
ON

MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE

REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

r |) o / Sec. Research Graduate School Committee
Under the copyright Act 1968, this thesis must be used only under the
normal conditions of scholarly fair dealing for the purposes of
research, criticism or review. In particular no results or conclusions
should be extracted from it, nor should it be copied or closely
paraphrased in whole or in part without the written consent of the
author. Proper written acknowledgement should be made fir any
assistance obtained from this thesis.

ADDENDUM

Page 3, first dot point, should read:
3 to determine the empirical validity of the conceptual process model, which is initially

grounded in the existing requirements engineering literature, by conducting in-depth case
studies of object-oriented requirements engineering which progressively refine and revise
the conceptual process model so that the final version of the model is also grounded in
current practice.

Page 9, last sentence, should read:

"The process was concluded when a representative model of the research domain being investigated
was produced."

Page 10, add after fourth dot point:

"These contributions have emerged from addressing the main aim of the thesis as outlined in section
1.3 above. This aim is overarching and encompasses the specific research objectives, and achieving
the objectives led directly to the contributions."

Page 80, add before the last paragraph:

"The logic for multiple case studies is based on the principle of theoretical replication, i.e.
replication of results through a series of rigorous case studies (Yin, 1994). The emphasis in this
project is on replication in the form of cumulative iteration. A multiple-case study design was used
in order to allow cross-case comparison and to strengthen the research findings in the way that
multiple experiments strengthen experimental research findings (Benbasat et al. 1987; Yin 1994, p.
31,45)."

Page 89, last sentence, first paragraph should read:

"The final version of the conceptual process model makes a significant contribution to the theory of
object-oriented requirements engineering."

Page 90, Section 4.2, first paragraph: the reference to Simons(2000) should read Simons(1998)

Page 106, add before first paragraph:

"The initial conceptual process model presented below is based on the same three processes and their
interactions as Loucopoulos and Karakostas' framework but within the specific context of object-
oriented requirements development which includes object-oriented modelling and explicit
transformations, flows and interactions."

ERRATA

page 59, last sentence: "The first two models are based on ..." should read "The first model is
based on..."
page 241, third dot point, paragraph 2: "reuirements" should read "requirements"

1
1
1
i

An Investigation of the use of

Object-Oriented Models in Requirements

Engineering Practice

Linda Louise Dawson

B.Sc. (Syd), Grad. Dip. Eng. Dev. (UNSW), M.Sc. (UTas)

This thesis is submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Information Management and Systems

Faculty of Information Technology

Monash University

I May, 2001

1

Abstract

In many organisations there has been increasing use of object-oriented methods

for the development of information systems. There is little research into the use

of object-oriented methods by practising prc.u.sionals in producing

requirements specifications for commercial or industrial sized projects.

Requirements specification is the starting point for system development. Before

a system can be designed and built, it must be specified in a way that facilitates

its design and construction. The requirements specification, the product of the

requirements engineering stage of systems development, specifies what needs

to be designed rather than how it is to be designed. It has been generally

recognised that many of the errors that lead to costly maintenance and/or

failure of information systems can be traced to omissions, inconsistencies and

ambiguities in the initial requirements specification.

Many object-oriented methods and methodologies have been published, based

on an underlying paradigm of objects, classes and inheritance, but little has

been published about how object-oriented methods and models are used by

practising professionals, particularly in the requirements engineering phase of

system development. Object-oriented analysis and requirements specification is

a relatively new addition to most object-oriented development methodologies.

Modelling of requirements is an important part of the requirements

specification process. Object-oriented models are said to provide a natural way

of modelling real world systems which can incorporate both static or

descriptive characteristics and dynamic or behavioural characteristics within

one model.

•fls

3 5

1
3

This research project presents a body of work which builds a conceptual

process model that represents a theory of the object-oriented requirements

engineering process. The model is based on the requirements engineering

literature and is refined using data collected during a multiple-case study of

object-oriented requirements engineering in practice. The study examined the

concepts of the conceptual process model in order to investigate their empirical

validity. Analysis of the data from the six cases in the study has been used to

refine the conceptual process model and to identify important implications for

object-oriented requirements engineering in practice.

|

•I

Acknowledgments

I wish to express my gratitude to Peta Darke, for her insightful comments,

support and encouragement and for taking on the supervision of this thesis in

its final phase.

I would also like to thank

• My colleague Simon Milton for his friendship and discussions about this

project and research in general

• My colleagues at Monash University and Deakin University for their

support

• Paul Swatman for his comments, especially on early drafts and

presentations of this work

• My colleagues in the wider information systems community for their

encouragement and comments

Lastly, I would like to thank my husband, Ralph, for his patience and support

during the production of this thesis.

May 2001

IV

Declaration

I certify that this thesis does not incorporate without acknowledgment any

material previously submitted for a degree or diploma in any university; and

that to the best of my knowledge and belief it does not contain any material

previously published or written by another person where due reference is not

made in the text.

2nd May 2001.

List of Tables
Table Page
2.1 A summary of object-oriented methods and their static models 63
2.2 A summary of object-oriented methods and their dynamic models 63
3.1 Table 8.2 from Galliers (1992), page 149 67

3.2 Table 3 from Fitzgerald and Howcroft (1998), p 160 67
3.3 Myers classification of qualitative research methods 68
4.1a A summary of object-oriented methods and their static models - 93

part (a).
4.1b A summary of object-oriented methods and their static models - 93

part (b).
4.2 A summary of object-oriented methods and their dynamic models 94
5.1 Background Information for each consultant 114
5.2 Seed Categories and example questions 115
5.3 Types and sources of data and their collection methods 117
5.4 The Seven Common Transactions 136
6.1 The three processes of object-oriented requirements engineering 196
6.2 Feedback and iteration in elicitation 198
6.3 Static and Dynamic Models 199
6.4 Cross-case analysis of concepts embodied in initial conceptual 200

process model
6.5 Evidence of use cases for requirements modelling 203
6.6 Evidence of mental modelling 206
6.7 Evidence of the separation of models 209

6.8 Emerging concepts from sequential-case studies as incorporated in 214
the conceptual process model (Figure 6.4)

6.9 Thinking object-oriented during elicitation 217
6.10 Use of a specific methodology 220
6.11 Opportunism in knowledge elicitation 222

6.12 Concepts related to the research questions but not directly related 223
to the conceptual process model

VI

List of Figures
Figure Page

1.1 Structure of the Research Project 11
2.1 A framework for requirements engineering processes: 20

Loucopoulos and Karakostas (1995) page 21
3.1 Unit of Analysis - the analyst/ requirements engineer in context 77

3.2 Structure of the Research 81
4.1 SSADM Feasibility Hierarchy (Downs et al., 1988) page 13 96
4.2 Viewpoint development framework (Darke and Shanks, 1996) 98
4.3 Macaulay's general process model, (Macaulay, 1996) page 7 99
4.4 Pohl's three dimensions of requirements engineering (Pohl, 1994), 100

page 246
4.5 A framework for requirements engineering processes: 102

Loucopoulos and Karakostas (1995) page 21
4.6 The Initial Conceptual Process Model 106
4.7 Legend for Initial Conceptual Process Model 107
5.1 Volere Requirements Card (Robertson and Robertson, 1997) 125
5.2 The client/user structure 134
5.3 Rich picture diagram for users and corresponding OMT fragment 162

not shown to users
6.1 Initial Conceptual Process Model 193
6.2 Version 2 of conceptual process model 204
6.3 Version 3 of the conceptual process model 207
6.4 Version 4 of Conceptual Process Model 213
7.1 Final Revised Conceptual Model 226

7.2 A theoretical model of the contribution of social, creative and 230
cognitive processes to requirements engineering

' 7

I
VII

Table of Contents

/•

%

't

•i
j

\

K

i

<

Abstract
Acknowledgments

Declaration

List of Tables

List of Figures

1 Introduction
1.1. Overview

1.2. Background and Motivation

1.3. Outline of the Research Design

1.4. Contributions

1.5. Outline of the Thesis

11

iv

v

vi

vii

1

1

3

8

10

10

2 Object-Oriented Requirements Engineering: Concepts

and Approaches 13
•f 2.1. Overview 13

) 2.2. The Requirements Engineering Process 14

\ 2.2.1. Defining and Modelling Requirements 17

2.2.2. Existing Requirements Engineering Process Models and

Frameworks 18

2.3. Cognitive Processes in Requirements Engineering 21

2.3.1. Thinking and Problem Solving 21

2.3.2. Theories of Reasoning 24

2.3.3. Cognitive Modelling 33

* 2.3.4. Summary of Cognitive Processes in Requirements

Engineering 34

J 2.4. Studies of the Requirements Engineering Process 36

,] 2.5. The Object Oriented Paradigm 47

I 2.6. A Review of the Major Object-Oriented Methods 49

2.6.1. First Generation Object-Oriented Methods 51

I 2.6.2. Second Generation Object-Oriented Methods 55

2.6.3. Third Generation Object-Oriented Methods 58

Vll l

c

2.6.4. Summary of the Characteristics of Object-Oriented

Methods

2.7. Summary

62

64

3 Research Design 65

3.1. Overview 65

3.2. Research in Information Systems 65

3.2.1. Paradigms and Philosophies in Information Systems

Research 68

3.2.2. Qualitative and Quantitative Research Methods 69

3.2.3. Candidate Qualitative Research Methods 71

3.3. The Research Framework 75

3.3.1. Research Objectives 75

3.3.2. Formal Research Questions 75

3.3.3. Unit of Analysis 76

3.3.4. The Research Approach 78

3.4. Justification of the Research Approach 84

3.4.1. The Conceptual Study 85

3.4.2. The Multiple Sequential-Case Study 86

3.5. Summary 87

4 An Initial Conceptual Process Model 88

4.1. Overview 88

4.2. Categorising Object-Oriented Models for Requirements

Engineering 90

4.3. Static and Dynamic Modelling for Requirements Engineering 92

4.4. Requirements Engineering Process Models and Frameworks 94

4.4.1. Traditional System Development Frameworks 95

4.4.2. Viewpoint Approaches 96

4.4.3. Macauky's Model 98

4.4.4. Pohl's Framework 99

4.4.5. Loucopoulos and Karakostas' Framework 101

4.5. An Initial Conceptual Process Model 104

4.5.1. The Elicitation Process 107

IX

9?

4.5.2. The Object-Oriented Modelling Pprocess 108

4.5.3. The Validation Process 108

4.6. Summary 109

5 A Multiple Sequential-Case Study of Modelling for

Object-Oriented Requirements Engineering 110
5.1. Overview 110

5.2. The Case Study Protocol 113

5.2.1. The Case Study Process 113

5.2.2. The Participants 114

5.2.3. The Data Collection and Analysis Method 115

5.2.4. The Structure of the Case Study Descriptions 119

5.3. Case 1: A New Infrastructure for a Federal Government

Department Software System 121

5.3.1. The Consultant and the Consulting Organisation 121

5.3.2. The Client and the Project 122

5.3.3. The Development Methodology 123

5.3.4. Project Documentation 126

5.3.5. The Requirements Engineering Process 127

5.4. Case 2: A Transaction Specification Methodology for a State

Government Authority 131

5.4.1. The Consultant and the Consulting Organisation 131

5.4.2. The Client and the Project 132

5.4.3. The Development Methodology 137

5.4.4. Project Documentation 138

5.4.5. The Requirements Engineering Process 139

5.5. Case 3: A Fault Management System for a Federal Government

Department 142

5.5.1. The Consultant and the Consulting Organisation 143

5.5.2. The Client and the Project 144

5.5.3. The Development Methodology 145

5.5.4. Project Documentation 145

5.5.5. The Requirements Engineering Process 146

5.6. Case 4: A Generic Insurance Package 154

5.6.1. The Consultant and the Consulting Organisation 154

t
5.6.2. The Client and the Project

5.6.3. The Development Methodology

5.6.4. Project Documentation

5.6.5. The Requirements Engineering Process

5.7. Case 5: A Life Insurance System

5.7.1. The Consultant and the Consulting Organisation

5.7.2. The Client and the Project

5.7.3. The Development Methodology

5.7.4. Project Documentation

5.7.5. The Requirements Engineering Process

5.8. Case 6: A Stockbroking System

5.8.1. The Consultant and the Consulting Organisation

5.8.2. The Client and the Project

5.8.3. The Development Methodology

5.8.4. Project Documentation

5.8.5. The Requirements Engineering Process

5.9. Summary

155

157

158

159

166

166

167

168

168

168

171

172

174

176

177

177

188

6 Case Study Analysis

6.1. Overview

6.2. Validation of the Initial Conceptual Model

6.2.1. The use of three processes: elicitation, modelling and

validation

6.2.2. The explicit use of feedback in elicitation

6.2.3. Identification and use of static and dynamic models

6.2.4. Summary - validation of the initial conceptual process

model

6.3. Evolution of the Conceptual Process Model

6.3.1. Additional Model Type: Use Cases

6.3.2. Mental Modelling

6.3.3. Formal and Informal Models

6.3.4. Summary - evolution of the conceptual model

6.4. Findings related to the cognitive and social aspects of

requirements engineering process

6.4.1. Analysts always thinking in object-oriented terms

the

190

190

192

193

196

198

200

200

201

204

206

213

215

215

XI

I
4*1

,4*
-it

t

&

6.4.2. Use of a specific methodology 217

6.4.3. Evidence of opportunistic approaches to elicitation 220

6.4.4. Summary 222

6.5. Chapter Summary 223

7 The Implications for Practice 225

7.1. Overview 225

7.2. Implications for the Conceptual Process Model 225

7.3. Implications for Requirements Engineering Practice 228

7.3.1. Requirements Engineering as a Social Process 231

7.3.2. Requirements Engineering as a Creative and Cognitive

Process 232

7.4. Implications for Education and Training 233

7.5. Limitations of Research Results 235

7.6. Summary 237

8 Conclusion and Future Work 239

8.1. Summary of this Research Project 239

8.2. Research Results 241

8.3. Future Work 244

8.3.1. Mapping Formal Models to Informal Models 244

8.3.2. Comparing perceived and demonstrated behaviours in

professional requirements engineering 245

8.3.3. Migration to Object Oriented Systems 245

8.3.4. Cognitive Processes in Requirements Engineering 246

8.3.5. Applying Useability Metrics to the use of Information

Systems Development Methodologies 249

8.4. Conclusion 251

References 253

Appendices 268

Appendix A: The Categorised Interview Questions 268

Appendix A.I The Initial Categorised Interview Questions 268

Appendix A.2 The Final Categorised Interview Questions 270

Appendix B: List of Publications Resulting Directly from this Research 272

Xll

Chapter 1 Introduction

I Chapter 1

Jr

Introduction

1.1 Overview

The increasing use of object-oriented methods for information system

development has led to a need for the development of object-oriented

approaches to requirements engineering. Although there are many object-

oriented methodologies available for systems development which concentrate

on design modelling and implementation (Graham, 1994, Booch, 1991,

Rumbaugh et al., 1991, Meyer, 1988), object-oriented analysis and requirements

specification is a relatively new addition to most object-oriented development

methodologies. Many object-oriented methods have been published, based on

an underlying paradigm of objects, classes and inheritance (Wegner, 1987), but

little has been published about how object-oriented methods and models are

used for requirements specification by practising professionals.

