Neki et al., 1996b). The mGk3

subtype is similarly expressed on neurones throughout the forebrain and cerebellum, but is

also uniquely located on glia (Ohishi et al., 1993a; Ohishi et al., 1994; Jeffery et al., 1996;

Mineff and Valtschanoff, 1999). While no mGlu3 mRNA is evident in cerebellar granule cells

(Ohishi et al., 1993a), positive immunoreactivity is evident for the receptor in this layer (Ohishi

et al., 1994) indicating a possible mechanism for the transport of the protein.

The group III mGlu receptor, mGlu6, is only expressed in the retina (Nakajima et al.,

1993; Shigemoto and Mizuno, 2000). Localisation of mGlu4 has been reported in the rat

cerebral cortex and hippocampus (Phillips et al., 1997), and further studies show this subtype

to be localised on the pre- and postsynaptic terminals (Kinoshita et al., 1996). The splice

variants mGlu7a and mGlu^ are similarly distributed in rat and mouse where mGlu7a appears

more widespread and includes sensory pathways. Both mGlu7 splice variants are found on

non-glutamatergic axon terminals including those that are presumed to be inhibitory

(Kinoshita et al., 1998). The expression of mGlu8 appears to be confined to the olfactory bulb,

and expressed to a lesser extent in the piriform cortex and dentate gyrus (Saugstad et al., 1997;

Corti et al., 1998; Shigemoto and Mizuno, 2000). In the main olfactory bulb, mGlu8 expression
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is greater in the mitral cell layer compared to the granule cell layer, however the inverse is true

in the accessory olfactory bulb. Pre- and postsynaptic expression of mGlu8 has been mapped

in the retina (Koulen and Brandstatter, 2002) and is thought to contribute to the negative

feedback mechanism involved in the fine adjustment of the light-regulated release of glutamate

from photoreceptors. Figure 1.5 demonstrates the cellular localisation of mGlu receptors and

respective second messenger coupling mechanisms. At present, no evidence exists for marked

differences in mGlu receptor protein or mRNA expression between rat and mouse brain.

In general, human mGlu receptor expression correlates well with that in rat brain,

particularly in the cefebellum where extensive expression studies have been undertaken

(Makoff et al., 1996a,b,q Blumcke et al., 1996; Makoff et al., 1997; Berthele et al.. 1999). In

such studies mRNA coding for mGlu subtypes 1, 3, 4 and 7 were expressed in Purkinje cells

and mGlu subtypes 1 and 4 were additionally expressed in granule cells; subtypes 1, 2, 3, 4 and

7 were detected in Golgi cells. Bergmann glial cells express mGlu5 and mGlu3 mRNA.

Expression of mGliij mRNA expression was low in the molecular layer and mGlu6 mRNA was

not detectable.

In addition to the cerebellum, in situ hybridisation studies with human brain sections

have showed mGlu3 mGlu4 and mGlu7 mRNA expression on neurones of the cerebral cortex,

caudate-putamen and thalamus (Makoff et al., 1996a,b,c; Richardson-Burns et al., 2000). In the

hippocampus, mGlu,, and mGlu7 is moderately expressed in the dentate gyrus and CA1, with

more diffuse labelling in the CA2 and CA3 regions; and diffuse labelling exists for mGlu5 in all

hippocampal regions (Blumcke et al., 1996; Malherbe et al., 1999; Blumcke et al., 2000). The

pattern of human mGlu8a/b mRNA expression was not found to be different between adult and

foetal human brain, with predominant expression in the olfactory bulb (Malherbe et al., 1999).



Figure 1.5 Schematic representation of the localisation and coupling of mGlu

receptor subtypes at a glutamatergic synapse.

Group I mGlu receptors are predominantly localised on the postsynaptic terminal where

mGlu5 has been shown to couple to NMDA receptors via intracellular proteins Shank and

-Homer-, or to intracellular calcium stores via Homer. Some evidence exists for presynaptic

localisation of mGlu1/5. Group II and III mGlu receptors are located on the pre- and

postsynaptic terminal in a perisynaptic position and appear to be recruited in times of high

synaptic concentrations of Glu. The receptor subtypes mGlu3l mGlu5 and more recently,

mGlu4, have been found on astrocytes. (Cartmell and Schoepp, 2000; Tamaru et al., 2001)
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The major difference from the rat brain is the presence in the human brain of mGlu4

mRNA in the caudate nucleus and putamen (Makoff et al., 1996b). A predominantly glial cell

expression exists for an mGlu8 isoform in human brain (mGlu8c) (Malherbe et al., 1999).

Immunocytochemical analysis has demonstrated that neuronal expression of group I

mGlu receptors is high throughout the spinal cord with highest expression of mGlu:a and

mGlu5 in the ventral horn and dorsal horn, respectively (Aronica et al., 2001). Group II mGlu

receptor immunoreactivity was mainly concentrated in the inner part of the lamina II. In spinal

cord, glia showed weak and moderate immunoreactivity of mGlu5 and mGlu^j, respectively

(Aronica et al., 2001).

1.4.2 In vitro

In cortical neuronal cultures mRNA and protein expression of the mGlu subtypes 1, 3,

4, 5, 6, 7, and 8 are quite similar (Janssens and Lesage, 2001), but no mGlu2 mRNA expression

was detected, in contrast to the study conducted by Heck et al. (1997). Such subtle differences

may reflect the age of the cultures used, or the growth medium employed. In cultures of the

hippocampus and cerebellum all mGlu receptor subtype mRNA is expressed, however

mGluj/5 protein levels appear higher than mGlu^j, while mGlu4 and mGlu8 protein were

absent (Aronica et al., 1993; Janssens and Lesage, 2001). In cortical astrocytes grown with or

without serum, mGlu3 and mGlu5 mRNA and protein has consistently been found to be

present (Miller et al., 1995; Ciccarelli et al., 1997; Nakahara et al., 1997; Janssens end Lesage,

I 2001). While a majority of research has found no evidence of any other mGlu receptor subtype

mRNA or protein on cortical astrocytes, Nicoletti and colleagues recently found positive

immunoreactivity and mRNA expression of mGlu4 (Besong et al., 2002).
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1.5. mGlu RECEPTOR PHARMACOLOGY

Apart from Glu, initial agonists employed to study mGlu receptors in a number of

model systems included quisqualate and ibotenate (Figure 1.6; Palmer et al., 1989; Baird et al.,

1991) However these compounds are also agonists at iGlu receptors, hence, the discovery of

the conformationally restricted Glu analogue t-ACPD, which stimulated PI hydrolysis,

represented the first evidence for a selective mGlu receptor agonist {Schoepp and Hillman,

1990; Manzoni et al., 1990; Schoepp et al., 1991a) (chemical names of all drugs appear in

Abbreviations). Furthermore, the mGlu receptor agonist activity of t-ACPD was found to

reside predominantly in the l.S,3i?-isomer (lS,3/?-ACPD) (Irving et al., 1990; Schoepp et al.,

1991a; Schoepp et al., 1992a; Caitmell et al., 1993). Investigations into mGlu receptor function

employing l5,3/?-ACPD revealed that this isomer was non-selective (Cartmell et al., 1993;

Schoepp et al., 1992a), possessing similar agonist potency across all mGlu receptors except

mGlu7 (Flor et al., 1997). A number of selective agonists and antagonists now exist for group I

and II mGlu receptors, prompting diverse studies into the role of these receptors in

physiological and pathological conditions (discussed in detail below).

Activation of presynaptic protein kinase C (PKC) with phorbol esters enhances

glutamate release. However, it has been shown that the non-selective mGlu receptor agonist t-

ACPD mediates an enhancement of glutamate exocytosis via the DAG-PKC pathway that is

dependent on arachidonic acid, possibly through the synergistic activation of PKC (Birrell et

al., 1993; Vazquez et al., 1994; Vazquez et al., 1995; Blanc et al., 1995). Modulation of

glutamate release in this way has been shown to be important in long-term potentiation (LTP)

(Herrero et al., 1992) which is implicated in learning and memory.

Group I and II mGlu receptors have been shown to modulate cardiovascular effects

(Li et al., 1999; Jones et al., 1999), induce hepatic glucose production, and stimulate adrenal
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Chapter 1: General Introduction 32

and pancreatic hormone secretion (Lang and Ajmal, 1995). Activation of mGlu receptors has

also been linked to genomic responses. For example, r-ACPD has been shown to cause a

transient increase in immediate early genes (IEG) c-fos, c-jun, and zif-268 in primary neuronal

cultures (Condorelli et al., 1994).

1.5.1 Group I mGlu receptors

; 1.5.1.1 Agonists

L Early group I mGlu receptor studies employed lS,3i?-ACPD. However due to its non-

I selective activity, which is shared by its more recent constrained analogue ABH x D-I

| (Kozikowski et al., 1998), any interpretation from these early functional and pharmacological

I studies must be undertaken with caution. DHPG was the first agonist shown to be group I
j

L mGlu receptor selective, displaying no agonist or antagonist activity at native (Schoepp et al.,
f
j 1994) or recombinant rat and/or human group II and III mGlu receptors (Gereau and Conn,
i
I

j 1995; Wu et al., 1998). The agonist activity of DHPG resides in the 5-isomer (Baker et al.,

1995) and is only slightly more selective for mGlu5 over mGlu, (Ito et al., 1992; Brabet et al.,

1995). The agonist, CHPG, which is an analogue of DHPG has been found to be more

selective for mGlu5, but lacks the potency of DHPG. Group I mGlu receptor agonists

generally display the following rank order of potency: quisqualate > ABH x D-I > DHPG =

Glu > DHPMP > lS,3/?-ACPD > L-CCG-I > 3-HPG > CHPG > t-ADA

Group I mGlu receptors are known to be involved in the modulation of the release of

Glu, GABA, dopamine and substance P (see Table 1.7). However, an increase in the release of

5HT and acetylcholine (ACh), or a decrease in the release of purines and cholecystokinin has

been reported with the non-selective agonist lS,3i?-AQPD (reviewed by Cartmell and

Schoepp, 2000). In general, DHPG has been used to demonstrate that activation of group I
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Table 1.7 Effects of selective mGlu receptor agonists on neurotransmitter release.

Most of these effects were under stimulated or depolarising conditions (Abridged from

Cartmell and Schoepp, 2000).

Pharmacology Release Preparation Reference

. group I agonists TGIu

TGABA

rat cortical & hippocampal
synaptosomes

(Herreroetal., 1998)
(Rodriguez-Moreno et al., 1998)

rat NTS, striatal & hippocampal slices (Jones et al., 1998)
(Wang etal., 1996)
(Janaky et al., 1994)

t Dopamine microdialysis: striatum, NAc

i Substance P rat trigeminal nucleus slices

group III agonists I Glu

4GABA

1 Dopamine

T5HT

rat cortical synaptosomes

(Taber etal., 1995)
(Bruton et al., 1999)

(Cuesta etal., 1999)

i group II agonists I Glu

. IGABA

4- Dopamine

• T Dopamine

T5HT

4-ACh

4- Purines

t Taurines

- rat cortical & hippocampal
synaptosomes
microdialysis: striatum

cortical neurons
NTS or striatal slices

rat NAc

rat striatum

rat PAG

rat striatal slices

rat hippocampal slices

mouse hippocampal slices

(Allen etal., 1999)
(Battaglia et al., 1997)
(Dilorio etal., 1996)

(Schaffhauser et al., 1998)
(Jones etal., 1998)
(Hanania and Johnson, 1999)

(Hu etal., 1999)

(Bruton et al., 1999)

(Maione et al., 1998)

(Hanania and Johnson, 1999)

(Dilorio etal., 1996)

(Saransaari and Oja, 1999)

(Herreroetal., 1996)
(Eastetal., 1995)

cultured rat cortical & striatal neurons (Schaffhauser et al., 1998)
(Lafon-Cazt.! et al., 1999a)

microdialysis: rat NAc

rat PAG

i Substance P rat trigeminal nucleus slices

(Huetal., 1999)

(Maione et al., 1998)

(Cuesta etal., 1999)

Abbreviations: Ach, acetylcholine; 5HT, serotonin; NAc, nucleus accumbens; NTS, nucleus tractus solitarii;

PAG, periaqueductal gray.
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mGlu receptors increases Glu, GABA and dopamine release in cortical, striatal and

hippocampal regions, while inhibiting substance P release in the trigeminal nucleus.

i
In addition to modulating neurotransmitter release, accumulating evidence has

identified group I mGlu receptors as the predominant subtype that mediates mGlu receptor-

induced EPSPs in the Purkinje cells of the cerebellum, corticothalamic projections and in the

CAl of the hippocampus (McGuinness et al., 1991; Crepel et al., 1994; Jouvenceau et al., 1995;

Breakwell et al., 1996; Manahan-Vaughan and Reymann, 1996; Eaton and Salt, 1996; Batchelor

. et al., 1997; Anwyl, 1999). These observations give support to the role of group I mGlu

receptors in the induction of LTP (Palmer et al., 1997; Manahan-Vaughan and Reymann,

1997). The involvement of mGlu receptors in LTP is complex (see review: Bortolotto et al.,

1999). For example, in the above studies, DHPG-induced depression of the postsynaptic

L potential was described which led to the hypothesis that this latter response involved the

postsynaptic release of arachidonic acid which could act in a negative feed-back manner at the

presynaptic terminal. Subtype knock-out studies revealed that, despite their expression at CAl

synapses, both group I mGlu receptor subtypes are not regarded as essential for AMPA

^ receptor-mediated LTP but are involved to differing degrees in NMDA receptor-mediated

LTP (Jia et al., 1998; Lu et al., 1997). At one time a molecular switch was proposed for the

apparent duality of the LTP responses (Bortolotto et al., 1994), later evidence for this switch

i
implicated PKC and CaMKII activation following group I mGlu receptor stimulation by

^ DHPG (Bortolotto and Collingridge, 1998; Bortolotto and Collingridge, 2000). More recently,

intracellular proteins Shank and Homer have been hypothesised to be responsible for the

group I mGlu receptor involvement with AMPA and NMDA receptor-mediated LTP (Daw et

i
al., 2000; Cho et al., 2002).
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Finally, in cultured cortical astrocytes Bezzi et al. (1998) showed that DHPG and

lS,3/?-ACPD increased Glu release, which was potentiated by AMPA through the release of

prostaglandins.

1.5.1.2 Antagonists

: Group I mGlu receptor antagonists have been characterised as either competitive or

non-competitive. Some of the early competitive antagonists were found to either possess

agonist-dependent actions (e.g. L-AP3; Saugstad et al., 1995) or have partial group II mGlu

receptor agonist activity themselves (e.g. the phenylglycine MCPG; Hayashi et al., 1994;

Watkins and CoUingridge, 1994). AID A is a conformationally restriaed analogue of MCPG

which possesses greater seleaivity for group I mGlu receptors than its parent. AIDA and a

number of other similar analogues were found to fit a three-dimensional model of mGlu,, and

from such modelling studies it has been proposed that competitive group I mGlu receptor

antagonists stabilise the open form of the receptor thus preventing the conformational

movement required for closing of the extraceUular lobes during agonist binding (Constantino

and Pellicciari, 1996). Three more recently developed mGlu1/5 antagonists which modulate the

receptor rather than compete with Glu for its binding site are MPEP (mGlu5 specific; Pagano

et al., 2000), CPCCOEt and BAY36-7620 (Litschig et al., 1999; Hermans et al., 1998). The

latter non-competitive antagonist has been employed to elucidate the constitutive activity of

mGlu receptors and the individual roles of mGlu, and mGlu5, respectively (CarroU et al., 2001).

Key mGlu1/5 agonists and antagonists are presented in Figure 1.7.
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Agonists:

S-DHPG CHPG
Cl

OH

HO2C

CO2H

Antagonists:

AIDA

MPEP

OEt

H2C=< O

O

(-)-CPCCOEt

Figure 1.7 Chemical structures of group I mGlu receptor agonists and antagonists.
Et: Ethyl group. Me: Methyl group.
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1.5.2 Group II mGlu receptors

1.5.2.1 Agonists

A systematic evaluation of eight enantiomers of 3,4-methyleneglutamic acid led to the

discovery of L-CCG-I, a highly potent and selective group II mGlu receptor agonist (Hayashi

et al., 1992; Lombardi et al., 1993; Prezeau et al., 1994). Until more recently, L-CCG-I

derivatives (e.g. DCG-IV and as-MCG-I) represented the most selective family of compounds

for group II mGlu receptors. However the use of pharmacophore models has seen the

development of conformationally constrained bicyclic and heterobicydic ring compounds (e.g.

LY354740 and LY379268, respectively) with greater selectivity and potency (Schoepp et al.,

1997; Monn et al., 1997; Monn et al., 1999). At present, the following rank order of potency

generally exists for group II selective agonists (established from recombinant studies):

LY379268 = LY389795 > LY354740 = L-F2CCG-I > DCG-IV = L-CCG-I = t-MCG-I =

2/?,4/?-APDC = 5-4MeGlu > as-MCG-I > ABHx D-I > Glu = 25,45-4-MG = 1S,3#-ACPD

= 1S.3S-ACPD > L-CBG-I. The group II agonist NAAG (or Spaglumic acid), has a potency

similar to 1S,37?-ACPD, but is the most selective (5-fold) agonist for mGlu3 over mGlu2

(Wroblewska et al., 1997). Group II mGlu receptor agonists are presented in Figure 1.8.

Selective group II mGlu receptor agonists have been shown to modulate release of not

only Glu, GABA and dopamine, but also 5HT, ACh, purines and taurines (see Table 1.7). In

general group II mGlu receptors mediate the inhibition of Glu and GABA release from nerve

terminals in the cortex and striatum. In normal physiological conditions activation of

presynaptic inhibitory mGlu^ is understood to occur when an increase in Glu concentration is

present within the synaptic cleft. This mechanism contributes to a negative feedback pathway

for controlling glutamatergic synaptic neurotransmission (Scanziani et al., 1997).
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H
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H
CO2H

CH2OCH3
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L-CCG-I
DCG-IV
cis-MCPG-l
trans-MCPG

HO2C

H0oC

1S.3S-ACPD
'/—N

H 2 N CO2H

2R4R-APDC

H 2 N CO,H

NHAc

NAAG
HO2C X O 2 H

O CO2H

Figure 1.8 Chemical structures of group II mGlu receptor agonists.
Ac: Acetyl group.
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Group II mGlu receptor agonists have been shown to inhibit EPSPs in a number of

preparations (Macek et al., 1996; Flavin et al., 2000; Kilbride et al., 1998; Anwyl, 1999; Lea et

al., 2001). This activity was shown to be via inhibition of Glu release from presynaptic

L terminals and most likely as a result of inhibiting VOOC. Group II mGlu receptors are also

understood to play a role in the induction of long-term depression (LTD) of postsynaptic

potentials. For example, the activation of group II mGlu receptors was required in addition to

group I mGlu- and NMDA-receptor mediated LTD in the perirhinal cortex (Cho et al., 2000).

By comparison, group II mGlu receptor agonists are able to independently induce LTD in the

dentate gyms (Huang et al., 1999; Lea et al., 2001) and the visual cortex (Renger et al., 2002).

This inhibitory activity may reside with the mGlu2 subtype since LTD in the mossy fibres of

the hippocampus was impaired in those mice lacking mGlu2 (Yokoi et al., 1996). Together with

molecular biology studies and immunogold labelling demonstrating the close proximity of

group I mGlu receptors to group II mGlu receptors on the postsynaptic membrane in these

regions (Lujan et al., 1997), a theory has emerged which links the cAMP response induced by

group II mGlu receptors to the phosphorylation of mGlu5 via PKA (Cho et al., 2002).

Through this receptor interaction group II mGlu receptors have been hypothesised to induce

LTD and consequently, play an important role in synaptic plasticity.

Other experiments investigating neurotransmission have suggested that the mGlu^-

mediated presynaptic inhibitory mechanism may be shared with adenosine receptors (Di Iorio

et al., 1996), and that group II mGlu receptor agonists may augment adenosine receptor-

mediated responses (Ogata et al., 1994; Cartmell et al., 1997).
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1.5.2.2 Antagonists

The first compound to be identified as an antagonist at group II mGlu receptors was

MCPG. This compound, and its family of co-carboxyl group substituted analogues, were found

to have a weak antagonist activity at mGluj and mGlu4 (Thomsen et al., 1996; Kowal et al.,

1998). A group of L-CCG-I analogues represented a second line of antagonists with greater

group II mGlu receptor selectivity. One of these analogues, MCCG, was found to possess

antagonist activity at both human and rat mGlu2, and is without activity at human and rat

mGluj, mGlu4 and mGlu6 (Laurie et al., 1997; Knopfel et al., 1995). Partial agonist activity in

rat cortical slices has been noted with MCCG (Kemp et al., 1996) although the receptor

subtype responsible for this activity has not been identified. FGlu, is a glutamate analogue with

antagonist activity and selectivity for mGlu, 0ane et al., 1996). Non-competitive antagonists

for group II mGlu receptors have not yet been reported. More recently, pharmacological

characterisation using cloned human mGlu receptor subtypes has shown that LY341495 is the

most potent group II antagonist developed (Ornstein et al., 1998; Kingston et al., 1998).

Employing agonists and antagonists in human mGlu, expressing cells revealed the relative

order of displacement for specific binding of [3HLY341495 was LY341495 > LY354740 >

DCG-IV > L-CCG-I > 2R,4R-APDC = Glu > I5,3i?-ACPD > MCPG (Johnson et al., 1999).

Group II mGlu receptor antagonists are presented in Figure 1.9.

1.5.3 Group HI mGlu receptors

1.5.3.1 Agonists

The pharmacology of group III mGlu receptors is not as advanced as that of group I

or group II mGlu receptors, which is partially due to the diversity of group III mGlu

receptors. L-AP4 represents the most selective agonist of group III mGlu receptors, in
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HO2C

LY341495

H 2 N CO2H

EGlu

41

CO2H

CO2H

LY307452

Figure 1.9 Chemical structures of group II mGlu receptor antagonists.
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particular mGlu4 (Tanabe et al., 1993) and mGlu6 (Laurie et al., 1997), while the endogenous

group III mGlu receptor agonist, L-SOP, exhibits partial antagonist activity at group II mGlu

receptors (Pin et al., 1999). For a long time the agonist (/?S)-PPG was thought to be the most

potent and selective mGlu8 agonist (Flor et al., 1998), however recent work by Thomas et al.

(2001) shows that in transfected cell lines and rat spinal cord at least, the newly developed S-

3,4-DCPG is more potent and selective. While more information is being accumulated

regarding the activity of S-3.4-DCPG, R,S-PPG is regularly used as the standard mGlus

agonist. A general, rank order of potency can be assembled: S-3,4-DCPG > L-AP4 > i?,S-PPG

> L-SOP > L-CCG-I > L-Glu > 15,3/J-ACPD.

The ability of group III mGlu receptors to modulate neurotransmission, and inhibit

EPSPs, resembles that of the group II mGlu receptors, and probably derives from their

presynaptic localisation and signal transduction mechanisms which are also shared with group

II mGlu receptors (see Table 1.7; Macek et al., 1996; Anwyl, 1999). Presynaptic expression of

mGlu8 in the retina is thought to contribute to the negative feedback mechanism involved in

the fine adjustment of the light-regulated release of glutamate from photoreceptors (Koulen et

al., 1999). Similarly, mGlu6 is strictly expressed at the postsynaptic site of ON-bipolar cells in

both rod and cone systems, and mGlu6 gene targeting experiments, which disrupt O N

responses without changing OFF responses, severely impaired the visual responses of those

animals (Nakanishi et al., 1998).

1.5.3.2 Antagonists

Non-competitive antagonists for group III mGlu receptors have not yet been reported.

Present data regarding group III mGlu receptor competitive antagonists are conflicting, or

non-selective activity is reported for group II mGlu receptors. Most of the current antagonists
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were developed from modifications of mGiu receptor agonists. For example, it was noted that

adding a carboxy group to L-CCG-I (to become DCG-IV) changes its activity from not only a

group II mGlu receptor agonist but also to a group III mGlu receptor antagonist (Brabet et al.,

1998). Furthermore, characterisation of group III mGlu receptor antagonists has tended to

centre on the ability of the compound to inhibit L-AP4 depression of synaptic transmission in

the neonatal rat spinal cord (Pook et al., 1993; Kemp et al., 1994; Cao et al., 1997a,b; Thomas

et al., 2001). Two compounds that moderately inhibit this activity are the a-methyl analogues

of the agonists L-SOP and L-AP4, which are termed MSOP and MAP4, respectively 0ane et

al., 1994; Johansen and Robinson, 1995). A recently developed mGlu8 specific antagonist

UBPl 111 is a methyl derivative of the 3,4-DCPG compounds, but has yet to be widely tested

(Thomas et al., 2001). Key group III mGlu receptor agonists and antagonists are presented in

Figure 1.10.

1.6. GLUTAMATE IN INJURY AND EPILEPSY

1.6.1 Glutamate and Excitotoxicity

1.6.1.1 Historical Perspective

Although Glu plays important roles in normal physiology, excessive stimulation of Glu

receptors has been implicated in neuronal injury and death in numerous pathological

conditions such as stroke, epilepsy or neurotrauma, and neurodegenerative diseases including

Huntington's chorea, Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease

(Meldrum and Garthwaite, 1990; Lipton and Rosenberg, 1994; Leist and Nicotera, 1998).

Evidence to suggest the involvement of Glu in various acute and chronic neurological

dysfunctions has come from both in vivo and in vitro cytopathological evidence and from direct

evidence, whereby high concentrations of Glu have been recovered from damaged brain areas
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Agonists: L-AP4

H O 2 C \ / N H 2
H2N,?°2H

R,S-PPG
•PO(OH),

PO(OH).
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CO-Hl

CO2H
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PO(OH)2
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Figure 1.10 Chemical structures of group III mGlu receptor agonists and
antagonists. Me: Methyl group.
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(Faden et al., 1989). Excessive Glu exposure leading to neuronal injury has been termed

! excitotoxicity (Obey and Sharpe, 1969). Figure 1.11 maps some key pathways involved in our

current understanding of excitotoxicity.

I As circumventricular organs lie outside the blood brain barrier, they are vulnerable to

i dietary excitotoxins. Based on animal studies it is likely that infants with underdeveloped

blood-brain barriers are particularly vulnerable to the dietary ingestion of Glu. For example,

monosodium glutamate (MSG) is a common food additive, and animal studies have

demonstrated neurodegeneration after oral administration of MSG (Olney and Sharpe, 1969)

and convulsions after administration of many otlier EAAs (Johnston, 1973) that were more

severe in immature, than mature animals. The best studied incidence of Glu receptor-mediated

neurotoxicity after oral administration was in Canada in 1987, where patients experienced

confusion, seizures, amnesia, coma and some died, after the ingestion of mussels contaminated

with domoic acid (Bose et al., 1990; Teitelbaum et al., 1990). Pathological investigations

revealed neurodegeneration of the hippocampus and amygdala, but no damage in the spinal

cord or the brain stem.

Pioneering studies conducted by Olney and his colleagues demonstrated that Glu and

its analogues induced neurodegeneration in areas with poorly developed blood brain barriers in

immature rodents, with relatively no damage in adult counterparts unless high concentrations

of Glu were used (Lucas and Newhouse, 1957; Obey, 1971). Early observations classified

neurotoxicity mediated by Glu into to disrinct types: that b which local necrosis occurred,

commonly caused by Glu, NMDA and aspartate, and a second type which not only caused

local necrosis but also sustabed limbic seizures (includbg KA, QA, and AMP A) (Obey,

1983). From these early studies the selectivity of neuronal bjury was also established, whereby

non-neuronal cells were usually unaffected by Glu, unless extremely high concentrations were
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Figure 1.11 Key pathways involved in the positive feed-back loop of excitotoxicity.

VOCC: voltage operated calcium channels. Based upon Lipton and Rosenberg, 1994;

Leist and Nicotera, 1998.
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used (Olney, 1971). These studi.s zii~ noted that different populations of neurones varied in

I their vulnerability to excitotoxins, possibly due to different Ca2+ buffering mechanisms and
Glu receptor expression.

i

I Once Glu was identified as a neurotoxin, many studies soon followed implicating
I

j endogenous Glu in the acute neuronal damage of various disease states such as ischaemia arid
i

! epilepsy, and later the role of Glu in the slow, chronic neurodegenerative diseases.

Amyotrophic lateral sclerosis (ALS) is characterised by selective loss of the lower

j motorneurones of the spinal cord and the upper motorneurones in the cerebral cortex

! (Mitosumoto et al., 1998), and patients suffering ALS eventually die from paralysis. Evidence
I
: to implicate Glu 35 a contributing factor in ALS have come from increased levels of Glu in the
j plasma and cerebrospinal fluid of patients suffering ALS, and there is some evidence to
i

| suggest the involvement of impaired Glu uptake systems (Lin et al., 1998; Mitosumoto et al.,

j 1998).
1

I A recognised role for Glu in various neurodegenerative diseases, such as Alzheimer's
i

1 disease (AD), has become stronger in the past few years due to an increase in our
i
j understanding of Glu uptake systems. AD, a severe neurodegenerative disease, is characterised

| by severe memory loss and by the histological presence of plaques and neurofibrillary tangles
1

1 (e.g. reviews: Jellinger, 1998; Iqbal et al., 2000; Shastry, 2001). A recent hypothesis has been

; advanced in AD implicating the defective functioning of GluTs, leading to a failure to clear

excess Glu from the synaptic cleft (Masliah et al., 1996). Moreover, post-mortem analyses of

brains from patients suffering AD demonstrate a marked increase in the expression of mKNA

of the AMPA subunits Glul-3 throughout the brain (Garcia-Ladona et ?.l, 1994). Exposure of

human spinal neurones to Glu results in morphological changes resembling neurofibrillary

tangles (De Boni and McLachlan, 1985), and while in the presence of P-amyloid, a peptide
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associated with plaques, Glu receptor-mediated toxicity is exacerbated (Gray and Patel, 1995).

Based on observations with muscarinic receptors, Wurtman and colleagues undertook studies

on the effect of mGlu receptor activation on amyloid precursor protein (APP) processing.

They concluded that group I and II/III mGlu receptor agonists may enhance the conversion

of full-length APP to nonamyloidogenic APPs in AD (Lee et al., 1995; Lee et al., 1997; Lee

and Wurtman, 1997; Blanchard et al., 2002).

Huntington's chorea is a hereditary condition characterised by the selective

degeneration of the spiny neurones of the neostriatum, which can be modelled in animals by

iiitrastriatal injections of KA (Coyle et al., 1978). Cerebrospinal fluid of patients with

Huntington's chorea contains elevated levels of Glu, and there is a depletion of the NMDA

receptors in the striatum (Young et al., 1988). More recently, transgenic animal models of

Huntington's chorea have demonstrated a decrease in the expression of AMPA and KA

receptors, whereas no change in NMDA receptor expression is evident (Cha et al., 1998).

Transgenic animal models of Huntington's chorea have a reduced sensitivity to KA and

NMDA receptor-mediated toxicity (Hansson et al., 1999; Morton and Leavens, 2000) again

indicating differential Glu receptor function and expression. Corticostriatal and thalamostriatal

projections which innervate the GABAergic spiny neurones lost in Huntington's chorea,

express mGlu receptors. While some evidence suggests that group I mGlu and NMDA

receptor interactions contribute to selective striatal neuronal loss (Calabresi et al., 1999),

further work is needed before a more complete understanding is reached regarding the role of

mGlu receptors in Huntington's chorea.

Post-mortem tissue from patients with Parkinson's disease, a progressive

neurodegenerative disease characterised by rigidity, tremor and bradykinesia, demonstrate a

selective degeneration of neuromelanin-containing neurones, especially the nigral
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dopaminergic neurones (Kastner et al., 1993; Stoessl, 1999). While evidence to link

excitotoxicity to Parkinson's disease is limited, animals treated with l-methvl-4-

phenylpyridinium (MPP+), to selectively damage dopaminergic neurones, are proteaed by the

NMDA receptor antagonist MK-801 (Coyle and Puttfarken, 1993). Recently it has been shown

that non-NMDA receptor antagonists are also effective at protecting against MPP+-induced

lesions in this model of Parkinson's disease (Merino et al., 1999; Klockgether et al., 1991), also

implicating the non-NMDA receptors in this neurodegenerative disease. A number of studies

have employed antagonists of group I mGlu receptors to inhibit chemically-induced

parkinsonism demonstrating that such antagonists may prove useful in the management of

Parkinson's disease, either alone or in conjunction with dopamine strategies (Kaatz and Albin,

1995; Abbott et al., 1997; Spooren et al., 2000; Awad et al., 2000; Marino et al., 2001; Popoli et

al., 2001). Other approaches involve inhibiting excitatory input into the substantia nigra or the

subthalamic nucleus using group II mGlu receptor agonists (Bradley et al., 2000; Dawson et al.,

2000).

