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Abstract

Blade aeroelasticity is an important problem in turbomachinery. In this study the interac-

tion between the gas dynamics and the turbine blades is considered. A computational tool

is developed and the phenomenon is investigated through simulations of vibrating turboma-

chinery cascades. In particular, the nature of 3-dimensional, viscous effects on aeroelastic

behaviour is examined.

The implementation of the fluid model involves a dual time method coupled with a finite

volume discretisation of the Favre averaged Navier-Stokes equations and the k-co turbulence

model. A moving mesh capability is implemented to accommodate the moving structure and

a basic structural model is also incorporated. A parallel and multiple block approach allows

for time efficient simulations. The new implementation is validated through the simulation

of a number of fundamental cases, with comparison with both experiment and theory. A

simple, coupled airfoil model is simulated for both Euler and Navier-Stokes flow models.

The turbomachinery cascade simulations involve two different configurations, both of

which are modelled on experimental apparatus. The first case is a linear cascade at low

subsonic outlet Mach number, in almost incompressible flow. The nature of tip gap flow is

discussed, as well as the effect of variation in tip gap size on the aeroelastic characteristics of

the cascade. Comparisons are also made between the simulation results and experiment. The

variation of tip gap results in significant local variations in blade unsteady surface pressure.

An analysis of aeroelastic stability is included using the energy method.

The second turbomachinery case considered is the Standard Configuration 4 annular cas-

cade involving both high subsonic and transonic flow conditions. Once again the energy

method is used in the analysis of aeroelastic stability, at a number of different inter-blade

phase angles. Euler and Navier-Stokes simulations are compared, as were 2-dimensional

and 3-dimensional geometries. Simulations with and without the tip gap model exhibit dif-

ferences in unsteady loading. Whilst 2-dimensional inviscid flow simulations are adequate

in simulating the aeroelastic configuration for the high subsonic flow case, significant dif-

ferences exist between the Navier-Stokes and Euler simulations, and 2-dimensional and 3-

dimensional geometries for the case with transonic flow conditions.
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Chapter 1

Introduction

Through the "Oth Century turbomachinery developed to become one of the most important

components in air transportation and power generation. The origins of the steam turbine

can be traced back to the reaction turbine of the Egyptian philosopher Hero. A great deal

of development occurred through the 1800's. One of the first axial flow steam turbines was

devised by Parsons of Britain, for which he obtained a patent in 1884. By 1896 Westinghouse

Machine Co. in the United States and later Brown Boveri and Co. in Switzerland began

manufacturing Parson's turbines in large quantities (Neilson, 1912). Early steam turbines

were used for electricity generation, but later they were also used in ship propulsion. By 1910

nearly all British warships were equipped with Parsons type turbines (Richardson, 1911).

By 1898 the French brothers Armangaud developed a working gas turbine engine. Frank

Whittle of Britain obtained the first patent for an aero-engine in 1930, and over the seven

years that followed developed this into a full scale engine. In the first half of the 20th Century,

reciprocating engines were the dominant form of propulsion in aviation. Today however, the

gas turbine has displaced the reciprocating engine and is the most widespread and most

effective method of aircraft propulsion (Huenecke, 2000).

Turbomachines are classified as those devices in which energy is transferred either to,

or from, a continuously flowing fluid by the dynamic action of one or more moving blade

rows (Dixon, 1998). A rotating blade row changes the enthalpy of the fluid moving through

it by either performing negative or positive work. Enthalpy changes are reflected in pressure

changes occurring in the fluid. In the present context axial flow turbines are considered,

where the flow at the inlet to the turbine is predominantly parallel to the axis of rotation.

A major difference between the axial flow turbines employed for jet propulsion and those

used in power generation is the configuration of the compressor and turbine stages. There

is a different objective - in power generation the maximum amount of energy possible is

removed from the flow as possible before it is exhausted. In jet propulsion, the exhaust is

used for propulsion and the aim is to impart as much kinetic energy to the flow as possible.

There are a number of other important differences. Aeroengines are required to run over
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a range of flow rates and rotational speeds, whereas power generation machines run at a

constant speed. Material weight is an important in aviation but it is net a consideration for

a stationary machine. Power generation turbines also tend to have higher aspect ratio blades

particularly at the exhaust of the low pressure stage.

The effect of aeroelasticity in turbomachinery has been recognised as far back as the

1940's when axial flow turbines were initially conceived for aircraft propulsion. Develop-

ment through the 1950's and 1960's was driven by the need for high performance aircraft in

both the military and the civil transport, and increasing demand for efficiency in the power

generation industry. These requirements led to higher rotational speeds, thinner blade air-

foils, higher pressure ratios per stage, and increased operating temperatures. The resulting

dynamic problems influence the structural integrity of the principal components of the en-

gine, particularly the blading (Fleeter, 1977). This area of dynamics is known as aeroelastic-

ity - the study of the interaction of aerodynamics with elastic structures.

Initially, design and development of turbomachinery was based on experimental work

and operating experience. This meant that often the turbines were introduced into service that

were prone to unpredictable failures. Given the critical nature of the requirement for reliabil-

ity especially in the case of aeroengines, this type of design process was far from acceptable.

The successful operation of a power plant depends largely on the structural integrity of its

rotating parts. In turn, the structural integrity depends on the ability of the machine to with-

stand steady and vibratory stresses. In the case of a jet engines, vibration-induced fatigue

failure of rotor blades is a problem of major concern to the designer (Srinivasan, 1997). As

a consequence manufacturers have embarked or. costly testing programs, in an attempt to

simulate operating conditions.

Whilst solutions have been found to many aeroelastic problems, new designs in these

areas of industry may be subject to unwanted vibratory response unless their effects are

accounted for in the design process. A tool is required to model this response if it is to be

avoided. However it is first necessary to understand the mechanisms of the vibration before

it may be modelled.

In particular, the understanding and modelling of aeroelastic responses of turbines in

power generation is required for the control of vibration of individual blades. The vibration

of turbine blades has a number of adverse effects on the turbine. These include a decrease

in efficiency due to an increase in the width of blade wakes, dynamic stall and variation

in loading due to vibration which can reduce the life of a blade due to cyclic fatigue. The

decreased service life of blades requires an increase in the frequency of servicing, at great

cost to the operator.

Due to inadequacies in classical and computational models, it is currently difficult to

predict the vibratory response of the turbine during the design process and such responses

are often found after a prototype has been manufactured. Thus any design tool that can
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CHAPTER 1. INTRODUCTION 3

accurately predict such responses will reduce the requirement for redesign, and may also
improve the design and efficiency of the final product.

Over the past couple of decades, airfoil design methods have involved the use of em-

pirical and semi-empirical methods to identify and avoid the highest responding, vibratory

modes of turbine blades. This is then followed by an extensive full scale engine test, where

strain gauges are used to ascertain the response at operating speed. However the empir-

ical methods have proven to be inadequate in avoiding all critical resonances, where the

blades would be prone to failure through high cycle fatigue or flutter. Thus flutter and forced

response is an expensive problem that cannot be completely overcome by conventional, em-

pirical means (Hilbert et al., 1997). Clearly, a computational method solving this problem of

avoiding blade response could reduce design cost and design lead-time.

Whilst most computational, aeroelastic analysis has been unsuccessful in exactly repro-

ducing experimental conditions, it has provided important insight into aeroelastic mecha-

nisms that may not otherwise be available. For example, it has been established that for

certain transonic fans that the major contribution to flutter is the oscillation in the passage

shock wave, rather than the stall of blading as first thought (Isomura & Giles, 1998). Thus

validated numerical codes can still be useful to the design process, even though physical

conditions cannot exactly be reproduced.

Another problem is the d termination of the rotor unsteady loading due to the interaction

with upstream and downstream stators (in the case of transonic and subsonic turbines) and

whether it is sufficient to cause excessive response in any one of these modes. If the response

is excessive in any one of the modes, then either the excitation frequency or magnitude

must be reduced or the airfoil responsiveness to the excitation reduced. It is not possible to

remove all modes from the operating range with significant airfoil thickness increases that

would adversely effect performance (Hilbert et al., 1997). The computational tool allows

the designer to predict the response in these modes without resorting to the use of full-scale

production models.

In turbomachinery design, the aeroelastic response is represented graphically through a

Campbell Diagram. The modal frequencies of the airfoil and forms of excitation are plotted

versus the rotational speed. Where the lines cross indicates an operating point at which

unacceptable vibratory stresses could occur. Thus the computational tool may be useful in

determining both the loaded natural frequencies of the blade and the sources of excitation for

a particular configuration so that the Campbell diagram may be formulated before physical

testing is required. In the case of power generation turbines, the designer may ensure that

there are no 'crossings' at or close to the design point.

It has been estimated that for studies on aeroplane wings, an experiment that involves the

study of aeroelasticity in a wind tunnel experiment is an order of magnitude more expensive

than a similar rigid body experiment involving only aerodynamics (Obayashi & Guruswamy,
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CHAPTER 1. INTRODUCTION 4

1992). Thus even for the simple case of an isolated airfoil, the use of experimentation to in-

vestigate aeroelasticity is an expensive exercise. When it is considered that the geometry for

a turbine rotor is a great deal more complex, the study of aeroelasticity may be prohibitive,

even if it was possible to perform all the measurements necessary.

The present study aims to identify the importance of viscous effects on the aeroelastic

stability of turbomachinery blades. It has been noted that in the literature the majority of

studies, both computational and experimental, concentrate on a 2-dimensional plane. Thus

the effects of hub and casing secondary flows and tip gap regions are usually ignored.

To simulate 3-dimensional effects on aeroelastic stability, a Navier-Stokes code has been

developed. The original code was written by Liu (Liu, 1991) and makes extensive use of

schemes by Jameson. This code implemented a steady state, Navier-Stokes solver that in-

cluded the 1988 k-0) turbulence model by Wilcox (Wilcox, 1988). Convergence accelera-

tion techniques involved residual averaging, multigrid and the use of local time steps. Both

Jameson Schmidt Turkel (JST) (Jameson et al, 1981) and Convective Upwind Split-Pressure

(Liu et al., 1998b) artificial viscosity schemes were implemented for stability in the transonic

regime and to correct odd-even decoupling.

The high demand on computational resources posed by the complexity of the aeroelas-

tic phenomenon prompted the development of a code that could more effectively simulate

the problem. A survey of the most powerful computers available indicated that the most

common architecture involved a parallel array of multiple processors, or a single very fast

processor connected to a large memory. The different types of architecture are discussed in

Chapter 4, however the most readily available systems involved an array of processors that

were not necessarily connected to the same memory. One of the most common methods

of performing simulations on these types of systems is through message passing software

using the Message Passer Interface (MPI). A portable version was developed by a research

group at the University of Argonne (Gropp et al, 1996; Gropp & Lusk, 1996) to run on most

systems. Consequently it was used in the parallel implementation.

Other issues involving the parallel implementation of the code included data structure,

the coordination of the moving mesh and the interpolation of the movement of the structure to

the movement of the fluid boundary. New routines were introduced for the moving mesh and

the unsteady implementation, and routines were adapted from other codes for the structural

solver.

The advent of computers and their subsequent development has allowed for the numerical

modelling of complex physical systems. Whilst the sophistication of computers continues to

develop, the goal of modelling exactly the complexity of the physics found in the interaction

between turbine flows and turbine structures still proves to be an elusive one. Thus experi-

mental analysis provides a key role in both validating numerical techniques, and providing

results for analysis of characteristics that numerical methods are unable to reproduce.
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CHAPTER 1. INTRODUCTION 5

The thesis is divided into seven chapters. Chapter 2 discusses the nature of aeroelasticity,

the configuration of typical turbomachinery cascades and some important forms of aeroelas- il l L

ticity in axial flow turbomachinery. A number of experiments are used in comparisons in

later chapters and the nature of experimental measurements is discussed. The various forms | j | |

of analysis and theoretical approaches are presented in the context of the present investiga- Hj
tion.

Chapter 3 presents the mathematical models underlying the simulations of the gas and ; ^

structural dynamics. This includes the Favre averaged Navier-Stokes equations, the k-0)

turbulence model and modal structural model.

Chapter 4 details the computational approach and the way in which the mathematical

model is represented on the computer. The discretisation of both the fluid field and the

structure is discussed at length. The method of parallel computation is a major issue in the

development of the implementation. Integration of the structural model and moving mesh to

accommodate structural displacement are other important issues.

Chapter 5 is a validation of the simulation model. The classical laminar and turbulent

regime flat plate cases are used to test the laminar and turbulent multiple block implemen-

tations. An isolated cylinder, and an isolated airfoil are used to validate the time accuracy $» %

and moving mesh implementation respectively. The behaviour of a simple aeroelastic airfoil I If

flutter model was investigated for both Euler and Navier-Stokes flow models. ^

Chapter 6 is a presentation of the turbomachinery cascade simulations. The issues re-

garding the modelling of the configurations are discussed. Typical flow features found in

turbomachinery cascades under different flow regimes is presented. The first turbine cascade

investigated involves flow in the low subsonic regime. The second is an annular cascade and

involves flow in the high subsonic and transonic flow regimes.

Chapter 7 concludes the thesis.
This work seeks to understand and quantify differences between theoretical models and |sf |'

experiment.
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Chapter 2 m

Aspects of Aeroelasticity in Axial

T\irbines

2.1 The Physics of the Aeroelastic Response in Axial Tlir-

bines

One of the most important aeroelastic responses in turbomachinery involves the interaction

of the fluid or gas with the turbine blades. This is complex and involves a number of different

mechanisms. In the following section, the general nature of aeroelasticity is described then

a number of the key mechanisms are presented. Methods of modelling the phenomenon

through experimental and analytical means are also examined.

The blades in compressors and turbines of turbomachines are subject to a number of

different aeroelastic effects. Two major sources are forced response and flutter, however there

are also others such as mistuning which affect the behaviour of the turbine to a lesser extent.

Before examining these effects, it is first necessary to consider the typical flow conditions

and the modes of vibration found in a rotor or stator.

2.1.1 Aeroelasticity

A general definition for aeroelasticity is provided by Collar (1947) as the study of the mutual

interaction that takes place within the triangle of the inertial, elastic, and aerodynamic forces

acting on structural members exposed to an airstream, and the influence of this on design.

This is illustrated in Figure 2.1. Aeroelastic interactions may have an undesirable effect and

are found in many areas of industry and transport. These include helicopter rotors, aeroplane

wings, wind turbines, aeroplane propellers, and turbomachinery in both aerospace and power

generation. Depending on the particular application, vibratory response decreases efficiency,

produces unwanted noise, reduces component life and may affect the control of the transport
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CHAPTER 2. ASPECTS OF AEROELASTICITY IN AXIAL TURBINES

Aerodynamic

vehicle.

One of the most common forms of aeroelasticity is the interaction that results in an os-

cillating displacement of the structure. If the oscillating displacement does not reach a limit

cycle, the amplitude of displacement of the structure may increase until the structural mem-

ber fails. In the situation where the amplitude is limited, high cycle fatigue may result and

the structural member may fail after an extended period.

Aeroelasticity may be considered by subdividing the problem into the two main disci-

plines that it encompasses, fluid dynamics and structural dynamics. The fluid dynamics tend

to be the more sensitive of the two domains. In some cases it is possible to decouple the

problem and assume a simplified model for the response of the other domain.

2.1.2 TYirbomachinery Cascade Geometry
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Figure 2.1: Definition of aeroelasticity (Collar, 1947).
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In the design and modelling of turbomachinery, they are often simplified to annular cascades

of turbine blades. This is the type of configuration that is investigated in this work. In | |

particular sections of this work the flow will be described within the cascade. A section of |j|]

the geometry of a typical turbomachinery cascade is shown in Figure 2.2 with labels for the

different regions and axes. For example, the pitch-wise direction is in the circumferential

plane between the blades. In this case two blades and 2 passages are shown. The turbine

blade on the right of the figure' .as been removed for clarity. §|< |

Different regions have Ken coloured depending on type. The yellow and blue regions

are the inlet and outlet planes respectively - these are orthogonal to the machine axis. The

dark green region is the hub of the cascade and the casing of the cascade is not shown, but !

would be a section of a cylinder spanning the top of the inlet and outlet planes with its axis ™:{l-

also at the machine axis. The blade tip is coloured red and rest of the blade is grey. The blade

leading edge is the part of the blade closest to the inlet plane and the blade trailing edge is
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closest to the outlet plane.

The flow through the turbine moves from inlet to outlet. An annular cascade involves
as many blades as required to complete the annulus; there are usually no side-walls in the
pitch-wise direction. Often two dimensional flow is investigated - this is done by considering
the flow field at a cylindrical plane through the passage, bisecting the blade and its axis
coinciding with the machine axis.

In turbine cascades, the blade suction side experiences the largest pressure drop at most

chord-wise positions. The blade pressure side typically faces upstream towards the cascade

inlet, whereas the blade suction side faces the blade outlet. The hub and casing are also

known as endwalls. The axial direction is positive in the major flow direction, moving from

cascade inlet to outlet.

rHfe

2.1.3 Fluid Dynamics

The development of theoretical analyses to predict unsteady flows in axial-flow turboma-

chines has been motivated primarily by the need to predict the aeroelastic behaviours of the

blading. Due to the complexity of the unsteady fluid dynamics, this component of the overall

industrial design prediction system has generally been regarded as being the one requiring

the most research attention (Verdon, 1993).

Typical gas turbines may be divided into a number of operating units, including a com-

pressor, the combuster stage and a turbine. Steam turbines may also involve multiple cylin-

ders, although the whole turbine is involved in the extraction of energy from the flow. Flow

characteristics vary throughout the turbines and range from transonic to low velocity sub-

sonic, depending on the stage involved. The fluid state may be characterised as compressible,

turbulent and multiphase (in the case of steam turbines). This is one of the more challenging

and difficult fluid regimes to model in both analytical and experimental fields, particularly

when it is considered that shock waves, boundary layers, wakes, laminar and turbulent flow

may all play important roles in determining flow behaviour.

For example, typical fan compressors operate in the transonic flow region. The flow is

mixed in that the flow at the hub may be subsonic and flow at the fan tip is supersonic. In

the region in between, the flow varies between the two. However the mixed nature of the

flow has a considerable influence on the shock structure at the tips, and consequently on the

aeroelastic stability of the rotor (Bendiksen, 1986). Toward the end of a low-pressure turbine

stage the flow velocity may approach the speed at which incompressibility may be assumed.

In this case, given the absence of shock waves, other flow characteristics dominate aeroelastic

interactions such as the potential or pressure effects, vortex shedding and laminar/turbulent

transition.
Blade vibration can significantly affect the aerodynamic performance of individual blades.

• r i i ' j ' f t I'l '

I

m
!

mmi

m

3!j

i l l

i f f
mm
m
m



CHAPTER 2. ASPECTS OF AEROELASTICITY IN AXIAL TURBINES

Figure 2.2: Schematic of a section of a typical annular turbomachinery cascade.



CHAPTER 2. ASPECTS OF AEROELASTICITY M AXIAL TURBINES 10

Excessive oscillations can cause the airfoil to stall, for example on the suction side of turbine
blades where the pressure gradient may be close to the critical value at which separation
may occur. This is known as dynamic stall and may be caused by any type of aeroelastic
oscillation.

The effect of turbulence can be important in the majority of flow regimes and the mod-

elling of viscous flow at any Reynolds number in practical turbomachinery cases requires a

turbulence model. The problem of modelling turbulence is one of the biggest facing those

in the scientific community simulating fluid dynamics at moderate Reynolds number. The

typical Reynolds number found in a turbine passage is of the order of 105 or above, which

is orders of magnitude above the Reynolds number threshold in turbulent channel flow. Un-

fortunately the modelling of turbulence increases the complexity of the mathematical model

and computational implementation. Whilst turbulence models exist that provide reasonable

predictions of bulk flow behaviour, however they still perform poorly in some cases where

effects such as laminar/turbulent transition and shock/boundary layer interactions are impor-

tant (Wilcox, 2000).

2.1.4 Structural Vibration Dynamics

The nature of the blade vibration can be important in understanding the sources of blade

instability. Complex vibrational motion is often simplified by linearisation through the as-

sumption that it may be represented by a number of vibrational modes. Each mode has a par-

ticular displacement associated with it, known as a mode shape. A frequency is also ascribed

to each mode. By summing all the mode shapes the complete motion may be described. In

general there is a single dominant mode of oscillation that is of primary importance to the

aeroelastic stability. Often this mode is modelled and the other modes are ignored, resulting

in single degree of freedom analysis. Usually modes shapes may be described as bending or

torsional modes.

Blades in high performance turbines and compressors are generally complex in geometry.

The camber of the blade may vary from hub to tip, the blade usually being twisted from root

to tip, may be raked in the axial flow direction and vary in chord length. Thus to closely

model these characteristics, 3-dimensional structural and fluid models are required. Despite

the complicated geometry of individual blades, in the majority of cases each blade on the

rotor may be regarded as being almost identical and this leads to modelling simplifications

that are discussed in Section 2.3.3.

Other blade characteristics may have a significant impact on both blade structural in-

tegrity and flow pattern. Cooling holes in gas turbines are an added complication, changing ,:.^^

the thermodynamics of the structure and hence the profile, the gas dynamics, and also com-

plicating the stress distribution in the structure due to the stress concentrations around the

1
•'!£!-:.
rjjj'.l

W
m

| ii
4); ij
I ;j!
:P •!

fi
••% i

w' 4 ' i i
i it

1
! '•

; ; | ; :

rim



CHAPTER 2. ASPECTS OF AEROELASTICITY IN AXIAL TURBINES 11

holes. Shrouded rotors or splitter blades may also change the inter-blade coupling of rotors
(Bendiksen, 1986).

Mikolajczak (Mikolajczak et al, 1975) provides a description of the vibration dynamics

of rotors in turbomachines. The vibration of a symmetrical rotating system such as a turbine

rotor is predominantly characterised by both torsional and bending motion. If the rotor is

considered isolated from the rest of the machine and is observed from a viewpoint in the

upstream axial direction, nodes of torsional vibration (where deflection from the steady state

is zero) will appear as radial lines, also known as travelling nodal diameters. Nodes of

bending vibration will appear as concentric circles around the bladed disc. On a rotating

stage the radial lines or waves of constant deflection travel around the hub. Adjacent blades

experience a relative time delay or phase difference as the wave passes; this is the inter-blade

phase angle (IBPA).

2.1.5 Forced Response

The blades in turbomachinery are subject to oscillating forces from a number of different

sources. A dynamic oscillation of a structure is described as forced if it occurs at or close to

the frequency of the force, rather than at the natural frequency of the structure. The forces

may be classified as either mechanically induced vibration due to external factors or internal

flow-field induced forces.

There are a number of sources of flow-induced response in the turbine:

• the interaction of blade wakes and tip vortices with following blade rows.

• the effect of the potential field of upstream and downstream blade rows (pressure field).

This includes pressure fluctuations of downstream shock bow waves on upstream vanes

• Oscillations in shock wave position - unsteady aerodynamic forces due to shock mo-

tion have a pronounced effect on the aeroelastic stability of cascades representative of

typical transonic/supersonic rotors (Bendiksen, 1986).

• Distortions of flow at the turbine inlet

Many investigations have been performed into forced response in turbine applications. Shi-

ratori (Shiratori et al., 1998) investigated the behaviour of passage shock waves in both

staggered and unstaggered 2 dimensional cascades. They observed self excited shock wave

oscillation with a similar frequency to that observed in channel flow. The oscillation in po-

sition was observed to be over 40% of the chord length of the blade, which may cause a

substantial torsional response.

Rotor stator interaction, or the interaction of blade rows with upstream flow is another

important area in research into forced response. Sbardella and Peiro (Sbardella & Peiro,
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1997) modelled inter-blade row interaction numerically using an inviscid flow solver. They

found that the effect of an oblique shock wave extending from the trailing edge of a stator

and impinging on the surface of the following rotor resulted in fluctuations in the local rotor

lift as high as 53%. This could cause substantial vibratory effects in the rotor blades . It

was also noted that the interaction between the shock wave and the leading edge of the rotor

blade could cause temporary separation of the boundary layer in this region.

Tip leakage effects may also contribute to rotor instability in high power turbines (Martinez-

Sanchez et al., 1995). The Alford Effect is the name given to the oscillating force due to

irregularities either in the casing or shroud that encases the rotor tips, or due to eccentric-

ity in the centre-line of the rotor. Leakage effects may lead to non-uniformity in the casing

pressure distribution, a consequence of irregularities in the casing seals. The magnitude

of these forces not only depends on the variations with respect to the tip clearance in the

circumferential direction, but also on the magnitude of the tip clearance.

The turbomachinery manufacturers invest heavily in research in an attempt to reduce the

effects of forced response. There is a major difference between the design issues addressed

in flutter and forced response. In flutter stability is required (the correct combination of

excitation frequency and natural frequency). In forced response, the amplitude of vibration

is important (so the fatigue life may be estimated). Given that there are other factors that

are difficult to quantify, such as structural damping, non-linear damping at the blade roots

and the forcing itself, forced response is often aimed at ranking potential designs rather than

predicting exact vibration levels (Imregun, 1998).

2.1.6 Flutter

The term flutter is applied to the self-excited vibration of turbine blades as a result of the

continuous interaction between the fluid and the structure. This is where the external flow

around the btode sustains oscillatory motion of the airfoil. It is similar to forced vibration,

however the frequency of oscillation is close to the natural frequency of the blade. It occurs

because the unsteady aerodynamic forces and moments created by periodic blade vibrations

do positive aerodynamic work on the blade during each vibration cycle and the mechanical

damping is insufficient to dissipate this work input (Mikolajczak et al., 1975). It may occur

in a completely uniform flow-field and the motion is sustained by the extraction of energy

from the uniform flow during each vibratory cycle. One notable characteristic of flutter

is that it induces high stresses, leading to short term, high cycle fatigue failure. Failure

has been observed in both turbines and compressors (Fleeter, 1977). Flutter has also been

identified in low pressure and therefore subsonic turbine stages, where shock waves do not

exist (Nowinski & Panovsky, 1998).

The major concern with flutter is structural stability. Flutter stability is reduced sharply
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for specific narrow speed ranges, a phenomenon known as flutter bite (Marshall & Giles,
1998).

A common correlation parameter that is used to describe flutter is the reduced frequency.
This is defined:

coc
Jrei

(2.1)

where co is the frequency of oscillation, c is the blade chord and f/ref a reference velocity.

Until recently it was believed that reduced frequency was the primary design parameter

for low pressure turbines. However, Nowinski 'Nowinski & Panovsky, 1998)observed in a

comparison of a number of different configurations that mode shape (or vibration mode) is

primary in the determination of damping. A relationship has also been observed between

minimum damping coefficient and reduced frequency - a reduction in reduced frequency

leads to a reduction in the minimum damping coefficient. The dominant contribution to the

overall stability of low pressure turbine blades was deemed to be the mode shape, followed

by reduced frequency, and finally some type of loading parameter. Incidence did not have a

rzs'pr effect on stability.

It has been found from aeroelastic simulations that the shock wave plays a dominant role

in flutter, especially at the point where the shock wave becomes detached. The stability of

the shock wave is decreased at this point and minor oscillations cause the shock wave to

oscillate between attached and detached (Isomura & Giles, 1998).

Both numerical and experimental approaches to flutter analysis are almost identical to

those applied to forced response, as they are very similar phenomena. The forcing mecha-

nisms are identical and the difference between the two is due to structural considerations.

2.1.7' Acoustic Resonance

Acoustic resonance is another phenomenon present in turbines. The significance of the effect

of these acoustic disturbances on the turbine structure is still not clear, due to the difficulties

with modelling this phenomenon both numerically and experimentally. It is usually caused

by the shedding of vortices from the trailing edge of stalled blades (Parker, 1997). Turbines in

the power generation industry run at close to optimal unstalled conditions, acoustic resonance

would usually only occur during start up or shut down, or in the case of dynamic stall.

Acoustic resonance may also be caused by the introduction of acoustic waves due to vibration

external to the turbine. Consequently the effects of acoustic resonance on the turbine are not

as important as flutter, or forced response (Marshall & Imicgun, 1996b).
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2.1.8 Structural Mistuning

Most analytical and numerical models of flutter and forced response rely on ideally tuned

vibrational modes of the blades - this assumes that each blade is identical. The accuracy to

which the profiles are shaped is directly related to the cost of machining. Therefore there is

a trade-off between profile accuracy and cost. However, variations in profile lead to struc-

tural mistuning of the bladings - this can cause unpredictable and serious aeroelastic effects.

Small deviations in the blade geometry can lead tc a scatter of the blade eigenfrequencies,

thus blade interactions become more unpredictable (Kahl, 1998). It is one of the most diffi-

cult of the sources of aeroelasticity to model, as the variations are usually random within a

certain tolerance. Ideally, a model should be able to predict the combinations of blade profile

variation that will provide the most response, however due to the number of combinations

possible this poses a difficult problem.

Kahl (1998) examined the effects of blade variations in a comparison between mistuned

and tuned calculations for a subsonic low-pressure turbine and transonic compressor rotor.

Mistuning, is often cited as the source of significant variations of the resonant amplitudes

in the individual blades of cascades in test facilities. It was found that in the numerical

experiment that mistuning leads to higher resonant amplitudes. It has also been found the

mistuning can have a stabilising effect and damp out the aeroelastic response (Nowinski

& Panovsky, 1998; Sadeghi & Liu, 2001a). Other types of mistuning includes the uneven

spacing of the blades. This has been studied using two whole annulus blade rows by Val.dati

et al (1999). They found that unsteady excitation increased with the increase in throat wid;h

variation.

2.1.9 Damping Effects

Where the tubomachine is subject to oscillating forces, damping plays a significant role

in determining not only the amplitude of vibration, but also i'.s frequency. The damping

of the aeroelastic system is due to a variety of factors and mechanisms. Predominantly

damping is provided by the fluid, with material damping and frictional damping at the blade

roots making a lesser contribution. Excitation forces can under certain conditions change to

damping forces, as has been mentioned in previous sections. In fact, some authors refer to

excitation forces as negative damping.

The sources of aerodynamic damping may be categorised:

• Mean aerodynamic loading

• Shock movement (in the transonic regime)

• Blade wakes and hub ?.nd casing vortices
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• Mistunfng

• Movement of regions of separation

• Movement of turbulence transition region (Mabey et al, 1987)

Structural damping is less complicated in that there are not as many contributing factors:

• Material (hysteric) damping

• Frictional damping at the blade roots, or at the shroud or tip

Damping is possibly one of the more difficult aeroelasiic properties to model, as it often

involves nonlinear m chanisms. These include frictional damping, large amplitude shock

wave oscillation, and turbulence. Thus damping is one characteristic that is most often ap-

proximatet ŝ linear, or neglected altogether.

2.2 Experiments in Aeroelasticity

Physical experimentation can iivoive observing systems and taking measurements, or by the

observation of a simplified t.<; nerimental model that is designed to simulate the physical sys-

tem. Usually a simplified model is created to simplify measurement, increase measurement

reliability or decrease system complexity. Turbines are complex rotating machinery and the

flow conditions and geometry make measurement of the flow difficult. Experimental mea-

surements provide invaluable data for the validation of the computational model. It is worth

reviewing the experimental data presently available as it provides insight into the important

characteristics of aeroelasticity and also suggests simplifications and approximations that

may be made in a computational model.

Unlike numerical and theoretical analysis, physical experiments are always made in

three-dimensional space. However the measurement of 3-dimensional flow phenomena pro-

vides a considerable challenge. In many cases measurements are taken across a single plane.

So that they may be compared with theorejcal models, the effect of 3-dimensional structures

is reduced by locating the measurement plane outside regions subject to their effects, such as

the hub and casing regions in turbomachinery. Thus the experiments may be characterised

by the method of measurement. Where measurements are specifically taken only at mid-

span, they may be regarded as being dominated by 2-dimensional effects. If measurements

are taken in the hub or tip regions, the flow in these areas is dominated by viscous struc-

tures and thus the measurements are investigating 3-dimensional effects. Consequently the

experimental studies may be grouped into 2-dimensional and 3-dimensional studies.

Whilst there have been many 3 dimensional numerical calculations performed on tur-

bine cascades and blade rows, it appears that there is a lack of experimental data to validate
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numerical simulations. One of the major reasons for this is the huge cost involved in per-

forming such experimeiitj. There is also a considerable problem in the reproduction of blade

oscillation in the wind tunnel.

Typical measurements performed on rigs include surface pressure, heat transfer (hot film

sensors), whole blade passage and downstream flow field velocity distributions through hot

wire measurement, vibration measurement through optical sensors and Schlieren pictures

to observe the position and movement of shock waves. Holography has also been used for

qualitative analysis and has identified torsional and bending nodes.

The construction of simplified experimental models not only reduces costs but also facili-

tates measurements that under normal, full scale operating conditions would not be possible.

An example of this is an experiment carried out by Bell and He (1998), where aeroelasticity

was modelled by hinging the blades at the blade root near the hub and moving the tip with

a sinusoidal displacement. This simplifies the experiment and also the numerics - as the

blade displacement varies linearly across the span, the grid is more easily adapted to blade

movement and no finite element structural modelling is required.

There are a number of common configurations found in experimental aeroelasticity and
unsteady flow analysis:

• a single oscillating blade (in first mode bending or torsion only) in a line .r cascade of

static airfoils

• an annular cascade of linear turbine blades in a turbine configuration, with all blades

oscillating.

• full scale engines

Over the past couple of decades, research and development in turboniachinery aeroelasticity

has grown into an important field in engineering. The symposium "Aeroelasticity in Turbo-

machines" was initiated in 1976, which brought together researchers in this area. This event

has been a regular forum for the presentation of new research in this area.

