
fOU

be
to
of

note

ON.

MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE

REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

16March2004

[made

or in

of my

Sec. Research Graduate School Committee
Under the Copyright Act 1968, this thesis must be used only under the
normal conditions of scholarly fair dealing for the purposes of
research, criticism or review. In particular no results or conclusions
should be extracted from it, nor should it be copied or closely
paraphrased in whole or in part without the written consent of the
author. Proper written acknowledgement should be made for any
assistance obtained from this thesis.

tguish
Setails,



Any other publications: Ralf H. Reussner, Iman H. Poernomo,
Heinz W. Schmidt, Reasoning about
Software Architectures with
Contractually Specified Components,
in Alejandra Cechich, Mario Piattini
and Antonio Vallecillo (Eds.)/
Component-Based Software Quality:
Metholds and Techniques, State-of-
the-Art Survey, Lecture Notes in
Computer Science LNCS 2693, Springer
2003, ISBN 0302-9743, pp. 287-326.

Iman Poernomo, Ralf Reussner, Heinz
W. Schmidt, Architectures of
Enterprise Systems: Modelling
Transactlonal Contexts, Proceedings
of the First IFIP/ACM Working
Conference on Component Deployment
(CD 2002), Lecture Notes in
Computer Science LNCS 237 0, Springer
2002, ISBN 3-540-43847-5, pp. 233-
243.

Iman Poernomo, John N. Crossley,
Fred: An Approach to Generating Real,
Correct/ Reusable Programs from
Proofs, Journal of Universal Computer
Science, Volume 7, Number 1, Springer
2001, pp.71-88 (Contribution: 50%)'

H. Schmidt, Iman Poernomo, Ralf
Reussner, Trust-By-Contract:
Modelling, Analyzing and Predicting
Behavior In Software Architectures,
Journal of Integrated Design and
Process Science, Volume 5, Number 3,
SDPS Press 2001, pp.25-51

Iman Poernomo, John N. Crossley,
Martin Wirsing, Programs, Proofs and
Parameterized Specifications, in
Maura Cerioli, Gianna Reggio (Eds.),
Recent Trends In Algebraic
Development Techniques, 15th
International Workshop, WADT 2001,
Joint with the CoFI WG Meeting,
Genova, Italy, April 1-3, 2001,
Selected Papers. Lecture Notes in
Computer Science LNCS 2267 Springer
2001, ISBN 3-540-43159-4, pp. 280-
304.

Iman roernomo, Heinz Schmidt, An
Architectural Description Language
for Enterprise Computing, in Working
Conference on Complex and Dynamic
Systems Architecture, Brisbane,
Australia, 12-14 December,

4.



4. Declaration by candidate

Candidate's signature:

Distributed Systems Technology
Centre, ISBN: 1864995823, 2001

Ananda Poernomo, Iman Poernomo,
Mosaic : Functional Programming for
Set Theoretic Composition, in
Proceedings of the Second
International Conference on
Generative Systems in the Electronic
Arts, Victoria, Australia, 5-7
December 2001, Centre for Electronic
Media Art, Vic, Australia, ISBN: 0-
7326-2195-X, 2001, pp 67-81.
(Contribution: 50%)

Iman Poernomo, John N. Crossley,
Protocols between Programs and
Proofs, in Kung-Kiu Lau (Ed.), Logic
Based Program Synthesis and
Transformation, 10th International
Workshop, LOPSTR 2000 London, UK,
July 24-28, 2000,
Lecture Notes in
LNCS 2042 Springer
42127-0, pp. 18-37.

Selected Papers.
Computer Science
2001, ISBN 3-540-

John N. Crossley, Iman Poernomo,
Martin Wirsing, Extraction of
Structured Programs from
Specification Proofs, in Didier Bert,
Christine Choppy, Peter D. Mosses
(Eds.), Recent Trends in Algebraic
Development Techniques, 14 th
International Workshop, WM)T '99,
Chateau de Bonas, France, September
15-18, 1999, Selected Papers. Lecture
Notes in Computer Science LNCS 1827
Springer 2000, ISBN 3-540-67898-0,
pp. 419-437

Date:



Variations on a theme of Curry and Howard:

The Curry-Howard isomorphism and the proofs-as-programs paradigm

adapted to imperative and structured program synthesis.

bv

Imaii Hafiz Poernomo, BA, BSci(Hons)

Dissertation

Submitted by Iman Hafiz Poernomo

for fulfilment of the Requirements for the Degree of

Doctor of Philosophy (0190)

in the School of Computer Science and Software Engineering at

Monash U niversity

Monash University

2003

r }??•&$'*"



© Copyright.

by

Imaii Hafiz Poernomo

2003



Contents

List of Figures xii

Abstract xv

Acknowledgments xix

I Pro logue 1

1 Introduction 3

1.1 Proofs-as-programs 4

1.1.1 The Curry-Howard isomorphism 5

1.1.2 Naive proofs-as-programs G

1.1.3 State-of-the-art proofs-as-programs G

1.1.4 Related methods 9

1.2 Generalizing constructive synthesis 10

1.2.1 Research on adaptation 10

1.2.2 Generalizing constructive synthesis 11

1.3 Imperative programs 11

1.3.1 Hoare logic 12

1.3.2 Synthesis of imperative programs with functional return values . . . 13

1.3.3 Alternative approaches to synthesis 14

1.4 Structured specifications and programs 15

1.4.1 Reasoning about specifications 16

1.4.2 Refinement of specifications 17

1.4.3 Proofs-as-programs for function extraction and refinement 18

iii

•:4



1.5 Research contributions and overview 19

1.5.1 The Curry-Howard protocol 19

1.5.2 Proofs-as-imperative-prograins 19

1.5.3 Structured proofs-as-programs and structured program synthesis . . 20

1.5.4 Thesis organisation 20

II Generalizing proofs-as-programs 23

2 Functional program synthesis 25

2.1 Abstract data types 27

2.1.1 Signatures and lambda terms 27

2.1.2 Formulae 30

2.1.3 Specification of abstract data types 30

2.2 Intuitionistic logic 31

2.2.1 Judgements 31

2.2.2 Basic rules 31

2.2.3 Axioms and schemata 34

2.3 Logical Type Theory . , 35

2.3.1 Proof-terms 36

2.3.2 Basic type inference rules 36

2.3.3 Axioms and schemata 39

2.3.4 The Curry-Howard isomorphism 39

2.3.5 Reduction rules 40

2.3.6 Strong normalization 42

2.3.7 The Church-Rosser Property 42

2.4 Programs in SML 43

2.5 Program synthesis 45

2.5.1 Modified readability 45

2.5.2 Extraction map 48

2.5.3 Extraction from proofs with axioms and schemata 70

2.5.4 Relation between proofs and programs 73

2.6 Example: Password checking system 73

2.7 Discussion 77

iv

3 The Curry-Howard Protocol 78

3.1 From ontology to protocol 79

3.2 Formalizing the ontology . . . 81

3.2.1 Type theories 82

3.2.2 Logic 83

3.2.3 Logical type theory 85

3.2.4 Computational type theory 87

3.2.5 The Curry-Howard protocol 88

3.3 Using the protocol , . . . 89

3.4 Discussion 89

III Imperative proofs-as-programs 91

III Overview 93

4 Intuitionistic Hoare Logic 96

4.1 Signatures 98

4.1.1 Lambda terms 99

4.1.2 Evaluation 100

4.2 A subset of SML 101

4.2.1 Preamble 102

4.2.2 Pure SML programs 103

4.2.3 Terms of IML .104

4.2.4 Types of IML 105

4.2.5 IML is a computational type theory 106

4.3 Semantics of SML . . . 106

4.3.1 Data values 107

4.3.2 States 108

4.3.3 Operational semantics 108

4.3.4 Evaluation and return values 110

4.3.5 Relational semantics I l l

4.4 Formulae , 113

4.4.1 Terms 114

v



4.4.2 Well-formed formulae 115

4.4.3 Interpreting terms of Terms (E/,) . . . . . 1 1 6

4.4.4 Truths about side-effect relations 117

4.5 Calculus 119

4.5.1 Program/formula pairs 119

4.5.2 Rules 119

4.5.3 Axioms and schemata 121

4.5.4 Intuitionistic Hoare logic as a natural deduction system 124

4.5.5 Example: Electronic Banking System 125

4.6 Comparison to Hoare logic with triples and its extensions 130

4.6.1 Single formula versus Hoare triples 130

4.6.2 Hoare triples 130

4.6.3 Terms 130

4.6.4 Calculus 131

4.6.5 Equivalence of Hoare triples to program/formula pairs 131

4.6.6 Axioms and schemata 136

4.6.7 Nondeterministic assignment 136

4.6.8 Total correctness 136

4.7 Discussion 136

Prope r t i e s of Intui t ionist ic Hoare Logic 138

5.1 Model theoretic properties 139

5.1.1 Soundness with respect to SML semantics 139

5.1.2 Axioms and schemata 150

5.1.3 Soundness and completeness over general models 150

5.2 Proof-theory of Intuitionistic Hoare Logic 153

5.2.1 Pull form of the type theory for IHL 154

5.2.2 A logical type theory for int 154

5.2.3 Proof-terms 154

5.2.4 Typing relation 156

5.2.5 Axioms and schemata 156

5.2.6 The Curry-Howard correspondence 160

5.2.7 Proof normalization 160

vi

5.2.8 Strong Normalization and the Church-Rosser property 161

5.3 Example: Electronic Banking System (continued) 163

5.3.1 Axioms 163

5.3.2 Constructing the proof-term 164

5.3.3 Normalization 168

5.4 Discussion 169

6 Proofs-as- imperat ive-programs 170

6.1 Readability 173

6.1.1 Skolemization 173

6.1.2 Adapting modified realizability for specifying return values 175

6.1.3 Specifying side-effects and return values 176

6.2 Extraction 177

6.2.1 Assumptions about black-box programs and E^ 177

6.2.2 Extraction over intuitionistic proofs 179

6.2.3 Imperative program extracton 179

6.2.4 Preliminary results 180

G.2.5 Extraction yields visible side-effect equivalence 185

6.2.6 Extraction results 190

6.3 The Curry-Howard protocol for program synthesis 219

6.3.1 Logical and computational type theories 219

6.3.2 Conformance to the Curry-Howard protocol 219

6.3.3 Application of the protocol 220

6.4 Example: Electronic Banking System (continued) 220

6.5 Example: Synthesis of contracts 223

6.5.1 Design-by-contract 224

6.5.2 Synthesis of post-conditions in SML 225

6.5.3 Using flawed programs to build new programs . 226

6.5.4 Order processing system 226

6.6 Discussion 232

vii



IV Structured proofs-as-programs 233

IV Overview 235

7 Reasoning about Structured Specifications 239

7.1 Specifications 241

7.1.1 Many-sorted signatures 241

7.1.2 Terms and formulae 244

7.1.3 Structures 246

7.1.4 Interpretations of terms 246

7.1.5 Formula satisfaction 247

7.1.6 Basic specifications • 247

7.1.7 Semantics of basic specifications 250

7.2 Structured specifications 251

7.2.1 Specification expressions 252

7.2.2 Basic specifications 253

7.2.3 Translation 253

7.2.4 Union 254

7.2.5 Extension . 254

7.2.6 Hiding 255

7.2.7 Flattening structured specifications 257

7.3 Reasoning about CASL specifications . 259

7.3.1 Judgements .259

7.3.2 Logical rules 260

7.3.3 Structural rules 262

7.3.4 Reasoning with equality 263

7.3.5 Induction 266

7.3.6 Example: Password checking system 268

7.4 Soundness 270

7.5 Discussion 275

8 Proof-theoretic properties of SSL 276

8.1 A type theory for SSL 277

8.1.1 Proof-terms 277

viii

8.1.2 Types 278

8.1.3 Type inference rules 283

8.1.4 The Curry-Howard isomorphism 283

8.1.5 Proof-term information 284

8.1.6 Example: Password checking system 286

8.1.7 Full form of the logical type theory 288

8.2 Normalization and proof-term reduction 289

8.2.1 Reductions of logical rules 290

8.2.2 Moving structural rules 293

8.2.3 Reduction preserves derivability 294

8.2.4 Further possible reductions 295

8.2.5 Strong normalization. 297

8.3 The Church-Rosser Property 310

8.4 Discussion 322

9 Structured proofs-as-programs 323

9.1 Specifying and reasoning about SML programs 324

9.1.1 Extended signatures 325

9.1.2 Lambda terms 325

9.1.3 Sorting 327

9.1.4 Computational type theory 327

9.1.5 Operational semantics 327

9.1.6 Using SML lambda terms in CASL 329

9.1.7 Semantics of extended specifications 330

9.2 Realizability 331

9.2.1 Skolemization 332

9.2.2 Modular realizability 334

9.2.3 Extended realizers 335

9.3 Extracting modular realizers 335

9.3.1 The extraction map 336

9.3.2 Extracting modular realizers from modular proofs 338

9.4 Extracting extended realizers 356

9.4.1 Extensions via extraction of modular realizers . . . . 357

ix

iss:i:s



9.4.2 Nevvr ̂ \x]e§ for consistent extension 358

9.4.3 Making proofs modular 360

9.4.4 Extraction of extended realizers 361

9.5 Example: JVsv^ord checking system 362

9.5.1 ExtiVtiAg a modular realizer 363

9.5.2 Extracting an extended realizer • 365

9.6 The Curry-^ow^rd protocol for program synthesis 366

9.6.1 Logi^ri &\\d computational type theories • • 366

9.6.2 Coflt<?ri#alice to the Curry-Howard protocol 366

9.6.3 Application of the protocol 367

9.7 Discussion • 367

10 Generic specifications 3 6 9

10.1 Generic afl<i instantiated specifications , 370

10.1.1 Natt^d %ad generic specifications • • • 371

10.1.2 Instruction 373
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Variations on a theme of Curry and Howard:
The Curry-Howard isomorphism and the proofs-as-programs paradigm

adapted to imperative and structured program synthesis.
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Supervisor: Prof. John N. Crossley

Abstract

The Curry-Howard isomorphism says that intuitionistic logic can be presented as a con-
structive type tlieory in which proofs correspond to terms, formulae to types, logical rules
to type inference and proof normalization to term simplification. In order to represent in-
tuitionistic proofs, terms of the constructive type theory contain constructive information
used to prove formulae. This information can be used to synthesize correct, error-free pro-
grams from proofs. Such approaches to program synthesis, based upon the Curry-Howard
isomorphism, consistute the area referred to as the proofs-as-programs paradigm.

The advantage of proofs-as-programs techniques is that the task of programming a function
is reduced to reasoning with domain knowledge. After more than 30 years of research,
proofs-as-programs constitutes a mature field with an established tlieory and set of best
practices. State-of-the-art approaches to proofs-as-programs usually involve some form
of optimization and extraction strategy, transforming intuitionistic proofs to a commonly
used functional programming language that can encode a simply typed lambda caclulus,
such as SAIL. Scheme or Haskell.

Wbrk has been done in providing analogous results to the Curry-Howard isomorphism and
proofs-as-programs for other logical systems and programming languages. However, little
work has been done in identifying a general framework that generalizes the form such
analogies should take over arbitrary logical calculi and programming languages. Such
a framework is useful because it can then be used to guide how to go about adapting
proofs-as-programs to new contexts.

This thesis defines such a framework, which we call the Curry-Howard protocol. It requires
an analogous property to the Curry-Howard isomorphism to hold between a given logic
and type theory. However, generalizing state-of-the-art approaches to proofs-as-programs.
the protocol requires an optimization and extraction strategy from proofs represented in
the logical type tlieory to programs in a separate programming language. While program
synthesis methods have been developed that conform to our protocol, such a framework
has not been explicitly identified previously.



We then use the protocol to show how proofs-as-programs can be adapted to two different

contexts.

« Proofs-as-imperative-programs. The Hoare logic provides a method for the simulta-
neous development of imperative programs and proofs of their properties. We adapt
proofs-as-programs to the Hoare logic for the purpose of extending it to developing
imperative programs with side-effect-free return values and views on state.

• Structured proofs-as-programs. Structured algebraic specifications are an approach
to the compositional design of software systems based on the development of data
types. There are proof systems that enable us to reason about structured specifica-
tions. We develop such a system and use proofs-as-programs-style techniques for the
synthesis of programs from proofs about specifications, and the eventual refinement
of specifications into structured code.

These adaptations constitute an exemplary justification for the applicability of the protocol

to different contexts.
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Chapter 1

Ultimately, we would like to solve problems by building well-structured, comprehensible,
correct programs, solely through the application of domain knowledge. The proofs-as-
programs paradigm has been proposed as a means of achieving this goal. These methods
use constructive, intuitionistic logic and the Curry-Howard isomorphism to generate cor-
rect programs from proofs of their specifications [CMH86, HKPM97, CS93, PCOl]. The
programs generated are pure functions (stateless programs written in languages such as
SML, HaskelL Scheme or LISP). The advantage of these techniques is that the task of
programming a function is reduced to reasoning with domain knowledge.

After more than 30 years of research, proofs-as-programs constitutes a mature field with
an established theory and set of best practices.

However, an open area of research concerns the possibility of adapting proofs-as-programs
to other programming paradigms and logics. Such an adaptation could leverage the suc-
cesses of proofs-as-programs in correct, domain-knowledge-oriented development, for a
wider range of programming and reasoning contexts.

In this thesis, we show how proofs-as-programs can be adapted to two different contexts:

• Proofs-as-imperative-programs. The Hoare logic of [Hoa69] provides a method for
the simultaneous development of imperative programs and proofs of their properties.
We adapt proofs-as-programs to the Hoare logic for the purpose of extending it to
the synthesis of imperative programs with side-effect-free return values and views on

Structured proofs-as-programs and structured program synthesis. Structured alge-
braic specifications are an approach to the compositional design of software systems
based on the development of data types [Wir90, CoFOl]. One important area of
research is proof systems that enable us to reason about these specifications. We
develop such a system and use proofs-as-programs-style techniques for the synthe-
sis of programs from proofs about specifications, and the eventual refinement of
specifications into structured code1.

3
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4 Chapter 1: Introduction

Proofs-as-programs consists of a number of approaches, and it is not immediately clear
what should constitute an adaptation. Part of this thesis is therefore concerned with
defining a framework for generalizing a specific constructive program synthesis approach
over a range of possible logics and programming languages. This framework is then used
to adapt this approach to the required contexts.

1.1 Proofs-as-programs

Proofs-as-programs methods enable the synthesis of programs using constructive type
theory and the Curry-Howard isomorphism. These methods may be more widely classified
as deductive methods of program synthesis, following Tyugu [Tyu88, p. 8]. In deductive
synthesis, a program that solves a problem is derived from the deduction of solvability of
the problem. This is in contrast to, for example, refinement-based methods of synthesis,
where programs are derived by means of verified transformation steps from an abstract
model.

In proofs-as-programs, correct functional programs are synthesized from intuitionistic
proofs of specifications. For instance, if a proof of Vx : t ® 3y : s • A(x, y) is given, then
a computable function / can be synthesized from the proof. The function is a "correct"
program in the sense that V.T : t • A(x, f(x)) is satisfied [How80].

This sense of correctness corresponds to a form of constructive realizability in the sense
defined by Kreisel [Kre59, BS95a, Dil80]. (See Appendix A for an overview of intuitionistic
logic, constructive type theory and and realizability.) The correctness property is guar-
anteed to hold because / is synthesized from the constructive content of the intuitionistic
proof. Prom the perspective of the designer, implementation details are hidden, encap-
sulated as the constructive content of the proof. Programs are developed solely through
reasoning with domain knowledge encoded as axioms and theorems of intuitionistic logic.

By the property known as the Curry-Howard isomorphism, a form of type theory can
be used to represent intuitionistic proofs, storing constructive content from which it is
possible to synthesize correct, realizing programs.

The proofs-as-programs paradigm has evolved over time, from what we classify as naive
approaches, to sophisticated, state-of-the-art approaches. The former approaches use con-
structive type theory as a programming language itself, and realizability to define program
correctness. In the latter approaches, a proof is transformed and optimized into a program
of a commonly used functional programming language (such as Scheme. SML or Haskell).
A different notion of correctness is employed, which is obtained by modifying the concept
of realizability to apply between functional programs and formulae.

In this thesis, we will be concerned with the adaptation of state-of-the-art approaches to
different logical and programming context,!-..

Proofs- as-programs 5

1.1.1 The Curry-Howard isomorphism

Proofs-as-programs is based on the the Curry-Howard isomorphism. This property tells
us that intuitionistic logic can be represented by a, kind of type theory where proofs corre-
spond to terms, formulae to types, logical rules to type inference, and proof normalization
to term simplification. The original idea was first described by Curry [Cur34] and extended
to intuitionistic first order logic by Howard [How80].

Essentially, a constructive type theory corresponding to intuitionistic predicate logic is a
typed lambda calculus with dependent product and sum types, and disjoint unions. The
rules of natural deduction then have corresponding type formation rules.

Example 1.1. The formula (A V B) in intuitionistic logic can be considered as a disjoint
union type of constructive type theory. The (V-Ii) rule of intuitionistic natural deduction
corresponds to a typing rule

P H

The rule tells us that the term inl(p) is correctly typed by (A V B), provided that p is
typed by A.

Example 1.2. The (V-I) rule of natural deduction for first order intuitionistic logic with
arithmetic corresponds to a typing rule

f v
T\~\x.p *X9A

The rule tells us tha t Xx.p is correctly typed with Va; © A, provided tha t p is typed by
A[y/x]. The formula Vx • A is taken as a dependent product type, by virtue of the type
inference rule corresponding to (V-E):

P \- (pa)A[a/x]

This is the elimination rule for dependent product types, showing that Var« A parametrizes
the type A over possible instantiation by a term a.

First order, and many-sorted, logics have straightforward type theories - see, for instance,
the type theory of Schwichtenberg in [Sch99b, pp. 1-13]. Crossley and Shepherdson
(CS93J provide a constructive type theory that was extended by Crossley and the author in
jPCOl, CP01] to be modular over sorts (with datatypes such as natural numbers, booleans
and lists

The Curry-Howard isomorphism can also be applied to a range of fully higher-order con-
structive type theories, each corresponding to a different form of intuitionistic logic that
permits predication over logical formulae. The predicative type theories of Martin-Lof
[ML75, ML84] restrict quantification according to hierarchies of type universes. In con-
trast, the impredicative type theories of, for instance, Girard [Gir72j, Reynolds [Rey74] and
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Coquand [MLM90] permit quantification over types to form a type itself. See Appendix A
for more background details.

1.1.2 Naive proofs-as-programs

The earliest proofs-as-programs approaches directly invoke the Curry-Howard isomor-
phism to extract programs by identifying terms of constructive type theory with programs.
We classify these approaches as naive, because they directly take constructive type theory
as a programming language, rather than synthesizing programs in a conventional language.

The idea is simple, following directly from the properties of type theory. The terms of a
constructive type theory constitute a lambda calculus which is equipped with reduction
rules. By the isomorphism, the closure of these reduction rules corresponds to proof
normalization. Also, these rules, considered as an operational semantics, permit us to
regard the type theory as an executable functional programming language. A formula
is considered as a specification of input/output behaviour, and realizability defines how
a program satisfies a specification. By constructing a realizing proof we simultaneously
provide an algorithm that satisfies the specification.

Thus a proof can be viewed as an executable, functional program.

This style of proofs-as-programs has been defined for higher-order predicative type theories
by Martin-L6f [ML85] and by Constable and Mendler who implemented it in the Prl and
Nuprl systems [BC85, CMH86]. Program synthesis of this form has also been defined for
the impredicative Calculus of Constructions by Coquand and Huet in [CH88], implemented
in the Coq system. (See Appendix A for an overview of these higher-order type theories.)

Example 1.3. For example, given an intuitionistic proof of Vx : t • 3y : .s • A(x,y), we can
form a corresponding term p in a Martin-L6f type theory of the form

If we define

Ax : t.{gi ( x ) : s , g2(x) : A(x, y)) : Vx itmly : s • A{x, y)

f == Xx : t.7Y\(p x)

(where m is the first projection) then / is considered a program such that, on every input
x : t, {fx) terminates and \/x : I • A{x, {fx)) is satisfied, and is consequently a correct
program corresponding to a proof of the specification. The former item holds because it
is possible to show that the terms are strongly normalizing, while the latter item is true
because the terms form rcalizers for types.

1.1.3 State-of-the-art proofs-as-programs

There are practical limitations to the use of the constructive type theories used in naive
approaches. These concern the efficiency and usability of resulting programs: terms of
a constructive type theory generally contain computationally irrelevant information, and
have types that are only representable in experimental programming languages.
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Commonly used functional programming languages, such as SML, Haskell or Scheme do
not have dependent sum and product type constructors. But these constructors are es-
sential for defining types that correspond to first-order and many-sorted formulae such as
Vx : tm3y : smA(x. y). Consequently, to execute a realizing, inhabiting term, a custom-built
compiler or interpreter for the type theory must be written. This is the situation for the
Nuprl and Coq systems. Currently these implementations are not bytecode compilers but
are rather interpreters encoded within a conventional functional programming language,
which is, in turn, interpreted rather than compiled. For larger scale practical programming
problems, this can result in inefficient code that is not reusable or maintainable.

A further problem is that lambda terms corresponding to intuitionistic proofs often encode
irrelevant, non-constructive information. Such irrelevant information is introduced when
proving Harrop formulae [HarGO].

Example 1.4. The atomic formula y = 2 * x is Harrop. Given an intuitionistic proof of
Vx : int • 3y : int * y = 2 * x, we might form a corresponding term p in a Martin-L6f type
theory of the form

Ax : int.(2 *£,<?) : Vx : int • 3y : int • A(x, y)

The number 2 * x is the witness term for the y in the existential statement. The term p
denotes the proof that 2 * x can stand for y in y = 2 * x and give a true statement. The
witness term is the constructive information in the proof and, consequently, is of interest
to us. The term q is irrelevant from a computational perspective (but, of course, relevant
from a logical view).

To solve these problems, later proofs-as-programs approaches distinguish between proofs of
specifications and the programs that are ultimately obtained. We refer to these approaches
as state-of-the-art (SOA) proofs-as-programs.

These approaches still use the Curry-Howard isomorphism for representing proofs within
a constructive type theory. However, they do not treat the constructive type theory as a
programming language. Term simplification is not identified with program execution but,
instead, only with simplification of the corresponding proof.

SOA approaches synthesize programs of a commonly used functional programming lan-
guage, such as SML, Scheme or Haskell. This is done by means of an extraction map from
proofs (terms of the constructive type theory) to programs (of the functional language).
The resulting programs satisfy the proved formulae (type of the term) according to a
specialized notion of realizability which takes into account redundant non-constructive
information and the Tact that reasoning and synthesis are done in two separate languages.

In [PC01], Crossley and the author defined a specialized notion of realizability to hold
between SML programs and many-sorted formulae. This thesis will use and extend this
notion of realizability.
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Example 1.5. According to this definition of reaJizability, the SML program

f n x : int => 2 * x

is a realizer of
Vx : int • 3y : int • y — 2 * x

This program is more optimal than the corresponding proof-term in Martin-Lof type theory
(it is smaller), and contains no redundant non-constructive information (no information
corresponding to proofs of Harrop formulae).
Example 1.6. Under this notion of readability, a SML program p is a realizer of

3x : int • Prirne(x)

with Prime(x) a Harrop formula, provided that p can be executed to give an answer a
that can be represented as a witness a with A[a/x] being provable,,

The relation between constructive proofs and extracted programs obey the following dia-
gram (based on an observation by Anderson [And93, p. 36] and modified by the author
and John Crossley in [PC01]). Let L denote a constructive type theory, C a target pro-
gramming language and extract be the extraction map between the two languages.

L: t

extract

P normalizes to
t p

extract

evaluates to
C : pi, satisfying P • P2 satisfying P

where satisfaction of a specification P is denned by the specialized notion of realizability.

The advantage of a state-of-the-art approach over a naive approach is twofold: programs
are optimized for execution and readability, and are implementable in a commonly used
functional programming language. Consequently these methods produce optimized pro-
grams that are easier to understand and use by programmers who have no knowledge of
constructive type theory but who require programs that are correct for a given specifica-
tion.

While the basic idea is the same between authors, the target programming language, and
the application and definition of extraction and specialized realizability differ between
authors. Nordstrom and Petersson were among the first authors to advocate a separation
between constructive type theory and programs for the purposes of optimal extraction
[NP83]. In [Sch82, Sch85j, Schwichtenberg defines an optimizing extraction map from
intuitionistic proofs to functions in a simply typed lambda calculus which can then be
transformed into Scheme programs. Sasaki [Sas86] provides an optimizing method of
extraction for the Nuprl system (based on Martin-Lof predicative type theory), mapping
intuitionistic proofs to programs in the subset of Nuprl corresponding to the simply typed
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lambda calculus. A different optimizing extraction map is given by Paulin-Mohring in
[PM89] for transforming proofs of the Calculus of Constructions into terms of Girard's Fu

(a superset of the simply typed lambda calculus [Gir72]). In [PMW93], Paulin-Mohring
and Werner showed how this method can be adapted to synthesize programs in ML.

The work at Monash University by John Crossley and the author has defined an SOA
approach that uses a constructive type theory for many-sorted logic with extraction into
SML [PC01, CP01, JPBC03]. In Chapter 2 of Part II, we will provide the details of this
approach. In later chapters, we will generalize and adapt this SOA approach to different
logics and other programming languages. So, when we claim to adapt the proofs-as-
programs paradigm, we me ? fhat we adapt this SOA approach. However, we argue that
this approach is typical ana ur results therefore give a fair generalization of the other
SOA methods mentioned here.

1.1.4 Related methods

There are several important related deductive program synthesis methods based in intu-
itionistic logic. Similar to SOA proofs-as-programs, these methods differentiate between
programs and proofs, and synthesize programs by ignoring redundant, non-constructive
proof information.

Hayashi and Nakano's system PX described in [HN88, Hay90] - is based on Feferman's
theory of functions and classes [Fef79]. The PX system can be used as a constructive
logic, and is equipped with a optimizing extraction map from proofs of specifications to
untyped LISP programs. The system itself is untyped, but can be used as a foundational
framework for constructive type theories.

The deductive synthesis methods developed by Manna and Waldinger are based in con-
structive logic see, e.g., [MW91]. These methods use a special tableaux style presentation
to develop proofs and optimized programs in tandem. This is in contrast to the SOA ap-
proaches, where the program is extracted after a proof is complete. The method uses the
same notion of a program's correctness with respect to a formula as a specialised notion of
realizability. This work was implemented at NASA with the Amphion system. The work
of Binidy in proof-plans [KBB93] is a development of this work, offering a similar means
of program synthesis with some improvements to the tableaux style reasoning.

In a wider context, there are many logic-based approaches to program synthesis. The
proofs-as-programs approaches we have described are all interactive (semi-automated), by
virtue of the fact that they involve proof goals in predicate logic (which can never be fully
automatically derived, by Godel's incompleteness theorem).

However, automated deductive synthesis is what occurs in high-level logic programming
languages such as Prolog and automatic theorem provers such as the Boyer-Moore prover
[BM79] or OTTER [McC92].

Tyugii devised an automatic approach to synthesis based in constructive logic, imple-
mented in the NUTS system [Tyu88, MT98]. This uses a type theory corresponding to
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propositional intuitionistic logic - essentially the simply typed lambda calculus with dis-
joint unions. It has the advantage that, under certain constraints, proofs are decidable,
and so the inhabitation of a type is decidable. The usefulness of the type theory comes
from the idea that simple types can correspond to a more detailed specification of term
(program) behaviour (such as the primality of an integer), in contrast to the usual typing
by a sort name (such as being an integer). Because of the decidability of the subset of
propositional proofs considered, this kind of program synthesis is automatic.

Finally, we note that deductive synthesis contrasts with two alternative approaches to
logic-based synthesis: the transformational and inductive. In transformational synthe-
sis, a program is derived stepwise from a specification by means of transformations or
refinements. Refinement calculi [Dij76, MV93, Mor94, Bac80] achieve transformational
synthesis through languages that mix non-executable specifications and programs. Re-
lated techniques (see, e.g., [HHS85]) have been employed to obtain structured programs
from both model-oriented specifications (such as B specifications [Abr96, pp. 501-550]),
and from structured algebraic specifications (such as OBJ [FD88, GWM+00] or CASL
[CoFOl]). In inductive synthesis, a program is built on the basis of a declaration of input-
output requirements cr examples of input-output pairs. Examples of methods that fall
into this category include inductive logic programming [PloTl, Mug92] and neural and
belief networks [RN95, pp.563-597].

1.2 Generalizing constructive synthesis

We have surveyed proofs-as-programs approaches to the synthesis of functional programs
from constructive proofs.

An interesting and largely unexplored area of research concerns how proofs-as-programs
can be adapted to different contexts (programming paradigms and logics other than func-
tional programming and constructive intuitionistic logic).

1.2.1 Research on adaptation

Throughout the 1990s, research on adapting proofs-as-programs has largely focused on two
areas: synthesis of functional programs from classical proofs and synthesis of functional
languages with catch-and-throw exception mechanisms.

Schwichtenberg and Berger developed a method for synthesis of functional Scheme pro-
grams from classical proofs [BS93, BS95b, BS95a, Sch99b]. Their method is an extension of
a SOA method for extracting programs from intuitionistic proofs about functionals. This
work involves a translation of the classical derivation to a intuitionistic proof, followed
by extraction of an optimized program that can be executed in Scheme. A comparable
approach is that of Murthy [Mur91], which uses a less elegant refinement translation and
yields less optimal programs.
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These methods develop functional pro^.ams by adapting SOA methods. Also, some inter-
esting work has been done in adapting naive proofs-as-programs to classical logic. Thesv.
results show that certain logics, given a type theoretic presentation, correspond directly
a kind of functional programming language with catch-and-throw control mechanisms.
Classical logic is used to achieve this in [Gri90, Par93].

Interesting work was done in [Nak.94], where Nakano defines new logic with connectives
that enables explicit reasoning about catch-and-throw mechanisms. This work is similar in
philosophy to the work of this thesis - defining new logics for new programming paradigms,
with an adaptation of the Curry-Howard isomorphism and proofs-as-programs for program
extraction from proofs. In related work, Sato examines the relation of catch-and-throw-
mechanisms to classical and intuitionistic deduction in [Sat97].

1.2.2 Generalizing constructive synthesis

To the best of our knowledge, no work has been done on defining what should constitute
an adaptation to general cases of logics and programming languages. A important part of
this thesis is therefore concerned with identifying a framework that generalizes a specific
constructive program synthesis approach over a range of possible logics and programming
language paradigms.

Our framework, which we call the Curry-Howard protocol, generalizes state-of-the-art ap-
proaches to proofs-as-programs. It assumes a Curry-Howard style isomorphism to hold
between a given logic and type theory. Following an important property of state-of-the
art approaches, our protocol requires an optimization and extraction strategy from proofs
to programs. Programs are elements of a separate programming language, not part of the
logical type theory.

The rest of this thesis will then concern applying this protocol to adapt proofs-as-programs
for imperative program synthesis, and to reasoning with structured algebraic specifications
and structured program synthesis.

1.3 Imperative programs

Imperative programs produce results by manipulating values stored in a computer's mem-
ory: producing side-effects. This is done by executing sequences of individual statements
which are determined by iterative and conditional commands. These programs are in
contrast to pure functional programs, which do not involve changes of state.

For both historical and practical reasons, imperative programming dominates industry
development. It is rare to see purely functional programs employed in industrial applica-
tions.

Also, many functional languages, such as LISP and SML, are not pure and offer imperative
constructs. In many imperative and object-oriented languages currently used in industry,
such as C-f-f, Java, C# or Visual Basic, it is possible to program in the functional style
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with simulated higher-order anonymous functions. These languages sometimes utilize
side-effect-free functional to access data and provide views of state [MeyOO].

Pi^e functional and imperative programming styles can be, and often are, mixed. It
is therefore of value to provide a formal means for reasoning about, and synthesizing,
correct programs that involve both imperative and pure functional aspects. Hoare logic is
an established approach to reasoning about, and synthesizing, imperative programs. By
considering a constructive variant we can use proofs-as-programs techniques to synthesize
imperative SML programs that involve complicated pure, functional return values. This
will form one of the main concerns of this thesis: proofs-as-imperative-programs.

1.3.1 Hoare logic

One of the most important ideas in formal software development is the Hoare calculus,
first described in [Hoa69]. This is a deduction system for simultaneously constructing and
reasoning about imperative programs, based on a semantics for programs due to Floyd
[Flo67].

The idea is to specify a program in terms of its side-effects via pre- and post-conditions.
Both conditions are usually formulae with special variables that denote the state of a
computer's memory. The post-condition explains how the program execution should affect
the state of memory, assuming the pre-condition was true prior to execution.

The Hoare calculus involves rules that show how to obtain imperative programs that
satisfy such specifications. An example of a theorem is

Y-{Even{g)}g'Mg+l{Odd{g)}

The middle term is a SML program, while the left-hand bracketed term is a pre-condition
and the right-hand term is a post-condition. In this example, the theorem tells us that,
assuming that the state g is an even number, after executing the addition program, we
have an odd number.

Hoare logic has had successful application in the development of imperative programs.
Hoare logic has been extended to the specification and construction of nondetenninis-
tic, parallel and distributed programs [Hoa85, Har84, HHH+87] and object-oriented pro-
grams [AL97]. The state-based specification of an imperative program via pre- and post-
conditions forms the basis of model-based specification languages such as the B method
[Abr96]. The object constraint language (OCL) part of UML [WK98] is based on the
notion of pre- and post-condition specifications. These specifications also form the basis
of the real-time assertion checking system of the Eiffel programming language [Mey97].

We will limit ourselves to a version of the basic Hoare logic for imperative SML programs
with while loops.
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1.3.2 Synthesis of imperative programs with functional return values

The presence of side-effects is what distinguishes the imperative paradigm from the func-
tional one. However, side-effect-free functions are also important In imperative programs
because they enable access to data, obtaining views of state and producing return values.
For instance, the SML program

s := 10; !s *2

involves a side-effect producing assignment statement, s := 10, followed by a side-effect-
free term !s * 2, which will evaluate to a return value.

Hoare logic is good for reasoning about and developing side-effect producing aspects of
imperative programs. However, there are some inadequacies in the traditional means
of using logic for developing side-effect-free aspects of imperative programs. Commonly,
Hoare logic relies on the uKor directly constructing a required side-effect-free function along
with a proof of its required property. Return values and state views are specified by a
post-condition that associates the return value itself with a special designated variable
(see, for instance, [Abr9C, pp. 240-241]).

Example 1.7. We can associate the variable return with a required return value. When
the variable is mentioned in the pre- and post-condition of a Hoare triple, it denotes the
return value of a program whose side-effect is equivalent to the program of the triple. So,
the triple

{}s :— 10{return ~ s * 2 A Even(return)}

describes a SML program s := 10; !s * 2 which returns an even number.

The problem with this approach is that the user is required to explicitly define a side-
effect-free function while proving properties about it.

As we have mentioned, in many imperative languages, return values can potentially take
the form of complex functional programs that are difficult to synthesize using the usual
approach in Hoare logic. Proofs-as-programs has had success in the synthesis of such pro-
grams. Constructive methods hide implementation details from the designer, permitting
a functional program to be developed solely through reasoning about domain knowledge.

We would prefer to be able to hide the details about the definition of a return value so the
designer need not think about the way the return value or view of state is to be coded, and
focus instead on manipulation of domain knowledge. It is therefore of interest to see how
to adapt proofs-as-programs to the Hoare-logic, and to combine imperative construction
and the functional synthesis of return values.

In constructive program synthesis, a proof of a statement can be used to synthesize a
realizer of the statement. The reaiizer is a functional program that satisfies the statement
as a specification. For example, an existential statement

3x : int • Even(x)
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can be used to synthesize a functional program that returns a witness value p such that
Even(p) is provable. Because the realizer is synthesized from a proof, the details about
its definition are hidden from the prover. The prover need only be concerned with using
logic to reason about a problem, not with the definition of a program.

We will adapt this property to the specification of return values.

Example 1.8. For instance, given a constructive proof of the theorem

{}s := 10{zkr : int« Even(x)}

we want to synthesize a program of the form

s := 10; f

with a side-effect-free function f that realizes the existential post-condition

3x : ini ® Even(x)

with a value that is a witness for the x. An example of such a realizing return value
function might be !s * 2.

In our methods the user does not need to manually code the return value, but instead the
Hoare logic is used to prove the theorem from which the return value is extracted, and
incorporated with the side-effect producing part of the theorem to give a final program.

The adaptation is not trivial, as, unlike functional program synthesis, our specifications
involve initial and final values of state and our extracted side-effect-free functions can
involve state references.

1.3.3 Alternative approaches to synthesis

To the best of our knowledge, there have been four distinct attempts at using proofs-as-
programs notions in imperative program synthesis.

The first three involved encodings within ordinary constructive logic.

Filliatre developed a denotational semantics of imperative programs within Coq, pr< viding
a means of transforming constructive content of proofs into monadic representations of
imperative programs, and then finally into executable imperative programs [Fil99. FilOl].

A similar approach was taken separately by Manna and Waldinger for the synthesis of
imperative LISP code [MW87], by encoding a semantics of imperative programs within
their deductive synthesis system [MW91].

Stark and Ireland use a straightforward metalogical encoding of a Hoare-like logic within
constructive logic which then facilitates interactive theorem proving, using tools based in
constructive type theory [SI98a, SI98b].

Structured specifications and programs 15

Finally, Bellot developed a logic based on Girard's linear logic, for denning requirements
of imperative programs [BR90, BCR+99]. This work might be characterized as an adap-
tation of naive proofs-as-programs because it defines a logical type theory that can also
be understood as an imperative programming language, in the same way that naive meth-
ods view constructive type theory as a functional programming language. The novelty of
his work is that the logic, represented as a type theory, corresponds to a programming
language with imperative qualities. In particular the normalization of a proof - and the
corresponding operational semantics of the proof-term - is ordered and and sequential in
an imperative sense. A new form of realizability is defined to hold between specifications
and imperative programs, corresponding to inhabitability of types in the type theory.
A problem with this logic and programming language is that they are nonstandard and
difficult to understand and use for a new user.

None of these methods can be said to adapt state-of-the-art proofs-as-prograrns techniques.
In particular our work is unique amongst these approaches, using Hoare logic to develop
side-effects of imperative programs and constructive methods to develop side-effect-free
return values.

Popular alternatives to the Hoare logic for imperative program synthesis are refinement
calculi. Refinement calculi achieve synthesis through languages that mix non-executable
specifications and programs see, e.g., [Dij76, MV93, Mor94, Bac80]. These calculi provide
rules for refining non-executable specifications into executable terms that satisfy the given
specification. Repeated recursive application of rules over a term with non-executable
subterms will eventually yield an executable term. Related techniques (seee, e.g., [HHS85])
liavc been employed to obtain structured programs from both model-oriented specifications
(such as specifications in the B language [Abr96, pp. 501 550]). Refinement calculi have
the advantage over Hoare logic of being scalable, and of appearing more like programming
languages.

However, the problem of specifying and synthesizing return values is usually dealt with
in a similar way that of the Hoare logic, using specially designated return value symbols
in specifications. The developer is required to explicitly define a side-effect-free function
during the refinement process. It is an open question as to whether proots-as-programs
ideas could be incorporated into refinement calculi for return value synthesis.

1.4 Structured specifications and programs

An important research area in software engineering is that of scalable metfrods for mod-
ular program specification and correct development. The need for provably correct, hi-
erarchical designs and implementations of programs was voiced r\ the program of the
1968 NATO conference on Software Engineering [NR68, pp. 45-55,181-186]. Since that
time, various formal abstractions have been studied to provide modular programming and
specification languages, methods of proving correctness of modular programs against their
specifications, and methods for the synthesis of structured programs from specifications.
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A popular example of such a formal abstraction is structured algebraic specifications
see. e.g.. [Wir90].

Structured algebraic specifications provide a data-centric view of a software system. They
can be considered as a hierarchical means of defining abstract data types, enabling us
to specify systematically the required functionality in terms of an algebraic theory. A
basic theory consists of a signature - type, function and predicate symbols - together
with axioms that define the required behaviour of the algebraic entities represented by the
signature. A new theory can be built from an existing theory via structuring operators: for
instance, by renaming its types and constants, by abstraction (forgetting some typrs and
constants and perhaps renaming the rest), combining two theories, or parametrizing and
instantiating. These theory-building operations allow large theories to be built in a flexible
and well-structured fashion. Structuring operators facilitate specification according to
compositional, divide-and-conquer principles.

There is a variety of specification languages available. The earliest specification language
was Clear developed by Burstall and Goguen [BG77, BG80]. Significant and well-developed
work is the provided by OBJ2 and OBJ3 systems [FGJM85, GWM+00], which are based
on order-sorted algebras. Sanella, Tariecki and Wirsing developed ASL as a core language
for developing specifications [Wir82, SW83, Wir86, ST88a].

Over the past few years, the CoFI group has defined a standard for algebraic specification,
called CASL [CoFOl], which incorporates ideas from previous work. CASL specifications
are based on many-sorted, partial, first-order algebras. Many of the ideas from ASL and
other specification languages have been incorporated into the CASL standard. This thesis
is concerned with CASL. However, because CASL resembles other systems, many of our
results could easily be adapted to other systems.

We will be interested in reasoning about and refining and extending structured specifica-
tions. We will use program extraction to aid refinement and extension using proofs about
specifications.

1.4.1 Reasoning about specifications

Reasoning about algebraic specifications is important for the purposes of understanding
the consequences of a specification and ensuring that a specification meets the requirements
of the domain being modelled.

It is possible to reason about a structured specification simply by using many-sorted logic.
This is true because structured specifications can be collapsed into an equivalent single
set of axioms with a signature [Wir91].]

To prove properties about the specification, we need only equip ordinary logic with the
axioms, and reason using the signature. However, this has the disadvantage of not be-
ing compositional. A compositional proof system constructs a proof about a structured

]This follows from the normal form theorem which slates that a specification is equivalent to a normal,
non-structured, specification of an algebra.
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specification in a modular fashion, using knowledge about sub-specifications to derive
knowledge about the composed specification. This promotes the desirable features of a
divide-and-conquer approach and proof reuse.

This thesis is concerned with extensions to the compositional proof systems for structured
specifications defined by Martin Wirsing in [Wir91]. Similar systems have been investi-
gated in [FC92, BCH99, HWB97]. The original idea has roots in work done on modular
reasoning by Sannella [SB83]. This used an extension to the Edinburgh LCF theorem-
proving system that permitted the construction of Clear-like specifications and provided
inference rules and strategies for compositional proofs about structured theories.

In this approach, proofs are conducted in a fashion that mirrors the structuring of speci-
fications. The user derives statements of the form

S P O P

where S P is a structured specification, and P is a known truth about the specification.
The system is compositional in that it enables the simultaneous composition of old speci-
fications to form new specifications and the derivation of new truths from known truths.

For example, the translation operation (p • SP) permits us to rename the signature and
axioms of a specification SP using a signature morphism p to give a newT specification with
renamed symbols. If we consider a specification as specifying component requirements, the
renamed specification can be considered as a means of wrapping the component require-
ments with a new interface. In Wirsing's system, a renaming rule permits the formation
of a renamed specification:

Besides constructing the new specification, the rule shows how to derive a truth P about
the renamed specification from the previously known truth p~l(P). In the sense that
the logic enables two things to be done - the construction of new entities from old and
the reasoning about the result it resembles Hoare logic's treatment of programs and
theorems.

The overall proof system is parametrized with respect to a first-order logic. Usually this
is classical logic, but, in this thesis, we replace it with intuitionistic logic, to obtain a
constructive system for compositional reasoning about specifications. Our motivation for
this is to adapt the Curry-Howard isomorphism and state-of-the-art proofs-as-programs
results in order to extract provably correct functions from proofs about specifications:
structured proofs-as-prograrns.

1.4.2 Refinement of specifications

One of the main aims of algebraic specification is to provide a formal basis to support
the systematic development of correct programs from specifications by means of verified
refinement steps. Refinement is the process of transforming abstract specifications into
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more concrete ones. If the concrete specification is executable, then we consider it as a
program that implements the specification.

Sannella and Tarlecki argue that refinement should proceed in a stepwise fashion, from
abstraction to implementation, gradually enriching the original specification with more
detail and incorporating design, architecture and implementation decision [ST88b, ST97,
SST92]. Such decisions include choosing between alternative behaviours of functions, data
representation and structure. Stepwise refinement is important for large specifications,
because it permits the designer to decide upon the implementation of different aspects of
a specification at separate points in the development process.

1.4.3 Proofs-as-programs for function extraction and refinement

A proof system for reasoning about ASL specifications was developed by Wirsing, Pe-
terreins and Crossley in [WCP98, Pet96]. That work developed the ideas of Wirsing's
calculus of [Wir91], but was based in natural deduction, over which Curry-Howard terms
could be provided to encode proofs. The calculus used classical deduction.

In this thesis, we will develop an intuitionistic version of that natural deduction calculus,
using the CASL standard for expressing specifications. Curry-Howard terms are defined in
a similar fashion to the classical calculus. However, because we use constructive deduction,
we can adapt proofs-as-programs, to enable the extraction of correct functions from proofs
about specifications.
Example 1.9. For instance, we could derive a proof of the theorem

INT o Vx : int • 3x : int Prime(y)

where INT is a specification of the natural numbers, with the predicates > and Prime
given appropriate axioms. Using our methods, we could extract a realizing lambda term
t such that

INT O VX : int » t > . x A Prime(t x)

is true. In this way, the term t is a function that satisfies the original theorem as a
specification.

By virtue of our methods, these programs can then be consistently added back to a
specification, for correct extension. For example, the term t can be associated with a
function / , with the equational axiom {/ = i) consistently extending the specification
INT. This provides a formal means of designing structured specifications by consistent
extension. This is another important result of this thesis: structured proofs-as-programs.

Finally, we show how our techniques can be used to define processes for the synthesis of
structured programs and the refinement for specifications. By deriving constructive proofs
of the axioms for a function, we can extract an executable definition of the function. By
repeating this process, we can achieve a stepwise development of full executable structured
programs from a structured specification.

To the best of our knowledge, our approach is novel and there is no directly related work
in the literature.

We are not the first to propose developing correct SML programs from structured spec-
ifications. Sannella and Tarlecki proposed a stepwise development process and designed
Extended ML (see [KST97]) as a language for expressing specifications and SML programs
by one single syntax. However, those techniques did not involve program extraction tech-
niques.

Also, the technique used by Smith in the SpecWare system bears some similarity to ours
[Smi93]. There he uses similar rule-based techniques to construct specification morphisms.
Our technique differs from Smith's in both the specification-building operations and in the
approach to program synthesis.. Even though he uses program synthesis techniques, he
does not involve constructive proofs-as-programs methods.

1.5 Research contributions and overview

This thesis presents the following contributions. To the best of our knowledge, these
results are entirely new.

1.5.1 The Curry-Howard protocol

Some work has been done in providing analogous results to the Curry-Howard isomorphism
and proofs-as-programs for other logical systems and programming languages, often in the
domain of classical logic. We contribute a novel result to the field by identifying a general
framework that generalizes the form such analogies should take over arbitrary logical
calculi and programming languages. The Curry-Howard protocol provides the framework,
It is useful because it can then be used as a guide for adapting proofs-as-programs to new
contexts, such as imperative program synthesis.

1.5.2 Proofs-as-imperative-programs

For the most part, even when tackling logics other than intuitionistic logic, proofs-as-
programs research has been concerned with the synthesis of side-effect-free programs.
Little work has been done in adapting proofs-as-programs for imperative program synthe-
sis.

Our method involves the synthesis of imperative programs from proofs of specifications.
Specifications concern side-effects and side-effect-free return values at the same time, but
with different treatments. Specifications of side-effects are given as assertions about initial
and final states as in standard Hoare logic. Specifications of side-effect-free aspects are
given by considering assertions as constructive specifications, with constructive realizers as
return values. By conforming to the Curry-Howard protocol, we adapt proofs-as-programs
(defining an extraction map from proofs in the Hoare logic:) to imperative programs of
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SML. The resulting programs satisfy specifications of both side-effects and side-effect-free
return values.

Also, by defining a constructive version of Hoare logic including proof-terms, we provide
a type-theoretic description of Hoare logic that is useful for theorem-proving implementa-
tions.

1.5.3 Structured proofs-as-programs and structured program synthesis

We present a method, using a version of the logical system of [WCP98, Pet96], for obtaining
SML programs from specifications written in the specification language CASL. These
programs are provably correct.

The logical calculus adds structural rules corresponding to the standard ways of creat-
ing structured specifications as presented in CASL: translating, hiding signatures, taking
unions of specifications and building structured and parametrized specifications.

We then adapt proofs-as-programs to this logic, applying the Curry-Howard protocol to
extract programs from proofs in our logic. We show that these techniques lead to consistent
extensions of specifications, and the stepwise development of structured code.

1.5.4 Thesis organisation

This thesis is organised into parts, corresponding to the main contributions above.

9 Part I, Chapter 1 is this introductory chapter.

Part II introduces the Curry-Howard protocol:

- Chapter 2 provides an example of SOA proofs-as-programs for the synthesis of
functional programs.

- In Chapter 3, we define the Curry-Howard protocol. We illustrate how it gen-
eralizes our SOA approach.

Part III defines a method for imperative program synthesis by the application of the
Curry-Howard protocol.

- Chapter 4 presents our logic for reasoning about side-effect relations.

- Chapter 5 provides some necessary properties of the calculus. We show sound-
ness and completeness and define the proof-theory necessary for applications
of the protocol We present a logical type theory for our logic, and show an
analogous result to the Curry-Howard isomorphism.

- Chapter 6 describes how the Curry-Howard protocol is applied to achieve the
synthesis of imperative programs from proofs in our logic.
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• Part IV develops a method for reasoning about structured specifications, the syn-
thesis of functions by application of the Curry-Howard protocol and refinement of
specifications.

- Chapter 7 presents the logic for reasoning about structured specifications.

- Chapter 8 provides proof-theory necessary for the application of the protocol.
We present a logical type theory for our logic, and show an analogous result to
the Curry-Howard isomorphism. We establish the Church-Rosser and strong
normalization theorems.

- Chapter 9 describes how the Curry-Howard protocol is applied to achieve the
synthesis of correct functions from proofs of our logic and how specifications
can be consistently extended by these functions.

- Chapter 10 extends our results to generic, parametrized specifications as they
are treated in the algebraic specification language CASL [CoFOl].

- Chapter 11 provides a methodology for using our results for the refinement of
structured specifications into structured executable code.

• Part V, Chapter 12, offers concluding remarks and suggests directions for future
research.

Some of this thesis is based on a series of eight papers by the present author. Part II
presents ideas that resulted from joint work with John Crossley, and were presented in
[PC01], [CP01] and [JPBC03]. Part III elaborates and extends the work done in [Poe99],
[PC03] (joint work with John Crossley) and [Poe03]. Part IV is based on two papers,
[CPW00] and [PCW02], co-authored with John Crossley and Martin Wirsing. For the
most part, these papers did not include full proofs of main theorems - this thesis is the
first presentation of these proofs. The proofs are entirely the work of the present author,
unless otherwise noted. More detailed attribution of results is given throughout the thesis.
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Chapter 2

Functional program synthesis

We describe a simple approach to the synthesis of SML functional programs from con-
structive proofs. The approach is a state-of-the-art (SOA) proofs-as-programs approach
in the sense described in the previous chapter.

We use many-sorted constructive logic. Formulae assert truths about a problem domain
and specify required SML programs as modified realizers, following [Kre59, BS95a, Dil80].
That is to say, a required program is specified as a Skolem function for the Skolem form
of a formula,

Example 2.1. For example, the formula A — \/x : int • 3y : int • x + 10 = y asserts that,
for every integer x there is an integer y equal to x plus 10.

Consider the Skolem form of A

Sk(A) = V.x : int • x + 10 = (fA x)

A function that can be substituted for JA is called a modified rcalizcr of A.

So, besides being a statement about the integers, the formula A can also be considered as
a specification of a modified realizer, a functional program a that evaluates to the Skolem
function JA in a proof

Hnt Skfix : int ® 3y : int © x -f 10 = y)[a/fA]

The SML program
f n x : int => x + 10

satisfies this specification, because, given an appropriate axiomatization of SML programs
it is possible to derive

h|nt V;r : int • x + 10 = (fn x : int => x 4- 10) x

25
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The major innovation of this presentation of proofe-as-programs can be stated as follows.
In contrast to naive approaches to proofs-as-programs, we differentiate between proofs
and programs, using different languages for each. Proofs are represented in a logical
type theory: a constructive type theory whose type inference rules reflect the rules of
the constructive logic according to the the Curry-Howard isomorphism [Cur34, How80].
Programs are from a different language: the simply typed lambda terms with disjoint
unions and product types, written in a subset of SML. The two languages are related via
a common signature so program values can be represented as terms of the logic and vice
versa,

Synthesis of correct programs from proofs is done via an extraction map between px
in the type theory and programs of SML, producing modified realizers for proved specifi-
cations.

In the next chapter we provide a framework for generalizing the approach givon here to
other programming paradigms and logics. We claim that the method of this chapter is
essentially a simplification of alternative SOA approaches that often involve additional
features that are not relevant to our purposes here. For instance, unlike some of the SOA
approaches mentioned in the previous chapter, we do not use full higher-order logic. We
could, however, easily extend our work to full higher-order logic. Consequently, we claim
that our framework, as a generalization of this chapter, is also an adequate generalization
of all SOA approaches.

This chapter proceeds as follows:

• Section 2.1 discusses abstract data types, signatures and well-formed many-sorted
formulae to be used in our logic.

© Section 2.2 provides a summary of many-sorted intuitionistic logic.

• In Section 2.3 we describe the logical type theory for representing proofs in our logic,
according to the principles of the Curry-Howard isomorphism.

• We discuss the subset of SML that we use to extract programs in Section 2.4.

• Our notion of realizability and the extraction process are defined in Section 2.5

« Section 2.7 provides a discussion of our results.

The results of this chapter were developed by John Crossley and the author, presented
first in [JPCBOOj and further elaborated in [CP01]. John Crossley and John Shepherd-
son [CS93] provided a simple, elegant approach for extracting programs from first-order
intuitionistic proofs. However, the extracted programs are not simply typed, and cannot
easily be compiled by commonly used functional programming languages, such as SML
or Haskell We extend that work by adding many-sorted logic and a different notion of
realizability, permitting extraction of simply typed lambda calculus SML programs. Bolis
Basit, John Jeavons, John Crossley and the author investigated the viability of this app-
proach in [JPBC03], presenting a medium-sized application to program extraction from
proofs about graph theory.
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Notation 2.1 (List notation). We will use the following notation throughout the thesis.

Li<s of elements are represented as follows: [a j ; . . . ; an]. We will use a bar above a symbol
to denote a list - e.g., we can define a to be a list [a\;...; an\.

Concatenation of lists is given by the :: operator. For example, if a is [a,\\...; an] and * ̂
[&].;•••; &m]> then a :: b is [a}]...; an: b\;... ; bm].

2.1 Abstract data types

We shall be reasoning with a many-sorted predicate logic, parametrized with respect to an
assumed specification of abstract data types. We need the concept of signatures to define
this specification.

2.1.1 Signatures and lambda terms

Signatures define sorts and function and predicate symbols.

We use the standard definition of first-order signatures (we use that given in [CoFOl, p.3])
extended to include sorts closed under functional, disjoin: union and product sorts and
also a unit (single element) sort.

Definition 2.1.1 (Many-sorted signature with total functions). A many-sorted
signature E = (5, TF, P) consists of:

• a set, 5, of sorts. Sorts are generated from a set of basic sorts, B(S) according to
the following inductive definition. First, B(S) C S. Also, if s\ aud S2 are in S. then

so are

— the function sort (s\ —> #

— the product sort (s\ * S2)

— the disjoint union

We assume that B(S) includes a special sort, called Unit.

• sets TFWiS of total function symbols, for each function profile (w,s). A function
profile (w, s) is a pair of words, consisting of a sequence of argument sorts w G S*
and a result sort s £ S. Constants are treated as functions with no arguments.
The length of w is called the arity of function symbols in TFW,S. We assume that
TF®,Unit contains a unit symbol written () (this denotes the single inhabitant of the
sort Unit € B{S)).

• sets Pw of predicate symbols, for each predicate profile w. A predicate profile consists
of a sequence of argument sorts w 6 S*. The length of w is called the arity of
predicate symbols in PUl, For each basic sort s 6 B(S), there is a distinguished
equality predicate =SE PSs-
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Constants and functions are also referred to as operations. The symbols which identify
operations and predicates may be overloaded, occurring in more than one of the above
sets. Whenever there is ambiguity in sentences, function symbols / and predicate symbols
P should be qualified by profiles, written fw,s and pw respectively. When no ambiguity is
present, these profiles can be omitted.

We define the terms for a signature S = (S, TF, P), Term(E), as in Fig. 2.1. This includes
the usual definition of terms for a signature freely generated over a set of term variables
Var. However, we have extended the definition to include a lambda calculus (with lambda
terms written in an SML style syntax). Note that the variables Var are assumed to be
disjoint from the constants in TF.
Notation 2.2. In later sections, we will require another lambda calculus for representing
proofs, distinct from the lambda calculus for a signature. To distinguish between the terms
of the two calculi, we will refer to the terms for a signature as individual terms. However,
when there is no confusion, we will simply refer to them as terms.

a,b,c ::=
, . . . ,an)

x

Inr\a)
match a with Inl(x) => b | Inr(y) => c
fax : s => b
(a b)
(a,b)
fst(a, b)
snd(a, b)

elements of Terra (E)
f E TFW,S, w of arity n and
(ai , . . . ,an) is a (possibly empty)
list of alemenis of Term(E)
a variable x € Var
in left
in right
match case, x,y G Var
lambda abstraction, s in S
application
pair
first projection
second projection

Figure 2.1: Syntax terms of Term(E).

We have the usual notions of free and bound variables of the lambda terms of Term(E).

Definition 2.1.2 (Free and bound variables of Terra(E)). Let x be any variable of
Var, and t a term of Term(E).

Then, x is bound in t if there is a subterm of t of the form

fn x : s => b

or
match a with Inl(x) —> b \ Inr(y) —>c

or
match a with Inl(y) => b \ Inr{x) —>c

If x is not bound in t, then x is free in t. We write BV(t) for the set of all bound variables
of t, and FV(i) for the set of all free variables of t. A program with no free variables is
called closed.

We write Closed(Term(E)) for the set of closed terms from Terra(E).

Terms of a signature E are associated with sorts according to the sort inference rules
provided in Fig. 2.2. These are the standard rules for inferring sorts of the lambda calculus.
They involve a sorting relation (:) between terms and sorts. An inference takes the form

T a : s (2.1)

where F is a context, consisting of variables associated with sorts, of the form {x\ :
s\,..., xn : sn}. The inference's intended meaning is that the term a has the sort 5, when
its free variables x\,...,xn denote possible terms of sorts S i , . . . , sn. If an inference of the
form (2.1) can be made for a term: a and sort s, we say that a is well-sorted with sort 5
for context F. If the context F can be determined with no ambiguity from examining a,
we simply say a is well-sorted with sort s.

A w

F, x : s hs x : 5
r- Fn h an : s

n

: s
(Fn)

si

F
(Union; a : s2

e a : si F2 HE b : s2

F h s a : (si * S2)
(Proji)

(Prod)

F h s a :

F, x : a :
fn x : s\ => a : si

a : (5i|52)

— (Abs)

F f-£ snd(a) :

a : 5i F2

~ (Proj2)

6*2 ) : s,F2 rv \uu) : S2

b: s Fs,y : 52 h^ c : 5

(APP)

,F 2 , match a with Inl[x) => b | Inriy) =>c : s
(Case)

Figure 2.2: Sort inference ru.-^ for terms of E.
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2.1.2 Formulae
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Many-sorted formulae, WFF(T), for a signature £ — (S. TF, P) are constructed according
to the following definition, given with respect to the denumerable set of term variables,
Var.

Definition 2.1.3 (Well-formed formulae of a signature). Let E = (S,TF,P) be
a signature. The set of well-formed formulae for a signature, WFF(E) is the least set
containing

• every Q(t\,... ,tn) where Q € PSl...sn
 1S a predicate symbol in Q and every t{ (i =

1, . . . , n) is a well-sorted lambda term of sort s$,

• every formula (A A B) for A, Be WFF&),

• every formula (A V B) for A, Be WFF{Z),

• every formula (A => B) for A,B e WFF(E),

• every formula Vx : s • F where x e Vars and F e WFF(E),

• every formula 3x : s • F where x e Vars and F e WFF(E),

• the formula J_.

We often write -iA for (A => 1).

Remark 2.1. Observe that our formulae WFF(E) can involve lambda terms from Term(E).

2.1.3 Specification of abstract data types

The results of this chapter are parametrized with respect to a specification of abstract
data types,

where S is a signature and AX is a set of formulae from WFF(T,).

Remark 2.2. Signatures are associated with a. semantic structure through an interpretation
function, over which formulae can be determined to be true or false, in the usual sense.
Thus our specification corresponds to a set of models - structures that are constrained to
satisfy the axioms. We do not provide the details of semantics in this chapter as this is
well-known and not essential to understanding our program extraction method. Instead,
we shall simply refer informally to the "models of AT)T\ In Part IV (Section 7.1 of
Chapter 7), a more general treatment of signatures and structures will be given which will
describe the semantics for specifications such as A'DT.

Remark 2.3. As we shall see in Section 2.4, in order to obtain correct programs from
proofs, we assume that the signature and axioms correspond to a SML library, which
must be loaded before executing our synthesized programs, of given functions that satisfy
the specification AWJ.

fi
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2.2 Intuitionistic logic

We now introduce our many-sorted intuitionistic logic, in order to reason about AT)7.
The calculus, Int, is given in a natural deduction presentation. The inference rules of the
calculus may be divided into basic rules and axioms and schemata. The basic rules are the
standard rules of intuitionistic logic for introducing and eliminating the connectives and
quantifiers of many-sorted formulae. Axioms and schemata are used to assert extra-logical
properties of ADT in proofs.

2.2.1 Judgements

We deal with judgements which we write in sequent form as

T\-A

where A is a formula and the context, F, is a set of assumption formulae. The intended
meaning of the judgement is that assuming F are true then A is also true.

2.2.2 Basic rules

The basic, core rules of the deductive system are presented in Fig. 2.3.

Remark 2.4 (Proof-tree notation). The sequent format presentation of proofs is equivalent
to a "tree" format presentation. The former preferred when space needs to be conserved,
the latter preferred when the steps of a deduction need to be displayed clearly. A sequent
h|nt F is equivalent to the following tree format presentation:

F

We use the usual natural deduction notation for discarding assumptions for the
(3-E) and (V-E) rules. So, the (=>-!) rule tells us that, given a proof tree for B from A,
we may discharge A to give a proof tree for (A

[A]

B
(A^B)

We denote discharging the assumption A by square brackets, [A], Similar remarks hold
for the (3-E), (V-Ii) and (V-E) rules.

Remark 2.5 (Substitution for individual variables). As usual A[t/x] denotes the result of
substituting t for all free occurrences of x in A subject to avoiding clashes of variables,
where t and x share the same sort.
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Assume that x:y are arbitrary variables of sort s from signature £, and
that a and c are well-sorted terms of sort s.

-7 (Ass-I)

A, A hnt
A hnt (A =»

A h,nt

A hnt si

A hnt A A'h,nt(-^

(V-I)

A, A' hnt B

A h l n t Vx: s*A

A h|nt Vx : 5 • A
provided x is not free in A

A hnt P[a/y]

A A[c/:r]
(V-E)

A hin t 3y : s • P (3-1)
A2 ,P[x/y]hntC (3-E)

where x not occur free in C

A hnt ^ A ' h , n t £

A hnt A A2)

A h|nt ̂ 1

A hint AX

A hnt {Ay. V A2)

(A-Ej)

(v-li)

A, A' h|nt {A A B)

A hnt

(A-I)

A2)

A h|nt

A h|nt

(A-E2)

A h l n t V

,, A2, A hint C

A t" int _L

(V-E)

( J - E )

provided A is Harrop

Figure 2.3: The basic rules of many-sorted intuitionistic logic, Int.

Remark 2.6 (Eigenvariable restrictions). The conditions on the rules (V-I) and (3-E) are
the usual eigenvariable restrictions.

Motivation, for the rules of intuitionistic logic is well known. We merely provide motivation
for several important rules as an illustration.

Remark 2.7. Rules (V-Ii) and (V-I2) are understood as follows.

Consider first the rule for V introduction on the left:

A
(V-Ii)

11

This means that from a sequent F hjnt .4 we may infer the sequent F h n t {A V JB). Here
we are weakening the conclusion to (A\/ B).

Example 2.2. The rule (V-E) is most easily understood by its analogy to proof by cases.
If we have a proof of C from A and also a proof of C from B then we get a proof of C
from A V B.

Likewise, for the (3-E) rule, if we have a proof of 3x : s • A and a proof of C from a proof
of A with free variable y, then we can get a proof of C.

The (-L-E) rule requires the following definition of Harrop formulae, which will also be
used to define readability in Section 2.5.

Definition 2.2.1 (Harrop). A formula F is a Harrop formula if it is

1. an atomic formula,

2. of the form (A A B) where A and B are Harrop formulae,

3. of the form (A =$ B) where B (but not necessarily A) is a Harrop formula, or

4. of the form (Vr : s • A) where A is a Harrop formula.

We write H(F) if F is a Harrop formula, and -*H(F) if F is not a Harrop formula.

Remark 2.8. Note that we restrict the premise formula of (-1-E) to Harrop formulae,
for reasons to do with program extraction, described in Section 2.5 (Theorem 2.5.3 and
Corollary 2.5.1).

However, this restriction does not affect the intuitionistic power of our calculus, by the
next lemma.

Lemma 2.2.1. The calculus Int with the rule

r hnt A

provided A is Harrop, can be extended conservatively to include the usual rule (J.-E*) rule

hnt-L
h n t ^

(1-E')

for all formulae A.

Proof. We assume T hnt_L. We then proceed by induction on the construction of the
formula A, to obtain the inference

r
hnt-L

A (2.2)

from the basic rules of Int.
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If A is atomic then A is Harrop and we achieve 2.2 by an application of (-L-E).

Suppose A is of the form (B A C) then, by the induction hypothesis, we have proofs

r hnti r

hnt B and T hnt

So, using (A-I) we have
r h,nti

r h,nt A c)

The remaining cases are similar. •

2.2.3 Axioms and schemata

We assume the presence of axioms and schemata that define knowledge about a problem
domain and provide extra-logical constraints about the behaviour of signature terms.

Recall that the axioms of A*D7 are given by a set of WFF(£) formulae, AX. To use these
axioms, we use an introduction rule of the form

We permit a potentially infinite number of axioms in AX to be generated by schemata.

Definition 2.2.2 (General form of schema). A schema R parametrized over lists of
predicates X, terms y and sorts Z, has the form

^ (R[X;mZ\)

When applying a schema, we must substitute actual predicates F, terms t and sorts 5, to
form a rule of the form

£i hint F t [F/X] [i/y] [S/Z] ... Tn hnt Fn [F/X] [t/y] [S/Z]
Th,tF[F/X}[t/y}[S/Z]

(R[F;i;B\)

Remark 2.9. The schemata rules are to be considered as a metalogical device for generating
axioms in AX. This is possible when we consider each schema application of the form

Fn hnt Fn

i

s
4

13

to generate an axiom ((Fi =^ F{) A . . . A (Fn => Fn)) => F in AX. The generated axiom
and the schema application are equivalent, because repeated application of (^-E) on the
former simulates satisfaction of premises in the latter.

Induction schemata may be provided for the data types of E that can be generated by
constructor functions. These schemata are defined in the usual fashion for a data type: to
prove a statement over all elements of a type we show that the statement holds over the
generation of the sort.

Example 2.3. For instance, assuming E has a sort of integers mt, with all elements gen-
erated from the constant 0 by the operation sue : int —-> int, then we have the induction

V[0/x] A Vy : int • V[y/x] =$> V[suc{y)/x)
: int •V

{IndInt[[V}])

H|nt F

Remark 2.10. It is possible to treat induction more generally. This is easy in higher-
order logic - see, e.g., Hayashi and Nagano [HN88] or Paulin-Mohrin [PM89, PM93] for
two different approaches. In Chapter 7 of Part IV (pp. 266-268), we show how to treat
induction generally for a range of sorts when reasoning with algebraic specifications. There
we show how to generate induction schemata for sorts with constructors. Such techniques
can also be employed for this logic, but we defer them until Part IV, where the use of
structured specifications makes for a more systematic treatment and aids intelligibility.

Remark 2.11. Our notion of schemata provide a limited way of simulating second order
logic - see, e.g., [Lei94, 279-285].

We give several standard schemata for reasoning about equality and disjoint unions in
lambda terms. These are provided in Fig. 2.4. These schemata are to be considered as
a means of generating axioms that will be assumed to be included in AX. Because they
define the usual notions of equality and properties of the lambda calculus, these schemata
do not affect the consistency of AX and the fact that there is a model for them.

2.3 Logical Type Theory

Our intuitionistic calculus corresponds to a type theory, LTT1 essentially a lambda calculus
with dependent sum and product types. This correspondence is known as the Curry-
Howard isomorphism. The idea is that proofs formed using the calculus can be represented
as lambda calculus terms (called proof-terms) with formulae considered as types of terms.
The rules of Fig. 2.3 and the axiom and schemata then correspond to type inference rules.

Remark 2,12. Note that these proof-terms and types define a theory distinct and separate
from, the terms and sorts of Term(E). This is an important feature of our presentation
of the isomorphism -- we use different terms for different tasks. Proof-terms, FT(lnt), are
used to represent proofs while terms of Term(E) are used to denote elements of a problem
domain for reasoning about within the logic.

In fact, we will see that terms of Terra(E) also serve another purpose - to denote SML
programs. Proof-terms, however, may not be used in this way. This is in contrast to some
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(ref)
hnt u=sr =5>r =su

 K

where s is a basic sort
P[r/y] Au=sr (subst)[[P];[u;r];Is]]

hnt : si •

P[u/y]
where u and r are well-sorted of basic sort s and

y is the only free variable in P

A \/y2 : s2 • P[Inr{y2)/x]
hnt

h|nt

(disj-ind)[P;[si;s2]]

' I n t "- —
(union=i)[[u;r];[si;s2]]

s i

where Inl(u) and /n/(r) are well-sorted terms of sort (S1JS2)

h|nt Inr(u) = Inijr)

' I n t a — s i i

where Inr{u) and Inr[r) are wrell-sorted terms of sort (si

hlnt M(u) = In
where u and r are well-sorted terms of sorts s\ and s2 respectively

Figure 2.4: Equality schemata and schemata for reasoning about disjoint unions.

naive proofs-as-programs approaches, such as that of Martin-Lof [ML84, ML85], where a
single type theory is used to denote terms for predication in the logic, and proofs of the
logic. (Appendix A, Section A.2, provides a brief overview of the type theories for which
the Curry-Howard isomorphism holds. A comparison is made between the use of a single
type theory to multiple type theories to denote terms for predication in the logic, proofs
of the logic, and programs.)

2.3.1 Proof-terms

The proof-terms of the type theory, PT(lnt), are given in Fig. 2.5. The grammar uses a
denumerable set of proof-term variables, Varpr(\nt)-

2.3.2 Basic t y p e inference rules

The basic type inference rules of LTT are presented in Fig. 2.6. These correspond to the
basic logical rules of Int (rather than the schemata or axioms).

h

n h c '•—

XF

Axiom (F)
Schema (JV, [e;F;F;s])

abstract x. a
app(a,6)
use i : t. a
specific(a, v)
(a,b)
fst(a)
snd(6)
inl(a)
inr(6)
case a of inl(x).6, \m(y).c
abort(a)
show(v,a)
select (a) in y : t.x.b

PT(Int), proof-terms of Int
proof-term with type superscript,
xeVarPT,M), FeWFF(Z)
axiom, F 6 WFF(E)
schema application, N the name of
the schema, F a list of formulae from
WFF(Y,), t a list of terms from Term(E),
and s a list of basic sorts
abstraction
application
term abstraction, i € Var, t a sort of S
term application, v £ Term(XI)
pair
first projection
second projection
in left
in right
case
abort
witness, v € Term(E)
select, y £ Var, t a sort of E, x E Varpx{\nt)

Figure 2.5: Syntax of the proof-terms PT(lnt) for the calculus Int.

4
Remark 2.13. For the sake of clarity, we equip PT(lnt) with two forms of lambda ab-
straction: abstraction over proof-term variables and abstraction over E term variables.
This necessitates two forms of application. Abstraction (abstract x. a) and application
(app(o, b)) correspond to applications of (=>-I) and (=^-E), respectively. In contrast, term
abstraction (use i : t. a) and term application (specific(a, v)) correspond to applications of
(V-I) and (V-E). It is possible to reformulate the Curry-Howard isomorphism to use a sin-
gle lambda abstraction and application to correspond to introduction and elimination for
both kinds of connective. This is, in fact, what is done in much of the proofs-as-programs
literature - see, e.g., Martin-Lof [ML84, ML85], the Nuprl system [CMH86] or the Coq
system [CH88]. However, to do this, the distinction between proof-terms and terms is not
so obvious, and the resulting theories can be difficult to understand and use for a novice.
We employ two forms of abstraction and application to highlight the distinction between
terms and proof-terms and to aid intelligibility.
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x, y are arbitrary £ variables of some sort s, and a is a term of arbitrary
sort s.

(Ass-I)
XA hint XA

(V-I) lnt

A h|nt specific(p,

A hint abstract x.

A h|nt V
A[ylx]

A h|nt use x : s. pVx:s'A

A h|nt pP[a/y]

A h lnt show(a,p)^ : s # p v ' Ai , A2 h ln t select (p) in ̂ .x.,
A h,nt a^ A' h,nt 6*

rF77ir(V-E)

(3-E)

A h|
nt

A hnt fet(p)
A h,nt

A

(A-Ej)

(V-I,)

A

A hnt
A hnt

(A-E2)

A h,nt i

i, A2 , A h|nt case p of inl(o:).a, inr(?/).6c'
A ±

(V-E)

A h|nt abort(a) '4

The type inference rules require the same conditions for application as their corresponding
logical rules given Fig. 2.3.

Figure 2.6: The logical rules of our calculus presented as type inference rules.

(is-

5

2.3.3 Axioms and schemata

We use special proof-terms to designate application of axioms and schemata. We require
that there be type inference rules for all axioms and schemata of Int.

Definition 2.3.1 (General form of type inference rules for axioms). Recall the
axiom application

FeAX
Hint F

(Ax)

We use the proof-term Axiom (F) to denote an application of this rule in the logical type
theory, with corresponding type formation rule

FeAX
h|nt Axiom(F)J (Ax)

Definition 2.3.2 (General form of type inference rules for schemata). Given a
schema rule R[X;y;Z] from int, where A", y and Z are lists of variables ranging over
formulae, terms and sorts, respectively:

h|nt
Int R[X; y; Z]

we define corresponding type formation schemata for proof-terms of the form

Schema(R, [[qi\... ;qn]',X]y] Z])

written
q[ hnt

h|nt Schema^, [{qi;...; qn)\ X\ y; Z})F
R[X;y-Z]

Example 2.4. The (subst) schema of Fig. 2.4 corresponds to the following type inference
schema

Qi\r/v]P[r/y]

; q2\\P\ V\

2.3.4 The Curry-Howard isomorphism

Every proof-term that is well-typed according to the inference rules corresponds to an
intuitionistic proof. This fact is known as the Curry-Howard isomorphism, formalized
according to the following theorem.

Theorem 2.3.3 (Curry-Howard isomorphism). Let V — {<7i,... ,Gn} be a set of
premises. Let Tf ~ {x\Cl,... , x n

G n } be a corresponding set of typed proof-term variables.

Then.,
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1.
2.
3.
4.
5.
6.
7.

app(abstract X a<^*> bA)
specific(use x : 5. aVa::s*^, v : s)
fst(7a b)(A/^B^)

sr\d((a b)(A/SiB^)
case inl(a)AvB of \n\(xA).bc, inr(yB)
case inr(a)^VjB of \n\(xA).bc, \nr{yB]
select (show(v,a)3y:s#jP) in z.xp\z/y]

t>lnt

>lnt

>lnt

>lnt
XC > | n t

).CC t>|nt

.bC l>|nt

a[6/X]B

bB

b[a/x]c

c[a/y]c

b[a/x][v/z}c

Figure 2.7: The seven reduction rules that define >int-

1. Given a natural deduction proof of

hnt

we can use the type inference rules to construct a well-typed proof-term p whose
free proof-term variables are F'.

2. Given a well-typed proof-term pA whose free term variables are V, we can construct
a natural deduction proof ofT h|nt A.

Proof. The proof of item 1 follows easily by induction on the structure of the deduction
D and the definition of the typing rules and Int. The proof of item 2 follows similarly by
induction on the structure of the deduction p. •

2.3.5 Reduction rules

Because proof-terms are terms in a form of lambda calculus, they have reduction rules
whose application corresponds to proof normalization by the Curry-Howard isomorphism.

There are seven rules that define the normalization process over proof-terms which are
given in Fig. 2.7. Each rule of Fig. 2.7 represents a possible proof simplification. These
may be obtained by matching redundant applications of elimination and introduction
rules.

I

h

n

I

'< t

r

For example, reduction 1 of Fig. 2.7 corresponds to deleting a (=>-!) followed by a

x

a
B : b

A

B

A

which reduces to B
a[b/x]

Similarly, reduction 7 of Fig. 2.7 corresponds to deleting a (3-1) followed by a matching
(3-E):

: a
p[t)/»]

3y : s • P

t

(3-1)

C

: b
C ,

which reduces to

: 6
P[z/y]

The left hand side of a reduction rule is called redex and right hand side of a rule is called
the reduct.

We write
P >int P

when p' may be obtained from p by the transitive closure of t>int. When p D>int p' holds,
then pf is obtainable from p by a sequence of replacements of subterms using the rules of
Fig. 5.4. In this case, we say that p is reducible to p'.

Remark 2.14. Recall that we treat terms Term(E) and proof-terms PT(lnt) as serving
different purposes. This is reflected in the fact that the Term(E) terms, which are used
in term application and in witness proof-terms, are not reduced by these reduction rules.
For instance, the (one-step) normalization chain:

SPecific(use X. y^ 3j3y:tnt.2*3=y

continues no further. The term (3 + 3) is treated as a constant. As we shall see, the term
(3 + 3) can only be "reduced" when evaluated in a separate programming language.

This is a point of deviation from rxdive proofs-as-programs approaches, which usually treat
proof-normalization and program evaluation as one and the same. For example, a Martin-
Lof type theory has reduction rules for normalization and for evaluating data types. The
equivalent of the above proof-term in a Martin-L6f type theory would reduce the witness
term to give a proof-term of the form (6,p) - considered to be the return value of the
program.

The state-of-the-art approach of this chapter is that reduction rules only correspond to
normalization of proofs, while, separately, we employ extraction to obtain optimized SML
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programs from proofs. So, in contrast to naive-proofs-as-programs, there is a clear separa-
tion of proofs from programs. This point will be important in the next chapter where we
shall take such a separation as important to the correct generalization of our approach.

2-3.6 Strong normalization

The strong normalization property tells us that the normalization process over a calculus
will always terminate. To show that this property holds over our calculus, we need to show
that the proof-terms of LTT(lnt) are strongly normalizable, according to the following
definition.

Definition 2.3.4 (Strongly normalizable proof-terms). We say that a proof-term is
normal if it contains no redex - that is to say, it is irreducible.

Given a proof-term t, we let N(t) denote the least upper bound of lengths of reduction
sequences for the term t. We say that t is strongly normalizable if all reduction sequences
are finite.

Remark 2.15. Clearly, if
Lemma, conversely.

is finite, then t is strongly normalizable and, by Konig's

Theorem 2.3.5. Any term t of Pl\\nt) is strongly normalizable.

Proof This is the proof of strong normalization for many-sorted first-order intuitionistlc
logic and the fact that proof-terms for axiom introductions are irreducible. For a proof,
see, e.g., [CS93]. •

Lemma 2.3.1. Take any proof-terms aA and bB. If aA t>|nt bB, then the type of a is the
same as the type of B.

Proof By induction on the length of the proof-term, using the fact that if a proof-term a
reduces to b by one of the rules of Fig. 5.4, then the type of a has the same type as b. •

Remark 2.16. By the Curry-Howard isomorphism of Theorem 2.3.3 and Lemma 2.3.1, if
proof-term a is reducible to 6, then both represent proofs of the same formula. In this
sense, reducibility is a form of equivalence between proofs.

2.3.7 The Church-Rosser Property

The Church-Rosser property says that if a proof's normalization sequence can diverge,
then eventually the divergent sequences will converge to yield the same pj-̂ of.

Usual proofs of the property involve showing that the transitive closure of >|nt satisfies
the so-called diamond property.

i

Definition 2.3.6 (Diamond property) . A relation # over a set S satisfies the diamond
property when

for all x, rci, 32 in S{x#Xi and x#x2 => there exists a x3 such that

andx2#x3))

Theorem 2.3.7 (Church-Rosser property). The relation > !nt satisfies the diamond
property (and therefore >\nt, as the transitive closure of >|nt, satisfies the diamond prop-
erty).

Proof. Because our proof-terms are terms in a lambda calculus, with >|nt a reduction
relation over the lambda calculus, we can show this by the proof given in [Bar84, pp.
59-62], a proof due to Tait and Maxtin-L6f. D

2.4 Programs in SML

We will be extracting terms from SML programs from proofs represented in the LTT.
For simplicity of presentation, instead of dealing with the full SML language specification
[MTH90], we consider the subset corresponding to the simply typed lambda calculus. This
enables us to consider a simple operational semantics for our programs.

Our subset of SML is exactly the terms, Term(E), of Fig. 2.1. We use typewriter font to
distinguish terms of Term^) when used as programs, as opposed to terms in formulae.
These terms can be considered well-formed and well-typed SML programs, where

• We assume all programs are evaluated with respect to a preamble - a library con-
sisting of data type and terminating function declarations.

• All the functions and constants from the signature E are defined in the preamble.

• Basic sorts correspond to assumed SML types that have been defined in the preamble.

• Functional and product sorts t —• u and sorts t * u are taken as functional and
product SML types t->u and t * u respectively. For the purposes of clarity and to
provide a relation to terms of AWT, we continue write disjoint unions in the form
t|u. However, this is to be taken as shorthand for the correct syntax in SML,

(t,u) disjointUnion

an instantiation of the following parametrized SML data type

datatype ( ;a/b) disjointUnion=Inl of 'a | Inroi 'b;;

We assume the parametrized data type is defined in the preamble, so that our disjoint
unions are available to all programs that use the preamble.
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Remark 2.17. The match construct of Term(£) forms a valid SML matching over the
disjoint union data type defined using Inl and Inr constructors.

The terms form a lambda calculus with the usual reduction rules. We consider these
rules to provide a simple operational semantics for determining program evaluation. The
semantics is given by the reduction relation V>SML, defined in Fig. 2.8.

In addition to the usual r reduction rule, we provide rules for projections and cases.

Also, we provide rules for applying function symbols to arguments. We assume that all
function symbols of E correspond to functions in the SML preamble. When a function is
applied to arguments of appropriate arities and types, SML should always evaluate the
result to an answer value, which can be represented as another term of Term(E). This
assumption is formalized by assuming a mapping, Eval, that gives the return value for
function applications. Given a function symbol / € TFsl...Sn,s and arguments (a1 ? . . . , an)
of sort (si * ... * sn), Eval(f(au ... , a j ) returns a term from Term(E) of sort s. The
term Eval(f(ai,..., an)) is exactly the return value obtained by evaluating f (a l 5 . . . , an)
in SML.

Assumption 2.1. For the purposes of generality, we do not explicitly define Eval for the
function symbols that occur in lambda terms. Instead, we assume that Eval is always
defined to represent the definition of the function symbols in a loaded SML preamble.
We assume that, because the preamble consists of terminating programs, the definition of
Eval is such that repeated applications of \>SML always terminate.

We write

if b can be obtained from a by one or more applications of the rules. We write >SML f°r

the transitive closure of V>SML, and say that a evaluates to b if

Remark 2.18. A standard SML compiler is equipped with a denotations^ semantics that is
compatible with our rules [MTH90]. This is true because SML was designed to incorporate
the simply typed lambda calculus.

Because SML terms can be used both as programs and as terms in the logic, it is desirable
to be able to reason about program evaluation using the logic. This is achieved by adding
the following schema to our calculus

(red=)[[a,b];[s]]

where a : s and b : s are well-typed (well-sorted) terms of both SML and AD7 (note the
change in font to denote the respective uses). This schema permits us to treat reducible
terms as equivalent according an equality =5 relation. In this way the logic can correctly
reason about the evaluation of program terms.

i 5

match Inl(a) with inl(x)
match Inr (a) with inl(x)

(fn
=>b
=>b

x : s => p) a
inr(y) => c
inr(y) => c

fst(()a,b)
snd(()a,b)

f(ai , . . . ,an)

>SML

>SML

>SML

>SML

>SML

>SML

p[a/x]
b[a/x]
c[a/y]
a
b
jE?va/(/(ai,...,On))

Figure 2.8: The operational semantics of our fragment of SML.

Assumption 2.2. We make the following assumption. When considered as SML programs,
functions always evaluate in a way that is consistent with their specification given by AX.
That is to say, we require that the definitions of Eval, >SML and the addition of the
(red=) rule to AX still yield consistent models for ArDeJ. In particular we consider our
subset of the SML language together with the preamble to form a model of AWT. This
model is of main interest to us, because we are primarily interested in using AT)*! to reason
about our SML programs.