1.6.1.2 Apoptosis versus necrosis

Excitotoxicity generally involves two fonns of neuronal cell death, necrosis and

apoptosis. These two forms of cellular death appear to be dependent on the intensity of the

insult (Lipton and Nicotera, 1998; Cheung et al., 1998b; Moldrich et al., 2000) and

mitochondria! function (Ankarcrona et al., 1995). Necrosis is characterised by a rapid swelling

of the cell, caused by a rapid influx of Na+ ions which is followed by a passive, secondary

influx of water and Cl" ions. These osmotic changes result in the disruption of the internal and

external cellular membranes, causing lysis of the cellular contents and thereby releasing

cytoplasmic material, which is often toxic to neighbouring cells (Steller, 1995) and frequently
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results in an inflammatory response in vivo (Kroemer et al., 1995). Apoptosis is a much slower

process requiring energy and in some cases, protein synthesis (Wyllie et al., 1980; Dessi et al.,

1994). Apoptosis is a normal physiological event that is involved in the removal of damaged

cells in various tissues, ensuring a balance between cellular loss and proliferation throughout

development and aging, and is essential for the correa funaioning of most major organ

systems, including the CNS (Kroercer et al., 1995; Oppenheim, 1991). Morphological changes

induced by apoptosis include cell shrinkage, nuclear condensation, oligonucleosomal

fragmentation of nuclear DNA to approximately 50-300 base pairs and neurite degeneration

(Wyllie et al., 1984). The extrusion of intracellular organelles and nuclear fragments are rapidly

digested by macrophages or by neighbouring cells in van and involves self-triggered

phagocytosis, thereby avoiding inflammation (Savill et al., 1993; Kroemer et al., 1995; Philpott

et al., 1996) and further toxic effeas resulting from the leakage of potentially harmful

substances (Clarke, 1990; Steller, 1995).

Studies of in vitro model systems have demonstrated that removal of Ca2+ from culture

medium hinders apoptosis (Manev et al., 1989; Dessi et al., 1993), and the use of various Ca2+

channel antagonists can attenuate Glu receptor-mediated excitotoxicity involving apoptosis

(Malcolm et al., 1996). For example, VOCC blockers are not protective against

neurodegeneration that results from cellular death resembling necrosis (Weiss et al., 1990), but

are highly proteaive against Glu-mediated apoptosis (Weiss et al., 1990; Pizzi et al., 1991).

These findings have led to the hypothesis that an excessive influx of Ca2+ leads to elevation of

free cytosolic Ca2+, and that the resultant loss of Ca2+ homeostasis can subsequently influence

numerous cellular mechanisms such as kinases and proteases, cellular metabolism and gene

expression, ultimately resulting in apoptosis (Siesjo et al., 1989). An increase in free cytosolic

Ca2+ can also result in the generation of toxic free radicals through aaivation of various
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phospholipases and/or stimulate further release of Glu, increasing cellular damage by means of

a positive feedback loop (see Figure 1.11; Choi et al., 1987). When prolonged stimulation of

Glu receptors occurs, excessive amounts of Ca2+-activated nitric oxide and superoxide free

radicals are produced. Evidence for this mechanism has come from studies in which free

radical scavengers have attenuated Glu receptor-mediated cellular damage (Whittemore et al-.,

1994; Simonian et al., 1996) and free radicals have been generated after excessive iGlu receptor

stimulation (Savolainen et al., 1995; Coyle and Puttfarken, 1993).

Numerous genes have been identified as pro-apoptotic or "death" genes whereby their

activation leads to apoptosis, or as anti-apoptotic genes which protect cells from various

apoptotic stimuli (Dessi et al., 1994; Sastry and Rao, 2000). Genes thought to be involved in

apoptosis were initially identified through studies in the nematode Ca&ioibakditis elevens, where

homologues of many mammalian genes have been identified (Bargmann and Kaplan, 1998).

Some examples of apoptotic genes include c-mp, caspases and BAX, whereas some anti-

apoptotic genes include Bcl-2 and p35 (Vaux et al,, 1988; Steller, 1995; Goldberg et al., 1997;

Roth and D'Sa, 2001). A summary of the key morphological and biochemical changes involved

in apoptosis and necrosis is presented in Table 1.8.

In a classical series of studies employing neuronal cultures Choi et al. (1987 & 1988)

drew attention to the neurotoxic and pharmacological profile of Glu suggesting that Glu-

induced cell death was occurring by necrosis. Later studies demonstrated lower concentrations

of Glu could indeed also result in apoptosis (Ankarcrona et al., 1995; Portera-Cailliau et al.,

1997; Nicotera et al., 1997; Cheung et al., 1998b). Necrosis can be triggered by both NMDA

(Qin et al., 1996) and non-NMDA receptor activation (Frandsen et al., 1989; Larm et al., 1997;

Giardina et al., 1998; John et al., 1999). Glu-induced toxicity is only partially attenuated by the

selective NMDA receptor antagonist MK-801, with larger attenuation achieved by the co-
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Table 1.8: Endpoints of neuronal death

Morphology

Function

Pharmacology

Cell body

Neurophil

DNA

Mitochondria

Cell Membrane

Membrane

Enzymes

Mitochondria

Apoptosis Necrosis

Shrinkage

Fragmentation

Discrete clumping

Cleavage into 200bp fragments

Well preserved

Blebbing

Delayed permeability

Preserved

Preserved

Protection by macromolecular
synthesis inhibitors

Swelling

Varicosities

Diffuse shrinkage

Generalised cleavage

Swelling

Large blebbing
imminent of lysis

Early permeability

Lost early

Lost

Protection by
macromolecular
synthesis inhibitors

Adapted from Goldberg et al., 1997
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addition of the non-NMDA receptor antagonist CNQX (Koh and Choi, 1991; Cheung et al.,

1998b). While NMDA receptor agonists are understood to produce apoptotic cell death in

primary neuronal cultures after short exposure times (5-30min) (Qin et al., 1996), a longer

exposure is required for non-NMDA receptor agonists (12-48h) (Larm et al., 1997; John et al.,

1999; Moldrich et al., 2000). Overstimulation of the KA receptor can result in apoptosis as

demonstrated by studies conducted in vitro (Cheung et al., 1998a; Pollard et al., 1994; Moldrich

et al., 2000) andinviw (Le Gal La Salle, 1988; Gillardon et al., 1995), as can overstimulation of

the AMPA receptor (Larm et al., 1997; John et al., 1999).

1.6.1.3 In vivo versus in vitro models ofexcitotoxicity

In vivo models of toxicity allow invaluable insights into the interaction of different cell

types, such as the phagocytosis of apoptotic cells by macrophages (Fadok, 1999). However,

identification of apoptotic cell bodies can be difficult invwo due to the similarity in appearance

of autophagotic vacuoles (Kerr, 1995) and the rapid clearance of dying cells by the immune

system (Fadok, 1999). Due to the inability of many compounds to penetrate the blood-brain

barrier, their direct application by injection or infusion can cause physical damage to the tissue

resulting in necrotic cell death. In addition, the brain contains a high proportion of glial cells to

neurones (10:1; Waxman, 1996), which serve as a protective system for the neurones, by

secreting a varie'y of growth factors for example, and in so doing cloud the true extent of

apoptosis induced. {

Early in vwo studies used extremely high systemic doses of Glu to produce

excitotoxicity in mature animals (total of 8 nmol/min over a period of one week) (McBean and

Roberts, 1984). However, the problems inherent in such studies were compounded due to the

presence of efficient GluT uptake systems (Vandenberg, 1998). Thus NMDA or KA were
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routinely employed since neither of these compounds are readily taken up by GluTs, and by

virtue of this are more potent neurotoxins in vivo than Glu itself Qohnston et al., 1979). In

contrast, the full extent of excitotoxicity mediated by Glu and other agonists is evident using in

ixtro model systems (Choi et al., 1987). These systems are particularly favourable since they

allow the researchers to control the milieu whereby GluTs can be readily blocked for example,

allowing minute quantities of agonist to produce an insult (Frandsen and Schousboe, 1990). In

ixtro studies revealed that Glu was much more potent as a neurotoxin than what was initially

understood from in TWO studies (Choi et al., 1987). Not only was the concentration of Glu

required to cause cell death some 1000-fold less than that required to induce injury in the adult

brain in van (Frandsen and Schousboe, 1990), the actual mode of cell death was more readily

examinable (Ankarcrona et al., 1995). In addition, excitotoxicity was for the first time shown to

be mediated by two forms of cell death, namely an. initial necrotic cell death followed by a

slower phase of cell death subsequently shown to be apoptosis (Ankarcrona et al., 1995;

Portera-Cailliau et al., 1997; Cheung et al., 1998b). The translation of these discoveries invcuo

then impacted on the understanding of trauma, stroke and epilepsy-induced toxicity, and

subsequently, the approach used to develop treatments for these disorders. With current

culture technology, various specific cell types can be isolated and readily examined, such as

hippocampal cells, cerebellar granule and Purkinje cells, neocortical cells, glial cells and

mesencephalic neurones. Alternatively, organotypic slice cultures of the hippocampus,

striatum, and neocortices are popular models used to show regional toxicity and

neuroprotection in a relatively intact system with conserved synaptic projections (Gahwiler et

al., 1997). Therefore, while in vivo studies are essential for the full understanding of

mechanisms in a physiological or pathological environment, in vitro studies have allowed the
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molecular examination of cellular death at the cellular level in a controlled milieu with less

confounding influences than are found in studies conducted in the intact CNS.

1.6.1.4 mGlu receptors and excitotoxicity

In the early 1990s, reports appeared documenting the protective and toxic effects of

the early, non-selective mGlu receptor ligand, ACPD (McDonald and Schoepp, 1992;

Siliprandi et al., 1992; Thomsen et al., 1993). Amongst these early reports, mGlu receptors

were thought to be linked to NMDA receptor function; and, the role of IP3 and PKC in

contributing to increased intracellular Ca2+ and excitotoxicity was proposed (Favaron et al.,

1990).

Agonists of group I mGlu receptors have been shown to act differentially during

excitotoxicity depending on the experimental model or brain region under investigation. For

example, activation of group I mGlu receptors has been shown to prevent Glu- anJ NMDA-

induced toxicity in cultured cerebellar cells and hippocampal slices (Montoliu et al., 1997; Pizzi

et al., 1993; Pizzi et al., 1996). In particular, it was discovered that the NMDA receptor

subunit NR2C was crucial for group I mGlu receptor-mediated attenuation of Glu-induced

excitotoxicity (Pizzi et al., 1999). Group I mGlu receptor activation of PKC induces

phosphorylation of NMDA receptors containing NR2C subunits, which reduces the abiKty of

glycine to enhance potentially toxic NMDA receptor-mediated responses. Group I mGlu

receptor interactions with NMDA receptors may also occur via the scaffolding protein Homer,

as discussed earlier. A second variable in the response of group I mGlu receptors is the

presence of glia; for example, DHPG amplifies Glu-induced toxicity of cerebellar granule cells

in the presence of glia (Nicoletti et al., 1999). Hence, it has been hypothesised that group I

mGlu receptor activation causes the release of a neurotoxic factor from glia. In contrast, group
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I mGlu receptor antagonists are generally thought to be neuroproteaive in the presence of

glia. For example, AIDA attenuates NMDA-induced excitotoxicity in some models (Cozzi et

al., 1999), while MPEP appears to protect against p-amyloid peptide(25.3ortoxicity in cultured

cortical cells (Flor et al., 1999). Group I mGlu receptors have been shown to modulate invcvo

and in vitro responses to post-traumatic neuronal injury (Mukhin et al., 1996) which was

thought to involve the mGlu, subtype, particularly since specific mGlu, agonists exacerbate,

and mGlu, antagonists reduce, these injuries (Allen et al., 2001; Faden et al., 2001). However,

the mGlu5 antagonist MPEP is also able to prevent toxicity during invitro and inixuo trauma

models (O'Leary et al., 2000; Bao et al., 2001; Movsesyan et al., 2001).

Agonists of group II mGlu receptors are thought to play a neuroproteaive role during

insult to cell cultures. Group II mGlu receptor agonists, L-CGG-I and the non-seleaive t-

ACPD, proteaed against NMD A- and kainate-induced excitotoxicity, but also stimulated the

produttion of inositol phosphates, suggesting this neuroprotection may result from aaivation

of group I mGlu receptors (Bruno et al., 1994). DCG-IV however did not stimulate significant

inositol phosphate production, but was neuroproteaive, although the least potent of the three

agonists tested. Furthermore, DCG-IV has been found to be neuroproteaive against NMDA-

induced toxicity in mixed cortical cultures (Kwak et al., 1996; Bruno et al., 1996). Part of this

neuroproteaive effea is thought to be due to the inhibition of presynaptic Ca2+ channels

(Chavis et al., 1994) and inhibition of glutamate release (Ishida et al., 1993a,b). For example,

decreasing intracellular cAMP levels via group II mGlu receptors could, in principle, decrease

the 'open time' of high-threshold VOCCs and increase specific K+ currents (e.g. KAHP), which

is responsible for after-hyperpolarisation (Bruno et al., 1995a; Cochilla and Alford, 1998). This

aaion would decrease both neuronal excitability and postsynaptic Ca2+ influx, subsequently

rendering the neurones less vulnerable to excitotoxic insult. A substantial contribution of this
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neuroprotection appears to come from neurone-glia signalling (Bruno et al., 1997; Bruno et al.,

1998; discussed in Chapter 2]. In contrast, LY354740 was not neuroprotective in NMDA or

oxygen-glucose deprivation insults in vitro or invwo, nor was it found to be neuroprotective in a

rat model of ischaemia (Behrens et al., 1999). When tested at 10 j/M, LY354740 was

neuroprotective against NMDA insult, however Behrens et al. (1999) suggest that at this

concentration such activity is probably due to non-selective group I mGlu receptor activation.

A similar hypothesis exists for the group II agonist 4C3HPG, whereby the ability of this

agonist to protett against NMDA insult was not reduced by a group II or group III mGlu

receptor antagonist (Behrens et al., 1999). Clearly, more work is needed to delineate the roles

of group II mGlu receptors in neuronal injury.

The group III mGlu receptor agonist, L-AP4, attenuated NMDA receptor-induced

excitotoxicity in murine cerebellar granule cells, possibly by reversal of the glutamate uptake

system (Lafon-Cazal ct al., 1999). (+)-PPG is the active enantiomer of i?,S-PPG, and has

recently been shown to protect against NMDA-induced excitotoxicity in vitro, and striatal

lesions and focal ischaemia rnvwo (Flor et al., 1999a,b; Henrich-Noack et al., 1999). This inikro

neuroprotection was lost in cultures derived from mGlu4-knockout mice, which suggests that

the neuroprotective activity of (+)-PPG may be mediated by this receptor. Given the recent

finding that astrocyf.es in culture express mGlu4 (Besong et al., 2002), it is possible to speculate

that mGlu4-mediated neuroprotection may occur in a similar manner to that mediated by

mGhij. Finally, an array of group III mGlu receptor agonists have been shown to induce

neuroprotection in in vitro models of trauma (Faden et al., 1997). ^
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1.6.2 Ischaemic Stroke

Ischaemic stroke results from a transient or permanent reduction in cerebral blood

flow that is restricted to the area surrounding a main cerebral artery. The reduction in blood

flow is often caused by an occlusion which can be either an embolus or a local thrombosis.

The brain has a relatively high consumption of oxygen and glucose, and depends almost

entirely on local oxidative phosphorylation for energy production (Dirnagl et al., 1999).

Therefore, a reduction in the supply of oxygen and glucose impairs the ability of the neurones

to maintain ionic gradients, consequently, compromising the membrane potential and inducing

neuronal and glial depolarisation. This depolarisation involves an imbalance of Ca2+

homeostasis which leads to Glu release and subsequent excitotoxicity (see Figure 1.12) (Choi,

1995). In studies of focal and global ischaemia, high concentrations of extracellular Glu were

recovered from damaged brain regions (Faden et al., 1989), which were within the same

concentration range as that found to be toxic rnvitm (Choi et al., 1987). The most persuasive

evidence to implicate Glu in ischaemic damage has come from studies employing Glu receptor

! antagonists, particularly the NMDA receptor antagonist MK-801, where there is an attenuation

i
I in post-ischaemic neuronal damage (Bond et al., 1999; Ikonomidou and Turski, 1995).

| Neuronal necrosis was originally thought to be the primary cause of neurological

deficit following induction of ischaemia in animal models (Degirolami et al., 1984).

J Accordingly, many early treatment strategies for the prevention of ischaemic damage aimed at
i

I countering the ion-influx cascades associated with necrosis. These strategies included the use

I of N-, P-, or L-type Ca2+ channel blockers, Na+ channel blockers, NMDA or AMPA receptor

j antagonists, and the reduction of reactive oxygen species or iron chelators (see Choi, 1995).

| Further studies demonstrated that neuronal loss associated with ischaemia involves a

I predominantly necrotic core, centred around the site of cerebral blood flow occlusion, and an
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Figure 1.12 Cellular pathways involved in ischaemia. Based upon DirnagI et al.,
1999.
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outer apoptotic penumbra (where some perfusion is preserved) (Choi, 1995; Dirnagl et al.,

1999). This apoptotic penumbra is thought to involve mitochondrial damage, DNA damage

and/or selective gene expression and protein synthesis (see Dirnagl et al., 1999). Consequently,

strategies for the treatment of ischaemia have broadened to include numerous targets including

cytosolic enzymes, macromolecules, mitochondrial enzymes, protein synthesis, gene

transcription, and other associated biochemical and morphological changes such as gliosis and

inflammation. Since the use of iGlu receptor antagonists to prevent ischaemic damage at the

clinical level has been limited, selective mGlu receptor agonists and antagonists have attracted

considerable attention for their ability to indirectly modulate Glu neurotransmission and Ca2+

homeostasis (e.g. Bond et al., 1998; PeUe&rini-Giampietro et al., 1999; Sabelhaus et al., 2000).

1.6.2.1 mGlu receptors and stroke

In general, oxygen-glucose deprivation for 60 min in xibv- correlates with approximately

80% of the toxicity induced by 1 mM Giu over 24 h and is inhibited by NMD A, AMPA/KA

(Small and Buchan, 1997; Gill and Lodge, 1997) and group I mGlu receptor antagonists

(Maginn et al., 1995; Pellegrini-Giampietro et al., 1999). In the latter study, mGlu1/5 agonists

were not toxic when added alone to hippocampal cultures, but did exacerbate toxicity induced

by oxygen-glucose deprivation, in agreement with other studies showing mGlu1/5-mediated

potentiation of NMDA toxicity in cortical wedges (S^hman and Neuman, 1996), cultured

neocortical cells (Bruno et al., 1995b), hippocampal (H^ohn et al., 1996) and striatal slices

(Pisani et al., 1997), and spinal cord ventral roots (Ugolini et al., 1997). Group II mGlu

receptor agonists have been investigated in rat and gerbil models of focal and global ischaemia

for their ability to reduce neurcna! loss (Bond et al., 1998; Lam et al., 1998; Bond et al., 1999).

As a result of these studies k appears that mGlu2/3 agonists may induce neuroprotection by a
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combination of actions, i.e. via presynaptic mGlu2 receptors to inhibit glutamate release and

possibly via glial mGlu3 receptors to induce trophic factor release. However, this putative dual

action does not appear to prevent acute neuronal loss, as occurs in the case of focal ischaemia.

The group III mGlu receptor agonist i?,S-PPG did not prevent neuronal loss in global cerebral

ischaemia of the gerbil or rat, or focal cerebral ischaemia in the mouse (Sabelhaus et al., 2000),

but significantly restored electrophysiological responses in hippocampal cultures after

hypoxic/hypoglycaemic insult (Henrich-Noack et al., 2000).

Following 24 h of reperfusion in a gerbil model of global ischaemia mGlu2 and mGlu4

mRNA levels were significantly increased, while mGlu5 mRNA expression levels were

depressed (Rosdahl et al., 1994). Considering the neuronal localisation of the receptors, this

study and those above suggested that the responses of infara tissue and treatment with mGlu

receptor ligands act to maintain the neuronal membrane potential below the threshold required

for Glu release.

1.6.3 Epilepsy

The International League Against Epilepsy have categorised over 40 distinct epileptic

conditions based upon charaaeristic symptoms and signs, seizure types, cause, age of onset

and electroencephalogram (EEG) patterns (Table 1.9).

Generalised seizures encompass two of the most common forms of epileptic disorder:

abseice (petit mal) and tonic-dork (grand mal) seizures. While there is enormous ambiguity

surrounding the clinical definition and diagnosis of absence epilepsy they are primarily non-

convulsive generalised seizures. Generally, absence seizures are characterised according to 2-4

Hz spike and wave discharges recorded on an EEG and can involve one or a number of

associated components (Bladin, 1985). Absence seizures are predominant in children rather



Chapter 1: General Introduction 62

Table 1.9 Epilepsy classification.
Compiled from Waxman, 1996; Bladin, 1985

Generalised

Partial
(focal, local)

Primary

Secondary

Simple
(Jacksonian)

Complex

Absence
(petit mat)

Tonic-Clonic
(grand-mal)

Myoclonic

Atonic

Absence

Childhood Absence Epilepsy
Juvenile Absence Epilepsy
Janz Myoclonic Epilepsy

Juvenile Myoclonic epilepsy

Lennox-Gastaut Syndrome (atypical absence)

Simple Partial evolving to secondary tonic-clonic
Complex Partial evolving to secondary tonic-clonic

Motor

Somatosensory

Special sensory

Autonomic

Psychic

Frontal lobe epilepsy
Benign Partial epilepsy

Parietal lobe epilepsy

Occipital or temporal lobe epilepsy

Temporal or Frontal lope epilepsy

Temporal lope epilepsy

Simple Partial followed by
impairment of consciousness and
automatisms

Temporal or Frontal lope
epilepsy

Generalised/Partial (Intermediate Petit-Mai) >
Epilepsies associated with dementia or mental retardation
Unclassified
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than in adults, and are associated with emotional or biochemical precipitating factors (such as

awakening or renal dysfunction; Berkovic, 1985). Brief lapses of consciousness during absence

seizures can not only be detrimental to a child's learning potential and psyche, but can be life

threatening. Tonic-clonic seizures are the most recognised seizure and involve repeated severe

and synchronous convulsions (clonus) and extensions (tonus). Tonic-clonic seizures are often

triggered by a visual stimulus (such as stroboscopic light) and can involve a preceding aura

particular to the patient.

Partial seizures involve a focal group of neurones from which the seizure initiates

(Waxman, 1996). If consciousness is not impaired during a partial seizure, it is considered a

simple partial seizure; a complex partial seizure does involve impairment of consciousness. Simple

partial seizures, involving a peripheral motor component, can be initiated by lesions from

tumors of the motor cortex diat spread to recruit regions of the homunculus cortex. Behaviour

initiating from the temporal lobe, including facial automatisms, is associated with complex

partial seizures and may involve tonic-clonic components.

Present clinically efficacious anti-epileptic drugs (AEDs) act via inducing prolonged

inactivation of the Na+ channel (e.g. phenytoin, carbamazepine, lamotrigine or valproate),

blocking Ca2+ channel currents (e.g. ethosuximide) or by enhancing inhibitory GABAergic

neurotransmission (e.g. diazepam, vigabatrin or tiagabine) (Meldrum and Chapman, 1999).

Some AEDs act via a number of different mechanisms, which may also include antagonism of

AMPA receptors (e.g. felbamate, phenobarbitone or topiramate). Most often, therapeutic

regimes for epileptic patients will involve a change of first-line AEDs and/or add-on (adjunct)

AEDs. Most AEDs are associated with adverse effects, some are mild such as sedation,

dizziness and weight gain (e.g. topiramate, tiagabine and vigabatrin). Other adverse effects can

be life threatening such as rashes leading to Stevens-Johnson syndrome (e.g. lamotrigine) or
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aplastic anemia (e.g. felbamate) (Bougeois, 1998). Some epileptic patients are unresponsive to

AED treatment. For this reason, research continues into safe and more effective AEDs.

1.6.3.1 mGlu Receptors and epilepsy

Excessive glutamatergic neurotransmission is understood to be one of the primary

metabolic and pathological mechanisms behind the aetiology of numerous types of epilepsy

(Chapman et al., 1996). A number of early studies showed that Glu, MSG and KA were

capable of inducing epilepsy in animals that correlated with human symptoms Qohnston, 1973;

Ben-Ari, 1985; Ben-Ari, 1981; Goyle et al., 1981; Meldrum et al., 1973). Since then, a number

of funaional changes in EAA neurotransmission have been reported in seizure-susceptible

animals including: increased EAA-induced Ca2+ influx, altered EAA binding, enhanced Glu

and Asp release, and modulation of Glu transporter expression and function (Meldrum et al.,

1999).

Metabotropic Glu receptor ligands are relatively novel compared to benzodiazepines

and Na+ channel inhibitors for example, consequently, the potential of mGlu ligands to

attenuate epileptic seizures has not been full investigated, and at present there exists no mGlu

receptor ligand in clinical use for the amelioration of epileptic seizures. Interest in iGlu

receptor antagonists alone as potential anti-epileptic drugs (AEDs) increased with the

discovery of the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist

GYKI 52466. Both these compounds possessed therapeutic potential in animal models of

epilepsy (Chapman et al., 1991; Meldrum et al., 1992), however they failed early clinical toxicity

trials and iGlu receptors have since lost popular favour as therapeutic targets for AEDs.

However, iGlu receptors continue to be investigated to further understand the role of Glu in

the aetiology of epilepsy. Reports that the "ACPD family" of mGlu receptor ligands could
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inhibit glutamatergic neurotransmission in some brain regions initiated new interest in this

target as a means of attenuating seizures. Especially since group II and III mGlu receptors are

located presynaptically on glutamatergic nerve terminals and from previous experiments inhibit

EPSPs.

Intra-amygdaloid injections of ACPD compounds inhibited the electrical kindling of

the amygdala in rats and consequently inhibited the resulting lower seizure threshold-mediated

clonic seizures (Attwell et al., 1995). Moreover, ACPD compounds decreased epileptiform

activity in rat neocortical slices in xkro (Burke and Hablitz, 1994). However, t-ACPD and

lS,3/?-ACPD in particular, continued to produce opposite effects in a variety of epileptic

models (Schoepp et al., 1991a; Klitgaard and Laudrup, 1993; Mayat et al., 1994) reflecting the

physiological duality noticed with these compounds in isolated cell culture and slice

experiments. Thus clearly, more selective compounds would be required to identify the role

which mGlu receptors played in epilepsy, especially as excellent animal models of epilepsy exist

(Chapman and Meldrum, 1987).

Advances made with respect to the pharmacological distinction of mGlu receptors

revealed that agonists of group I mGlu receptors could induce seizures (Tizzano et al., 1995),

while antagonists could prevent seizures (Ghauri et al., 1996; Chapman et al., 1999; Chapman

et al., 2000). The induction of seizures by group I mGlu receptors may involve synaptogenesis

and/or protein synthesis (Merlin et al., 1998). In contrast, group II and III mGlu receptor

agonists were thought to prevent seizures. A summary of the experimental anticonvulsant and

proconvulsant profile of mGlu receptor ligands to date is found in Tables 1.10, 1.11 and 1.12.

While early, selective mGlu receptor ligands consistently proved efficacious in

preventing seizures in animal models of epilepsy, few were potent when administered

systemically. In fact, only the mGlu5 antagonist MPEP had proved successful in inhibiting



Chapter I: General Introduction
66

Table 1.10. Anticonvulsant and proconvulsant activity of group I mGlu receptor
ligands.

LIGANDS ANTICONVULSANT ACTIVITY PROCONVULSANT ACTIVITY

Agonists
DHPG

Antagonists
S-4CPG

MCPGa

AIDA

LY367385

SIB 1893

MPEP

• Sound-induced seizures in mice2

• DMCM and PTZ chemoconvulsant seizures in
mice2

• (no effect: electro-shock-induced seizures in
mice)2

• (no effect: sound-induced, PTZ-, DMCM-,
electro-shock-induced seizures in mice)2

• Sound-induced seizures in mice1

• SWD of absence seizures in Ih/lh mice1

• Sound-induced seizures in GEP rats1

• Sound-induced seizures in mice1

• SWD of absence seizures in Ih/lh mice1

• Sound-induced seizures in GEP rats1

• Sound-induced seizures in mice (i.p.)3

• CHPG or DHPG chemoconvulsant seizures in
mice3

• Sound-induced seizures in mice (i.p.)3

• CHPG or DHPG chemoconvulsant seizures in
mice3

• SWD of absence seizures in Ih/lh mice1

hyperexcitability/status epilepticus in
rats5

limbic seizures in mice4

teeth chattering & head bobbing in
GEP rats1

Anticonvulsant or proconvulsant activity was produced by intracerebroventricular or intracollicular
injection unless otherwise indicated.
Abbreviations: DMCM, methyl-6,7-dimethoxy-4-ethyl-p-carboline-2-carboxylate; GEP, genetically
epilepsy prone; i.p., intraperitoneally; Ih/lh, lethargic mice; PTZ, pentylenetetrazol; SWD, spike and
wave discharge. -\
a also 1T1GIU2/3 antagonist
1Chapman et al., 1999 2Dalby and Thomsen, 1996 3Chapman etal., 2000 Tizzano etal., 1995
5Camonetal., 1998



Chapter 1: General Introduction 67

Table 1.11. Anticonvulsant and proconvulsant activity of group II mGlu receptor
ligands.

LIGANDS ANTICONVULSANT ACTIVITY PROCONVULSANT ACTIVITY

Agonists
L-CCG-i

DCG-IV

1S,3R-ACPDb

1S.3S-ACPD

(S)-4C3HPGa

2R.4R-APDC

LY345470

LY379268

LY389795

Antagonists
EGLU

• Sound-induced seizures in mice1'5

• DHPG chemoconvulsant seizures12

• (no effect: PTZ-, DMCM-, electro- shock-
induced seizures in mice)12

• KA chemocor;vulsant seizures in rats6

• GST in Am-kindled rats7

• Sound-induced seizures in mice15

• Seizure score in Am-kindled rats2

• DMCM & NMDA chemoconvulsant seizures in
mice5

• GST in Am-kindled rats8

• Epileptogenesis in Am-kindled rats8

• Sound-induced seizures in GEP rats10

DMCM & PTZ chemoconvuisant seizures in
mice5

Electro-shock in mice5

Sound-induced seizures in GEP rats 9

DHPG chemoconvulsant seizures in mice
GST in Am-kindled rats10

PTZ, PIC & ACPD chemoconvulsant seizures
in mice (i.p.)3'11

(no effect: NMDA chsmoconvulsant seizures
in mice)3

ACPD chemoconvulsant seizures in mice
(i.p.)4

ACPD chemoconvulsant seizures in mice
(i.p)4

limbic seizures in mice12

mild convulsions in rats2

limbic seizures in mice12

hyperexcitability/status epilepticus in
rats4

mild convulsions in mice1

Decreased GST, Am-kindled rats10

e clonic seizures in mice1

Anticonvulsant or proconvulsant activity was produced by intracerebroventricuiar, intracoliicuiar or
intra-amygdaloid injection unless otherwise indicated.
Abbreviations: ACPD, (-/S,3R)-ACPD; Am, amygdala; DMCM, methyl-6,7-dimethoxy-4-ethyl-p-
carboline-2-carboxylate; GST, general seizure threshold; i.p., intraperitoneally; Ih/lh, lethargic mice;
PIC, picrotoxin; PTZ, pentylenetetrazol.
a also mGlu-,/5 antagonistb partial mGlu, agonist
1Meldrum et al 1996 2Suzuki et al., 1996 3Klodzinska et al., 2000 4Monn et al 1999 Dalby and
Thomsen, 1996 6Miyamoto et al., 1997 7Attwell et al., 1998 8Attwell et al., 1995 Tang et al., 1997
10Attwelletal., 1998 11Monn etal., 1997 12Tizzanoetal., 1995.
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Table 1.12.
ligands.