Requirements specification is usually the starting point for system

development. Before a system can be designed and built, it must be specified in

a way that facilitates its design and construction. The requirements

Chapter 1 Introduction

specification, the product of the requirements stage of systems development,

specifies " ...what needs to be designed rather than how it is to be designed"

(Macaulay, 1996).

One of the reasons for developing a requirements specification (Loucopoulos

and Karakostas, 1995) is that it may form "... part of the contractual

arrangements ...when an organisation wishes to procure a system from some

vendor rather than develop it 'in house'" and many consulting organisations

will not give a fixed quote (or "go into contract") for system development

unless the requirements specification is as complete and unambiguous as

possible. Although requirements may change during the development process,

if changes are small then some fine tuning can usually be undertaken without

compromising the specification on which the design and construction is based.

However, if changes are substantial then the cycle may need to start again

(Macaulay, 1996). Incomplete, inadequate, incorrect or unclear requirements

have been identified as a major factor in information systems failures

(Macaulay, 1996, Boehm, 1981, Lyytinen and Hirschheim, 1987, Jackson, 1997,

OASIG, 1996).

The overall objective of this thesis is to explore and describe the use of object-

oriented models and methods in requirements engineering practice.

The specific research objectives of this thesis are:

• to investigate and better understand the use of object-oriented methods and

models in professional requirements engineering practice

• to propose a conceptual process model for object-oriented requirements

engineering in practice based on the relevant literature

Chapter 1 Introduction

• to determine the empirical validity of the conceptual process model by

conducting case studies of object-oriented requirements engineering in

practice

• to document and describe the findings that emerge from the case studies in

terms of the implications for practice and for training.

This chapter presents the background in the domains relevant to this research

project and discusses the motivation for this research project. The research

approach adopted is briefly described, and the structure of the thesis is outlined.

A summary of the main contributions of the research is presented at the end of

the chapter. In this thesis the terms "requirements engineer" and "systems

analyst" will be used synonymously. The term "methodology" will be used in

the manner defined by Avison and Fitzgerald (1995) to mean a collection of

techniques and tools used in a particular definition of system development

activity rather than in the strict definition of "the science of method" (Concise

Oxford Dictionary, 1976).

1.2 Background and Motivation

•6,

Requirements engineering may be considered to be a subsidiary discipline of

software engineering (Sommerville and Sawyer, 1997). Software engineering

developed as a discipline to address the need for developing large complex

software systems in an organised and structured manner (Sommerville, 1996).

The goal of requirements engineering in this context is to produce a set of

system requirements which is as correct, complete and consistent as possible

(Sommerville and Sawyer, 1997). Requirements engineering (Loucopoulos and

Karakostas, 1995, Macaulay, 1996) deals with the early phase of software

development where requirements are determined and expressed as a

requirements specification. The requirements engineering process also

addresses the problems associated with errors in the specification of

Chapter 1 Introduction

'1 requirements which result in the costly maintenance or failure of software

systems (Boehm, 1976, Jackson, 1997, OASIG, 1996), and it is now an accepted

term within the information systems community for defining the process and

outcome of systems analysis in general (Sommerville and Sawyer, 1997).

Various definitions of and approaches to the requirements engineering process

are suggested in the literature. Kotonya and Sommerville (1998) suggest that

each organisation must develop its own process which is appropriate for the

type of systems it develops, its organisational culture., and the level of

experience and ability of the people involved in requirements engineering.

Macaulay (1996) similarly suggests nine different approaches which vary

depending on the interest of the groups from which they originate. Pohl (1993)

proposes three dimensions of requirements engineering: the specification

dimension, the representation dimension and the agreement dimension.

Loucopoulos and Karakostas (1995) suggest a specifically process-oriented

framework in which the requirements engineering process is broken down into

the three sub-processes of requirements engineering: elicitation, specification

and validation.

Object-oriented approaches to requirements engineering have generally been

embedded in object-oriented system development methodologies rather than

existing as stand alone methodologies in their own right. Object-oriented

models and methodologies (Booch, 1994, Coad and Yourdon, 1991, Henderson-

Sellers and Edwards, 1994, Meyer, 1988) are claimed to provide a more natural

way of specifying, designing and implementing information systems based on

features which include:

the ease of understanding object-oriented models due to a consistent

underlying representation throughout the development process

Chapter 1 Introduction

• the ability to model the behaviour of objects and encapsulate the static or

descriptive characteristics together with the dynamic or behavioural

characteristics in a single paradigm

• the ease of modification and extensibility of object-oriented models

• the ease of reuse of object components from previously designed systems

• the incorporation of high-level data abstraction facilities including

inheritance and polymorphism.

In this research project, empirical evidence for or against these perceptions is

sought which is grounded in the professional use of object-oriented methods

on a commercial scale and in a commercial setting.

A major focus of this project is the examination of the use of models in the

requirements engineering process. In an object-oriented specification several

models are usually produced. These models can be loosely categorised as either

static models or dynamic models. Static models describe objects, their

characteristics and the relationships between them. Some common models are

class and object diagrams (Booch, 1994), component notation and templates

(Coad and Yourdon, 1991), object models (Rumbaugh et al., 1991), class cards,

hierarchies and collaborations (Wirfs-Brock et al., 1990), object/class models

(Henderson-Sellers, 1997), and object and layer models (Graham, 1994).

s

k

Dynamic models define states of objects, state transitions, message passing and

event handling. Some common dynamic models are state transition and event

diagrams (Booch, 1994), state diagrams (Coad and Yourdon, 1991, Rumbaugh et

al., 1991), objectcharts (Henderson-Sellers, 1997), interaction diagrams (Jacobson

et al., 1992), rules (Graham, 1994), and object communication models (Shlaer

and Mellor, 1991). Sequencing is often modelled using use cases (Jacobson et al.,

1992), task scripts (Graham, 1994) or scenarios (Henderson-Sellers, 1997,

Rumbaugh et al., 1991) defining typical user interaction with the system.

Chapter 1 Introduction

Although there has been little research about, how practising professionals use

object-oriented methods and models for requirements determination, there is

some evidence that untrained users have difficulty in understanding the

standard data models and object/class models that many professional analysts

use during requirements and system modelling (Flynn and Warhurst, 1994,

Vessey and Conger, 1994, Weidenhaupt et al., 1998). Various approaches to

representing requirements in a manner that is understandable to untrained

users have been suggested, often based on use cases and scenarios. Jacobson

designed use case models (Jacobson et al., 1992, Jacobson, 1995) as an end user's

,| view of an application which assists in understanding an application's

-3 requirements. A use case is a description of a sequence of actions constituting a

complete transaction in an application. The use case is a key modelling

1

construct in many object-oriented system development approaches (Jacobson,
5

1
1995, Jacobson et al., 1999, Jacobson and Christerson, 1995). A use case can take

either a textual or diagrammatic form. Closely related to the use case is the

concept of using scenarios (Kotonya and Sommerville, 1998, Weidenhaupt et

al., 1998) and task scripts (Graham, 1994) to describe transactions and

requirements independently of design and implementation issues.

Weidenhaupt et al (1998) found different forms of scenarios such as narrative

text, structured text, diagrammatic notations, images, animations and

simulations were used in current practice.

There has been little research to date related to the use of object-oriented

models and methods in practice. Research in the use of object-oriented

specification or analysis models and methods has been mainly limited to

studying students in laboratory-type situations. These have usually been studies

of small groups where the participants use object-oriented methods for small

one-off exercises and problems (Guindon, 1990, Chaiyasut and Shanks, 1994,

Boehm-Davis and Ross, 1992, Lee and Pennington, 1994, Morris et al., 1996,

Sutcliffe and Maiden, 1992, Vessey and Conger, 1994). However, the behaviour

of students, even graduate students, cannot be considered to be indicative of the

Chapter 1 Introduction 7 \

if behaviour of experienced professionals. Also, the problems used in these

? experiments tend to be small and, therefore, unlike commercial or industrial
H $ projects. Further, some case study evidence in the literature (Carroll and

* Swatman, 1997) and some laboratory-based empirical evidence (Khushalani et

"'' al., 1994) indicates that professional specification (in other fields, such as civil

engineering and architecture (Schon, 1983), as well as in requirements
r« engineering) tends to be highly individualistic and often opportunistic. This

4 evidence suggests that specification activities are often based on professional

experience acquired over a number of years and a number of projects.

Some studies (Chaiyasut and Shanks, 1994, Guindon, 1990, Sutcliffe and

Maiden, 1992, Vitalari and Dickson, 1983) have looked at how analysts apply

general problem solving and reasoning skills to the process of requirements

engineering, while other studies (Boehm-Davis and Ross, 1992, Lee and

Pennington, 1994, Morris et al., 1996, Vessey and Conger, 1994) have addressed

specific aspects of using and learning object-oriented methods compared to

other methods.
s

[In order to understand what successful professional developers do, how they do

it, why they do what they do and when they do what they do, further
>

investigation is needed. This thesis presents a body of work which builds a

conceptual process model and associated theory of the object-oriented

requirements engineering process based on the literature. The model is then

refined using data collected from practising professionals. The research project

specifically builds on existing research which proposed a conceptual process

model (Loucopoulos and Karakostas, 1995) and a requirements engineering

framework (Pohl, 1993).

A
i

^

Chapter 1 Introduction

:i

1.3 Outline of the Research Design

The main aim of this research project is to investigate and better understand

the use of object-oriented methods and models in professional requirements

engineering practice. This aim is encompassed in the following broad research

question:

"How are object-oriented modelling methods used by practising professionals

in the process of requirements engineering?"

This broad research question can usefully be broken down into three

sub questions, based on the three processes of requirements engineering as

identified by Loucopoulos and Karakostas (1995) and outlined below:

Is elicitation influenced by the use of object-oriented modelling methods?

When, how and for whom is object-oriented modelling undertaken?

How is validation performed on object-oriented models?

A detailed discussion of the research design and the selection of a research

approach used to address these research questions is presented in Chapters 3

and 4. Figure 1.1 illustrates the structure of the research project and shows the

relationships between its components.

The first phase of the project is a conceptual study (Galliers, 1992, Shanks et al.,

1993). The outcome of the conceptual study is a conceptual process model of the

object-oriented requirements engineering process. The term "conceptual

process model" used in this thesis is a descriptive term for the model

developed from a conceptual study investigating the processes of object-

oriented requirements engineering. It draws on and represents similar concepts

as Macaulay's general process model (Macaulay, 1996) and Loucopoulos and

Karakostas' framework for requirements engineering processes (Loucopoulos

Chapter 1 Introduction

and Karakostas, 1995). This conceptual process model is developed specifically

to reflect the general requirements engineering process and the object-oriented

requirements engineering process in particular in terms of what the literature

indicates is or should be happening in practice. The conceptual process model

describes the process-oriented elements of the object-oriented requirements

engineering process and is complemented as a foundation of the research

design by the research questions proposed above which explore the opinions,

beliefs and behaviours of professional systems analysts. The conceptual process

model and the research questions are used in the research process to guide the

design of interview scripts and data analysis techniques in the cate study

fieldwork.

The second phase of this project is fieldwork based on a research approach

which uses multiple sequential-case studies (Cavaye, 1996, Eisenhardt, 1989,

Yin, 1994). This research component ut-es the conceptual process model and the

research questions, which are all grounded in the literature, to develop a set of

six sequential-case studies which are used to empirically validate rhe conceptual

process model and answer the proposed research questions. The sequential

nature of the case studies allowed for the active exploration of concepts and

characteristics of the requirements engineering process which emerged during

the course of a case study. Emerging characteristics were then explored further

in subsequent case studies, thus producing an accumulation of data over

several case studies and refinements to th2 conceptual process model.

Reflection on and re-examination of data collected between cases led to learning

and then to revised case documents and interview scripts. The process was

concluded when a representative model of the research domain being

investigated was believed to have been produced.

Chapter 1 Introduction 10

1.5 Contributions

This thesis describes the first significant study of the use of object-oriented

t] | models and methods in requirements engineering practice. The investigation is

?$ based on the refinement of an initial conceptual process model grounded in the

I literature using the findings of six in-depth sequential-case studies of practising

^ professional requirements engineers. The thesis makes contributions to the

% theory of object-oriented requirements engineering and requi rements

^ engineering in general.

s

* The specific research contributions of this research project are:

t

< • a conceptual process model of the use of object-oriented models and
u

^ methods which describes and organises key concepts and their relationships
51 in the object-oriented requirements engineering process. This model is
4
\, grounded in the literature and refined by subsequent case studies of current
- practice.
\
I • a theoretical model based on the findings which assists in explaining current
* Y

^ requirements engineering practice and the implications for practice and

'A training in requirements engineering
\

f{ • the formulation and demonstration of a research approach specifically

\ tailored to this research project but which provides a useful research

^ framework for similar theory building research, particularly in information

% systems.
{ • a platform for extensive further research programs which are either directly
^ related to this work or that flow from findings associated with this work.

3 1.4 Outline of Thesis

This thesis consists of eight chapters which are shown in Figure 1.1.

Chapter 1 Introduction 11

Conceptual
Study Literature Review &

Research Approach
Chapters 2&3

Chapter 4

Case Study

Initial Conceptual
Process Model

r

\

\

Chapter 5 Case Study
Descriptions

Chapter 6
Case Study
Analysis

Implications for Practice of
the Case Study Findings

Chapter 7

Conclusions and
Future Work Chapter 8

Figure 1.1 Structure of the Research Project

Chapter 2 provides an analytical review of the literature in two major areas:

requirements engineering with particular reference to the processes of

requirements engineering and the cognitive and social aspects of requirements

engineering; object-oriented approaches to requirements engineering,

Chapter 1 Introduction 12

including object-oriented models and object-oriented development

methodologies.

Chapter 3 presents the research approach for this project. It outlines the

objectives of this research, the formal research questions and the unit of

analysis used in the research project. The choice of research approach is

discussed in the light of commonly accepted philosophies, paradigms and

methods used in information systems research.

Chapter 4 describes the development of the initial conceptual process model.

Chapter 5 is a detailed description of the case studies undertaken in this project.

Chapter 6 presents the findings in terms of the empirical validation of the

conceptual process model, the evolution of the conceptual process model

through several versions to a final conceptual process model, and the cognitive

and social aspects of object-oriented requirements addressed in the research

questions.

Chapter 7 discusses the implications of the findings and the conceptual process

model for practice and training.