2.5 Program synthesis

We are now able to show how to synthesize correct SML programs from intuitionistic
proofs. Our method follows the principles of state-of-the-art (SOA) proofs-as-programs.
We define an optimising extraction map. Given a proof-terxm in the LTT corresponding
to a proof of a specification, the map produces a program in SML that satisfies the
specification.

The way by which a formula specifies a program is formalized by a notion of modified
readability between SML programs and formulae. Following similar SOA approaches,
our extraction map involves removal of nonconstructive information from proof-terms,
and type simplification, to transform logical proof-terms into realizing SML lambda terms
with simple types.

2.5.1 Modified readability

We use a notion of modified realizability between our formulae and programs of SML,
based on that given in [Kre59, BS95a, Dil80]. Essentially, an SML program is a modified
realizer of a formula if it can act as a required Skolem function for the Skolem form of a
formula. We define these concepts now.

We first need to define a sort extraction map xsort from formulae to sorts of E. This is
given by Fig. 2.9.

Then we define the Skolem form of formulae.
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F

P(a)

(AAB)

(AV B)

{A=>B)

Vx : s • A

JX . 5 • Ji.

1

etype(F)

<
' etype(A) if not H(B)

etype(B) if not H(A)
etype(A) * etype(B) otherwise

etype(A)|etype(£)
f etype(B) if not H(B)
\ etype(A) —»• etype(B) otherwise
5 —•• etype(A)

f 5 if#(A)
^ s * etype(A) otherwise
Unit

P is an atomic predicate.

Figure 2.9: Definition of etype.

Definition 2.5.1 (Skolem form and Skolem functions). Given a closed formula A,
we define the Skolem form of A to be the Harrop formula Sk(A) = 5/cr(A,0), where
Skf(A,AV) is defined as follows.

A unique function letter fA, called the Skolem function, is associated with each such
formula A, of sort etype(A). AV represents a list of application variables for A (that is,
the variables that will be arguments of fA). If AV is {x.\ : s i , . . . ,xn : sn} then /(AV)
stands for the function application app(f, (x\,..., xn)).

1. If A is Harrop, then Sk'(A,AV) = A.

2. If A = ( £ V C ) , then

S7c'(A,AV) = (Vx:etype(B)*/A(AV) =
A(Vy:etype(C)#A(AV)

3. If A= (B AC), then

(a) If JB is Harrop and C is not Harrop,

^(C, AV)[2///C])

kf{C, AV)[snd(fA)/fc}

(b) If B is not Harrop and C is Harrop,

/(A AV) = {Sk'(B, AV)[fst(fA)/fB] A C)

M

i

ll

4 J

F W

w

(c) If B and C are not Harrop,

Sk'(A,AV) = {Sk\B,AV)\Jst(fA)lfB]ASkt{C,AV){snd{fA)/fc])

4. If A=(B=>C), then

(a) If i? is Harrop,

= (B =• Sk'(C,AV)[fA/fc))

(b) If 5 is not Harrop and C is not Harrop,

S7c'(A,AV) =

5. If A = 3y : 5 • P, then

Sk>(C,AV)[{fAz)/fc])

(a) when P is Harrop, Sk\A,AV) = Sk'(P,AV)[fA{AV)/y]

(b) when P is not Harrop,

Skf(A,AV) - Stf(P,

6. If A = Vx : s • P, then 5fc'(A, AV) = Vx : s • Sk'{P, AV)[{fAx)/fP].

Example 2.5. Given a formula A defined as 3y : intoy > s(s(s(s(0)))), the Skolem form
5/c(A) is / 4 >

Recall that our SML programs may be represented in formulae. We define an SML program
to be a modified realizer when, treated as a term of Term(E), it can be proved to be a
Skolem function for the Skolem form of the formula.

Definition 2.5.2 (Modified realizability). A program p is a modified realizer of a
formula F if, and only if,

hnt Sk(F)\p/fF]

is provable (where p is the representation of p as a term of Terra(£)). In this case, we
write

p m r F

We will need the following lemma

Lemma 2.5.1. / / there is a proofT h n t Sk(A)[a/fA] then T \-\nt A.

Proof. By induction on the form of A. •
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p

any proof-term where P is Harrop

u

abstract uA. aB

use x : s. aA

specif \c(c*x*A,v)

case ̂ v s of i n l ^ ) ^
\nr{uB).cc

show(t), aA)

select (a3y:s*A)mx.uA{x/y].bB

inl(a)
inr(a)
fst(a)

snd(a)
abort(ax)

extractint(p )

xu not H(A)
0 H(A)
fn xu => extractint(a) not H{A)
extractint(a) ', H(A)

(extractint(c) extract|nt(a)) not H(A)
f n x : s -> extractint (a)
(extractint (c) v)

extractint (a) H(B)
extractint (b) H{A)
(extractint (a), extractint (b)) otherwise

match extractint(a) with
Inl(xt) => extracting)',
Inr(xu) => extractive)

v H(A)
(v, extractint(a)) not H(A)
(fn x => extract|nt(6))extract|nt(a)

f n x => f n xu => extractint(^)
f st(extractint(a)) snd(extractint (a))

H(A)

notH{A)

Inl(extractint(a))
Inr (extractint (a
f s t (extractint (a))
snd(extractint(a))

We write H{A) for "A is Harrop".

Figure 2.10: Extraction map extract|nt defined over the intuitionistic proof-terms.

2.5.2 Extraction map

The extraction map, extractjnt, from proof-terms to SML programs, is given in Fig. 2.10.

The map presumes a set of variables in Var, each corresponding to a proof-term variable
from VrarPr(|nt),

{xu | wE

The principle goal of our work is to produce correct code from proofs of specifications.

Theorem 2.5.3 and Corollary 2.5.1 tells us that extract|nt produces modified realizers.
Together, these results provide us with the fundamental result of our SOA approach, telling
us that the map extracts correct code from proofs of specifications.

Theorem 2.5.3. Let F =' {uf],..., ufn }.

Let V = {Sk{Gi)[xuJfGl],..., Sk(Gn)\xuJfGn}}.

"A

P

h

tiu

I

5
4

Take any intuitionistic proof, represented in the LTT as

r P P

that does not such that no axioms or schemata are used.

Then extract|nt(p) will produce a modified realizer of P, assuming V

Proof. First, if P is Harrop then Sk{P) = P, and we are done.

So, we assume that P is not Harrop and proceed by induction on the length of the proof.
(Note that, in the following, we use both sequent and proof-tree style notation, depending
on convenience.)

Case: (Ass-I). Assume that pp is of the form A obtained by an application of (Ass-I):

(Ass-I)
UA h,nt U

So F' = {Sk(A)[xu/JA]} and we can prove

(Ass-I)

as required.

Case: (A-I). Assume that pp is of the form

obtained by an application of (A-I):

(A-I)

so that F7 = 1 ^ UF2.

Because we assume that P is not Harrop, either

1. A and B are both non-Harrop.

2. 4̂ is Harrop and B is non-Harrop.

3. .A is non-Harrop and B is Harrop.

We deal only with the first case, as the other two cases are similar. Here,

extract|nt(p) = (extract|nt(a),extract|rit(6))
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and

5/c(P)[extract,nt(p)//P] =

Sk(A)\fst(extractlnt(p))/fA] A

So, by the IH, we know there are proofs a' and b' such that

and

S/c(,4) [extracts

r'
1 o

,?fc(J3)[extractlnt(&)//B] •

The conjunction of these two conclusions is proved by (A-I):

ri r'2
: (2.3) : (2.4)

Sk(A)[extrzctlnt(a)/fA] Sk{B)[extractint{b)/fB}
(Sfc(A) [extracts (a)//A] A Sfc(B)[extract|nt(6)//B])

We are required to prove

(A-I)

(2.3)

(2.4)

(2.5)

with /si(extract|nt(a),extrac.t4nt(&)) of sort etype(A), and so R\ is the schema application
name (red=)[[/s£(extract|nt(a); extract|nt(6)); extract|nt(a)]; [etype(-A)]].

Similarly, we obtain h n t S72c?(extract|nt(a),extract|nt(6)) = extract|nt(6).

5nd(extract|nt(a),extract|nt(6)) >*SML extract!nt(6)

snd( extract|nt (a), extract|nt (6)) = extract$nt(6) (2.7)

where R2 is the schema application

(red=)[[snd(extract|nt(a); extract|nt(6)); ext.ract|nt(6)]; [etype(J5)]]

Recall the (subst) schema of Fig, 2.4.

We apply this schema, setting u to/s£(extract|nt(a),extract|nt(&)), r to extractjnt(a) and P
to Sk(A)[y/fA] A Sk(B)[extractlnt(b)/fB]

(2.5)
I (2-6)

a),extractint(&))

{Sk(A)[extr3Ct\nt(a)/fA] A
(/s£(extract|nt (a), extract|nt(6)) = extract|nt(a))

Sk(A)[/st(extract|nt(a),extracts(b))/fA] ASk(B)[extract\nt(b)/~fB\

(A-I)

(2.8)

where R3 is

Sk(A)\fst(extract\nt(a), extractjnt(6))] A Sk{B)[snd(extract\nt(a), extract\nt(b))/fA]

Our schemata let us take reducible terms as equal. Consequently we can prove extract|nt(a)
is/s£(extract|nt(a),extract|nt(&)) and extract^ (b) is snd(extract|nt(a),extract|nt:(6)). The re-
quired conclusion follows from this and (2.5).

More formally, we proceed as follows. First we show that h|nt /s£(extract|nt(a), extractjnt (6)) =
extract|nt(a). This can be seen by applying the (red=) schema of p. 4.4:

d

hnt d =s
L± {red=)[[d,e];[s]]

Taking d as /st(extract|nt(a),extractjnt(6)), e as extract|nt(a) and s as etype(-A), we have

/s£(extract|nt(a),extractjnt(6)) >*SML extract|nt(a)

/st(extract|nt(a),extract|nt(6)) = extract|nt(a) (2.6)

I

(snbst)[[Sk(A)[y/fA} A Sk(B)[extractlr)t(b)/fB}]',

[f5^(extract|nt(a), extractlnt(6)); extract!nt(a)]; [etype(A)]]

We apply this schema again, setting u to snd(extract|nt(a),extract|nt(6))\ r to extract|nt(6)
and P to (5^(A)[Mextract|nt(a),extract,nt(6))//Aj ASk(B)[y/fB])

1 2
: (2.8)

(5fc(A)[/st(extract|nt(a),extract|nt(6))//i4]A
Sk(B)[extractlnt(b)/fB})

: (2.7)

extract|nt(6)
(A-I)

snd(extract|nt(a),extract|nt(6)) = extract|nt(6))
~ R.4

where i?4 is

(subst)[[(^/c(A)[Mextract,nt(a),extract,nt(6))//A] A Sk(B)[y/fB))}:

[snd(extract|nt(a), extract|nt(6)); extract|nt(6)]; [etype(A)]]
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This is the required proof, as the the conclusion

5r/c(A)|>i(extract,nt(a), extractlnt(6))//A] A Sk{B)\fst{extract]nt(a), extract,^

is the same as writing

(Sk(A)[fst(extract]nt{p))/fA] A Sk{B)[snd(extractlnt(p))/fB})

Case: (A-Ei). Assume that pp is of the form

fctfo)A

obtained by an application of (A-Ei):

hint q{AAB)

h
lnt

(A-Ej)

We are required to prove Tr h|nt Sk(A)[extract\nt(p) / fA}.

There are two possible cases: either B is Harrop or B is not Harrop. We reason over these

cases.

1. Assume that B is Harrop, so that Sk(B) = B. Then,

extractint(p) = extract^ (<?)

and we are required to prove Sk(A)[extr%ct\nt(q) / fA].

By the IH and the fact that Sk(B) = 23, we know that there is a proof of the form

r

From this, we can derive

r
(Sk{A)[extractlnt(q)/fA] A B)

Sk(A)[extractlnt{q)/fA)
(A-Ei)

as required.

2. Assume that B is not Harrop. Then,

extract|nt(p) = /s*(extract|nt(g))

and we are required to prove Ff h|nt Sk(A)\fst(extract\nt(q))/fA}.

ii

•I

C

• ' 1

U

if

I

the IH, we know that there is a proof of the form

r
A Sk(B)[snd{extract,nt(q))/fB])

We apply (A-Ei) this to obtain the required proof

r
A Sk(B)[snd(extr3ctint{q))/fB})

Sk{A)\fst(extvactint{q))/fA}
(A-Ei)

Case: (A-E2). Similar to the case (A-Ei) above.

Caso: (V-Ii). Assume that pp is of the form

inl(a)AVB

obtained by an application of (V-Ii)

hint inlaAvB (V-Ii)

so that extract|nt(p) = Inl(extract|nt(a)).

We are required to show that Tf hnt Sk(P)[extract\nt(p)/fp]. That is to say, we must
prove

T' h|nt (Vz : etype(A) • 7n/(extract|nt(a)) = Inl(x) =» Sk(A)[x/fA])A

(Vy : etype(B) • 7nZ(extract,nt(a)) = 7nr(t/) => Sk(B)[y/fB})

To show this, we use the following assumptions

and

7n/(extract|nt(a)) =

7n/(extract|nt(a)) = Inr(y)

(2.9)

(2.10)

By the IH, there is a proof of the form

r'

Sk(A)[extractini{a)/fA] (2.11)



54 Chapter 2: Functional program synthesis Program synthesis 55

Recall the (union=i) schema: for any u and r of the same type,

(union=i)[[u; r];[sr,s2]]u=Sl r

Letting u be extract^ (a) and r be x, then using assumption (2.9), we have

7n/(extract|nt(a)) =

extract|nt(a) = x (2.12)

where Ri is (union=i) [[extract^ (a) ;z]; [ety pe (A) ;etype (£)]].

Recall the reflexivity (ref) schema of Fig. 2.4. Letting u be extracts (a), r be x and s be
etype(j4) in this schema, then using (2.12), we have

extract|nt(a) = x
x = extract|nt(a)

where R<i is re/[[extract|nt(a);x];etype(A)].

Applying (A-I) to the proofs (2.13) and the IH (2.11) will give us

(2.13)

Sfc(A)[extract|nt(a)/2/]

Jn/(extractint(a)) =

x = extract|nt(a)

(Sk(A)[extract\nt(a)/y] A x — extract|nt(a))
(A-I)

By the (subst) schema, with P set to Sk(A)[y/fA], r set to extract|nt(a) and u set to x,
we obtain

r/,/n/(extract|nt(a)) =

(5fe(A)[extract|nt(a)/y] A x = extract|nt(a))
R:- (2.14)Sk(A)[x/fA]

where R3 is (subst)[[Sk{A)[y/fA]]] [extract^ (a) ;x]: [etype(4)]].

We apply (=>-I) on (2.14) introducing assumption (2.9), and then perform (V-I) abstracting

r/,[/nZ(extract|nt(a)) =over x:

Sk{A)[x/fA]
M(extract|nt(a)) = M(x) =» Sk(A)[x/fA]

Vx : etype(A) • M(extract|nt(a)) = Inl(x) =»

This gives us the left hand side of the required conjunction.

(V-I)
(2.15)

11

4

1
'5

Recall the (union^) schema of Fig. 2.4: for any u and r of types s\ and S2 respectively,

M(u) = 7nr(r)

Letting it be extract^ (a) and r be y, we have

7n/(extract|nt(a)) = Inr(y) (2.16)

where R4 is (union^)[[extract|nt(o);y]; [etype(A);etype(J5)]].

So, the assumption (2.10) and (2.16) give a contradiction, from which we may conclude
Sk(B)[y/fs] by the absurdity rule:

7n/(extract|nt(a)) = Inr(y) 7n£(extract|nt(a)) = Inr{y)

Sk(B)[y/fB] 1-E
(2.17)

Finally, applying (=>-I) to (2.17) introducing assumption (2.10), and then performing (V-I)
abstracting over y will give

[7raZ(extract|nt(a)) =
*

Sk(B)[y/fB]

extract|nt(q) = Inrjy) =» Sk(B)[y/fB]
Vy : etype(B) •extract|nt(o) = Inr(y) => Sk{B)[y/fB]

(V-I)
(2.18)

Then, applying (A-I) over (2.15) and (2.18), we obtain the required proof:

(Vx : etype(A) •extract|nt(p) = Inl(x) =» Sk(A)[x/fA])/\
(\fy : etype(B) •extract,nt(p) - Inr\y) => Sk(B)[y/fB])

Case: (V-I2). Similar to the (V-Ii) case above.

Case: (V-E). Assume that pp is of the form

case e of inl(x).a, \nr(y)ib
c

obtained by an application of (V-E)

, r2 , r3 h|nt case e of inl(w).a, \nr(v).bc (V-E)
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so that F' = T[ U F2 U F3, and extract\nt(p) is defined

extract|nt(p) = match extract|nt(e) with
Inl(xu) => extract|nt(a),

v) => extract|nt(&)

(2.19)

By the iH,

r i hnt Sk(A V B)[(extract|nt(e))//^V.B]
V2,Sk(A)[xu/fA] hnt S/c(C)[(extractlnt(a))//c]
r'3,Sk(B)[xv/fB] hnt 5

(2.20)

(2.21)

(2.22)

By (=>-I) and (V-I) on (2.21) and (2.22) respectively, we obtain

f
2 hnt Vxu : etype(A) • Sk(A)[xJfA] =» Sffc(C)[(extract,nt(a))//c]
^ hnt Vxv : etype(jB) • Sk{B)[xv/fB] => S/c(C)[(extract,nt(&))//c

Also, by the definition of Sk(A V J5), (2.20) may be rewritten:

(2.23)

(2.24)

r'i hnt M (2.25)

where M is

(Vrc : etype(A) •extract|nt(e) = =»
: etype(B) • extract)nt(e) = Inr[y) =» Sk(B)[y/fB])

Using the (disj-ind) schema, we claim it is possible to prove

h|
n t

• etype(A) = M(vi))V

(3vr : etype(A) • extractive) = Inr{vT)) (2.26)

Proof of (2.26).

To see this, first recall the (disj-ind) schema of Fig. 2.4 for terms of type (si|s2)
arbitrary predicate Q:

: 8l • (Q[M(yi)/x] A

Vx : Si|s2 •

We use this schema with s\ set to etype(A), s<i set to etype(B) and Q set to the statement

'/ : etype(A) • x ~ Inl(vfi) V (3vr : etype(J5) • x = Im{vT))

i;
5 -

•?

in the following proof

ifc

etype(A) • Inl(y\) =
Q[M(yi)/x]

: etype(^)

(3-1)

(V-Ii)
(V-I)

Q[Inr(y2)/x}
\/y2 : etype(B) •Q[Inr(y2)/x

: etype(i4) A (Vy2 : Q[Inr[y2)/x])

(3-1)

V-/z

(V-I)
(A-I)

(2.27)

: etype(A)|etype(5) • Q

where R\ is

(disj-ind)[[(3u/ : etype(A) • x = Inl(vi)) V (3ur : etype(£?) • x = 7nr(t;r))],

[etype(A);etype(B)]]

and i?o is
(red=)[[Mj/i); /n%i) ] ; [etype(A)|€type(B)]]

and i^3 is
red=[[7nr(?/2); /M2/2)]; [etype(i4)|etype(5)]]

both the names of applications of the schema (red=).

By setting extractive) for x in (2.27), we have the required proof of (2.26)

End of proof of (2.26).

We reason over the two possible cases given by (2.26).

Left case of (2.26). We assume the left case holds:

extract|nt(e) (2.28)

We will establish

: etype(A) •extract|nt(e) = h|
nt

(2.29)

We first assume that there is a &/ : etype(A) such that

extract|nt(e) =

Also, we observe that it is possible to derive

extract|nt(e) = Inl(ki)

(2.30)

(Q/[extract|nt(6)/i/] A = extract lnt(e)) (2.31)
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with Q1 defined to be

extractjnt(p) = matchy with Inl(xu) - > extract|nt(a) | Inr[xv) =>extract|nt(&)

This follows from taking the conjunction of P[extract|nt(&)/?/] (that is, of the identity
extract|nt(p) = extracts(p)) obtained using the (red=) schema, and o£Inl{k{) = extract|nt(e)),
obtained from the assumption (2.30) extract|nt(e) = Inl{k{) and the reflexivity (ref=) schema.

We apply the substitution schema:

extract|nt(e) =
: (2.31)

(Q/[extract|nt(&)/2/] A Inl(ki) = extracts (e))

extractint (p) =
match Inl{ki) with Inl(xu) => extract|nt(a) | Inr(xv) =>extract|nt(6)

where R4 is

(subst) [[extract|nt (p) =

match y with Inl(xu) ='.

(2.32)

extract|nt(o) | Inr[xv) =>extract|nt(6)];

[extract,nt(e); JnZ(fci)]; [etype(A V B)]]

Also, using the (red=) schema we can obtain

t
 >*SML extract|nt(a)[fe|/a;1x]

match Inl(ki) with Inl(xu) => extract^(a) | Inr(xv)
extract\nt(a)[ki/xu]

:>extract|nt(6) =
(2.33)

where t stands for match Inl(k{) with Inl(xu) => extract|nt(a) | Inr{xv) —>extract|nt(6)
and E5 is (red=)[[t;extract,nt(a)[A;//a:w]]; [etype(C)]].

Then, by application of the substitution schema, taking r to be £, u to be extract|nt(a)[/c^/xu]
and P to be extracts (p) = y

extract|nt(e) = Inl(ki)

«
p \(extractint(6)=iAt=extractint(a)[kt/xu\)

extractint(p) = extract|nt(a)[/c//xu]

where RQ is (subst)[[F]; [extract|nt(a)[fci/a;w];*]; [etype(C)]].

Next we prove

(2.34)

r;
1: T2, extractive) = Inl(k) h,nt 5/c(C)[(extract,nt(a)[/cz/.Tu])//c] (2.35)

Proof of (2.35).

t 5

M

Using (2.25):

M
Vx : etype(A) » (extract|nt(e) = Inljx) =» Sk(A)[x/fA]) j j " ^ (2-36)

extractint(e) = Inl(ki) extract|nt(e) = Inl(kt) => Sk(A)[ki/fA]

We set the xu of (2.23) to be ki,

V
1 o

Mxu : etype(^)
: (2.23)

5fe(C)[(extract,nt(a))//c]
Sk(A)[k/fA]

(V-E)
(2.37)

Then, we instantiate (2.37) with with the conclusion of (2.36) to obtain (2.35):

,̂ extractint (e) = Inl(k{)
: (2.36) T|

$k{A)[hlfA] Sk(A)[hlfA} =» 5fe(C)[(extract|nt(a)[fcz/xu])//c]
Sk{C) [(extractint {a) [k /xu}) /fc]

End of proof of (2.35).

So, using (2.34), (2.35) and (subst), we can derive

(2.37)

^ ^ , extract|nt (e) =
: (2.35)

extract|nt(e) =
: (2.34)

extract|nt(p) = extractlnt(a)[A;//:ru]
^(C)[extract,n t(p)//C]

where RQ is the rule formed from the schema application

(subst)[[Sk{C)[y/fc]}; [extract,nt(e);

Re (2.38)

V B)]]

Observe that /c/ does not occur in Sr/c(C)[(extract|nt(p))//c]- So, we can apply (3-E) to
assumption (2.28) and (2.38):

, [extractint

etype(A) • [extract|nt(e) = Inl{v{)\
(Ass)

5/c(C)[extract,nt(p)//c]

This concludes our subproof using the left case of (2.26).

(3-E)
(2.39)
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Right case of (2.26). We assume the right case holds:

3vr : etype(B) • extract^ (e) = Inr(vr)

By symmetric reasoning to the previous case, we obtain a proof of the form

r : etype(J3) • extract|nt(e) = Inr(vr)

Sfc(C)[(extract,nt(p))//c]

So, we have

(2.40)

(2.41)

concluding our subproof using the right case of (2.26).

It then remains to apply (V-E) to the proofs (2.26), (2.41) and (2.39), obtaining the
required conclusion

A

[3vi : etype(A) • extract]nt(e) = Inl(vi)]
: (2.39)

SMC)[(extractlnt(p))//c]

[3vr : etype(B) • extracts(e) = Inr[vr)}
\ (2.41)

Sfc(C) [(extract,* (p))//c]

where A is

Sfc(C) [(extractint
(V-E)

: (2.26)
(3vi : etype(v4) •extractive) = Inl(v{)) V (3vi : etype(A) • extractjnt(e) = Inr(y{))

Case: (3-1). Assume that pp is of the form 3x : s • A obtained by an application of (3-1)

nt

(2.42)

There are two cases, dependent on whether A is Harrop or not.

Case 1: Assume A is Harrop. Then extract]nt(p) is defined to be v.

Also, because A is Harrop, Sk(3x : s • A) is A, and so Sk(3x : s • ^4)[extract|nt(p)//p] is
A[v/fA\- This means that Sk(3x : 5 • A)[/^/x][extract|nt(p)//^] = A[v/x], and, by the
premise of (2.42),

r*
Sk(3x : s • ^[extractint^J/Zaarrs.^]

By repeated application of Lemma 2.5.1, for each G[ E P7, we can derive ft E F .

1

i

A
IF

Sk(3x : 5

This concludes case 1.

Case 2: Assume A is not Harrop. Then extract|nt(p) is defined as

(v, extract|nt (a))

Also, because A is not Harrop, Sk(3x : s • i4)[extract|nt(p)//p] is

Now, by the IH, there is a proof

5fe(-A)[v/a;][extract|nt(a)//i4]

Using the (red=) schema, we prove

Mextract|nt(p)) >*SML v
/s*(extract|nt(p)) = v

where R\ is red = [[/si(extract|nt(p));v]; [s]]. Similarly, we have

5nd(extract|nt(p))

(2.43)

(2.44)

snd( extract|nt (p)) = extract|nt(a) (2.45)

where R\ is red = [[snd(extract|nt(p)); extracts (a)]; [etype(i4)]].

We apply the (subst) schema, setting P to 5/c(A)[y/x][extract|nt(a)//^], setting u to be
/s£(extract|nt(p)) and r to be v, obtaining

r
: (2.43) : (2.44)

Sk(A)[v/x][extr2ct\nt(a)/fA] fst(extract\nt(p)) = v

(5fc(i4)[t;/a;][extract|nt(Q)//>i] A/5<extract|nt(p)) = v)
5A;(A)[/s«(extract|nt(p))/x][extractint(a)//i4]

(A-I)

R<2
(2.46)

where R2 is (subst)[[Sfc(/x)[t//x][extract|nt(a)//>4]]; [/st(extract|nt(p)); v]; [s]].
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Then, we apply the (subst) schema a second time, letting P stand for the statement
Sk(A)\f$t(extract\nt(p))/x][y/JA], setting u to snd(extract|nt(p)) and r to extract^(a), ob-
taining the required proof

r'
\ (2-46) i (2.45)

P[r/y] u = r
(P[r/y] Au =

(A-I)

5fc(J4)[fst(extractint(p))/a;][extract|nt(a)//>i]

where Rs is

(subst)[[5fe(A)[/s*(extractint(p)/x][e)ctract|nt(a)//A]]];

[snd(extract|nt(p)); extract|nt(a)]; [etype(A)]]

This concludes case 2 and the case of (3-1).

Case: (3-E). Assume that pp is of the form C, obtained by an application of (3-E)

Hnt select (a) in v : s.u.bc (3-E)
(2.47)

So, r = riur;
2.

There are two cases, dependent on whether A is Harrop or not.

1. If A is Harrop, then extract3nt(p) i

(f n v : s => extract|nt(6)) extract|nt(a)

Because A is Harrop, Sk(A[v/y]) =• A[v/y). So, by the IH, there is a proof such that

Sfc(C)[extractlnt(W//c] (2.48)

Taking this proof, we first apply followed by (V-I) to give

* [A[v/y]]

Sfc(C) [extract|nt(fr)/7c]
A[v/y] =» gfc(C)[extract|nt(fr)//c]

(=>-!)

\/v : s . A[v/y] =*. 5fc(C)[extractlnt(6)//c]
(V-I)

(2.49)

A

I ' 1

I

Because A is Harrop,

Sk(3y : s • A)[extract!nt(a)//3?/:s.A]

= A[extract|nt(a)/y]

So, by the IH, there is a proof

A[extract|nt(o)/y] (2.50)

We apply (V-E) on (2.49), setting v to extract|nt(a), and then apply (=^-E) on the
result, instantiating with (2.50):

\fv : s • A[v/y]

:. (2.49) r ;

<g/c(C)[extract,nt(6)//A] : (2.50)
^ " ' i4[extract|nt(a)/y]AC

Sk(C) [ (b)/fc] [extract!nt (a)/v] (2.51)

where AC denotes the formula

A[extract|nt(a)/y] => 5/c(C)[extract|nt(6)//c][extract|nt(a)/i;]

Because, by definition of the (3-E) rule, v cannot occur in C, (2.51) is the same
proof as

1 1 ' 1 2

5A;(C)[(extract|nt(&)[e)ctract|nt(a)/v])//c]

ly application of the (red=) schema, we can obtain

(2.52)

•"int {fn v => extracting)) extractjnt(a) = extract|nt(&)[extract|nt(a)/v] (2.53)

We then apply the (subst) schema, setting u to be

(fnv => extract|nt(6)) extract|nt(a)

and r to be extract|nt(6)[extract|nt(«)/«] and Q to be Sk(C)[y/fc], thereby obtaining:

: (2.52)
5/c(Cf)[(extractlnt(6)[extractlnt(q)/t;])//A]

(Q[r/y)Au =
u —

(2.53)
r

Q[u/y]
R
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where R is

subst[[(,/h t; = > extracting)) extract|nt(a);extractlnt(6)[extract|nt(a)/v]];

This is the required conclusion because

Q[u/y]
= Sfc(C)[((f n v => extract|nt(6) extract|nt(a)))//c]
= 5fc(C)[extract|nt(p)//c]

2, If A is not Harrop, then extract|nt(;?) is

(f n v : s => f n xu : etype(A) => extract|nt(&)) f st(extract|nt(a)) snd(extract!nt(a))

By the IH, there is a proof

T'2,Sk(A)[v/y}[xu/fA}-

5fc(C)[extract,nt(6)//c] (2.54)

To this proof we ca,n apply (=>-I), followed by two applications of (V-I), giving

Ti2,[Sk(A)[v/y][xJfA}}

Sk(C){extracUnt(h)/fc}
Sk(A)[v/y}[xu/fA}=>Sk(C)[e-<traalnt(b)/fc]

: etype(A) • Sk(A)[v/y)[xu/fA] => S7c(C)[extract|nt(b)//c]
(V-I)

\fv : s . Mxu : etype(A) . Sk{A)[v/y][xu/fA] =• 5fc(C)[extractlnt(6)//c]
(V-I)

(2.55)

Because A is not Harrop,

Sk(3y : s • A)[extract\nt(a)/f3y:smA]
= (^(^)l/^(/3y:a«A)/2/][5"'d(/3y:a«i4)//A])[extract|nt(a)//3j/:5.^]

= ^(^)|/s*(extract|nt(a))/y][5nrf(e)ctract|nt(a))//A]

So, by the IH, there is a proof

5/c(A)[/sf(extract|nt(a))/2/][sfid(extract,nt(a))//i4] (2.56)

i

i
j

1

t

¥7e apply (V-E) on (2.55), setting v to /s£(extract|nt(a)), then apply (V-E), setting xu

to snd(extract|nt(a)), and then apply (=£-E) on the result, instantiating with (2.56):

1 2

: (2.55)

(V-E)
: (2.56)

C2 (2.57)

where yl/1 denotes the formula

\/v : s • \/xu : etype(A) • Sk(A)[v/y][xu/fA]

denotes the formula

5/c(C)[extract|nt(6)//c][Mextract|nt(a))/t;],

where A2 denotes the formula

5fe(i4)[/5i(extract|nt(a))/2/][5nd(e)ctract|nt(a))//i4]

and where C2 denotes the formula

Because, by the definition of the (3-E) rule, v cannot occur in C, and also we can
assume xu cannot occur in C,

is the same formula as

5A;(C)[((extract|nt(6)|/^e)€tract|nt(a))/v][snd(extract|nt(a))/a;u]))//c]

and so (2.57) is the same proof as

pl pr
L I ' 1 2

Sfc(C) [((extracts (2.58)

We can apply the (red=) schema to obtain

(fn v : s = > fn xu : etype(^) = > extract|nt(6)) /6^(extract|nt(a)) snd(extractlr)t(a)) =

extract|nt(&)[/s*(extract|nt(a))/i;][sfid(extract|nt(o))/a;u] (2.59)
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Recall that extract|nt(p) is

fnv : s —> fnxu : etype(A) = > extract|nt(6) /s£(extract|nt(a)) sn<i(extract|nt(a))

So, another way of writing the conclusion of the proof (2.59) is

hnt extract|nt(p) = extract|nt(6)[fst(extract|nt(a))/v][5nd(extract|nt(a))/a:w] (2.60)

So, we can apply the (subst) schema, using (2.59), setting u to be extracts (p),
setting r to be

extract|nt(6)[/st(extract|nt(a))/v][snd(extract|nt(a))/a;ll]

and P to be Sk(C)[y/fc], obtaining:

r' r'1 u i 2
: (2.58)

(Sk(C)[y/fc]{r/y}Au =

: (2.60)
u = r . .

(A-I)

where R2 is

subst[[extract|nt(p),extract|nt(6)[/st(extract|nt(a))/t'][snd(extract|nt(a))/a:u]];

[etype(C)];[Sfc(C)[y//c]]]

This proves the required conclusion, because

P[u/y] = Sk(C){y/fc}{extract]nt(p)/y}
= 5fc(C)[extract|nt(p)//c]

Case: (=>-!). Assume that p is of the form (̂ 4 => B) obtained by an application of (=>-I)

r, u^ h|rt

h|nt abstract u.

There are two cases, dependent on whether A is Harrop or not.

1. Assume that A is Harrop. Then extract|nt(p) is extract|nt(6),
that there is a proof of the form

T',A

S/c(£)[extract,nt(6)//B]

the IH, we know

•I
f
is

}

1
i

i

I

because 5*̂ (̂ 4) is A. Applying (=>-I) to this proof, we obtain

r,[A]

Sfc(B)[extract|nt(6)//B]

A=> Sk(B)[extractint{b)/fB]

This is the required proof because Sk(A =*• B)[extract|nt(p)//j4=>,B] is the same for-
mula as the conclusion A => Sfc(-B)[extract|nt(j>)//B].

2. Assume that A is not Harrop. Then extract^ (p) is f n xu => extract^ (6). By the
IH, we know that there is a proof of the form

T',Sk(A)[xu/fA]
*

Sfc(B)[extractlnt(6)//B] (2.61)

Using the (red=) schema, it is easy to derive

hnt (Jnxu => extract|nt(6)) xu = extract|nt(6) (2.62)

We apply the (subst) schema, using (2.62), setting u to be (fn xu —> extract!nt(6)) xu,
r to be extract|nt(&) and P to be Sk(B)[y/'/#], obtaining:

T',Sk(A)[xu/fA]
: 2.61

S7c(B)[extract|nt(6)//B] {fnxu=:
: (2.62)

extract|nt(6)) xu = extract|nt(6)

(5fc(B)[extract|m(&)//g] Au = r)
Sk(B)[(fnxu => extract|nt(6) xu)/fB]

(A-I)

(2.63)

where R\ is

(subst)[[(/n xu = > extracting)) xu;extractJnt(6)]; [etype(B)]; [Sk(B)[y/fB]]]

By definition of extract|nt(p), we know that the conclusion of (2.63) can be written
Sfc(£)[extract|nt(p) xu/fB]- We apply (=>-I) on (2.63):

[Sk(A)[xu/fB])
: (2.63)

xu)/fB]
Sk(A)[xu/fA xu)/fB] (2.64)

Finally, we apply (V-I) to (2.64), abstracting over xu, to give

\/xu : etype(A) • Sk{A)[xu/fA] =*• Sfc(B)[extract|nt(p) xu/fB]
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This, by the definition of Skolem form, is the required proof.

Case: (=£-E). Assume that pp is of the form app(a, 6)c , obtained by an application of

so that r ' = r; u r'2.
There are two cases, dependent on whether B is Harrop or not.

1. Assume that B is Harrop. Then

extract|nt(p) = extract^ (a)

Also, by the IH, we know that there are proofs

n

(2.65)

(2.66)

and
r'.2*
B

We apply (=>-E), instantiating (2.66) with (2.67) to give

: (2.66) i (2.67)
Sfe(C)[ortract,nt(a)//c] B

(2.67)

5/c(C)[extract,nt(a)//c]

Because of (2.65), the conclusion of this proof is the same as stating 5fc(C) [extracts
as required.

2. Assume that B is not Harrop. Then extract|nt(p) is (extract|nt(a) extract|nt(&))

Also, by the IH, we know that there are proofs

and

Vz : etype(B) . Sk(B)[x/fB] => 5'fc(C)[extract|nt(a) x/fc]

r"
1 n

Sk(B)[extractlnt(b)/fB]

(2.68)

(2.69)

4
1,

*

We apply (V-E) on (2.66), letting x be extract^ (6), and then apply
tiating with (2.67) to give

-E), instan-

: (2.66)
\/x : etype(B) © Sk(B)[x/fB)
5fe(C)[extractlnt(o)//c]

5fc(B)[extractlnt(6)//B]
5/c(C)[extract,nt(a)//c]

(V-E) ;2(2.67)

5A:(C)[extract|nt(a) extracting)//c]

The conclusion of this proof is the same as stating 5fc(C)[extract|nt(p)//c] as re-
quired.

Case: (V-I). Assume that pp is of the form use x
of (V-I)

r h n t aA

s. aVrc:s*^, obtained by an application

T h,nt use x : s.
(V-I)

Because we have assumed that P is not Harrop (so \/x : s
be Harrop, and extract|nt(p) is f n x => extracts (a).

By the IH, there is a proof r

A is not Harrop), A must not

5/c(^)[extract|nt(a)//A] (2.70)

First, we use (red=) to derive

(fax => extract|nt(a) x) = extract|nt(a) (2.71)

Then, we apply the (subst) schema, using (2.71), setting u to be (extract^(p) x), r to be
extract|nt(a) and P to be Sk(A)[y/fA], obtaining:

r
: (2.70) : (2.71)

5fc(A)[extract|nt(<Q/./U] extract|nt(p) x = extractlnt(a)
- A^[extract|nt{a)]fA] Au = r)

Sk(A)[{extractint(p) x)/fA)
R

where R is (subst)[[Sfc(A)[y//.A]]; [(extract|nt(p) x);extract|nt(o)]; [etype(A)]].

Applying (V-I) on (2.72), abstracting over x, gives us the required conclusion

(2.72)

hlnt Vx : etype(A) • 5A;(i4)[extract|nt(p)
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Case: (V-E). Assume that pp is of the form specific(a, £ ) ^ / ^ obtained by an application
of (V-E)

1 Hnt Q / w

Because we have assumed that P (and so Vx : s • A) is not Harrop, this means that A
must not be Harrop, and extract|nt(;p) is (extract^ (a)

By the IH, there is a proof

Vx : 5 • 5/c(A) [extractjnt (a) (2.73)

To obtain the required proof, we need only apply (V-E) over (2.73), instantiating with £,
to give

r'
: (2.73)

\fx : s • gfc(A) [extracts (a) x/fA] (y. „*

5fc(A)[extract|nt(a) t/fA] [ " j (2.74)

This is the required proof, because

Sfc(A) [extracted) t/fA]

is the same formula as
Sfc(A) [extracts (p)/./

This last case concludes the proof. D

2.5.3 Extraction from proofs with axioms and schemata

The proof can be extended to include the use of axioms and application of schemata, if
we make the following assumptions.

Assumption 2.3. We assume that, for each proof-term corresponding to an axiom rule:

Axiom (A)A

there is a function in E and a corresponding program in the SML preamble

PKA : etype(A)

such that PKA is a modified realizer of A:

PKA mr A

i

Then, defining
extract|nt(Axiom(j4)) = PKA

the proof is extended trivially to include axioms.

Assumption 2.4. We assume that, for each proof-term corresponding to a rule generated
from a schema,

there is a function in £ and a corresponding program in the SML preambk;

"Int -F-i-s] : etype(,4)

such that
PKN[e;F-i;S] k r A'

Defining
extract|nt(Schema(N, [e; F\ i\ §])) =

the proof extends trivially to include schemata application.

Example 2.6. We take the modified realizers for instances of the substitution schema
(subst)

hnt

to be

AT/y\ U. ^=sr

PK subst,{[qi-q2};P;y;Z) = extract|nt(^)[w/2/] (2.75)

This is permit ted, by extending the proof by induction of Theorem 2.5.3 to include in-
stances of (subst), with the following additional case. Assuming a proof ends in (subst)

hnt hnt

hnt
(subst)[[P];[u;r];M]

then, by the IH, there is a proof that

h|nt5'/c(P[r/?/])[extract|nt(g1[r/2/])//p[r/?/]]

which means
l-|nt5A:(P)[extractlnt(g1)//p][r/y]

So, by applying (subst) again we have

h|nt 5fc(P)[extract|nt(g1)//p][r/g/] u =s r
Hint Sk(P)[extract|nt(q,)/fP][u/y]

(subst)[[P];[w;r];[s]]

This maybe be rewritten to be the required conclusion, by (2.75),

Sk{P)[PKsubst[[qi.q2].P.y.z]/fp]
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Remark 2.19. It is possible to define modified realizers for proof-terms corresponding to
induction schema over recursive data types in a systematic way. However, we do this in
Part IV (Chapter 9), for a constructive logic about structured specifications. That work is
a more sophisticated treatment of the ideas here, and can be brought down to the simple,
single signature treatment of AT)7 given here. For the moment, we simply give an example
for integer induction.

Example 2.7. A definition of the sort int (integers), constructed from a constant 0 : int
and successor function sue : (int —> int) will give is associated with the induction schema

1 aX[O/z]A(\/x:infcX[x/z]=>X[suc(x)/z})

hnt Schema(reclnt, [a;
(recInt[[X]])

an application of this schema to a formula P is of the form

nP[O/z]A{Vx:int*P[x/z]=>P[suc(x)/z])

hnt Schema(recln£, [a;
(rednt[[P]])

We define the function PKreclnt[[P}} ^° be shorthand for the SML program

l e t rec rho n y —
begin match y with

0 => f st(n)
x => snd(n)(x — l)(rho n (x- 1 ) )

Eval can be defined appropriately to correctly model the evaluation of this program in
SML: so that -Pi r̂ec/nt[[P]j *s a modified realizer of \fy : int • P[y/z]. Rather than proving
this, we shall simply assume this is true. See Part IV (Chapter 9) for a systematic
treatment of modified realizers for induction schemata.

It immediately follows from this Theorem 2.5.3 and Assumptions 2.3 and 2.4 that logical
proofs yield modified reaHzers of the proved formulae.

Corollary 2.5.1 (Logical proofs yield modified realizers). If there is a proof® hnt
pF then

extract|nt(p) mr F

2.5.4 Relation between proofs and programs

It can be shown that the extraction results of this section, together with the strong nor-
malization result of the previous section, lead to the following situation:

ZJT(lnt) : > i nt

extract|nt extract|nt

SML: o >SML „
pi mr b • P2 mr 0

Thus, in our state-of-the-art approach, proofs and programs are separate entities, related
by extraction and a notion of realizability.

2.6 Example: Password checking system

We illustrate our concepts with the following example about an email service.

We consider a service that hosts email accounts for a number of users. When a user joins
the service, he/she is required to define a new numerical password. We make the following
assumptions concerning the password correctness functions for a new user joining, or
logging onto, the system:

• Password numbers must be 4 digits long.

• If the number chosen is not of the right length, the system should output a response
message, asking the user to select a new number of the correct length.

• If the number is of the correct length, then the system should output a response
message to this effect.

We shall model the system by specifying these assumptions, defining notions of acceptable
lengths of passwords and the correct responses for given passwords.

We model aspects of the password checking system by assuming the following functions
and predicates to be in AT)7:

• We assume appropriate sorts and function symbols for the booleans, boot, natural
numbers, nat, and strings string.

• We define a new7 boolean function okLengthlx) that will output true if the password
number (x) is of the required length

• A new predicate OkPwd(x) holds over a number, if the number is an acceptable
password (tha* is, if okLength(x) = true).
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• A new predicate ValidMsg(x, y) that holds if a string y is a correct response message
for the input of a password number x.

We take the following axioms in AVI to model our domain assumptions:

okLength(x) = true

okLength(x) — false

OkPwd(x)

-i OkPwd{x)

OkPwd(x)

ValidMsg(x, 'Password acceptable')

ValidMsg(x, 'Please choose a
password of correct length')

(2.76)

(2.77)

(2.78)

(2.79)

The first two axioms tell us that a password number is acceptable if, and only if, it is
of an acceptable length. The second two axioms define the appropriate response message
strings for an acceptable password and for an unacceptable password.

Our goal formula will be that, given any password as input, the system will always output
an appropriate response message. This is specified as follows:

h Vx : nat • 3y : string • ValidMsg(x, y) (2.80)

The Skolem form of the formula

A — Vx : nat • 3y : string • ValidMsg(x, y)

is
Sk(A) = Vx : nat • Valid(x, /A 0*0)

Thus, by the definition of modified realizability, the theorem can be viewed as a specifica-
tion of a function f& that outputs an appropriate response message for a given password.

We assume the following axiom about the function okLength(x):

\/x : nat • okLength(x) — true V okLength(x) = false

By our Assumptions 2.2 and 2.3, we assume there is a realizing term

: (nat —> Unit\Unit)

PKA mr A

(2.81)

in the signature of AT)1! such that

where A stands for the axiom Vx : nat • okLength(x) = true V okLength(x) — false. That
is to say, we assume PKA is present as a function symbol in the SML preamble and is
denned with the following operational semantics

Eval(PKA{x)) = Inl(()) when okLength(x) = true
Inr(()) when okLength(x) = false

It is easy to see that a term with this semantics will produce the required modified realizer
of (2.81): when the length of the password is acceptable, PKA will be equal to /n/(Q),
and Inr(Q) otherwise.

We derive (2.80) by reasoning over the possible cases that either okLength(x) — true or
okLength(x) = false.

Assuming the first case corresponds to the use of a proof-term variable

u
okLength(x)=true

in a derivation of the form

okLength(x)=true
u

(Ass-I)

-E)

app(p7, app(p6,p5)) acceptable')
(3-1)

show ('Password acceptable', app(p7, app(p6,P5)))3y:siHn5# ValidMs9^,v) (V.I}

use x : nat. show('Password acceptable', app(p7, app(p6,p5)))Vx:nat*3^ :str^* ValidMsg(x,y)

where the proof-term pb
 1 corresponds to an instantiated axiom of AVJ, which when

written
specific(ax(Vx : nat • okLength(x) = true —> OkPwd(x)),x)

with type okLength(x) — true —• OkPwd(x) The proof-term p7
 2 also corresponds to an

instantiated axiom of AT)7 written in full as

specific(ax(Vx : nat • OkPwd(x) —> ValidMsg(x, 'Password acceptable')), x)

with type OkPwd(x) —» ValidMsg(x, 'Password acceptable')

Similar reasoning over an assumption variable v
ofc^en9t'l(x)=false

 w[\\ g[ve a proof-term of
the form

(Ass-I)
,.okLength(x)~ false
v

ValidMsg(x,'Please choose a password of correct length')

,( 'Please choose a
^ I 'password of correct length

(3-1)

. ,, i ^v choose a
use x : nat. show( , , £ , , .,

v y password or correct length

(V-I)

(

where p$ is a proof-term involving manipulation of our axioms.

Finally, by applying (V-E) over (2.81), (2.82) and (2.83), and then applying (hide) will
give (2.80), as required

i ryx:naU3y:string» ValidMsg(x,y)



76 Chapter 2: Functional program synthesis Discussion 77

with proof-term

p = case Axiom(yl) of inl(w).use x : not. show('Password acceptable', app(p7,app(p65P5)))?

inr(v).use x : nat. show(Tlease choose a password of correct length,p$)

The proof-term encodes constructive information obtained from the (3-1) steps used in
the proof - in particular, the witness string y for a valid message such that ValidMsgix., y)
given a password number, x, depending on the length of the password number.

We can apply Theorem 2.5.3 to obtain a function

extractjnt(g) =

( f n x : nat =>
match PKA(X) with

Inl(xu) =-
Inr(xv) =>

\

\

'Password acceptable',
'Please choose a password in correct range'

such that
h|nt Vx : nat • Valid(x, (extract|nt(g)x)) (2.84)

as required.

Remark 2.20. We can see that (2.84) holds for any password input a, using Int and the
axioms of AT)7. For example, if a is such that okLength(a) = true, then, by the operational
semantics for PKA-,

extract(#)(a) \>SML 'Password acceptable'

Consequently, by schema (red—)

extract(g) — 'Password acceptable'

By the axioms (2.76) and (2.78) and the schemata and (subst), we know that

h|nt ValidMsg(a, 'Password acceptable')

But then, by applying (subst) aga v we arrive at

hint Valid(a, (extract|nt(g)a))

This is (2,84), instantiated with a, as required.

The advantage of our extraction methodology is that functions such as extractmocj (q) are
synthesized automatically from proofs, and their correctness as realizers is guaranteed by
Theorem 2.5.3. There is no need for a further verification proof of function correctness.

Remark 2.21. Effective reas ning and program synthesis is dependent upon an adequate
representation of the target domain. In the approach of this chapter, we axiomatize our
domain using a single, unstructured specification AWT. This approach is adequate for
working with domains of small scale.

4

\

However, at the medium and large scales, it can be difficult to define, comprehend and
maintain domain specifications without some notion of compositionality and hierarchy,
instead of working within a single, unstructured theory ADJ. In Part IV, Chapters 7-
9, we shall return to this domain. We shall specify and reason about the domain using
structured specifications. That work has the advantage over the approach of this chapter
that we can understand our domain using a compositional hierarchy of related theories.
Consquently, we can utilize divide-and-conquer approaches to specifying and reasoning
about a domain.

2.7 Discussion

There always remains the question of whether the proofs that we use are correct and
whether the software we use preserves correctness. We are almost as vulnerable as any
mathematician concerning the correctness of a proof. We say "almost" bec^".:se our proofs
are formalized and therefore checking the steps is a mechanical process. However, the
extraction process uses software that may be unreliable. We minimise the effects of this
because our procedures are simple and essentially syntactic. Ideally we would run the
process on our own software to check it, but this is, at present, a daunting task.

In comparison to naive functional program synthesis approaches, the advantages of the
Curry-Howard protocol in the context of functional program synthesis are practical. We
have chosen to use a LTT based on a first-order, many-sorted logic, because this is an
easy type of deductive system to use. Additionally, adopting a loose coupling between
terms and sorts of the LTT and programs and types of SML promotes a natural concep-
tual distinction: the logic is used for reasoning about programs, while SML is used for
programming.

In some cases the protocol, or something similar, appears to be necessary in order to be
able to define a simple Curry-Howard style extraction mechanism for more complicated
logical systems. In the next two parts of this thesis, we will examine this assertion, for
imperative program synthesis and Curry-Howard style synthesis over the proof system for
reasoning about algebraic specifications. Without the protocol, these results would have
been difficult to achieve.

This chapter serves as a reference for the kind of extraction that the Curry-Howard pro-
tocol should achieve within the familiar domain of functional programs synthesized from
constructive proofs. The reader will therefore find it useful to refer back to this chapter for
comparisons when we formally define the protocol and investigate less familiar domains.
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3.1 From ontology to protocol

Chapter 3

The Curry-Howard Protocol

In this chapter, we define the Curry-Howard protocol, a framework for generalizing state-
of-the-art (SOA) proofs-as-programs. The protocol specifies a minimal set of properties
to be satisfied by a logic and programming language. If these properties are satisfied for a
new logic and programming language, then we claim that the Curry-Howard isomorphism
and SOA proofs-as-programs have been generalized.

The protocol is defined by identifying aspects of SOA proofs-as-programs that are relevant
to program extraction. These relevant aspects are taken from examination of the previous
chapter's functional synthesis technique. This is acceptable as that work is a simple
example of SOA proofs-as-programs.

The protocol, of course, is useful insofar as it is applicable. In the next two parts of this
thesis we shall apply the protocol to the synthesis of imperative and structured program
synthesis. That work forms a basis for justifying the utility of the results of this chapter.

The chapter proceeds as follows:

• Section 3.1 provides a discussion on how SOA approaches should be generalized,
including some arguments of what constitutes a good generalization.

• Section 3.2 uses that work to formally define the Curry-Howard protocol.

• Section 3.3 defines a process for application of the protocol to a given logic and
programming language.

• Section 3.4 relates our results to the rest of the thesis and discusses some related
work.

These ideas result from joint work with John Crossle}', and were presented in [PCOl], based
on the functional program synthesis methods of the present author and John Crossley in
[CP01].

78
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1,7

A

I 1

We wish to define what makes a generalization of SOA proofs-as-programs. Moreover, we
want this generalization to be "good".

To generalize a concept is to define what is essential to its being, and then give a means
of preserving this essence to form different concepts. In both philosophy and knowledge
representation research, this essence is sometimes referred to as an ontology: the entities
that are presumed to exist, and their interrelationships [Gn^ ] . 1

In any problem space it is possible to give a bad generalization. A good generalization of a
concept can be aided by providing an abstract, role-based ontology. This kind of ontology
identifies important roles and relationships, but, as an abstraction, does not include the
players of roles. A good generalization of the concept preserves the roles and relations,
but permits possibly different players.

Example 3.1. For example, the notion of "marriage" involves an ontology consisting of
husband and wife roles. An anthropologist might compare a monogamous society with a
polygamous society. He would take the familiar concept of monogamy and generalize it to
polygamy. This act of generalization preserves the role-based ontology. It is understood
and unquestioned by fellow anthropologists by virtue of the fact that the roles of husband
and wife are preserved (albeit now adapted for more than two players).

We believe that SOA approaches can be characterized by a role-based ontology, which is
preserved by good generalizations. Examining the SOA method of the previous chapter,
we identify several important roles and relationships, which are displayed in Fip*. 3.1. The
three important roles in program extraction are those of logic, proofs and programming
language.

As described in the review of the introductory chapter, SOA proofs-as-programs consists
of several competing systems and methods. Due to its minimal nature, our role-based
ontology is common to all such approaches. This can be easily seen by examining each
approach in turn - however, for reasons of brevity, we omit such a review.

The roles of logic, proofs and programming language are central to all SOA approaches:
logical proofs of specifications can be transformed into programs that satisfy specifications.
The main relations between these roles arise from realizability and extraction:

• logical statements form specifications of program behaviour, in a sense defined by
a realizability relation between programs and statements. Realizability formalizes
how a statement is true of program behaviour.

• extraction of realizers relates the roles of proofs and programs by obtaining realizers
from proofs of statements.

1 Ontologies have also been known as a notational, syntactic expression of so-called conceptulizations
[GN87].
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Role

Logic-

Proofs

Programming
language

Purpose

Represent and make as-
sertions about a prob-
lem space.

Show truth and falsity
of assertions.

Write programs that
perform computations;
program behaviour
forms the basis of the
problem space.

Relationships with other roles

Logical statements are determined to
be true or false by proofs; Logic
should represent aspects of program
behaviour, by specifying required real-
izers, programs whose behaviour satis-
fies the specification in some fashion.

Proofs are made using a logic to de-
rive true assertions; Logical proofs are
transformed into programs.

Aspects of programs are represented
as mathematical objects; programs are
extracted from proofs.

Figure 3.1: Role-based ontology of SOA proofs-as-programs.

We place no restriction on the choice of the logic or programming language. This is because
we want to generalize proofs-as-programs to logics and languages other than variants of
intuitionistic logic and functional programming languages.

Remark 3.1. Alternative role-based ontologies can be formed, but we assert that, at least,
they would involve the roles we have identified. This is true by inspection of SOA ap-
proaches reviewed in Chapter 1 and those given in C o p t e r 2. Other roles and relations
could be added, but we believe that this would strengthen the ontology to an undesirable
extent, making it difficult to use for a good generalization.

Remark 3.2. The ontology is more complicated than that of a naive proofs-as-programs
method. Naive proofs-as-programs involve a single type theory for defining algebraic
theories, specifying programs, proving theorems and writing and running programs. Con-
sequently, naive approaches effectively combine the three roles of Fig. 3.1 into a single
role.

Note that the roles are not usually made explicit in SOA approaches to functional program
synthesis. Some proofs-as-programs involve powerful higher-order calculi in which the
players of these roles are represented in the same language.

Example 3.2. For example, the Nuprl type theory [BC85, CMH86] is often used for the
roles of logical reasoning and representing mathematical objects. The subset of Nuprl
that corresponds to the simply typed lambda calculus is then used to play the role of pro-
gramming language [Sas86]. Programs, formulae and proofs are all mathematical objects
that may be predicated over in formulae. This approach involves a coincidence between
mathematical objects, logical statements and formal proofs.

A
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Role

Logic

Proofs

Programming
language

Domain in the Curry-
Howard protocol
Natural deduction system

Logical type theory
(LTT)

Computational type
theory (CT7)

Properties of domain

A formal system that defines a logical
calculus.

A type theory that enables encoding of
proofs in the logical calculus, accord-
ing to the Curry-Howard isomorphism:
types denote statements, terms denotes
proofs and type inference corresponds
to logical inference.

A type theory for the programming
language, equipped with an operational
semantics.

Figure 3.2: The roles of the ontology and their corresponding domains in the Curry-Howard
protocol.

However, we claim that, given any SOA method, even if some players are written in the
same language, the three roles are distinct for the purposes of program extraction, and
may be treated as distinct to form a good generalization.

Example 3.3. In the Nuprl approach, when a term is treated as a proof, its role is to derive
logic statements and be transformed into programs, while, when a term is treated as a
program, its role changes to performing computations and being extracted from proofs.
The players of the roles are identified in the epistemology of the theory because they are
taken from the same domain. Nevertheless, the roles themselves remain separate.

So, while we accept that a SOA approach may involve an epistemic identification of some
roles, we believe that an ontological demarcation is fundamental.

3.2 Formalizing the ontology

The ontology of the previous section was given in English. To use it as a guide for
generalizing proofs-as-programs it is useful to explain the roles and relations formally.
In this way we can specify when the ontology is preserved by a logic and programming
language. Hence, it will show precisely when SOA proofs-as-programs may be generalized.
Our formalization will be given by a framework that represents the roles and relationships
of the ontology. We call this framework the Curry-Howard protocol

To define the protocol, we need to specify the formal counterparts of the entities of Fig. 3.1:
domains for representing the roles and domain relationships that con^pond to role rela-
tionships.

The roles and the names of their corresponding domains are listed in Fig. 3.2. Proofs and
programs both find natural representation in two distinct type theories:
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• Type theory is ideal for denoting a logic with explicit representation of proofs. Proof-
theoretic presentations of logics are often given in a type theory, where dependent
products and sums are used to represent universal quantification arid constructive
existential quantification.

• All commonly used programming languages can be presented as type theories. Type
inference rules determine how types of programs are deduced by a compiler. An
accompanying operational semantics is given over the terms, which defines how com-
piled programs are to be executed.

We now formally define the roles and their inter-relationships.

3.2.1 Type theories

We will use the following broad definition of a type theory.

Definition 3.2.1 (Type theory). A type theory is of the form

TT = {Terms(TT)> Types(TT), hTT, (:), TIE)

consisting of terms, Terms(TT), and types, Types(TT), where

I
J

• Terms{TT) and Types(TT) are sets of terms and types with recursive grammars.

• We assume Terms(TT) contains a distinguished subset of variables, VarTerrnssTTy

• A binary type judgement relation (:) holds between terms and types.

• A type inference relation \~TT holds between a set of type judgements for variables
F = {xi : 5Jj=i,...;n (xi € VarTerms(TT) an(^ & £ Typesi^TT)) (called a type context)
and a single judgement for a term t : S (t £ Terms, S € Types). We call a relation
of the form

r \-TT t: s
a type inference.

• The relation f- is defined by a set of type inference rules SIR, consisting of rules
from several (premise) type inferences to a single (conclusion) inference, of the form

n
tn : Sn

F \-Tr t : S

where (R) is a unique name of the rule.

We permit SIR to contain an infinite number of rules.

Given t\. £2 € Terms such that, for any context F,

(R)

I

-t

i

i
i

t

we say that i\ and £2 have the sam.e type S.

We will write tr : S to denote the term t and the fact that F h t : S can be derived,
and call t well-typed in context F. We will simply write t: S for £r : S if the context
F can be unambiguously inferred.

• We require that \~TT is defined so that every term t e Terms(TT) is well-typed.

3.2.2 Logic

We provide a very general definition of a logic, consisting of formulae and rules for proving
true formulae, based on Gabbay's notion of a deductive system in [Gab96].

Definition 3.2.2 (Natural deduction system). A natural deduction system

D = (Formulae(D), hD , DR)

where

• Formulae(D) is a set of well-formed statement formulae, generated by a recursive
grammar, to be reasoned with in D.

• \~o is a relation that is defined between lists of assumption formulae F = {G\,..., Gn}
(G{ € Formulae(D)) and a single conclusion formula C £ Formulae(D),

T\-LC

Such a relation is called an inference. This relation is defined by a set of deduction
rules DR, consisting of rules from several (premisej inferences to a single (conclusion)
inference, of the form

Fn

where (R) is the unique name of the rule.

We permit DR to contain an infinite number of rules.

Example 3.4. Propositional logic Prop is one of the simplest logics that qualify' as a de-
duction system, according to this definition. Let ESig be the empty signature (consisting
of an empty set of terms, sorts and rules). Then we define define Formulae(Prop) to be
well-formed formulae constructed by

• a set of basic propositions Pred(Prop) that are treated here as predicates that take
no arguments. We set Varpre^Prop^ to be the empty set.

• the connectives Connprop — {A, -\ V, =>} with the obvious arities.

• there are no quantifiers: Quantprop — 0.
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There are a finite number of rules. Some of the rules are as follows.

T\~ A Y\- B
T\-AVB Th Av B T\- A.

The soundness and completeness of this presentation may be proved with respect to a
truth table semantics.

Example 3.5. The intuitionistic logic of the previous chapter is an example of a deduction
system.

Well-formed formulae are built from the usual connectives and quantifiers, with predicates
applyv /ver elements of some signature.

The I iks of t}v logic are the usual introduction and elimination rules of intuitionistic
logic, t -̂ 1 T w.ch axioms and schema for denning an algebraic theory over the logic's
signatux*e.

Example 3.0. Schemata are a common way of generating infinite rules for first-order logics,
to simulate higher-order quantification over predicates.

For instance, to axiomatize the natural numbers in a first-order classical or intuitionistic
logic, we require an induction schema. In a deduction system, it may be written as a
parametrized rule with predicate variable X

T h X(0) A Vn : nat • X(n) => X(succ(n))
T\-\/x: nat*X(x)

(ind-Nat[X))

The parametrized rule is to be regarded as shorthand for an infinite set of rules

T h P(0) A Vn : nat • P(n) =» P(succ(n))
r h \/x : not* P{x)

{ind-N at[P\)

for each predicate P available to the logic.

Example 3.7. Girard's Intuitionistic Linear Logic [Gir87] is an example of a natural deduc-
tion system. We describe the multiplicative fragment, MLL as presented in [BBHdP93].
Well-formed formulae Formulae{MLL) are built from predicates that take no arguments.
So, similar to Prop, we can take the signature of LL to be the empty signature ESig The
formulae F ormulae(M LL) are defined from

• a set of basic propositions Pred(MLL) that are treated here as predicates that
take no arguments. There is a designated proposition / € PredyMLL). We set
Vrar'pred{MLL) t° t>e the empty set.

• the connectives, COUUMLL-, consist of

- ®5 -o,!, where the first two connectives are binary, the last is unary, and

- an infinite set of superscript indicies ()n (n a natural number) that apply to the
formulae, Forrnulae(MLL), used to uniquely identify assumptions in rules.

H

I

• -s

ft

f
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Some of the rules are as follows.

Ax\~ A
(Ass-I)x

ra,*»i-c
Th-C

!An \A\\ ... ,\A£ h B t
(Promotion)n

THA AhB (Weakening)

B

n

Fh A-oB

where x, y range over natural numbers. Observe that (Ass-I)^, (<g) — E)(x^, (Promotion)
and (-o-I)^, denote an infinite set of rules, for each value of a; and y. By associating indicies
with assumption formulae, the last rule tells us tnat we may only discharge one assumption
from a deduction to form a linear implication.

3.2.3 Logical type theory

A logical type theory is a type theoretic presentation of a particular deduction system.
We provide a very flexible definition, preserving relations between logic and proof roles
identified in the ontology of Fig. 3.1. These constraints form a generalization of the Curry-
Howard isomorphism: the types of the LTT are formulae of the logic; terms encode the
steps to derive their types, and a reduction relation can be assumed over terms, defining
a normalization strategy over proofs. When a theorem can be proved in the logic, there
is a term in the theory that has the theorem as a valid type, and vice versa.

Definition 3.2.3 (Logical type theory, LTT). A logical type theory (LTT) for a de-
duction system L is of the form

LTT (1) =

with
{PT(l),Formulae(l),(.){-\hL,PTR)

forming a type theory (see Definition 3.2.1) where PT(L) are terms (called proof-terms),
Formulae(L) are taken as types, (.)(•) is a type judgement relation and hL is a type
inference relation defined by rules from PTR. We assume

the set of proof-terms PT(L) has a distinguished set of variables

PJT(L) includes a lambda calculus
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• the type judgement relation, written as a superscript, (p)"T\ defined between proof-
terms of p G PT(L) and the formulae T G Formulae(L) of L

• We permit PTR to contain an infinite number of rules.

• there is a normalization relation t>, defined over proof-terms of PT(L), generated as
the transitive closure of a one-step reduction relation >. The relation o is defined
by a set of rules over proof-terms

Pl>V2

We require that

— normalization preserves the typing of proof-terms, so that

F \~PT{1) PA a n d Pi •> P2 entails F P2

— the normalization relation is strongly normalizing: that is, for each proof-term
pi, every sequence <•,* ore-step reductions is finite, terminating in a term pn:

- the relation satis)1.:.?:> I;; Church-Rosser property: for any proof-terms p, p\ and
p2, such that p > p\ and p t> p2, there must be a common term p$ such that
Pi > p3 and p2 >P3-

Example 3.8. Intuitionistic many-sorted predicate logic has several logical type theories,
one of which was presented in the previous chapter. Martin-Lof's constructive type theory
[ML84, ML85], Coquand's Calculus of Constructions [MLM90] or Luo's Extended Calculus
of Constructions [Luo94] are other possibilities.

In all these theories, the normalization relation corresponds to removal of redundant in-
troduction/elimination rule pairs in intuitionistic proofs.

If a type theory is a LTT for a deduction system, then we say that the Curry-Howard
isomorphism has been adapted for the deduction system and type theory.

Example 3.9. There are several type theories proposed to adapt the Curry-Howard isomor-
phism to classical predicate logic: see, for instance, [Gri90, Mur91, Par93, BS93, BS95b,
BS95a, Sch99b]. Inspection of these systems shows that each forms a LTT in our sense
for classical logic.

Example 3.10. A new logic was defined by Nakano [Nak94], with connectives that enable
explicit reasoning about catch-and-throw mechanisms. A logical type theory was also
given that represents proofs according to the style of the Curry-Howard isomorphism.

Example 3.11. Many authors have showed how Girard's Intuitionistic Linear Logic [Gir87]
can be associated with a logical type theory.

We briefly sketch the presentation of [BBHdP93] as a logical type theory for the multi-
plicative fragment. The deduction system is the MLL described in Example 3.7. The
proof-terms consist of an extension of the lambda calculus. Some of the type inference

\\

H
b

rules are as follows.

XA
(Ass-I)x

r r i-

r h e 0 fA®B

An h e !Al A h e!^
/ » I I Ci • • • '••••ft r ^ I *-^T)

Ti,r2 \- lete be in

n l
1 5 • • • 5 H/J

, . . . , An, F h promote e i , . . . , en

, A h discard e in f B

. . . , xn in fB

(Weakening)

(Promotion)n

T\-\XAX.e
A-OB (-O-I):

where x,y range over natural numbers. Observe that (Ass-I)^, (®-E)(X2/) and
denote an infinite set of type rules, for each value of x and y. The normalization relation
> is defined by the usual lambda reduction rules augmented with new rules for the new
proof-terms. For instance, one of the new rules is

discard (promote e\,..., en for x\,..., xn in t) in u >

discard e\ in(.. . (discard en in u)...)

This rule corresponds to normalizing logical proofs that involve (Promotion)^ rules fol-
lowed by the (Weakening) rule.

3.2.4 Computational type theory

The computational type theory (CT1) should have a simple definition because we wish
to accommodate as wide a range of programming languages as possible.

Definition 3.2.4 (Computational type theory, CTT). A computational type theory
(CTT) is a type theory (see Definition 3.2.1) of the form

C - (Term(C),Type(Q,:, hc, TIR)

where

the set of terms, Terra(C), defines a set of programs,

the set of types, Type(C), defines a set of types for programs,

typing judgements, written t : T, hold between programs and types according to the
type inference relation (~c and the rules TIR.
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P^mark 3.3. Observe that imperative languages can be included as computational type
theories according to this definition.

3.2.5 The Curry-Howard protocol

The three roles now associated with formal domains, and the relation between logical
calculus and type theory having been defined, it remains to formalize the relationships
pertaining to vextraction. This will complete the formalization of the role-based ontology
of Fig. 3.1, and provide us with the Curry-Howard protocol.

Recall that the three roles have the following (circular) inter-relationships: aspects of
program behaviour are represented in the logic, logical statements are represented as
formal proofs, and formal proofs may be transformed into programs.

We have already formalized the relation between logic and proofs.

Prom the perspective of program extraction, the most important relationship is that be-
tween the logic and programming language. This requires that

• A formula of the logic can specify the behaviour of a program as a realizer of the
formula.

• There is a transformation of proofs of specifications into realizing programs.

Formalization requires

• a realizabity relation to be defined between formulae of programs of the CTT and
the LTT, and

• a program extraction and optimization map from proofs of the LTT to programs of
the CTT such that, given a proof of a specification, the extracted program should
realize the specification.

The protocol follows from these observations.

Definition 3.2.5 (The Curry-Howard protocol). The Curry-Howard protocol holds
between a logical type theory, L, and computational type theory, C, when

1. There are extraction maps etype from formulae of L to types of C and extract from
proof-terms of L to programs of C,

extract : PT(l) -> Term(C)
etype : Formulae(L) —> Type(C)

such that, given a proof d € PT(L) such that

then extract(rf) is in C and is of type etype(A)

I
i

V

1

> j

I ;.

4

2. there is a readability relation r between programs and formulae, such that, for any
proof

0 hL P
A e PT

it is true that
extract(p)r A

Remark 3.4. The concepts of the protocol are related according to the following diagram
(with ts denoting a proof-term t of S in the logical type theory):

LTT: hS normalizes to
+ l2

extract extract

CTT: Pi r S
=s

P2 r S

where pi =s P2 holds between two programs when both pi r S and p2 r S.

3.3 Using the protocol

We now give a process for using the protocol to adapt proofs-as-programs to new contexts.
The process involves the following steps:

1. Define a signature and a logical calculus that involves the signature. This might
involve issues that are orthogonal to the protocol - e.g., finding a semantics for the
calculus and proving soundness and completeness.

2. Define a logical type theory for the logical calculus. Again, other important prop-
erties that are not part of the protocol may need to be proved, such as the Church-
Rosser theorem and strong normalization for the LTTs proof-terms.

3. Identify a programming language and describe it by means of a computational type
theory.

4. Prove the Curry-Howard protocol to hold over the domains.

We will refer to this process as protocol application.

3.4 Discussion

In the next chapters, we will use the protocol to adapt the Curry-Howard isomorphism and
SOA proofs-as-programs to extracting imperative and structured programs from proofs.
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This work will serve as an example of why the protocol is a useful and natural generaliza-
tion of proofs-as-programs to new contexts.

In particular we shall see how the ontology of the protocol facilitates a more natural
approach to adaptation than might otherwise be the case.

For example, the advantage of demarcating proofs from programs is more apparent in the
imperative case of the next part than in the familiar constructive case. In Part II, we give
a LTT for reasoning about side-effects and return values of imperative SML programs.
The underlying calculus is a constructive version of the Hoare Logic with a natural deduc-
tion presentation. We then define an extract map from the LTT to an imperative CTT
which preserves the protocol, and allows us to extract imperative programs from proofs
of specifications.

Identification of domains would mean designing a unifying language in which the signature,
CTT and LTT type theories could all be written. Any resulting LTT wouk' have to be
equipped with the CTTs imperative operational semantics, with a call-by-value evaluation
strategy over function applications. This semantics would coincide in some way with the
LTTs proof-normalisation rules. The calculus of the LTT would be nonstandard, and
would be difficult to learn and use. In contrast, distinguishing between the LTT and the
CTT enables a logical calculus for reasoning about imperative programs that is closer to
established logics.

Similar remarks can be made for the adaptation of Part III for synthesis of functions for
structured specifications and structured programs.

To the best of our knowledge, no previous work has been done in identifying a framework
for generalizing SO A proofs-as-programs.

In the area of type theory, Zhaohui Luo's Extended Calculus of Constructions (ECC,
[Luo94]) has a similar philosophy to our framework. The ECC provides a predicative
universe Prop to represent logical propositions and a Martin-L6f-style impredicative uni-
verse hierarchy to represent programs. As in Martin-L6f, the impredicative universes are
open, so the same comparison holds. Like our protocol, the ECC has a similar division of
labour between proving properties of programs (in Prop) and creating new programs and
types (in the universe hierarchy). The ECC was designed to provide a unified framework
for the two (recognised) separate tasks of logical reasoning and program development but
not with program synthesis in mind. This means that in the ECC there is no notion of
a simplifying extraction map between terms that represent proofs and program terms -
they are identified.

We have presented the Curry-Howard protocol in an informal metalogic. Anderson [And93]
used the Edinburgh Logical Framework (ELF) to provide a similar relationship between
proofs in a logical type theory and programs in a computational type theory. That work
was only concerned with constructive synthesis of functional programs, and in particular
with defining relationships to obtain optimized programs within ELF. However, represen-
tations of optimized programs are not added to the logical type theory. Our metalogical
results might benefit from a similar formal representation.

1
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Part III

Imperative proofs-as-programs
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Part III

Overview

For over thirty years, researchers have explored methods for generating functional pro-
grams from proofs of constructive logic. A similar length of time has seen the develop-
ment and uptake of Hoare logic and related systems for the specification and synthesis of
imperative and object-oriented programs. In this part of the thesis we combine the two
approaches to synthesize imperative programs with return values.

3

: Imperative programs involve both side-effects and side-effect-free return values. For in-
stance, the SML program

s :—!s * 3; Is * 2

involves a side-effect producing assignment statement, s :=!s * 3, followed by the return
value !s * 2. In many popular imperative languages (e.g., C# with delegates, C++ with
52X, Eiffel with Agents, SML or LISP) such return values are potentially complex, in-
volving higher-order functional aspects that are difficult to program correctly.

~ The goal of this part of the thesis is to specify, reason about and synthesize both aspects

of imperative programs - side-effects and functional return values.

Our approach is as follows.

i We use a version of Hoare logic to synthesize the side-effect producing aspect of a program,
specified in terms of pre- and post-conditions. For instance, the formula

} Sf> Si

specifies a side-effect where the final value of state s, denoted by sj, is greater than the
initial value, denoted by S{. We can use Hoare logic to synthesize a SML program that
satisfies this specification, by producing, for example, a theorem of the form

i . h s :=!s * 3<> sj > Si

it where the left-hand-side of o symbol is the required SML program, and the right-hand-side
is a true statement about the program.

93
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To specify and synthesize return values of a program we adapt readability and proofs-as-
programs. For instance, given the theorem

s := s * 3 o sj > si A (3x : int.Even(x) A x > Si)

we can synthesize a program of the form

s := s * 3; f

where the function / is a side-effect-free function (such as !s * 2) that realizes extential
statement of the post-condition (3x : int.Even(x)Ax > Sj), by providing a witness for the
x. Our adaptation is done according to the Curry-Howard protocol framework outlined
in the previous chapter (Chapter 3 of Part II).

Hoare logic is usually defined with respect to an internal logic. We take this to be con-
structive (intuitionistic) logic. This enables us to use some of the results of intuitionistic
p.roofs-as-programs to synthesize correct return values from proofs. However, the adap-
tation is not trivial, as, unlike in functional program synthesis, our specifications involve
initial and final values of state, and our extracted side-effect-free functions can sometimes
involve state references.

The advantage of our approach to return value synthesis is. that the user need not code
the return value manually, but instead works within a logical theory to prove a theorem
from which the return value is extracted. Constructive program synthesis has a successful
track record in deriving side-effect-free functional programs. These methods are equipped
to reason directly about and synthesize functions.

By combining Hoare-like approaches with constructive program synthesis, we obtain a
best-of-both-worlds system for specifying and synthesizing the two aspects of imperative
programs.

This part proceeds as follows:

• Chapter 4 presents a constructive version of Hoare logic for reasoning about and
constructing imperative SML programs.

• The semantics of this logic is investigated in Chapter 5. That chapter also shows
how the logic may be given a type-theoretic presentation in the style of the Curry-
Howard isomorphism, where proofs and theorems are taken as terms and types of a
logical type theory.

• The last chapter of this part, Chapter 6 shows how to use the type theory for
imperative program synthesis by applying the Curry-Howard protocol. We discuss
the uses of our approach to imperative program synthesis in a practical setting, and,
in particular, show how the so-called design-by-contract approach to system design
(see, e.g., [Mey97]) can be aided by our results.

This part of the thesis expands on work presented in three papers. A prototype presenta-
tion of our program synthesis methodology was first presented by the author in [Poe99].

3
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That work used a more primitive imperative programming language (lacking while loops),
and involved a more complicated extension of the Hoare logic. A detailed account the
results of this part of the thesis was given in [PC03], a joint paper with John Grossley.
That paper presented the proof-theoretic properties of the Hoare logic and summarized
the results regarding the adaptation of the Curry-Howard isomorphism and proofs-as-
programs for imperative program synthesis. John Crossley's main contribution was to
help in the definition of the type-theoretic presentation of the logic and in the adaptation
of the Curry-Howard isomorphism. The author's main contribution was to help in the
type-theoretic presentation and to provide an imperative program synthesis methodology
using the Curry-Howard protocol. In [Poe03], the author discussed further extensions
to the imperative program synthesis methods, presenting the design-by-contract example
used at the end of Chapter 6. Where appropriate, detailed attribution of authorship will
be stated throughout this part of the thesis.
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Chapter 4

Intuitionistic Hoare Logic

Hoare logic is a formal system for simultaneously reasoning about and constructing imper-
ative programs. The system was first described by Hoare in [Hoa69]. In this chapter we
define a constructive version of Hoare logic, called Intuitionistic Hoare logic, IHL, for rea-
soning about side-effects of imperative programs in SML. In later chapters we will adapt
proofs-as-programs methods to this logic, to specify and synthesize imperative programs
with side-effect-free return values.

The Hoare logic specifies side-effects through pre- and post-condition formulae [Flo67,
Hoa69]. Pre- and post-conditions are assertions about the behaviour of a program before
and after execution, respectively. In the original presentation of the Hoare logic, pre- and
post-condition formulae were treated as distinct [Hoa69]. We shall utilize the fact that
pre- and post-conditions can be combined into a single formula description (common in,
for example, OCL [WK98], the B-method [Abr96] or Abadi [AL97]). For our purposes pre-
and post-condition formulae are statements of many-sorted predicate logic, with special
symbols used to denote values of state.

The Hoare logic manipulates theorems, which, in our presentation, consist of pairs of
programs and pre- and post-condition formulae, of the form

p o F

where the left hand side of the diamond is a program, and the right hand side of the dia-
mond is a pre- and post-condition description of the program's behaviour. The program's
side-effect is described by the formula in terms of initial and final state reference values,
prior to, and after, execution. We denote initial and final state reference values by the
name of the state reference with a ()j or a ()/ subscript respectively.

Example 4.1. An example of a theorem is

h r :=!r + 1 o rj = r* + 1
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The example theorem is correct, because the pre- and post-condition statement asserts
that the final value of state reference r is equal to the increment of the initial value, after
executing the program r :=!r -f 1.

The rules of the logic derive new theorems, enabling the user to develop programs and
assertions about the program in tandem.

Hoare logic is always defined with respect to a separate logical subsystem. Usually, this
is classical logic. This chapter introduces a version of Hoare logic that uses intuitionistic
logic as its subsystem. In Hoare's 1969 paper [Hoa69], the logic was given given with
respect to a simple, toy, imperative language. Here, we will consider an imperative subset
of SML.

The usefulness of our version of Hoare logic will be seen in later chapters where we use
constructive aspects of IHL for adapting proofs-as-programs to synthesize SML programs
with side-effects and side-effect-free return values.

Because Hoare logic involves programs and pre- and post-condition formulae, the first
part of this chapter is dedicated to defining the syntax and semantics of programs and
formulae. Then we define Hoare logic proper. We proceed as follows:

© Section 4.1 defines the form of the signatures we use in this part of the thesis.

• In Section 4.2 we define an imperative subset of SML.

• Section 4.3 provides a simple operational and relational semantics for our subset.

• Section 4.4 defines well-formed formulae for our calculus and defines when a formula
is true about an imperative SML program execution.

• We present Intuitionistic Hoare logic in Section 4.5. We explain why its rules allow
us to infer true statements about programs.

• Section 4.6 compares our presentation to the more standard, Hoare-triple-based,
presentations of Hoare logic.

• Finally we provide a summary and discussion of our results in Section 4.7.

Chapter 5 will discuss soundness and completeness of IHL and will show how IHL can
be given a type theoretic presentation. Chapter 6 will achieve the goal of this part,
identifying how correct imperative SML programs with return values can be synthesized
from its proofs using proofs-as-programs.

The results of this chapter are standard, ultimately deriving from Hoare's original paper
[Hoa69]. However, our use of SML, the choice of intuitionistic logic as a subsystem, and
the natural deduction presentation are points of difference from the usual literature. This
presentation was first given by the author and John Crossley in [PC03], providing an
improved version of that given by the author in [Poe99]. The presentation is largely the
author's work, with John Crossley assisting in the natural deduction rules.
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4.1 Signatures

Our work will be parametrized over many-sorted signatures. We shall use signatures for
two purposes:

• to define an assumed SML preamble of datatype and function declarations, which
will be used in constructing larger SML programs, and

• to define terms for use in formulae of our Hoare logic.

Notation 4.1. First we take the following convention. As in the previous part of this
thesis, we will often let sets of things (terms, values, side-effect-free programs) be common
to both programs and formulae. Depending on the context, we will interchange the names
"sorts" and "types" to denote names of collections of things. We will use "types" when
referring to collections of things used in programming (programs, values of programs, etc).
We will use "sorts" when referring to collections of things used in formulae (terms used in
predicates). We use a typewriter font to denote types and roman font to denote sorts.

We employ the usual definition of signature (specifically, we take that given in [CoFOl,
p.3]), but extended with sorts corresponding to the relevant types of imperative SML:
functional, product, disjoint union sorts and the unit sort.

Definition 4.1.1 (Many-sorted signature with total functions). A many-sorted
signature E — (5, TF, Pred) consists of:

• a set, S, of sorts. Sorts are generated from a set of basic sorts, B(S) as according
to the following inductive definition. First, B(S) C 5. Also, if s\ and S2 a r e m $>
then so are the

— function sort (si —» S2)

— product sort (51 * S2)

— disjoint union

• We assume that B(S) includes a special sort, called Unit.

• sets TFWiS of total function symbols for each function profile (w,s). A function
profile (w,s) consists of a sequence word of argument sorts w 6 S* and a result sort
s G S (constants are treated as functions with no arguments). The length of ID is
called the arity of function symbols in TFW^8.

• We assume that there is only one element in TF^Uniu a unit symbol, written ().

• sets Pw of predicate symbols, for each predicate profile w. A predicate profile consists
of a sequence of argument sorts w 6 S*. The length of w is called the arity of
predicate symbols in Pw. For each basic sort s e B(S), there is a distinguished
equality predicate =SG Pss-

TA
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Our signature definition is the same as Definition 2.1.1, Chapter 2 of Part II. As in that
part of this thesis, the symbols that identify operations and predicates may be overloaded,
occurring in more than one of the above sets. Whenever there is ambiguity in sentences,
function symbols / and predicate symbols P should be qualified by profiles, written
and Pw respectively. When no ambiguity is present, these profiles can be omitted.

4.1.1 Lambda terms

We define a lambda calculus for a signature as in Chapter 2 of Part II. The set of lambda
terms Terras(E), for a signature S = (5, TF, Pred), is given with respect to a denumerable
set of term variables, Var, disjoint from the constants in TF. For reference, we repeat
the grammar here in Fig. 4.1.

e
X

Inl(a)
Inr(a)
match a with Inl(x) => b
fun x : s => b
(ab)
(a,b)
fst(a, b)
snd(a, b)

elements of Terms(E)
any function or constant from TF
a variable x 6 Var
in left
in right

Inr(y) —> c m a t c h case , x,y € Var
lambda abstraction, s € Sorts(E)
application
pair
first projection
second projection

Figure 4.1: Syntax terms of Terms(E).

Terms are associated with sorts according to sort inference rules. We follow the same rules
given in Fig. 2.2, p. 29, Chapter 2 of Part II. For reference, the rules are repeated in full
in Fig. 4.2.

Free and bound variables are defined in the usual way.

Definition 4.1.2 (Free and bound variables of Terms(S)). Let x be any variable of
Var, and t be a term of Terms(E).

Then, x is bound in t if there is a subterm of t of the form

fnx : s => b

or
match a with Inl(x) ~> b \ Inr(y) =>c
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f e
f u (Ass)
1 , x : 5 r£ x : s

I ^ * l • ^ 1 • • • •* - 72 ' ^"77, • ^ 7 1

a :
F hs InZ(a) :

(Union i

: 5

F hE a : 52

(Fn)

a :

FhE /nr(a) : (5i|s2)

b : 52

ri,F

F hx; a : s2)

F
(Proji)

(Prod)
(a, o) : (si * 52)

F hs a : (51 *

a :
r f~s /ft x : 5j —> a :

a :

(Abs)

x : 5]

F hs snd(a) : 52

a : 5i F2 hg 6 :

(Proj2)

: 5

a) :

: 52 Ks c : s
— (Case)

(App)

, F2, F3 hs match a with Inl(x) => b \ Inr{y) =>c : s

Figure 4.2: Sort inference rules for terms of PML.

or
match a with Inl(y) = > 6 | Inr\x) =>c

If a; is not bound in t, then x is free in t. We write BV(t) for the set of all bound variables
of t, and FV(t) for the set of all free variables of t. A term with no free variables is called
closed.

We write Closed(Terms(E)) for the set of closed PML programs.
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Definition 4.1.3 (Irreducible, normal terms). The set of irreducible, normal terms,
Normal(E), consists of elements a from Terms(Y,) such that

a a

Assumption 4.1. The rules are parametrized with respect to possible evaluation of function
symbol application. When a function is applied to arguments of appropriate arity and
types, we assume that there is always a resulting answer. This assumption is formalized
by assuming a mapping Eval% that gives the return value for function applications: Given
a function symbol / G TFSl...Sn,s and arguments (a i , . . . , an) of sorts s\,..., sn respectively,
Eval^(f(a\,..., an)) returns a term from Terms(Y>) of sort 5.

match Inl(a) with Inl{x)
match Inr(a) with Inl(x)

(fnx
=> b |
=>6 |

/

: s => p) a
Inr(y) =>c
Inr(y) =>c

fst(a, b)
snd(a. b)

(a i , . . . ,an)

> s p[a/x]
>s b[a/x]
> s c[a/y]

>E b

Figure 4.3: Rules that define >£, giving the operational semantics of the data values.

This concludes our discussion of many-sorted signatures and their associated terms. In
the next section, we will use these concepts in our definition of SML. In section 4.4, we
will again use signatures to define the terms used in our formulae.

4.1.2 Evaluation

Because our terms constitute a lambda calculus we have the usual reduction rules. The
rules are similar to those given in Section 2.4, Chapter 2 of Part II. The rules define a
one-step reduction relation > s , given in Fig. 4.3. We write >£ for the transitive closure
of >£• and say that a evaluates to b if

a

We write

a

if b can be obtained frcnn a by one or more applications of the rule?

4.2 A subset of SML

We shall be reasoning about an imperative subset of SML, called IML) described in this
section. We base our description on the SML standard given in [MTH90]. However, our
definition is self-contained and it is not necessary for the reader to be well-versed in the
standard. The language comprises basic imperative constructs (assignments, sequencing,
conditionals and loops) and has functional, product and disjoint union types. It includes
side-effect-free programs which can be used to define return values and as boolean checks
in loops and conditional statements. SML programs are usually written using a precoded
functions from libraries. In our work, we will assume a preamble library of datatypes,
side-effect-free functions and black-box programs.
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4.2.1 Preamble
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Our preamble is formally defined now. The preamble will consist of two kinds of programs:
pure SML functions, whose execution does not affect memory, and black-box programs
with side-effect-effects, wiiose execution will result in changes to memory.

We shall use a signature to denote the pure SML functions of the preamble:

Ep = (S, TF, Pred)

where the set of sorts S denotes the types available to the preamble, the set of functions
TF denotes the set of side-effect-free functions defined in the preamble and Pred is a
set of predicate symbols used to make logical statements about the preamble. We defer
discussion of the use of predicates to the next section. We will consider the lambda calculus
of terms formed from our functions, Terras(Ep), to define a set of pure SML programs, a
subset of the programs of interest IML.