Anticonvulsant and proconvulsant activity of group III mGlu receptor

LIGANDS ANTICONVULSANT ACTIVITY PROCONVULSANT ACTIVITY

Agonists
R.S-PPG

L-SOP

L-AP4

• Sound-induced seizures in mice1

• Sound-induced seizures in GEP rats1

• Electroshock in mice5

• (no effect: sound-induced seizures in mice)3 • clonic-tonic seizures in mice3

• Seizure score in Am-kindled rats2

• Seziure score, SWD and GST in Am-kindled
rats"

• (no effect: sound-induced seizures in mice)3

clonic-tonic seizures in mice

Antagonists

MCPA

MAP4

MPPG

Sound-induced seizures in mice
NMDA & DHPG chemoconvulsant seizures in

mice3

(no effect: sound-induced seizures in mice)3

(no effect: sound-induced seizures in mice)3

(no effect at high doses in mice)3

clonic-tonic seizures in mice

clonic-tonic seizures in mice

Anticonvulsant or proconvulsant activity was produced by intracerebroventricuiar, intracollicular or
intra-amygdaloid injection.
Abbreviations: ACPD, (7S,3R)-ACPD; Am, amygdala; DMCM, methyl-6,7-dimethoxy-4-ethyl-(3-
carboline-2-carboxylate; GST, general seizure threshold; i.p., intraperitoneally; Ih/lh, lethargic mice;
PIC, picrotoxin; PTZ, pentylenetetrazol.
1Chapman et al., 1999 2Suzuki et al., 1996 3Ghauri et al., 1996 4Abdu!-Ghani et al., 1997 5Gasparini
etal., 1999
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sound-induced seizures in mice when given intraperitoneally (Chapman et al., 2000). The lack

of potent, systemically active mGlu receptor ligands has meant that their potential as AEDs is

relatively unexploited.

Group I mGlu receptor antagonists have been found to reduce sound-induced clonic

seizures in inice and seizures in genetically epilepsy prone rats (Chapman et al., 1999). This

work supports earlier studies showing the anticonvulsant activity of the mGluj

antagonist/mGlu, agonist CHPG (Thomsen et al., 1994; Dalby and Thomsen, 1996) and the

convulsant activity of the group I mGlu receptor agonist DHPG (Schoepp et al., 1994). Side

effects resulting from benzodiazepine withdrawal in rodents include spontaneous seizures,

increased muscle tone and a decrease in seizure threshold for convulsants (Suzuki et al., 1992;

Mortensen et al., 1995). Recently it was discovered that the group I mGlu receptor antagonist

(S)-4CPG suppressed the decrease in seizure threshold for the convulsant pentylenetetrazole

following diazepam withdrawal in mice (Suzuki et al., 1999). Consequently, it appears that

mGluj not only contributes to the epileptic activity of tonic-clonic and absence seizures, but

may also play a role in anxiety.

Previous approaches in the treatment of epilepsy have involved modulation of

GABAergic neurotransmission or blocking of glutamatergic neurotransmission. The discovery

that group II mGlu receptors act presynaptically to modulate glutamatergic and GABAergic

transmission, and the development of selective agonists, has led to the investigation of the role

of these receptors in rodent models of epilepsy. The mGlu! antagonist/mGlu2 agonist CHPG

was shown to reduce seizures induced by pentylenetetrazol, benzodiazepine ligands, and sound

and electrical stimulation (Dalby and Thomsen, 1996). In the latter two models only L-CCG-I

and lS,3/?-ACPD were found to be effective. DCG-IV was found to be effective in reducing

electrical stimulated seizures in fully kindled rats (Attwell et al., 1998a) and reducing long-term
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(but not short-term) effects of kainate-induced seizures (Miyamoto et al., 1997). Both of these

studies failed to account for the NMDA receptor agonist aaivity of DCG-IV, hence it is

possible that this non-seleaive aaivity masked the true anticonvulsant aaivity of this group II

mGlu receptor agonist.

Activation of group III mGlu receptors presynaptically decreases the release of- Glu

and GABA. Intracerebroventricular injeaions of group III mGlu receptor agonists and

antagonists have produced a variety of convulsant and anticonvulsant actions across a number

of epileptic models. For example, the group III agonists L-AP4 and L-SOP and antagonists

MAP4 and MPPG were found to be proconvulsant, while MCPA (a selective antagonist of L-

AP4) was found to be anticonvulsant (Ghauri et al., 1996). Further experiments involving

genetically epilepsy-prone rats showed that L-SOP caused prolonged anticonvulsant attions,

despite inducing early acute seizures (Tang et al., 1997).

Apart from the pharmacological evidence for a role of mGlu receptors in seizures,

changes in mGlu receptor expression have been found in human sufferers of epilepsy. Subtle

differences appear to exist across epilepsy types (Glazier et al., 1997; Dietrich et al., 1999;

Blumcke et al., 2000; Lie et al., 2000), with some studies reporting increases in mGlu,, mGiu2

and group III mGlu receptors while others have reported increases in only mGlu, and mGlu4.

Differences in group II and group III mGlu receptor expression have been found in human

patients with mesial temporal lobe epilepsy (MTLE) (Tang and Lee, 2001). In this ^study

receptor expression of mGlu^ or mGlu8 appeared confined to presynaptic terminals in the

molecular layer or CA2, respectively. Furthermore, mGlu^, mGlu4 and mGlu8 were found on

astrocytes in the hippocampus of these MTLE patients which the authors concluded may

relate to gliosis. In a similar series of experiments, immunoreaaivity of group I mGlu

receptors in these MTLE patients suggested that mGlu, and mGlu5 may increase hippocampal
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exatability through postsynaptic activation, and pre- and post-synaptic mechanisms,

! respectively (Tang et al., 2001a). Increased mGlu,, but not mGlu5, labelling was observed

j within the dentate gyrus molecular layer of chronic TLE patients, which correlated with the

b expression pattern found in animals with induced limbic seizures (Blumcke et al., 2000).

I In animal models of epilepsy an upregulation of mGlu3 and mGlu5 has been observed

L '•'' in reactive astrocytes (Aronica et al., 2000; Ulas et al., 2000), while both mGlu8 and mGluj

| were found to be upregulated in the hippocampus of a rat pilocarpine model of status
i

epilepticus (Tang et al., 2001b,c). Additionally, mice lacking mGlu7 have been described as

seizure-prone with an increase in excitability in cortical tissue (Sansig et al., 1999). No such

\ trait has been reported in mGlu4 or mGlu6 knockout mice (Nakanishi et al., 1998).

1.6.3.2 Epilepsy and toxicity

L Prolonged epileptic seizures produce a similar histopathological pattern to that of
I
I ischaemic damage (Meldrum, 1991), involving neuronal damage (Salcman et al., 1978;

\ Meldrum et al., 1973; Ben-Ari, 1981; Obey, 1983; Auer and Siesjo, 1985; Lowenstein et al.,

!

1992; Sutula, 2002) and astrogliosis (Khurgel et al., 1995; Morita et al., 1999). The

giut'inatergic system has been strongly implicated in neuronal damage as a result of seizure

activity, since both pathologies are induced by DHPG, KA and NMD-5!, administration (Obey

et al., 1986; Obey et al., 1979; van Den Pol et al., 1996; Loscher, 1998), or can reduced by the

appropriate Glu receptor antagonists (Clifford et al., 1989; Chapman et al., 1991; Chapman et

al., 1991; Dingledbe et al., 1990). In addition to pharmacological evidence for seizure-induced

neurodegeneration, further direct evidence emerges from human epileptic conditions (Mathern

et al., 1997; Mouritzen-Dam, 1980), particularly status epilepticus (Bengzon et al., 2002), tonic-
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clonic seizures (Savic et al., 1998), temporal lobe epilepsy (Tang and Lee, 2001; Tang et al.,

2001a; Mathern et al., 1995) and myodonus (Takeda et al., 1988). Neuronal damage as a result

of status epilepticus involves the alteration of apoptotic proteins such as Bcl-2 and caspases

(Bengzon et al., 2002), similar to those involved in the apoptosis of stroke and trauma, and

TLE induced by KA (Ben-Ari, 1985).

1.7. Thesis aims

In light of what is known regarding the ability of group II mGlu receptors to modulate

glutamatergic neurotransmission, investigations into the extent and mode by which group II

mGlu receptor ligands might promote neuroprotection and/or reduce the severity of seizures

are important in developing therapeutic approaches for those disorders involving injury and

epilepsy.

Thus the specific aims of this thesis are:

1. To evaluate the potential of group II mGlu receptor agonists to induce neuroprotection in

neuronal cultures derived from the neostriatum, neocortex and cerebellar cortex.

2. To evaluate the potential of group II mGlu receptor agonists to protect against different

modes of neurotoxicity, for example, apoptosis and necrosis.

3. To investigate the role of group II mGlu receptor function in astrocytes

4. To better understand the role of the second messenger, cAMP, in the function of group II

mGlu receptors, and

5. To evaluate the potential of group II mGlu receptor agonists to reduce the severity and

duration of seizures in animal models of human epilepsy.
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CHAPTER 2

MGLU2/3 AND IN VITRO NEURONAL INJURY
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2.1. Introduction

Group II mGlu receptors have been shown to modulate neurotransmission

(Hayashi et al., 1993; Flavin et al., 2000; Cartmell and Schoepp, 2000), and because of this

role they have attracted considerable attention for their potential to reduce ionotropic Glu

receptor-mediated excitotoxicity implicated in many neurological disorders (Nicoletti et al.,

1996; Conn and Pin, 1997; Passani et al., 1997; Calabresi et al., 1999; Pellicciari and

Costantino, 1999). The recent development of relatively selective mGlu^ agonists (review:

Schoepp et al., 1999) has allowed evaluation of this neuroprotective potential. Earlier

studies into the neuroprotective potential of mGlu^j employed the agonists 1-amino-

cyclopentyl-lS,37?-dicarboxylate (1S,37?-ACPD), (2S,l'5,2'5)-2-(carboxycydopropyl)glycine

(L-CCG-I) and (2S,27?,3'^)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV). However,

these agonists possessed significant group I mGlu receptor or NMDA receptor activity,

both of which have been shown to facilitate neurotoxicity. Despite such pharmacological

profiles, these agonists were neuroproteaive in a number of toxic conditions including

excitotoxicity (Pizzi et al., 1993; Bruno et al., 1994; Bruno et al., 1995; Pizzi et aL, 1996;

Pizzi et al., 2000), oxygen-glucose deprivation (Small et al., 1996) and amyloidogenesis

(Copani et al., 1995). Subsequently, Bruno and colleagues reported that neuroprotection in

cultures containing neurones and glia required protein synthesis (Bruno et al., 1997), and^

that neurotrophic factors released by glia were most likely responsible for the

neuroprotection observed during NMDA insult (Bruno et al., 1998a). More recently

Kingston et al. (1999) demonstrated that the selective mGlu^j agonists, including

(lS,2S,5^,65)-(+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), protected

cortical cultures from excitatory amino acid- and staurosporine-induced toxicity, via a

mechanism shown to be dependent upon the content of glia present. In contrast, Behrens
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et al. (1999) claimed that LY354740 did not attenuate injury induced by NMDA or hypoxic-

ischaemic insult in vitro or invko. Further discrepancies exist regarding the ability of selective

mGlu^j agonists to protect against neuronal injury in models of cerebral ischaemia

(Kingston et al., 1999; Behrens et al., 1999; Bond et al., 1999). In many studies pure

neuronal cultures have been abandoned, despite the role neurones play in early CNS

development in the absence of elaborate glial networks, and even though neuronal mGlu^j

appear to inhibit neuronal glutamate release and be recruited during periods of high

neurotransmitter release (Cartmell and Schoepp, 2000). Additionally, interpretation of data

obtained in a mixed neuronal-glial milieu is likely to be confounded by glial "trophic"

effects on neurones, whilst glia appear to have high levels of expression of mGlu receptors

(Winder and Conn, 1996).

The present study is the first to comprehensively and systematically focus on the

role of neurones in the neuroprotection reported to be induced by the activation of

mGlu2/3. Essentially glial-free neuronal cultures from three brain regions were employed

and the role of multiple factors that could possibly influence neuronal responses to mGlu^

agonists were investigated. These factors include the development and type of neurones,

mode of insult induced, degree of insult, activity of mGlu^j agonists, concentration of

agonists and mode cf agonist treatment. Varying modes of insult were investigated,

including the free radical generator hydrogen peroxide, the non-selective protein kinase

inhibitor staurosporine, low K+-induced apoptosis and the excitatory amino acids (EAA)

NMDA, AMPA and KA. Traditional agonists L-CCG-I, DCG-IV and N-

acetylaspartylglutamate (NAAG) were evaluated with particular focus given to the selective

agonist 2/?,4/?-4-aminopyrrolidine-2,4-dicarboxylic acid (2R,4R-APDC). A preliminary
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account of some of these findings was presented at the 3rd International Meeting

Metabotropic Glutamate Receptors (Moldrich and Beart, 1999).

on

2.2. Methods

All animal experiments in this chapter were performed according to the Animal Ethics

Guidelines of Monash University under animal ethics approval Pharmacology 1999/09. A

full list of materials used appears in Appendix IV. Full culture methods appear in

Appendices VI-VII.

2.2.1. Cortical and striatal neuronal cultures

Cells from the cerebral neocortex and striatum were similarly cultured from Swiss

white embryonic mice (day 15-16) as previously described (Cheung et al., 1998b). The

cortices and striatum were dissected in Hank's Balanced Salt Solution (HBSS; Appendix III)

containing bovine serum albumin (3 mg/ml) and 1.2 mM MgSO4. Tissue was digested with

trypsin (0.2 mg/ml) and DNase (80 /xg/ml) at 37°C for 5 min. Digestion was terminated by

the addition of trypsin inhibitor (0.52 mg/ml) and the cells were triturated and suspended in

Neurobasal medium (Appendix I) containing B27 (Appendix II), penicillin (100 U/ml) and

streptomycin (100 /xg/ml), 0.5 mM glutamine and 10% fetal calf serum. Cells were seeded in

Nunc mutliwell plates at 0.12 x 106 or 0.3 x 106 cells/well for pharmacological (96-well

plates) or morphological/cAMP assay (24-well plates) experiments, respectively. After 24 h

in vWro, the medium was replaced with serum-free Neurobasal medium containing B27

supplement, and cultures were maintained in a humidified CO2 incubator (5% CO,, 8.5%

O2; 37°C) for up to 13 days invitro (div). Partial medium changes were performed each 4-5

div.
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2.2.2. Cerebellar granule cell culture

Cerebella were dissected from Swiss white mice pups (postnatal day 7) and

cerebellar granule cells (CGC) cultured as described above with some modifications (c.f.

Cheung et al., 1998a). Cerebellar tissue was digested in HBSS containing BSA (3 mg/ml)

and 1.2 mM MgSO4 with trypsin (0.2 mg/ml) and DNase (160 Mg/ml) for 30 min at 37°C,

and the digestion was terminated by addition of trypsin inhibitor (0.52 mg/ml). Cells were

triturated and seeded in 24-well plates at a density of 0.4 x 106 cells/well for all experiments.

After 24 h invitro, the medium was replaced with Neurobasal medium containing B27, 25.4

mM KCl, penicillin/streptomycin and 10 /xM aphidicolin. Cells were maintained in a

humidified CO, incubator and a medium change was performed every 3 days after 6 div.

2.2.3. Immunocytochemistry

Immunocytochemistry was performed at 6, 9 and 13 div. Cells were fixed with 4%

paraformaldehyde for 15 min at room temperature. Cultures were quenched with Stable

Peroxide Substrate and non-specific binding blocked with 10% normal goat serum (NfGS)

and 0.1% Triton X-100 in Tris-buffered saline (TBS) for 1 h at 4°C. Cells were incubated

overnight at 4°C with either anti-microtubule associated protein-2 (MAP-2; 1:500 dilution),

or anti-glial-fibrillary acidic protein (GFAP; 1:200). Secondary antibodies were incubated for

3 h at 25°C with 2% NGS, 0.1% Triton X-100 in TBS (1:200; anti-rabbit for GFAP and

mGlu2/3, anti-mouse for MAP-2). Immunoreactivity was developed with 3,3'-

diaminobenzidine (DAB, 0.5 mg/ml) in Stable Peroxide Substrate and visualised using

brightfield microscopy. To assess the purity of cultures counts were made of cells

immunoreactive for GFAP across nine fields from three independent cultures.
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'• 2.2.4 Cell viability assay

I Cultures were exposed to toxic insults at 6, 9 and 13 div for either 4, 24 or 48 h in a

I humidified CO, incubator at 37°C. Cortical and striatal neurones were exposed to 60-110

fM H2O2, 1 /M staurosporine, 100 /M AMPA and 100 /tM KA in antioxidant-free N2-

supplemented Neurobasal medium (Cheung et al., 1998b; Appendix III). This latter vehicle

medium contains 5.4 mM KC1, and is not toxic to cortical or striatal neurones, but as well

documented, induces apoptosis in CGC cultures (Ikeuchi et al., 1998). Hence, this medium

served as a toxic insult for CGCs. Dulbecco's Modified Essential Medium (DMEM) served

as the vehicle for the NMDA (70 /xM) insult in cortical and striatal neurones. All treatments

were incubated in a humidified CO2 incubator to allow solutions to reach 37°C and pH of

the cultures before addition to the cells. Group II mGlu receptor agonists evaluated

included L-CCG-I (1-300 /iM), DCG-IV (1-300 IM), NAAG (1-300 /iM) or 2i?,4^-APDC

(1-100 /iM). Agonists were co-incubated with the insult for the complete timecourse,

additional experiments were carried out in the presence of MK-801 (10 /iM) and AIDA (10

/iM) for DCG-IV and L-CCG-I respectively. Pre-incubation experiments were performed

with 2R,4R-APDC whereby cultures were pre-treated with the agonist for 2 h prior to the

addition of the insult. Acute toxicity experiments were performed with 150 /KM H2O2, 10

juM staurosporine, 300 /iM NMDA, 1000 /iM AMPA and 1000 [M KA for 30 min with

2R,4R-APDC, followed by a 24 h incubation with vehicle or 2R,4/?-APDC only. Cultures

were routinely exposed to vehicle medium only (100% cell viability control) and 0.1%

Triton X-100 (0% cell viability control). Cellular viability was examined by phase-contrast

microscopy and by the measurement of formazan produced by the reduction of 3-(4,5-

dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) by viable cells (Cheung et

al., 1998b). MTT (5 mg/ml) was prepared in RPMI 1640 growth medium and was
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incubated with the cells at 37°C for 30 min following the injury timecourse. The resulting

formazan product was dissolved in 20% sodium dodecyl sulfate and 40%

dimethylformamide. The optical density was measured at 570 nm using a microplate reader.

2.2.5 Measurement of cAMP

The cellular content of cAMP in cortical, striatal and cerebellar granular neurones

(9-12 div, 24-well plates) was measured following treatment with 10 /iM forskolin and/or

2/?,4i?-APDC (1-30 /xM) in the presence or Jibsence of the mGlu^ antagonist (2S,45)-2-

amino-4-(4,4-diphenylbut-l-yl)pentane-l,5-dioic acid (LY307452; 100 JIM; Schoepp et al.,

1999). Cultures were washed, and incubated for 5 min at 37°C in HEPES-buffered saline

(146 raM NaCl, 4.2 mM KCl, 0.5 mM MgCl2, 0.1% (v/v) glucose, 20 mM HEPES; pH 7.2)

containing 1 mM 3-isobutyl-l-methylxanthine (IBMX) and treatments. Ca2+ was omitted

from the incubation buffer to avoid inhibition of AC (Lui et al., 1998). Following aspiration

of the buffer, cellular cAMP was extracted by scraping the well in the presence of 1.75%

(v/v) ice-cold HC1O4. The final extraction volume was made up to 250 /A with 1.2 M

K2CO3. Following centrifugation of the extract at 13000 x g, aliquots of the supernatant

were assayed according to the commercially available Biotrak [3H]cAMP assay kit.

2.2.6. Statistics

For the cellular viability assay, optical density values were standardised against the

vehicle medium only (100%) or 0.1% Triton X-100 (0%) which causes rapid lysis of cells.

The mean ± S.E.M. of the treatment was calculated from 3-4 wells per culture, and across 2

independent cultures. Treatment groups were analysed using one-way analysis of variance

(ANOVA) and significant differences identified where P <0.05.

I
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2.3. Results

2.3.1. Characterisation of cortical and striatal cultures

Morphological examination by phase-contrast microscopy of each cell culture was made at

6, 9 and 13 div. At 6 div cortical cultures consisted of an extensive neurite network

spanning clusters of neuronal cell bodies. This network was less extensive in striatal and

cerebellar cultures at this time point. At 9 div, an extensive and evenly distributed neuronal

monolayer was observed for CGCs. At 13 div, a healthy neuronal monolayer was observed

in the striatal cultures, but at which time cortical cultures showed an increase in background

cell death. Counts of cells immunoreactive for GFAP revealed that at any div cortical,

striatal and cerebellar cultures contained a maximum (mean + S.E.M.) of 5.5 ± 0.8%, 6.6 ±

1.3% (13 div) and 1.5 ± 0.8% glia respectively (Figure 2.1, Table 2.1).

2.3.2. Group II mGlu receptor agonists and cellular viability after various neurotoxic insults

2.3.2.1. Co-incubation with group II mGlu receptor agonists

Graded reductions in cellular viability were produced by exposure of the cultures to varying

toxic insults for either 4, 24 or 48 h. In both cortical and striatal cultures, EAA-induced

toxicity was not substantial by 4 h, hence measurements of cellular viability were only made

at 24 and 48 h. In N2-supplemented Neurobasal medium, NMDA (300 /xM) caused a

maximum of 30% toxicity at 48 h (not shown). Hence, DMEM was employed as the vehicle

resulting in toxicity of > 50% with 70 /xM NMDA.

In cortical neuronal cultures, concentrations of 70-100 pM H2O2 were

employed at 6, 9 and 13 div to induce a decrease in cellular viability of approximately 15-

25%, 50-60% or 70-90% from control at 4, 24 or 48 h respectively. 2/?,4/?-APDC (1-100

lM), DCG-IV (1-300 /xM), L-CCG-I (1-300 /xM), and NAAG (1-300 /xM) failed to



Figure 2.1 Immunocytochemistry of cortical, striatal and cerebellar neuronal

cultures. Bright-field photomicrographs of cortical (A & B, 9 div), striatal (C & D, 13 div)

and cerebellar granular neurones (E & F, 9 div) showing labelling of anti-MAP-2 (A, C, E)

and ariti-GFAP (B, D, F). Note the comparatively prolific labelling of the cultures with anti-

MAP-2 compared to anti-GFAP. Non-immune controls for anti-MAP-2 (G), anti-GFAP (H)

are shown for cortical neurones but are representative of all cultures. Scale bar = 75 um.

H



W^^^mil \v \T îJ§f
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Table 2.1 Quantification of glial content in neuronal cultures as determined

by anti-GFAP immunocytochemistry

% Positive anti-GFAP labelled cells

day in vitro

6

9

13

cortical

4.1

4.4

5.5

cultures

±0.7

±0.5

±0.8

striatal

3.3

4.8

6.7

cultures

±0.2

±0.6

±1.3

CGC

1

1

1

.8

.1

.5

cultures

±0.3

±0.6

±0.8

Mean ± S.E.M. of 9 fields from 3 independent cultures.
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attenuate the decrease in cellular viability produced by H2O2 (Figures 2.2-2.5 and Table

2.3B). Staurosporine (1 /xM) induced a more stable decrease in cellular viability at each div,

with cultures exhibiting approximately 90%, 30% and 10% cellular viability at 4, 24 and 48

h, respectively. 2/?,4R-APDC (1-100 /xM), DCG-IV (1-300 /xM), L-COG-I (1-300 /xM), and

NAAG (1-300 /xM) failed to attenuate the decrease in cellular viability produced by

staurosporine (Figures 2.2-2.5 and Table 2.3B). Both KA (100 /xM) and AMPA (100 /zM)

demonstrated similar excitotoxic profiles, such that each EAA caused a decrease in cellular

viability to approximately 50% and 30% of control at 24 and 48 h, respectively. NMDA (70

/xM) generally produced a greater decrease in cellular viability, ranging from 50% at 24 h to

20-25% at 48 h. None of the mGluj/j agonists attenuated the EAA-induced decrease in

cellular viability (Figure 2.2-2.5 and Table 2.3B).

In striatal neuronal cultures, concentrations of 60-110 /xM H2O2 over 6, 9 and 13 div

were employed to induce a decrease in cellular viability similar to that of cortical neurones.

2/?,4i?-APDC (1-100 fM), DCG-IV (1-300 /iM), L-CGG-I (1-300 /xM), and NAAG (1-300

/xM) failed to attenuate this decrease in cellular viability (Figures 2.2-2.5 and Table 2.3B). In

contrast to (;ortical neurones, staurosporine (1 /xM) only produced a decrease in cellular

viability to approximately 90%, 50% and 30% of control at 4, 24 and 48 h, respectively.

Again the agonists failed to attenuate this injury (Figures 2.2-2.5 and Table 2.3B). NMDA

(70 /xM), KA (100 fM) and AMPA (100 /xM) demonstrated similar excitotoxic profiles in

striatal neurones, each EAA caused a decrease in cellular viability that was substantially less

than that induced in cortical neurones (approximately 70% and 50% of control at 24 and 48

h, respectively). Group II mGlu receptor agonists also failed to attenuate EAA-induced

injury in striatal neurones also (Figures 2.2-2.5 and Table 2.3B).
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inN2-supplemented medium containing low K+ (5.4 mM RC1) produced a decrease i

the viability of cerebellar granule neurones to approximately 90%, 30% and 10% of control

after 4, 24 and 48 h, respectively. 27?,4i?-APDC (1-100 /xM), DCG-IV (1-300 /xM), L-CCG-I

(1-300 /xM) and NAAG (1-300 /xM) failed to attenuate this decrease in cellular viability at

either 6, 9 or 13 div (Table 2.2 and Table 2.3B).

Experiments in all cultures with the agonists DCG-IV and L-CCG-I were repeated

in the presence of the NMDA receptor antagonist (57?,10i)--(+)-5-methyl-10,llHdihydro-

5//-dibenzo[a,d]cydohepten-5,10-imine (MK-801, 10 /xM) or the mGluj antagonist 1-

aminoindan-l,5-dicarboxylic acid (AIDA, 10 pcM). Some minor attenuation of NMDA-

induced toxicity was noticed in those experiments with DCG-IV and MK-801, but this

neuroprotection was attributable to the activity of MK-801 (not shown). Similarly, where

DCG-IV concentrations of 100 /xM or more were used, a decrease in cellular viability in

addition to that induced by the insult under investigation was noticed, which was abolished

by co-incubation with MK-801 (not shown). With this exception of DCG-IV, none of the

agonists affected the cellular viability of the cultures when tested up to the maximum

1 concentration used in the absence of insult.

2.3.2.2. Pre-incubation and treatment of acute ioxiciry mth 2R,4R-APDC

Experiments involving pre-incubation of 2R,AR-APDC (1-30 /xM) were carried out

at either 9 div for cortical and cerebellar cultures or 13 div for striatal cultures, at which

stage healthy neuronal monolayers were prevalent. 2R,4R-AFDC was incubated with the

cultures in the presence of the experimental vehicle mediums or growth medium (in the

case of cerebellar cultures) 2 h prior to a medium change which included 2#,42?-APDCand

the insult (as above). Following 24 h exposure to this latter medium, 27?,4/?-APDC did not
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attenuate the decrease in cellular viability induced by the insults (Table 2.3A). Additionally,

2R,4R-APDC (1-30 (M) failed to attenuate toxicity induced by 30 min exposure to 150 /xM

H2O2, 10 iM staurosporine, 300 fM NMDA, 1000 fM KA or 1000 iM AMPA (Table

2.3C).

2.3.3. Cell morphology

Each insult compromised the morphological integrity of the neuronal monolayer in

each culture, with a pattern of neuronal injury which was charaaeristically time-dependent

(Figure 2.6). Each insult, in general, caused the degradation of neurites and the breakdown

of neuronal bodies; H,O, also caused some cellular swelling indicative of necrosis (Cheung

et al., 2000). In contrast, both staurosporine and AMPA in cortical and striatal cultures, and

low K+ in CGCs, caused cellular shrinkage, neurite bleL-br.ig and formation of pyknotic

bodies consistent with apoptotic-like neuronal injury (Cheung et al., 1998b; Moldrich et al.,

2000; Cheung et al., 2000). In all experiments described above mGlu^ agonists, on the

basis of the assessment of the morphological features of the relevant patterns of injury

arising from any insult, failed to protect cortical, striatal and CGC neurones from the

pathological consequences of neurotoxicity.



Figure 2.2 2R.4R-APDC fails to attenuate the decrease in cell viability induced by

various insults. Bar graphs represent results obtained with cortical neurones (A-E, 9 div

shown) or striatal neurones (F-J, 13 div shown) at each div. For each insult and time-point

2R.4R-APDC treatment (1-30 uM) was not significant from that of insult only (One-way

ANOVA, P> 0.05, n = 6-8).
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Figure 2.3 DCG-IV, in the presence of the NMDA receptor antagonist MK-801 (10 uM),

fails to attenuate the decrease in cell viability induced by various insults. Bar graphs

represent results obtained with cortical neurones (A-C, 9 div shown) or striatal neurones

(D-F, 13 div shown) at each div. For each insult and time-point DCG-IV (1-30 uM) was not

significant from that of insult in the presence of MK-801 (One-way ANOVA, P > 0.05, n =

6-8).
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Figure 2.4 L-CCG-I, in the presence of the mGIUvs antagonist AIDA (10 uNI), fails to

attenuate the decrease in cell-viability induced by various insults. Bar graphs

represent results obtained with cortical neurones (A-C, 9 div shown) or striatal neurones

(D-F, 13 div shown) at each div. For each insult and time-point L-CCG-I (1-30 uM) was not

significant from that of insult in the presence of AIDA (One-way ANOVA, P > 0.05, n = 6-

8).
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Table 2.2. The decrease in cell viability produced by low K+ (5.4 mM KCI) in CGCs at 9

div was not attenuated by 2R.4R-APDC.

Time (h)

A

24

48

Vehicle

79.4 ± 1 .

3 1 . 7 ± 1 .

17.9 ± 6 .

0

5

8

81

32

15

.1

.7

.3

1

±

±

±

1

0

6

.1

.6

.1

2R4R-APDC

80.

30.

15.

10

,3±

,7±

,3±

0.

0,

7

'(MM)

.3

.9

.3

80

33

19

30

A±

.0±

.8±

0.4

1.0

8.3

Values represent the mean ± S.E.M. (n = 5-6). P> 0.4906.
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Table 2.3. Varying modes of treatment with 2/?,4/?-APDC fail to attenuate the

decrease in cellular viability induced by various insults in cortical, striatal and cerebellar

granular neuronal cultures.

TREATMENT

A. 2h
Preincubation

Cortical:
Insult
APDC

Striatal:
Insult
APDC

Cerebellar:
Insult
APDC

CELL VIABILITY (% MEDIUM ONLY)

H2O2

(100-110
MM)

31.5 ±4.6
29.4 ± 2.5

86.2 ± 3.6
86.7 ±4.1

Staurosporine NMDA KA AMPA
(1uM) (70 uM) (100 uM) (100 uM)

22.2 ±2.8 66.2 ±3.2 48.3 ±2.1 57.7 ±2.6
23.2 ±2.2 69.7 ±7.3 47.8 ±2.1 56.0 ± 3.7

58.5 ±1.8 76.8 ±7.1 71.2 ±3.1 74.3 ± 3.2
59.3 ±2.1 77.5 ±6.8 71.6 ±2.8 74.5 ±4.8

LowK*
(5.4 mM

KCI)

26.3 ± 0.6
28.7 ±1.7

B. 100 uM APDC

Cortical:
Insult
APDC

Striatal:
Insult
APDC

Cerebellar:
Insult
APDC

19.8 ±1.8 28.3 ±3.5 43.6 ± 3.4 48.7 ± 2.6 55.8 i .
19.8 ±0.9 25.4 ±1.8 46.0 ± 5.2 52.4 ± 0.7 54.5 -\ /

78.3 ±3.8 61.5 ±2.4 86.0 ±2.8 71.9 ±1.9 62.2 ±1.3
78.7 ±1 .6 61.7 ±3.0 84.2 ± 2.9 72.6 ±2.5 60.6 ±2 .9

30.7 ±1.7
30.3 ± 0.9

C. Acute Insult
(30 min)

Cortical:
Insult
APDC

Striatal:
Insult
APDC

H2O2 Staurosporine NMDA KA AMPA
(150 uM) (10 MM) (300 MM) (1000 MM) (1000 MM)

65.9 ±3.3 25.8 ±5.7 55.2 ± 3.2 40.5 ±1.8 56.1 ±5.2
69.3 ±2.2 24.3 ±3.0 58.4 ±1.9 39.3 ± 2.2 58.9 ± 2,4

79.2 ± 3.2 55.7 ± 1.6 74.7 ± 4.5 75.9 ± 3.1 77.9 ± 2.3
74.3 ±2.3 55.3 ±4.1 74.4 ± 3.0 74.1 ±0.6 70.2 ± 3.7

With the exception of B, 2R4R-APDC = 30 uM. Values represent the mean ± S.E.M. of 6-8 treatments from

2 independent cultures. Experiments shown are of cortical and cerebellar granular neurones at 9 djv and

striatal neurones at 13 div following treatment for 24 h. P > 0.066. (-: not determined).'
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Figure 2.6 Phase-contrast microscopy showing the loss of morphologicai integrity

from exposure to insults is not prevented by mGlu^ agonists.