Finally, Chapter 8 provides a summary discussion of the meaning of the

findings in relation to the research objectives and research questions together

with a discussion of proposed future research projects that follow from this

project.

Chapter 2 OORE: Concepts and Approaches 13

Chapter 2

Object-Oriented Requirements Engineering:

Concepts and Approaches

2.1 Overview

The research focus of this project is the use of models and methods in object-

oriented requirements engineering. This domain includes concepts from both

the domain of requirements engineering in general and the domain of object-

oriented systems development. This chapter provides a review of the literature

within both these domains.

In addressing the object-oriented requirements engineering process this project

takes a broad view which includes the technical or process model issues and the

cognitive and social or human factor issues. In the following sections firstly,

research concerning the nature of the requirements engineering process is

outlined in section 2.2. Several definitions and frameworks of the requirements

engineering process from the requirements engineering research literature are

presented. This section presents the literature addressing the technical or

• I

Chapter 2 OORE: Concepts and Approaches 14

process model issues. Secondly, the cognitive aspects of requirements

engineering within the context of general theories about problem-solving,

reasoning and modelling are described and discussed in section 2.3. Thirdly,

research studies of the requirements engineering process which address

technical, cognitive and social aspects of requirements engineering are

discussed. Finally, various approaches to object-oriented systems development

are discussed in sections 2.5 and 2.6 with particular reference to the

requirements engineering process.

The important issues which relate directly to this research project are:

• the features and characteristics of the requirements engineering process in

general

• the cognitive and social factors which influence the conduct of requirements

engineering

• the way the requirements engineering process is carried out in object-

oriented system development and,

• the way object-oriented models are used in the object-oriented requirements

specification process.

In addressing these issues, this research project proposes to define a specifically

object-oriented view of the requirements engineering process in the form of a

conceptual process model. The empirical validity of the model will be

examined by conducting case studies of practising professional requirements

engineers (or systems analysts) who are working with object-oriented system

development methods and models.

2.2 The Requirements Engineering Process

Requirements engineering refers to the process or processes that occur early in

information systems development in which the requirements for an

Chapter 2 OORE: Concepts and Approaches 15

information system are determined and expressed as a requirements

specification (Loucopoulos and Karakostas, 1995, Macaulay, 1996).

Requirements engineering specifically addresses the problems associated with

requirements specifications which may be ambiguous, incomplete or incorrect.

Inadequacies in requirements specifications can result in errors and

subsequently the costly maintenance or failure of software systems (Boehm,

1981, Lyytinen and Hirschheim, 1987, Jackson, 1997, OASIG, 1996).

A requirements specification document is, at least in the functional sense, an

outcome of requirements engineering from which an information system is

designed and implemented (Macaulay, 1996). A definition of a requirement

from IEEE-Std.610 (IEEE-Std., 1990) is given as follows:

• A condition or capacity needed by a user to solve a problem or achieve an

objective.

• A condition or capability that must be met or possessed by a system or

system component to satisfy a contract, standard, specification, or other

formally imposed documents.

• A documented representation of a condition or capability as in 1 or 2.

There are several views of requirements engineering presented in the literature

that are relevant to this project. Two definitions are given by Loucopoulos and

Karakostas (1995)

"Requirements engineering deals with activities which attempt to

understand the exact needs of the users of a software intensive system

and to translate such needs into precise and unambiguous statements

which will subsequently be used in the development of the system."

[page vii] (Loucopoulos and Karakostas, 1995)

Chapter 2 OORE: Concepts and Approaches 16

4

"... the systematic process of developing requirements through an

iterative co-operative process of analysing the problem, documenting

the resulting observations in a variety of representation formats, and

checking the accuracy of the understanding gained."

[page 13] (Loucopoulos and Karakostas, 1995)

The first definition emphasises the need for a precise, unambiguous

specification from which to develop a system. The second definition

emphasises the social process involved in eliciting, modelling and validating

requirements.

Kotonya and Sommerville (1998) suggest that

"...there is no single [requirements engineering] process which is right

for all organisations. Each organisation must develop its own process

which is appropriate for the type of systems it develops, its

organisational culture, and the level of experience and ability of the

people involved in requirements engineering," p9.

Macaulay (1996) similarly suggests nine different approaches which "...vary

depending on the interest of the groups from which they originate" p9.

Although there is no commonly accepted definition of requirements

engineering (Loucopoulos and Karakostas, 1995, Macaulay, 1996) the definition

used in this thesis is (Dawson and Swatman, 1999):

"Requirements engineering is an iterative and collaborative process

of elicitation, modelling, and validation of information system

requirements which provides a specification which is the basis for the

design and implementation of that information system." p355

Chapter 2 OORE: Concepts and Approaches 17

I
This definition places the requirements engineering process early in the system

development cycle, although in many projects it may not necessarily be the

very first phase. It may be that the requirements engineering process is triggered

by preliminary investigations (Avison and Fitzgerald, 1995) or questionings of

users and clients of the way activities are undertaken within their organisation

(Checkland and Scholes, 1990). This definition also contains explicit reference to

the collaboration needed between clients and analysts (Urquhart, 1998) and the

need for feedback via iteration in the process of specifying requirements.

2.2.1 Defining and Modelling Requirements

Various formal, semi-formal and informal techniques are used for representing

requirements (Pohl, 1994, Jarke et al., 1993) where the choice of representation

technique depends on personal preference of the analyst and the current state of

the specification (Pohl, 1994, Bubenko and Wangler, 1991). Informal

representations (such as graphics, natural language and animations) are

expressive and user-oriented (Flynn and Warhurst, 1994, Pohl, 1994,

Weidenhaupt et al., 1998) whereas formal representations are semantically well

defined and system-oriented (Pohl, 1994, Jarke et al., 1993, Swatman and

Swatman, 1992, Greenspan et al., 1994). Semi-formal representations such as

entity-relationship diagrams and data flow diagrams provide graphical

visualisation but lack formal semantics (Pohl, 1994).

There are many methods used by successful systems analysts to produce robust

requirements specifications: data-oriented methods (Chen, 1976, Martin and

Odell, 1992); process-oriented methods (DeMarco, 1978, Gane and Sarson, 1978);

object-oriented techniques and methods (Booch, 1994, Henderson-Sellers, 1997,

Rumbaugh et al., 1991); or a combination of several methods. Most system

development methods provide techniques for modelling requirements and for

system decomposition as part of the structuring of system development

activities. Data-oriented methods focus on modelling data requirements first

Chapter 2 OORE: Concepts and Approaches 18

u

i ft

and then modelling processes as acting on the data in the models. The

development of applications using this approach is data driven and is often

based on entity-relationship (ER) modelling (Chen, 1976). Process-oriented

methods focus on modelling process requirements ar-d then building a data

model to represent the data that the processes act upon. The development of

applications is process-driven and is often based on Data Flow Diagrams (DFDs)

(DeMarco, 1978, Gane and Sarson, 1978). Object-oriented methods model

systems as sets of client and server objects in a problem domain and are based

on various object-oriented modelling techniques and methods (Booch, 1994,

Henderson-Sellers, 1997, Rumbaugh et al., 1991, Jacobson et al., 1992) which are

described in section 2.5 below.

2.2.2 Existing Requirements Engineering Process Models and Frameworks

The material presented in this section regarding existing requirements

engineering process models and frameworks is extended and dealt with in

greater detail in Chapter 4 as the basis of the development of a conceptual

process model of object-oriented requirements engineering.

Traditional systems development approaches or frameworks incorporate

requirements specification as a separate phase within larger systems

development methodologies. In these approaches, such as Structured Systems

Analysis and Structured Systems Analysis and Design Method (SSADM) (Gane

and Sarson, 1978, Downs et al., 1988), the process of requirements engineering

produces a specification or requirements document which is the basis of design

and implementation (Avison and Fitzgerald, 1995). Requirements are

represented using standard models such as data flow diagrams, entity-

relationship models and structured English.

Chapter 2 GORE: Concepts and Approaches 19

IT

fi

«•?

4

I"1

k>

Pohl (1993) proposes a framework suggesting three dimensions of the

requirements engineering process. These three dimensions can be outlined as

follows:

Specification Dimension involves the develops <v ••:..' the specification from

the "opaque" to the specific.

Representation Dimension which deals with the methods for representing the

specification and include informal, semi-formal and formal languages.

Agreement Dimension describes the "common specification" or agreed

specification which is based on the different viewpoints of the parties involved

in developing the specification.

This view of requirements engineering is in harmony with the idea of

information systems development being more than a purely technical

undertaking. It incorporates the co~ opt of an information system described by

(Loucopoulos and Karakostas, 1995) as a "socio-technical system", that is, a

'system "... that involve[s] computer-based components interacting with people

and other technical system components in an organisational setting."

h
•re;
/ii

1:1
k

%
%
&

M

Darke and Shanks (Darke and Shanks, 1996) propose a viewpoint framework

based on four main elements. The viewpoint agent is a particular role or view

of the problem domain adopted by one or more stakeholders. The viewpoint

development role identifies the intended use of viewpoint development. The

viewpoint representation is an informal, semi-formal or formal representation

of a viewpoint associated with a particular agent and the viewpoint

development process defines essential activities carried out in viewpoint

development including representation. Viewpoint approaches to requirements

engineering emphasise the collaborative nature of requirements definition and

viewpoint development is the process of identifying and representing

requirements from multiple stakeholder perspectives (Finkelstein et al., 1992,

Darke and Shanks, 1996, Nuseibeh et al., 1994).

Chapter 2 OORE: Concepts and Approaches 20

When considering the various existing frameworks of requirements

engineering as the basis of the conceptual process model for this research

project, the framework proposed by Loucopoulos and Karakostas (1995) is the

most compatible with the definition of requirements engineering used in this

thesis which was given above in section 2.2. This framework is shown in

Figure 2.1. In this framework the requirements engineering process is broken

down into three processes, elicitation, specification and validation, which deal

with two external entities, the user and the problem domain. The purpose of

elicitation is to obtain as much knowledge as possible about the problem in

order to build a specification for the solution to the problem. Input comes from

the user and existing information about the problem domain. Like the other

two processes, elicitation does not end when the next process starts. Rather,

each process relies on feedback from the other processes throughout the

requirements lifecycle. The specification process provides models for validation

by the user and against the original problem domain.

User
Requirements

User Feedback

Requirements
Specifications

Knowledge

Specification
Request more
knowledge

Domain
Knowledge

Problem
Domain

Models to
be validated
by user

Requirements
models

Validation
Results

Domain
Knowledge

Figure 2.1: A framework for requirements engineering processes: Loucopoulos and Karakostas

(1995) page 21

rt

Chapter 2 OORE: Concepts and Approaches 21

Loukopoulos and Karakostas (1995) suggest that the main outcomes from the

elicitation process are the conceptual models which are domain-dependent

models. The models become more software-oriented than problem domain-

! oriented as the requirements engineering process progresses.

] 2.3 Cognitive Processes in Requirements Engineering

' Having examined the technical or process aspects of requirements engineering

t there is a need to describe the cognitive processes in the requirements

engineering process. Based on Pohl's (1993) three dimensions of requirements

I engineering (described in section 2.2.2 above): specification, representation and

| agreement, it is proposed that the technical skills used to develop software

\ systems that have traditionally been the focus of software engineering are not
3 sufficient for understanding of the processes of elicitalion, specification and

validation of requirements. Underlying the social/organisational and cognitive

aspects of the requirements engineering process are skills and concepts from

\ other disciplines such as sociology, organisational science, and cognitive science

I (Urquhart, 1998, Hirschheim, 1985, Hirschheim and Klein, 1989, Checkland,

!? 1981).

!£ Successful r equ i r emen t s specification can be considered to be an art or a ski l l

honed from a great deal of experience (Loucopoulos and Karakostas , 1995,

Macaulay, 1996, Sommervi l le a n d Sawyer , 1997). In order to u n d e r s t a n d the ar t

of r equ i remen t s specification we need to unde r s t and h o w successful analysts

T(operate within a requirements engineering environment.

2.3.1 Thinking and Problem Solving

Problem modelling for simulation or systems design is an important aspect of

many design activities including architecture, engineering, modelling chemical

processes, and economic modelling to name but a few (Schon, 1983, Khushalani

Chapter 2 OORE: Concepts and Approaches 22

et al., 1994, Johnston, 1999, Galal, 1998). All of these design processes draw on

the discipline of cognitive science or the study of human thinking and

problem-solving. The cognitive design processes used in information

technology-related disciplines, such as knowledge engineering, software

engineering, database development and conceptual modelling for information

systems, and the similarity and overlap of the cognitive processes involved in

the design methods used in these disciplines, are of interest in understanding

the modelling methods used for specifying requirements for information

systems.

This section presents a background to problem modelling for information

systems development. The aim is to investigate and gain a better

understanding of problem modelling and problem solving in the context of

information systems development by drawing on classical cognitive science

definitions of problem solving and thinking. In sections 2.3.1, 2.3.2, 2.3.3 the

way that general definitions of thinking, reasoning and modelling can be

applied to information systems are highlighted and summarised in section

2.3.4.

Problem modelling in systems analysis is not necessarily aimed at modelling

"problems" in the general sense (although the term problem is an often-used

general term as it is in cognitive science) but is usually aimed at achieving

some task. That is, if there is a perception of a task to be accomplished or a

problem to be solved, a systems designer must first describe or model the

problem or task in a way that facilitates progress towards accomplishing that

task or solving that problem.

Problem solving can be defined as having three phases (Mayer, 1992, Polya,

1957):

m

Chapter 2 OORE: Concepts and Approaches 23

:t i

1

1

-' Understanding the problem in terms of what is known (givens) and what

needs to be achieved (goal), i.e. describing what the task is.

• Planning a solution (using past experience where appropriate), i.e. reuse

previous knowledge to describe how to achieve the task.

• Testing the result, i.e. validating and verifying the solution.

The investigation of thinking, problem solving and cognition has long been a

major concern of cognitive psychologists, and now cognitive scientists are

seeking to apply cognitive theory to information technology disciplines.

General definitions of thinking and problems are a useful starting point for

discussing problem modelling for information systems development.

Mayer (1992) defines human cognitive processes in terms of problems and

thinking. He defines a -problem as having the characteristics of givens and

goals: and that " ... any definition of "problem" should consist of the three ideas

that (1) the problem is presently in some [given] state, but (2) it is desired that it

be in another [goal] state, and (3) there is no direct, obvious ivay to accomplish

the change."

Reitman (1965) categorises problems according to given and goal states as:

• Well-defined given state and well-defined goal state

• Well-defined given stale and poorly defined goal state

• Poorly defined given state and well-defined goai state

• Fooriy defined given state and poorly defined goal state

Greeno and Simons (1988) suggest a four-part topology of problems:

• Problems of transformation

» Problems of arrangement

I
Chapter 2 OORE: Concepts and Approaches 24

i
• Problems of inducing structure
• Evaluation of deductive arguments

and that most problems include several of these aspects.