As in the previous part, we use typewriter font to distinguish terms and sorts of E when
used as programs and types of SML, as opposed to terms and sorts in formulae.

Assumption 4.2. We assume that Ep includes the usual definition of the boolean data type
bool, so that, for any closed boolean term b : bool, either

6t>v true'E

or
false

This assumption will be important when we use Sp to define boolean checks in conditional
and while-loop constructs of IML.

Also, our results will assume a set of side-effect-producing, black-box programs. These
black-box programs will be represented by a sets of function symbols, BB. Each set BBt
of BB is sorted according to the sorts of Ep. A function symbol / 6 BBt is intended to
denote a side-effect-producing program named f of type t .

Assumption 4.3. We make the following assumptions about the precoded Ep and BB:

All the functions and constants from the signature
preamble.

and BB are defined in the

• We assume that the evaluation mapping Eval^p models the behaviour of the pure
function symbols TF in the SML preamble. Thus the term Eval^p{f{a\,... ,an))
should denote the return value obtained by evaluating f (a i , . . . , an) in SML.

• Basic sorts correspond to assumed SML types that have been defined in the preamble.
Functional and product sorts (t —> u) and (t * u) are taken as functional and product
SML types (t—> u) and (t * u) respectively. The disjoint union t\u is taken as
shorthand for

(t,u) disjointUnion

I i

I (

J

A subset of SML

an instantiation of the parametrized SML datatype, given in the preamble as
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datatype ( a, b) disjointUnion=Inl of 'a | Inr of 'b;;

These assumptions are comparable to those made in our treatment of pure functional SML
in Section 2.4, Chapter 2 of Part II, p. 43.

Imperative SML programs involve state references - memory addresses - to store values.
References are similar to pointers in C or C++, and must be dereferenced to obtain the
value stored at the memory address. So we assume a set of state references, StateRef sorted
according to Ep. An element r € StateRefs is intended to represent a state reference that
is available for use in a SML program. To obtain the value denoted by the state reference,
SML uses the dereferenced expression !r, of SML type s.

We use the following sorted sets of dereferenced states:

!StateRefs = {!r | r e StateRefs}

Assumption 4.4. To use the state references of StateRef in actual SML programs, we
assume the preamble provides an initialization of the form of the form

val si - ref ... ;;
val s2 = ref ... ;;
val s3 = ref ... ;;
* • •
val sn = ref ... ; ;

where s i , . . . , sn are all the state references of StateRef Each initialization is of the form

val r = ref a;;

and must set the state identifier r to a reference ref a of the SML type ref t where
r 6 StateReft. In this way state references StateRef are to be considered as global state
references, available for any SML program we write.

4.2.2 Pure SML programs

We identify a pure, side-effect-free subset of SML constructed from a signature built from
p with additional dereferenced state identifiers IStateRefE

= (S, TF U IStateRef Pred)

The pure programs consist of the lambda terms

PML = Terms
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Example 4.2 (Terms of PML). Assuming we have the usual representations of integer
arithmetic and lists of strings in BB, the following are example terms of PML, if namel,
name2, s i and s2 are state references in StateRef.

!sl+!s2

f n x : s t r ing => [x]@[!namel, !name2, 'Iman Poernomo']

fst(!sl,22)

Remark 4.1. Observe that PML forms a lambda calculus. It is the same kind of lambda
calculus subset of SML we reasoned with in Chapter 2 of Part II, but extended to include
dereferenced states. So we have the usual notion of free and bound variables.

Remark 4.2. PML does not use state references in its lambda terms, that is to say, the
names of SML memory addresses cannot be used. We can only use the values stored in
these addresses by use of dereferenced states. It is possible to define a larger, pure subset of
SML, which includes state references, for use in pointer arithmetic expressions. However,
PML will suffice for the purposes of this thesis.

4.2.3 Terms of IML

The terms of PML define a side-effect-free subset of SML. We now define an imperative
extension of PML, called IML. This is the language we will use in our Hoare logic. The
grammar of IML is given in Fig. 4.4, and involves the black-box programs of BB, together
with the basic imperative constructs of assignments, sequencing, conditionals and loops.
Terms of PML are used to define Boolean terms, value expressions for state asssignments
and side-effect-free return value expressions.

Remark 4.3. Significant to the main result of this part of the thesis, given in Chapter 6,
is the fact that IML includes a side-effect-free subset, PML. This permits the definition
of complex side-effect-free return value expressions. In Chapter 6, we will show how an
adaptation of proofs-as-programs permits us to synthesize correct IML programs with
PML return value expressions, from proofs in our Hoare logic.

Remark 4.4. Note that the syntax of IML permits state references to be assigned to closed
terms of PML. This reflects the situation in SML where assignment to open terms is illegal.
For instance,

is an illegal assignment because x is free in !s + x, while

s : = f n x : in t => !s -f- x

is a legal assignment, because f n x : int => !s -h x is a closed term.
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8
I >

- I

j?

a, b ::= IML terms
t any side-effect producing function symbol from BB
p any closed side-effect-free term from Closed(PML)
a; b sequencing
s: =v assignment of state reference s 6 StateRef to side-

effect-free term v E Closed(PML)
if c then a e lse b conditional, c : bool a Boolean term in PML
while c do b while-loop, c : bool a Boolean term in PML
() unit

Closed(PML) are terms of PML that do not contain free variables - see Definition
4.1.2.

Figure 4.4: Syntax of IML constructed over black-box programs from BB and PML.

4.2.4 Types of IML

We take the set of types of our programs, Types(IML), to consist of the sorts S of Ep (the
same sorts used by PML and BB) (we refer to these sorts as types when using them in
SML programs).

Terms are associated with types according to the inference rules TIR(IML). These rules
involve a sorting relation (:) between terms and types. An inference takes the form

\~IML a : s (4.1)

where F is a context of variables with types of the form {xi : s i , . . . , xn : sn}. The infer-
ence's intended meaning is that the term a has the type t, given when its free variables
x i , . . . , xn denote possible terms of types s i , . . . , sn. If F can be uniquely inferred from a,
we say a is well-typed with type s and simply write a : s.

The type inference rules for the PML subset are simply the sort inference rules for

SPML = (5, TF U IStateRef, Pred)

that is to say,
a : s a : s

Remark 4.5. The rules include typing for dereferenced states, treated as function symbols
of the signature. This is achieved by the rule

s e !StateReft

!s : t
(Fn)
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beBBt (BB)
T \~IML b : t

\~IML s : t F2 V-IML v :

I-/MLS := v : t

h / M L a : U T2 h/MZ/ b : t

(assign)

a : Bool F2

a;b : T

b : t F3

(seq)

C : t

, F2, F3 \~IML if si then b else c : t

w : t T2 h /ML c : Bool

(conditional)

, F2 while c do w : unit
(loop)

(Type inference rules for the subset of side-effect-free terms PML are given in Fig. 4.2.)

Figure 4.5: Type inference rules for the imperative constructs of IML.

The typing rules for the imperative part of IML are given in Fig. 4.5.

4.2.5 IML is a computational type theory

We observe that IML defines a computational type theory (CTT) in the sense used by the
Curry-Howard protocol, of the form

C(IML) = (Terms(IML), Type{IML),:,\-1ML, TIR(IML))

(See Chapter 3, Definition 3.2.4, p. 87 for the general definition of a CTT.)

Terms Terms(IML) and types Type(IML) are the terms and types of IML, with the typing
rules for \~IML defining a set TIR(IML).

4.3 Semantics of SML

The semantics of programs is given as usual, according to a model of an abstract environ-
ment with mutable memory state. The machine's state consists of state identifiers that
store data values. A program's evaluation changes the state of the machine by affecting
the contents of these identifiers.

We provide two related forms of semantics - an operational and a relational semantics -
that tell us how programs evaluate. The former semantics tells us how we expect programs
to execute, in terms of reduction sequences that produce (possibly non-terminating) se-
quences of states of the abstract environment, possibly resulting in a return value. The

latter semantics provides a more abstract understanding of programs, as side-effect rela-
tions between final and initial states. A side-effect is formally understood as a relation
between two states, representing the result of executing an terminating imperative pro-
gram, to make a transition from an initial state to a final state.

The operational semantics will be useful for two reasons:

1. Operational semantics models how a SML program evaluates. It is therefore at a
lower level of abstraction than relational semantics, and we can define the relational
semantics in terms of the operational.

2. The operational semantics tells us how programs evaluate, and what their return
value is. In contrast, the relational semantics ignores return values. This is important
for Chapter 6, where we will be concerned with synthesis of correct return values.

The relational semantics of programs is a higher-level, less detailed, description of how
programs can evaluate, and is useful in understanding the semantics of Hoare logic given
in this chapter and for deriving soundness results in Chapter 5.

It is possible to define a third, denotational, semantics for our programs, but this is not
necessary for our results.

4.3.1 Data values

Our programs manipulate data. Data can be thought of as mathematical values. Unlike
programs, values are static, and are not open to further reduction but are independent of
changes to the memory of the computer.

In SML these data terms are always not amenable to further reduction and are closed -
they cannot have free variables.

For the purposes of this thesis we shall define our values to be the closed, irreducible,
side-effect-free terms of Terms(Y*v). Because repeated application of the reduction rules
for these always terminates, we shall consider data values to be equivalent modulo the

relation.

Definition 4.3.1 {Values). We define the set of data values to be the closed, irreducible
terms of Terra6(£p),

Values = Closed(N'ormal(Ep))

Remark 4.6. We do not permit state references in our data. In full SML it is possible to
have state references themselves as values. This is useful when pointer manipulation is
required. However, we do not consider such values here. See remark 4.2 for a similar note
about PML.
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4.3.2 States
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Intuitively we can imagine a state of a SML environment to be a configuration of the
memory of a computer. Recall that SML state references are named locations of memory
(see p. 103 in the previous section). In our semantics we will be interested in understanding
program execution in terms of state "snapshots" of the memory — all the values stored
at state references for a particular instant in the evaluation of a program.

The formal definition of a state of is as follows.

Definition 4.3.2 (State). A state is a function a from the state references StateRef to
values from Values. We let ML States consist of the set of all states. We assume that any
a € MLStates maps state references to Closed(PML) terms of the same type, that is to
say, a must satisfy the constraint

s E StateRef StateType(s) — t &(S) '•

This requirement is standard for any modern imperative language: state references are
typed, and may only store values of their types.

Each function a 6 MLStates represents a possible memory configuration, where o~(s) is
the value of the state reference s.

We will use the following notation.

Definition 4.3.3. Given a term n G PML and a state a we write cr(n) for the term

(which is in Values) where !s is a list of every dereferenced state reference in n.

Remark 4.7. If n is a side-effect-free term, only the values of its dereferenced state refer-
ences need to be computed in order to transform n into a value (that is to say, into an
element of Values). Thus, the term a(n) should be thought of as an evaluation of n in
state a.

4.3.3 Operational semantics

An operational semantics will now be given in terms of possibly infinite reduction sequences
of programs and memory states, each representing a "snapshot" of how the program
execution affects the state of the SML interpreter.

We use a typical call-by-value operational semantics (see, for example, [Gun93]), given in
Fig. 4.6. The semantics defines an evaluation relation \>IML over pairs of IML programs
and states,

called configurations.
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Notation 4.2 (Variants of maps). We will use the following notation throughout this thesis.
Given any mapping 0 : A —+ B, we will write 0[a t-* b] : A —> B for the mapping that is
identical to 9 over all elements of the domain, except (possibly) a, which is mapped to b.

n € Closed(PML) cr(n) >*r v
V > W £P {pML)

>IML \V,cr;

, . . . , a n ) , a ) = (b,</)
7T" (se)>1ML (b,

(pi, a) S>JML (Pi, a7) (p2, a') O/ML (P3, O , N <J; = a[s H-> a(v)]
(seq)

t>sp true

(if b then p else q, a) >JML (p,

a(b) >Ep false

(s := v,a>

(conditional) 2

(assign)

(if b then p else q, a) >JML (q?cr)

false

(conditional) 2

(while b do c,a) >IML

>sp true (c, a) >IML (r, </)

(while) j

(while b do r, a) I>/ML (while b do c, a')A (w h i l e)2

Figure 4.6: Operational Semantics for IML

Remark 4.8. The intended meaning of

( p , a ) >IML {? : a )

is that p can evaluate to p; with a change in state from a to a'. So the value of the
state location s is cr(s) prior to running p. Similarly, the value stored in s is (j'(z) after p
evaluates to p'.

Remark 4.9. Observe that the (PML) rule shows how to evaluate PML terms, by

1. Evaluating all dereferenced state identifiers, to give a data value, and then

2. Applying lambda reduction rules, to obtain a final value that cannot be reduced
further.

As a consequence of this, all function symbols used in PML (that is, those symbols from
the signature Ep) are evaluated according to the Evalp mapping.
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The semantics assumes we know how to evaluate side-effect-producing black-box programs
of the preamble. Recall that such functions are given in BB. We assume that evaluation
is correctly described by a mapping Eval^ from function applications and states to val-
ues and states. Given a function symbol / £ BBSl_Sj^Si arguments ( a t , . . . , an) of sort
(si * . . . * sn), and initial state cr,

Evak(f (a i , . . .,an),<r)

gives a value from Values of sort s and a new state a'. We assume that Eval (f (&i, • • •, an), a)
is exactly the return value and final state obtained by evaluating f ( a i , . . . , an) in SML.

Assumption 4.5. Recall that Assumption 4.2 (p. 102) took Ep and consequently the closed
irreducible terms of that signature, Values, to include booleans. So, for any b € Values
and any state a, either

o r >*IML

This ensures that the boolean checks of conditional and while-loop statements will always
reduce to true or false, just as they should do in SML.

4.3.4 Evaluation and return values

We define evaluation of a program to be the repeated application the reduction rules of
Fig. 4.6. It is important to note that these rules will sometimes never terminate - we can
have SML programs that continue in infinite loop.

For instance, to evaluate a program p for a given initial state a, we consider the configu-
ration

and apply a rule to obtain a new configuration

such that
(p,cr> >/ML (pi,0"i)

We then repeat the process, obtaining a possibly non-terminating sequence of configura-
tions:

(p,<r) >1ML (pi,0"i)
>JML - • -

>IML (PniO-n)

>IML • • •

If the sequence terminates at a final configuration, say, (p;,Oj) some j , then we say that
p in initial state a evaluates to return value pj with final state a1.

i
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Example 4.3. Consider the loop

while iconEstab = = f a l s e do
tryConnect();

'Connection e s t ab l i shed 3

This program tries to establish a connection with a database, by repeatedly calling a
function called tryConnectQ. The state conEstab determines if a connection has been
established or not. The program continues until this state has a t rue value.

The evaluation sequence of the program will either continue indefinitely or else terminate
with a string return value,

(Connection established7

Example 4.4. Assume StateRef includes the state i with StateType(i) = in t .

Let a be a state such that cr(i) = 0. The program

while !i < 3 do i :=!i + 1

results in a terminating execution sequence

(while !i < 3 do i :=!i + 1, a)

>IML

>IML

>IML

(while
(while
(while

i < 3 do i :=!i + 1, cr[i
i < 3 do i :=!i + 1, cr[i
i < 3 do i :=!i -b 1, <r[i

2])

by repeated application of the (loop) reduction rule, because, for any r,

(i :=!i + l,r> >IML ( O , r [ i H- r ( i ) + 1])

Thus this program in initial state a evaluates to return value () with final state a[i M 3].

Remark 4.10. Inspection of our operational semantics easily reveals that return values are
always elements in Values.

4.3.5 Relational semantics

We now turn our attention to a more abstract, relational semantics of programs. This
semantics considers programs solely in terms of a range of possible side-effects, that is,
changes in state that result from execution. The relational view, in contrast to the more
detailed view afforded by operational semantics, is not concerned with sequences of state
and program configurations, nor in the return values given by some executions.

We write MLRel for the set of side-effect relations given over MLStates,

MLRel = y(MLStates x MLStates)



112 Chapter 4' Intuitionistic Hoare Logic

(where 7(A) denotes the power set of a set A).

Given a relation R € MLRel and a, u' e MLStates, we will often write

for

a Ro1

(a, a') e R

A side-effect relation provides an abstract view of program behaviour in terms of input
and output states.

Example 4.$. Using our notation, the increment function g := g -f 1 is represented by the
side-effect relation from MLRel

R =

A relational semantics for IML programs is given by associating a side-effect relation with
each IML program, using a semantic valuation map

[.J : IML -+ MLRel (4.2)

The definition of | . | simply uses the operational semantics of terminating programs, ignor-
ing intermediate states.

Definition 4.3.4 (Relational semantics of programs). Given any program p £ IML,
if there are states a, af E MLStoJes such that

(P, o) > IML (r,<7;)

for some return value r G IML then

If there are no such states for p (that is to say, if the program does not terminate), then
we take [p] to be the emptyset 0.

Remark 4.11. It is possible to define a relational semantics for our programs that is inde-
pendent of the operational semantics, by defining operators over the side-effect relations
that correspond to imperative constructs. Such a semantics can be built using, for in-
stance, Kleene Algebras with tests (see, e.g., [Koz97]).

Remark 4.12. Values constitutes a term model for data stored in states. It is possible to
define a wider range of models for data, and, as a consequence, a more general relational
semantics for IML. This type of general relational semantics is commonly used for the
semantics of Hoare logic.

However, for our purposes, we are only interested in states MLStates that involve
Values as data. This is because, in SML, it is the terms of Values that are stored in
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SML state references, and we are primarily concerned with a model of execution that is
as close to SML implementation as possible. When we introduce formulae of intuitionistic
Hoare logic and the calculus itself, we will provide soundness results using MLRel. The
interested reader is referred to [Cou90] for a more general semantic treatment of Hoare
logic, given over a range possible relational semantics. It would be easy to adapt that
treatment to our case.

4.4 Formulae

We define a set of formulae that describe side-effect relations and, as a consequence,
program behaviour. A range of possible side-effects is specified by pre- and post-conditions,
in the single formula style of, for instance, OCL [WK98], the B-method [Abr96] or Abadi's
object-oriented extension of Hoare logic [AL97].

A side-effect is described in terms of initial and final state reference values, prior to, and
after, execution. Such initial and final state reference values are, respectively denoted by
the name of the state reference with a ()2- or with a ()/ subscript. For instance, the formula
rj > ri specifies side-effects where the initial value of r, denoted by ry, is greater than the
initial value, denoted by r^. A program that satisfies this specification is r :=!r -+-1.

The formulae of our logic are first-order, many-sorted, and use the quantifiers and con-
nectives of classical/intuitionistic logic. Sorts, terms and predicates are obtained from the
signature Ep.

To enable the specification of side-effects our predicates range over the usual set of terms
of Dp extended by the subscripted StateRef symbols that denote initial and final state
reference values. For instance, if r £ StateRef then r* * 20 + 77 is a well-formed term that
may be used in our logic.

We can define when a formula is true of a side-effect relation from MLRel. Recall that a
program's execution is defined by a particular side-effect relation. We therefore can define
when a formula is true of a program's execution: this is exactly when it is true of the
program's side-effect relation. For instance,

sf Si

is true of the side-effect relation

R = {(a, a1) I a' = a[s ̂  a(s) + 1]}

because the new value of s is greater than the old value of s for R (that is, a7(s) is greater
than (j(s) for every (cr,af) £ R). The side-effect relation R denotes the range of possible
side-effects for s := s + 1, and so the formula is true of this program's execution.

We proceed as follows. We first describe a set of terms used by our formulae. Then we
define the set of well-tbrmed formulae. Finally, we define when a formula is true of a
side-effect relation, and, hence, true of a program's execution.
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4.4.1 Terms
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Our terms consist of the lambda calculus built from Ep, extended by extra symbols to
refer to the initial and final values of state identifers in a given side-effect relation.

Definition 4.4.1 (Initial and final values). We reserve a sorted set of symbols IStateVal
to represent initial values of state references, and a sorted set FStateVal to represent final
values.

IStateVak = {si | s 6 StateReft}
FStateVak = s e StateReft}

We write State Val for IState Val U FState Vol. Given a term S{ 6 IState Val, we write
state—id(si) for the corresponding state reference, s. We overload this function, so that,
given a term sj G FStateVal, we write state—id(sf) for the corresponding state reference,
s.

Our terms are denned as follows.

Definition 4.4.2 (Elements of Terms(Et)). We define the signature of our terms to be

Et = (S,TF U StateVal, Fred)

formed from Ep extended by State Val, treated as function symbols.

Then we define Terms (I!*) according to the grammar of Fig. 4.1, p. 99.

Remark 4.13. Terms(Ef) is a lambda calculus equipped with the usual notion of free and
bound variables.

Remark 4.14. Note that we have now defined three distinct lambda calculi - PML, Values
and now Terms(E$). The calculi all share the sorts S and function symbols TF. However,
they each serve different purposes:

• PML defines the side-effect-free expressions of IML,

• Values defines the data values of states and evaluated return values of programs.

• Terms(Ei) is used in Hoare logic as terms of predicates.

Example 4.6. Assuming Ê  contains symbols for representing integer arithmetic, strings
and lists of strings, the following are elements of Terms(Et):

fa x : int —> x +

fax : string => [x]@[namelf,name2f,f Iman Poernomo]

M A , 22)
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Because Terms(E^) is a lambda calculus we have the reduction relation D>st, with rules
as defined in Fig. 4.3, p. 101.

Remark 4.15. The reduction rules treat the state identifiers as irreducible constant sym-
bols. State identifiers are only associated with values when interpretated with respect to
a given side-effect relation, described later in this section.

We will require the following definition.

Definition 4,4.3 (State reference values for a term). Let t be a term of Terms(St).
We define initial(t) to be the list of IStateVal symbols that occur in t. We define final(i)
similarly, to be the list of FState Val symbols that occur in t.

The sort inference rules for our terms are simply those of Sf, as given in Fig. 4.2, p. 100.

Remark 4.16. Note that the sort inference rules treat the initial and final state references
as function symbols for the purpose of associating sorts:

Si € IStateValt
i Si '. t

sf e FStateVak
: t

4.4.2 Well-formed formulae

We use first-order, many-sorted formulae to make assertions about programs. All predi-
cates and terms are taken from Eg.

The definition well-formed formulae over the signature Et is as in Definition 2.1.3 of
Chapter 2, Part II. We repeat the definition for reference, made specific for our signature

Definition 4.4.4 (Well-formed formulae for Et). Let E t - (S,TF U State Val, P)
The set of well-formed formulae for a signature, WFF(Y,t) is the least set containing

• every P(s\,... ,tn) where P 6 P{s1,...,sn) *
s a predicate symbol in P and every tj

(j = 1 , . . . , n) is a well-sorted term of sort Sj,

• every formula (A A B), A, B 6 WFF(Y,t),

• every formula (A V B), A, B E WFF(Et),

• every formula (A => B), A,B e WFF(Zt),

• every formula \/x : s • F where x £ Var and F 6 WFF(Y,t),

• every formula 3x : s • F where x 6 Var and F G WFF(Et)i

• the formula J_.

We often write -*A for A => _L.
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The usual definitions of free and bound variables apply to our formulae.

Definition 4.4.5 (Bound and free variables of formulae). A formula G binds a
variable of Var if, and only if, either

• G contains a subformula of form \/x : s • A or 3x : s • A, or

• G contains an atomic subformula of the form P(a\, . . . ,an) where x : s occurs in
BV(aj) for some dj (j £ { 1 , . . . , n}).

In this case, we say x is bound in G. If a variable x is not bound by a formula G, but
occurs in a Terms(E$) term used in an atomic subformula of G, then we say that it occurs
free in G. . •

We write FV{G) for the set of free variables of G, and BV(G) for the set of bound
variables.

4.4.3 Interpreting terms of Terms(Et)

To understand how our formulae specify SML program behaviour, we need to interpret
them over the data that is stored in state references used by IML programs. Recall that,
for the purposes of our work, we take this data to be Values.

Definition 4.4.6 (Interpreting Terras(Et) terms over Values), Let a and af be states
of MLStates.

Let I be an interpretation of Var by Values. We define i to be the inductive extension of
I to all of Terms(Sp), so that, for any variable x e Var and any function / : f —> T €
Terms (Ep),

. . , t(an)), . . . , an)) =

We write i(t)* € Values for the interpretation of t formed by extending the interpretation
I to all of

where i' interprets every symbol S{ E initial(t) (s E StateRef) by the corresponding initial
state reference Value <r(s), and similarly for final state references:

i! — t[i y-* a(state — id(i))][fi-* o~'(state—id{i))}

with i and / the lists of initial and final state reference identifiers, initial(t) and final (t),
respectively.

Lemma 4.4.1. Let a and b be elements of Terms {Tit), o,o' be states and i some inter-
pretation. Then

( ) ' {i & a >Et b

J

[I
h
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! '

Proof. By induction on the possible forms of a, using the fact that the operational seman-
tics of £t has the same reduction rules as Ep, and treats the state identifiers as irreducible
symbols. •

4.4.4 Truths about side-effect relations

We can define when a formula P is true of a particular side-effect transition pair (o*, or'),
a, a1 e MLStates.

The terms of IState Val and FState Val denote the initial and final values of corresponding-
state identitifers for a side-effect relation. This leads to a formal definition of when a
formula is true of a side-effect transition pair.

We define a formula to be true of a side-effect relation when it is true of every side-effect
transition of the relation.

We required the following definition.

Definition 4.4.7 (Truth valuation function). Given the signature E — (S,TF,Pred)
a truth valuation function is a map

where

h : Pred -> y(Values)

HP)
only when, for every predicate P in PredSl...Sn, we have that a] : s i , . . . , an : sn.

Assumption 4.6. Our results will assume a fixed truth valuation function h for

Ep = (5, TF, Pred)

Intuitively, this function tells us what elements of Values the predicates from Pred hold
over.

Definition 4.4.8 (Truth about a side-effect relation). Let G be a formula. Let i be an
interpretation of terms of Terms(Ep) by elements of Values (formed by an interpretation
I of elements of Var by elements of Values).

Let a\ o' G MLStates.

We say that G is true of the side-effect (cr,cr') under the interpretation t, written (a, a') IK
G, when

• if G is atomic, of the form P(a\,..., an), then

if Gis {AVB), then
or {a,o-f)\\-LB
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if Gis (AAB), then

and

if G is (A =» B), then

(<r, cr') IK A entails (<x, af) IK

if G is Vx : t • P, then
,*/) IK G[a/x]

for every a :t £ Values.

if G is Ete : s • P , then

for some a : £ £

(a, </) IK G[a/x]

it is never the case that (a, a') \\rL J_.

it is always the case that (a, a1) IK

Let JR be an element of MLRel.

We say that G is inxe of R under interpretation i, written R IK G, when,

all (a,a1) £R. (a,a')\bLG

We say that G is true o/ R with initial state a under i, written R Irf G when, if a ft a',
then

(a, a') IK G

We say that G is true of R with initial state a, written R IK G, when, for every interpre-

tation L, R Ihf G.

We say that G is true of R, writing R Ih G, when, for every interpretation t, R IK G.

Remark 4.17. The notion of truth given uses models which interpret Terras(Ep) and
Terras (Et) by elements of Values. This is because Vafa/es terms are the data used in SML,
and we are primarily concerned with models that are as close to SML implementation as
possible.

However, there is a wider range of models of Terms(Ep). It is possible to interpret
Terras(Ep) and Terms(E t) over a range of models to arrive at a more general definition
of truth of formulae. This is the usual case when providing a semantics for Hoare logic.
See Remark 4.12 (p. 112) for a similar observation about side-effect relations of IML.

The interested reader is referred to [Cou90] for a more general semantic treatment of the
formulae of Hoare logic given over a range of models of data. It would be easy to adapt
that treatment to our case.

t
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We now define a constructive version of Hoare logic, which we call Intuitionistic Hoare
logic (IHL), for reasoning about side-effects of imperative programs in SML.

Hoare logic is traditionally given with respect to a simple imperative programming lan-
guage and a language for expressing pre- and post-conditions [Flo67, Hoa69]. In our case,
IHL uses IML as the imperative programming language the formulae WFF(Et) for speci-
fying pre- and post-conditions. The programs were described in Sections 4.2 and 4.3 and
the formulae were defined in Section 4.4.

Hoare logic is often parametrized over a deductive system, usually classical logic. For
the purposes of adapting proofs-as-programs in later chapters, we will instead use an
intuitionistic deduction system, based on that given in Chapter 2 of Part II.

4.5.1 Program/formula pairs

The theorems of our calculus involve program/formula pairs of the form

consisting of a program p € IML and a formula A from WFF(Et). We shall refer to the
set of such pairs as Pairs(\HL).

Formally, the meaning of program/formula pair in pur calculus is given by an interpretation

Definition 4.5.1 (Truth of program/formula pair). We say that an formula ipoA is
true for an interpretation r when

h. A

(Recall the semantic valuation map [[.]] was defined on p. 112 above.) We say that po A
is true, if, and only if, p o A is true for every possible interpretation.

The formula is a true statement about the side-effect relation, [p], associated with p
provided that p terminates.

4.5.2 Rules

Our calculus provides a set of rules for constructing new true program/formula pairs from
known true program/formula pairs.

The basic calculus is presented in Figs. 4.7 and 4.8. The former rules are the basic rules
of Hoare logic, while the latter are rules for intuitionistic logic.

The basic rules are used to construct new programs and new truths about the programs
from old.
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Remark 4.18. The rule (seq) of the logic enables us to build a new program (p;q) and a
new truth A[si/v] => C[s~f/v] about the program from known truths .A [$$/?;] =» B[sj/v]
and B[si/v] =>• C[sf/v] about the subprograms p and q respectively.

The (loop) and (ite) rules are similar.

Remark 4.19. The (assign) permits us to make a simple assertion about an assignment
statements: that is, given a, program s :— v we know that the final value of s must be
equal to v.

Remark 4.20. Our version of Hoare logic is concerned with so-called pariial correctness
of statements about programs [Cou90]. Given a theorem, the formula is true about the
program, assuming that the program terminates. However, the logic is not equipped
with a means to prove program termination. In particular the (loop) rule does not prove
termination of the while-loop of the conclusion. This can be rectified by considering a
version of Hoare logic for total correctness. That version of Hoare logic is well understood,
but is complicated, for our current purpose of adapting proofs-as-prograrris. We limit
ourselves to partial correctness, and leave the extension to total correctness as future
work.

Remark 4.21. It will be shown that all theorems are true, by the soundness property,
which is proved in the next chapter.

The (ite) and (loop) rules require the map tologiq, which transforms a SML boolean
function b into a Terms(Et) boolean term, for use in formulae. The map replaces all
dereferenced state references of the form !s with initial state identifiers of the form S{.

Definition 4.5.2. Given any term b, we define

tologiq(b) = h[s~i/\s]

where \s is every dereferenced state reference in b, and S{ the corresponding list of initial
state identifiers.

We also define
tologicf(b) — b[sf/\s]

where !s is every dereferenced state reference in b, and sj the corresponding list of final
state identifiers.

The rule (cons) of Fig. 4.7 is given with respect to intuitionistic deduction h|nt, as described
in Chapter 2, Section 2.2. We use the same rules but given over formulae from WFF(Et).
The core, basic rules for h|nt are repeated for reference in Fig. 4.8.

The intutionistic rules are concerned with truths that are universal to all programs, that
is to say, they can be used to infer properties that hold over any side-effect.

Example 4.7. For instance, an application of the logical (A-I) rule

sf — sz * 2 hnt. sf ^ si sf — si * 2 hnt Even(sf)
= S{*2 h|nt sj > Si A Even(sf)

(A-I)

1
•.'to

1
I
i
I
i

•;•»

' i

h
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(assign)rlHl s :=vosf = tologiq (v)
where s G StateRef.

f—IHL P ° (tologiq(b) = true => C) h|HL qo (tologiq(b) = false => C)

if b then p e lse qo C

(A[SJ/V] =» B[sf/v]) t-iHL qo (B[SJ/V] =» C[sf/v])

(ite)

hHL p; qo (A[si/v] =» C[sf/v])
where A and B are free of state identifiers.

HJHL qo (tologiq(b) = true A A[s~i/v]) =$• A[sf/v]
while b do qo A[s~i/v] => (A[sf/v] A tologicf(b) = false)
where A is free of state identifiers.

hHLPoP hnt (P=>A)
—~-A (cons)

(seq)

(loop)

(Intuitionistic deduction h|nt is given in Fig. 4.8.)

Figure 4.7: The basic rules of IHL.

tells us that, for any program that makes Sf = si * 2 true, because it follows that Sf > si
and Even(sf) must also be true, Sf > S{ A Even(sf) must be true of the program.

Remark 4.22. Our calculus is a form of natural deduction, using sequents to represent
proofs. The sequent format presentation of proofs is equivalent to a "tree" format presen-
tation (the former preferred when space needs to be conserved, the latter preferred when
the steps of a deduction need to be displayed clearly). A sequent I—IHL P O F is equivalent
to the following tree format presentation:

poF

4.5.3 Axioms and schemata

In addition to the rules described, our deduction system permits for use in the intuitionistic
subsystem and Hoare logic proper. We use axioms and schemata to define knowledge about
a problem domain by extra-logical constraints about the behaviour of signature terms.

We assume a set of axioms AX, which consists of two sets: a set of WFF(Ht) formulae,
yiXint and a set of pairs of IML programs and WFF(Et) formulae, AXBB- The former
forms axioms used in the intuitionistic subsystem, while the latter forms axioms about
programs, used in the Hoare logic proper.

j
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Assume that cc, y are arbitrary variables of sort s from signature E, and
that a and c are well-sorted terms of sort s.

A h,nt
(Ass-I)

A h,nt (A =» B)

A h,nt

(=*-!)

A L W ," ( V - J )

A h|nt vx : s • A
provided x is not free in A

A hnt P[a/y]

A hnt ^ A;hnt(A=»
A,A'h,n t£

A h|nt V̂  : s • A

A h ,nt
: s • P

(3-1)
hint

A h|nt A[c/x]

: a • P

(V-E)

hnt

A i , A 2 h , n t C
where x not occur free in C

(3-E)

A hnt A A;h,nt

A h|
nt

A A2)

A h,nt

A h|nt

A hnt i V A2)

A hnt

(A-Ei)

(V-Il)

A, A' h|nt {A A b)

A hnt

r (A-I)

A A2)

A hnt ̂ 2

A h|nt A2

(A-E2)

A h!nt (Ai V A2)

7 A2 5Bh[ n tC
Ai,A2,AhntC

(V-E)

XTMf
A h|nt A

f «

provided A is Harrop

Figure 4.8: The basic rules of many-sorted intuitionistic logic, Int, ranging over WFF(Et)

1
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To use axioms from -4X|nt, we use the introduction rule
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A e AX\nt
hint A

(Ax-I) Int

Similarly, to use axioms from A%BB-> we have the rule

(p o A) e AXBB

Assumption 4.7. We leave the set of axioms to be a parameter of our system, to be
specified for use in a particular domain. However, we shall assume that, at least, axioms
for (Heyting) integer arithmetic are included for reasoning in the intuitionistic subset.

We use schemata rules as a metalogical device for generating (a potentially infinite number
of) axioms in AX.

Schemata for the intuitionistic subsystem are as denned in Chapter 2, Part II, Definition
2.2.2, p. 34. We will require several standard intuiticnistic schemata for reasoning about
equality and disjoint unions in lambda terms, given in Fig. 4.9. These are the same as
those schemata required for the intuitionistic logic of Chapter 2. These schemata provide
a consistent theory about notions of equality and properties of the .lambda calculus. The
schemata require that we have an equality predicate for every basic sort.
Assumption 4.8. We require that, for every basic sort s from S t (and consequently from
Ep), there is a binary equality predicate =se Preds. The subscript is omitted when there
is no confusion regarding the sort.
Remark 4.23. A result of the schemata for equality is that, in the semantics of IHL, the
valuation function h is constrained as follows. For each =s and terms a\ : s and a2 : s of
Terms(St), any interpretation function i and states a and a'\

if, and only if,
CL\

By Lemma 4.4.1, this can be shown to be equivalent to the condition that
i

We also use schemata to generate program/formula pair axioms in AXBB- These are
particularly useful when we wish to define how a black-box program from BB will react
to input. The general form of a schema is as follows.

Definition 4.5.3 (Schemata for parametrized black-box programs). Let f be a
black-box program of BB8lmmm8ni3, parametrized over arguments of types ( s i , . . . , sn). Let
x be a list of n term variables x i , . . . , xn.
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A black-box schema is of the form

f ( x i , . . . , x n ) o F
R[x]

where R is the name of the schema, An application of the schema is

R[a]
f ( a i , . . . , a n ) o F

where a is a list of n terms a\,..., an of sorts s±,..., sn.

— (ref)
r-|nt u =s r => r =s U K

where s is a basic sort

P[r/y] Au=sr (subst)[[P];[u;r];[s]]
P[u/y]

where u and r are well-sorted of basic sort s and
y is the only free variable in P

hnt Vyi : si • P[Inl(yi)/x]A\/y2 : s2 • P[7nr(y2)/^] , , . . . , U n r n
(disj-ind)[P; [si; s2]]h !nt VJ : : SI 1*2 •

h|nt

P

hnt
(union=i)[[u;r];[sr,s2]]

where Inl(u) and 7n/(r) are well-sorted terms of sort

h|nt Inr{u) = 7nr(f)
- (union=2)[[u;rJ;[si;s2]Jhnt u =S1 r

where Inr(u) and Inr{r) are well-sorted terms of sort

hnt InKu) = Inrir) => 1
where u and r are well-sorted terms of sorts s\ and s2 respectively

Figure 4.9: Equality schemata and schemata for reasoning about disjoint unions.

4.5.4 Intuitionistic Hoare logic as a natural deduction system

Our calculus is a natural deduction system, in the sense identified by the Curry-Howard
protocol of Definition 3.2.2, Chapter 3, Part II, p. 83.

IHL=

>i

1

where Di?.(IHL) consists of the rules that define h1HL- Observe, however, that h m
DR(\HL) are dependent on the deduction system for Int:

where DT^(lnt) consists of the rules that define f-|nt.

Recall that Definition 3.2.2 takes a deduction system to be a means of proving "state-
ments". In the case of IHL, these statements are program/formula pairs. This will be
significant in the next chapter, when we define a type theory for IHL, in the style of con-
structive type theories satisfying the Curry-Howard isomorphism for intuitionistic logic.
In that work, we shall represent program/formula pairs as types.

4.5.5 Example : Elect ronic Bank ing Sys tem

We illustrate Hoare logic with a medium sized example, involving code for part of an
electronic banking system. We shall return to this example in the next two chapters, to
show how proofs-as-programs methodology can be applied.

Consider an Automatic Bank Teller machine (ATM) example with the following domain
conditions:

• The ATM permits the user to enter a Personal Identification Number (PIN) and to
withdraw money. In order to withdraw money, the user must enter their PIN and a
database connection to the bank's server must be made. The machine has a screen
on which it displays messages to the user.

• The integer state reference pin stores the PIN number entered by the user, the
boolean state reference canWithdraw stores a flag to determine whether or not
the user may withdraw money from the machine, and the boolean state reference
isConnected stores a flag to determine whether or not there is a connection to the
bank's server.

• We use the predicate AppMessage(rn) to assert that a string m is an appropri-
ate message to display on the screen for the user, given that the ATM is in some
particular state.

• There is a program p satisfying the following property. Given the user has entered
their Personal Identification Number (PIN) correctly, the program allows the user
to withdraw money. This property is formally given by a axiom

K|HL P o PINCorrecb(pirii) => canWithdrawf — true

• There is a program q such that, if the user is permitted to withdraw money, then a
database connection is established, and also it is the case that there is an appropriate
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message that can be displayed. These properties are formally given by the axiom

hiHL qocanWithdrawi = true => (isConnectedf — trueA3x : string* AppMessage(x))

For the sake of argument, we simplify our domain with the following assumptions:

• We assume two SML record datatypes have been defined, user and account. In-
stances of the former contain information to represent a user in the system, while
instances of the latter represent bank accounts. We do not detail the full definition
of these types.

However, we assume that an account record type which contains a user element in
the owner field to represent the owner of the account. So the owner of the account
element myAccount : account is accessed by myAccount.owner.

We also assume that user is an equivalence type in SML, so that its elements may
be compared using the boolean valued comparison function =.

We assume a constant cur rent User : user that represents the current user who is
the subject of the account search.

• The database is represented in SML as an array of accounts,

db : account array

Following the SML API, the array is 0-indexed, with the ith element accessed as

Calculus

sub(db,i

and the size of the array given as

length db

Assume we have an array of size Size, called accounts. Although SML arrays are
mutable, for the purposes of this example, we will consider db to be an immutable
value. Consequently, it will be represented in our logic as a constant.

We assume a state reference counter : in t ref, to be used as a counter in searches
through the database.

We take a predicate

all Accounts At (u : user,x : account list^y : int)

whose meaning is that x is a list of all accounts found to be owned by the user u, up to
the point y in the database db. The predicate defined by the following axioms in AX

\/u : user • Vx : (account list) • \/y : int • (all Accounts At (it, x, y) =>

(v'z : int • z < y =>• sub(db, z).owner — u)) (4.3)
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: user • Vx : (account list) • My : i

((y < (length db) - 1) A sub(db,y + I) .user = uA all AccountsAt(u,x,y))

all Accounts At (u, sub(db, y + 1) :: x, y -f 1) (4.4)

\/u : user • Vx : (account list) • \Jy : int*

(y < (length db) - 1 A -^sub(l, y -f 1).user = u A all Accounts At (u, x, y))

all Accounts At(u, x, y + 1) (4.5)

\fu : user •\/y:intmy = 0=> all Accounts At(u, \\,y) (4.6)

Observe that these are intuitionistic axioms, for use in intuitionistic deduction, and so
they do not involve programs. However, deductions which use these axioms can be used
within the Hoare logic by means of the (cons) rule.

We will develop a program that satisfies the following property: given a user's details, it is
possible to obtain a list of all accounts held at the bank by the user, by searching through
the database. This is formally stated as the following requirement

3y : (account list) • list All Accounts(curr entU ser, y, counter f) A

(counterf < (length db) — 1) = false (4.7)

The post-condition requirement of counterf signifies that a complete search of the database
should be completed by the program.

The previous axioms are Harrop. We also have a non-Harrop axiom

y < (length db) - 1 => sub(l,y + 1).owner = u V -^sub(l,y -}- I).owner = u (4.8)

From (4.4), (4.5) and (4.8), we can derive an intuitionistic proof of ths* form

y < (length db) — 1, all Accounts At (u,x,y)

h|nt 3/ : (account list) • all Accounts At(u, Z, y -f 1) (4.9)

By assuming 3/ : (account list) • all Accounts At(u, I, y), we can apply (3-E) on (4.9) and
then obtain

h-|nt My : int • \/u : user*

(y < (length db) — 1) A 3! : (account list) • all Accounts At(u, /, y)

31 : [account list) • all Accounts At (u, /,?/ (4.10)
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We can transform (4.10) into
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: int • v = y + 1 =» \/u : user*

(y < (length db) — 1) A 3/ : (account list) • all Accounts At(u, /, y)

3Z : (account list) • all Accounts At(u, /, t>) (4.11)

We then instantiate (4.12) with counteri and counterf and curreniUser for y, v and it,
to give

r-|nt counterj = counteri + 1 => (counter i < (length db) — 1)A

31 : (account list) • all Account sAt(curreniUser,I, counter {) =>

31 : (account list) • all Accounts At (cur rentUser, /, counter f) (4.12)

We also have the following, by the (assign) rule of Hoare logic:

h counter :=!counter + 1 o counterj = counter^ -f 1

And so, by applying (cons) to (4.13) and (4.12),

Prom the axiom (4.6) we can derivee

h|nt counterf = 0

By application of (assign)

h counter : = 0 o counterf — 0

(4.13)

h counter :=!counter + 1 o (counter < (length db) — 1)A

3/ : (account list) • all Accounts At (cur rentUser, I, count eri) =>

31 : (account list) • all Accounts At (cur rentU ser, /, counter f) (4.14)

Then we apply (loop) to (4.14)

h while Icounter < (length db) — 1 do counter :=Icounter + lo

31 : (account list) • all Accounts At(cwTentUser,L counter^)

3/ : (account list) • all Accounts At(currentU ser, /, counter f) A

(counterf < (length db) — 1) = (4.15)

3y : (account list) • all Accounts At(currentU"ser, y, counter f) (4.16)

(4,17)

1

Calculus 129

Then, applying (cons) to (4.17) and (4.16) gives

counter :—0 o 3y : (account list) • all Accounts At(currentUser,y, counter f) (4.18)

This can be weakened to include a true hypothesis true:

counter : = 0 o true =>

3y : (account list) • all Accounts At(currentUser, y, counter f) (4.19)

So, using (seq) on (4.19) and (4.15), we can obtain

h counter :=!counter + 1;

while Icounter < (length db) — 1 do counter :=!counter -f lo

true => 3y : (account list) • all Accounts At (cur rentUser, y, counter f) A

(counterf < (length db) — 1) = false (4.20)

which can be simplified to the required form

h counter :=!counter -f 1;

while Icounter < (length db) — 1 do counter :=!counter + lo

3y : (account list) • all Account sAt(currentUser^y, counter f)A

(counterf < (length db) — 1) — false

The program of this pair satisfies the specification (4.7).

(4.21)

Remark 4.24. We shall return to this example in the following chapters. By adapting
proofs-as-programs to IHL, it is possible to augment the imperative program of (4.21)
with a side-effect-free return value function. The return value satisfies the specification
(4.7), according to a notion of realizability adapted from the functional program synthesis
of Chapter 2, Part II. Essentially, when viewed as a specifica,tion of a return value, (4.7)
requires a program that, given a user's details, will search through a database to obtain
all accounts held at the bank bv the user, and then return this list.

In Chapter 5, we will define a logical type theory that can encode proofs of IHL in the style
of the Curry-Howard isomorphism. Section 5.3 of that chapter will show how our example
proof is represented in this way. Then, in Chapter 6, we will formall]r define return value
realizability of IHL and provide a method of program extraction, returning to our example
(in Section 6.4) to syntiiesize an imperative program (with correct side-effects and return
values) from this proof.
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4.6 Comparison to Hoare logic with triples and its exten-
sions

We make some brief observations about IHL and its relation to the original Hoare logic and
its variants. This section may be skipped by readers interested only in using our calculus
for program extraction. It is a necessary preliminary for the discussion of completeness of
SSL given in the next chapter.

4.6.1 Single formula versus Hoare tr iples

We have chosen to present our logic using program/formula pairs rather than the original
Hoare triples. We choose to do this, because, in the next chapter, we will present a logical
type theory of IHL, where program/formula pairs are treated as types. Then, in Chapter
6, we will use the Skolem form of a formula in a pair to define how the formula specifies
a required return value for the program. It is more convenient to use a single formula in
these cases.

Single formulae with initial and final state identifiers are common in program specification
methodologies such OCL [WK98] or the B-method [Abr96]. Hoare logics in which post-
conditions of triples are predicates involving initial and final state identifiers are used in,
for instance, [HH86, HHH+87, HHS87]. Also, program/formula pairs are sometimes a
more convenient notation compared to triples [AL97].

4.6.2 Hoare triples

However, it is possible to show that our calculus is equivalent to a Hoare logic that uses
triples, TIHL. We briefly sketch TIHL and outline how the equivalence holds.

4.6.3 Terms

Our terms consist of the lambda calculus built from Ep, extended by extra symbols to
refer to values of state identifers for a particular point in a program's execution (not initial
and final points, as was the case for terms of Terms(Ht) above).

The set of terms Terms(T\HL) consists of Terms(Ep) inductively extended by StateRef
treated as special constant symbols.

Our terms are defined as follows.

Definition 4.6.1 (Elements of Terras(E£*)). We define the signature of our terms to
be

E t = (S, TF U State Val, Pred)

formed from Sp extended by StateRef treated as constant function symbols.

Then we define Terms{Jlu) according to the grammar of Fig. 4.1, p. 99.
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Remark 4.25. Terms(Ht) is a lambda calculus equipped with the usual notion of free and
bound variables.

Sort inference rules of terms Terms{Et^) are given by the the inference rules for Terms{Y,p),
augmented with a rule for dealing with initial and final state references:

s £ StateRef oiid StateType(s) = T

We define tologic* to be a map from Values to Terms(Ht*) so that, tologic*(t) consists of
t with every dereferenced state reference !s replaced by the corresponding state reference
5.

The formulae of TIHL are WFF(Et), the first-order many-sorted formulae that use terms
from Terras(Et*). Intuitively, these formulae make statements about the state of a pro-
gram at a particular point in the program's execution. In contrast to the formulae of
W.FF(Et), we cannot make assertions about initial and final states within the same for-
mula. Instead, such statements are made using the formulae in a Hoare triple.

Hoare triples are defined to be of the form

where A,B are well-formed formulae of For mu/a (TIHL), and p is a program of IML.
Intuitively, A and B are statements about the state of the abstract machine. The triple is
correct for a terminating p, if whenever A is true prior to executing p then B will be true
afterwards.

4.6.4 Calculus

The core rules of Hoare logic TIHL are given in Fig. 4.10. As in the case of IHL, these rules
are defined with respect to the intuitionistic deduction of Fig. 4.8, but now with formulae
taken from WFF(T,t*). We use the same rules that define h|nt, now given over formulae
from WJF\F(EA*), to define a deduction relation hnt(TiHL)-

4.6.5 Equivalence of Hoare triples to program/formula pairs

Any Hoare triple can be mapped to a program/formula pair and vice versa, in such a way
that provability is preserved, that is to say, we can give a bijection 0 from triples {^4}p{i?}
to pairs p o F such that probability of triples is preserved as provability of pairs, and vice
versa.

Assume that s is a list that, at least, includes all elements of StateRef that occur in A and
J5, with si and Sf being the corresponding lists of initial and final state identifiers, then
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!~TIHL

;—:——-r- (assignS)
{truejs := v{s = tologic*(v)}

where 5 E StateRef.

A tologic*(b) = true}p{C} KTIHL {B A tologic*(b) = false}q{C}
H"lHl {^}if b then p else q{C}

h"IHL {A}p{B} T̂IHL {B}q{C}
(seq-i)

I~TIHL {tologic*(b) = true A A}w{A}
b do q{A A tologic*(b) = false}

hjlHL {A'MB'} ^ B' hnt(TIHL)

(loopJ)

(cons.i)

(Intuitionistic deduction hnt(TiHL) *s given by the same rules that define h|nt in Fig. 4.8,
but now ranging over formulae from WFF(Jjt*)-)

Figure 4.10: Rules of the Hoare calculus with the triple notation.

we define <f> by

= S}p{F[s/sf]{x/si}}

The following theorem tells us that 0 preserves triple provability in TIHL as program/formula
provability in IHL.

Theorem 4.6.2 (</> preserves provability). Take any program p and any formulae of
P andQ ofWFF{Y,t*).

i_ T\HL{PMQ} entails HHL

Proof. By induction on the length of the proof F h-TIHL {P}p{Q}-

Case: proof ends in (assign). Assume {P}p{Q} is of the form {true}s := v{s = tologic*(v)},
deduced by (assign.^):

- (assignjt)
{true}s := v{s — tologic*(v)}

We are required to show

' 9
' ft

i

?

a

i

1

I
r

I

Comparison to Hoare logic with triples and its extensions 133

By applying the (assign) rule of IHL, we have

I—IHL s : = v O 5 / = tologicf(v)
(assign)

(4.23)

We have the following intuitionistic proof:

= tologicf(v)hnts/ =

= tologicf (v), true h-

(Ass-I) r— (Ass-I)
g f ( ) true\-\nt true K }

g f ( ) , |nt 5/ = tologicf (v) A trite
to!ogicf(v),true h " ' " ' x

—:—:—7-T (A-E2)
— i v i v g i v-y ^ v j , i/# \ju\_s 1 \X\\ & f LOIOglC^(V)

tologicf(v) h|nt true => sj — tologicf (v)
int sy =

(4.24)

We apply (cons) to 4.23 and 4.24 to obtain 4.22, as required.

Case: proof ends in (ite_t). Assume {P}v{Q} is of the form

{B}if b then p else q{C}

deduced by (iteJ):

A tologic*(b) = true}p{C} A tologic*(b) = false}q{C}

hT«HL then p q{C}

Let s be a list that includes all elements of StateRef that occur in B and C, with s\ and
Sf being the corresponding lists of initial and final state identifiers.

We are required to show

if b then p else qo B[si/s] =£• C[sj/s] (4.25)

By the IH, we have

P o B[si/s] A tologiq(b) = true => C[sf/s]

[s'i/s] A tologiq(b) = false => C[sf/s]

It is easy to prove the following using the intuitionistic calculus:

(4.26)

(4.27)

B[si/s] A tologiq(b) = true => C[s//s],tologiq(b) = true h|nt B[si/s] => C[s//s](4.28)

B[si/s] A tologiq(b) = false =» C[sj/s], tologiq(b) = false h|nt B[si/s] => C[sf/s](4.29)

By applying the (cons) rule to (4.26) and (4.28), and to (4.27) and (4.29), we obtain

tologiq(b) = true =^(po B[si/s] =>• C[sf/s])

tologiq(b) = false => (qoB[si/s\ => C[sf/s\)

(4.30)

(4.31)

S := V O true => Sf = tologicf (v) (4.22) Application of (ite) to (4.30) and (4.31) gives us (4 25), as required.
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Case: proof ends in (seq_t). Assume {P}?{Q} is of the form {A}p;q{C}, deduced by
(seq_t):

{A}p{B} KxiHL {B}q{C}

Let s be a list that, at least, includes all elements of StateRef that occur in A, B and C,
with si and Sf being the corresponding lists of initial and final state identifiers

We are required to show
h H L P;<1* (A[si/s} => C[S}/s}) (4.32)

By the IH, we know that

[sf/s]) (4.33)

(4.34)

We can then apply (seq) to (4.33) and (4.34) to obtain (4.32), as required.

Case: pruof ends in (loop_£). Assume {P}p{Q} is of the form {.4}while b do q{A A
toiogic*(b) = false}, deduced by (loopt):

(loopJ)
I~TIHL {tologic*(b) ~ true A A}w

l~T'iHL

We are required to show

i l e b do q{A A tologic*(b) = false}

him. while b do qo A[si/v] => A[sf/v] A tologicf(b) = false (4.35)

Let s be a list that includes all elements of StateRef that occur in A, with Si and sj being
the corresponding lists of initial and final state identifiers

By the IH, we know

hHL qo (tologiq(b) = true A A[si/v] => A[sf/v}) (4.36)

We can easily prove the following:

toiogiq(b) = true A A[st/v\ => A[sf/v\, tologiq(b) = true A A[si/v] hnt A[sj/v] (4.37)

Then, applying (cons) to (4.36) and (4.37) gives

tologiq(b) = true A A[s~i/v] hnt qo

Then, applying (loop) to (4.38) will give the required conclusion (4.35).

(4.38)
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Case: proof ends in (consJ). Assume {P}p{Q} is of the form
an application of (conL_t):

{A'}p{B'} A'hlm{TmL)A B'i

hT,HL {A}V{B}

135

obtained from

(consJ)

Let 5 be a list that includes all elements of StateRef that occur in A, B, Ar and B1 with
Si and Sf being the corresponding lists of initial and final state identifiers

We are required to show

By the IH, we know

(4.39)

(4.40)

Now, we can transform any proof M hnt(TiHL) ^ m^° a ^nt Pro°fs M[si/s] h|nt N[si/s]
and M[sf/s] h|nt N[s~f/s], where s is the list of all StateRef elements that occur in M and
N.

So we have the following Int proofs

B%/S] hlnt) B[8f/8]

(4.41)

(4.42)

Using (4.41) and (4.42), it is easy to derive

Af[si/s},Bf[sf/s] hnt) A[8i/S] A B[sf/s] (4.43)

We arrive at the required conclusion (4.39) by applying (cons) to (4.40) and (4.43).

This last case concludes the proof. •

The following theorem tells us that (j) l preserves triple provability in TIHL as pro-
gram/formula provability in IHL.

Theorem 4.6.3 (<p~l preserves provability). Take any program p and any formulae
ofP ofWFF(Ht).

hHL P o P entails HTIHL p)

Proof. By induction on the form of the length of the proof of

The proof is symmetric to that of Theorem 4.6.2. •
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4.6.6 Axioms and schemata

The axioms and schemata of A'DI can still be used in TIHL to reason about ADI in TIHL.
It is a straightforward task to transform the axioms and schemata rules of BB(A(DrS) into
equivalent forms for use in TIHL using <j>.

4.6.7 Nondeterministic assignment

Our calculus deals with the same imperative constructs as the original version of Hoare
Logic (that is, while-loops, conditional statements, sequencing and assignment) [Hoa69].
However, unlike the original Hoare logic, we do not deal with nondeterministic assignment.
This construct could be added to our calculus with minimal changes to our semantics. But
this is a future research topic which would extend the results of the next two chapters in
order to deal with this construct.

i
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In order to arrive at that result, we must

understand the semantics of IHL.

provide a type theoretic representation of IHL.

TLese topics are dealt with in the next chapter (Chapter 5).

4.6.8 Total correctness

Because this semantics of program/formula pairs is given over terminating programs, our
version of Hoare logic is concerned with so-called partial correctness of statements about
programs [Cou90l. The original presentation of Hoare logic dealt with partial correctness
[Hoa69]. However, extensions have been made to deal with total correctness, yielding a
variant of Hoare logic that derives truths about programs that always terminate [Hoa81].
This is a future research topic for extending our calculus, and the results that follow in
order to deal with total correctness.

I

4.7 Discussion

This chapter presented a version of Hoare logic, called IHL, that

• uses constructive deduction for its internal logic,

• reasons and constructs programs taken from an imperative subset of SML.

Our presentation employed program/formula pairs instead of the more traditional Hoare
triples. We showed that the two presentations are equivalent, which shall be The reason
for this presentation is that it aids representation of IHL as a tyi>e theory, in the style of
the Curry-Howard isomorphism for intuitionistic logic.

On its own the logic can be used to develop correct imperative programs that satisfy pre-
and post-condition specifications of side-effects. This is the usual benefit of Hoare logic.

We extend this result, adapting the proofs-as-programs paradigm to IHL, to develop correct
SML programs that satisfy side-effect and return value specifications. This will be shown
in the last chapter of this part (Chapter 6).
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Chapter 5

Properties of Intuitionistic Hoare
Logic

In this chapter, we discuss important model- and proof-theoretic properties of Intuitionistic
Hoare Logic (IHL).

We outline a soundness proof for IHL, using the relational semantics and the definition of
the truth of a formula given in the previous chapter. We also examine completness issues
for IHL, which, like ordinary Hoare logic, is incomplete. As noted in the previous chapter,
this semantics and notion of truth is given over a specific model - a relational semantics
that is close to actual SML execution. This result is important for us: it tells us that
theorems of IHL produce true statements about SML program execution.

We next define a logical type theory for representing proofs in our logic. The type theory
is analogous to the constructive type theory for intuitionistic logic described in Chapter
3. That is,

• A type represents a specification.

• A term for a type represents a proof of a specification.

• Our terms form a lambda calculus.

• Term reduction rules defines how redundancies in proofs may be removed.

Our logical type theory's distinguishing feature is that its types are the program/formula
pairs of IHL. This logical type theory is important for the main result of this part of the
thesis, given in the next chapter, where we apply the Curry-Howard protocol to extract
imperative programs with return values from IHL proofs.

We proceed as follows:

• Section 5.1 examines soundness and completeness issues for IHL.
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• The logical type theory for IHL is defined in Section 5.2.

• A discussion and summary is provided in Section 5.4,

This chapter derives from a collaboration with John Crossley, the results of which were
presented in [PC03]. However, that paper did not provide full proofs - we provide these
here for the first time. The author's main work was in understanding the semantics of IHL
and in defining the logical type theory. John Crossley's main contribution was to help in
the definition of the logical type theory and in understanding the associated proof-theoretic
properties (in particular, the strong normalization result).

5.1 Model theoretic properties

In this section we outline a soundness proof for !HL using the relational semantics and the
definition of the truth of a formula given in Chapter 4. As noted in that chapter, this
semantics and notion of truth is given over a specific model - a relational semantics that
is close to actual SML execution.

This result is important for us: it tells us that theorems of IHL produce true statements
about SML program execution.

It is possible to give a more general semantics of program execution, over a wider range
of models. Such a general semantics has been well understood by other authors, and is
outside the scope of this thesis. However, we briefly discuss the form of the semantics.
We then outline and discuss soundness and completeness issues and results for the general
semantics.

5.1.1 Soundness with respect to SML semantics

Recall the relational semantics for IML programs given in Chapter 4. It was given over
a set of states MLStates and maps from state references StateRef to Values (the closed,
irreducible terms of Terras(Ep)). This semantics is close to the actual execution of SML
programs because it reflects the fact that SML states store closed, side-effect-free terms.
The relational semantics associates terminating programs of IML with relations between
pairs of states representing the initial and final states of a program.

First, we show that intuitionistic proofs that use formulae from WFF(Et) allow us to
infer truths about arbitrary side-effects. This means that we can use the core rules of Int
to reason about properties that are universal to all programs.

Lemma 5.1.1. Lei T be a set of assumption formulae 6?i , . . . , Gn and G a formula such
that there is a proof constructed from the core rules of Int

r hnt G

Take any interpretation t end any two states a, a* 6 MLStates.
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Assume, for every i = 1 , . . . , n,

Then
(a, a') IK G

(In this case, we say that the sequent F h|nt G is valid.)

Proof. Given a set of formulae H = {Hi , . . . , #m}> w e write

Valid(H,L,(o-,a'))

for the assumptiona that, for every 2 = 1 , . . . , m, for any relation R G MLRel,

{*,</)

So, the assumption of the lemma is

Valid(T,L,((T,o-f))

We proceed by induction on the length of the proof F h|nt G.

(Ass-I). If G is derived by (Ass-I)

G h|
nt

(Ass-I)

the IH tells us that
Valid({G}, L, {o-,a')) entails (a, a') IK G

But the requirement of (5.2) is satisfied by (5.1), and so we are done.

(A-I). Assume G is of the form (A A B), and is derived by (A-I)

A F2 f- B
(A-I)

The IH and (5.1) make the following true

((7,(7') IK ^

So, by definition of IK, {&,o-f) IK {A A JB), as required.

(A-Ei). Assume G is of the form A\, and is derived by (A-Ei)

AA2)

(5.1)

(5.2)

fft,

The IH and (5.1) makes the following true

(cr, a') IK (Ai A (5.3)

But then, by definition of IK? (c^o7) IK -Ai, as required.

(A-E2). This case is similar to the case of a proof ending in (A-Ei).

^ - 1 ) . Assume G is of the form (A =$• # ) , and is derived by (=>-!)

r,A\- B

The IH dictates that
(<j, a') iK A entails (a, a1) IK #

So, in particular, (cr,a') IK (^ => B), as required.

. Assume F — Fi UF2, and that our sequent is derived via (=>-E):

\-{A=>B) F2 h A

(5.4)

The IH over the second premise of the rule means that

if Valid{r2, t, (cr, a')) holds, then (cr, 07) IK A

and applying IH over the first premise gives

if Valid{TUL, (a, a')) holds, then (a, cr') IK (A =» B)

(5.5)

(5.6)

Assumption (5.1) entails Valid(T\ U F2,t, (cr, cr')).
and, as a consequence of 5.6,

(v,o-f) IK

By definition, this means

This means that Valid(ri,L, (cr, a')),

(cr,cr') H-t A entails (cr,o-') lht B (5.7)

We are required to show that (cr, cr') IK B holds. The IH entails that Valid(T2,L, (a, a')).
We instantiate (5.5) with this, to give (<r, a1) IK A and hence

IK A (5.8)

We then instantiate (5.7) with (5.8), to give (cr,cr') IK B, as required.

(V-I). ASSUME G is of the form Vx* : t • A, and that the sequent is derived by

ri- A (V-I)
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This rule requires that x :t £ FV(T).

By the IH, for every interpretation. 77,

Valid(T, 77, (cr.a')) entails (cr, a1) \\-n A (5.9)

Take any x : £-variant tf (that is. any interpretation i! that differs from i only over x : t).
By assumption (5.1), the fact that x : t £ FV(T), we can prove

(5.10)

Setting 77 to L' in (5.9), and then instantiating with (5.10),

{<j,of)\\-Ll A

for every x : i-variant 1! of L, as required.

(V-E). Assume G is A[a/x], derived by

(V-E)
T h

By the III,

Valid(T\ L, (a, a')) entails (a, a') \\-L \/x

Instantiating (5.11) with the assumption (5.1) yields

(cr,cr') \\-L\/x:t*A

(5.11)

(5.12)

which means that, for every x : t-variant il of 6, (cr, crr) Ih,/ v4.

Take the x-variant 1' = t[x i-» t(a)j ']. By the IH, (a, cr7) IK' A. From this it is easy to
show that (cr, a') \\-L A[a/x] for any *,, as required.

(3-1). Assume G is of the form 3x : t • A, and that the sequent is derived by

T h A[a/x]
(3-1)

t he lH and (5.1),

(5.13)

Let i! be a x : t-variant of ^ (that is, any interpretation t! that differs from t only over
x : £), defined

Model theoretic properties 143

Prom this and (5.13) we can derive

So, by definition of Ih,, (a, a') Ih,

(3-E). Assume G is Q derived by

(a,af) \\-Li A

• • A. as required.

h,nt 3y:fP T2; P[x/y] h lnt Q
r i 5 r 2 h|nt Q

The rule requires that x : £ does not occur free in Q or T2.

By the IH and (5.1)

(3-E)

This means that there is a y : t-variant */ of j, such that

In turn, (5.16) entails that there is a x : ^-variant */' of 1 such that

Also, by the IH, for every interpretation 77

Valid{Y2^ (a, a')) and {a, a') Ih^ P[z/y] entails (a, a') Ih^ Q

Because x : t does not occur free in T2, it is possible to derive from (5.1) that

Valid{T2,u",{?,*'

So we can instantiate (5.18) with (5.19) and (5.17) to obtain

but because x : t does not occur in Q, we have that

(a,o-')\\-LQ

as required.

(V-Ii). Assume G is of the form (Ai V ^42), and is derived by

hi nt

r h,nt (A, v Ar r r (v-Ii)

The IH and (5.1) makes the following true

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)
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But then, by definition of IK, (a, a1) IK (A\ V A2), as required.

(V-I2). This case is similar to the case of a proof ending in (V-Ii).

(V-E). Assume that F = Fi U F2 U T3 and G is of the form C, derived via (V-E)

,r2, c

The IH entails that

Valid(Ti,i
Valid{T2\j{A},L, (c

Valid{T3U{B},L

1) and the fact that

,,{o
7, <7

"i \P

r == Fi U

entails
entails

entails

F2UF3

(a, a

fro*
' (*,</

entail

) I K

) I K
) ' K

(Av
C

C

^) (5.21)
(5.22)

(5.23)

Valid(Ti,L, {a, a1))

These statements satisfy the premises-of (5.21), (5.22) and (5.23). So,

(a, a') IK

entails (cr,</)IKC

entails {o~,o') IK C

(5.24)

(5.25)

(5.26)

must hold.

By (5.24) and the definition of Ih, either (a, a') IK -4 or (a, a') IK # . We argue over these
two cases. Assume {cr,o-1) IK -4- This assumption, together with (5.25), gives (c,crf) IK C
For the other case, assume (o^a') IK B. This assumption, together with (5.26), gives
(o~,a') \hL C. Thus, we may conclude that (a,<r') IK C- ^s required.

(_L-E). Assume that G is obtained via an application of (_L — E)

Fhi.
F h C

(±-E)

By the IH and (5.1), we know that (a, a') IK -L- By definition, this is never the case. So,
we can conclude anything (by a metalogical application of the classical absurdity rule)
(a, a1) IK G, as required. •

We are now able to give a soundness theorem for the core rules of IHL proofs over our
relational semantics.
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Theorem 5.1.1 (Soundness). Let t be a terminating program and G be a formula. Take
any proof constructed from the core rules of IHL

hm to (3

Take any interpretation 1. It is the case that

IK G

Proof We proceed by induction on the derivation of F h t o G.

For a set of formulae A and interpretation r/, let Valid(&,rj) denote the assumption that,
for every D 6 A,

for every R e MLRel, R\\-LD

Vo.lid(T,

a lt]af

(5.27)
Assume

Let a, a' be any states such that

We need only show that

Our proof uses the definition of relational semantics (Chapter 4, Definition 4.3.4, Section
4.2, p. 112), which is given in terms of the operational semantics (Chapter 4, Fig. 4.6, p.
109). Given any program p G /ML, if there are states <r, a' 6 ML States such that

for some return value r G IML. then

to o1) e

(ite). Assume that t o G is of the form w o C, F — Fi U F2 U F3, and that the sequent is
derived vie (ite) as

tologicj(b) = true => C hi-iL tologiq(b) = false => C .
(ite)if b then p else qo C

The IH and (5.27) entail that

IK tologiq(b) = true => C

IK tologiq(b) = false => C

(5.28)

(5.29)
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The boolean function b 6 Closed(Terms(IML)) is such that

true

or
false

We reason over these two possibilities.

Case: <r(b) > s p t r u e . By the operational semantics of if b then p e l s e q, we see that,
because b >£ p t r u e holds,

[if b then p e l s e qj =

So (5.28) entails that
IK tologiq(b) = true => C (5.30)

Then, ^jy definition of IK, it must be the case that

(cr,(jf) IK tologiq(b) = true

This fact, (5.30) and the definition of IK yield

r,</)IKC

as required.

Case: o~(b) >x p f a l s e . Similar to the previous case.

(loop). Assume toG is of the form while b do qoA[s~i/v]
whose derivation ends in (loop):

(j4[s//u]Atologicf(b) = false),

hiHL qo (tologiq(b) = true A A[si/v]) => A[sf/v]

while b do qo A[s'i/v] =>> A[sf/v] A tologicf(b) = false
(loop)

The rule requires the following constraints that no state identifiers occur in A.

Assume that
(5.31)

By the IH, we know that,

IK (tologiq(b) = true A A[s~i/v]) =$> A[sj/v\

and so, for any T,T' such that

(r,rf) IK (tologiq(b) = true A A[si/v]) => A[sf/v]

assumption, while b do q terminates, so by the operational semantics, either

(5.32)

i

1
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2. there is an n > 0 such that

147

a = ao[qjai[q3<72 . . . an_i[qjcrn

and

for every jfi <j<n entails Oj(b) > s p t r u e and crn(b) D>£p f a l s e (5.33)

In case 1), by definition of IK

(a, a ) IK tologiq(b) = false (5.34)

Also, because a = a ;, (5.31) and the fact that there are no state identifiers in A, we have
that

(a,a')\hLA[sf/v} (5.35)

So, (5.34) and (5.35) give

] A tologicf(b) = false(a, a') IK

Because we have assumed (5.31), the definition of IK and (5.3C) give us

(5.36)

(cr,cr') IK (A[s//v] A tologicf(b) = false)

In case 2), the first clause of (5.33) entails that

(ai,(Ti+i) IK (tologiq(b) = true) (5.37)

for (0 < i < n- 1).

We show
(5.38)

by induction for i — 0 , . . . , n — 1.

ise case. By (5.31), and the fact that state identifiers do not occur in A, we have

(a = <7Q,<7I) \\-LA[sf/v] (5.39)

This and (5.37) give us
(cro,cri) \\-LA[sf/v]

as required.

Inductive step. Assume (5.38) holds for some k < n — 2:

1. a — o1 with cr(b) D> fa l se holds, or (5.40)
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Because A does not contain any state identifiers, this is equivalent to wrriting

\\-LA[si/v] (5.41)

This and (5.37) give us

(afc,crfc+i) IK (tologiq(b) = true A A[si/v]) (5.42)

Instantiating the IH (5.32) with (5.42) gives

as required, concluding the proof of (5.38).

Now, (5.38) means that, in particular,

(5.43)

(5.44)

n_i,o-n = o-f) \\-LA[sf/v)

Because A does not contain any state identifiers, this means

(a,a) \\-LA[sf/v]

The second clause of (5.33) entails that

(cr, </) IK toiogicfb = false

So, (5.44) and (5.45), together with the assumption (5.31) give

{a,a') IK A[s~i/v] =» (A[sf/v) Atologicf(b) = false)

as required.

(seq). Assume t oG is of the form p; qoA[s~i/v] => C[sf/v] derived from a proof ending in

(5.45)

po B[sf/v]) go (B[SJ/V] => C[sf/v])
'-IHL p; q<> (A[si/v\ =» C[sf/v])

where A and B are free of state identifiers.

The IH tells us that
[p] IK (A[si/v] => B[sf/v])

and
IK (B[Si/v] => C[Sf/v])

(seq)

(5.46)

(5.47)

By the operational and relational semantics of p; q, we know that, because cr[p; qjo7, there
is an intermediate state a" such that

cr|ip||or//|fqlcr/
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')IK

So, (5.46) entails

and (5.47) entails

Assume
{a,o-') \\-LA[si/v]

Because A does not contain any state identifiers, this means

with which we may instantiate (5.48), to give

Because B does not contain any state identifiers, (5.52) means

We instantiate (5.49) with (5.53), to give

Now, because C does not contain state identifiers, (5.54) entails

Because (5.55) follows from the assumption (5.50), we have

,</) \\-LA[8i/v]=>C[sf/v]

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

as required.

(cons). Assume t o G is of the form p o A, derived from a proof ending in (cons)

(cons)

the IH, we know
r, a1) IK P (5.56)

Also, because P h|nt A, by Lemma 5.1.1,

(a, a') IK P entails (a, a') IK A (5.57)
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We instantiate (5.57) with (5.56), to give

A

•
as required.

This last case concludes our proof.

5.1.2 Axioms and schemata

The proof of soundness is given over the core rules of IHL and int. As discussed in the
previous chapter, these rules are to be used in conjunction with non-logical axioms and
schemata to reason about a domain problem and given black-box IML programs.

Our soundness result can be easily extended to include proofs that involve axioms and
schemata, assuming that these are true. For instance, given an intuitionistic axiom A G
»AX|nt, we must assume that

for any interpretation t and initial and final states a and o~'. Similarly, given an axiom
about programs, (poA) G AXBB, we must assume that, for any interpretation i,

IK A

The axioms generated by schemata must also be subject to the same assumptions for
soundess to be extended.

5.1.3 Soundness and completeness over general models

The semantics of Hoare logic is usually given over a range of possible models for imperative
programs. Such semantics are well understood, and need not be discussed in detail here.
However, we make some salient remarks regarding soundness and completeness issues for
such a general semantics.

In our semantics, Values forms a term model of the data that we want to store in the
states. For our current purpose this semantics is sufRcent, because we wish to use a model
of execution that is as close to SML implementation as possible.

To achieve such a wider range of models, we could take different models of Values, which,
in turn, achieve different states for different models. In this way, it is possible to give a
more general relational semantics for IML, parametrized over a range of possible models
for Values.

Such a general semantics is given in [Cou90, pp. 897-898] for a Hoare logic that uses
triples. This semantics can easily be adapted to the logic TIHL of the previous chapter. It
defines a notion of when a triple is true for a model M of Values, which we shall write as

M \\-Gen_t {A}V{B}

4
I
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and also when a single formula is true for a model, written as,
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Mih GenlntJ.A

We can use this notion of truth to define truth for program/formulae pairs:

M\\-GenpoP

holds whenever

Soundness

Soundness for Hoare logic was originally given in [Hoa69] for a general semantics of this
form. See [Cou90, pp. 901-902] for a proof of soundness over a general relational semantics,
based upon a proof by [Coo78]. This proof can be adapted to TIHL, and therefore to a
proof that, for all models of Values in the semantics, obeys

triple entails M !hGen_t (5.58)

Then, by Theorem 4.6.3, p. 135, Section 4,6 of Chapter 4,

'IHL P o P entails KTIHL 0~ (p o

So we can use this to extend the proof of soundness over the general relational semantics
to proofs in IHL, using (5.58),

h|H(_ p o P entails
entails

ententails

for any model M.

Completeness

Completness means that every true statement is provable. The property for completeness
for TIHL is stated as follows:

^Gen-t {A}?{B} entails hT|HL {A}p{B}

Completeness is not possible for Hoare logic.

The incompleteness for Hoare logic is deep rooted. This fact is not necessarily a conse-
quence of unprovability problems with the formulae used in Hoare logic, that might be

-
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inherited through the consequence rule. We can define versions of TIHL in which all for-
mulae (all pre- and post-conditions) are decidable, but for which, for all models M. it is
not the case that

then

M lhGenj {AMB} entails hT5HL {A}?{B}

See [Cou90, pp. 909-910] for a proof of this, based upon proofs of [GS78] and [Wan78],

In our intuitionistic version of Hoare logic, we assume at least that the axioms equivalent
to those of Heyting arithmetic are included for reasoning using the consequence rule (cons)
(Assumption 4.7 of the previous chapter, p. 123). So we reason using statements whose
truth values are undecidable. It was shown in [Coo78] that the completeness of Hoare logic
with Peano arithmetic is equivalent to the semidecidability of the nonhalting problem.
This can adapted to Heyting arithmetic. So our version of Hoare logic is incomplete for
this situation.

Cook defined a notion of relative completeness [Coo78], which holds for Hoare logic, given
some restrictions.

Relative completeness requires a notion of expressiveness of an interpretation of commands
and formulae in a model M. Intuitively, expressiveness entails that,

• given a true triple involving sequential programs

M\\-Gen_t{A}?;q{C}

we can always obtain an intermediate invariant formula B such that

M \\-aenX {A}p{S}

• given a true triple involving a loop

M \\-Genj. {A}while b do q{B}

we know that there is an intermediate invariant formula / such that

\\-Genlnt-t {I A tologic*(b) = false) => A

and

M \\-GenintJt B => (I A tologic*(b) = false)

M lhGen_t {tologic*(b) = true A /}w{/}

Relative completeness states that, if

1. a model is expressive for TIHL, and

2. we restrict proofs within Int(TIHL) to known truths in the model, that is, P for
which

hnt(TIHL) P & M Ihtit(TIHL) P

n

M \VGen_t {A}p{J5} entails hTiHL {A}v{B}

See [Cou90, 914-918] for a proof of this result.

As in the case of soundness for general models, we can easily adapt this result to show a
form of relative completeness for IHL, using the 0 translation between the triple notion
for TIHL and the program/formula pair notion of IHL.

5.2 Proof-theory of Intuitionistic Hoare Logic

We shall define a logical type theory LTT(IHL) for representing proofs in IHL. The main
result of this part of the thesis, presented in the next chapter, is the application of the
Curry-Howard protocol to extract imperative programs, with return values, from proofs
in IHL. This section is therefore important, because a logical type theory is an essential
requirement for the protocol to be used.

Our type theory has analogous properties to the type theory for intuitionistic logic de-
scribed in Chapter 3. A type inference is of the form

r LTT(IHL)

where

• the type (w o P) corresponds to a theorem of IHL, and

• the term t (called a "proof-term") represents a proof of the theorem.

Similar to intuitionistic type theories, our type theory is a kind of lambda calculus. In
this sense our logic and logical type theory satisfy a form of the Curry-Howard isomor-
phism. The distinguishing feature of this form of the isomorphism is that types are the
program/formula pairs of IHL, whereas in the intuitionistic case, types were simply for-
mulae.

Because IHL uses an intuitionistic deductive system, Int, the theory LTT(IHL) involves
a corresponding separate type theory, LTT(Int). This theory is the logical type theory
for Int described in Chapter 3, but with types now ranging over WFF(Y,t) (first-order,
many-sorted formulae with state identifiers) instead of the formula of ADT.

As with the Curry-Howard isomorphism for intuitionistic logic, we define proof-term reduc-
tion rules that correspond to a proof normalization process. The normalization strategy
over IHL only involves normalization of the intuitionistic proofs used in the (cons) rule.
Normalization is not done over the basic, program building rules of IHL. As a result, strong
normalization and the Church-Rosser property follow trivially from the corresponding the-
orems for Int.
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5.2.1 Full form of the type theory for IHL

Written in full, our logical type theory LTT(IHL) is

(see Definition 3.2.3, Chapter 3, p. -85 for the general form of a logical type theory).
The set of proof-terms are denoted by PT(iHL). Types are taken to be pairs of IML
programs and WFF(Ht) formulae, Pazrs(IHL). Type inference given by ^LTT(IHL)

 an<3
rules PTR(LTT(\HL)), explained in Fig. 5.2. The normalization relation D>IHL is described
in 5.2.7.

Following Definition 3.2.3 of Chapter 3, to be a logical type theory for IHL, LTT{IHL)
must be such that type inference in LTT(IHL) and deduction in IHL are isomorphic, in
the sense that

*~«HL(there is a p £ PT(IHL) where hm_ PA)

This isomorphism is proved in Theorem 5.2.5.

The elements of our type theory are now discussed in detail.

5.2.2 A logical type theory for Int

The definition of LTT(IHL) involves a logical type theory for Int, intuitionistic proofs
about WFF(Et):

LTT(lnt) -

Because WFF(Y>t) is the same as Formula(\nt) with terms expanded to include state
identifiers, and the inference rules of are unchanged,

• We can take proof-terms PT(Int) to be identical to those of PT(Int) (given in Chapter
2), with the extension that existential witness terms v of show(i?, a) now range over
elements of Terras(IHL), instead of Terms(AT)7).

• We can retain the proof-term inference rules of LTT(lnt), PTR(LTT(\nt)).

• We can keep the normalization relation >|nt defined by the rules used in LXT(lnt).

5.2.3 Proof-terms

The proof-terms of our logical type theory, PT(IHL), are intended to represent proofs
in IHL. Their grammar is given in Fig. 5.1. The grammar is given with respect to a
denumerable set of proof-term variables, VarpT{\HL)-

The elements of PT(IHL) that represent proofs of the subsystem Int are also displayed in
Fig. 5.1.

i

4

1

4

a^b,c ::=
X

Axiom (A)
Sdnema(N,[e;F]i;S])

abstract x. a
app(a,6)
use i. a
specific(a, v)
{a, b)
fst(a)
snd(6)
inl(a)
inr(6)
case a of inl(;r).6, \nr(y).c
abort(a,F)
show(v,a)
select (a) in x.y.b

a,b,c ::~
IHLAxiom(woA)

IHLSchema(iV[e])

assign(r, i)
seq(d,e)
ite(d, e)
wd(d)
cons(d, a)

PT(Int), proof-terms of Int
proof-term variable, x E Varpx(\\-\L)
intuitionistic axiom, A is a formula
intuitionistic schema application, N is a
schema name, e, F- t and S are lists of
proof-terms, formulae, terms and sorts, re-
spectively
abstraction
application
AV7-abstraction, i 6 Var(Term)
/IDT-application, v 6 Terms(\HL)
pair
first projection
second projection
in left
in right
case
abort, Fe WFF(Zt)
witness, v € Terms(\HL)
select, x, y € Varj{i)7
PT(IHL), proof-terms of IHL
black-box axiom, w o A is a pro-
gram/formula pair
black-box schema application, e is a list of
terms and TV is a schema name
r a state reference and i a term
sequence
if-then-else
loop
consequence, a G PT(Int)

Figure 5.1: Syntax of proof-terms PT(IHL) for the calculus IHL.
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5.2.4 Typing relation
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Proof-terms represent proofs of program/formula pairs. This relationship is defined by
a typing relation between proof-terms and types. A typed proof-term of our theory is
written

where p is a proof-term, 1 is a program of IML and F is a formula of WFF(Ht).

From a proof-theoretic perspective the rules of IHL define how we can use proofs in the
construction of larger proofs. Making this fact explicit, the rules of IHL lead to the typing
rules for LTT(IHL) given in Fig. 5.2.

Example 5.1. Consider the a proof in IHL that involves an application of the (loop) rule

o (toSogiq(b) = true A A[sf/v]

while bdowo =» (A[sf/v] A tologicf (b) = false))
(loop)

This application requires that a proof of the premise is given in order to construct a proof
of the conclusion. This construction is made explicit as the proof-term wd(g) in the type
inference

- (loop)
^~LTT(\HL) Wd(#)

w h i l e b d 0 =false))

with q the proof-term denoting the proof of the premise.

The (cons) rule is important. In IHL, this rule uses deduction in the intuitionistic subsys-
tem Int to derive new truths about programs. In the logical type theory, the corresponding
type inference rule permits proof-terms of the subsystem LTT(\nt) to be used to construct
new proof-terms, via the cons proof-term operator.

Proof-terms for the subsystem LTT(lnt) are written

P
F

where p is a proof-term and F is a formula of WFF(Et)- The typing rules are identical to
those given in Chapter 2, Fig. 2.6, p. 38, but using the signature E*. For completeness, we
repeat the typing rule in Fig. 5.3. See Section 2.3 of that chapter for a deeper discussion
of how these rules correspond to proofs in the subsystem.

5.2.5 Axioms and schemata

We require that there are type inference rules for all axioms and schemata of IHL and Int.
These typing rules of LTT(\HL) and LTT(lnt) are generated from the corresponding rules
of IHL and Int is the following way.

Of

V

i
it.

%

1
I
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(assign)

where s E StateRef
i lio(tologicj(b)=£n/e=»C)
hLTT(IHL) Q\ 'LTT(IHL)

l2o(tologiq(b)=

b t
(ite)

h
L r T ( | H L )

where A and B do not contain any state identifiers

(seq)

LTT(IHL) Q

\-LTT(mL) w d ( g ) w h i l e b d 0 »o(A[$i/v}MA[sf/v]Ato\og\cf (b)=false))

where A does not contain any state identifiers

(loop)

Q-2

consul,q2)P°A (cons)

Figure 5.2: Type inference rules of LTT{IHL) corresponding to the structural rules of
Hoare logic IHL.

Definition 5.2.1 (Type inference for black-box axioms). Given an axiom introduc-
tion rule (Ax-I) BB from IHL

we use the proof-term IHLAxiom(p o A) to denote an application of this rule, with the
corresponding type formation rule

(p o A) e AXBB

IHLAxiom(po
(Ax-I).

The type inference rule corresponding to an intuitionistic axiom rule (Ax-I)int is the same
as that given for Int in Chapter 2, Definition 2.3.1, p. 39, repeated here for completeness.

Definition 5.2.2 (Type inference for intuitionistic axioms). Given an inference

A e AX\nt

Hint A
(Ax-I) Int
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Assume that z,y are arbitrary variables of sort s, and that a and c are
well-sorted terms of sort s. We abbreviate the relation hLj"r(int) by K

A,xA \-bB

(Ass-I)

A h a - 4 A' h

A h abstract x.

A h nA[y/x]
t±Lji (V-I)

h use x : s. p w x & 9 / i

provided x is not free in A
A L_ nP[a/y]

=* (3-1)

A, A7 happ(p,a)B

A h pV:E:5#^

A h specific^, c
(V-E)

(3-E)

where x not occur free in C

A h aA A' h (A-I)

A h ht{p)M

A h p A l

AT- snd(p)^2 (A-E2)

(V-Ii)
A h i

, A2 , A h case p of inl(x).a, inr(?y).6c
(V-E)

Ahabort(a)^4

provided A is Harrop

(We abbreviate \~LTT(\nt) by h.)

Figure 5.3: Type inference rules for the subsystem LTT(int).

i

i

I

Proof-theory of Intuitionistic Hoare Logic 159

we use the proof-term Axiom (A) to denote an application of this rule, with the correspond-
ing type formation rule

A G
Axiom

Type inference rules corresponding to schemata of the intuitionistic subset are of the same
form as those given in Chapter 2, Definition 2.3.1, p. 39. We repeat this definition for
completeness. These are defined as follows.

Definition 5.2.3 (General form of type inference rules for schemata). Given a
schema rule R[X;y;Z] from Int, where X, y and Z are lists of variab-es ranging over
formulae, terms and sorts, respectively:

hnt hnt - R[X;y;Z]

we define corresponding type formation schemata for proof-terms of the form

Schema^, [[<?i;...; qn]\ X; y\ Z})

written
hnt

QFn

In
h | n t S c h e m a ^ , [[gi; ...\qn];X;y; Z])F

R[X;y;Z]

Definition 5.2.4 (General form of type inference rules for black-box schemata).
Let f be a black-box program of BBSl...Sn^s, parametrized over arguments of types ( s i , . . . , sn),
Let x be a list of n term variables # i , . . . , xn. Take a black-box schema

The corresponding type inference schema is

R[x]

Take a IHL proof involving an application of the schema

where a is a list of n terms a\,.
of the type inference schema

an of sorts s\,..., sn. This corresponds to an application

R[a]



160 Chapter 5: Properties of Intuitionistic Hoare Logic

5.2.6 The Curry-Howard correspondence

We now show that proof-terms of LTT(IHL) represent proofs of theorems in IHL.

Theorem 5.2.5 (Curry-Howard correspondence between LTT(IHL) and IHL). The
following properties hold

1. Given a natural deduction proof D O
• such that

2. Given a proof-term P°A such that

wo A, we can construct a proof-term fv<>A

J

we can construct a natural deduction proof D o / h w o i .

Proof. Item 1) is derived by straightforward induction on the structure of the deduction
D. Item 2) is given by induction on the structure of the inference \~LTT{\HL) fvoA. •

5.2.7 Proof normalization

We can define a normalization strategy for removing redundant parts of IHL proofs.

We do not define any reduction rules for applications of program/formula inference rules
of IHL. That is to say, applications of these rules never result in redundant proof steps.

The only proof reductions that we apply are over the intuitionistic proofs, which occur
within IHL proofs because of the (cons) rule. As in intuitionistic logic, normalization is
done by matching applications of introduction and elimination rules (see, e.g., [Gen69] or
[GLT89] and also Chapter 2).