Photomicrographs are of cortical neurones (A-L) or cerebeilar granule cells (M-O) at

9 div following treatment for 24 h with 2R.4R-APDC (30 uM) and/or insult.

A. N2-supplemented medium only.

B. 1 uM staurosporine
C. 1 uM staurosporine in the presence of 2R.4R-APDC.

D. 100uMH2O2.

E. 100 uM H2O2 in the presence of 2R.4R-APDC.

F. 100UMKA.

G. 100 uM KA in the presence of 2R.4R-APDC.

H. 100uMAMPA

I. 100 uM AMPA in the presence 2R.4R-APDC.

J. DMEM medium only;

K. 70 uM NMDA

L. 70 uM NMDA in the presence of 2R.4R-APDC.

CGCs:
M. Medium only.

N. 5.4 mM KCI.

O. 5.4 mM KCI in the presence of 2R.4R-APDC.

Scale bar = 75 urn.
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2.3.4. Inhibition of cAMP formation

In cortical neuronal cultures, the increase in cAMP production following forskolin

stimulation was decreased significantly in a concentration-dependent manner 2/?,4i?-APDC

(F3i 29 = 8.99, P = 0.0003). The mGlu^ antagonist LY307452 (Schoepp et al, 1999; 100

fM) significantly attenuated the decrease in cAMP produced by 30 /xM 2/?,4i?-APDC (P =

0.0177; Figure 2.7). In striatal neurones, 2R,4R-APDC only produced a significant decrease

in cAMP formation at 30 /xM (F3> 25 = 3.82, P = 0.0364). LY307452 failed to prevent the

reduction in cAMP formation by 30 pM 2/?,4i?-APDC in these cultures (P = 0.5173; Figure •

2.7). In CGC neurones 2i?,4i?-APDC caused a significant concentration-dependent

inhibition of forskolin-stimulated cAMP production (F3 27 = 9.16, P = 0.0003). "While

LY307452 caused an approximately 35% reversal of the specific effect of 30 juM 2R,4R-

APDC, this increase was not statistically significant because of the variability of the agonist

alone data (P == 0.0816; Figure 2.7). In summary, 2K,4i?-APDC (30 iM) decreased the

forskolin-stimulated production of cAMP in cortical, striatal and CGC neurones by

approximately 41%, 17% and 46% respectively. In the absence of forskolin stimulation,

production of cAMP by cultures treated with 30 /xM 2R,4R-A¥DC did not differ

significantly from untreated cultures (P = 0.568; Figure 2.7).
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Figure 2.7 Concentration-dependent reduction of forskolin-stimulated

production of cAMP by 2R.4R-APDC in pure neuronal cultures at 9-12 div.

cAMP values represent the mean ± S.E.M. from duplicate determinations of 3-4

independent experiments. *P < 0.05 when compared to 10 uM forskolin alone,

#P < 0.05 when compared to 10 uM forskolin + 30 uM 2R,4/?-APDC.

Basal

ESS 10 pM forskolin

Essa 10 pM forskolin
+1 pM APDC

+ 10
forskolin
M APDC

10 |iM forskolin
+ 30 (JM APDC

cortical striatal

Neuronal Cultures

10 pM forskolin
+ 30 pM APDC
+ 100pMLY307452

pM APDC only

cerebellar
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2.4. Discussion

The key finding of our strategic study was that stimulation of mGlu^ failed to

protect cultured neurones from a range of toxic insults. This conclusion was reached on the

basis of a diverse range of investigations employing three different neuronal cultures,

various neurotoxic insults and treatment conditions, and despite evidence for the presence

of functional mGlu^. Since the prime aim of the present study was to conduct this

investigation into the putative neuroprotective role of mGlu^j agonists in the virtual

absence of glia, and to attempt to resolve some ambiguity in this area, successful cultures

were established where glia represented 2-7% of all cells. Under these defined conditions,

unlike a number of previous studies, mGlu2/3 agonists were never neuroprotective in any of

the experimental paradigms investigated.

Positive in situ mRNA and protein expression of mGlu^ has been located in a

number of cortical regions, striatum and in the granule cell layer of the cerebellum (Ohishi

et al., 1993a,b; Ohishi et al., 1994). Cartmell et al. (1998) detected mGlu3 transcripts by in

situ hybridisation in rat striatal neurones and showed inhibition of Ca2+ currents by DCG-

IV in these cultures. Secondly, although low mGlu^ expression was found by Prezeau et al.

(1994) in rat striatal neurones, marked protein expression was found in rat cortical and

cerebellar granular neuronal cultures. Additionally, despite evidence indicating predominant

mGlu^j expression in glia, Makcff et al., (1996a) showed that the expression of human

mGlu3 throughout the cerebellum and cerebral cortex predominated in neurones. Finally,

NAAG-like immunoreactivity (Passani et al., 1997) and 3[HJNAAG binding (Shave et al.,

2000) has been shown in cortical, striatal and cerebellar granular regions also. In the

findings not presented here, positive mGlu3-like immunoreactivity was found to be

neuronally localised within each culture at each div using a previously characterised
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antibody directed at mGlu3. This antibody has demonstrated widespread neuronal

localisation of mGlu3 -like immunoreactivity in brain, including the striatum (Beart et al.,

1999) in agreement with both previous invwo and in vitro studies.

Evaluation of the neuroprotective potential of mGlu^j agonists required

investigating a variety of toxic insults. Injury to cortical and striatal neurones induced by

NMDA, AMPA and KA was generally not substantial after 4 h exposure, so cultures

subjected to these insults were examined after 24 and 48 h. Staurosporine, H2O, and low K+

did induce substantial neurotoxicity after 4 h and hence cultures used for the evaluation of

the actions of mGlu^j agonists included this timepoint in addition to 24 and 48 h. The

degree to which insults decreased cellular viability greatly depended on the type of culture

and the div on which the experiments were carried out. For example, striatal neurones at 6

div were more vulnerable to H2O2 insult than cortical neurones at the same div,

consequently 60 /xM H2O, was used for striatal neurones at 6 div, but 70 /*M for cortical

neurones. These differential actions of H2O2 were most likely due to the comparatively slow

development of the neuronal monolayer observed in striatal neurones at this timepoint. In

contrast, the reverse applied at 13 div, where 110 /xM H,O2 was used for striatal neurones

but 100 fjM for cortical neurones. In this case the increased background cell death observed

in cortical neurones most likely contributed to an increased sensitivity to H2O2 insult.

Regardless of the div, striatal neurones were less susceptible to excitatory amino acid

toxicity than cortical neurones. This observation was not unexpected considering inhibitory

GABAergic neurones predominate in the striatum, where the only glutamatergic neurones

are extrinsic and associated with thalamostriatal and corticostriatal projections.

In general, DCG-IV, L-CCG-I and 2R,4R-APDC possess similar potencies at

mGlu2/3 (Schoepp et al., 1999). However, DCG-IV and L-CCG-I also exhibit agonist
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activity at NMDA receptors and group I mGlu receptors respectively. Hence, 2#,4/?-APDC

is the most potent and selective mGlu^ agonist used in the present study. Considering the

cultures employed express native mGlu receptors this feature is of particular importance.

NAAG is less potent than ZR,4i?-APDC, but possesses particular selectivity for mGlu3

versus mGlu2receptors (Schoepp et al., 1999).

In mixed cortical cultures DCG-IV has been shown to attenuate both NMDA- and

KA-induced toxicity across a concentration range of 10 nM to 100 /xM (Bruno et al.. 1995a).

Similarly, L-CCG-I, LY354740 and its analogues have been shown to attenuate NMDA

injury but from concentrations > 1 /M (Bruno et al., 1994; Kingston et al., 1999; Behrens et

al., 1999). Employing these effective concentrations in cortical pure neuronal cultures,

DCG-IV and L-CCG-I (in the presence of appropriate antagonists) failed to protect

neurones against both acute and chronic toxicity induced by NMDA, AMPA and KA. In

agreement with the present study DCG-IV did not protect against chronic NMDA-induced

toxicity in mixed cultures (Buisson et al., 1996). Similarly, 2K,4i?-APDC (> 0.1 /iM) has

been shown to be neuroprotective in mixed cultures exposed to NMDA insult (Battaglia et

al., 1998; Kozikowski et al., 1999), although when used at these concentrations in the

present study neuroprotection was not observed throughout the various experimental

strategies. NAAG, also failed to protect neurones from toxic insult despite earlier reports to

the contrary in mixed cultures (Bruno et al., 1998b). Furthermore, the agonist

concentrations were increased to 100 /xM and 300 /xM (30,000 times the minimal effective

concentration and equivalent to the maximal effective concentration used in mixed cultures)

without evidence of neuroprotection. The significance of mixed cultures will be discussed

below.



Chapter 2: mGlu2.., and in vitro neuronal injury 98

In a recent report, Colwell and Levine (1999) proposed that mGlu^ modulation of

NMDA-induced toxicity involved voltage-operated Ca2+ channels (VOCQ. Their study

revealed that inhibition of Ca2+-influx through VOCQ particularly high-voltage gated N-

type Ca2+ channels, reduced the degree of neuronal swelling induced by NMDA, and that

this effect was mimicked by the non-selective agonist £rara4-amino-cyclopentyl-lS,3i?-

rdicarboxylate (t-ACPD). Since cortical, striatal and cerebelkr granular regions express N-

type Ca2+ channels (Chung et al., 2000) it might be expected that the agonists employed

here would attenuate NMDA in/ory. However, our results suggest that either inhibition of

the N-type Ca2+ channel is incapable of attenuating toxicity alone under the conditions

investigated or that the non-selective activity of t-ACPD for group I mGlu receptors may

contribute to the result seen by Colwell and Levine (1999).

Group II mGlu receptor-mediated neuroprotection has been observed following-

application of the agonists prior to KA insult in spinal cord slices (Pizzi et al., 2000), mixed

cultures (Bruno et al., 1995a) and cortical neuronal cells (Kingston et al., 1999). In the

present study, neuroprotection was not observed in cortical or striatal neuronal cultures

despite attempts to match both the mode of KA insult and the concentration of mGluj/j

agonists employed by Kingston et al. (1999). This latter study also investigated AMPA-

induced toxicity in the presence of cyclothiazide and did not find any neuroprotective effect

by the agonists. Our study also failed to demonstrate mGluj/j agonist neuroprotection

against AMPA alone-induced toxicity in cortical and striatal neuronal cultures, observations

which also support those findings of Bruno et al. (1995a) in mixed cultures.

Staurosporine is a non-selective protein kinase inhibitor which is often used to

induce apoptosis in cultures. Novel mGlu2/3 agonists were recently shown to protect against

staurosporine-induced toxicity in cortical mixed cultures (Kingston et al, 1999). Once again,
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despite our attempts to match the mode of staurosporine toxicity and mGlu,/3 agonist

concentrations employed by these investigators, neuroprotection was not found in either

cortical or striatal neuronal cultures. But whilst 2R,4i?-APDC is not quite as selective as the

agonists used by Kingston et al., (1999) it is however equally as potent at group II mGlu

receptors as other agonists with reported neuroprotective properties such as DCG-IV, L-

GCG-I and NAAG and so is not likely to have affected the outcome of our extensive

investigations.

Cellular injury from exposure to H2O2 results from a number of effects that are

different from EAA- or staurosporine-induced injury, including modulation of Glu

exocytosis and oxidative stress (Pellegrini-Giamprieto et al., 1988; Abe and Saito, 1998).

Since H2O2 is often detoxified by cultured astrocytes (Desagher et al., 1996) the pure

neuronal cultures employed in this study provided a sensitive and controlled model for

investigating mGlu2/3 agonist modulation of oxidative stress. However, none of the

strategies investigated revealed neuroprotection by the agonists DCG-IV, L-CCG-I, NAAG

or 2/?,4ft-APDC. No previous studies have been undertaken investigating mGluj/j-

meditated neuroprotection of H2O2-induced insult in mixed cultures, however, given the

importance glutathione plays in neuronal-glial interactions (Drukarch et al., 1997), mGlu2/3

stimulation may be neuroprotective via stimulation of this interaction and/or neurotrophin

release following H2O2-induced injury in neurones.

Cultured CGCs maintained in a growth medium containing 25 mM KCl undergo

apoptosis when changed to a medium containing approximately 5 mM KCl (low K+). CGCs

undergo apoptosis within 2-5 h from transfer into low K+ involving activation of c-jun

mRNA expression, caspase-like proteases and DNA fragmentation (review: Ikeuchi et al.,

1998). Low K+ -induced apoptosis was induced for 4, 24 and 48 h in this study and the
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neuroprotective potential of mGlu^ agonists investigated.'Despite employing a range of

concentrations and including pre-incubation of the agonists, neuroprotection was not

observed using the cellular viability assay or phase-contrast microscopy. Furthermore, this

absence of neuroprotection is not dependent on the development of the cerebellar

neurones, since at 6, 9 and 13 div cultures produced similar results. These findings do not

disagree with previous evidence which indicates that production, rather than inhibition of

cAMP, is responsible for the attenuation of low K+-induced apoptosis (D'Mello et al.,

1993).

Previous studies have demonstrated that following exposure of group II mGlu

receptor agonists, 2 h is required before substantial neuroprotection is achieved in mixed

cultures undergoing NMDA insult (Bruno et al., 1997). In line with these findings the

neuronal cultures in the present study were treated for 2 h with 2R,4R-AVDC prior to the

addition of either H2O2, staurosporine, NMDA, AMPA or KA for 4, 24 or 48 h. Following

this prestimulation, 2R,4R-APDC was also incubated in the presence of the insults and

failed to protect against the injury induced in the cultures.

NMDA-induced toxicity has been suggested to be partly due to an increase in

cAMP (Buisson and Choi, 1995; Schaffhauser et al., 1997). In the light of observations that

protein kinase A (PKA) activators and dopamine receptors positively coupled to AC

enhance NMDA responses (Colwell and Levine, 1996; Cepeda et al., 1998), it might be

expected that inhibitors of the AC/PKA pathway, such as mGlu^j agonists, would

attenuate NMDA receptor-mediated toxicity. However, the present study has demonstrated

that despite inhibiting cAMP production (via Ca2+-sensitive AC), group II mGlu receptor

agonists fail to attenuate not only varying modes of NMDA-induced toxicity but also KA

and AMPA-induced toxicity, including pre-inhibition of the AC/PKA pathway.
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The importance of glia in mediating neuroprotection has become evident recently.

Neuroprotection observed in mixed cultures was identified as bemg dependent on protem

synthesis (Bruno et al., 1997). Subsequent studies showed that neurotrophic factors were

produced following mGlu, stimulation, of which transformmg growth factor (TGF)-pi and

-P2 were identified as primary candidates responsible for the glial-mediated neuroprotection

observed (Bruno et al., 1998a) (mGlu3-stimulated production of NGF and S1OO-P has since

been demonstrated also; Gccarelli et al., 1999). More recent studies showed that greater

neuroprotection was obtained in mixed cultures than those containing only 15% glia

(Kingston et al., 1999), supporting the hypothesis that glial production of trophic factors is

responsible for neuroprotection. However, evidence has been emerging that glia are not

essential for trophic neuroprotection (Dobbertin et al., 1997; Hattori et al., 1999; Zhu et al.,

2000). In particular, TGFP-1 immunoreactivity has been shown to be upregulated days-

before glial activation in transient forebrain ischaemia and this immunoreactivity is not co-

localised with cells considered to be apoptotic on the basis of TUNEL-positive staining

(Zhu et al., 2000). Despite this evidence indicating neuronal production of trophic factors

and subsequent neuroprotection, the to::icity induced here was not attenuated in pure

neuronal cultures.

The suitability of 2R,4R-APDC as a selective activator of mGlu^j-mediated

intracellular events is clouded by a number of reports which suggest that at high doses

2#,4i?-APDC-induced mGlu^ activation augments the intracellular response of mGluI/5

activation. This phenomena was originally reported by Schoepp et al., (1996) and has since

been reported to be responsible for a number of biphasic responses observed with 2R,4R-

APDC including proconvulsant activity (Attwell et al., 1998a) and neurotoxicity during

NMDA insult (Battaglia et al., 1998). In the latter study 2R,4R-APDC provided less
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neuroprotection at 30-100 pM when compared to 1 /M during NMDA insult in mixed

cultures. In the present study, 2R,4R-APDC did not augment the toxicity induced by

NMDA nor any other insult investigated. Alternatively, results from the cAMP assay

suggest that 2R,4R-APDC provides concentration-dependent inhibition of cAMP

production, including concentrations greater than 1 /xM. In fact, significant inhibition of

cAMP production by 2R,4R-APDC was not observed at 1 fM in any of the cultures

investigated. Instead there appears to be a correlation between the augmentation of mGlu1/5

second messenger systems by 2R,4R-APDC thought to be observed by various groups and

the inhibition of cAMP production by 2R,4R-APDC demonstrated here. Additionally, the

absence of neuroprotection by 2R,AR-APDC in the present study does not support the

hypothesis that activation of pre- and postsynaptic neuronal mGluj/j results in

neuroprotection, rather these results suggest that the neuroprotection provided by mGluj/j

in mixed cultures originates from glia (which supports previous findings: Bruno et al., 1997;

Bruno et al.,' 1998a; Kingston et al., 1999). But more importantly, glia have been shown not

to accommodate mGlu^-mediated inhibition of cAMP production (Prezeau et al, 1994;

Bruno et al., 1995a), and yet 1 juM 2R,AR-APDC was the maximally effective concentration

against NMDA-induced toxicity in mixed cultures (Battaglia et al., 1998). Consequently, it is

most likely that the neuroprotection observed throughout mixed cultures is not primarily

instigated by inhibition of the neuronal or glial AC/cAMP pathway and therefore does not

primarily depend on the mGlu^j-mediated regulation of neurotransmitter release. Group II

mGlu receptor mediated neuroprotection most likely results from an entirely glial

mechanism (especially in light of Bruno et al., 1997, 1998a) which at present remains

uncharacterised.
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Regardless of the mechanisms purported to be active in the cultures employed

throughout the investigation, including Ca2+ channel-mediated inhibition of EAA toxicity

and cAMP-mediated inhibition of NMDA toxicity, and despite demonstrating the presence

of functional mGlu^, neuroprotection was not observed in the present study. These results

add support to the growing body of evidence that mGlu^j agonist-stimulated glial

production of trophic factors is the primary mechanism of neuroprotection observed in

studies employing mGlu^j. Finally, this investigation highlights the importance of defining

the morphology of models employed for neuroprotection studies, since even subtle

morphological differences can influence the outcome observed.

N O T E ADDED:

Some months after these findings were published, D'Onofrio et al. (2001) published their

study of the pathways involved in the release of the neuroprotective trophic factor TGF-0

as observed esriier by Bruno et al., (1998). In brief, D'Onofrio et al., demonstrated an

increase in astrocyte cultures an increase in the phosphorated forms of extracellular signal-

regulated kinase (ERKl/2) and Akt thereby implicating the recruitment of the mitogen

activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI-3-K) pathways

following mGlu3 receptor activation by 4C3HPG and LY379268. Similar agonists were used

in vivo whereby an increase in TGF-P mRNA was observed, and which could be decreased

by inhibition the MAPK pathway. This study was able to link the mGlu3-induced and

astrocytic TGF-P-mediated neuroprotective effects that had been noticed in vivo to the
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neuroprotection of striatal neurones invtvo, which Bond et al. (2000) could not demonstrate

in a rat model of ischaemia.

The elegant work by D'Onofrio et al. emphasised the importance of group II mGlu

receptor funaion in astrocytes as a key event contributing to neuroprotection in models of

neuronal injury. Therefore, it appeared that addressing mGlu^j function in astrocytes was

more relevant to the aims of this thesis than addressing mGlu^j function in neurones.

Consequently, the next series of experiments aimed at investigating the role of cAMP in

astrocytes and its role in neuroprotection, particularly since cAMP is the key signal

transduction component associated with group II mGlu receptors.



Chapter 3: cA MP regulation

I CHAPTER 3

if

MGLU2/3-MEDIATED REGULATION OF

C A M P IN NEURONES AND ASTROCYTES

I



Chapter 3: cAMP regulation

3.1. Introduction

While many groups have demonstrated that mGlu^ mediate inhibition of forskolin-

stimulated production of cAMP, a disparity exists surrounding the conditions in which this

inhibitory effect can be achieved. Early research showed that the prototypic mGhi receptor

agonists (±)4-aminocyclopentane-fr^-l,3-dicarboxylic acid (tmns-ACPD), 15,3S-ACPD and

1S,3R-ACPD decreased forskolin-stimulated production of cAMP in striatal neurones and

cerebral slices (Schoepp et al., 1992b; Prezeau et al., 1992; Manzoni et al., 1992; Cartmell et al.,

1992). At the same time it was discovered that these agonists could induce increases in cAMP

accumulation (Casabona et al., 1992; Schoepp et al., 1992b; Winder and Conn, 1992). It was

clear that this effect was not mediated by direct coupling of mGlu^ to Gs) but rather through

indirect potentiation of other Gs-mediated agonist responses. However, the non-selective

activity of these early agonists at mGlu1/5 was considered likely to indirectly contribute to the

activity observed. Nevertheless, potentiation of cAMP production was again observed with the

more selective mGlu^Carboxycydopropylglycines DCG-IV and L-CCG-I (Winder and Conn,

1995). In that study, the potentiation of cAMP production was proposed to be mediated by a

receptor with mGlu^j-like pharmacology and not via potentiating phosphoinositide hydrolysis

as earlier thought (Casabona et al., 1992; Cartmell et al., 1993b; Cartmell et al., 1994). In

contrast, Schoepp et al. (1996a) showed that when the mGbi / 5 agonist DHPG and the

mGlu2/3 agonist 2/?,4/?-APDC were added in combination to 7-day old rat hippocampal slices

a 5-fold potentiation of cAMP production was observed - an effect inhibited by adenosine

deaminase and an adenosine receptor antagonist. DCG-IV was without effect in modulating

cAMP in slices of rat striatum but inhibited forskolin-stimulated cAMP production in cortical

slices (Cartmell et al., 1998; Kemp et al., 1996). Such differences may be explained by varying

receptor expression, nevertheless Prezeau et al. (1994) showed mGlu receptor mediated



Chapter 3: cAMP regulation 107

inhibition of cAMP production in a variety of neuronal and astrocyte cultures, including L-

GCG-I-induced inhibition of cAMP production in striatal neurones. In mixed, neuronal-glial

cultures Bruno et al. (1994) found no inhibition of cAMP production following application of

DCG-IV, L-CCG-I or I5,3i?-ACPD. Activation of mGlu^ has been shown to positively

modulate phosphoinositide hydrolysis (Genazzani et al., 1994; Schoepp et al., 1996b), while

mGlu2/3 mediated activity in astrocytes appears to be sensitive to the activation of other G-

protein coupled receptors such as adrenoceptors (Balazs et al., 1998a) and adenosine receptors

p i Iorio et al., 1996; Ciccarelli et al., 1999; Cormier et al., 2001).

mGluj/j have attracted considerable attention as therapeutic targets since they reduce

Glu release and inhibit Ca2+ entry (review: Cartmell and Schoepp, 2000), two mechanisms

likely to contribute to neuronal injury processes including excitotoxicity (Lipton and

Rosenberg, 1994) and convulsions in epilepsy (Chapter 4). Agonists of mGlu^ have been

shown to be neuroprotective in animal models of stroke (Bond et al., 1999), iniitm models of

traumatic brain injury (Allen et al., 1999) and excitotoxicity (Kingston et al., 1999). However,

increasing evidence suggests that this neuroprotective mechanism certainly involves mGlu^

located on glial cells (Bruno et al., 1998; D'Onofrio et al., 2001; Chapter 2). Given that many

early investigations of mGlu2/3-mediated inhibition of cAMP production were performed in

pure neuronal cultures or brain slices where neuronal versus glial events cannot be separated, it

is surprising to find that mGlu^-linked cAMP signalling in astrocytes has received only sparse

attention (Balazs et al., 1998a; Cormier et al, 2001).

The present study sought to characterise the in vkro pharmacology of the selective

mGlu2/3 agonists 2/?,4#-APDC and LY379268 by measuring changes in cAMP production in

astrocyte and neuronal cultures. Furthermore, our own preliminary evidence (Moldrich and

Beart, 2002) had indicated that the ability of mGlu*, to inhibit stimulated production of cAMP
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was sensitive to extracellular calcium. Therefore, further attempts were made to characterise

this phenomenon and to elucidate how calcium may affect cAMP responses following

activation of

3.2. Methods

All animal experiments in this chapter were performed according to the Animal Ethics

Guidelines of Monash University under animal ethics approval Pharmacology 1999/09. A full

list of materials used appears in Appendix IV. Full methods appear in Appendices VI-X.

3.2.1. Cortical and striatal neuronal cultures

Cells from the cerebral neocortex and striatum were similarly cultured from Swiss

white embryonic mice (day 15-16) as previously described (Cheung et al., 1998b). The cortices

and striatum were dissected in Hank's Balanced Salt Solution (HBSS; Appendix III) containing

bovine serum albumin (3 mg/ml) and 1.2 mM MgSO4. Tissue was digested with trypsin (0.2

mg/ml) and DNase (80 /xg/ml) at 37°C for 5 min. Digestion was terminated by the addition of

trypsin inhibitor (0.52 mg/ml) and the cells were triturated and suspended in Neurobasal

medium (Appendix I) containing B27 (Appendix II), penicillin (100 U/ml) and streptomycin

(100 Mg/ml), 0.5 mM glutamine and 10% fetal calf serum. Cells were seeded in Nunc muHwell

plates at 0.12 x 106 or 0.3 x 106 cells/well for pharmacological (96-well plates) or

morphological/cAMP assay (24-well plates) experiments, respectively. After 24 h in ixtro, the

medium was replaced with serum-free Neurobasal medium containing B27 supplement, and

cultures were maintained in a humidified CO2 incubator (5% CO2, 8.5% O2; 37°C) for up to 13

days invitro (div). Partial medium changes were performed each 4-5 div.
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3.2.2. Astrocyte culture

The forebrains of Swiss white mice (postnatal day 1-2) were dissected, digested and

triturated in a manner similar to that of cortical/striatal neuronal cultures. Cells were originally

cultured in flasks in 10 ml of Astrocyte Medium (AM) consisting of Dulbecco's Modified

Eagle's Medium, 10% fetal calf serum, penicillin/streptomycin (100 U/ml/100 /zg/ml) and

Fungizone® (amphotericin B, 1 /xg/ml) at 36°C and 5% CO2. Complete medium changes were

performed twice weekly until cells were confluent. Following detachment from the flasks with

10 mM EDTA (Ratek Orbital Mixer; 37°C, 200 rpm, 2 h), astrocytes were replated in Nunc

multiwell plates at 3.0 x 104 or 8.0 x 10' cells/well for calcium assay (96-well plates) or cAMP

assay (24-well plates) experiments. Astrocytes were grown to confluence with twice weekly

medium changes at 36°C and 5% CO2, such that at the time of the experiments astrocytes

were 24-28 div. These cultures demonstrate no neuronal microtubule associated protein-2, but

>90% glial fibrillary acidic protein-positive, immunoreactivity (representative

photomicrographs shown in Appendix IX).

3,2.3. Measurement. ofcAMP

The cellular content of cAMP in cortical neurones, striatal neurones and astrocytes was

measured following exposure to 10 /xM forskolin in the presence and absence of LY379268.

Treatments were prepared in 1.8 mM CaCl2-containing or CaCl2-free HEPES-buffered saline

(HBS: 146 mM NaCl, 4.2 mM KCl, 0.5 mM MgCl2, 0.1% (v/v) glucose, 20 mM HEPES; pH

7.2) containing the phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine (IBMX; 1 mM).

In some experiments the extracellular calcium concentration flC^D ™* a d i u s t e d a s i n d i c a t e d

or replaced with 1.8 mM BaCl2. Cultures were washed with appropriate buffers prior to 5 min
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exposure to treatment solutions at 36/37°C. Vehicle (IBMX) and drug pre-incubation

treatments were performed where appropriate.

The treatment solutions were aspirated and the cellular cAMP extracted by scraping

the well in the presence of ice-cold 70% ethanol and 1 mM EDTA. This extraa was gently

centrifuged at 37°C (Savant Environmental Speedvac ESC2000) to evaporate the supernatant

and the pellet was resuspended in cold 50 mM Tris-lmM EDTA solution. Aliquots of the

sonicated resuspension were assayed according to the commercially available Biotrak

[3H]cAMP as.;ay kit (Amersham). The protein content of the final resuspension was

determined using the Bio-Rad D c Protein Assay kit using BS A as standard.

3.2.4. Intracellu/ar calcium concentration

The intracellular calcium concentration ftCa2*];) of cortical neurones and astrocytes was

measured in an attempt to correlate [Ca2+]; with the cAMP responses observed. The [Ca2+];

was determined using the Fluo-3/AM calcium-binding dye. Cells were loaded with 10 fM

Fluo-3/AM in HEPES-buffered saline containing (mM): NaCl 135, KCl 5, MgSO4 0.62, CaCl2

1.8, HEPES 10 and glucose 6, pH 7.4 at 37/36°C for 1 h. DMSO (1%) and 0.2% Pluronic F-

127 were included to aid dispersion of the dye. The cells were washed with the above HEPES-

buffered saline including 1 mM furosemide to prevent efflux of the dye (used in each buffer

thereafter). Cells were washed in either 1.8 mM Ca2+-containing or Ca2+-free HBS (as per

section 2.3), followed by a 5 min incubation with IBMX in the presence and absence 10 (M

forskolin plus LY379268. The relative fluorescence units (RFU) of the cells was measured after

the wash and during treatment at 485/530 nm (excitation/emission) using theFluoroskan

Ascent fluorometer (Labsystems).
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3.2.5. Statistics

The formation of cAMP was expressed as mean production (pmol/mg protein/min)

pooled from 6-9 replicates from 2-3 independent cultures. Basal and 10 /*M forskolin

treatments were preformed for each experiment and represent 0% and 100% controls

respectively, unless otherwise indicated. EC^ values were calculated by non-linear regression

analysis (sigmoidal, variable slope; GraphPad Prism).

To determine [Ca2+];, cells were incubated in the presence of the calcium ionophore

A23187 (10 fjM) following drug treatment to obtain the maximum RFU of the ceils (Fmax)

which was quenched with 2 mM CuCL, to obtain the minimum RFU of the cells (Fmin).

Fluorescence was blanked against unloaded cells, and the free cytosolic calcium concentration

determined according to the equation: [Ca2+]; = KD(F-'Fm^)/(FmarSr)i where F was the observed

RFU. KD was determined to be 145 nM, using a commercially available calibration kit. E)ata

from cAMP and [Ca2+]; measurements were shown to be from a single population (one-way

ANOVA) and significant differences were identified using one-way or two-way ANOVA

followed by a Student Newman-Keuls post-hoc test, or unpaired f-test (SigmaStat) where P <

0.05.

3.3. Results

3.3.1. mGlu2/}pharmacology in neurones

In cortical neurones 2/?,4i?-APDC (Figure 3.1, Table 3.1) and LY379268 (Figure 3.2,

Table 3.1) produced a concentration-dependent inhibition of forskolin (10 /*M)-stimulated

production of cAMP in the absence and presence of 1.8 mM Ca2+
; under these conditions

EC50 values were approximately 0.5 iM and 1.8 [M respectively for 2/?,4i?-APDC; and 10 nM

and 60 nM, respectively, for LY379268 (Table 3.1). The abilities of 2i?,4i?-APDC and
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LY379268 to inhibit forskolin stimulated production of cAMP (Emax -12% versus - 2 3 % of

control, respectively) were not. shown to be significantly different (P > 0.05, f-test). The

presence of Ca2+ (1.8 mM) compared with Ca2+-free buffer, failed to significantly influence the

efficacy or apparent potency of 2^,4i?-APDC or LY379268 in these cortical neuronal cultures

(both agonists: P> 0.05, two-way ANOVA).

In striatal neurones, LY379268 (Figure 3.2, Table 3.1) produced a concentration-

dependent inhibition of forskolin (10 /*M)-stimulated production of cAMP in the absence and

presence of Ca2+ (1.8 mM) whereby the ECW values were approximately 36 nM and 20 nM,

and Emax values approximately 65% and 60% of control, respectively (Table 3.1). The presence

of Ca2+ (1.8 mM) failed to significantly influence the efficacy or potency of LY379268 in these

striatal neuronal cultures (P > 0.05, two-way ANOVA). The ability of 2R,4i?-APDCto inhibit

forskolin-stimulated production of cAMP in striatal neurones has been earlier described in part

(Chapter 2).