2.2.1 Two-dimensional Measurements

In the 1980's it was recognised that research in the area of aeroelasticity in turbomachinery

was hindered by a general lack of consistency in the configurations subject to both theoreti-

cal and physical experimentation. Another problem exists where research was performed in

collaboration with commercial entities. Often the results of such research are highly confi-

dential - whilst the resulting papers may provide physical insight into the mechanisms of the

aeroelastic phenomenon, often important details such as geometry specifications are omitted

so that the physical or numerical results cannot be reproduced. Therefore any comparisons
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with results may only be qualitative which provides little scope for a detailed analysis and | |
evaluation cf a numerical solution method. |1

In 1980, as a result of the symposium, a wide scope of different "standard configurations" |1

was established, and sample cases with different flow conditions within each standard con- ; l |

figuration were defined. The objective was to formulate test cases which are repeatable and ; |i|

suitable for code validations of numericai models predicting flutter in viscous flows (Boles 11

& Fransson, 1986). It was intended that subsequently they would be better defined and even- |; |

tually expand or reduce these cases. At the 1987 Symposium, a task force was charged with ft

the collecting of infonnation about experimental and theoretical methods and data in the field

of aeroelasticity in turbomachines, and this was presented at the 1991 Symposium with ten

standard configurations (Fransson & Verdon, 1991). An 11th configuration has been added

more recently (Fransson et al, 1998).

The standard configurations are useful in the validation process of 2 dimensional numer-

ical codes, as there is a large body of experimental, numerical and theoretical results from

which to make comparisons.

2,2.2 Three-dimensional Measurements

As noted earlier, there are fewer experiments that concentrate on 3-dimensional aeroelastic

flow characteristics in turbomachinery. Compared to flow field measurements, measure-

ments of the blade structure are more common as they may be more easily performed. For

example the aeroelastic response of full-scale subsonic turbines has been measured through

the application of strain gauges to the blade surfaces. These data have been used to de-

termine the maximum vibrational mode, which has been compared with calculated results

(Hilbert et al, 1997). The same maximum mode was determined to be dominant in both

the experiment and computation. Non-interference measurements have been conducted on a

stage using optical sensors (Watkins & Chi, 1989). Whilst they provide detailed information

on the blade vibration modes, they provide little with regard to the flow mechanisms causing

the instability. Without knowledge of the source of the aeroelastic interaction it is difficult

for designers to eradicate the problem.

A number of researchers have investigated 3-dimensional flow structures in turbomachin-

ery in both stationary and rotating facilities. However these have concentrated on secondary

flows or inter-blade row interaction. For example, the tip region of an operating turbine has

been investigated recently through unsteady velocity measurements (McCarter etal, 2001a;

McCarter et al, 2001b). Whilst the detail of the measurements was limited, all of the major

secondary flows were identified in the region of the casing.

However, 3-dimensional flow measurements for aeroelasticity are not common in the

literature. The effects of 3-dimensional flow features have been modelled more simply by

pi:

sir*;.

ifflf
TJif

i ;|!f

ti



CHAPTER 2. ASPECTS OF AEROELAST1CITY IN AXIAL TURBINES 18

a single blade and two-blade passages (Bell & He, 1997; Bell & He, 1998). The bending
mode was simulated by hinging the blade at the root. Measurements were taken at a num-
ber of span-wise locations. The effect of tip gap on the unsteady aerodynamics was also
investigated (Bell & He, 2000).

Data for the inlet and outlet planes and the 3-dimensional mode shape of Standard Test
Case 4 (Ott, 1998; Ott, 2002) have been made available and this allows the simulation and
comparison of this case in 3-dimensions.

The last two cases are used in this work to investigate viscous flow structures, tip leakage
effects and the differences between 2-dimensional and 3-dimensional aeroelastic simulation
models.

2.3 Theoretical Modelling

The numerical simulation of engineering systems provides a number of advantages over

physical experimentation. One is economic in that in general computer resources are cheaper

than experimental facilities. Another is that the fluid dynamics may be represented with a

much higher level of detail with a computational model. Whilst experimental analysis is

subject to measurement errors, computational simulation is subject to modelling errors and

these may be much more difficult to identify than those due to experimental method.
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2.3.1 Methods of Analysis

Since the identification of the aeroelasticity as a major problem, a number of different ap-

proaches have been applied to analyse the interaction of fluid and structure. Initially the

anal •'sis was limited due to the lack of methods for modelling unsteady fluid flow. However

over the last couple of decades there has been advancement in the fields of fluid modelling

which has led to more sophisticated methods.

The different approaches have been recently classified by Marshall and Imregun (1996b).

Principally methods may be divided into two different categories. The first class is classical,

whereby the fluid and structural fields are uncoupled and considered completely separately.

At present this approach is most commonly used and most widely researched. One reason

is that the power of computational facilities have restricted design and research to this more

simplified problem. Another is that it has only been recently that ihe strong integration of

personnel between the disciplines of structural and fluid modelling has occurred (Marshall &

Imregun, 1996b). The second class is known as an integrated approach, where the coupling

of the structure and aerodynamics is considered. Uncoupled procedures have been classed

as inadequate in many cases (Marshall & Imregun, 1996a) as the basic assumption relies on

splitting an inherently coupled non-linear phenomenon into two separate analyses, which are

•MM
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j

j often themselves linear

j The various methods of coupling have been classified. Uncoupled solution methods are

I not integrated, whilst partially coupled methods involve the separate solution of the fluid

and structural fields, where the information is passed as boundaiy conditions at each global

time step. Fully integrated methods are where the structural motion is solved simultaneously

with the fluid solution in time. This may be achieved by using the same time integration

I solver for the entire fluid/structural domain. Whilst fully integrated methods may provide a

j superior model of the energy exchange between the two domains due to the lack of time lag,

j partially integrated methods allow for the use of structural modal analysis and sub-cycling

of the fluid domain, both of which greatly increase the computational efficiency and thus

reduce simulation time.

{ The two domains of solid and fluid may be directly modelled through the same numerical

! method, however it is found in the majority of cases that it is more efficient to use simulation

j methods that have been developed specifically for each discipline. Finite element methods ' f fjj | | |

are almost exclusively used for the modelling of structures. On the other hand, finite vol- ! I |;|l!l|i

j ume methods are most common in the simulation of gas dynamics. The structural and fluid •,: | j l | ! i |

I domains are both governed by second order differential equations, however the resolution

j required for the fluid domain is usually much higher. Given the different resolution require-

ments for solid and fluid elements, it seems natural to solve the dynamics of the two domains

I separately, transferring any interactions between the two during the solution process. A ma-

! jor consideration in the modelling of aeroelasticity is the method of coupling these equations

I and therefore modelling the interaction between two different physical regions.

! Usually structural calculations are performed in Lagrangian space, where the computa-

; tional nodes remain fixed with respect to the material. Fluid calculations are usually per-

formed in Eulerian space, where the nodes are fixed with respect to space. Thus there is a

I problem at the fluid/structural boundary where the structure is moving with respect to space.

! To overcome this problem, the most common solution is to adapt the fluid grid to the move-

j ment of the structure. It is also possible that the fluid grid may remain stationary, however

• this introduces complexities at the flow boundaries, where quantities must be then interpo-

j lated and the possibility of the boundary in the middle of a computational cell must be taken

I into account.
i

I The efficiency and accuracy of coupled procedures for the solution of aeroelastic prob-

! lems has been studied in detail by a number of researchers (Piperno, 1997; Piperno et al, ; l i i l l
1 1995; Farhat et al, 1998). If the solution of the structural and fluid domains are to be found

using a partially coupled formulation, the accuracy of the computational model is governed ;
! not only by the accuracy of the individual methods for fluid and structure, but the way in

| which they are coupled. Numerical inaccuracies in the method of coupling may be quanti-

| fied through the calculation of the energy created at the fluid/structure interfaces. Piperno
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(1997) has investigated various schemes and their corresponding accuracy with respect to ||:ijij \
energy transfer. f f^H

The method of sub-cycling has been used widely to increase computational efficiency. ;| | ; | ] j

It involves the utilisation of different time steps in the structural and fluid solvers. This is 11!]!!

useful as in the majority of cases, the fluid solver requires a much smaller time step due to | ;|: h j

constraints on stability or the requirement for temporal resolution. It has the advantage that |f;: <:j}:

it reduces overall simulation CPU time due to the fact that the structural solution is advanced | i | j L

a fewer number of steps. There is also a reduction in the number of transfers between the ; ffp|4

two solvers, further decreasing solution time. However this is only effective if sub-cycling

does not affect the stability of the partitioned algorithm (Farhat et al., 1995).

Within the class of classical approaches there are a number of different methods. Usually

they involve reducing the 3-dimensional problem to a single, typical cross-section.

Some early work on actuator disc theory was presented by Whitehead (1959) and then

later developed for compressible flow (Adamczyk et al., 1982). This theory predicts the

unsteady forces on the blade as a function of the steady flow field entering the cascade and

the geometry and dynamic response of the cascade. It is limited to modelling low reduced

frequencies and small inter-blade phase angles. Given that instability can occur at relatively

large inter-blade phase angles this technique has limited applicability.

A frequency domain approach, also known as the aeroelastic eigensolution method (Mar-

shall & Imregun, 1996b), transforms unsteady aerodynamic data to the frequency domain.

These aerodynamic coefficients are calculated for a number of inter-blade phase angles and

reduced frequencies. With the inclusion of the force coefficients, the governing equations

of motion for the blade structure may be reduced to a complex eigenvalue problem. A sta-

bility map may be produced for each reduced frequency which is a locus of eigenvalues.

The real axis represents the frequency of the oscillation and the imaginary axis the damping

(Srinivasan, 1997).

A time domain approach allows for the detailed investigation of the aerodynamic pa-

rameters that contribute to energy loss in turbomachinery designs (Srinivasan, 1997). Also

known as the energy method it represents more or less the state of the art in turbomachin-
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ery flutter analysis in the aerospace industry because not only their simplicity but also their 'M\$\

compatibility with section by section design procedures (Marshall & Irmrgun, 1996b). The

energy method does not include the complexities of a coupled approach in the coupling be- - I ;||:];

tween structural and fluid fields, nor does it involve the long simulation times required for a

number of different structural modes and thus time scales.

Whilst 3-dimensional coupled simulations of turbomachinery have already been per- | | l i 1

formed (for example (Doi & Alonso, 2002; Vahdati et al., 1999)) for compressors, there | j | r | |

is still a need for the investigation into the simulation unsteady effects in turbines and 3- i|j||

dimensional aeroelastic flows. Detailed analysis of uncoupled, unsteady aeroelastic flows



CHAPTER 2. ASPECTS OF AEROELASTICTTY IN AXIAL TURBINES 21

allows for the identification of sources of instability with regard to flow features and their
importance in the aeroelastic instability without the added complication of a responding
structure.

2.3.2 The Energy Method

One of the first researchers to introduce the energy method (Marshall & Imregun, 1996b) was

Carta (1967). He investigated the notion that coupled motion can result in system instability

under certain conditions. This instability manifests itself in an extraction of energy of a

rotor from the airflow in sufficient quantities to produce an unstable vibratory motion. The

approach finds its basis in the most fundamental of analyses due to Collar (1947) briefly

discussed in Section 2.1.1.

A particular mode shape and structural eigenfrequency is modelled and the flow response

on the surface of the vibrating structure is monitored. This approach is used in both physical

experimentation and numerical simulation. The motion of the structure is prescribed and the

flow has no effect on the structural mode shape. If the integrated effect of the flow on the

structure is to amplify the motion, that is it applies more force to the structure in the direction

of oscillation, the configuration is deemed unstable. If the configuration was an elastic sys-

tem, the force would tend to add energy over time. Without any other damping the amplitude

of oscillation would increase in time until the elastic system fails. The integration of work

over a displacement cycle provides a direct indication of system stability. The negative of

this quantity results in the damping coefficient.

The aerodynamic force coefficient is the integral of the pressure over the blade, resolved

in the direction of the oscillation motion,

where e/, is the vector aligned with the blade displacement direction and n is the surface

normal.

The aerodynamic work coefficient may be calculated by integrating the force coefficient

over a cycle of oscillation,

,= fh-ch(t)dh= f hc,,{t)-hdt.
Jh Jo

(2.2)

The aerodynamic damping is a function of the aerodynamic work and may be expressed

in normalised form,

£h (2.3)

Given that the blade motion and force coefficient are purely harmonic, the phase between
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j the two ultimately determines the stability. The damping coefficient may also be calculated

through the imaginary part of the force coefficient (Boles & Fransson, 1986),

The phase of the pressure coefficient with respect to the blade motion provides a useful

indication of any local flow behaviour that may be leading to configuration instability.

A positive damping coefficient is stable - the phase of the displacement leads the aerody-

namic force on the blade and the motion is damped. If the coefficient is negative, the phase

of the aerodynamic force leads the displacement function and thus would add energy to an

elastic system over time; this system is unstable.

dm
2.3.3 Simplification of the Model Geometry

One method of reducing the demands on computational resources is to simplify the model

geometry. Simplifications include reduction of domain size due to the assumption of period-

icity and isolation of particular regions from the rest of the machine. Further simplifications

include the assumption of 2-dimensionality of the configuration and 1-dimensional vibra-

tional mode shapes.

Given the symmetric nature of a turbine blade row, flow periodicity may be assumed

over a certain number of passages - that is the flow pattern is assumed to repeat itself after a

certain number of consecutive passages in the annulus. The assumption of flow periodicity | |

• coincides with the notion of inter-blade phase angle and a single equivalent blade for the | i |

\ modelling of the blade vibration. | ;j

I Lane (Lane, 1956) was one of the first to identify and simplify the vibrational characteris- : 14
i .'::i3':t"I

j tics of turbine rotors. He reduced the number of possible system modes to one by considering v|;|

j a single equivalent blade. In this assumption the blade vibrational mode shape for each blade i ; | | |

in the rotor is identical, with a phase shift between adjacent blades. The shape of the mode

may be quite complex in that it involves a combination of bending and twist. One result

of this analysis is that the phase shift between blades, known as the inter-blade phase angle

! ' (IBPA) must be a multiple of the circumferential angle between blades. For a finite rotor, i«feii

there are a finite number of possible IBRA's. This is due to the fact that a single blade must be

in phase with itself in sustained vibration. The analysis is applied to compressor blade rovs,

but may equally be applied to turbine blade rows. It is reasonable to assume that the rotor

vibrational modes are identical around the rotor as the blades are intended to be identical in

the manufacturing process. Where blades differ in characteristics, this leads to mistuning, a
I phenomenon discussed in Section 2.1.8.

Due to the complexity of the flow in a full turbine, often different flow mechanisms are

decoupled for the purposes of analysis. For example, it may be assumed that the effect of

| ]
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wakes passing due to upstream blade rows may be considered separately from the unsteadi-

ness caused by blade vibration (Hilbert et al, 1997). This is analogous to the decoupling

methods used in potential and Euler linear analysis, where the steady and unsteady flows are

decoupled from one another.

Often blade rows are considered individually and are isolated from interactions with the

rest of the machine. With Lane's assumption and the assumption of flow periodicity, a blade

row may be further reduced to part of the annulus, where only a number of blades and

blade passages are included in the analysis. A single dominant mode shape may only be

considered, reducing the resolution required for time domain analysis.

A structural model may be used that structurally decouples the blade row and assumes a

rigid hub and casing. This simplifies computation whilst still allowing for the aerodynamic

coupling of the full blade row model. It does not take into account the effects of inter-blade

structural vibrations that would be transmitted through a non-rigid hub, which may damp

or further excite instabilities of particular configurations. However it was found by Chew

(Chew et al, 1998) through a finite element model that the inclusion of the effect of the

elasticity of the fan disc of an aeroengine did not vary the natural frequencies of the blades.

In an analysis of the time histories of a numerical calculation for a full annulus, it has

been found that there are interactions taking place between the different assembly modes

(Sayma et al, 1998). Thus it may not always be valid to consider the different vibration

modes separately in the computational analysis.

A great deal of analysis has been performed on 2-dimensional configurations where the

structural mode shape is a harmonic translation or pitching rotation of the turbine blade.

However three-dimensional effects are important in the modelling of turbomachinery blades

for a number of reasons (Holmes & Lorence, 1998):

• Modern blades, which are designed routinely using inviscid and viscous 3D solvers

can have highly 3 dimensional shapes (twist, rake, change in camber, change in chord

length over the radial span)

• Three dimensional flow features - hub and tip boundary layers, secondary flows (hub

and casing horse-shoe vortices), and tip vortices can occupy a significant portion of

the flow field, limiting the flow region in which the flow field can be regarded as

two dimensional. This also includes the interactions with upstream blade rows due to

secondary flows.

o Transonic flows are inherently 3 dimensional - shocks may only exist in the out board

region of the blade where the flow moves from sub to supersonic

• Even where the mean flow is two dimensional, the vibration mode of the blade usually

leads to different surface displacements in the radial direction.
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2.3.4 Simplification of Fluid Model

Computational demands may also be reduced through the simplification of the mathemat-
ical model for the fluid domain. A number of different flow models have been used for
the simulation of turbomachinery flows. In general these have been simplifications of the
Navier-Stokes equations. The Navier-Stokes equations are presented in Section 3.1.1. The
following flow models have been applied or are available to researchers in the simulation of
aeroelasticity in turbomachinery.

• Potential flow equations.

• Linearised Euler equations.

• Euler equations.

• Thin Layer Reynolds averaged Navier-Stokes equations (TLRNS).

• Reynolds averaged Navier-Stokes equations (RANS).

• Large Eddy Simulation (LES).

• Direct Numerical Simulation (DNS).

These models are listed from least to most complex with regard to the physics that they are

able to capture. For example, LES is a more complex model than DNS, however the com-

plexity of the flow that can be captured is less. Whilst present-day computers are capable of

providing useful results with the second last of the fluid models, the others are still appropri-

ate where a large parameter space is to be investigated. Each has limitations in representing

physical processes and this should be allowed for in analysis. The solution of the unsteady

flow equations imposes considerable demands on computational resources. The solution

methods for each model vary. In the case of the more complex governing equations, some

researchers have linearised the governing equations in an effort to reduce the computational

requirements whilst retaining the ability to model certain phenomena.

Given the lack of knowledge on the importance of different factors in the aeroelastic

interaction, the appropriate selection of governing equations can pose a difficult problem.

Each simplification has the advantage of a reduction in computation time or complexity

over the full implementation, however there are trade-offs in the physical accuracy of the

computational model.

The simplest of models is potential flow. Some of the earliest work involving the aero-

dynamics of oscillating airfoils involved the application of the potential flow equations (for

example, Goldstein (1977)). The coupling of the Navier-Stokes equations with an aeroelas-

tic solver typically requires two or three orders of magnitude of computer time for solution
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when compared to one which implements the potential flow equations for flow around air-
craft wings (Chaderjian & Guruswamy, 1992). In the early development of aeroelastic and
unsteady flow analysis, computers were greatly limited by processing speed and memory
storage and the potential equations were the only fluid model that could be effectively simu-
lated.

Where potential flow is used to model transonic, unsteady flows, the mean flow is as-

sumed to be steady. The unsteadiness is modelled as linear perturbations from the mean

flow. It can be used to analyse the unsteadiness due to wake/blade interaction or incoming

potential waves in addition io structural bending or torsion. A major problem is the assump-

tion of steady flow, which does not take account of the effect of mean loading on the steady

pressure field. The complexity of extending linear potential methods to 3-dimensions re-

stricts them to the solution of two-dimensional flows. Variations on the method of potential

flow analysis include the transonic small disturbance method of Cunningham (1988). This

has been applied to the solution of flow about a whole aircraft, and combines simplicity

with computational efficiency to the computation of flows in the transonic regime. Another

problem with potential, therefore isentropic and irrotational flow is that it does not account

for the production of steady and unsteady entropy and vorticity across shock waves. This

deficiency can produce under some circumstances serious errors in the predicted unsteady

pressure distribution, shock motions, and unsteady blade loading (Hall & Crawley, 1989).

The Euler equations are a simplification of the Navier-Stokes equations with the effects

of viscosity neglected and thus the diffusive terms removed. The flow model is isentropic,

except for where discontinuities such as shock waves or vortex sheets exist (Hirsch, 1992a).

In the linearisation of the Euler equations, the steady part is regarded as nonlinear, whilst

the unsteadiness is regarded as a linear perturbation from the steady flow. A significant ad-

vantage offered by the linearised inviscid approximation is that the first-order unsteady fluid

motions arising from various Fourier modes of unsteady excitation are not coupled. Hence

it is sufficient to develop solution procedures for a single harmonic (in time and space) com-

ponent of a given excitation. Solutions for arbitrary periodic excitations and arbitrary com-

binations of such excitations can then be obtained by superposition (Verdon, 1993). Some

authors have found that there are some cases where unsteady perturbations are linear, thus a

method assuming a linear change in field variables would suffice (Chew et al, 1998). It has

been shown by Lindquist (1994) that the use of the linearised Euler equations coupled with

shock capturing is a valid means of modelling unsteady shock movement over turbomachin-

ery airfoils, provided that the shock movement is linear. This requires that the length over

which the shock moves is small compared to the chord of the airfoil.

However shock fitting is cumbersome and requires a relatively complex implementation,

even though it provides sharp resolution. A harmonic method for the linearised Euler equa-

tions was developed in combination with a moving grid to model 2-dimensional aeroelastic

•p..

i :

•f?.'



CHAPTER 2. ASPECTS OF AEROELASTICITY IN AXIAL TURBINES 26

flows in turbomachinery (Hall & Clark, 1993). In this analysis, a steady base flow was

assumed and the unsteadiness of the flow was assumed to be linear about the steady solu-

tion. It was estimated that the solution method requires one to two orders of magnitude less

computation time than for a time-integrating method.

This method was later developed to a nonlinear harmonic method to include a time av-

eraged base flow rather than a steady base flow (He & Ning, 1998; Ning & He, 1998). This

produces extra terms in the governing equations, similar to the turbulence stress terms found

in the RNS equations. The non-linear effects are included in the time-averaged part of the

flow and the unsteady perturbations are calculated based on the time-average flow field. The

nonlinear effect on the time-averaged flow is only included as the product term of the first

order unsteady calculations, thus assuming that the contributions of the first order term is

dominant. It was found that the results where moving shocks that were present in the flow-

field were considerably better than for the linearised analysis, whilst only increasing the

solution time by 60% (less than required by the nonlinear Euler equations). The difference

between the results from a time-linear method and those from a nonlinear method strongly

depends on the amplitude of movement of the shock oscillation. Whilst the nonlinear har-

monic method improved predictions in the case of oscillating shock waves, the non-linearity

present in large oscillations still limits the predictive capability when compared to non-linear

calculations (He & Ning, 1998).

Shibata (1998) also made a comparison between non-linear and linear Euler calculations.

They found that whilst for most transonic flows containing shocks, the linearised Euler anal-

ysis was in good agreement with the nonlinear one, the linearised code showed once again

poor agreement where the flow includes large shock movement or where shock waves dis-

appear. Even where the leading edge shock is relatively weak, it has been found that in the

majority of cases that the nonlinear Euler solution produces a result closer to experimental

measurements in compari? on to Hnearised Euler computations (Hwang & Yang, 1995).

Viscous effects havr been included in the fluid model without solving the full Reynolds

averaged Navier-Stokes equations. For example, the Euler method has been implemented

and viscous effects accounted for through the application of integral boundary layer theory

(Wolff & Fleeter, 1995). It is reported that this method increases the solution time by 25%,

less than the increase required to implement the Navier Stokes equations. It has the advantage

that the same grid may be used for both the inviscid and viscous calculations, something not

possible in other inviscid-viscous formulations employing the Navier Stokes equations. Thus

there is a substantial saving in the memory required to run such a solution. This is due to the

fact that the grid does not have to be concentrated at the wall to the same extent, and also that

all fluxes of flow variables at the boundary do not have to be stored at every time step. Other

authors have also implemented loss models (Chew et al., 1998; Sayma et ai, 1998). Given

that computational resources are limited, this has allowed for the computational modelling
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of the complete rotor or stator annulus. The loss model assumes that a distributed friction

force may represent the effect of the shear stresses on motion and may be determined from

experimental or calculated data. Sayma et al (1998) define the loss model numerically using

data from a previous viscous analysis of a single blade passage on a much finer mesh. The

viscous solution is then interpolated onto the coarser mesh that is used for an inviscid analysis j , : i;i,

of the whole assembly. The viscous stresses of the first solution are used as source terms in

the inviscid calculation. 1

Time linearised viscous methods have been shown to be valid for subsonic cases, where |i

large (closed) separation bubbles exist (He, 1998). Although it was found that local pres- | j

sure coefficients varied by up to 10 percent from nonlinear calculations, the difference in jijij'.j:j

integrated pressure coefficient was much less. However this was only achieved through the Jfj;||

modelling of the separation region and may not be a good method where the form of the | | | !

separation bubble is not well understood. ||:jji

Inviscid calculations that employ linearised or non-linear Euler equations require much | ;;||y:

less computation time and reduce the complexity of implementation, however ignoring vis- $|j!;$j

cosity may be neglecting important effects (Shibata & Kaji, 1998). Shock boundary layer |:|i-|j

interaction or the interaction between the shock wave and the turbulent transition point may ') |:i j !

play an important role in the aeroelastic interaction, especially where strong shocks exist in | |:p|

the blade passr je . It has been found by Griiber and Carstens (1998) that RNS calculations

predict an expansion shock position that is much closer to that measured experimentally,

when compared with an Euler calculation. They attribute this to a shock induced separation 1 ,,,,

bubble, which effects a sudden thickening of the boundary layer, causing the shock to move | | |j;|

upstream, since the pressure gradient in front of the shock is fairly small. Other researchers 11| | |

have identified configurations where viscous effects are important. It has been found that | | | |

flow separation has an important role in the damping of the effect of shock oscillation (Iso-

mura & Giles, 1998), which cannot be modelled by an inviscid calculation.

Comparisons of some of the simulations involving different flow models applied to aeroe-

lastic turbomachinery flows have been performed by a number of authors. Ayer (1998) com- ^

pare TLRNS, Euler, Euler first harmonic, and linearised inviscid flow predictions for the

f:

i M

10th Standard Cascade. The research indicated that for subsonic flow conditions, although

viscous effects cause a small reduction in the time-averaged or mean pressure loading of the fk

down-stream half of a blade, they have a negligible impact on the unsteady surface pres-

sure fluctuations. In a comparison of work per cycle predictions for subsonic flow, it was

found that TLRNS, Euler, Euler first harmonic, and linearised inviscid flow predictions pro-

duced very similar results. It was therefore concluded that for subsonic flows, the non-linear

and viscous effects only have a small impact on the aeroelastic stability margin. However ] ji|j;j

for transonic flows, non-linear and viscous effects were found to be important in regions

traversed by shocks - viscous effects diminish the impulsive unsteady loads due to shock
l-ii-lfij}:
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motion. Relatively large second and higher harmonic pressure variations occur close to the

shock, thus degrading the predictions made by the first harmonic Euler calculation.

Fransson (1998) made a comparison between a quasi-3dimensional potential small per-

turbation model, linearised Euler, 2D nonlinear Euler and quasi-3D nonlinear RNS solver

for the 11th Standard Configuration. Meshes were chosen so that the solutions were grid

independent. For the steady results, the shock position is best predicted by the RNS result.

None of the results predicted well either the position of the passage shock, or its strength.

However it was noted that the experimental results were highly sensitive to inlet conditions,

especially with regard to the characteristics of the passage shock. Once again it was deter-

mined that for the subsonic case, the inviscid linearised methods made sufficiently accurate

predictions, whilst also providing high computational efficiency.

The TLRNS equations approximate the RNS equations by neglecting gradients in the

stream-wise direction. This is useful if there is little recirculation in the flow and little sep-

aration. However the method becomes inaccurate if there is gross separation. A turbulence

model is once again required to model the nonlinear unsteady components of the TLRNS

equations.

The RANS equations have been applied in 2-dimensional simulations in aeroelastic sim-

ulations of power generation turbines (Griiber & Carstens, 1998; He, 1998). The quasi-

3dimensional form of the governing equations, where the solution is calculated along a

stream surface, has also been implemented (Weber et ai, 1998). In this work, a compar-

ison was made between non-linear Euler and RNS calculations, and it was found that the

RNS calculations predicted aerodynamic damping closest to that found in experiment.

Linearised, three dimensional RNS equations coupled with the k-co turbulence model

have also been implemented (Holmes & Lorence, 1998). The authors note that a complete

linearisation of the discretised non-linear flow solver may be impossible. Some part of the

non-linear flow solver can only be linearised at significant development cost. The degree to

which the turbulence model needs to be linearised was identified as an area requiring further

research. The turbulence model must be completely linearised for low reduced frequency

and higher incidences, close to stall.

It appears that one of the most promising methods of reducing the fluid model equations

for periodic types of flows such as those found in aeroelastic turbomachinery applications is

the harmonic balance method or time linearisation methods (Hall & Crawley, 1989; Hall &

Clark, 1993; Hall etal, 2000; McMullen etal., 2001). This method is particularly useful for

multiple blade row simulations where the blade passing frequency requires up to 100 peri-

ods of oscillation of a time-accurate solver to resolve the periodic flow features. Harmonic

balance techniques effectively transform an unsteady problem in the time domain to a steady

problem in the frequency domain (McMullen et al, 2001).
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The time harmonic method can provide a substantial reduction in the solution time. How-

ever it is difficult to establish for the present application and it depends on the resolution of

the simulation that is required. If five temporal modes are included in the case of the low

Reynolds number circular cylinder (the number required for temporal convergence) it rep-

resents 50% of the effort required for the dual-time method (McMullen et ai, 2001). How

this compares with the simulation of turbomachinery flows with a two-equation turbulence

model is not known. The formulation of the harmonic balance form of the turbulence equa-

tions presents a significant challenge and the related convergence issues are not known or

understood.

Given the presently available computer resources and numerical methods, the RANS

equations are the most suitable for investigating the effects of tip leakage and secondary flows

and flows that are potentially under the influence of shock/boundary interaction and separa-

tion in aeroelastic turbomachinery configurations. Time linearisation of the fluid model is

possible, however this approach is complicated and the linearisation of two-equation turbu-

lence models is not yet well understood. The Wilcox (Wilcox, 1988) k-co model was chosen

over more simple models for a better prediction of length scales for the turbulence eddy vis-

cosity in the tip gap region. The selection of turbulence model is an important issue and this

is discussed further in Section 3.1.3.

2.3.5 Simplification of Structural Model

Finite element methods are traditionally used for simulation and design of dynamic and static

structural elements. They are also widely used in aeroelastic calculations where the structure

has a complex geometry. The methods of solution are well documented and developed.

Compared to computational fluid mechanics, structural analysis is much more reliable and

for most applications predictions closely match experimental measurements.

There are two common ways of solving the dynamic structural equations. The first is

modal analysis, briefly discussed in section 2.1.4, where a finite number of modes is assumed

which reduces the size of the dynamical matrix system. The second are direct integration

methods and require no transformation of the dynamic equations. Time is discretised through

the finite difference or Newmark methods. Given that the solution time is proportional to the

' number of time steps required for solution, where there are a large number of time steps to

be calculated, it is often more efficient to use modal analysis (Rao, 1989).

Modal analysis finds its basis in the method of Rayleigh. The Rayleigh Ritz Method

is an extension of the Rayleigh method. Whilst the method of Rayleigh assumes that the

entire integral equation may be satisfied through a single function, the Rayleigh Ritz method

assumes that the integral equation may be satisfied by using a summation of functions, each

function referred to as a mode or mode shape. Thus the total deflection may be represented

• lie,.•!'!.
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by the sum of the mode shape functions. A solution may be made up of an arbitrary number

of mode shapes, however the more modes included in the calculation the more accurate the

solution (Rao, 1995).

The solution may be approximated by first assuming a finite number of modes and then

calculating the total response from superposition. This allows the reduction of the bandwidth

of the stiffness, mass and damping matrices in the aeroelastic equations. Since the number of

operations required to solve the problem is proportional to the bandwidth of these matrices,

this reduces the computation requirements. For modal analysis, the element displacements

must first be transformed to generalised displacements. This transformation must also be

performed on stiffness, mass and damping matrices. However the transformation is not time

dependent and must only be performed at the start of the solution process.

The transformation matrices are often calculated by only considering the undamped sys-

tem. Thus small vibrations and therefore linear structural behaviour is assumed. In the

present work a modal approach is used for the modelling of an airfoil aeroelastic problem,

but this is not extended to turbomachinery configurations.

1:1

'If
I

i l l
II!

• • i l l

«

III
iirf

:! I

1 1 1 1 1 !

•}§w
'tit ill.



3.1.1 Navier-Stokes Equations

A number of different derivations of the Navier-Stokes equations exist in the literature. One

of the more physically intuitive developments of the governing equations is through the con-

struction of a control volume. This relates well to the finite volume method of discretisation

used in the present computational method.

Consider an arbitrary control volume V fixed in space and time, conservation of mass

requires that the rate of change of mass within the control volume is equal to the mass flux

across the surface S of V (Fletcher, 1997).
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Traditionally fluids and structures have been widely modelled as continuous media. Equa- iil|||iij|

tions governing the continuum have been developed and whilst they do not represent matter

at a molecular level they provide very good representation when bulk phenomena are con-

sidered. These are formulated by applying classical conservation laws of mass, momentum

and energy (Hirsch, 1992a).

3.1 Fluid Model

The gas or fluid fou^d in the compressors and turbines of turbomachinery may typically be

modelled by the Favre averaged Navier-Stokes equations.