Mayer (1992) considers the terms thinking, problem solving and cognition to be

equivalent, and although there is a serious lack of agreement among

psychologists . iout the definition of thinking, Mayer suggests a compromise

general definition that most psychologists might accept:

1. Thinking is cognitive, but is inferred from behaviour. It occurs internally,

in the mind or cognitive system, and mus: be inferred indirectly.

2. Thinking is a process that involves -ome manipulation of a set of

operations on knowledge in the cognitive system.

3. Thinking is directed and results in behaviour that "solves" a problem or is

directed towa/ds a solution.

In other words, thinking is what happens when a person solves a problem, that

is, produces behaviour that moves the individual from the given state to the

goal state.

2.3.2 Theories of Reasoning

Wilhelm Wundt (often called "the father of psychology") opened the first

psychology laboratory in Leipzig in 1879. Wundt divided psychology into two

parts: psychical processes such as physiological reflexes, perception etc. which

could be observed; and higher psychical processes such as art, literature etc

which could not be studied in a laboratory but could only be studied by looking

at society as a whole.

The first experimental studies on human thought by Otto Selz in the early

1900s (Humphrey, 1963) used a method called introspection. A subject is given

Chapter 2 OORE: Concepts and Approaches 25

a word and a question about the word, and asked to say the first word that

enters his/her mind and describe the process which led to the answer. This is

also known as a "thinking aloud protocol" and has been developed into

pj'otocol analysis (Ericsson and Simon, 1980) as a technique used in laboratory-

based empirical research including in information systems research (Chaiyasut

and Shanks, 1994, Guindon, 1990, Sutcliffe and Maiden, 1992).

Otto Selz used introspection to develop a theory independent of images and

associations. His theory suggested that rather than a chain of associations,

problem-solving involved completing a structural complex called a unit of

thought. Selz's ideas foreshadowed modern cognitive psychology and included:

• the unit of thought is the directed association (as opposed to the undirected

association)

• understanding a problem involves forming a structure

• solving a problem involves testing for conditions.

Further development of the discipline of psychology included behaviourism,

gestalt and modern cognitive psychology. Modern cognitive psychology

emerged in the so-called "cognitive revolution" (Gardner, 1985).

Associationism is based on the concept of learning by reinforcement.

Associationist theory views problem-solving in terms of a problem situation

(S) with associations to many possible responses {Rv R2, ...Rn) which vary in

strength. Experiments using anagram solving and scenarios where animals

escape from puzzle boxes by performing certain actions led to the idea of

response learning based on trial and error. Thorndike (1898) formulated two

laws of learning:

• the law of exercise where practice tends to strengthen an S-R link.

m
Chapter 2 OORE: Concepts and Approaches 26

i

• the law of effect where unsuccessful responses tend to weaken an S-R link.

Mayer (1992) summarises this as ".. . associationists describe problem-solving as

the trial and error application of a thinker's existing habit family hierarchy. In a

new situation ... subjects try their most dominant response first, then their

second strongest and so on." Within associationist theory, mediational theory

suggests a "train of thought" where a response (R) to a stimulus (S) is reached

via a chain of covert (trial and error in the mind) s-r pairs:

S-r,-Sj-r2-s2-...,rn-sn-R

The theory of transfer (Thorndike, 1898) is still being investigated (Mayer, 1992).

Transfer describes the effects of prior learning on new learning in terms of

positive transfer - learning task A helps to learn task B and negative transfer -

learning task A inhibits the learning of task B. Thorndike (1898) was interested

in specific transfer - A and B identical, versus general transfer - A is a general

cognitive skill helpful in learning B. For example, 'Does learning Latin help in

learning French or does learning Latin provide good learning habits for

thinking in general?'. The concept of transfer may be relevant to the idea of

professional systems analysts being able to relate the learning of one technique,

tool or modelling notation to another.

Gestalt theory views problem-solving as looking at a problem in a new way or

restructuring or reorganising a problem using insight resulting in a structural

understanding of how all the parts of the problem fit together to satisfy the goal.

Gestalt theory suggests that there are two types of thinking: productive thinking

which produces a new organisation using insight; and reproductive thinking

which reproduces old behaviours by trial and error.

Poly a (1957) suggested four steps in (mathematical) problem-solving:

Understand the problem - information gathering and questioning

Chapter 2 OORE: Concepts and Approaches 27

• Devise a Plan - find a method of solution based on past experience [either

backwards from goals previously achieved or forwards by restating the

givens]

• Carry out the Plan - plan and check each step of the solution

& • Look back - check the result.

There have r«.l so been experiments (Duncker, 1945, Luchins, 1942, Bartlett, 1958)

which identify "functional fixedness" where past experience inhibits successful

problem-solving.

Inductive reasoning or hypothesis testing is based on concept learning. This is

related to the idea of classification where one tries to determine whether a new

instance belongs to a specific concept-class. For example, 'Is a four-legged furry

animal a cat or a dog?'. Inductive learning is based on inducing rules or

hypotheses and testing them. If the rule can predict class membership for any

instance then the hypothesis is retained otherwise a new hypothesis is

generated. Inductive reasoning treats thinking as hypothesis testing. This type

of reasoning in terms of identifying members of classes is typically used in

entity-relationship and object-class modelling for system specification.

Bruner et al (1956) suggest three types of classification rules:

1. Single-value concepts - based on a single attribute

2. Conjunctive concepts - based on two concurrent attributes

3. Disjunctive concepts - based on an instance having a specific attribute in one

case or a different attribute in another case.

An alternative to hypothesis testing models involves averaging all instances of

a category into a prototypical instance or abstraction of prototype.

Chapter 2 OORE: Concepts and Approaches 28

Klahr and Dunbar (1988) set up experiments to discover how subjects learnt to

operate a robot tank. Subjects were taught how to use a set of ten keypad

instructions and then asked to work out how the RPT key worked. They could

enter and run as many programs as they wanted until they worked out what

the RPT key did. Subjects were also asked to think aloud by stating their current

hypothesis and saying what they were thinking as they tried different keys and

the robot responded. Analysis showed that subjects made two kinds of

selections: select a hypothesis; and select an experiment to test the hypothesis.

Subjects often failed to seek negative evidence. Rather they used positive test

h strategies (Klahr and Dunbar, 1988). That is, vThis is what should happen'. In

60% of experiments, hypotheses were falsified by subsequent testing but

approximately half the subjects retained their hypothesis and retested it.

Successful strategies included testing alternative hypotheses of different types

and designing experiments to explain unexpected results. Unsuccessful or

slower strategies involved focussing on a single hypothesis of one type and

searching for confirmation of a hypothesis. Klahr and Dunbar (1988) argue that

positive test strategies can lead to effective reasoning in cases where the

probability of obtaining confirmation is low and therefore humans can be

S successful scientific reasoners.

Deductive reasoning or drawing logical conclusions is based on syllogisms. A

syllogism consists of two premises and a conclusion. There are three types of

syllogisms (Mayer, 1992):

1. Categorical syllogisms - all A are B; all B are C; therefore, all A are C.

2. Linear syllogisms - A is greater than B; B is greater than C; therefore, A is

greater than C.

3. Conditional syllogisms - if p then q; p is true; therefore q is true.

F| That is, given some premises that are accepted as true, a person should be able

to draw a logical conclusion. Categorical reasoning is based on relationships

Chapter 2 OORE: Concepts and Approaches 29

between categories, or sets of things and is often represented using Venn

diagrams. For example,

All A are B is the universal affirmative (UA)

No A are B is the universal negative (UN)

Some A are B is the particular affirmative (PA)

Some A are not B is the particular negative (PN)

Most propositions are ambiguous. Although "All A are B" does not necessarily

imply "All B are A" it does not rule it out. Also "some" means "at least one and

:| possibly all". Some of these concepts relate to cardinality in entity-relationship

modelling and multiplicity in object modelling, that is, specifying how many

instances of one class or entity-set may relate to an instance of an associated

class or entity-set.

Human errors in syllogistic reasoning have two basic theoretical explanations:

1. Encoding theories - incomplete or incorrect interpretation of premises

and/or conclusions.

2. Processing theories - incomplete or nonlogical processing of premises.

Linear reasoning is based on the three term series task (Mayer, 1992). For

example,

Bill is shorter than Alien.

Bill is taller than Charles.

Therefore, Allen is the tallest of the three.

Two issues are of interest in linear reasoning. Firstly, do subjects use a visual

strategy or a \ erbal strategy? Secondly, do subjects integrate the two premises

into a singlt representation or do they encode individual facts? A visual

Chapter 2 OORE: Concepts and Approaches 30

strategy might relate to the use of graphical models in an analysis or design

modelling process.

Conditional reasoning is based on two premises and a conclusion of the form:

I "if p then q". That is

I Premise 1: If p then q, where p is an antecedent condition and q is a consequent

H condition leads to

I Premise 2: Affirmation of antecedent - p is true OR

I Denial of antecedent - p is false OR

| Affirmation of consequence - q is true OR

| Denial of consequence - q is false.

I
I For example,
¥,
I

I If there is a solar eclipse, then the streets will be dark.

| There is a solar eclipse.

Therefore the streets are dark.

Studies (Staudenmayer, 1975, Staudenmayer and Bourne, 1978, Taplin and

Staudenmayer, 1973) have shown that human errors in conditional reasoning

are due to subjects misrepresenting the first premise rather than errors in logic.

Most often subjects interpret "if p then q" to include "if q then p". This is called

a biconditional relation. It is also known as abduction or abductive inference in

knowledge-based systems (KBS). Menzies and Compton (1995) give a definition

as follows:

"Consider a system with two facts a, b and a rule K{. if a -> b.

Deduction is the inference from a to b. Induction is the process of

learning Rj given examples of a and b occurring together. Abduction

Chapter 2 OORE: Concepts and Approaches 31

is inferring a, given b. Abduction is not a certain inference and its

results must be checked by an inference assessment operator."

I
I

It

•3

I?

Abduction is used in expert systems development as a heuristic which may

help reduce the search space by generating reasonable hypotheses which can

then be used with deduction. Abduction is sometimes referred to as

"...reasoning from observed facts to the best possible explanation" (Reggia,

1985). Jackson (Jackson, 1990) calls abduction "... reasoning from observed effects

to possible causes." Giarratano and Riley (1989) describe abduction as "... a

fallacious argument ... [which] ... is not a valid deductive argument" and cannot

provide true conclusions. For example (Giarratano and Riley, 1989),

11

!/5

If x is an elephant THEN x is an animal.

If x is an animal THEN x is a mammal.

Can we conclude that Clyde is an elephant if we know that Clyde is a mammal?

In the real world we cannot but in a closed world with only the two rules above

we can. So, adding another rule, "If x is a dog THEN x is an animal" means that

Clyde is either an elephant or a dog in our closed world.

Analogical Reasoning is based on analogues, models and examples and "...

pervades all our thinking." (Polya, 1957). Mayer (1992) defines analogical

reasoning as abstracting a solution strategy from one problem and relating that

information to a new problem where the original domain is called the base

domain and the domain to be explained is called the target domain. A critical

skill in the cognitive processes required in conceptual modelling and

conceptual reuse based on experience is the ability to apply the principle of

abstraction. Abstraction is a key aspect of analogical reasoning.

Two analogical problems may have a surface similarity where the two

problems share, common characteristics which may not be related to the

I

Chapter 2 OORE: Concepts and Approaches 32

solution and/or a structural similarity where the relations of objects in one

problem correspond to the relations of objects in the other problem. If solving

one problem helps to solve another problem we can say there has been an

analogical transfer of problem solving strategy. Mayer (1992) goes on to show

that it is how the analogies are presented which influences the positive or

negative outcome of analogical transfer.

Mayer describes three conditions for successful analogical transfer:

1. Recognition - in which a problem solver identifies a potential analog (or

base) from which to reason,

2. Abstraction - in which a problem solver abstracts a general structure or

principle or procedure from the base, and

P; 3. Mapping - in which a problem solver applies that knowledge to the target.
**$
fk
• 1

| Mayer divides analogical reasoning into thinking using analogues, thinking

| using models and thinking using examples. An analog has structural similarity

I but not surface similarity with a target problem.

| | Subjects' recognition of structural similarity seemed to depend on hints.

I Subjects were given three stories, two unrelated to the problem and the other

structurally similar. If subjects were told "one of the stories you read before will

give you a hint for a solution to the problem" there was a 92 percent success

rate against a 20 percent success rate without the hint. Knowing a solution plan

for an analogous problem is not very useful unless you realise that the problem

is analogous to the one you are working on. Studies in this area (Gentner, 1989,

Gentner, 1983, Gick and Holyoak, 1980, Holyoak and Koh, 1987) show that

experience and structural similarity of problems are critical in analogical

transfer.

Encouraging subjects to abstract solutions from analogues has been the subject

of several studies. Gick and Holyoak (1980) propose a schema induction theory

feS

Chapter 2 OORE: Concepts and Approaches 33

which suggests that it is easier to induce a general schema from experiences

with structurally similar problems in different domains than from a single

problem.

| | Mapping knowledge from a base analogy to a target analogy depends on the

g overall analogy transfer, that is, recognition of an analogous problem, then the
Sit

abstraction of useful information that can be used to solve another problem.

Holyoak and Koh (1987) propose that the more surface features between two

analogues the more likely that subjects will actually map the knowledge from

one problem to the other. Recognition of structural similarity or some form of

analogical transfer may be a factor for experienced analysts when approaching

new problems or systems development projects.

2.3.3 Cognitive Modelling

One of the major focus areas of this research project is the use of models,

particularly object-oriented models, in the requirements engineering process.

f| Mayer describes a model of a system as a system "[which] includes the essential

| | parts of the system as well as the cause-and-effect relations between a change in

I status of one part and a change in status of another part". He uses Gentner's

(Gentner, 1983, Gentner, 1989) structure-mapping theory where knowledge

about one system (the base) is used to reason about another system (the target).

Gentner's system consists of objects with attributes and relations between

objects (similar to object-oriented modelling methods). Studies based on using a

water-flow model and a moving-crowd model to understand and reason about

an electrical system showed that subjects could reason about electrical circuits

based on knowledge of a water-flow model or a moving-crowd model. Mayer

and Gallini (1990) also showed in a series of experiments concerning reasoning

about models for explaining how radar and pumping systems work, that adding

pictorial models to textual descriptions improved problem solving

performance by an average of over 60 percent. Among novice subjects the

Chapter 2 OORE: Concepts and Approaches 34

model-illustration group produced almost twice as many useful answers to the

questions than the incomplete-illustration or no-illustration groups. This is

j one aspect of modelling investigated in this research project.