3.3.2. mGlu2/3pharmacology in astrocytes

In astrocytes, 2/?,4i?-APDC (Figure 3.1, Table 3.1) and LY379268 (Figure 3.2, Table

3.1) produced a concentration-dependent inhibition of forskolin (10 juM)-stimulated

production of cAMP in the absence of extracellular Ca2+ to approximately 50% and 30% of

control, respectively (Table 3.1). However, unlike cortical or striatal neurones, the presence of

Ca2+ (1.8 mM) produced a concentration-dependent potentiation of cAMP production in

astrocytes by both 2R,4R-APDC and LY379268 to approximately 200% of control such that

there was a significant difference between 1.8 mM Ca2+-containing and Ca2+-free conditions

(both agonists: P < 0.0001, two-way ANOVA). The apparent potencies of 2i?,4i?-APDC and

LY379268 to induce this potentiation were approximately 4 and 15 orders of magnitude



Figure 3.1 Concentration-response curves of cAI/r production modulated by the mGlu2/3

agonist 2R.4R-APDC in murine cortical neurons and forebrain astrocytes.

Treatments were performed for 5 min at 37°C, standardised against the protein content

of the sample, values adjusted to reflect cAMP production per min and finally normalised

against 10 uM forskolin (100% control) in Ca2+-containing (closed circles) or Ca2+-free buffer

(open squares) where appropriate. '

A. Results show 2R.4R-APDC induced a concentration dependent potentiation of cAMP

production in astrocytes in the presence of 1.8 mM Ca2+.

B. Such potentiation is not obtained in cortical neurons. * p < 0.05 compared to the

same concentration of LY379268 in the absence of 1.8 mM Ca2+ ^wo-way ANOVA, post hoc

test, n = 6-9).
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Figure 3.2 Concentration-response curves of cAMP production modulated by the

agonist LY379268 in murine cortical neurons, striatal neurons and forebrain astrocytes.

Treatments were performed for 5 min at 37°C, standardised against the protein content

of the sample, values adjusted to reflect cAMP production per min and finally normalised

against 10 uM forskolin (100% control) in Ca2+-containing (closed circles) or Ca2+-free buffer

(open squares) where appropriate. Results show LY379268 induced a concentration dependent

potentiation of cAMP production in astrocytes in the presence of 1.8 mM Ca2+. Such potentiation

is not obtained in cortical or striatal neurons. * P < 0.05 compared to the same concentration of

LY379268 in the absence of 1.8 mM Ca2+ (two-way ANOVA, post hoc test, n = 6-9).
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Table 3.1 Modulation of stimulated cAMP in neurones and astrocytes by mGIUz/3
agonists.

mG!u2/3 agonist pharmacology in cell culture

[Ca*l,(mM, ECM(nM) %df£fc
(MM)

Cortical Neurones
2R.4R-APDC

LY379268

Striatal Neurones
LY379268

Astrocytes
2R.4R-APDC

LY379268

0

1.8

0

1.8

0

1.8

0

1.8

0

1.8

540 ± 200

1800 ±600

10.3 ±5.4

61.7 ±20.0

36.2 ± 9.4

19.6 ±2.9

940 ±100

240 ±100*

15.8 ±2.5

0.88 ± 0.20*

8±5(100)

7 ± 4 (100)

23 ± 4 (0.3)

12 ± 2 (0.3)

65 ± 5 (0.3)

60 ± 7 (0.3)

50 ±6(1)

194 ±9 (200)

30 ± 4 (0.1)

228 ±13 (0.1)

[Ca2+]e: extracellular Ca2+ concentration. EC50 and Emax were determined by non-linear regression analysis

(sigmoidal, variable slope) using GraphPad Prism. Treatments were performed for 5 min at 37°C, standardised

against the protein content of the sample, values adjusted to reflect cAMP production per min and finally

normalised against 10 uM forskolin (100% control) in Ca2+-containing or Ca2+-free buffer where appropriate.

Value in parenthesis represents the concentration (uM) at which a maximal response was observed. * P < 0.05

compared to the ECso of either 2R.4R-APDC or LY379268 in astrocytes in Ca2+-free buffer (f-test). n = 6-9.



Chapter 3: cAMP regulation , , 6

greater than that required to inhibit forskolin-stimulated cAMP production under Ca2+-free

conditions (Table 3.1), which was statistically significant for both agonists (P < 0.0006, r-test).

3.3.3. The effect of extracellular calcium concentration ([Ca2+Jj on cAMP production and

intracellular calcium concentration ([Ca2+]J in astrocytes

The dichotomy of mGlu^j responses in astrocytes was further investigated using the

more potent mGlu^ agonist LY379268 and by manipulating the [Ca2+]e. The inhibition of

stimulated cAMP production mediated by mGlu^j was examined over a range of extracellular

Ca2+ concentrations (0.001-10 mM). Firstly, forskolin (10 /xM)-stimulated production of cAMP

was inhibited in Ca2+-free buffer by the inclusion of LY379268 (100 nM; 100% control).

Secondly, astrocytes were exposed to increasing [Ca2+]e which resulted in increases in cAMP

production to nearly 500% of control at 3 mM (Figure 3.3A)(/> < 0.0001, one-way ANOVA).

The EC50 for [Ca2+]c to potentiate the induced decrease in cAMP production was determined

to be 36 ± 10 (M.

A second series of experiments determined that increasing [Ca2+]e produced increases

in [Ca2+]; in astrocytes based on fluorescence measurements of the affinity of Fluo-3/AM for

cytosolic free Ca2+ (Figure 3.3B)(P < 0.0001, one-way ANOVA). While 1 mM and 10 mM

[Ca2+]e produced increases in [Ca2+]j of approximately 140% and 350% above zero [Ca2+]e,

respectively, only the increase in [Ca2+]; produced by 10 mM was statistically significant (P <

0.05, one-way ANOVA, post hoc test).

Finally, the combined effect of increasing [Ca2+]e in the presence of 10 /xM forskolin

and 100 nM LY379268 was investigated (Figure 3.3C). Increasing [Ca2+]e produced an increase

in [Ca2+]j whereby both 0.1 mM and 1 mM significantly increased [Ca2+]; above zero [Ca2+]e (P

< 0.05,one-way ANOVA, post hoc test). Supramaximal Ca2+ (10 mM) decreased [Ca2+]i beyond



Figure 3.3 Increasing [Ca2*]e increases cAMP production in astrocytes.

A. Treatments were performed for 5 min at 37°C, standardised against the protein

content of the sample, values adjusted to reflect cAMP production per min and finally

normalised against 10 uM forskoiin plus 100 nM LY379268 in the absence of Ca2+ (100%

control; n = 4). 10 uM forskoiin alone (open circle) is in included as reference.

B. Increasing [Ca2+]e induce [Ca2+]j increases in astrocytes. [Ca2+]j measurements

represent the mean ± S.E.M. (n = 8) at each [Ca2+]e over a period of 5 min at 37°C.

* P < 0.05 compared to zero [Ca2+]e, one-way ANOVA, post hoc test. C. Increasing

[Ca2+]e induce [Ca2+]j increases and decreases in astrocytes in the presence of 10 uM forskoiin

and 100 nM LY379268. All [Ca2+]j are expressed as a ratio of the [Ca2+]j prior to the addition of

10 uM forskoiin plus 100 nM LY379268 to give change in [Ca2 l (A[Ca2+]i).

** p < 0.05 compared to zero [Ca2+]e, two-way ANOVA, post hoc test.

# P < 0.05 compared to 1 mM [Ca2+]e, two-way ANOVA, post hoc test.
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that of 1 mM (JP< 0.05, one-way ANOVA, post IXK test) and slightly beyond that of zero [Ca2+]e

(P > 0.05, one-way ANOVA, post hoc test), implicating a biphasic and [Ca2+]e-dependent

mechanism for modulation of [Ca2+]; during forskolin and mGlu^ agonist treatment. This

effect correlates with the potentiation, then de-potentiation of forskolin-stimulated production

of cAMP by increasing [Ca2+]c (seen in Figure 3.3A) where 10 mM [Ca2+],. produced a sub-

maximal effect.

3.3.4. Pharmacological and biochemical modulation of mGlu2/J-mediatedpotentiation or inhibition

of forskolin-stimulated cA UP production in astrocytes

In an attempt to determine the mechanism by which [Ca24]e affected the mGlu^-

mediated potentiation or inhibition of forskolin-stimulated cAMP production, a number of

receptor agonists and intracellular enzyme inhibitors were employed (Table 3.2). For each

treatment, the drug was incubated with astrocytes alone (0% control), in the presence of 10 iM

forskolin (100%) and finally, with forskolin and 100 nM LY37928. In the presence of Ca2+ (1.8

mM), LY379268 (100 nM) and forskolin (10 /M) produced a potentiation of cAMP

production to approximately 240% compared to forskolin alone. In the absence of Ca2+, 100

nM LY379268 and 10 //M forskolin produced an inhibition of cAMP production to

approximately 60% compared to forskolin alone (section 3.3.2). Both the potentiation and

inhibition of cAMP production was prevented by uncoupling the G; protein from the mGlu^

receptor by overnight treatment with 100 ng/ml pertussis toxin to 66% and 130% of

respective controls (P > 0.05 compared to respective forskolin controls; t-test). Similarly, the

potentiation and inhibition was antagonised by the mGlu^-specific antagonist LY341495 (1

lM; 118% and 85% of respective controls; P > 0.05, t-test), and not by the mGlu5-specific

antagonist MPEP (1 (M; 247% of control; P = 0.0163, t-test). The potentiation. of cAMP
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t

x

production was reduced by the breakdown of endogenous, extracellular adenosine using 1

U/ml adenosine deaminase (134% of control; P = 0.0418, t-test), and reduced by the A2A

receptor antagonist 2M241385 (Ongini et al., 1999; 1 /zM; 99% of control; P > 0.05, t-test).

Furthermore, 30 min pre-incubation of astrocytes with the PLC inhibitor U73122 (10 fM) and

the protein ldnase A (PKA) inhibitor H89 (30 JIM) elevated cAMP formation by forskolin

(both inhibitors: P < 0.0002, t-test), however only pre-incubation with U73122 and the

calmodulin kinase II inhibitor KN-62 (10 /*M) prevented or inhibited mGlu^-mediated

potentiation of cAMP production to 93% (P > 0.05, t-test) and 49% (P = 0.001, t-test) of

respective controls, indicating the specific role of these intracellular enzymes in the mGlu^-

mediated potentiation observed.

In 1.8 mM Ca2+-containing buffer, the L-type Ca2+ channel blockers nifedipine (1 /uM)

and nimodipine (1 JUM) reduced the LY379268-induced potentiation of cAMP production to

107% of control (P > 0.05, t-test). In Ca2+-free buffer, the Ca2+-ATPase inhibitor thapsigargin

(1 /xM) induced mGlu^j-mediated potentiation of forskolin-stimulated production of cAMP to

176% of forskolin alone (P = 0.0014, t-test). Finally, extracellular Ca2+ was replaced by an equal

concentration of BaCl2 (1.8 mM) which failed to produce mGlu^-mediated potentiation of

forskolin-stimulated cAMP production (105%; P > 0.05, t-test), but did reduce the LY379268-

induced inhibition of forskolin-stimulated cAMP production. In separate experiments in Ca2+-

free buffer (not shown), BaCl2 produced a [Ca2+]; of 210 ± 17 nM - an increase of

approximately 30% above that produced by Ca2+-free buffer. This increase in [Ga2+]; most

likely contributes to the reduction in LY379268-induced inhibition of stimulated cAMP

production observed, and possibly results from the ability of BaCl2 to inhibit inward rectifying

K+ currents in astrocytes (Tse et al., 1992). Together, these latter experiments further
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Table 3.2 Modulation of mGIUzn-mediated potentiation or inhibition of forskolin (10
uM)-stimulated production of cAMP in astrocytes.

+ 1.8mMCa2+

100ng/mlPTXa

1 |JM LY341495

1 |JM MPEP

1 U/ml aden. deaminase

1 (JMZM241385

30 [jM H89b

10|JMU73122b

10|JM KN-62b

Ca2+-channel blockers

Ca?+-free

100ng/mlPTXa

1 |JM LY341495

1 pM thapsigargin

1.8mMBaCI2

Basal

0.1 ±0.3

0.2 ± 0.2

1.1 ±0.1

0.4 ±0.1

0.3 ±0.1

0.8 ± 0.3

1.3 ±0.2

1.7 ±0.3

1.2 ±0.1

0.6 ± 0.2

1.7 ±0.7

0.4 ±0.1

1.2 ±0.4

0.9 ± 0.2

0.8 ± 0.3

cAMP Production in Astrocytes
(pmol/mg protein/min)

A n . ,M

1U |JM
Forskolin

10.1 ±1.9

6.1 ±0.7

12.8 ±2.3

11.3±3.1

7.6 ±1.4

13.3 ±3.1

25.4 ± 2.4*

28.0 ± 2.0*

13.0±1.0

5.5 ±0.1

8.3 ±0.3

4.4 ±0.8

9.1 ±0.7

5.1 ±0.3

8.0 ±0.2

Forskolin +
100nMLY379268

(% of control)

24.7 ± 5.2 (240)*

4.1 ± 0.5 (66)

15.0 ±3.0 (118)

27.4 ± 2.7 (247)*

10.1 ±1.0(134)*

13.2 ±4.4 (99)

47.9 ±11.9 (193)*

26.1 ±7.1 (93)

6.4 ±0.1 (49)*

5.9 ±1.3 (107)

5.0 ± 0.4 (58)*

5.6 ±1.0 (130)

7.9 ±1.1 (85)

8.3 ±0.4 (176)*

8.4 ±0.1 (105)

Treatments were performed for 5 min at 37°C, standardised against the protein content of the sample, and

values adjusted to reflect cAMP production per min. a Cells were treated with PTX overnight. b H89, U73122

and KN-62 were pre-incubated with astrocytes for 30 min prior to forskolin stimulation. Ca2+-channel blockers

include 1 uM nifedipine and 1 uM nimodipine and were included in the wash buffers also. # P < 0.05 compared

to forskolin, as determined in section 3.2. * P < 0.05 compared to forskolin (f-test). ± P < 0.05 compared to

forskolin without H89 or U73122 (f-test). n = 6-9.
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demonstrate the importance of the mobilisation of extracellular and intracellular Ca2+ into the

cytosol where mGlu^ second messenger signalling occurs.

3.3.5. The effect of[Ca2+]e and pharmacological treatments on [Ca2+]i inneurones and astrocytes

Given the importance of both [Ca2+]c and [Ca2+];, further studies explored in detail the

changes of [Ca2+]; following treatment of neurones and astrocytes with forskolin, LY379268,

and other putative [Ca2+l modulators. Since the objective of these experiments was to replicate

the conditions used to measure changes in cAMP production, 1 mM IBMX was used

throughout treatments. Consequently, the [Ca2+]; decreased slightly following basal treatment

across both neurones and astrocytes by approximately 20% in Ca2+-free buffer, and by

approximately 10% in 1.8 mM Ca2+~containing buffer (Figure 3.4). As an additional control, an

increase in [Ca2*]; was induced in both neurones (Figure 3.4A) and astrocytes (Figure 3.4D)

with a depolarising concentration of KCl (50 mM), demonstrating the extent and absence of

K+-induced Ca2+ influx in Ca2+-containing and Ca2+-free buffer respectively. Treatment of

neurones or astrocytes in Ca2+-free buffer with 10 /xM forskolin decreased [Ca2+]; slightly

compared to basal (astrocytes: P < 0.05, one-way ANOVA, post hoc test; Figure 3.4B and E),

i however treatment with both forskolin and 100 nM LY379268 increased [Ca2+]; compared to

I basal (astrocytes: P < 0.05, one-way ANOVA, post hoc test; Figure 3.4B and E). In contrast, in

Ca2+-containing buffer, treatment of neurones with 10 /xM forskolin increased [Ca2+]j slightly

i compared to basal values (P < 0.05, one-way ANOVA, post hoc test; Figure 3.4C). This increase

1 in [Ca2+]; was inhibited in the presence of 100 nM LY379268 (P < 0.05, one-way ANOVA, post

hoc test; Figure 3.4C). There was no significant difference between forskolin and basal, and

forskolin plus LY379268 and basal in Ca2+-containing buffer in astrocytes (P > 0.05, one-way

ANOVA,posthoctest; Figure 3.4F).
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Since the Ca2+-dependent potentiation of cAMP production was shown to be

associated with astrocytes, and not cortical or striatal neurones, further experiments focused on

these astrocyte cultures. Consequently, it was demonstrated that the increased [Ca2+]; iri

astrocytes in Ca2+-containing buffer was largely mediated by L-type Ca2+ channels since the

specific L-type Ca2+ channel blockers nifedipine (1 yxM) and nimodipine (1 pM) inhibited this

increase [Ca2+} by approximately 75% {P = 0.0593, t-test; Fig 3.4D).

While the above experiments had established the essential role of [Ca2+]c in mGlu^j-

mediated potentiation of cAMP production in astrocytes, it was unclear if [Ca2+]c did, or did

not, induce release of Ca2+ from intracellular stores (e.g. capacitative Ca2+ entry; Wu et al.,

1999), or alternatively, if pharmacological induction of intracellular Ca2+ release contributed to

this potentiation. Therefore, in Ca2+-free buffer, thapsigargin (1 /oM) and the mGlu1/5 agonist

DHPG (100 fjM) were employed to induce intracellular Ca2+ release (Figure 3.4E). However,

only thapsigargin (1 /xM) was effective in increasing [Ca2+]; producing an increase of

approximately 18% above basal [Ca2+]; (P< 0.05, one-way ANOVA, post hoc test), compared to

DHPG which produced a decrease of 15% below basal [Ca2+]; (P <0.05, one-way ANOVA,

post lux test) when averaged across the 5 min treatment period.

Considering that in the presence of Ca2+, L-type Ca'* channel blockers and the A2A

receptor antagonist ZM241385 had inhibited the mGlu^-mediated potentiation of cAMP

production (Table 2), the effect of these treatments on [Ca2+]; was investigated (Figure 3.4F).

While ZM241385 (1 \M) had little effect on [Ca2+], compared to 10 (M forskolin plus 100 nM

LY379268 (P > 0.05, one-way ANOVA, post hoc test), an increase in [Ca2+]; was evident in the

presence of the L-type Ca2+ channel blockers (P< 0.05, one-way ANOVA, post hoc test). These

blockers were included in the wash buffer (containing 1.8 mM Ca2+, as per the cAMP assay),

therefore while it appears that L-type Ca2+ channel blockers have increased [Ca2+]; following
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treatment with forskolin and LY379268, this effea is standardised to the already decreased

[Ca2+]; following pre-incubation with the blockers (see Figure 3.4D). LY379268 (100 nM) alone

did not affect basal [Ca2+], in Ca2+-free or 1.8 mM Ca2+ buffers (both conditions: P > 0.05, one-

way ANOVA; not shown). These results suggest that in the presence of forskolin, agonists of

are capable of inducing intracellular Ca2+ release.

3.3.6. mGlu2/3 potentiation of cAMP production in astrocytes in the presence of additional

stimulants

Apart from forskolin, other receptor agonists were employed to induce cAMP

production in astrocytes (Table 3.3). The non-selective P-adrenoceptor agonist isoprenaline (10

//M) and the non-selective adenosine agonist NECA (10 piM) both stimulated cAMP

production to approximately equivalent levels in Ca2+-containing buffer. However LY379268-

induced potentiation of cAMP production only occurred during isoprenaliae stimulus (224%

of isoprenaline control; P = 0.022, t-test). In Ca2+-free buffer, 100 nM LY379268 inhibited

cAMP production stimulated by isoprenaline to 49% of control (P = 0.0022, t-test) and NECA

to 21% of control. However due to the latter agonist only weakly stimulating cAMP

production in Ca2+-free buffer, the LY379268-induced inhibition failed to reach statistical

significance (Table 3.3; P > 0.05, Mest). Evidence suggests that stimulation of the intracellular

PLC/IP3 pathway via mGlu1/5 may be linked with intracellular effects induced by mGkij/j

(Schoepp et al., 1996a; Cormier et al., 2001) such that DHPG and 2i?,42?-APDCact in synergy

to increase cAMP production for example. However, in the present study 100 / M DHPG not

only failed to induce cAMP production, but also failed to facilitate cAMP production when co-

applied with 100 nM LY379268 (Table 3; P > 0.05, t-test) and 1 /iM (P >0.05, t-test; not



Figure 3.4 Pharmacological manipulation of [Caz+]i in neurons (A-C) and astrocytes (D-F).

A. In the presence of 1.8 mM Ca2+, 50 mM KCI induces an increase in [Ca2+]j ($ P <

0.05, one-way ANOVA, post-hoc test). In the absence of 1.8 mM Ca2+, 50 mM KCI is unable to

induce increases in [Ca2+]i (P > 0.05, one-way ANOVA, post-hoc test). Values represent the

mean ± S.E.M. (n = 8) over a period of 5 min at 37°C.

B. Treatment of neurons in Ca2+-free buffer with 10 uM forskolin decreased [Ca2+],

slightly compared to basal, however treatment with both forskolin plus 100 nM LY379268

slightly increased [Ca2+]j compared to basal.

C. In Ca2+-contsinin.g buffer, treatment of neurons with 10 uM forskolin increased [Ca2+]j

compared to basal values (*P < 0.05, one-way ANOVA, post hoc test). This increase was

inhibited when co-treated with 100 nM LY379268 (#P < 0.05, one-way ANOVA, post hoc test).

D. In the absence of 1.8 mM Ca2+, 50 mM KCI is unable to induce increases in [Ca2+]|.

Values represent the mean ± S.E.M. (n = 8) over a period of 5 min at 37°C. Ca2+ channel

blockers include 1 uM nifedipine and 1 uM nimodipine and reduced the [Ca2+]j by approximately

75% compared to 1.8 mM Ca2+ buffer. Ca2+ channel blockers included in the wash buffer also.

In Ca2+-containing buffer the increase in [Ca2+]j was not statistically significant due to variability.

In the absence of 1.8 mM Ca2+, 50 mM KCI is unable to induce increases in [Ca2+]i (P > 0.05,

one-way ANOVA, post-hoc test).

E. Thapsigargin (1 uM), but not DHPG (100 uM) produces an increase in [Ca^ I in

astrocytes when co-treatod vith 10 uM forskolin and 100 nM LY379268 in Ca2+-free buffer. * P <

0.05 compared to basal, two-way ANOVA, post hoc test. # P < 0.05 compared to forskolin, two-

way ANOVA, post hoc test.

F. Ca^ channel blockers but not ZM241385 (1 uM) produce an increase in [Caz ], in

astrocytes when co-treated with 10 pM forskolin and 100 nM LY379268 in Ca2+-containing

buffer. However, the increase produced by the Ca2+ channel blockers here follows the already

decreased [Ca2+]j produced by the blockers prior to the addition of forskolin and LY379268 (as

seen in A).

t P < 0.05 compared to treatment with both forskolin and LY379268, two-way ANOVA,

post hoc test. LY379268 alone (with IBMX) had no significant effect on [Ca2+], compared to

basal in either Ca2+-free or 1.8 mM Ca2+ buffer (both conditions: P > 0.05, two-way ANOVA,

post hoc test). In B, C, E and F all [Ca2+]i are expressed as a ratio of the [Ca2+]j prior to the

addition of 10 uM forskolin and 100 nM LY379268 to give change in [Ca2+]i (A[Ca2+]j).
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Table 3.3 Ca2+-dependent, mGlu^-mediated potentiation or inhibition of cAMP

production using various stimulants.

+ 1.8mMCa2+

10 uM Forskolin
10 uM Isoprenaline

10uMNECA
100uMDHPG

10 uM 1,9-Dideoxyforskolin

Ca2+-free
10 uM Forskolin

10 uM Isoprenaline
10uMNECA

100uMDHPG

cAMP Production in Astrocytes
(pmol/mg

Stimulant

10.1 ±1.9
17.4 ±1.1
18.4 ±1.9
1.1 ±0.1
0.3 ±0.1

8.3 ±0.3
21.2 ±4.1
2.9 ±1.2
0.2 ±0.1

protein/min)
Stimulant +

100 nM LY379268
(% of stimulant)

24.7 ± 5.2 (244)*
39.1 ±5.2 (224)*
13.4 ±3.1 (72)
1.4 ±0.2 (127)

0.1 ±0.1

5.0 ± 0.4 (58)*
10.3 + 1.5(49)*
0.6 ±0.1 (21)

0.1 ±0.0

Treatments were performed for 5 min at 37°C, standardised against the protein content of the sample, and

values adjusted to reflect cAMP production per min. 10 uM 1,9-dideoxyforskolin and 100 uM DHPG were

without effect in inducing cAMP formation, and no significant potentiation was obcerved when co-treated with

100 nM LY379268. 100 nM LY379268 was without effect in potentiating 10 uM NECA-induced cAMP

production. #P< 0.05 compared to forskolin, as determined in section 3.2. * P < 0.05 compared to respective

stimulant alone (Mest). n = 6-9.
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shown). Finally, in the presence cf Ca2+ (1.8 raM) and the inactive forskolin analogue 1,9-

dideoxyforskolin (10 /AM), LY379268 failed to increase cAMP (1-1000 nM; only 100 nM

shewn in Table 3.3), indicating that in these astrocytes LY379268 is unlikely to be mediating a

potentiation effect though a Gs protein-coupled mGlu^ or as a result of secondary effects of

forskolin (Hoshi et al., 1988).

3.3.7. CaMKII and agonist-induced cAMP production

Further experiments were undertaken to determine the site of action of KN-62 which

appeared to "restore" the LY379268-induced inhibition of cAMP production despite the

presence of 1.8 mM Ca2+. Pre-incubation with KN-62 (10 /AM) failed to prevent the inhibition

of forskolin-stimulated cAMP production produced by LY379268 (100 nM) in Ca2+-free buffer

(P > 0.05 compared to 10 fM forskolin plus 100 nM LY379268, t-test; Figure 3.5A). In Ca2+-

containing buffer, KN-62 (10 /AM) inhibited the production of cAMP induced by 10 /AM

NECA by approximately 90% {P = 0.0286 compared to 10 fjM NECA alone, £-test; Figure

3.5B), but not cAMP production induced by 10 JAM isoprenaline (P > 0.05 compared to 10 /AM

isoprenaline alone, t-test; Figure 3.5B). These results suggest that stimulated CaMKII acts to

promote the adenosine-activated A^-mediated potentiation of cAMP production, and is

relatively specific for those responses induced by A^ coupled to Gs over P-adrenoceptors

coupled to Gs or mGlu^j coupled to G;.

3.4. Discussion

Group II mGlu receptors localised on neurones undoubtedly play an important role in

the regulation of synaptic transmission, especially through their ability to regulate presynaptic

atransmitter release (Cartmell and Schoepp, 2000). Other evidence emphasises that
neurot



Figure 3.5 Inhibition of CaMKII reduces NECA-induced production of cAMP.

A. In Ca2+-free buffer, KN-62 (10 uM) did not affect the ability of 100 nM LY379268

(LY379) to inhibit 10 uM forskolin (Fsk)-stimulated production of cAMP when compared to 10

uM forskolin plus 100 nM LY379268 in the absence of KN-62.

B. In 1.8 mM Ca2+ buffer, pre-incubation of KN-62 (10 uM) did not affect 10 uM

forskolin (Fsk)- or 10 uM isoprenaline (ISO)-stimulated production of cAMP. In. contrast, under

similar treatment conditions, KN-62 did inhibit NECA-stimulated production of cAMP (P = 0.0286

compared to 10 pM NECA alone, Mest). Treatments were performed for 5 min at 37°C,

standardised against the protein content of the sample, and values adjusted to reflect cAMP

production per min.

* P = 0.0286 between indicated treatments, Mest. n = 6 - 9.
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mGlu2/3 located on glia are likely to contribute to cellular signalling (Winder and Conn, 1996)

and neuroprotection (Bruno et al., 1998a; D'Onofrio et sd, 2001). Classically, mGlu^ have

been defined, not only by their pharmacology but also by inhibition of stimulated production

of cAMP. In this context our study has shown that 2i?,4i?-APDC and the more recently

developed, potent and selective mGlu^ agonist, LY379268, inhibit forskolin-stimulated

production of cAMP in a PTX-sensitive and concentration-dependent manner in cortical and

striatal neurones. While 2J?,4i?-APDC and LY379268 inhibited stimulated cAMP production

in astrocytes under Ca2+-free conditions, these agonists also potentiated stimulated cAMP

production in the presence of physiological concentrations of calcium, an effect absent in

cortical and striatal neurones. Furthermore, this study demonstrated that the potentiation of

stimulated cAMP production mediated by mGlu,^ is regulated by the effective [Ca2+];, which is

sensitive to Ca2+ influx from the extracellular milieu and/or from mobilisation of intracellular

Ca2+ stores. Based on an extensive range of pharmacological investigations targeting cellular

signalling mechanisms, evidence was found suggesting that mGlu^ mediated potentiation of

cAMP production in astrocytes was associated with the PLC/IP3 pathway, CaMKII and

adenosine receptors.

The abilities of LY379268 and IR^R-APDC to inhibit and potentiate cAMP

production in neurones and/or astrocytes correlate with the potencies found previously in cell

lines (Monn et al., 1999). Since many early studies used non-selective mGlu^ agonists, the

resultant literature contains a panoply of interpretations including the involvement of mGlu1/5

(Casabona et al., 1992; Schoepp et al., 1996a), possible group Il-like mGlu receptors (Winder

and Conn, 1995) and the involvement of other G protein-coupled receptors, including P-

adrenoceptors (Balazs et al., 1998a,b), histamine (Selbie and Hill, 1998) and adenosine
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receptors (Cartmell et al., 1993; Schoepp et al, 1996a; Ogata et al., 1996; Ribeiro, 1999;

Cormier et al., 2001).

Protein and mRNA expression of the group I mGlu receptor subtype, mGlu5, and the

group II mGlu receptor subtype, mGlu3, is understood to be localised on astrocytes inizw, or

cultured in the presence or absence of serum (Tamaru et al., 2001; Janssens and Lesage, 2001).

Cultured cortical neurones express all subtypes of group I and II mGlu receptors (f anssens and

Lesage, 2001). In agreement with earlier evidence (Cartmell et al., 1993), Schoepp et al. (1996a)

found evidence for synergism between group I and II mGlu receptors, whereby increasing

concentrations of 2/?,4/?-APDC increased cAMP formation in rat neonatal hippocampal slices

only in the presence of DHPG, and vice versa, by a mechanism which involved endogenous

adenosine release. Whilst no group I/II mGlu receptor synergism in astrocyte cultures was

found in the present study, evidence existed for endogenous adenosine release such that

adenosine deaminase or antagonism of AM receptors prevented the potentiation of cAMP

production mediated by mGlu^j. Winder and Conn (1995) found that DCG-IV and L-CCG-I

potentiated (3-adrenergic stimulated cAMP production in adult rat hippocampal slices, in

agreement with our current findings with LY379268 plus isoprenaline. However, in the present

study mGlu^ was able to inhibit (3-adrenoceptor production of cAMP in the absence of

extracellular Ca2+. These results suggest that the potentiation reported briefly by Winder and

Conn (1995) was most possibly a result of endogenous adenosine release produced by

activation of mGlu2/3 on astrocytes in the presence of sufficient [Ca2+]; and Gs protein-coupled

receptor stimulation and/or positive adenylate cyclase activity.

While our research had previously noted the sensitivity of cAMP signalling to

extracellular Ca2+ (Moldrich and Beart, 2002), the present study sought to investigate this

phenomenon in greater depth. The first observation made was that this Ca2+ sensitivity
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occurred in forebrain astrocytes and not cortical or striatal neurones. Thus, the physiological

concentrations of extracellular Ca2+ (1.8 mM) were replicated in astrocytes in ikm and

demonstrated that the potentiation of cAMP production was dependent on the [Ca2+]e. Since

these observations did little to explain the mechanisms involved, it was important to correlate

this [Ca2+]c with [Ca2+];, and finally, to include treatments used to first characterise cAMP

produaion in culture. What these studies collectively showed was that cAMP potentiation was

dependent upon [Ca2+], and that this was likely due in part to Ca2+ influx which could be

manipulated by adjusting the [Ca2+]e. Further evidence for this latter hypothesis came from

employing L-type Ca2+ channel blockers to prevent Ca2+ influx. While astrocytes have been

shown to express various Ca2+ channels (Verkhratsky and Steinhauser, 2000), initial

experiments showed that the L-type Ca2+ channel blockers, nifedipine and nimodipine, could

inhibit [Ca2+]; increases by approximately 75% in the presence of 1.8 mM Ca2+. Consequently,

these blockers were then employed to better understand the mechanisms behind the mGlu^j-

mediated potentiation of cAMP production. Given the rapid nature of both Ca2+ influx and

second messenger signalling, the L-type Ca2+ channels blockers were included in the wash

buffers to pre-empt any Ca2+ influx. Ultimately, these results suggested that Ca2+ influx in

astrocytes through predominantly L-type Ca2+ channels contributed to an increase in [Ca2+];

which correlated with a mGlu^-mediated potentiation of forskolin-stimulated cAMP

produaion.