•lii!
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tim

m

— / pdV = — / pui-ndS (3.1)
dt Jv Js

For a control volume that changes in geometry in time, the normal velocity of the sur- |!>

face must be subtracted from the fluid velocity. Thus the formulation is changed from a

purely Eulerian reference frame to the more general arbitrary Lagrangian Eulerian formu-

lation. This may then be applied to configurations involving a fluid domain that is moving, | |

particularly important in aeroelastic simulations. l l f l l
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(3-2)

Since the volume V is arbitrary, this integral formulation reduces to the more commonly
known form of the continuity equation

Newton's second law of motion states that the time rate of change of linear momentum
is equal to the sum of forces acting.

and the Navier-Stokes momentum equation is

and the mean strain rate tensor is defined,

(3.8)

111

d r J i 7 ^
— / puidV = Y/v (3.4)
dt J *-*

The forces on the fluid element involve those acting at its surface and volume forces. In : j |

this case the effect of volume forces is neglected, as for aerodynamic applications the density If '̂

is low enough for the influence of body forces to be of negligible magnitude. Surface forces |||

include a normal pressure force and tangential surface shear stresses due to viscosity. For | |

some of the simulations only the Euler equations are solved thus the effects of viscosity are

neglected and the shear stresses are omitted from the governing equations. ; ill}
•y.-M

In integral form, the Euler momentum equation is pi

where /;; is the viscous stress tensor that accounts for tangential stresses in arbitrary !

directions,
i l l

2 an*. \ ( 3 7 ) ;

M

The total stress tensor is defined

n -t- ^ r3 9̂1

Where the Mach number exceeds a the limit for incompressible flows Ma > 0.3, conser-

vation of energy plays an important role in the fluid governing equations. The first law of
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thermodynamics states that the time rate of change of the internal energy and the kinetic en-
ergy is equal to the rate of heat transfer less the rate of work done by the system. Combined
into a transport equation to account for the movement of the fluid (Fletcher, 1997; Batchelor,
1981),

+

where the terms on the right hand side are the contribution to work of the forces at the
volume boundary by the surrounding matter and the transfer of heat or heat flux across the
bounding surface S.

The integral equation reduces to the more common differential equation,

(3.11)

where the rate of dissipation of mechanical energy is defined,

(3.12)

The first term on the right hand side is the contribution of the work done due to isotropic

or expansion part of the rate of strain, the dissipation of mechanical energy is the second

term due to the viscosity and this is an irreversible addition of heat. The third term is due to

conduction of heat into the element.

To complete the model two equations are required that involve the thermodynamic prop-

erties of the fluid or gas (Batchelor, 1981). Local temporal and spatial equilibrium is assumed

and the all quantities describing the fluid are a function of two parameters of state. For the

ideal gas that is modelled in this work, the temperature is related to pressure and density by

the ideal gas equation, or equation of state for an ideal gas,

= RpT. (3.13)

In the case of a perfect gas with constant specific heats, that is the amount of heat required

by to raise the fluid by a unit of temperature, the energy is related to the temperature,

e-E = CvT.

3.1.2 Favre averaged Navier Stokes Equations

(3.14)

In principal the Navier-Stokes equations apply equally to turbulent and laminar flow (Laun-

der & Spalding, 1972). Typically flow in a turbine passage is of relatively high Reynolds

number and the flow is fully turbulent. There is usually a large disparity in the physical
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scales that exist in the problem and those that may be resolved by the numerical discreti-

sation. It is estimated that a typical calculation performed in the aerospace industry for an

aircraft using the RANS equations requires an operation count in the range of 1012 - 1013

operations. For example, for a simulation of flow over an F16A or the space shuttle in as-

cent mode requires 8 to 12 hours on a CRAY Y/MP single processor. It is estimated for a

direct numerical simulation the number operations required is proportional to Re3. If a DNS

performed for the same craft then 1020 operations is required; this is seven orders of magni-

tude more than for the RANS case and clearly beyond the capabilities of Teraflop machines

(Schiano, 1994). These machines are among the fastest available at the beginning of the 21st

Century.

In typical engineering applications the details of turbulence are not required; usually 11!Ill

only it's time-averaged affects are important even when the mean flow is unsteady (Launder

& Spalding, 1972). One of the most common methods of accounting for the effects of tur-

bulence into the fluid governing equations is through some method of averaging in time and |i| ||{j

space. According to Wilcox (Wilcox, 2000), Reynolds averaging (or Favre averaging) is "a |;j{;

brutal simplification that loses much of the information contained within the Navier-Stokes | |[

equation". However at present it is the most common way of dealing with the inadequacies

of present computational and numerical methods. Conventional Reynolds time averaging

decomposes the independent variables into average and fluctuating parts. For example, for

velocity:

ui(x,t) = Ui(x,t)+u'i(x,t) (3.15)

• i l l 1 1 *

1 rt+l

Ui(x) = - ui(x,t)dt Ti < T < T2 (3.16)
T Jt

If the compressible fluid governing equations are averaged using Reynolds averaging

additional terms are introduced that have no analog in the laminar equations (Wilcox, 2000).

For example in the continuity equation, a term is introduced that involves a multiplication of |i;i Wk

fluctuating parts of density and velocity even in the continuity equation. An approximation to ';mM:0

the correlation of these two quantities must be introduced, further complicating the governing til!I

f!|S

! i!
equations. Jijifei*

•flip

To overcome this problem Favre proposed the introduction of a mass averaged veloc- | | 1-!|{

ity. Thus the momentum per unit volume is treated as the dependent variable rather than l|i|i!
the velocity in the averaging process. In this case there are no longer terms involving the jjfjlj
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fluctuating parts of density and velocity. The mass averaged velocity is represented as:

35

1 r'+T

p Ji
(3.18)

The conservation of mass in terms of the Favre averaged variables may then be written

The Favre averaged Navier-Slokes equations are

(p — (puj(
9 r_

(3.19)

(3.20)

(3.21)

^(P(«;-«;)gnw)tf) = ^[-^,-^,+07«; /-p«J^«:X-']+ (3.22)

(3.23)= pRT

The total energy E and total enthalpy H include the kinetic energy of the fluctuating

energy field k.

1 . «
-UiUi

-UjUi

The terms arising due to viscous stress, the viscous stress tensor tyt is,

2 9M^_

(3.24)

(3.25)

Excluding the energy equation, the difference between the Navier-Stokes equations and

the Favre Averaged Navier-Stokes equations is the Reynolds stress tensor,

ij = -pu'/u'j, (3.26)

appearing in the momentum equations. Further terms appear in the energy equation,

including the molecular diffusion F^uf, the turbulent transport of turbulence kinetic energy
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pu'j^u'/u'/ and the turbulent transport of heat qTj. These terms reflect the energy transfer that

occurs from the smallest turbulent structures to heat.

3.1.3 Closure Approximations

A turbulence model is a mathematical formulation that accounts for the unknowns that arise

from the averaging of the Navier-Stokes equations. The Boushesq eddy viscosity approx-

imation is where the Reynolds stress tensor in equation 3.26, also known as the turbulence

shear stress tensor, is assumed to be the product of an eddy viscosity and the mean strain-rate

tensor,

(3.27)

where the mean strain rate tensor is defined in terms of the Favre averaged velocities.

This assumes the principal axes of the Reynolds Stress tensor are coincident with the

mean strain-rate tensor at all points in the turbulent flow. The eddy-viscosity v^ varies

throughout the flow-field and must be modelled in some manner. The most widely used

turbulence models use this approximation as their basis (Wilcox, 2000). Experimental evi-

dence suggests that flow history effects on the stress tensor often persist for long distances

in a turbulent flow. This raises questions as to the validity of the assumption of a linear Slj ]'! I

relationship between the mean strain rate tensor and the Reynolds-stress tensor. f ' I

The molecular diffusion and transport of turbulent energy terms are commonly approxi-

m
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m a t e d , | j j
njf | |

and the turbulent heat flux through Reynolds analogy between momentum and heat transfer, | | :j;!ii|
• I'MI*

that assumes the proportionality to the mean temperature gradient, |;:jiP:Ji|j

dh M
Wilcox lists the applications where the approximations fail to accurately model turbu- |:!!i;p||where the approximations fail to accurately model turbu-

lence. A number of them include:

1. flow over curved surfaces

2. flow in ducts with secondary motions

3. flow in rotating and stratified fluids

4. three-dimensional flows
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5. flows with boundary-layer separation

6. transitional flows

Clearly the flow inside a turbomachinery blade passage may be characterised by all of the
above applications. There are a number of alternatives to the Bousinesq approximation,
however they involve models that are much more complicated both in their mathematical
description and numerical solution methods.

There are a range of different turbulence models that may be applied to model turbulent
flow, They may be grouped into four different categories (Wilcox, 1994):

1. Algebraic (Zero-Equation) Models

2. One-Equation Models

3. Two-Equation Models

4. Second Order Closure Models

The type of model that is applied will depend on the phyncs that is characteristic of and

therefore important to the fluid and in general there is a correlation between the level of

complexity of the model and its implementation and the complexity of the physics that will

be represented in the final result. Wilcox (Wilcox, 1994) contends that an ideal model should

introduce the minimum amount of complexity while capturing the essence of the relevant

physics.

Examples of algebraic models include the Cebeci Smith model (Cebeci & Smith, 1974)

or the Baldwin Lomax model (Baldwin & Lomax, 1978). Half equation models include

the Johnson King model (Johnson & King, 1985), a development of an algebraic model to

handle non-equilibrium flows. A popular one equation model is the Baldwin Barth model

(Baldwin & Barth, 1991). A number of comparisons have been made with the zero and one

equation models and it has been found that only a modest advantage is gained through the

use of the latter.

A major problem with the implementation of Zero and One-Equation models is that

a length scale must be calculated (Ekaterinaris & Menter, 1994). In general this usually

involves the distance to the closest solid surface which is often ambiguous. In a general

multiblock code it is further complicated by that fact that the flow-field domain is spread

over a number of processors and the locating of the nearest boundaries is difficult. Wake

regions must also be modelled and the locating of these pose another problem. In practical

flows, more than one length scale may be important in a particular region and determining

a model to determine the importance of each is overly complicated (Launder & Spalding,

1972).
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Illl!
The most commonly employed in aeroelasticity and oscillating airfoil simulations (Kruse

et al, 1997; Ayer & Verdon, 1998; Griiber & Carstens, 1998; He, 1998; Abhari & Giles,

1997; Hoehn & Fransson, 1998; Chaderjian & Guruswamy, 1992; Weber et al, 1998) is the

Baldwin Lomax algebraic turbulence model (Baldwin & Lomax, 1978). The justification for

the use of this simple model is that many researchers believe that the best turbulence models

currently available do not model turbulence sufficiently to warrant the extra computation

required for their evaluation by the computational method.

Where it has been important that certain mechanisms be modelled, other turbulence mod- 11

els have been applied. For example, shock/boundary layer interaction has been identified as liiiil;!

an important effect Consequently Johnson and King's one half equation model has been ap-

plied, with correction from Johnson and Croakley (Isomura & Giles, 1998). This was chosen

for its capability to model shock/boundary layer interaction in 2 dimensional calculations.

The transition from laminar flow to turbulent flow has also been identified as important in fijlf j

aeroelastic analysis of airfoils, especially in lower Reynolds number flows. In experiments |!J|:

it has been shown that transition occurs well downstream of the leading edge suction peak, WM

and sometimes in the vicinity of the mid-chord region. Even for a relatively low Reynolds |j!j||; f

number flow of 4106, it has been found that the transition region has a major effect on the | |

prediction of lift, moment and drag coefficients for oscillating airfoils when compared with f;!

experimental measurements (Ekaterinaris & Platzer, 1996). In this investigation, two cases Jjj

were compared, one in which the transition region was set at the leading edge, the other |:j

where it was set to be at a point downstream of the maximum surface pressure gradient. |jj

In the more basic turbulence models the transition region has to be set manually or from

experiment (Baldwin Lomax for example). Reliable prediction of the transition region is

well beyond the capability of the more sophisticated models; ultimately a good model would | | |

find some basis in stability analysis. Transition models are also available for steady compu- I J!
•fii'

tations, for example the en method. Some researches have paid a great deal of attention to i§
' lu

the issue of turbulence modelling, with particular attention directed towards the movement
of the transition region in the unsteady calculation (Isomura & Giles, 1998).

He (He, 1998) assumes Horton's laminar separation model for steady flow to set the | |

transition region of the Baldwin Lomax model. This separation model is employed in a quasi | |

steady manner in that it is applied at each time step. Convergence problems were encountered | | | |

for the steady solution of an almost incompressible, subsonic cascade calculation. Thus |;p,J

the model had to be altered so that the pressure surface was fully turbulent, and on the

suction surface the transition model was applied assuming a laminar boundary layer. If | | | | |

the turbulence model had merely been applied to both surfaces, the effect of reattachment |:||ijj

around the separation bubble on the suction side would not have been modelled. Thus the J j | j j

direct application of a turbulence model does not guarantee that the effects of flow separation 1 1 | | |

and reattachment will be simulated. ii||j;i]i

iiiii

l l j iJit
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p Turbine flows are complicated by the fact that a number of length scales may exist in

particular regions. It has been found that two-equation models, also known as turbulent

I transport models, result in more physically accurate clearance flow simulations in turboma-

i chinery than the algebraic models (van Zante et al, 2000). There are also advantages in the

implementation of two-equation models, in that there is no requirement for the explicit cal- |

culation of a length scale that is dependent on the distance from the wall. This is convenient t

? in a multiple block formulation as the turbulent quantities may be evaluated within a com- f

putational block requiring only transfer of information at block interfaces. No computation |i

j of properties is required on a central processor. The two-equation model results in closure of |

i the flow model governing equations without the assumption of a characteristic length scale i

within the flow domain and thus should provide a better flow model than the lower order I

models. However the increase in computational effort required in the calculation may be I

? equivalent to that required to solve the RANS equations themselves. Thus the physical char- |

acteristic that imposes the highest level of uncertainty on the numerical model also involves |

a substantial portion of computation time and the implementation. f

J The most widely used two equation turbulence model is the k-e model, first developed | |

by Launder and Spalding (Launder & Spalding, 1972). The debate over the best of the two ,.,

most common two-equation models continues and will continue into the future as these mod-

f els are developed and additions are made. There have been a number of studies that show

that the k-co model is better for some configurations, such as where there are adverse pres-

sure gradients (Henkes, 1997), yet there are others that show the k-e model to be superior. •<!:?

J However comparisons are usually made be applying them to highly simplified geometries

and conditions and it is difficult to evaluate their performance under more complex config-

urations. The advantages of the k-co model over the k-e is that is does not require damping

} functions in the viscous sublayer and the equations are less stiff near the wall (Menter, 1992).

A numerical model may be described as stiff where there are two different scales in the in-

dependent variable on which the dependant variables are changing. This is equivalent to a

I system having very different eigenvalues. The smallest time scales for the k-co model tend

to occur at solid boundaries where dissipation levels are the highest, ie. tdiss ~ -.However | j

in these regions there are algebraic solutions to the turbulence quantity co, thus rendering the

' • k-co model more easily integrated to the wall compared to other models such as the k-e.

3.1.4 The k-co Turbulence Model

The selection of turbulence model for a particular problem will depend on the implementa-

tion and the level of physics that are to be modelled. In general it is wise to use a model that .^^

is widely used rather than a new model that provides better results for particular cases. This

is because the deficiencies of more popular models are better understood than one that has

mm\
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not undergone the thorough testing of many years of use in industry and research circles.

The k-co model was used as it was already implemented in the steady code and has been

validated for a number of turbine cases. A comparison of surface pressure coefficient with

experimental results provided a good correlation (Liu & Zheng, 1994; Zheng & Liu, 1995;

Liu & Zheng, 1996; Liu et al, 1998b). The low Reynolds number of the model has been

implemented for quasi-3-dimensional calculations involving a transonic rotor and turbine

cascade (Chima, 1996). The results proved adequate in comparison with experiment for

surface pressure coefficient, however the spreading rate in the wake was under predicted.

The spreading rate behaviour has also been observed for an annular jet and the problem has

been rectified in a later version of the model (Wilcox, 2000).

The model has been used to simulate unsteady flows for various airfoils for the thin

layer approximation to the Navier-Stokes equations (Ekaterinaris & Menter, 1994), the in-

compressible 2-dimensional Navier Stokes equations (Queutey, 1998) and the compressible

Navier-Stokes equations (Ji & Liu, 1999). It has also been applied in linearised form to tur-

bomachinsry aeroelastic configurations (Holmes & Lorence, 1998), although this work dealt

more with the linearisation issues rather than an evaluation of results. Smati et al (Smati

et al, 1998) applied the k-co model to the 7th Standard Test Configuration in a 2-dimensional

code. The unsteady calculations for this case appeared to deviate from experiment and it was

suggested that the definition of the geometry of the cascade was provided incorrectly in the

presentation of experimental results.

The model has been compared to the k-e and original k-co for steady flow (Kim et al,

2000) producing results slightly closer to experiment for the velocity profile, although the

plots for surface pressure coefficient were very similar. For time accurate simulations (Eka-

terinaris & Menter, 1994) it was found that it better predicted the flow for a stalled airfoil

where the standard two equation models tended to suppress the separation of the boundary

layer.

An important concept that manifests itself in many turbulence models is the cascade of

energy from large structures to small. Turbulence may be regarded as being composed of a

collection of eddies of varying sizes. If the spectrum of sizes is considered across a turbulent

region, the largest may be of the order of the width of the boundary layer thickness. The size

of the smallest structure is attributed to the Kolmogorov length scale.

Kolmogorov's universal equilibrium theory is based on the premise that the rate of re-

ceiving energy from the larger eddies is nearly the same as the rate at which energy is dis-

sipated into heat. Thus the behaviour of the smallest scales only depends on the kinematic

viscosity and the rate at which they receive energy from the larger scales (Wilcox, 2000).

The k-co model was first proposed by Kolmogorov in 1942 and was the first model of tur-

bulence without the assumption of a characteristic length scale. This was formulated based

on dimensional arguments and involves transport equations. Turbulence was described by
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Specific dissipation rate

) j p | (3.32)

Closure coefficients
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two independent variables; the kinetic energy and the characteristic frequency of the energy

containing motions (Launder & Spalding, 1972). Saffman also formulated a k-co model in

1970 without prior knowledge of Kolmogorov's work (Wilcox, 2000).

The two equation model involves k which is the kinetic energy of the turbulence and ©

the dissipation per unit of turbulence kinetic energy. The process of dissipation occurs in the

smallest eddies, the rate of dissipation is the rate of transfer of turbulence kinetic energy to

the smallest eddies.

The Wilcox 1988 (Wilcox, 1988) model is implemented in the present code, with changes

to the inlet boundary condition as proposed by Menter to reduce the dependence of the |i

solution on inlet levels (Menter, 1992).

Wilcox (Wilcox, 2000) also introduces additions to the model that are intended to remove

the dependence on free-stream values and improve the performance of the model for other

configurations. This includes a cross diffusion term which requires a matrix multiplication

of the mean-rotation and mean strain rate tensors which requires a reasonable level of com- E; -.̂

putational effort. However due to the independence in cases tested using Menter's boundary ijli

conditions, this was not implemented due to the extra computational work it added to the

solution process.

There are five main sets of equations involved in the model.

The eddy viscosity is given

MT = — (3.30)
03 'II if

Turbulence kinetic energy

1•M
a = 5/9, (3 = 3/40, p* = 9/100, a =1/2, a* =1/2 (3.33) I

II
Auxiliary relations | i | |
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(3.34)

3.2 Structural Model

3.2.1 The Equations Governing the Structural Model

Structural dynamics primarily involves three different characteristics, namely mass, damp-

ing and elasticity. The dynamic nature of the problem is due to a constant force (in the

case of transient analysis), or time varying force. In the case of an aeroelastic problem, the

fluctuating pressure exerts time varying distributed loads on the structure.

The equations governing the structure are in general non-linear. There are many different

forms of the governing equations used in the analysis of structures in turbomachinery. How-

ever for problems involving aeroelasticity, the nonlinear effects are usually ignored due to

the complications they add to the solution process and the fact that their influence is regarded

as insignificant.

The complete equation of motion governing a structure may be written |

i
(i i),t) (3.35)

fill 1 1

Where C is a function of acceleration, velocity and displacement and rotor angular fre-

quency and K is a function of displacement and rotor angular frequency.

If it is assumed that the damping matrix is linear, but the stiffness matrix is nonlinear, it

may also take the form (Srivastava & Reddy, 1995)

| .«

where Ks is the centrifugal softening matrix due to the rotation of the rotor.

Whilst the structural part of the aeroelastic problem may be more accurately modelled

compared to the fluid field, the linear equation above does not allow for non-linear charac-

teristics such as frictional damping at the blade roots, shroud interfaces and large deforma-

tions under high centrifugal loading (Vahdati & Imregun, 1996). Non-linear interaction may

also occur between shroud and blade tip (Marshall & Imregun, 1996a). This displacement-

dependent dry friction damping may be an effective means of flutter suppression in tur-

bine and fan blade applications. However the non-linear assumption greatly increases the

complexity and time required to compute the structural solution, and is therefore currently

avoided by the majority of aeroelastic analyses.
f'fl.!:
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and

Of MOy- = Of COy- = Of KOy = 0 when / ^ j

Thus the modes are orthogonal, or decoupled. In general the damping matrix is not

diagonal, however it may be assumed that the damping matrix may be formed from a linear

combination of mass and stiffness matrices.

The eigenvalues of equation 3.39 may be found by considering the solution of free un-

damped response.

therefore

di = K<5;

CHAPTER 3. MATHEMATICAL MODEL 43

3.2.2 Modal Equations of Motion

Modal analysis is implemented by assuming that the nodal displacements may be represented
by a finite sum of modes, with each mode being approximated as complex and harmonic
(Zienkiewicz & Taylor, 1991):

f i i ,
\emt (3.37) $f]]#

where co/ are the eigenvalues, $,• are the corresponding eigenvectors and subscript i de-

notes the mode number. For forced response, it may be assumed that the solution is a linear

combination of modes:

• 1 1
S>3,...]q (3.38) I ; '

This may be substituted into the dynamic equation.

I!
miq'i + crfi + kiqi = Qi (3.39) | i

•§ • • ;

S!i
If the modes are normalised with respect to the mass matrix, then | |

nti — Of MO,- =

a = ofco,-
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Premultiplying by Of

The damping may be related to its critical value, for each mode through

ci = 2a>&.

The solution may be found for each corresponding eignenvalue, to create a vector of

modal displacements that may be transformed back to actual displacements using the trans-

formation equation 3.37.

Where complete assemblys are analysed, the efficiency of the code is critical and often

assumptions are made in the structural model. In some cases, the damping of the structure

may be considered negligible compared to the damping provided by the aerodynamics and

may therefore be neglected (Sayma et al., 1998).

With the normalisation of modes with the mass matrix, the modal equation of motion

becomes

(3 .40)
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Chapter 4

Computational Implementation

I0M
The discretisation refers to the method by which the mathematical formulation is represented :1: |: | | I

on a computer and this will be presented in the following section. Whilst the mathematical 'i iii i r f

formulation assumes a continuum, memory limits and storage methods in the computer re-

quire that the flow field or structural field be represented by discrete quantities in space. The

state of the continuum may be determined by applying the governing equations in discretised

form to the discretised continuum. There are a range of discretisations and numerical meth-

ods of applying the model governing equations. The present approach is a cell centred finite

volume method on a structured mesh for the fluid and a modal lumped mass representation

of the structure.

4.1 Fluid Model Discretisation fil
plf; I

In the present analysis the domain of interest is finite in size. The discretisation results in a |!fjr^:

network of nodes otherwise known as a grid or mesh. Through a solution method the fluid i | ]|!i

conditions are calculated at the points on the mesh. There are a number of solution methods iij m- j

available for the equations governing the fluid. A good method is one which produces a i i | i | |

solution in a time efficient manner and reproduces as accurately as possible the physical l;;||ij[:;
V: •1 | |!';T:i| >t'

characteristics of real fluid phenomena. |f*:H^

As stated in Chapter 3, the simulation of flows is restricted by the size and speed of the 1 1 | | |

available computer hardware and the finite amount of time available to researchers. Over

the years solution methods in CFD have been developed and researchers have improved

algorithms to produce solutions in a more time efficient manner. Debate remains as to the |i| :i||l

most appropriate algorithm for CFD and often this is dependant on the type of geometry and | | j | |

flow regime. In the present approach, Jameson type schemes are used. It involves a number

of different algorithms that have been previously developed and optimised into an effective

method that produces well resolved solutions efficiently.

A survey of numerical solution methods applied by authors in the 1997 International .

45 !$|!i|
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Symposium of Unsteady Aerodynamics and Aeroelasticity of Turbomachinery (Fransson,

1998) shows that just over half employ Jameson type Runge-Kutta schemes, the rest us-

ing implicit time integration methods. The fact that the Jameson type scheme is the most

popular scheme does not lead to the conclusion that it is the best method for modelling un-

steady aerodynamics in turbomachinery, however it does provide support for its use. Usually

implicit methods are coupled with upwind discretisations of the convective terms, whilst

central differences or finite volume methods coupled with artificial dissipation are used for

the Runge-Kutta schemes.

A range of problems are introduced by the discretisation of a continuum, particularly in

high subsonic and transonic flow. This is due to the presence of flow phenomena that may be

described as discontinuous. These pose a problem to a discrete representation as the highest

resolution that may be achieved is limited by mesh density. The lack of resolution leads to

instabilities in the numerical methods and may result in the divergence of the approximation

from the physical flow. Many approaches have been proposed to solve the problems due to

discretisation of the model gas dynamics equations (for example (Liou & Steffen, 1993)),

however it is believed that the present approach provides comparable resolution and numer-

ical efficiency. The other more sophisticated approaches such as Riemann solvers (Toro,

1997) may be warranted where flow conditions are particularly extreme, however none of

the cases presently considered involve this type of phenomena.

4.1.1 Spatial Discretisation of Navier-Stokes Equations

The discretisation in space refers to the way in which spatial derivatives in the governing

equations are approximated. There are three major methods of discretisation of the fluid

field. The finite element method is where approximating functions are used to represent the

variation of physical quantities through a finite element. Most implementations involve an

unstructured grid that employ pointers to map the computational domain. If the governing

equations are represented by the finite difference method, a generalised coordinate transfor-

. mation is required to apply the governing equations to complex geometries. In the present

approach the finite volume method is used for the spatial discretisation of the fluid governing

equations. This has a number of advantages over finite difference or finite element meth-

ods. It has good conservation properties. It allows complicated computational domains to be

discretised in a simpler way than the aforementioned methods (Fletcher, 1991).

The finite volume method exploits the divergence theorem of Gauss to reduce the spatial

derivative terms of the volume integral form of the governing equations to surface integrals.

This theorem can be considered as defining the average gradient of a scalar as a function of

its values at the boundaries of the volume under consideration (Hirsch, 1992a).

dm
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i.j.k i+1,j,k

Figure 4.1: Discretisation in computational space.

Figure 4.2: Geometry of a typical computational cell.

p)dV= IUidS.
dxj Js

47

(4.1)

The calculation of the volume integral reduces to a summation of the momentum fluxes

through the volume's surface.

(4.2)
sides

The fluid governing equations may be rewritten in a flux formulation

d
^^-C^IJ/C ^£.£tjljK ) (4.3)

where Qc,ijk and Q^ijk are the summations of the convective and viscous fluxes respectively.

The fluxes are decomposed into convective and viscous terms as they considered separately

in the time integration method.
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* i ! !5 :

The flow, convective and viscous vectors in Cartesian coordinates implemented in the
code are,

p ^

pu

pv

pw

f c=

P(M-Mgrid)

pM(M- Mgrid) +P

pE(ii - Mgrid) +PU J

pv(v-Vgr id)+P

pM>(v-Vgrid)
\̂  pE(v-vgrid)+Pv \ pJB(w-wgrid)+/)vv J

0

txx
Xyx

X7r

ŷ - /

0

ixy

Xyy

^ UX^ + VXyy + WXZy + (ji + C*flT) fy ~ ^ J

0
Xxz

XyZ

x77

\ uxxz + vxyz °>r)!-W

(4.6)

The total shear stress tensor which includes the turbulent stress tensor and viscous shear

tensor is,
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5 dxk

and the heat flux vector,

( H uT\dh

' i i . | j : \ j ; if-

Note that other variables are defined in Chapter 3.

Fluxes are calculated by averaging the cell centred values to the cell face and multiplying

by the corresponding area vector. For example, the flux through the face in the positive i

direction in computational space is shown in Figure 4.1. Mesh points are represented by

filled spheres, whilst the cell centred flow variables are represented by empty spheres. The

average of the two cell centred values is used to approximate the flux through the shaded WVH

face. The geometry of a typical cell of the discretised fluid field is shown in Figure 4.2. For ' '

a moving mesh, the extra flux due to the velocity of the cell face must also be accounted for

in the calculation. The flux through common faces of cells need not be calculated twice, but £'ii

may be added to one and subtracted from the other. This results in a compact implementation

in the calculation of the viscous fluxes.

The coordinates of the cell centred values do not appear explicitly in the discretisation,

nor in the implementation. Thus the variable is not necessarily attached to a fixed point

within the cell volume and may be considered the average value of the variable over the

entire cell volume (Hirsch, 1992a).

The viscous stress tensor is calculated through a dual application of the divergence theo-

rem. Firstly the velocity and heat gradients are calculated at the cell vertices. This involves ^

calculating the flux through the centre of the cells by multiplying the cell centred values by | |

an average of the area vectors on either side of the cell. These fluxes are averaged to the cell |>

face and then a summation is performed to calculate the gradients at the cell vertex.

m

Once the gradients have been calculated at the cell vertices, the second derivatives of the | |

' ' " • • •it--!!-1!--":

5 i If; '

if
•dmstress tensor may be calculated by another application of the Gauss formula. The gradient | |

tensor is averaged to the cell faces, then multiplied by the corresponding area vector. The ffjff^

fluxes are summed over the cell volume resulting in the calculation of the viscous stress |jj||j!j.j

tensor at the cell centre (Liu, 1991).

4.1.2 Spatial Discretisation of k-co Equations

The turbulence model equations closely resemble the Navier-Stokes equations, in that they | | | | |

| involve first and second order spatial derivatives. Therefore a similar algorithm is used to l:i|jfj;j;

i solve the k-co equations in a strongly coupled manner with the Navier-Stokes solver (Liu & :;;§j::j;,j:j

•if j i t •
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Zheng, 1994). It has proven to be an efficient and effective method for solving steady flow

in turbine cascade passages (Liu & Zheng, 1994; Zheng & Liu, 1995; Liu & Zheng, 1996).

The method involves the serial evaluation of the eddy viscosity within the five stage

solution scheme of the Navier-Stokes equations. A five stage Runge-Kutta scheme is also

used for the solution of the turbulence equations. The turbulence variables of k and 03 are

also located at cell centres. This is different to the previous implementations (Liu & Zheng,

1994) due to stability issues with certain turbine cases and also a simplification of inter-block

communication. With a cell vertex scheme, the cells at block interfaces must be averaged in

some manner, increasing communication overhead and storage. Previously it was believed

that a staggered implementation was more stable than a cell centred scheme, however the

present implementation has been tested by other anthers and is sufficiently stable (Yao et ai,

2000).

4.1.3 Time Discretisation

* ' — ) - 0 (4.7)

Since the equations are non-linear, they must be solved through an iterative technique. In

flifjf
Si

There are a range of methods for the accurate integration of time dependant problems. The

method of lines (Fletcher, 1991) is used to reduce a partial differential equation from a non-

linear partial differential equation to an ordinary differential equation, otherwise known as ^ l l ! '

semi-discrete form. j

II
'&W

general iterative techniques may be divided into implicit and explicit methods.

A major consideration in the solution of ordinary differential equations is stability, as

it determines the rate of convergence of the iterative method and hence the solution time.

Implicit methods usually have no stability limit however they require a large matrix inversion,

or at the very least the solution of a tridiagonal system. For the multidimensional problem | |

• the matrix inversion may be avoided by splitting the problem into a number of 1 -dimensional | | j ;

problems and solving in a number of steps. The alternating direction implicit method is an

example which may be used for the solution of 3-dimensional systems of equations, requiring

3 steps per integration iteration. Explicit methods are restricted by stability and often require i.u^jj',

a prohibitive number of iterations for convergence.

A dual time stepping scheme (Jameson, 1991) is used to calculate the unsteady flow

problem. This involves a steady state solver modified to compute a solution in a time accurate | | | ; | | |

manner. Within a real time-step, the scheme is explicit and all the methods of convergence p|!:;|j

acceleration for steady state solutions may be employed. The time accuracy is gained through j | jjj jjj j

the inclusion of an unsteady source term. The method has shown to be effective for external |;jj||j

flow simulations involving flow past an airfoil (Alonso & Jameson, 1994; Alonso, 1997;

•.!»;; a.iy
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Jameson, 1991), flows past wings (Liu et al, 2000), and in turbomachinery simulations (Ji
& Liu, 1999; Sadeghi & Liu, 2001 a).

Following the Jameson and Alonso (Jameson, 1991; Alonso, 1997), the time derivative
can be written as an operator,

where D, is a backward difference operator to order k. A second order backwards difference
operator is

J-I\t. / v f.f\T

Equation (4.8) can discretised using this operator and rewritten in terms of source terms and
residual,

where the source terms E,

£ +/?(w(«+i)) = 0, (4.10)

E = -2wWv(«) + Iw^

The implicit equations maybe cast into a modified steady state form

(4.11)

(4.12)

where the residual contains the source terms arising from the time discretisation and a steady

state residual,

This equation may be marched in time explicitly, however this can lead to numerical insta-

bility if the ratio of quasi time step to real time step X = ^ - becomes too small. This may

be overcome by treating the time derivative implicitly,

(1 (4.14)

Within each Runge-Kutta stage, the term w^ is the solution from the previous stage so

that the scheme is implicit within a complete Runge-Kutta integration step.