For example, a proof of the form

: b
B : a

m

A
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The normalization strategy for Int is given by defining a reduction relation >|nt over typed
terms of LTT(Int). See Fig. 5.4 for the seven reduction rules which constitute an inductive
definition of >|nt (previously given in Chapter 3). The LHD and the RHD of a rule are
called the redex and the reduct of the rule, respectively.

We define >|nt to be the transitive closure of the application of these rules. When at>int6
holds, when b is obtainable from a by a sequence of replacements of subterms using the
rules of Fig. 5.4. In this case, we say that a is reducible to b.

We then use this normalizing relation to define normalization of IHL proofs, given by the
relation D>IHL over LTT(IHL) proof-terms. This relation is given by a single reduction rule

a>\nta! entails cons(d, a) > IHL cons(d, a1) (5.59)

We take >IHL to be the transitive closure of this rule. Observe that,

if, and only if, d! is obtained from d by replacing occurences of intuitionistic proof-terms
in cons(t, b) terms by equivalent normalized forms by repeated application of the rules for
>lnt-

We have the following result.

Lemma 5.2.1. Take any LTT(IHL) proof-terms aloA and If03.

If aloA
 D>IHL ^oB', then the type of a is the same as the type of b. That is to say, the

program/formula pair 1 o A is the same as mo B.

Proof. Using Lemma 2.3.1 of Chapter 2 for LTT(lnt), which entails that, if an intuitionistic
proof-term c e PT(lnt) reduces to d G PT(lnt) by one of the rules of Fig. 5.4, then the
type of c is the same as the type of d.

Consequently, any application of the rule (5.59)

c >|nt d entails cons(d, c) > IHL cons(d, c )

will mean that cons(d, c) and cons(d,c') will have the same type. The lemma follows
immediately from this fact. O

involves the redundant use of a (=>>-I) followed by (=^-E). The proof can be simplified to

a
A

M

5.2.8 Strong Normalization and the Church-Rosser property

The strong normalization property tells us that the normalization process will always
terminate, To show that this property holds over our calculus, we need to show that the
proof-terms of LTT(IHL) are strongly normalizable, according to the following definition.

r
i •-I
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1.
2.
3.
4.
5.
6.

app(abstract x. a
specific(use x : s. aVl

fst({
snd«

case inl(a)(AvB) of inl(^).6 c ,
case inr(a)^v5) of \n\(xA).bc,

select (show(t;,a)^:s#p)

T* <«• A

a, bp
a, bp
\nr(yB).

MvB)-
in xp .y.

*)
«)

3))
3))
cc

cc

bc

>lnt

>lnt

>lnt

>lnt

>lnt

>lnt

>lnt

a[b/x]B

a[v/i]AWx]
aA

bB

b[a/x]c

c[a/y]c

b[a/x}[v/y]c

Figure 5.4: The reduction rules that inductively define t>|nt-

Definition 5.2.6 (Strongly normalizable proof-terms - Definition 2.3.4 of Chap-
ter 3). We say that a proof-term is normal if it contains no redex - that is, if it is
irreducible.

Given a proof-term £, we let N(£) denote the least upper bound of lengths of reduction
sequences for t. We say that t is strongly normalizable if all reduction sequences are finite.

By Theorem 2.3.5 of Chapter 3, p. 42, proof-terms of PT(Int) are strongly normalizing
with respect to the relation p>|nt. Note that PT(lnt) and PT(lnt) are identical, apart from
witness terms of show(v,a) terms. But, because witness terms do not affect application of
[>int, it follows that PT(lnt) are strongly normalizing with respect to D>|nt.

Strong normalization of LTT(IHL) follows easily from the fact that Int proofs are strongly
normalizing.

Theorem 5.2.7 (Strong normalization for IHL proofs). Each proof-term ofPT(\HL)
is strongly normalizing.

Proof. Any IHL proof has a finite number of applications of the (cons) rule. Consequently,
for any PT(IHL) term, there are only a finite number of subterms of the form cons(d, a).

Any reduction using D>IHL
 c a n o n ly involve application of the rule (5.59). That is to say, a

reduction according to to the rule for >IHL
 c a n occur if, and only if, a reduction according

to the rules for >|nt can occur over a subterm of the form cons(c/,a). Because proof-
terms of LTT(lnt) are strongly normalizing, there are only a finite number of times the
intuitionistic proof-term a can be reduced in cons((i, a) subterms.

By these two facts, the theorem holds. •

The Church-Rosser property says that divergent proof normalization sequences always
eventually converge to yield the same proof.
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As in the previous part of this thesis, we formalize this notion using the Curry-Howard
correspondence, proving the Church-Rosser property in terms of the relation > over a
proof's corresponding proof-term. We say that proofs in IHL satisfy the Church-Rosser
property when the normalizing relation > satisfies the diamond property.

Definition 5.2.8 (Diamond property). A relation # over a set S satisfies the diamond
property when for every x, x\ and x^ in S

{x#x\ and x#X2 entails there is a x3 such that (x\#xs and

As a consequence of the Church-Rosser property for Int (Theorem 2.3.7, Chapter 2, p.
43) we know that PT(Int) proof-terms satisfy the Church-Rosser property. From this, we
have the Church-Rosser property for PT(\HL).

Theorem 5.2.9 (Church-Rosser property for IHL proofs). The relation >IHL over
PT(IHL) satisfies the diamond property. Consequently, PT(IHL) satisfies the Church-
Rosser property.

Proof. A consequence of the Church-Rosser property for PT(lnt) and the definition of
t>iHL- •

5.3 Example: Electronic Banking System (continued)

Recall the electronic banking system example of Chapter 4, Section 4.5.5. The system
consists of a database of account details, indexed by user identification. We used IHL to
develop a program and a description of the program. The program searches through the
database, making it possible to obtain a list of all accounts held at the bank by the user,
given a user's details. This described by the program/formula pair in the theorem

h counter :— 0;

while Icounter < (length db) — 1 do counter :=!counter + lo

3y : (account list) • all Account sAt(cwrrentU ser,y, counterj)/\

(counterj < (length db) — 1) = false (5.60)

5.3.1 Axioms

The domain was axiomatized as follows. We take a predicate

all Accounts At(u : user, x : account list, y : int)

whose meaning is that x is a list of all accounts found to be owned by the user u, up to
the point y in the database db. The predicate is defined by the following four axioms in

r
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.AX, denoted by A5.61, ^5.52, ^5.63 a n d ^5.64 respectively (see Chapter 4, Section 4.5.5 for
the explanations of the axioms).

Vit: itser • Vx : (account list) • Vy : int • all Accounts At(u, x, y) =>

Vz : int • z < y => sub(db, z).owner = u (5.61)

Vit : user • Vx : (account list) • Vy : info

sub(db,y + l).owner = it A

all Accounts At(u, x, y) =£• all Accounts At (u, sub(db, y •+-1) :: x, y + 1) (5.62)

Vit: user • Vx : (account list) • Vy : mt»

all Accounts At (u: x, y) => all Account sAt(u, x, y + 1) (5.63)

Vit: itser • \/y : int • y = 0 =4> all Accounts At(u, [], y) (5.64)

(these axioms are available for introduction in the intuitionistic subsystem of IHL, so they
do not involve programs).

The previous axioms are Harrop. We also have a non-Harrop axiom, denoted by A5.65'

y < (ler.gth db) — 1 =>• sub(l,y -f l).cmmer = uV -isub(l,y -f- 1).owner = it (5.65)

Applications of these axioms are used in the LTT by writing Axiom (A), where A is the
axiom. For instance, use of (5.61) is denoted by Axiom(.A5.61).

5.3.2 Constructing the proof-term

We follow the original proof, building the corresponding proof-term. Prom (5.62), (5.63)
and (5.65), we can derive an intuitionistic proof-term of the form

y<{length db)-\ f all Accounts At (u,x,y) \ 3l:(accountlist)*all Accounts At(u,l,y+l)

where P5.66 is a proof-term denoting proof by cases

case app (A ( 5 6 5 ) , e ) of \n\(gsub^^ owner^u).show (sub(dbiV + 1) :: x,p2),

P2 uses (5.62) and the assumption sub(l,y -f- l).owner = u to derive

app(app(app(app(A(5
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and ps uses (5.63) and the assumption ->sit6(/, y -f l).owner — u to derive

app(app(app(app(^(5 6 2 ) , u), i ) ,») , {ff, /))«'"«»«»«'>»'(^.»+i)

By assuming 31 : (account list) • all Accounts At(u, I ,y), we can apply (3-E) on (5.66) and
then obtain

f—int Vy : int • Viz, : userm

(y < (length db) — 1) A 3/ : (account list) • all Accounts At(u. /, y) =>

3/ : (account list) • all Accounts At (it, /, y + 1) (5.67)

by (=^-I) over our assumptions, and successive (V-I) over the free variables. The corre-
sponding proof-term ps.67 is of the form

use y : int. use it : user, abstract m(y<(l™9thdb)-i)A3l:(accountHst)^

app(app(abstract eV<^gth db)-l^ a b s t r a c t ^.(account list).allAccountsAt(u,l,y)^

Specific^, xjailAccount8At(u1x,y).Pli.e6^fa(m^ s nd(m))

Using (subst) and taking a variable v such that v = y + 1, we can transform (5.67) into

Hnt Vy : int • Vt> : int • u = y H-1 =£• Vit : user*

(y < (length db) — 1) A 3/ : (account list) • all Accounts At(u, /, y) =>

3/ : (account list) • all Accounts At(u, /, 1;) (5.68)

with proof-term P5.68 of the form

use y : in£. use v : int. abstract r u = y + 1 .

Schema (.swfrst, [[(specific(ps.67j 2/)); r v = 2 / + 1 ] ;

[Vit : user • (y < (length db) — 1) A 3/ : (account list) • all Accounts At (u, I, y)

31 : (account list) • all Accounts At (it, /, ra)][y -f 1; v];

We then instantiate (5.68) with counteri and counterf and currentUser for y, t; and it,
respectively, to give

hnt counterf = counteri + 1 => (counteri < (length db) - 1)A

3/ : (account list) • all Accounts At (currentUser, I, counter i) =>

31 : (account list) • all Accounts At(currentU ser, /, counter y) (5.69)

The proof-term corresponding to this proof, which we will denote by P5.69, is of the form

specific(specific(specific(p5.68, counteri), counter/), currentUser)
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We also have the following, by the (assign) rule of Hoare logic:

h counter :=!counter + 1 o counterf — counteri

This has a corresponding proof-term assign {counter, counter -f 1).

And so, by applying (cons) to (5.70) and (5.69)

(5.70)

h counter :=!counter + l o (counter^ < [length db) — 1)A

31 : (account list) • all Accounts At(currentU ser, I, counter i

31 : (account list) • all Accounts At (cur rentU ser, I, counter f) (5.71)

The corresponding proof-term is

cons(assign (counter, counter + l),Ps.69)

Then we apply (loop) on (5.71)

h while Icounter < (length db) — 1 do counter :=!counter 4- lo

31 : (account list) • all Accounts At(currentUser, L counter i

31 : (account list) • all Accounts At (cur rentUser, I, counter f)A

(counterf < (length db) — 1) = false (5.72)

with resulting proof-term

wd(cons(assign (counter, counter + l),ps.69))

Prom the axiom (5.64) we can derive

h|nt counterf = 0

3y : (account list) • all Accounts At(currentU ser, y, counter j) (5.73)

with a proof-term P5.73. By application of (assign) we have

h counter := 0 o counterf = 0 (5.74)

with proof-term assign (counter, 0). Then, applying (cons) to (5.74) and (5.73) gives

counter :~0 o3y : (account list) • all Accounts At(currentUser, u, counter j) (5.75)

1 I
' i
r #

1

,1

I I

Example: Electronic Banking System (continued) 167

with proof-term cons(assign(counter, 0),p5.73). This can be weakened to include a true
hypothesis true:

counter := 0 o true
3y : (account list) • all Accounts At(currentU ser, y, counter f) (5.76)

with a proof-term of the form

(true =̂  P) where P is

cons(cons(assign (counter, 0), ̂ 5.73), ptrue)

where ptrue is a proof-term for an intuitionistic proof of P
3y : (account list) • all Accounts At(currentUser, y, counter y).

So, using (seq) on (5.76) and (5.72), we can obtain

h counter := 0;

while y < (length db) - 1 do counter :=!counter + lo

true => 3y : (account list) • all Accounts At(currentUser, y, counter f) A

(counterf < (length db) — 1) = false

with proof-term

(5.77)

seq (cons(cons(assign (counter, 0),

P5.73), ptrue), wd(cons(assign(counter, counter + l),ps.69)))

which can be simplified to the required form of (5.60)

h counter :=!counter + 1;

while y < (length db) — 1 do counter :=!counter + lo

3u : (account list) • all Account sAt(currentUser, y, counter y)A

(counterj < (length db) — 1) = false

with proof-term P5.78

cons(seq (cons(cons (assign (counter, 0),

P5.73),ptrue),\Nd(cons(ass\gn(counter, counter -f I),p5.69))),<?true) (5.78)

where is a proof of (true => A) => A with A standing for

3u : (account list) • all Accounts At(currentU ser, y, counter f) A

(counterj < (length db) — 1) = false
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Remark 5.1. We have shown how to encode (5.60) in our logical type theory. In the next
chapter, we will define a notion of return value realizability of IHL and provide a method
of program extraction, returning to our example in Section 6.4. There, we shall see how to
transform our proof-term into a program that, given a user's details, will search through
a database to obtain all accounts held at the bank by the user, and then returns this list.

5.3.3 Normalization

The proof can by normalized by application of the reduction rule (5.59), (and so using the
intuitionistic proof-term reduction rules of Fig. 5.4). These rules only reduce the subterms
corresponding to intuitionistic subproofs used within our iHL proof. The only applicable
subterm of ^5.73 is ^5.59- The proof-term was of the form

specific(specific(specific(p5.68, counter i), counter f), currentUser)

Normalization involves repeated applications of rule 2 of Fig. 5.4, reducing pairs of specific
and use proof-term constructors.

This results in a poof-term p§ 69 of the form

SPecific(abstract r™unter ̂ counter i+l_

Schema (subst, [[p^67; renter ^

[\/u : user •{counter i < {length db)-l)/\3l : {account list)mallI Accounts At{u,l, counter

31 : {account list) • all Accounts At{u, /, rn)][counteri + 1 ; counter f]\ [int]]), currentUser)

where pf
b67 is the normalized form of specific(specific(p5.67, counter•$), counter/),

USe U ' User abstract jji(counteri<^en9^1 db) — l)A3l: (account list)

app(app(abstract e
counteri<(len9^ db)-l ^ a b s j - r a c t jBl:(account list)»allAccountsAt(u,l,counten)

Specif\c{^xjallAccountsAtiu^counter,) ^ > 6 6 ) , fet(m)),Snd(ro))

We define p'b m by

^case app(A ( 5 6 5 ) ,e) of i

where p'2 is

app(app(app(app(A(5>62), u), x), counteri), (g, / ) )

with type all Accounts At (u, sub(db, counter + 1) :: x,counteri + 1) and p'3 is

app(app(app(app(A/5 6 2 ) , w), x), counteri), (g,

I

J
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Because this is the only reducible subterm of P5.78, the normalized proof pf
5 78 is given by

taking p^.78 and substituting p§ 69 for ^5.59, to give

cons(seq (cons(cons(assign {counter, 0),

P5.73),ptrue), wd(cons(assign {counter, counter + 1)^5.69))) 5 qtrue)

Remark 5.2. The outermost specific application argument currentUser of pf
5 69 cannot

be matched with the abstraction use u : user variable of pf
567, because the proof-term

constructor for the (subst) schema separates the former from the latter. In certain cases
it is possible to add additional reduction rules to move schemata up and down a proof, to
facilitate matchings for further reductions. These rules would be similar to those defined
by Crossley, Wirsing and the author for their structured specification logic - see [CPW00,
PCW02] and also Chapter 8 in Part IV of this thesis. However, for the purposes of our
work, we will be satisfied with the current reduction rules.

Remark 5.3. When extracting a program from our example proof in the next chapter, we
will show that this sub-proof can be transformed into a SML program that helps to build
a list of accounts for a user. We will see that the extracted program's structure reflects
parts of the structure of the proof-term. Consequently, normalization of proof-terms aids
the extraction of simpler programs.

5.4 Discussion

This chapter presented some important semantic and proof-theoretic properties of IHL.
First we examined soundness and completeness issues for IHL. Then we defined logical
type theory for IHL, providing a property analogous to the Curry-Howard correspondence
for intuitionistic logic.

The logical type theory is of particular importance for the results of this part of the thesis,
as it is necessary for us to apply the Curry-Howard protocol to IHL.

Our proof-terms form an augmented lambda calculus. Our domain of reasoning is impera-
tive programs. Observe that, in contrast to naive functional proof-as-programs, proof-term
normalization does not correspond to imperative program execution. We claim that it is
not possible to provide a naive proofs-as-programs correspondence for Hoare logic, be-
cause proof normalization and imperative operational semantics are too different to be
identified. However, in the next chapter, we will show how to transform our proof-terms
into provably correct imperative programs with side-effects and side-effect-free return val-
ues. In this way, following the analogy to state-of-the-art functional proofs-as-programs,
program evaluation and proof-normalization are clearly distinguished from one another.
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Proofs-as-imperative-programs

In this chapter we show how to synthesize correct imperative programs from proofs in
IHL according to the Curry-Howard protocol of Chapter 3. We take a novel approach to
specifying imperative program behaviour, using the formulae of IHL to specify, not only
pre- and post- conditions of imperative programs, but also the required return values. A
required return value is taken as a Skolem function for the formula (using the definition
of Skolemization for first-order many-sorted formulae given in Chapter 2 of Part II).

Hoare logic is good for reasoning about and developing side-effect producing imperative
programs. However, Hoare logic on its own is arguably not as well suited as constructive
methods for developing side-effect-free aspects of imperative programs, such as return
values.

Return values can be complex - and difficult to reason about. Most imperative languages
permit the definition of higher-order functions as return values. This can be achieved
in C++, for instance, using the Standard Template Library (STL), or in Eiffel using the
Agents library. In an impure functional language such as SML, complex return values take
the form of side-effect-free lambda expressions. In general, such expressions are difficult
to code from a given specification, due to their functional nature and the fact that they
may use state values that have been manipulated by code preceding the return value.

Hoare logic usually specifies properties of return values, or a view of states, by associating
these values with designated state symbols. The construction of a return value consists of
designing an assignment statement for a designated state reference, and proving a required
property holds about the resulting final value of the state. For instance, imagine we want
to derive a program whose return value is an even number. In Hoare logic, if we let r be
the state symbol associated with a return value !s * 2, we can prove

s := 3; r :=!s * 2 o Even(r) (6.1)

The program on the left hand side of the tuple s := 3; r :=\s * 2 is not the required program
- it is represents the required program with the state reference r representing the required
return value. The program needs to be transformed into a program where the required
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return value replaces the assignment r := s * 2:

s := 10; !s*2 (6.2)

might be synthesized. Thus, the second assignment r :=!s * 2 of (6.1) is shorthand for
the fact that !s * 2 should be returned by the required program (6.2), and the assertion is
shorthand for specifying that the return value is even.

The problem with this traditional approach is that return values are not synthesized -
they are hand-writ ten. The designer is required to explicitly define a return value before
proving properties about it. For instance, in a proof of (6.1), the required return value
!s * 2 must be identified and assigned to r so that we can prove that Even(r) holds for
the program.

Such an explicit definition is an implementation detail - it involves writing the code for a
return value. We would prefer to be able to specify, prove properties about, and synthesize
required return values, while hiding such implementation details.

Constructive methods enable us to achieve this. In constructive program synthesis, a
proof of a statement can be used to synthesize a realizer of the statement. The realizer
is a functional program that satisfies the statement as a specification. For example, an
existential statement

t • A(x)

can be used to synthesize a function that returns a value p such that A(p) is provable.
Because the realizer is synthesized from a proof, the details about its definition are hidden
from the prover. The prover need only be concerned with using logic to reason about a
problem, not with the definition of a program.

In this chapter, we will adapt this property of constructive functional synthesis to the
imperative context.

Example 6.1. Given a constructive proof in IHL of

s := s * 3 o Sf > si A (Bx : int • Even(x) A x > Si)

our techniques will synthesize a program of the form

s := s * 3;f

where the function / is a side-effect-free function (such as !s*2) that realizes the existential
statement of the post-condition (3x : int • Even(x) A x > s$), acting as a witness for the
x.
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Example 6.2. Given the proof of the Example 4.5.5 of Chapter 4 (p. 125)

h poPINCorrect{pini) =>• canWithdrawf = true
h q o canWithdraWi = true =$•

(isConnectedf — true A 3x : string • AppMessage(x))
(seq)

h p; qo PINCorrect(pirti) =>

(isConnectedf = true A 3x : string • AppMessage(x))

our adaptation will enable us to synthesize a, program m that makes
p; qo PTNCorrect(pini) => (isConnectedf = true A 3x : string • AppMessage(x))

true (just as p;q does), but also returns an appropriate message, given that the user has
entered their PIN correctly. That is to say, we will synthesize a program m that, when
executed, will return a string r such that

AppM essage(r)

is true, given that the user has entered their PIN correctly.

By virtue of the synthesis process the user should have no need to manually code the
return value, but instead works within IHL to prove a theorem, from which the return
value is then synthesized.

We proceed as follows, ensuring that our approach adheres to the Curry-Howard protocol,
where IML and LTT(IHL) are considered as the computation A type theory and the log-
ical type theory respectively. We define a notion of realizability between IML programs
and formulae of IHL. Essentially, a program is a realizer of a formula when the formula
correctly describes the side-effects of the program and the the possible return values of the
program. After this, we define an extraction map from proof-terms of LTT(IHL) (given
in the previous chapter) to IML programs. The map is used to transform a proof of a
program/formula pair p o F into a program m with return value that realizes the formula
F. The program m will be similar to p in that it makes F true, but more complicated in
that it will involve a return value realizer for F.

We proceed as follows:

• Our notion of realizability is explained in section 6.1 and program extraction is
explained in section 6.2.

• We explain how these results lead to a successful application of the Curry-Howard
protocol in section 6.3.

• A chapter summary and concluding discussion are provided in section 6.6.

Some of the results presented here were published in [PC03].

j
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6.1 Realizability

This section discusses a new notion of realizability between IML programs and the formulae
of IHL. Intuitively, an imperative program p is a realizer of a program/formula pair l o F
when

• the side-effects of p are correctly described by F. That is to say, F is true of p in
the sense defined in Chapter 4.

• the side-effects of 1 involving state references used in F are the same as those of p
involving those references.

• the return value of p is correctly described by F. That is to say, for every execution,
the return value of p is a modified realizer of F, as defined for intuitionistic logic in
Section 2.5 of Chapter 2, Part II, p. 2.5.

The first two requirements use definitions given in Chapter 4. The third requirement
requires further elucidation.

We define how return values may be specified by formulae by adapting intuitionistic mod-
ified realizability. A formula of IHL can be true about the return value of a program,
when the return value is a modified realizer for the formula. This is done by adapting the
intuitionistic definition to our context. To make this adaptation, we require a notion of
Skolem form for formulae of IHL, WFF(Et).

6.1.1 Skolemization

Our notion of Skolemization follows the intuitionistic case of Chapter 2, and so involves
Harrop formulae.

Harrop formulae are defined as in Definition 2.2.1 of Chapter 2, Part II. We repeat the
definition of completeness here.

Definition 6.1.1 (Harrop). A formula F of WFF(£t)
 i s a Harrop formula if it is

1. an atomic formula,

2. of the form (A A B) where A and B are Harrop formulae,

3. of the form (A => B) where B (but not necessarily A) is a Harrop formula, or

4. of the form (\fx : s • A) where A is a Harrop formula.

We write H(F) if F is a Harrop formula, and -^H(F) if F is not a Harrop formula.

We also need to define a sort extraction map etype from formulae to sorts of Et (and so
of Ep). This is given in Fig. 6.1.



174 Chapter 6: Proofs-as-imperative-programs

F

any Harrop formula

i A

(A

(A:

(Vz : ;

(3x:i

AB)

V B)

fA)

imA)

1

etype(F)

Unit

<
etype(A)
etype(5)
etype(A) * etype(J3)

etype(A)|etype(P)
f etype(JB)
\ etype(A) —> etype(jB)
s —> etype(A)

if not H(B)
if not H{A)
otherwise

if not H(A)
otherwise

f 5 if if (A)
\ s * etype(A) otherwise

P is an atomic predicate.

Figure 6.1: Definition of etype.

We can now define the Skolem form of a WFF(Et) formula, in the same way as we did
for formulae of Chapter 2.

Definition 6.1.2 (Skolem form and Skolem functions). Given a closed formula A.
we define the Skolem form of A to be the Harrop formula Sk(A) = STc^A^), where
Sk'(A,AV) is defined as follows.

A unique function letter fA, called the Skolem function, is associated with each such
formula A, of sort etype(A). AV represents a list of application variables for A (that is,
the variables that will be arguments of fA). If AV is {xi : s\.... ,xn : sn} then f(AV)
stands for the function application app(f, (x\,... ,.T7,)).

1. If A is Harrop, then Skf{A, AV) = A.

2. If A = (5VC) , then

: etype(B) •
A(Vy : etype(C)

3. If A = (5 AC), then

(a) If B is Harrop and C is not Harrop,

Sk'(A,AV) = BA Sk'(C,AV)[snd(fA)/fc}

-r

i
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(b) If B is not Harrop and C is Harrop,

Sk'(A,AV) = (.Sfc'

(c) If B and C are not Harrop,

A C)

Sk\A,AV) = (Sk'(B,AV)\fst(fA)/fB]ASkf(C,AV)[snd(fA)/fc})

4. If A= (B=>C), then

(a) If B is Harrop,

) = (B =*> Sfc'(C,

5.

(b) If B is not Harrop and C is not Harrop,

Sk'(A,AV) =

UA = 3y:sm P , then

(a) when P is Harrop, S'fe'

(b) when P is not Harrop,

Sk'(C,AV)[(fAx)/fc})

- Sk'(P, AV)[fA(AV)/y]

Skf(A,AV) = Skf(P,AV){fst(fA(AV))/y][snd(fA(AV))/fP}

6. If A = Vx : s • P , then S/c'(A, AV )̂ = Vx : s • 5/c;(P,

For intuitionistic proofs, we retain the same notion of modified realizability used in Chapter
2.

Definition 6.1.3 (Modified realizability). A program p is a modified realizer of a
formula F if, and only if.

hnt Sk(F)\p/fF]

is provable. In this case, we write
p mr F

6.1.2 Adapting modified realizability for specifying return values

We say that a formula specifies a program's possible return values if, for every execution
of the program, the return value can be used as a Skolem function in the Skolemized
version of the formula, which is made true by the program's execution. In this case, we
say that the return value is a modified realizer for the program's side-effects or a return
value realizer.
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Definition 6.1.4 (Return value realizability with respect to side-effects). Let p
be an IML program. We say that the program is a is a return value realizer of F for the
initial state a and interpretation i when, for any af € MLStates. if

then

In this case, we write

If

(p, a) t> (answer, a')

(a,o-f) IK Sk(F)[answer/fF]

p rettf F

P retr? F

for some a, we say that the program is a is a return value realizer of F under i and write

P retr, F

If
p retr, F

for some L, we say that the program is a is a return value realizer of F and write

p retr F

Our definition of return value realizability is analogous to realizability for intuitionistic
logic, where a modified realizer is a term that provides the constructive content of a
formula, making the Skolemized version of the formula true when substituted for the
Skolem function. However, our definition is further complicated because of to the presence
of state identifiers in the formula which require realizability to be given with respect to a
program's side-effects.

6.1.3 Specifying side-effects and return values

Using the definition of return value realizability and the definition of truth about program
side-effects, we can now define how program/formula pairs specify programs and required
return values of programs.

We use the following definition.

Definition 6.1.5 (Visible side-effect equivalence). Take two programs, p and q of
IML and take-; any formula A.

We say that p and q are side-effect equivalent over the states visible from A, and write

V=A q

f

1

I
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when
(a, a1) 6 |pj entails {a, a") 6 [q]

provided a1 and cr" differ only over state references which are not used in A. That is to
say, a' and a" differ only over references not in state—id{si :: fj), where ŝ  and ry are the
initial and final state identifiers that occur in A.

The notion of a program/formula pair being true of both program's side-effects and return
values, informally stated at the beginning of this section, is called IHL-realizability, and is
defined formally as follows.

Definition 6.1,6 (IHL-realizability). Let p be an IML program, and let w o P be a
program/formula pair of IHL.

We say p is a \HL-realizer of w o P if, and only if,

1. [p] Ih P, and

2. p retr P

3. p =p w

When these hold, we write p kr wo P.

In the next section, we will show how to extract correct programs as IHL-realizers of
specifications from proofs in Hoare logic.

6.2 Extraction

In this section we prove the main result of this part of the thesis: that there is an ex-
traction map extractiHL from proof-terms of LTr(IHL) to IML programs that generates
IH L-realizers from proofs of specifications. Due to the presence of intuitionistic proofs
in Hoare logic proofs via the (cons) rule, our map also involves an extraction map over
intuitionistic proof-terms, of the form given in Chapter 2.

We first need to make some assumptions about the treatment of black-box programs,
axioms and schemata in extraction. Then we will revisit intuitionistic extract, provide our
full extraction map and finally derive our main result.

6.2.1 Assumptions about black-box programs and Ep

Our results assume that we can obtain IHL-realizers from axioms and applications of
schemata.
Assumption 6.1 (IHL-realizers from axioms and schemata). We assume that, for each
proof-term corresponding to an axiom,

IHLAxiom(wo A)voA
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there is a program PKWÔ  ' etype(.A) such that
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PKW<>.4 kr w o A

Similarly, we assume that, for each proof-term corresponding to an rule generated from a
black-box schema,

iHLSchema(/\T[e])w<>'4

there is a program PK^g] : etype(yl) such that

PKjV[g] kr w o A

We also assume that all non-Harrop axioms used in intuitionistic proofs have associated
modified realizers.

Assumption 6.2. We assume that, for each proof-term corresponding to an axiom:

Axiom(A) A

there is a function in Ep and a corresponding program in the SML preamble

such that

PKA : etype(A)

PKA mr A

Similarly, we assume that, for each proof-term corresponding to a rule generated from a
schema,

Schema(N,[e;F;i;§\)A-

there is a function in E and a corresponding program in the SML preamble

hnt

such that
PKN[e;F;t;S] k r A

This assumption is similar to the one made in the presentation of functional proofs-as-
programs in Chapter 2 (see Assumption 2.3, p. 70).

Example 6.3. Following Chapter 2, we take the modified realizer for instances of the
substitution schema (subst)

P\P/V]

(subst) [[P]; [a; /5];

to be
PKsubst,[[qim);P;y;Z} = extract ing [a/y])
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It is easy to see that this is the required realizer, using the same reasons given in Example
2.6, p. 71.

6.2.2 Ext rac t ion over intuitionistic proofs

Because of the (cons) rule, where intuitionistic proofs of Int(IHL) are used in IHL proofs,
LTT(!HL) proof-terms involve proof-terms taken from the intuitionistic subsystem of
UT(IHL), and our definition of extractim must be built on an extraction map over intu-
itionistic proof-terms, of the form given in Chapter 2. For reference, we provide this map
again in Fig. 6.2.

The map in Fig. 6.2 extracts Terms(Y,t) terms from PT(lnt(IHL)) proofs. Note that we can
treat the resulting terms of Terms (Et) as pure IML program terms with state identifiers
taken to be free variables. The extracted terms are intuitionistic modified realizers in the
sense defined in Section 2.5 of Chapter 2, Part II, p. 2.5. The map presumes a set of
variables in Var, each corresponding to a proof-term variable from V"arPT(|HL),

{xu \ue VarPT{lnt)}

Theorem 6.2.1. Take any proof

Then extract|nt(£) is an intuitionistic modified realizer ofT,

extract|nt(£) rnr T

That is to say,
hnt S/c(T)[extract,nt(t)//T]

Proof The proof follows from the proof of Theorem 2.5 of Chapter 2, Part II, p. 2.5.
The extraction map extract|nt(p) is the same. The only difference is that state identifiers
are used in the terms, Terras(Ej), of our version of Int. However, the presence of state
identifiers does not affect the proof as these are treated as special constant symbols in X ,̂
and so the proof can be retained. •

6.2.3 Imperative program extracton

Using the intuitionistic extraction map of Fig. 6.2, we can define extractmL over all the
proof-terms of L7T(IHL), as in Fig. 6.3.

Remark 6.1. The extraction map for producing IML programs (Fig. 6.3) treats terms
extracting) 6 Terms(£*) as IML programs. This is possible when we treat state identifiers
as free variables in an IML term.

So, for instance, the term
Si -f- 10
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from Terms(T>t) can be treated as an IML program with free variables si and

+ 10

any proof-term where H(P)

uA

Ax\om(N)A

Schema(N,[e;F;t-S})A

abstract uA. aB

app(cA=*B,aA)

use x : s. aA

specific(aVa;:s#j4,i>)

{aA,b")
caseaAWB of inl(^).6G',

mr(uB).cc

show(v,aA)

select ( a 3 ^ ) in x.uAW*\bB

#(a) where # is inl, inr, fst or snd
abort(a-L)

extract|nt(p^)

0
xu not H(A)
0 H(A)

PKN

?KN\e;F;i;S)
f n xu => extracts (a) not H(A)
extract|nt(a) H(A)
extractint(c) H(A)
(extract|nt(c) extracts (a)) not H(A)

fn x : s => extractint(fl)
(extract|nt(a) v)
(extract|nt(a), extracting))

match extractint(a) with
Inl(xt) => extract|m(&),
Inr(xu) => extract|nt(c)

v H(A)
(v, extract|nt(a)) not H(A)
(f n x => extract|nt(6))extract|nt(a) not H(A)

(in x => fn xu => extract,nt(&)) 1
fst(extractint(a)) snd(extract|nt(a)) j ^ '

#(purepart(a))
0

Figure 6.2: The extraction map extract|nt, defined from intuitionistic proof-terms LTT(lnt)
to terms of

The required results are provided in Theorems 6.2.4 and 6.2.5.

6.2.4 Preliminary results

To prove our results, we require the following lemmata.

Theorem 6.2.2. Take any proof

Then

is a coi^rect type inference.

' LTT{ I HL)

extract^) : etype(i4)

A

Extraction 181

tvOT

any proof-term t with H(T)
IHLAxiom(wo^)woA

IHLSchema(iV[e])w<>>1

wd(7x) w h i l e b d o l < > F

where
P is A[si/v] =>

(A[sf/v] A tologicf(b) = false)

'\te{quq2)
iihthenlielsel2OC;

Seq(pVl°P nv2<>Qyu*2OA[si/v}=*C[sfft]

where
P is A[si/v] ̂  B[sf/v]
Q is B[si/v] => C[sf/v]

cons{pv<>p,qp=*A)voA

extractiHL(O

w
PKwOv4

PK;v[e1

rvi : = f n x : etype(A) => x;
while b do

rv2 :=extractiHi_(g);
rv i := (f n X2 :: Xi ==>

fn x : etype(A) => x2 (xi x))
!rv2 !rvi;

!rvi;
if b then extract(gx) e l se extract(<?2)

rvp := extract(p);
rv9 :~ extract(g);
(f n xp => f n xq =>

f n x : etype(A) => xq (xpx))
!rvp !rvg

rvp := extract(p);
rvq := extract(q);
rv9 rvp

not H{A)
not H(B)
and
not H(C)

H(A)
. not H{B)

and not H(C)

w;
rvg := extract(5);
!rvg

) H{A)
, H(B)

and
> not H(C)

w;
Tvq := extract(<?);
(f n x9 =>

f n x : etype(A) => xq x) !rvg

1 := s;

rvp := extract(p);
f : = s ;
(f n Si :: Sf =>

extracting) !rvp)
'I •• f

not H(A)
and H{B)
and
not H{C)

not H(P)
> and

not H{A)

i : = S ;
w;
f := s;
(f::. 5 ; :: sf => extract|nt(9))

!i f

H(P)
> and

not H(A)

where we assume that rvi, rv2, rvp, rvq, i anbd f are state references that do not occur
in extract(p) and extract(g), and whose corresponding state identifiers never occur in any
formula used in the proof of p or q.

Figure 6.3: The extraction map extracts : LTT(IHL) -> IML
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Proof. By induction on the possible forms of d.

In the case where d represents the application of an axiom or schema, we have the theorem
from the assumptions at 6.2.1, p. 177.

The other cases follow easily using the type inference rules of Fig. 4.5, Chapter 4, p.
106. D

Lemma 6.2.1. Take an arbitrary interpretation i and states a and a'. If there is a term
a such that

then

Proof. By induction on the form of A. D

Lemma 6.2.2. Take an arbitrary interpretation t. Let A be a formula that does not
contain any initial or final state identifiers. Let a,a',(T/r be arbitrary states.

Then

(a,af) IK Sk(A[8f/v])\p/fAlSf/9]] entails (a1\a") IK Sk(A[si/v])\p/fA[,iM]

Lemma 6.2.3. Let A be an arbitrary formula and a be a state. Let a1 and a" be states
that differ from a only over a state reference r.

Assume T{ and rj do not occur in Sk(A)[si/v)[answer

Then

(o~,o~f) IK' Sk(A)[si/v][answer x/fA[sf/v]] entails

IK' Sk(A)[sf/v][answer

Proof. The proof is straightforward, by induction over the possible forms of A.

Lemma 6.2.4. Take any interpretation i. Take any set of state references

D

Let A be a formula in which the corresponding final and initial state identifiers

do not occur. Let a, af be arbitrary states.

If r' is a state that differs from af only over the state references from R, then

(a, c/) IK A entails (a,rf) IK A

i
3
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Also, if T is a state that differs from a only over the state references R, then

(<r, a') IK A entails (r,a') IK A

Proof By induction over the form of A, using the definition of ih (Chapter 4, Section
4.4.3, Definition 4.4.8, p. 117).

We only exhibit the base case where A is a predicate over terms. The other cases follow
easily.

Assume A is of the form P(a\,..., an). Then

Now, for each aj (2 = 1, . . . , n),

where i! = i [initial(aj) H-> a(state~id(initial(aj)))]
[final(aj)»—»• a'(state — id( final (aj)))}

But, because the elements of Rij do not occur in A, iniiial(aj) and final(aj) cannot
contain any elements of i^/. Consequently, state—id(initial(aj)) and state-id(final(oj))
cannot contain any elements of R. This means that

and

It follows that

and

a(state~id(initial(aj))) — r (state—id(initial (aj)))

af (state—id( final (a j))) — rf (state—id(final(aj)))

aJrT' = ,,(ajyT
f

the definition of Ih, it is easy to see that

and

follow from these facts.

(a, a') IK A entails (a, r) Ih, A

(a, a1) IK A entails (r,</) IK A

•

Lemma 6.2.5. Let A be a formula and let a and a' be arbitrary states. Letp : t and q : t
be terms of programs o/Term(Ep) such that
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Then, for any interpretation t,
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(a,crr) lht A\p/v] entails (a. a1) IK A[q/v]

Proof. By induction over the form of A, using the definition of Ih (Chapter 4, Section
4.4.3, Definition 4.4.8, p. 117).

Similarly, to the previous lemma, we only exhibit the base case, where A is a predicate
over terms. The other cases follow easily.

Assume A is of the from P ( a i , . . . , a n ) . Then

(a,*1) IK A\p/v] & (o-)a')\^LP(a1\p/v]1...,an\p/v})

where \! = i\v »—>• t(p)]. Because p t>sp g, by definition of interpretations (Chapter 4,
Section 4.4.3, Definition 4.4.6, p. 116), this means // = t[v »-> t(g)]. So, we know

h(P)BP(i'(a1ra',...,t'(anro') ^ h(P)S
r, cr') Ih-

as required. D

L e m m a 6.2.6. Let A be a formula that does not contain initial state identitifers and let
B be a formula that does not contain final state identifiers.

Then, for any states a, a1\a"

and

(a,a) Ih A entails {a",a') Ih A

(a,o-f) Ih B entails {a,a") Ih B

Proof. The proof is straightforward, but tedious, by induction over the possible forms of
A and B. •

Lemma 6.2.7. Let p be an element of PML and a an element of Values (that is, of the
closed, irreducible subset of Terms(Ep), Values — Closed{Normal(Y>p))) such that

(p,a)

for some state a.

Then
{cr,a) Ih tologiq(p) = a

Proof The proof is straightforward, using the operational semantics of IML. •

•4
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Corollary 6.2.1, Lei p 6e an element of PML and a an element of Values such that

Then, for any state o~'

v.nd

(p, a) > (a, cr')

, a') Ih tologiq(p) = a

(cr7, a) Ih tologicf (p) = a

Proof The proof is straightforward, using interpretation of equality in our models and
the definitions of tologicj and tologicf. D

6.2.5 Extraction yields visible side-effect equivalence

We are now ready to derive one important part of our main result: that a program m
extracted from a proof of woP is equivalent to w over the state references used by P . This
is the third of the requirements given by Definition 6.1.6 for extracted programs to be IHL-
realizers of program/formula pairs. We will shortly derive the other two requirements.

Theorem 6.2.3 (Extraction yields visible side-effect equivalence). Given a proof

hLTT(IHL) V
voP

we have that

Iextract|HL(p)l

Proof When P is Harrop, by the definition of extractim?

and r}o clearly

extra ct(p) = w

[extract|Hi_(p)I =P

Case: Axioms and schemata. By the assumptions given in Assumption 6.1 (p. 177), if p
is of the form

then

extractiHi(p) =A w

as required.

Similarly, by Assumption 6.1 (p. 177), if p is of the form

IHLSchema(7V[e])w<>j4
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then
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extractmL(p) =A w

as required.

Case: Proof ends in an application of (loop). Assume p is of the form

d o 'cf (b)=/a/se)

obtained by

hL T r( IHL)

Wd(g)w h i l e b d0
loop

Then
:= f n x : fetype(A) => x;

while b do

rv2 := extracts (<?);
:= (f n X2 => f n xi =>

f n x : etype(A) => X2
!rv2 !rvi;

\

x))

V
By the IH,

(6.3)

Assume that r are all the state references used in b, so that r\ are all the state identifiers
used in tologiq(b) and ff are all the state identifiers used in tologicf(b).

Observe that the state identifiers used in the formula

(tologiq(b) = true A A[s~i/v]) =$> A[sf/v]

are exactly
2 .. 02 . . oj

and the state identifiers used in the conclusion «

A[si/v] => (A[sf/v] Atologicf(b) = false)

are

Because
state — id(r~i :: S{ :: Sf) — f :: s = state — id(ff

we can use (6.3) and Definition 6.1.5 to obtain

extracting) =P 1 (6.4)

m

:::':5
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By the operational semantics of JML (Fig. 4.6 in Chapter 4, p. 109) it follows that, because
and rv2 do not occur in extract|Hi_(#),

( rv2 := extracting);
:= (f n x2 => f n Xi =>

f n x : etype(A) => x2 (xi x))

\

!rv2 !rvi; I

Finally, again by the operational semantics of IML, because rvi does not occur in extracting),

extract|HL(p) ==P while b do 1

as required.

Case: Proof ends in an application o/(seq).

Assume pWOjP is of the form

^

derived

\i2o{B[si/v}=>C[sf/v})

h
(seq)

By the IH,

extractiHL(g) =A[si/v}=>B[sf/v] w i (6.5)

Observe that, because A is free of state identifiers, the state identifiers used in the formula

(A[si/v] =» B[sf/v})

are the same as those used in the conclusion

C[Sf/v})

and so by (6.3)

similar reasoning, we can conclude

(6.6)

extracting) =p (6.7)

There are four cases: 1) A is not Harrop, B is not Harrop and C is not Harrop, 2) A is
Harrop, B is not Harrop and C is not Harrop, 3) A is Harrop and B is Harrop and C is
not Harrop, 4) A is Harrop and B is Harrop and C is not Harrop. (There are only four
cases to deal with, because in other possibilities, the conclusion formula is Harrop and the
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extracted program is identical to the program of the program/formula pair and we are
done).

Case 1: A is not Harrop, B is not Harrop and C is not Harrop. Then

extract|Hi_(p) =

( rvq := extracting);
rv r := extracting);
(f n xq => f n xr =>

f n x : etype(A) => x r (xqx))
lxvq !rvr

Because rvp and rv9 do not occur in extracting) and extract|Hi_(<?)? by (6.6) and (6.7)
and the operational semantics, we can conclude that

extract|Hi_(p) =pwi;w2

as required.

Cases 2-4- These cases follow by similar reasoning.

Case: Proof ends in an application of (ite). Assume that pvoP is of the form

ite(p, q)

obtained

if b then wi else W20C

1

itefo i f b e l s e /.. \

By the IH

and
extractiHL(r) =

(6.8)

(6.9)

Assume that r are all the state references used in b, so that r% are all the state identifiers
used in tologiq(b).

Assume that s~i :: if are all the state identifiers used in C.

If f n state — id{si '-'• if) = 0, then by (6.8) and Definition 6.1.5,

(a,crf) entails (cr,<r") e [extract|HL(g)I

where a' and arf only differ over states not in

r :: state — id(si

We can weaken this to obtain

(a, a') e [wtj entails {a, a") e Iextract|HL(g)I

j

.1

1

Extraction

where af and o~ff only differ over states not in
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And so

state — id(si :: r/)

extracting) = (6.10)

Similar reasoning over (6.9) shows

extracting) =c (6.11)

Then, by the operational semantics (Fig. 4.6 in Chapter 4, p. 109) and Definition 6.1.5,
(6.10) and (6.11) yield

if b then extract(^) e lse extract(r)

as required.

Case: Proof ends in an application of (cons). Assume pvoP is of the form

derived by
u hnt Q

R=>A

h cons(rwo^ 0 "=^ ) *
(cons)

Assume

If R and A are not Harrop, then

extractimM =

( i :— s;
rvp := extract(p);
f :=g;
[ f Tl Q. " Ox :=^
i l u "i •• of ^

f n xv : etype(R) => extracts
!rvp !i :: f

\

By the operational semantics for extracts (r)? i

then a11 and a differ only over the references 1, rvp and f. But, because we always assume
that state identifiers corresponding to these references cannot occur in R or A, we then
have

extract|Ht(r) ^A w

as required.
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If P is Harrop and A is not Harrop, then
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i := s; \

f := s;
(fn si :: sf => extract|nt(#))

v ! i : : f /

By the operational semantics for extractini_(r)? ^

(a,a")e [extractimMJ

then o~" and a differ only over the references i and f. But, because we always assume that
state identifiers corresponding to these references cannot occur in R or A, we then have

extracting) =A W

as required.

This last case concludes the proof. •

6.2.6 Extraction results

We are now ready to show that we can extract correct programs with return values from
IHL proofs. Theorems 6.2.4 and 6.2.5, proved below, together with Theorem 6.2.3 above
tell us that any proof

^LTT(IHL) PW°

can be transformed into an IHL-realizer,

extractiHi_(p) kr P

Part of the proof of this theorem was presented in [PC03], but this is the first full presen-
tation.

Theorem 6.2.4 (Extraction produces programs that satisfy proved formulae).
Given a proof

uoP

then

LTT(IHL) P

[extracting)] IH P

Proof When P is Harrop, by the definition of extracting

and so

extract(p) = w

[extract,HL(p)I !r P

s
•3

f
•r y

j
i

Extraction

follows from soundness (Theorem 5.1.1, Chapter 5, p. 5.1.1).

When P is not Harrop, we proceed as follows.

Let S{ :: fj be all the state identifiers used in P.

By Theorem 6.2.3,

extract|Hi_(p) =p w

This means that
(or, a') e [extractiHL(p)I entails (a,aff) e [vj

only when o~f and a" differ over states not in

state—id(s~i ::fj)

By soundness (Theorem 5.1.1, Chapter 5, p. 5.1.1),

[w] lh P

We apply Lemma 6.2.4 to (6.13) and (6.12) to obtain
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(6.12)

(6.13)

Iextract|HL(p)I If" P

as required. •

This theorem proves another requirement of our programs in order to be IHL-realizers of
the theorems they are extracted from.

The next theorem is is the last requirement of our main result - it tells us that extracted
programs result in correct return value realizers.

Theorem 6.2.5 (Program extraction produces return value realizers). Take any
proof

Let L be any interpretation.

Then

extracting) r&rL T

Proof To prove this, we proceed by induction over the form of T.
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We use the following induction hypothesis:
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Take any proof
L_ +VOT

^LTT(IHL) t

Take any pair of states (cr, a1) such that extracting) terminates
with an execution sequence of the form

(answer, a7) (6.14)

yielding a return value answer. Then

,a1) IK Sk(T)[answer/fT]

Observe that answer has a representation answer = toiogic (answer) in Values.

Case 1: T is Harrop. In this case, by the definition of Skolem form, we are required to
prove that, if

(W,CT) > (answer, a')

then
(or,a')\\-LT (6.15)

But this is the case by soundness (Theorem 5.1.1).

Case 2: Proof ends in an application of (loop). Assume that tvoT is of the form

wd((7)w h i l e b d 0 lsf/v]Ato\og\C{{b)~false)

By the IH, we know that

(6.16)extract|HL(#) retr^ J4[SJ/U] A tologiq(6) — true => A[sf/v]

This means that, for any T,T' and pure program value answerr, if

(extracting),7") t> (answerer')

we know that, for answery = toiogic (answerr)v

{T,T') Ih Sk(A[si/v]Atologiq(6) = true => A[3//v])[ans«;err//i4[S./e]Ato,ogiCi(6)=irtte=:>i4[g//e]]

(6.17)

There are two cases, depending on whether A is Harrop or not.

We wish to show that answer is such that

,cr') \\~L Sk(A[si/v] => (A[sf/v] Atologicf(b) = false))[answer/f} (6.18)

t
It
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Case £a: assume that A is Harrop. Then J4[SJ/?;] and A[sf/v] are Harrop, and that

Sk(P) = =» A tologicf(b) = false)

So, by (6.17), we know that for any T,T' and pure program value answerr, if

/\(answerr, r )

then we know that, for answerT = tologic(answerr),

(r, r) IH A[si/v] A tologiq(6) = true =» (6.19)

Because A is Harrop, extracting) i

while b do
extract (q)

First we make some observations about the execution of the extracted program.

Beginning of observations.

Because we know that extract|Hi_(p) terminates, by the definition of >, the program must
have an execution sequence that results in states

where

where

with

and

while b do
extract(g)

> (answer, an)

(extract (q), do) > (answer^ 01)
and
• • •
and
(extract^), o-n-i) > (answern, an)

(b, &i) > (true, o-i) i = (0 , . . . , n - 1)

(6.20)

(6.21)

(b,<rn)i> (false, <rn)

(6.22)

(6.23)

Observe that (6.22) and Corollary 6.2.1 entails

tologiq(b) = true (6.24)



194 Chapter 6: Proofs-as-imperative-programs

for i = 0 , . . . , n — 1. Similarly, (6.23) and Corollary 6.2.1 tell us that, for any state r ,

(r, an) Ih tologicf(b) =

o/ observations.

Because A is Harrop, we can rewrite our requirement (6.18) as follows:

{O-,CF') IK A[s~i/v] => (A.[sf/v] Atologicf(b) = false)

To show (6.26), we assume

and we prove

and

Proof o/(6.29).

By (6.25),

for any r. So, in particular,

((7,(7') IK A[3i/V]

(cr,(7') U-LA[sf/v]

(cr,af) IK tologicf(b) = false

(r,(7n) IK tologicf(b) = false

{(7Q,<7n) 'K tologiCf(b) = false

which is the same as writing (6.28), as required.

End of proof of (6.29).

Proof of (6.28).

There are two subcases:

1. or = (To and a1 = o~o (n = 0).

2. a = ao and a' = crn (n > 0).

Subcase (1). Because a and a' do not differ at at all, (6.28) gives us

((7,0-0 IK A[sf/v)

as required.

Subcase (2). If o7 = an for n > 0, we proceed as follows.

We will show that, for any j — 1 , . . . , n — 1

We proceed by induction.

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

y

Extraction

Base case. First, note that (6.27) can be wrtten as
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Because final states are not used in A[s~i/v] then by Lemma 6.2.6, we know that

(0o,0"i) \\-LA[si/v]

So, we can instantiate (6.19) with (6.31) and (6.24 with i — 1), to give

(6.31)

and we are done.

Inductive step. Assume that

(0"fcj0"fc-fl) IK A[sj/v]

holds for some k < n — 2.

Because no initial state references occur in A[s~f/v], by Lemma 6.2.2 this means that

\\~tA[si/v]) (6.32)

We can then instantiate (6.19) setting r =
i — k 4-1, to give

, r ~ o-jb+2 with (6.32) and (6.24) setting

as required and (6.30) is proven.

Then, by 6.30, we know, in particular that

-l<crn) \\~LA[sf/v]

Now, because initial state references do not occur in A[s~f/v]), by Lemma 6.2.6 this means
that

,cm) \!-LA.[sf/v]

as required.

End of proof of (6.28).

Finally, by the definition of Ih, because assumption (6.27) gave (6.28) and (6.29),

(a,Gf) Ih, A[si/v] => (A[sf/v] Atologicf(b) = false)

as required.

End of Case 2a.
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Case 2b: assume that A is not Harrop. Then A[si/v] is not Harrop, and extract|Hi_(£) is

rvi : = f n x : etype(A) => x;
while b do

rv2 := extracting);
rvi := (f n x2 => f n xi => f n x : etype(A) => x2(xix)) !rv2 !rvi;

!rvi

By the definition of Skolem form and the fact that A[si/v] and A[sj/v] are not Harrop,
the required statement (6.18) may be rewritten as

(<7,(7')IK • Sk(A)[si/v][x/fA[Si/ij]]

(Sk(A)[sf/v][answer toSogicf(b) = false) (6.33)

First we make some observations about the execution of the extracted program.

Beginning of observations.

Because we know that extracting) terminates, by the definition of t>, the program must
have an execution sequence that results in states

a — <7o,(Ji,... , a n ~ a

where

:= f n x : etype(A) => x;
while b do

rv2 := extracting);
rvj := (fn x2 - > fn xi -> fn x : etype(A) => x2(xix)) !rv2 !rv<;

\

\

D>
\

b do
rv2 := extracting);
rvj := (fn x2 => fn xi => fn x : etype(A) => x2(xix)) !rv2 !rvi;

/
\

\
(!rvi,<Tn)

(6.34)

Extraction

so answer = an(rvi) and
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and

and

rv2 := extracting);
:= (f n x2 => f n xA =>
fnx : etype(A) => x2(xix)) !rv2

( rv2 := extractJHL (q)i
:= (f n x2 => f n xi =>
f n x : etype(A) => x2{x1x)) !rv2

(!rvi,cr2)

, ( 7 2

(6.35)

rv2 := extracting);
:= (f n x2 => f n
f n x : etype(A) =>

=> (!rvi,an)

with

(i = 1,. . . ,n — 1) and

!rv2 !rvi

(true,(7i)

(b, an} > (false, an)

(6.36)

(6.37)

Observe that (6.36) and Corollary 6.2.1 entail

(<7i,crj+i) Ih to!ogiq(b) = true (6.38)

for i = 1 , . . . , n — 1. Similarly, (6.37) and Corollary 6.2.1 tell us that, for any state r

(r,an) Ih tologicf(b) = false

Let a'( (i = 1 , . . . , n — 1) denote the state such that

(6.39)

, ^ } > (answer^., o{) (6.40)

for some return value answer^. Let o\ (i• = 1 , . . . ,n — 1) denote the state such that

(answerai, a[ (6.41)

so that
(rv2 := extracting), 0%) > (!rv2, cr[)

> (answer^.,^)

The last line holds by definition of the operational semantics for assignment (rule (assign)
of Fig. 4.6 in Chapter 4, p. 109) and by (6.40), because it must be the case that

cr|(rv2) — answer^. (6.42)
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Observe that a" and a\ differ only over rv2. Also, by the operational semantics for
assignment (rule (assign) of Fig. 4.6 in Chapter 4, p. 109), o\ and CTJ+I must differ only
over rvi in

:= (fn x2 => fn xi => f n x : etype(A) => x2(rvix)) !rv2 Irv^a-) X> (!rvi,<ri+1)

Thus, it must be the case that

a'l and <T?+1 differ only over rvi and rv2 in

rv2 := extracting);
rvj := (fn x2 => fn xi => fn x : etype(A) => x2(xix)) !rv2 !rvx J '

(6.43)

for i = 1, . . . ,n — 1.

By inspection of the evaluation sequence (6.34),

ai ( rVl) = f n x : etype(A) => x (6.44)

Also, because rvj does not occur in extracting)5 the execution of extracting) from O{
to o~\ will not affect the value of rvi: that is, G\{TV\) = G\(rvi). So, by inspection of the
evaluation sequence (6.35):

0"i+i(rvi) is the normal form of f n x : etype(A) => <7i(rv2)(<Xi(rvi)x)

[i = 1, . . . ,n — 1). (see Definition 4.1.3 of Chapter 4, p. 100 for the definition of normal
form). That is to say,

(jj+i(rvi) is the normal form of f n x : etype(A) => answer^(ai(rvi)x) (6.45)

So, because answer = <rn(rvi), when n > 1, answer must be the normal form of

fn x : etype(A) => (answer^^ (fn x : etype(A) =>

answeran_1 (... answerai (f n x : etype(A) => xx). . .)x)x)

That is, if n > 1

answer = f n x : etype(A) => answer(Tn_1(answercrn_2 . . . (answer^x)...) (6.46)

Also, by (6.44), when n — 1 (that is, when a1 — <j]),

answer — f n x : etype(A) => x (6.47)

' 3r

A
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Take arbitrary r, r" such that

(extracting),T) > (answerT,r")

By (6.16) and (6.17), the definition of Skolem form and the fact that A[si/v] and A[sf/v]
are not Harrop,

{T,T") IK Vx : etype(A[si/v]) • Sk{A[si/v])[x/fA[§i/d]] A tologiq(b) = true =>

A[sf/v][answerT x/fA[Sf/i}]] (6.48)

Recall that rvi and rv2 do not occur in

Vx : etype(A[si/v]) • Sk(A[si/v])[x/fA!Si/v]] A tologiq(&) = true =>

A[sf/v][answerT

So, by Lemma 6.2.4, for any r' that differs from T" only over state variables rvi and rv2,
it must be the case that

(T,T) IK Vx : etype(A[si/v]) • Sk(A[si/v])[x/fA^.f^] A tologiq(&) = true

A[sf/v][answerT

Also, recall (6.43): that a" and Oi+\ differ only over rvi and rv2 in

y]] (6.49)

r v 2 := extract|HL(<?);
:= (f n x2 => f n xi => f n x : etype(A) => x2(xix)) !rv2 !rvi

for i — 1,. . . ,n — 1.

This fact and (6.49) mean that

IK Vx : etype(A[si/v]) • Sk(A[si/v])[x/fA[S./^] A tologiq(6) - true

A[sf/v][answera.

f o r i — 1 , . . . , r t — 1 .

2£nd 0/ observations.

We wish to show (6.33):

[a, a )
Vx : etype{A[si/v}) • Sk(A)[si/v][x/fA[§i/v]] =>
(Sk(X)[sf/v][answer x/fA[s M] A tologicf(b) = false)
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To do this, we take an arbitrary x : etype(A[si/v\)-variant L' of t with the assumption

and we prove

Sk{A)\silv][x

(a, a) IK,/ Sk(A)[sf/v][answer x/fA[§f/y]]

and

Proof of (6.53).

By (6.39),

for any r . So, in particular,

, a') IK' tologicf(b) = false

(r,o-n) IK tologicf(b) = false

^n) IK' tologicf(b) =

which is the same as writing (6.52), as required.

End of proof of (6.53).

Proof of (6.52)

There are two subcases:

1. a = o"o and a1 — <T\ (n = 1).

2. cr = <Jo and a' — an (n > 1).

Subcase (1). In this case, by (6.47),

answer - f n x : etype(A) => x

and so,
answer x >£.o x

Then, by Lemma 6.2.5, (6.51) may be rewritten as

IK' Sk(A)[si/v][answer

Now, <Jo = or and en = a' only differ over rvi , which does not occur in

Sk(A)[si/v][answer

we may use Lemma 6.2.3 on (6.54) to give

(a,cr7) It-v Sk {A) [sfjv] [answer x/fA{^/v)\

Subcase (2). If a' = an for n > 1, we proceed as follows.

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

r

Extraction

Define
= x

= answerajb_1(afe)

for k = 2 , . . . , n. As usual, we take ai to be denned as tologic(ai).
It will be important to note that, as answer^ is state-free, it is the case that each
also state-free. Consequently, the only state references in

Sk{A)[sf/v][aj/fA[Sf/ij]]

are sj.

By expanding the definition of an, we obtain

an = answer^.j (answer(Tn_2... (answeraix)..
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is

We will next show, for any j — 2 , . . . , n — 1

IK' Sk(A)[sf/v][aj+i/fA[Sf/y]] (6.56)

We proceed by induction.

Base case. First, note that (6.51) can be written as

IK' Sk(A)[si/v][x/fA[Si/v]]

But, because o~o and o\ differ only over rvi , which does not occur in Sk(A) [
by Lemma 6.2.4, we knowr this means

(o-i,an) lht/ Sk(A)[si/v]ix/fA[Si/fj]]

Also, because final states are not used in Sk(A)[si/v][x/fA[si/v]], by Lemma 6.2.6, we know
that

(aha2) IK' Sk(A)[8i/v][x/fA[Si/f>]] (6.57)

So, we can instantiate (6.49) with (6.57) and (6.38 with i = 1), to give

IK A[sf/v][answerffl

and we are done.

Inductive step. Assume that

Sk(A)[sfjv][ak+i/fA[sf/T)]]

holds for some k < n — 2.



202 Chapter 6: Proofs-as-imperative-programs

Because no initial state references occur in Sk(A)[sf/v], by Lemma 6.2.2, this means

(<7fc+i,<7fc+2) IK (6.58)

We can instantiate (6.49) setting r == crfe+1 and r' - crk+2 and with (6.58) and (6.38)
setting i ~ k + 1 we obtain

IK'

which means
IK

as required and (6.56) is proven.

So, by (6.56), we know, in particular, that

(crn-l,crn) Ihv Sk(A)[Sf/v][On/fA[Sf/y]]

Now, because initial state references do not occur in Sk(A[sf/v\), by Lemma 6.2.6 this
means that

(crO,crn) IK Sk(A)[sf/v][an/fA[Sf/y]]

Also, because n > 1, (6.46) must hold, that is,

answer = f n x : etype(A) =>

answer(an_lian_1/)(answer(an_2)Crn_2') • • • (answer^, i<rl/)x)...)

we know that

and by Lemma 6.2.5,

answer x a>n

IK Sk(A)[sf/v][answerx/fA[sf/v}]

End of proof of (6.52).

Finally, by the definition of Ik because we took an arbitrary i\ we have

{a,a') IK Mx : etype(A[si/v]) • Sk(A)[si/v][x/fA[§i/d]] =>

{Sk(A)[sf/v][answerx/fA[sf/v]\ A tologicf(b) = false)

End of Case 2b.

Case 3: Proof ends in an application of (seq). Assume tv<>1 is of the form

V

'a
4
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(seq)

By the IH, we know that

and

extract|Hi_(p) retr

extract|HL(p) retr

=» (6.59)

(6.60)

There are four cases: 3a) A is not Harrop, B is not Harrop and C is not Harrop, 3b) A is
Harrop, B is not Harrop and C is not Harrop. 3c) A is Harrop and B is Harrop and C is
not Harrop, 3d) A is Harrop and B is Harrop and C is not Harrop. (All other possibilities
involve the conclusion formula being Harrop, and so are dealt with already.)

Case 3a: A is not Harrop, B is not Harrop and C is not Harrop. In this case, by the
definition of Skolem form, and because etype(A) = etype(A[si/v\), we are required to prove

(a, a1) IK Vx : etype(A) • Sk(A[si/v])[x/fA[Si/€]] => Sk(C[sf/v])[(answer x)/fc[§fM]
(6.61)

To show this, we pick an arbitrary x : etype(A)-variant of t, i!, with the following assump-
tion

(6.62)

and wish to derive

(a, a') IK Sk{C[sf/v])[{answer x)/fC[Sf/v]] (6.63)

We require the following observations.

Beginning of observations for Case 3a.

By (6.59), given any T,T' and side-effect-free program value

(extracting), T) > (abr')

then we know that, for a\ = tologic(ai),

Ih Vx : etype(A[si/v})

, if

(6.64)

Similarly, (6.60) means that, given any T,T' and siide-effect-free program value a ,̂ if

(extracting),7") >
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then we know that, for 02 = tologic(a2),

,T') Ih V i : etype(fl[«</v]) . Sk(B[§i/v])[x/fA]giM]

Sk(C[sf/v])[(a2 x)/fB[S)/ij]} (6.65)

In this case,
extracting) is rv p := extraction, (p);

(f n xp => f n xq =>
fn x .: etype(A) => xq (xpx))

Irvn

Because we assume extracting) terminates, by the operational semantics the exection of
extracting) must result in a series of five states,

a = cr0,0"x, (72, (J3,0-4 = a

such that
xvp := \

rv g :
(f n Xp => f n xq ~>

f n x : etype(A) => xq (xpx))
\ Irvp !rvq

f n Xp => f n xq => \

S

f n x : etype(A) => xq (xpx))
!rvp !rvq

(answer, (74}

with
(extractiHL(p),cro) >

(rvD := extractmi (P)JO"I) > (!x'vD,cr2)
(6.66)

(!rv9,cr4)

where

a2

a2]

(6.67)

(6.68)

and

answer = a4

f n Xp =>f n xq -> \
(f n x : etype(A) => xq (xpx))

!rv
(6.69)

Also, because both xvp does not occur in ex t rac t^ (<?), it must be the case that

= a2
(6.70)

So, (6.69) and (6.70) together entail

answer = f n x : etype(A) &
(6 ;• )

a pure, state-free term.

End of observations for Case 3a.

Now, as Sk(A[si/v])[x/fA[si/v]] does not contain final state identifiers, we may apply
Lemma 6.2.6 to (6.62), giving

(00,on) ll-y

Also, by the execution (6.66), we know that

(6.72)

<extract|Hi_(p),cro)

and so, by (6.64),

Ih Vx : Sk(A[si/v])[x/fA[Si/y]] => Sk(B[sf/v])[{ai x)/fB[§f/d]]
(6.73)

Then, by the definition of !h, (6.73) and (6.72) yield

Sk(B[sf/v])[(ai x

By (6.67), <JI and cr2 differ only over rvp , which does not occur in

Sk(B[sf/v])[^i x)/fB[sf/v]]

So, by Lemma 6.2.4,

Sk(B[sf/v])[(ai x)/fB[§f/f,]] (6.74)

We then apply Lemma 6.2.2 to (6.74) to give

Sk(B[si/v])[(aL (6.75)

Now, by the execution (6.66), we know that

(extracting), £T2> > (a2 ,a3)

and so, by the IH (6.65),

(0-2,0-3) lh Vx : etype(B[si/i;]) • Sk(B[si/v])[x/fA[Si/i)]] =» Sk(C[sf/v])[(a2 x)/fB[Sf/i}]]
(6.76)
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Then, by the definition of Ih, (6.76) and (6.75) yield

Sk(C[sf/v\)[(a2 (aa x))/fC[Sf/v]]

By (6.68), <73 and 0-4 differ only over rvg, which does not occur in

(6.77)

Sk(C[sf/v])[(a2

so, by Lemma 6.2.4,

IK' Sk(C[sf/v])[(a2 (01 (6.78)

But, as initial state values do not occur in Sk(B[sf/v])[(a,2 (p>\ x))/fc[sf/v]]i w e c a n u s e

Lemma 6.2.6 on (6.78) to give

(cro,cr4) IK' Sk(C[sf/v])[(a2 (6.79)

Now, V :(>.7L),

answer x >%p (fn x : etype(A) = > a2 {a-x)) x t>sp {a2

So we can apply Lemma 6.2.5 to (6.79) to give

(00,04) IK' Sk(C[sf/v})[answer x/fC[sf/v]]

This is (6.63), as required.

Case 3b: A is Ilarrop, B is not Harrop and C is not Harrop. In this case, by the definition
of Skolem form, we are required to prove

(cr,cr') IK => Sk(C[sf/v])[answer/fC[if/y]\ (6.80)

To show this, we make the following assumption

) IK

and try to derive
,a1) IK Sk{C[sf/v))[answerlSc[sf/v)]

(6.81)

(6.82)

We require the following observations.

Beginning of observations for Case 3b. By (6.59), given any T,T' and pure program value
ai,if

(extract|HL(p),T) t>
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we know that, for a\ =

(T,r') Ih A[«i/S] =» Sk(B[sf/v}){ai/fB[SfM]

Similarly, (6.60) means that, given any T,T' and pure program value a2, if

(answerT,r;

we know that, for a2 = tologic(a2),

r^) Ih Vx : etype(B[si/v})

(5.83)

=» x)/fB[Sf/€]])
(6.84)

In this case,

extracting) is
( TVP := extract(p);

rv9 := extract(q);
\rvq \rvp

Because we assume extractim W terminates, by the operational semantics, the exection of
extracts W must result in a series of five states,

a —

such that
rvp := extract(p);

:= extract(^);

f !rvp

> (answer, (T4)

with the same properties as (6.66), (6.67), (6.68), given for Case 3a above, and where

I

((!rv9 !

answer = \rvp) (6.85)

Also, for the same reasons as in case 3a, we know property (&JQ) holds:

cr4(rvp) =

But then (6.85) and (6.70) together entail

= a2

answer = !rvP) = (6.86)

a pure, state-free term.

End of observations for Case 3b.

Now, as A[si/i;]) does not contain final state identifiers, we can apply Lemma 6.2.6 to
(6.81), giving

(6.87)
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Also, by the execution sequence given by (6.66), we have that

and so, by (6.83),

Ih A[si/v] => Sk{B[sf/v])[ai/fB[Sf/v]] (6.88)

Then, by the definition of ih, (6.88) and (6.87) yield

Ih, Sk(B[sf/v])[ai/fB[sf/v]] (6.89)

By (6.67), o\ and o~2 differ only over rvp , which does not occur in Sk(B{sf/v])[ai/fB[sf/v}]>
So, by Lemma 6.2,4,

(6-90)Ih

We then apply Lemma 6.2.2 to (6.90) to give

Sk(B[si/v])[ai/fB[Si/v]] (6.91)

Now, by the execution given in (6.66), we have that

(extracting), CT2) > (a2,cr3)

and so, by (6.84),

(cr2,a3) Ih Vx : etype(B[si/v]) • Sk(B[si/v])[x/fA[Bi/y]]

Then, by the definition of Ih, (6.92) and (6.91) yield

(6.92)

(0-2,o-s) Ih,/ Sk(C[sf/v])[(a2 ai)/fC[sf/v]] (6.93)

(6.68), 03 and <r4 differ only over rv9 , which does not occur in

so, by Lemma 6.2.4,

(6.94)

But, as initial state values do not occur in Sk(B[sj/v])[(a2 a\)/fc[sf/v}]i w e can use Lemma
6.2.6 on (6.94) to give

Sk(C[sf/v])[(a2 ai)/fc[sf/v}} (6.95)

Extraction

Now, by (6.86),
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&2 &i i>Ep answer

So we can apply Lemma 6.2.5 to (6.95) to give

(cr0,cr4) lhV ^

This is (6.82), as required.

Case 3c: A is Harrop, B is Harrop and C is not Harrop. In this case, by the definition
of Skolern form, we are required to prove

(6.96)(a, a') Ih, A[si/v}) =• Sk(C[sf/v})[answer/fc[§fM]

To show this, we make the following assumption

and wish to derive
,a1) Ih, Sk(C[sf/v])[answer/fc[§f/€]}

(6.97)

(6.98)

We require the following observations.

Beginning of observations for Case 3c. By Soundness (Theorem 5.1.1 of Chapter 5, p. 144),
we know that, given any T,T'', if

T [v,

(where [wi] is the side-effect relation associated with wi - see p. I l l of Chapter 4) then

(6.99)

Similarly, (6.60) means that, given any T,T' and pure program value a2, if

7T) > (answerVJT'

we know that, for a2 = to!ogic(a2),

,rf) Ih B[Si/v] =» Sk(C[3f/v])[o2/fBlBM] (6.100)

In ihis case,

w;
, ), := extractimO); .

Because we assume extracting) terminates, by the operational semantics the execution
of extractim (t) must result in a series of four states,

a — CTQ, CF\ , = a
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such that

rv? := extracting); t>

irv,
> (answer, (J3)

with
cr0) t>

(6.101)

0-2) (!rv9,<73)

where

and

= cr2 a2]

answer = (73(!rvq)

(6.102)

(6.103)

Also, by inspection of the execution, it must be the case that

0-3 ( rv 9 ) = a2

But then (6.103) and (6.104) together entail

(6.104)

answer = (6.105)

a pure, state-free term.

End of observations for Case 3c.

Now, as A[si/v]) does not contain final state identifiers, we may apply Lemma 6.2.6 to

(6.81), giving

Also, by the execution of (6.101), we have that

(w,cr0) > (ai,cri)

and so, by (6.83),
B[sf/v] (6.107)

Then, by the definition of Ih, (6.108) and (6.106) yield

[sf/v]

We can then apply Lemma 6.2.2 to (6.108) to give

(aua2)\\~l.B[si/v}

(6.108)

(6.109)

(the Lemma can be applied, as Sk(B[sf/v])[a/f[:y/i;]] is B[sf/v] and Sk(B[si/v])[a/f[S.ffl]
is B[si/v\).

Now, by the execution of (6.101), we know that

and so, by the IH (6.100),

Ih B[si/v] =» Sk(C[sf/v])[a2/fmM] (6.110)

Then, by the definition of Ih, (6.110) and (6.109) yield

IK Sk{C[sf/v])[a2/fC[8f/v]] (6.111)

By (6.102), CT3 and a^ differ only over rv9 , which does not occur in Sk(C[sf/v])[a2/fc[sf/v]]'
So, by Lemma 6.2.4,

IK Sk(C[8j/v])[a2/fc[8f/v]] (6.H2)

But, as initial state values do not occur in Sk(B[sf/v])[(a,2 a>\)lfc[stfv^ w e c a n u s e Lemma
6.2.6 on (6.112) to give

Sk(C[sf/v})[a2/fC[sf/v}} (6.113)

Now, by (6.105),

a2 >s B answer

So we can apply Lemma 6.2.5 to (6.113) to give

(^0,^3) IK' Sk(C[sffv])[answer/fC[gf/^]

This is (6.98), as required.

Case 3d: A is not Harrop, B is Harrop and C is not Harrop. In this case, by the definition
of Skolem form, and because etype(^4) = etype(A[s~i/v]), we are required to prove

,cry) Ih, Vx : etype(A) • Sk{A[silv])[x/fA\Si/^[ =» Sk(C[sf/v])[(answer x)/-fc[if/v]]
(6.114)

To show this, we pick an arbitrary x : etype(A)-variant of t, i1, with the following assump-
tion

(a,a') ll-t< Sk(A[si/v}){x/fA[SiM} (6.115)

and try to derive
(or, a') Ih,/ Sk(C[sf/v])[{answer x)/fC[gf/v)l (6.116)

We require the following observations.

Beginning of observations for Case 3d.
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By Soundness, we know that given any r, r ' , if

T [wi]

we know
(r,r') IhAfo/v] (6.117)

Similarly, (6.60) means that, given any T,T' and pure program value a2, if

5T) > (answerer')

we know that, for a<i — tologic:(a2),

,T') Ih B[si/v] =» Sk{C[sf/v])la2/fB[3f/v]] (6.118)

In this case,
\

TVq :— extract(#);
(f n xq =>

f n x : etype(A) => xq x) !rvg )

Because we assume extracting) terminates, by the operational semantics the exection of
extracting) must result in a series of four states,

a — = a

such that

rvg := extract(q);
(f n xq =>

f n x : etype(A) => xq x) !rvg )

(f n xq =>
f n x : etype(A) - > xq x)

t> (answer,

with the same properties (6.101) and (6.102) for case 3c above.

By inspection of the above execution sequence, we see that

answer =
(fnxq=>

f n x : etype(A) => xq x) !rvg

Also, by inspection of the execution, it must be the case that

= a2

(6.119)

(6.120)

(6.121)

h

But then (6.120) and (6.121) together entail

answer = f n x : etype(A) => a3(rvq) x) = f n x : etype(A) => a2 x (6.122)

a pure, state-free term.

End of observations for Case 3d.

Now, as Sk(A[si/v])[x/fA[§./€]] does not contain final state identifiers, we may apply
Lemma 6.2.6 to (6.115), giving

,^ ) Ih, (6.123)

Also, by Lemma 6.2.1, this means

(cr0, A[Si/v] (6.124)

Also, by the execution (6.101), we have that

and so, by (6.117),
A[si/v] =>B[sf/v] (6.125)

Then, by the definition of Ih, (6.125) and (6.124) yield

[sf/v]

We can then apply Lemma 6.2.2 to (6.126) to give

(6.126)

(6.127)

The Lemma can be applied, since Sk(B[sf/v])[a/f^/^} is B[sj/v] and Sk(B[si/v])[a
is B[s~i/v]).

Now, by the execution of (6.119), we know that

and so, by (6.118),

B[si/v] => Sk(C[sf/v])[a2/fB[§f/v]] (6.128)

Then, by the definition of Ih, (6.128) and (6.127) yield

(0-1,(J2) Ih' Sk(C[sf/v})[a2/fC[sf/v}] (6.129)
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By (6.102), (73 and a^ differ only over rvg, which does not occur in Sk(C[sf/v])[a2/fc[sf/v]]'
So, by Lemma 6.2.4,

(<7i,er3) IK' Sk(C{sj/v})[a2/fc[§fM} (6.130)

But, as initial state values do not occur in Sk(B\sf/v])[(a2 &i)//c[sf/•D]L w e c a n u s e Lemma
6.2.6 on (6.130) to give

IK' Sk{C[sf/v])[a2/fc[8f/v]]

answer = fnx : etype(A) = > a2 x
Now, by (6.122),

But this means
a2 t>sp fa x : etype(A) => a2 x x — answer x

So we can apply Lemma 6.2.5 to (6.131) to give

(ero,a3) IK/ Sk(G%/^])[answer x/fC[sf/v]]

This is (6.116), as required.
Case ^: Proof ends in an application of(ite). Assume that twoT is of the form

ite(p, q)if b then wi else W20C

derived
1 ^w2otologiq(b)=/a/se=»C

h ite(p, if b then wi else W20C ite

We need to show that
(a,or') IK Sk(C)[answer/fc]

Because tologiq(b) = true is Harrop, by the IH

r e t r t tologiq(b) = true =$> C

Similarly, tologici(b) = false is Harrop, by the IH

retrt tologiq(b) = false =» C

Using (6.133) and (6.134) we obtain

and

extract]HL(P) r e t r t tologiq(b) = true => C

extract|HL(<?) re*rt tologiq(b) = false => C

(6.131)

(6.132)

(6.133)

(6.134)

(6.135)

(6.136)
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So, by the definition of retr and Sfc, (6.135) means that, for any states r, r',

(extract|Hi_(p), r)>(answerp, r) entails

(r,r') IK tologiq(b) = true =» Sk{C)[answerp/fc] (6.137)

and (6.136) means that, for any states r, r ;

(extracting)< T)t>(answerg, r') entails

(r, r ;) IK tologiq(b) = false =» 5A:(C)[an5wer9//c] (6.138)

Either a(b) = ^rwe or <r(b) = /a/se. We reason over these two cases to obtain (6.132).

Subcase 4a: c(b) = true. Then
(b, a) r> (true, a)

and so, by Lemma 6.2.7, this means that

(a, a1) IK tologiq(b) = true (6.139)

Also, the operational semantics of extract^i_M demands the following holds:

(if b then extract|HL.(p) else extractiHi_(<?); v)>(answer, a'}

entails (extractiHi(p), cr)> (answer, or')

So

(extractjHL(p),cr)i> (answer, a') (6.140)

Instantiating (6.137) with (6.140) gives

(o~, a') IK tologiq(b) = true =>- Sk(C)[answer/fc]

Instantiating this with (6.139) gives

(a,cr')\\-LSk{C)[answer/fc]

which establishes (6.132), as required.

Subcase ^6: a(b) = false. Similar reasoning to the previous subcase will establish (6.132).

Case 5: Proof ends in aa application of (cons). Assume tvoT is of the form

derived by
V r ln t Q (cons
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the IH. we know that
extract|HL(p) ret 17 P

There are two cases, depending on whether P is Harrop or not.

Case 5a: Assume P is not Harrop. Then, by Theorem 6.2.1,

fn xv : etype(P) => extracts (g) mr P =$> A

By Lemma 5.1.1 of Chapter 5 (p. 5.1.1), this means that, for any (r, r ') .

( r , / ) Ih Mxv : etype(P) • Sk{P)[xv/fP] =* Sk{A)[{a xv)/fA]

for any a = tologic(a) where

a = fn xv : etype(P) => extract\nt(q)[T(s)/si}[Tf(s)/sf}

Now, the execution of extract|Hi_(£) must result m a sequence of four states

(6.141)

(6,142)

(6.143)

(6.144)

such that

0~ = o~Q, ( 7 i , <J2, <T3 — CT

/ I := s; rvp := extract(p); f := s;
(f n §i :: s f =>

f n xv : etype(P) => extract|nt(g))
, !i :: f !rv
(fn Si :: s±- =>

fn xv : etype(P) => extracts(g)) ,0-3
!i :: f !rv

> (answer, 0-3)
p

where

and

answer = fn xv : etype(P) => extract|nt(g)[a3(i)/si][cr3(f )/sf] cr3(rvp)

(i:=s,cro)

so that

t> (a2,(T3)

cr2(s)]a3(rvp) = a

(6.145)

(6.146)

(6.147)

(6.148)

Now, because i do not occur in extractmUp), (6.148) and inspection of (6.147) reveal that

or3(i) = o ri(i) = 0"o(s) (6.149)
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Also, because the values of s are unchanged in the assignment f := s,

= cr3(s)

So, using (6.148), (6.149) and (6.150) in (6.146) gives

Define

Then

answer = f n x v : etype(P) => extract,nt(^)[a(s)/si][a/(s)/5/]

ag = f n xv : etype(P) =>

answer =

(6.143), it is the case that

(a, or) Ih \fxv : etype(P)

(6.150)

(6.151)

(6.152)

(6.153)

(6.154)

Also, given that
(rvp :=

we let aj be the state such that

Now, recall the IH, (6.141)

This means that

(ap , cr2)

P

{au^^SkiPftap/fp]

Note that O~Q differs from o\ only over 1, and a3 differs from a[ only over f and rvp. So,
because i, f and rvp do not occur in Sk(P)[ap/fp], by Lemma 6.2.4, we have

(o-,o-f)\KSk(P)[ap/fP] (6.155)

We in&trantiate (6.154) with (6.155) to give

But then, by 6.153) and Lemma 6.2.5, we have

(a,a') IK Sk(A)[answer/fA]

as required.
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Case 5b: Assume P is Harrop. Then, by Theorem 6.2.1,

extracting) mr P =$ A

By Lemma 5.1.1 of Chapter 5 (p. 139), this means that, for any (r,Tf)

for any a = tologic(a) where

a = extract\nt(q)[T(s)/si\[T'(s)/sf]

Now, the execution of extracting) must result in a sequence of four states

0~ ~ GQ, G\, 0 2 j CT3 = a

such that

t>

I := s; extract(p); f :
(f n §i :: s f =>

extracting))
!i :: I

/ (fn Si :: Sf =>

/ extract|nt((?)) ,cr3

\ ! i : : f
(answer

= s; \

)

(TO

where

and

answer = ex t rac t ing) [°"3(i)/si] [^3 (f ) /«/]

(i := s,

:= s,

so that

= 00

Now, because i do not occur in w, (6.162) and inspection of (6.161) reveal that

cr3(i) = o-i(i) = c70(s)

Also, because the values of s are unchanged in the assignment f := s, we have

(73 (f) = 0-

(6.156)

(6.157)

(6.158)

(6.159)

(6.160)

(6.161)

(6.162)

(6.163)

(6.164)

So, using (6.162), (6.163) and (6.164) in (6.160), gives

answer = extract|nt(g)[0-(s)/si][<j/(s)/s/] (6.165)

By (6.157), it is the case that

y ) I!-, P (6.166)

Now, by Soundness (Theorem 5.1.1), and because

cr v cr

we know

(*,(/) IK p

Therefore (6.166) can be instantiated with (6.167) to give

((7,<7') IK P =» Sk(A)[answer/fA]

as required.

This last case concludes our proof.

(6.167)

D

6.3 The Curry-Howard protocol for program synthesis

In this section, we show that our extraction map leads to an effective application of the
Curry-Howard protocol for the synthesis of IHL-realizers from proofs of specifications.

6.3.1 Logical and computational type theories

In the Curry-Howard protocol of Chapter 3, we gave a general framework for program
synthesis from proofs of specifications, generalizing state-of-the-art proofs-as-programs to
new programming languages and logical contexts.

The protocol requires a logical type theory and a computational type theory. We take
the logical type theory as the ZJT(IHL) of Chapter 5.2 (identified as an ITT for IHL in
Section 5.2 p. 154). We take the computational type theory to be IML of Chapter 4. We
shall take our computational type theory to be the IML (identified as a CTT in Section
4.2, p. 106).

6.3.2 Conformance t o t h e Curry-Howard protocol

The Curry-Howard protocol (Definition 3.2.5, Chapter 3, p. 88) holds between the LTT(IHL),
and /ML, for the following reasons
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1. There are extraction maps etype from formulae of LTT(IHL) to types of IML and
extract from proof-terms of LTT(IHL) to programs of IML,

extract,HL : PT(LTT(\HL)) => Term(IML)
etype : WFF(Et) =P- Type(IML)

such that, given a proof d e PT(LTT(\HL)) with the property that

1~LTT(IHL)

then extract(cZ) is in IML, is of type etypeA The maps were given in Figs. 6.1 and
6.3. The required typing property was shown in Theorem 6.2.2.

2. There is a readability relation kr between programs and formulae, such that, for
any proof

it is true that

^LTT(IHL) PV°

extract(p) kr (woA)

The readability relation was identified in Definition 6.1.6. The required property
holds by Theorems 6.2.4 and 6.2.5.

6.3.3 Application of the protocol

Recalling the process of protocol application described in Chapter 3, Section 3.3, p. 89,
we have successfully taken the required steps

1. We defined a signature and a logical calculus that involves the signature in Chapter 4.
This involved deriving some properties that were orthogonal to the protocol process
itself, but which were necessary for deriving the extraction theorem. Specifically,
we provided a semantics for the calculus (in Chapter 4) and proved soundness (in
Chapter 5).

2. We defined a logical type theory for the logical calculus in Chapter 5.

3. We Identified a programming language and described it as a computational type
theory in Chapter 4.

4. Finally, in this chapter, we completed the process by proving the Curry-Howard
protocol to hold over the above domains.

6.4 Example: Electronic Banking System (continued)

We illustrate our approach to program synthesis using the electronic banking example used
throughout this part of the thesis. The system consists of a database of account details,

i. f
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indexed by user identification. In Section 4.5.5 of Chapter 4, we used IHL to develop
a program/formula pair that satisfied the following property. By using the program to
search through the database, it is possible to obtain a list of all accounts held at the bank
by the user, given a user's details. This was shown by the following:

f- counter := 0;

while y < (length db) - 1 do counter :=!counter + lo

3y : (account list) • all Accounts At(currentUser,y, counter /) A

(counterf < (length db) — 1) = false (6.168)

The formula here is the unSkolemized form of

list All Accounts (cur rentUser, y, (length db))

Consequently, when viewed as a specification of a side-effect-free return value, according
to our notion of IHL-realizability, the program/formula pair of (6.168) specifies a program
that, given a user's details, will search through a database to obtain all accounts held at
the bank by the user, and then return this list. The program should exhibit the same
side-effects as the program of the pair with respect to the state identifiers used in the
formula of the pair.

Section 5.3 of Chapter 5 showed how the proof of (6.168) might be represented in the
logical type theory for IHL.

Using Theorems 6.2.4 and 6.2.5, we can take the proof-term of (6.168) given in the logical
type theory and obtain the required IHL-realizer.

Before examining the IHL-realizer, we make some observations relating about the subproofs
of the theorem and the corresponding subprograms of the realizer.

Note that the proof of (6.168) involved a non-Harrop axiom available to intuitionistic
proofs

y < (length db) - 1 =$> sub(l, y + 1).owner = u V -*sub(l, y + 1).owner =u

By Assumption 6.1, this axiom is presumed to be associated with a side-effect-free program
PK5.65 that is an intuitionistic modified realizer of (5.65), so that

(V* : etype(B) • PK\65 = inl(x) => Sk(B)[x/fB])

A (Vy : etype(C) • PK5.65 = inr(y) =* Sk(C)[y/fc})

where B and C denote the left and right subformulae of the axiom, respectively.
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We use the normalized proof of the theorem. The proof involves a subproof of the form

h|nt counter f = counter\ + 1 =4> {counter\ < (length db) - 1) = true A

31 : (account list) • all Account s At (currentUser, /, counteri) =>

31: (account list) • all Accounts At(currentUser, /, counter /) (6.169)

The normalized proof-term corresponding to this proof, pf
569, is of the form

specif ic(abstractrcounter/=cownier i+1.