7?
The term mental models are defined in cognitive psychology (Johnson-Laird,

[i 1983, Craik, 1943, Norman, 1983) as either analogical representations or a

»1 combination of analogical and propositional representations. Preece (1994)

I suggests that "A mental model represents the relative position of n set of objects

i in an analogical manner that parallels the structure of the state of objects in the

zvorld." In the field of human computer interaction (HCI) a mental model has

13 been defined as " ... the model people have of themselves, others, the

| environment, and the things with which they interact. People form mental

\ models through experience, training and instruction." (Norman, 1988, p 17).

I Mental models are used extensively in HCI to explain dynamic aspects of

^ cognitive activity and it is suggested that people build mental models of the

f\ world in order to make predictions about an external event before carrying out
M an action (Preece, 1994). Mental models, as specific examples of analogical

I models, may be used by analysts when developing requirements or design

I models.

i

2.3.4 Summary of cognitive processes in requirements engineering

I The aim of this section was to gain a better understanding of problem

modelling and problem solving in the context of information systems

^ development by drawing on classical cognitive science definitions of problem

4 solving and thinking. The examination of the literature highlighted the

J| following aspects of modelling and problem solving for information systems

^ development:

introspection and association are methods used in protocol analysis

(Ericsson and Simon, 1980), a technique used in laboratory-based empirical

•m

Chapter 2 OORE: Concepts and Approaches 35

information systems research (Chaiyasut and Shanks, 1994, Guindon, 1990,

Sutcliffe and Maiden, 1992)

• the theory of transfer (Thorndike, 1898) may be relevant to the idea of

professional systems analysts being able to relate the learning of one

technique, tool or modelling notation to another.

• inductive reasoning or concept learning where members of specific concept-

classes are identified is similar to techniques used in entity-relationship and

§| object-class modelling for system specification.

| • deductive reasoning involving concepts of cardinality or multiplicity, that

1 is, specifying how many instances of one class or entity-set may relate to an

| | instance of an associated class or entity-set is evident in entity-relationship

pf modelling and object modelling

|§ • visual strategies used in linear reasoning may be the basis of graphical

|f models in an analysis or design modelling process.

• explicit conditional reasoning based on two premises and a conclusion and

the variation of conditional reasoning known as abduction used in expert

systems development may assist system modellers in generating reasonable

if hypotheses which can then be used to reason about the logic of the models

if that they build.

|§ • a critical skill in the cognitive processes required in conceptual modelling

If and conceptual reuse based on experience is the ability to apply the principle

If of abstraction.
| l

| • recognition of structural similarity or some form of analogical transfer may

I be a factor for experienced analysts when approaching new problems or

systems development projects.

• the definition of general conceptual models as consisting of objects with

attributes and relations between objects maps directly to object-oriented

modelling approaches.

fej

Chapter 2 OORE: Concepts and Approaches 36

• mental modelling may be used by analysts when developing requirements

or design models to test models privately before developing more concrete

paper-based models.

2.4 Studies of the Requirements Engineering Process

Having examined and described problem solving and modelling for

information systems within the context of traditional cognitive science

definitions of problem solving and reasoning this section presents research in

information systems specification and modelling based on cognitive and social

factors.

Several studies (Chaiyasut and Shanks, 1994, Guindon, 1990, Loucopoulos and

Karakostas, 1995, Sutcliffe and Maiden, 1992, Vitalari and Dickson, 1983) have

looked at how analysts apply general problem solving and reasoning skills to

the process of requirements engineering. Some factors affecting requirements

specification as a problem solving activity are as follows (Loucopoulos and

Karakostas, 1995):

• Analysis problems are ill-defined and constantly changing as the

organisational context changes and more information about user

requirements is gathered

• Requirements exist in organisational contexts and may be conflicting from

I differing viewpoints

• The process of analysis is a cognitive activity, requiring understanding of an

abstract problem, and development of a logical and internally consistent set

of specifications.

Some characteristics of successful analysts include (Loucopoulos and

Karakostas, 1995):

i
i

I

!$s

Chapter 2 OORE: Concepts and Approaches 37

• have acquired interdisciplinary knowledge and skill.

• are flexible and ready to incorporate changes in the technology and to

participate with users in different ways.

• have highly developed interpersonal and organisational skills which

facilitate the problem solving process.

• use information from the problem domain to classify problems and relate

them to previous experience.

• often start solving a problem by forming a mental model which is

progressively refined as further information is obtained.

f
I refuted and retained and retested otherwise.

f| • develop hypotheses about possible solutions which are discarded if they are

I • almost always summarise at intervals during client/developer interviews

| in order to verify their findings.

Several studies have been undertaken which investigate the cognitive

processes used by novices and experts in systems analysis and design (Sutcliffe

| and Maiden, 1992, Guindon, 1990, Chaiyasut and Shanks, 1994, Morris et al.,

| 1996). The method used most often in these studies is protocol analysis

(Ericsson and Simon, 1980) which is based on rerbal reporting of activities or

thinking aloud protocols. Subjects are asked to describe their thought processes

while undertaking some analysis or design task and these verbal reports are

recorded on audio or videotape for later analysis.

Sutcliffe and Maiden (1992) used protocol analysis to investigate the cognitive

problem-solving behaviour of novice systems analysts performing a

requirements analysis task. The main aim of the study was to model the

behaviour of novice analysts in order to form the basis for a diagnostic module

of an intelligent tutor for a CASE tool. In this instance a CASE tool is viewed as

both a problem solving tool and a learning tool where the diagnostic module

Chapter 2 OORE: Concepts and Approaches 38

I"

c

I

ft
h

attempts to determine a user's knowledge state (given state) and a didactic

module aims to lead the user to a required knowledge state (goal state).

The study used 13 MSc students in a Business Systems Analysis course who

were asked to develop a specification for a delivery scheduling system using

Structured Systems Analysis (SSA) (Downs et al., 1988) methods and data flow

diagrams (DFDs) (DeMarco, 1978). Subjects were given a 400-word description

of a manual scheduling system.

"Subjects were requested to think aloud and their verba] protocols

[concurrent protocols] were recorded on audio tape ...[After some

practice at thinking aloud] ...each subject was requested to develop a

specification of a computerized system using the SSA and data flow

diagramming techniques taught on the MSc course ...Subjects were

given 35 minutes to develop a specification ...Upon completion of

the task a 10 minute retrospective protocol elicited further details of

reasoning strategy and behaviour ...A marking scheme was created

from solutions developed by three experienced analysts who had

considerable knowledge of the delivery scheduling problem and SSA

techniques. ...Subjects received a score if a component was included

in the resulting data flow diagram or if the subject verbally stated that

the component was to be included in the system [giving a

completeness score as a percentage]."

Subjects' behaviour was analysed using six major categories divided into

mental and non-mental behaviours:

Mental:

• Recognise goal - statement of the high-level problem goals used in

structuring the problem space.

• Assertion - the verbalisation of a belief or statement of fact.

Chapter 2 OORE: Concepts and Approaches 39

• Reasoning - the verbalisation of the creation, development and testing of

hypotheses.

• Planning - SSA plans and general plans.

Non-mental:

• Information Acquisition - from problem text or elsewhere.

• Conceptual Modelling - construction of specification using DFDs.

>l Since all the behaviours listed above could be called "mental" or cognitive,
i

perhaps a more useful definition of the division could be cognitive behaviours

and task-directed cognitive behaviours as used by Ericsson and Simon (1980).

Planning was differentiated from goal recognition as " ...goals state what the

) system must achieve whilst plans state how the subject develops a specification

I to meet those system goals."

I!
Inductive reasoning in this group was categorised as a process of generate,

develop, test, confirm, modify or discard. Analysis of "mental" behaviours

showed a decline in information gathering before an increase in goal

recognition. Use of model-based or analogous reasoning by some subjects

suggested that the use of conceptual modelling techniques may improve

analytical performance or greater experience with conceptual modelling may

promote model-based reasoning.

'I
<*! Subjects' overall performance was poor, averaging only 11.4% of the expert

srore. Solutions were incomplete rather than erroneous. Analysis of protocols

suggested that subjects were unable to recognise or infer the processes and data

store accesses included in the expert analysts' solutions.

Overall, performance in analysis was not linked to any one factor although

reasoning was correlated with success. Poor performance was ascribed to failure

Chapter 2 OOR.E: Concepts and Approaches 40

to scope the problem, poor formation of a conceptual model of the problem

domain or insufficient testing of hypotheses. Good performance was indicated

by well-formed conceptual models and good reasoning/testing abilities.

This leads Sutcliffe and Maiden (1992) to suggest that "Formalisation of

conceptual models in tractable notations may be one of the more important

improvements which structured methods have made in supporting the

analytical reasoning process."

Guindon (1990) used protocol analysis to study how designers exploit

knowledge in software systems design. Of interest in this study is the

examination of how the designers defined and clarified the problem domain

from informal system requirements to a specification suitable for producing a

final systems design. A main premise in the study is that high level software

design is characterised by incompletely specified requirements, no

1 predetermined solution path, and by integration of multiple domains of

knowledge at various levels of abstraction and further, "[{Incomplete and

ambiguous system requirements (or goals) are intrinsic to system design ...

[d]esign tasks involve extensive problem structuring. Problem structuring is the

process of uncovering missing information and using it to define a problem

space.".

Guindon (1990) also found that designers rely heavily on problem domain

| scenario simulations throughout solution development and that "...these

simulations trigger the inferences of new requirements and complete the

requirement specification." There were three designers participating in the

study who were all considered to be extremely competent and experienced by

their peers and supervisors. The problem statement was based on the Lift

Control Problem, a standard problem in the areas of software specification and

software requirements research. The goal was to design the control logic to

move N lifts between M floors, given several rules. The specification was

Chapter 2 OORE: Concepts and Approaches 41

considered to be informal, and therefore incomplete and ambiguous, as well as

knowledge-rich over several domains. Thinking aloud reports were collected

from the designers over a period of two hours and participants were

videotaped. Notes, diagrams and transcripts were time-stamped at regular

intervals. When describing and clarifying the problem domain the designers

performed scenario simulations in the problem domain "... a subset of the real

world with which a computer system is concerned (but not the design solution

describing the computer system itself.)". The study identified five main uses for

the scenario simulations:

• Understanding the given requirements.

• Understanding the inferred requirements.

• Developing solutions with scenarios.

• Unplanned discovery of new requirements.

• Unplanned discovery of partial solutions.

§

The study describes an activity observed in this study as the "elaboration of the

requirements - any activity whose purpose is to decrease the incompleteness

and ambiguity of the informal requirements specification" including inferred

constraints not explicit in the original specification which can be deduced from

knowledge of the problem domain. The inferred and added requirements

reduce the ambiguity and incompleteness in the original specification and also

reduce the range of possible solutions.

1
I

Morris et al (1996) conducted an empirical study to test a set of hypotheses

which investigated the use of procedural and object-oriented techniques by

experienced and novice systems analysts. Morris et al were interested in

whether claims that object-oriented methodologies provide more complete

solutions with reduced complexity compared to traditional process oriented

methods were supported and whether experience in one method facilitates the

learning and application of another method.

Chapter 2 OORE: Concepts and Approaches 42

Morris et al propose that the research method they use differs from previous

research in that it uses an empirical partial factorial design; has a larger sample

size (71 subjects); and is based on a previously published cognitive processing

model. They believe this is the first time that a subjective mental workload

(SMW) (common in the human factors literature) has been examined in an IS

context. Six hypotheses were set up for this study:

[H1A.] For novice systems analysts, the subjective mental workload (SMW)

using modified Coad and Yourdon Object-Oriented Analysis (OOA) will be

lower than the SMW using DFDs.

[H1B.] For procedurally experienced systems analysts, the SMW using DFDs will

be lower than the SMW using modified Coad and Yourdon OOA.

[H2.] For novices, analysts applying modified Coad and Yourdon OOA followed

by DFDs will differ in their ratings of SMW for each technique from analysts

applying DFDs followed by modified Coad and Yourdon OOA.

: [H3A.] For experienced systems analysts, time to solution using Coad and

Yourdon OOA will be higher than time to solution using DFDs.

I [H3B.] For novice systems analysts, time to solution using DFDs will be higher

f than time to solution using modified Coad and Yourdon OOA.

[H4.] Across all subjects, there will be a significant positive correlation between

*,-, mental workload and time to solution.

The research design for this study was a 2X2X2 repeated measures, partial

factorial design, with experience and method order as the between subjects

variables and the analysis method as the within subjects variable. The method

order received by subjects was counterbalanced to control for learning. Results

showed that H1B and H2 were supported and H4 was partially supported.

Morris et al suggest that "[t]he theoretical model which was developed and

tested in this study suggested that there zuould be an interaction between

experience level and analysis method on SMW, and time to solution ...

Instead, there appeared to be a main effect for method across all levels of

Chapter 2 OORE: Concepts and Approaches 43

experience. Specifically, the use of DFDs consistently resulted in lower SMW

than 00A." and " ...the SMW when using 00A is always greater than the

SMW when using DFDs, regardless of the order in which it is performed.".

Further attitudinal measures " . . . collected for potential post hoc analyses ...are

interesting because, on the surface, they appear contradictory to the results

obtained from testing hypotheses 1A and IB. However, it is possible that while

novice subjects preferred OOA, the implementation of the method required

greater cognitive effort."

Morris et al acknowledge several limitations in their study. Specifically, the

quantitative nature of the study and the use of SMW rather than protocol

analysis (which generally gives a more qualitative view) limited the ability to

capture the true mental models of the subjects. Other major limitations, it

could be argued, are the assumption tl at final year students can be classified as

"experienced analysts", the use of Coad and Yourdon's OOA methodology

rather than one of the more commonly used methods such as Booch's (Booch,

1994), Rumbaugh et al's (Rumbaugh et al., 1991) or Jacobson's (Jacobson et al.,

1992) and the fact that the OOA method was "operationalized" or modified in

order to control the complexity differences between DFD and OOA modelling.

Other limitations identified by Morris et al include the motivation of subjects,

inadequate training on alternative techniques, and a concentration on internal

validity at the possible expense of external validity.

Some recent work has addressed the idea that system design and requirements

engineering is opportunistic and design and information gathering activities

are triggered by information as it is gathered. Carroll and Swatman (1997) have

argued the requirements engineering process is neither linear nor cyclic process

of specification evolution but rather it is complex, ill-structured and often

opportunistic. This view concurs with the work of Khushalani et al (1994) who

showed, through an extensive and detailed protocol analysis-based study, that

Chapter 2 OORE: Concepts and Approaches 44

"design" in a software context is opportunistic and insight-driven rather than

incremental and evolutionary.