The k-co equations are discretised in time in a similar manner,



CHAPTER 4. COMPUTATIONAL IMPLEMENTATION 52

= 0, (4.15)

however there are further implicit terms must also be included. These are discussed in Sec-

tion 4.1.5 and relate to the stiffness of the k-co model. For the k equation,

• +

V(«H
(4.16)

and the G) equation,

1
y(n+\)

(4.17)

4.1.4 Time Stepping Scheme for Navier-Stokes Equations

Within the time accurate flow solver, a steady state solver is used to march the flow field

in quasi-time. This solver involves a number of convergence acceleration techniques that

allow the use of higher Courant numbers, thus increasing numerical efficiency and reducing

solution time.

The Runge-Kutta scheme has been developed into an efficient method to solve the steady

Euler equations (Jameson et ai, 1981). To take full advantage of a multigrid method the

scheme should be effective in damping high frequency modes. A five stage scheme was

found to be one of the most effective, as it allows the addition of the dissipative terms at

. alternate Runge Kutta stages to improve the high frequency damping properties and extend

the stability region (Jameson & Schmidt, 1985). In effect, the scheme is tailored so that

different schemes are selected for the convective terms that tend to be hyperbolic and the

dissipative terms that are parabolic in nature. This scheme is implemented in the present

method and has proven effective for the solution of the gas dynamic equations in different

applications (Hirsch, 1992a).

The Courant Fredrich Lewy condition is the time step limit that is a result of the explicit

time discretisation. This limits the rate at which the iterative method reaches a converged

solution. In general, the lower this number, the more cycles required thus the longer the time

period required for the computational method to obtain a solution. The Courant number of

this scheme is 2\/2. This is higher than for other methods such as Leapfrog or MacCormack
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schemes. Note that the present method differs from the traditional Runge-Kutta method in

that the evaluations of intermediate stages are not stored separately. This is intended to con-

serve computer memory and still proves effective as the order of accuracy is not important,

the requirement being that a steady state solution is obtained as quickly as possible.

Consider the semi-discrete form of the fluid governing equations

where /?(w) is the residual

(4.18)

(4.19)

and J2(w^) are the convective terms and D(w^) and D(w^k~^) are dissipative terms.

Given that w" is the value of w after n time steps, the general m stage scheme to advance

to a time At* is,

(0) =w(0) =

(4.20)

where the implicit terms due to the time accurate discretisation appear on the left hand side

and the term R*(w^k~^) is the modified residual that includes the unsteady source terms.

Note that the Runge-Kutta scheme is reformulated in Section 4.1.6 for the multigrid solver.

Local time steps are used, whereby the time step for each cell is calculated based on

the Courant number of the each cell. At the expense of time accuracy, the solution rate of

convergence is increased. The local time step is calculated through an approximation to the

wave speed that accounts for hyperbolic convective terms (Liu, 1991).

At* =
CFL-y (4.21)

The parabolic or viscous terms are also accounted for by the second term in the denom-

inator. To aid stability, a pressure sensor is used to detect the presence of shock waves. In

these regions the time step is reduced (Alonso, 1997).

^—— (4.22)

The pressure sensor is a normalised second difference of pressure in each coordinate direc-

tion,
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4.1.5 Time Stepping Scheme for k-oo Equations

The major difference between the time stepping scheme for the Navier-Stokes equations and

the turbulence model equations is the implicit treatment of the negative source terms.

The semi-discrete form of the k-co equations is written

(4.23)

-- 0 (4.24)
oi

where Rk and R(0 are the residuals for k and GO respectively. The terms in the turbu-

lence model equations may be collected into convective, dissipative and source terms (Liu &

Zheng, 1994).

-

Ra(pk, poo) = —(Cm-

(4.25)

(4.26)

The convective and dissipative terms are integrated explicitly, however unlike the Navier-

Stokes equations the dissipative terms are calculated at every Runge-Kutta stage in the 5

stage scheme. It has been found that in practical implementations of the k-e that the negative

source terms lead to large negative eigenvalues and hence a stiff system of equations and slow

convergence. These terms include the Favre averaged Reynolds-stress tensor and dissipation

terms. The effect of the time step restriction imposed by the negative source terms may be

lessened by treating these terms implicitly within the Runge Kutta solution method. The

source terms of equations 4.25 and 4.26 may be expanded

(4.27)
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where

Sm = aa*pPd - a - (V • u) (poo) - H ( p w ) 2 (4.28)

' r 2 1 1 \ 7 7 7
• = ^(£11 +E22 + £33) +£l2 +El3 ' "

A+ = max (0 ,1V. u j (4.29)

Hi;

x
•t :i|:i|j:p

The major production terms of equation 4.27 and 4.28 /i,Pd and aa*p/></ are always posi- |

tive. The dilation of pressure term (V • u) may be positive or negative, depending on whether !!

the flow is locally undergoing compression or expansion. This term is treated implicitly if it |:!

is negative and explicitly if positive by defining the following.
:ri : i i! |

II• at

The time discretisation may now be formulated sij:

II
ii!

(4.30) 31!
P

R* ; $f
[1 + A/oA+][(pco)"+1 - (pco)"] + A?^-[(p«)"+1 (pco)"+1 - (p(o)"(pco)"] = -R^At (4.31) : f| | |

The time discretisation is not time accurate, but is consistent. Time accuracy is not

important in the steady state solver and only the steady solution is required within each real

•time step in time accurate simulations. Equation (4.30) is a nonlinear algebraic equation in |jj!

terms of the new values (pA:)n+1 and (pco)"+I. They may be solved using the quadratic root |jjj

formula, but in this case the equations are linearised instead.

Define
• > • ; ! ; '

(4.32) {I

U:il :!

I(4.33) HI
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(4.34)

(4.35)

4.1.6 Multigrid

The explicit scheme is subject to a time step constraint. One method of accelerating conver-

gence is through the use of multiple grids. Initially this method was applied to the equations

for potential flow. Subsequently they were used successfully in the solution of the Euler

equations (Jameson, 1983).

The multigrid method involves the solution of the problem on an increasingly coarse grid.

Multigrid increases the rate of convergence in a number of ways. Its application removes the

low frequency spatial errors from the solution domain. The time stepping scheme is relatively

efficient at removing high frequency spatial errors. When the solution is interpolated to

a coarser grid, low frequency errors on the fine grid become high frequency errors on the

coarse grid. Thus the application of the time stepping scheme to coarser grids removes these

low frequency errors. For explicit methods, the speed at which disturbances may propagate

through the flow-field is limited by the number of cells in any particular coordinate direction

for a finite discretisation stencil. This speed of propagation may be accelerated through the

use of coarser grids with smaller numbers of cells in each direction of the computational

domain. Coarser grids also involve larger cells and given that the time step is governed by

the Courant condition, larger local time steps may be used.

The coarser grids are generated by removing every second grid point, effectively dou-

bling the mesh spacing. Flow variables are transferred to a coarser mesh by weighting each

cell by its volume

v ( 0 ) _
V2ft —

v2h

(4.36)

where the sum is over the eight cells of the finer grid within the single cell of the coarse grid.

This conserves energy, momentum and mass.

A forcing function is defined

8!

(4-37)

The Runge-Kutta scheme is formulated,

(0) _ (/)
V2ft ~ W2ft
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(4.38)

'2h = W
2/J

Note that in the first Runge-Kutta step the addition of the forcing term P2/i cancels out
the residual for the first stage. Thus the evolution of the coarse grid solution is driven by the
fine grid residual. This process is performed on successively coarse grids. Once the coarsest
grid is reached, the solution is interpolated back through the array of grids to the finest grid
us trilinear interpolation. During this process of interpolation, no further application of the
governing equations or time stepping scheme is performed. On the coarser grids, because the
unsteady source terms are constant throughout a Runge-Kutta stage, they need not be added
to the residual. This is due to the fact that they will be cancelled out by the second term in
the forcing term P/,.

There are a number of different multigrid strategies. Two common ones are known as V

and W cycle. The V-cycle is where each increasingly coarse grid is calculated for, then the

solutions interpolated back to the finest grid. In a W-cycle, the finest grid solution is only

calculated every second cycle through the grids. The W-cycle has proven more effective

with regards to its convergence rate compared to the V-cycle for practical flows(Liu, 1991;

Alonso, 1997). This is due to the fact that more iterations on the coarser grid appears to

increase rates of convergence.

A similar algorithm is used for the k-oi solver.

4.1.7 Artificial Dissipation

In the solution of the Euler equations in the transonic and supersonic flow regimes, it is

necessary to implement a discretisation that removes nonphysical oscillations from the flow

domain. These oscillations lead to instability in the numerical method and stem from a

number of sources including odd even decoupling due to the finite volume discretisation and

oscillations in the region of large gradients found at stagnation points and in the region of

shock waves. A number of solutions have been proposed including the addition of artificial

viscosity in the form of second and fourth order terms (Jameson et al., 1981), approximate

Riemann solvers and other flux splitting schemes. The performance of these schemes is often

problem dependant; where later developments perform better for some cases, the earlier

schemes are more appropriate for others. Of major importance is that the scheme adds

sufficient dissipation without adversely affecting the final solution.

The evaluation of the artificial viscosity at each time step adds to the overall computation

time. Jameson proposed that this be frozen through the Runge Kutta scheme, however after

experimentation an effective combination of Runge Kutta coefficients was chosen and the

dissipation was calculated at alternate steps through the 5 step scheme. This resulted in a

; ! J :

m
Mm

in

f\V : i i

Sit

• :- i ' i '

. f . i i ' l - • • » ; • ) ! ; • •

Ml

ml
mi
•m

' ! • ! . : ! ! • ! . !

W i ii;! ••



CHAPTER 4. COMPUTATIONAL IMPLEMENTATION 58

robust scheme that minimised the appearance of high frequency errors in the steady state
solution (Jameson & Schmidt, 1985).

There are a number of smoothing schemes implemented in the code, however only two

have been applied herein. The first is the addition of artificial viscosity through the ad-

dition of second and fourth order terms to the governing equations and is referred to as a

JST scheme after the original authors (Jameson et al, 1981). The second involves adding

artificial viscosity through a scheme that becomes upwind in supersonic regions through a

flux limiter and is known as convective upwind split pressure or CUSP (Jameson, 1995a;

Jameson, 1995b) scheme.

Extensive research has been undertaken into the mathematical formulation of non-oscilla-

tory discretisation schemes (Jameson, 1995a). The applicability of the schemes is highly

dependant on the flow configuration (Private communication, Liu). It has been shown that

scalar dissipation can perform equally as well as more sophisticated splitting of the conser-

vation laws such as through characteristic decomposition for resolution of laminar boundary

layers (Tatsumi et al, 1995). In theory, the CUSP scheme will capture a shock wave within

a single interior point. According to Jameson (1995b), this is the simplest implementation

with this property. The JST scheme is unable to capture shocks with this resolution and thus

represents shock waves of greater width. In theory, strong shock waves may have a very

small width, in the order of a few molecules. If weak shock, wives are present, these are best

captured with a characteristic method, as the front tends to be smeared by both the JST and

CUSP schemes.

JST scheme

Originally the JST scheme was developed for the solution of the Euler equations. It is still ap-

plicable to high speed simulations involving the Navier-Stokes equations. While the govern-

ing equations include dissipative terms, they may not be sufficient to damp flow instabilities

particularly in free stream regions away from solid boundaries. The scheme has been devel-

oped from its original form (Jameson et al, 1981) to improve the scaling of the dissipative

terms, although essentially the algorithm remains the same.

The scheme involves the addition of first and third order differences. The third order dif-

ferences are distributed throughout that flow field and provide a background level of smooth-

ing. Whilst this is sufficiently high to remove odd even decoupling it is insufficient to damp

flow instabilities due to discontinuities such as shock waves. In the region of discontinu-

ities the scheme uses a switch to detect high gradients and the more dissipative first order

differences are applied to generate artificial viscosity (Jameson & Schmidt, 1985).

The dissipation is constructed as a dissipative flux for each cell face to preserve the

conservation properties of the discretisation. These are summed over the faces of a cell to

generate the dissipation for the cell flow variable at the cell centre through the finite volume
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method (Jameson, 1983). The dissipation flux of the positive / cell face for the conservation
equations,

d- i . (w) = D@) (w) + D^ (w) (4 39)

where the dissipative fluxes are made up of a blending of terms that result in second and

fourth differences when the dissipative fluxes are summed over the finite volume cell.

n(2)r \ * (2) A
L)K ' w = A- , i • ,£ , A w (4.40)

(4.41)

where

An approximation is used for the spectral radii of the flux Jacobian matrix for the scal-

ing of the dissipative terms (Jameson & Schmidt, 1985). For the local cell direction £ in

curvilinear coordinates this is estimated as (Liu, 1991)

\i+li,k ~ 2
(4.42)%,i+\,j,k) = \(u-ugrid)-S^\+c\S^\

where S^ is the area vector in the i; direction.

The large aspect ratios found in boundary regions of the flow-field can lead to a large

differences in the dissipation scales in different coordinate directions. To reduce this effect,

the spectral radius is modified,

(4.43)

where

(4.44)

This improves the convergence properties of the scheme for computations involving

stretched meshes.
The smoothing parameters are formulated

(2) = (4.45)

where the pressure sensor is a normalised second difference of pressure as defined in

Section 4.1.4 and
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e(4) = max(0, (Jt(4) - e(2)) (4.46)

where the kW and k^ are user specified parameters, ranging between zero and one.
The coefficients e(2) and ê 4) are constructed so that the fourth differences are switched

off in the regions of shock waves. This was found necessary to prevent overshoot and oscil-
lation in the neighbourhood of shock waves (Jameson & Schmidt, 1985). Thus the scheme
behaves locally first order in the neighbourhood of shock waves. Where the flow is varying
smoothly the parameter e^ is proportional to the square of the mesh width, while e ^ is of
the order of one.

The dissipative fluxes at solid boundaries are set to zero to maintain conservation. The
fluxes are constructed for all of the conservative variables in each coordinate direction and
are added explicitly to the governing equations.

CUSP

A series of non-oscillatory schemes were developed in the first half of the 1990's. Liou and

Stefen (Liou & Steffen, 1993) proposed a scheme that has the similar general form to the

flux splitting of the CUSP scheme. A major difference between the CUSP scheme and the

JST scheme is the use of flux limiters instead of a pressure switch.

The scheme involves the splitting of the governing equations into convective and pressure

terms (Tatsumi et al, 1995). For a one dimensional system, the Euler equations may be

written

(4.47)

where

= | p« | , f ( w ) = I Du2 + p | (4.48)

pE

The CUSP scheme is constructed by splitting the dissipative fluxes into convective and

pressure fluxes. This is convenient so that upwinding may be applied separately to the pres-

sure terms. In supersonic flow, the pressure and convective terms have the same zone of

dependence and may be treated in a similar method. However in subsonic flow, pressure

waves must be allowed to travel in any direction. The application of an upwind method to

these terms in subsonic flow will mean that the system will not have a proper zone of de-

pendence. The scheme therefore is constructed to switch to an upwind scheme in supersonic

regions.

Convective and pressure terms are split
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(4.49)

The dissipative fluxes for the convective terms and pressure terms are respectively

f An. , \

dc i = .
j+1

Ap« .+ ,
(4.50)

= h{M)
o

(4-51)

The functions f\{M) and f2(M) are formulated so that the upwinding is appropriately

implemented in the discretisation. So that these functions are smooth as the discretisation

moves from subsonic to supersonic regions, a blend of quartic and linear functions is used.

|M|<1

\M\ \M\ > 1

sign(M) \M\ > 1

(4.52)

(4.53)

Note that the diffusion remains positive for the convective terms when M = 0 so that it is

active in stagnation regions. To preserve continuity of the function f\ at a Mach number of

unity, the coefficients are chosen a2 — | = — 2ao> <?4 = «o ~ \- In practise it was found that

for high speed flows oo = \ and for transonic flows ao = | . The diffusion for the convective

terms is the same as that for the JST scheme with a modification of the scaling.

4.1.8 Residual Averaging

Another method is used to increase the rate of convergence of the fluid governing equations.

The stability region of the multistage time integration scheme may be increased through the

application of residual averaging. This increases the CFL number by replacing the residuals

calculated through the Runge Kutta method with weighted averages of neighbouring residu-

als has been found to be particularly effective for solutions of the Euler equations (Jameson

& Schmidt, 1985). This method was further developed for application to the Navier-Sokes

equations by the inclusion of locally varying coefficients (Martinelli, 1987).

For a one-dimensional problem, consider the residual to be an average of itself and its
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two neighbours,

Ri = £/?,•_! + ( ! - 2z)Ri + eRi+,

If the factor e > i then there are Fourier modes that exist in residual space such that
Ri = 0 when /?, 7̂  0. One method of avoiding this problem is to form the average in an
implicit manner.

-e/j,-_i + (1 4- 2e)Rt - eRi+} = Rt

It can be shown for an infinite interval, the tridiagonal system has the explicit solution

An expansion of the above sum demonstrates that in this form the residual for each cell

is influenced by all residuals in the flow domain. To apply the scheme in multi-dimensions,

an alternating direction implicit approach is taken,

(1 -E^&lXl - e ^ , ) ( l -e&Rij^Rw

The coefficients for each coordinate direction are formulated based on a modified local

wave speed and the ratio of CFL number to maximum allowable CFL number CFL*, in the

x-direction,

= max (o, \ { ̂  [Xx + X.. + *J } ^ (4.54)

It has been found that implicit residual averaging can allow the use of Courant numbers

three times higher than usually allowable, however in the present case this was close to twice

for the calculation of the Navier-Stokes equations on a highly stretched grid. The residuals

' are smoothed at every Runge-Kutta stage for both the Navier-Stokes and the k-co variables.

4.1.9 Boundary Conditions for Navier-Stokes Equations

The boundary conditions are the auxiliary data that help to provide a unique solution of

the model equations and may be drawn frcm experimental or theoretical sources. They are

particularly important in defining the flow conditions. There are a number of different types

of boundary conditions applied in CFD. One is the far-field conditions where fluid crosses

into or out of the flow domain. The second are solid surface boundary conditions, where

the flow must be locally tangential to the boundary given that the boundary is impervious.
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A third type is periodic conditions, mainly applied to flows that involve an array of profiles,

such as a turbomachinery cascade.

Far field boundary conditions are the most difficult conditions to formulate and imple-

ment. Ideally they will prevent reflections of waves at the boundary whilst remaining rela-

tively simple. The way in which far-field boundary conditions are applied depends on the

model geometry. In field of aerospace CFD simulations may be classified as either exter-

nal or internal flows. External flows generally involve the simulation of vehicles or parts

of vehicles such as wings in flight and the edge of the computational domain may be many

chords away from the body. The flow at an external boundary may enter or exit the flow

domain. Depending on the direction of flow at the external boundary of a particular cell,

inflow or outflow conditions are imposed. For compressible flow models the parameters of

Mach number and Reynolds number are specified.

Internal flows are where the domain boundaries are well defined and usually involve flow

that is bounded by solid surfaces. There are well defined and possibly multiple inlet and

outlet planes. For simulations in turbomachinery, it is the usual practice to specify constant

values of total temperature and pressure at the inlet with an average flow angle. An average

value of the static pressure is imposed at the outlet, with the characteristic theory providing

the variation about this average. For a given set of inlet conditions, the outlet conditions

may be varied to produce completely different conditions within the turbine passage. One

major difference from external flows is that usually the inlet velocity and outlet velocity are

unknown initially - they are determined once the solution is found and are determined by

the pressure gradient.

Giles (Giles, 1988; Giles, 1990) formulated boundary conditions applicable both to ex-

ternal and internal flows, in particular for turbomachinery. External flows such as airfoil

simulations usually employ grids that extend to 30 - 50 chords from the airfoil surface. As

waves propagate outwards from the airfoil surface the grid becomes coarser and eventually

disturbances may be dissipated by numerical viscosity. In the case of turbomachinery how-

ever the inlet plane may be less than a chord length from the leading edge of a blade. Shock

waves may exist if the flow is transonic. It is important though that boundary conditions be

compatible with physical flow behaviour as they can have a dominating effect on accuracy,

stability and convergence rate of the scheme (Hirsch, 1992b; Giles, 1988). In general nu-

merical schemes require the values of all variables at boundaries. Boundary conditions may

be classified as physical boundary conditions where flow conditions are transported from the

boundary into the domain and the remaining variables are numerical boundary conditions

that depend on the final solution and must be consistent with the physical properties of the

flow. For one-dimensional compressible flows, three variables are required at each boundary.

At the inlet two physical conditions are required and one numerical condition. At the outlet

one physical condition is required and two numerical conditions (Hirsch, 1992b). For inter-

illill
vMM'Y|

mti-

•ii&i

§11

• • i • <: ! '

\ mil



CHAPTER 4. COMPUTATIONAL IMPLEMENTATION 64

•i :; i i I !

nal flows the inlet and outlet flow velocity magnitudes are unknown they may be determined li; |iH

by the inner flow. . lj:::|p";

To understand the far-field boundary conditions it is useful to consider the mathematical

properties of the model governing equations. The numerical schemes and their properties

for the Navier-Stokes equations are dominated by their hyperbolic character in time. This rf^li I

hyperbolic nature is also found in the Euler equations that are a subset of the Navier-Stokes | f| j

equations. The Euler equations omit the effects of viscosity which simplifies analysis. Since

;i|i: I': I

the influence of viscous effects is much less in magnitude in far-field regions compared to '•''u';rm-

mm
the time dependent behaviour, the Euler equations are sufficient in describing flow behaviour.

They involve both spatial and time characteristics and are classed as mixed or hybrid in type,

depending on the Mach number and spatial direction under consideration. Therefore they !;i|i H !

may be in the hyperbolic or elliptic class of differential equations. Most importantly though ;!P| |;i i

they are dominated by their time dependent behaviour. As a consequence they admit wave ; |i îi I

like solutions, thus the methods of characteristics is useful for analysing the for <n of solutions :||;;||[ I

and represent the essential aspects of inviscid flows (Hirsch, 1992a). The dominant property nllpj'i I

of both the mathematical description and numerical discretisation is convective in nature. j |!:! iri •

Non-reflecting boundary conditions can be derived for 1-dimensional flows using hyper- !1 i|i|

bolic characteristic theory. For three-dimensional and two-dimensional flows the 1-dimens- ;:;||;;;ji-i|

ional theory can be applied in the normal direction, ignoring all tangential derivatives. This i 1| i'' [

is the most commonly used boundary condition in unsteady calculations and is referred to {!liji;!]||

as the quasi-one-dimensional or normal one-dimensional boundary conditions or method of -;|! ii

characteristics (Giles, 1988).

The non-reflecting boundary condition expresses the physical boundary conditions under

the requirement that the local perturbations propagated along incoming characteristics be 'iiifljf

made to vanish. The method is valid provided shock waves do not cross the boundary. Given ti$i$l
; ; ' ] ! i'hi[i

that across a shock wave, if the shock is of strength e, the Riemann variables change by an >j| |;j|jl

amount O(e2) through the shock and produce a reflection of this magnitude (Hirsch, 1992b). N | | | ij

In one-dimensional isentropic flows, the characteristics are constant along the associated l i i l j l

.characteristics in (x,t) space. Riemann variables are variables that may be characterised by I ill ill

a propagation speed or characteristic. When a variable is conserved during the propagation 1 l | i | |

along a characteristic, it said to be invariant and is regarded as a Riemann invariant. Thus ;|jjiii;||i.,

the application of the 1 -dimensional characteristic equations at a boundary is equivalent to ; | -j;; |

the use of Riemann invariants. The present formulation for of non-reflecting boundary con- ;|| |,i i[

ditions for the Euler equations was proposed by Jameson (Jameson, 1983).

The majority of viscous and inviscid aeroelastic computations implement 1-dimensional,

non-reflecting boundary conditions as described by Giles (1990). The two-dimensional form .^idfu

of boundary conditions are not implemented in numerical models because they are known to

show great benefit only in steady flow calculations (Isomura & Giles, 1998). However they
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have been implemented in unsteady calculations for rotor stator interactions, where the inlet

and outlet lengths are substantially shorter than a chord length (Sbardella & Peiro, 1997).

There are a number of conditions that may be imposed at the inlet:

1. Incoming characteristic: unB + —^ = Unoo + §̂=-

2. Outgoing characteristic: unB — ^ = Unj + ^

3. Far-field normal velocity: unB — unx

4. Far-field entropy: SB = Sx

5. Far-field enthalpy: HB = //«,

6. Far-field flow angles: aB = Ooo, PB = [}«>, yB = Y<»

To determine the inlet velocities, condition number 2. is used, coupled with the flow angles

and constant enthalpy. The enthalpy is calculated from the local values of total temperature

and total pressure. Thus the two physical conditions are the enthalpy and the flow angle and

the numerical condition is obtained from the Riemann invariant. This satisfies the require-

ments for application of 1-dimensional boundary conditions.

At the outlet, two numerical conditions are required with one physical condition. The

static pressure is specified at the outlet boundary and the outgoing characteristic equation

is used to calculate the other conditions at the boundary, combined with the entropy that is

extrapolated from inside the flow field to calculate the outlet density and sound speed.

Periodic boundary conditions can be implemented where it is assumed that a single blade

passage represents all blades in the cascade or annulus. For steady calculations, fluxes are

merely passed from one side of the domain to the other, taking into account the angle between

periodic faces if the cascade is annular. However where periodicity is assumed in unsteady

aeroelastic calculations and only one passage is used, the periodic boundary field variables

will change depending on the stage within the oscillation cycle. Thus in the "direct store

method", the periodic boundary values must be stored at each point in the cycle, which

equates to the temporal linearisation of the lagged periodic boundary condition. This allows

the modelling of any inter-blade phase angle with a single blade passage (Hwang & Yang,

1995; Abhari & Giles, 1997; Weber et al., 1998). However, this method has been shown to

produce different results compared to multiple passage calculations (Marshall & Imregun,

1996a).

Since the direct store method is not used in the present approach, as many passages

must be modelled as there are different flow patterns in the cascade. This may be calculated

by through 360/IBPA where the IBPA is specified in degrees. Spatially periodic boundary

conditions are used at the boundary of the annulus segment in the present method.
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Wall boundary conditions are applied by setting the boundary ghost cells. These cells lie

beyond the flow domain. For the Euler equations, the normal velocity is equated to zero,

= ~f (4.58)

where yn is the normal distance from the first grid point to wall. For multigrid calcu-
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4.1.10 Boundary Conditions for k-co Equations

The boundary conditions are implemented as in previous versions of the code (Liu & Zheng,

1994).

Simulations involving the original free-stream conditions have been found to be sensi-

tive to the free-stream level of turbulence dissipation rate co (Menter, 1992), particularly in

the case of free shear flows. The present implementation used that proposed by Menter,

estimated for high Reynolds number boundary layer flows as

(4.56)

The far-field boundary value of turbulence kinetic energy k is set at a very low level, but

is not zero for numerical reasons.

Wall conditions are as originally prescribed (Wilcox, 1988). The exact solution of the co

equation within the viscous sub-layer is given as

a > ~ T T T . y+<2-5 <4-57)
Por \

Alternate conditions have been proposed by other authors (Wilcox, 2000; Menter, 1994)

to improve the velocity distribution through the boundary layer. However the the grid depen-

dence of all Navier-Stokes simulations was investigated and the following implementation

was found to be sufficient. This has also been found by other authors for relatively complex

turbine configurations (Liu & Zheng, 1994). At the first grid point from the wall, the value 'rM$•£

of turbulence specific dissipation rate coWaii is set based on the normal distance from the wall,

mm
m
lift!
i l

(w - usrid) • n = 0, (4.55)

and the density is extrapolated from within the domain. The normal momentum equation

may be constructed through the streamline differentiation of the wall boundary condition

(Rizzi, 1978). The pressure gradient obtained may be then used to calculated the total energy

in the ghost cell. In Navier-Stokes simulations, the flow velocity at the boundary is set to

zero by setting the velocities to the negative of those in the domain interior. The wall is

adiabatic in that there is zero heat flux at the boundary.
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q'i + 2&<Dtf «• + (Ofqi = Qi (4.60)

Following Alonso and Jameson (Alonso & Jameson, 1994), we assume

hu = q'i

hu = h2i (4.61)

where {if,} = | *" \.\A] =
nn

0 1
-co? - 2 a > & Qi

After proper diagonalisation, the above equation can be decoupled.

h (4.63)
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lations, the fine grid wall distance is used in the calculation of cowau on coarser grids. In "M-iUM-

all the simulations presented, the turbulence quantities are integrated to solid surfaces and
no special functions are used in boundary layer regions to obtain theoretical boundary layer
profiles.

4.2 Structural Model Discretisation

The simulation of the structural behaviour involves the equations governing the structural

model that have been reduced to modal form. Each mode has an associated model equa-

tion which is solved to obtain the behaviour of the complete model. These equations are

solved in a similar manner to the fluid model governing equations, with the same dual time

discretisation and Runge-Kutta time stepping scheme.

The structural displacement vector is written as a summation of N modal shapes extracted

from a finite element analysis of the structure.

A, = 2 *.«&«• (4.59)

where <!>, are the modal shapes. Equation (5.1) is further reduced to a first order system

of equations for each i and integrated in time by a second-order fully implicit scheme.

II

for each of the modal equations. Thus in matrix form:

3}, i = l , 2 (4.62) if

andfm = ( ° l . I

'v'liif iii'Ji:
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"if = ̂ (-&->/^^ + ™#2& (4.64) ; ;s | ;

In these equations, the time derivative operator is discretised by a second order accurate n ;ij;
scheme for each mode ;| i j ' j

( 4 6 6 )

4.3 Parallel Computation Strategy

The motivation behind the development of computing systems for scientific and engineer-

ing applications is to reduce computation time and increase computational capacity. The

reduction of computation time is gained through higher processor speed and improvement

of system architecture. Increasing the system memory allows for the solution of larger prob-

lems, or the solution of problems at higher resolution or model complexity. Ultimately this

results in better models and more realistic predictions or results.

Single processor vector supercomputers were popular in the 1980's. In the 1990's it

was recognised that parallel architecture computers offer the promise of providing orders

of magnitude greater computational power. One of the key advantages identified was the

scalability of the systems, that is the performance of a multi-processor architecture increases

linearly with the number of processors for a wide variety of problems. It was proposed

that the computational requirements for solving the grand challenge large scale problems

in industry the distributed memory, multiple instruction, multiple data machines are most

likely to meet this challenge due to their scalability (Argarwal, 1992). The grand challenge

equations are the most difficult and important equations that model scientific phenomena,

including the Navier-Stokes equations.

The above equations are coupled with the time-marching of the Navier-Stokes equations | l ; I if

and solved by a dual time stepping algorithm similar to that used for the fluid solver.

li;
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4.3.1 Architecture of High Performance Computers

One of the significant differences between sequential programming and parallel processing

is that it is necessary to have an understanding of the underlying computer architecture and ;|ji;jp

numerical algorithm and the effect one has on the other for efficient operation. This is im- •']•!||| |

portant in order to extract a significant fraction of the peak performance from the machine ••||;ji:j|
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could take 50 or 100 clock cycles. One of the most important strategies used to reduce thj

: ; ; ; , - j f .J

I (Emerson, 1996). The great effort that has been invested in the development of powerful | | | | j

computers has led to large number of different types of systems. The configuration or ar- ;f | j j j

chitecture of these machines is complex however it is useful to characterise them so that the fj'itj • j

A s tructure of the simulation tool may be tailored in an appropriate manner. ''; |;'l

One of the most widely used classifications of parallel architectures was provided by

Flynn (Flynn, 1972). Known as Flynn 's Taxonomy, it is based on the concept of a data and

n instruction stream. A data stream is a sequence of data that includes input and partial or

temporary results. T h e instruction stream is a sequence of instructions as executed by the

machine . The classification involves four major groups; single instruction and single data

jj stream (SISD), single instruction and multiple data stream (SIMD), multiple instruction and

single data stream (MISD) and multiple instruction and multiple data stream (MIMD) .

Single instruction stream single data (SISD) organisation is found in the majority of con-

™ ventional desktop computers , however rarely in modern large scale computers. Processor

speed is limited by manufacturing techniques and the speed of light. Even though manufac-

turing technology is advancing to produce faster processors, parallelism has been introduced

p to further increase the efficiency of the computer beyond the restrictions of the SISD model .

T h e single-instruction mult iple data (SIMD) classification is for computers otherwise

known as vector or array processors . They have one instruction processing unit and several

processing units and involve an array of processors that operate on a segment of a vector of

data. Pipeline computers also fall within this category. An important characteristic of S IMD

organisation is that the processor has access to all of the memory. The Multiple instruction

j single data (MISD) class of machines do not exist.

T h e final and most diverse group involves Multiple Instruction Multiple Data organ-

isation. This group is subdivided into shared memory S M - M I M D systems and distributed

memory D M - M I M D systems. Hybrids also exist, for example combining a number of S I M D

processors to form a M I M D system, or S M - M I M D systems to create an D M - M I M D . Thus

Flynn 's Taxonomy isn ' t the most descriptive of classifications, however it remains the most

\ widely used.

There are a number of strategies used to increase the power of the large scale system.

> Pipelining is where instructions are overlapped enabling the processor to produce a result

every cycle, even for instructions that may require multiple clock cycles to be produced.

Initialisation is required where the pipe is filled. Thus processor clock speed is not an ac-
! curate indication of processing speed as the use of a pipeline can significantly increase the

jj processor work rate independently of the clock speed.