Schema(sutei, [[(p^.67); r™unter ̂ counter ^

[\fu : userm(counteri < (length db)-l)A3l : (account list)%all Accounts At(u,l, counter i) =4

3/ : (account list) • all Accounts At(u, I, m)][counteri + 1 ; countery]; [m£]]), currentUser)

where p'5 67 is the normalized form of specific(p5.67, counteri) (p5.67 was defined Section 5.3
of Chapter 5, p. 165),

use U : user, abstract m («~nter«<( len^ db)-l) All: (account list)^

app(app(abstract e
counter^len9th db)~l.

I . . -3l:(account list)»allAccountsAt(u,l,counteri)

specific^, z . / a / M ^ o w n ^ ^

and where P^.QQ is a proof-term denoting proof by cases

case app(Axiom(^(565)),e) of \n\(gsub^y+1^owner=u).show (sub(db,y + 1)

We define pf5M by

case app(Axiom(A(5>65p,e) of \n\(gsub^counteri+l^owner=u^ + 1) :: x,rf2

\m^sub(l,counteri+l).owner=uyshow(x^p^

where p'2 is

counter) (a

and P3 is

^̂^̂
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We denote the modified realizer of (6.169), extract^(p6. l69) ; by

PP : user —> (account l i s t ) -» (account l i s t )

Written in full, PP is

(f n u : user =>
f n m : account l i s t =>

fn i : account l i s t =>
(fn x : account l i s t =>
match PK5.65 with in l (O) => sub(db, counte r + 1) :: x | inr (Q) => x
m)

currentUser)

Inspection shows that the form of PP mirrors the structure of p'5 69, but with simplifications
achieved by ignoring proof-terms for Harrop formulae.

The normalized proof-term for the required theorem (6.168) was given as pf
5 78 in Section

5.3 of Chapter 5,

cons(seq(cons(cons(assign(coim£er, 0),

P5.73)iPtrue),wd(cons(assign(countery counter + l),Ps.69'))),qtrue)

We apply extract to p'578 and obtain the required program

rvl := fun x:account l i s t => x;
while !counter<(length db) - 1 do
(rv2 := (ic := !counter; counter: = !counter+l; if := {counter;

(fun counter_i => fun counter_f =>
(PP !counter_i currentUser)) ic if)

rvl := fun x_2::x_l=> fun x => (x_2 (rvl x)) !rv2 !rvl;)
!rvl

Inspection of this program's execution shows that it is indeed an IHL-realizer for (6.168).

6.5 Example: Synthesis of contracts

We illustrate our approach with a second example. We consider the specification and syn-
thesis of a routine for processing orders for books at an online bookstore. The specification
involves a disjunction, and, consequently, the return values of the synthesized program are
of disjoint union type. We will briefly discuss how our program can be considered equiv-
alent to a program with an assertion contract in the sense defined by Bertrand Meyer's
principle of design-by-contract [Mey97]. Briefly, an assertion contract is a boolean function
that is evaluate at the beginning or end of a program for run-time testing. Disjoint unions



224 Chapter 6: Proofs-as-imperative-programs

can be used instead of booleans, and, in fact, carry more useful information to define
more complex contracts. This opens up a potentially useful application of our methods
- the synthesis of programs with complex contracts to be used in systems built using
design-by-contract.

6.5.1 Design-by-contract

Design-by-contract is a method of software development, first proposed by Bertrand Meyer
[Mey97]. Its roots in the Hoare logic and pre- and post-condition specifications of pro-
grams. Design-by-contract is incorporated into languages such Eiffel and Oberon, and also
in specification languages such as the OCL part of the UML [WK98]. Design-by-contract
is often given as a method of object-oriented and structured program development - for
our purposes, we shall restrict ourselves to examining design-by-contract for isolated im-
perative programs.

Briefly, the idea is as follows. When a program is developed, it must be accompanied
with two boolean-valued functions, called assertions. These form the so-called contract
of the program. The boolean functions are called the pre- and post- condition assertions.
Programs are tested at run-time by evaluating the values of the assertions in a dedicated
test suite. If the pre-condition assertion evaluates to true before the program is executed,
and the post-condition evaluates to false, then the program has an error and the designer
is altered by the test suite.

The assertions are defined by the programmer to specify expectations about code. The
programmer writes the code independently of the specification in the sense there is no
guarantee that the code satisfies the contract assertions. However, testing enables the
programmer to systematically check the code's validity against logical expectations. In
this way, design-by-contract facilitates a logical, specification-oriented approach to run-
time testing of programs.

For example, a program in an Eiffel-like language takes the form:

pre:
Odd(s)

body:
s:=s+l;

post:
Even(s)

The program consists of a body of code, s := s + 1 and two boolean assertions Odd(s) and
Even(s), before and after the body. The former assertion is true if the state identifier s
contains an odd integer. The latter is true if the state identifier contains an even integer.
The execution of the program proceeds by evaluating Odd(s), then s := s + 1 and then
Even(s). The program will never generate an error, because it is always the case that the
increment of an odd number is even. However, if the body of the code was replace with
s := s -f 2, any execution would generate an error.
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Remark 6.2. Note that, in contrast to the pre- and post-conditions of our version of the
Hoare logic, these assertions are decidable boolean functions. This is why we refer to
these functions as pre- and post-condition assertions, to distinguish them from our pre-
and post-condition predicate formulae. In the literature, the functions are often simply
referred to as pre- and post- condition.s

The assertions of the example are very simple. However, it was noted in [MeyOO] that, as
programs become more complex, accompanying assertions will also grow in complexity.
When this happens, it becomes more likely that an assertion can be incorrectly coded - in
the sense that the boolean function does not correctly represent the required specification.
The assertions of a program are side-effect-free. Our program synthesis methods are
designed to develop programs with side-effects and side-effect-free aspects. It is therefore
an interesting question to see if we can use our methods to synthesize programs with
provably correct assertions.

6.5.2 Synthesis of post-conditions in SML

For our purposes, we will consider only programs that use post-condition assertion con-
tracts, without pre-conditions. We leave a full treatment of contracts for future research.

There is no native support for design-by-contract in SML. We will take a very simple
approach, which will make it easy for us to apply our program synthesis methods to
post-condition contracts.

We will simulate post-conditions as return values of disjoint union type. That is to say,
to be used in design-by-contract development, a SML program code must have evaluation
sequences of the form

(code,cr) t> (p, a1)

where the return value p is of type (t | t) , for some type t . The post-condition assertion for
code is taken to be true if post is of the form Inl(a) and false if it is of the form Inr(b).
We will assume that such programs are evaluated within a test suite that will generate
appropriate error reports given false post-conditions.

For example, assume a program that

s :=!s * 2;Even(!s)

consists of some imperative code s :=!s * 2 with return values arising from Even(!s), of
type (Unit|Unit). If the state value !s is even, then the return value of the program is
Inl(()), and Inr(Q) otherwise.

Because post-condition assertions are taken to be return values, we can employ this chap-
ter's synthesis techniques to contracts. The specification of a required post-condition as-
sertion is given by a disjunction of the form AV-^A. The disjunction specifies the required
post-condition as a return value realizer, of type (etype(A)|etype(--A)). By Theorems 6.2.4
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and 6.2.5, given a proof of the form
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h body o A V (6.170)

we can extract a program that are visibily side-effect equivalent to body, with the required
post-condition assertion.

6.5.3 Using flawed programs to build new programs

The designer uses the rules of our Hoare logic to make proofs of the form (6.170). As
usual, the designer should only use true properties about given programs. However, we
permit programs to have faults. Faulty programs are reasoned about as follows. Instead
of using formulae that assert the correctness of programs, we use disjunctive statements
stating that the program may or may not be faulty.

For example, consider a program designed to connect to a database, connectDB. The
program is intended to always result in a successful connection, specified by formula
connectedf — true. However, the problem has a fault, and sometimes results in an unsuc-
cessful connection. This situation is described truthfully by the disjunction

h connectDBo connectedf = true V -^connectedf = true
J J

This property is true of the program, and so the program may be used within the Hoare
logic to develop a larger program/formula theorem, without jeapordizing the truth of the
final result.

6.5.4 Order processing system

We consider a program that processes a number of book orders for an online bookstore.
The program first initializes a bulk order in the database. Then the program takes a list
of individual orders and successively adds them to the bulk order, until no more individual
orders are left. There is a possiblity that the program may corrupt the database. We wish
to synthesize this program, together with a post-condition assertion that determines if the
program has corrupted the database or not.

We make the following domain assumptions:

• We presume there is a SML type of databases, DBT.

• We use the predicate DBCorrupt(d) to say that a database d : DBT is corrupt.

• We take a SML state reference db of reference type DBT, the database to be manip-
ulated by our required program.

• We use a boolean state reference orderRemaining, to determine if there are any
orders that need to be added to the database db.
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• There is a program that initializes the bulk order, i n i t . This program always leav
the database free of corruption. More formally, we have an axiom

es

in i t o ~^DBCorrupt(dbf) (6.171)

We denote this axiom by

We are given a black-box program add that adds an order request to the database db.
Each time this program is called, there is a chance that the database may become
corrupt. The program should only be called if there are orders to be processed (that
is, if orderRemaining is true). If the status the database is known, prior to adding
a new entry, we can determine if the new entry results in corruption or not.

This is stated formally by a non-Harrop axiom,

add o (orderRemainingi = true A (->DBCorrupt(dbi) V DBCorrupt(dbi)))

=> (-*DBCorrupt{dbf) V DBCorrupt(dbf)) (6.172)

We denote this axiom by ̂ 6.172 •

• Because axiom A6A72 is non-Harrop, by Assumption 6.1, A6A72 is presumed to be
associated with a side-effect-free program PK, its IHL-realizer.

Let P denote

(orderRemainingi = true A (^DBCorrupt(dbi) V DBCorrupt(dbi)))

=> (pDBCorrupt(dbf) V DBCorrupt(dbf))

so that PK kr P . Then

[PKJ Ih P (6.173)

PK ~p add (6.174)

and

PKretrP (6.175)

Condition (6.175) is important. It says that PK is a return value realizer of P. That
is, for any <r, a1 and interpretation t, if

then

(PK, a) > (answer, a')

(a,af)\\-LSk(P)[answer/fF]
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where Sk(P)[answer/fj?] is of the form

\fx : (Unit\Unit) • (order Remainingi = true A

((Vy : Unit • x = inl(y) =>• -iDBCorrupt(dbi))A

(\/y : £/m£ • a; = inr(y) =$• DBCorrupt(dbi))))

=$• ((\/y : £/m£ • (answer x) = inl(y) =^ ~^DBCorrupt(dbf))A

(\/y : £/m£ • (answer x) = inr(y) => DBCorrupt(dbj))

We wish to obtain a program that

• initializes the database, processes each order until no orders remain, and

• provides the required assertion as a return value realizer of

~^DBCorrupt(dbf) V DBCorrupt(dbj)

Prom (6.172) we can apply (loop) to obtain

while orderRemaining do addo (~^DBCorrupt(dbi) V DBCorrupt(dbi)) =>

((-^DBCorrupt(dbf) V DBCorrupt(dbj)) A orderRemainingf = true) (6.176)

The proof-term for this theorem is simply

wd (Axiom (ADBc~\))

Let True be a provable intuitionistic statement, say J_ => JL. It is easy to derive

hnt(iHL) ^DBCorrupt(dbf) => (True => (-^DBCorrupt(dbf) V DBCorrupt(dbj)))
(6.177)

by (Ass-I), (V-2-I) and weakening the result with True as hypothesis.. But then by applying
(cons) to from (6.171) and (6.177) we can derive

init oTrue => (^DBCorrupt(dbf) V DBCorrupt(dbj))

Written in full, the proof-term for this theorem is

(6.178)

COns(abstract u-DBCorrupt(dbf)^ a p p ( ab s t ract w^BCorrupt(dbf)\/DBCorrupt{dbj)

abstract xTrue. fst((w, x)), i

I
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We apply (seq) to (6.178) and (6.176) to obtain
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init; while orderRemaining do add o True
((~^DBCorrupt(dbf) V DBCorrupt(dbf)) A order Remaining f = true) (6.179)

with proof-term

It is a simple task to derive

seq (P6.178, wd (Axiom (ADBc-i)))

hnt(iHL) (True => (-^DBCorrupt(dbj)\/DBCorrupt(dbf))AorderRemaining/• — true)

(-^DBCorrupt(dbf) V DBCorrupt(dbj)) A orderRemaining/ = true (6.180)

with proof-term

abstract =true)

app(/, abstract v

We will abbreviate this term this proof-term by

By (cons) applied to (6.179) and (6.180) we have

h in i t ; while orderRemaining do addo

(-iDBCorrupt(dbf) V DBCorrupt(dbf)) A order Remaining f — true

Finally, we can apply(Ai-E) we obtain

in i t ; while orderRemaining do add o ->DBCorrupt(dbf) V DBCorrupt(dbf) (6.181)

with proof-term

Observe that the program of theorem (6.181) satisfies one of the system requirements:
it initializes the database, processes each order until no c^ers remain. However, this
program is not sufiicent for our needs. Recall that our system is required to include a
post-condition assertion, the return value realizer of

-iDBCorrupt(dbf) V DBCorrupt(dbf)

The full system, with accompanying post-condition, is synthesized by applying the extrac-
tion map to the proof-term for (6.181). This results in an SML program of the form:

We will denote this proof-term by P6.178-
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i_l := !db;
rv_r := (

rv_p := (
i_2 := !db; i n i t ; f_2 := !db;
((fn s_i => fn s_f => _2 f __

rv_q :=
rv_l := (fn x:Unit I Unit => x);
while OrderRemaining do
rv_2 := PK;
rv_l := (fn x_2 => fn x_l => fn x:Unit I Unit

x_2 (x_l x)) !rv_2 !rv_l;
!rv_l

=>

(!rv_q !rv_p)

f_l := !db;
(fn s_i ==> fn s_f => fn x:Unit |Unit => x) !i_l !f_l !rv_r;

To understand this program, it is helpful to consider the equivalent, optimised form:

rv_r :=
rv_p := (init; Inl(O))
rv_q := (
rv_l := (fn x:Unit|Unit => x);
while OrderRemaining do
rv_2 := PK;
rv_l := (fn x_2 => fn x_l => fn x:Unit I Unit

x_2 (x_l x)) !rv_2 !rv__l;

=>

(!rv_q !rv_p)

!rv_r;

Equivalence of side-effects and of return values is easily shown, because the values of i_l
and i_2 are not used anywhere except

(fn s_i => fn s_f => fn x:Unit|Unit => x) ! i_l !f_l !rv_r

which, by the operational semantics is equivalent to rv r . Similarly, the values of i_2and
i_l are not used anywhere except

I

which is equivalent to In l (O) under any evaluation.

This program will initialize the database, by calling i n i t and then, using the while loop,
it will processes each order until no orders remain. Also, by virtue of our extraction
techniques, it forms a return value realizer of

-^DBCorrupt(dbf) V DBCorrupt(dbf)

Assume an initial state such that only 3 orders need to be processed - that is, OrderRomaining
has the value t rue for 3 calls to PK Then, by the operational semantics, the extracted pro-
gram will result in a return value of the form

rPK3(rPK2(rPK1Inl(())))

where rPK1? rPK2 and rPK3 are modified realizers of

(6.182)

((fn s_i => fn s_f => i_2 f_2)

(orderRemainingi = true A (^DBCorrupt(dbi) V DBCorrupt(dbi)))

=> (-^DBCorrupt(dbf) V DBCorrupt(dbf)) (6.183)

for states after the first, second and third calls to PK, respectively.

Condition (6.175) above is equivalent to the following condition on terms (rPKi t ) (z =
1,2,3). For each call to PK, if the database is known to be either corrupt (t is of the form
Inr(())) or not corrupt (t is of the form Inl(())) prior to the call, (rPKi t ) is guaranteed
to tell us if the database is either corrupt ((rPKi t) evaluating to Inr(())) or not corrupt
((rPKi t) evaluating to Inl(())) after the call. (This is true by the fact that PK is a return
value realizer of (6.183).)

Thus, it can be seen that (6.182) will provide a return value realizer of

-^DBCorrupt(dbf) V DBCorrupt(dbj)

for the initial and final states of the evaluation.

The extraction map produces the required program and post-condition assertion. The
assertion will always return Inl(Q) or Inr(()), telling us if the program evaluation has
resulted in the database becoming corrupt or not.

Remark 6.3. Our work has applied constructive methods to the synthesis of imperative
programs, taking realizability as a specification of pure functional return value terms.
However, return values are not the only places in an imperative program where pure
functional terms may occur.

Also, in the case of languages such as Eiffel side-effect-free boolean assertions are sometimes
used for run-time testing of programs. These assertions can be understood as functional
return values of boolean range [MeyOO]. It would be an interesting and potentially fruitful
topic to examine how our methods of return value synthesis could be adapted to the
synthesis of such assertions.
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6.6 Discussion
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This chapter concludes Part III of this thesis. Chapter 4 defined IHL. Chapter 5 discussed
issues relating to semantics and gave a soundness theorem, showing that IHL theorems rep-
resent truths about SML program side-effects. It also showed how IHL can be represented
as a logical type theory, in the style of the Curry-Howard isomorphism for constructive
logic, where proofs are given as terms and program/formula pairs as types.

In this chapter we have achieved our ultimate goal of adapting proofs-as-programs to IHL,
bulding upon the results of previous chapters. We applied the Curry-Howard protocol
of Chapter 3 from Part II. A new notion of readability was given between IHL pro-
gram/formula pairs and SML programs - where a pair specifies a required program in
terms of side-effects and a return-value. We then defined an extraction map from proofs
in the logical type theory of Chapter 5, to realizing imperative SML programs which are
terms of a computational type theory.

These results show a successful and practical approach to merging constructive proofs-
as-programs with Hoare logic. We retain the advantages of both methods, using them
to target their concerns separately. Hoare logic is retained to reason about and develop
a program in terms of side-effects. Constructive realizability is adapted to reason and
develop functional ret urn-values. Throughout the extraction process, programs with both
aspects are synthesized from proofs.

To the best of our knowledge, this is the first time such an approach has been given.

Nondeterminism and total correctness have long been understood in extensions of the
Hoare logic. It would be interesting to examine how our results could be adapted to such
extensions.

Our work has applied constructive methods to the synthesis of imperative programs, taking
realizability as a specification of pure functional return value terms. However, return
values are not the only places in an imperative program where pure functional terms may
occur. In the case of languages such as Eiffel [Mey97], side-effect-free boolean assertions
are sometimes used for the run-time testing of programs. In general, boolean assertions
can contain complex functional aspects, such as higher-order abstractions [MeyOO]. We
have briefly shown by example how these assertions can be understood as functional return
values of boolean range, and how they can be synthesized using our approach. It would be
an interesting and potentially fruitful topic to develop these results further to an industrial
strength approach to assertion synthesis, for a language such as Eiffel.

We leave such investigations to future research.

The work of this part has been an application of the Curry-Howard protocol of Part
II. Its success and utility provide a justification for the protocol as a good framework
for generalizing proofs-as-programs. In the next part of this thesis, we shall provide a
second application of the protocol in the domain of structured algebraic specifications and
structured program synthesis.

I

Part IV

Structured proofs-as-programs
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Part IV

Overview

In this part of the thesis we apply the Curry-Howard protocol to another context. We
present an approach to constructing correct functions from constructive proofs about
CASL specifications.

For some time, an important research area of computer science has been program develop-
ment from specifications. A subarea of this is the development of modular programs from
specifications. Various formal abstractions have been studied to provide modular program-
ming and specification languages, methods of proving correctness of modular programs
against their specifications, and methods for synthesis of modules from specifications. A
popular example of such a formal abstraction is structured algebraic specifications.

Structured specifications provide a data-centric view of a software system. They can be
considered as a hierarchical means of defining abstract data types, enabling a decompos-
able specification of required functionality in terms of an algebraic theory. A basic theory
consists of a signature - type, function and predicate symbols - together with axioms that
define the required behaviour of the algebraic entities represented by the signature. A
new theory can be built from an existing theory via structuring operators: for instance,
by renaming types and constants, by abstraction (forgetting some types and constants
and perhaps renaming the rest), combining two theories, or parametrizing and instanti-
ating. These theory-building operations allow large theories to be built in a flexible and
well-structured fashion. Structuring operators facilitate specification according to compo-
sitional, divide-and-conquer principles.

This part of the thesis is concerned with CASL, a standard for algebraic specification
devised, by the CoFI group [CoFOl]. (See Chapter 1 for a brief survey of available speci-
fication languages.) However, because CASL resembles other systems, much of our work
can readily be adapted to other systems.

One of the main aims of algebraic specification is to provide a formal basis of support for
the systematic development of correct programs from specifications. The most popular
means of enabling such development is based on the notion of refinement. Refinement
is the process of progressively transforming abstract specifications into more concrete
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ones. If the concrete specification is executable, then we consider it to be a program that
implements the specification.

In this part of the thesis we investigate a novel technique for developing correct func-
tions from specifications by application of the Curry-Howard protocol. We then use these
techniques to support refinement and extension of abstract specifications into concrete,
executable specifications.

We proceed as follows.

First we develop a constructive logic for constructing and reasoning about structured
specifications. The logic is based on the classical natural deduction calculus of Peterreins,
Crossley and Wirsing [WCP98, Pet96], which in turn has its roots in the proof system
defined by Martin Wirsing in [Wir91]. (Similar systems have been investigated in [FC92,
BCH99, HWB97] - see Section 1.4 of Chapter 1 for some brief historical notes.)

One contribution of this part of the thesis is to make the calculus constructive rather than
classical. The user derives theorems of the form

SPOP

where S P is a structured specification, and P is a known truth about the specification.
The system enables the simultaneous structuring of specifications and the derivation of
new truths from known truths.

We then adapt proofs-as-programs to the logic, applying the Curry-Howard protocol to
extract programs from proofs in our logic. We present a logical type theory that can
be used to represent proofs in the logic in the style of the Curry-Howard isomorphism.
(PProofs, theorems and normalization correspond to terms, types and term reduction,
respectively.) Following the protocol, we define an extraction map from proofs of theorems
in the type theory to SML programs. The map produces SML functions that satisfy
the theorems according to a notion of realizability, based on modified realizability for
intuitionistic logic (defined in Chapter 2).

For instance, we could derive a proof of the theorem

INT O VX : int • 3y : int • y > x A Prime{y)

where INT is a specification of the natural numbers containing appropriate axioms for the
predicates > and Prime. Using our methods, we can extract a realizing term t such that

INT O \/X : int • (t x) > x A Prime(t x)

is true. In this way, the term t is a function that satisfies the original theorem as a
specification.

We show how these techniques permit us to consistently extend specifications with ex-
tracted functions. By virtue of our methods, these functions can then be consistently
added back to a specification, giving a correct extension. For example, the term t can

I
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be associated with a named function / , with the equational axiom {/ = t} consistently
extending the specification INT. This provides a formal means of designing structured
specifications by consistent extensions.

Finally, we show how our techniques enable a refinement process for specifications. By
deriving constructive proofs of the axiom for a function, we can extract an executable def-
inition of the function. By repeating this process, we can achieve a stepwise development
from an abstract structured specification to a full executable structured program.

We proceed as follows:

• In Chapter 7 we present a logical system for reasoning about algebraic specifica-
tions written in the specification language CASL. We briefly summarize the relevant
notation of CASL.

• Chapter 8 investigates a version of the Curry-Howard isomorphism, between our
logic and an associated logical type theory, defined according to the principles of the
Curry-Howard protocol of Chapter 3.

• In Chapter 9, we use the logical type theory to adapt proofs-as-programs to our logic
for the extraction of programs from proofs. We explain how our programs can be
added back into specifications to provide consistent extensions.

• Chapter 10 extends our system and results to account for parametrized specifications.

• Finally, in Chapter 11, we develop the concept of refinement of specifications to
executable structured program modules, and address architectural issues.

This part of the thesis expands on work presented in two papers.

Chapters 7 to 9 are based on the work of John Crossley, the present author and Martin
Wirsing, first published in [CPW00]. The main contributions of Martin Wirsing in that
paper were the definition of the logical system, the treatment of CASL specifications within
the logic and the logical type theory. The main contributions of John Crossley in that
paper was in the definition of the logic and the definition of its normalization strategy.
The main contributions of the present author in that paper was the the logical type theory
and the actual extraction process. The version of the logic used in this thesis differs in
some aspects from that of [CPW00]. In [FCW02] the present author helped in making
a distrinction of rules into structural and logical rules to aid program extraction. Suffice
it to say, collaboration was very close in that work, and each author also contributed a
significant portion of assistance to each of the results of that paper.

Chapters 10 and 11 are based on the collaboration of the present author, John Crossley
and Martin Wirsing, the results of which were published in [PCW02]. All three authors
worked equally to adapt and extend the logic and type theory to deal with parametrized
specifications. Martin Wirsing helped to extend the normalization strategy and to de-
fine the process for refinement of specifications. John Crossley helped to show that many
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important proof-theoretic and semantic properties of the extended calculus reduce to prop-
erties of the original calculus. The present author defined the program extraction strategy
from proofs involving parametrized specifications and the treatment of named specifica-
tions through a mutable global namespace. John Crossley and the present author jointly
provided the method for extraction of executable modules.

The papers [CPWOO] and [PCW02] do not include proofs of important theorems - this
thesis is the first presentation of these proofs. The proofs are entirely the work of the
present author, unless otherwise noted. The discussion of architectural issues in Chapter
11 is new work, based on informal discussions between the author, John Crossley and
Martin Wirsing.

I 7

i

Chapter 7

Reasoning about Structured
Specifications

In this chapter, we introduce a logical system, called the Structured Specification Logic
(SSL), for reasoning constructively about structured specifications. We consider specifi-
cations written in the Common Algebraic Specification Language (CASL) as defined in
the CoFI group's standard [CoFOl]. Our logic is compositional in the sense that proofs
about a structured specifications are given in a modular fashion, using knowledge about
sub-specifications to derive knowledge about composite specifications. This promotes the
desirable features of a divide-and-conquer approach and proof reuse.

SSL is based on one of the first compositional proof systems for structured specifications,
defined by Martin Wirsing in [Wir91]. (See the introduction of Chapter 1 for a review of
related work.) Peterreins, Crossley and Wirsing [Pet96, WCP98] extended that calculus
to a natural deduction system. Their system was concerned with structured specifications
in an ASL-like kernel language [Wir86, ST88a], involving basic operators for composing
specifications (renaming and hiding signatures and taking unions of specifications). That
work was given as a natural deduction system and used classical logic.

The novelty of the SSL system is as follows. We simplify the rules of the original calculus
of Peterreins, Crossley and Wirsing, dividing them into structural and logical classes. We
use CASL syntax for structured specifications instead of ASL. Also, we make the calculus
constructive.

Theorems of our calculus consist of labelled formulae, of the form

HSSL S P O P

where S P is an structured specification from CASL and P is a many-sorted formula that
is derivable from the axioms of S P via constructive reasoning. It will be shown using
soundness that P is true for the models of SP.

Our calculus involves structural and logical rules, permitting us to do two things.
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240 Chapter 7: Reasoning about Structured Specifications

1. Reasoning about specifications. This is achieved by means of logical rules which
augment the rules of intuitionistic many-sorted logic to deal with specifications. For
example, we define the following rule to prove the conjunction (A A B) from the
axioms of a specification SP, given that we already have proofs of A and B from SP:

(A-I)

This rule is the usual constructive rule for (A-I), augmented to accommodate speci-
fication labels.

2. Building new specifications. This is done by adding so-called structural rules that,
given a theorem, permit us to change the specification label. In this chapter, struc-
tural rules correspond to the standard ways of creating structured specifications
as presented in CASL: translating, hiding signatures, taking unions and extending
specifications. For instance, we define the following rule,

T hssL SP-1 O A
HSSL (SP-1 and SP_2) O A

(union i)

which tells us that if A is true about S P _ 1 , then A is also true about the union of
SP_1 and SP-2.1 In Chapter 10, we provide additional structural rules that deal
with defining and instantiating generic (parametrized) specifications.

This process of reasoning about and constructing new specifications is similar to the Hoare
logic of Part III, which also had a notion of manipulating formulae and the associated
information carried by labels. In the case of Hoare logic, the labels were imperative
programs. In the present case, they are structured specifications. The analogy is continued
in the next chapter, where we define a logical type theory for SSL with labelled formulae
treated as types, and in Chapter 9, where we adapt proofs-as-programs to SSL, defining a
realizability notion for labelled formulae.

The chapter is organized as follows:

• In Section 7.1, we provide an overview of background knowledge and define the basic
specifications used in CASL.

• Section 7.2 defines the necessary concepts of CASL structured specifications.

• Our logic is presented in Section 7.3.

• Section 7.4 gives a soundness theorem.

• Section 7.5 provides a summary and discussion of our results.

1This is a specialized version of the (unioni) rule defined in this chapter: see particularly Remark 7.16
of Section 7.3, and the list of structural rules in F"ig. 7.5, p. 262.
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We illustrate our work with an password checking system example, similar to that exam-
ined in Chapter 2 of Part II. We show how to specify and reason about this system in
a structured fashion. We will continue to use this example in the following two chapters
of this part, illustrating how our reasoning can be used to extract correct programs and
construct specification refinements.

The main results of this chapter were first presented in [CPW00]. The treatment of
specification extensions and the separation of the calculus into logical and structural rules
comes from [PCW02]. Both papers were joint collaboration with John Crossley and Martin
Wirsing. Martin Wirsing and John Crossley provided the initial definition of the logical
system. The present author advocated the separation of the logical and structural rules.

7.1 Specifications

In this section, we outline the important concepts of many-sorted signatures, basic speci-
fications and models, as provided in the CASL CoFI document [CoFOl].

The ideas of this section are all from elementary model theory. A basic specification con-
sists essentially of a signature and a set of axioms over a signature. From a computational
perspective basic specifications provide a means of defining simple, unstructured compo-
nents. The semantics of a basic specification is the class of all models that satisfy the
axioms. Semantics is important when specifying components because classes of models
can be considered to denote a range of possible implementations.

Later in this chapter we will be representing, and reasoning about, SML programs using
the CASL syntax for basic specifications. We will only be interested in SML programs that
implement total functions. So, in order to minimize the technical problems of representing
such programs in our specifications, we confine ourselves to basic specifications with total
functions, although partial functions are permitted in CASL.

7.1.1 Many-sorted signatures

We use the COFI document's definition of a many-sorted signature [CoFOl, p.3], but
restricted to involve only total function symbols.

Definition 7.1.1 (Many-sorted signature with total functions). A many-sorted
signature £ = {S, TF, P) consists of:

• a set S of sorts,

• sets TFW,S of total function symbols for each function profile (iu, s) consisting of a
word sequence of argument sorts w 6 S* and a result sort s 6 S (constants are
treated as functions with no arguments);

• sets Pw of predicate symbols for each predicate profile consisting of a word sequence
of argument sorts w 6 S*.
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We overload £ to denote membership of sorts, functions or predicates in the appropriate
sets of a signature. That is, given a sort symbol s we write s 6 S if s 6 S. Similarly, for
a function symbol / and a predicate symbol A, we write / E £ and A E E if / € TF and
A E P respectively.

Constants and functions are also referred to as operations.

Remark 7.1. CASL signatures are the standard notion of signatures. They are similar
to those of Definition 2.1.1, Chapter 2 of Part II. However, we do not (yet) include
functional sorts - and the terms of our signatures as they will be defined in this chapter
are not lambda terms. In Chapter 9, we will extend CASL signatures and terms to include
functional sorts and also lambda abstraction and application, for the purposes of program
extraction. However, for the purposes of this chapter, it is only necessary to understand
first-order many-sorted signatures.

Remark 7.2. Conforming to CASL syntax, given a signature E = (5, TF, P), we will often
denote membership to a set of TF using product and function typing notation. That is,
rather than writing

/ € TFSl...^,t

we will simply write
/ : (si x . . . x sn) -» s

for s\... sn £ S* and a result sort s e S.

As in the previous part, and also following the CoFI standard [CoFOl, p.3], the symbols
that identify operations and predicates may be overloaded, occurring in more than one
of the sorted sets. Whenever there is ambiguity in sentences, function symbols / and
predicate symbols P should be qualified by profiles, written fWyS and pw respectively. We
omit these profiles when there is no ambiguity.

We will require a definition of signature morphisms.

Definition 7.1.2 (Many-sorted signature morphism). A many-sorted signature mor-
phism

a: (S,TF,P) -* (S',TF',P')

is a mapping such that

1. *{S) c (50

2. a(TF)CTFf

3. a(P) C P'

4. it feTFw,s, then o-(f)eTF^{w)Ms)

5. if Q E Pw then a(Q) E P ^

where (given w = s\... sn) a*(w) — o(s\)... or(sn).
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Definition 7.1.3. We define CSig to be the category with signatures as objects and
signature morphisms as morphisms.

We will require several operations on signatures.

Disjoint unions of signatures are defined as follows.

Definition 7,1.4. Given two signatures Sx = {ShTFhPi) and E2 = {S2,TF2,P2), the
disjoint union

Si i±i S2 = (Si tti S2,TF11±) TF2,Pi U P2)

where l±J is the disjoint union for sets, so that, for any symbol t, we symbols t\ and tr such
that ti € Ei i±l E2 if, and only if, t e Ei and tr € Si l±) S2 if, and only if, t £ £2-

The amalgamated union of signatures is defined using a pushout construction (following,
e.g., [Cen94, pp.18-21]).

Definition 7.1.5 (Amalgamated unions). Given two signatures, Si = (SuTFuPJ
and S2 = (5 2 , rF 2 ,P 2) that share a (possibly empty) sub-signature E = (S,TF,P)\ we
define the disjoint union Ex + s S2 to be the pushout in CSig,

inl

£ 9 - mr

where

i\ and i2 are injections of E into Ex and E2.

Ei -f-£ S2 is defined as

(Si/S U S2/S u 5, TFx u TF2/TF W TF, PJP a P2/P y P)

where W is the disjoint union for sets. For any symbol t, we have symbols tu tr such
thaU, e Ei + s S2 if, and only if, t 6 Sj /E, *r 6 Ex + s E2 whenever t 6 E2 /E and
t 6 Ei -f s S2 whenever t 6 E.

The pushout morphisms are defined by

inr(t) =

if t G E
otherwise
if t E E
otherwise

To define renaming and hiding operations, we require the following concept.
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Definition 7.1.6 (Symbol lists and mappings, [CoFOl], section 6.4). A symbol list
is a list of sort, function (and predicate) symbols and a symbol mapping p i s a a list of
maps of the form

where each SY{ and SY( is a sort, function or predicate symbol. SY{ t—• SY( denotes a
map that takes the sort or symbol SYi to the sort or symbol SY(, respectively. A symbol
mapping must not map the same symbol to two different symbols.

We write p~l for the same symbol mapping with mappings reversed.

A symbol mapping p extends to a morphism between signatures,

£ '

so that, for any sort, function or predicate symbol t of E, we define

tl if t H-> t' is in p
t otherwise

This morphism is well-defined, provided that p(t) is a symbol of £'. It can easily be seen
that if p is well-defined, p~l is the inverse (p)"1 of p. When there is nc ambiguity, we will
overload p to denote with a symbol mapping p and its associated morphism.

Renaming is an operation on signatures using symbol mappings.

Definition 7.1.7. Given a signature E = (S,TF, P), and a symbol mapping p, we define
the renaming p(E) to be

(p(S),p(TF),p(P))

The final important operation on signatures is hiding, defined as follows.

Definition 7.1.8 (Hiding). Let SL be a symbol list consisting of (possibly empty) sets of
sort symbols 5o, function symbols TFQ and predicate symbols PQ. Let E] be the associated
signature (Si, TF\, P\).

Then we define Ei with SL hidden, written Ei/SX, to be the signature

7.1.2 Terms and formulae

A signature is associated with sets of well-formed terms formed from free variables and
the function symbols of the signature. These terms are sorted according to the sorts of
the signature. These terms, in turn, together with the predicate and sort symbols of the
signature, form a set of well-formed formulae for the signature.

Definition 7.1.9 (Terms of a signature). Let E = (S,TF,P) be a signature. Let X
be a set that includes an ^-sorted set of free variables, disjoint from the constants in TF
(so that X consists of disjoint subsets, Xs, indexed by s 6 S).
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For every sort s E 5, the set Term(E, X)s of terms of sort s is the least set containing

1. every x € Xs of sort s and every nullary operation symbol / 6 TFQS, and

2. every f(t\,..., tn) where / E TFSl...SnjS is a function symbol in TF with range s and
every t{ (i — 1, . . . , n) is a term of sort si in Terra (E, X)Si.

Terms without elements of X are referred to as ground terms and Terra(E, 0)s is denoted
by Term(Y)s.

If t is a E-term, then FV(t) denotes the set of free variables in t.

A sensible signature has at least one ground term for each sort.

Definition 7.1.10 (Well-formed formulae of a signature). Let E = (S,TF,P) be a
signature.

Let X be an 5-sorted set of free variables, disjoint from the constants in TF.

The set of well-formed formulae for a signature, WFF(E,X) is the least set containing

• every P(t\,..., tn) where P 6 PSl...5n is a predicate symbol in P and every t{ (i —
1, . . . , n) is a term of sort si in Term(E, X)Si,

• every formula (A A B), where A, B € WFF(Y>,X),

• every formula (A V B), where A, B e WFF(E, X),

• every formula (A => £) , where A, Be WFF(E, X),

• every formula Vx : s • F, where x e Xs and F e WFF(E, X),

• every formula 3x : s • F, where x E Xs and F € WFF(E, X),

• the formula JL.

We often write ->A as an abbreviation for A —• ±.

Definition 7.1.11. We can inductively extend the signature morphism a : E —• Er,
to a morphism between formulae of H /Fi?(E /, X) in the obvious way. That is, a(F) E
VFFF(E/,X) for F e WFF(E,X) is obtained by applying a to each term and predicate
symbol in F.

Assumption 7.1. As in previous parts of this thesis we will always use terms built over a
denumerable set of variables, Var. We will assume that Var is large enough to include
S'-sorted sets of free variables for any signature's list of sorts S.
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7.1.3 Structures

Chapter 7: Reasoning about Structured Specifications

As usual, signatures are associated with semantic objects by means of a semantic inter-
pretation function. Interpreted signatures without predicates are known as algebras (in
universal algebra theory). In our case, where predicate symbols are used, the resulting
intepretations are called structures for signatures.

A E-structure has a carrier set for each sort of E, a function on those sets corresponding
to each function symbol of E, and a subset of tuples of carriers for each predicate symbol
of E.

Definition 7.1.12 (E-structure). Let M be a E-structure. Let wM denote the Cartesian
product s^ x . . . x s}f if w — s\... sn.

For a many-sorted signature E = (S,TF, P), a E-structure M consists of

• non-empty carrier sets sm for each sort s G 5,

• a total (unction fM from wM to sM for each function symbol / G TFW^S,

• a relation PM C sf1 x . . . x sff for each predicate symbol P G Pw with w — s\ ... sn.

We write Struct{T>) for the set of all E-structures.

A S-homomorphism is a map between E-structures preserving the operations interpreting
the functions symbols of E and the relations interpreting the predicate symbols of E.

A (weak) many-sorted homomorphism h from M\ to M2, with Mi,M2 G Struct(Y>),
£ = (S,TF,PF,P), consists of a function hs : sMl —> sM'2 for each s G S preserving
not only the values of functions but also their definedness, and preserving the truth of
predicates.

Definition 7.1.13 (Reducts, [Wir91, p. 682]). Given a structure M = Struct^')
and a signature morphism a : S —* E', one can recover the E = (5, TJF, P) structure
buried inside M - this structure is called the a-reduct of M, written M\a, consisting of

• carrier sets sM^ = sM for each s G £,

• a total function fM\° = a(f)M for each / G TF, and

• a relation AM\° = a(A)M for each AeP.

7.1.4 Interpretations of terms

Given a signature, we can define an interpretation map L from terms of the signature to a
structure for the signature - this map provides a meaning for the terms.

Definition 7.1.14 (Interpretation). Given a signature E, we extend an interpretation
map L from terms Term(E,X) to a structure M £ Struct{Ju) via a variable valuation map
t: X -» M:

«
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L(X) = l(x) for every x G Xs,

We call interpretation r the x-variant of interpretation r ' when they differ only
particular variable x. over a

7.1.5 Formula satisfaction

We take the usual approach to denning when a well-formed formula of a signature is true
of a structure for the signature.

rom
Definition 7.1.15 (Satisfaction). Take any signature E and a structure M of E ffi
Struct^)). K

For any formula F in WFF(2, Var) and valuation I: X -> M, then M satisfies F under
t, written

M|=, F

when

if F is P{tu . . . , *n), then
. . . ,

P M

if F is (A A £ ) then.

• if F is (X V B) then Af

and M \=L B,

or M \=L B,

• if F is (4 => 5 ) then, if M f=A A holds, it must be the case that M \=L B,

• if F is \/x:sm <3, where i 6 l s , then M f=A/ Q for every x-variant */ of ,̂

• if F is 3x : s • Q, where a: G Xs, then M (=A/ Q for some x-variant t7 of t,

We require that M |=A ± never holds.

If M \=L F holds for every valuation t, then we say that M satisfies F and write M |= F.

7.1.6 Basic specifications

Ultimately we will be building larger specifications of components from smaller speci-
fications of smaller components. The atomic building blocks of this process are basic
(otherwise called simple or flat) specifications. Prom a computational perspective, basic
specifications provide a means of defining primitive, unstructured components for use in
defining more complex data types.

For our purposes, we take a basic specification to be as follows.
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spec NATBOOLEAN =
sorts

nat, boolean
ops 0 : nat; s : nat —* nat; ~h

F : boolean, ge : nat x nat •
preds

>: nat x nat
axioms

Va: : nat • x -f 0 = x
\fx; y : nat • x -f- s(t/) = s(a; +
Va:; ?/ : nat •x-\-y — y + x
\fx; y;v;w : nat • x > v A y >
Va: : nat • s(x) > x
\/x; y : nat • x > y —

end

x
boolean

nai, T : boolean,

x > 0

Figure 7.1: A basic specification of the natural numbers and booleans.

Definition 7.1.16 (Basic specification). A basic specification is a specification of the
form

where E is a signature and Ax is a set axioms for the signature, formulae from WFF(E, Var),

Assumption 7.2. For the purposes of program extraction, described in Chapter 9, we will
assume all axioms are Harrop (given by Definition 6.1.1 of Chapter 2, Part II, p. 33).

Assumption 7.3. We assume that, for each basic specification S P = (E, Ax), E = {S, TF, P)
contains a distinguished equality predicate =SG Pss for each s E S.

Remark 7.3. We use equality predicates to define the so-called existential equations of
CASL, of the form

h = £2

(we omit the profile subscript in =s when the sorts of the terms are clear). Intuitively, an
existential equation holds in a structure when the interpreted values of both terms t\ and
t<i are defined and identical.2

Assumption 7.4. We assume that, for each basic specification S P = (E, Ax), E = [S, TF, P),
there is a distinguished set Conss C (UreS TFr) for each s € S, called the set of construc-
tors for s. If Conss ^ 0, we call 5 a generated sort.

Remark 7.4. Informally, the constructors of a generated sort form a canonical representa-
tion of every element in the sort. From the perspective of our intended semantics, when
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spec STRINGBOOL =
sorts

string, bool
ops a : string, b : string,... ,x : string, y : string, z : string, A : string,

B : string,..., Z : string, space : string, emptystring : string,
concat : stnng x string —> string, toUpper : string —+ string,
toLower : string —•> string, true : bool, false : boot, not : bool —•> 600/,
o r : 600/ x 600/ —> &<%>/

axioms
Va: : string © concat (emptystring, x) — x
Va: : string • concat(x, emptystring) = a:
Va:; ?/ : string • to Upper (concat (x, y)) = concat (to Upper (x), toUpper(y))
Va:; ^ : stnng • toLower (concat (x, y)) ~ concat (toLpper(x), toLower(y))
toUpper(a) = A . . . tollpper(z) = Z
toLower(A) = a ... toLower(Z) — z
not (true) = /afee not (false) — true
or (true, true) = £rwe or (true, false) ~ true
or (false, true) = £nze or (false, false) = false

end

2For the sake of simplicity, we do not deal with strong equations, which also hold when the values of
both terms are undefined. Our work could easily be adapted to include strong equations.

We will often abbreviate strings of the form concat(a\, concat(..., concat(an_ 1, an))) by
'ai . . . an_ian ' and write a blank space for the constant space.

Figure 7.2: A basic specification of strings and booleans.

a generated sort is taken as a set of elements, all the elements of the set always repre-
sent terms formed from the sort's constructors - see our discussion of loose models for
specifications below.

In Chapter 9, we investigate program synthesis from proofs in our logic by applying the
Curry-Howard protocol. For reasons to do with program synthesis, we will make the
convenient (though not essential) assumption that all axioms of basic specifications are
Harrop formulae (see Definition 2.2.1 of Chapter 2 in Part II).

It is possible to write basic specifications using a more lengthy, human-readable syntax
employed in CASL. For instance, using the longer syntax, the specification S P = (E,Ax),
E = (S, TF, P) can be written in standard CASL notation:

spec SP =
sorts

SortList
ops

OpList
preds

PredList
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axioms
AxiomList

end
where

• SortList is a list of the sorts of 5,

• OpList is a list of every operation of TF and their associated sorts, so that, if

t: si x . . . x sn —> s € OpList
t e TF8l...8ni8 then

• PredList is a list of every predicate of P with associated sorts, so that, if £ € PSi...sn

then
P : si x-... x sn € PredList

• Axioms is a list of the axioms Ax

We use this syntax when we wish to clearly present a large specification.

Example 7.1. A basic specification of the natural numbers and booleans is given in Fig.
7.1. The signature of the specification consists of the sort of natural numbers, a successor
function s, the addition function, and ordering predicate >. The first two axioms provide
a recursive definition of addition, the third axiom defines addition to be commutative,
and the remaining axioms define the > predicate as an ordering over the natural numbers.
The booleans are given a simple definition, consisting only of constant symbols for truth
and falsity. Finally, there is a boolean function over the naturals ge(x,y), which has the
value T when x > y holds.

A basic specification of strings and booleans is given as STRINGBOOL in Fig. 7.2. The only
predicates used are the implicitly assumed equality predicates for strings and booleans.
The upper and lowercase letters of the alphabet are given as constant symbols. Function
symbols consist of concatenation and changing the case of a string. In contrast to the
specification NATBOOL of Fig. 7.1, STRINGBOOL contains a more detailed axiomatization
of the booleans, with function symbols for negation and disjunction.

7.1.7 Semantics of basic specifications

The semantics of a basic specification consists of a class of structures that satisfy the
axioms of the specification. We will consider two ways of defining the semantics - an
algebraic and a loose semantics (we take our definitions from [Wir91, pp.696-699]).

Algebraic semantics is as follows. Given a basic specification S P = (E,Ax), we can
associate with it a class of E-structures that satisfies all the axioms Ax. We call this
class the (algebraic) models of SP, Alg(Sp) so

Alg(Sp) = {M 6 Struct(E) \ M \= A for every A e Ax}
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(7.1)

This class of structures denotes the range of possible meanings a specification raay have.
For instance, some of these models could be executable programs that implement the
functions defined in the specification.

An algebraic semantics admits nonstandard models - those models in which models use
elements that are not representable by the terms of SP. The problem with this semantics
is that it includes such "useless", non-specified elements. Computationally, this means the
models are not precise enough to represent a concrete definition of the data types used in
a program component.

Also, we would like a generated sort to denote a set whose elements are all represented by
terms formed from the constructors for the sort. Because we have nonstandard models,
this is not possible.

To rectify these problems, the loose semantics is defined by the following restriction on the
class of structures used in (7.1). Essentially we constrain our semantics to models whose
elements always correspond to terms of the specification. Given a basic specification
Sp = ({5,TF, P), Ar), we associate a class of reachable E-structures that satisfy all the
axioms Ax, defined by

Loose(Sp) = {M e Struct(E) | M (= A for every A e Ax and, for each (7.2)
s € S and each a 6 sM if s is not gener-
ated, then there is a corresponding ground
term t e Term((S, TF, P), 0)s, and if s is
generated, there is a corresponding ground
term formed from the constructors for s,
t e Term({S, Conss, P), 0)s}

Unless otherwise stated, loose semantics will be used here to provide the intended inter-
pretation of basic specifications used in CASL.

7.2 Structured specifications

In writing large specifications it is desirable to design specifications in a structural fashion
by combining and modifying smaller specifications. This supports modular decomposition,
facilitating a divide-and-conquer approach to defining system component requirement?.
This is desirable because a complex system typically involves many functions and axioms,
which become unmanagable when defined using a simple basic specification.

In CASL a structured specification is formed by combining specifications in various ways,
starting from basic specifications. For instance,

• specifications may be united,

• a specification may be extended with further signature items and/or axioms

• parts of a signature may be hidden

i
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• the signature may be translated to use different symbols (with corresponding trans-
lation of the sentences) by a signature morphism, and

• models may be restricted to initial models.

We will now provide an overview how structured specifications are treated in the CoFI
standard [CoFOl]. For the purposes of this and the next two chapters, we will be con-
cerned with the following specification structuring operations: building unions and ex-
tensions, hiding signatures and translations of symbols. We defer treatment of generic
(parametrized) and named specifications in CASL to Chapter 10.

Example 7.2. We will illustrate our concepts with the following ongoing example of a
password checking system example, similar to that used throughout Chapter 2.

The informal domain specification is as follows. We consider a service that hosts email
accounts for a number of users, When a user joins the service, he/she is required to define
a new numerical password. We make the following assumptions concerning the password
correctness functions for a new user joining or logging onto the system:

• Password numbers must be 4 digits long (and so within the range of 0000 to 9999).

• If the number chosen is not of the right length, the system should output a response
message, asking the user to select a new number within the correct range.

• If the number is within the correct range, then the system should output a response
message to this effect.

We shall model the system within CASL by formally specifying these assumptions, defining
notions of acceptable lengths of passwords and the correct responses for given passwords.

7.2.1 Specification expressions

In CASL, we understand structured specifications by means of the collection CSpec of
specification expressions, denoting the range of possible basic and structured specifica-
tions. Later in this section we will introduce the CASL operators to build specification
expressions.

We require that every specification expression is associated with two maps, namely

Sig : CSpec -> CSig

giving the visible signature of the specification, and

Mod : CSpec -> {M C Struct(L) | S e CSig}

giving the models of the specification.

i;
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7.2.2 Basic specifications

A basic specification

is a specification expression, with
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<£, Ax)

Sig((E,Ax)) =

and

Mod((E,Ax)) = Ax))

Remark 7.5. Note that we will sometimes consider an algebraic semantics instead of a
loose semantics for basic specifications. In this case we will take

Mod{(£, Az» = Alg((E,Ax))

Unless otherwise stated, however, we will employ the loose semantics.

7.2.3 Translation

Syntactically, the translation operation permits us to rename the signature and axioms
of a specification to give a new specification that uses renamed symbols. If we consider
a specification as specifying component requirements, the renamed specification can be
considered as a means of wrapping the component requirements with a new interface.

In CASL, given a specification expression S P and a symbol mapping p, we will write

for the expression denoting the translation of S P by p.

We define
Sig{p . SP) = p(Sig(Sp))

and
Mod(p • SP) = {A\p-i \ A e Afod(Sp)}

Example 7.3.. Consider the basic specifications of Example 7.1. Take the symbol mapping

BtoB = [boolean true, F t-* false]

Then the specification
BtoB • NATBOOLEAN

is NATBOOLEAN of Fig. 7.1 with the booleans now renamed to have the same sort and
constant symbols as those of the specification STRINGBOOL in Fig. 7.2. The axioms and
functions are appropriately renamed, so that ge is now a function from Nat x Nat to Bool,
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whose behaviour is given according to the renamed axiom:

Vrr; y : not • x > y —* ge(x, y) = T

7.2.4 Union

The union of two specifications is a new specification that retains the meaning of the
shared parts of the specifications. In CASL, given two specification expressions SP_1 and
SP-2, and a signature E such that E C Sig (SP-1) and E C Sig (SP-2), the union

SP_1 and SP_2

is a specification expression with

Sig(SPA and SP_2) ='Sig(SP-l)

and

_1 and SP_2) - {C e Mod(Sig(SpA) + s SZ<?(SP_2)) |

e Mod(SpA) and C\inr e Mod(Sp_2)}

(The signature morphisms inl and inr are from the pusbout construction for Sig(SP-l)
and Srz^(SP_2) and their common signature - see Definition 7.1.5, p. 243 above.)

Example 7.4. Consider the union

SNB = (BtoB • NATBOOLEAN) and STRINGBOOL

(where BtoB was given in Example 7.3 above). The two sub-specifications (BtoB •
NATBOOLEAN) and STRINGBOOL involve a common signature - that with the boolean sort
Bool and true and false constant symbols. Consequently, by the nature of the pushout
construction, the boolean symbols of both the sub-specifications are interpreted by the
same objects in all models of SNB.

7.2.5 Extension

The extension of a specification is a way of adding additional symbols and axioms to a
specification to extend the specification, whilst retaining the original meaning.

Extensions are useful when we wish to define new axioms Axext using symbols from a
given specification SP_1 and possibly new symbols Eexi. A collection of such new ax-
ioms and symbols (EextjAxext constitutes a so-called partial specification. Such a partial
specifications has no models in isolation - its axioms require symbols from SP_1 to be
interpreted.

For the purposes of this thesis, we will define the meaning of extensions using unions.

1
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If SP_1 is a specification and SP_EXT = (Eext: Axext) is a (possibly partial) specifica-
tion which determines an extension from Sig(SpA) to a complete signature E, then the
extension

SP_1 then SP.EXT

is a specification expression in CASL. We define this expression to be equivalent to a union
of the form

SPJL and SP_2

where SP-2 = (E UT,exUAxexi), the partial specification SP-EXT extended to include the
complete signature E. It follows that

Sig(SpA) = E

and

Mod(SrA then SP_EXT) = Mod(SPA and SP_2)

Remark 7.6. Extensions add nothing that cannot be expressed using unions. However,
they are a convenient, because, if we want to add new information to a specification, we
need not define a full specification to add appropriate new axioms, as would have to be
done in the case of unions.

Example 7.5. We use extensions to specify the password system outlined in Example 7.2.
The specification of the system, PWDCORE, is given in Fig. 7.3.

The specification PWDCORE extends the naturals, strings and booleans given by SNB

SNB = (BtoB * NATBOOLEAN) and STRINGBOOL

We model aspects of the password checking system by adding new functions and predicates.

• We define a new boolean function inRange(x) that will output true if the password
number (x) is within the required range (between the natural numbers 1000 and
9999).

• A new predicate OkPwd(x) holds over a number, if the number is an acceptable
password (that is. if inRange(x) = true).

• A new predicate ValidMsg(x, y) that holds if a string y is a correct response message
for the input of a password number x.

7.2.6 Hiding

We can hide symbols used by a signature of a specification wrhile retaining the original
meaning,. If we consider a specification as a requirement of a component, hiding is a means
of encapsulating functionality. Hiding permits us to expose only certain important parts

\ t
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spec PWDCORE = (BtoB • NATBOOLEAN) and STRINGBOOL then
ops inRange : nat —> Bool
preds

OkPwd : nat, ValidMsg : nat x String
axioms

\/x : nat • ge{x, 0) — true A ge(s""(0), x) = true —» inRange(x) = true
Va: : na£ • ^e(x, ^) = true A ge(s""(0), x) = /a/se —•• inRange(x) = /a/se

nat • #e(x, ?̂) = /a/se A ge{s9999(0), x) = £rwe —*• inRange(x) = false
\/x : nat • ge(x, 0) = /a/se A ge{s""{0), x) — false —> inRange(x) — false
\/x : nat • inRange(x) — trtie —> OkPwd(x)
\/x : nat • inRange(x) = false —* -
Va; : nat • Vy : string • OkPwd(x) —* ValidMsg(x, 'Password acceptable')
Va; : nat\/y : string*-^OkPwd(x) —+ ValidMsg(x, 'Please choose a password in|

correct range')

end

(We write s2(0) for the successor function applied ?! times to 0.)

Figure 7.3: Specification of the password checking system.

of a component interface, but taking other other parts to be black-box workings of the
component.

In CASL, given a specification expression S P and symbol list »SX, S P hidden by SL is the
specification expression

S P hide SL

is
Sig(Sp hide SL) = E - Sig(Sp)/SL

and

Mod(SP hide SL) = {C|a }C € Mod(Sp) with a the injection from S to

Example 7.6. We give a final specification of the password checking system outlined in
Example 7.2, by encapsulating some of the functionality exposed by PWDCORE (Example
7.5, Fig. 7.3).

While PWDCORE models all the assumptions we require of the the system, it contains
some implementation detail should be encapsulated. In Particular we hide the functions
ge (defined in the sub-specification NATBOOLEAN) and the function inRange (defined in
the extension part of PWDCORE). These functions are closer to implementation detail,
because they are concerned with defining when a password is valid.

I 4
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PWDSYS = PWDCORE hide {ge, inRange}

When viewed as- a component, this specification only exposes the relevant functionality
which is related to the validity of the password and axioms defining correct response
messages. The component does not expose details about how a password is determined
to be valid.

7.2.7 Flattening structured specifications

To understand properties of a specification expression, it will sometimes be useful to
consider a normal form of the expression, written as a basic specification with hidden
symbols. The normal form can be considered a means of "flattening" the structure of
the specification to a basic specification with some hidden symbols. The normal form is
equivalent to the original specification in that the signature and set of models are the
same.

The following theorem shows that a normal form exists for every specification. The proof of
the theorem is constructive, showing how to build the normal form n/(Sp) for an expression
SP.

Theorem 7.2.1. For any specification expression S P there is a normal form specification
expression of the form

n/(Sp) = (E,Ac) hideSXe

where SLe is some symbol list, such that

and

Sig(Sp) = E/SL(

Mod(;Sp) - Mod(nf(Sp))

Proof Given a specification S P ' such that

and

we write

Sig(Sp) = Sig(Sp')

Mod(Sp) = Mod(Sp')

S P £ n/(Sp)

If S P is a basic specification, then SLe is empty.
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If S P is SP_1 and SP_2, then by the IH, there are symbol lists SL\ and SL\ such that

i) hide SLlSP_1 ^ nflSP-1) =
SP_2 = n/(SP_2) - {E2,Ax2) hide SL

It can be shown that

S P £ n/(Sp_l) and n/(Sp_l)
= (Ei + E E2, inl(Axi) U
- nf(Sp)

hide SL
C

where

• E is the signature common to Ei and £2

• inl and inr are the maps for the pushout of these signatures

• if Ef and E | are signatures formed from the symbol lists SL\ and SLl, SLe is the
symbol list formed from Ef S§.

The proof of this is straightforward, but involved. See [Cen94, pp. 85-86] for details.

If S P is SP_1 then SP_BXT, then S P is semantically equivalent to a union of the form
SP_1 and SP_2 where SP_2 = (T,,Axext), where E is the extension of Sig(SpA) by
Sig(SP-EXT). So we can take n/(Sp) to be n/(SP_l and SP_2) .

If S P is SP_1 hide SL, then, by the IH, there is a symbol list SL\ such that

SP_1 ^ n/(Sp_l) - i) hide SL\

So,
S P =* n/(SP_l) hide SL

= (Ei,Axi))hide(,f
= n/(Sp)

where SL\, SL = 5Le is the concatenation of SL\ and 5L.

If S P is p • SP_1 , then, by the IH, there is a symbol list SL\ such that

{) hide SL\SP_1 ^ n/(Sp_l) -

Again, following [Cen94, pp. 85-86] it can be, shown that there is a p' such that

i) hideSL*) ^ (p' hide p(SLl
e)

which we take to be n/(SiD). D

Definition 7.2.2 (Visible symbols and axioms). Given a specification S P with normal
form

n/(Sp) = (£,Ax) hide
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we call the symbols of Z/SLe the visible sorts, functions, and predicates of SP .

The subset of axioms Ax that only involve visible sorts, functions and predicates, is called
the visible axioms of SP, written

Axioms(Sp) = {A \ A e Ax and A € WFF(X/SLe, Var)}

7.3 Reasoning about CASL specifications

Having understood the basic concepts of structured CASL specifications, we are now ready
to define a logical calculus for constructing and ieasoning about these specifications.

In this section, we develop an intuitionistic version of the natural deduction calculus
originally proposed by Wirsing, Peterreins and Crossley in [WCP98, Pet96] for reasoning
about ASL specifications. We use CASL instead of ASL as our specification language. We
call our calculus the Structured Specification Logic (SSL). SSL is constructive, extending
intuitionistic logic.

This section presents the basic rules of our calculus. Later chapters will investigate ad-
ditional rules for SSL. (Specifically, Chapter 9 adds a rule to deal with adding new
extracted functions to specifications, and Chapter 10 adds rules to develop and reason
with parametrized and named specifications from CASL.)

7.3.1 Judgements

The formal calculus is presented as ® smtural deduction system.

We deal with judgements which we write in sequent form as

r hSSL S P O A

where S P is a CASL specification and A is a formula from WFF(Sig(Sp),Var). The
context, F, is a set of assumption formulae from WFF(Sig(SP), Var). The intended
meaning of the judgement is that, assuming T are satisfied by the models of SP, then A is
also satisfied.

Throughout this thesis, when the context is clear, we will abbreviate I~SSL by ~̂-

As usual, we employ a sequent style presentation of natural deduction, but switch to a
proof-tree notation when convenient.

Remark 7.7. We have modified the syntax for judgements from that used in the papers
[CPW00] and [PCW02]. There, the specification label appeared as a subscript of the
turnstile, so that judgements were written as

r
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We use the new notation to draw the analogy with our treatment of Hoare logic in Part
III. As we will see in the next chapter where we define a logical type theory for our logic,
we can take labelled formulae as types, in a similar fashion to our treatment of the logical
type theory for IHL given in Chapter 5 of Part III.

7.3.2 Logical rules

The basic rules for SSL are of two kinds: logical and structural.

The logical rules of SSL are shown in Fig. 7.4, These rules are essentially the standard rules
for many-sorted intuitionistic logic, but with specification labels. Intuitively, a logical rule
enables us to do constructive reasoning about the properties of a single specification.

For example, we augment the usual (=£-I) rule of constructive logic as follows:

B)

This rule permits us to prove that the implication (A => B) satisfies the specification SP ,
given a proof that, assuming A, then B is satisfiable for SP .

The conditions of application for the logical rules are similar to those of intuitionistic logic
presented in Chapter 2.

Remark 7.8 (Substitution for individual variables). As usual A[t/x] denotes the result of
substituting t for all free occurrences of x in A subject to avoiding clashes of variables,
where t and x share the same sort.

We illustrate the motivation of our calculus by considering several rules. The other rules
can be understood similarly.

Remark 7.9. Axiom and assumption introduction rules deserve some discussion. These
rules allow formulae to be proved about a specification, using the specification axioms and
assumptions about the specification. The axiom introduction rule (Ax-I) permits the use
the axioms of a basic specification. Assumption introduction (Ass-I) enables assumptions
to be made about a specification, using visible symbols of the specification's signature.

Remark 7.10. The rule (V-Ii)

(v-li)T h S P O (A V

means that, we know (A V JJ) is true of $P because we know A is true of SP. This is
an important principle of constructive systems - a disjunction is known only if the left or
right formula of the disjunction is known. Motivation for (V-I2) is similar.

Remark 7.11. As was the case for intuitionistic logic, the premise formula of (-L-E) is
restricted to Harrop formulae. This restriction, though not necessary, aids program ex-
traction, investigated in Chapter 9 The restriction does not affect the power of our logical
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i

h

Take any structured specification expression SP. Let t be a term of
Term(Sig(Sp), X)s with s a sort s of Sig(Sp).

where Sig(A) C Sig(Sp)

(=•-1)

0 h <£, Ax) o A
where A 6 Ax

(Ax-I)

i H S P

{ '

T\-SPO(A1AA2)

T h S P o A2
(A-Ea)

h SP O(AVB)

r h S P O (A V

r h S P O A

(V-Ii)
B)

- (V-E)

(V-I)
T h S P O\/X : s • A

provided x is not free in A nor in T
ThSPoA[t/x]

(V-E)

ThSpoA[t/x]
(3-1)

T h S P O 3X : s • A
h S P O SX : s • A T2, A[z/x] h S P O C

(3-E)

where z does not occur free in C

r f- SPQ -L

provided A is Harrop

Figure 7.4: The logical rules of SSL.

i
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rules. That is, we can conservatively extend our calculus with a rule of the form

hnt (±-E*)

for all formulae A. This rule is derivable from (J--E) by a similar proof to that of Lemma
2.2.1 in Chapter 2, Part II, p. 33.

Remark 7.12. Our presentation of the logical rules follows that given in [CPWOO]. How-
ever, we have restricted logical rules to use the same specification in premises and conclu-
sion. This does not affect the logical strength of the system as the structural rules, given
below, allow us to derive all the rules in [CPWOO] in our present system.

7.3.3 Structural rules

The structural rules of SSL are given in Fig. 7.5. These rules allow us to simultaneously
build a structured specification and prove properties about the result, given previously
known properties about smaller specifications.

For instance, the translation rule (trans)

(trans)
pT h SP with pop* (A)

permits us to simultaneously

• rename a specification SP to SP with p, and

• transform a known property A of the specification to a new property p • A of the
renamed specification.

Remark 7.13. Observe that, for the logical rules, the specification in the conclusion is the
same as that in the premises. On the other hand, for the structural rules, the change in
structure is reflected in the new specification label of the conclusion.

T H SP O A
pT h SP with pop* (A)

(trans) (hide)

rr-Sp_landSP-2om/(j4) '

r I- SP-1 O A

(union i

T h SP hide SL o A
where V U {A} C WFF(Sig(Sp)/SL, Var)

r h S p _ 2 o A

F I- SP-l then SP-EXT oinl(A)
(exti)

rhSP-landSP-2omr(A) v

F 1- SPJEXTOA

r h SP_1 then SP-EXTomr(i)
(ext2)

Figure 7.5: The structural rules of SSL.
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Remark 7.14. We make the following remarks about the stuctural rules of Fig. 7.5:

• Given a formula F and symbol translation p, then p(F) denotes the obvious trans-
lation of F by replacing function symbols according to p.

• The translation of the context T by p is written pT. This is simply the recursive
application of p to every formula in T to obtain a result context V = pT.

• The morphisms inl : Sig(SPA) -> Sig(SpA) + E Sig{SPJ2) and inr : Sig(Sp^2) -*
Sig(SPA) + E S ^ ( S P _ 2 ) in (uniom) and (union2) are the pushout morphisms over
common signature E, as defined in Definition 7.1.5.

• The morphisms inl : Sig(SpA) -> Sig(SpA) + r Sia(SpJ2) and inr : Sig{Sp.2) -*
Sig(SpA) + E 5 ^ ( S P _ 2 ) in (exti) and (ext2) ai ,, .lout morphisms over the com-
mon signature E = Sig(SPA), where SP_2 = (5^ 'SP-r Ee,^xe) is formed by
extending the signature of SP_EXT = (Ee, Axe).

Remark 7.15. Our presentation of the structural rules folios .hat of [CPWOO] but with
the additional rules for extensions that were given in [PCW02].

Remark 7.16 (Standard representation of unions). In later chapters, following; [Pet96
WCP98, CPWOO, PCW02], we will use ^ ( S P _ 1 ) U 5 ^ ( S P _ 2 ) as standard representation
of the isomorphism class of Sig{SPA and SP_2). This simplifies the presentation of the
(union*), (exti) (i = 1,2), since we do not have to write the embedding morphisms inl and
inr explicitly.

However, in this present chapter, we will use the full pushout construction for

Sig(SpA and SP_2)

as given in 7.2.4, p. 254, Section 7.2.

7.3.4 Reasoning with equality

CASL makes the following assumptions to aid reasoning about equality between terms.
Every signature contains an equality predicate --=s for each sort s of the signature, and
also the following sets of axioms are in every basic specification (E,Ax), E = (S,TF,P):

1. Reflexivity: for every s € 5,

2. Symmetry: for every s e 5,

Vx* : s • x =„ x

3. Transitivity: for every s 6 S,

Vz, y, z : s • x =s y A y =s z => x =s z
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4. Substitutivity for terms: for every s i , . . . , s n , s 6 S and every term v e TFSl...Sn,s,

an, bn : s
n

= &i A . . • A an — bn) =>

/ ( a i , . . . , a n )

5. Substitutivity in predicates: for every s i , . . . , sn € S and every predicate F € PSl...Sn,

, b\ : . . . an ,
: s

n
. . . A a n =

In CASL, these axioms are presumed implicit in basic specifications - they do not need
to be given by the specification writer.

These assumptions permit us to take the following as a convenient derivable schema, for
any specification expression SP:

h ... rnrSPOXn=8yn
ru...,Tn\-Sp<>{P[x/z]=*P[y/z])

(subst[P])
(7.3)

for s e Sig(Sp) and P <E WFF(Sig(Sp),Var).

To see why (7.3) is a derivable schema, we require Lemmata 7.3.1 and 7.3.2 below.

Lemma 7.3.1. For any specification SP , for every a : s2 G Term(Sig(SYJ))

h S P O VZ, 2/: si • V£ = a i y =» a[x/2J = 5 2 a[i//

lu/iere formula P is a formula in WFF(Sig(Sp)).

Proof We use the axioms of substitutivity for basic specifications.

By induction on the forms of a and of SP. Suppose

z =s. y (7.4)

Assume S P is basic.

Either z is free in a or not. If the latter holds, then we are done. If the former, then a is
of two forms: either

a is / ( a i , . . . , an), and z is only free in the subset {a^ : s\,
By the IH, it is possible to prove

h SPOa[[x/z] =s/ a[[y/z]

^SPoal
m[x/z]=8>a/

m[y/z]

I

I c*

I *'

1,
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h S P o /(ai,...,an)[x/z] = f(ah . . . , an)[y/z]

is provable

• a is a variable z. In this case, we are done, because we have assumed (7.4).

If S P is a structured specification expression, we prove

h S P _ 2 O VZ, y : sx • x =Sl y => a[x/z] =S2 a[y/z]

for the sub-specification SP_2 of S P whose signature includes sus2 as sorts and a as a
term. Then we use the structural rules to construct SP. For example, if S P is of the form
p • SP_2, then, by the IH, it is possible to derive

hSP^op'^Yx.y: sim\fx=8l y^a

We then apply the rule (trans) to obtain the required conclusion by translation,

LerrriR 7.3.2. For any specification SP , for sort s e Sig(Sp)

y : s • x —s y => (P[x/z\

for any formula P 6 WFF(Sig{Sp)).

Proof We use the assumed axioms of substitutivity, proceeding by induction on the forms
of P and of SP. Suppose

h S P O x =s y

If P is atomic, of the form F(a i , . . . , an), then either 2 is free in F or not. If the latter, then
we are done. If the former, then z is free only in some non-empty subset {a[ : su ... a'm :
sm} of {a i , . . . , an}. By Lemma (7.3.1), it is possible to prove

h a\ [x/z] =Sl a\ [x/z]

Using the basic specification axioms of substitutivity of predicates, we have

h SP O F(ai,..., an)[x/z] => F{a\,..., an)[y/z]

as required.

Otherwise we proceed over the structure of P.
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If S P is a structured specification expression, we prove

h SP_2 O VX, y : s • x =s y => (P[x/z) =^ P[y/z\)

for the smallest sub-specification SP_2 of S P whose signature includes si,S2 <as> sorts and
a as a term, and we then use the structural rules to construct S P in the same way as with
the proof of Lemma 7.3.1. •

Repeated application of last lemma is enough to derive any application of the schema
(7.3).

7.3.5 Induction

To reason inductively over generated sorts, we include structural induction schemata.

Recall, in Chapter 2 (p. 35), we dealt with specific cases of induction schemata for many-
sorted intuitionistic logic. In the case of SSL, we will go further and provide a general
induction schemata for any generated sort of any basic specification.

Given a sort in a signature £ = (5, F, P), generated by constructors Cons C Fs, we permit
an induction schema of the form given in Fig. 7.6.

The general form of this schema is complicated. It is best illustrated by examples.

Example 7.7. Consider the specification NATBOOLEAN of Example 7.1, Fig. 7.1, in which
the booleans boolean are generated by constants

{F : boolean, T : boolean}

The corresponding induction schema Ind(boolean) prodcued by the general schema of Fig.
7.6 is

NATBOOLEAN OP[F/X] NATBOOLEAN OP[T/X]
NATBOOLEAN O VX : boolean • P \ n I a i JJ

Example 7.8. Given a signature £ in which the natural numbers not are generated by

Conrmt — {0 : nat, sue : not —> vat}

The induction schema (Ind[natj), a special case of Fig. 7.6, is

(£, Ax) o P[0/x] (£, Ax) o Vy : nat • P[y/x] -> P[suc{y)/x]
{£, Ax) o\/x : P

(In d [nat])

Example 7.9. Given a signature £ in which lists of natural numbers Inat are generated by

— {̂  : nat —* Inat, con : (Inat x Inat)

4

A?

i

I
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Let £ - (S, F, P) be a signature that contains a sort s generated by constructors
Cons C F8,

Cons, = {ci : 5 , . . . , ^ . : s, / i : (s\ x . . . x ^ ) - , a , . . . , / p : (af x . . . x s^) ^ s\

Let P be a formula of £ with x : s free.
For each % = 1, . . . , p w e make the following definitions. Take a set of variables

/ ^ i r^ corresponding to argument sorts of /•, we define

(When this set is empty then /• does not involve s as an argument sort.^
If this set is empty, then we define

Otherwise, we take

Pfi =

where Q/tf is formed from M{s,{x)
=i,...,mJ as follows. Assume M{s, {x*

If A;> 1,

Then we have the following induction schema for s in £:

Figure 7.6: General structural induction schema.
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The induction schema (Ind[lnat]), a special case of Fig. 7.6, is

(£, Ax) o My : nat • P[l{y)/x]
(£, Ax) o \/y : Inat • Mz : Inat • P[y/x] —* P[z/x] —+ P[con(y, z)/x]

(E,Ax) oMx :
(Indpnat])

7.3.6 Example: Password checking system

We will now illustrate SSL in practice. We use the calculus to simultaneously reason about
and to construct specifications, developing a theorem about the password checking system
PWDSYS described throughout Section' 7.2.

We will prove that, given any input x of a password, there is always an appropriate
response message to be output. The response message will tell the user if the password is
of the correct length or not. This requirement is stated as follows

h PWDSYS O MX : nat • 3y : string • ValidMsg(x, r) (7.5)

We now derive (7.5).

First we need to prove the following lemma using boolean induction over NATBOOLEAN

(this induction schema was defined in Example 7.7 above):

NATBOOLEAN O F = F
NATBOOLEANo T = T VF = F

2)
NATBOOLEAN O T = T

NATBOOLEAN OT=TMT=F
NATBOOLEANOV6 : boolean•b = T\/b~ F

(v-li)
Ind(Boolean)

(7.6)
where the axioms are from the assumed axioms of equality.

We wish to use (7.6) to show that the value inRange(x) of PWDCORE will always be
either true or false for any input password x.

In order to use (7.6) in PWDCORE, we must employ structural rules to build PWDCORE

from NATBOOLEAN. The function inRange is defined with boolean sort symbols of
PWDCORE, which are renamed versions of those in NATBOOLEAN. SO we proceed by
renaming boolean symbols of NATBOOLEAN to their appropriate counterparts used by
inRange, taking a union with STRING BOOLEAN and then extending the new symbols and
axioms of PWDCORE as follows

i 4
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where SNB = (BtoB • NATBOOLEAN) and STRINGBOOL and BtoB is the symbol map-
ping [boolean •-»• bool, T i-+ true, F H-> false].

Then we can instantiate (7.7) with inRange(x) for 6, by application of (V-E), to give

PWDCORE O inRange(x) = true V inRange(x) = false (7.8)

We will derive (7.5) by reasoning over the possible cases that PWDCOREO inRange(x) —
true or PWDCORE O inRange(x) = false.

First we consider the former case, PWDCORE O inRange(x) — true.

We apply (V-E) on two axioms of PWDCORE, to remove the quantifiers:

(Ax-I)
PWDCORE O MX : nat • inRange(x) = true —> OkPwd(x)

PWDCORE O inRange(x) — true —> OkPwd(x) (7.9)

and

(Ax-I)
PWDCORE O MX : nat • OkPwd(x) —• ValidMsg(x, 'Password acceptable')

PWDCORE O OkPwd(x) -> ValidMsg(x, 'Password acceptable')
(7.10)

We use these axioms and the assumption to derive (7.5):

PWDCORE O A2
(7.10)

PWDCORE O
(7.9)

PWDCORE O inRange(x) = true
(Ass-I)

PWDCORE O OkPiod(x)
PWDCORE O ValidMsg(x, 'Password acceptable')

PWDCOREO3y : string• ValidMsg(x,y) nj

PWDCORE O MX : nat • 3y : string • ValidMsg(x, y)

(

(V-I)

£ ^ ^ ^ a inRan9e(x) = true - OkPwd{x) in the instantiated aliom
(7.9) and A2 denotes the formula OkPwd{x) - ValidMsg{x, 'Password acceptable') in

the instantiated axiom of (7.10).

Similar reasoning from the assumption PWDCoREOinRange(x) = false, using the axioms
of PWDCORE will give a proof of the form

PWDCORE O inRange(x) = false
(Ass-I)

PWDCORE O ValidMsg(x, 'Please choose a password in correct range')
PWDCORE O 3y : string • ValidMsn(x, y)

PWDCORE O MX : nat • 3y : string • ValidMsg(x, y)

(3-1)

(7.12)
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We apply (V-E) using (7.8), (7.11) and (7.12), to obtain

PWDCORE O \/X : nat • 3y : string • ValidMsg(x, y)

This proves the formula of the required theorem, but over the system specification prior
to encapsulation, PWDCORE.

By hiding {ge, inRange} in the result, we obtain the theorem (7.5) as required:

PWDCORE O \/X : na,t • 3y : string • ValidMsg(x, y)
PWDSYS O VX : nat • 3y : string • ValidMsg(x, y)

(hide)

This theorem is a truth about the specification PWDSYS, given known properties about
its required behaviour. It tells us that there is always a correct response message for a
given password number.

To build an implementation of the password checking system, it would be useful to find
a function for producing such a message for given passwords. In isolation the theorem
does not tell us what this function is. However, by utilizing the Curry-Howard protocol to
adapt proofs-as-programs to SSL, it is p>ossible extract such a function from the proof of
the theorem. As we develop such a methodology in the next two chapters, we shall return
to this example to illustrate our ideas.

In Chapter 8 we will define a logical type theory for representing proofs in SSL. We will
show how the proof of this example can be encoded as a term in the type theory (see
Section 3.2.1, p. 286).

In Chapter 9 we will use the Curry-Howard protocol to provide a method for extracting
correct programs from proofs in SSL. We will show how the proof of theorem (7.5) can be
transformed into a password checking function which outputs an appropriate response for
a given password number input. Then we will also show how this function can be used to
build a consistent extension of PWDSYS (Section 9.4, p. 362).

7.4 Soundness

In this section, we outline soundness proofs for SSL, using the semantics of specification
expressions and definition of formula satisfaction.

We require the following notion of validity for sequents in SSL.

Definition 7.4.1. Take any specification SP .

Let T = {<3I, . . . , Gn} and F be WFF(Sig(Sp), Var) formulae.

We write
S P , T\=F

Soundness
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if, for every M e Af od(Sp), and every interpretation I: Var -* M,
assuming

for each t = l , , . . , n then

M\=tF

In this case we say that F is valid for SP, assuming I\

If F is empty and

SP\=F

then we say the formula F is valid for the specification.

Soundness is an important result: it tells us that if S P O P can be proved, then P is a valid
statement for SP.

Theorem 7.4.2 (Soundness). Given an SSL proof

T h S P o F

Then

^ required t o P r o v e that, if, for every M e MOC/(SP), and valuation I: Var
h Oi (each GteT), then M K F.

We show this by induction on the length of the proof.

Take any M e Mod(Sp) and valuation l:X->M and assume

M h °i (7.13)
for every Gi € T.

Logical rules. If the proof ends in the application of a logical rule, then the approach
is straightforward. We obtain the required conclusion using the definition of satisfaction
(Definition 7.1.15 on page 247).

(Ass-l). If the proof is of the form

0h <£, Ax) o A ( A x J )

then M^LAby definition of Mod{{Y,, Ax)) and the fact that A € Ax, and we are done.
{Ass-I). If the proof is of the form

Sig(A) C 5tg(Sp)
~ A H S P O A ( A S S - : )

Then T = {A} and we have M \=L A by assumption (7.13).
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(=>-I). Assume the proof ends in a rule application of the form

T.A\~SPOB

ThSPo(A=> B)

The IH and assumption (7.13) dilate that, if M \=L A then M \=L B. Then, by definition
of satisfaction, we know A —» £?, as required.

(—»-E). Assume the proof ends in a rule application of the form

Then the IH assumption (7.13) dictate that M \=t A —• B and M K ^- By definition of
satisfaction for A —* £?, we know that M |=A J5 as required.

The cases of proofs ending in (A-I), (Ai-E), (A2-E), (V rI), (V2-I), (V-E) and (±-E) are
similar.

(V-I). Assume the proof ends in a rule application of the form

(V-I)
SPOVX :S*A

Take any x : s-variant i! of i. By assumption (7,13), and the fact that x : T $ FV(T), it
is easy to derive

M K' Gi (7.14)

for each Gi 6 F. So, by the IH, M \=Lt A for every x : T-variant L' of t, as required.

The case of a proof ending in (3-1) is similar.

(V-E). Assume the proof ends in a rule application of the form

Eh SPOVX: S*
ThSPoA[t/x]

(V-E)

By assumption (7.13), M \=L \fx : s • A. So, M \=Li A for the J variant that maps x to
t(t). It is then easy to derive M \=L A[t/x] as required.

The case of a proof ending in (3-E) is similar.

Structural rules. We follow [Cen94, p. 88], using the definition of Mod over structured
specification expressions.

(uniorii). Assume the proof ends in rule application

rf-Sp_lo/l
rf-SpJL andSP_2om/(A)

(union i)

By the IE, N \= A for any Â  e Mod(SP.A). Now, M 6 Mod(SP_l and SP_2) .

definition of Mod, M\ini G Mod(SpecNarneSp1). So, M \= inl(A), as required.

I
1
i

V
3

Soundness

(union>2). This case is symmetric.

(exti). Assume the proof ends in rule application
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F h SP_1 then Sp_EXTom/(^4)
(exti)

where SPJEXT = <£, Ar). Let £ be the 5 ^ ( S P . 1 then SP_EXT). By the IH, N \= A for
any A" e Afod(SP-l). Now, M € Mod(SP-l & SP_2) for SP_2 = (E, Ar. By definition
of Mod, M\ini e Mod(SpecNameSpij. So, M |= inl(A) as required.

(ext^). This case is symmetric.

The cases of (hide) and (trans) are trivial.

Induction schemata. Assume that a proof ends in an induction schema:

h (Z,Ax)oP[Cl/x} . . . \-(E,Ax)oP[cn/x] \~(yL,Ax)oPh . . . h (£, Ac} oP/_

h Ind(s)

where

• (E, Ax) is a basic specification with E = (5, TF, P) with constructors Conss C TF
for a sort s 6 5,

= {ci :s, . . . ,Cn : s , / i : (sj x . . . sl
mi) -> s , . . . Jp : (s? x . . .sf

• where each P^ is defined as in Fig. 7.6 (p. 267).

We are required to show that, for every M € Mod({E,Ax)) (using loose semantics), for
every interpretation I: Var —> M

M KK'
for every x-variant // of t.

We establish 7.15 by a second induction over the form of a — i'(x) € sM.

Because we use loose semantics and s has constructors, we know that a must be of the
following forms

• a — cf1 for some i = 1,... ,n. In this case, by the main IH, M \=L P[ci/x] and so
(7.15) holds.

• a = /•A f((a l
])

M , . . . , (ajrlt)
M) for some z = 1,... ,m, with each (a})M 6 (sj)M 0" =

First, let M(s, {xj- : 4}j=ir.. imi) be defined as in Fig. 7.6 (p. 267):

M(s, {x) : s* }j=i,,..,m,:) = {x) : s) \ s) = s for j{ = l i ? . . . , m j = {xi : 5 , . . . , xk : s}

We deal with the more complicated case where M(s, {x^ : «sJ}j=iv.Mm.) is not empty
and k > 1. The other cases (where the set is empty or when k = 1) are similar.
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We have a set of terms corresponding to M(s, {xlj : si}j=i,...,

M(s, {a) : = Wj ' s) \ s) = s for j ; = l i ? . . . , m j : s , . . . , ak : s}

By the second IH, for each j = 1 , . . . , k it is true that

K P

for the x-variant tj of i defined

But this means
M (7.16)

Now,

where

Pfi =

is
Qfi = P[Xl/x]

P{fi(x\,

P[xk/x]

t

By the main IH,

M

By repeated instantiation, this means

, . . . ,a*m)/x\

M\=lQ'f.^P[fi{ali,...,ami)/x]

with
Q'ft = P[oi/ i] - . . . - P[ofc/x]

So we can repeatedly instantiate Q' with (7.16) j = 1 , . . . , k to obtain

M K Pl/^ai^-.^amJ/a:]

This gives us (7.15) as required.

•
Remark 7.17. We omit the opposite direction - completeness. Completeness is not as
important a property as soundness for the purposes of program extraction.

The proof of completeness would follow along the lines given by Cengarle in [Cen94, pp.89-
91], but would require constructive models for specifications (e.g., Kripke semantics), due
to the constructive nature of our logical rules.

Also, as noted by Cengarle, the completeness theorem does not hold for the case where
we use loose semantics and where S P involves basic sub-specifications with constructors
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for sorts. This is because the model classes for such sub-specifications are computation
structures, which, by Godel's Incompleteness Theorem, do not have complete formal sys-
tems. Note that only these sub-specifications permit reasoning with structural induction
schemata. Thus, our logic with schemata is sound with respect to our loose semantics,
but not complete.

7.5 Discussion

This chapter presented the important concepts of structured specifications in CASL and
defined the logic SSL. The next two chapters will be concerned with application of the
Curry-Howard protocol to SSL.

In Chapter 8 we will define a logical type theory for SSL for which the Curry-Howard
isomorphism holds. Then, in Chapter 9, we will show how to transform SSL proofs into
provably correct functional programs, which may then be used to consistently extend
structured specifications.

The logic SSL is extensible. Later in this part of the thesis, we will propose various
extensions to the basic SSL. In Chapter 9, we shall extend the language of CASL and
our logic to specify with and reason about a lambda calculus of the SML programming
language. This is necessary for us to use the Curry-Howard protocol to extract lambda
terms from proofs of SSL and to obtain executable refinements of CASL specifications.

The current chapter has not dealt with generic (parametrized) specifications. Chapter 10
extends SSL to the generic specifications of CASL.

The final chapter of this part of the thesis, Chapter 11, will examine how our calculus and
the synthesis results can be applied to give methods for structured program synthesis.
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Proof-theoretic properties of SSL

According to the Curry-Howard isomorphism, ordinary intuitionistic logic corresponds to
a logical type theory. Intuitionistic proofs correspond to terms, formulae to types and the
logical rules to type inference rules of the theory. In Chapter 3 of Part II, we defined
the Curry-Howard protocol as a framework for generalizing proofs-as-programs to new
logics and programming paradigms. Integral to that framework is the identification of
a type theory for the target logic so "that there is a correspondence in the style of the
Curry-Howard isomorphism.

We want to apply the Curry-Howard protocol to synthesize correct functions from proofs
about CASL specifications. To achieve this objective, we must first investigate a similar
version of the Curry-Howard isomorphism between SSL and an associated logical type
theory LTT(SSL). Then, in the next chapter (Chapter 9), we will use LTr(SSL) to
achieve the ultimate goal of adapting proofs-as-programs to SSL.

Our logical type theory is a kind of lambda calculus. Its distinguishing feature is that the
types are specification/formula pairs (similar to the logical type theory for Hoare logic
of Chapter 5 in Part III, where types were program/formulae pairs). As in the case of
the type theory for intuitionistic logic there is an associated normalizing relation. This
relation corresponds to a proof normalization strategy for simplifying proofs by eliminating
redundant application of rules. Owing to the presence of structural rules, we need to
consider a more complex normalization strategy than that used by intuitionistic logic. We
will derive two important proof-theoretic properties with respect to this reduction relation:
the Church-Rosser property and strong normalization.

We proceed as follows:

• Section 8.1 defines a logical type theory for our calculus and explains how the Curry-
Howard isomorphism holds for this new context.

• Section 8.2 identifies rules for proof normalization and proves the strong normaliza-
tion theorem (Theorem 8.2.9).

• Section 8.3 derives the Church-Rosser property for our proof-terms (Theorem 8.3.3).
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• Finally, in Section 8.4, we provide a discussion of our results.

In Part III we applied the Curry-Howard protocol to the synthesis of imperative programs
with return values. Part of that work involved defining a similar adaptation of the Curry-
Howard isomorphism to the Hoare logic and an associated type theory (Chapter 5). This
chapter provides a second example of how the isomorphism can be adapted for use with
an application of the protocol.

The type theory of this chapter were first presented in [CPWOO]. The author, together
with Crossley and Wirsing, claimed strong normalization and the Church-Rosser property
for SSL in [CPWOO] - but this chapter presents the first full proofs of these results. The
proofs of strong normalization and the Church-Rosser property are based on those given
for the classical calculus of Peter reins, Crossley and Wirsing in [Pet96, WCP98]. However,
our results are adapted for our constructive calculus with its distinctive proof-terms.