Sarco-endoplasmic reticulum Ca2+-ATPases are transporters that aaively sequester

Ca2+ within the endoplasmic reticulum or to one of its sub-compartments. Thapsigargin aas

indirealy by inhibiting these transporters and consequently preventing the counterbalancing of

the passive Ca2+ leak from the stores to the cytosol (Treiman et al., 1998). Given the obvious

sensitivity of the mGlu^-mediated modulation of cAMP produaion to extracellular Ca2+,
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thapsigargin was employed in this study to increase cytosolic [Ca2+]; in the absence of

extracellular Ca2+. The results show that thapsigargin prevented the decrease in [Ca2+]; induced

by treatment with both forskolin plus LY379268 in astrocyr.es, and under similar conditions,

facilitated the potentiation of forskolin-stimulated produaion of cAMP following activation of

mGlu2/3. Therefore, the present stud)' not only linked the effect of [Ca2+]e on [Ca2+]; to the

potentiation of cAMP production, but also demonstrated that in Ca2+-free conditions

mobilisation of intracellular Ca2+ stores increased [Ca2+]; and that both mechanisms were likely

to be operative in regulating mGhi^ signalling.

In light of the evidence indicating adenosine release, it is possible that an increase in

[Ca2+]; results in activation of synaptotagmins, the putative targets of which include SNARE,

syntaxin and SNAP-25 - key proteins expressed in astrocytes and involved in exocytosis (Sugita

and Sudhof, 2000; Araque et al., 2000). Other possible targets of this increase in [Ca2+]; could

be AC isoforms - at the micromolar concentrations achieved here, intracellular Ca2+ is known

to inhibit some negatively coupled AC isofonns (e.g. AC V and VI), which presumably

transduce the mGluj/j-G; protein signal in astrocytes (Charbardes et al., 1999). Alternatively, or

simultaneously, such increases in [Ca2+]; could stimulate other positively coupled AC isofonns

through calmodulin binding (e.g. AC I and VIII) which could transduce p-adrenergic/A2A-Gs

protein signals (Antoni, 2000), or through stimulating PKC activity (Defer et al., 2000).

In neurones, CaN'IKII has been known for some time to be directly activated by

autophosphorylation and/or from its interaction with cytosolic Ca2+/calmodulin complexes.

Although, in neurones, regulation of CaMKII is important in synaptic transmission, synaptic

plasticity and epileptogenesis (Lowenstein 1996; Bronstein et al., 1993), little is known about

the functions or isoforms of CaMKII in astrocytes. CaMKII has been shown to be capable of

phosphorylating AC III as a result of an increase in [Ca2*} thereby inhibiting AC Ill-mediated
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produaion of cAMP (Wei et al., 1996). Thus, in the present system, CaMKII may art at AC HI

to inhibit the secondary adenosine-induced rise in cAMP production. However, the

observation that KN-62 inhibited NECA-stimulated cAMP production (but did not modulate

forskolin- or P-adrenoceptor-stimulated cAMP production) suggests that CaMKII is most

likely involved in inhibiting adenosine receptor-induced cAMP production at the site of the

receptor itself, the G protein or a specifically coupled AC. Clearly, the role of CaMKII in

astrocytes needs to be studied in some detail with attention focusing on its interfaces with

cellular signaling cascades.

Forskolin and cAMP analogues are known to inhibit the function of presynaptic group

II mGlu receptors in area CA3 of the hippocampus (Kamiya and Yamamoto, 1997; Maccaferri

et al., 1998). Additional research showed that the function and coupling of mGlu2 to G

proteins could be restored by inhibitors of PKA (Schaffhauser et al., 2000) whereby Ser843 was

identified as the primary site of PKA-induced phosphoiylation. mGlu3 contains a similar PKA

consensus site at Ser845. Given that in our system one might expect to induce PKA-mediated

phosphorylation, the PKA inhibitor H89 was employed to determine if the LY379268-induced

cAMP response was sensitive to phosphorylation. Since H89 obviously increased the level of

forskolin-stimulated cAMP production, there exists the potential for the interaction of cAMP

with PKA in t^ese astrocytes. Interestingly, stimulation of cAMP production by forskolin is

either not able to inhibit the coupling of mGlu3 to G; via PKA-induced phosphorylation, or

alternatively PKA-induced phosphorylation is not adequate to arrest the gross mGlu3-mediated

signal transduction. Because quite simply, in our study and many others, mGlu^ agonists are

capable of reducing stimulated cAMP production, demonstrating successful G; protein

coupling. Indeed, LY379268 was still able to potentiate cAMP produaion with the same

efficiency (compared to 100% forskolin plus H89 control) despite the presence of H89.
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The present study also demonstrated the importance of PLC in the mGlu^-mediated

potentiation of cAMP production, and in light of other evidence in this study, recruitment of

PLC presumably results in the release of Ca2+ from intracellular stores. Since the mGlu1/5

agonist DHPG failed to facilitate potentiation of cAMP in the present study it is unlikely this

receptor-induced recruitment of the PLC/IP3 pathway and subsequent intracellular Ca2+

release from nVsensitive stores is responsible for the potentiation observed. While generally,

G; protein-coupled Aj receptors decrease cAMP production (Ralevic and Burnstock, 1998),

they have also been shown to potentiate the intracellular effects mediated by mGlu5,

presumably by synergy with the PLC/IP3 pathway (Cormier et al., 2001). However, the Gs

protein-coupled Km receptor antagonist ZM241385 inhibited the potentiation of cAMP

observed in the present study which involved the PLC/IP3 pathway. Following G protein

activation, Py subunit release has been shown in other systems to stimulate Gs-associated AC

II (Antoni, 2000) while increasing evidence links Py subunit release with activation of IP3

kinase and PLC. A recent elegant study showed how IP3 kinase was involved in

neuroprotection induced by LY379268 and mediated through astrocytes (D'Onofrio et al,

2001). However, mGiu5 activation by DHPG which is known to involve PLC, did not induce

potentiation of cAMP in the present study, and was similarly absent in the study by Balazs et

al. (1998a). Consequently, in the astrocytes cultured here it is unlikely that mGlu5-dependent G

protein-coupled receptor" (GPCR) cross-talk contributes significantly to the potentiation

observed, unlike that seen in hippocampal astrocytes (Cormier et al., 2001) or in neurones

(Ciruela et al., 2001), indicating possible regional and cell-type specific patterns of GPCR

interactions. GPCR pathways and AC signalling have been discussed in more detail elsewhere

(Selbie and Hill, 1998; Ford et al., 1998; Tesmer and Sprang, 1998; Antoni, 2000; Fimia and
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Sassone-Corsi, 2000). Figure 3.6 represents some signalling pathways in astrocytes implicated

in the results arising from the present study.

Adenosine has been shown to be neuroprotective in numerous models of neuronal,

glial a n d w m o injury via inhibiting N O toxicity and Ca2+ influx in neurones, or in glial cells

because of its regulatory role on the Ca2+- and cAMP-dependent intracellular signalling which

influences cellular proliferation and differentiation, and affects intercellular signalling involving

microglia (Schubert et al., 1996, 1997, 2001). For example, A t receptor-mediated Ca2+

signalling has been shown to cause a prolonged potentiation of the A2 receptor-mediated

intracellular cAMP rise leading to increased expression of K+ and Cl' channels (Verkhratsky

and Steinhauser, 2000), and of glutamate transporters (Eng et al., 1997; Schlag et al., 1998).

The putative actions of cAMP to promote the increased expression of glial glutamate

transporters EAATl and EAAT2 might be important in preventing excitotoxicity since they

are the predominant transporters responsible for the clearance of extracellular glutamate

(Danbolt, 2001). Alternatively, Ar and mGlu3 co-stimulation induces protein synthesis and

trophic factor release, which subsequently protects neurones against toxic insult (Ciccarelli et

al., 1999). Finally, nucleoside transport of adenosine and its metabolised analogues has been

shown to be important in the survival of glia Qurkowitz et al., 1998).

Little is known about the expression and function of many key intracellular signals in

astrocytes. For example, knowledge of the expression and coupling of AC isoforms would help

explain the interaction of GPCR second messengers and indicate the sensitivity of these

isoforms to Ca2+ and/or calmodulin. Stimulated PKC may also alter the ability of the various

AC isoforms to integrate inputs in these astrocytes (Jacobowitz et al., 1993). The possibility

that other cAMP-dependent kinases or guanine nucleotide exchange factors are involved in the

responses observed should not be discounted, especially in light of the recent discovery of
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responses observed should not be discounted, especially in light of the recent discovery of ^



Figure 3.6. Model of putative, key signalling pathways in astrocytes implicated from

previous findings and those from the present study.

Arrows represent activation. Lines with T-shaped ends indicate inhibition. Broken lines

indicate indeterminate pathways or pathways involving multiple, unlabeiled steps. Abbreviations

not made in the text: AD, adenosine deaminase; CREB, cAMP-responsive-element-binding

protein; Nif/Nim, nifedipine/nimodipine; MEK, MAP/ERK kinase; PIP2, phosphatidylinositol(4,5)-

biphosphate; IP3, inositol 1,4,5-triphosphate; RyR, ryanodine receptor.
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Epac, a cAMP-dependent kinase with links to PI3 kinase and PKB (Kawasaki et al., 1998; Mei

et al., 2002). For example, activation of Gs protein-coupled (52-adrenoceptors expressed in

HEK-293 cells induced Ca2+ mobilisation and PLC activation via a guanine-nudeotide

exchange factor and GTPase (Schmidt et al., 2001). Finally, the presence of putative functions1

complexes between GPCRs, as for example between mGlula and A, (Ciruela et al., 2001),

needs to be determined.

This study has demonstrated a unique effect in astrocytes whereby potentiation of

stimulated production of cAMP can be induced by agonists acting at mGluj/j to promote

adenosine release. Furthermore, this effect is dependent on [Ca2+]; which is in turn influenced

by extracellular and intracellular Ca2+ stores linked to PLC and CaMKII. Ultimately, our data

supports existing evidence for elaborate pathways and receptor interactions amongst GPCRs

in astrocytes that are likely to modulate synaptic activity, be it in the normal or pathological

synaptic milieu.
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4.1. Introduction

Excessive glutamatergic neurotransmission is understood to be one of the primary

pathological mechanisms behind the aetiology of numerous types of epilepsy (Chapman et

al., 1996). Consequently, attempts to modulate glutamatergic neurotransmission in animal

models of epilepsy via activation of group II mGlu receptors have previously employed the'

non-selective agonists (lS,3i?)-l-aminocydopentane-l,3-dicarboxylic acid (15,3-R-ACPD),

(S)-4-carboxy-3-hyoroxyphenylglycine (S-4C3HPG), (25,l'S,2'5)-2-

(carboxycydopropyl)glycine (L-CCG-I) and (2S,2'i?,3'£)-2-

(2',3'dicarboxycyclopropyl)glycine (DCG-IV) (Meldrum et al., 1996; Dalby and Thomsen,

1996; Attwell et al., 1998a,b). The agonists S-4C3HPG, L-CCG-I and 1S,37?-ACPD have

been shown to inhibit sound-induced clonic seizures and possess variable activity inhibiting

chemoconvulsant-induced clonic seizures (Meldrum et al., 1996; Dalby and Thomsen,

1996). The agonists lS,3i?-ACPD and DCG-IV have been shown to be inhibit electrically-

stimulated seizures in amygdala-kindled rats via intra-amygdaloid injection (Attwell et al.,

1998a; Suzuki et al., 1996), while DCG-IV also partly inhibits kainate-induced limbic

seizures (Miyamoto et al., 1997). Anticonvulsant activity has also been reported for the

more selective mGlu2/3 agonist 2i?,4i?-4-aminopyrrolidine-2,4-dicarboxylate (2i?,42?-APDQ

in amygdala-kindled rats (Attwell et al., 1998b). The highly selective mGlu^ agonists (+)-2-

aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), (-)-2-oxa-4-

aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268) and (-)-2-thia-4-

aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY389795) were originally reported to inhibit

lS,3/?-ACPD-induced seizures in mice (Monn et al., 1997; Monn et al., 1999). While more

recently, LY354740, which is less potent than LY379268 and LY389795, has been shown to
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inhibit pentylenetetrazol- and picrotoxin-induced clonic convulsions (Klodzinska et aL,

2000).

The present study investigated the anti-epileptic activity of 2i?,4/?-APDC, LY379268

and LY389795 against sound-induced clonic seizures in audiogenic mice and rats, DHPG-

induced limbic seizures, absence seizures in lethargic mice and electrically-stimulated

seizures in amygdala-kindled rats. The proconvulsant profile of the agonists, and the

mGlu2/3 antagonist LY341495 was, also investigated.

4.2. Methods

All regulated procedures performed in this study were carried out in accordance with

the UK Animals (Scientific Procedures) Aa, 1986 under project licence 70/4775 at the

Institute of Psychiatry, King's College, London. A full list of materials used appears in

Appendix IV.

4.2.1. Sound-induced seizures in DBA /2mke

Dilute brown agouti (DBA/2) mice (male and female, age 21-28 days, 7-15g weight;

Institute of Psychiatry colony) were weaned at 21 days, housed on a 12 h dark/12 h light

cycle and allowed free access to food and water. The mice were randomly assigned to

groups of 10 for experiments. DBA/2 mice undergo a well-characterised seizure response

when exposed to loud sound stimulus which consistently results in whole body clonus

(Chapman and Meldrum, 1987). Drug or vehicle were administered

intracerebroventricularly (Lev.) (1 mm anterior to the bregma, 1 mm lateral to the midline,

to a depth of 3 mm; Franklin and Paxinos, 1997) under light fluothane anaesthesia using a

Hamilton syringe with a 25 short-gauge butterfly needle for delivering a volume of 10 /xl.
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Drug or vehicle was also administered intraperitoneally (i.p.) in a volume of 100 /xl/10 g

body weight. Following drug or vehicle injections, the mice were maintained at a body

temperature of 36-3 8°C by applying heating lamps when required. Mice were observed for

abnormal motor behaviour or proconvulsant effects of the drugs prior to testing for sound-

induced seizures.

Anticonvulsant testing was carried out on individual mice 15-120 min following

administration of drug or vehicle under a perspex dome (58 cm in diameter) fitted with a
i

doorbell generating a sound of 110 dB for a period of 60 s or until the onset of clonic

seizure. The sound stimulus produced a sequential seizure response, consisting of a wild

running phase (1-4 s latency; score 1), clonic seizures (4-15 s latency; score 2), tonic

extension (10-30 s latency; score 3) and occasionally respiratory arrest (20-40 s latency;

score 4) (Figure 4.1; Chapman and Meldrum, 1987).

The agonists were dissolved in water and adjusted to pH 7.3-7.7 with NaOH for

either Lev. or i.p. injection. 2R,AR-APDC, LY379268 or LY389795 (0.001-40 nmol Lev. or

1-100 mg/kg i.p., n = 10 per group) were injected 15 min prior (-15 min) to being tested

for sound-induced seizures. A timecourse of action was determined for the agonists by

testing groups of mice (n = 10) injected Lev. (0.3-20 nmol, 15-120 min) or i.p. (30 mg/kg,

15-30 min). A dose-response suppression of the inhibition of sound-induced seizures by

LY379268 was established with the mGlu^ antagonist (aS)-a-amino-[(lS,2S)-2-

carboxycydopropyl]-9H-x;mthine-9-propanoic acid (LY341495; Kingston et al., 1998;

10-300 nmol, Lev.).
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Figure 4.1. Photographs representing the sound-induced clonus of DBA/2 mice. A.

Unstimulated mouse. B. Stimulated mouse with forelimb and hindlimb extension during

clonus (Score 2).
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4.2.2. Rotarodperformance in DBA /2 mice

Drug-induced motor-impairment was assessed using a rotarod (Ugo Basile). Groups of

DBA/2 mice (n = 10) were trained prior to drug administration to remain for 2 min on a

rotating wooden dowel (diameter 28 mm), fitted with shallow grooves every 20° and

rotating with a speed 20 rpm. Following administration of 2R,4R-AFDC, LY379268 or

LY389795 (-15 min, 0.01-40 nmol Lev. or 30 mg/kg i.p) the rotarod performance of the

group of mice was assessed for 2 min by recording the time spent on the rotarod before

falling off. The mean rotarod performance for each group was expressed as a percentage of

the time spent on the rotarod before injection (2 min) and used for calculating the ED50

value for motor impairment.

4.2.3. Seizures induced by DHPG administration in DBA /2 mice

DBA/2 mice (rc = 10 per group) received 1.5 /nmol (R,S)-3,5-

dihydroxyphenylglycine (DHPG) i.ev. (pH 7.4) in a volume of 10 /xl under light fluothane

anaesthesia and were observed for the following 90 min for the occurrence of seizure-

related attivity. DHPG-induced seizure activity included hindlimb scratching, mouth and/or

forelimb clonus, forelimb and hindlimb extension, rearing and falling, and head and tail

extension. Quantification of DHPG-induced seizure activity was based on a score (DHPG-

induced seizure score) whereby the occurrence of each of the above characteristics received

one score. DHPG-induced seizures were characterised by forelimb and hindlimb extension,

and/or head and tail extension. The agonists (0.001-40 nmol) were co-injected with

DHPG, or alternatively, LY379268 or LY389795 (10 mg/kg, i.p.) were administered 50 min

following the i.c.v. injection of DHPG to coincide with the DHPG-induced development

of seizures, and observed until 90 min following the administration of DHPG.
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4.2.4. Sound-induced seizures in Genetically Epileps\> Prvne-9 (GEP) rats

Adult GEP rats (Institute of Psychiatry colony) of either sex were housed in

temperature and humidity controlled room on a 12 h light/12 h dark cycle and allowed free

access to food and water. GEP rats were tested for sound-induced seizures on three

consecutive days before treatment, only those animals which responded with three full

seizures were included in the study. Testing was carried out in an enclosed chamber fitted

with a doorbell generating a sound stimulus of 100 dB for a period of 60 s or until the onset

of whole-body tonus (n = 4 per group). Scoring of sound-induced seizures in GEP rats was

based on that of Jobe et al. (1973) whereby 0 = no response, 1 = wild running, 2-3 = partial

whole-body clonus followed by one or two episodes of wild running, 4-5 = whole-body

clonus with one or two episodes of wild running, 6-7 = whole-body clonus and partial tonic

limb extension following one or two episodes of wild running, 8-9 = one or two episodes

of wild running followed by whole-body clonus and tonic extension. Photos demonstrating

GEP rats in typical stage 7 clonus and stage 9 tonus are presented in Figure 4.2. Vehicle

(water) or the agonists were administered i.p. in a volume of 200 /xl/200 g, 30 min or 1 h

prior to exposure to sound stimulus.

4.2.5. A bsenae epilepsy in lethaigc (ibM) mioe

Lethargic (Ih/lb) mice (Institute of Psychiatry colony) were bred and maintained as

previously described (Chapman et al., 1999). A group of Ih/lh mice of either sex from age of

8-12 weeks (20-25 g) were randomly selected for surgery (n = 5-6 per group).

The mice were anaesthetised with isoflurane-RM (4-4.5%) in medical oxygen (2.5

L/min) and immobilised in a stereotaxic holder. Bilateral burr holes were drilled over the

frontal cortex (1.5 mm anterior to bregma and 1.5 mm lateral to the midsagittal suture;
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Figure 4.2. Representative photos of GEP rats in various sound-induced seizure

stages: A. Unstimulated GEP rat (Stage 0) B. Stimulated GEP rat undergoing clonus

(stage 7), C. Stimulated GEP rat undergoing tonus (stage 9).
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Franklin and Paxinos, 1997) and parietal cortex (left: 3 mm and right: 1 mm posterior

lambda, and 1.5 mm lateral to midsagittal sinus; Franklin and Paxinos, 1997) for stainless

steel microelectrodes. Another burr hole was made 1 mm left of midsagittal sinus and 1 mm

anterior to lambda for guide cannula (gauge 21) implantation (0.8 mm below dura). The

implants were fixed with dental acrylic and epoxy resin. The electrodes were connected to a

female plug for attachment to the Grass electroencephalogram (EEG) recorder.

Testing of the agonists (prepared as described in 2.1) began at least one week after

surgery. During the EEG recording, the testing session was organised into 15 min epochs

with the first epoch recording immediately prior to injection of vehicle or agonist (pre-

injection epoch), and 6 epochs following injection. Injection cannulae (27 gauge) were

lowered 2 mm beyond the edge of the guide cannula to the ventricle. The vehicle (water) or

agonist (1 and 10 nmol) was infused at 2.5 /xl/min in a total volume of 10 /xl via a Hamilton

syringe using a CMA/100 infusion pump. The injection cannula was withdrawn 1 min

following infusion.

During each recording the behavioural changes after drug treatment in comparison

to vehicle were noted. To minimise bias to observations associated with sedation, the Ih/lh

mouse was frequently aroused by a clapping noise (Hosford et al, 1992). The quantification

of absence seizures was based on the duration (s) of EEG spike and wave discharges or

polyspikes, as described by Hosford et al. (1992) (i.e. amplitude not less than 60 /xV and

frequency range of 5-6 Hz during seizures of not less than 0.6 s). The Ih/lh mice spent on

average approximately 1-2 min out of every 15 min pre-injection epoch in absence seizures

according to these criteria. EEG recordings were made at an amplification of 200 /xV/cm

and a chart speed of 3 mm/s. To assess the pharmacological effect of the agonists the spike

and wave discharge per epoch was calculated and expressed as a percentage of the spike and
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wave discharge from the corresponding pie-injection epoch. In this way, the spike and

wave discharge for each epoch following administration of the vehicle and agonists is

presented as a mean ± S.E.M. of that treatment group (n =5-6).

4.2.6. Electrical stimulation of amygUa-kindledrats

Male Wistar rats (Charles River, Margate, UK) weighing between 250-300 g at the time

of surgery were housed in groups of four and allowed free access to food and water under a [
i

!

14 h light/10 h dark cycle in an environment maintained at 19-22°C with a relative |

humidity of 55 + 3%. |

Animals were anaesthetised with 4-5% isoflurane-RM mixed with medical oxygen at 2.5 I

L/min and maintained iri this way throughout surgery. The animals were placed in a j
!
I

stereotaxic frame and five burr holes were drilled into the cranium for the electrode !

assembly. Two cortical electrodes were implanted in the region of the sensorimotor cortex

approximately 1.5 mm anterior to bregma, left and right of the intraural line. Earth and i

anchor electrodes were implanted in the region of the parietal cortex, left and right of the t

intraural line. A twisted bipolar, Teflon-coated, platinum/iridium electrode was implanted

in the left basolateral amygdala (from interaural, AP +6.2 mm, L +5.0 mm and V +1.5 mm;

Paxinos and Watson, 1997). The electrodes were connected to a female plug, for <

attachment to the EEG recorder, and the entire assembly fixed in place with dental acrylate

and epoxy resin.

At least 7 days after surgery, animals were assessed for basal EEG activity.

Afterdischarge spike and wave activity was induced using the following stimulation

parameters: 2 s duration, 50 pulses/s, bipolar, 1 ms pulse-width and initially 1 V. Animals

repeatedly stimulated at 2 min intervals using 0.2 V increments on each stimulation
were
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until an afterdischarge was achieved in the amygdala EEG trace. Once this threshold

stimulation was determined, the animals were stimulated at this intensity once daily until

fully kindled whereby stimulus of the threshold intensity produced five consecutive stage 5

seizures as described by Racine et al. (1972). Briefly, the animals experienced an electrically

stimulated motor seizure when the threshold intensity produced spike and wave discharge

(stage 1) followed by oral and facial automatisms (e.g. chewing, head nodding; stage 2),

unilateral forelimb clonus (stage 3), bilateral forelimb clonus and rearing (stage 4), and

rearing and falling (stage 5). Animals were electrically stimulated once, 24 h prior to drug

administration to confirm the induction of stage 5 seizures. The agonists (3-30 mg/kg, i.p.)

were administered 30 min prior to the first electrical stimulation, where a significant

inhibition of seizure activity was observed a further stimulation 6 h following agonist

injection was performed.

4.2.7. Statistics

ED50 values for the inhibition of sound-induced clonic seizures or DHPG-induced

seizures, or IC 0 values for the suppression of agonist inhibition of sound-induced seizures

by LY341495 were calculated with 95% confidence limits according to the method of

Litchfield and Wilcoxon (1949). ED50 values from rotarod testing of motor-impairment

were similarly calculated.

Scores were established for sound-, DHPG- and electrically-induced seizure activity as

described in sections 2.1 and 2.4 for sound stimulation of DBA/2 and GEP rats

respeaively, section 2.3 for the chemoconvulsant stimulus of DHPG, and section 2.6 for

electrical stimulation of amygdala-kindled rats. Significant differences between the scores of

treatment grorps were determined using the Mann-Whitney U test or Wilcoxon Signed
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Rank test whereby P < 0.05. The mean ± S.E.M. of the score per animal of a treatment

group across the experimental models are presented.

Significant differences in the duration of the spike and wave discharge of Ih/lh mice

following treatment with the agonists were compared with the vehicle using a one-way

analysis of variance (ANOVA) and Newman-Keuls post hoc comparison where P < 0.05.

Comparisons in the duration of spike and wave discharge in electrically stimulated

amygdala-kindled rats were made between the treatment and the -24 h control for the same

animal, significant differences were determined using a paired Student t-test where P < 0.05.

The duration of spike and wave discharge for treatments is expressed as the mean + S.E.M.

percentage of the -24 h control.

Proconvulsant activity following j.cv. injection in DBA/2 mice was determined by

recording behaviour different to that of the untreated mice and assigning a score of one per

behaviour type. Significant statistical differences in the score between treatment groups

were determined using the Mann-Whitney U test whereby P < 0.05. The mean ± S.E.M.

score per animal in the treatment groups are presented.

4.3. Results

4.3.1. Inhibition of sound-induced seizures in DBA /2 mice

2R,AR-APDC (10-25 nmol, Lev.) produced a significant inhibition of the sound-

induced seizure score in DBA/2 mice when compared to vehicle (P < 0.0089). However, at

30 nmol 2R,4/?-APDC the inhibition of wild running, clonus, tonus and respiratory arrest

had decreased compared to 15-20 nmol such that the score of DBA/2 mice at 30 nmol

following sound stimulus was significantly greater than that at 15 and 20 nmol (P = 0.0185

and P = 0.0288 respectively). Inhibition of sound-induced seizure activity is presented in
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Figure 4.3A. In the period following Lev. injection of 2K,4/?-APDC and before exposure to

sound stimulus, DBA/2 mice exhibited relatively normal behaviour at all doses tested

without sedation or proconvulsant activity. The response of DBA/2 mice to sound-induced

clonic seizures was also investigated at 20 min and 30 min following Lev. injection (Figure

4.3B). 2/?,4/?-APDC (20 nmol) exhibited a time-dependent loss of anticonvulsant activity

whereby the score was not significantly different from that of vehicle within 20 min (P =

0.3150; Figure 4.3B). DBA/2 mice demonstrated relatively normal behaviour throughout

the entire timecourse. The inhibition of sound-induced clonic seizures by 20 nmol 2R,AR-

APDC was completely reversed by the mGlu^ antagonist LY341495 (100 nmol; P =

0.0101). At 100 nmol (Lev., -15 min), LY341495 alone had no proconvulsant activity.

2R,4R-APDC inhibited sound-induced clonic seizures in a dose-dependent manner when

administered systemically (30-100 mg/kg, i.p., -15 min; P = 0.0411 (100 mg/kg)), whereby

ED50 = 75 [25-116] mg/kg (Figure 4.3C). A reversal of anticonvulsant activity was not

observed over the doses tested. The behaviour of DBA/2 mice following i.p.

administration of 2/?,4/?-APDC was not markedly different from that of vehicle.

Sound-induced seizures in DBA/2 mice were similarly suppressed in a dose-

dependent manner 15 min following Lev. administration of LY379268 (0.001-0.3 nmol)

and LY389795 (0.001-3 nmol) whereby ED^ - 0.08 [0.02-0.33] nmol, Emax = 0% of

vehicle (0.3 nmol) and ED50 = 0.82 [0.27-3.24] nmol, Emax = 0% of vehicle (3 nmol)

respectively (Figure 4.4A). Both agonists significantly reduced the score of sound-induced

seizure activity (P < 0.0288). At higher doses (> 3 nmol) the agonists produced some

hypolocomotion and sedation, however proconvulsant activity or hyperlocomotion was not

observed (< 20 nmol, Lev.). LY379268 (0.3 nmol) and LY389795 (3 nmol) demonstrated a

time-dependent loss of anticonvulsant activity, whereby the score of seizure activity 30 min
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Figure 4.3 Anticonvulsant activity of 2K.4R-APDC against sound- and DHPG-
induced seizures in DBA/2 mice.
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n = 6).

D. 2R,4f?-APDC inhibition of DHPG-induced seizure activity (DHPG Seizure Score)

*P < 0.05 when compared to vehicle.

*P < 0.05 when compared to 20 nmol 2R.4R-APDC (Mann-Whitney U test; i.c.v., n =

10).



Figure 4.4. Inhibition of sound-induced seizures in DBA/2 mice following i.c.v. (A-C)

or i.p. (D-E) administration of the LY379268 and LY389795.

A. Dose-dependent (non-linear, variable-slope regression) inhibition of seizures by the

agonists.

B. Time-dependent loss of anticonvulsant activity.

C. Dose-dependent suppression of agonist inhibition of seizures by the mGlu^ antagonist

LY341495.

D. Dose-dependent inhibition of seizures by the agonists i.p.

E. Loss of anticonvulsant activity of the agonists at 30 min, i.p. n = 10.

H

it

Of

If

I• •

100

I II

ft
7J 40!8



0)
(Q
O

5L (D
o

Sound-induced clonic
seizures (%vehicle)

to
©

o
CO

o

o _̂

(O

Sound-induced clonic
seizures (% vehicle)

o
o

Tim
e

««>

O

o "

0 1 "

en
0 "

•*J
cn"

0 "

0 -
tn

ro-
0

M
O
1

0

to
3m

ol

s
00
CO

CD
0 1

0
1

1
0
w
3m

ol
LY

3

to
10
o>
00

0 1
0
1

\

« 0
0 0
1 1

\

\

\
\
\
1

0 •

Sound-induced clonic
seizures (% vehicle)

ro ik 01 co o «« .̂
0 0 0 0 0 0 &
1 • t • 1 • ^

I

0 1 -x -

1
•8

O -J
3 <O

2. «
u
o

t r-
_ . 00
• CO

TJ ^4
-^ - CO

cn

Sound-induced clonic
seizures (%vehicle)

N> 4^ CO 00 O
0 0 0 0 0 0_l I I I I l__

m
Sound-induced clonic
seizures (% vehicle)

o

I

I

I
1

cnm
in

D
•

CO

o
3
5

innm
ol,Lev, -1

cnm
in

o .



Chapter 4: mGlu2/i and epilepsy i 5 2

following Lev. injection of LY379268 was not significantly different from that of vehicle

control (P « 0.1903; clonic seizures shown in Figure 4.4B). The mGlu^ antagonist

LY341495 (10-300 nmol, Lev.) suppressed the inhibition of sound-induced seizures and

score of 0.3 nmol LY379268 in a dose-dependent manner (IC50 = 110.0 [9.3-430.7] nmol (P

< 0.0052; Figure 4.4D)). LY341495 (300 nmol) •imilarly suppressed the inhibition of sound-

educed seizures and score by 3 nmol LY389795 (P = 0.0001; Figure 4.4D).

Following i.p. administration, LY379268 and LY389795 (1-30 mg/kg) inhibited

sound-inducc;d seizures and score in a dose-dependent manner whereby EDJQ = 2.9

[0.9-9.6] mg/kg, Emax = 10% of vehicle (30 mg/kg) (P < 0.0021; Figure 4.3D) and ED50 =

3.4 [1.0-11.7] mg/kg, Emax = 10% of vehicle (30 mg/kg) (P < 0.0433; Figure 4.3D),

respectively. A significant loss of anticonvulsant activity was observed at 30 min compared

to 15 min following i.p. administration of LY379268 and LY389795 (30 mg/kg; P = 0.0288

and P = 0.0007; Figure 4.3E). DBA/2 mice demonstrated no proconv. Jsant behaviour

following i.p. injection of the agonists and appeared only slightly sedated following

administration of 30 mg/kg.