Toward the end of the 20th century, processor speed approximately doubles every 18

. months , however this does not apply to memory access speed (Gustafson, 1998). Mos t

: arithmetic operations are executed in one or two clock cycles, but fetching data from memory

;!!iujj -t,
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effect of memory latency involves the caching of data and instructions in smaller and faster I! |J|

memory chips that are closer to the processor. Data that is used a number of times can be .0]||

stored in the cache rather than main memory. Data can also be loaded into the cache in |!i |||

advance while the processor is performing operations on data from other parts of the cache. |: H

Thus memory is divided into a number of levels, some systems have a small and very fast Ij |;|

primary cache and a slower but larger secondary cache. :|: |;]

Relatively slow memory fetch time also makes it difficult to evaluate system performance |!!;]

from fundamental measures such as clock speed and floating operations per second (FLOPS) |Nii

(Gustafson, 1998). The memory size and memory organisation may become a major con-

straint on system performance - programs with small memory requirements may run much

faster than those with large memory requirements. Performance is therefore application de-

pendant as well as system dependant.

An important measure in the evaluation of computer performance is the execution time | |

for a particular program (Allen et al., 1996). This may be represented by the following j

equation in terms of n,- the number of instructions to be executed, the cycles required per ĵljip

instruction and the time per cycle.

T = nx CPI x tCyCie (4.67)

• ! t | :

»:i!

1

Jill ::j
•! i'iThe time required per instruction is purely determined by the engineering of the process-

ing unit, whereas the other two parameters are affected by the type of architecture under -vwyyj

consideration. Given that the technology of the processing unit is limited by the advance of ^ :ii

manufacturing techniques, there has been a large effort to develop architectures to increase

computer performance. Key to this is the concept of parallelism, be it within the processor

or through collecting of processing units to form a single machine.

A number of different types of parallelism have been identified (Flynn, 1972). In par-

ticular there is program level parallelism, instruction level parallelism and arithmetic and bit

level parallelism. All of these optimisations have the ability to affect the method of code

implementation. Program level parallelism may be applied to different sections of a pro-

gram, or a loop where each operation is independent of another within the loop. This will

affect the implementation at the programming level. Instruction level parallelism is where an

instruction may be divided into sub-operations and the operations overlapped, or individual

instructions may be overlapped. Compilers are in general optimised to make best use of this i|i;||;i|

parallelism and it does not impact on the implementation as the program level parallelism. » ^

4.3.2 Parallel Performance

There are a host of parallel performance metrics, however the most frequently used is the

speed-up Sn and total efficiency En (Drikakis, 1999).

m.
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h
(4.68)

n

Efficiency is given by,

For a large number of processors, the speed-up is bounded by

1
(4-73)

This law has limited applicability. It is pessimistic in that even a small level of serial

computation will lead to a low speed-up - few problems experience even a 100-fold speed-

up. It has been found that the law does not take into account that the sequential part of

Iff
r ii

1 ' • ' : " ! , :

C ; i ' ] • !

m

(4.69) ;
'"P | ; j |

The parallel execution time is tp and n is the number of processors. The definition of the if

sequential execution time ti is important as it can greatly affect the measures of performance. \ \ \

The relative speed-up is defined as where the sequential time is based on the speed of the •l!ifj|| •

parallel code on one processor and the absolute speed-up is where the sequential execution

time is for the best sequential algorithm available. In the present context, the relative speed-

up should be higher given that the implementation of the multiple block code tends to slightly

increase the execution time and operation count. The absolute speed-up should emphasise

how much faster a problem can be solved with parallel processing, while the relative speed-

up will be more dependant on machine architecture.

An important factor in the parallel performance of an algorithm is the percentage of

serial computation time versus the parallel computation time (Emerson, 1996). Amdahl's

law (Amdhal, 1967) was first applied to vector systems, however it may equally be applied to

parallel systems. Given that the fraction / is carried out on n processors and the other fraction h |1| !i;||

of the computation occurs on a single processor (1 — / ) (which includes time required for 'jjijfj j{

communication between processors), t\ is the time taken on a single processor, the total time

taken is given by ,|1=1
•.ii$i.i:l?

t = tp + ts = — + (l-f)ti (4.70)

Ware's (Ware, 1973) law provides the speed-up in terms of fraction of parallel computa- ...|i|!.,
j . '-iihii

tion time / , ;^|[|:
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the computation may reduce in proportion as the problem size increases. This is true if the

initialisation phase and message passing phase does not increase with the larger problem.

Gustafson (Gustafson, 1998) found that to a first approximation, the parallel or vector part

of a program scales v/ith problem size. Times for vector start-up, program loading and

input/output operations do not grow with problem size. Thus the amount of work done

varies linearly with the number of processors. An alternative to Amdahl's law is provided

as:

^scaled = n + s(\ -n) = n + (1 - / ) ( 1 - n ) (4.74)

where s = (1 — / ) is the fraction of serial computation time. However there is still much

debate of the usefulness of this model (Casavant et al, 1996).

If experiments are used to determine the parallel performance of a particular parallel

machine, performance metrics can be greatly affected by the machine architecture. Most high

performance machines have memory that is divided into a hierarchy. Small but fast memory

is located close to the processor, whereas lower level slower cache may be larger and further

away. Access time for data in lower level cache and main memory is much slower than for

the high level cache. Execution time can vary greatly, depending on the amount of memory

used and the percentage of the data that fits in the faster memory. Speedup may increase

due to different memory usage purely because the ratio of execution to communication time

increases.

4.3.3 Parallelisation of CFD Codes

There are two major types of parallel processing models, the Single Program Multiple Data

(SPMD) and the Multiple Program Multiple Data (MPMD) model. The most commonly

used model for scientific computation is the SPMD (Emerson, 1996) model as they usually

involve performing computations in an iterative manner on a relatively large set of data. The

MPMD model is not applicable to CFD and the SPMD model is used in the present code.

The type of parallel implementation will depend on the configuration of the particular

system. The compilers on some shared memory SM-MIMD machines can parallelise code

automatically through compiler directives within the source code. This is one of the simplest

methods of implementing a parallel solver, however it is limited to these types of machines

and is not compatible with machines with distributed memory. A code suitable for the DM-

MIMD may be run on a SM-MIMD machine, although it may not be optimal.

The method of domain decomposition is where the computational domain is divided into

a number of blocks that can be allocated to processors of the a multiple processor system.

Each processor performs the same types of computations on data, although different bound-

ary conditions may be applied by each processor. In the present work, so that each block

' I ,1
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Block 1

73

Block 2

a Ghost Cell

E3 Internal Cell

Figure 4.3: Transfer of boundary cells.

may be operated on in parallel, each cell must have access to two neighbouring cells at the

edge o c the domain in each coordinate direction of the computational domain due to the

discretisation stencil. At the edges of a block ghost cells are required to hold the data of a

neighbouring block from the previous time step, or for the boundary condition. The transfer

of cells is demonstrated in Figure 4.3 in computational space for a 2-dimensional domain.

The two internal rows adjacent to a boundary of block 1 are transferred to the ghost cells of

block 2. Subsequently the internal cells of block 2 would be transferred to the ghost cells

of block 1. This transfer of cells is performed at every time step or partial step. Where the

blocks are allocated to the same processor and therefore share the same memory, the transfer

may take place by copying from one memory location to the other. Where the blocks reside

on different processors that do not share the same memory the transfer must occur through

message passing.

Typical modern day distributed memory machines have multiple processors sharing com-

mon memory within a node, with the machine being made up of a large number of nodes. An

optimal code for this type of architecture would be one that is parallel within each node using

compiler directives, then use message passing between each cluster. Whilst it is significantly

less complex to implement a parallel code through the use of compiler directives, it takes

time for the system to initialise the parallel loop computation. This time must be compared

for the time required for message passing. Efficiency gains maybe negligible compared to

the added complexity required for such a hybrid approach.

The method of code parallelisation is not a trivial one as -t adds another level to code

complexity and can vary in efficiency. There are many different standards and implemen-

tations that may be used, however the Message Passing Interface (MPI) has become one of

the most popular. The majority of large, parallel computers support this standard, as do the
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more economical PC based Beowulf clusters. Open MP is another standard, that makes use

of compiler directives to parallelise loops within a shared memory system.

Load balancing is another important issue which relates to the distribution of the com-

putational domain across the system. Ideally each processor would perform calculations on

the same number of computational cells. However due to geometry this may not always be

possible, particularly where the more sophisticated turbomachinery grid generators are used

that provide better cell distributions in a geometric sense, but are poorer with regard to the

domain decomposition. There may al;.i be small regions of the flow field such as the tip gap

that due to their geometry involve blocks with small numbers of cells. Thus it may be more

efficient with regard to load balancing to allocate more than one block to a singe processor.

There is a compromise between numerical efficiency and parallel efficiency. Parallel

efficiency involves maintaining a high ratio between number of operations and size of com-

munications. Numerical efficiency involves implementing the fastest converging numerical

methods. Often these two counter each other, however in general the numerical efficiency is

the most important consideration.

There are a number of important issues with reg?rd to the parallel computations of large

problems, some of which are considerations in the design of the implementation, others that

are important in the problem setup at run time.

• Total efficiency increases for increasingly fine grids (computation time/communication

time), as in general the number of operations increases proportional to the cube of the

number of cells, whilst the relative size of the communication increases by six times

the square of the number of cells.

• Total efficiency decreases for larger number of processors (Amdahl's law).

• Method of discretisation does not greatly affect total efficiency unless there is a large

difference between communication size and thus communication time, although it af-

fects numerical efficiency.

• The more model equations solved, the higher the total efficiency provided the increase

in communication time is not proportional to the increase in computation time.

• The closer to cube in shape the computational blocks, the higher the parallel efficiency

due to reduction of message size without changing of number of operations.

• Multigrid decreases parallel efficiency due to increased communication per grid point.

However increased numerical efficiency overshadows this disadvantage.

• Poor load balancing can reduce parallel efficiency.
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Block

Multigrid level

i

1

1

1

1

1

i

1

I

1

i

2

Transfer Boundary Information

Figure 4.4: Communication between blocks and grids in multiblock code.

4.3.4 Iiiripkmentation of Parallel Solver

The conventional method of domain decomposition of the structured grid is used to exploit

the parallel computing systems that are presently available. An unstructured approach was

taken to the method of decomposition in order to not restrict the topology and distribution of

blocks. This allows for better load balancing where the computational geometry is restricted

due to physical and geometrical considerations. While each block consists of a structured

grid, the blocks can be connected to each other in an unstructured manner provided the mesh

geometry is matched at the block interfaces. Thus the parallel topology is unstructured in that

the block size and geometry in the computational domain does not have to be regular over

the problem domain. This has implications for the data structure, outlined in the following

sections.

Each fluid block is treated as a single object or entity. A schematic of the multi-block

data structure is shown in Figure 4.4. A processor may be allocated more than one fine

grid block and each fine grid block will have associated a number of coarser, multi-bJock

grids. Computations are performed at each multigrid in parallel then copies the solution or

interpolates the residual to the next multigrid level.

In keeping with the use of high levels of Fortran90 code, the communication module also

exploits some of the more sophisticated MPI routines. The use of MPI derived types allows

the direct access of memory for the transfer of data, reducing the number of copies required

i.'i'i'i'' I ' f
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during the communication of ghost cells. Due to the repetitive nature of the CFD computa-

tion, the >ipe-lining" of message passing calls, also known as persistent communication is

implemented.

4.3.5 Data Structure

With the implementation of the parallel solver, the data structure was redesigned to allow for

the unstructured domain decomposition approach and multiple block single process capabil-

ity. Object oriented data constructs and matrix transformations are introduced to allow for

more efficient allocation of memory and a more compact implementation.

A similar structure has been implemented for a general multigrid solver (Numerich et ah,

1998), although there are some major difference as this solver assumed the problem domain

is regular and rectangular and decomposition may be performed automatically. The present

method is not limited to this structured block topology. In the general multigrid solver, it was

found that Co-Array Fortran, an extension of Fortran-95, was equally efficient as MPI over

a small number of processors. However it became much more efficient over a much larger

number of processors, is much easier to implement than MPI calls and does not require

access to the large MPI library. The problem with using such a Fortran extension is that this

is only available on large parallel computers with shared memory. It cannot be used on the

DM-MIMD systems, therefore is less portable. Portability was; a major consideration in the

development of the present code, thus MPI was chosen as the most portable standard.

Fortran 90 has a number of developments that are improvements from the former versions

of Fortran. The major differences is the ability to allocate array sizes at run time and the in-

troduction of object oriented data constructs such as derived types and pointer arrays. These

features have been exploited to reformulate the data structure in a manner better suited to

parallel processing. A major drawback of using these features is that it is often more difficult

to debug due to the use of pointer variables.

All the quantities are stored for each multigrid level which means that they do not have

to be swapped. This is the reason that each multigrid level in Figure 4.4 is shown as an

individual block. If stored in structured arrays, the dimensions of all arrays would have to

be the same for all multigrid levels, as different sizes cannot be allocated for different array

indices. The use of Fortran90 derived types allows each block involving a single multigrid

level to be treated as an entity. The arrays within the entity may be allocated to the exact size

required without regard to the size of other blocks.

All variables required for each block are contained within a single array of block derived

types, the first index being for the local block number and the second for the multigrid level.

All variables are associated with a pointer and this pointer is set to the variables on the re-

quired block by a single subroutine call. The variables stored within a block include the flow

!
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quantities, grid geometry and grid velocity, turbulence quantities and boundary condition
information.

4.3.6 Boundary Conditions

Due to the increase in complexity of the geometric modelling introduced by the multiple

block implementation, it was decided to formulate a general way of handling block bound-

aries. Consider ?. single block in the computational domain. The ghost cells that surround the

computational block are updated either by applying a boundary condition or transferring val-

ues from neighbouring blocks as shown in Figure 4.3. There are two planes of cells required

for each face for the flow quantities due to the artificial viscosity and the k-co equations for

the calculation of the dissipative terms at the cell vertices.

Each block face may be subdivided into sub-domains, or subfaces. There are a number of

restrictions on the specification of subfaces; they must be rectangular in computational space

and they must have corners that are defined on the coarsest multigrid level. Multiple blocks

may interface with a single block face by defining the appropriate subfaces on the blocks,

however this may not be used with the present moving grid implementation. In the code,

interpolation for the moving grid is performed by defining the movement of block corners

only - the generation of the spring network for subface block topology is more complex, as

is the interpolation for a face containing a number of subfaces that interface with multiple

blocks.

A subface is defined as another object in the data structure. This is used for the inter-

face between the present block and another block, or a region to which a single boundary

condition is to be applied. These objects are cycled through each time the boundary of the

blocks are to be updated, upon which communication is effected or a boundary condition

is applied. So that separate boundary conditions are not required for each coordinate direc-

tion, subface objects are transformed into a single coordinate system. This increases code

complexity marginally. However it maintains that the code that is relatively compact. The

structured cell numbering within each block is unimportant as transformations are used to

re-orient the face so that the numbering matches with the neighbouring face. For example

for a C-grid where a single block is wrapped around the blade, at the interface downstream

of the trailing edge the cell numbering will be different on the upper and lower blocks, thus

requiring re-orientation of the 2-dimensional arrays. Where meshes are required in tip gap

regions, transformations must be used due to the nature of the structured grid. The nature of

the tip gap mesh is discussed in Chapter 6.

. ' i f i i !•'•!;



CHAPTER 4. COMPUTATIONAL IMPLEMENTATION 78 ! |

4.4 Moving Grid |

The movement of the fluid boundary requires the fluid computational mesh be somehow ; jj

adapted to the new geometry. A number of researchers have coupled the fluid solver with H: | i

a grid generator to regenerate the grid at each timt step. Clearly the optimal method would !;: jijiij

be one that required the least computational effort whilst maintaining grid regularity. Grid

regularity is particularly important in Navier-Stokes computations where the aspect ratio of

cells close to the solid boundary is high.

Given that the original grid is close to optimal and the structural deformations are not

too large, an interpolation method such as transfinite interpolation (TFT) is more efficient

compared to iterative grid generation methods. The method has the advantage that only the

location of the comers of each computational block are defined for the the cell geometries on

the block faces to be maintained across block boundaries with the displacement of the corner

points.

The method has been used for an incompressible flow soiver, whereby the block corners

were located globally by modelling the whole flow-field as an elastic solid (Jenssen et al,

1998). The finite element method was used to solve the static problem and locate block cor-

ners. This was intended to maintain grid regularity over the entire flow domain. It has also

been employed for aeroelasticity in turbomachinery simulations where time linearised fluid

models were used (Holmes & Lorence, 1998). In a more general application, the aeroelastic

problem was regarded as the solution of three sets of equations. They include the equations

governing the fluid, the equations governing the structure and third set governing the defor-

mation of the mesh (Farhat etal., 1998). The equation governing the rnesh deformation may

be regarded as a pseudo-structural problem, where field variables such as grid elasticity and

density are used to maintain mesh regularity. These methods may be more sophisticated than

is necessary where small deformations are involved.

The method used herein is through the use of Batina's (Batina, 1990) spring analogy

to locate block corners (Wong et al, 2000). This is equivalent to the above, however the

solution of the static equilibrium equations are less complicated to implement. Note that the

present implementation is less sophisticated than that used in by Wong et al (2000), as the

mixed block boundary conditions have not been allowed for in the moving mesh method,

and grid blending is not used at block corners. It was found that these were unnecessary for

the geometries of the cases presented.

4.4.1 Transfinite Interpolation

The grid for each computational block is regenerated independently of other blocks, on the

local processor. The arc length method of transfinite interpolation has been used by other 'M^k

authors in similar applications (Jones & Samareh-Abolhassani, 1995; Wong et al., 2000). :.}$U'.
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In this case it is used to regenerate the grid of a single hexahedral block. The displacement
of the block corners or whole surfaces is first calculated and this is used to interpolate the
position of the new grid.

This method may be broken down into a nu!r>btr of steps.

1. Calculate edge and corner deformations.

2. Parameterise points on block surface.

3. Perform 1-dimensional, 2-dimensional and 3-dimensional TFI of the deformations.

4. Add the deformations to the original grid to obtain the final mesh.

Edge and corner deformations are calculated through the structural solver or specified by

input parameters. The parameterisation of the mesh involves the taking of differences in

each direction in computational space. Each direction is considered separately, the parame-

terised coordinates for the /-direction, /-direction and ^"-directions are denoted F, G and H

respectively. For example, in the /-direction the arc length and parameterised coordinate:

imax
Fik = X

The 1-dimensional TFI in the /^-direction to calculate the deformation of an edge &E\,\

is given by

The deformations of the corner points at each end of the edge are bP\,\,\ and AP\>i)icmax.

For a surface, the 2-d TFI is defined for a surface in the / = 1 plane,

A\jtkAEijti+B]jfkMEijjmax +

C\,y,JtA£i,\,k + Di,j,k&E\ Jmaxjc ~

1 ,j,kD i tjjk6P\, 1 jkmax ~ B1 j,kD, J>k APi f i >kmax •

\ jmax,k,nax
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The blending functions are related to the parameterisation of the grid:

B\j,k = T\\j,k

where

The volumes aie constructed in a number of steps, combining point-wise, edgewise and

surface-wise deformations.

/ i M = X1+X2+X3-X12-X13-X23+X123

where

X2 = (l-Gij

X3 = {]-HiJ}kASij^+Hij,kASijikmax

X\2 = {\-FiJ,k){l-Gij!

i,j,kO ~Hi,j,k)AF,i,jmax,\

HiJtk)AEhj>] + (1 -Fijik)HiJikAEhjtkmax +

I

i ! < 1 i

I

X123 = (1 -FiJtk)(\ - Gi,j,k)(\ - Hij - /v,M-)0 - GiJ,k)HiJ,kAPhi,kmax +

TH t|
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(1 -Fi,j,k)Gij,k{} -HiJjd^PlJmaxA + O -Fi,j,k)Ghj,kHijik&P\,jmax,hnaxJr

k{\ -GiJik)HijikAPimaXi]tbmx +

In the implementation, the surfaces and edges are objects and as such derived types are

used to store the deformations of the coordinates.

4.4.2 Multi-block Moving Grid

In a large multi-block problem, there are block corners that do not correspond with a sta-

tionary or moving solid surface. One possible solution is to fix the location of these corners,

however this may result in a loss of grid regularity. To avoid this problem, a hypothetical

network of springs is generated for the whole network of blocks (Wong et al., 2000).

Initially an unstructured grid network is constructed on the root processor. This contains

nodal locations for each block corner and the connecting node information. Each spring runs

â ong the edge of a block and connects two corners. There are also springs in the diagonal

direction across the block. The stiffness of each spring is inversely proportional to the length

of each block side or diagonal.

fc;, i = F

The variable p controls the stiffness of the springs; the higher the value of p the stiffer

the springs connecting the blocks and the more constrained the block corners. Block corner

positions are determined by a solution of the static equilibrium problem.

At the predictor step, the new displacements are approximated:

(8r)/ |M =

The corrector step is given by

+1 _
( hj'k

+
iJ'k
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Figure 4.5: Deformed mesh for NACA64A010.

The predictor and corrector scheme is applied in an iterative manner until the system is

in static equilibrium. Once the new corner displacements are calculated, they are broadcast

to each corresponding block.

The solution time required for the mesh regeneration is small compared to the time re-

quired for solution of the Navier-Stokes equations and turbulence model. An example of the

deformed mesh for the NACA64A010 airfoil is shown in Figure 4.5. Note that although the

deflection of the airfoil is much larger than considered in any of the validation test problems,

it demonstrates the effectiveness of the moving mesh implementation.

ill

i
! .>ti
Is '
!I
;|!

il
|:

!
l |
1

s
IP
ll

i! ill

i l l"it
ill

i ;
Sii ;



CHAPTER 4. COMPUTATIONAL IMPLEMENTATION 83

4.5 Coupling and Model Integration

As discussed in Chapter 2, often in the modelling of aeroelastic problems the method of

sub-cycling is appropriate due to the different rates of convergence of the structural and fluid

domains. Usually more iterations are performed on the fluid field per real time step. The

solution process is illustrated in Figure 4.6. One real time step is made up of a number of

sub-cycles. Within a structural sub-cycle, the position of the structure is updated a number of

times. For the fluid field, a number of iterations are required before the pressure field at the

structural interface changes enough to influence the structural model. The optimal number

of cycles for each field is problem dependant, however for the Isogai model presented in

Chapter 5,10 multigrid cycles were performed per structural iteration and 5 structural cycles

were performed per real time step.

rt

' $

/!

If,I,

y

I1

H

II i!

til '

' l i b



CHAPTER 4. COMPUTATIONAL IMPLEMENTATION 84

Sub-cycle
fluid

Sub-cycle
structure

Real
Timestep

Initialisation

>

Multiple Grid

Navier-Stokes Solver

Modal Structural

Solver

TFI Mesh
Adaptation

i

Move flow-field

and geometry
i

Ji. l

Figure 4.6: Integration of fluid and structure models.



Chapter 5

Validation of Computational Model

During the course of research a code has been developed to model unsteady gas and structural

dynamics. With the implementation of the new routines it was necessary to test or validate

the code. This helps to identify errors in the implementation that may not be obvious when

the code is applied to more complex geometries. Test or validation cases are intended to

be as simple as possible whilst at the same time providing data that may be compared with

existing experimental or theoretical results. The ideal case is where a physical flow process

can be isolated and analysed in comparison with experiment or theory.

The majority of the validation cases have been used by other authors with similar algo-

rithms. However it is useful as it provides an estimate of the code's ability to model flow and

the magnitude of deviation from experimental measurements. This also develops confidence

in the predictions made for the more complex cases that are considered herein.

mi
ihi.i ;|1

ill

5.1 Laminar Flat Plate

The classical, theoretical analysis of 2-dimensional boundary layer flow involves flow over

a flat plate for both laminar and turbulent flow regimes (White, 1994). In the case of laminar

flow the boundary layer equations may be used to approximate the Naviei-Stokes equations.

Blasius derived an exact solution for the velocity and showed that the velocity profile is a

function of the dimensionless variable TJ.

t/o

This leads to an analytic solution for the skin friction c/.

0.664
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The flat plate is modelled by a 2-dimensional rectangular domain with an inlet and an outlet

at the two sides and the plate at the top and bottom, separated by a distance of 50% of

plate chord. The plate leading edge is 10% of chord from the inlet and the outlet is at the

plate trailing edge. Periodic boundary conditions were applied at the top and bottom of the

domain between the inlet and the plate trailing edge and slip conditions were applied to the

boundaries in the span-wise direction, orthogonal to the plane of the flow. The mesh of

dimensions 448 x 160 x 2 was generated by stretching in the direction parallel to the flow

and the cross-flow direction with cells concentrated at the plate leading edge and surface.

Flow conditions were a Reynolds number of 53131 and an outlet Mach number of 0.3. The

computational grid was divided into 16 blocks, 4 blocks in the flow direction and 4 in the

cross-flow direction. Post-processing involved transforming from a multiple block domain

to a single block domain before calculating flow properties.

A comparison is made between the computed and theoretical skin friction for the laminar

regime in Figure 5.1. The Blasius equation may be integrated numerically to provide a

relationship between velocity profile and a non-dimensional distance from the wall (White,

1994). The deviation between theory and the computed result at the leading edge of the plate

may be attributed to the discontinuity in velocity and the singularity in the analytical solution

of the Navier-Stokes equations at this point. Toward the trailing edge the skin fiction is over

predicted. This is probably due to the effects of blockage of the boundary layer and the axial

pressure gradient. A comparison of velocity profile through the boundary layer for various

axial positions along the plate is made with the analytic solution in Figure 5.2. The largest

discrepancy is found at the middle region of the boundary layer and this may once again

be due to boundary layer blockage effects. Other potential sources of deviation include a

small compressibility of the flow and the effects of the artificial dissipation scheme. The JST

artificial dissipation scheme was used for the present simulation.

5.2 Turbulent Flat Plate

The turbulent flat plate is similar to the laminar flat plate, in that it is one of the simplest ways

to investigate 2-dimensional boundary layer flows. With the development of the flow solver

from single block to multiple block, it was necessary to change the storage of the turbulence

quantities from cell vertex to cell centred. It was also necessary to check that the results for

the simulations were continuous over block boundaries.

The smooth flat plate in the turbulent regime may be analysed based on the momentum

integral equation of boundary-layer theory. This provides a relationship between the char-

acteristic parameters of the boundary layer, between the displacement thickness, momentum

thickness and shear stress at the wall. The same law of velocity distribution in a pipe leads

to the same velocity distribution in the boundary layer of a flat plate which is found to be in
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Figure 5.1: Skin friction coefficient for a flat plate for laminar flow regime.
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Figure 5.2: Boundary layer profile for a flat plate in laminar regime and theory.
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agreement with experimental measurements (Schlichting, 1968). The skin friction is given
byPrandtl

0.074

::!.!

• {Re-x)V

The velocity distribution through the boundary layer is also developed from pipe flow theory
and may be approximated by the function

M ^ 1 yu*
Uoo ~ K V '

where K = 0.41 and B = 5.0 (White, 1994).

The geometry of the simulation was similar to the laminar flat plate, except that the

stretching distribution for the mesh was slightly different. The Reynolds number was Re =

4.53 x 105. The same mesh dimensions of 448 x 160 x 2 were used and divided into 16

blocks, 4 blocks in the flow direction and 4 in the cross-flow direction. One of the block

boundaries was positioned at approximately y+ = 2. A comparison of the skin friction in

Figure 5.3 provides a reasonable match with theory, except for close to the plate leading

edge. The deviation in gradient of the skin friction may be due to blockage effects. The

velocity profile in Figure 5.4 also compares well, except for the profiles at 10% and 90%

from the leading edge. Deviations in these regions are probably due to proximity to the

domain boundaries. The profile of the inner layer region is consistant with the logarithmic

law of the wall.

5.3 Isolated cylinder

The behaviour of the low Reynolds number, unsteady cylinder flow that exhibits a vortex

street is well documented. It is a useful case to check the implementation of the time-accurate

solver.

A four block O-grid was generated with the far-field boundary approximately 50 diame-

ters from the cylinder surface. The far-field was placed at this distance to avoid interaction

with the cylinder flow. The code may only calculate for 3-dimensional mesh geometries,

so 2 cells were used in the span-wise direction. The Mach number of the compressible

solver was in the region of 0.2 as at this Mach number the effects of compressibility are

assumed to be negligible. A number of parameters have been compared with those from

experiment (Barkley & Henderson, 1996) and other simulations (Reichl, 2001) in Table 5.1

for a Reynolds number of 190.

The drag coefficient Co is the time average value, and the coefficients C'D and C'L are the
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Figure 5.3: Skin friction coefficient for a flat plate with k-co turbulence model simulation and
theory.
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Figure 5.4: Boundary layer profile for a flat plate with k-co turbulence model simulation and
theory.
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Barkley & Henderson (1996)
Reichl(2001)

JST, mesh 384 x 192 x 2, 60 time steps
JST, mesh 384 x 192 x 2,40 time steps

CUSP, mesh 384 x 192 x 2,40 time steps
JST, mesh 256 x 128 x 2, 40 time steps
JST, mesh 192 x 96 x 2, 40 time steps

CD

1.344
1.335
1.257
1.256
1.269
1.261
1.245

C'n
0.0293
0.0262
0.0249
0.0236
0.0251
0.0245
0.0257

r'
0.465
0.435
0.431
0.421
0.419
0.426
0.433

Strouhal
0.195
0.191
0.192
0.191
0.193
0.194
0.192

Table 5.1: Comparison of circular cylinder simulation parameters.

\

Figure 5.5: Inner mesh for isolated cylinder of dimensions 384 x 198 x 2.

RMS values for unsteady drag and lift respectively. In the first column, the number of time

steps is the approximate number of implicit time steps per shedding period. The Strouhal

number was calculated for the simulations by fitting a cubic polynomial to the four closest

points to a minimum and maximum of the lift coefficient in the shedding cycle and interpo-

lating the extrema. The time difference between successive extrema may be calculated and

thus the Strouhal number - this is the method advocated by Reichl (2001) for calculating the

Strouhal number for numerical simulations of cylinder shedding flows.

The inner part of the mesh for the finest mesh of dimensions 384 x 198 x 2 is shown in

Figure 5.5. A plot of the instantaneous vorticity is shown in Figure 5.7 and the time evolution

of the unsteady lift and unsteady drag for the finest JST simulation is shown in Figure 5.6.

The simulation reached a periodic state after 10 shedding periods.

A small variation in the unsteady parameters may be observed over the different smooth-

ing schemes and mesh geometries. Compared to the other numerical simulations, the quan-

tity exhibiting the largest deviation is the average drag coefficient. Overall the comparison

demonstrates the ability of the code to simulate unsteady flows, in particular the predicted
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Figure 5.6: Time evolution of unsteady lift and unsteady drag for circular cylinder.

Figure 5.7: Vorticity plot for isolated cylinder at Re — 190.
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Strouhal number. There is however a 7% difference in the drag coefficient - this could be
due to the flow compressibility.

5.4 Isolated Airfoil

The circular cylinder provides a useful comparison with experimental, unsteady data. How-

ever most turbine configurations involve flow in the high subsonic and transonic flow regimes.

A number of unsteady experimental measurements have been made for the NACA64010 air-

foil in forced oscillation (Davis, 1982). This provides a useful test of the moving grid and

unsteady implementation under flow conditions that are closer to those found in a turbine

passage.

The 2-dimensional configuration involves the NACA64010 airfoil that is forced to os-

cillate about a pitching axis at quarter chord. Simulation conditions are free-stream Max =

0.796, static temperature Tx — 300°K, reduced frequency kc = 0.202 and an oscillation am-

plitude of Aa = 1.01 °. The experimental Reynolds number was Re = 12.56 x 106.

A 2-dimensional grid was generated for the NACA64A010 profile using "nearly" con-

formal mapping (Thompson et ai, 1985). It is difficult to generate an O-grid for the airfoil

case using conventional finite difference methods coupled with systems of equations, due to

the discontinuity of the airfoil surface at the trailing edge. Conformal mapping involves a

coordinate transform so that the mesh may be generated in a more regular domain. The air-

foil surface is mapped to a near circle through a Karman-Trefftz transformation, effectively

smoothing out the trailing edge region in the transformed plane. Stretching functions are

used to distribute the mesh points in this coordinate system. Upon transformation back to

geometric space, a smooth grid is produced. The mesh was generated by a code written by

Jameson and has been used for simulations in other work (Alonso & Jameson, 1994).

. -I I '.\'\
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5.4.1 Steady and Inviscid Simulations

A 3-dimensional grid is produced by stacking the 2-dimensional mesh in the span-wise di-

rection. The inner region of the 160 x 32 x 2 mesh used for the inviscid calculations is shown

in figure 5.8. The far-field is placed at about 25 chords from the airfoil surface and is ap-

proximately circular. Far-field boundary conditions are applied at the outer regions, whilst

tangential inviscid conditions are applied at the boundaries in the span-wise direction and at

the airfoil surface.

To investigate the validity of the moving mesh algorithm, three different configurations

were chosen. The first involves a four block mesh that rotates rigidly with the airfoil. Sec-

ondly, the outer boundary is fixed, and the TFI routines are used to adapt a four block mesh

to the movement of the airfoil. The third configuration involves 32 computational blocks
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Figure 5.8: Inner region of mesh used for inviscid simulation of NACA64A010 airfoil.

and the spring network is used to locate block corners, with TFI to regenerate the mesh. The

32 block mesh has eight blocks in the circumferential direction and 4 in the radial direction.

Results for unsteady lift are close to being identical and are compared in Figure 5.9. The di-

mensions of the mesh are denoted in the legend, the number of blocks is the first dimension,

then the number of cells in the i direction, the j direction and k direction respectively.

The accuracy of the temporal and spatial discretisation of the numerical algorithm was

investigated through analysis of the L2 norm. The L2 norm was calculated by taking the

square root of the average of the square of the differences between a quantity and a reference

quantity for a series of spatial or temporal resolutions. The gradient of the log of the metric

versus the log of the L2 norm over the different resolutions in time or space provides an

indication of the accuracy of the discretisation.