8.1 A type theory for SSL

To define our logical type theory ZyTT(SSL), we proceed as we did for our version of Hoare
Logic (Chapter 5 of Part III). We define a version of the lambda calculus whose terms
(referred to as "proof-terms") represent proofs. We take types of proof-terms to be pairs
of specification expressions and formulae. Then we define type inference rules so that
correct typing of a proof-term corresponds to a valid proof according to the rules of SSL.

8.1.1 Proof-terms

Recall that the rules of SSL extend intuitionistic logic with rules for using structured
specifications. Correspondingly our proof-terms consist of the lambda calculus for intu-
itionistic type theory (Chapter 2 of Part II) extended with additional constructs to handle
structured specifications.

The syntax for proof-terms, PT(SSL) is given in Fig. 8.1.

Notation 8.1. Proof-terms are given with respect to two sets of variables:

> a denumerable set of proof-term variables, and

• Var, the set of individual term variables (already used to define terms of SSL in the
previous chapter).

Similar to the logical type theory for intuitionistic logic in Chapter 2, our proof-terms
involve individual terms (the terms used within the-types of the proof-terms). Individual
terms come from signatures of specification labels used in rules. However, for the purposes
of speaking about proof-terms, it will sometimes be helpful to speak about the set of all
individual terms, without reference to the particular signature they come from.
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Notation 8.2. The set of all individual terms is the set of terms for all signatures,

(J Terra(£, Var)
SECSig

For the rest of this thesis, we shall simply refer to this set as individual terms.

Remark 8.1. Note that individual terms are distinct from the proof-terms of LTT'(SSL).
The former are used by formulae of IHL, while the latter are used in the logical type theory
to represent SSL proofs. Individual terms occur within proof-terms to denote the use of
individual terms as witnesses in instances of (3-1) and for instantiation in instances of
(V-E).

Notation 8.3. Formulae used in proof-terms are taken from the set of well-formed formulae
for all signatures,

(J WFF(Z, Var)
2€CSig

For the rest of this thesis, we shall simply refer to this set as formulae.

Remark 8.2. On its own, the translation proof-term

p9 a

is pure syntax and has no semantics of evaluation - it does not denote the evaluated
application of the symbol map p to a. However, later, when we define a normalization
strategy for proofs, we will simplify translation terms by evaluating symbol maps.

8.1.2 Types

A theorems of SSL involves a specification expression paired with a formula. Because we
want types of proof-terms to correspond to proved expressions, a distinguishing feature of
our theory is that its types will be specification/formula pairs, from the set

Pairs(SSL) = {SP o F \ S P is a specification expression and

F is a formula from U^CSig WFF(E, Var)}

Remark 8.3. This treatment of types is similar to our work on adapting the Curry-Howard
isomorphism to Hoare logic, where types range over program/formula pairs. It suggests
a wider range of application of the Curry-Howard isomorphism to logical systems that
involve formulae paired with some kind of labels (so-called labelled deductive systems
[Gab96]. We leave exploration of this possibility to future research.

A type theory for SSL
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a,b,c ::=
ass(SP, uF)

ax((E,i4x),F)

rec(Conss,s,p)

abstract uF. a
app(a,b)
(a, 6)
fst(a)
snd(a)
use x : s. a
specific(a, t)
show(£, a)
select (a) in x.y.b
case a of inl(z).6, \nr(y).c
in I (a)
inr(a)
abort(a,F)
p* a
hide(a, SL)
unioni(a,Sp)
union2(a, S P )
exti(a, SP)

a, SP)

Proof-terms, PT(SSL), of L7T(SSL) ~
assumption, where F is a formula, S P
is a specification expression , u is in
VarPT(SSl)

axiom, where F is a formula, (£, Ax) is a
basic specification expression
structural induction, where Conss is a list
of constructors for sort s and p is a list of
proof-1 erms.
abstraction, u from VarPT{SSL), F a formula
application
pair
first projm fen
second projection
term variable abstraction, x e Var, s a sort symbol
term application, t an individual term
witness, t an individual term
select, x a term variable and y from VarPT{SSL)

case, x and y are variables from VarPT^SSL^
in left
in right
abort, where F is a formula
translation
hide, SL a symbol list
first union, SP a specification expression
second union, S P a specification expression
first extension, S P a specification expression
second extension, S P a specification expression

Figure 8.1: Syntax for the proof-terms of LTT (SSL).
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A h ass(SP,
where Sig(A) C Sig(Sp)

T,x:A\- dSp<>B

y\-Xx:A

h

where A e Ax

h

SPOAAB (A-I)

r h fst(d)SpOj4

h inl(d)

h snd(d)Sp<>A2

r h

(A-E2)

h inr(e)Sp<>i4vB

h use x : 5.

r,ri,r2hcase/of \n\(x).d, inr(y).eS p < > c
-E)

h specific^,

xl \- eSpoC

r i , r 2 h select (d) in ^.

r h

(3-E)

Th abort(d,i4)
(-L-E)

We abbreviate the relation f-LTT(SSL) by h. These rules have the same conditions of
application as the corresponding rules of Fig. 7.4, p. 261, Chapter 7.

Figure 8.2: Logical rules of SSL represented in the logical type theory LTT'(SSL).

W-
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T h dSpoA

pT h {p m d)(Sp w i t h

(hide)

where F U {A} c WFF(Sig(Sp)/SL, Var)

jSp_2)(Sp-iandsp^4 (uniom)

Ft-
union2(d, -1 a n d

r

T I- exti(d, 3-1 t h e n (exti)

h e.Xt2(d, 5 - 1 t h e n SP-EXT)oinr(i4)
(ext2)

We abbreviate the relation I~LTT(SSL) by h. These rules have the same conditions of
application as the corresponding rules of Fig. 7.5, p. 262, Chapter 7.

Figure 8.3: Type inference rules of LTT(SSL) corresponding to the structural rules of SSL.
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Let E = (5, F, P) be a signature that contains a sort s generated by constructors
Cons C Fs,

Conss = x . . . x : (s? x ... x

Let P be a formula of E with x : s free.
For each z = 1, . . . ,p we make the following definitions. Take a set of variables

j}j=iv..,mi corresponding to argument sorts of fa, we define

(When this set is empty, then fa does not involve s as an argument sort.)
If this set is empty, then we define

Pfi = \fx\ : 4 , . . . , P[fa(xl..., x ^

Otherwise, we take

J t 1 1 ' ' '' *"i

where Qf. is formed from M(s, {x]

S A \ n = l m

P[fi(x\,..., 4

as follows. Assume M(s,{x)

If k>l,

Qfi=P(x1)=>...=>P(xk)

Then we have the following induction schema for s in E:
(E,Ax)oP[ci/x] (X,Ax)oP[cn/x] ,<2

ai . . . an Vi

(Z,Ax)oPfp

p 7nd(s,E)

Figure 8.4: Type inference schema corresponding to the general structural induction
schema.
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8.1.3 Type inference rules

We use proof-terms to denote SSL proofs. This follows from associating types with proof-
terms by the typing relation (.)(•). When p € PT(SSL) is associated with type ( S P O F ) e
Pairs(SSl), we write pSpoF and say that p represents a proof of the pair S P O F.

A proof-term correctly represents a proof when it is typed with the proof's formula and
specification according to a set of type inference rules. Each type inference rule corre-
sponds to a rule of SSL. Consequently the division between logical and structural rules is
preserved.

The rules for typing proof-terms that denote instances of logical rules are given in Fig. 8.2,
while correct typing of proof-terms for structural rules is given in Fig. 8.3.

The general form of the induction schema corresponds to the typing schema given in
Fig. 8.4.

These rules define an inference relation ^LTT(SSL) that holds between a context F and
a typed proof-term pSpo i? . A context F consists of a set of assumption formulae with
associated proof-term variables

r 6 y({uF I u e VarPT{SSL) and F is a formula from UseCSig WFF{Y>, Var)})

(We often write (Fi, F2) for the union of two contexts (T\ U F2).)

Remark 8.4. An assumption variable u from a context can be used to build a larger proof-
term by means of the (Ass-I) rule. Applications of that rule will be denoted by subterms
of the form ass(F, SP , U) in the larger proof-term.

The rule for translation, (trans), requires us to apply symbol mappings to context formulae
and to the formula of the conclusion. So we require the following definition.

Definition 8.1.1 (Translation of contexts). The translation of the context F by a
symbol mapping p is written p'F, and is defined by

u
G e F}

8.1.4 The Curry-Howard isomorphism

The Curry-Howard isomorphism for intuitionistic logic states that proofs of formulae can
be denoted by correctly typed terms of a typed lambda calculus with dependent products
and sums. An analogous property holds between terms of our logical type theory and
proofs of theorems in our logic.

Theorem 8.1.2 (Curry-Howard correspondence between LTT(SSL) and SSL). The
following properties hold

1. Givi.r a natural deduction proof D of h$sL S P o A, we can construct a well typed
term hLTT{SSL) fSp<>A.
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2. Given a well-typed term ^LTT(SSL) fSF°A> we can construct a natural deduction proof
D with conclusion S P O A

Proof Item 1) is derived by straightforward induction on the structure of the deduction
D. Item 2) is obtained by induction on the structure of the inference t~LTT(SSL) , ~°~~ * ~

8.1.5 Proof-term information

A proof-term is a very compact representation of information important for formal rea-
soning about proofs. Given a proof-term d with a derivation

r l
t~LrT(SSL)

JSPOF

there are algorithms to compute the following data from d

1. the current context con(d)

2. the specification sp(d) for which d is a derivation,

3. the derived formula, for(d)

We define these algorithms in Figs. 8.5 and 8.6, by a modification of those given for the
system of [WCP98].

con(ass(SP,^A)) =
con(abstract uA. d) =

con(inl(d)) =
con(use x : s. d) =

con((d, e)) =
con(fst(d)) =

con (case / of

con is defined by:
{uA}
con{d)/{uA}
con(d)
con(c?)
con(d) U con(e)
con(d)
inl(o;).d, inr(y).e

con(se!ect (d) in z.y.e
con(/9 • d)

con(unioni(d, SP_2))

con(exti(d, SP_2))

— p'(con(d))
= con(d)
= con(d)

con(ax((E,i4a;),F)) =
con(app(d, r)) =

con(inr(e)) =
con(specific(d,/,)) =
con(abort(d, A)) =

con(snd(d)) =
) = con(d) U con(e) U
) = con(d) U con(e)

con(hide(d, SL)) :

con(uniori2(d, S P _ 1 ) )
 :

con(ext2(d,SP_l))

= 0
= con(c?) Ucon(r)
= con(e)
= con(d)
= con(d)
= con(d)
con(/)

= con(d)
= con(d)
= con(d)

I

I

I
i
i

I
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sp(ass(SP, uA)) :
sp (abstract x. dA) ••

sp(use x : s. d) -
sp((de)) :

sp(snd(d)) =
sp(show(^, d)) •

sp(inl(d)) =
sp(case /

sp(p • d) = sp(d)
sp(unioni(rf, S P _ 2 ) ) = sp(d)

sp(exti (d, S P _ 2 ) ) = sp(rf)

for(ass(SP/a^)) = A
for (abstract xA.d) = (A-

sp is defined by:
= S P

= sp(rf)
= sp(d)
= sp(d)
= sp(d)
= sp(d)
= sp(d)

sp(ax((E,Ac),i4)) =
sp(app(d,r)) =

sp(specific(d, £)) =
sp(fet(d)) =

sp(abort(d,F)) =
sp(inr(e)) =

of inl(a;).d, \nr(y).e) = sp(d)
3p(select (d) in z.y.e) — sp(c?)
with /9
and SP_2

and SP_2

sp(hide(d, SL))
sp(union2(d, SP-1))

sp(ext2(d,SP_l))

for is defined by:

=> for(d))
for(inl(d)) = (for(d) V B)

for(use x : s. d) = Vx :
for(app(c?, e)) =

for(fst(d)) =
for(snd(d)) =

for(specific(d, t)) —
for(abort(d,yl)) =

5 • for(d)

for(ax((S,Ar),-A)) =
for((d,e)) =
for(inr(e)) =

for (show (t, d)) -
5 where for(d) = (-A —> J5) and
T4I where for(d) = (̂ 4i V A2)
A2 where for(d) = (Ai V A2)
A[t/x] where for(d) = Vx : s • A
A

for(case / of inl(a;).c?, inr(y).e) = for(d)
for (select (d) in z.y.e) — for(e)

for(p • d) —
for(unioni(d,SP_2)) =

for(exti(d,SP-2)) =

p(for(d))
for(d)
for(d)

for{h\de(d, SL))
for(union2(d, SP_1))

for(ext2(d,Sp_l))

(S, Ax)
sp(d)
sp(d)
sp(d)

sp(d)
sp(e)

= sp(d) hide SL
= sp(d) and Sp_2
= sp(d) and SP_2

= A
= for(cf) A for(e)
= (A V for(e))
= 3:r : 5 • for(cf)
for(r) = A

= for(d)
= for(d)
= for(d)

Figure 8.6: The definitions of sp and for.

Figure 8.5: The definition of con.
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8.1.6 Example: Password checking system

Recall the password checking system example given in the previous chapter. In Section
7.3, pp. 268-270, we developed a theorem in SSL about the system specification PWDSYS:

given any input x of a password, there is always an appropriate response message to be
output, explaining if the password is of the correct length or not. This is the theorem

I~L7T(SSL) PWDSYS O \fx : nat • 3y : string • ValidMsg(x, y) (8.1)

We will now show how the proof of this theorem can be encoded as a proof-term in our
logical type theory.

We require the following lemma, proved by boolean induction over NATBOOLEAN, as
identified in Example 7.7 of the previous chapter. Observe that a proof by induction
corresponds to application of the induction schema proof-term constructor.

ax(NATBOOLEAN, F = jfr ax(NATBOOLEAN, T = T ) N A T B O ° ' ' ™ N O T =

N V2

rec([T, F], boolean, \puP2})'NATBooi.lCANOV6:6oo/ean»6=Tv6=F
Ind(Boolean)

(8.2)

where pi = inr(ax(NATBoOLEAN, F = F)) and P2 = inl(ax(NATBooLEAN,T = T)).

In the proof of the last chapter, Section 7.3, pp. 268-270, the property (8.2) was used to
show that the function inRange(x) of PWDCORE is either true or false for any input pass-
word x. This required the use of structural rules to build PWDCORE from NATBOOLEAN.

The resulting proof-term makes use of proof-term constructors corresponding to these
rules.

i (8.2)
rjNATBoOLEANoV6:6oo/ean»6-Tv6=F

(trans)
JDJ- JD (BtoB»'NATBoOLEAN)o\/b:bool»b—trueWb=false

•* o

unlon^BtoB • ps, STmNGBooL)SNBoyb:booM=trueWb=false (unioni)

p 3 , S T R I N G B O O L ) , {SExt, AExt))PwDCoRE<'Wb:boolmb=trueyb=false ^
(exti)

where ps = rec([T, F], boolean, [pi,
(8.3)

SNB = (BtoB • NATBOOLEAN) and STRINGBOOL

and where BtoB is the symbol mapping [Boolean H* Bool,T *-> true,F H-» false] and
(SExt,AExt) is the signature and axiom extension required to form PWDCORE from
SNB.

In the SSL proof of the previous chapter, we instantiated (8.3) with inRange(x) for 6, by
application of (V-E).

1
%

I
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That proof corresponds to the following proof-term construction

PWDCoREoinRange(x)—trueVinRange(x)~ false
PA
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(8.4)

where p\ = specific(exti (union! (BtoB • p3, STRINGBOOL), (SExt, AExt)), inRange(x)).

We derive (8.1) by reasoning over the possible cases that either PWDCoREoinRange(x) =
true or PWDCORE O znRange(x) = false.

Assuming the first case corresponds to the use of a proof-term variable

PvvDCoREom Range(x)=true

in a derivation of the form

(7.9) u
inRange{x)—true

; P

PWDCORI:OA2P7

I P

app(pQ,p5)
Pm)Coim<>okPwd(x)

(Ass-I)

(->- E)

app(»r acceptable')
E)

show(TaSSWOrd acceptable' , app(p7 , app(^6 , p5))fw>COREo3y.stringmValidMsg(x,y) ( y i ) '

where p5 = ass(SpecNamePwdCore,uinmin^x^true). The proof-term P ^
responds to an instantiated axiom of PWDCORE, which can be written in full as

specific(ax(PwDCoRE, Vx : nat • inRange(x) ~ true —> OhPwd(x)),x)

CQr

with type P W D C O R E <O inRange(x) = true -> OkPwd(x). T h e proof-term p

also corresponds to an ins tant ia ted axiom of P W D C O R E , which when wri t ten in full iis

specific(ax(PwDCoRE, Vx : nat • OkPwd(x) —> ValidMsg(x, 'Password acceptable ' ) ) , x)

with type P W D C O R E O OkPwd(x) —> ValidMsg(x, 'Password acceptable ')

In t he second case, similar reasoning over an assumpt ion variable v

using the axioms of P W D C O R E will give a proof-term derivation of the form

1.inRange(x)—true
I Aco .

PwDConKoVaiidMsg(x,lPlease choose a password in correct range')
8

, .( 'Please choose a
y 'password in correct range'

n \P\\'i)COREo3y:string*ValidMsg(x,
1F8)

(3-1)

(8.6)

axioms.where ps is a proof-term involving manipulation of PWDCORE

By applying (V-E) using (8.4), (8.5) and (8.6), followed by (V-I) and (hide) will give (8.1),
as required

^ LTT(SSL)
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with proof-term

p = hide(use x : not. casep4 of in!(w).show('Password acceptable', app(£>7, app(p6,

inr(v).show('Please choose a password in correct range', ps),

{ge, inRange})

Fully expanded, the proof-term is as follows

p = hide(use x : not. case

(specific(exti(unioni(I?£oi?» (rec([T, F], boolean, [(inr(ax(NATBoOLEAN,T = T))),

(inl(ax(NATBooLEAN,T = T)) ) ] ) ) ,STRINGBOOL), (SExt,AExt)),inRange(x)))

of in I (it), show ('Password acceptable', app(p75app(pe,p5))),

inr(i>).show('Please choose a password in correct range',p&),

{ge, inRange})

By our version of the Curry-Howard isomorphism (Theorem 8.1.2 above), the entire SSL
proof can be retrieved from this proof-term. In particular, the proof-term encodes con-
structive information obtained from the (3-1) steps of (8.5) and (8.6). The witness strings
for the variable y are always valid messages, such that ValidMsg(x, y) given a password
number x.

In Chapter 9 we will use the Curry-Howard protocol to provide a method for extracting
correct programs from proofs in SSL. We will show how the constructive information
in proof-term p can be used to extract a password checking program, which outputs an
appropriate response for any given password number input. Then we will also show how
this program can be treated as a specification of a function to build a consistent extension
of PWDSYS.

However, before we investigate program extraction, we will investigate some simplifications
corresponding to proof normalizatio that can be made to proof-terms. These simplifica-
tions will help in extracting programs, because they will yield more optimal programs.

8.1.7 Full form of the logical type theory

In full, the logical type theory LTT(SSL) is defined as a tuple, following the general
definition of Definition 3.2.3, Chapter 3, p. 85:

LZT(SSL) -

consisting of

a set of proof-terms PT(SSL), described in 8.1.1 and Fig. 8.1,

Normalization and proof-term reduction 289

a set of types, taken as Pairs (SSL),

• a typing relation (.)(•) between proof-terms and types, so that if p e PT(SSL) has
type ( S P O F ) G Pairs(SSL), we write p S p o i \

• a type inference relation given by \~LTT(SSL) with rules PTR(LTT'(SSL)), explained
in 8.1.3,

• a normalizing relation t>ssL? described in the next section (Section 8.2, p. 289).

8.2 Normalization and proof-term reduction

We define a normalization strategy for removing redundant parts of SSL proofs, based on
proof normalization for intuitionistic logic.

In intuitionistic logic, normalization consists of repeatedly deleting matching applications
of introduction and elimination rules (see, e.g., [Gen69] or [GLT89] and also Chapter 2). As
we have seen, the logical rules of SSL correspond to intuitionistic rules, with introduction
and elimination rules for the connectives. Consequently, we can define a similar kind of
normalization.

As was the case for Int in Chapter 2 (pp. 40- 42) and for Hoare logic in Chapter 5 (pp.
160-161), we define our proof normalization strategy in terms of a normalizing relation
over proof-terms of our logical type theory.

The relation >ssL corresponding to normalization is given inductively by the rules of
Figs. 8.7 and 8.9. As usual, the LHD and the RHD of a rule are called the redex and the
reduct of the rule, respectively.

We write
P >SSL P

when p' may be obtained from p by the transitive closure of >LTT{SSL)
 a s defined in

Figs. 8.7 and 8.9. When p 1>SSL p' holds, then p' is obtainable from p by a sequence of
replacements of subterms using the rules of Figs. 8.7 and 8.9. In this case, we say that p
is reducible to p'.

The rules fall into two categories:

• Reductions of logical rules. These reductions follow intuitionistic normalization, and
form extention of /3-reduction over the proof-terms that corresponding to sub-proofs
in which a connective is introduced and then immediately removed. Fig. 8.7 gives
these rules.

• Moving of structural rules. Redundances can also occur due to application of struc-
tural rules in between two logical introduction and elimination rules that may be
further simplified. To deal with this, we introduce reduction rules for moving struc-
tural rules up a proof tree before logical introduction rules. These reduction rules
are given in Fig. 8.9.
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app(abstracta;-4.aSpoS,6Spo^)
specific(use x : s. a81*0^^*"4,?;)

fst((a,6)S p o^A B)
snd((a,b)SpOj4AB)

case \n\(a)Sp<>AyB of inl(z).&SpoC, \nr(y).cSp<>c

case inr(a)S p O i 4 v s of inl(x).6SpoC, inr(?/).cSp<>c

select (show(v,a)Spo3^s*p) in x.y.bSpoC

>SSL

>SSL

I>SSL

>SSL

>SSL

>SSL

>SSL

a[b/xfp<>B

a{v/ifp<>A^v-/x^
aSroA

frSpoB

b[a/xfp<>c

c[a/y)Sp<>c

b[a/x][v/y]Sp<>c

Figure 8.7: Logical reduction rules that inductively define £>SSL-

The rest of this section provides some motivation for these two categories. Also, at the end
of this section, we also briefly discuss further permutations of rules that are possible, but
which are not included in our normalization strategy. These permutations were identified
in [WCP98. Pet96] for the calculus of that work, but are also applicable here.

8.2.1 Reductions of logical rules

We provide some motivation for the rules of Fig. 8.7. Our rules define reduction as a
relation >SSL that holds between proof-terms.

The simplest cases of logical reduction are where a connective is introduced and then
immediately removed.

Here we give two simple examples.

Example 8.1. The proof

d Po ,SPOB

(A-I)

-E)

can be reduced to the very simple proof

dSroA

because the introduction of the conjunct B ultimately adds nothing to the proof.

To define the full range of possible logical reductions using proof-terms, we need to define
substitution, in the obvious way.

Definition 8.2.1 (Substitution). The substitution of the proof-term r for the proof-
term variable x in the proof-term d, written d[r/x], is defined recursively, as in Fig. 8.8.
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1) Logical rules

abstract yB. d[r/x] —

(d,e)[r/x] -
(\n\(d))[r/x] -

otherwise

abstract yB. d if y : B = x : A
abstract yB. d[r/x] if y : B ^ x : A,

y not free in r,
abstract yB. d[z/y][r/x] otherwise, where z is new

(d[r/x],e[r/x})
\n\(d[r/x])
\nr(d[r/x])
use y : s. (d[r/x\)
show(t,d[r/x])
app((d[r/x]),(e[r/a;]))
fst(d[r/x])
snd(d[r/x])
specif \c(d[r/x],t)

case / of \n\(z).d, \nr(y).e[r/x] = case f[r/x] of inl(^).d[r/a;], inr(2/).e[r/x]
select (d) in ^.?/.e[r/x] = select (d[z/x\) in z.?/.e[2;/a;]

^ Structural rules

(use y : s. d[r/x]
sho\N(t,d)[r/x]

(fst(d))[r/x]
(snd(d))[r/z]

specific(d,

(h\de(d,SL))[r/x]
unioni(d, SP_2)[r/x]
un\on2(d, SpA)[r/x]

exti(d, SP_2)[r/x]
ext2(d, SP.l)[r/a;]

= h\4e(d[r/xlSL)
— unioni(d[r/x], SP_2)
= union2(d[r/rr], S P _ 1 )
= exti(d[r/a;], SP_2)
= ext2(d[r/x], SP._1)

Figure 8.8: Definition of substitution of proof-terms for proof-term variables.
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Example 8.2. Substitution is used to define reductions involving the
this, consider the proof

connective. To see

»A
}

,SPO£

HLTT(SSL) abstract^4. h,7T(SSL)

app(abstractxj4. e,d)

This too can be reduced to the much simpler proof:

SPOB

e[d/x]SPOB

where the proof

has replaced the assumption

H

{xA}

L T T ( S S L )

,SPOA

Example 8.3. Here is the logical reduction for a particular (V-Ii) followed by a (V-E). Note
that, for simplicity, we have assumed that the contexts for the two proofs of C are the
same. (The case of a (V-I2) followed by a (V-E) is similar.)

9SroA

r2, r 2 , {?/*} h L r r ( S S L ) e rT h L r r ( S S L )

h (case inl(p) of inl(x).d, inr(y).e)SpoC<

(v-ii)

(V-E)

This reduces to application of a new, derivable rule (Ass-E):

{xA} hL h L T T ( S S L )
,SPO,4

H
L T T ( S S L )

SPOC (Ass-E)

The corresponding proof-term reductions are as follows:

(case inlfo) of inl(ar).d, inr(y).e)SpoC >SSL d[g/xfp°c
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8.2.2 Moving structural rules

We now provide some motivation for the rules of Fig. 8.9. Under certain conditions, it
is also possible to move structural rules up and down proofs. This can lead to matching
of previously separated introduction and elimination rules and, consequently, to further
logical reductions.

S(abstract uA. d)
5(use x : s. d)
S(show(t,d))
S((d,e))
5(inl(d))
S(\nr(d))

where S(p) denotes an̂

>SSL

>SSL

>SSL

>SSL

>SSL

>SSL

abstract uA. S(d)
use x : s. S(d)
show(t,S(d))
(S(d),S(e))
\n\(S(d))
\nr(S(d))

r of the following possible operations on a proof-term p:
unioni(p, SP), union2(p, SP) exti(p, SP) or ext2(p, SP).

p« (abstract uA. d)
p9 (use x : s. d)
p« (show(t,rf))
P9((d,e))
p • (inl(d))
pm(\r)r(d))

hide(abstract uA. d, SL)
hie use x : s. d, SL)
h\6e((d,e),SL)
hide(inl(d),5L)
hide(inr(d),5L)

>SSL

!>SSL

>SSL

>SSL

>SSL

[>SSL

>SSL

>SSL

>SSL

t>SSL

>SSL

abstract u^Al S(d)
use .T : p(.s). (p*d)
show(p(t),(pmd))
<(p»d),(p«e))
inl((p.d))
inr((p»d))

abstract^. 5(d)
use .T : s. hide(of, 5L)
(hide(d,5L),hide(e,5L)>
inl(hide(d,5L))
inr(hide(d,SX))

Figure 8.9: Structural reduction rules that inductively define 1>SSL-

Example 8.4. Consider the following example.

r KLTT(SSL) (abstract t / . d)S~>»-B ,
' ir

P'F) +-LTT{SSL) (P • abstract uA. d)^ w i t h P)*P(A)*P(B) LTT(SSL)
P with p)op(A)

r-LTT(ssL) (app(p • abstract

where the last step of the proof is an instance of (=^-E). Observe that the lambda abstrac-
tion and application in the proof-term (app(p • abstract uA. d,r)) cannot be matched for
reduction, becsuse of the renaming over the abstraction. However, if we swap the order of
the rule applications (=>-!) and (trans), we obtain a correctly typed proof-term, for which
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, {vA}
h L r r ( 5 S L ) (P. d

(t

H i T T ( S S L ) (abstract t A p . LTT(SSL) r (SP with p)op(A)

h L r r ( S S L ) (? • app(abstract

The resulting proof-term reduces as follows

d, w i t h

app(abstract u . p • d, 7") >SSL (p • d)[r/u]

Clearly it is in our interest to systematically move structural rules above introduction
rules, when possible, in order to eliminate further redundancies in a proof. We do this by
extending >ssi_ w ^h rules for swapping proof-terms for structural and introduction rules.
Fig. 8.9 gives these additional rules.

Remark 8.5. Such interchange is not possible for (hide) and (3-1) rules because an 3
introduction may be applied with respect to a witness term that is later hidden.

In this case, the rules cannot be reversed. For example:

^LTT(SSL) Show(t, d)
(3-1)

, d), h i d e (hide)

cannot be replaced by a sequence

^ LTT(SSL)

hide(d, h i d e
(hide)

(3-1)
r f-LTT(SSL) show(^, hide(d, *))<Sp h i d e

The hiding inference is not permitted because the hidden term t is then used as a witness
by the existential introduction.

8.2.3 Reduction preserves derivability

We have the following important lemma about the reduction relation [>SSL

Lemma 8.2.1. Let p and pf be proof-terms such that p >SSL p'> If we have a derivation
T \~LTT(SSL) pSpoA then we can construct a derivation T \~LTT(SSL) p'spoA.

Proof. By a straightforward induction on the possible forms of p. •
Remark 8.6. Our main concern is the extraction of programs from proofs. As discussed
in Chapter 3 of Part II and seen in the cases of intuitionistic logic (Chapter 2 of Part

r.i
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(Composition) p2 • p\ • dSp w i t h Pl w i t h

with p+op**{A)

(unioni) trivializing hide(unioni(d, SP_2), -X a n d Sp-2) h i d e

(union2) trivializing hide(union2(^, S P . 1 ) , SP_2)((S P-1 a n d h i d e

(exti) trivializing hide(exti(d, SP_2), -1 a n d Sp-2) h i d e

(ext2) trivializing hide(ext2(^, SP_1), S 2 ) ( ( S P - 1 a n d Sp"2) h i d e

>triv

SP_1 and SP_2 are arbitrary specification expressions.
Ei denotes Sig(SP-l) and E2 denotes Sig(SP_2).
Note that p* is the composition of p\ followed by

Figure 8.10: IVivializing structural reductions.

II) and Hoare logic (Chapter 5 of Part III), proof-normalization is a useful means of
simplifying proof-terms prior to transformation into required programs. Application of
a normalization strategy will yield simpler programs, because, as we will see in the next
chapter, the size of an extracted program often reflects the size of the proof.

Note, however, we are generalizing state-of-the-art proofs-as-programs, where the impor-
tance of normalization is devalued from naive methods for constructive program extraction.
In those methods, proofs are treated as programs with proof-normalization considered to
be an operational semantics. Our work stands in contrast to that treatment, by virtue of
our adherence to the Curry-Howard protocol. Normalization does not correspond to exe-
cuting programs, because, in the protocol, proofs are not considered to be programs. (See
Remark 2.14 of Chpater 2, p. 2.14.) Proofs are transformed into programs via an extrac-
tion map. Potentially, we could extract correct programs from proofs that are not normal.
So, from the perspective of program extraction according to the protocol, normalization
should be seen as a pre-processing strategy to be carried out prior to extraction for the
purpose of yielding more optimal programs.

•r r

8.2.4 Further possible reductions

The normalization process defined by Figs. 8.7 and 8.9 does not eliminate all possible
redundancies in a proof. Following [WCP98] and [Pet96], we can define further trivializing
reductions over structural rules. However, these reductions result in changing the speci-
fication of the conclusion. This is not the case of the normalization reductions discussed
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above, where the formula and specification expression remain the same, and only the proof
is simplified.

Example 8.5. As an example of a structural rule reduction, two translations can be con-
solidated into one. In particular translating by p followed by p~l can be regarded as
redundant. In general we have the reduction:

(P

I-L7T(SSL) (P2 • Pi

reduces to

P* '(r)
(trans)

(8.7)

where p* = p2 ° Pi (the concatentation of the symbol maps p2 and /?]). In the special
case that pi = p^1 or vice versa, the translation of (8.7) becomes a triviality and can be
omitted.

Example 8.6. Another example of a trivial, reducible proof is taking the union with a
specification whose signature is E and then hiding E, or vice versa. The pushout for the
union can be regarded as an introduction rule and hiding as an elimination rule in the
case where the signature goes from SPJL to (SP_1 and SP_2) and then back (by hiding)
to SP_1 . Thus we can remove the following pair of rules (and similarly for (unioni) in a
proof:

LTT(SSL)
( u m o n i }

*

The list of trivializing structural reductions can be formalized by a reduction relation >triv

over proof-terms, displayed in Fig. 8.9. The list is modified from that given in [Pet96], to
account for the different syntax of our proof-terms.

Extending >SSL to include Otriv will conserve the strong normalization and Church-Rosser
properties (to be proved for >SSL below). The reader is referred to [Pet96] for a proof that
can be readily adapted to our system.

Remark 8.7. For the purposes of program extraction, these structural reductions are not
as important as the logical reductions. Therefore we do not use them for the remainder of
this thesis. The reasons for this is as follows. In the following chapter, we will define an
extraction map from proof-terms to SML functions that will ignore all structural proof-
terms (except for renamings). So the simplification of redundant structural rules is not a
vital consideration. Logical reductions, in contrast, are important for program extraction,
because the size of logical proof-terms can affect the size of extracted SML programs.
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8.2.5 Strong normalization.

We now prove strong normalization for our normalization reductions: that is, we show
that any sequence of normalizing reductions obtained by Figs. 8.7 and 8.9 will always
terminate. We will prove this in Theorem 8.2.9 and Corollary 8.2.1. The proof follows
that given by Crossley and Shepherdson [CS93] for intuitionistic logic (based in part on
the reductibility methods of Tait and of Girard [GLT89]).

Recall that SSL consists of both logical and structural rules. The logical part of the formal
calculus is essentially intuitionistic logic with the same specification expression used to
label premisses and conclusions. The proof-terms, and reduction rules, for that part of
the calculus are essentially identical to those of intuitionistic logic. It follows that the
logical part of SSL, considered separate from the structural part, is strongly normalizing
with respect to the logical reduction rules of Fig. 8.7.

However, in order to prove strong normalization for the whole calculus we have to include
the possibility of structural reductions.

We require the following notation and definitions in our proof.

Definition 8.2.2. We define the relation a >i b to hold if b is obtained from a by a single
application of one of the reduction rules of Figs. 8.7 and 8.9 to a redex of a.

If a t>i b holds, we say that b is immediately reducible from a.

Definition 8.2.3. We say that a proof-term is normal if it contains no redex. A normal
proof-term is irreducible.

Definition 8.2.4. Given a proof-term t, we let N(£) denote the least upper bound of
lengths of reduction sequences for t. We say that t is strongly normalizable if all reduction
sequences are finite.

Remark 8.8. It is the case that, if t is strongly normalizable, then N(t) must be finite.
The converse also holds, by Konig's Lemma.

Definition 8.2.5 (Neutral proof-terms). A proof-term is neutral if it is a
variable or is of one of the following forms:

ax((E,Ar), A) app(a, 6)
fist (a) snd(6)
select (a) in x.y.b pm d

SP) exti(d, SP)

case a of \n\(x).b, \nr(y).c
hide(d!, SL)

, SP)

specific(a, v)
abort(d, A)
unioni(d, SP)

Remark 8.9. A proof-term is not neutral if it is of one of the following forms:

abstract x. a use i : s. a
{a, 6) ini(a) inr(6) show(v, a)

Neutral proof-terms satisfy the following lemma.
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Lemma 8.2.2. Let p, q, r and s be proof-terms. Assume that p is neutral.

Then the following properties are true:

• Every immediate reduct o/app(p, q) is obtained by reducing p or q. That is, the im-
mediate reduct must be of the form. app(p',#) orapp(p, q'), where p' is an immediate
reduct of p and qf is an immediate reduct of q.

9 Every immediate reduct of select (p) in x.y.q is obtained by reducing p or q.

• Every immediate reduct of case p of \n\(x).q. \nr(y).r is obtained by reducing p, q or
r.

Also, every immediate reduct of use x : s. p, abort(p, A), specific^, v), fst(p), snd(p),
(p^p), hide(p, SL), unioni(p, SP)7 uniori2(p, S P ) , exti(p, SP) and ext2(p, SP) is obtained by
reducing p.

Proof. The proof follows easily from the definition of C>SSL- •

Our definition of candidates for reducibility (CR) is similar to that for the logical type
theory for intuitionistic logic, following [CS93] and Girard [GLT89]. Candidates for re-
ducibility are sets of strongly normalizing proof-terms of a common type. We will use
CR to prove strong normalizability, by showing that every derivable proof-term is in a
CR. Because our types now range over pairs of specification expressions and formulae, we
associate CR with such pairs (rather than single formulae, as in the intuitionistic case).
This is necessary to define well-formed operations over CR. We define CR for specifica-
tion/formulae pairs as follows.

Definition 8.2.6 (Candidate for reducibility). A candidate for reducibility (CR) of
formula A is a set C of proof-terms of type S P O A such that

CR1. If t G C, then t is strongly normalizable.
CR2. If t e C and t >i tf, then t1 6 C.
CR3. If t is neutral and all immediate reducts t' of t are in C, then t 6 C.

Lemma 8.2.3. Assume that tSpoA is a proof-term and C is a CR of type S P O A.

If t is neutral and normal, then t £ C.

Proof. This is a direct consequence of CR3. •
Definition 8.2.7 (Operations on CR) . We define operations on CR corresponding to
the connectives used to construct types, as follows.

Suppose that Ci, C2 are CR of types ( S P O Ai) and (SPO A<2) respectively. Then define

(,C\ => C2) as the set of all proof-terms t of type SPO(^4J => A2) such that, for every
proof-term u G C\, it is true that app(£, u) 6 C^-
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• (C\ A C2) as the set of all proof-terms t of type S P O (A\ A A2) such that fst(£) G C\
and snd(£) G C2.

• {C\ V C2) as the set of all proof-terms t of type SPO (A\ V A2) such that the following
holds. Assume C is any CR of some type S P O P , ft G {C\ => C) and /2 G (C2 =^ C),
where uCl is not free in ft and v°2 is not free in /2 . Then,

case t of inl(t/).app(/i, u), inr(v).app(/2, v) G C

Lemma 8.2.4. A CR can be obtained by applying any of the operations of Definition 8.2.7
to other CR.

Proof. We essentially follow the proof given in [CS93], adapted for our system. For the
operations =>, A and V we must verify CR1, CR2 and CR3.

Assume that C\ and C<i are CR of types (SP O A\) and (SP O A%) respectively.

case). (C\ => C2) is a CR because of the following facts.

CR1 Assuming t is in (C\ => C2) then, by Lemma 8.2.3 applied to Ci, the variable uCl

is in Ci, so app(t,u) is in C2. It is the case that app(£,u) is strongly normalizable,
by CR1 for C\. Consequently, Jsf(app(t,zx)) is finite. Then, as N(app(£,u)) >

is finite and t is strongly normalizable.

CR2 Assume t is in {C\ =$> C2) and t is immediately reducible to t!. \iu is in C\ then the
proof-term app(t, u) in C2, is immediately reducible to app(t;,u). By CR2 for C2,

x, u) is in C2. Hence t' is in {C\ =$- C2).

CR,3 Suppose t is neutral and all immediate reducts t1 of t are in (C\ =$- C2).

We wish to show that, if u is in C\, then app(t,u) in C2. We proceed by induction
on N(ti). By CR3 for C2, since app(t, u) is neutral, we need only prove that every
immediate reduct of app(£, u) is in C2. Because t is neutral, such a proof-term can
be of two forms:

(a) t can be of the form app(t/, u), where t' is an immediate reduct of t. Observe
that t! is in (C\ => C2). As a consequence app(i', u) is in C2.

(b) t can be of the form app(£, uf), where ur is an immediate reduct of u. But here
< X(w), so the result follows by the induction hypothesis.

(A case). (C\ A C2) is a CR because we can verify the following conditions.

CR1 Assume that t is in (C\ A C2). This means fst(t) is in C\. Because it can be shown
that yi{t) < N(fet(*)) + >f(snd(*)), we are done.

CR2 Assume t is in (C\ A C2) and t is immediately reducible to t'. Then it is the case
that fst(£) is in C\ and is immediately reducible to fst(t'). Consequently fst(t') is in
C by CR2 for C\. Similarly we have that snd(^) is in C2. So, f is in [C\ A C2).
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CR3 Assuming t is neutral and all immediate reducts t' of t are in C\ A C2, we have that
fst(i) is neutral and all immediate reducts of fst(£) are of the form fst(^), where t' is
an immediate reduct of t. Because any such fst(^) is in Ci, fst(t) is in C\ by CR3.
Similarly snd(t) is in C2. This gives us that t is in C\ A C2-

(V case). (Ci V C2) is a CR due to the following reasoning. First, suppose t is in C\ V C2-
Take an arbitrary type (SP O P), and a CR, called C, of type ( S P O P) . Take arbitrary
proof-terms f\ € (Ci =» C2) and / 2 € (C2 => C), where uCl is not free in /1 and v°2 is
not free in f2.

Then the following conditions for CR are satisified.

CR1 It is the case that

3sf(case t of i

But case £ of inl(it).app(/i, w), inr('y).app(/2, t̂ ) is in C and hence strongly normaliz-
able by CR1 for C. So N(£) is finite, as required

CR2 If t is immediately reducible to t' then case t of inl(w).app(/i, it), inr(t>).app(/2, v) is
immediately reducible to case t' of inl(u).app(/i,iz), inr(^).app(/2,^). By CR2 for
C, case £' of inl(tt).app(/i,u), inr(u).app(/2,v) is in C. As a consequence, £' is in

V C2), as required.

CR3 Assume that t is neutral and every immediate reduct t' of t is in {C\ V C2). Then

case £' of inl(?i).app(/i,u), inr(v).app(/2,<y) 6 C

We are required to show that t e {C\ V C2). This is tantamount to deriving

case t of inl(u).app(/i, w), inr(v).app(/2,v)

is in C. This proof-term is neutral, so we need only show that all its immediate
reducts are in C.

We can rephrase this requirement. We fix t and define g\ — app(fi,uCl) and g2 =
aPP(/2, v°2). We are then required to prove that r = case t of \r\\(uCl ).g\, \nr(vC2).g2

is in C, assuming that g\ and g^ are in C, £ is neutral and, for each immediate reduct
if of t, case if of i n l ^ 1 ) . ^ , tnr(^°2).^2 is in C.

We prove this by induction over N(gi) + ^{92)- Since r is neutral it is enough to
show all its immediate reducts are in C. But t is neutral, so these reducts must be
of one of three forms:
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(b) r2 — case t of inl(nCl).pJ, \nr(vC2).g2 where g\ is an immediate reduct of pi.
By CR2 for C, g[ is in C and X(^) < X(^1). Also, if t >i t7, then

case t ; of i

.#i, inr(t;C2).p2 e C by CR2

case t ' of i

=> case t ' of

So, r2 is in C by the induction hypothesis,

(c) r3 = case t of \n\(uCl).g\, inr(i^2).<72- This case follows similarly to r2-

This last case concludes the proof. •
Definition 8.2.8 (Canonical CR). For every labelled formula SPO^4 we define a canon-
ical CR, Cvjpoyi as in Fig. 8.11.

Formula A
Atomic
±

Ai A A2

A\ V A2

\/x : 5 • P

3x : s • P

Canonical CR
All strongly normalizable proof-terms of type S P O A
All strongly normalizable proof-terms of type S P O _L

I A

V CSPOA2

The set of all proof-terms t of type (SP O \/X : s • P)
such that specific^, a) E CsPOp[a/a;] f°r every proof-term a in
Terra(Sig(Sp), Var) of sort 5.
The set of all proof-terms t of type (SP O 3X : s • P) satisfying
the following condition. Take any type (SP o G), with a: not free
in G, and an arbitrary CR, called D, of type (SP O G). Take any
proof-term g of type (SP o A => G) satisfying

g[t/x) e CSpoA[t/x] => D

for any t € Terra(Sig(Sp),Far). It must be the case that the
proof-term

seiect (t) in x : s.yA.app(g, y)

is in D.

Figure 8.11: Definition of canonical CR for a labelled formula SP O A.

Lemma 8.2.5. Consider formulae of the forms S P O MX : s • A and S P O 3X : s • A. Then
it is the case that CSPO\/X-.S»A

 and C^^x-.s^A &re CR.

(a) n = case t' of inl(wCl).#j, inr(t>C2).£2 where t >i tx. By the induction hypoth-
esis, this is in C.

Proof. Our proof is adapts that given in [CS93]. As in Lemma 8.2.4 we must verify the
conditions for CR (CR1, CR2 and CR3) hold over CSPoVx:s^ and
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case). We show CSPO\/X:S»A is a CR by the fact that the conditions for CR are
satisfied.

CR1 Assume t € CsP<>\/x:s»A- Then specific(t, x : s) is in CSPOA- But because N(specific(£, x :
> N(£) we have that t is strongly normalizing as required.

CR2 If t>it', then specific^, a) (a € Term(Sig(Sp), Var)) is immediately reducible to
specific^', a). Assume specific^,a) is in C/^a/xy Then, by CR2, specific^', a) is also
in CA[O./X]' Consequently t' is in C

CR3 Assume t is neutral and every immediate reduct t' of t is in CspoWx-.smA- It follows
that, for any a € Terra(Sig(Sp), Var), the proof-term specific(£', a) is in SPoC^[a/x].
So specific^, a) is neutral and any immediate reduct of specific^, a) is of the form
specific(£',a) where t>\tr. By assumption these proof-terms are in Cspo,4[a/a:]- It fol-
lows by CR3 for CSp<>A[a/x] that specific^, a) is in CspoA[a/z]- T m i s t is in C

case). It is true that CSPO3X:S*A is a

To see this, we first make some assumptions. Take an arbitrary type ( S P O G) in which
x : s does not occur free. Let D be an arbitrary CR of type ( S P O G ) . Take any t 6 C^x:smA.
Then we know that

select (t) in x.yA.app(g,y) 6 D

for any proof-term g of type (SP O A=> G) which satisfies

g[a/x] e CSpoA[a/x] => D

for any a e Term(Sig(Sp), Var).

Then we can derive the conditions for CR.

CR1 Assume t is in C^x:smA. We abbreviate the proof-term abstract vA. ass(SP,zG) by g.
This is a proof-term of type S P O (A => G).

First we show that, for ea.ch a G Term(Sig(Sp), Var), it is the case that

(8.8)g[a/x] ~ abstract

is in CSp<>{A[a/x] => D).

We rephrase (8.8) as follows: we wish to prove that, for every u 6
the case that

it is

s = = app(abstract D

This is derived by induction on K(u). Since s is neutral, it is enough to show that
all its immediate reducts are in D. These are of two possible forms

(a) si = BSS(SP,zG)[u/v] = ass(SP, zG). Because this is neutral and normal, s\ is
in JD, as required.

I

I
I

I
I
'I

I

i
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(b) 52 = app(abstract v
AWxl

and this is in D by the induction hypothesis.

If (8.8) holds, then the term r = select (t) in x : s.y^.
K(r) > N(t), t is strongly normalizable, as required

, y) must be in D. Because

CR2 Assume t is in CsPO3x:smA. If t is immediately reducible to tr, then select (t) in x :
s.^.app^,?/) is immediately reducible to select (tf) in x : 5.yA.app(p, y). Thus we
have that t' is in Cspo3:r:s.A by property CR2 for D.

CR3 Assume £ is a neutral proof-term such that every immediate reduct t' of t is in
CSPO3X:S»A- The proof-term select (£') in rr : s.yA.app(g,y) is therefore in D. We are
required to prove select (£) in x : s.yA.app(g, y) is in D.

We can rephrase this requirement as follows. We define h to denote app(#,y), so
that h is in D. We need to prove r = select (£) in x : s.yA.h is in D, given that the
proof-term sekct (tf) in x : s.yA.app(g,y) is in £) for any t \>\ t'.

We proceed by induction on N(/i). Since r is neutral, it is enough to show that all
its immediate reducts are in D. Due to the fact that i is neutral, these reducts can
be of only two forms:

(a) The first possible form is select (£') in x : s.yA.h where i >\t'. This proof-term
is in D by hypothesis.

(b) The second possible form is r2 = select (t) in x : s.yA.h! where h>\hf. By the
property CR2 for D, it is true that h' e D and N(h') < 7f(h). Also, if t' is
an immediate reduct of t, then select (tf) in x : s.yA.hr is an immediate reduct
of select (tf) in x : s.yA.h E D and therefore is in D. So, r2 is in D by the
induction hypothesis.

This last case concludes the proof. •

We now show that every proof-term corresponding to an SSL proof is strongly normal-
izable. We do this by first showing that such proof-terms are always contained in a CR
(Theorem 8.2.9). Strong normalization follows as a simple corollary (Corollary 8.2.1).

Theorem 8.2.9 (Strong normalization for SSL proofs). Each derivable proof-term
f of type S P O A is in

Proof. We adapt the proof of strong normalization for intuitionistic logic given by Crossley
and Shepherdson in [CS93]. The adaptation is straightforward: additional complication
is due to the additional proof-terms corresponding to structural proofs.

We proceed by induction on the structure of / . To aid the derivation, we strengthen the
induction hypothesis to the following:
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Let z = zi,... ,zs be a list of distinct individual variables, t = £ 1 , . . . , ts a
list of individual terms, y = 3/p1,... yj?r a list of distinct proof-term variables,

and p = p1 , •.. pk a list of proof-terms m G g p j ^ , . • • CSP_ROG;

respectively, where each G\ = G^t/^] so that Sig(Gi) C Sig(SP_l) and

Sig(G{) C Sig(SPJ). Let y1 = yf\ ..., y ^ .
Then,

is a, proof-term of type S P O A' and is in , where A! — A[i/z\.

Without loss of generality, we will assume bound variables of / are not equivalent to any
y' or any variable in p'.

(Base case). I f / is an assumption ass(SP,a;'4), then either

• x is not yi, for every i G { l , . . . , r } , and so fSp<>A[t/z]\p'/y') is ass(SP,xj4 ), which
belongs to CSPOA'^ OT

x is yi, some i G { 1 , . . . , r } , and so fSpoA[t/z]\p'/yf] is pfP<>A , which belongs to
by the induction hypothesis.

-I). We are required to prove that, if fSpoB satisfies the induction hypothesis, then so
does (abstract xA. f S p o B ) . This is equivalent to proving r is in CSPOA'^B'I where r is
defined to be (abstract xA. fSpoB[t/z][pf/y'}).

Observe that, by definition, r can be rewritten abstract xA . (fSpoB[t/z])[p' /yf]. We can
rewrite this again as

r = abstract xA>. (fSpoB[t/z]\p'/yf])

because we can assume xA does not occur in y' or p'.

We define gSpoB' to be fSpoB[t/z][p'/y'], so that r - abstract xA>. gSpoB>'.

Noting that C^poA'^B' — CSPOA' ^ CSPOB'J
 w e have to show that, for all u G

true that app(r, u) = app(abstract xA . gSpoB
 5 u) G (

By the induction hypothesis,

is

j [t/z][pf ::q/y' :: xA>] G C s ,

since xA is not equivalent to any yf or any variable pr. Consequently, we may infer

J since xA is not equivalent to any y' or any
vanable p''.
because C^POB'

 1S closed under equivalence
of proof-terms.

gSpoB>[q/xA/]eCSpoB'
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for any q G CSPOA' •

The proof-term app(r,ix) is neutral. So, by condition CR3 for CSP OB', it is enough to show
that all immediate reducts are in

We proceed to prove this by subsidary induction on >%) + N(u), given that

9

and

uK poAr

In the base case, when N(g) -f K(w) = 0, app(r, u) is in normal form. Because app(r, u) is
neutral, app(r, u) must be in CSPOB' by Lemma 8.2.3.

For the subsidary induction step, consider that the reducts of r can be of only three
possible forms:

1. The first possible reduct form is app(abstract xA\ gSpoB\uf), where u > i u'. So, by
CR2, v! 6 CSPOA'- Also, J^(uf) < !N(w). So, the reduct is in CSPOB' by the- subsidary
induction hypothesis.

2. The second possible reduct form is app(abstract xA . gfSpoB
 yu), where g > i g'. So,

by CR2, g' e CSPOB'- Also, N(g') < N(p). This reduct is in CSPOB' by the subsidary
induction hypothesis.

3. The third possible form is g^p<>B'[u/xSp<>A'l which is in CSPOB', by (8.9).

(=>>-E). We have to show that app(fSpoA=>B', gSpoA) satisfies the induction hypothesis.
That is, we must show that app(f'Spc>A=*B'[i'/'z]\pf/y%gSpoA[i/z}\p'/yf]) is in CSPOB>. This
follows from the induction hypothesis for fSpoA^B[t/z]\pf/y1] and gSpoA[i/z]\p'/y'] and the
definition of C^POA'^B'-

(A-I). We define r to be {fpoA[i/z]\p'/y%g$p<>B[t/z)\p'/y'}) We are required to prove r is
in CSPOA'^B1- That is, we must prove that fst(r) G CSPO^' and snd(r) G CSPOB'-

Because fst(r) and snd(r) are neutral, we can proceed in a similar way to the case for (=>-
I) above, showing all immediate reducts of these proof-terms are in CSPOA'

 a n d CSPOB'^

respectively. We use a subsidary induction on N(/SpoA[?/f][p //y /]) -f N(gSp<>B[i/z}\pf/y']).

For instance, in the case of fst(r) one of the possible immediate reducts of fst(r) is
fSpoA[i/z]\pt/y']. This is in CSPOA', by the main induction hypothesis. The other im-
mediate reducts obtained by reducing / or g follow easily.

(i = 1,2). When i = 1, we have to show r = fet(fSpoAAB)[t/z]\p'/y'] is in
This follows from the definition of CSPO^AB')

 anc* the inductive assumption
that fSi^ArKB}[t/z}\p'/yf] is in CSPOA'AB'- We proceed similarly when i — 2 for snd(r).

(V-I). We show that (use x : s. fSpoA)[i/z)\pf/yr] is in CSPO\/X:S*A'• We can rewrite the
proof-term as use x : s. {fSpoA[i/z}\pf/y']), where x does not occur in p', nor in the types
of?/-
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So, we are required to prove that, for all to : s € Terra($ig(Sp), Var),

r = specific(use x : s. fSpoA[i/z]\p/yf],to)

is in CA'[to/x]- This is proved by induction on N(fSp<>A[i/z]\pf/y']).

Since r is neutral we need only consider its immediate reducts. These are of two forms:

1. The first form of reduct derives from a reduction of / . By induction on N(/[£/z] \pf/y'])
we can show that this reduct is in C^'ito/x] 3S required.

2. The second reduct is of the form f[i/z]\pf/y'][to/x]. This may be rewritten

f[i/zW/y'}[to/x}

Because x : 5 does not occur in f? or y', this proof-term is equal to

f[i/z}[x/to}\p'/y'}Sp°A'^

which is in CsPoA'[t0/x] by the main induction hypothesis.

(V-E). We have to show spec\f\c(fSpo^:smA[t/z]\pf/y%i0) is in CSPoA'[to/x} if, ^r all t0 : s,

This follows from the definition of

(V-Ii). We have to show \n\(fSpoA)[i/z]\pf /yfpoA'VB/ is in CSPOA'VB', assuming that
/ ^ ^ [ ^ [ p V ^ J i s i n C s p o ^ .

Take arbitrary types (SP O C), all CR C of type (SP O C), and proof-terms / i , fa in
CSPOA'=*C and C^poB'^c respectively (with xSpoA not free in f\ and ySpoB not free in fa).
We must prove that the proof-term

r = case m\(fSf>A[i/z]tf/tf]) of inl(x^').app(/1,ass(SP,.x^)), inr(yB').app(/2,ass(Sp,a:iJ'))

is in C.

We reformulate this requirement. First we define g\ to be app(/i,x), g2 to be app(/2,?/)
and #3 to be f[i/z]\p'/yf}. We have to show that trie proof-term

r = case inI(^3) of inl(:r).#i, inr(t/).p2

is in C, given that g\ and #2 are in CSPOC #3 is m
 CSPOA'? and gi[gz/x] is in C (Note that

9i\9$/x] is app(/i,^3), which is in C by the definition of CsP0A' =̂  C-)

We proceed by subsidiary induction on !N"(Gi) + ^((^2) + ^(^3)5 using the fact that r is
neutral, examining immediate reducts of r.

There are four possible immediate reducts of r.

J l
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The first possible immediate reduct of r is of the form gx \gzjx\. This is in C by hypothesis.

Each alternative possible immediate reducts r' is obtained by reducing one of pi, g<i or g%.
Observe that N(r7) is less than ttfoi) + X(^2) + >T(p3). So only have to verify that each
reduct will still leave

1. the reduced g\ or g2 in CsPOc or the reduced ^3 in CSPOA', and

2. the reduced version of g\[gz/x\ still in C

The first of these requirements follows by CR2 for CsPOc and CsP<>,4'. The second follows
by CR2 for C by the following reasoning. If gf

3 is an immediate reduct of #3, then gi[gf
3/x]

is a (not necessarily immediate) reduct of g\[gz/x\. Also, if g\ is an immediate reduct
of g\ then g'i\gz/x] is an immediate reduct of g\[gz/x\. This concludes the proof for this
subsidary induction and for this case.

(V-I2). Similar to the previous case.

(V-E). We have to show

case Iy'\ of \n\(xA').ff>G[t/z)\p'/y% inr(yB').flP°G[i/z}]p'/y'}

is in CSPOG'- This proof-term is neutral. As in previous cases, it is enough to show all
immediate reducts of the proof-term are in

We proceed by induction on

iy'\)

There are several possible imeediate reducts. The reducts obtained by reducing /i, /1 or
fa are then in CsP<>G" by this subsidiary induction. As a consequence,

case
f) of \n\{xA').ffp<>G[tlz]\p'/y% m

is in CSPOG" •

There are two further possible reducts, depending on whether h is \n\(k) or inr(/c). We
deal with the former case as the latter is similar. If h is inl(fc) there is another immediate
reduct,

Because we can assume xA is not equivalent to any free proof-term variable in y\ this
proof-term is equivalent to

which is in CsPoG' be the main induction hypothesis, as required.
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(3-1). A proof-term obtained by (3-1) is of the form sho\N(uJSp<>A^x^Sp<>3x:S9A. We can
assume that z denotes the list of all free individual variables in this proof-term. We write
UQ = u\t/z\.

So, we have to show show(u0, fpoA[u/x]^E^f^Spo3x:s.A' i s i n cSPo3:r:S.A' Take any type
( S P O G) with x not free in G, any CR D of type ( S P O (3), and any proof-term g of type
(SPOA'=>G) satisfying, for any individual term u of sort s,

g[u/x] e CSpoA,[u/x] => D

We must show that the proof-term r = select (show(uo, fSpoAWx])[i/z]\pf /y']) in x :
s.yA'.app(g,y)Sp<>G is in D.

As in previous cases, we reformulate the requirement.

First we set g\ to be app(#,?/) and f\ to be fSp<>A^u^x^[i/z]\p'/y']. So we can easily see tha/t
g\ is in D, f\ is in C§P<>A>[UO/XU

 x ls n ° t ^ ree m a n y type superscripts in g\ (except perhaps
ySp<>A') and gi[uo/x][fi/y] is in D.

We are required to prov;. r = select (show(^o,/i)) in x : s.y.gi is in D

We prove this by a subsidiary induction in N(gi) -h N(/i). As r is neutral we need only
prove that its immediate reducts are in D. These reducts can be of three kinds:

1. The first form is r[ = select (show(i^o,/i)) in x : s.yA .g[ where g[ is an immediate
reduct of g\. Since N(<?i) < 3Sf(pi), the subsidiary induction hypothesis tells us
that this is in D, provided that g[[uo/x][fi/y] is in D. To see this, we observe
that g'\[uQIx)[fi/y] is an immediate reduct of gi[uo/x][fi/y], which is in D by the
hypothesis.

2. The second form is rf
2 = select (show(wo, /{)) in x : s.yA .gi where /{is an immediate

reduct of f\. The subsidiary induction hypothesis tells us that this is in Z), because
gi[uo/x][fi/y] is in D. This follows from CR2 for D, using the easily verifiable fact
that gi[uo/x][f[/y] is a reduct of gi[uo/x][ft/y].

3. The third form is rf
3 = gi[uo/x][fi/y], which is in D by the hypothesis.

(3-E). A proof-term obtained by (3-E) is of the form

(select (hSp<Bx:8mA) in x : s.yA.gSpcG)Sp<>G

where x : s is not free in G nor in any type of any free variable of g. So, we have to
show that r = (select (hSpo3x:s<A[i/z}\pf/yf]) in x : s.yA>.gSpoG[t/z}\p'/yf} is in CSPoG'. We
assume that the y! do not have x : s occuring free in the type of any of their free variables.

Since r is neutral, it is enough to show its immediate reducts are in CSPOG'-

This is proved by induction on N(hSpo3x:S9A[i/z]\p'/y']) + ^(gSpoG[i/z}\p'/yf]).

The reducts obtained by reducing g or h are in CSPOG' by the subsidiary induction hy-
pothesis.
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If h is of the form show(w : s, fx
 P° \u'x>) there is another reduct,

gSpoG[i/z}W/yf][ Wz]W/yf])/y]

where UQ = u[i/z\. This proof-term is equivalent to

[i:: uo/z :: x]\pf :: (fi[t/z]\pf/y'])/y' :: y]

because (as in the case of (V-I) above) the i do not contain x free, and x does not occur free
in the type of any z which is free in g, or of any of the p'. We are done, as the proof-term
r/SpoA j g }n cS p o^, by the main induction hypothesis.

(±-E). We must show r = abort(aSpo1, A)SpoA[i/z]\pf/yf] is in C S P O ^ We know that aSpo±

is in CsPO_L. We can rewrite r a s r = abort(a[f/^][p//^/]Sp<>"L)Sp<:>'4'- We can prove this is
in CSPOA', by induction on N(a[£/z][p'/yf]lo±) using CR3 for CSPOA' and the fact that r is
neutral.

(trans). We must show r = (p • cSpoA)[t/z]\p'/yf] is in C(Sp withp)op(A)'» where p(A)' =
p(A)[f/j], By the induction hypothesis, cSpOi4 [£/£] [p'/^i ^s m ^SP-

As this proof-term is neutral, it is enough to show that every immediate reduct r t>i r'
is in C^gpwithpjop^)'* This is done by a subsidiary induction on N(c). In the base case,
N(c) = 0, and so (p*cSpoA)[i/z]\pf/y'] is in normal form and must be in C(sP_i with p)op{A)'

For the inductive step, we reason as follows.

Suppose r' — (p*cf) where c[i/z]\pf/yf] t>i d. In this case, K(c;) < N(c) and we are done.

Otherwise, c must have one of the following forms: abstract uB'. (iSp<>iD, (use # : 5. dSpOjD),
({dSpOjD,eSpOjE;)), inl(dSpoD) or inr(^SpoD). In each of these cases r' must be obtained by a
structural reduction rule and take the form

abstract u ^ . {p • dspoD)[t/z]\pf/yf]
use x : p(s). (p • dSp<>D)[t/z]\p'/yf}

• e
SPOE W/z]\P'/y'}

respectively. Each of these is in C(gp wi th P)OA by the main induction hypothesis.

(unioni). We must show r = unioni(cSp-1Ov4, SP-2)[i/z]\p'/yf] is in C(SP_I and SP_2)OA/? given

that, by the induction hypothesis, c^/z\\pf/yf]Sp-1<>A is in CsP_i-

As this proof-term is neutral, it is enough to show that every immediate reduct r D>i r'
is in C(SP_I andSp_2))oA- This is done by a subsidiary induction on N(c). For the base
case N(c) =.0, and so un\or\i(cSp-1<>A,SP-2)[i/z]\pf/yf] is in normal form and must be in

CSP_1 and SP.20,4'

For the inductive step, we reason as follows.
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Suppose r' = unioni(c', SP_2) where c[t/z]\pf/yf] > i d. In this case, Ji{d) < N(c) and we
are done.

Otherwise, c must take one of the following forms: abstract uA. dSp-1OjB, (use x : s. dSp-loB),
«dSp- loB

5eSp-1OjB)), \n\(dSp-loB) or \m(dSpA<>B). In each of these cases r ' must be obtained
by a structural reduction rule and take the form

abstract uA. unioni(dSp-loB, SP-2)[i/z)\pf/yf]
use x : s. union!(dSpA<>B)[i/2]\pf/yf]

show(t, union!(rfSp-loB, SP J2))[t/z]\pf/yf]
, SP-2), unioni(eSp-loC, SP-2))[t/z]\p'/y']

D

D

;SpJ2))[i/z]Wffl
respectively. Each of these is in CSP.I and SP_2OA by the main induction hypothesis.

The cases for proof-terms for (unioni), (exti) and (ext2) and (hide) are similar.

Strong normalization for our system follows at once from this theorem.

Corollary 8.2.1. Each proof-term is strongly normalizing.

Proof. Using Theorem 8.2.9 and CR1.

8.3 The Church-Rosser Property

The Church-Rosser property says that divergent proof normalization sequences always
eventually converge to yield the same proof. We have already discussed the Church-Rosser
property for the type theories of intuitionistic logic (Chapter 2, Part II) and intuitionistic
Hoare logic (Chapter 5, Part III).

As in the previous parts of this thesis we formalize this notion using the Curry-Howard cor-
respondence, proving the Church-Rosser property in terms of the logical type theory and
the normalization relation >SSL- We did not include detailed proofs of the property for the
previous two logics discussed. The property is well known for intuitionistic logic. Because
intuitionistic Hoare logic did not add any new normalizing reduction rules to proof-terms
besides those of intuitionistic logic, the property followed trivially for intuitionistic Hoare
logic,

However, the reduction rules for SSL are a non-trivial extension of those for intuitionistic
logic, and so it is of interest to show the Church-Rosser property holds for this new logic.
We do this by adapting the proof presented in [Bar84, pp. 59-62] for intuitionistic logic.

We define the diamond property of relations as before.

Definition 8.3.1. A relation # over a set S satisfies the diamond property when

for all x, x\,X2 in S {x#x% and x#X2 => there is a X3 such that and

a >* a'
a >* a1 and b £>* b'

a >* a'
a[>* a'
al>* a'

a t>* a1 and b !>* b'

<s>* bf

. ,>* a'
&>* br

a >* a' and b t>* b1

and c ># d
a>* a'
a>* a'

a >* a' and b >* 6'
a>* a'
a >* a'
a >* ar

a >* a'
a>* a'
a >* a'

a >* a' and 6t>* &'
a >* a'
a >* a'

a >* a' and 6 [>* 6'
a t>* a1 and c[>* c'
a ># aA and b t>* 6'

=>

=̂
=̂>
=4>

= ^
=$>
=$>
= >

a
abstract x. a

app(a,6)
use i. a

show(f, a)
specific(a, v)

(a, 6)
fst(a)

snd(fc)
inl(a)
inr(6)

case a of inl(a;).6, inr(?/).c

abort(a)
show(f,a)

select (a) in x.y.b
unioni(a, SP)
union2(ci, SP)

exti(a, SP)
ext2(a, SP)
hide(a,SX)

p • a
app(abstract x. a, 6)

specific(use x : s. a, v)
fet((o,6))

snd({a, b})
case inl(a) of inl(a;).6, mr(y).c
case inr(a) of m\(x).b, mr(y).c

select (show(t;?a)) in x.y.b

>*
>*
>*
>*
>*
>*
>*
>*
>*
>*
>*

>*

>*

>*
>*

>*
>*

>*

>*
>*

a
abstracts, a'
app(a/

i6')
use i a'
show(i>, a7)
specific(a/,v)

fst(a')
snd(6')
inl(a')
inr(6')

case a' of inl(x).6', inr(y).c/

abort (a')
show(v, a1)
select (a7) in x.y.b'
unioni(a',Sp)
union2(a/,Sp)
exti(a',Sp)
ext2(a',Sp)
ext2(a /,5L)
p»a'
a'[bf/x]
a'[v/x]
a'
V
b'la'/x]
d[a'/y]
V[a'/x][v/y]

Figure 8.12: Axioms defining >*.

We also remind the reader of the following lemma.

Lemma 8.3.1. Let # be a binary relation over a set and let # be its transitive closure.
If # satisfies the diamond property then so does

Definition 8.3.2 (Church-Rosser proper ty) . Formally, we say that our normaliza-
tion reduction rules satisfy the Church-Rosser property when t>ssi_ satisfies the diamond
property.

We define the relation [>* by the axioms of Figs. 8.12 and 8.13. This relation is a single
step reflexive closure of the rules presented in Figs. 8.7 and 8.9. Consequently, this relation
(when considered as a set of pairs) is a subset of the relation >SSL and it can be easily
verified that t>ssi_ is the transitive closure of >*.
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d
d
d

d >* d! and e
d
d

>*d'
>*d'
>*df

>*e'
>*d'
>*df

^(abstract uA. d)
S(use x : s. d)
5(show(*,d))

5((d,c»
5(inl(d))
5(inr(d))

>*
>•

>*
where S(p) denotes the following possible operations
union2(p,Sp) exti(p, SP) , ext2(p,Sp).

d
d
d

do* d' and e
d
d
d
d

d O* d' and e
d
d

!>* d!
>* d'
O*d'
>* e'
l>*d'

>*d'
l ^ d '
>*d'
>*e'
>*d'
>*df

p» (abstract uA. d)
p • (use x : s. d)
p» (show(i,d))

p»((d,e))
p • (inl(d))
P«('nr(d))

hide(abstract uA. d, 5L)
hide(use x : s. d, SL)

hide((d,e),SX)
hide(inl(d),5L)
hide(inr(d),5L)

>•
>•
D > *

> •

> *

> •

> •

o*

abstract uA. 5(dr)
use x : 5. 5(d;)
show(t, 5(d'))
(S(d%S(ef))
\n\(S(d'))
inr(5(d'))

over proof-term p: unioni(p, SP) ,

abstract M^).5(d ' )
use x : p(s). (p« (i7)
show(p(*),(p«d'))
((p.dO,^*^)}
inl((p.d'))
inr((p.dO)
abstract ?/r/lo^.5(a0
use a:: 5. hide(dr, SL)
(hide(d/,5'L),hide(e/,5L))
inl(hide(d/,5L))
inr(hide(d/,5'L))

The Church-Rosser Property

Assume a is the proof-term variable z, not equivalent to x. Then both a[b/x] and
a[£//#] are equivalent to y. Thus o[6/x] i>* a[b'/x] is the same as saying y>*y. This
is true, so the we are done.

Figure 8.13: Axioms defining >* (cont.).

Thus, by Lemma 8.3.1, we can show >SSL satisfies the Church-Rosser property by proving
that t>* satisfies the diamond property.

First, we establish the following lemma.

L e m m a 8.3.2. Let x be a proof-term variable, y be an individual term variable, and
assume v is an individual term of the same sort as y.

If a >* af and b I>* b' then

1. a[v/y] >*a![v/y]

2. a[b/x] >*a'[l//x\

3. a[b/x}[v/y] t>* a'[b'/x][v/y]

Proof. We prove this by induction on the definition of a >* of. The first item is straight-
forward. The third item follows from the second item, which we now prove.

Case: Assume that a>*af is a>*a.

Then we must show that a[b/x] D>* a[b'/x]. This follows by subsidiary induction over the
structure of a:

« Assume that a is a proof-term variable x. Then a[b'/x) is bf and a[b/x] >* a[bf/x] is
the same as saying b>*bf. This is true, so we are done.

Assume a is the proof-term app(p, q). Then a[b/x] is equivalent to app(p[b/x],q[b/x])
and a[b'/x] is equivaler c to app(p[6'/x], q[bf/x]). By the induction hypothesis and the
definition of >*, we are done.

Case: Assume that a >* a' is of the form, (abstract z. p) >* (abstract z. p1), and is a
consequence ofp>*pf.

By the induction hypothesis, it must be the case that p[b/x] t>* pf[bf/x]. But then
abstract z. p[b/x] > # abstract z. pf[bf/x] holds, as required.

Case: Assume that a >* a1 is of the form app(j>, q) O* app(p', q'), and is <i consequence of
p t>*p; and q >* q'.

Then we know that

a[b/x] is the same as writing

is

app(p[b/x],q[b/x])
app(p'{V/x},q{b'/x})
by the induction hypothesis and the definition of
af[b'/x]

as required.

Case: Assume that a [>* a' is of the form unioni(p, S P ) l>* unioni(p;, S P ) , and is a conse-
quence of p\>*pl.

By the induction hypothesis, it must be the case that p[b/x] >* p'[b'/x]. But then
unioni(p[6/x],Sp) D>* uri\oni(pf[b'/x],Sp) holds, as required.

Similar cases. We reason similarly (by the induction hypothesis and the definition of >*)
for the cases when a >* o! is of any of the following forms:

abstract x. p

app(p,4)
use i. p

specific^ v)

(Pi<l)
fst(p)

snd(#)
inl(p)
inr(^)

>*

>*
>*

I>*
>*
>*
>*
t>*

abstract x. p1

app(p'r^)
use i. p'
specific^', v)
IT! n'\
\P iQ /

fst(p')
snd^)
inl(pO
inr(^)
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case p of inl(x).g, inr(y).r >* casep' of in\(x).qf, \nr(y).rf

show(v : s,p) D>* show(t; : s,pf)
select (p) in rc.y : s.g >* select (pf) in x.y : s.g'

union2(p, SP) >* union2(p', SP)
exti(p,Sp) D>* exti(p',Sp)
ext2(p,Sp) >* ext2fp',Sp)
hide(p,SX) >* hide(p', 5X)

p»p D>* p*p'

Case: Assume a >* a' is app(abstract z. p,q) >*p'[qf/z] and is a direct consequence of
pt>*p' and q >* qf.

Then we reason as follows.

a[b/x] is

>*

is
is

app(abstract 2?. (p[b/x]),q[b/x])
p'[bf/x]lqf[b'/x)/z) .
by the induction hypothesis and the definition of >.
l/W/z][V/x]
a'[b'/x]

as required.
. Assume a >* ar 25 specific(use 2; : 5. p, v)

P>*pf.

Then we reason as follows.

aric? zs a direct consequence of

a[b/x] is

>*

is
is

(specific(use x : 5. p,

by the induction hypothesis and the definition of >.
a'[v/z][t//x]
a'[b'/x]

as required.

Case: Asssume a D>* a' is fst((p, g)) >* p ; and is a direct consequence of p >* p'. Then we
reason as follows.

a[b/x] is

is

fst({p,q))[b/x]
p'ffe'/a;]
by the induction hypothesis and the definition of >
a'[b'/x]

as required.

The case when a 0 * a' is snd((p, q)) O* ̂ , a consequence of q >* ^ is similar.

Case; Assume a t>* a' is (case inj(p) of \n\(zi).q, inr(^).r) >* q'\p'/zi] and is a direct
consequence of pt>*p' and q>*q''.

Then we reason as follows.

a[b/x] is (case inl(p) of inl(^i).^, \nrfa).r)[b/x]

by the induction hypothesis and the definition of t>*

is a'[t//x]

as required.

We proceed similarly for the case where a>*af is case inr(p) of inS(̂ i).gr, \nr fa).r>*rf\p
and is a direct consequence of p D>* p' and r D>* r'.

Case: Assume a t>* a1 is select (show(v,p)) in z.y.q >*pf[qr/z][v/y] and is a direct conse
quence of p >* p' and r D>* r'.

Then we reason as follows.

a[b/x] is

is
is

select (show(v,p)) in z.y.q[b/x]
p'[b'/x}{q'[b'/x}/z}{v/y}
by the induction hypothesis and the definition of >.
pf[q'/z}\v/y}\h'/x} ^
a'[V'/x]

as required.

Let S(p) denote any of the following following: unioni(p, SP) , union2(p, SP) exti(p, S P ) ,
ext2(p,Sp).

Case: Assume a>*a! is 5(abstract uA. p)>*abstract uA. S(pf). and is a direct consequence
ofp>*p''.

Then we reasun as follows.

a[b/x] =

is

5(abstract uA. p)[b/x]
abs t rac t^ . S{p'[b'/x\)
by the induction hypothesis and the definition of >.
a'[b'/x]

as required.

The remaining cases of the proof are similar. •

Lemma 8.3.3. Let a, 6,c,p,q and r be arbitrary well-typed proof-terms. Let z\,Z2,x be
well-typed proof-term variables. Let y and i be individual variables and let v be an arbitrary
individual term. Then £>* possesses the following properties.
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use i: s. a I>* b
inl(a) D>* b

i T, . ,, ,, , inr(a) >* b
1. It is the case that . v J .

abstract x. a t>* b
(a, c) >* 6

show(v : s, a) >* 6
abort (a) >* 6

£ app(a, 6) >* c entails that either

b is use i : 5. a! with a>*af.
b is inl(a7) with aX>*a'.
b is inr(a7) with a>*af.
b is abstract x. af with a >* o!.
b is (a7, br) with a t>* a7 and c >* c7

6 is show(?; : s, a7) m^/i a >* a7.
6 is abort (a7) with at>* a''.
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• c is app(a7, b') with a >* a' and b O* b1, or

• a is abstract x. p and c is pf[b'/x] where pt>*pf and b >* bf.

3. specific(a, v : s) >* c entails that either

• c is specific(a7, v) with a >* a', or

• a is use z : s. p and c is pf[v/z] where p >* p1.

4- fst(a) >* c entails that either

« c is fst(a') with a>*af, or

e a is (p, q) and c is pf where p>*pf.

5. snd(a) [>* c entails that either

• c is snd(a/) with a>*a', or

• a is (p, q) and c is q' where q >* q'.

6. case p of \n\(zi).q, inr(z2).r >* c entails that either

• c is case p' of inl(2i).</> inr(2:2).r/ with p $>* p1, q [>* q' and r >* r',
• p is inl(a) and c is q'\p''/z\] where p >* p' and q >* g', or
• p is inr(a) and c zs q'\p!/z^] where p >* p ; and q\>*q'.

7. select (p) in a:.y.^ >* c entails that either

• c is select (p;) in x.;</.</ ^ii/i p [>* p ;, g ># q', or

• p is show(7;,a) and c is q'\pf/x)[v/y] where p >* p' and q >* qf.

8. Let S(a) denote the following possible operations over proof-term a: unioni(a, S P ) ,
union2(a,Sp) exti(a,Sp), ext2(a,Sp) or hide(a,5L). Then S(a) >* c entails that
either

• c = 5(a ;, SP) with a >* a;

• c

• c

• c

• c

• c

use x : s. S(a!) with a >* a',

show(t, S(a!)) with a>*ar, provided S(a) does not denote hide(a, SL),

{S(af), S(bf)} with a D>* a1 and b >* bf,

inl(5'(a/)) with a I>* a!', or

inr(5(a/)) with a t>* a7.

p • a >* c entails that either

• c

• c

• c

• c

• c

• c

p • a1 with a >* a'

abstract u ^ ) . p • (a;) tyii/i a >* a'

use x : s. p • (a') wz£/i a D>* a',

show(p(t), p • (a;)) mi/i a >* a';

(p • (a'), p • (6')) ttfitfi a l>* a' and 6 >

inl(p • (a')) with a >* a'7 or

inr(p • (a7)) tyzt/i a t>* a'.

aProof. By induction on the definition of >*.

Theorem 8.3.3 (Church-Rosser property for SSL). The relation >* satisfies the
diamond property (and therefore >SSL? os the transitive closure o/>*7 satisfies the diamond
property).

• c = abstract -u .̂ *S'(a/) wif/i a t>* a

Proof We proceed by induction on the definition of a >* ai. We show that for all a l>*
there is an a% such that a\ >* «3 and a2 >* 0̂ 3.

Case: >lsswme that a >* ai is 0/ #ie /orvn a >* a. We may take a^ to be the same as a2.

Case: Assume that a >* a\ is of the form app(p, q) O* app(p7,g7); and is a consequence of
p >* p7 and q >* qf. By Lemma 8.3.3 (2), there are two cases.

• a2 is app(p/7, q") with p >i p77 and q >\ q". Then, using the induction hypothesis, we
may take a3 to be app(p777, qm), where p71>* p/7/ and p771>* p777 and similarly q' >* q"1

and q" >* q"'.

• p is abstract x. p\ and a2 is Pi[q"/x] where pi >* p̂ 7 and q [>* g77. By Lemma 8.3.3
(1), it is the case that p7 is abstract x. p[ with p\ >*p[. By the induction hypothesis,
we can take a3 to be p'"[q"!/x], where p7 >* p777 and p77 >* p777 and similarly q1 >» g77/

and q" >* g77/.

Case: Assume thata\>*a\ is of the form specif\c(p, v)>*specific(p7,i>); and is a consequence
ofp>*pf-

By Lemma 8.3.3 (3), there are two cases.
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a<i is specific(p77, v) with p\>\p". Then, using the induction hypothesis, we may take
to be specific(p777, v), where pf t>* pm and p" t>* pm\

p is show(^,pi) and 0,2 is p"[v/i] where p\ \>*p'{. By Lemma 8.3.3 (1), it is the case
that p' is use i. p[ with pi t>* p[. By the induction hypothesis, we can take a3 to be

1 >* Pf" >

Case; Assame that a [>* ai zs of the form fst(p) >* fst(p;) and is a consequence of p l>* p7.
By Lemma 8.3.3 (4), there are two cases.

is fst(p77) with p >* p77. Then, using the induction hypothesis, we may take
a3 is fst(p77/), where pf [>* pm and p" >* p77/.

• p is (pi, q) and a2 is p7/ with pi >*p". By Lemma 8»3.3 (1). Note that p! must be of
the form (pi,<?7) with p\ E>* p7

x and qt>*qf. Then, by the induction hypothesis, we
can take as as p"7 with p[ >*p"f (so that fst(p') is fst((p'1,^/)) >* p1") and p7/ t>* p7/7.

We proceed similarly for when a > * a i is of the form snd(p) D>*snd(p7) and is a consequence
of p\>*pf.

Case: Assume that at>*a\ is of the form

(case p of inl(rr).<2, inr(y).r) t>* (case p' of inl(a;).</, inr(2/).r7)

and! is a consequence of p [>* p'', q t>* g7 and r >* r7. By Lemma 8.3.3 (6), there are three
cases.

is (casep77 of \n\(x).(/\ mr(y).r") with px>\ p" , q t>i g77 and r t>i r77. Then, using
the induction hypothesis, we may take 03 to be (case p'" of inl(x).g777, inr(y).r777),
w h e r e p ' > * p777, p p777, > , r7 O* r777 a n d r77 777

• p is inl(pi) and a<i is 97'fei/x] where pi >*pf{. By Lemma 8.3.3 (1), it is the case that
p7 is i n l ^ ) with pi >* p7

x. Then, by the induction hypothesis, we can take as to be

# p
777, q'q?"W/x], where p7 >* p77/, p77 > # p777, q' >* g77/ and q" >* qm.

• p is inr(pi) and a2 is rn\p'[/y\ where pi >*Pi and r >* r77. By Lemma 8.3.3 (1), it is
the case that p7 is inr(p/

1) with p\ >*p j . Then, by the induction hypothesis, we can
take a3 to be rf/f\p'"/y], where p7 !>* p77/, p77 D>* p777, r7 >* r777 and r77 [>* r777.

Case: Assume that a [>* a\ is of the form select (p) in x.y.q >* select (p7) in x.y.q1', and is
a consequence of p !>* p7 and q >* qf. Bj^ Lemma 8.3.3 (7), there are two cases.

• CZ2 is select (p77) in x.y.q" with p >\ p" and q t>i q". Then, using the induction
hypothesis, we may take as is select (p7//) in x.y.q"1\ where p7>*p777, p7/l>*p77/, qf>*qf",
q" >* q'".

The Church-Rosser Property 319

We proceed similarly for the cases where a >* a\ is of the form

(abstract z. p) >* (abstract z. p7)

or
use i. p [>* use i. p'

a consequence of p D>* p7.

Case: Assume that a>*ai is of the form specific(p, v) l>*specific(p7, v)f and is a consequence
ofp>*p'. Then a2 is specific(p77, v). Using the induction hypothesis and Lemma 8.3.3 (1),
we can take as is specific(p777, v), where p7 >* p777 and p77 >* p7//.

Similar cases. The cases when a [>* ai is of the form

inl(a)

,a)

inl(a7),

show(?;, a7)

follow similarly (by applications of the induction hypothesis and Lemma 8.3.3 (1)).

Case: Assume that a [>* a\ is of the form app(abstract x. p, q) >* p'[q'/x] and is a conse-
quence of p >* p7 and q t>* q'. By Lemma 8.3.3 (2) we know that either

• (22 is app(abstract x. p77, q") with p >* p7/ and q t>* q". By induction hypothesis there
are proof-terms p777 and q"' with p7 >* p777 and p77 >* p777 and similarly q' t>* g777 and
q" >* q'". By Lemma 8.3.2 (1) we can take as to be p"'[q"ffx].

• (22 is p77[g77/x] where p>*p" and q>*q". Then, using the induction hypothesis, we
can take a3 to be p"f[q"'/x] where p7 >* p777 and p77 O* p777 and similarly q' [>* g777 and

" '"

Case: Assume a D>* ai is specific(use z : s. p,v) >*p7[^/2:] and is a direct consequence of
p\>^ pf

 r Then, by Lemma 8,3,3 (3) we know that either

• G-2 is specific(use z : s. p77, v) with p t>* p77. By induction hypothesis there is a proof-
term p777 with p7 [>* p777 and p77 >* p777. Then, by Lemma 8.3.2 (1) we can take a3 to

is p"[v/z] where pt>*p77. Then, using the induction hypothesis, we can take a3 to
be p"'[v/z] where p7 > # p777 and p77 D>* p777.

Case: Asssume a > * a i is fst((p,q)) t>*p7 and is a direct consequence of p\>*p'. Then, by
Lemma 8.3.3 (4) we know that either
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is fst({p", g")) with p>*p" and g t>* p"'. By the induction hypothesis there are
proof-terms pw and g'" such that p' >* p w and p" t>* p'" and g' t>* g'7/ and q" >* g'".
Then we can take as to be p'".

is p" where p >* p". Then, using the induction hypothesis, we can take as to be
pw where p' D>* p"' and p" !>* p"'.

We proceed similarly for the case where a l>* a\ is of the form snd((p. g)) >* g', a direct
consequence of q !>* g'.

Case: Assume a >* ai ?<s (case inl(p) of inl(zi).g, inr(^2)-r) D>* qf\pf' jz{\ and is a direct
consequence of p t>* p' and q >* q'. Then, by Lemma 8.3.3 (6) we know that either

is case inl(p;/) of inl(zi).g'7, inr^y.r" with p >* //', q D>* qn and r !>* r". By
the induction hypothesis there are proof-terms p"\ q!" and r'!i such that p' >* p'",
p" >* P7", ^ >* tf'", 9" >* 9W

5
 r ' >* r"7 a n d T" >* *"". Then, by Lemma 8.3.2 (2), we

can take as to be qf"\p/f/'/z{\.

• a2 is q"\p"[zi] where q >* q" and p D>* p/r. Then, using the induction hypothesis, we
can take as to be q'" where p' >* p/;/, p" D>* pw , g; ># gw and q" >* gw.

We proceed similarly for the case when a >* ai k of the form

(case inr(p) of \n\(zi).q, i

and is a direct consequence of p !>* p1 and r >* r'.

Case: Assume a >* a\ is (select (show(i?,p)) in z.y
consequence o/p t>* p ; and r>*r'.

Then, by Lemma 8.3.3 (7) we know that either

s.q) >*pr[q'/z][v/y] and is a direct

is (select (show(-i;,p;/)) in z.y : s.q") with p >* p" and q t>* q". By the induction
hypothesis there are proof-terms pin and qf" such that p7 D>* p7//, p;/ >* p w , q' >* g//;

and g;/1>* g;//. Then, by Lemma 8.3.2 (3), we can take a^ to be p'!f[qr"/z][v/y\.

is p"{q"/z][v/y] where p>*p" and #>* g;/. Then, using the induction hypothesis,
we can take a3 is pf"[tf"/z] where p' >* p w , p/r >* pw , g' >* g7// and q" O* gw.

Let S'(p) denote any of the following possible operations over a proof-term p: unioni(p, SP) ,
union2(p, SP) exti(p, S P ) , ext2(p, SP) or hide(p, 5L), for some specification expression S P
and symbol list SL.

Case: Assume a>*ai is ^'(abstract uA. p)>* abstract uA. S{p') and is a direct consequence
ofp>*pf.

Then, by Lemma 8.3.3 (8), we know that either

= ^(abstract uA. p") with p >* p". By the induction hypothesis there is a proof-
term pf" such that p' >* pnt and p" >* pm'. So we let a3 = abstract uA. S(pfff).

The Church-Rosser Property 321

= abstract uA. S(p") with p D>* p". By the induction hypothesis there is a proof-
term p"' such that p' >» p"' and p;/ >+ p w . So we let a3 = abstract uA. 5(pw).

We deal similarly with the cases where a >* ai is of the form

5(use x : s.p) >* use x : s. S(pf)

S(inr(p)) >* inr(S(p'))
>• show(^,

and is a direct consequence of p t>, p', or of the form

and is a direct consequence of p >* p' and g >* qf.