4.3.2. Rotamdperformance in DBA/2 mice

LY379268 and LY389795 produced a dose-dependent impairment of motor

performance on the rotarod when DBA/2 mice were injected Lev. whereby ED50 = 2.2

[6.4-0.7] nmol (LY379268) and ED50 = 1.5 [5.4-0.5] nmol (LY389795). The therapeutic

indices (rotarod locomotor deficit ED50/anticonvulsant ED50) for the two agonists were

27.5 for LY379268, and 1.8 for LY389795. At 30 mg/kg, LY379268 and LY389795

produced an impairment of motor performance of 45% and 68%, respectively. 2R,4K-
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APDC (20 nmol, i.cv.) produced a rotarod performance that was 100% of that tested prior

to injection (n = 9).

4.3.3. Inhibition of DHPG-induced seizures in DBA/2 mice

When co-injected with 1.5 /imol DHPG, 2i?,4£-APDC (10-40 nmol) significantly,

inhibited DHPG-induced seizure-related behaviour (DHPG seizure score) including

hindlimb scratching, mouth and forelimb clonus, rearing and falling, and head and tail

extension over a timecourse of 90 min. The significant inhibition of the DHPG seizure

score by 1040 nmol 2#,4tf-APDC (P < 0.0011) is presented in Figure 4.3D. The inhibition

of DHPG seizure score by 20 nmol 2R,4R-APDC is significantly different from the

inhibition produced by 10 (P = 0.0002) and 40 nmol (P = 0.0003) 2R,4R-ATDC, indicating

a reversal of anticonvulsant activity similar to that observed in sound-induced seizures.

LY379268 and LY389795 (0.0001-1 nmol, i.cv.) produced a dose-dependent

inhibition of DHPG-induced seizures and seizure score (P < 0.0216, 0.01-0.1 nmol

LY379268; P < 0.0262, 0.1-1 nmol LY389795; Figure 4.5). LY379268 inhibited DHPG-

induced seizures whereby ED50 = 0.3 [0.02-5.0] pmol and Emax = 20% of DHPG alone.

LY389795 inhibited DHPG-induced seizures whereby ED50 = 0.03 [0.05-0.19] nmol and

Em3X - 20% of DHPG alone. An increase in DHPG-induced seizures and seizure score was

found at agonist doses of > 1 nmol when compared to doses of 0.01-0.1 nmol. This

increase in DHPG-induced seizure score included occasional respiratory arrest

approximately 30 min following i.cv. co-injection of either agonist and DHPG. A slight

increase in DHPG-induced seizures and a significant increase in DHPG-induced score

following i.cv. co-injection with 1 nmol LY379268 compared to 0.1 nmol is presented in

Figure 4.5 (P = 0.011). Both agonists inhibited DHPG-induced seizures and seizure score
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Figure 4.5 Inhibition of DHPG-induced seizures.
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A. The dose-dependent inhibition of seizures (line graph) and seizure score (bar graph)

by the agonists co-injected i.c.v. with 1.5 umol DHPG.

B. Inhibition of seizures (in parenthesis) and seizure score following i.p. injection of the

agonists 50 min after i.c.v. injection of DHPG. Seizure score data is represented

as the mean ± S.E.M. of n = 10.

* P < 0.05 compared to DHPG alone.

# P < 0.05 compared to 0.1 nmol LY379268: Mann-Whitney U test.
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when administered systemically. When administered 50 min following the i.c.v. injeaion of

1.5 junol DHPG, 10 mg/kg LY379268 and LY389795 inhibited DHPG-induced seizures to

0% and 10% of vehicle, respectively (Figure 4.5B).

4.3.4. Sound-induced seizures in GEP rats are riot inhibited by up. administration of doe agonists

• - - • GEP rats were tested for sound-induced seizures 30 min or 1 h following i.p.

administration of LY379268 and LY389795 (0.1-1 mg/kg). The agonists did not inhibit

score 9 seizures in GEP rats at either timepoint at any of the doses tested. At doses > 0.1

mg/kg the agonists induced proconvulsant activity following the sound-induced score-9

seizure stimulated at 30 min and 1 h (43% of animals tested). This proconvulsant activity

was generally characterised by ataxic hyperlocomotion for approximately 15-20 min

following the score-9 seizure and concluded in whole-body clonus: for this reason higher

doses were not tested. At both timepoints and across both agonists, the dose of 0.1 mg/kg

induced proconvulsant activity following the sound-induced seizure in 6% of animals

tested. In the absence of the sound stimulus proconvulsant activity was not observed at any

of the doses tested.

4.3.5. Inhibition of spike and wavedisdhar^ in Ih'Ah mice

Intracerebroventricular administration of the LY379268 and LY389795 (1 and 10

nmol) reduced the duration of spike and wave (SWD) discharge in Ih/lb mice compared to

vehicle up to 90 min following injection (P < 0.05, LY379268 and LY389795; one-way

ANOVA). Figure 4.6 presents a representative EEG trace showing the SWD of absence

seizures, before and following LY389795 treatment. The reduction of quantified SWDs by

the agonists is presented in Figure 4.7. Administration of 1 and 10 nmol LY379268
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Figure 4.6 Representative EEG traces of cortical spike and wave discharge of absence

seizures in Ih/lh mice before and following infusion of 10 umol LY389795.

* indicates some typical absence seizures.

Preinjection

Post-injection 10 (jmol i.c.v. LY389795

I I +16 min |

+ 44.5 min
i i—, — 1 i

^f|^Y^4]^^
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2 sees



Chapter 4: mGlu3/i and epilepsy

A. LY379268

o 1U

c
0)
C 75-|

Q .2

« si 50.

£ 25J

[=3Vehicle E3S1 nmol H ^ O nmol

I i1

1 I I i i
0-15 15-30 30-45 45-60 60-75 75-90

Epoch (min)

B. LY389795

g 10
a
o
C 75-J
2Q.2

«, 50.

£ 25-1

0.

CZ3 Vehicle ES31nmol

1

110 nmol

I

I

*#
i

0-15 15-30 30-45 45-60 60-75 75-90
Epoch (min)

157

Figure 4.7 Inhibition of spike and wave discharge (SWD) in Ih/lh mice.

Significant inhibition of the duration of SWD by 1 and 10 nmol LY379268 (A) and

LY389795 (B), i.c.v. SWD data is represented as the mean ± S.E.M. of n = 5-6.

* P < 0.05 compared to vehicle, One-way ANOVA.

# P < 0.05 compared to 10 nmol LY389795, Student Newman Keuls post hoc test.
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significantly inhibited SWD up to 90 min following injection. Administration of 1 nmol

LY389795 significantly inhibited SWD up to 75 min, while 10 nmol inhibited SWD for up

to 90 min. Additionally, 10 nmol LY389795 significantly reduced SWD in Ib/lh mice

compared to 1 nmol from 15-45 min following injection (P < 0.05; Newman-Keuls post

hoc). Proconvulsant activity was not observed following Lev. administration of the agonists,

some slight sedation occurred in those Ih/lb mice receiving 10 nmol of either agonist.

4.3.6. Inhibition of electrically-stimulatedseizures in aniyglala-kindledrats

LY379268 and LY389795 produced a partial inhibition of electrically-induced

seizure score in Am-kindled rats at 30 min following i.p. injection of 10 mg/kg (P < 0.0032;

Figure 4.8). Figure 4.9 presents a representative EEG trace showing the SWD of absence

seizures, before and following LY389795 treatment. Both agonists significantly decreased

the duration of spike and wave discharge (SWD) of the cortices 30 min following injection

of 10 mg/kg, i.p. (P < 0.0004; Figure 4.10). (Due to the severity of electrically-induced

seizures in Am-kindled rats, the animals were never repeatedly stimulated within 5 h after

receiving the first stimulation). LY379268 similarly inhibited the duration of amygdala SWD

under these conditions (P = 0.0012), which was mostly absent by 6 h (P > 0.6632). The

inhibition of seizure score was absent when the animals were again stimulated 6 h following

injection (P = 0.3739, LY379268 and LY389795); which concurred with the loss of the

inhibition of SWD duration following LY379268 treatment, but contrasted with the

duration of SWD following treatment with LY389795. Following i.p. injection of 10 mg/kg

LY3 89795, a significant inhibition of the duration of cortical and amygdaloid SWD was

obtained at 6 h (P < 0.0361; Figure 4.10). A significant inhibition of electrically-induced

seizure score was not achieved with either agonist at 3 mg/kg (P > 0.208). However, while
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Figure 4.7 Inhibition of spike and wave discharge (SWD) in Ih/lh mice.

Significant inhibition of the duration of SWD by 1 and 10 nmol LY379268 (A) and

LY389795 (B), i.c.v. SWD data is represented as the mean ± S.E.M. of n = 5-6.

* P < 0.05 compared to vehicle, One-way ANOVA.

# P < 0.05 compared to 10 nmol LY389795, Student Newman Keuls post hoc test.
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Figure 4.9. Representative EEG traces of electrically-stimulated Am-kindled rats

The spike and wave discharge of the amygdala (A & C) and cortices (B & D) 24 h prior

to (A & B), and 30 min following (C & D) administration of LY389795 (10 mg/kg, i.p.).
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Figure 4.10 Inhibition of the duration of spike and wave discharge (SWD) in

amygdala-kindled rats following i.p. administration of LY379268 (A) and LY389795

(B). The duration of SWD is expressed as a percentage of the -24 h control and the

treatment group presented as mean ± S.E.M.

*P < 0.05, duration of SWD of the treatment compared to the respective -24 h control,

paired Student t-test. n = 5.
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not significant, a partial inhibition of the duration of cortical SWD was observed with either

agonist 30 min following this latter dose (Figure 4.10). Proconvulsant activity was observed

following i.p. administration of the agonists at 30 ing/kg (n = 2-3). This proconvulsant

activity was characterised by head-turning and spontaneous jumping 15-50 min following

injection.

4.3.7. ProomxAsant activity induced by lev. administration <f 2R,4R-APDQ LY379268 and

LY389795 in DBA/2 mice

The proconvulsant profile of the agonists was determined by i.c.v. injection at doses

of 0.1-3 ptmol in DBA/2 mice for 90 min. LY379268 induced intermittent and

spontaneous wild running and hindlimb scratching at 1 and 3 /xmol. In contrast, at 0.3-3

i /xmol 2i?,4/?-APDC and LY389795 rapidly induced wild running, hindlimb scratching,
t
| clonus, tonus and respiratory arrest. LY389795-induced clonus consisted of head and tail

extension, unilateral or bilateral forelimb clonus, and whole-limb clonus (Table 4.1).

4.4. Discussion

This study evaluated the anti-epileptic activity of three novel agonists for group II mGlu

receptors in various animal models of epilepsy. The agonists, 2i?,4i?-2R,4R-APDC,

LY379268 and LY389795 were anti-epileptic in generalised motor seizures in DBA/2 mice,

primary generalised non-convulsive seizures in Ih/lb mice, epileptogenesis induced in rats,

and chemoconvulsant seizures in DBA/2 mice involving the recruitment of the limbic

system. The agonists were not anti-epileptic the rat model of generalised motor seizures.

2/?,4/?-APDC was not used throughout all studies because of the proconvulsant activity it

produced in the sound-induced seizures of DBA/2 mice, and also because the more
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Table 4.1 Occurrence of mGlu i3 agonist- and antagonist-induced seizure activity

in DBA/2 mice

mGliiM
ligand

Vehicle

2R4R-APDC

LY389795

LY379268

Vehicle

LY341495

j/mol
(i.c.v.)

0

0.1
0.3
0.6
1.0

0.1
1.0
3.0

3.0

0

0.1
0.3
0.6
1.0

Hindlimb
Scratching

1/6

2/6
5/6
6/6
6/6

6/6
6/6
6/6

2/6

2/10

3/10
0/10
3/10
8/10

Mouth/FL
Clonus

0/6

0/6
2/6
6/6
6/6

0/6
1/6
6/6

0/6

0/10

0/10
3/10
8/10
10/10

Clonus Tonus R.A.

0/6

0/6
3/6
6/6
6/6

0/6
6/6
6/6

0/6

0/10

0/10
2/10
8/10
10/10

0/6

0/6
0/6
1/6
1/6

0/6
1/6
3/6

0/6

0/10

0/10

1/10
7/10
10/10

0/6

0/6
0/6
1/6
4/6

0/6
1/6
4/6

0/6

0/10

0/10

1/10
7/10
10/10

Score3

0.17 ±0.17

0.33 ± 0.21
1.50 ±0.56*
3.17 ±0.40*
3.83 ±0.31*

1.00 ±0.00*
3.33 ± 0.42*
4.83 ± 0.60*

0.83 ± 0.40

0.20 ±0.13

0.30 ±0.15
1.20 + 0.14*
4.30 ± 0.72*
6.60 + 0.16*

a Score represents the mean ± S.E.M. of the occurrence of seizure activity (hindlimb scratching, mouth

clonus, clonus, tonus and respiratory arrest) per animal in the treatment group. * P < 0.05 compared to

vehicle (Mann-Whitney U test). FL; forelimb. R.A.; respiratory arrest.
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selective, potent and systemically active agonists, LY379268 and LY389795, would suffice

to demonstrate the role of group II mGlu receptors in preventing the seizures of these

animals.

The mGlu^j agonists, 2tf ,4K-APDC, LY379268 and LY389795 have been shown in the

present study to inhibit DHPG-induced seizures, which are understood to recruitment

limbic brain regions (Tizzano et al., 1995). These findings concur with those of Monn et al.,

(1997, 1999) where these agonists and the structurally related LY354740 was shown to

inhibit lS,3i?-ACPD-mduced limbic seizures following i.p. injection. In agreement with

previous studies showing that LY354740 inhibited chemoconvulsant clonic seizures

following i.p. injection (Klodzinska et al., 2000), the present study has also demonstrated

the inhibition of clonic seizures induced by sound following i.p. administration of the more

selective mGlu2/3 agonists LY379268 and LY389795.

In general, LY379268 appeared more potent at inhibiting seizures across all models

than LY389795; which is in agreement with their respective potencies for mGlu^ (Schoepp

et al., 1999). When administered i.cv. this difference in potency was approximately 10-fold,

however when administered i.p. the potency of the agonists was relatively similar.

Furthermore, LY379268 demonstrated a more favourable therapeutic index than

LY389795. The selectivity and potency of the agonists for group III mGlu receptors at

higher doses cannot be ruled out from consideration, of the differences in activity observed

(Schoepp et al., 1999). At these higher doses, LY379268 is more likely to activate group l-II

mGlu receptors than LY3 89795. This is possibly why at doses of 1-3 fj.mol i.cv., LY379268

does not induce clonus, unlike LY389795. The latter agonist not only demonstrates a

similar proconvulsant profile at high doses to 2R,4i?-APDC but also shares a similar mGlu

receptor agonist profile to 2/?,4i?-APDC. In particular. LY389795 and 2i?,4/?-APDC have
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not been reported to activate group III mGlu receptors at concentrations comparable to

LY379268 (Schoepp et al., 1999). LY379268 and LY389795 were approximately 250-fold

and 25-fold more potent at inhibiting sound-induced seizures than the mGlu^ agonist

2/?i,4i?-APDC respectively, and at least 600-fold more potent at inhibiting DHPG-induced

seizures than 2i?,4i?-APDC (i.cv.). Additionally, LY379268 and LY389795 were

approximately 20-fold more potent at inhibiting sound-induced seizures when administered

systemically than 2/?,4i?-APDC.

Sound-induced clonic seizures in DBA/2 mice are produced by activation of auditory

structures in brainstem/midbrain regions such as the inferior colliculus and medial

geniculate body (Chapman and Meldrum, 1987), while DHPG-induced seizures involve the

recruitment of limbic brain regions. Group II mGlu receptor agonists have been reported

to inhibit glutamate and aspartate release in numerous brain regions (Cartmell and Schoepp,

2000) and consequently, the anti-epileptic aaivity seen in the present study most likely

results from mGlu^-mediated inhibition of presynaptic glutamate release from
i

I
f

! glutamatergic neurones these regions.

LY379268 and LY389795, like 2R,4£-APDC, were initially reported as a selective

agonists for negatively-coupled cAMP-linked mGlu receptors without appreciable activity in

group I or III mGlu-expressing cells (Monn et al., 1999; Schoepp et al., 1995). However,

2i?,4i?-APDC has since been identified to enhance the phosphoinositide hydrolysis

response of the mGlu1/5 agonists DHPG and quisqualate in rat hippocampus (Schoepp et

al., 1996) - data which may indicate that mGlu^ has a dual role in the modulation of

glutamate release. Since group I mGlu receptors have been identified to induce

proconvulsant activity (Tizzano et al., 1995; Dalby and Thomsen, 1996; Chapman et al.,

1999; Chapman et al., 2000), it might be expected that mGlu^ agonists would augment
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seizure activity during activation of group I mGlu receptors. For example, in the absence of

selective mGlu,/5 agonists, activation of mGlu]/5-coupled second messenger pathways

during sound-induced seizures by endogenous glutamate, which promotes clonus, could be

augmented by high doses of mGlu^j agonists. Evidence to support this hypothesis was

observed during evaluation of the anticonvulsant activity of 2/?,4i?-APDC, and earlier by

-- Attwell and colleagues (1998b). 2i?,4/?-APDC was shown to be anticonvulsant in models of

sound and DHPG-induced seizures, however at doses two times that of the anticonvulsant

dose, 2/?,4i?~APDC was proconvulsant. Similarly, in the present study, LY379268 and

LY389795 induced proconvulsant activity in the model of DHPG (mGlu1/5 agonist)-

induced seizures at higher doses - consistent with the hypothesis for a dual role mediated

by mGlu^j. However, the current .ngonists showed a demonstrable dose-dependent

inhibition of DHPG-induced seizure activity, unlike that seen for 2R,4R-AFDC, which may

result from their differing potencies for mGlu^j.

Contrasting results found in the DBA/2 mice and the GEP rats is surprising in that

previous studies of mGlu receptor related agonists and ionotropic glutamate receptor

antagonists have given consistent results in the two seizure models (Meldrum and

Chapman, 1999). A possible explanation for these differences could be due to the loss of

mGlu?0 expression and faaction during development (Ross et al., 2000). The GEP rats are

developmentally more advanced than the DBA/2 mice and may have lost responsiveness to

mGki-.^ agonists at specific sites involved in epileptogenesis. However, focal injection of

mGhji/3 agonists into the key epileptogenic regions such as the inferior colliculus (Tang et

al.j. 1997) or the substantia nigra (personal communication: B.S. Meldrum) of GEP rats does

inhibit the induction of sound-induced seizures. Whether i.p. administration of LY379268

or LY389795 similarly function in these regions is unclear. LY379268 (intravenous)
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induction of glucose utilization has been demonstrated in the inferior colliculus (Lam et al.,

1999), but only at doses 30 times higher than that which produced proconvulsant activity in

the present study. Furthermore, LY379268 (intravenous)-induced glucose utilization has not

been demonstrated in the substantia nigra (Lam et al., 1999); which may explain why an

inhibition of sound-induced seizures was not observed following i.p. administration of

i - LY379268 and LY389795 in GEP rats in the present study. Ultimately, whether because of

I
I a failure to reach key epileptogenetic regions or due to a developmentally-regulated loss, of
t
i mGlu^ sensitivity, when administered systemically, tnGlu^j agonists are not anticonvulsant

I in the GEP rat model of generalised seizures.

!; Repeated stimulation of structures within the limbic system (kindling), for example

I
I the amygdala, permanently lowers the seizure threshold of that particular region (Meldrum
I

i et al., 1999). This process of epileptogenesis is thought to involve enhancement of voltage-

I sensitive Ca2+ conductance, mGlu receptor-mediated phosphoinositide hydrolysis and

! glutamate release (Meldrum et al., 1999). Consequently, the inhibition of electrically-
f
| stimulated seizure activity produced by the agonists in the present study most likely results
i-

I from the inhibition of glutamate release and voltage-sensitive Ca2+ conductance.

Conversely, the proconvulsant activity seen with higher doses of the agonists may result

from mGlu^j-mediated synergy of mGluI/5 activation. Evidence suggests that this mGlu^

agonist-induced anticonvulsant and convulsant action may take effect in the amygdala itself

(Suzuki et al., 1996; Attwell et al., 1998a). However, intravenous administration of

LY379268 failed to induce glucose utilization in the amygdala (Lam et al., 1999). While this

does not disclude the amygdala from mediating this dual role, it also indicates that the

partial inhibition of electrically-stimulated seizures shown here may result via inhibition of

glutamate release in recruited structures of the cortical or subcortical regions. This
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hypothesis is supported by the observation that, in general, the inhibition of cortical spike

and wave discharge was often greater than that of the amygdala.

LY379268 and LY389795 showed inhibition of cortical and amygdaloid SWD for

up to 6 h following i.p. injection. Variability in the responses of kindled-rats following i.p.

injection of LY379268 at 6 h was most likely responsible for the difference between the two

agonists under these conditions. A greater latency in the inhibition of amygdaloid SWD was

observed following i.p. administration of LY389795 than following administration of

LY379268. Similarly, a delay in the inhibition of electrically-stimulated seizure score has

been described following intra-amygdaloid injection of 1S,3R-ACPD into Am-kindled rats

previously (Suzuki et al., 1996).

The present study is the first to show that mGlu^j agonists inhibit the duration of

SWD of Ih/tti mice. Single gene mutations that comprise the p4-subunit of voltage-sensitive

Ca2+ channels underlie the spontaneous discharges of the absence, non-convulsive seizures

of lh/B) mice. Beta subunits have been shown to attenuate G protein-coupled inhibition of

Ca2+ channels (Campbell et al., 1995), however recent evidence indicates that an increase in

P3-subunit expression compensates for the 'defective' 84 subunits of Ih/lh mice, except in

some areas, including the thalamus and neocortex (Tanaka et al., 1995; Burgess et al., 1999;

Lin et al., 1999). Hence, it is possible that mGlu^ agonists, acting via G protein-mediated

inhibition of Ca2+ channels in those P4-subunit 'defective' regions, reduce the duration of

SWD in Ib/lb mice. However, further elucidation of the pathological implications behind

the mutation to the P4-subunit gene is required to fully understand the mechanisms behind

the observations of the present study.

The pharmacological profile of the mGlu^j antagonist LY341495 is dissimilar to

that of the selective agonists when given by i.c.v. injection. Despite a difference in action,
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> •

\ anticonvulsant versus proconvulsant activity, none-the-less LY341495 is less potent a
f
[ proconvulsant as the agonists are anticonvulsant. In fact both 2^,4^-APDC and LY389795
f,

I are almost equally potent as proconvulsants as the antagonist. This observation suggests
[•

K

! that while mGlu^ are important sites in anticonvulsant behaviour they are not responsible

[• for proconvulsant behaviour. They same dynamics does not apply to AMPA receptors for

['• example; with these iGlu receptors, agonists and antagonists are equally potent inducers of

i
I proconvulsant or anticonvulsant activity respectively (Chapman et al., 1991). The
[

proconvulsant activity of mGlu^ agonists and possibly antagonists appears due to their

grossly non-selective and toxic artions. The proconvulsant activity reported here merely

establishes the upper limits of a safe anticonvulsant dose range. The exception is 2R,4R-

APDC, where proconvulsant activity was recorded at doses less than 100 nmol i.cv. in the

sound and DHPG seizure models. However this proconvulsant activity did not immediately

manifest itself in a similar way to that of LY389795 or LY341495 at these lower doses,

instead similar high doses were required to elicit the proconvulsant behaviour of wild

running, mouth clonus, clonus and tonus. If the proconvulsant activity of 2R,4R-APDC

was produced by activation of mGlu^ it would be expected that LY379268 and LY3 89795,

with higher selectivity for mGlu^, would be more potent at inducing proconvulsant

behaviour. However, this was not observed; instead no dose of LY379268 in DBA/2 mice

induced clonus. 2R,4R-APDC is unique in this low-dose proconvulsant effect, but why this

is the case is unknown at present.

This study has shown that group II mGlu receptors play a role in the amelioration

of seizures in animals which share a similar etiology to those seizures found in humans.

Furthermore, systemic administration of LY379268 and LY3 89795 in particular inhibit

these seizures and consequently demonstrate potential as potent anti-epileptic drugs.
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Studies within the present thesis have examined the function of group II metabotropic

glutamate receptors using a range of pharmacological tools under normal and pathological

conditions, including toxicity mixtro and epilepsy invivo.

The role of Glu and the glutamatergic neurotransmission system has been described

in detail in Chapter 1. From this introduction it is clear that disruption of Glu homeostasis is

known to cause neuronal injury and/or convulsive seizures, and is involved in the

neuropathology of many neurological disorders including Alzheimer's disease, amyotrophic

lateral sclerosis, ischaemic stroke and epilepsy.

Since group II mGlu receptors are located on the presynaptic terminal and inhibit

glutamatergic neurotransmission (Anwyl, 1999; Cartmell and Schoepp, 2000), these receptors

[ represent a potential target for the amelioration of neuronal injury as a result of
I
j excitotoxicity. In Chapter 2 the hypothesis that agonists, acting at presynaptic group II mGlu

I receptors could, via inhibition of Glu release prevent the exacerbation of toxicity induced by
i

various insults in cortical, striatal and cerebellar granular pure neuronal cultures was

investigated. The presence of functional receptors in these preparations was confirmed by

2/?,4i?-APDC-induced inhibition of forskolin-stimulated production of cAMP. At different

days of development in vitro a graded pattern of injury to cortical and striatal cultures was

achieved through the free radical generator hydrogen peroxide, the non-selective protein

kinase inhibitor staurosporine, and the iGlu receptor agonists NMDA, AMPA and KA.

Cultures were also exposed to insults over a range of periods to induce varying degrees of

injury, due to apoptosis or necrosis, and to reflect some of the cell death seen in

neurodegenerative conditions. Granule cells were similarly exposed to low K+ which is

known to induce apoptosis. Some of these injury conditions resembled those used by



Chapter 5: General Discussion

previous investigators in cultures of a more mixed cell phenotype whereby group II mGlu

receptor agonists had been shown to be neuroprotective (Bruno et al., 1994; Bruno et al.,

1997; Bruno et al., 1998a). Treatment of injured cultures with group II mGlu receptor

agonists 2/?,4i?-APDC, L-CCG-I, DCG-IV and NAAG failed to attenuate the toxicity

induced by any of the above insults, under any of the various conditions employed. These

findings contrasted to those of Bruno and colleagues in mixed cultures. During the course of

this study, Kingston et al., (1999) published findings using similar toxic regimes to those

i employed here, and found that the third generation group II mGlu receptor agonists

! LY354740, LY379268 and LY389795 induced neuroprotection that was likely mediated by

astrocytes in culture. When the results of these studies are taken with those by Nicoletti and

colleagues (Bruno et al., 1998a), and Kingston et al., (1999) together they conclusively show
r
i that group II mGlu receptor-mediated neuroprotection in vitro can only be achieved by

I

I activation of receptors on astrocytes. Furthermore, given the nature of mGlu receptor

expression throughout the CNS and in vitro (Shigemoto and Mizuno, 2000; Janssens and

Lesage, 2001), this neuroprotective effect was most likely mediated by the mGlu3 subtype

localised to astrocytes. In 2001, D'Onofrio et al. published their investigation into the

signalling mechanisms which revealed a process whereby astrocytes were understood to

release TGF-P following mGlu3 activation - a trophic factor responsible for group II mGlu

receptor-induced neuroprotection. In brief, TGF-P induction was demonstrated in vitro via

activation of the MAPK and PI-3-K pathways with similar evidence obtained from in viv

experiments.

Despite evidence for the important role of astrocytes that was emerging at that time

(as discussed above), signal transduction mechanisms of group II mGlu receptors remained

a matter of some controversy, particularly in astrocytes. Therefore, a focused group of
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inexperiments were designed to gain new insights into group II mGlu receptor function i

astrocytes by examining inter-relationships of intracellular signalling, particularly in light of

our own earlier observation on the sensitivity of mGlu^-cAMP signalling to extracellular

calcium. Chapter 3 demonstrates that under physiological Ca2+ and adenylate cyclase

stimulation there was a rapid elevation of [Ca2+], and an elevation of cAMP production is

achieved in astrocytes following group II mGlu receptor stimulation. This observation had

been noted earlier in slice preparations (Schoepp et al., 1996a,b), however the interpretations

surrounding the basis of this elevation were incomplete and at times contradictory.

Furthermore, the data from initial experiments demonstrated that this elevation was not

found in neurones and was specific to astrocytes, thereby showing that different cell types

possessed different group II mGlu receptor signalling "infrastructure". This elevation in

cAMP was subsequently shown to be sensitive to inhibitors of PLC and CaMKII, and the

breakdown of endogenous adenosine by adenosine deaminase. While the PLC/IP3 pathway-

was interpreted to be downstream of group II mGlu receptor activation and precede

adenosine release, the role of CaMKII appeared to relate to the adenosine positive feed back

on cAMP production. In Chapter 3 also, roles for adenosine in the regulation of glial

function and protection of neurones under insult were highlighted. However, further work is

needed before it can be concluded that the group II mGlu receptor-mediated release of

adenosine in the present study would have a neuroprotective effect in ikm. For example,

further experiments examining the temporal patterns of involvement of TGF-P and

adenosine represent a logical conclusion to the present work. Figure 5.1 outlines some of the

key pathways involved in group II mGlu receptor-mediated neuroprotection incorporating

possible presynaptic components and what is also now known about the role of astrocytes.



Figure 5.1 Putative neuroprotective pathways induced by activation of

group II metabotropic glutamate receptors.

Three neuroprotective pathways postulated in the figure include (1) inhibition of

Glu release from activation of presynaptic group II mGlu receptors, (2) induction

of trophic factor release from glia (e.g. TGF-p), and (3) induction of adenosine

release. Each of these pathways acts to prevent excitotoxicity (cell death) as a

result of ion influx in the postsynaptic terminal.

Arrows indicate activation. Lines with T shaped end indicate inhibition. T shaped

lines in red highlight the putative neuroprotective pathways.
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Finally, the ability of group II mGlu receptors to modulate excessive glutamatergic

neurotransmission was investigated in animal models of generalised motor seizures, primary

generalised non-convulsive seizures, epileptogenesis and convulsions of the limbic system.

As a result of these experiments LY379268 and LY389795 were found to be systemicalfy

active and potent anticonvulsants, and clearly, these two third-generation mGlu^ agonists

possess anticonvulsant potencies comparable to those of current clinical AEDs (Table 5.1.).

Interestingly, unlike LY379268 and LY389795, 2/?,4i?-APDC produced marked anti- and

proconvulsant aaivity. The reason for these contrasting results is not entirely clear since

their selectivity for group II mGlu receptors is quite similar. 2R,4R-AVDC may produce

proconvulsant activity through unique, non-selective actions at other targets of

neurotransmission recruited during seizures. Furthermore, this study broadened our

understanding of the anticonvulsant potential of group II mGlu receptors, which contrasted

to that of some group III mGlu receptors by producing a transient rather than prolonged

anticonvulsant effect (Tang et al., 1997).

Other work performed during my doctoral candidature showed that activation of

group III mGlu receptors and antagonism of AMPA receptors (using the 3,4-

dicarboxyphenyl&lycines; Thomas et al., 2001) could produce a greater-than-additive

anticonvulsant effect than when either of these receptors were targeted alone (Moldrich et

al., 2001; Appendix V). In theory, activation of group II mGlu receptors and antagonism of

iGlu receptors could produce similar effects to those seen with the 3,4-

dicarboxyphenylglycines. More importantly, this study serves to show that targeting multiple

sites of the glutamatergic transmission system may produce greater therapeutic benefits than

when only one target is addressed, particularly with respect to those conditions which are

polygenic or polymorphic. Combination therapy of multiple mGlu and iGlu receptor ligands
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Table 5.1 Comparison of the inhibition of sound-induced clonic seizures in DBA/2

mice of conventional anti-epileptic drugs and mGlu receptor ligands. Drugs are

listed in decreasing order of potency according to ED50 values with 95% confidence

intervals.

Drug Clinical Use (mg/kg, i.p.)

Diazepam

Phenytoin

LY379268

Phenobarbital

LY389795

Lamotrigine

Carbamazepine

Levetiracetam

Topiramate

MPEP

SIB 1893

Sodium Valproate

2R4R-APDC

(f?S)-3,4-DCPG

Partial & generalised seizures

Generalised convulsive & partial seizures

n.a.