For the investigation of spatial accuracy, differences were defined as being between the

surface pressure coefficient and some reference solution. Given that the exact solution for

this problem is not known, three different reference solutions were used. The first was cal-

culated through Richardson extrapolation of the calculated surface pressure coefficients for

the two finest grids. The next was the next successively fine grid in the grid sequence. In

another the finest grid solution was taken as the reference.

Coarser grids were generated by removing every other point in both coordinate directions

in the plane of the airfoil. The finest grid was 256 x 256 x 2. Successively coarse grids were

of dimension 128 x 128 x 2 and so on. All simulations were performed on a single block

grid. The maximum residual of the simulation reduced by four orders magnitude for the

CUSP smoothing and five orders for JST. It was found that sufficient resolution could not be

provided for a high subsonic airfoil case with a shock at mid-chord. Resolution was required

in two different regions - mid-chord and at the leading edge and this could not be provided
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Figure 5.9: Validation of moving mesh implementation with NACA64A010 airfoil.

by the present grid generation method. Thus the lower far-field Mach number of Maoo=0.5

was used in the present simulations. The grid was concentrated toward the leading edge

and the trailing edge point was excluded from the calculation of the L2 norm, as the sharp

trailing edge led slow convergence in this region. Figure 5.10 is a comparison between JST

and CUSP smoothing schemes. The siope of these lines is of the order of 2.

The pressure distribution for the two dissipation schemes for a far-field Mach number of

Mfloo=0.5 is compared with experiment for the two smoothing schemes in Figure 5.11. Note

that the shock resolution for the CUSP scheme appears to be higher, in that the gradient of

the pressure coefficient is higher in the region of the shock wave. The overshoots before and

after the ahock in the pressure coefficient are also less significant for the CUSP scheme.

The temporal accuracy was investigated for the second order accurate implicit operator.

This investigation involved a comparison of the unsteady lift for the airfoil throughout the

pitching cycle. For the comparison, four different simulations were used, the finest having

128 steps per period. The coarser simulations in time used half the number of time steps of

the finer time resolutions. This case exhibited a temporal accuracy of approximately 2.5.

A comparison was also made between the unsteady lift coefficients for the two smoothing

schemes and this is shown in Figure 5.13. The differences in shock resolution and the fact

that it is the shock movement that produces the hysteresis in the unsteady lift coefficient

produces a significant disparity between the two schemes in unsteady simulations of high

subsonic and inviscid flow. This highlights the importance of resolving the flow phenomena

to obtain more realistic simulation results.
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Figure 5.10: Spatial resolution study for NACA64A010 airfoil.
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Figure 5.11: Spatial resolution study for NACA64A010 airfoil.
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Figure 5.12: Temporal resolution study for NACA64A010 airfoil.
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Figure 5.13: Comparison of smoothing schemes for NACA64A010 airfoil.

5.4.2 Navier-Stokes Simulations

This is the first case used to test the unsteady implementation of the turbulence model. The

Navier-Stokes simulations for the NACA64A010 airfoil required a griri different to that used

in the inviscid simulations. The number of cells was doubled in the radial direction and the

grid is further refined in the proximity of the airfoil surface. Although it is recommended

that the mesh spacing at the surface of a body should have y+ < 1, this was not found to be

necessary for this particular case. A number of meshes of different dimensions were used,

including 64 x 160 x 8 and 97 x 160 x 8 and 128 x 160 x 8. All produced similar results for

unsteady lift coefficient. A comparison between the Navier-Stokes, inviscid simulations and

experiment is shown in Figure 5.14.
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5.5 Naca64 in Coupled Simulation

The modelling of coupled aeroelasticity requires the simulation of the interaction of an elastic

member with an unsteady flow. One of the simplest examples is Isogai's wing model (Isogai,

1979; Isogai, 1981), a 2-dimensional NACA64A010 airfoil that has been studied numerically

by a number of authors (Alonso & Jameson, 1994; Liu etai, 2000). The structural response

is determined by integrating the coupled model structural equations given the instantaneous

lift and moment on the airfoil that is provided by the flow solver. In terms of the aeroelastic

model classification, this is a partially integrated approach where sub-cycling of the fluid is

employed.
The model of the wing is shown in Figure 5.15. A torsion spring is connected to the

pitching axis and a linear spring is connected to the plunging axis of the NACA64010 airfoil

• ; : ! ; i ;
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Figure 5.14: Validation of unsteady k-co implementation with NACA64A010 airfoil.

U
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Figure 5.15: Isogai wing model

section. In this particular model, the pitching axis is well forward of the airfoil leading edge.

This configuration leads to structural instabilities typically found in the swept back wings of

fighter planes (Isogai, 1981). The wall at the top of Figure 5.15 is to indicate that the springs

are attached to a stationary reference plane and the wall plays no role in the fluid model. The

airfoil is isolated in that the far-field boundaries are approximately 25 chords from the airfoil

surface. The model involves a mass ratio of /*,„ = 60 m, natural frequencies coa = 100 rad/s

and ©/, = 100 rad/s, distance from pitching axis to leading edge a = -2.0 m. The distance

between the centre of gravity and the pitching axis is x = -0.2 m and b is the semichord, or

half the true chord.

The structural model is similar to the simple spring mass problem, involving one equation

for the linear inertial terms and another for rotational inertia.
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111
Sah+Iaa.+kaa = M hijr;

These equations may be decoupled using modal analysis discussed in Section 3.2.2. This
results in two second order differentia] equations in modal coordinates,

"'/ = &• (5.1)

where the modal coordinates are obtained by multiplying by the corresponding mode shape

that involves the normalised mass matrix. The second order differential equation is further

reduced to two first order equations that are solved using the structural solver.

The section is held by a pin at the torsion axis and forced for one period of oscillation

whereupon the pin is released and the amplitudes of pitching and plunging are observed.

The behaviour depends on the non-dimensional parameter of flutter velocity that contains

the mass ratio and the reduced frequency,

the flutter velocity in terms of the spring constant and flow parameters is

(5.3)

I

P
111
•H i1!]

T;.

During the investigation, the parameter of flutter velocity was varied while the far-field

Mach number was kept constant. Other geometric parameters such as wing chord, rotation |.|i j | p

axis, moment of inertia and hence mass also remained constant. Effectively this is equivalent

to changing the spring constant ka, or the stiffness of the spring mass system. The behaviour

of the configuration is dominated by the ratio of the aerodynamic force to the combined force :||j j | l | :

due to the spring and mass inertia. Given the natural frequency of the spring on the torsional iljHi-lf.

axis, \ isli'lf!: •

/~ iijiJiiit

If one holds the Mach number constant and thus the flow parameters, an increase in the flutter

velocity leads to a lower spring constant, thus there is less spring force to resist the instability

provided by the force of the fluid. A decrease in this parameter increases the spring force and ;;j]f.

increases the stabilising effect of the spring. If the square of the flutter velocity is regarded, jjj•)f'
\ •! f l i f '

and the force due to aerodynamics is considered proportional to the free stream dynamic

pressure and the force due to the spring is proportional to the spring constant,
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Once again this assumes that the parameters of semi-chord length and distance between the

airfoil centre of gravity to rotation axis remain unchanged.

However there is not a simple one-to-one relationship between Mach number and flutter

velocity for flutter boundary over the whole parameter space. This is due to the way in which

the two degrees of freedom couple at particular Mach numbers. An example of neutrally

stable, unstable and damped configurations and results are shown in Figures 5.16 to 5.18.

A plot of the predicted flutter boundary of the configuration is shown in Figure 5.19, the

point at which the configuration changes from being stable to unstable. This result compares

well with results from other authors (Alonso & Jameson, 1994).

This case was also computed with the Navier-Stokes and k-co flow model. A comparison

between the flutter boundary for the inviscid and viscous simulations is shown in Figure

5.20. It appears that the inclusion of viscous effects tends to damp the system, leading to a

higher flutter boundary curve. Thus a lower spring force is required at lower Mach numbers

for system stability.
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5.7 Parallel Performance

As discussed in Section 4.3.2, there are many different methods of evaluating the parallel

efficiency of a computational implementation. The efficiency of the algorithm may be tested

through experimentation with different parallel topologies for a particular problem. It is also

interesting to compare the performance of the different flow models. Parallel performance

8!
ffil
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5.6 Grid Independence

An important aspect of numerical simulation is the dependence of the result on the grid .; ji

geometry. For high resolution studies that are independent of the grid, a certain number of ; ij

points are required in regions of high gradients of the flow quantities. In inviscid simulations '•]{]

performed in the transonic or supersonic regimes, often shock-waves are present. There are :; If

high gradients in the region of the shock front and stagnation points; to resolve both the

shock position and shock strength the grid must be sufficiently fine in these regions. ',

The level of resolution of flow features will depend on the parameter under investiga- \

tion. For example, the flutter boundary of the coupled case in Section 5.5 can be computed

successfully with a relatively coarse grid. However where the unsteady lift of the airfoil is |;

compared to experiment in the previous section, more grid resolution is required. ;.:! jj'jl

Where the effects of viscosity are included in the simulation, boundary layers form in l| j.;|f

regions close to solid bodies. High gradients exist in the cross-stream direction both in flow

variables and turbulence quantities. In fact, for perfectly smooth walls, the value of the rate

of turbulence dissipation GO becomes singular. Discontinuities can exist over turbulent and

non-turbulent interfaces such as found in jet flow. !'j ]Jj-|

After over a decade of use, it has been found that where the k-co model is integrated ! ' '

through the viscous sublayer, the distance of the first point from the wall should be such that

y+ < 1 (Wilcox, 2000). Grid resolution studies were performed on all of the cases presented

to ensure that the parameter under consideration was relatively grid insensitive. The value of

y+ was varied above and below unity and results compared. For the higher speed flows such jjj ||i(

the isolated airfoil with an Ma = 0.7 and for the turbine cases an exit Ma — 1.3, y+ = 5 was ;i |jj! ;|
'•]} i l l

sufficient for a grid independent solution. ;j: ;;l ;•

Other flow structures may also be sensitive to grid resolution. Stream-wise secondary

flows such as hub and casing vortices may dissipate down stream if they are not sufficiently

resolved. It is possibly the most difficult to ensure the resolution of these types of flow

features as they are 3-dimensional and may migrate away from the boundaries toward the

mid-passage region. These regions are usually the least well resolved, due to the constraints

on processing and memory. Even with fine meshes that approach the capability of computa-

tional resources available it may be difficult to resolve all flow features of interest.
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Figure 5.21: Communication time for different flow models.

may be model and geometry dependent.

The investigation involved the Euler, Navier-Stokes and RANS solver with k-co turbu-

lence model. The case was the flat plate geometry from Section 5.1. All simulations used the

same grid dimensions and parallel topology, except the stretching was different in the case

of the laminar and turbulent flows. The same number of multi-grid cycles were also used.

Results are listed for each simulation in Table 5.2.

Tests were made on the computational facility used for the majority of simulations in-

vestigated in this work - the Compaq Alpha National Facility at the Australian National

University in Canberra. This machine has a peak rating of almost 1 Teraflop and involves a

cluster of 480, 1 GHz processors.

As shown in Figure 5.21, for the simpler models, the percentage of communication time

increases by up to four times compared to the RANS solver. This is a substantial difference -

clearly an increase in communication efficiency would have a great effect on the inviscid flow

solver, particularly if the computational blocks are small. However the gains in increasing

communication efficiency for the RANS solver would be marginal. This is shown where

communication time as a percentage of total simulation time is plotted against the number

of processors in Figure 5.21. The computer architecture involved nodes of 4 processors,

thus the ten processor simulations may not have had exclusive access to nodes, so the timing

results may have been affected by sharing resources with other processes.

Methods of evaluating the parallel performance of a code are discussed in Section 4.3.2.

The relative speed-up is a metric that describes the wall time required for a simulation, given

that the time required for the parallel algorithm running on a single processor is known.

Timing results in Table 5.2 are used to calculate the speed-up for the simulation in Table 5.3.

In Section 4.3 it was noted that the computer hardware architecture can have a significant
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Procs Time/proc Total
Time (s)

Comm
Time (%)

Time (s)/
(points*steps)

Euler Solver
1
4
8
10
16

15600
3003
1363
1113
617

15600
12012
10904
11130
9872

0
2.4
4.2
7.2
10.0

2.72x10-5
2.10x10-5
1.90x10-5
1.94x10-5
1.72x10-5

Navier-Stokes Solver
1
4
8
10
16

20548
5652
2599
2160
1034

20548
22608
20792
21600
17216

0
2.3
5.7
6.5
7.0

3.56 x 10"5
3.94 x 10-5
3.62 x 10-5
3.77 x 10-5
3.30x10-5

RANS Solver
1
4
8
10
16

38746
10279
4601
4221
1911

38746
41116
36808
42210
30576

0
0.708
1.23
2.75
2.95

6.76 x lO-5

7.17x10-5
6.42 x lO-5

7.36 x 10-5
5.33x10-5

Table 5.2: Statistics for speed performance of code.

impact on parallel performance and performance metrics. Given that the problem is of fixed

size, by increasing the number of processors each processor has smaller memory require-

ments. A larger percentage of the total data fits within the faster memory and thus execution

time decreases (Foster, 1995).

There appears to be a large increase in communication time for the Euler simulation.

This may be due to the fact the execution time has decreased due to cache effects and thus

communication becomes a much larger portion of total execution time. The relative speed-

up shown in Figure 5.22 experiences super-linear scaling, or speed-up that is greater than

linear. This is most likely due to cache effects. Another method of calculating speed-up is

Ware's law which is based purely on the parallel and serial execution time of an individual

simulation. This model is bounded by Amdahl's law and is pessimistic in it's estimate of

maximum speed-up achieved. A less pessimistic model is provided by Gustafson and these

two are compared in Figure 5.23. Whilst both laws do not suffer from the super-linear speed-

up of the traditional measure it can be difficult to decide which is more useful. Ware's law is

clearly more sensitive to the fraction of parallel execution time and thus to parallel inefficien-

cies. The two dominant factors on speed-up in this experiment appear to be cache effects and

fluid model type. Both appear to have a significant impact on the ratio of communication to

computation. This is inverse - a decrease in the number of processors for fixed problem size
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; | i ; ! , K

leads to a decrease in the effects of cache, therefore a scalability that is closer to ideal. An
increase in the complexity of the fluid model leads to an increase in scalability, provided the
increase in communication time does not increase by the same amount. In general, compu-
tation would increase proportionally to the number of cells in volume of each computational
block, whereas communication would increase proportional to the number of cell surfaces
of the block.

Procs Relative
Speed-up

Fraction
Parallel

Ware's
Law

Bound Gustafson's
Law

Euler Solver
4
8
10
16

5.2
11
14

25.3

0.976
0.956
0.913
0.866

3.73
6.11
5.61
5.31

42
23
12
7

3.93
7.69
9.22
13.98

Navier-Stokes Solver
4
8
10
16

3.6
7.9
9.5
19.9

0.974
0.937
0.926
0.900

3.62
5.55
6.00
6.4

39
16
14
10

3.92
7.56
9.33
14.50

RANS Solver
4
8
10
16

3.76
8.42
9.2
20.3

0.99
0.98
0.97
0.97

3.88
7.02
7.87
11.03

100
50
33
33

3.97
7.86
9.73
15.55

Table 5.3: Speed-up of code using various methods.

The evaluation of parallel performance can be important if the simulation tool is used

repeatedly on large problems. In this case efficiency is important and improvements can in-

crease its effectiveness. Of primary importance in this study is the ability to model complex

physics rather than to produce an optimal parallel algorithm, thus performance considera-

tions are secondary to the analysis of results of the simulations. However the simulations

considered herein allow for tightly coupled parallel computation and thus provide excellent

efficiencies compared to other problems and methods.
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Chapter 6

Turbine Cascade Simulations

This chapter discusses the application of the computational model to turbomachinery cascade

flows, following the development and validation that has been described in the previous

sections. Before the presentation of results typical cascade flow phenomena are discussed.

Simulation results are compared with experimental measurements where they are available.

Differences between existing models and experimental results are discussed, as well as the

deviations of the approach over less complex models.

6.1 Modelling Considerations and Flow Physics

There are a number of important features in turbomachinery flows that contribute to loss

and impact blade loading. These are found in both steady and time-averaged flow, and flow

involving unsteady and time dependent behaviour. Given their potential importance in un-

derstanding the mechanisms behind aeroelastic flows it is instructive to first consider the

different types of important flow structures found in turbomachinery cascades.

For configurations with supersonic axial outlet conditions impinging shocks and choked

flow are important in determining the flow behaviour and its effects on structural members.

Secondary flows such as passage vortices and stagnation point vortices increase blockage

through the cascade. A poor modelling approach can also adversely affect simulation results.

Thus, the independence of the simulation results on model parameters is ensured through

investigations on the effects of grid density and turbulence quantities.

6.1.1 Computational Grid

A number of different types of meshes are employed in the simulation of turbomachinery

flows. Terms structured and unstructured when applied to computational meshes define the

way in which the computational domain is stored in memory. A structured mesh is made up

of multidimensional arrays of hexahedral or quadrilateral cells. An unstructured grid may
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be considered as a vector of tetrahedral or triangular cells. Structured grids are classified

by their cell shape and global layout. Commonly used varieties include the straight H-grid

that involves planes of nodes orthogonal to the machine axis, the orthogonal H-grid where the

grid points are almost orthogonal at the blade surface and retain the H pattern, and the C-grid

and the O-grid that both wrap around the blades. The advantages of the structured approach

is that they may be better optimised for computation due to the fact that neighbouring cells

in the computation are also neighbours in memory space. The mapping of the computational

domain is much more easily handled. The computational meshes themselves may also be

more easily and quickly generated and may more simply undergo resolution studies. The

major disadvantages is that they often unnecessarily resolve parts of the flow-field or provide ! •

cells that are of undesirable geometry. Unstructured grids provide more regular cell shapes, j;i

however tetrahedral cells provide a reduced order of accuracy compared to the hexahedral

cells usually used in structured meshes. Hybrid grids are also employed, that use structured

meshes in boundary regions and unstructured meshes between far-field boundaries to outside

boundary layers.

In the present approach, two different types of meshes have been used. The first is

an orthogonal H-grid and the second a hybrid H-0 mesh. These are first generated in 2-

dimensions around the blade profile, then stacked in the span-wise direction. For the or-

thogonal H-grid, a straight H-grid is used to generate the initial mesh, then the orthogonal

mesh is generated by using the spring network analogy. An example of the tip gap region

of a typical grid is shown in Figure 6.1, for the Standard Test Case 4. Hyperbolic stretching

functions are used to distribute the cells on the blade surface and geometric functions are

used to distribute the grid in the pitch-wise direction. In the case of annular geometry, two

meshes are generated for the hub and casing and then the 3-dimensional mesh is created by

interpolation between the two.

The second type of mesh is an O-H hybrid grid, where the inner region wraps around

the blade. The region between the O-mesh and the periodic boundaries is connected by an

H-mesh. Initially 12 mesh blocks are generated, each involving local block numbering that

does not necessarily coincide with neighbouring block. To the author's knowledge this mesh

represents the state-of-the-art in structured meshes for turbomachinery.

The O-H mesh has a number of advantages over the orthogonal H-mesh. Later in this

section this will be demonstrated through a comparison of simulation results. The O-H mesh

provides a better distribution of cells - comparatively less cells are generated in the inlet ji; i||*

region, with more cells in the mid-passage region. The orthogonal H-grid has highly sheared jjj; Jj

cells in the throat region- this can lead to poor resolution due to extremely slow conver- ||| if

gence. However, the O-H grid provides regular cell shapes throughout the computational |;| Ijjj

domain. A disadvantage of the O-H mesh is the non-aligned coordinate systems from block

to block. This introduces added complexity to both the implementation and the specification
I
ill
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Figure 6.1: Mesh in tipgap region of the He Cascade

of boundary conditions. Cell counts are similar between the two, a.s is the time required for

simulation. It was found that there was little difference between simulations for either of

the meshes for the subsonic cases, but significant differences arose between results for the

transonic cases that will be examined in later sections.

In a number of the simulations, the tip gap is also modelled. Tip gap models that obviate

the need for detailed modelling of the region have been developed for compressors (van

Zante et ah, 2000). Compressor blades have little or no camber and tend to have very little

depth. The researchers modelled the tip gap without a grid, by assuming orifice flow with no

change in mass or momentum or energy. For the compressor cases investigated this provided

results sufficiently similar to simulations involving a tip gap mesh. However, turbine blades

are highly cambered and relatively thick - the selection of flow direction over the tip is not

obvious. Thus this model was not considered for the present turbine simulations.

The grid for the tip gap region between the blade tip and the casing was generated using

the spring network approach between the mesh points defined on the surface of the blade.

This provided a mesh that was similar in geometry to other numerical simulations of tip

gap flow (Tallman & Lakshminarayana, 2001a; Tallman & Lakshminarayana, 2001b). An

example for the He Cascade is shown in Figure 6.1. Note that the grid is relatively coarse in

the pitch direction, however the structured grid limits the number of grid points. It is believed

that the resolution in the pitch-wise direction is sufficient for the present work.

i l l
i l l :

i l l

(I:

3-P
i ! t i l

i l l '

111
I I i ! •;;•

;i JI

i l l

III



CHAPTER 6. TURBINE CASCADE SIMULATIONS 111 if

Figure 6.2: 0-H grid for Standard Test Case 4 profile for Euler simulations.

6.1.2 Vortex Structures

Most vortex structures in turbomachinery cascades are classified as secondary flows, in that

they influence the flow in the plane normal to the stream-wise direction. Separation on the

blade surface may exist and can lead to undesirable aeroelastic effects, however these are

not referred to as secondary flows herein. A thorough description of secondary flows in

turbomachinery cascades is provided by Langston (1980) and also Sieverding (1985). A

number of theories have been proposed as to the nature of the secondary flows; the more

recent ones include vortices due to two different phenomena. They differ in their description

of the position of these vortices and their interaction as the flow moves through the cascade

passage.

Typical models for vortex structures in a turbomachinery cascade are shown in Figures

6.3 - 6.5. The stagnation vortex, also known as a horse-shoe vortex, wraps around the

leading edge of the blade near the passage walls. It is a result of the boundary layer of the

end-walls meeting the blade leading edge in a similar phenomenon to the case of a cylinder

on a flat plate (Sierverding, 1985). Upstream of the blade leading edge a cross-flow vorticity

component exists due to the boundary layer profile. As this boundary layer meets the leading

edge the vorticity field is reorganised in such a way that the vortex lines are stretched and

turned around the obstacle. The cross-flow lines of vorticity are turned so that they are in the

stream-wise direction and intensify due to further stretching.

The horseshoe vortex has been identified by Gaugler and Russell (1984) through flow

visualisation in a linear cascade of inlet guide vanes that have a similar profile to those used
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Stagnation Point Vortex

Passage Vortex

Figure 6.3: Sketch of viscous flow structures in a typical turbine cascade (Sierverding, 1985).

in the present simulations. About three rotations of the pressure-side vortex can be discerned

from the Helium bubbles used to visualise the flow, by the time it reaches the mid-chord

region. The authors note that the vortex core flow has moved about two thirds of the way

toward the suction-side of the neighbouring blade at the trailing edge plane. Moore (Moore

& Ransmayr, 1984; Moore & Smith, 1984) performed an experiment on a cascade in which

he found that the pressure-side leg of the horseshoe vortex was entrained and distributed

throughout the passage vortex by the time it had reached the passage exit plane. The suction-

side vortex, however, was convected around the centre of the passage vortex.

The horseshoe vortex was not identified at the 0.4 chord region in an experiment by

Sieverding et al. (1984) in an annular cascade and they state that they do not expect a

distinct vortex except for the region close to the leading edge due to the fact that its sense

of rotation coincides with the passage vortex. A detailed analysis of the horseshoe vortex

has been performed by Ishii and Honami (Ishii & Honami, 1986) for turbulent flow of a

low speed flow. They identify three smaller vortices in this type of flow, a separation vortex

and counter vortex upstream of the horseshoe vortex and a corner vortex downstream of the

horseshoe vortex.

The passage vortex is due to the turning of the flow by the cascade. The flow may be

reduced to a simple flow with circular streamlines in order to understand the source of this

flow structure (Gostelow, 1984). Consider a flow where all streamlines are circles centred
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Stream Surface

Inlet Boundary Layer

113

Endwall

Endwall Cross Flow

Passage Vortex

Horse Shoe Vortex

Figure 6.4: Sketch of viscous flow structures in a typical turbine cascade (Langston, 1980).

on a common axis of symmetry. If the motion is to remain purely rotatory, with the radial

component of velocity zero, the circumferential pressure gradient is also zero. Thus the

radial variation in pressure simply supplies the force necessary to maintain the circular path

of the fluid particles (Batchelor, 1981). If the radius of the stream lines is R and the vector n

is normal to the streamlines, the radial equation of motion in cylindrical coordinates reduces

to

dp pU2

dn~ R '

i l l
HI

I

In a linear cascade, the pressure gradient at the end wall is approximately the same as that at

the mid-span - the pressure gradient is almost constant through the boundary layer. However,

the velocity at the end-wall is much lower. Thus the streamlines closest to the end-walls turn

at a smaller radius resulting in a velocity component normal to the stream-wise direction

away from the pressure-side and toward the suction-side. This leads to what is known as

over-turning at the end-walls. As a result there is a velocity component perpendicular to the

stream-wise direction, causing a roll up of the shear layer in this region.

One of the more recent reviews of cascade flow behaviour (Sierverding, 1985) describes

the interaction of the horse shoe vortices with the passage vortex. This updated model is

shown in Figure 6.5. The pressure-side and suction-side legs of the horseshoe vortex (de-

noted Hp and Hs, respectively) are connected by the stream surface SS\. This stream surface

• i i . ;
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Figure 6.5: Sketch of interaction of passage and horseshoe vortex (Sierverding, 1985).

is inside the wall boundary layer. Another stream surface is shown outside the end-wall

boundary layer - SS2. As the flow moves downstream of the leading edge, both stream

surfaces start to rotate.

The pressure-side leg of the horseshoe vortex remains at the centre of this rotation, whilst

the suction-side leg rotates around at some radius from the centre. Thus the pressure-side leg

is at the centre of the passage vortex, while the suction-side leg Hp wraps around this core.

This is consistent with the observations of Moore and Smith (Moore & Smith, 1984). The

position of the suction-side leg of the horse shoe vortex depends on the flow conditions in

the cascade and cascade geometry. However, in cascade experiments it has been difficult to

trace its path through the cascade due to the strong acceleration and therefore stretching that

it experiences at the front portion of the blade, then the strong interaction with the passage

vortex in the region toward the trailing edge.

Annular cascades are slightly different to linear cascades in the comparative strength of

the secondary flows at the hub and casing. Observations have been made of the passage

vortex in an annular cascade of blades without a tip clearance (Sieverding et al., 1984).

Sieverding et al. note that one can expect different strengths of passage vortex at the hub

and casing can be attributed to the different blade loading due to the radial pressure gradient

distribution. This is observed through their analysis of the pitch-wise integrated flow angle.
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6.1.3 Transonic Flow

Transonic turbine cascade flow has some different characteristics from cascades at subsonic

conditions. Shock waves and the choking of the passage change both the steady and the

aeroelastic loading distributions on the surface of the blade. The movement of shock waves

on the blade surface causes oscillations in the local pressure coefficient and interactions of

shock waves with the boundary layer can cause separation.

The flow behaviour dependence on Mach number is shown diagramatically in Figure 6.6.

This figure has been drawn based on Schlieren photos from the Standard Test Case 4 report

(Boles & Fransson, 1986) and from other sources (Baines & Moheban, 1989; Gostelow,

1984). The Standard Test Case 4 profile is used in the present example. In cascades of blades

that are convex on the blade suction-side in the region of the trailing edge, expansion shocks

are possible in this neighbourhood (Gostelow, 1984). Note that the blade profile beyond the

throat region has very little curvature, thus one would not expect expansion waves in this

case.

In Figure 6.6(a), which is at high subsonic Mach number, regions on the suction-side of

the blade become supersonic.

A further increase of outlet Mach number leads to choking of the passage as shown

in Figure 6.6(b). A weak compression shock wave extends from the trailing edge of the

upper blade to the mid-chord region of the lower blade. The condition where the passage is

just choked is a particularly unpredictable flow regime that can lead to time non-linear flow

effects where aeroelastic effects are considered. These have been investigated by a number

of researchers (Sadeghi & Liu, 2001b; Bendiksen, 2000). Prediction of flow in this regime

by time linearised methods is highly inaccurate due to the non-linear nature in time of the

blade displacement. There is the possibility of the blade oscillating about mean position

different to the undisturbed position, where every second blade passage is choked.

As the outlet Mach number increases the first compression shock becomes stronger,

moves downstream and is more oblique to the suction-side surface. Reflections may arise

from the suction surface at the point of impingement of the first compression shock as shown

in Figure 6.6(c). These reflections may further reflect from the wake of the neighbouring

blade.

The final diagram in Figure 6.6(d) shows an even higher outlet Mach number. The im-

pingement of first compression shock has moved further aft and reflections are possibly

stronger. At the trailing edge the shock has also gained in strength and has become more

oblique. The strength of this shock wave may cause separation on the blade suction-side

near the trailing edge. This is due to the strong, adverse pressure gradient setup by the shock

front. Separation of this nature may cause a number of undesirable effects in terms of aeroe-

lasticity. It will cause a thickening of the wake region and can lead to large fluctuations in

pressure in the wake. The shock wave may oscillate in position due to shedding leading to
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Supersonic Regions

Wake

(a) High subsonic conditions, outlet MaIS2 =
0.9.

(b) Supersonic outlet conditions, outlet

Shock Reflections

Wake Boundary Layer Separator

Wake

Shock Reflection

Shock Wave

(c) Supersonic outlet conditions, outlet
Mais2 = \.2.

(d) Supersonic outlet conditions, outlet
Maw = 1 -4.

Figure 6.6: Sketch of passage flow at different outlet conditions.
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Figure 6.7: Nomenclature for aeroelastic turbomachinery simulations,

large oscillating forces at the blade trailing edge.

:• Hi
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6.1.4 Aeroelastic Configuration i [!||
j

!i f

Where the energy method has been applied to turbomachinery cascade configurations, a \\ [
: ' i i • ! • • • [

nomenclature has been developed to describe the cascade geometry and vibration mode. i; | J

This began with the development of the Standard Test Configurations for aeroelasticity in \\ [:||'?!

turbomachinery (Boles & Fransson, 1986). The nomenclature in the present investigation j ] j i |

uses the same symbols, however operates in the reference frame of the machine axis rather

than the blade chord.

For translational mode shapes, such as those used to model blade bending modes, the

blade displacement hc is non-dimensional with blade chord. Other important parameters

include the inlet flow angle a and the blade displacement angle 8 which are both with respect

to the machine centre line.

IT l i fe

! ! •<•••
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! i i '6.2 He Cascade
i i j ; _

The first of the turbine cascade configurations considered is a single blade oscillating in a

contoured channel with low subsonic, incompressible flow conditions. Comprehensive, 3-

dimensional surface measurements have been taken by Bell and He (Bell & He, 1997; Bell

& He, 1998) on this experimental configuration including an investigation into the effects of
4

; i • r:!
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Side-wall

Figure 6.8: Configuration of the cascade of Bell and He (1997).

varying tip gap clearance (Bell & He, 2000).

The configuration is shown in Figure 6.8. A bending mode is simulated by attaching

the hub end of the blade to a hinge and moving the blade tip in an oscillatory motion at

a specific amplitude. The blade's displacement is prescribed by a sinusoidal signal at a

particular reduced frequency. Passage flow is well subsonic and almost incompressible at

an inlet Mach number of Ma = 0.1. Experimental measurements were taken at a number

of span-wise locations, however only those at 10%, 50% and 90% span were considered in

the present investigation. The turbine blade is prismatic and there are two passages above

and below the blade. The side-wall shown in Figure 6.8 in dark blue was contoured to the

blade shape and inflow and out flow angles to simulate a turbine cascade - the side-wall on

the side of the blade closest of the viewer has been omitted for clarity. The green area is the

cascade hub which is planar as is the cascade casing, which is not shown. The design of the

blade profile is such that the flow deflection angle is restricted to reduce the strength of blade

secondary flows.

A summary of flow conditions used in the present simulations is tabulated in Table 6.1

and the geometry is summarised in Table 6.2. Note that the only major difference between

the experimental conditions and those in the simulation is the outlet Mach number. The com-

pressible solver has extremely slow convergence at very low Mach number due to the effects
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Condition
Typical Reference Velocity
Bending mode direction
Bending mode amplitude at tip
Bending mode amplitude at hub
Reynolds number
(referenced to outlet velocity)
Outlet Mach number

Experiment
33.4 m/s
35.5°
0.055 Chord
0.006 Chord
4.5 x 105

0.1

Simulation

35.5°
0.055 Chord
0.006 Chord
4.5 xlO5

0.3

Table 6.1: Parameters for He Cascade

Blade chord
Aspect ratio
Solidity
Blade inlet angle
Blade outlet angle
Inlet flow angle
Nominal exit flow

0.2 m
1.0
1.35
25.0°
74.3°
31.0°
71.3°

Table 6.2: Cascade, blade and flow geometry

of incompressibility on the algorithm. Therefore the outlet Mach number was increased to

MaiS2 — 0.3. In this regime the effects of compressibility are still low enough to have a

negligible effect on simulation results.