I

Rasch and Tosi (1992) set up a study to investigate factors affecting software

developers' performance. This study was a psychological study based on

anonymous questionnaires and existing personnel information. The integrated

research model incorporated elements of expectancy theory, goal-setting theory

and individual characteristics and analysed 335 systems developers in three

large organisations. Individual participants were asked to fill out a

questionnaire for self-assessment and companies were asked to provide

internal company information. Research variables were performance, effort,

role ambiguity, achievement needs, locus of control, self-esteem, goal

specificity, goal difficulty, intellectual ability and quality of education. Results

indicated that " ... a software developer's ability and individual need for

achievement were the two strongest factors determining individual

performance." ...and ..." ...that a softivare developer's motivation or level of

effort was another important factor in determining individual performance."

When considering requirements specification from the users' point of view

there is some evidence that untrained users have difficulty in understanding

the standard data models and object/class models that many professional

analysts use during requirements and system modelling (Vessey and Conger,

1994). Various approaches to representing requirements in a manner that is

understandable to untrained users have been suggested, often based on use

cases and scenarios. Jacobson designed use case models (Jacobson et al., 1992,

Jacobson, 1995) as a "...first system model ...[which must] ...be comprehensible

by people both inside the development organisation ...and outside... Object

models are too complex for this purpose", but he also suggests that use cases

serve many other purposes as well. These other purposes seem to contradict the

purpose that use cases were originally designed for as the following quote

reveals:

Chapter 2 OORE: Concepts and Approaches 45

"Use cases serve several important purposes. Among other things,

use cases are the basis for:

1. defining functional requirements

2. deriving objects

3. allocating functionality to objects

4. defining object interaction and object interfaces

5. designing the user interface

6. performing ijitegration testing

7. determining development increments

8. composing user documentation and manuals.

They also help define the system and control development by serving

as the vehicle for:

1. capturing and tracing requirements

2. envisioning an application

3. communicating with end users and customers

4. delimiting a system

5. estimating project size and required resources

6. defining database-access patterns

7. dimensio'fiing processor capacity " (Jacobson and Christerson,

1995) [page 15-19]

Some recent research has investigated scenarios which are described by Kotonya

and Sommerville (1998) as "... stones which explain how the system is used."

Weidenhaupt et al (1998) provide an exploratory study of the use of scenarios in

current practice. They found that "...while many companies express interest in

Jacobson's use case approach, actual scenario usage often falls outside what is

described in textbooks and standard methodologies.". They also found different

forms of scenarios such as narrative text, structured text, diagrammatic

notations, images, animations and simulations.

Chapter 2 OORE: Concepts and Approaches 46

Studies of requirements engineering and systems development from a social

and organisational perspective (Hirschheim and Klein, 1992, Checkland and

Scholes, 1990) are also important to the foundations of this project. Based on

the following definition (Dawson et al., 1995)[page 3],

"An information system is a collection of people, machines, software,

data and procedures which must be designed, implemented and

managed to fulfil a given proposal within an organisational

environment."

information system development can be considered as an outward looking,

holistic process where systems (computerised and otherwise) are analysed,

designed and developed within an organisational and social context. These

ideas were explicitly explored and presented by Galal and McDonnell (Galal and

McDonnell, 1998). They suggest the following:

• Firstly, requirements themselves are subjective (and political) and therefore

must be interpreted by the professional.

• Secondly, both requirements specification and requirements validation are

social processes. Both these processes involve interaction between a

professional analyst and a client where problems and ideas are explored and

solutions and actions are agreed upon.

• Thirdly, for this interaction to take place in a meaningful and useful way the

language used is very important. In this research project, the language is the

modelling representation selected and its notations.

Social and organisational aspects of requirements engineering including

communication skills and analyst-client relationships have been a consistent

issue in Information Systems (IS) literature for over 20 years (Urquhart, 1998).

Macaulay (1996) found the following skills (amongst other skills) were

Chapter 2 OORE: Concepts and Approaches 47

considered necessary for a requirements engineer from a survey of 32

companies: interviewing skills, groupwork skills, facilitation skills, negotiation

skills and analytical skills. Similarly, Darke and Shanks (1997) suggest that

defining requirements is a collaborative effort which relies on communication

and interaction between stakeholder groups. Urquhart (Urquhart, 1998) found

that analysts brought strong individual influences to the requirements

definition process and that in individual cases " ... it is possible to see how a

myriad of situational influences contribute to what is discussed and in turn

shape initial requirements."

2.5 The Object Oriented Paradigm

The use of object-oriented approaches to system modelling and design arose out

of a perceived need to address the problems of increasing system complexity

and the need to reuse components from previously designed systems. The

object-oriented paradigm combines data and procedural abstraction by defining

objects and their behaviour, Complexity is said to be reduced because the

concept of an object remains the same throughout the development process

from analysis to implementation and flow of control is modelled as

interactions between objects.

The move towards the use of object-oriented methods for information system

development has led to a need for the development of object-oriented

approaches to requirements engineering. Object-oriented methodologies can

generally be thought of as having evolved from programming languages and

design modelling (Graham, 1994). Most of the commonly used texts emphasise

object-oriented design (Booch, 1991, Rumbaugh et al., 1991, Meyer, 1988). Object-

oriented analysis and requirements specification is a relatively new addition to

most object-oriented development methodologies and many methodologies

take a fairly traditional, structured approach to the early phases of requirements

Chapter 2 OORE: Concepts and Approaches 48

specification with the emphasis on deliverables (Booch, 1994, Graham et al.,

1997, Jacobson et al., 1999).

Object-oriented models and methodologies (Booch, 1994, Coad and Yourdon,

1991, Henderson-Sellers and Edwards, 1994, Meyer, 1988) are claimed to provide

a more natural way of specifying, designing and implementing information

systems based on features which include:

• a consistent underlying representation of an identified object throughout

the development process

• the encapsulation of static or descriptive characteristics together with tiie

dynamic or behavioural characteristics of an object

• the ability to model complex systems by reusing objects and object

components from previously designed systems

• the incorporation of high-level data abstraction facilities including

inheritance and polymorphism

Object-oriented approaches to system development are considered to be a new

way of thinking about problem solving and developing solutions which view a

system as a collection of objects where each object is responsible for a specific

task. The characteristics of object-oriented systems are (Budd, 1997, Henderson-

Sellers, 1997, Graham, 1994):

processing and computation proceeds by interaction between objects

an object is an encapsulation of state (data values) and behaviour (methods)

behaviour is dictated by an object's class, ie all object instances of the same

class behave in a similar way (invoke the same methods)

an object will exhibit behaviour by invoking a method in response to a

message

Chapter 2 OORE: Concepts and Approaches 49

• objects and classes extend the concept of abstraction by adding inheritance, ie

classes can be organised into a hierarchy (tree). Data and behaviour of classes

higher in the tree can be accessed by classes lower in the tree.

• by reducing interdependency among software components object-oriented

approaches permit the development of reusable software ie components can

be created and tested as independent units

• reusable software components allow a higher level of abstraction, ie we can

define and manipulate objects simply in terms of the messages they

understand and a description of the tasks that they perform, ignoring

implementation details

2.6 A Review of Major Object-oriented Methods

Object-oriented systems development life cycles are usually based on non-linear

cycles such as the spiral model (Boehm, 1988) or the fountain model

(Henderson-Sellers, 1997). Henderson-Sellers (1997) reflects the conventional

wisdom of the object-oriented community in stating that object-oriented

analysis provides an accurate picture of a real world situation, object-oriented

design supports good software engineering design and the goal of a good object-

oriented method is the "seamless" transition between the analysis and design

phase. Further, it is generally agreed within the object-oriented community

(Coad and Yourdon, 1991, Meyer, 1988, Henderson-Sellers, 1997, Jacobson et al.,

1992) that one of the strengths of object-oriented methods is that complexity is

reduced because the concept of an object remains the same throughout the

development process from analysis to implementation, and flow of control is

modelled as interactions between objects.

Taylor (1992) provides a simplified view of the object-oriented life cycle based

on this concept which uses the following phases:

V-i

Chapter 2 OORE: Concepts and Approaches 50

• Object Descriptions corresponding to analysis

• Object Structures corresponding to design

• Object Code corresponding to implementation

• Object Testing corresponding to testing

• Object Extensions corresponding to maintenance.

Object-oriented analysis involves the specification of user requirements and the

specification of system structure and function. It is independent of

implementation and includes business analysis and synthesis in terms of:

• abstracting user requirements

• identifying key domain objects

• assembling objects into structures for design.

Graham, (1994) suggests that there are three aspects which often lead to three

models of a object-oriented system:

• Data models - which model objects and their structure using entity-

relationship (ER) (Chen, 1976) style diagrams

• Process models - which define the system architecture and the processes of

interaction using dataflow (DFD) type diagrams (Gane and Sarson, 1978,

DeMarco, 1978)

• Control models - which define dynamics of systems using state transition

(STD) type diagrams

Graham, (1994) also divides object-oriented methods into three categories

according to the following categorisation of model types:

Chapter 2 OORE: Concepts and A, . nes 51

• Ternary models - which have three separate notations for data, process and

control eg OMT, (Rumbaugh et al., 1991), Ptech, (Martin and Odell, 1992)

• Unary models - which have one notation since objects inherently combine

data and processes eg RDD (Wirfs-Brock et al., 1990), OOA (Coad and

Yourdon, 1991)

• Hybrid models - which encompass characteristics of both ternary and unary

models eg MOSES, (Henderson-Sellers and Edwards, 1994), SOMA,

(Graham, 1994).

Henderson-Sellers (1997) uses the term "hybrid" in a different way. He describes

a "pure" object-oriented methodology as encompassing object-oriented analysis,

object-oriented design and object-oriented programming or O-OO. Two hybrid

methodologies are defined as comprising functional analysis,-object-oriented

design and object-oriented programming (F-O-O) and object-oriented analysis,

object-oriented design and functional (procedural) programming (O-O-F).

The following overview is based on the original sources together with some

insights from published surveys (Graham, 1994, Henderson-Sellers, 1997,

Henderson-Sellers and Edwards, 1994, Loosley et al., 1994, Fichman and

Kemerer, 1992, Hamilton and Pooch, 1995, Simons, 1998). The emphasis in this

overview is on the modelling process, particularly for requirements

specification, rather than the whole analysis cycle. The methods are categorised

as first-, second- and third- generation after Simons (Simons, 1998) and

Henderson-Sellers [OPEN, 2000 #124; (Henderson-Sellers and Simons, 2000).

2.6.1 First Generation Object-Oriented Methods

First generation methods are characterised by (Simons, 1998) as:

Chapter 2 OORE: Concepts and Approaches 52 \

"... methodologies that appeared after 1988, naively using enriched entity-

relationship models as the basis for implementation. Characteristically

attribute-centred, with late process modelling."

Object Modelling Technique (OMT)

OMT (Rumbaugh et al., 1991) is a popular data-oriented method providing a

simple, language independent approach. The method emphasises the data

components and data modelling techniques. OMT involves three models

similar to Graham's (1994) generic ternary model outlined above. These are

described as follows (Blaha and Premerlani, 1998):

| • Object model - an information/data model which describes the static

[structure of the system

• Dynamic model - a state model which describes the temporal interactions

between objects in the system

• Functional model - a process model which defines the computations that

objects perform.

The method has a rich, detailed notation which usually requires the use of

CASE tools. There are three main phases: analysis, system design and object

design (implementation design). Of interest from a requirements engineering

perspective is the analysis phase as outlined by Hamilton and Pooch (1995):

• Build an object model including object model diagrams and a data

dictionary

• Develop a dynamic model including state diagrams and global event flow

diagrams

• Construct a functional model including data flow diagrams and constraints

• Verify, iterate, and refine the three models.

Chapter 2 OORE: Concepts and Approaches 53

The Object Model notation is a variation on entity-relationship diagrams and

includes generalisation, aggregation, and association. The Dynamic model

notation is a form of state transition diagram based on Harel's statecharts

(Harel, 1987), and the functional model notation is based on data flow diagrams.

According to two of the original authors of OMT, Blaha and Premerlani (1998)

in a publication that applies OMT specifically to database design, " Our

approach, OMT, stresses the importance of 7iiodels and the uses of models to

achieve abstraction."

Shlaer and Mellor Method

I
I
i

The Shlaer and Mellor (1988) method is one of the earliest approaches. It is

heavily based on traditional data modelling and the normalisation of tables.

Process modelling using Data Flow Diagrams is used to describe object

behaviour and dynamic modelling is based on state transition diagrams and

object life cycles (Henderson-Sellers, 1997). It has been criticised as not truly

object-oriented (Graham. 1994, Winblad et al., 1990) because of the emphasis on

information modelling at the expense of the "... basic object-oriented

philosophy of data-phis-functionaliti/" (Henderson-Sellers, 1997).

Coad and Yourdon's Object Oriented Analysis

Object Oriented Analysis (Coad and Yourdon, 1990, Coad and Yourdon, 1991)

uses extensions to ER modelling and provides a five-layer model with the

emphasis on analysis rather than design. There is progressive expansion of the

analysis model towards implementation. There is no guidance on reuse or

interface design and the method is often seen as an incomplete, data driven

method omitting behaviour (Graham, 1994, Loosley et al., 1994).

The five stages or layers of object-oriented analysis are:

Chapter 2 OORE: Concepts and Approaches 54

h

• Subject Layer - identify subjects, subsystems composed of 5 to 9 objects

• Class and Object Layer - describe objects in detail

• Structure Layer - identify inheritance structures

• Attribute Layer - specify attributes and relationships

• Service Layer - define services, specify methods.

Responsibility-Driven Design (RDD)

The Responsibility-Driven Design approach (Wirfs-Brock et al., 1990) is one of

the earliest documented approaches. The RDD approach is based on classes,

responsibilities, collaborations (CRC) cards (Beck and Cunningham, 1989). CRC

cards are physical index cards which list a class, its responsibilities and its

collaborators. These cards are used to support the abstraction process as

candidate classes and objects are identified. This approach assumes existing user

requirements and has the following phases:

r

identify objects (from nouns in specification) and organise into classification

structures

find responsibilities (from verbs in specification)

assign responsibilities to classes

refine responsibilities based on classification structures

find collaborations

discard classes without collaborations

refine structures

group responsibilities into contracts

use collaborations to define subsystems

fill in the details.

Chapter 2 OORE: Concepts and Approaches 55

2.6.2 Second Generation Methods

Second generation methods are characterised by Simons (1998) as:

" ... methodologies that appeared after 1991, synthetic approaches, borrowing

techniques indiscriminately from each other and the first generation.

Characteristically having rich notations, but little guiding process or coherence

between stages."

Booch Method (1987/1991/1994)

Booch's (1987, 1991) early work was based on object-oriented programming

languages, particularly Ada. The method is now oriented to C++ although it is

language independent and supports detailed design issues and some real-time

issues. The development process includes micro and macro lifecycles and is

documented using scenarios, class diagrams, state transition diagrams and

object diagrams. The method involves the following steps:

• identify classes and objects using separate diagrams

• identify semantics of objects and classes

• identify relationships

• implement objects and classes.