Partial & generalised seizures

n.a.

Generalised seizures & Lennox-Gastaut
syndrome

Generalised convulsive & partial seizures

Adjunct for partial seizures

Adjunct for partial/generaiised seizures

n.a.

n.a.

Partial & generalised seizures

n.a.

n.a.

0.28 [0.20-0.39]2

2.5[1.8-3.5]2

2.8 [0.9-9.6]6

3.4 [2.3-5.0]2

3.4 [1.0-11.7]6

3.5 [2.4-5.1]2

4.4 [3.6-5.4]2

8.6 [6.2-11.2]1

16.2[11.3-23.1]7

18 [10-32]3

27[17-44]3

43 [33-56]2

75 [25-116]4

86 [74-101 ]5

n.a.: not applicable
1Gower et al., 1992 2De Sarro et al., 1996 3Chapman et al., 2000 "Chapter 4 5Moldrich et al., 2001 6Chapter

4 7De Sarro et al., 2000.
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with or without current clinical AEDs to achieve a more potent and more broadly-effective

anti-epileptic strategy may also serve as an extension to the experiments described in this

thesis. In addition to this anti-epileptic strategy, mGlu3 specific agonists may be included to

prevent the neuronal loss associated with seizures. The "philosophy" of this glutamatergic,

and multi-target approach extends beyond that of epilepsy, and may also apply to stroke,

ALS and possibly Alzheimer's disease.

Apart from investigating the temporal pattern of TGF-P and adenosine release from

astrocytes (as described earlier), other extensions of this study may include:

investigating cAMP signalling and adenosine release in mixed, neuronal-glial

cultures and organotypic slice cultures,

using P-adrenoceptor agonists and mGlu^ agonists to induce adenosine release,

and subsequently evaluating potential neuroprotective" outcomes,

• using P-adrenoceptor agonists and mGluy, agonists to induce a sustained

increase in cAMP, which might then be expected to upregulate translation and

expression of GluTs in astrocytes (Eng et al., 1997),

• targeting group II mGlu receptor- and astrocyte-mediated neuroprotection in

animal models of ischaemic stroke, and parkinsonsim.

In conclusion, potent and selective grou}. II mGlu receptor agonists possess

neuroprotective activity in vitro and in vivo via stimulation of astrocytes, which involves the

release of trophic fartors and possibly adenosine. The same agonists are also effective at

inhibiting seizures in animal models of human epilepsy and demonstrate a potency

comparable to clinically effective anti-epileptic drugs. Therefore, such group II mGlu
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receptor agonists may prove useful in the treatment of human neurological disorders that

involve neurodegeneration due to injury and/or epilepsy.
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Appendix I: Composition of Neurobasal Medium

Brewer, 1995

COMPONENT

L-alanine

L-arginine.HCl

L-asparagine.H2O
L-cysteine

L-glutamine

gylcine
histidine.HCl.H2O

L-isoleucine
L-leucine

L-lysine.HCl
L-methionine

L-phenylalanine

L-proliiie

L-serine

L-threonine
L-tryptophan

L-tyrosine

L-valine

mg/L
2

84

0.83
1.21

73.5
30
42

105
105
146
30

66

7.76
42

95
16
72

94

COMPONENT
CaCl2.anhydrous
Fe(NO3)3.9H2O

KC1
Mg02

NaCl
NaHCO3

NaH2PO4.H2O
D-Ca pantothenate

folic acid
i-inositol

niadnamide

pyridoxalHCl
riboflavin

thiamine.HCl
vitamin B12

D-glucose
Phenol red

HEPES
sodium pyruvate

mg/L
200
0.1

400

77.3
3000
2200
125
4
4
4
72
4
4

0.4
0.34
4500
8.1

2600
25
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Appendix II: Composition of B27 components

COMPONENT

BSA

Biotin

L-carnitine

catalase

corticosterone

ethanolamine

D(+)-galactose

giutathione

insulin

linoleic acid

linolenic acid

progesterone

putrescine

retinyl acetate

selenium

superoxide dismutase

apo-transferrin

triiodothronine

DL-a-tocopherol

DL-a-tocopherol acetate

CONCENTRATION
(ng/ml)

2500

0.1

2

2.5

0.02

1

15

1

4

1

1

0.063

16.1

0.1

0.01

2.5

5

0.02

1

1
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Appendix III:

Composition of N2 Media

COMPONENT CONCENTRATION (ug/ml)

Insulin (Bovine)

Human Transferrin

Progesterone

Putrescine

Selenite

500

10000

0.63

1611

0.52

Composition of HBSS

COMPONENT

KC1

KH2PO4

NaCl

Na.HPO,

D-Glucose

Phenol Red

CONCENTRATION (mM)

5

0.3

138

0.3

5.6

0.03
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! APPENDIX IV: MATERIALS

Chapter 2

Group II mGlu receptor agonists, NMDA, (5)-AMPA and KA were purchased from

Tocris Cookson (Bristol, UK). LY307452 was a gift from D. Schoepp (Eli Lilly, IN, USA).

H,O2 and staurosporine were obtained from Sigma (Sydney, Australia). Neurobasal medium,

DMEM, B27 and N2 supplements, penicillin/streptomycin, aphidicolin, HBSS, HEPES and

L-glutamine were obtained from Gibco-BRL Life Technologies (Melbourne, Australia). Other

cell culture components, IBMX, forskolin, MTT and RPMI1640 medium were purchased

from Sigma. MAP-2, NGS and secondary antibodies were acquired from Silenus (Melbourne,

Australia), while anti-GFAP was acquired from Incstar (Stillwater, MN, USA). DAB and the

Stable Peroxide Substrate were obtained from Pierce (Rockford, IL, USA). The Biotrak

[3H]cAMP assay kit was purchased from Amersham (Little Chalfont, UK).

Chapter 3

Metabotropic Glu receptor agonists, /?,S-3,5-dihydroxyphenylglycine (DHPG), 2R,4R-

4-aminopyrrolidine-2,4-dicarboxylic acid (2i?,4/?-APDC), and antagonists, 2-methyl-6-

(phenylethynyl)-pyridine (MPEP), (aS)-a-amino-a-[(lS,2S)-2-carboxycyclopropyl]-9H-

xanthine-9-propanoic acid (LY341495) were purchased from Tocris (Bristol, UK) with the

exception of (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268) which

was a gift from D.D. Schoepp (Eli Lilly, IN, USA). 4-(2-[7-Amino-2-(2-

furyl)[l,2,4]triazolo[2,3-a][l,3,5]triazin-5-ylamino]ethy3)phenol (ZM241385) was also purchased

from Tocris. Neurobasal medium, DMEM, B27 supplement, penicillin/streptomycin, HBSS,

HEPES, L-glutamine and pertussis toxin were obtained from Invitrogen (Melbourne,
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Australia). Other cell culture components, IBMX, forskolin, furosemide, adenosine deaminase,

NECA, DMSO, U73122, H89 and the ester of (S)-isoquinolinesulphonic acid (KN-62) were

purchased from Sigma (Sydney, Australia). Nifedipine and nimodipine were from RBI

(Natick, MA, USA). The Biotrak [3H]cAMP assay kit was purchased from Amersham (Little .

Chalfont, UK). Pluronic F-127, Fluo-3/AM and the calcium calibration kit were obtained from

Molecular Probes (Eugene, OR, USA).

Chapter 4

The selective mGlu2/3 agonists (-)-2-oxa-4-aminobicydo[3.1.0]hexane-4,6-

dicarboxylate (LY379268, M , = 187.15) and (-)-2-thia-4-aminobicyclo[3.1.0]hexane-4,6-

dicarboxylate (LY389795, Mw = 203.22) were generous gifts from Eli Lilly & Co. 2R,4R-

APDC, the mGlu^ antagonist (a5)-a-amino-[(15,25)-2-carboxycyclopropyl]-9H-xanthine-9-

propanoic acid (LY341495) and the mGlu1/5 agonist (i?,5)-3,5-dihydroxyphenylglycine

(DHPG) were purchased from Tocris Cookson Ltd. (Bristol, UK).
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Abstract

The 3,4-dicarboxyphenylglycines (3,4-DCPG) inhibit sound-induced seizures in DBA/2 mice with the racemate being notably
mor nt than rimer isomer (EDM (nmol, i.c.v.)): (RS)-3,4-DCPG (0.004; 86 mg/kg, i.j » t h e mGlu8 agonist (S)-3,4-DCPG
(0.1 >the AMPA antagonist (R)-3,4-DCPG (0.38). A potentiation of anticonvulsant activity between AMPA and mGlu8 receptors
was confirmed by combining (R)-3,4-DCPG with the mGlu« ag> ' RS)-4-phosphonophenylglycine. This potentiating mechanism
provides a novel strategy for the treatment of epileptic seizure; © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Anticonvulsant; 3,4-dicart>oxyphenylglycine (3,4-DCPG); (RS)-4-phosphonophenyIglycine (RS)-PPG; DBA/2 mice; Epilepsy; mGluRs

The 3,4-dicarboxyphenylglycines (3,4-DCPG) rep-
resent a novel group of pharmacological tools which
allow the investigation of the role of glutamate receptors
in physiological and pathological conditions. The R- iso-
mer of 3,4-DCPG has been identified as an AMPA
receptor antagonist with weak activity at NMDA recep-
tors and little, or no, activity at kainate receptors
(Thomas et al., 1997). More recently, the S- isomer has
been tested on cloned human metabotropic glutamate
receptor (mGlu) subtypes and was identified as a selec-
tive and full mGIUg agonist with weak activity at other
mGlu receptor subtypes (Thomas et al., 2001). (S)-3,4-
DCPG is at least 100-fold more potent at mGlu8 than
other group III mGlu recept :h the following order
of potency mGl >>mGl >mGl >>mGlu7 . Both
(RS)- and (S)-3,4-DCPG display weak or no antagonism
of NMDA or kainate receptors. A similar functional pro-
file of the compounds has been demonstrated in neonatal
rat spinal cord (Thomas et al., 1997, 2001).

Group III mGlu and AMPA receptors have been idcnt-

* Corresponding author. Tel.: +44-207-8480398; fax: +44-207-
8480689.

E-mail address: hrian.meldrum@kcl.ac.uk (B.S. Meldrum).

ified as targets for the suppression of epileptic seizures
due to their ability to modulate glutamatergic neuro-
transmission (Bleakman and Lodge, 1998; Cartmel! and
Schoepp, 2000). Previous studies have identified group
III mGlu receptor agonists as potent inhibitors of sound-
induced clonic-tonic seizures in mice and rats following
intracerebral injection (Ghauri et al., 1996; Chapman et
al., 1999). However, these agonists either induce procon-
vulsant activity at higher doses or are not anticonvulsant
v/hen administered systemically. Alternatively, AMPA
receptor antagonists are potent inhibitors of seizures
induced in a variety of animal models (Chapman et al.,
1991; Meldrum et al., 1992). The present study evalu-
ated the anticonvulsart activity of the (R)-3,4-DCPG,
(S)-3,4-DCPG and (RS)-3,4-DCPG against sound-
induced clonic-tonic seizures induced in mice an"d inves-
tigated the mechanism behind the potent anticonvulsant
activity of (RS)-3,4-DCPG.

All regulated procedures performed in this study were
carried out in accordance with the UK Animals
(Scientific Procedures) Act, 1986. Dilute brown agouti
(DBA/2) mice (male and female, age 21-28 days, 7-15
g weight; Institute of Psychiatry colony and Harlan and
Olac, Bichester, UK) undergo a well-characterised seiz-
ure response when exposed to a loud stimulus. Drag or

0028-390X/OI/S - see Iront muttc «> 2001 Elsevier Science Lid. All rights reserved.
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vehicle were aJ~":~istered iniraccrcbroventricularly
(i.- -• * under lighi fiuothane anaesthesia in a volume of
K u.1. (RS)-3,4-DCPG was also J ' listered intraperi-
toneally (i.p.) in a volume of I(X p.1/10 g body weight.
Sound-induced seizures were induced 15-60 min follow-
ing administration of drug or vehicle as previously
described (Chapman et al., 2000). Sound-induced seir- re
activity was scored 0-4 (wild running, clonus, tonus and
resp:""*"~y arrest each received a score of 1). The
mea +SEM score per animal withir. a treatment group
was calculated and statistical differences between scores
determined by the Mann-Whitney U test. A rotarod test
was used to determine drug-induced motor-impairment
at 15 min following i.c.v. administration of the com-
pounds as previously described (Chapman et al., 2000).
The compounds were synthesised as previously
described (Thomas et al., 1997, a fuller account is in
preparation) and dissolved in phosphate buffered saline
(PBS) for i.c.v. injection where pH 4.0. PBS (pH 4.0)
was prepared using HC1 and served as the vehicle. (RS)-
3,4-DCPG was dissolved in water and adjusted to pH
7.0-7.7 with NaOH for i.p. injection. (RS)-4-phosphono-
phenylglycine ((RS)-PPG; soluble in PBS) was obtained
from Tocris Cookson (Bristol, UK).

Each of the 3,4-DCPG compounds produced a dose-
dependent inhibition of sound-induced clonic seizures in
DBA/2 mice —:"- the following ED50 values [upper-
lower 95% co fidence limits] (nmol, i.c.v.): (RS)-3,4-
DCPG (0.0' )O031-O.O52 »(S)-3,4-DCPG (0.11
[0.054-2.2E >(R)-3,4-DCPG (0.38 [0.13-1.13]) [Fig.
l(a)]. Sinv1--'--, each of the 3,4-DCPG compounds
(i.c.v.) sigi ficantly inhibited the sound-induced seizure
score at he following doses: 1-10 nmol (R)-
DCPG i <0.0005), 0.01-10 nmol (S)-3,4- i <
0.0433), 0.001-10 nmol (RS)-3,4-DCPG < <0.0089).
The duration of the inhibition of sound-induced seizures
was tested at those doses of the compounds which pro-
duced 100% inhibition of clonic seizures (3 nmol (R)-
3,4-DCPG, 10 nmol (S)-3,4-DCPG and 1 nmol (RS)-3,4-
DCPG). Each of the compounds demonstrated a similar
transient inhibition of sound-induced seizures such that
at 60 min following i.< jection the occurrence

onic seizures was s 6 6 % of vehicle [score:
S0.0559 compared to vehicle; Fig. l(c)]. Co-injection

of 3 nmol (R)-3,4-DCPG and 10 nmol (S)-3,4-DCPG
produced an inhibition of sound-induced clonic seizures
greater than cither compound - ' " e at 60 min [Fig. !(c)],
where the score v 'so sigr ficantly different from that
of the vehicle ( =0.0047). (RS)-3,4-DCPG also pro-
duced an inhibition of sound-induced clonic sei~
when administered systemically whereby (he ED; =86
[74-101] mg/kg, i.p. with a steep dose response curve
t»7ig- Kb)].

The 3,4-DCPG compounds produced a dose-depen-
dent motor impairment when tested on •he rotarod —

ED5() (nmol, i.c.v.): 2.79 [1.46- ((S)-3 4-
DCPC <4.7 [0.8-25.2] ((RS)-3,4-DCPC <6.06 [3 84-
9.57] ((R)-3,4-DCPG). The therapeutic indices of the
3,4-DCP" impounds were calculated (rotarod loco-
motor d rich ED50/anticonvul :D5U)- 1175 (RS)-
3,4-DCF » 2 5 , (S)-3,4-DCP >16, (R)-3,4-DCPG.

Following the observation that the racemate provided
greater than additive inhibition of sound-induced seiz-
ures compared with the isomers given alone, the mGlu8

agonist (RS)-PPG (0.03-3 nmol; (Chapman et al., 1999))
was co-injected i.c.v. with (R)-3,4-DCPG (0.001-0.1
nmol). Treatment with these compounds produced an
' "'•'bition of sound-induced seizures with a similar pro-
file to that of (RS)-3,4-DCPG, whereby the ED50 values
for the co-injection were 0.011 [0.0017-0.076] nmol for
(R)-3,4-DCPG or 0.34 [0.052-2.27] nmol for (RS)-PPG
(from Chapman et al., 1999) [Fig. l(d)]. Similarly, co-
injection of (R)-3,4-DCPG (0.01-0 ' ~nol) with (RS)-
PPG (0.3-3 nmol) produced a sigi ficant inhibition of
seizure score compared to the istration of similar
doses of (R)-3,4-DCPG alone i <=0.0068).

Sound-induced seizures in DBA/2 mice are an estab-
lished animal model of generalised epilepsy in humans,
such that all effective anti-epileptic drugs in humans
potently inhibit seizures in DBA/2 mice. The 3,4-DCPG
compounds inhibited sound-induced clonic seizures with
the following order otency (i.c.v.) (RS)-3,4-
DCF »(S)-3,4-DCF >(R)-3,4-DCPG. Based on
their respective ED50 values (RS)-3,4-DCPG is approxi-
mately 30- and 100-fold more potent at inhibiting seiz-
ures than either (S)-3,4-DCPG and (R)-3,4-DCPG,
respectively; (S)-3,4-DCPG is approximately 3-fold
more potent than (R)-3,4-DCPG in this regard. The con-
centration response curve for the depression of the fast
component of the dorsal root-evoked ventral root poten-
tial by (S)-3,4-DCPG in the neonatal rat spin"' —d was
h:-"--sic (Thomas ' '., 2001). The uniden fied weak
i finity component -300-fold difference in EC50 values)
of this concentration response curve to (S)-3,4-DCPG
cannot be ignored, however no biphasic response was
observed with this compound in the present study. While
the weak antagonism of NMDA and kainate receptors
of (R)- and (RS)-3,4-r'"r>1 (Thomas et al., 1997) is
unlikely to make a sigi ficant difference to the relative
potencies demonstrated here. Interestingly, despite the
greater potency of (RS)-3,4-DCPG, the racemate did not
impair motor performance beyond that experienced with
either of the isomers.

At doses with which (R)-3,4-DCPG did not inhibit
sound-induced clonic seizures, the racemate provided
greater inhibition of seizures than (S)-3,4-DCPG alone at
a similar dose. Since <RV " "-DCPG possesses negligible
activity at mGIu8, ihesc findings suggest that a potenti-
ation of the inhibition of sound-induced seizures is
occurring, and results from the activation of ~^uis and
antagonism at AMPA receptors. To co firm this



734 R.X. Moldrkh el al. / Neurophanracotogy 40 (2001) 732-735

(a)

- 100 .c.v.

(R,S)-DCPG

(S)-DCPG

(R)-DCPG

(b)

(c)

•5- 100'

0.00001 0.0001 0.001 0.01 0.1
Dose (nmol, l.c.v., -1S mln)

10C

80

60

40

20

0

\

\

\

1 1 1 i i _

i.p.

(R,S)-DCPG

10 10 20 60 100 200 500
Dose (mg/kg, I.p., -15 mln)

c
o
"5

e
w
c
o
a.
c
K
S
3

80

60

40

20

* 3

S^/* 1 nmol (R,S)-DCPC

L ^ C — - * > 10 nmol (S)-DCPG

3 nmol (R)-DCPG *
10 nmol (S)-DCPG

20 40 60
time (min)

0.001 0.01 0.1 1 10
Dose (nmol, l.c.v., -15 ?'.ln)

Fig. I. Sound-induced clonic seizures in DBA/2 mice, (a) Dose-dependent inhibition of seizur— r-Ilowing i.c.v. injection of 3,4-DCPG. =10
per data point, (b) Dose-dependent inhibitir- -' seizures by i.p. injection of (RS)-3,4-DCPG. =6 per data point, (c) Time-dependent loss of
anticonvulsanl activity of 3,4-DCPG (i.c.v.). =10 per data point, (d) Potentir-:— of the inhibition of sound-induced clonic seizures by co-adminis-
tration of (R)-3,4-DCPG and (RS)-PPG compared to either compound alone. =10 per data point. (RS)-PPG alone data from Chapman et al. (1999).

potentiating mechanism, the mGlu8 agonist (RS)-PPG
was co-injected with the AMPA receptor antagonist (R)-
3,4-DCPG. Again, at doses with which (R)-3,4-DCPG
did not provide inhibition of sound-induced seizures, a
greater than additive inhibition of seizures was obtained
by co-injection of the compounds than with (RS)-PPG
alor.e. Co-injection of the compounds produced an
approximate 10- and 35-fold greater inhibition of sound-
induced seizures than either (RS)-PPG and (R)-3,4-
DCPG, respectively.

This study has shown that a potentiation of the inhi-
bition of sound-induced seizures is obtained by acti-
vation of mGlu8 and antagonism at AMPA receptors,
and that this presents a novel and effective strategy for
the amelioration of seizures. Furthermore, since (RS)-
3,4-DCPG is systemically active, the racemate is a novel
and effective compound for the investigation of the inter-
action of mGlu8 activation and AMPA receptor antagon-
ism in models of epilepsy.
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Appendices

Appendix VI: Cortical and Striatal Neuronal Culture

Pregnant Swiss White mice (Monash University Central Animal House) of gestation day 14-16

were sacrificed by cervical dislocation. Under sterile conditions, the foetuses were removed

and decapitated, their brains were disserted free and the cerebral cortices or neostriatum were

microdissected under a dissection microscope (Industrial and Scientific Supply Co.). The

dissection was conducted over ice in Hank's balance salt solution (HBSS; 137 mM NaCl, 5.37

mM KCI, 4.10 mM NaHCO30.44 mM KH2PO4 0.13 mMNaHPO4, 10 mMHEPES, 1 mM

pyruvate, 13 mM D(+)glucose and 0.001 g/L phenol red) containing 3 mg/ml bovine serum

albumin (BSA) and 1.2 mM MgSO4 (pH 7.4). Care was taken to remove the meninges and

blood vessels. The tissue was broken into small pieces using a plastic pipette tip and briefly

centrifuged (Labofuge 400e, Heraeus Instruments) at 1000 g x force to collect the fragments.

The pellet of fragments was resuspended in warm (37°C) HBSS (with 3 mg/ml BSA and 1.2

mM MgSO4) containing trypsin (0.2 mg/ml) and deoxyribonuclease I (DNase I, 880 U/ml)

and incubated for 5 min at 37°C in a shaking water bath (Gallenkamp). The digestion of the

fragments was terminated by addition of an equal volume of HBSS (with 3 mg/ml BSA)

containing trypsin inhibitor (83.2 ug/ml, DNase I 880 U/ml) and MgSO4 (1.22 mM) and

centrifugation for 5 min at 1000 g x force. The supernatant was aspirated and HBSS containing

trypsin inhibitor (0.52 mg/ml), DNase I (880 U/ml) and MgSO4 (2.7 mM) was added to the

pellet. The tissue was dissociated by trituration (15 strokes with a 24 gauge needle) and spun

down for 5 min at 1000 g x force. The supernatant was aspirated and the cells were

resuspended in Neurobasal™ medium (NBM; see Appendix I) containing 2% B27 supplement

(see Appendix II), 100 U/ml penicillin and 100 ug/ml streptomycin, 0.5 mM L-glutamine and

10% dialysed foetal calf serum (dFCS), henceforth referred to as full NBM. The cell density of

the suspension and culture yield were established by repeated cell counting on

heamocytrometer chambers. Cells were seeded in Nunc™ (Denmark) 24- or 96-well plates at

densities of 0.3 x 106 or 0.12 x 106 cells/well respectively, designated zero days invfav (0 div).

Plates were previously coated with poly-D-lysine (50 ug/ml), which was removed after

incubation overnight at 37°C, to aid cell adherence. After 24 h (1 div), the full NBM was

replaced with dFCS-free full NBM (2.5% B27 supplement). Half of the serum-free full NBM

replaced each 3-4 div. Cells were maintained in a humidified CO2 incubator (5% CO, g/5%

was
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O,. 37°C; Forma Scientific) and examined using inverted, phase-contrast microscopy

(Olympus, IMT-2). Photographs (Kodacolor Gold 100 ISO film) were taken to document the

morphology of cultures undergoing insult. All experiments were carried out at room

temperature (~ 21°C unless otherwise indicated).

Appendix VII: Cerebellar Granule Cell Culture

Swiss White mice pups (Monash University Central Animal House) of postnatal day 7 were

sacrificed by cervical dislocation. Under sterile conditions, brains were dissected free and the

cerebellar cortex was microdissected under a dissection microscope (Industrial and Scientific

Supply Co.). The dissection was conducted over ice in Hank's balance salt solution (HBSS; 137

mM NaCl, 5.37 mM KCI, 4.10 mM NaHCO3 0.44 mM KH2PO4 0.13 mMNaHPO4) 10 mM

HEPES, 1 mM pyruvate, 13 mM D(+)glucose and 0.001 g/L phenol red) containing 3 mg/ml

bovine serum albumin (BSA) and 1.2 mM MgSO4 (pH 7.4). Care was taken to remove the

meninges and blood vessels. The tissue was broken into small pieces using a plastic pipette tip

and briefly centrifuged (Labofuge 400e, Heraeus Instruments) at 1000 g x force to collect the

fragments. The pellet of fragments was resuspended in warm (37°C) HBSS (with 3 mg/ml BSA

and 1.2 mM MgSO4) containing trypsin (0.2 mg/ml) and deoxyribonuclease I (DNase I, 1600

U/ml) and incubated for 30 min at 37°C in a shaking water bath (Gallenkamp). The digestion

of the fragments was terminated by addition of an equal volume of HBSS (with 3 mg/ml BSA)

containing trypsin inhibitor (83.2 u.g/ml, DNase I 1600 U/ml) and MgSO4 (1.22 mM) and

centrifugation for 3 min at 1500 g x force. The supernatant was aspirated and HBSS containing

trypsin inhibitor (0.52 mg/ml), DNase I (880 U/ml) and MgSO4 (2.7 mM) was added to the

pellet. The tissue was dissociated by trituration (15 strokes with a 24 gauge needle) and spun

down for 3 min at 1500 g x force. The supernatant was aspirated and the cells were

resuspended in Neurobasal™ medium (NBM; see Appendix I) containing 2% B27 supplement

(see Appendix If), 100 U/ml penicillin and 100 fig/ml streptomycin, 0.5 mM L-glutamine and

10% dialysed foetal calf serum (dFCS) (full NBM). The K+ concentration was raised to 25 mM

to prevent cell death. The cell density of the suspension and culture yield were established by
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repeated cell counting on heamocytrometer chambers. Cells were seeded in Nunc™ (Denmark)

24- or 96-well plates at densities of 0.2 x 106 or 0.1 x 106 cells/well respectively, designated

zero days in vitro (0 div). Plates were previously coated with poly-D-lysine (50 Hg/ml), which

was removed after incubation overnight at 37°Q to aid cell adherence. After 24 h (1 div), the

full NBM was replaced with dFCS-free full NBM (25 mM K+ and 2.5% B27 supplement). At

this stage also 2 /xg/ml of aphidicolin was included to prevent proliferation of astrocytes. Half

of the serum-free full NBM (with 25 mM K+ and aphidicolin) was replaced each 3-4 div. Cells

were maintained in a humidified CO2 incubator (5% CO2,8.5% O2; 37°C;Forma Scientific) and

examined using inverted, phase-contrast microscopy (Olympus, IMT-2). Photographs

(Kodacolor Gold 100 ISO film) were taken to document the morphology of cultures

undergoing insult. All experiments were carried out at room temperature (~ 21°C unless

otherwise indicated).

Appendix VIII: Astrocyte Culture

Swiss White mice pups (Monash University Central Animal House) of postnatal day 1-2 were

sacrificed by cervical dislocation. Under sterile conditioas, their brains were dissected free and

the forebrain was microdissected under a dissection microscope (Industrial and Scientific

Supply Co.). The dissection was conducted over ice in Hank's balance salt solution (HBSS; 137

mMNaCl, 5.37 mM KCI, 4.10 mMNaHCO30.44 mMKH2PO4 0.13 niMNaHPO4, 10 mM

HEPES, 1 mM pyruvate, 13 mM D(+)glucose and 0.001 g/L phenol red) containing 3 mg/ml

bovine serum albumin (BSA) and 1.2 mM MgSO4 (pH 7.4). Care was taken to remove the

olfactory bulb,, meninges and blood vessels. The tissue was broken into small pieces using a

plastic pipette tip and briefly centrifuged (Labofuge 400e, Heraeus Instruments) at 1000 g x

force to collect the fragments. The pellet of fragments was resuspended in warm (37°C) HBSS

(with 3 mg/ml BSA and 1.2 mM MgSO4) containing trypsin (0.2 mg/ml) and

deoxyribonuclease I pNase I, 880 U/ml) and incubated for 5 min at 37°C in a shaking water

bath (Gallenkamp). The digestion of the fragments was terminated by addition of an equal

volume of HBSS (with 3 mg/ml BSA) containing trypsin inhibitor (83.2 ug/ml, DNase I 880
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U/ml) and MgSO4 (1.22 mM) and centrifugation for 5 min at 1000 g x force. The supernatant

was aspirated and HBSS containing trypsin inhibitor (0.52 mg/ml), DNase I (880 U/ml) and

MgSO4 (2.7 mM) was added to the pellet. The tissue was dissociated by trituration (15 strokes

with a 24 gauge needle) and spun down for 5 min at 1000 g x force. The supernatant was

aspirated and the cells were resuspended in Astrocyte Medium (AM) consisting of Dulbecco's

Modified Eagle's Medium, 10% fetal calf serum, penicillin/streptomycin (100 U/ml/100

/ig/ml) and Fungizone (amphotericin B, 1 /ig/ml). In general 10 ml of this solution,

containing the forebrain tissue of two pups, was deposited in 75 ml Nunc flasks (with filter

lids) and maintained at 36°C and 5% CO2. Astrocytes were grown to confluency with twice

weekly medium changes of AM (approx. 12-14 div). Astrocytes were removed from the flasks

and separated from microglia by overnight shaking at 150 rpm (Ratek Orbital Mixer; 37°C),

followed by a further shake in warmed AM (150 rpm, 2 h, 37°C). Cells were then allowed to

incubate at room temperature with 10 mM EDTA in the flasks before the cell suspension was

transferred to centrifuge tubes and spun down at 1500 g x force (5 min). Astrocytes were

replated in AM in Nunc multiwell plates at 3.0 x 104 or 8.0 x 104 cells/well for calcium assay

(96-well plates) or cAMP assay (24-well plates) experiments. Astrocytes were grown to

confluence with twice weekly medium changes of AM at 36°C and 5% CO2, such that at the

time of the experiments astrocytes were 24-28 div.
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APPENDIX IX: Photos of astrocyte cultures

A. Representative phase-contrast photomicrograph of cultured astrocytes at 24 div.

Astrocytes typically display a flat, polygonal morphology.

B. Representative brightfield photomicrograph of cultured astrocytes at 24 div following

immunocytochemistry using anti-GFAP (glial marker).

C. Representative brightfield photomicrograph of cultured astrocytes at 24 div following

immunocytochemistry using anti-MAP-2 (neuronal marker). Astrocyte cultures contain

no positive labelling of neurones. Scale bar = 30 urn.
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Appendix X: Measurements of Intracellular Calcium

Concentration

(Protocol for cultures in a 96-well plate). Cells were washed with 100 /zl of warmed HEPES-

buffered saline (HBS: 120 mM NaCl, 5 mM KC1, 0.62 mMMgSO4, 1.8 mM CaCl2, 10 mM

HEPES, 6 mM glucose; pH 7.4). Cells were then incubated with 50 /zl of warmed Fluo-3/AM

solution (10 /zM Fluo-3/AM in HBS containing 1% v/v DMSO and 0.2% w/v Pluronic F-

127), at room temperature for 15 min in the dark (and thereafter if possible). A further 50 /zl of

warmed HBS was added and cells were incubated at 37°C for 1 h. This dye-loading solution

was aspirated and cells washed with 100 /zl of warmed HBS containing 1 mM furosemide

(HBSF). New HBSF (50 /zl) containing drug treatments or control was added to the cells and

the fluorescence measured immediately using the Ascent Fluoroskan for approx. 5 min

(excitation/emission: 485/535). The maximum fluorescence (Fmax) was determined after this

reading by aspirating the treatment solution and adding 50 /zl of HBSF containing 10 /zM of

A23187 for approx. 30 min at 37°C then read in the Ascent Fluoroskan. The minimum

fluorescence (Fmin) was taken after Fmax, whereby an additional 50 /zl of 2mM CuCl2 (in 0.9%

w/v NaCl) ?/ith 10 /zM A23187 was added and read in the Ascent Fluoroskan 5 min later.

Intracellular calcium concentration, [Ca2+]i = Kd (F-Fmin)/(Fmax-F) where Kd is 450nM. To

diminish variable scatter of levels [Ca2+]i can be expressed as A = flCa]i-[Ca]ir) x 100/[Ca]ir

where [Ca2+]ir is under resting conditions (i.e. 5 mM KCl).
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