Case: Assume a D>* a\ is p* (show(t,p)) O* show(/9(t), (p »p;))
ofp>*p*. Then, by Lemma 8.3.3 (9), we know that either

^s fl e&rectf consequence

= 5(show(t,p//)) with p\>*p". By the induction hypothesis there is a proof-term
p'" such that pf >* p"1 and p" >* pm. So we let 03 -- show(p(^), (p • pw))«

= show(/9(t), (p •p")) with p >* pr/. By the induction hypothesis there is a proof-
term p';/ such that p' >* p//; and p;/ D>* p w . So we let as = show(/9(t), (p • p'"))-

We deal similarly with the cases where a>*a\ is of the form

(abstract uA.p)
p • (use x : s.p)

p«(inl(p))
p»(inr(p))

>* abstract'
>* use x : p(s)

>* in'((P*P7))
>+ inr((p#p7))

and is a direct consequence of p D>* p', or of the form

and is a direct consequence of p t>* p1 and g D>* g;.

This last case concludes the proof. •
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8.4 Discussion

This chapter presented some important proof-theoretic properties of SSL necessary for the
application of the Curry-Howard protocol to SSL.

We have defined a logical type theory for SSL for which the Curry-Howard isomorphism
holds. The proof-terms of our theory are more complex than those for ordinary intu-
itionistic logic. We have seen that this is due to the presence of additional proof-term
constructors corresponding to structural rules. We examined further normalizing rules
that can be given over the new proof-terms. This makes the proof of strong normalization
a non-trivial extension of the proof for the intuitionistic case.

In the next chapter, we will show how to transform the proof-tennis of this chapter into
provably correct functional ^•••^ainp, which may then be used to consistently extend
structured specifications. Thru, in Cb: ter 10, we will extend our calculus and its logical
type theory to accomodate p rai ti zt;d specifications. We will show how to extract
programs from that augmented ca? vas. Finally, in Chapter 11, we will examine how our
calculus and the synthesis results can be applied to give methods for structured program
synthesis.

Chapter 9

Structured proofs-as-programs

In this chapter we show how to synthesize correct SML programs from proofs about CASL
specifications according to the Curry-Howard protocol of Chapter 3. We also provide a
method for incorporating extracted programs back into a CASL specification, to develop
an executable extension. We refer to these techniques as structured proofs-as-programs.

Because we follow the protocol, the process of proving a specification and then extracting
a realizing program is similar to that given for intuitionistic logic and SML programs
in Chapter 2 and for IHL and imperative SML in Chapter 6 of Part III. We define
an extraction map over proof-terms of the logical type theory LTT(SSL) (described in
Chapter 8) to elements of a computational type theory, which consists of the lambda
calculus of SML.

Briefly, our method is as follows. We define a notion of readability between terms of the
CTT and the specification/formula pairs of our calculus. A realizer of a pair S P O A is
taken as a Skolem function for the Skolem form of the formula, true for some extension
S P ' of SP . Then, given a proof

with a corresponding proof-term, pSpoA, in the LTT, we define an extraction map extractssL
so that the program extractssij? realizes S P o A. For instance, given pSpoVz:s»3y:s»A(z,y) w e

extract the term extractssL_(p) as a realizer, standing as a Skolem function for the proved
formula, so that

SP1' |= v'x : s • A(x, (extractssi_(p)

holds for an extension SP7 of SP.

The extraction map extends the map for intuitionistic logic given in Chapter 2 of Part
II, with additions to deal with structural rules. In extraction, most of the structural
rules are deal with easily: unions and extension do not affect the extracted program,
and renamings define corresponding renamings of programs. However, we find that we
cannot immediately extract realizing programs from proofs that involve instances of the
rule for hiding symbols in a specification. We approach this problem by refining a given

323
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specification (that may include hide) to a specification that containsour extracted, realizing
functions.

In order to achieve these results, we require CASL specifications to accommodate the
lambda calculus of SML.

We proceed as follows.

• In Section 9.1, we tiefine the computational type theory into which we shall extract
programs. This is the lambda calculus fragment of SML, constructed over function
symbols of CASL signatures. We discuss how to extend CASL to accommodate
these SML lambda terms in specifications.

• In Section 9.2, we define notions of readability between our CTT and an LTT.

• The extraction map is identified in Section 9.3. We use this map to extract programs
from what we call modular proofs (proofs without occurrences of the (hide) rule.

• In Section 9.4, we describe how to overrule some of the complications that arise
from hiding, to extract realizing terms *h/«u n'l proofs. (In Chapter 11, we describe
how to use these techniques to obtain w.•>:•.uisively successive executable extensions
of a given specification that contain pro^vns ^or e a c n declared function symbol of
SP.)

• Section 9.5 returns to the password checking system example used in previous chap-
ters, to show how we can extract a correct program from our proof and consistently
refine the system specification.

• In section 9.6, we review how our methods of synthesis are an effective application
of the Curry-Howard protocol as it was defined in Chapter 3.

• Section 9.7 provides a brief discussion of our results.

The extraction techniques of this chapter were first presented in [CPWOO], and represent
the main contribution of the present author to that work. The proofs that are given here,
unless otherwise noted, are given for the first time.

9.1 Specifying and reasoning about SML programs

We wish to use CASL and our calculus to specify, reason about, and synthesize functional,
SML programs. This is achieved by extending CASL specifications by

• extending the set of terms for any signature to include the lambda calculus of SML,
and

• assuming implicit axioms in every CASL specification, enabling SSL proofs for rea-
soning about lambda terms.
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This is similar to Chapter 2 of Part II and Chapter 4 of Part III, where we used SML
programs within formulae by treating signature terms as extended by the lambda cakulus
of SML.

9.1.1 Extended signatures

To represent SML programs in our specifications, we need to extend our signatures with
functional, disjoint union and prod;.jt sort constructors, corresponding to their respective
type constructors in SML. This is done by using replacing our definition of signatures with
that given in Definition 2.1.1 of Chapter 2, Part II, p. 27, repeated here for completeness.

Definition 9.1.1 (Many-sorted signature with total functions). A many-sorted
signature E = (S, TF, P) consists of:

• a set, 5, of sorts. Sorts are general 4 from a set of basic sorts, B(S) according to
the following inductive definition. First, B(S) C 5. Also, if sx and s2 are in S, then
so are

- the function sort (sy —> $2)

- the product soft (51 * S2)

- the disjoint union

We assume that B(S) includes a special sort, called Unit.

• sets TFWi8 of total function symbols, for each function profile (w,s). A function
profile (w, s) is a pair of words, consisting of a sequence of argument sorts w e 5*
and a result sort s 6 S. Constants are treated as functions with no arguments.
The length of w is called the arity of function symbols in TFW,S- We assume that
TF<D.Unit contains a unit symbol, written () (this denotes the single inhabitant of the
sort Unit € B(S)).

• sets Pw of predicate symbols, for each predicate profile w. A predicate profile consists
of a sequence of argument sorts w e S*. The length of w is called the arity of
predicate symbols in Pw. For each basic sort s € B(S), there is a distinguished

Q 11-f-!T

9,1,2 Lambda terms

Our SML programs will be represented as terms in CASL specifications. Because we are
only concerned with the pure fragment of SML corresponding to the lambda calculus, we
need to extend the terms generated from a signature by the lambda calculus. This is
done by following the same pattern as in Fig. 2.1 of Chapter 2, Part II, p. 28, inductively
extending the usual terms with operators for lambda abstraction, application, pairing and
making disjoint unions. However, we will also add a new operator for recursion.
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We redefine the terms for a signature E = (S.TF,P) generated over variables Var,
Term(Y,,Var), as in Fig. 9.1.

a,b,c ::=
•f ( n \

I V^l? • • • ? ^n)

X

Inl(a)
Inr{a)
match a with Inl(x) •
fnx : s —> b
(ab)
(a, b)
fst(a, b)
snd(a, b)
rec(s, cons, arg)

elements of Term(E, Var)
f e TFW,S, w of arity n and
{a\,... ,an) a (possibly empty) list
of elements of Term(E)
a variable x G Var
in left
in right

=> b | Inr{y) => c match case, x,y € Var
lambda abstraction, 5 is a sort of E
application
pair
first projection
second projection
recursion, where s is a sort in E and
cons a list of constructors for s, and
arg is a list of terms

Figure 9.1: Syntax terms of Term(E, Var).

Remark 9.1. The recursion operator rec(s, cons, arg) can be written in SML syntax as
follows. Given the lists of constructors

fp : (sip x . . . x
[ p I \

oj^ . O, . . . , Ĉ 2 . o , J \ ' \ ^ l i A, . . . / \ ^77ii y ^5

= [«!?••• , a n , 6 i , . . . , 6

rec{x, s, cons, ar^) can be thought of as shorthand for a recursive function application

(rec_s ai . . . an b± . . . bn)

with recs defined in SML as follows

fun rec_s ai

• * •
| rec-S ai
| rec_s ai

• « •
| rec-S ai

. . . a^ Dĵ

. . . an bi

. . . an bi

. . . an bi

. . . Dp C;

. . . b p c n

. . . b p f 1

. . . b p f p

= a•n

. . . , xm>p) —

where
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denotes

for
s.

(recs . . . a . . . b

. . , Xfcj] the list obtained from

. . . (rec_s ai . . . an bi . . . bp xk)

j , . . . , xmj] by removing all Xij such that

9.1.3 Sorting

Our extended lambda terms are associated with sorts of their signature, according to the
sort inference rules provided in Fig. 9.2. These identical to those given in Fig. 2.2, Chapter
2 of Part II p. 29, except to include a sorting rule for the new recursion terms. As usual,
we use the words "sorts" and "types" for terms interchangably, depending on whether we
consider terms as elements of a CASL specification or programs in SML, respectively.

Remark 9.2. The sort inference rule for recursion terms, (Rec), is weaker than that actually
used in SML. We omit the full rule, as this rule will suffice for our purposes of illustrating
program extraction. See, e.g., [MTH90] for the full typing specification for SML.

9.1.4 Computational type theory

By the remarks in Section 2.4 of Chapter 2, our extended signatures and lambda terms,
together with the operational semantics, constitute an effective representation of SML.

That is, we can consider our set of terms and sorts to be a computational type theory:

C(SML) = (Terrn,s(SML),Sorts(SML),hSML,TIR(SML))

where

•' Terms(SML) is a set of terms, built from all Terms(E, Var) for each signature E.

• Types(SML) is a set of types built from all sorts available for every signature.

• TIR(SML) is a set of typing rules that define the type inference relation \~SML that
holds between contexts and typed terms, built from the collection of all sorting rules
for each signature.

We will use our SML terms within formulae to reason about programs. As usual we use
typewriter font to distinguish terms when used as programs, as opposed to terms in
formulae.

9.1.5 Operational semantics

We provide an operational semantics for lambda terms by a reduction relation >SML, which
is given in Figs. 9.3 and 9.4. These are the usual reduction rules for lambda calculus, but
using the syntax of SML.
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f e T

~—-— (Ass)

a :
F hE M(a) : (Sl\s2)

F Fi r

(Unioni)

•. •,
(Fn)

F a : 52

o : : 52

Fi,r2f-S (a, b) : (si*s2)

o: {si * s2)

h s : si

a : s2

(Proji)

(Prod)

h s a:(si* s2)
(Proj2)

(Ab)

F hs snd(a) :

h s a ; 5i F 2 h s 6 : {s\ —> S2)

=> a : s\ —> s2
 v " y Fi,F2 hs (b a) : s2

a : (si|s2) F2,x : si h s 6 : s Ts,y : s2 h s c : s

(App)

match a with Inl(x) => b \ Inr(y) ~>c : s

F i h c\ : s . . . Tn \- Cn : s

h / i : ( s i j x . . . x smi) -+ s . . .

h / p : (sip x . . . x smp) -*s
01 h ai : £... 0 n \- an : t

the result sort of b\,..., bp is £

(Case)

. . . , 6 n h rec(s, cons, arg) : t
(Rec)

Figure 9.2: Sort inference rules for terms of S.

Remark 9.3. For the purposes of this chapter, we do not provide an operational semantics
for the function symbols that occur in lambda terms. Instead, when we use a lambda term
in a specification, we assume that, when used as an SML program, its function symbols
correspond to functions which, when executed by a standard SML compiler, evaluate
according to the specification. In particular, evaluation preserves equality. That is to say,
if f evaluates to p, then / = p is true in the models for the specification.

Example 9.1. For example, take the lambda term fn y : Nat => x -f y in the basic
specification:

spec NAT_0 =
sorts

Nat
ops 0 : Nat; s : Nat
preds

>: Nat x Nat

Nat: + : Nat x Nat —> Nat/J : Nat —• Nat

Specifying and reasoning about SML programs

axioms
Vx : Nat • x + 0 = x\/x; y : Nat • x +

jh ?/: Nat => x -\- y
end

329

-f y)ix : iVat • f(x) =

We presume that, when treated as an SML program, fn y : Nat => x + y will behave
according to the reduction rules and that the function symbol + will be according to the
axioms of the specification.

Remark 9.4. A standard SML compiler is equipped with a denotational semantics that is
compatible with these rules (see, e.g., [MTH90]).

match Inl (a) with Inl(x)
match Inr(a) with Inl(x)

(fnx:s=>p) a >SML p[a/x]
> b I Inr(y) =>c >SML b[a/x]
> b I Inr(y) =>c >SML c[a/y]

fst(a,b) >SML a
snd(a,b) >SML b

Figure 9.3: The operational semantics of lambda calculus.

9.1.6 Using SML lambda terms in CASL

The CASL specification document [CoFOl] does not use higher-order sorts. That is, we
are not permitted to have a function symbol that accepts another function (non-constant)
symbol as an argument.

For the remainder of this thesis we will relax this requirement.

It will also be necessary to add extra-logical axioms to CASL specifications, so that we
can reason about lambda terms. For convenience, we will use the the schemata of Fig. 9.5
to generate these axioms.

Remark 9.5. Because formulae may now involve lambda terms from and higher-order
types, we have equalities between functions. For example, we can have a specification
with an axiom

/ =nat-^nat fn x : nat => x + x

We will assume that the semantics for these equalities is extensional. For example, we
take the above axiom to mean that f(y) denotes the same value as (fn x : nat => x -f x y)
for every natural number y. These equalities will be particularly useful for providing
definitions of functions in terms of SML lambda terms.
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Assume a list of constructors for a sort s, cons, defined

Jl : X . . . X S ^ j • . . ,
fp: (sXp x ... x smv)

and a list of terms, arg, defined

Then rec{cons,arg) reduces as follows.

rec(cons, arg)ci

for each c i , . . . ,0^.
For /i : (s^ x . . . x s m j such that each s^ ^ s,

For /i : (si- x . . . x sm.) with [di , . . . , 4 ] the ordered list obtained from

reckons, arg)fi(dit,...,dm

6idi. . . . dmi (rec(cons, Wrg)d\)... (rec(cons, Wrg)dk)

Figure 9.4: The operational semantics of recursion operators in the lambda calculus.

9.1.7 Semantics of extended specifications

CASL specifications extended with SML terms can still be viewed as using first-order
signatures [HS96, pp. 47-48]. This is possible by translating our extended signatures
into first-order signatures that involve combinators (see, for example [SimOO, pp. 43-45]).
We represent the lambda term formation operators by appropriately typed I, S, K and
application operators, with appropriate combinator axioms added to every specification
[HS86]. Our lambda calculus and its axioms are then taken as syntactic sugar for the
resulting system.

From the perspective of semantics, our extensions mean that we now assume any models
for a CASL specification are also models for a lambda calculus, so that equality between
interpretations of lambda terms coincides with >SML reduction. There are several possible
approaches to modelling the lambda calculus. We do not detail a specific approach here,
but instead leave the choice open: the results to follow are not dependent on the choice of
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hint u=8r=>r=su

where s is a basic sort

P[r/y] Au=sr
(sub6t)[[F];[u;r];[a]]

hnt

P[u/y)
where u and r are well-sorted of basic sort s and

y is the only free variable in P

« P[Inl(yi)/x] A \/y2 : s2 • P[/nr(ift)/a:]
h|nt Va: :

hn t

(disj-ind)[P;[si;6'2]]

where Inl(u) and Inl(r) are well-sorted terms of sort (s.i|s2)

h|nt Inrju) = Inrjr)
(union=2)[[u; r ; [sx- s2]]• _

' I n t a —8\ 1

where Inr(u) and Inr(r) are well-sorted terms of sort

h|nt Inl(u) — Inryr)
where u and r are well-sorted terms of sorts s\ and 52 respectively

Figure 9.5: Equality schemata and schemata for reasoning about disjoint unions.

models for the lambda calculus. See, for example, [Bar90, pp. 337-347] for a discussion
on denotational semantics for the lambda calculus.

Because we can view our extensions as still retaining first-order signatures, our under-
standing of specification building operations need not be altered. More complex higher-
order models can be developed, but it is not necessary to consider these for our program
extraction purposes.

9.2 Realizability

We now define a notion of realizability. A SML term is correct with respect to a specifi-
cation/formula pair S P O A when it is a realizer for S P and A. In the next two sections,
we will be concerned with the correct synthesis of SML terms, by extraction of realizers.

We will define two kinds of realizers: modular realizers and extended realizers. The latter
kind subsumes the former kind.

Modular realizability is essentially the same concept as modified realizability for intuition-
istic logic, but we now need to include CASL specifications. A lambda term is a modular
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realizer of a formula and specification when it can stand for the Skolem function of the
Skolem form of the formula in a, proof about the specification.

In the next section, we derive an important extraction result: that we can extract a
modular realizer for S P O A from a proof of this pair. However, as we shall see, that result
only works for a subset of SSL proofs, due to complications that arise from application of
the (hide) rule.

To provide a more general extraction result for all proofs, we require extended realizability.
This weakens modular realizability for S P o A: a lambda term an extended realizer of a
formula and specification when it is a modified realizer for the formula and an extension
of the specification. In section 9.4, we shall use the result on extracting modular realizers
to extract refinement realizers from all SSL proofs.

9.2.1 Skolemization

To define our notions of realizability, we use the Skolem form of formulae.

We need the definition of Harrop formulae, given by Definition 6.1.1 of Chapter 2, Part
II, p. 33.

We also need to define a sort extraction map xsort from formulae to sorts of C(SML). This
the same map as given by in Fig. 2*9 of Chapter 2, Part II. For completeness, we repeat
the definition in Fig. 9.6.

An analogous result to Theorem 6.2.2 of Chapter 6, Part III holds.

Theorem 9.2.1. Take any proof

Then

is a correct type inference.

'LTT(SSl)

extractmod(o0 : etypeA

Proof. The proof is by induction on the possible forms of d, and is similar to that for
Theorem 6.2.2 of Chapter 6, Part III. D

We define the Skolem form of a formula, in the same way as we did for formulae of Chapter
2. The definition is repeated here for completeness.

Definition 9.2.2 (Skolem form and Skolem functions). Given a closed formula A,
we define the Skolem form of A to be the Harrop formula Sk{A) — SA/(J4L, 0), where
Sk!(A,AV) is defined as follows.

A unique function letter fAi called the Skolem function, is associated with each such
formula A, of sort etype(A). AV represents a list of application variables for A (that is,
the variables that will be arguments of f A ) . If AV is {x\ : s i , . . . ,x n : sn} then f{AV)
stands for the function application app(f, ( x i , . . . , xn)).
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F

any Harrop formula

(AAB)

(AvB)

{A^B)

(Vx : s • A)

(3x : s • A)

1

etype(F)

Unit

<
' etype(A) ifnotlT(B)

etype(£) if not JT(A)
etype(A) * etype(B) otherwise

etype(A)\etype(B)
( etype(5) if not H(A)
\ etype(A) —• etype(B) otherwise
s —> etype(A)
f s HH(A)
\ s * etype(A) otherwise
Unit

P is an atomic predicate.

Figure 9.6: Inductive definition of etype.

1. If A is Harrop, then Sk'(A,AV) = A.

2. If A = (BVC), then

Sk'{A, AV) = (Vx : etype(£) • fA(AV) = M{x) =» Sk'(B, AV)[x/fB])
A(yy : etype(C) • fA(AV) = Inr(y) => Skf(C,AV)[y/fc})

3. If A = (BAC), then

(a) If B is Harrop and C is not Harrop,

Skf(A,AV) = BA Sk'(C,AV)[snd(fA)/fc]

(b) If B is not Harrop and C is Harrop,

Sk\A,AV) = [Sk'{B, AV)\fst{fA)lfB] A C)

(c) If B and C are not Harrop,

Sk'(AAV) = (Skt(B,AV)\fst{fA)/fB}ASk'{C,AV)[snd{fA)lfc])

4. If A = (B=>C), then

(a) If B is Harrop,

Sk'{A,AV) = (B => Sk'{C,AV)[fA/fc])
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(b) If B is not Harrop and C is not Harrop,

Sk'{A,AV) = Vx:etype(B)*(Skf(B,AV)[x/fB]
Sk'(C,AV){(fAx)/fc))

5. If A = 3y : s • P, then

(a) when P is Harrop, Skf(A,AV) = Sk'{P,AV)[fA(AV)/y].

(b) when P is not Harrop,

- Sk'(P,AV)\fst(fA(AV))/y][snd(fA(AV))/fp]

6. If A = \fx : s • P, then S7c'(A AV) = Vz : 5 • 5£/(P, AV)[{fAx)/fP].

We will require the following Lemma.

Lemma 9.2.1. , For any formula G, any term t and any specification S P , if Sig(Sp)
contains Si?(C), we can prove

Sk(G)[t/fG}HsLSpoG

Proof By induction on the form of G. •

9.2.2 Modular readability

As in the case of modified readability for intuitionistic logic, a lambda term is a realizer
for a formula when it can be used in place of the Skolem function in the Skolem form of
the formula, with the result being true (see Definition 2.5.2 of Chapter 2, Part II, p. 47).
The only difference is that we now need to take into account the fact that our proofs are
about CASL specifications. So we define a notion of SSL-realizability that is given over
pairs of CASL specifications and formulae.

Definition 9.2.3 (Modular realizer). Given a specification S P and a formula A, r is a
modular realizer of S P O A if, and only if, r can be used for the Skolem function fA in the
Skolem form Sk(A), with the result being true of the models of S P

SP (= Sk(A)[r/fA]

Remark 9.6. A modular realizer r for S P O A must be a term of Term(Sig(Sp), Var). This
is because S P (= Sk(A)[r/fA] is true, and this statement is well-formed only when all
terms in Sk(A)[r/fA] symbols in Sig(Sp) (This follows from Definition 7.1.15 of Chapter
7, p. 247, where f= is defined to hold only between models and formulae of the same
signature.)

Remark 9.7. This definition of realizability is similar to that of modified realizability for
intuitionistic logic, but now extended to proofs about specifications.
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Because we extend modified realizers from single formulae to pairs of specifications and
formulae, our approach is comparable to that of Chapter 6 in Part III, where modified
realizability was adapted to define return value realizers for pairs of programs and formulae
of Hoare logic. However, note that, just as with return value realizability, we define our
realizers with respect to semantic truth. This is in contrast to modified realizability
of intuitionistic logic, which was given with respect to provability of the Skolem form
within the calculus. Our reason for this is that it faciliates an easier approach to proving
correctness of extraction from proofs that involve induction.

9.2.3 Extended realizers

To define our notions of extended realizability, we require a notion of specification exten-
sions. We choose a simple notion of model inclusion for extension.

Definition 9.2.4 (Specification extension). A specification SP_1 is said to be an
extension of a specification S P (written S P ^> SP-1) if all models of SP_1 (restricted
to Sig(Sp)) are also models of S P - that is, when every C G Mod(SP_l) is such that
CISig(Sp) ^ Mod(Sp).

We say an extension S P ̂  SP-1 is relatively consistent if, assuming S P is consistent, then
so is S P _ 1 .

We now define a second concept of realizability, based on modular realizability for exten-
sions of specifications.

Definition 9.2.5 (Extended realizer). Given a specification S P and a formula A, r is
an extended realizer of S P O A if, and only if,

SP' h Sk(A)[r/fA)

is true for some relatively consistent extension SP7 of SP.

In this case, we write
extr S P o A

9.3 Extracting modular realizers

In this section, we provide one of the main results of this part of the thesis: there is an
extraction map from proof-terms of the logical type theory to the SML lambda terms of
the computational type theory, generating modular realizers from proofs of specifications.
This is the idea of structured proofs-as-programs.

Because our logical type theory is an extension of intuitionistic type theory, the extraction
map extends the extraction map for intuitionistic proof-terms. Proof-terms corresponding
to structural rules require some care.
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In the case of unions, we can discard the structural rule altogether - it does not affect the
constructive content.

Renamings must be carried out over extracted programs.

However, in the case of hiding, we need to be careful. Our notion of modular readability
means that a realizer of S P OP is written as a term of Sig(Sp) (see Remark 9.6). Therefore
we cannot extract programs that use hidden symbols of a specification, because these
programs cannot be spoken about in the specification.

Consequently, in this section, we will prove that we can extract modular realizers for
a subset of SSL proofs, called modular proofs. In the next section, we will describe a
method for extracting extended realizers from all SSL proofc That method is based upon
the definitions and results of this section.

9.3.1 The extraction map

The extraction map extractssL is defined in Fig. 9.7. It extracts SML lambda terms from
proof-terms of LTT(SSL).

The map presumes a set of variables in Var, each corresponding to a proof-term variable
from Far P r ( S S L ) ,

{xu

Because the proof-terms for logical rules are similar to those for intuitionistic logic, our
extraction map is based on the map for intuitionistic logic in Chapter 2.

A lambda term is a modular realizer when it provides the constructive, computational
content for a formula. Thus the idea of our map is to extract this content from the proof-
term of a proved specification/formula pair. Harrop formulae have no computational
content and so are systematically ignored, while computational content for non-Harrop
formulae is mapped to lambda terms. The result yields terms in SML that are simply
typed (with disjoint unions and products).

Also, we remove much structural information from the proof-term. In particular,

1. translations of symbols is carried out explicitly.

2. the structural information of taking unions and extending specifications can be ig-
nored,

3. applications of the hiding rule are ignored - but see below for a discussion on the
problem extraction of realizers from proof-terms with hiding, and Section 9.4 for a
solution to this problem.

Remark 9.8. Because we have assumed that all axioms available in a specification are Har-
rop, we always extract the term () from applications of an axiom introduction ax(SP, A)Sp<>A

(by the first case of the table in Fig. 9.7).

any proof-term where P is Harrop

uA

abstract uA.aSr<>B

app(c , q )

use x : s. a S p o A

specif ic(cB P O V x : s*A , i ; )

(q S p o A ,6 S p o B )

case q S p o A v " of m\(tA) .b*v»u,

show(v,qSPOj4)

select (aSv<>3y[s*A) in a; . i / l x / y l .&S p < > B

inl(qSPoA)

inr(qbPOj4)

fst (qS p o A )

snd(qSPoA)

abort(qSpOj4bPoJ-)

rec(Conss,s, [ar,... ;an ;bi; • • • ;6P])
unioni(d , SP)
unior^d , SP)

exti(d IO , SP)
ext2(dSPO/J,Sp)

p • d S p o ^

hide(dypOj^,5L)

extractm0d (pb p o / J)

0
f xu not H(A)
\ 0 H(A)
\ f n xu => extractmod (q) not H(A)
1 extractmod (q) not H(A)
{ extractmod (c) not H(A)
\ (extractmod (c) extractmod (q)) notH(A)
in x : s => extracted (a)
(extractmod (c) v)

<
extractmod (q) H{B)
extractmod (6) H(A)
(extractmod (a)»extractmOd (b)) otherwise

match extractmod (q) w i t h
I n l ( x t ) => extractmod (b),
Inr(xu) => extractmod (c)

f v H(A)
\ (v, extractmod (a)) not H(A)

<
( f n x => extractmod (6))extractmod(q) H(A)
( f n x => f n xu => extractmod(b) \ „ , A,

, / w ,/ M. / w 1 not hi A)
\ f s t (extractmod (q)) snd(extractmod(a)) /

Inl(extractmod(q))
I n r (extracted (q))
f s t (extractmod (q))

snd(extractmod(q))

0
rec(cons, arg)
extractmod (d)
extractmod (d)
extractmod (d)
extractmod (d)

/9(extractmOd(q'))
extractmod (d)

I
Figure 9.7: The extraction map extractssL, defined over the proof-terms of LTT(SSL) to
the lambda terms of C(SML).
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Remark 9.9. Recall that, following [Pet98, WCP98, CPWOO, PCW02], we use
Sig(SpA) U Sig(SP-2) as the standard representation of the isomorphism class of
Sig(SpA and SP_2) . This simplifies the presentation of the (union^), (ext^) (i = 1,2)
cases, since we do not have to write the embedding morphisms inl and inr explicitly. So,
we do not need these morphisms in our extraction map or in our proof that extraction
produces modular realizers.

However, if we wished to, we could avoid this representation, and redefine extraction over
union proof-terms as follows:

extractmod(unioni((iSp-:l<>>1, SP_2)) = mZ(extractmod(d))
= inr (extractmocj(d))

where inl and inr are the embedding morphisms for the pushout construction for almal-
gamated unions of signatures of SP^l and SP_2.

9.3.2 Extracting modular realizers from modular proofs

We would like synthesize a modular realizer of a specification/formula pair from a proof
of the pair by means of our extraction map.

Unfortunately, this is not possible for all proofs. We cannot obtain modular realizers for
certain applications of the hide rule.

Example 9.2. For instance, recall the password checking system of the previous two chap-
ters. An initial specification of the system's password requirements, PWDCORE, was given
in Example 7.6, p. 256, Chapter 7. The function symbols {<?e, inRange} of PWDCORE

were relevant to the internal specification of the system. However, it is not desirable to
expose these symbols when specifying the external functionality of the system. By hid-
ing these functions, we restricted the specification of the system to relevant functionality,
obtaining a final, encapsulating specification PWDSYS.

We proved that, given any numerical password entered to the system, an appropriate
message can be output. The theorem was obtained by proving

h PWDCORE O VO; : nat • 3y : string • ValidMsg(x, y)

and then applying (hide) to obtain

h PWDSYS O VX : nat • 3y : string • ValidMsg(x, y)
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When encoded in the logical type theory, we obtained a proof-term for the final theorem
of the form

p = hide(use x : nat. case

(specific(exti(unioni(£tojB • (rec([T,F], boolean, [(inr(ax(NATBoOLEAN, T = T))),

(inl(ax(NATBoOLEAN, T = T)))])), STRINGBOOL), {§Ext, AExt)), inRange{x)))

of inl(u).show('Password acceptable', app(p7,app(p6>P5)))>

inr (v). show ('Please choose a password in correct range', ps),

{ge, inRange})

If we were to extract the program for this term using the extraction map as it is defined,
ignoring the application of hide, we would obtain the term

k = fnx : nat =>
match rec([true, false], [inr (()), inl (())]) in Rang e(x) with

Inl(xu) => 'Password acceptable',
Inr(xv) => 'Please choose a password in correct range'

Now inRange is not in the specification PWDSYS, and therefore is not a valid modular
realizer of

PWDSYS O VX : nat • Sy : string • ValidMsg(x, y)

because it is not possible to obtain the Skolem form

PWDSYS |= \/X : nat • ValidMsg{x, (k x))

with k for the Skolem function.

We prove that extraction of realizers is guaranteed to be possible if the proof-term is
modular according to the following definition.

Definition 9.3.1. A proof-term d is said to be non-modular with respect to a symbol list
SL if

• d is of the form hide(eSpoA, SL) and

• if the term e depends on symbols that are in SL: that is, if Sig(SP) D SL ^ 0.

A proof-term is modular if it contains no non-modular subterms.

Remark 9.10. In partice, non-modular proof-terms often occur the construction of spec-
ifications in SSL. This holds because we use functions from other specifications to prove
a required result. These functions are often hidden, to aid comprehensibility and encap-
sulation in the resulting specification signature. Consequently, it is important to find a
means of extracting correct programs from non-modular proof-terms. We do this in the
next section.
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We now prove that we can extract realizers from modular proof-terms.

Theorem 9.3.2. Take any set of typed proof-terms T = {u{\ . . . , u%n}. We define Ff to
the corresponding set of Skolemized formulae

r ' = {Sk(Gi)[xni/fGl], • • .,Sk(Gn)[xUn/fGn}}

If there is a well-formed modular proof-term p for the proof of S P O P

SPOP

then

i

f~Z,TT(SSL) P

S P , T ' (= Sk(P) [extractmod (p)/fP]

Proof. By induction on the length of the proof.

We can assume that P is not Harrop, because if it is, then Sk(P) is P and we are done.
This covers the case of axiom introduction, as, the conclusion formula P is Harrop (by
assumption 7,2) and so S k (P)[extr actmod (p) / fp] is simply P.

We proceed as follows for proofs ending in structural rules.

Case: (trans). Assume pSpoP is of the form p^d^SA w i t h
 P ) ° (H^) ) ? derived by an application

of (trans):

so that A must be of the form {uf *,
means that V is

p(A') =

., u%n} with T set to be { u f D l , . . . , u£Dn}. This

By the IH,
SA, A' |= Sfc(A)[extractmod(<2)/iU]

By the semantics of translation, it can be seen that this entails

extracted(d)/fA](SA with p),p'(A') |= p

Because T is p'(A') and Sric(P)[extractmod(p)//p] is Sk(p • A)[p(extractmod(d))//^] =
p • Sfc(A)[extractmod(d)//U], we are done.

Case: (unioni). Assume p S p o P is of the form unioni(d, SP_2)S P~1 a n d SP-2OJ4
5 derived from

a proof of the form

T h dSpA<>A

T h uniom(d, S P _ 2 ) ( S R 1 a n d
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By the IH,
SP . l , r ' h Sk(A)[extractmod(d)/fA] (9.1)

But, by definition, extractmod(p) is extractmod (unioni(d,SP_2)) = extractmod(^), and so
(9.1) is the same as writing

-1,1" |= Sk(A) [extractmod (p)/fA] (9.2)

By the semantics for unions it then follows that

(SP_1 and Sp.2),r ' \= Sk(A)[extractmo6{p)/fA}

as required.

The cases of (unio^), (exti), (ext2) (hide) are similar to (unioni). Because the proof-term
is modular, there are no complications with (hide).

We proceed as follows for proofs ending in logical rules. Because these cases involve proof-
terms that are the same as those of LTT( I nt) of Chapter 2, and the extracted programs are
identical, we use similar arguments for Int, only augmented to accommodate structured
specifications in our notion of validity of Skolem forms:

Sp,r ' |= Sk{P) [extractmod (p)/fP]

Case: (Ass-I). Assume that p S p o P is of the form uSpoA, obtained by an application of
(Ass-I):

(Ass-I)
u

So F' = {Sk(A)[xu/fA]} and we can prove

Sk(A)[xu/fA] h (S\g{Sk(A)[xu/fA]),fH)oSk(A)[xu/fA]
(Ass-I)

It is then easy to show that

8p(u') = (Sig(Sk(A)[xu/fA]),ID) = <Sig(A),0) = 8p(u)

Then, by soundness, we are done.

Case: (A-I). Assume that p S p o P is of the form

(o,6) SPOAAB

obtained by an application of (A-I):

h
S P O A A B

(A-I)

so that r = ri u r^.



342 Chapter 9: Structured proofs-as-programs Extracting modular realizers 343

Because we assume that P is not Harrop, either

1. A and B are both non-Harrop.

2. A is Harrop and B is non-Harrop.

3. A is non-Harrop and B is Harrop.

We deal only with the first case, as the other two cases are similar. Here, extractmod(p) is
(extractmod(a), extractmod(^)) and S&(P)[extractmod(p)//p] is

5fe(A)[5fc(i4)[/st(extractmod(p))//>i] A 5A;(J5)[5nd(extractmod(p))//^]

So, by the IH, we know

obtained by an application of (A-Ei):

, r i |= .Sk(A) [extractmod (a)/fA]
SP,r2 (= Sk(B)[extractmod(b)/fB]

By the definition of f=, it follows from this that

SP,r ; (= Sk{A)[extractmod{o)/fA] A Sfe(J3)[extractmod(6)//jB]

(A-Ei)

We are required to prove SP,r ' |= Sk{A)[extractmod(p)/fA].

There are two possible cases: either B is Harrop or B is not Harrop. We reason over these
cases.

1. Assume that B is Harrop, so that Sk(B) = B. Then, extractmod(p) is extractmod(g)
and we are required to prove S P , T (= Sk{A)[extractmod(q)/fA].

By the IH and the fact that Sk(B) = B, we know

S P , ^ \= Sk(A)[extractmod(q)/fA]AB

By the semantics A, it easily follows that

, r ' \=Sk(A)[extractmod (q)/fA]

(9.3) as required.

Because we assume all specifications models include a model of the lambda calculus with
equality preserving reduction, we know that

SP |= /5t(extractmod(a),extractmod(^)) = extracted {a)

SP [= 5nd(extractmod(a),extractmod(&)) = extractmod(h)

(9.4)

(9.5)

So, (9.4), (9.5) and (9.3) give us

Sp,r ; J= Sr/c(A)[/st(extractmod(a), extractmod

Sk(B)[

This is the required conclusion, because

(a), extractmod (b))/fA]

a), extractmod(&))//A] A Sfc(JB)[/st(extractmod(a)? extractmod(6))//i?]

is the same as writing

Case:

Sk{A)[fst(extractmo6(p))/fA) A Sk(B)[snd(extractmo6{p))/fB}

Assume that p S p o P is of the form

2. Assume that B is not Harrop. Then, extractmod(p) is /s£(extraetmod(g)) and we are
required to show S P , T ' (=

By the IH, we know

SP,r ; |= Sk{A)[fst(extractmod(q))/fA] A Sk(B)[snd[extractmod(q))/fB]

From this, by the semantics for A, we obtain the required conclusion

,!* h Sk(A)[fst(extractmod(q))/fA]

Case: (A-E2). Similar to the case (A-Ei) above.

Case: (V-Ii). Assume that pSpoP is of the form

in! (a)SPOAVB

obtained by an application of (V-Ii)

J- hSSL a

I-SSL "nKtt

SPOA so that extractmod (p) is Inl(extractmod(a))
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We are required to show that S P , F ' |= 5fc(P)[extractmod(p)//p] is true. That is, we must
prove

Sp,T' |= (Vz : etype(A) • Inl(extracted(a)) = Inl(x) => Sk(A)[x/fA})/\

(Vy : etype(B) • InZ(extractmod(a)) = Inr(y) => Sk{B)[y/fB})

To show this, we take any model M E Mod(Sv) and any interpretation I: Var -+ M such
that

M \=L G'

for each G' G F'. We try to show

M |=t (Vz : etype(A) • 7nZ(extractmod(a)) = Inl(x) => Sk(A)[x/fA])A

(Vy : etype(£) • 7nZ(extractmod(a)) = Inr(y) (9.6)

By the IH,
M K Sk(A)[extractmod(a)/fA] (9.7)

We prove the left hand side of the conjunction (9.6) - the right hand side is similar.

Take any x : etype(A)-variant L' of t, and assume

M \=L, In/(extracted(a)) = Inl(x) (9.8)

Because we use a loose semantics (p. 251 of Chapter 7 that models the lambda calculus
(p. 330 of this chapter), this must mean that

M f=v extractmod(a) — x (9.9)

So, (9.7) may be rewritten
M l— , Qh>( A\ \rr I f .1 (C\ 1 C\\

p1^/ OKyJxjyb/ JAj yiJ.HJ)

Because the assumption (9.8) entails (9.10) for any x : etype(A)~variant i! of i we know
that

M K Vx : etype(A) • 7nZ(extractmod(a)) = Inl(x) => Sk(A)[x/fA] (9.11)

This gives us the left hand side of the required conjunction.

The right hand side of (9.6) is deduced similarly.

Case: (V-I2). Similar to the (V-Ii) case above.

Case: (V-E). Assume that pSpoP is of the form

case e of inl(x).a, inr(y).6SpoCr

obtained by an application of (V-E)

S P o A V ff hSSL S P O C

r 1 ? r 2 , T3 h case e of inl(w).o, \nr(v).bSp^
(V-E)

so that r = r i U T2 U T3, and extractmod(p) is defined as

match extractmod(e) with
Inl{xu) => extractmod(a),
Inr(xv) => extractmod(6)

By the IH,

(9.12)

Sk{A V
SP,T 2 U {Sk(A)[xu/fA}} h Sk(C)[extractmod(a)/fc]

SP,r3 U {Sk(B)[xv/fB}} h Sfc(C)[e)ctractmod(6)//c]

(9.13)

(9.14)

(9.15)

By definition of Sk(A V B), (9.13) may be rewritten as:

SP, ri |= N (9.16)

where N is

(Va; : etype(A) • extractmod(e) = Inl(x) => Sk{A)[x/fA])A

(Vy : etype(£) • extracted(e) = Inr(y) => Sk(B)[y/fB})

Take any model M € Mod (SP) and interpretation £ :
each Gf eT'. We want to show that

M \=L Sk{C)[extractmod(p)/fc]

D such that M |= C for

(9.17)

Because we use loose semantics and our models must always model the lambda calculus,
our models must model disjoint union sorts given by Inl and Inr constructors. So, we
know that, either there is a term vi such that

t(extractmod(e)) =

or else there is a term vr such that

t(extractmod(e)) = i(Inr(vr))

We reason over these two possible cases to establish (9.17)

(9.18)

(9.19)
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1. Assume (9.18) holds. It follows then, by instantiating the first conjuct of (9.16) with
(9.12), that

M\=LSk{A)[vi/fA] (9.20)

But then (9.20) and (9.14) give us

M K Sk(C)[extractmod(a)[vi/xu]/fc] (9.21)

Because our models use a loose semantics and must preserve the lambda calculus,
we have that

t(extractmod(p)) = i
( match extractmocj(e) with

Inl{xu) => extracted (a)>
\

\ Inr(xv) => extractmod (b)

match Inl(vi) with
Inl(xu) => extractmod(a),
Inr(xv) => extracted W J

= ^(extractmod(a)[?;z/:ru]) (9.22)

So (9.22) and (9.21) entail (9.17)

M \=L Sk(C)[extractmod{p)/fc]

as required.

2. The case when (9.19) holds is similar.

Case: (3-1). Assume that the proof-term p S p o P is of the form 3x
application of (3-1)

r h

s • A obtained by an

(9.23)

There are two cases, dependent on whether A is Harrop or not.

1. Assume A is Harrop. Then extractmocj (p) is defined

extractmod(p) = v (9.24)

Also, because A is Harrop, Sk(3x : s*A) is ^4, and so Sk{3x : s • A) [extracted (p)//p]
is A[v/fA\- This means that Sk(3x : s • A)[fA/x][extractmod(p)/fA] = A[v/x], and,
by (9.23),

S P , T (= Sk(3x : s • A)[extractmod(p)//3a::5.A]

By application of Lemma 9.2.1, we have
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for each G{ E V % — 1 , . . . , n.

So, we have
SP, r ; |= Sk(3x : s
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2. Assume A is not Harrop. Then

extractmod (p) = (v, extractmod (a))

Because A is not Harrop, Sk(3x : s • A) [extracted (p)//p] is

(9.25)

Sk(A) [/s£(extractmod (p))/x\ [snd(extractmod (p))/fA]

Now, by the IH

Because our models preserve the lambda calculus

SP,T' (= Sk(A)[v/x][ (a)/fA] (9.26)

and

S P |= /s£(extractmod(p)) =

S P [= snd(extractmod(p)) = extractmod (a)

(9.27)

(9.28)

The required conclusion follows from (9.26), (9.27) and (9.28)

SP, r ; |= Sk(A)[fst(extractmod(p))/x][extractmod(d)/fA] (9.29)

Case: (3-E). Assume that p S p o F is of the form select (a) in x.u.bSFoC, obtained by an
application of (3-E)

_ aSPo3y:smA ^ uSpoA[v/y] |_

r i , r2r-select (a) in x.u.bSpoC (3-E)
(9.30)

So, r̂  = ri u r;
2.

We take any model M € Mod(Sp) and any interpretation I: Var —> M such that

M\=LG'

for each G € F', and show

M \=LSk(C) [extractmod (9.31)

There are two cases, dependent on whether A is Harrop or not.

1. If-A is Harrop, then extracted (p) is

SP, F' (fnv => extractmod(&)) extractmod(a)
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Because A is Harrop, Sk(A[v/y\) is A[v/y]. So, by the IH,

,r'2 U {A[v/y}} f= Sk(C)[extractmod(b)/fc}

and so, in particular,

M K Vv : s • A[v/y] => S/c(C)[extractmod (&)//<?] (9.32)

Because A is Harrop,

Sk(3y : s

= A[extractmod(a)/?/]

M \=L A[extractmo6(a)/y]

So, by the IH

and, in particular,

By the definition of f=, (9.33) and (9.32) entail

M \=L 6'A:(C)[extractmod(6)//c][extractmod(a)/?;]

Because, by definition of the (3-E) rule, v cannot occur in C, (9.34) means

(9.33)

(9.34)

M h Srfc(Cf)[(extractmod(6)[extractmod(a)/v])//c] (9.35)

Because our models preserve the lambda calculus, and

fnv=> extractmod(6)) extractmod(a) \>SML extractmod(b)[extractmod(a)/v]

we know that

^(extractmod(p)) = t((fn v => extractmod(&)) extractmod(a)) =

t(extractmod(&)[extractrt1o<j(a)/v]) (9.36)

The required conclusion (9.31) follows from (9.35) and (9.36).

2. If A is not Harrop, then extractmod(p) is

(Jn v => fn xu = > extractmod(6)) /5t(extractmod(a)) 5nd(extractmod(a))

By theIH,

M K W : s.\fxu : etype(A)*Sk(A)[v/y][xu/fA] =» 5*(C)[e)ctractmod(6)//c] (9.37)
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Because A is not Harrop,
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Sk(3y : s • A) [extracted {a)lhy.s.A]
= Sk(A) [fst(f3y:smA)/y}[snd(f3y:s9A)/fA] [extracted {a)/hy.s.A]
= Sk(A) [/5t(extractmod (a))/y] [5nd(extractmod {a))/fA]

So, by the IH

M (=A 5fc(A)[/5i(extractmod(o))/2/][5nd(extractmoci(a))//A] (9.38)

We take (9.37), set v to /s£(extractmod(a)), xu to 5n(i(extractmod(a)), and then in-
stantiating with (9.38) to obtain

M K Sk(C)[extractm0d(b)/fc][/si(extractmod (a))/v][snd(extractmod(a))/xu] (9.39)

Because, by definition of the (3-E) rule, v cannot occur in C, and also xu cannot
occur in C,~

5f/c(C)[extractmod(6)//c][/5t(extractmod(a))/v][.sn^(extractmod(tt))/xu]

is the same formula as

and so (9.39) means

M

Because our models preserve the lambda calculus, and

(9.40)

(fn v => fn xu = > extractmod(&)) /5^(extr2ctmocj(a)) snL'(extractmod(a))[>5MX

we know that

i((fnv = > fnxu = > extractmod(b)) /st(extractmod(«-)) 5nd(extractmod(a))) =
(9.41)

So (9.41) and (9.40) gives us the required conclusion (9.31).

Recall that all variables of the form xa (a G ^ttrP T ( I / T T s s L )) are assumed not to occur in any formulae
prior to use.
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Case: (=*-I). Assume that pS p o P is of the form A=> B obtained by an application of (=»-I)

T, uA h bSpoB

T h abstract u. 6SpoC

There are two cases, dependent on whether A is Harrop or not.

1. Assume that A is Harrop. Then extractmod(p) is extractmod(6). By the IH,

SP,T U {A} \= Sk(B)[extractmod(b)/fB]

because Sk(A) is A. By the semantics of implication, this means

S P , T (= A =» Sk{B)[extrBctmod(b)/fB}

This is the required conclusion, because extractmod(p) = extractmod(fr) and because

Sk(A => B)[extractmod{p)/fA=>B]

is the same formula as the conclusion

A => Sk(B)[extractmod(b)/fB]

2. Assume that A is not Harrop. Then extractmod(p) is fn xu-=> extractmod(6). By the
IH, we know that there is a proof of the form

^U {Sk{A)[xu/fA]} [= Sk(B)[extractmod(b)/fB] (9.42)

Take any model M € Mod(Sp) and any interpretation I: Var —* M such that

M k G'

for each G' E T'.

Because our models respect the lambda calculus with equality preserving reduction,

u => extractmod(&)) xu) = ^(extractmoc|(6))
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The semantics for quantification permits us to abstract over xu% to give
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M h V^u : etype(A) • Sk(A)[xu/fA] ^ Sk(B)[extractmod(p) xu/fB] (9.45)

This is the required conclusion.

Case: (=>-E). Assume that pS p o P is of the form C, obtained by an application of (=>-E)

so that F' = T[ U T2.

There are two cases, dependent on whether B is Harrop or not.

1. Assume that B is Harrop. Then extractmod(p) — extractmod(a).

Also, by the IH,
SP,r; \=LB => Sk(C)[extractmod(a)/fc}

and
SP, r'2 K B

(9.46)

(9.47)

The semantics for implication permits us to instantiate (9.46) with (9.47) to give

SP,T h Sfc(Cf)[extractmod(o)//c]

Because extractmod(p) = extractmod(a), the conclusion of this proof is the same as
stating 5/c(C)[extractmod(p)//cL ^ required.

2. Assume that B is not Harrop. Then extractmod(^) is (extractmod(a) extractmod(6))

Also, by the IH, we know

SP,ri (= Va; : etype(B) • Sk(B)[x/fB] => 5/c(C)[extractmod(a) x/fc] (9.48)

(9.43)
and

SP,r2 h Sk(B)[extractmo6(b)/fB] (9.49)

Now (9.43) and (9.42) entail that

M h {Sk(A)[xu/fA}} entails M h Sk{B)[((Jh xu => extracted(&)) xu)/fB]

So, by the semantics for implication

M K Sk(A)[xu/fA] =» Sk(B)[(extractmod(p) xu)/fB] (9.44)

The semantics for quantification and implication allows us to take (9.46), instantiate
x with extractmod(6), and then instantiate with (9.47) to give

S P , ^ (= Sk(C) [(extracted (a) extractmod(&))//c]

Because extractmod(p) is defined to be (extracted (&) extractmod(6)), this is the re-
quired conclusion.

wmm
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Case: (V-I). Assume that p S p o P is of the form Va; : s • A, obtained by an application of

(V-I)

r h use x : s. a
SpoV*:s*A

Because we have assumed that P is not Harrop (so \fx : s • A is not Harrop), A must not
be Harrop, and extractmocj(p) is fax => extracted(a)

Take any model M e Mod(Sp) and any interpretation I: Var —> M such that

for each G' e V

By the IH,
M \=L 5fe(A)[extractmod(a)//Aj (9.50)

Because our models take reducible lambda terms as equal (because they satisfy axioms
generated by schemata of Fig. 9.5)

t(fn x = > extractmod (a) x) — t(extractmod(a)) (9.51)

Now (9.51) and (9.50) entail

M \=L S7c(A) [(extractmod (p) x)/fA] (9.52)

By the semantics for quantification we can abstract over x in (9.52) to give us the required
conclusion

M J=, \/x : etype(-A) • 5fA:(^)[extractmod(p) x/fA]

Case: (V-E). Assume that pSpoP is of the form specif i c (a ,£ ) S p o A ^ obtained by an appli-
cation of (V-E)

(V-E)

Because we have assumed that P is not Harrop, this means that A must not be Harrop,
and extractmod(p) is (extractmod(o) t)

By the IH,
SP, r ; |= \/x : s • Sk(A)[(extractmod(a) x)/fA] (9.53)

To obtain the required conclusion, we need only instantiate 9.53) with t to give

,r7 (= Sk(A) [(extractmod (o) t)/fA) (9.54)

Extracting modular realizers

This is the required result, because
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is the same formula as

Sk(A)[extractmod(a) t/fA]

Sk(A)[extractmod(p)/fA]

Case: {Ind(s, £)). Assume that p S p o P is of the form

rec(Conss, s, [a l 5 . . . ; an; bV)...;

obtained bv an induction:

(S,Ax)oP[Cl /x] (Z,Ax)oP{cn/x} , (S,
Op

rec(Conss, s, [ a i ; . . . ; a
n;

E)

where

(E, Ax) is a basic specification where E = (S,TF, P) with constructors Conss C
for a sort s £ S,

Conss =

and

: 5 , . . . , : s, x . . . x s,..., ^ x . . . x sv
mp) -> s}

• where each P^ is defined as in Fig. 7.6 of Chapter 7 (p. 267).

In the non-Harrop case,

where
cons
arg

extractmod (p) = rec(cons,arg)

= [c i ; . . . ;cn; / i ; . . , ; / p ] and
= [extractmod (^ i ) ; . . . ; extractmod

We are required to show that

M K Vsc : $ • S7c(A)[(extractmod(p) x)/fA]

for M e Mod((Yt,Ax)) and every interpretation L.

That is, we need to show that, for every x-variant L'(X) € sM ,

M \=L> Sk(A) [(extractmod (p) .'

Let L" be the x-variant defined by

(9.55)

(^(extractmod(p)
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Because we use a loose semantics and s has constructors Conss, we know that i'(x) must
be of one of the following possible forms

where each d{ e T(E, 0 ) ^ , . . . , d?mj e T(£, 0 ) ^ (j = 1 , . . . , p).

To establish (9.55), we use a secondary induction. We reason over the possible form of
L\X).

• Assume i'{x) = i!

By the main IH

So, in particular,

for some i == 1 , . . . , n.

M \= Sk(A[cd/x})[extractmod(pi)/fA]

[=y Sfc(A)[extractmod(Pi)//,4] (9.56)

But, by the definition of >SML over recursion terms, and because extractmod(p) =
recicons^arg),

(extracted (p) <k) >SML extractmod(Pi)

and so, because our models take reducibility to entail equality,

//(extractmod(p) x) = i'(extractmod(Pi))

So, using (9.56) and (9.57), we can deduce

M \=Li Sk(A)[(extracted(p)

as required.

(9.57)

Assume i!(x) = i'{fi{d\,..., d^.)) for some z = 1 , . . . , n, and that sj ^ s for each

In this case, because extractmod (p) = rec(cons,arg).

(extractmod(p) fi(d\,..., d^.)) >SML (extracted(p»Ki . . . dl
m.)

and so, because our models our models take reducibility to entail equality,

i!(extractmod(p) x) = ^(extractmod(Pi) d\ . . . dl
m.) (9.58)
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By the main IH,

M K i : smi

So, by repeated instantiation,

M
. . . ,

and thus, by the definition of //

M

Then, by (9.58) and (9.59), we have

[(extractm0d

][(extractmodfe) dj .

i) d\ . . . cTm.

M h ' a'fc(A)[(extract^(p) x)/fA]

as required.

(9.59)

Assume t'{x) = i'{f\{di.,... ,dm.)) for some z = 1, . . . ,n, where the set M(s,
s}}j=i,..Mm») is non-empty, denned as in Fig. 7.6 of Chapter 7 (p. 267):

M(s, {x) : «5}j=i,...,m<) = {x) : sj | s) = 5 for jj = l j , . . . , m»} = {xi : 5 , . . . , xk : s}

We deal with the more complicated case where k > 1. The other case (/c = 1) is
similar.

Note that we have a set of terms corresponding to M(s, {x1, : s}}j=i,...,mj)

} = s f o r ^ = li» • • •» : 5,..., 4 : s}

In this case, because extractmod(p) = rec(cons,arg),

(extractmod (p) /»(4 , . . . , ^ ) )

extractmod(Pi) d\

and so

. (extractmod(p) a'i). . . (extracted(p)4

^(extractmod (p) x) =

(.'(extractm0d(pi) d\ . . . (extractmod(p) d\)... (extractmod(p)4)) (9.60)

By the secondary IH, for each / = 1 , . . . , /c, because di G T(E, 0)s,

M \=Ll Sk(A)[(extractmod(p) x)/fA]
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for LI = L[X *-+ i(di)]. This means

M h Sk{A)[(extractmod(p) dt)/fA] (9.61)

By the main IH,

>* . o *
. . . ,

=»
Sk(A)[fi(x\,... ,xl

m)/x][(extractmod(pi)xu . . . x m i yi . . . yk)/fA] (9.62)

By repeatedly instantiating (9.62) with (9.61), we can obtain

[(extractmod{pi)d\ . . . d\ni (extractmod(p)di)... (extractmod(p)dk))/fA)

Then, by the definition of J and (9.60), we have

M K ' 5fc(A)[(extractmod(p) x)/fA]

as required.

This last case concludes the proof. •

Because any CASL specification is a trivial extension of itself, we have the following
corollary to Theorem 9.3.2.

Corollary 9*3.1. If there is a well-formed modular proof-term p for the proof of S P O P

SPOP
f~LTT(SSL) P

then extractmod(^) is an extended reaiizer of S P O P.

9.4 Extracting extended realizers

By adding additional axioms and symbols to a specification, we can add extracted pro-
grams back into a specification to form a conservative extension while preserving consis-
tency. This yields executable extensions of specifications. This is a useful result for two
reasons:

• This permits a systematic approach to consistent extension (extending a specification
while retaining consistency) and the reuse of previously extracted programs

• We need this result in order to synthesize provably correct SML terms from all
SSL proofs (including non-modular proofs). This is achieved by extracting extended
realizers.

We use the results of the previous section to transform non-modular proofs of the form

into modular proofs of the form

f-SSL S P O A

I-SSL S P ' O A

where SP ' is a relatively consistent extension of SP . This transformation will require
us to extend SSL and L I T (SSL) conservatively with an additional rule and proof-term
construct. Then, by extracting a modular reaiizer from the resulting proof, we have the
required extended reaiizer of S P O A.

9.4.1 Extensions via extraction of modular realizers

We shall first show how relatively consistent extensions of specifications can be given using
the extraction of modular realizers.

When we extract a term extracted (d) from a modular proof

SPOA.\-d

the equality fA — extractmod(d) and the formula Sk(A) can be added to S P as an axiom,
and fA can be added to Sig(Sp). This will give a larger specification S P ' that is a relatively
consistent extension of SP .

This is formalized by the following theorem, which follows from the soundness of SSL
(Theorem 7.4.2 of Chapter 7) and our proof that modular proofs yield realizers (Theorem
9.3.2 above).

Theorem 9.4.1. Given a proof
0 h dS p o A

such that e = extractmod(<i), then we have that S P ' = NewSpec(Sp, A, e) is a consistent
extension of S P ; where NewSpeciSP, A, e) is defined by

SP then {(fA : etype(A)}, 0,0), {fA = e, Sk(A)}}

Proof. We can assume that Skolem function symbol fA does not occur in the specification
S P (because, if it did occur, we could rename fA to something else). The result then
follows easily because

• the equation fA = e is a conservative extension of the original specification, not
affecting consistency.
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we have a proof that h SPoSk{A)[e/fA]. This means, for every model M e Mod(Sp),

M\=Sk{A)[e/fA]

It can then easily be seen that, for any model C such that C|gjg(gp)

where
C |= fA = e

Mod($p)

(9.63)

it must be the case that
C |= Sk{A)

So, because Mod(A^e^5fpec(SP,^4,e)) is the smallest set of models C such that
^iSig(Sp) e Mod(Sp) we know that these models are always consistent, provided the
models of Af od(Sp) are consistent.

D

Remark 9.11. Note that / ^ and e can be functions, m which case the equation fA = eis
a higher-order equation. This is permissible, because we assume CASL is now extended
to permit higher-order statements. If we did not permit this, we would have to add an
equation of the form

fA(~x) = e(~x)

where ~x is the list all abstraction variables for the lambda term e in the specification.

9.4.2 New rules for consistent extension

We will require our logic and logical type theory to be extended with a new rule, an
additional constructor unextract, and new type inference rules. The new rule provides a
means of consistently extending a specification with an equational definition for a function
and a new axiom for defining behaviour of the function. In this way, the rule permits
consistent extension by and reuse of extracted terms in further proofs and synthesis.

The following is a new rule of SSL

h NewSpec(Sp, A,e)oA
(Sk)

(9.64)

where e is a modular realizer of S P O A.

Also,
unextract(SP, A, e)

is a new proof-term to LTT (SSL), for SML term e and specification/formula pair S P O A
We add

extractmod (unextract (SP, A, e)) = fA

to the definition of extractssL-
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If e is a modular realizer of S P O A, then we can apply a the following new type inference
rule of LTT(SSL) corresponding to the rule (Sk) in SSL

h unextract(SP, A, e)NewSpec{SPyA,e)oA
(Sk)

These extensions given by the rule are conservative, in the sense that all the important
results about SSL and LTT(SSL) are preserved as shown by the following lemma.

Lemma 9.4.1 (Preservation of known properties). The rides of LTT'(SSL) with the
unextract construct, the additional type inference rule (Sk) and the new extended definition
of extractmod preserve the following theorems about LTT(SSL):

1. Soundness for SSL (Theorem 7.4-2 of Chapter 7).

2. The Curry-Howard isomorphism (Theorem 5.2.5 of Chapter 8):

• Given a natural deduction proof D of \~ssi SPO A, we can construct a well typed
proof-term fSpoA.

• Given a well-typed proof-term fSpoA, we can construct a natural deduction proof
D of

m

f-SpoA

3. Strong normalization and the Church-Ros'ser property (Theorems 8.2.9 and 2.3.7 of
Chapter 8):

4- Extraction of modular realizers (Theorem 9.3.2 above).

Proof. Proof of item 1. We need only show that soundness holds for the new rule of SSL,
assuming soundness for the original rules. The rule (Sk) is derivable from the (ext2) rule:

SP then {(fA : etype(A)},0,0), {fA = e}}

and so soundness follows trivially.

Proof of item 2. The first part of Item (2) follows trivially from Theorem 5.2.5 of Chapter
8, because we do not need to use unextract in the derivation of / . The second part of Item
(3) follows because (Sk) has a matching rule in SSL.

Proof of item 3,, Strong normalization is preserved because we treat unextract proof-terms
in the same way as we treat the ax proof-terms - as constants that cannot be reduced.
The Church-Rosser property is preserved because, as with ax proof-terms, there are no
critical pairs introduced by unextract.

Proof of item 4- The new construct unextract still preserves extraction of modular realizers.
We add the following case to the proof of Theorem 9.3.2. Assume we have a modular proof
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ending in (Sk),
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(Sk)
h unextract(SP, A, e)NewSpec{SP,A,e)oA

We have that extractmocj(unextract(SP, A, e)) = /A- SO, we need to show

NewSpec(Sp,A,e) \= Sk{A)

Now, as e is a modular realizer, we already know that

SP |= Sk(A)[e/fA}

By the semantics for extension, we can infer from this that

SP then {(fA : etype(A)} J , 0), {fA = e}} (= Sk(A)[e/fA}

which means
NewSpee{Sp,A,e) \= Sk{A)[e/fA) (9.65)

Now, by definition of NewSpec, we have /A — e as an axiom and so

JVewSpec(SP, A, extractmo(j (d)) |= /A = (9.66)

It follows from (9.65) and (9.66) that

NewSpec(SP, A, extractmod (d)) j= Sk{A)

as required. D

9.4.3 Making proofs modular

We now show how to transform a proof

\-d SPOA

into a modular proof
\-d

,/SP'OA

by using Theorem 9.4.1. This result will then be used to extract extended realizers from
any proof.

The transformation proceeds according to the proof of the following lemma.

Lemma 9.4.2. Given any term 0 h dSp<>A, there is a proof-term h moduiar(d)bP oA such
that modular(d) contains no non-modular subtenns and SP ̂ > SP ' .
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Proof. We give a recursive definition of modu!ar(<i) using a depth-first traversal of the
proof tree encoded by d. (Recall that d is a proof-term and therefore represents a natural
deduction proof tree.)

Let n(t) be the total number of non-modular sub terms in the proof-term t.

We define a terminating sequence of proof terms d = do,..., dk = modular(d).

Given di, we determine dj+i as follows.

Case 1. If di does not contain any non-modular subterm, then di+\ = modular(d) = di
(that is, the sequence terminates).

Case 2. Otherwise, normalize di to give a proof-term dl'. As long as d{ has no assumptions,
the normalized proof-term d' will contain no subterms of the form hide((A:r : Ap), E).

1. Take the leftmost innermost non-modular subterm of the form t = hide(e : B, E) in
d1. That is, take the first non-modular subterm t in d1 which does not contain any
non-modular subterms. So, e itself contains no non-modular subterms.

2. Extract a modular realizer from e to yield a new SML term / = extracted

Let SP = NewSpec(sp(e), A, extracted(e)). Then, in t, replace all occurrences of e
by unextract(Sp, A, extractmod(e))) to give t' = i[unextract(SP, A, extractmod(e))/e].

Note that t' proves the same formula as t by the typing of unextract and Lemma
9.4.1, but with a refined specification (adding the definition of /A = extractmod(e)).
The term t1 is modular because hidden symbols now do not hide the function /A,
which can be used in extractmod(0-

3. Replace t by tf in ci', to give di+i -•-• df[f /t]. Then <^+i has at least one less non-
modular subterm than dj, and proves the same theorem as di.

Since n(di+i) < n(^) . this process yields a k such that n(dk) = 0. Then we take
modular(d) = dk, which is a proof-term with no non-modular subterms.

Note that SP ' is a conservatively correct extension of SP by Lemma 9.4.1. So the the final
specification will be a conservatively correct extension of sp(d). •

9.4.4 Ext rac t ion of extended realizers

The previous results can be used to extract correct SML terms from any SSL proof. These
terms are correct in the sense that they are extended realizers of the proved specifica-
tion/formula pairs.

Theorem 9.4.2 (Extraction of extended realizers). There is an extraction map
extractssL from proof-terms to SML terms such that, given any proof

\-d SPOA
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it is the case that extractssi_(rf) is a extended realizer ofSPoA,

extr S P O A

Proof. The map extractssi_ is defined according to the following sequence

1. Take any proof
\~dSPOA

2. Apply Lemma 9.4.2, to transform d into a modular proof

s where S P > SP7

3. Let extractssL(^) — extractmo(j(d
/). By Theorem 9.3.2 is a modular realizer of d'. So

S P ' O Sfc(A)[extractSsL(d)//A]

4. Because S P ^> SP ' , extractssi_(cO is the required extended realizer of S P O A.

Theorem 9.4.3. Tafce any proof

extractSsi_(c0 : etype^i

a correct type inference.

Proof. The theorem follows easily from Theorem 6.2.2 and the construction of extractssi.

9.5 Example: Password checking system

We now demonstrate the extraction of modular and extended realizers using the password
checking system example of the previous two chapters.

For reference, we briefly summarize the domain description. In Chapter 7, we specified
a password system for an email hosting service, similar to the example used throughout
Chapter 2. When a user joins the service, he/she is required to define a new numerical
password. We restricted our attention to the part of the system that defines when a
password is of an acceptable length. This password number must be 4 digits long (and
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so within the range of 0 and 9999). If the number chosen is not of the right length, the
system will output a response message asking the user to select a new number within
the correct range. If the number is within the correct range, then the system outputs a
response message to this effect.

An initial specification of the system's password requirements, PWDCORE, was given in
terms of subspecifications of the natural numbers, booleans and strings, together with
some axioms to model the domain (Example 7.6, p. 256, Chapter 7). To restrict the
specification of the system to the relevant functionality, a final specification PWDSYS was
defined by hiding functions of PWDCORE that we did not wish exposed.

We developed a theorem in SSL about PWDSYS: given any input a: of a password, there
is always an appropriate response message to be output explaining whether the password
is of the correct length or not (Section 7.3.6, pp. 268-270 of Chapter 7). This theorem
is a truth about the specification PWDSYS, given known properties about its required
behaviour. However, to build an implementation of the password checking system, we
need to obtain a function for producing such a message for given passwords. In isolation,
the theorem does not tell us what this function is.

We will now use our synthesis methods to extract such a password checking function which
outputs an appropriate response for a given password number input.

We have seen how the proof of the theorem can be encoded as a term in the logical type
theory (Chapter 8, Section 3.2.1, p. 286). The proof-term for the theorem involves a
critical subterm because it involves proving the required property over P W D C O R E and
then applying (hide) to show the property holds for PWDSYS.

Consequently, we can extract an extended realizer from the proof of the theorem for
PWDSYS. TO do this, we first need to obtain a modified realizer for the proof of the
property over PWDCORE.

We show how to extract a modified realizer from part of the proof about PWDCORE, and
then an extended realizer from the proof about PWDSYS. We then show how the extended
realizer can be used to build a consistent extension of PWDSYS.

9.5.1 Extracting a modular realizer

The main part of the proof described in previous chapters involved a derivation of

h PWDCORE O VZ : nat» 3y : string • ValidMsg{x, y) (9.67)

The Skolem form of the formula A = \/x : nat • 3y : string • ValidMsg{x, y) is

Sk{A) = Vx : nat • Valid(x,

Thus, by the definition of modular realizability, the theorem can be viewed as a specifica-
tion of a function /A that outputs an appropriate response message for a given password
number.
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The proof of this theorem can be encoded as a typed proof-term of the form

PwDCOKEc\/x:nafa3y:string»ValidMsg(x,y)i

(see Section 7.3, pp. 268-270). where

q = use x : nat. casep± of inl(u).show('Password acceptable', app(p7,app(p65P5))),

inr(u).show('Please choose a password in correct range'

where p± is of the form

specific(exti(unioni(£foJ3 • (rec([T,F], boolean, [(inr(ax(NATBoOLEAN,T = T))),

(in1(ax(NATBooLEAN, T = T)))])), STRINGBOOL), (SExt, AExt)), inRange{x))

The proof-term encodes constructive information obtained from the (3-1) applications
used within the proof - in particular, the witness string, y, for a valid message such that
ValidMsg{x, y) given a password number x, depending on the length of the password
number.

By inspection, it can be seen that this proof-term is modular. We can apply Theorem
9.3.2 to obtain a function

extractmod (q) =
fn x : not =>
match rec([true, false], [inr(Q), inl(Q)])inRange(x) with

Inl(xu) => 'Password acceptable',
Inr(xv) => 'Please choose a password in correct range'

such that
PWDCORE (= Sfc(P)[extracted

This function has the required property. For instance, because inRange(9999) = true, we
have that

PWDCORE (= extracted (#)9999 =
match (rec([true, false], [inr(Q),inl(())])inRange(9999)) with

Inl{xu) —> 'Password acceptable',
Inr(xv) —> 'Please choose a password in correct range'

PWDCORE |= extractmod(<?)9999 = (9.68)
match true with

Inl(xu) => 'Password acceptable',
Inr(xv) => 'Please choose a password in correct range'

PWDCORE (= extracted (<?)9999 = 'Password acceptable'
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The last inference holds because equality in our modeis preserves >SML reduction and

match true with
Inl(xu) => 'Password acceptable',
Inr(xv) => 'Please choose a password in correct range'

>SML 'Password acceptable'

The inference (9.68) shows we hare the correct property for input 9999 because

and so

P W D C O R E (= ValidMsg(9999, 'Password acceptable')

P W D C O R E f= VraZidMs^(9999,extractmod(/2)9999)

9.5.2 Extracting an extended realizer

The conclusion of (9.67) specifies a function for P W D C O R E , which, although specifying
the password system, also exposes some extraneous functionality. To encapsulate this
functionality, we apply the (hide) rule to (9.67), obtaining the final theorem about the
specification PWDSYS

h PWDSYS OWX : not • 3y : string • ValidMsg(x, y) (9.69)

mes-
The resulting theorem still describes a function that outputs an appropriate response
sage for a given password number, but for the specification PWDSYS of the encapsulated
password system.

The proof of this theorem can be encoded as a typed proof-term of the form

i_ PwDSYS<>yx:nat*3y:string»ValidA/fsg(x,y)

(see Section 7.3, pp. 268-270) where

P hide(use x : nat. case p± of in I (u). show ('Password acceptable', app(py, app(p6>P5)))?

inr(t;).show('Please choose a password in correct range',p$),

{ge, inRange})

This proof-term is not modular, so we cannot extract a modular from the proof. However,
by applying Theorem 9.4.2, we can obtain an extended realizer from p. This involves
application of the process used in the proof of Lemma 9.4.2, to remove critical subterms
of p. Essentially, we extend the specification P W D C O R E with the function definition
{f& = extractmo<j(<7)}. By the nature of our extraction process, this results in a consistent
extension,

N ewSpec(P WDSYS, A, extractmod (q))
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This process gives us the proof-term
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pf - unextract(PWDSYS, A,extractmod(^))

with the theorem NewSpec(PWDSYS, A, extracted (<?)) o ^ as type.

The required extended realizer is then

extractmod(p) = extractmod ( / ) = extractmod(unextract(PWDSYS, A, extracted (<?))) = SA

which satisfies

NewSpec(PWDSYS, A,e)o\/x : nat • Valid(x,extractm0(j(p){x))

where the specification iVe«;5pec(PWDSYS, A,extractmod(g)) is a consistent extension of
PWDSYS. This is the required function which, given any input x of a password, outputs
an appropriate response message explaining whether the password is of the correct length
or not.

9.6 The Curry-Howard protocol for program synthesis

Our extraction map leads to an effective application of the Curry-Howard protocol for the
synthesis of extended realizers from proofs of specifications. In this section, we show this.

9.6.1 Logical and computational type theories

In the Curry-Howard protocol of Chapter 3, we gave a general framework for program
synthesis from proofs of specification that generalized state-of-the-art proofs-as-programs.

The protocol requires a logical type theory and a computational type theory. We take
the logical type theory as the in LTT(SSL) of Chapter 8 (identified as an LTT for SSL
in Section 3.2.1 of Chapter 8, p. 82). We shall take our computational type theory to be
SML (as defined in this chapter).

9.6.2 Conformance to the Curry-Howard protocol

The Curry-Howard protocol (Definition 3.2.5, Chapter 3, p. 88) holds between the LTT(SSL)
and SML, for the following reasons

1. There are extraction maps etype from formulae of LTT (SSL) to the types of SML
and extractssL from proof-terms of LTT(SSL) to programs of SML,

extractssL : PT(LTT(SSL)) -> Term(SML)
etype : Formulae(SSL) —» Type(SML)

such that, given a proof d £ Pr (Lr r (SSL)) such that

oA
*~LTT(SSL)

then extractssL (d) is a lambda term of SML, is of type etype A The map etype was
defined in Fig. 9.6. The map extractssL is defined in the construction for the proof of
Theorem 9.4.2, using the map extractssL, which was given in Fig. 9.7. The required
typing property was shown in Theorem 9.4.3.

2. There is a readability relation extr between programs and formulae, such that, for
any proof

^LTT(SSL) V P°A

it is true that there is an extended realizer for S P O A:

extractssL (p) extr S P O A

The readability relation was identified in Definition 9.2.5. The required property
holds by Theorem 9.4.2.

9.6.3 Application of the protocol

Recalling the process of protocol application described in Chapter 3, Section 3.3, p. 89,
we have successfully taken the required steps:

Step 1 We defined a signature and a logical calculus that involves the signature, in Chap-
ter 4. This involved deriving some properties that were orthogonal to the protocol
process itself, but which were necessary for deriving the extraction theorem. Specif-
ically, we provided a semantics for the calculus (in Chapter 4) and proved soundness
(in Chapter 5).

Step 2 We defined a logical type theory for the logical calculus in Chapter 5.

Step 3 We identified a programming language and described it by means of a computational
type theory in Chapter 4.

Step 4 Finally, in this chapter, we completed the process by proving the Curry-Howard
protocol to hold over the above domains.

9.7 Discussion

We have shown how to synthesize correct SML functions from proofs about CASL spec-
ifications. We have achieved one of the main goals of this part of the thesis: adapting
proofs-as-programs to SSL, bulding upon the results of previous chapters. We applied
the Curry-Howard protocol of Chapter 3 from Part II. A new notion of readability was
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given between SSL specifications and formula pairs and SML functions. We then defined
an extraction map from proofs in the logical type theory of Chapter 8 to realizing SML
functions, which are terms of a computational type theory.

Additionally, we defined a method for incorporating extracted programs back into a CASL
specification, in order to develop partly executable extensions.

In Chapter 10, we will extend our calculus and its logical type theory to accomodate
parametrized specifications. We will show how the extraction results of this chapter can
be extended to that augmented calculus.

Our method of defining consistent extensions involved extracting functions from a theorem
and then adding them back into the theorem's specification. This leads to an intriguing
possibility for program development: beginning with an abstract, nonexecutable specifi-
cation, a system designer could repeatedly apply our method to derive a fully executable
specification. Because our method always produces consistent extensions, the final spec-
ification can be viewed as a structured program that is provably correct. We will return
to this question in more depth in Chapter 11.

Chapter 10

Generic specifications

In this chapter we extend our results to generic, parametrized specifications as they are
treated in CASL [CoFOl].

Generic (parametrized) specifications permit the abstraction of specifications. Abstraction
is an important concept in structured development of systems, because it facilitates the
encapsulation of system components that are applicable to a variety of problem domains.

Commonly, abstraction defines a system component with parameters to denote
re-configurable parts. Then, by instantiation of the parameters, the abstract component
can be made concrete to suit a particular problem domain. So a generic specification ab-
stracts over a specification by parametrizing over sub-specifications. The parameters are
the aspects of the specification that are open to change. The abstract generic specification
is made more concrete by instantiating these parameters.

There are two main approaches to parametrization in the algebraic specification literature
[Wir90, pp. 752-759]. The first method is by lambda abstraction, where a parametrized
specification is taken as a mapping from argument specifications to a result specification.
We do not deal with this approach in our work. The second approach, adopted by CASL,
is by pushouts, where parametrization is a generalization of the notion of unions and
extensions. A generic specification consists of a (fixed) main body in union with parameters
that are open to change. Instantiation is taken as a kind of translation of parameters.

CASL defines generic specifications via the concept of a named specification - a structured
specification that is given a name. Named specifications are an important idea on their
own as they permit the reuse of complicated specifications by simply referring to a name,
without the need to rewrite specifications in full. So we add new rules to SSL and its
logical type theory, in order to reason with generic and named specifications, and show
how this preserve the strong normalization and Church-Rosser properties, and finally show
how to extract correct SML terms from proofs.

We proceed as follows:

369
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• In Section 10.1 we summarize how generic and instantiated specifications are repre-
sented in CASL through the concept of named specifications.

• Section 10.2 adds new rules to SSL to deal with named, generic, and instantiated
specifications. We discuss semantic issues, and show that soundness is unaffected by
our changes.

• Section 10.3 adds correcponding type inference rules to LTT(SSL). We discuss
proof-theory issues, and show that the normalization and Church-Rosser properties
are unaffected.

• Finally, section 10.4 shows that we can still extract extended realizers from proofs
in the extended system.

Throughout this chapter we illustrate our techniques by two simple examples (one ulti-
mately deriving from one of Sannella and Tarlecki in [TS89] of a specification for a ware-
house parametrized by a specification of a catalogue of parts stored in the warehouse).

In the next chapter, we shall take extended versions of SSL and LTT{SSL) and show
how to produce executable refinements of specifications. We will then give a method for
refining non-generic specifications and generic specifications into provably correct SML
modules and functors, respectively.

The work of this chapter was first presented in [PCW02].

10.1 Generic and instantiated specifications

In this section, we define named, generic and instantiated specifications as treated in CASL

[CoFOl].

We define these constructions as structured specification expressions from the collection
CSpec defined in Section 7.2 of Chapter 7. This will enable us to use the maps

and

Sig : CSpec -> CSig

Mod : CSpec -> {M C Mod{Y) | £ e CSig}

to give the visible signature and semantics of our new constructions.

Example 10.1 (Warehouse catalogue: domain considerations). For the purposes of illus-
trating our ideas, we consider a very simple example, to be used throughout this chapter
and the next.

We shall specify and reason about a generic system for a warehouse that houses parts.
The warehouse supplies clients with replacements for faulty parts. The warehouse keeps
track of the parts by means of a catalogue that contains a list of each part's possible
replacements, indexed by the part's name. If a client has a faulty part, the warehouse
system's catalogue can be used to locate a replacement, using the faulty part's name.
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The system may be instantiated to work for a range of particular domains. For instance,
we may wish to use the system for the car manufacturing industry, where warehouse parts
are car parts, or for the textile industry, where parts are garments. Different warehouses
can use different catalogues and involve different types of part.

We shall therefore define the warehouse system as generic over a specification of a catalogue
and parts. To specify the essential elements a catalogue, we will require a specification of
lists. Lists themselves will be given as a generic specification.

10.1.1 Named and generic specifications

In the language of CASL, a generic specification is given through the notion of a named
specification, that is, a specification name with a definition for it. Generic specifications
are named specifications with parameter specifications.

A named specification is a specification with an associated name by which it may be
referred to in other specifications. In this way, named specifications permit the reuse of
specifications.

Definition 10.1.1 (Named and generic specifications). A named specification is
written

specSN[SP-l]...[Sp_n] given S P " _ 1 , . . . ,Sp"_m =
S P (10.1)

end

where the S P J (i = 1 , . . . , n) are specifications, called the parameters for the specification
SN, and the SP"_J (j = l , . . . , r a ) are specifications, called the imports for SN. The
specification S P is called the body of SN. If n = 0, there axe no parameter specifications
S P J , and SN is said to be a non-generic definition, otherwise it is called generic.

To keep a record of named specifications and what they refer to, CASL assumes a global
environment, consisting of a mutable set of named specification declarations. When a
named specification for SN is defined, the global environment is extended to include the
definition, provided a definition for SN has not been given previously. We shall adopt the
following notation to deal with the global environment.

Definition 10.1.2. We write Global to denote the global environment, and then Global :=
Global U {D} means that the global environment is extended by the named specification
definition D. We write SN 6 Global to mean that SN is defined in Global. Therefore
SN 0 Global otherwise.

We understand the well-formedness and semantics of a named specification as given by
the imports extended by the union of the parameter specifications and then extended by
the body. That is, given SN e Global of the form (10.1) in Definition 10.1.1, we define the
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visible signature of SN to be

Sig(SN) = Sig({Sp"A and . . . and Sp"_ra}

then {SP_1 and

Similarly, the semantics of SN is

. and Sp_n} then SP)

Mod(SN) = Mod({Sp"A and ... and Sp"_m}
then {SP_1 and ... and SP_n} then SP)

Remark 10.1. Note that, on their own, generic specifications are not considered specifica-
tion expressions - we are not permitted to apply union, translations, hidings or extension
to generic specifications. In order to building a specification expression using generic spec-
ifications, each parameter must has to be instantiated in all references to a specification
name SP .

Remark 10.2. The declared parameters show just which parts of the generic specification
are intended to vary between different references to it. The imports, by contrast, are
fixed, and common to the parameters, body, and arguments. This illustrates the difference
between declaring parameters and leaving them implicit in an extension of the form used
to provide the semantics for generic specifications.

Remark 10.3. A non-generic specification is a specification expression and may be used
to construct new specification expressions. In this case, we simply view the non-generic
specification SN E Global

specSN given S P " _ 1 , Sp"_ra =
S P

end
(10.2)

as shorthand for the expression

{SP"~1 and . . . and Sp"_m} then S P

Example 10.2 (Warehouse catalogue: generic lists). Because a catalogue is a list of parts,
we need a specification of lists LISTS: which we shall give first as a generic specification.

First we assume a specification of the natural numbers, NAT. For convenience we often
omit irrelevant axioms, denoting them by an ellipsis . . . . We shall build LISTS as a generic
specification of lists of elements of sort Elem that contains an operation hd that returns
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the head of a list, on top of NAT:

spec LISTS [{sorts Elem}] given NAT =
sorts List(Elem)
ops nil: List(Elem); cons : Elem x Lisi{Elem) —> List(Elem);
hd : List(Elem) —> Elem; size : List(Elem) ~» nat
preds G: Elem x List(Elem)
axioms Vk : List(Elern) • size(k) > 0 => hd(k) G k

We assume LISTS is a specification name in the global environment.

10.1.2 Instantiation

A non-generic specification may be used as a structured specification in place of its defi-
nition body. However, a generic specification must be instantiated in order to be used as
a structured specification expression. CASL follows a pushout approach to instantiation,
consisting of a process of applying morphism to "fit" a generic specification's parameters
with instantiating specifications and then taking the pushout of the result.

Instantiation is done through fitting arguments ([CoFOl], section 6.2.2). A fitting argu-
ment for a parameter specification consists of an instantiating specification and a symbol
mapping, that defines a morphism between the signatures of the two specifications.

Definition 10.1.3 (Fitting argument). Take two specifications S P and SP ' . Given a
well-formed symbol mapping SM : Sig(SP) -* Sig(Sp)' such that M\SM € Mod(Sp) for
every M G Mod(Sp'), we have that

S P ' fit SM

is a well-defined fitting argument for S P . We call SM the fitting morphism for this fitting
argument.

The form of an instantiated specification is as follows.

Definition 10.1.4 (Instantiated specifications). Instantiation of a generic specifica-
tion with name SN, defined in Global, is wntten

where FAi,..., FAn are well-defined fitting arguments from the parameters of SN

SPJL . . .

to a set of instantiating specifications

S P ' J . . . . Sp'_n
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Remark 10.4. The instantiation is valid provided that SN has been defined in the global
environment.

To understand the semantics of instantiation, we required the following definitions.

Definition 10.1.5 (Well-definedness of instantiations). We take the following in-
stantiation of a generic specification with name SN defined in Global:

where
spec SN[SP-1] . . . [SP-n]

S P

end

S P " _ 1 , . . . , Sp"_m =

(10.3)

and SP ; _1 , . . . , SP'_U are the argument specifications for the fitting arguments.

Let SP* stand for the imports and parameters extending body of SN:

{SP"_1 and ... and SP"jm} then {SP_1 and ... and Sp_n} then SP (10.4)

We define a morphism over SN,

FM{Sn[FAi]...[FAn])

to be the morphism formed by the the fitting arguments extended to a morphism applicable
to ^he signature of SP*. When there is no abiguity about the instantiated specification
referred to, we shall simply write FM for this morphism.

We define Inst(SN[FAi]... [FAn]) to be

SP* with FM then {SP'_1 and . . . and Sp'_n}

The instantiation SN[JFV1I] . . . [FAn] is well-defined only when Sig(Inst(SN[FAi]
m a pushout of the body and argument signatures of SN.

This requiien? -̂ a is formalised as follows. Let

(10.5)

"_1 and ... and Sp"_ra} then
{SP_1 and ... and Sp_n})
Sig{Sp*)
Sig({SPff-l and ... and Sp"..m} then
{SPJL' and ... and SP_ra'})

... [FAn]))

Let FA denote the morphism formed from the fitting arguments extended with identities
over imports to now map Eo to Ep.
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The instantiation is well-defined only when FM can be used a morphism in the pushout
diagram:

FA FM

where i\ and %2 are morphisms from S a to £& and £ p to S^ respectively. (For our purposes,
we may additionally require that these morphisms are injections.)

Rem,ark 10.5. The requirement on well-definedness in the previous definition means that,
if the translated body

{SP* with FM}

and the union of the argument specifications

{SP'_1 and , . . and Sp'_n}

share any symbols, these symbols must be the result of applying FM to symbols shared
with

{SP"_1 and ... and Sp"-m} then {SP_1 and ... and Sp_n}

We understand the signature of an intantiation as

Sig{SN[FA!]... [FAn]) = Sig(Inst(SN[FAi]... [FAn]))

and the semantics of an instantiation to be

Mod(SN[FAi]... [FAn]) = Mod(/nst(SN[Fi4i]... [FAn]))

Remark 10.6. The difference between imports and parameters in a generic specification
is shown by the semantics for instantiation. The symbols and axioms of imports may be
used by the parameters in a generic specification - and may also be used by the arguments
in an instantiation. However, they are fixed - not permitted to change according to the
fitting arguments. In contrast, the parameters denote specifications that can be changed
according to the fitting arguments. In this way, they denote the parts of an abstract generic
specification that may vary according to the concrete application by the instantiation
mechanism.

Example 10.3 (Warehouse catalogue: instantiating lists to specify the catalogue and the
warehouse). We instantiate and extend LISTS to give the specification of the general form
of a catalogue. We use 10R for the operation that provides a list of replacements for a
part, and Rep for the predicate meaning that one part can be replaced with another, with
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their obvious semantics.

spec CATALOGUE = LISTS [Elem \-> Part) then S P

where S P stands for

sorts Catalogue
ops myCat: Catalogue; IOR : Part —» Lisi(Part)
preds Rep : Part x Part x Catalogue; In : Part x Catalogue
axioms Vi, e : Par t • e G lOR{i) A 7n(e, myCat) => Rep(e, i, myCat);

Vz : Par t • size(lOR(i)) > 0

The specification of the generic warehouse system is then

spec WAREHOUSE[CATALOGUE] =
ops rep : Part —» Par t
axioms Vz: Par t • size(lOR(i)) > 0 =» In(rep(i), myCat) => Rep(rep(i), z, myCat)

Given a faulty part name as input, the function rep uses the catalogue to obtain a re-
placement part, if it exists.

Observe that the warehouse specification uses the general form of the catalogue as a
parameter. This general catalogue contains enough information for us to adequately define
the behaviour of replacement searches in the catalogue. To make the warehouse specific for
a given problem domain we need only provide an appropriate definition of the catalogue
specification, such that a fitting argument can be given to the general form of catalogue.

When we refer to this specification, we shall sometimes denote the body of the generic
specification by BODY WARE.

We assume WAREHOUSE and CATALOGUE are specification names in the global environ-
ment.

10.2 Extensions to logical calculus

We now extend the SSL calculus to cover generic specifications. Recall how, in the case of
structured specifications, we defined structural rules in SSL corresponding to specification
building operations. These rules involved changing the specification for a known theorem
f~ S P O A to construct a new theorem about a new specification. We proceed similarly,
defining rules for construction using generic and named specifications.

We are concerned with two kinds of construction done using these specifications: the
definition of named (possibly generic) specifications and the instantiation of generic spec-
ifications. Correspondingly, we give the following rules

A rule for defining named, and consequently parametrized, specifications (Defn).

Two rules for instantiating a parametrized specification by fitting arguments (Fiti)
and (Fit2).

In addition, we will extend the axiom rule of SSL to allow us to use visible axioms from
named specifications.

The new rules are shown in Fig. 10.1, p. 378.