Later Booch (1994) improved the method and added interaction diagrams, a

simpler notation, use-case analysis and the definition of a macro process as

follows:

• establish core requirements

• develop model of behaviour (analysis)

• create architecture (design)

• evolve implementation

• post delivery maintenance.

Chapter 2 OORE: Concepts and Approaches 56

-I

Methodology for Object-Oriented Software Engineering of Systems (MOSES)

MOSES (Henderson-Sellers and Edwards, 1994, Henderson-Sellers., 1997) is a

comprehensive method providing metrics, project management reuse and

business modelling. It has five graphical deliverables and eight textual

deliverables. It also provides a general, broad model for analysis and design

with the following phases:

• system requirements specification

• identify candidate object/classes

• establish relationships

• analysis merges to design

• bottom up design using existing library classes - begin coding/testing

• introduce inheritance - finalise coding/testing

• clustering/generalisation.

In MOSES there is no distinct OOA/OOD boundary which is part of the

philosophy of the "seamless" transition between analysis and design. Analysis

is complemented by the synthesis of design while analysis continues. The

models for analysis and design are the same. The system is described in terms of

abstract data types (ADTs) and roles or Classes, Instances, Roles and Types

(CIRTs). Systems are modelled as networks of methods and messages where the

relationship between two CIRT> provides a connection channel for messages to

be sent. Messages trigger methods that lead to changes in state of CIRTs.

Henderson-Sellers (1997) explicitly describes two aspects of modelling: static

object modelling and dynamic modelling. Static object modelling is based on

descriptions of CIRTs and descriptions of CIRT interactions. CIRTs are

identified by looking for nouns in the specification as a first cut. Then objects

are identified in terms of the services offerred (responsibilities). The notation

Chapter 2 OORE: Concepts and Approaches 57

for CIRT model diagrams can be loosely described as ER-type. CIRTs have

names, properties (attributes) and operations (methods). Optionally, business

rules can be added to the diagrams. Relationships are descibed in terms of:

• generalisation (inheritance): IS-A

• aggregation (composition): IS-PART-OF

• association: USES-A

Dynamic Modelling in MOSES is based on objectcharts, transition specification

tables, event diagrams and service contracts which describe the obligations and

benefits of clients and servers.

MOSES is the forerunner of the current OPEN method discussed in third

generation methods below.

Object-Oriented Software Engineering (OOSE)

The OOSE method is based on Objectory (Jacobson et al., 1992) and addresses the

whole development life cycle. It is based on a supporting architecture; a step-by-

step method to apply the architecture concepts; a process or scaling up of the

method to industrial activity; and tools to support the architecture, method and

process. The tools are said to be analogous to those of the building trade

(Graham, 1994). It is a complete and mature approach which supports detailed

analysis and design processes with complete process documentation.

There are three types of objects: interface, entity and control objects and

progressive, iterative cycles of analysis, construction, testing. Each iteration

refines one version of the system to a new version. The defining characteristic

of OOSE is the concept of the "use case", a concept which has since been

incorporated into other methods (Jacobson and Christerson, 1995). A use case is

Chapter 2 OORE: Concepts and Approaches 58

¥

h
M

a description (or script) of how users interact with a system for specific

transactions. This means that there is an infinite number of possible use cases

for any system but pivotal ones can be used to guide the modelling and design.

The OOSE method has six models:

• requirements model - use cases + actors (external entities)

• domain object model - objects based on business entities

• analysis model - interface objects, entity objects, control objects

• design model - blocks which are implementations of one or more objects

• implementation model - annotated source code

• test model - test specifications derived from use cases.

2.6.3 Third Generation Methods

Third generation methods are characterised by Simons (1998) as:

"... methodologies appearing after 1995, focussing on the technical process and

the management process. Characteristically more selective in choice of

techniques, inclusion of metrics and cross-checks."

Semantic Object Modelling Approach (SOMA)

Although SOMA was first published in 1994, Simons classifies it as a third

generation method. SOMA (Graham, 1994) is based on ER concepts and Coad

and Yourdon's (Coad and Yourdon, 1991) approach with the addition of layers

and rules (from artificial intelligence). SOMA has seven activities:

m

identify layers (sets of objects with semantics)

identify objects

identify usage, classification, composition structures

Chapter 2 OORE: Concepts and Approaches 59

H

• define data semantics and associations

• add attributes to objects

• add operations to objects

• add declarative semantics (rules).

The OPEN method

OPEN stands for Object-oriented Process, Environment and Notation

(Henderson-Sellers and Simons, 2000, Graham et al, 1997). According to

Henderson-Sellers (1997) this method is a merging of SOMA, MOSES, Ptech

"...together with strong influences from RDD, BON, OOrnm, [and] OBA". The

OPEN Web Page describes the method as "...the premier third generation,

public domain, fully object-oriented methodology/process" [OPEN, 2000 #124].

OPEN is a mature method that is designed to deliver a complete and

disciplined process for object-oriented software engineering. The method

supports iterative and incremental development, promotes the Software

Engineering Process (SEP) and is said to embody 30 person-years of effort

(Henderson-Sellers and Simons, 2000). SEP is described as a time sequenced set

of activities which transform a set of user requirements into software. The

object model sequence of development is characterised by a requirements

capture process followed by a logical design process (Simons and Swatman,

1997) in which three models are developed: a task object model, a system object

model and an implementation object model, The first two models are based on

business knowledge and the second two models are based on systems

knowledge. The main constructs in the method are:

• Process units which define a set of related activities

• Activities which are defined in terms of a series of tasks

• Tasks which are accomplished using well-known object-oriented techniques

Chapter 2 OORE: Concepts and Approaches 60

• Techniques include scenario analysis, CRC carding and object/class

modelling.

Unified Modelling Language (UML)

UML is one of the best known of the third generation development methods. It

arose out of a collaboration of the authors of the OMT, Booch and OOSE

methods. According to the Rational/UML web site

"The Unified Modeling Language (UML) is a language for specifying,

visualizing, constructing, and documenting the artifacts of software systems, as

well as for business modeling and other non-software systems. The UML

represents a collection of best engineering practices that have proven successful

in the modeling of large and complex systems."

A major objective of the developers of UML has been to have it adopted as a

standard by the Object Management Group (OMG). The Object Management

Group is an industry organisation of over 400 members who are committed to

establishing broad agreement between vendors on terminology and standards.

Members include DEC, Hewlett Packard, Prime, Sun Systems, IBM, and

Microsoft. UML 1.1 was officially adopted as the object modelling standard by

the OMG in November 1998. Although UML 1.3 (approved in June 1999)

provides some corrections to problems of UML 1.1 (Kobryn, 1999), it has still

been criticised for logical inconsistencies, technical errors and lack of clarity in

its specification (Kobryn, 1999, Simons and Graham, 1998, Simons and Graham,

1999).

UML incorporates and extends OMT models, use case models and Booch

models so that it includes nine diagrams:

• The Class diagram - a structural diagram that shows a set of classes,

interfaces, collaborations and their relationships

Chapter 2 OORE: Concepts and Approaches 61

• The Object diagram - a structural diagram that shows a set of objects and

their relationships

• The Use case diagram - a behavioural diagram that shows a set of use cases

and actors and their relationships

• The Sequence diagram - a behavioural diagram that shows an interaction,

emphasising the time ordering of messages

• The Collaboration diagram - a behavioural diagram that shows an

interaction, emphasising the structural organisation of the objects that send

and receive messages

• The Statechart diagram - a behavioural diagram that shows a state machine,

emphasising the event-ordered behaviour of an object

• The Activity diagram - a behavioural diagram that shows a state machine,

emphasising the flow from activity to activity

• The Component diagram - a structural diagram that shows a set of

components and their relationships

• The Deployment diagram - a structural diagram that shows a set of nodes

and their relationships.

The processes involved in UML modelling are:

• Identifying the requirements of the application and modelling business

processes

• Mapping requirements to abstract business objects, identifying and applying

design patterns, and creating usage scenarios

• Identifying and designing business objects or partitioning services across a

three-tiered services model

• Mapping business objects to software components and designing how

components will be distributed across a network.

Chapter 2 OORE: Concepts and Approaches 62

The Discovery Method

The Discover)' method was developed by Anthony Simons in 1998 (Simons,

1998). He categorises it as a third-generation development method for object-

oriented systems which " ... draws on insights from both the data modelling

and behaviour-centred schools of thought" (Simons, 2000). It is described as

transformational in that analysis models evolve towards design models. It is

also described as having a cognitive focus based on the power of abstraction,

selective use of techniques and "discovery processes" based on reinforcement.

There are four main phases in the method:

• Task Modelling - interviewing, narrative modelling, system task

identification and task scripting

• Object Modelling - data modelling (ER models), control modelling, CRC

carding

• System Modelling - collaboration diagrams, coupling analysis, system

layering, reuse of frameworks and components

• Language Modelling - lifetime analysis, attribute/relationship structures,

method specification.

The emphasis of Discovery is that techniques and notations are " ... borrowed

from existing methods, but they are carefully selected for fitness-for-purpose"

(Simons, 2000). Discovery is not based on any particular software lifecycle

model but encourages the assembling of appropriate techniques and tools for

assisting the development process for the developer.

2.6.4 Summary of the Characteristics of Object-Oriented Methods

Tables 2.1 and 2.2 provide a summary of the characteristics of the methods

outlined in sections 2.5.1, 2.5.2 and 2.5.3. All the methods outlined have some

characteristics in common. These characteristics are dealt with in more detail in

Chapter 4 as part of the development of a generic representation of object-

Chapter 2 OORE: Concepts and Approaches 63

oriented requirements engineering in the form of an initial conceptual process

model.

Method

Shlaer & Mellor

Coad & Yourdon

Responsibility
Driven Design
OMT
Booch Method
OOSE

MOSES
SOMA
OPEN
UML

Discovery

Objects/Class models

Information Structure Diagram;
Class Diagram
Class and objects diagram - layers
1,4
Class card

Object model
Class diagram; object diagram
Requirements model; analysis model

Object/class model
Object model
OML Metamodel
Class diagram;
object diagram
Data model

Relationship/Association
models
Information Structure Diagram;
Subsystem Relationship Model
Class and objects diagram -
layers 2,4
Class card with collaborations

Object model

Requirements model; Analysis
model
Object/class model
Object model
OML Metamodel
Object diagram

Collaborations;
system layering

Table 2.1 A summary of object-oriented methods and their static models

Method
Shlaer & Mellor
Coad & Yourdon
Responsibility
Driven Design
OMT
Booch Method
OOSE
MOSES
SOMA
OPEN
UML
Discovery

states & transition models
State Model; object life cydc-
Object-state diagram; service chart

Dynamic model; State chart
State transition diagram
State transition graph
Object charts
State transition diagram
State model
Statechart diagram; activity diagram
State diagram; activity diagram

event models
State transition diagram;
Service chart

Dynamic model
Event diagram
Interaction diagram
Event model
State transition diagram
State model
Event hierarchies; signals
State diagram

Table 2.2 A summary of object-oriented methods and their dynamic models

Chapter 2 OORE: Concepts and Approaches 64

2.7 Summary

This chapter has reviewed the literature relevant to the general context of

object-oriented requirements engineering which is the focus for this research

project. This project investigates the use of object-oriented models in

requirements engineering practice in order to define, understand and describe

the role of object-oriented models in the requirements engineering process and

to empirically validate concepts contributing to that role. Section 2.2 examined

the literature with respect to the technical or process-related issues of

requirements engineering. This material is the basis of the conceptual process

model developed in Chapter 4. Section 2.3 provided an understanding of

problem 5;olving and modelling for requirements engineering by drawing on

classical definitions of cognition and reasoning. This material contributes to the

formulation of research questions in Chapter 3 and development of interview

scripts used in the case studies described in Chapter 5. Section 2.4 presented

published research into the requirements engineering process. Section 2.5

provided a definition of object-oriented approaches to system development and

section 2.6 provided a review of several major object-oriented methodologies

relating directly to modelling activities for requirements engineering. This

review included summaries of several well-known object-oriented

methodologies and their static and dynamic modelling methods. This material

contributes to the specifically object-oriented characteristics of ihe conceptual

process model developed in Chapter 4 and the research questions developed in

Chapter 3.

The discussion of requirements engineering models and frameworks and the

object-oriented methods introduced here are extended and described in

considerably more detail in Chapter 4 as the basis of the development of a

conceptual process model.

Chapter 3 Research Design 65

I
|
I
I

Chapter 3

Research Design

3.1 Ove view

This chapter presents the research design for this project. Firstly, there is a

discussion of commonly accepted philosophies, paradigms and methods

adopted in information systems research. Secondly, the chosen research

method is described in the context of the objectives of this research, the formal

research questions and the unit of analysis used in the research project. Lastly, a

justification of the choice of research methods used in each component of the

research project is presented.

3.2 Research in Information Systems

Information Systems (IS) is still regarded as a relatively new area of research.

Peter Keen (1987) described the mission of IS research as a study of "... the

effective design, delivery, use and impact of information technologies in

organisations and society". There has been debate over whether information

systems can be defined as a discipline in its own right due to its

Chapter 3 Research Design 66

multidisciplinary nature in that it draws its theory and methods from a

number of existing disciplines such as computer science, management science,

sociology, philosophy and psychology (Keen, 1991, Mumford et al., 1985,

Banville and Landry, 1989, Kaplan and Duchon, 1988).

There has also been debate over the nature of information systems research and

the appropriate methods for conducting information systems research

(Mumford et al., 1985, Walsham, 1995, Fitzgerald et al., 1985). As a consequence

of this debate several research method taxonomies have been published

(Hamilton and Ives, 1982, Benbasat, 1984, Galliers, 1985, Galliers, 1992, Keen,

1991, Fitzgerald and Howcroft, 1998, Myers, 1999, Fitzgerald et al., 1985) and

many approaches for conducting information systems research have been

advocated and discussed (Galliers and Land, 1987, Galliers, 1992, Mumford et al.,

1985, Myers, 1999, Fitzgerald and Howcroft, 1998, Hirschheim, 1985).

Information systems research is generally regarded as social research which can

encompass positivist, interpretivist or combined philosophies (Galliers and

Land, 1987, Galliers, 1992, Fitzgerald and Howcroft, 1998). To assist researchers

in understanding and selecting potential research methods several taxonomies

have been published which categorise research methods in information

systems (Galliers, 1992, Fitzgerald and Howcroft, 1998, Myers, 1999).

Galliers (1992) divides information systems research approaches into two

categories, scientific and interpretivist. (see Table 3.1) and provides a summary

of these approaches in terms of key features, strengths and weaknesses. From

this Galliers (1992) provides a non-prescriptive taxonomy which "...provides a

framework upon which to base questions as to the likely utility of alternative

approaches in a given context."