The geometry of the cascade was modelled through an orthogonal H grid, a cross-section

of which is shown in Figure 6.1. The inlet and oulet region extends 1 axial chord upstream

and downstream of the blade respectively as in the experiment, the inlet plane having the

same geometry as the inlet traverse plane. The same span was also used as the experiment

for the height of the cascade and the side-walls were modelled as solid walls.

6.2.1 Steady Simulations

An investigation was undertaken into the effects of model parameters on the characteristics

• of the simulated cascade. This included a study into the effects of grid resolution, inlet turbu-

lence quantities and geometric configuration. These results are compared with experiment.

A grid resolution study was performed in 2-dimensions for the Navier-Stokes simula-

tions. For this study, the computational mesh included 8 cells in the third dimension and the

slip boundary condition was imposed on the walls in the span-wise direction. In Figure 6.9,

the effect of variation in mesh distribution is investigated whilst the number of mesh nodes

is kept constant - note that the mesh size in the contour legend is the number of cells in

the axial, span-wise and pitch-wise directions respectively. Figure 6 JO is another grid study,

whereby a fine grid of 160 x 256 x 8 in the axial, pitch-wise and span-wise directions was ini-

tially generated. Coarser grids are created by removing every second point. The differences
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Figure 6.9: He Cascade — 2-dimensional simulation test for grid dependency of grid cluster.

between pressure coefficient for the different grids is deemed to be small enough for a grid

geometry of 160 x 64 x 8 with the geometry of the grid point adjacent to the blade surface

such that y+ < 1 as recommended (Wilcox, 2000). It is assumed that in the 3-dimensional

simulations that this distribution when applied in the span-wise direction also provides a grid

independent solution for the Navier-Stokes simulations at the hub and casing. It was found

for higher Reynolds number cases that the restriction on y+ < 1 for the grid point adjacent

to the wall may be relaxed.

The differences between 3-dimensional and 2-dimensional models on surface pressure

coefficient are also investigated. In Figure 6.11 a comparison of simulations shows some

difference in pressure coefficient on the blade suction-side. However, the presence of sec-

ondary flows, typically about 10% from the end-walls, has little effect on the span-wise

variation of the surface pressure coefficient in the simulation as shown in Figure 6.12. The

•experimental results displayed greater variation between these span-wise positions.

Secondary flows can be visualised in the passage through fluid stream-lines or path-lines

in unsteady flow. The commerical plotting package Tecplot was used to generate path-lines,

through its predictor corrector algorithm. A rake line is specified within the fluid field and

the program defines a number of evenly spaced points over the line. From each of these

points, the local vector field is used to define the initial direction of the streamline. The

path-lines are then generated by taking small spatial increments along the vector and using

the vector at the new position to define the next segment of the path-line. The path-lines may

be integrated in both the upstream and downstream directions.

The stream-wise vorticity was plotted to identify the hub vortex recirculation in front of
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Figure 6.10: He Cascade - 2-dimensional simulation test for grid dependency of grid density.
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Figure 6.11: He Cascade, significance of endwall flows on steady pressure coefficient distri-
bution at mid-span without tip clearance model.
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Figure 6.12: He Cascade, significance of endwall flows on steady pressure coefficient distri-
bution across blade span, without tip clearance model.

the blade leading edge. While the vortex was small in size in this region it could be identified

by a clear peak in the vorticity. Stream-lines were integrated through the flow field on both

sides of the leading edge stagnation line to locate both the pressure-side and suction-side legs

of the vortex shown in Figure 6.13. Stream-lines were placed at increasing distance from the

hub in colour order yellow, pink, green, dark blue and light blue.

On the pressure-side the over-turning of the flow away from the pressure-side and toward

the side wall can be observed. However, there is no clear roll up of the stream lines on the

pressure-side. On the suction-side there is also over-turning of the flow close to the hub.

Once again there is little roll up. It would seem that the horse shoe vortex is weak in this

case.

In axial turbomachinery, often a gap exists between the ends of the blades and casing.

This introduces a number of phenomena not present in shrouded assemblies. The two major

effects is the blockage due to the tip vortex which is a result of the tip leakage flow, and the

unloading of the blade in the tip region.

The resolution required for the tip gap region was investigated by varying the number of

cells in the span-wise direction and comparing with the experimental measurements of pres-

sure coefficient at 90% span, for a tip clearance of 1.5% chord. This case was chosen as it

represents the largest gap considered and thus it is expected that if the resolution is sufficient

for this case it is also sufficient for the cases with a smaller tip gap. For the present simula-

tions it was decided that 32 cells was sufficient to resolve the tip clearance flow. Comparisons

are made in Figure 6.14. The same number of cells and cell distribution is maintained in the

; i;V.
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Side wall

Side wall

Figure 6.13: He Cascade and stream-lines in horseshoe vortex flow in the hub region.
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Figure 6.14: He Cascade grid dependence study for tip gap configuration - pressure coeffi-
cient at 90% span.

span-wise direction to the top of the blade - only the number of cells in the gap is varied.

The turbulence model also has the potential to affect simulation results. It has been found

by a number of researchers (Menter, 1992; Wilcox, 2000) that a particular issue with the k-co

model is that the level of free-stream turbulence dissipation rate co can have a large effect on

the spreading rate of free shear flows. Whilst the present investigations involve internal and

therefore wall bounded flows, free vortices may be affected by this quantity where they lie

beyond the wall boundary layers.

Menter (1992) found that for solutions of the defect layer equations the free-stream values

of CO were most influential at the boundary layer edge - this is the region closest to the

secondary flows. For free shear layers Menter found that the velocity profile was found to be

more affected by free-stream values and has a much larger spreading rate as the free-stream

CO decreases. The present flow cannot be classified as either a free shear flow or a boundary

layer flow, however it should be noted that the local value of CO at vortex cores was close

to the free-stream values. Regions of low co may be dependent on free-stream values. The

specification of far-field CO is given by Menter (1992) as a function of inlet velocity and a

length scale (see Section 4.1.10). In the present investigation this length scale was set at

smaller values to increase the level of co at the inlet.

The tip gap vortex was the feature of most interest so this was chosen to investigate the

effect of the inlet turbulence length scale. Two different positions were chosen, one at 90%

axial chord and the other just downstream of the trailing edge at 110% axial chord from the

leading edge. The circulation around the tip vortex was calculated at these stations through
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Inlet Turbulence
Length Scale
0.2
0.1
0.02

Inlet

1.85
3.7 x
1.85

co,

xlO4

104

xlO5

rs • n at 90% Chord

-10.40
-10.25
-10.31

IV

- 8
- 8
- 8

nat 110% Chord

.86

.75

.71

Table 6.3: Tip vortex and dependence on inlet turbulence length scale.

the integration of the stream-wise vorticity,

JAS

This is calculated over a closed contour of vorticity in the region of the tip vortex, with the

same level of vorticity contour for the different inlet turbulence levels and a comparison is

shown in Table 6.3. Note that the normal of the plane of integration is not coincident with

the stream-wise direction, nor the axis of the vortex, but the machine axis. It is shown that

the inlet turbulence level CO] has little impact on the strength of the tip clearance vortex in

this case.

For steady simulations, Bell and He (Bell & He, 2000) found that the tip leakage flow

had a considerable impact on the surface pressure coefficient at 90% span. A comparison

is made between experimental measurements and simulation results in Figure 6.15. The

pressure coefficient is over predicted a little on the pressure-side compared with experiment

as in all of the other steady simulations presented. On the suction-side the leakage flow has

less impact on span-wise variation in pressure distribution between 10% and 50% span in

the simulation than in the experiment. The overall trend on the suction-side compares well

with the experimental measurements.

The effect of varying the tip clearance was also investigated in the present simulations by

the comparison in Figure 6.16 of the steady pressure coefficient with no tip gap model, a tip

gap of 0.5% chord, 1.0% chord and 1.5% chord. The trends between experiment and sim-

ulations agree well, although the pressure coefficient on the pressure-side is over predicted

once again in the simulations.

The effect of different tip gap ratios on the tip leakage vortex for the simulations is

demonstrated in Figure 6.17. Figure 6.17(a) is for a tip gap ratio of 0.5% chord and Figure

6.17(b} for a tip gap of 1.5% chord. There are a number of notable differences between

the two. The larger tip gap has a larger diameter vortex and the turning of the stream-lines

appears to continue much further down stream, indicating a stronger vortex behaviour. The

tip vortex on the right appears to remain attached to the blade longer. In the left hand case it

appears that only those stream-lines at the centre of the vortex, originating close to the blade

leading edge, continue the vortical motion well downstream from the trailing edge. The
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Figure 6.15: He Cascade span-wise pressure coefficient distribution for tip gap of 1.5%
chord.
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Figure 6.16: He Cascade comparison of surface pressure coefficient for different tip gaps at
90% span.
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green stream-lines, crossing the tip just aft of the mid chord region, undergo little rotation in

the smaller tip gap case. However, in the right hand figure, these lines are entrained in the

centra] vortex motion even before the flow passes the trailing edge.

There are few descriptions of the nature of the tip leakage vortex in the literature. Re-

cently, the different types of roll-up in the tip vortex have been classified by Tallman and

Lakshminarayana (Tallman & Lakshminarayana, 2001a). In particular they sought to find

a physical explanation for the behaviour of the tip leakage vortex. They conclude that the

convection of vorticity plays a significant role in the development of the tip gap vortex and

also that a shear jet model is invalid for certain tip clearance flows. It will be argued that

the jet shear model is adequate in describing the present flow and that their classification of

different types of vortex flow is ambiguous.

They classify three types of roll-up in the tip vortex. The first two types involve the flow

over the tip at the forward part of the blade. Consider the velocity profile at the exit of the tip

gap region shown in Figure 6.18 at quarter chord. Some of the contours in the tip gap region

have been omitted for clarity. Vorticity at the blade tip side has the same sense of rotation

as the tip gap vortex. Flow at the outer boundary involves vorticity of opposite sign. They

separate the two different types of roll-up, type one and two, due to the differences in sign of

vorticity at the exit of the tip gap region from which the stream-lines originate. They point

out that the flow close to the blade tip has the same vorticity as the tip vortex and therefore

rolls up in the centre of the vortex. They contend the flow close to the casing however has

the opposite vorticity and therefore it resists roiling into the leakage vortex and is gradually

entrained around the outside of the leakage vortex downstream of the trailing edge, but does

not roll up inside the passage. In their case the tip gap flow at the casing appears to avoid

the tip vortex completely, travelling through the passage slightly below and outside the tip

vortex.

They argue that for the tip flow to follow the jet model some of the bulk flow, that has not

passed over the gap, must be entrained in the vortex formed at the edge of the shear layer of

the jet flow. In their investigations they fail to find streamlines that move through the passage

and do not pass over the blade tip, that are involved in the roll-up of the tip vortex.

Their description does not coincide what is observed in the present simulations. The plan

view and side view of three stream-lines are shown in Figure 6.19(a) and Figure 6.19(b),

respectively. The red stream-line enters the tip gap close to the blade leading edge. At the

tip gap exit, it is very close to the blade tip and beyond this region it rolls into the tip vortex.

The blue stream-line represents passage flow that is entrained into the tip gap vortex due to

the shearing of the jet-like flow. It passes close to the blade at the leading edge and follows

the contour of the blade, before rolling into the tip vortex. Whilst it begins close to the core

of the tip vortex it moves radially outwards as it is convected downstream. Once again, this

stream-line could not be located in the simulations performed by Tallman et al (Tallman &
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(a) Tip gap 0.5% Chord (b) Tip gap 1.5% chord.

Figure 6.17: He Cascade stream-lines through tip gap region for two different tip gap lengths.
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Figure 6.18: He Cascade velocity profile in tip region and vorticity at exit of tip section at
25% chord.

Lakshminarayana, 2001a).

Tallman's analysis is applied to the present flow in Figure 6.20. In Figure 6.20(a) stream-

lines pass through the tip clearance region forward of mid-chord. Each group of stream-

lines passed through the same axial and pitch-wise location on the middle of the blade tip

and divided into two colours, based on their proximity to the blade tip. For example, the

light blue stream-lines follow the flow in the span-wise half of the tip gap closest to the

casing wall, the dark blue stream-lines follow the span-wise half of the tip gap closest to

the blade tip. Further downstream the light blue stream-lines wrap around the outside of

the tip vortex, whilst the dark blue stream-lines remain in the vortex centre. Figure 6.20(b)

shows stream-lines in the portion of the tip gap downstream of the mid-chord region. Once

again stream-lines are separated into colours depending on their span-wise position in the

clearance region.

In Tallman et al's analysis, type 3 roll up is separated from type one and type two due

to the fact that these stream- lines do not divide depending on their proximity due to their

position at the blade tip exit. The present flow differs from this analysis as shown in 6.20(b).

A number of the red and the blue stream-lines separate from the rest of the group as they

travel through the vortex.

In the present example, the organisation of the stream-lines within the vortex may be

explained due to their proximity to the blade trailing edge, and the vortex dynamics are im-

pacted little by the vorticity from the tip gap flow. A comparison of two different flows is

shown in Figures 6.21 (a) and 6.21 (b). The first is under the conditions found in the exper-

iment with non-slip boundaries at all solid walls. The second has a slip condition applied

at the casing boundary - there is no casing boundary layer. The stream-lines over the blade

tip behave in a similar manner between the two configurations, even though the stream-lines

exiting the gap close to the casing have vorticity of the same sign at the exit as the flow close
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(a) Plan view.

(b) Side view.

Figure 6.19: He cascade, entrainment of passage flow in tip vortex for tip gap of 1.5% chord.
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(a) Type 1 and 2 roll-up (b) Type 3 roll-up

Figure 6.20: He Cascade, classifcation of different types of tip vortex roll up, with stream-
lines through tip gap region for tip gap of 1.5 % chord.
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to the blade tip.

It appears that the casing boundary layer flow increases the strength of the tip vortex.

This is probably due to the fact that the slower moving flow in the boundary layer is more

influenced by the secondary flow.

The tip gap leakage vortex is predominantly an inviscid phenomenon that may be con-

sidered to have properties similar to a two dimensional jet flow at a solid boundary. The

presence of viscosity has a number of effects on the leakage flow and tip vortex. The casing

boundary layer decreases flow velocity and makes it more susceptible to entrainment, com-

pared to flow away from the boundary. It causes blockage in the tip gap region, therefore

limiting the mass flow through the tip gap and thus the strength of the tip vortex. Finally,

viscous forces dissipate the energy in the leakage vortex and reduce its strength as it moves

downstream, both before and after the trailing edge.

The classifcation of the stream-lines into different types depending on the vorticity at the

tip exit seems arbitrary, particularly considering the continuous nature of the flow field and

lack of flow discontinuities. The location of the stream-lines within the tip gap is important

in determing the position of the stream-lines and their location once they become involved

in the tip vortex. At the tip exit, the closer the stream-lines are to the casing, or the further

down stream they exit the gap, the larger the radius at which the streamlines are located in

the tip vortex.

The effects of the tip leakage model on surface pressure coefficient for the simulation

are illustrated by comparisons of complete blade surface distributions of the steady pressure

coefficient on the blade suction-side, in Figure 6.22. The most obvious effect of the increase

in tip gap is the reduction of the steady pressure coefficient over the whole blade. There are

also local effects close to the tip gap where the steady pressure coefficient decreases signif-

icantly. Thus the tip leakage has the effect of increasing the variation in pressure coefficient

across the blade in the span-wise direction, as one may expect.

Although the tip leakage flow affects the steady blade loading, it is not obvious how

the unsteady loading will be influenced. The consequences of the tip leakage flow on the

unsteady aeroelastic behaviour of the cascade will be investigated in the following section.

It has been shown that the presence of the tip gap vortex causes blockage in the passage and

passage flow moves towards the mid-chord region. The extent of this blockage and its effect

on the aeroelastic configuration needs to be quantified.

6.2.2 Aeroelastic Simulations

As described earlier this case involves a rigid bending mode of blade oscillation, with the

parameters defined in Table 6.1. Investigations involve three different tip gap models. First

the effect of including the tip gap in the model configuration is examined, then the effect of
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(a) No slip Casing (b) Slip Casing

Figure 6.21: He Cascade, type 1 and 2 roll-up with different casing boundary conditions for
tip gap of 1.5 % chord.
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C: -0.2-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) No tip gap.

Cp: -0.2-0.1 -0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) Tip gap 0.5 % chord.

Cp: -0.2-0.1 -0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(c) Tip gap 1.5% chord.

Figure 6.22: He Cascade, comparison of steady pressure coefficient on blade.
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varying the tip gap is investigated. Finally the damping coefficient for the different tip gap

results is compared with experiment.

The 3-dimensional mode was realised through different oscillation amplitudes at the hub

and blade tip. In the simulation this was modelled through a span-wise variation in oscillation

amplitude, which was assumed to be a pure translation in a plane orthogonal to the span-wise

direction. Where a tip gap was modelled, the tip gap clearance was maintained as constant

throughout the blade movement. In the experii;iuit there may have been some variation in

tip clearance through the oscillation due to the fact that the blade tip displacement follows a

circular path in plane normal to the axial direction.

The simulation of the unsteady flow involved two different models, one with the same

tip clearancr; as in the experiment, the other without the tip gap. A reduced frequency of

kc = 0.125 was chosen for comparison with the experimental investigation into tip gap flow

behaviour. Note that in the experiment the reduced frequency is defined with respect to chord

either than semi-chord as in this case.

A comparison between experimental results for unsteady pressure is made in Figures 6.23

- 6.26. Bell and He (Bell & He, 2000) found that the magnitude of the unsteady pressure

coefficient increased in the region between the mid-chord and the trailing edge of the suction-

side at 90% span, for increasing tip gap. The introduction of the tip gap in the model appears

to have a similar >:ffect in the simulated results as the effect of increasing the tip gap in the

experiment. The largest deviations between the two simulations in Figure 6.23 is in the mid-

chord region at 90% span. The simulation under predicts the unsteady pressure magnitude

compared to the experiment at 20% chord across the span, except for the 10% span position.

Towards the blade trailing edge the unsteady pressure is also under predicted on the blade

suction-side.

Chord-wise distributions of the phase of the unsteady pressure for the blade suction-

side at different span-wise positions are shown in 6.24. The phase of the unsteady pressure

compares well with experiment, except for at 10% span. The inclusion of the tip gap model

reduces the phase variation along the chord of the blade on the suction-side. The largest

deviations in phase in the experiment for different tip gaps were also observed in the region

from mid-chord to the trailing edge.

In the comparison for the pressure-side in Figure 6.25 there is less difference between

the simulation results with and without the tip gap model. The magnitude of the pressure

coefficient on the forward part of the blade is under predicted at all span-wise locations. The

phase of the unsteady pressure compares better with experiment than for the suction-side,

except for the 10% span position. This displays the largest deviation in phase for both the

suction and pressure surfaces.

The effect of the size of tip clearance on the aeroelastic simulations is investigaced and

also compared with the experimental measurements. Simulations were performed at a re-
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A Experiment 90%

— Simulation no tip gap 10%
Simulation no tip gap 50%
Simulation no tip gap 90%
Simulation tip gap 10%
Simulation tip gap 50%
Simulation tip gap 90%

0.2 0.4 0.6
Chord

0.8

Figure 6.23: He Cascade, comparison of magnitude of first harmonic of unsteady pressure
coefficient with experiment for suction surface kc = 0.125.
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Figure 6.24: He Cascade, comparison of phase of first harmonic of unsteady pressure coef-
ficient with experiment for suction surface kc = 0.125.
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Figure 6.25: He Cascade, comparison of magnitude of first harmonic of unsteady pressure
coefficient with experiment for pressure surface kc = 0.125.

360

300

240

^ 1 8 0

120

60

Experiment 10%
Experiment 50%
Experiment 90%
Simulation no tipgap 10%
Simulation no tipgap 50%
Simulation no tipgap 90%
Simulation tipgap 10%
Simulation tipgap 50%
Simulation tipgap 90%

1
0.2 0.4 0.6 0.8

Chord

Figure 6.26: He Cascade, comparison of magnitude of first harmonic of unsteady pressure
coefficient with experiment for pressure surface kc = 0.125.
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• Experiment tip gap 0.5%
• Experiment tip gap 1.5%

Simulation no tip gap
Simulation tip gap 0.5%
Fimulation tip gap 1.5%

Figure 6.27: He Cascade, comparison of magnitude of first harmonic of unsteady pressure
coefficient at 90% span with experiment for suction surface kc = 0.125 for different tip gaps.

duced frequency of kc = 0.125 for a configuration with no tip gap model, a tip gap of 0.5%

chord and 1.5% chord. Figure 6.27 compares results for the suction-side at 90% span. For

the unsteady pressure magnitude, a similar trend may be observed with experiment, although

the magnitude is under predicted across the whole blade. The simulation results are closest

to experiment for the tip gap of 1.5% chord. The largest deviations in unsteady pressure

magnitude between the experimental results on the blade suction-side occur for the 1.5%

case at the trailing edge, and the other simulation cases at mid-chord. For the simulations,

there is a larger difference between the magnitude of the 1.5% tip clearance case compared

to the other two simulation results for the first half of the blade.

Differences in phase; for both the simulations and the experiment for the blade suction-

side are most signifcant from the mid-chord region to the trailing edge, as shown in Figure

6.28. However, in the region between mid-chord and the trailing edge, the simulations with

the tip gap model predict the phase singnificantly closer to the experimental results when

compared to the simulation without a tip gap. The pressure side results are much more similar

in terms of magnitude, as shown in Figure 6.29, although .here are significant deviations in

the trailing edge region.

The blade surface distribution of unsteady pressure magnitude has been plotted in Figure

6.30 for the sucticn-side. Once again the three different models are compared - no tip gap,

0.5% chord gap, and 1.5% chord gap. The signature of the tip vortex can be observed for

the two cases involving the tip gap model. The reduction in unsteady pressure magnitude

with increasing tip gap across the blade surface is obvious. It appears that in the 1.5% gap
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• Experiment tip gap 0.5%
• Experiment tip gap 1.5%

Simulation no tip gap
Simulation tip gap 0.5%
Simulation tip gap 1.5%

Figure 6.28: He Cascade, comparison of phase of first harmonic of unsteady pressure coef-
ficient at 90% span with experiment for suction surface kc = 0.125 for different tip gaps.

o

a Experiment tip gap 0.5%
Simulation no tip gap
Simulation tip gap 0.5%
Simulation tip gap 1.5%

0.5
Chord

Figure 6.29: He Cascade, comparison of magnitude of first harmonic of unsteady pressure
coefficient at 90% span with experiment for pressure surface kc = 0.125 for different tip
gaps.
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Case
No tip gap
Tip gap 0.5% Chord
Tip gap 1.5% Chord

Experiment damping H

0.422
0.422

Simulation damping 5
0.52
0.456
0.421

Table 6.4: He Cascade, variation of damping with tip gap at kc = 0.125.

case the local impact on the unsteady blade loading is more significant and is lower in the

span-wise direction.

A distribution plot was also generated for the unsteady pressure p'.iase and compared

between the different models in Figure 6.31. The differences between the model predictions

for phase are signifcant from the blade mid-chord to the blade trailing edge, as observed

in the chord-wise plots. It is interesting that while in the plot of magnitude the existence

of the tip vortex is obvious in the peak unsteady pressure region, it is not so in the phase

distributions. However, there is evidence of a passage vortex in the simulation without the

tip gap modelled, near the blade tip at 75% chord. In the simulations with a tip gap, the

signature of the tip gap flow only becomes evident towards the trailing edge.

A decrease in phase is observed with an increase in tip gap length for the after part of

the blade. In a case that is close to the stability limit, this could make a stable configuration

unstable. In some particular cases, the inclusion of a tip model in the simulation could be

important due to this effect. The impact of this difference in phase on the damping coefficient

will be investigated later in this chapter.

The damping coefficient was calculated for the simulations to provide an indication of

the effect of the tip gap on the aeroelastic stability of the configuration. This is compared

with the damping coefficients calculated in the experiment (Bell & He, 2000) in Table 6.4.

Note that the experimental results have been multiplied by the blade span, as damping co-

efficient calculated in the paper was not non-dimensional and has the units of m"1. As in

the experiment, the different tip gaps for the simulation provide a similar damping coeffi-

cient. However, there is a significant difference between simulation results with and without

the tip gap model. This is due to the differences in unsteady pressure magnitude at mid-

chord and, perhaps more importantly, the phase towards the blade trailing edge on the blade

suction-side.

A number of trends were found in the simulation results. The net effect of tip clearance

flow on the aeroelastic configuration is to increase the span-wise variation in unsteady pres-

sure magnitude, particularly on the blade suction-side. Locally the tip gap flow introduces a

local maximum and minimum in the tip gap region to the unsteady pressure magnitude on

the suction-side. However over the whole blade, the unsteady pressure magnitude is reduced.

There was little effect noted on the blade pressure-side of a variation in tip gap length. A

significant variation in phase was observed on the blade suction-side, from mid-chord to the
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(a) No tip gap.

(b) Tip gap 0.5 % chord.

(c) Tip gap 1.5 % chord.

Figure 6.30: He Cascade, comparison of unsteady pressure coefficient magnitude on suction-
side of blade, kc = 0.125 for different tip models.
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(a) No tip gap.

(b) Tip gap 0.5 % chord.

(c) Tip gap 1.5 % chord.

Figure 6.31: He Cascade, comparison of unsteady pressure coefficient phase on suction-side
of blade, kc = 0.125 for different tip models.
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(a) No tip gap.

(b) Tip gap 0.5 % chord.

(c) Tip gap 1.5 % chord.

Figure 6.31: He Cascade, comparison of unsteady pressure coefficient phase on suction-side
of blade, kc = 0.125 for different tip models.
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blade trailing edge.

A number of comparisons have been made between the linear cascade aeroelastic case,
between experiment and simulation with different tip gap lengths. The results are sum-
marised as follows:

• The suction-side pressure coefficient at 90% span for different tip gap lengths com-

pares well between experiment and simulation for the steady configuration.

• Differences were proposed between the description of the tip gap flow compared to

those given by Tallman and Lakshminarayana (2001a). The behaviour of the present

tip gap flow may be best described by a jet flow close to a solid boundary.

• The unsteady pressure magnitude results for the simulations compare well in trend for
a reduced frequency of kc = 0.125.

• The signature of the tip vortex was evident in blade surface plots of magnitude and

phase. For the kc = 0.125 case the vortex moved lower down the blade with increasing

tip gap length, and increasing axial chord position on the blade.

• While there was some difference found between experiment and simulation for un-

steady pressure magnitude, the damping coefficient compares well with experiment

for a kc = 0.125. The simulations with a tip gap compare more favourably with exper-

iment.

6.3 Standard Configuration 4

The second of the turbine cascades is subject to flow in the high subsonic and the transonic

flow regimes. As discussed in Section 6.1.3, this flow regime involves important phenomena

that have the potential to influence the aeroelastic configuration, including shock waves and

shock-induced boundary layer interaction.

A comprehensive set of measurements were performed on the annular cascade at Lau-

sanne Institute of Technology or Ecole Polytechnique Federale de Lausanne (EPFL) (Boles

& Fransson, 1986). The experiment involved an annulus of blades vibrating at a prescribed

reduced frequency, the vibration of each blade set at a particular inter-blade phase angle.

Subsequently 3-dimensional data has been made available for the flow (Ott, 1998) and the

3-dimensional geometry of the vibration mode shape (Ott, 2002). The case is known as Stan-

dard Configuration 4 (STCF 4), and is one of the 11 standard, aeroelastic turbine test cases

(Boles & Fransson, 1986; Fransson & Verdon, 1991).

Data for the blade geometry is listed in Table 6.5. Blade profiles are described as being

typical of modern free standing turbine blades. Blade thickness and camber is relatively
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Blade chord
Aspect ratio
Solidity
Blade outlet angle
Inlet flow angle
Stagger angle

0.072 m
1.8
0.76 (at midspan)
72.4°
44.1°
56.5°

Table 6.5: Blade and flow geometry for Standard Configuration 4

Figure 6.32: Standard Test Case 4 blade from experimental facility (Ott, 2002).

high. Some of the tests were performed under transonic flow conditions; at the inlet the

flow is low subsonic and at the outlet it is supersonic in the axial direction. Typically these

types of blades exhibit a flutter instability in the first bending mode. This is simulated in the

experiment by a translation in the cylindrical coordinate system of the prismatic blade at a

prescribed displacement angle. A blade from the rig is shown in Figure 6.32 - note the hub

shroud to reduce end-wall leakage.

The mode shape of vibration in the experiment has been estimated by taking the mid-

span amplitude and assuming a pivot point at 0.0885 m from the axis of the facility. The

spring body assembly for the experimental rig is shown in Figure 6.33. In this figure, the

radiating spokes form the springs, the large blocks and the blades (not shownj are the masses

for the system. The pivot point for each blade is estimated as being at the centre of the spring

section (Ott, 2002).

The experimental rig is described as an annular cascade of turbine blades meaning that

that the rig is non-rotating. The full annulus allows for the measurement of all possible inter-

blade phase angles without any of the approximations to flow periodicity made in linear

cascades. Figures 6.34 and 6.35 show the cascade assembly. There is no structural inter-



Figure 6.33: Standard Test Case 4 spring mass assembly in experimental facility (Ott, 2002).

ference for the flow between the blade tips and casing. A significant lip exists on the hub

shroud.

6.3.1 Simulation Model

The present simulations involve two different geometric configurations. The first is a 2-

dimensional cascade, the geometry of which is a 2-dimensional projection of the annular

cascade onto a cylinder of constant radius that bisects the blades at mid-span of the experi-

mental rig. The second involves 3-dimensional annular blade passages which is as similar as

possible to the rig. The inlet and outlet plane lie one axial chord upstream and downstream

of the blade's leading and trailing edges, respectively.

Differences in geometry:

• Hub leakage shroud not modelled.

• Surface on blade and side-walls assumed to be hydraulically smooth.

• The tip clearance varies, depending on the blade number. The casing is oval by 0.1 mm

and it is estimated that the tip clearance is between 0.25 mm and 0.3 mm. In the

simulation the clearance is set at 0.3 mm where it is modelled.

• There is a slight chamfer on the blade tip edges, that is not modelled.

Differences in flow conditions:
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Figure 6.34: Standard Test Configuration 4 annular cascade assembly (Ott, 2002).

Figure 6.35: Close up of Standard Test Configuration 4 annular cascade assembly (Ott,

2002).
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• The inlet plane in the simulation is specified at 1 axial chord upstream of the blade
leading edge; in the experiment inlet plane measurements are made at 13% of axial
chord upstream of the blade.

• Inlet total pressure span-wise distribution is specified as a constant, taking the same
value as the circumferential average at mid-span at the inlet measurement plane in the
experiment.

• Inlet flow angle is also prescribed from the experiments in the same manner as the inlet

total pressure for the subsonic test. For the transonic test, this is specified to obtain the

same blade loading as the experiment.

• The outlet plane is 1 axial chord down-stream from the trailing edge; the experimental

measurement plane is 1.61 axial chords down-stream of trailing edge.

• The outlet static pressure profile is specified in the span-wise direction. As with the

inlet total pressure distribution, no pitch-wise variation is specified; all other quantities

are extrapolated from the interior of the domain.

• Boundary layers on the blade and side-walls are assumed to be fully turbulent.

• Hub leakage flow is not modelled.

• The boundary layers on the side walls at the inlet are assumed to be of negligible

thickness.

• The inlet total temperature was not indicated in the experiment; this was set at standard

conditions.

• An ideal gas was modelled, in the experiment air was the working fluid.

• The typical inlet turbulence length scale was not specified in the experimental report,

nor was the inlet intensity level. This was assumed to be the order of the blade length

and 0.1 respectively, as used by other researchers in the simulation of turbomachinery

cascades (Liu et ai, 1998a; Garg & Ameri, 2001).

The inlet plane was positioned through a number of considerations. In the experimental

results, no data was provided regarding the condition of the hub and casing boundary layer

at the inlet. It was not possible to generate an acceptable mesh with an inlet length of 0.13

axial chord as in the experiment. Small inlet disturbances can adversely affect the solution

process causing divergence of the numerical algorithm. These effects are usually reduced by

moving the inlet away from the blade leading edge. Boundary layer suction was performed

in the experiment 2.34 axial chord lengths upstream of the cascade so the thickness of the

boundary layers at the inlet of the simulation domain are assumed to be small.
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Condition
Bending mode direction
Bending mode amplitude
Bending mode amplitude
Bending mode amplitude
Reynolds number
Inlet Mach number
Outlet Mach number
Reduced frequency

at hub
at midspan
at casing

Test 552
63°
NA
3-OxlO-3

NA
8.2 xlO5

0.28
0.9
0.107

Test(
63°
3.0 x
3.8 x
4.68
5.6 x
0.19
0.85

527

10-3
10-3

XlO-3

105

0.1187

Table 6.6: Aeroelastic configuration parameters for high subsonic test*; for Standard Config-
uration 4.

6.3.2 High-subsonic Cases

In this section two different cases are considered in the high-subsonic regime. The first

is for validation purposes and is a 2-dimensional configuration, involving an outlet Mach

number of 0.9. The second is a 3-dimensional configuration for which inlet and outlet plane

conditions are available and is characterised by an outlet Mach number of 0.85. Conditions

for both cases are listed in Table 6.6. Significant differences between the two experimental

results exist, even though they involve similar conditions.

The importance of including the effects of viscosity is examined through comparisons of

Euler and RANS simulations and through the modelling of tip gap flow. The blade surface

unsteady pressure distributions are compared for two different interblade phase angles; the

simplest from a modelling perspective at IBPA = 180° and the second at IB PA = -90°. At

the second IBPA the configuration exhibits an aeroelastic instability - this is important from

a design perspective. Parameters for the steady and aeroelastic cases are listed in Table 6.6.