10.2.1 New specification/formula pairs

We extend the calculus to permit named (possibly generic) specifications. That is, we now
reason with pairs

SPOA

where S P is any specification expression (including non-generic named specifications and
instantiated specifications) or a gener'c named specification. That is, conclusions of our
theorems vary over elements of Pairs (SSL), redefined below.

Definition 10.2.1 (Pairs for new rules).

.Pazrs(SSL) = { S P O F | S P is a specification expression or a generic specification and

F is a formula from UseCSig WFF{T,, Var)}

10.2.2 Global environment

In CASL, the definition of a named specific specification extends the global environment of
available specification definitions. We formalise this by making the following metalogical
assumption. We assume that the mutable global environment state Global is defined at
any stage of a proof. The state does not change in any of the previously defined rules of
SSL. However, upon application of the (Defn) rule, the Global state is expanded to include
a new specification definition that may be used in subsequent stages of the proof.

10.2,3 Definition rule

The definition rule (Defn), see Fig. 10.1, p. 378, corresponds to the introduction of a new
named specification. The formula is not affected, but the global environment must now
include the new name. Note that the actual final specification obtained in proving a given
formula will depend on the order in which the applications of (Defn) are introduced.
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Let SP* stand for the imports and parameters extending body of a named
specification SN:
{SP"_1 and ... and Sp;/_m} then {SP_1 and ... and Sp_n} then S P

(Defn)

Global := Global U {specSN[Sp_l]... [SP-ra] given SP"_1 , . . . SP"jm =
S P

end}
provided that the resulting Global contains only one definition of SN.

Global (Fit!)
FMT h SN[FAI] . . . [FAn] o FM{B)

where FM is the pushout morphism for the FA^ as described in Definition 10.1.5

F h {SP '_1 and . . . and SP' .TI} o B SN e Global
(Fit2)

r\-SN[FA1]...[FAn]oB
where each SP'_Z is the argument specification for FA{.

SN e Global (Ax* I)

where A G Axioms(SN)

Figure 10.1: The new rules of SSL.
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10.2.4 Fitting rules

The fitting rules1 (Fiti) and (Fit-2) in Fig. 10.1, p. 378 corresponds to instantiating the
specification parameters S P _ 1 , . . . , Sp_n by the specifications S P ' - I , . . . ,Sp'_n. The mor-
phism for the instantiation FM(SN[FA{\ . . . [i^An]) is as defined in Definition 10.1.5.

10.2.5 New axiom introduction rule

The third rule of Fig. 10.1, p. 378 allows us to use an axiom from the named specification,
even if the specification is generic. It extends the axiom rule but we now have to ensure
that SN is in Global.

We require the following notation to speak about axioms of named specifications.

Definition 10.2.2. We write Axioms(Sp) to denote the set of visible axioms in a struc-
tured specification SP . If SN names a generic specification, we write Axioms(SN) to
denote the set of visible axioms in its body and imports. We call the instantiation
SN[F^4I] . . . [Fi4n] an unevaluaied instantiation. We call its expansion, given by the se-
mantics above, an evaluated instantiation.

Remark 10.7. The axiom ru'-j permits us to introduce axioms from a named specification.
After the introduction of an axiom, the full range of logical rules is available for further
reasoning about a named specification (generic or not). Note that these rules will not
change the specification, but can be used to derive new properties about it.

If the specification is not generic, we can also use any structural rule to build new speci-
fications and theorems from this named specification.

However, in CASL, a generic specification name is not considered to be a specification
expression to be used with the structuring operations (hiding, extension, transation or
unions). Consequently, the structural rules for hiding, extension, transation and unions
cannot be used with generic specifications. The only structural rules available to a generic
specification are the (Fiti) (i = 1,2).

10.2.6 Soundness

Soundness of SSL with the new rules of Fig. 10.1 follows from the original proof, due to
the straightforward semantics of generic and instantiated specifications.

Theorem 10.2.3. The extended system of logical and structural rules is sound.

Proof The proof is a simple extension of the proofs of Theorem 7.4.2 given in Chapter 7.

*At WADT2001, Sannella pointed out that one can use the earlier rules to simulate the effects of (Fit).
While this is true our aim has always been to accommodate our system to actual practice. Including the
(Fit) rule explicitly allows the user to use the standard apparatus of CASL directly.
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Soundness of a proof ending in (Defii) follows because Afod(SN) = Mod(SP*), in

ThSP*oA Global

T\-SNOA

Global := Global U {specSN[SP_l]... [SP_n] given SP"_1 , . . . S?"_m =
SP

end}

(Defh)

For soundness of a proof ending in (Fiti),

SNG Global
FMT h SN[FAI] . . . [FAn] o FM{B)

(Fit!)

take any

M e Mod(SN[FAi]... [FAn]) = Mod(Inst(SN[FAi]... [FAn])) =
Mod(SP* with FM then { S P ' J . and , and Sp'-ra})

By the IH, N f= J5 for any

JV 6 Afod(SN) = Mod(SP*)

By definition the semantics for translation and extension, it follows that M f= FM(B)

We proceed similarly for the case of a proof ending in(Fit2).

The soundness of (Ax* I) is trivial.

10.3 Extensions to the logical type theory

It is a simple task to extend the logical type theory for SSL to represent proofs that use
the new rules.

In this section we add new proof-terms and type inference rules corresponding to the new
rules. Types of LTT(SSL) now vary over the pairs used in the new rules, consisting of
formulae with named and instantiated specifications. The Curry-Howard isomorphism is
preserved, so that correct typing of a term corresponds to a valid proof according to the
rules of SSL.

We do not change the reduction relation over the resulting lambda calculus so the Church-
Rosser and proof normalization theorems are trivially preserved. Further reductions are
possible to eliminate redundancies in our proofs. This is done by removing named and
instantiated specifications with equivalent structured specifications. We briefly discuss
these reductions at the end of this section.

10.3.1 New proof-terms and typing rules

We inductively extend the set of proof-terms of LTT (SSL) by means of four new proof-term
constructors:

name(p, SN; SP~1, . . . , SP_n; S P " J . , .
instantiate^, SN; FM)
ax(SN, x)

., Sp"-.ra) naming
instantiation

axiom

where SN a specification name, SP_1, . . . , SP_n, SP"_1 , . . . , Sp"_ra are specification expres-
sions, FM is a symbol mapping and p is a proof-term.

We type these rules with specification/formula pairs according to the rules of Fig. 10.2.

Let SP* stand for the imports and parameters extend Kg
specification SN:

G*, -jf a named

-! and .. . and Sp"_m} then {SPJ. and . . . and Sp_n} then SP

T h p SP*OA

T h name(p, SN; SP_1, . . . , Sp.n; SP"_1 , . . . , Sp"_m)SN<>A

Global := Global U {specSN[Sp_l]... [Sp_n] given S P " - 1 , . . . Sp"_m =
SP

end}
provided that the resulting Global contains only one definition of SN.

(Defii)

T\-pSmB S N E Global

F M T h instantiate^, SN;
where FM is a fitting morphism for the

^<>FM9B

f - -l and ... and SP'_HO£

— (Fito)
r h instantiate (p,FAU...,FAn)*"™--[FAnJ<>jE?

where each S P ' J is the argument specification for FA{.

SN € Global {A} € Axiams(SN)

0 h ax(SN, A)
(Ax* I)

Figure 10.2: The type inference rules.
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It is easy to see that a well-typed proof-term uniquely determines the form of an SSL proof
of its type, and vice versa. That is, the Curry-Howard isomorphism (Theorem 5.2.5 of
Chapter 8) is preserved by the new type inference rules.

Theorem 10.3.1.

The Curry-Howard isomorphism:

• Given a natural deduction proof D of HSSL S P O A, we can construct a well-typed
termfSpoA.

• Given a well-typed term fSp<>A
7 we can construct a natural deduction proof D of

Recall three functions for determining proof information from a proof-term, defined on
page 8.1.5: given a proof-term d with a derivation

JSPOF

we can compute the following data from d

1. the current context con(d)

2. the specification sp(d) for which d is a derivation,

3. the derived formula, for(rf)

These functions are easily extended to our new terms, as in Fig. 10.3.

10.3.2 Proof-term reductions

We do not add any additional rules to define the >ssi_ reduction relation over proof-terms.
Consequently, strong normalization and the Church-Rosser property follow easily.

Theorem 10.3.2 (Strong Normalization and the Church-Rosser property). The
extended calculus is strongly normalizing and satisfies the Church-Rosser property.

Proof Strong normalization follows trivially from the original proof, as the new terms can
be treated similarly to the other neutral terms. Church-Rosser follows because the new
terms do not introduce any critical pairs. •
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sp(name(p, SN; SP_1, . . . , Sp_n; S P " - 1 , . . . , Sp"_ra)) = SN

sp(instantiate(p, SN; FM)) =

i,x)) = SN

for(instantiate(p, SN; FM))

If {a: A} e Axioms(SN) for(aa;(SN, a))

for(name(p, SN; SPJL, . . . , SP_n; SP"_1 , . . . , Sp"_m))

for(p)

A

for(p)

con(instantiate(p, SN; FM)) =

con(a;c(SN,a)) =

con(name(p, SN; SP_1, . . . , SP_n; SP"_1, . . . , Sp"_m)) = con(p)

FM • con(p)

0

FAu...FAn are the fitting argument specifications which can b; icovered
from the fitting morphism FM.

Figure 10.3: Extensions of the sp, for and con functions to new proof-terms.

10-3.3 Ex tended logical t ype theory

We extend the logical type theory of Chapter 8 as follows

consisting of

• a set of extended proof-terms PT(SSL),

• a set of types, taken as the extended pairs Pairs (SSL),

• a typing relation (.)<•) between proof-terms and types, so that if p e PT(SSl) has
type (SP OF) <E Pairs(SSL), and we write j9SpoF,

• a type inference relation given by the original rules of l-/rr(SSL) extended by those
of Fig. 10.2,

• a reduction relation >ssi_ is unchanged.

10.3.4 Proof-term simplifications

In [PCW02] the present author, John Crossley and Martin Wirsing presented some addi-
tional reductions for simplifying proofs that involve the new rules for generic specifications.
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These reductions involved matching definition and fitting rules, and then mapping instan-
tiated specifications to a semantically equivalent specification expression that does not
involve a named specification. This changes the associated conclusion specification, but
provides a potential means for simplifying proofs.

We can define these reductions via transformations over proof-terms. However, application
of these transformations will change the resulting type, corresponding to a change in the
conclusion specification. Consequently, we do not include them in our reduction rules for
D>SSL? but instead permit them as optional transformations that can be applied by the
prover if required.
Remark 10.8. In this way, these reductions are similar to those described in Section 8.2 of
Chapter 8 (p. 295). These reductions result in changing the specification of the conclusion
and so were not used in our normalization strategy.

We wish to reduce proof redundancies in which a generic specification is defined (by an
application of rule (Defn)) and then immediately instantiated (by an application of the
rule (Fit)). The form of such a proof is

T h dSp*oA

h narne(d, SN; S P . 1 , . . . , Sp_n; SP / ; -1 , . . . , Sp'

FMT h i

(Dem)

(Fit2) (10.6)

where d! is

and

, SN; SP_1, . . . , SP_n; SP "JL,..., Sp"_n)

Global := Global U {specSN[SP.JL]... [Sp_n] given SP" JL,... Sp"_m =
SP

end}

where SP* is of the form given in Definition 10.1.5.

So such a proof can be transformed to a proof (that does not use (Defn) nor (Fiti) (= 1,2)):

FMTd' Sp* w i t h FMoFM*A J

FMT h d! w i t h a n d -1 a n d •••and (union i
(10.7)

where d!
2 — FM • d\ and d$ = unioni(d^ {SP ' - I and . . . and Sp'_n}).

We justify this transformation by the semantics for instantiation: The conclusion of the
original proof (10.6) is equivalent to the conclusion of the transformed proof (10.7). To
see this, first observe that the formulae are identical. Also, the unreduced proof (10.6)
concludes with the specification S N [ F A I ] . . . [i*Mn]. By the semantics for instantiation,
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this specification denotes the concluding specification of the reduced proof (10.7). That
is, the reduction transforms the concluding specification from an unevaluated instantiation
to an equivalent, evaluated instantiation.

We also note that the premise of the original proof (10.6) is identical to the premise of
the transformed proof (10.7) Thus the transformation yields a proof ti does not use
(Defn) or (Fit), yet proves the same conclusion from the same premise.

This process may be formalized by defining a transformation mapping >- over proof-terms
as follows:

instantiate(name(p, SN; SP_1, . . . , Sp_n; SP"_1, . . . , Sp"_m), SN; FM) y INST}

where INSTi is the proof-term

unioni(FM • p), {SP" _1 and . . . and Sr"-m}) and Sp"_m}})))

We assume that all values in Global in the original proof remain defined in the transformed
proof, including any definitions made in discarded occurrences of (Defn). We are required
to make this assumption, because it is possible that these definitions are used in other
proofs. For example, in the proofs:

(Axiom)

,u

and

, SN; S P J . , . . . , SP-n; Sp/;-m) SNOC
(Defn)

FMT3 h FM • name(c3, SN; SPJL, . . . ,

p

the lower proof defines SN to be the name of a generic specification over the specification
body SP. That proof may be transformed, because the definition is immediately followed
by an instantiation. However, the definition of SN must still remain in Global, because it is
required by the upper proof. We also wish to reduce redundancies in proofs where a generic
specification is defined in Global, an axiom of the generic specification is introduced, and
the generic speciiication is then instantiated (by an application of the rule (Fit)). The
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form of such a proof is

SN E Global {a : A} e Axioms(SN)

rhax(SN,x)
(Ax* I)

FMT h
(Fit)

(10.8)

A must be an axiom of the body of SN, its parameters or one of its imports. We only
present the first case here as they are very similar. Such a proof can be reduced to a proof
with the body S P of SN instead of SN and which does not use (Fit):

A € Axioms(Sp)
^ j (Ax*

Fhax(Sp,a)S p o A V

i T{SP"_1 and ... and Sp"_?n} then {SP_1 and ... and SP_n} then SPOA

FMT h FM • dfp* w i t h

(ext2)

FMT h d' w i t h a n d -1 a n d •" a n d

(trans)

(union i
(10.9)

where

= exti(ax(Sp, x), SP"_1 and .. . and Sp"_ra, SP_1 and . . . and SP_n)
= ext2(FM • di, SP ;_1 and .. . and SP'_N)

The justification for this reduction is similar to that given for (Defn)/(Fit) pairs. The
reduction may be formalized by extending the reduction relation >- on proof-terms as
follows:

instantiate(Arzom(SN,a;),SN;FM) >- INST2

where INST2 is the proof-term

unioni ({SP_1 and . . . and Sp_n}, FM • ext2(p, {SP"_1 and . . . and Sp"_m}
then {SP_1 and ... Sp_n}, Axiom(Sp)))

Remark 10.9. There are changes to all specification labels that follow either of the reduc-
tions above. This is because, unlike the normalizing for structural rules given in [WCP98],
the proposed reductions result in conclusions with different (but equivalent) specification
labels. (Both reductions result in a change from unevaluated instantiations to evaluated
instantiations.)2

2 It is possible to make further reductions on the structure of a proof, by first moving applications of
(Dem) down proofs and then matching with applications of (Fit) to apply the above reduction. We also
observe that an application of (Dem) and a logical rule (*), say, may be swapped, to give an equivalent
proof. In fact the swapping is transitive over multiple occurrences of (*). Often, if there are several
application of logical rules between the applications of the (Dem) and (Fit) rules, then (Dem) can be
swapped over each rule, matched with (Fit) and discarded.
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10.4 Structured proofs-as-programs revisited

In the previous chapter we adapted techniques for extracting programs from constructive
proofs to produce executable refinements of specifications. This gave a method that used
the (Sk) rule and unSkolemization to derive an executable refinement for a given specifica-
tion. We now extend this to the extraction of SML programs and to our calculus extended
by the new rules.

We need only extend our modular extraction map extractmocj over the new proof-terms, as
follows:

extracted (instantiate^, SN; FM)) = FM • extractmocj(p)
extractmoc|(instantiate2(SN, FA±,..., FAn,p)) = extracted
extractmod(name(p, SN; SP_I , . . . , Sp_n; SP ; / _I , . . . , Sp"_m)) = extractmod

Extraction over proof-terms for (Ax* I) is the same as for (Ax I) (see Fig. 9.7, p. 337),
mapping to (), because we assume all axioms are Harrop.

The definition of modular proof-terms is unchanged for the new proof-terms.

Extraction of modular realizers from modular proofs still holds.

Theorem 10.4.1 (Extraction of modular realizers). Take any set of typed proof-
terms F = {u^ l,..., Unn}. We define Tf to the corresponding set cf Skolemized formulae

V =

/ / there is a well-formed modular proof-term p for the proof of S P O P

r-L7T(SSL) P
SPOP

then there is a proof

S P O Sk(P) [extractmod (p)/fp]

Proof We extend the proof of Theorem 9.3.2 with additional cases to deal with the new
rules. If the proof ends in an axiom rule, then we have the result trivially, as the conclusion
formula must be Harrop.

We deal with the new rules similarly to the structural rules.

Case: (Fiti). Assume pSpoP is of the form instantiate^, SN;FM)SNfFAl^-[FAJOFM.S d e r i v e d

from a proof of the form

r h dSmB SN e Global
FMT h instantiate^, M*B [ * l)

By the IH, there is a proof

SN O 5fc(i4)[extractmod(d)//A] (10,10)
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But, by definition, extract(p) is FM(extractmod(d)), and so (10.10) is the same as writing

T' F-SSL S P J . O Sk{A)[FArl (extracted ( P ) ) / / A ] (10.11)

n] o Sk{A)[extrBctmo6(p)/fA}

By applying (Fiti) to (10.11), we obtain

FMT1 \

as required.

The case of (Fit2) is similar.

Case: (Defn). Assume p S p o P is of the form name(d, SN; SP_1 , . . . , SP_n; S P " _ 1 , . . . , Sp"_m)
derived from a proof of the form

r
h name(d, SN; S P _ 1 , . . . , Sp_n; S P " _ 1 , . . . , Sp"_m)

(Defn)

with the Global environment defined by

Global := Global U {specSN[SP_l]... [SP_n] given S P " _ 1 , . . . Sp"_m = }
S P

end

where this is an extension of Global if SN had not been previously added. By the IH,

T' h SP* O Sk(A) [extractmod (d)/fA]

But extractmod (d) = extracted (p)> so we can apply (Defn) to obtain

h SN O Sk(A) [extractmod (d)/fA]

as required.

D

Remark 10.10. The extraction map "ignores" the occurrence of the name proof-term for
the (Defn) rule and also the instantiate2 proof-term for (Fit2). So, extracting a program
from a proof that ends in an application of (Defn) is the same as extracting a program
from a proof without this application.

Our reasons are similar to those for the definition over structural unions, The new rules
do not affect the computational nature of the extracted term, and, because the extracted
term uses operations from the premise specification that are a subset of the operations
available to the conclusion specification, we can still reason about the term using the
conclusion specification.

Remark 10.11. The extraction map over the proof-term for (Fiti) applies the fitting mor-
phism F M , for a similar reason to the renaming structural rule. That is, the constructive

content is unchanged by the rule, but the morphism must be applied in order to reason
about the extract term using the new specification.

The extension of a specification expression by the definition fA = e,

NewSpec(Sp, A, e)

is defined as before (Theorem 9.4.1 of the previous chapter, page 357). Note that, be-
cause this is an extension of a specification expression S P , S P is never a generic named
specification.

By Theorem 10.4.1, the following rules are a conservative extension of SSL and LTT'(SSL)
(in the sense of Lemma 9.4.1 of the previous chapter, page 359):

h NewSpec(Sp, A,e)oA
(Sk) (10.12)

for a modular realizer e of S P o A, and corresponding type inference rule

h unextract(iVew;5pec(Sp, A, e), A, (Sk)

with

extractmod(unextract(SP,A,e)) = / A

As before, we extract extended realizers from any proof by first transforming the proof
into a modular proof by repeated applications of (Sk) to eliminate hidden terms that are
used as witnesses for existential statements.

There is a complication because the (Sk) rule cannot be applied to proofs that involve
generic specifications. This is not a problem, because of the following lemma, which
tells us that, if the proof preceeding the application of (Defn) is modular, then the proof
following the rule is modular as well.

Lemma 10.4.1. Take any proof-term 0 h dSpoA. Assume d contains at least one generic
suhterm and that each generic subterm of d of the form

name(p, SN; S P _ 1 , . . . , Sp_n; S P " _ 1 , . . . , SP" jm

is such that p is modular.

Then d is modular.

Proof By a simple induction on the derivation of d - the induction is simple and is omitted
here.

The idea is as follows. Non-modular proof-terms must contain proof-terms corresponding
to (hide).
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However, because each generic subterm t of the form

Chapter 10: Generic specifications Example: Reasoning about the warehouse specification (cont.) 391

name(p, SN; S P _ 1 , . . . , SP._n; S P " _ 1 , . . . , Sp"_ra)

has a generic specification in its type, it cannot be used as a premise for any structural
rule. So d will not contain any subterms of the form

hide(e, SL)

with t as a subterm of e. •

This lemma means that elimination of modular proof-terms by our process of (Sk) appli-
cation need only consider subterms that do not involve name. So we have the following
lemma.

Lemma 10.4.2. Given any term 0 h dSpOi4, there is a term h modular(<i)Sp'Oy4 such that
modular(d) contains no non-modular subterms and S P ^> SP ' .

Proof. We give a recursive definition of modular(d) using a depth-first traversal of the proof
tree for d. (Recall that d is a proof-term and therefore represents a natural deduction proof

tree.)

Let n(i) be the total number of non-modular subterms in the proof-term t.

We define a terminating sequence of proof terms d = do, •••, d^ = modular^).

Given di, we determine di+i as follows.
Case 1. If d{ does not contain any non-modular subterm, then d{+i = modular(d) = d{
(viz, the sequence terminates).

Case 2. Otherwise, normalize di to give a proof-term d'. As long as d% has no assumptions,
the normalized proof-term d' will contain no subterms of the form hide((Ax : Ap),

1. Take the leftmost innermost non-modular subterm of the form t — hide(e : B,S) in
d'. That is, take the first non-modular subterm t in d1 which does not contain any
non-modular subterms. So, e itself contains no non-modular subterms.

2. Extract a modular realizer from e to yield a new SML term / = extractmO(j(e).

Let S P = NewSpec(sp(e), A, extractmocj(e)). Then, in £, replace all occurrences of
e by unextract(SP, A,extractmod(e)), to give t1 = t[unextract(SP, A,extractmo(j(e))/e].
The proof-term unextract(SP, A, extractmod(e)) is well-typed.

Note that t' proves the same formula as t by the typing of unextract and Lemma
9.4.1, but with a refined specification (adding the definition of JA = extractmocj(e)).
The term tf is modular because hidden symbols now do not hide the function JA->
which can be used in extractmod(t/).

3. Replace t by t1 in d', to give di+i = d'\t!/t). Then dj+i has at least one less non-
modular subterm than di, and proves the same theorem as d{.

L

Since n(di+i) < n(d7;), this process yields a k such that n(dk) = 0. Then we take
modular(ti) = d^ which is a proof-term with no non-modular subterms.

Note that S P ' is a conservatively correct extension of S P by Lemma 9.4.1. So the final
specification will be a conservatively correct refinement of sp(d). •

As a consequence, we can always apply the above theorem to extract modular realizers
from proofs that involve (Defn) - provided the proofs that precede (Defn) are modular.
We extract extended realizers by the same process described by Theorem 9,4.2, Section
9.4 of Chapter 9, but now using Lemma 10.4.2 to remove modular subterms. This gives
us the required theorem.

Theorem 10.4.2 (Extract ion of extended realizers). There is an extraction map
extractssL from proof-terms to SML terms such that, given any proof

h dSp*A

it is the case that extractssL(^) is & extended realizer of S P O A,

It is easy to see that the. new rules for SSL, the new proof-terms and typing rules for
LTT(SSL) and the extraction map extractssL preserves satisfaction of the Curry-Howard
protocol, as identified to hold for the original system SSL in Section 9.6 of Chapter 9.

10.5 Example: Reasoning about the warehouse specifica-
tion (cont.)

We now illustrate the extended calculus and extraction theorem. We shall derive the
following theorem about WAREHOUSE:

h WAREHOUSE O \/i: Part • 3y : Part • size(lOR(i)) >0=>

(/n(y, myCat) => Rep(y, z, myCai)) (10.13)

This theorem states that, if the list of replacements for a part i is of size greater than
zero, then there is a replacement part y in the warehouse catalogue that can replace i in
the catalogue. The theorem can be considered a specification of a realizing function /

h WAREHOUSEoVz : Part*size(lOR(i)) > 0 => (In(f(i),myCat) => Rep(f(i),i,myCat))

We will use the extended calculus to simultaneously derive the formula and construct the
specification WAREHOUSE. Using the Curry-Howard isomorphism we represent this proof
as a proof-term in the extended logical type theory from which we shall then extract a
realizing function.

For convenience we shall omit the contexts and Global.
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We begin with the axiom for 6 from the generic specification LISTS:

U ™fT TO-TCJ r\LiSTSo\/k:List(Elem)»szze(k)>0=>hd{k)ek

We instantiate the specification to obtain a theorem about € for elements of Lisi(Parts)
by applying the rule (Fiti), with the fitting argument [Elem i-> Parts], which yields the
fitting morphism FM:

h instantiate(ax(LlSTS, Z), L ISTS;

We next apply (exti) to this obtaining the same theorem over CATALOGUE and (trivially)
the (Defe; rule to get

h name(exti(instantiate (ax(LlSTS, I), LISTS; FM), BODY C AT)) (lOr(i))
(ax(CATALOGUE, c ) , CATALOGUE:; )CATALOGVEo\/k:List(Parts).size(k)>0=>hd(k)zk

and call this proof-term q±. We apply (V-E) to this theorem with lOR(i) for k and the
formula obtained from the CATALOGUE axiom by (V-E) to get:

[- ax(CATALOGUE,

Then these two theorems we apply (=>-E) obtaining the formula

CATALOGVEOhd{lOR(l))GlOR{i) (10.14)

where q*> = (q4UOr(i)))((ax(CATALOGVE,c)lOR(i))).

Now we use the axiom for IOR given by WAREHOUSE, labelling it with w. Applying (V-E)
twice, with hd(lOR(i)) for e, we obtain:

where <?6 = (ax(WAREHOUSE, w) i)(hd(lOR(i)))).

Applying (=*-E) to this formula and (10.14), we get

CATALOGUEoIn(hd(lOR{i)),myCat)^Rep(hd(lOR(i)),i,myCat)

We apply (exti) to the axiom for IOR, extending CATALOGUE by the body of the specifi-
cation WAREHOUSE, that is: BODYWARE. We then apply (3-1):

• CATALOGUE then BoDYWAREo3y:Part»In(y,rnyCat)=>Rep(y,i,myCat)

where P2 = show(hd(lOR(i)): exti(app(qe,q5),BODYWARE)).

Applying (V-I) over the sequent gives us the goal formula with proof-term p3 but with the
specification CATALOGUE then BODYWARE where

p3 = use i: Part. show(hd(lOR(i)))ext2(app(qe, ^5), CATALOGUE))

We apply the (Dem) rule to the sequent, abstracting over CATALOGUE to obtain the
specification WAREHOUSE, and our goal theorem

with

WAREHOVSEoVi:Part93y:Part9ln(y,myCat)=>Rep(y4,myCat)

Pi = name(use i : Part. (hd(lOR(i)),
, BODYWARE)) , WAREHOUSE; CATALOGUE)

(10.15)

Now applying extract to the proof-term p4, gives the function

fni=> hd(lOR(i))

which returns the first element in the list of replacements for i. Here the function IOR is
a parameter, coming from the particular catalogue chosen for the warehouse specification.

Theorem 10.4.1 ensures this function satisfies the goal formula, in the sense that
WAREHOUSE |= Vi : Part • In(extract(p4)(i),myCat) => Rep(extract{p4)(i),i,myCat)
is true for WAREHOUSE.

Observe that, because WAREHOUSE is a generic named specification, we cannot apply the
(Sk) rule to extend it by this function. However, given a specification for CATALOGUE, we
can instantiate WAREHOUSE and then apply (Sk) to extend the result with the function.
For example, if we have a specification for catalogues of car parts, CARCATALOGUE with a
fitting argument FA from CATALOGUE and CARCATALOGUE and corresponding morphism
FM, we could apply (Fiti) to (10.15), obtaining

with

= instantiatei(WAREHOUSE,

name(use i : Part. (hd(lOR(i)),

ext2(app(g6, q5), BODYWARE)), WAREHOUSE; CATALOGUE))

We obtain the extension

A^e^Srpec(WAREHOUSE[i?^4], A, extract (p5))

_
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where A is Vi: Part • 3y : Car Part • In(y, carCat) => Rep(y, z, carCat) and

extract(p5) = FM(extract(p4))

This extension permits us to use the function JA = extract(p5) in further reasonings about
the car parts warehouse.
Remark 10.12. Observe that the theorem (10.13) is an unSkolemized version of the axiom
for rep:

\ri : Part • size(lOR(i)) => (In(rep(i),myCat) =» Rep(rep(i),i,myCat))

In the next chapte we shall investigate the development of executable refinements from
specifications using our extraction process. The idea is that, in certain cases, if we extract
a function for the unSkolemized form of an axiom for a function, we can define the function
to be equal to the realizer, producing an executable, consistent refinement. We shall return
to this example and dervie an executable refinement of WAREHOUSE.

10.6 Discussion

We have treated generic specifications for reasoning and program synthesis, presenting
extensions to the structural rules of SSL that have permitted us to

• reason about named and generic specifications by

— defining named, possibly generic specifications and to conclude new truths
about the result from known truths about the body of the named specifica-
tion

— instantiating generic specifications and concluding new truths about the instan-
tiation from known truths about the generic specification

• extract extended realizers from proofs in our system, utilizing process of the Curry-
Howard protocol.

Generic specifications provide a useful abstraction mechanism for system development.
Our extensions are therefore valuable for reasoning and program synthesis within the
context of abstractions of system elements. Further, the fact that our approach utilizes the
Curry-Howard protocol represents another justification for use of the protocol in adapting
the proof-as-programs paradigm to new logics and computational theories.

In the next chapter, we shall present an application of the process of extracting programs
using proofs in SSL, to develop SML modules. The idea is that structured and generic
specifications employ structuring and abstraction mechanisms that often parallel those
used for developing structured (module-based) SML programs. By extracting SML terms
for every function used in a specification, we shall show that it is possible to transform a
CASL specification into a SML module or functor.

Chapter 11

Structured program synthesis

This chapter discusses how our calculus and the structured proofs-as-programs results can
be applied to give methods for structured program synthesis.

We will take structured programs to be executable CASL specifications - specifications in
which e:rery function symbol has an executable definition as a lambda term. The specifi-
cation building operations are viewed as imposing architectural structure over executable
programs. We consider executable CASL as an intermediate implementation language,
with the possibility of further translation to a conventional structured programming lan-
guage such as SML or C# .

We outline two complementary methods for the development of structured programs:

• We give a process for the construction from new structured programs from known
structured programs, using the rules of SSL (including the Skolemization rule to
define consistent extensions using extraction).

• A specification can be refined to a specification which retains the signature of the
specification and includes all models of the original specification. We define a process
for the systematic refinement of abstract (non-executable) specifications, repeatedly
using SSL and extraction to obtain definitions of all functions of a signature.

These methods apply different stages of the software development process. The first
method assumes we have a repository of structured programs, for use in implementation-
level reasoning about and construction of new structured programs. The second method
involves a higher-level of abstraction and is useful when we wish to develop structured
programs from an abstract specification. The approaches are related, because the pro-
grams in the repository should be correct - and on way of guaranteeing their correctness
is to construct them using our refinement methods.

One of the main aims of algebraic specification is to provide a formal basis to support
the systematic development of correct programs from specifications by means of verified
refinement steps. Our refinement technique is an important and novel use of our extraction

395
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to achieve this goal. In general, when refining a specification proving consistency can be
very difficult. The great advantage of our process is that consistency is guaranteed -
provided, of course, the original specification and the specifications used in a proof was
consistent.

Also, our methods for reasoning about and constructing structured programs shows that
a logic such as SSL can be useful for reasoning and synthesis at the implementation-level,
as well as higher-levels, of program specification.

Because our methods involve structured programs, we must address their architectural
design issues. A software architecture comprises the design decisions made about the
structure and texture of software, defining how a system implemented as a configuration
of components (see, e.g., [RanOO, pp. 10-12]). In our context, components are basic
executable specifications, and architectural configurations are defined by structured spec-
ification operators. Our methods require us to make design decisions about software ar-
chitecture, using the language of CASL. We therefore need to be careful that our methods
yield architectures that conform to accepted design standards of intelligibility, coherence
and maintainablity. This is possible because, in our methods, design decisions are made
through interactive application of SSL structural rules.

We proceed as follows.

• In section 11.1 we define the notion of an executable specification, and discuss how
such specifications can be thought of as comprising a structured programming lan-
guage. We discuss the relation between implementation architectures and specifi-
cation structuring operators. We then outline a simple process that uses SSL for
reasoning about and synthesizing structured programs.

• Section 11.3 reviews notions of refinement for non-generic and generic specifications
and presents out method of refinement based on program extraction. We identify
some problems concerning how final implementation architectural design can be
affected by the refinement process, and provide how these problems can be avoided
by considering implementation architectures earlier in the refinement process.

• In section 10.5, we illustrate our refinement techniques, continuing with the ware-
house example of Chapter 10.

• Conclusions are drawn in section 11.4.

11.1 Structured programs

Structured programming languages are used to build systems from components. As a
minimal definition, a component is a cohesive (semantically related) grouping of function-
alities. The maiii activities of structured programming are twofold:

• Definition of basic, atomic components. This activity occurs at a low-level of granu-
larity, and is primarily concerned with the traditional programming task of function
definition.

© Configuration of components to form, larger, compound components. This activity is
of a coarser-grained nature, focusing on the definition of usage relationships between
components to construct larger components.

The second activity defines system architectures - that is, the the dependencies, encapsu-
lation and hierarchies that form a component configuration and, ultimately, a component-
based system.

There is a range of popular structured programming .languages, some in industrial use,
such C++, Java or Visual Basic, and some of a more theoretical nature, such as modular
SML. By virtue of the fact that these languages are structured, their operational and
denotation semantics are complex.

Rathsr than introduce the syntax and semantics of a separate structured programming
language, in this chapter we shall simply consider a subset of CASL - executable CASL -
consisting of specifications in which every function symbol has a unique equational defini-
tion. We show that this subset exhibits the features common to structured programming
languages. Specifically, we show that

• executable CASL can be equipped with a simple operational semantics (11.1.1), and

• it facilitates the two activities of structured programming identified above: con-
struction of basic components (11.1.2) and of compound component architectures
(11.1.3).

Because these properties are satisfied, it is possible to extend the results of this chapter to
a conventional structured programming language by defining a translation from executable
CASL.

11.1.1 Executable CASL

Executable CASL consists of executable specifications. By an executable non-generic
specification we simply mean a specification in which every function has an executable
definition and every sort has free data type declaration (that is, is given by constructor
functions). A generic specification is executable if its body is executable.

We make these definitions formal as follows.

Definition 11.1.1 (Executable specification). Let S P _ A be a well-formed, consistent
specification in which every symbol is declared at most once.

Then,

1. If SP_A is non-generic then SP_A is called executable if, and only if,

K T ?
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(a) for each visible1 sort symbol s used in SP_A, SP_A contains a basic or partial
specification in which s has a free data type declaration.

(b) for each visible function symbol / of SP_A, there is a unique equational defini-
tion

/ = dec(/) G AxiomsiSP-A.)

for some SML term dec(/)

(c) every hidden subspecification in SP_A of the form

S P hide SL

is such that S P is executable.

2. If SP_A is generic of the form specSP_B[SPi]... [SPn] given SP"_1 . . . SP".m = SP ,
then SP_A is called executable if, and only if, S P is executable.

Remark 11.1. Items lb and 1c of the definition together entail that we have a unique
equational definition of every (visible or hidden) function of the given specification.

When considering structured specifications as structured programs, we require a full op-
erational semantics for functions. This semantics defines how a function application will
evaluate to an answer, with respect to a given executable specification.

Recall that the lambda terms of our specifications are equipped with standard lambda
reduction rules (see Fig. 9.3 in Section 9.1 of Chapter 9, p. 329). These rules are used
within our logic to equate terms modulo lambda reduction. However, in isolation, these
rules are not enough to define a satisfactory operational semantics, because they do not
evaluate the application of a specification function symbol. Function application can occur
in the lambda terms of our specifications. Because we assume function symbols always
have an equational definition, we should be able to use this definition to evaluate such
applications.

To provide a full operational semantics of an executable specification, we proceed as fol-
lows. We take the usual lambda reduction rules and extend them to replace references to
functions with their equational definitions, according to the executable specification.

We define a reduction relation of the following form

S P h / > d

with the intended meaning that the term / evaluates to d in the context of component SP .
This relation is given by the transitive closure of the following rules that define a one-step
reduction relation D>.

First, our reduction relation preserves >SML-

f >SML d entails S P h / > d

1 Visible axioms and symbols are defined in Definition 7.2.2, Chapter 7, p. 258.
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where >SML is defined as in Fig. 9.3 of Chapter 9, p . 329.

Then, we add a rule that tells us we can replace a function with its equational definition
in an evaluation:

g[f/x] = g[dec(f)/x] (11.2)

if

= dec(/) G Axioms(Sp)

for the SML term dec(/).

Note that repeated application of > need not give a terminating sequence of reductions.
This occurs when two functions are mutually recursive without a base case. 'So we let >
denote the finite transitive closure of >, if this closure exists, otherwise we let it be the
null relation.

The following lemma tells us that any property that we can prove about a program g for
the executable specification SP, is a)so true of its final value.

Lemma 11.1.1. / /

and

then

SP f= P[g/x}

SP\~ g £> k

S P (= P[k/x]

Proof. This follows easily from the following facts

• we assume that the models of S P equate interpretations of terms that are reducable
according to the lambda reduction >SML-

• For any function symbols g and / , given that

/ = dec(/) G Axioms(Sp)

it must be the case that interpretations of g[f/x] and g[dec(f)/x] are equal under
all models of SP .

•
Remark 11.2. This lemma means that any statement that is provable about a program i
also true of the program's evaluation, according to our operational semantics.

11.1.2 Specifications as software components

Software components are commonly defined as reusable entities that encapsulate a range of
cohesive (semantically related) functionalities. Components can be basic (atomic building
blocks) or compound (constructed out of smaller components).
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A component enables clients to use its functionality by exposing an interface. The interface
describes the functions offered. At its most simple level, this interface description takes the
form of a signature list. At a more complicated level, the interface description may involve
descriptive annotations, such as English documentation, behavioural description (using,
for instance, a CCS process description or a UML activity graph), logical specifications of
input/output behaviour or non-functional property descriptions [Szy98].

The executable specifications form components in accordance with this definition. We can
consider a specification's signature, together with its visible axioms, to form a component
interface. The signature lists the functions available for a client and the axioms document
this functionality.

Basic executable specifications are therefore the basic components of our structured pro-
gramming language.

A compound component is a component that is built from smaller components, using the
mechanisms of the structured programming language. In executable CASL, we consider
the structured and generic executable specifications as compound components. The spec-
ification structuring operators and the naming and instantiation of generic specifications
are our way of building larger components from smaller. The way in which a compound
component is constructed, by the use of the structuring operators, comprises an architec-
ture.

11.1.3 Architectures of executable specifications

An important area of software engineering research is concerned with understanding archi-
tectures of structured programs, for specification, construction, analysis and maintenance
[MT00, KMND00, PRSO2].

A software architecture is a hierarchical configuration of components, expressing usage
relations between components and their interfaces. In general, configuration can take
many forms. We will consider four important patterns of configuration

• Composition of components. This involves using two or more components together to
form a larger component that combines the components' functionality and interfaces.

• Wrapping of component interfaces. Functionality is redefined for use in new context.

• Further encapsulation of interfaces. Functionality is hiddenby constraining exposure
of interface description.

• Abstraction and instantiation of components. A configuration of components is
parametrized by abstracting over required functionality that may then be provided
by a specific component via instantiation.

Composition is by far the most important means of building a software architecture. For
instance, in component based design, a compound component is often specified first - to
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conform to an industry standard API, for instance. It is then built by combining smaller
components.

Wrapping and encapsulation are also important to rationalize and encapsulate aspects of
the design in divide-and-conquer fashion. For instance, if we wish to define a component
with three functions, from two components each with twenty functions, some form of
wrapping and encapsulation is important.

Abstraction and instantiation are important for component reuse, providing a means of
developing generic components that suit a range of problem domains.

The structure of an executable specification defines its architecture as a component, where

• basic executable specifications are basic components,

• unions and extensions are the means of combining components

• renaming permits wrapping and adaption of component interfaces

• hiding provides encapsulation of functionality, by constraining the interface available
to a component user.

• generic named specifications and instantiated specifications are the means of provid-
ing component abstractions.

Sp_A And Sp_B

Sp_A

Sp_B

Figure 11.1: The architecture corresponding to unions of two executable specifications.

We can visually represent how these operations define design decisions about component-
based architectures. We represent components as boxes, with a list of circles denoting the
component interface. A basic component is an empty box, while a compound component
is a box that contains other components. A line between component interfaces denotes a
usage relation.

Then, the implementation architecture resulting from unions of executable specifications
is depicted as in Fig. 11.1. The two specifications are considered as components, with the
union combining the components to form a compound component, and exposing amalga-
mated union signature as an interface. The final architecture is a compound component



402 Chapter 11: Structured program synthesis

that is hierarchically composed from two smaller components, using their functionality to
define a larger range of services. We consider the architecture of extensions to be similar.

The implementation architecture resulting from renaming of an executable specification
is given in Fig. 11.2 The specification is considered as a component, with the renaming
defining a wrapping of the component interface.

Sp_A with FM

Sp_A

Figure 11.2: An implementation architecture resulting from renaming of an executable
specification.

The implementation architecture resulting from hiding of symbols an executable specifi-
cation is depicted in Fig. 11.3. The specification is considered as a component, with the
hiding operator providing further encapsulation of functionality through hiding parts of
the component interface.

Sp_A Hide SL

Sp._A

Figure 11.3: An implementation architecture resulting from hiding of symbols for an
executable specification.

In Fig. 11.4, the architectures resulting from (a) the definition and (b) instantiation of
a generic executable specification. In Fig. 11.4 (a), the specification is considered as
a template of a component, with the (possibly non-executable) parameter specifications
representing parameters that need to be identified to make the template into a functioning
architecture. In Fig. 11.4 (b), such a parameter argument has been found and is used to
instantiate the architecture to form a functioning architecture.

In designing a component-based system for extension, it is vital that architectures are
designed carefully to address issues of optimal performance, reuse and maintainability. In
general, this is achieved by careful use of design patterns for component composition, which
are known to be appropriate for a problem domain. In practice, the appropriateness of a
pattern is usually a judgment of the human designer, based on his/her experience of the
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Figure 11.4: Architectures corresponding to (a) the definition and (b) instantiation of a
generic executable specification.

domain - see [GHJV95], for instance. The field of software engineering is still too young
for the fully automated design and configuration of appropriate software architectures.

For our purposes, this means that we require that our methods for construction of struc-
tured programs permit the formation of an architecture through interactive design deci-
sions.

Remark 11.3. It is possible to define a further translation from executable CASL to a
conventional structured programming language such as SML or C# , for compilation and
integration with other software. Translation into these languages should preserve the
architectural design decisions of executable specification components. Such a translation
is possible - by virtue of the fact that these languages permit the architectural patterns we
have discussed. For instance, it is possible to define a map from executable specifications
to SML structures and functors. This was done by John Crossley, Martin Wirsing and
the author in [PCW02]. Essentially, we discard axioms, taking an equational functional
definition as a function definition in a structure, and map specification signatures or SML
signatures.

Using that translation, it is possible to see that the structural and abstraction opera-
tions for executable specifications correspond to patterns for composition, encapsulation,
wrapping, abstraction and instantiation of modules and functors in SML.

11.2 Reasoning about structured programs

We can use SSL and program extraction for reasoning about and synthesizing structured
programs. The idea follows simply because we consider executable CASL as our struc-
tured programming language. So, if we restrict our SSL to only reason about executable
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specifications, then our calculus and extraction results consitute a method for specification
of, reasoning about and synthesis of structured programs.

11.2.1 SSL for construction of components

By restricting our consideration to executable specifications only, the sequents of SSL are
viewed as statements about components. So,

is understood as asserting that A is true of a component SP .

The logical rules of SSL are then taken as a means of deducing new truths about a com-
ponent from its known properties. For instance, the (A-I) rule permits us to prove the
conjunction (A A B) about a component SP, given that we already have proofs of A and
B from SP:

(A-I)

The structural rules are considered as a means of constructing new components from old,
and deducing a truth about the result. For instance, the (unioiii) rule

T h S P J . o A
F h- (SP_1 and S P . 2 ) O A

(union i)

tells us that, if A is true about a component S P _ 1 , then A is also true about the component
composition of SP_1 and SP_2.

Because the structural rules are used to build components, they are our means of design-
ing new architectures. Under our view of specifications as components, these rules treat
components as black-box. For instance, in the (unioiii) rule above, we assume both speci-
fications SP_1 and SP_2 have already been defined and are executable. The application of
the rule combines components and reasons with their interface information (signature and
logical axioms). However, the rule does not change or extend the interface or functionality
of a component. In this sense, the structural rules are not concerned with the "inside" of
a component - only with its interface.

To extend an architecture with additional required functionality, we use the rule {Sk) and
extraction:

(Sk)h unextract(SP, A,

where e is a modular realizer of S P O A (obtained by extraction from the proof of S P O A)
and NewSpec(SPy A, e) is defined by

S P then {(fA : etype(A)},0,0), {fA = e,Sk{A)}}
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Under our view, extraction and {Sk) constructs a new component architecture,

NewSpec(SP) A, e)

However, it also produces a new sub-component for use in this architecture,

{(f , 0,0), {fA = e, Sk{A)}}

The sub-component involves a single function and has an interface that provides an axiom-
atization of this. This new component, when combined with S P to give NewSpec{SP, A, e),
results in "correct" architecture. By "correct", we mean that given that S P is consistent,
then the combination with the new component is also consistent (this is true by Theorem
9.4.1 of Chapter 9, p. 357).

Remark 11.4. Our calculus is interactive. Proofs can be done by hand, or by the use
of encoding in interactive theorem prover, such Isabelle [NPW02]. So the architectural
design decisions made using the structural rules permit the architect to exercise his/her
design experience to build an optimal architecture. On the other hand, use of the calculus
ensures that the resulting architecture is correct with respect to i set of required properties
given by the derived formula, or relatively consistent with respect to its derivation from
other components.

11.2.2 Process of construction

Our methods suggest an approach to design and correct construction of software architec-
tures.

Given a repository of correct components (executable, consistent specifications), we can
use our calculus to combine these components to obtain new components that satisfy
required properties, and then add the result back to the repository, for component reuse.
This leads to the following process, depicted in Fig. 11.5:

Process 11.2.1. Take a repository consisting of a finite set of consistent, executable
specifications (components). We extend the repository to include a new component by

1. Repeatedly select components from the repository

2. Use SSL to simultaneously

• construct a larger component from the selected components and

• derive a required theorem about the result

3. Either

• add new specification back to the repository, or

• use extraction and {Sk) rule to consistently extend the specification with a
functional definition of the realizer of the derived theorem
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4. Add the resulting specification back to the repository.

By the nature of the rules of SSL, the resulting extended repository is still consistent.

This process enables us to use SSL for component-based software development and, in
particular, correct component reuse.

SP A
SP ,

\

Warehouse
[Catalog

Lists[Elem]
/

i,1

\ Choose executable specifications

V
:•:•>:• — f -

Use SSL to
simultaneously
a) construct larger
executable
specification from
specifications

SP

p
and b) derive re<pr&l ^
# b t f k

•Q

Add the new specification

o P

\ Either a) add new specification back to the
j repository, or b) ase extraction and (Sk) rule to consistently extend
j the $pmfication with a functional <feWion of the
; Warner of the sMv£<* theorem

Figure 11.5: Process of structured program synthesis

Example 11.1 (Password checking system). We consider how the process of structured
program synthesis would work for the two main examples used in this part of the thesis.

Consider the password checking system example of the first three chapters of this part.
In Chapter 7, we specified a password system for an email hosting service. An initial
specification of the system's password requirements, PWDCORE, was given in terms of
subspecifications of the natural numbers, booleans and strings, together with some axioms
to model the domain (Example 7.6, p. 256, Chapter 7). To restrict the specification of
the system to relevant functionality, a final specification PWDSYS was defined by hiding
functions of P W D C O R E that we did not wish exposed.

For the purposes of illustration, we shall assume that PWDCORE and PWDSYS are exe-
cutable specifications - all function symbols used in these specifications have executable
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definitions. This can be achieved simply by adding appropriate function definitions for
the boolean, string and integer specifications.

We developed a theorem in SSL about PWDSYS:

I- PWDSYS O V:r : not • 3y : string • ValidMsg(x, y) (11.3)

This specified that, given any input x of a password, there is always an appropriate
response message to be output, explaining if the password is of the correct length or not
(Section 7.3.6 of Chapter 7). We encoded our proof as a term in the logical type theory
for SSL (Chapter 8, Section 3.2.1, p. 286). Finally, we used our synthesis techniques to
extract a realizing function for the theorem (Chapter 9, Section 9.5).

Because the proof-term for the theorem involved a critical subterm, we extracted an ex-
tended realizer from the proof of the theorem for PWDSYS. TO do this, we first need to
obtain a modified realizer for the proof of the required property over the subspecification
PWDCORE.

/ = fn x : not =>

such that

match rec([truejalse], [inr(()),inl(Q)])inRange(x) with
Inl[xu) => 'Password acceptable',
Inr{xv) => 'Please choose a password in correct range'

PWDCORE \=Sk{P)[f/fP

By application of the (Sk) rule, it is possible to obtain

UnextraCt(PWDSYS, A, extractmod

The new specification is a relatively consistent extension of PWDSYS:

PWDSYS > iVe«;5pec(PwDSYS, A, f)

The application of the (Sk) rule corresponds to taking an implementation step in defining
the password checking system, adding a correct function definition to the specification.

Now because we have assumed PWDCORE and PWDSYS are executable specifications, we
have that NewSp^(PwDSYS,AJ) is also executable. If PWDSYS is taken from a con-
sistent repository of specifications, then, following our process, NewSpec(PvtDSYS> A, f)
may be added back to the repository without affecting consistency.
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11.3 Using extraction to obtain executable refinements

A specification can be refined to a specification, which retains the signature of the specifi-
cation and includes all models of the original specification. Given certain kinds of specifi-
cation expressions, we can obtain consistent refinements of specifications by the techniques
of Chapter 9 (extended in Chapter 10).

Our refinement steps are given through the proof and extraction process. Briefly, our
method of refinement is as follows. Given a (possibly parametrized) specification S P with
universal axioms and given a function symbol / in the body of SP , we collect all the visible
axioms for / into a formula, say \/x : s • A(x, /(#))• Then we build a modular proof of the
unSkolemization

S P ' O \/X : s • 3y • A(x, y)

using our calculus for some extension of SP. Prom this proof, we extract a lambda term
as a modular realizer. We then extend the specification SP ' , defining / to be equal co
this term, and restrict the resulting signature to be the same as the original specification
S P . By virtue of the fact that the lambda term is a modular realizer, this is a consistent
refinement of S P with an executable definition of / . By repeating this process for all
functions, we obtain a final executable refinement of the specification.

Our refinement method will not work for all specifications - we need to consider a subset,
the properly encapsulated specifications. These are specifications where, given a function
that is yet to be programmed, all axioms defining its behaviour are visible.

Before explaining our method, we formalize the concept of refinement and proper encap-
sulation.

Note that, according to this definition, a refinement of a generic specification need not
itself be generic. It is interesting to consider refinements of generic specifications that
preserve the generic structure. This notion of generic refinement is now defined.

Definition 11.3.2 (Generic refinement). Let SN be the name of a generic specification
defined by

specSN[SP_l]... [SP_n] givenSp"_l. . . Sp"_m = S P

Now define a new generic specification SN' by

specSN'[SP-l]. •. [Sp_n] given SP"_1 . . . Sp"_m = S P '

Then SN' is said to be a generic refinement of SN if, and only if, for all fitting arguments
FAU . . . , FAn, SN ' [F ;4 I ] . . . [FAn] is a refinement of S N [ F ^ I ] . . . [FAn]. We write SN' C
SN in this case.

Lemma 11.3.1. Specification building operators are monotonic with respect to^~>. That
is, for any specification expressions S P _ 1 , S P _ 1 , SP_2 and SP-2', if SP A ^ S P _ 1 ' and
SP_2 -> SP_2 ' , then

Sp_landSP-2
SP_1 then SP_2

SP-lhideSX
SP_1 with p

S P _ 1 ' and SP_2 '

S P _ 1 ; and SP_2 ;

SP_1' hide SL
S P _ 1 ' with p

Proof As in [Cen94, p. 172]. •

11.3.1 Refinements

The notion of refinement can be given as a partial order over specification expressions.
One specification implements another if it shares the same signature and includes the
mod^l classes.

Definition 11.3.1 (Specification refinements). A specification SP_1 is said to be a
refinement of a specification S P (written S P ^ S P _ 1 ) if

• Sig(Sp) - Sig(SP-l).

• all models of SP_1 (restricted to Sig(Sp)) are also models of S P - that is, when every
C e Mod(SP-l) are such that C|sig(Sp) 6 Mod(Sp).

We say a refinement S P ~> SP_1 is relatively consistent if, assuming all Mod(Sp) is con-
sistent, then so is Mod(SP-l).

This definition can also be made to apply to generic named specifications, because Sig and
Mod are defined over these specifications.

11.3.2 Proper encapsulation

A specification is properly encapsulated by hiding a symbol list when each visible function
symbols has its axioms' visibility preserved, or else is already executable.

Definition 11.3.3 (Proper encapsulation). Let S P be a specification, and SL a symbol
list. We say that S P is properly encapsulated by SL when, for each / G Sig(SP hide SL),
either

1. each axiom in Axioms(SP) that involves / is also an axiom in Axioms(SP hide 5X),
or

2. / has an executable definition in SP .

A specification is properly encapsulated if every subspecification of the form S P hide SL
is such that S P is properly encapsulated by SL.

If the function has no definition, we should expose all information about the function's
behaviour for the purposes of refinement.
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Remark 11.5. This definition restricts the hiding of functions and axioms. Given a properly
encapsulated specification, all hidden functions have executable definitions. All visible
functions an axiomatization with no hidden axioms - we do not permit axioms for visible
functions that involve hidden symbols.

Using extraction to obtain executable refinements

Then
SP ^ (NewSpec((Sp then SP ' ) , A, e) with [fA »-* /])

is a consistent refinement of S P and is properly encapsulated.

411

11.3.3 Refinement method

Given a properly encapsulated specification S P , we can construct an executable specifica-
tion SP-EXEC such that SP ̂  SP_EXEC.

Rather than attempting to achieve this in a single step, we proceed systematically in a
stepwise fashion, incorporating more and more design and implementation decisions with
each step. These include choosing between the options of behavic-ur left open by the spec-
ification, between the algorithms that realize this behaviour, between data representation
schemes, etc. Each such decision is recorded as a separate step, typically consisting of a
local modification to the specification.

So, developing structured program from a specification then involves a sequence of such
steps:

SP_0 -N* SP_1 ~» SP_N

Here, S P = SP_0 is the original specification of requirements and each SP_I-1 -^ SP_I for
any i = 1 , . . . , n is an individual refinement step. The aim is to reach a specification that
is an exact description of an algebra. Our our case, the exact description is given by an
executable specification.

Each of these steps involve deriving the definition of a function as constructive witness for
the ukSkolemized form of the axioms for a function, then adding the definition back int
the specification to yield a consistent refinement. This process follows according to the
proof of the following theorem.

Theorem 11.3.4. Let S P be a specification expression that is properly encapsulated by
SL with Ax = Axioms(Sp) and Sig(Sp) = (S,TF,P).

Take a nonexecutable f £ TF/SL and let Df be the conjunction of every axiom in Ax
that involves f.

Take a proof
_̂ ^ (SP then SP ;)O^ (11.4)

such that Sk(A)[f/fA] = Df, S P ' is some specification expression and where S P then S P '
is a consistent implementation refinement of SP, and S P ' does not have f as a visible
sym,bol.

As the proof d must be modular, there is a modular realizer extract(d) such that

S P then SP7 O Sk(A) [extract[d)/fA]

Proof. First note that, by the definition, NewSpec(SP then S P ' , A , e) is a refinement of
SP. So we need to show that this is a consistent refinement.

First, because we have an SSL proof (11.4), and we assume that all applications of struc-
tural rules in our proofs preserve consistency, we can assume that S P then S P ' is consis-
tent.

Then, by Theorem 9.4.1 of Chapter 9 (p. 357), we have that

NewSpec(SP then SP' , A, e)

is consistent. Assuming the normal form of this specification is

nf(NewSpec{SP then SP' , A,e)) = (S, Ar) hide SL

(11.5)

(11.6)

we know that (£, Ax) hide SL is consistent (because normal forms preserve model classes),
and contains more than the trivial model.

It remains to show that the renaming

NewSpec(Sp then SP7
? A, e) with [fA t-» / ] (11.7)

is consistent. It is enough to show that

Mod(NewSpec(SP then SP', A, e) with [fA t-> /])

contains more than the trivial model.

Let p be the identity over all of E, except over fA, where p(fA) = / . It can be seen by
(11.6), that the normal form of (11.7) must be

nf(NewSpec(Sp then SP', A,e) with [fA H+ /]) = (p(E),p(Ax)) hide SL

(E/fA,Ax/{Dj[fA/fl fA = e}Uf = e) hide SL (11.8)

because we can assume that the hidden symbols SL do not contain fA.

Now, as (11.5) is consistent, there is a non-trivial model

N e Mod((E, Ax) hide SL)

but, by the semantics of specifications with hide, this must be the reduct of a non-trivial
model

MeMod((E,Ax))
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We construct a non-trivial model Mf of ( S / / A , Ax/{Df[fA/f], / ^ = e} U / = e) from M.
We define M' from M so that

SM> = S M s a sort of E / / A

? a predicate of E / / ^
if g is function symbol /

gM if # is any other function symbol

axiom, then

9 =

Now,
Mt=Ax/{Df,Df\fA/f]JA = <

but because Df,Df[fA/f],fA = e are the only axioms in Ax that involve / and JA ~ it
can be seen that

M' \= Ax/{Df, Df[fA/f], fA = e} (11.9)

But also, by definition of M', it can be seen that, as

M\=Df[fA/f],fA =

it must be the case that
(11.10)

So (11.9) and (11.10) show that there is a non-trivial model M' for the specification

, Ax/{Df[fA/f], fA =

It follows from this that, by hiding the list of hidden symbols for the normal form (11.8),
we have a non-trivial model for (11.7) as required. •

Remark 11.6. Observe that Theorem 11.3.4 will fail to hold if the specification to be
refined, SP , is not properly encapsulated. Because we will use repeated applications of
this theorem to obtain refinements, this means we must only consider a refinement process
that begins with a properly encapsulated specification.

If S P is not properly encapsulated, the visible axioms for / , Df, will not be all axioms in
the normal form for SP , and so the normal form (11.6) in the proof

nf(NewSpec(SP then SP', A, e)) = (E, Ax) hide SL

will contain axioms in Ax for / in addition to Df. So the fact that we know Df[fA/f] is
true for models of (11.6) is not enough to entail that (11.9) is true

M'\=Ax/{Df,Df[fA/f],fA =

for the model M' that takes JA and / to denote the same object.

Remark 11.7. Note that implicit axioms obtained from schema are always preserved across
functions. They need not be proved or unSkolemized. This is because, if / is an implicit

and

will all hold.

S P O

SPO I[fA/x]

S P O /[extract (p)/x]

Remark 11.8. In Theorem 11.3.4, consistency of the refined specification is guaranteed,
provided we assume consistency of the extension S P then S P ' has been verified during its
derivation in the proof (11.4):

j _ J (SP then SP')OA

If instead we prove the unSkolemized axioms A with respect to S P

f- dSpoA

then the refinement is consistent only with respect to the consistency of S P (not with
respect to some extension). Thus use of the extension introduces extra consistency obli-
gations in the derivation - but enables the use of other structured specifications that may
help in the derivation.

We use this theorem to define a refinement process for non-generic properly encapsulated
specifications as follows.

Process 11.3.5. Let S P be a non-generic properly encapsulated specification.

Let R denote a finite set of executable specifications.

We define the following refinement process

S P = SP_0 ^> S P J. --> SP_N = SP_EX

where SP_EX is an executable specification

1. Let i = 0.

2. Take the first visible function symbol / in the specification SP_I that is not exe-
cutable.

3. Let Df be the conjunction of all the visible axioms for / , and let A be the unSkolem-
ized form of Df - so that Sk(A) = Df[f/fo].

Prove the theorem
then SP')OA (11.11)

so that S P ' € R is some specification expression where S P then S P ' is a consistent
refinement of SP, and where S P ' does not have / as a visible symbol.
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4. Use Theorem 11.3.4 to obtain a refinement specification

S P J + 1 = {NewSpec({SP then Sp'),4,e) with [fA »-> /])

as a consistent refinement of SP_I.

Then SP-l-f-1 has one less nonexecutable function that SP_I.

5. If SPJ-hl is executable, then n = i + 1 and we are done. Otherwise, let i = i -f- 1
and continue as in step 2.

The nature of this process guarantees that the refinement process will terminate, as each
refinement will have strictly one less non-executable function symbol than the last, pro-
vided we can find proofs of the form given by (11.11).

We now extract programs for every function declared in the imports S P " - 1 , . . . , Sp"-m or
in the body SP.

Process 11.3.6 (Executable refinements from a generic specification). Suppose
SN names a consistent, generic specification of the form

specSN[Sp_l]... [Sp_n] given SP"_1 . . . SP" jm = SP,

where S P " - ! . . . Sp"_m are executable, all the sorts declared in the body of SP are basic or
have free datatype declarations and the unSkolemized versions of all the axioms of S P can
be proved using only executable specifications and the parameter specifications. Then we
can obtain a consistent, executable refinement, SN_EXEC,which is a conservative extension
of SN.

We sketch the process for producing a chain of refinements SN = SN_0 C SN_1 C
... SN_n = SN_EXEC. We shall assume that each SN_i is of the form

specSNJ[SP»1] . . . [SPjn] given SP"_1 . . . Sp"_ra = SPBODYJ.

1. Given the properly encapsulated generic specification S N J , take any function / in
SPBODY -i for which there is no executable definition.

2. Prove the unSkolemization, Af, of the conjunction, I)/ , of all the visible axioms for
/ to give a proof

h SP"O Af

where

S P " = {SP"_1 and . . . and . . . Sp"_n} then

{SP_1 and . . . and ... Sp_m} then SPBODYJ then SP '

*a^rJnM«.ist^^
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3. Apply Theorem 11.3.4 to obtain a consistent refinement

S P J + 1 ' = (NewSpec((Sp" then Sp'),Af,e) with [fA ~

because fA does not occur in SP", this specification has the same signature and
model classes as

SPJH-I'" =

S P " then S P ' then (((0, fA : etype(^), 0), {Df[fA/f], fA = e})) w i t n [fA _ ; ]

= {SP"_1 and . . . and . . . Sp"_n} then

{SP_1 and . . . and .. . Sp_m} then S P J + 1 " "

with

SPBODYJ then SP' then

(((0, fA : etypeCA/), 0), {Df\fA/f], fA = c}» with [fA ̂  f]

4. Now set

SN_(i + 1) = specSN'J[SP_1] . . . [SPjn] given S P " 1 S P " J

• = SPJH-1"" " "
m

Then SN _(t +1) l s a refinement of SN J which, by construction is a conservative extension
bach SN_(i + 1) contains one less non-executable function than the previous SN i so the
chain of refinements must terminate at some finite stage r, say, so that SN r = SN EXEC
as required. '

Example 11.2 (Refinement of the warehouse specification). Consider the warehouse exam-
ple of the previous chapter, given by the generic specification WAREHOUSE,

spec WAREHOUSE[CATALOGUE] =
ops rep : Part —* Part

axioms Vz : Part . size(lOR(i)) > 0 =» Jn(rep(t), myCat) => Rep(rep(^ i, myCat)

Given a faulty part name as input, the function rep uses the catalogue to obtains
replacement part, if it exists.

In Section 10.5 of that chapter we derived the following:

a

CATALOGUE then BODYWAREOA
(11.12)

with a proof-term of the form

and where SP ' G R is an executable specification from the repository. ps = use i: Part show(/id(/O^(0),ext2(app(^6,g5), CATALOGUE))
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where A is
Vz: Part • 3y : Part • /n(y, myCat) => Rep(y, z, myCat)

This theorem is the unSkolemized form of the axiom for rep, Drep

V?' : Part • size(lOR(i)) > 0 => In(rep(i),myCat) => Rep(rep(i),i,myCat)

in the warehouse specification body.

Because the proof-term is modular, there is a modular realizer of (11.12) such that

CATALOGUE then BODYWARE |=

Vz : Part • Jn(extract(p3)(i), my Cat) => Rep(extract(p3)(i), i, my Cat)

We can apply Theorem 11.3.4 to obtain a refinement

CATALOGUE then BODYWARE ~>
(iVe^Srpec((CATALOGUE then BODYWARE), A, extract(p3)) with [fA \-> rep]) (11.13)

Because CATALOGUE then BODYWARE is properly encapsulate this is a consistent refine-
ment.

Now, because rep is the only visible nonexecutable function symbol in the body of
WAREHOUSE, the refinement (11.13) can be used in a single step application of Process
11.3.6 to obtain the generic specification refinement

WAREHOUSE' C WAREHOUSE

where WAREHOUSE' is defined

spec WAREHOUSE'[CATALOGUE] = BoDYWAREthen

((0, fA : etype(A), 0), Drep[fA/rep]JA = extract(p3)>with [fA ^ rep]

This specification can be rewritten to the equivalent, easier to read executable refinement

spec WAREHOUSE[CATALOGUE] =
BODYCAT then

ops fA : Part —> Part
axioms Vz : Part • In(fA(i),myCat) => Rep(fA(i), z, my Cat);

= fn± => hd(listOfReplacements(i))

11.3.4 Software development via specification refinement

Our methods yield a notion of provably correct systematic component development and
reuse.
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Our method of refinement is done with respect to a repository of structured programs.
Once we refine a specification into a structured program, we can add it back to this
repository. This repository consists of executable specifications, consistent with respect
to their derivation by refinement. The expanded repository can then be used for use the
refine of other abstract specifications.

A possible systematic development process results, of the form of Fig. 11.6. By virtue
of the refinement process, components developed in this way are provably correct, in the
sense of being relatively consistent with respect to the specifications from which they are
refined.

FinanceOperati
ons

SR

Catalogue

AbstractLists

SP A 1
SP a.

Warehouse
[Catalogr

Lists[Elem]

I Taks basic specification

i2

[:g|p|a |̂iy:!d^r^ ;̂;:
axioms—

! by possibly extending Sp

SP Then SP' oAx

| Extended with extracted
; f unotions to {fcfam
| execiiiabte refinement
| and add ta

Figure 11.6: Software development using the process of executable refinement (Process
11.3.6).

11.4 Discussion

Our methods require us to consider the relation between the specification structure and
required implementation architecture carefully. We showed that specification building
operations correspond to architectural design decisions. In particular, we found that

• Our refinement process preserves and extends the structure of the original abstract
specification in the architecture of final executable specification. So we must be care-
ful with the abstract specification's structure, because decisions about this structure
will affect the executable specification structure.
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• Our use of the SSL calculus as in a method of constructing correct structured pro-
grams entails that the structural and Skolemization rules now correspond to archi-
tectural design decisions.

This is in contrast to usual approaches to specification refinement, where a structured
specification is not considered to impose any architectural constraints on its final im-
plementation. Architectural considerations are left as outside the scope of structured
specifications.

Our techniques are compositional by virtue of the fact that they are grounded in a com-
positiuonal proof system, SSL. SSL derives a proof about a structured specification in
a modular fashion, using knowledge about sub-specifications to derive knowledge about
the composed specification. By employing extraction to extend and refine specifications
from a proof, we compositionally employ known results about subspecifications. Thus, the
divide-and-conquer approach of proof reuse in SSL corresponds to a form of knowledge
reuse in construction of architectures. Part V

Epilogue
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Chapter 12

Conclusions: Toward constructive
logic as a practical 4GL

As we said at the beginning, ultimately, we would like to solve problems by building
well-structured, comprehensible, correct programs, solely through reasoning with domain
knowledge. The discipline of the software engineer is still far from realizing this goal in
an industrial setting. This thesis has explored research ideas that are a small step in this
direction which may be useful in the long-term.

Traditional software development distinguishes between specification of requirements and
implementation of requirements. Specifications are not formally included in the commonly
used industrial third generation programming languages (3GLS).1 Instead, a specification
is written in a different system (such as Engish or predicate logic)- and serves as a per-
scriptive goal to be achieved through implementation.

This distinction leads to a division between the tasks of specification and implementation.
Although sometimes desirable, problems can result. In particular:

• The separation of tasks leads to an inefficient demarcation of development roles,
between specification expert and programmer. A specification expert is needed to
understand a problem, but is not usually skilled in providing a solution. Implemen-
tation is a task that requires knowledge of and experience with the programming
language. A programmer is skilled in the technology to provide a solution, but, by
virtue of this, usually lacks knowledge about the problem domain. The different skills
sets of the two roles can impede communication and the process of development.

1We define 3GLs to be to be high-level procedural languages in which single instructions abstract away
from several lines of machine code. Examples of 3GLs are FORTRAN, COBOL, C, C++, Java or C # .
Programming a 3GL requires expertise that is specific to this task. In contrast, 4GLs are meant abstract
away from 3GLs, with the aim of enabling end-user programming that is, programming of a product by the
person who will use the product [Sch99a, 440-443]. For example, a spreadsheet package may be thought
of as a 4GL, which enables end-user programming for an accountant. 4GLs may be procedural, such as
Visual Basic for Applications (VBA), or declarative, such as Microsoft Excel, SQL or Prolog.
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• Traditional implementation involves many issues that are orthogonal to the problem
domain. It would be preferable to minimize these issues, to facilitate development
that is driven entirely by specification, where the only skills required are knowledge
of and the ability to reason about the problem to be solved.

• Because implementation is a separate task from specification, there is usually no
formal guarantee that an implementation correctly satisfies its specification. For
instance, ambiguities can arise in the transition from a specification to implementa-
tion.

To solve these problems, program construction should ultimately be driven primarily by
knowledge of the problem domain, and less by orthogonal, language specific issues.

This is the goal of many approaches to program synthesis. The idea is that, given a spec-
ification, an automated or interactive process of synthesis yields a program that behaves
according to the specification. In this way, program synthesis occurs at a higher level of
abstraction than 3GL programming, forming a 4GL infrastructure that can treat specifi-
cation declaration as a part of the programming task. Following Tyugu [Tyu88, p. 8], we
distinguish three different approaches to program synthesis:

• Transformational synthesis: a program is derived stepwise from a specification by
means of transformations or refinements. Refinement calculi [Dij76, MV93, Mor94,
Bac80] achieve transformational synthesis through languages that mhc non- exe-
cutable specifications and programs. These calculi provide rules for refining non-
executable specifications into executable terms that satisfy the specification. Re-
peated recursive application of rules over a term with non-executable subterms will
eventually yield an executable term. Related techniques [HHS85] have been em-
ployed to obtain structured programs from both model-oriented specifications (such
as B specifications [Abr96, pp. 501-550]), and from algebraic structured specifica-
tions (such as OBJ or CASL [CoFOl]).

• Deductive synthesis: a uses deduction of a proof of solvability of a problem and
derives a program from the proof. Deductive synthesis can be interactive (semi-
automated) or completely automated.

Automated deductive synthesis is what occurs in high-level logic programming lan-
guages like Prolog and automatic theorem provers such as the Boyer-Moore prover
[BM79] or OTTER [McC92].

Interactive deductive synthesis often involves constructive logic, such as the systems
described in [MW91] and [KBB93J. Of these constructive approaches, a subset is
based on forms of constructive type theories [HN88, Tyu88, CMH86, CH88, PC01,
CP01].

• Inductive synthesis: a program is based on a declaration of input-output require-
ments or examples of input-output pairs. Examples of methods that fall into this
category include inductive logic programming [Plo71, Mug92] and neural and. belief
networks [RN95, pp.563-597].
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This thesis has been concerned with deductive and transformational approaches. We have
considered

• interactive deductive synthesis of imperative programs with side-effects (in Part III)
and

• the combination of deductive and transformational approaches for structured pro-
gram synthesis (in Part IV).

Our approaches generalize the deductive synthesis techniques commonly referred to as
proof-as-programs, based on constructive logic, type theory and the Curry-Howard iso-
morphism.

We have used a framework, called the Curry-Howard protocol, to identify how to adapt
proofs-as-programs to new logics and programming paradigms. A strength of this frame-
work is its apparent generality - we have demonstrated it successfully with two separate
contexts (imperative programs and structured specifications). However, further use of the
protocol will determine its ultimate success as a general framework.

Why is it interesting to adapt proofs-as-programs to the new contexts?

We argue that the construction of a program should be driven more by knowledge of
the problem domain and less by orthogonal, language specific issues. This is the goal
of fourth generation programming languages (4GLs). To move toward this goal, we have
advocated the integration of specifications and, more generally, the ability to reason about
domain knowledge into the process of program construction. Constructive logic permits
us to define a system while hiding as much low level implementation detail as possible.
Constructive logic does not require implementation knowledge, but only knowledge of, and
the ability to reason about, the problem domain.

In contrast to declarative, fully automated program synthesis, such as SQL or Prolog, but
similar to procedural languages such as C, Java or Microsoft's VBA, a constructive logic
requires the development of a program to be guided incrementally by a system designer.
This permits a degree of design freedom, which is important when developing complex
system architectures for reuse and manageability. Our work defines a 4GL in the sense
that, programs can be constructed purely through reasoning about domain knowledge. By
the fact that we use adapt constructive synthesis, we can guarantee that our synthesized
programs are correct with respect to their specification.

There already exist experimental 4GLs. However, most do not address two concerns that
are important for industry uptake:

• Many industrial programming tasks are essentially imperative in nature. Common
tasks usually involve state in some sense - for example, accessing and changing
values in a database is fundamental to most industrial applications. We argue that
imperative issues will never disappear as industrial concewrns, no matter how high
level the language used for development. Therefore a useful 4GL must in some way



424 Chapter 12: Conclusions: Toward constructive logic as a practical 4GL

incorporate state. Our work in imperative program synthesis in Part III addresses
state issues, by extending 4GL proofs-as-progr ims ideas.

• Industrial strength programs are large and often difficult to maintain. Structured
programming is an important means of developing and maintaining a system ac-
cording to compositional, d'vide-and-conquer principles. It is therefore important
that an industrial strength 4GL be intrinsically structured and compositional. The
work of Part IV in synthesis, extension and refinement using structured algebraic
specifications represents a step in this direction.

Our systems are by no means ready for industry use as they stand. Further work must
involve examining efficiency of extracted programs and ease of use of our systems within
a theorem proving environment.

However, we believe the results of this thesis are positive and demand further investigation.
By adapting constructive synthesis, we have contributed some results toward the possi-
bility of constructive logic as a 4GL and the goal of building complex, correct imperative
and structured programs, solely through reasoning witl? domain knowledge. Appendix
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Appendix A

Constructive logic

This appendix presents some background information on constructive logic, type theory
and the Curry-Howard isomorphism.

A-l Constructive logic

Logic is the study of formal systems of deduction.

Classical logic is the most well-known formal system, formalising the way in which math-
ematicians commonly reason. However, many other formal systems have been developed
to reasoning about different domains.

Other formal systems include, amongst many others, modal logics [HC68], the temporal
logic of actions (TLA) [Lam94], the Hoare logic [Hoa69] and linear logic [Gir87]. Each of
these logics formalise some aspect of reasoning about a problem domain. For instance,
modal logics are used to formally reason about possibility and necessity, while the TLA
and Hoare Logic can be used to reason about the dynamic behaviour of distributed and
imperative programs, respectively.

Following classical logic, constructive (or intuitionistic) logic is one of the earliest formal
systems of deduction. Constructive logic has its roots in the philosophy of Intuitionism, a
position on the foundations of mathematics. Intuitionism was first described by Brouwer
[Bro75, Bro81]. Its formalisation with constructive logic was given by Heyting [Hey71].
One of its most important philosophical exponents was Dummett, with his anti-realist
verificationist meaning theory [Dum77, Dum91].

Intuitionism restricts the ways in which mathematical reasoning should be done. It main-
tains that mathematics is dependent solely on the intuition of the creative subject (the
mathematician). This means that the objects of mathematics are constructions of the
subject, whose properties and meaning are given entirely by virtue of their construction.
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Consequently, for an intuitionist, a mathematical proof is permissible inasmuch as it en-
codes the constructions of the subject. For instance, the truth of the statement (A V -iA)
is only known if we can provide a construction that shows either A or -»A to be true.

This is in contrast to the Platonic, realist view on mathematics, where objects and their
meaning are considered to be external and objective, existing in their own right apart from
from subjective creation. In that view, we can reason about properties of an object that
have not be constructed. Classical logic complements this Platonic view. The semantics
of classical logic presupposes an external world in which statements objectively true or
false. Thus, in classical logic, the statement (A V ~^A) is true, because either A is true or
not.

For the most part, intuitionism gained acceptance only in philosophical circles. It was not
adopted by mathematicians, who, on the whole, freely use non-constructive arguments
when it suits them. However, constructive logic has found great application in the realm,
of computer science, where the notion of construction is fundamental (all programming is
about constructing functions). Its application is largely due to the correspondence between
constructive proofs and algorithms, resulting the Curry-Howard isomorphism property. l

A. 1.1 Constructive evidence

Constructive logic is distinguished in that it requires constructive evidence of a formula's
truth. There three important formal definitions of "constructive evidence":

m

1. a constructive proof,

2. a realizer, or

3. inhabitation of the formula seen as a type.

The Curry-Howard isomorphism is a property of constructive logic that shows that these
three notions are coincident. We now briefly review these definitions and the isomorphism.

A.1.2 Constructive proofs

The notion of a constructive proof was first made precise by Kolmogorov and Heyting
[Kol32, Hey71]. In the Brouwer-Heyting-Kolmogorov (BHK) explanation, provability of a
compound formula is given in terms of the provability of the components of the formula.
This may be defined as follows, assuming that we have a notion of constructive evidence
for atomic formulae:

• A proof of an atomic formula A is constructive evidence that guarantees A.

1Also, from a philosophical perspective, it has been argued that constructive logic need not be tied
to intuitionism, and can in fact complement weaker notions of constructivism, realist or Platonist views
[ResOO].

A proof of (A A B) is a construction that provides a proof of A and a proof of B.

A proof of (A V B) is a construction that provides either a proof of A or a proof of
B.

A proof of (A => B) is a construction that, when given any proof of A provide;
proof of B. :S a

• A proof of Vx • A is construction that, when given a term a, provides a proof of
A\a/x).

• / ; 'oof of 3x • A is a construction that provides a witness term a and a proof of
A[a/x).

• There is no proof of the absurdity, JL.

In this way, constructive evidence to support the truth of a compound formula is to be
found in the evidence that supports its components.

Gentzen devised the natural deduction calculus, a set of rules for building constructive
proofs [Gen69]. For instance, the (V-Ii) rule of natural deduction tells us that we have a
constructive proof of (A V B), provided that we have a constructive proof of A:

r\~A

The (V-I) rule tells us that we have a proof of \fx • A provided that we have a proof of
A[y/x] for free variable x in A:

A. 1.3 Realizability

The original notion of realizability was introduced by Kleene in [Kle45, Kle52] as a se-
mantics for intuitionistic arithmetic. His idea was to show that natural numbers can be
used to encode constructive evidence of formula truth.

Given formulae about the natural numbers, we can take the set of realizers to range over
functional terms built from the naturals with with pairs, projections (TTI and 7^), disjoint
unions (formed using inl and inr) and a unit constant Q.2 Then, we say that a formula is
valid (realizable) when we can find a realizer for it, according to the following definition
defined as follows:

2Kleene's original definition was for formulae, and involved functionals encoded as natural numbers.
Later, more general definitions of realizability were developed using combinatorial algebra or the lambda
calculus to define functionals.
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() is realizer of an atomic formula A if A is true.

p realizes (A A B) if rri(p) realizes A and ̂ {p) realizes B.

p realizes (A V B) if it is of the form ini(g) with q realizing A, or of the form \m(q)
with q realizing B.

p realizes A —» B, if it is a functional such that, given any realizer q of A, (pq) is a

realizer of B.
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• p is realizer of Va: • A if it is a functional, such that, when given a number t, provides
a realizer (pt) of A [£/#].

p is a realizer of 3:r• A, such that, K\{p) = t for a witness number £ and ^ ( p ) realizes

• There is no realizer of the contradiction, _L.

When a realizer can be constructed for a formula, it is true. In this way, a realizer
corresponds to Brouwer's notion of constructive evidence to support the formula.

This notion of realizability can be adapted to many-sorted and higher-order formulae.
Since then, various variations on the idea have been developed - see Troelstra [Tro73,
Tro98] for a detailed overview. In our work, we shall be concerned with realizability for
many-sorted formulae with functional sorts.

A. 1.4 The Curry-Howard isomorphism

A third notion of constructive validity is given by the Curry-Howard isomorphism. This
property tells us that constructive natural deduction corresponds to a kind of type theory,
where proofs correspond to terms, formulae to types, logical rules to type inference and
proof normalization to term simplification. The original idea was first described by Curry
in [Cur34] extended to intuitionistic first order logic by Howard [How80].

Essentially, a constructive type theory corresponding to natural deduction for predicate
logic is a typed lambda calculus with dependent product and sum types and disjoint
unions. The rules of natural deduction then have corresponding type formation rules.

Example A.I. The (V-Ii) rule of natural deduction corresponds to a typing rule

V-L
AWB

which tells us that inl(p) is correctly typed with AV B, provided that p is typed with A.
The formula A V B is taken to be a disjoint union type.

Example A.2. For instance, the (V-I) rule of natural deduction for first order constructive
logic with arithmetic corresponds to a typing rule

(V-I)
r h \x.pVxmA

that tells us that Xx.p is correctly typed with Mx*A, provided that p is typed with A[y/x].
The formula Vx • A is taken as a dependent product type, by virtue of the type inference
rule corresponding to (V-E):

T h v*x*A

— — (V-E)
T h \x.(pa)A[a/x]

This is the elimination rule for dependent product types, because it shows, that \/x • A
parameterises the type A over possible instantiation by the number a.

We can view the isomorphism as a means of relating the BHK interpretation of logical
connectives to a form of constructive realizability (similar to that given by Diller [Dil80]).
This is achieved if we take realizability to be inhabitation of types by terms, as the lambda
calculus enables definition of functionals.

A.2 Constructive type theories

First order and many-sorted logic have straightforward type theories, similar in form to
that given by Howard [How80] for first order logic (see, for instance, [Sch99b, pp. 1-13]).
Crossley and Shepherdson [CS93] provided a constructive type theory that is modular over
sorts (datatypes such as natural numbers, booleans, lists, etc). We will also see that, by
treating sorts as closed under functional constructors, we can provide a limited form of
higher-order reasoning.

The Curry-Howard isomorphism also can be applied to a range of fully higher-order con-
structive type theories, each corresponding to a different form of constructive logic that
permits predication over logical formulae.

The main motivation of these theories is to provide a single framework that unifies log-
ical reasoning about computational objects with the typing of these objects. Typically,
a programming language can be understood with a type system that defines the type of
values for input and output of functions, and reduction rules for evaluating function ap-
plication. By the Curry-Howard isomorphism, logic is also such a type system. Because
logic reasons about computational entities, it is of foundational interest to examine how
logical and computational domains can be unified within a single type theory.

For our purposes, unified higher-order theories are worth describing briefly, as they form
the basis of two important program synthesis methods (Nuprl and Coq). As we shall later
see, our work presents a different approach to program synthesis, which argues against
unified type system for programming and reasoning.
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A.2.1 Higher-order type theories

Higher-order type theories fall into two camps: the predicative theories and impredicative
theories. The differences lie in impredicativity - the scop^ of quantification over types to
form new types. Impredicativity is an important issues, because, if treated incorrectly, a
paradoxical type system can arise. For example, Martin-L6f 's original constructive type
theory permitted a type of all types that contains itself as a term and is closed under
quantification. Girard showed that this type theory entails that every type is inhabited
and so corresponds to an inconsistent logic, exhibiting a form of Russell's paradox [Gir72].

A.2.2 Predicative type theories

The predicative type theories of Martin-L6f [ML75, ML84] restricts quantification accord-
ing to hierarchies of type universes. Quantification over types from one universe forms a
type of a higher universe, such that lower universe types cannot quantify over types of
higher universes.

The idea is as follows. Basic computational datatypes (for example, integers and booleans)
are denned in a base universe UQ. This universe is closed under logical formula types
that predicate over the basic types. However, datatypes that define functions over UQ or
formulae that quantify over UQ are necessarily types of the next i mi verse U\. The rest of
the universe hierarchy is similarly constructed.

In these theories, datatypes and logical types can be represented within a single type theory
and are treated similarly. Logical types are introduced by means of introduction and
elimination rules corresponding to natural deduction rules. Datatypes are also introduced
via construction typing rules for constructors and eliminated by typing rules for recursion
operators.

These predicative theories are essentially functional programming languages, but with
more powerful type systems. This is an advantage for the programmer, because, in partic-
ular, Martin-L6f describes an extensible methodology in which we are permitted to define
new datatypes, simply by adding introduction, elimination and reduction rules. This cor-
responds to programming practice of defining new abstract data types. However, these
theories have a disadvantage for the logician or mathematician, as their syntax and usage
differs significantly from more commonly used deductive systems (such as many-sorted
logic).

A.2.3 Impredicative type theories

The impredicative type theories of, for instance, Girard [Gir72], Reynolds [Rey74] and
Coquand [MLM90] permit quantification over types to form a type itself. For instance,
in Coquand's calculus of constructions [MLM90], formulae types maybe be formed by
universal quantification over any type including Prop, the type of all formulae types.
Thus, VP : Prop.P is a proposition of type Prop. To avoid paradox, these impredicative
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theories require that the type of formulae types is not itself a formulae type, but a different
kind of type (so all formulae correspond to types, but not all types correspond to formulae).

In contrast to predicative theories, impredicative theories do not treat datatypes and
logical propositions as the same - but rather encode the former using the latter. This
results from the computational power of predicative theories, that permits an encoding
of commonly used computational datatypes (see, e.g., [BB85]). For example, the natural
numbers datatype can be represented using Church numerals, with the polymorphic type
VP : Prop.P -> (P -> P) ~> p .

While mathematically elegant, such encodings are unnatural and inefficient for program-
ming. No software engineer would use Church numerals to write arithmetic functions,
because the syntax is difficult to understand and evaluation is typically impractical (for
example, Church-style numbers have no linear-time predecessor function).

Luo's extended calculus of constructions [Luo94] solves some practical problems with im-
predicative theories, unifying an impredicative logical type theory, for representing higher-
order constructive logic, with a predicative computational type theory of datatypes, for
representing objects in the logic.

A.2.4 Theorem proving

The isomorphism and constructive type theories have been used in many interactive theo-
rem provers - for example, the Endinburgh Logical Framework [GMW79, HHP87], Nuprl
[CMH86], Isabelle [NPW02] and the ALF system [MN94]. One of the earliest approaches
to theorem proving with type theory was the Automath work [Bru70]. Amongst other
advantages, type theory permits complex proof tactics and parametrized lemmata to be
given simply as functions over terms, and the automation of proof simplification.

A.2S,5 Disadvantages of unified type theories

Higher-order type theories aim to represent datatypes and logical formulae within the
same system. It can be argued that, while useful from a foundational perspective, such
approaches are not desirable in practice.

In general, programming and logical reasoning are two very different tasks. Implementa-
tions of higher-order type theories have existed for over 20 years now, but have largely
failed to make an impact in the software development community - in contrast to, for in-
stance, the Hoare Logic [Hoa69] or model-based refinement methods such as the B method
[Abr96].

It is possible that this failure is due to the very nature of a unified system of program
typing and logical reasoning. By definition, such a system aims to do two complicated
tasks, and necessarily has a more complicated syntax and a steeper learning curve.

We hypothesise that, following the more successful approaches to formal software develop-
ment, different languages for programming and logical reasoning should still be employed
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in practice. This motivates the work of Crossley and Shepherdson [CS93], which empha-
sised the importance of a logic that is commonly understood by people trained in formal
reasoning for software development (such as first-order or many-sorted logic).

The idea of separating proofs is essential to the Curry-Howard protocol, identified by
Crossley and the author in [PC01], and described in Part II of this thesis. Parts III
and IV of this thesis are an applications of the protocol, and can be seen as a further
argument for the separation of proofs from programs, to achieve a practical approaches to
constructive synthesis in new logical and programming contexts.
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global environment, 376
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basic specifications, 241, 247-250, 253
equality axioms, 263-264
extensions, 251, 254, 334
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proof system, 17
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visible side-effect equivalence, 176
visible symbols, 258

warehouse catalogue example, 369-372,
-374-375

refinement, 414-415
synthesis, 390-393

validity