Steady Simulations

As done previously the suitability of the mesh was investigated. The grid convergence of the

Navier-Stokes simulations was only performed for 2-dimensional configurations, with the

mid-span conditions for Test 627. It was found that a mesh of 160 cells in the axial direction

and 64 cells in the blade to blade direction was sufficient to provide grid convergence, with

a y+ < 3 at mid-chord on the suction-side. Simulations were also performed on a finer

grid with a y + < l , however this produced a variation in the steady pressure coefficient

of less than 1 percent. The number of cells was doubled in the axial direction but this

made little difference to the steady surface pressure coefficient. Based on the 2-dimensional

grid convergence studies, a mesh of 160 x 64 x 64 in the axial, pitch-wise and span-wise

directions, respectively, is used for 3-dimensional Navier-Stokes simulations. The largest

grid involved approximately 2.6 million points distributed over 32 computational blocks. A

typical mesh for a four passage, 3-dimensional Euler simulation for an interblade phase angle
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Figure 6.36: Typical mesh for a four passage, 3-dirnensional Euler simulation.

of 90 degrees is shown in Figure 6.36.

The steady pressure coefficient is shown for the 3-dimensional cascade simulation at mid-

span of Test 627 and compared with experiment in Figure 6.37. The Navier-Stokes results

under-predict the suction over the back portion of the blade suction-side, while the inviscid

result under-predicts the suction in the mid-chord region. The reason for this deviation is not

obvious, but maybe due to a combination of the presence of the boundary layer on the blade

and the end-walls.

A plot of passage Mach number distribution at mid-span for an annular cascade configu-

ration with a tip gap model is shown in Figure 6.38. Flow conditions are subsonic through-

out the entire passage. This has important implications for the aeroelastic configuration - a

choked passage leads to coupling between the blades due to the passage shock wave and an

entirely different unsteady pressure distribution, particularly for the mid-chord region of the

blade suction-side.
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o

• Experiment (Pressur
x Experiment (Suction Side)

Figure 6.37: Steady surface pressure coefficient.

Aeroelastic Simulations

The investigation ato the aeroelastic configuration involved two different cases, with the

conditions listed in Table 6.6. For all of the simulations, time step was such that 32 steps

were used per period of oscillation. For temporal convergence the simulation was integrated

for 4 periods, except for the tip gap simulations which required 6.

The first case was also simulated by other authors (Griiber & Carstens, 1998). Note that

there is a slight difference in reduced frequency and inflow Reynolds number between the

other simulations and the present simulations as these were the conditions quoted in the up-

dated experimental report (Fransson & Verdon, 1991). The simulation model involved a two

passage, 2-dimensional cascade and an inter blade phase angle of 180°. The Navier-Stokes

and k-co flow solver was used and slip boundary conditions were applied to the end-walls

in the span-wise direction. A comparison between experimental results (Boles & Fransson,

1986) and simulated results for unsteady pressure magnitude and unsteady pressure phase is

shown in Figures 6.39 and 6.40 respectively.

There is some discrepancy between the simulated results and experiment, particularly in

the unsteady pressure magnitude at 20% chord on the blade suction-side. However, these

results are very close to the 2-dimensional Navier-Stokes simulations presented by Griiber

and Carstens (1998).
The second case, Test 627, has a lower outlet Mach number than Test 525. The 3-
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Figure 6.38: STCF 4 Test 627, Mach number distribution for simulation with Navier-Stokes
model in passage at mid-span.
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Figure 6.39: STCF 4, Test 552,1BPA = 180° first harmonic of unsteady pressure coefficient
magnitude.
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dimensional flow conditions were available for this case, allowing for 3-dimensional simu-

lations. For the 3-dimensional results, the reference pressure for the unsteady pressure is at

mid-span on the inlet plane and the reference amplitude is at mid-span on the blade.

Simulations were performed for a number of different configurations. As a reference,

2-dimensional simulations for both the inviscid and Navier-Stokes flow model were under-

taken. The 3-dimensional simulations involved the Euler flow model, the Navier-Stokes

solver with k-co turbulence model, and the Navier-Stokes model with the tip gap modelled.

Comparisons are made between these cases at different span-wise locations, between the

Euler and Navier-Stokes simulations and experiment at 50% and 10% span, and with the

Navier-Stokes simulations with and without the tip gap model at 90% span. These compar-

isons exhibit the largest differences between simulation configurations.

A comparison between the unsteady pressure coefficient for the two different flow mod-

els, and the 2-dimensional and 3-dimensional configuration is made in Figures 6.41 - 6.43.

Where the amplitude is highest on the suction-side at 20% chord there is a deviation be-

tween the simulations and experiment in the order of 15-30%. This is less than the previous

case, Test 525. None of the simulations exhibit a local maximum in the magnitude of un-

steady pressure coefficient found in experimental measurements in the region of mid-chord.

Predictions for phase compare well with experiment close to the leading edge on both the

suction-side and pressure-side. The 2-dimensional simulations predict similar unsteady pres-

sure magnitude to the 3-dimensional simulation, and are almost identical in phase.

There is a significant difference in the predictions of the phase angle for the surface pres-

sure coefficient on the blade suction-side in Figure 6.43, in particular for the region between

mid-chord and the trailing edge. This feature in the experimental results coincides with a

maximum in the magnitude of the unsteady pressure coefficient that is also not observed in

the simulation.

The experimental results are consistent with choked or close to choked conditions in the

passage. The Mach distribution of the Navier-Stokes simulation of the passage in Figure

6.38 shows that the Mach number is no higher than 0.8 close to the trailing edge on the blade

pressure-side. The Test 525, which was discussed earlier in this section, has a higher outlet

Mach number than the present Test 627. Therefore one would expect if the Test 627 passage

was choked, the passage of Test 525 would also be choked. Consequently Test 525 should

exhibit a similar phase change on the blade suction-side as Test 627 due to the impingement

of the passage shock. As is shown in Figure 6.40, this is not the case, thus there appears

to be some inconsistency in the experimental measurements. The behaviour of the unsteady

pressure phase on the blade suction-side is similar to other tests at higher outlet Mach number

conditions, one of which will be examined later in this chapter.

The largest difference between the Euler and Navier-Stokes simulations is in the predic-

tion of the unsteady pressure magnitude on the blade suction-side. The profiles are similar in
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Figure 6.41: STCF 4,1BPA = 180°, first harmonic magnitude of unsteady pressure coeffi-
cient on suction-side at mid-span.

shape and differences in phase only become apparent towards the trailing edge on the blade

suction-side.

One of the most significant differences between the 3-dimensional Euler and Navier-

Stokes simulations was found at 10% span, on the blade suction-side. Figures 6.44 and 6.45

show the Euler and Navier-Stokes results at 10% span. There is a local maximum in the Euler

simulation at 50% chord which is not present in the Navier-Stokes result. Flow conditions in

the Euler simulation at this span-wise position are close to choke - much closer than for the

Navier-Stokes simulation.

The deviations in phase for blade suction surface are minor in Figure 6.45. This suggests

that for the inviscid simulation it appears that the close to choked conditions affect the mag-

nitude of the unsteady pressure coefficient first, before influencing its phase. The influence

of the hub secondary flows on the Navier-Stokes results is difficult to gauge - this done more

easily through complete surface distributions.

The tip gap effects are investigated through comparisons of unsteady pressure coefficient

at 90% span. This is in the region of the casing secondary flow, but below the localised

effects of the tip vortex. Figures 6.46 - 6.47 compare Navier-Stokes simulations with and

without the tip gap model. Results with and without the tip gap model are similar, with the

largest differences on the suction-side at 20% chord at the peak unsteady pressure, and mid-

chord. Whereas the subsonic case in Section 6.2 exhibited a significant rise in the unsteady

pressure magnitude at mid-span with the tip gap, this is not observed for this case.
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Figure 6.42: STCF 4, IBPA = 180°, first harmonic magnitude of unsteady pressure coeffi-
cient on pressure-side at mid-span.
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Figure 6.43: STCF 4, IBPA = 180°, phase of first harmonic of unsteady pressure coefficient
at mid-span.
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Figure 6.44: STCF 4, IBPA = 180c, first harmonic magnitude of unsteady pressure coeffi-
cient on suction-side at 10% span.
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Figure 6.45: STCF 4, IBPA = 180°, phase first harmonic of unsteady pressure coefficient on
suction-side at 10% span.
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Figure 6.46: STCF 4, IBPA = 180°, first harmonic magnitude of unsteady pressure coeffi-
cient on suction-side at 90% span.
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Figure 6.47: STCF 4, IBPA = 180°, phase of first harmonic of unsteady pressure coefficient
on suction-side at 90% span.



CHAPTER 6. TURBINE CASCADE SIMULATIONS 158

o

x Experiment 50% span
— Eu!er2D
•••• NS2D
- - Euler 3D 50% span
• - • NS 3D 50% span

Figure 6.48: STCF 4, IBPA = 270°, first harmonic magnitude of unsteady pressure coeffi-
cient on suction-side at mid-span.

At an IBPA = 270° the aeroelastir configuration exhibits instability in the experimental

measurements. The same simulations were performed for this inter-blade phase angle as for

the 180 degrees case. Once again results are compared for the different flow models and

geometric configurations, in Figures 6.48 - 6.51. In a similar way to the 180 degrees case,

the simulations over predict the peak unsteady pressure at 20% chord when compared to

experimental measurements on the blade suction-side. Results for phase in Figure 6.50 and

Figure 6.51 compare well close to the leading edge, however there are discrepancies in the

mid-chord region. The experimental results for the suction-side in Figure 6.50 are similar

to those at higher outlet Mach number where the passage is choked. The dip in phase at

60% chord is not a feature of the experimental results at the higher outlet Mach number of

0.9 from Test 525 (Boles & Fransson, 1986). This suggests a similar inconsistency in flow

conditions in the experiment as in the IBPA = 180° case.

The differences between the Navier-Stokes and Euler simulations, and also the geometric

models is less than for the IBPA = 180°. The largest differences are at the blade trailing edge

on the suction-side, for both unsteady pressure magnitude and phase. These are probably

due once again to the influence of the boundary layers in the case of the Navier-Stokes

simulations.

Figure 6.52 shows a comparison of the unsteady pressure coefficient between the Euler,

Navier-Stokes and Navier-Stokes with tip gap simulations. The contours of pressure mag-

nitude have the same levels for all of the results shown in the figure. In the case of the
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Figure 6.49: STCF 4, IBPA = 270°, first harmonic magnitude of unsteady pressure coeffi-
cient on pressure-side at mid-span.
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Figure 6.50: STCF 4, IBPA = 270°, phase of first harmonic of unsteady pressure coefficient
on suction-side at mid-span.
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Figure 6.51: STCF 4, IBPA = 270°, phase of first harmonic of unsteady pressure coefficient
on pressure-side at mid-span.

Euler simulation in Figure 6.52(a), the distribution varies little with span-wise position. The

variation observed in the chord-wise distribution at mid-chord at 10% span is not obvious,

although variation towards the trailing edge in the hub region is obvious.

The distribution for the unsteady pressure coefficient for the Navier-Stokes simulation

without a tip gap is shown in Figure 6.52(b). This shows significantly more variation of

surface pressure with span compared to the inviscid simulation, particularly towards the

blade tip. The impression of the passage vortex can be observed at 90% span, particularly

towards the trailing edge region. It is also evident in the plot of phase in Figure 6.53(b). Less

distinct is the passage vortex at 10% span, close to the cascade hub. The relative impact of the

hub and casing passage vortices on the blade may be attributed to the different magnitudes

of blade vibration in these two regions. The relative strength of the hub passage vortex and

casing passage vortex is similar, based on the fact that the flow velocity is also similar.

In the bottom of Figure 6.52, the unsteady pressure magnitude for the Navier-Stokes

simulation with a tip gap is shown. There are two major differences between this figure and

the one above involving the Navier-Stokes simulation without the tip gap. The signature of

the leakage vortex may be observed in the close-up of the tip region towards the front of the

blade as a dip in the unsteady pressure. Towards the trailing edge, the passage vortex also

causes a dip in the unsteady pressure coefficient, at about 90% span. This dip is much less

than in the simulation without the tip gap. Thus the tip leakage flow appears to reduce the

effects of the passage vortex on the unsteady pressure, either causing it to migrate away from
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the blade surface or by reducing its strength. The decrease in the influence of the passage
vortex on the unsteady pressure coefficient magnitude is also reflected in the plot of phase in
Figure 6.53(c).

The overall difference between the simulations with and without a tip gap on the blade

suction-side is that the unsteady pressure magnitude on the blade in the simulation without

the tip gap is more uniform over the span in the forward part of the blade. Conversely, the

simulation with the tip gap has a more uniform distribution of unsteady pressure magnitude

in the region after mid-chord, as the effects of the casing passage vortex on the unsteady

pressure is much less significant.

It is interesting to note the higher impact of passage vortices on the blade surface unsteady

pressure in this case, compared to the low subsonic case of Section 6.2. This is mainly due

to the different turning angles of the blade profiles - the relatively low turning angle of the

low subsonic case results in secondary flows that are much weaker and thus have less impact

on the unsteady surface pressure for the aeroelastic configuration.

Aeroelastic Work

To understand the unsteady blade loading in terms of aeroelasticity, blade surface pressures

were integrated over the displacement cycle to gauge the stability of the configuration, using

the energy method. Comparisons are made with experiment in Figure 6.54 for the differ-

ent flow models and geometric configurations. A positive damping coefficient indicates a

stable configuration and conversely a negative coefficient is unstable. Even though there

are discrepancies between simulation and experiment, the predictions of damping coefficient

compare well.

For the present case all the flow models and geometries predicted a similar damping co-

efficient, except for the 3-dimensional Euler simulations. Thus, the simplest model is able to

predict a similar aeroelastic stability of this configuration at the given flow conditions. This

is significant when simulation times and resource requirements are compared. The most so-

phisticated of the models for an inter-blade phase angle of 180 degrees was the 3-dimensional

geometry with tip gap and Navier-Stokes flow model. The simplest model considered was

with the 2-dimensional configuration with the Euler flow model. The former required 200

times the CPU time, 2.5 times the number of processors and 20 times the memory as the

latter.

The most significant 3-dimensional effects were found to be due to the choking of the

flow close to the cascade hub. This effect will be investigated in the following section for

flow conditions at higher outlet Mach number.
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(a) Inviscid. Euler simulation.
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(b) Navier-Stokes simulation without tip gap model.

|Cp|1)|: 0 10203040506070

(c) Navier-Stokes simulation with tip gap model.

Figure 6.52: STCF 4, IBPA = 180°, first harmonic magnitude of unsteady pressure coeffi-
cient on suction for different models.
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(a) Inviscid, Euler simulation.
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(b) Navier-Stokes simulation without tip gap model.
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(c) Navier-Stokes simulailon with tip gap model.

Figure 6.53: STCF 4, IBPA = 180°, phase of first harmonic of unsteady pressure coefficient
on suction for different models.
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Figure 6.54: STCF 4, Test 627, damping coefficient for different configurations over a range
of inter-blade-phase-angles.

6.3.3 Transonic Cascade

This test is known as Test 628 and involves the same geometry as Test 627, with different

flow conditions and displacement amplitude - these are tabulated in Table 6.7. The most

significant difference is the supersonic outlet conditions, leading to transonic flow within

the turbine cascade passage. Visualisation of the flow in the form of Schlieren photographs

was performed by the researchers. They identify the presence of a relatively strong passage

shock. As with Test 627, the aeroelastic characteristics of this case will be investigated

through 2-dimensional and 3-dimensional, Euler and Navier-Stokes simulations.

Condition
Typical Reference Velocity
Bending mode direction
Bending mode amplitude at hub
Bending mode amplitude at midspan
Bending mode amplitude at casing
Reynolds number
Outlet Mach number
Reduced frequency

Experiment
65 m/s
63.0°
3.]5xl0~ 3

4.03 xlO~3

4.91 x 10~3

5.9 xlO5

1.43
0.0779

Table 6.7: Aeroelastic parameters for Standard Configuration 4, Test 628.
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ity Flow

During a grid dependence study it was found that whilst the orthogonal H-grid was ad-

equate for modelling the subsonic cases, it had some major deficiencies when applied to

the modelling of transonic cascade flow. A comparison between the passage Mach number

distribution and cell distribution for 2-dimensional steady simulations with an outlet Mach

number of 1.4 is shown in Figure 6.55 for the two different types of mesh geometries. Each

mesh has a comparable cell count, with the O-H grid having 152 cells and the orthogonal

H-grid having 160 cells on the blade surface, respectively. The most notable difference is the

resolution of the trailing edge shock. The wake region in the case of the orthogonal H-grid is

also less distinct. This was the most compelling reason for the use of the O-H mesh for the

modelling of this flow regime. It was suspected that the low resolution of this region could

lead to inaccuracies in the reproduction of the unsteady flow field close to the trailing edge.

An O-H mesh was further refined in the throat region, which led to better resolution

of the passage shock. A simulation involving the new mesh of four times the number of

cells exhibited shock-induced boundary-layer separation at about 70% of chord on the blade

suction-side. A mesh of twice the density was produced involving 85000 cells per span-

wise plane and 736 cells on the blade surface, displayed little further change in results. The

surface pressure coefficient for these two meshes is shown in Figure 6.56. There is some

difference in the separation region, however the distribution through the passage shock at

70% chord is similar between the two simulations.

To obtain a similar blade loading to experiment, the inlet flow angle was increased from

-12 to -26 degrees. It is assumed that the average values measured in the experiment at

10% axial chord from the leading edge were under the influence of the blade and that since

the inlet of the cascade in the simulation was further upstream a different flow angle was

appropriate.

Pseudo-Schlieren distributions of the simulated flow field may be represented by contours

of density gradient (defined as Vp). They are useful for identifying shock features, wake

regions and boundary layers in compressible flow. Comparisons of this quantity for the

coarse and fine meshes showed that they were similar for the 2-dimensional simulations, with

little difference between the flow features. The plot in Figure 6.57 showing the trailing edge

region of the two dimensional simulation, shows the flow separation on the blade suction-

side. The contours of Mach number are plotted and the streamlines help to identify the

separation zone.

A comparison of the surface pressure coefficient at mid-span for the 3-dimensional, the

2-dimensional Navier-Stokes and Euler simulations is made in Figure 6.58. Both Navier-

Stokes simulations predict the impingement of the passage shock on the blade suction-side

at about 65% chord, with the position predicted by the 2-dimensional simulation slightly for-

ward of that predicted by the 3-dimensional simulation. The 2-dimensional Euler simulation
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(a) Orthogonal H-grid Mach distribution. (b) Hybrid O-H "rid Mach distribution.

(c) Orthogonal H-grid. (d) Hybrid O-H grid

Figure 6.55: Comparison of transonic How fields for two different mesh geometries.
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Figure 6.56: Grid dependency of 2-dimensional grid for Test 628.

Figure 6.57: STCF4, Test 628, separation region on trailing edge of blade for 2-dimensional
simulation.



CHAPTER 6. TURBINE CASCADE SIMULATIONS 168

-10

o

-20

-30

• Experiment 50% span (P. Side)
• Experiment 50% span (S. Side)

— Euler2D
— NS2D
• - • NS 3d 50% span

. I • l
0.2 0.4 0.6

Chord
0.8

Figure 6.58: STCF 4, Test 628, comparison of steady pressure coefficient for the 2-
dimensional and 3-dimensional simulations.

predicts the shock impingement further forward again, at 60% chord. In the experimental

results shown in the same figure, it appears that the passage shock impinges on the blade at

50% of chord, given that the passage shock is identified by a local minimum in the surface

pressure coefficient. It is not obvious whether the experimental results involve a separation

zone at the trailing edge. Experiments in a linear cascade at the higher outlet Mach number

of 1.68 (Boles & Fransson, 1986) show what appears to be a separated zone after the passage

shock on the suction-side in a plot of surface isentropic Mach number.

The Sehlieren distributions in Figure 6.59 were calculated for the 2-dimensional and 3-

dimensional Navier-Stokes simulations to identify differences between the two results. The

Sehlieren distribution for the 3-dimensional case is at mid-span. The flow is quite complex

and involves a number of different phenomena. Both the 2-dimensional and 3-dimensional

simulations exhibit similar features although the geometry is different.

In the 2-dimensional case the point of flow separation coincides with the passage com-

pression shock at about 70% chord. An oblique shock wave emanates from the separation

point at -30 degrees from the machine axis. The shear layer is thick on the outside of the

separation bubble, much thicker than on the blade surface before the point of separation.

Another oblique shock wave extends from the blade trailing edge towards the outlet at an

angle of -20 degrees from the machine axis. The wake is characterised by a fork like region,

extending in the flow direction from the trailing edge.

The 3-dimensional simulations differ in the point of separation and the geometry of

the shock waves. The passage shock is also visible but does not coincide with the sepa-

flfc
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ration point on the blade suction-side - the flow separates further down stream at about 85%

chord. A shock wave also occurs at the point of separation at a similar angle to that in the

2-dimensional case.

A 3-dimensional contour plot of steady pressure coefficient for the blade suction-side is

shown in Figure 6.60. In the trailing edge region of the blade in the figure, the green region

represents the separation bubble - this is where the flow has negative axial velocity at the

first mesh point adjacent to the blade surface. The pressure distribution varies significantly

in the span-wise direction from mid-chord towards the trailing edge, as does the size of the

separation bubble. Upon inspection, the flow in the circumferential plane at the 25% span

region more closely resembles the 2-dimensional simulation compared with the mid-span

3-dimensional distribution.

The span-wise variation in pressure coefficient is also compared with experimentally

measured values in Figure 6.6 L Once again, the impingement of the passage shock on the

blade suction-side is identified by a local minimum in the pressure coefficient, in the neigh-

bourhood of mid-chord. The point of impingement of the passage shock in the simulation

is 70% chord at 25% span, 65% chord at mid-span and 55% chord at 75% span. It is more

difficult to identify the position of the shock in the experimental measurements due to a lack

of resolution. At 25% span the shock may be at about 65% chord, at mid-span at 50% chord

and at 75% span at 45% chord. The simulation predicts a shock position that is 10% fur-

ther aft on average than the experiment. Therefore, the in-passage flow conditions in the

simulations are at higher Mach number than in the experiment.

There are some differences between the steady simulations, between the 2-dimensional

and 3-dimensional simulations, and also with experiment. The next section investigates

the way in which these differences affect the results for the simulations of the aeroelastic

configuration. The surface pressure distribution for the 3-dimensional case does not vary

linearly with span, as it does for the subsonic case. Therefore 2-dimensional geometries will

not describe sufficiently similar flow conditions. The way in which this affects the aeroelastic

stability of the configuration is investigated in the following section.

Aeroelastic Simulations

Due to the higher density of the mesh required to resolve the passage shock, only an inter-

blade phase angle of 180 degrees is investigated for this Test, given the limits of the available

computer resources. Significant differences were found in the flow features and steady pres-

sure distribution for this test between different models and geometries. Once again different

flow models and geometries are compared.

A comparison is made between Euler and Navier-Stokes simulations for 2-dimensional

and 3-dimensional simulation models in Figures 6.62-6.64. For the peak unsteady pressure

on the blade suction-side at 20% chord, there is some deviation between the 2-dimensional
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(a) 2-dimensional simulation.

(b) 3-dimcnsional simulation, at mid-span.

Figure 6.59: Comparison of Schlieren plots.
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Figure 6.60: STCF 4, Test 628, steady pressure coefficient and separation bubble on suction-
side of the 3-dimensional simulation.
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Figure 6.61: STCF 4, Test 628, the span-wise distribution of steady pressure coefficient on
blade surface.
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Figure 6.62: STCF 4, Test 628, IBPA = 180°, first harmonic magnitude of unsteady pressure
coefficient on suction-side at mid-span.

and 3-dimensional geometries. In the forward half of the blade, the predictions of unsteady

pressure phase compare well with experiment for both models and both surfaces.

Beyond mid-chord on the blade suction-side, however, there are more significant dif-

ferences. The passage shock is evident in the experiment and simulation results by a local

maximum on the blade suction-side between 60% and 70% chord. The 2-dimensional Eu-

ler simulation predicts the shock impingement position closest to the experiment as it did

in the steadv simulations. For the 2-dimensional Navier-Stokes simulations it is difficult to

distinguish between the shock impingement and the separation point at 70% chord. The

3-dimensional Navier-Stokes simulation predicts the impingement at about 65% chord as in

the steady simulation. The flow separation is the cause of the second maximum at about 85%

chord.
On the blade pressure side, the magnitude of the pressure coefficient in Figure 6.63 com-

pares well with experiment up until the midchord region. Beyond the mid-chord region, all

of the simulations underpredict the magnitude, by more the 50% close to the trailing edge.

There are significant differences in phase in Figure 6.64 for the flow models on the blade

suction-side towards the trailing edge, however the 3-dimensional result gives the best pre-

diction of phase in this region. In the experiment, the phase on the blade suction-side re-

turns to similar values to the forward section after the neighbourhood of the passage shock,

whereas both 2-dimensional fluid models predict a phase almost half a cycle from the exper-

imentally measured value.
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Figure 6.63: STCF4, Test 628, IBPA = 180°, first harmonic magnitude of unsteady pressure
coefficient on pressure-side at mid-span.
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Figure 6.64: STCF 4, Test 628, IBPA - 180°, phase of first harmonic of unsteady pressure
coefficient at mid-span.



CHAPTER 6. TURBINE CASCADE SIMULATIONS 174

Figure 6.65: STCF 4, Test 628, IBPA = 180°, blade unsteady surface pressure magnitude
distribution.

The distribution on the blade of the unsteady pressure and phase for the 3-dimensional

Navier-Stokes simulation is shown in Figures 6.65 and 6.66. The separation line is visible

in both plots towards the blade trailing edge. The impingement of the passage shock is also

visible in the plot of phase, as a local maximum at 70% chord. Due to the span-wise dis-

tribution of the unsteady pressure, it is doubtful whether a 2-dimensional simulation could

reproduce the distribution at a particular span, as is supported by the 2-dimensional simula-

tions presented.

Given that only one inter-blade phase angle was considered, it is difficult to draw con-

clusions on the predictive ability of the simulations in terms of the damping coefficient.

Nonetheless, a comparison is made between the different configurations for damping co-

efficient in Figure 6.67. Even though the 3-dimensionai Navier-Stokes simulation predicts

a significant difference in the peak unsteady pressure magnitude at 20% chord, the damp-

ing coefficient it predicts is closest to experiment since the damping coefficient is mostly

determined by phase angle.

Clearly, the shock induced boundary layer separation or any other flow separation on the

blade suction-side cannot be well predicted by the inviscid simulations. However it is not

clear whether this behaviour should be expected at these flow conditions. The prediction of

flow separation involves characteristics that probably cannot be predicted by the present flow

models due to the following reasons:

• Separation point position, existence of bubble - affected by turbulence model and

resolution of viscous passage flow.

• Width of unsteady pressure spike from passage shock, due to lack of mesh resolution.
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Figure 6.66: STCF 4, Test 628, IBPA = 180°, blade unsteady surface pressure phase distri-
bution.
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• Shedding due to flow separation.

• Amplitude of unsteady pressure across shock.

Shedding of the separation bubble could lead to further increases in the unsteady pressure,

movement of the passage shock and differences in phase in the separated region. This prob-

ably cannot be resolved by the present spatial and temporal resolution. Different behaviour

could occur depending on the phase of the shedding with respect to the blade motion.

The suitability of the turbulence model under the present conditions needs to be better

understood. Other authors have investigated the performance of turbulence simulations with

separated flow with mixed results (Fransson et al, 1998).

The design engineer may not be interested in the behaviour of the separated flow. How-

ever the point of onset of flow separation may be important so that it can be avoided. In the

present case it is possible that shock-induced boundary-layer separation is predicted where

in reality it would not occur. Deficiencies in the turbulence model could be an important

factor in determining the appearance of the separated flow, however other factors could be

as equally important, such as the detailed specification of flow conditions at the boundaries.

This includes effects such as leakage at hub shrouds and the flow conditions at the simulation

inlet and outlet planes.



Chapter 7

Conclusions and Future Work

A computational tool has been developed to simulate 3-dimensional transonic, viscous and

unsteady flow. The important requirements of the implementation included a flexible parallel

solution capability, so that well resolved studies into aeroelastic cascade simulations could

be undertaken. The code was developed from a single passage and single block, steady

Navier-Stokes solver with the k-co turbulence model.

During the development of the code, the data structure was completely restructured to

make it suitable for a multiple block solution method. This was combined with the extensive

use of high level data structures in Fortran-90 for a more object oriented approach. A number

of high level message passing structures were also used in keeping with the data structure.

An unstructured approach to the multiblock method provided flexibility and allowed the use

of the latest structured turbomachinery meshes and the simulation of tip gap regions. This

resulted in a sophisticated, efficient and compact implementation.

With the implementation of the unsteady routines, the data structure and the multiple

block and parallel method, each component was validated through comparison with theoret-

ical, experimental and other numerical results. This provided the confidence in the method

so that it could be applied to the more complicated turbomachinery configuration.

The parallel efficiency of the implementation was investigated. Traditional methods in-

dicated super scalar speed-up, where the sum of the computation time for the parallel simu-

lation was less than for a simulation on a single processor. This is not unusual and is due to

the computer architecture. Gustafson's and Ware's laws were also used to evaluate parallel

efficiency. While these no longer indicated super-scalar speed-up, it is difficult to establish

the most useful measure. A single coefficient is not sufficient to represent and analyse the

complexities that implementation and architecture impose on parallel efficiency.

The importance of viscous flow behaviour on aeroelasticity has been investigated through

the simulation of a number of turbine cascade configurations, under different flow regimes.

The cases were selected due to the availability of 3-dimensional experimental results.

The nature of the behaviour of the tip gap flow for the low-subsonic cascades was in-
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vestigated and compared with other simulation results. It was found that the present tip gap

flow may be described as being similar to a jet flow model, something disputed by other

researchers for another turbine cascade configuration. Results with the tip gap model exhib-

ited significant local variations in the steady pressure coefficient in the neighbourhood of the

blade tip and an overall decrease in blade loading.

Aeroelastic simulations were undertaken for different tip gap lengths for the low-subsonic

case. The trend of the magnitude of unsteady pressure compared well with the experimen-

tal observations. As with the steady simulations, the tip gap flow imposed local variations

in the unsteady pressure close to the blade tip. Configuration aeroelastic stability was also

investigated through the damping coefficient. This compared well with experiment for the

simulations with the tip gap and the simulation without the tip gap model tended to over

predict the damping coefficient.

The behaviour of aeroelastic configurations involving high subsonic and transonic flow

was investigated through the simulation of Standard Configuration 4 at a number of different

conditions. Viscous effects and cascade configuration geometry were examined through the

comparison of 3-dimensional and 2-dimensional geometries, and Euler and Navier-Stokes

results for a range of inter-blade phase angles. While the tip gap model did not significantly

change the overall aeroelastic behaviour of the simulated configuration, it did have a dis-

cernible impact on the distribution of the unsteady pressure on the blade surface. In the

Navier-Stokes simulations without the tip gap, the signature of the casing vortex was clearly

observed towards the blade trailing edge on the suction side. For the unsteady pressure dis-

tribution for the simulation with the tip gap model, the effect of the passage vortex was less

evident. Thus the tip gap leakage reduces the impact of the passage vortex on the unsteady

pressure distribution for the simulation.

The 2-dimensional simulations made adequate predictions of the unsteady pressure and

damping coefficient that were similar to the 3-dimensional simulations. Thus 3-dimensional

effects were insignificant in this case.

The flow behaviour in cascade simulations in the transonic regime differs from the high-

subsonic case due to the presence of the passage shock. The grid resolution and geometry

required for the simulation of this case necessitated the use of an O-H mesh, rather than the

orthogonal H mesh used for the other turbomachinery simulations. Highly 3-dimensional

flow features were noted in both the steady and unsteady surface pressure distributions. Invis-

cid Euler and Navier-Stokes simulations were performed and significant differences existed

between the two, and 3-dimensional Navier-Stokes simulations. Shock boundary interac-

tion caused separation of the boundary layer towards the blade trailing edge; this was the

most significant physical difference between the three simulations. This type of behaviour

cannot be predicted by an inviscid model. It also results in a highly 3-dimensional flow in

the annular cascade, thus 2-dimensional Navier-Stokes configurations are also not suitable
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for analysis. The 3-dimensional Navier-Stokes simulation provided a prediction of phase

the closest to the experiment of the configurations, although the shock position and peak

unsteady pressure magnitude deviated from the experimental results. Nonetheless, the 3-

dimensional Navier-Stokes simulation provided a prediction of damping coefficient closest

to experiment, for an inter-blade phase angle of IBPA = 180°.

The simulations of transonic cascade flow may be beyond the prediction capability of

the present Navier-Stokes flow model. Shock boundary layer interaction is a very challeng-

ing phenomenon to model due to uncertainties in turbulence modelling, particularly for the

unsteady periodic flow investigated in Chapter 6. The shedding of the separation bubble be-

hind the shock may cause a different unsteady surface pressure distribution, and this is not

predicted by the present simulations.

Further work needs to be undertaken to understand how well the present implementation

simulates shock boundary layer interaction. This may concentrate on the turbulence model,

for more simple configurations. The predictive capability for the turbulence model under

strong adverse pressure gradient, conditions which are found on the suction side of the blade,

are still under question. This issue requires further research.

Simulations have been undertaken of the behaviour of aeroelastic configurations of turbo-

machinery cascades. These have been compared with experiment and a number of different

aspects of cascade flow has been discussed. Their effect on the aeroelastic characteristics

of the cascade has been investigated. Whilst the present approach may be beyond the so-

phistication required for parameter studies used in industry, it provides a starting point for

the understanding of the flow phenomena. The 2-dimensional investigations could be used

in parameter studies, and the 3-dimensional approach used to validate particular cases of

interest.
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