Chapter 3 Research Design 67

Scientific
Laboratory experiments
Field experiments
Surveys
Case studies
Theorem proof
Forecasting
Simulation

Interpretivist
Subjective/argumentative
Reviews
Action research
Descriptive/interpretive

Futures research
Role/game playing

IS

Table 3.1 Table 8.2 from Galliers(1992)/ page 149

Fitzgerald and Howcroft (1998) present a taxonomy of "Soft Vs Hard Research

Dichotomies" (see Table 3.2). This taxonomy is a response to the issue that

fundamental research philosophies are often seen as dichotomous. The

taxonomy provides a multiple paradigm approach where different methods

with complementary strengths could be used as appropriate.

Interpretivist

Relativist

Subjectivist
Emic/Insider/Subjective

Qualitative
Exploratory
Induction
Field
Idiographic

Relevance

PARADIGM LEVEL
Positivist

ONTOLOGICAL LEVEL
Realist

EPISTEMOLOGICAL LEVEL
Objectivist
Etic/Outsider/Objective

METHODOLOGICAL LEVEL
Quantitative
Confirmatory
Deduction
Laboratory
Nomothetic

AXIOLOGICAL LEVEL
Rigor

Table 3.2 Table 3 from Fitzgerald and Howcroft (1998), p 160

Myers' taxonomy (Myers, 1999) is for specifically qualitative methods and

identifies perspectives, methods and modes of analysis (see Table 3.3)

Chapter 3 Research Design 68

Philosophical perspectives

Qualitative research methods

Modes of analysis

Positivistist research
Interpretive research
Critical research
Action research
Case study research
Ethnographic research
Grounded theory
Hermeneutics
Semiotics
Narrative and metaphor

Table 3.3 Myers classification of qualitative research methods

Research may be further categorised in terms of theory building, theory testing

and theory refinement (Neuman, 1994). Theory building research is based on

collecting data with a view to formulating a theory using inductive reasoning.

It is often exploratory or descriptive and frequently uses qualitative and

interpretive approaches. Theory testing research is based on collecting data with

a view to providing evidence about the truth of a formulated theory, research

question or hypothesis using deductive reasoning. It can involve descriptive

and/or explanatory approaches. Theory refinement involves using the results

of theory testing to refine and improve previously formed theories.

3.2.1 Paradigms and Philosophies in Information Systems Research

From the point of view of defining a research environment a paradigm

encompasses a particular ontology or view of the world and its components

and a particular epistemology or theory of knowledge and knowledge

acquisition (Hirschheim, 1985). Social research is often defined in terms of

positivist or interpretivist paradigms. Positivism attempts to apply scientific

methods to social sciences and interpretivism attempts to understand and

interpret " ... how people create and maintain their social worlds." (Neuman,

1994). Myers (1999) describes the positivist paradigm as one where it is assumed

that " ... reality is objectively given and can be described by measurable

Chapter 3 Research Design 69

properties which are independent of the observer (researcher) and his or her

instruments" and further that Orlikowski and Baroudi (1991) classified IS

research as positivist "... if there zvas evidence of formal propositions,

quantifiable measures of variables, hypothesis testing and the drazoing of

inferences about a phenomenon from the sample to a stated population". The

interpretivist research paradigm is described by Myers (1999) as one where it is

assumed that " . . . access to reality (given or socially constructed) is only through

social constructions such as language, consciousness and shared meanings ...

[and] ...interpretive research does not predefine dependent and independent

variables, but focuses on the full complexity of human sense making as the

situation emerges (Kaplan and Maxwell, 1994)."

Walsham (1995) considers interpretive research as an empirical approach

which focuses particularly on human interpretations and meanings. He also

acknowledges the iterative nature of interpretive research which "...results in

an iterative process of data collection and analysis, with initial theories being

expanded, revised, or abandoned altogether."

3.2.2 Qualitative and Quantitative Research Methods

In simple terms quantitative methods are based on the collection and analysis

of quantitative data (numbers) and qualitative methods are based on the

collection and analysis of qualitative data (text, pictures, artifacts) (Neuman,

1994, Miles and Huberman, 1994).

An important concept (Neuman, 1994) is the notion of the empirical nature of

collected data:

"Scientists gather data using specialised techniques and use the data

to support or reject theories. Data are the empirical evidence or

information that one gathers carefully according to rules or

procedures ...Empirical evidence refers to observations that people

Chapter 3 Research Design 70

1

experience through the senses - touch, sight, hearing, smell, taste.

This confuses people, because researchers cannot use their senses to

directly observe many aspects of the social world about which they

seek answers (e.g., intelligence, attitudes, opinions, feelings,

emotions, power, authority). Researchers have many specialised

techniques to observe and indirectly measure such aspects of the

social world." [Page 6](Neuman, 1994)

It

This quote highlights the perceived problems (Galliers and Land, 1987, Galliers,

1992, Walsham, 1995, Hirschheim and Klein, 1992) of using purely quantitative

approaches for research in social contexts. Quantitative methods are often based

on traditional scientific method which is characterised by repeatability,

reductionism and refutability (Galliers, 1992, Neuman, 1994). Repeatability

assumes that an "experiment" can be replicated in exactly the same context.

This is not true for social research if different individuals are involved.

Reductionism assumes that a problem can be divided into manageable parts

without distorting the issues. This is difficult where a researcher has evidence

only about specific individuals and uses it to try and explain macro-level events

(Neuman, 1994). Refutability assumes that there are verifiable predictions of

anticipated outcomes and that the research process itself will not affect those

outcomes. This is not often the case in social research where the researcher

often explicitly influences the research (Walsham, 1995).

Understanding a phenomenon from the point of view of the participants in its

particular social context is difficult to achieve when data is quantified (Kaplan

and Maxwell, 1994). According to Myers "The motivation for doing qualitative

research, as opposed to quantitative research comes from the observation that,

if there is one thing which distinguishes humans from the natural world, it is

our ability to talk!" Allowing participants to talk about and describe the

situation under study provides a researcher with extremely rich data

(Walsham, 1995).

Chapter 3 Research Design 71

Klein and Myers (1999) suggest that "It is important to explicitly define what w e

mean by interpretive research. This is especially so given that no clear

distinction is often made between 'qualitative' and 'interpretive' research... the

word 'interpretive'"..." 'is not a synonym for 'qualitative' -qualitative research

may or may not be interpretive, depending on the underlying philosophical

assumptions of the researcher." Qualitative methods deal with descriptive data,

concepts, attitudes, beliefs etc and empirical data gained from experience

(Neuman, 1994) and this data can be analysed in an interpretivist or a positivist

manner. The interpretive paradigm is an overarching philosophy and deals

with knowledge gained through social constructs - language, consciousness,

shared meaning, documents and artefacts (Klein and Myers, 1999). Walsham

(1995) suggests that there are two levels of interpretation in that as researchers

we are "...accessing others' interpretations through our own cognitive

apparatus and feeding a version of events back to others".

3.2.3 Candidate Qualitative Research Methods

Once a philosophical perspective has been chosen for a research project a

strategy of inquiry can be selected "...which moves from the underlying

philosophical assumptions to research design and data collection". (Myers, 1999).

The strategy chosen has been called a "method" (Myers, 1999) or an "approach"

(Galliers, 1992). The choice of research methods will be influenced by the

underlying philosophy and the research objectives. The methods particularly

appropriate for studying technology in its human context (as in this project) are

conceptual study, action research, case study research, grounded theory and

ethnography (Myers, 1999).

Choosing research methods for qualitative data and interpretive analysis is

difficult. Miles and Huberman (1994) suggest that qualitative researchers are

constantly adapting and modifying commonly used methods and that "no

study conforms exactly to a standard methodology; each one calls for the

- .] ' ' • • •
i . * "• •

Chapter 3 Research Design 72

researcher to bend the methodology to the peculiarities of the setting" and that

in fact the quest for qualitative researchers is the "... creation, testing, and

revision of simple, practical, and effective analysis methods".

Conceptual Study Research

The conceptual study research approach (Keen, 1991, Shanks et al., 1993) also

called the argumentative/subjective approach (Galliers, 1992) " ...involves the

articulation of subjective beliefs about an area of invetigation." (Shanks et al.,

1993) and is based " ... more on opinion/speculation than observation, thereby

placing greater emphasis on the role/perspective of the researcher." (Galliers,

1992). It can be used to review existing bodies of knowledge as well as actual

situations. Building a theoretical or conceptual model to represent a body of

knowledge based on the researcher's interpretation of the literature can be

considered a conceptual study and is one of the research methods used in this

project.

Case Study Research

Case study research can take many forms, single or multiple cases and can be

carried out within a positivist or an interpretivist philosophy (Yin, 1994,

Benbasat et al., 1987, Lee, 1989, Eisenhardt, 1989, Darke et al., 1998, Cavaye, 1996).

Case study research aims to examine a phenomenon in its natural context

(Cavaye, 1996, Yin, 1994) and aims to contribute to knowledge by relating

findings to generalisable theory (Cavaye, 1996). The case study research method

is one of the most popular methods in information systems research and is

well-suited to understanding the interactions between information technology-

related innovations and organisational contexts (Darke et al., 1998) as in this

research project.

Chapter 3 Research Design 73

Eisenhardt (1989) describes case stu.^ ~r>h ir a similar manner as "...a

research strategy which focuses on understanding the dynamics present within

single settings ... [which] ... can involve either single or multiple cases, and

numerous levels of analysis." Eisenhardt (1989) also explicitly addresses the

issue of "theoretical saturation" or how to determine the appropriate number

of cases. She suggests that multiple case design requires the study of at least

four, but no more than ten cases. Closure can often be determined by looking at

how much new information is likely to emerge from studying further cases

(Cavaye, 1996).

Action Research

The action research method involves collaboration between the researcher(s)

and the participant(s) and intervention by the researcher(s) in the situation

being studied (Susman and Evered, 1973, Susman, 1983, Baskerville and Wood-

Harper, 1996, Baskerville and Wood-Harper, 1998, Avison et al., 1999). This

often involves a cycle of feedback aimed at increasing the understanding of a

given social situation (Hult and Lennung, 1980). Galliers (1992) describes action

research as an interpretivist subset of the case study approach where the

presence of the researcher affects the situation being studied. In their critical

perspective of the method Baskerville and Wood-Harper (1996) describe it as "..

a paragon of the post-positivist research methods. It is empirical, yet

interpretive. It is experimental, yet multivariate. It is observational, yet

interventionist.... To an arch positivist it should seem very unscientific. To the

post-positivist, it seems ideal."

This research approach has many attractive characteristics for this project in

terms of studying practising professionals and what they do and why. That is,

active exploration, cyclic rede nition and reflective learning leading to a

hermeneutic approach to analysis. Further, Baskerville and Wood-Harper

(1998) suggest that there are many diverse forms of action research rather than

Chapter 3 Research Design 74

one definitive method. Subsequently a variation on the action research

approach together with multiple case studies as described below in section 3.3.4

was the approach arrived at for this research project.

Grounded Theory

Grounded theory seeks to develop theory that is grounded in data that has been

systematically gathered and analysed (Strauss and Corbin, 1990). A key element

of the grounded theory approach is that the theory should be developed with a

reflexive 'back and forth1 interplay between data collection and analysis (Myers,

1999, Urquhart, 1998) without any preconceptions about the outcome until all

the data has been collected and analysed. Glaser (1992) suggests that "there is a

need not to review any of the literature in the. substantive area under study"

since it might contaminate the findings. There *~••• ve been several successful

applications of grounded theory in information systems published (Orlikowski,

1993, Pandit, 1996, Galal and McDonnell, 1998, Urquhart, 1998). Urquhart's

research is heavily based on detailed conversational analysis which is

particularly suited to the grounded theory approach.

Grounded theory was considered unsuitable for this project because of the

project's exploratory nature in the investigation of a research domain in which

there were preconceived notions from existing literature about the outcome. A

grounded theory approach also raises the possibility of focusing on the "micro

phenomena of IS development" that detailed grounded theory analysis might

produce (Walsham, 1995).

Ethnography

Ethnographic research (also known as social anthropology (Miles and

Huberman, 1994)) requires the researcher to spend a significant amount of time

in the organisation or situation under study investigating day-to-day events,

Chapter 3 Research Design 75

behaviours and rituals. For this reason most ethnographic studies are of a

single organisation or situation and are often long-term studies over months or

years.

Since this research project focuses on the use of modelling techniques used by

professional analysts, the setting for this research is a specific social interaction

between an analyst and user(s) and subsequent reaction in terms of the models

produced rather than the exaniination of a social situation or community over

time in a particular work setting (Miles and Huberman, 1994). Therefore, this

approach was considered inappropriate for this project.

3.3 The Research Framework

3.3.1 Research Objectives

The main objectives of this research are threefold and complementary. The first

objective is to investigate the role of modelling in object-oriented requirements

engineering practice. Secondly, this investigation contributes to a theory, based

on a conceptual process model, about how practising professionals use object-

oriented models and methods to specify information systems. Thirdly, the

results of this study raise various questions for further investigation.

3.3.2 Formal Research Questions

The main objective of this research project is encompassed in the following

research question:

"How are object-oriented modelling methods being used by practising

professionals for requirements specification?"

Chapter 3 Research Design 76

I

i
i

The emphasis is on how practising professionals are currently using object-

oriented modelling methods, not what the literature says they should be doing.

In order to investigate this question it was necessary to go out into

organisations and interview professional analysts who are undertaking or have

undertaken object-oriented requirements engineering for commercial scale

projects.

This broad research question can usefully be broken down into three

subquestions each addressing the use of models in one of the three processes of

the requirements engineering process as outlined below:

Is elicitation influenced by the use of object-oriented modelling methods?

When, how and for whom is object-oriented modelling undertaken?

How is validation performed on object-oriented models?

3.3.3 Unit of Analysis

In order to understand the use of object-oriented models by practising

professionals the bounds of the research and data collection must be set by

determining the unit of analysis - the entity about which data will be gathered

and the context of that entity within each case study. Yin (1994) suggests that the

unit of analysis defines the "case" in a case study. He suggests five possible units

of analysis:

• individuals

• decisions

• programs

• implementation processes

i
i

m

Chapter 3 Research Design 77

• organisational change.

The choice of the unit of analysis in a study is related to the way the questions

and propositions are defined. In this project the main unit of analysis is the

individual experienced requirements engineer or analyst, within the context of

four other elements derived from Yin's elements (see Figure 3.1).

implementation
process decision

process

ANALYST

experience organisational
change

I

Figure 3.1 - Unit of Analysis - the analyst/requirements engineer in context

Implementation Process: the analyst is working in an organisation which has

adopted object-oriented methods for system development. The analyst will be

influenced by how the organisation has gone about implementing that change.

The analyst may be one of many within the organisation who has been co-

opted into the object-oriented program or he/she may be part of a pilot program

within the organisation.

Decision Process: the analyst may have been consulted, or may not, about the

decision to adopt object-oriented methods and may have been through an

organisation sponsored training course.

Chapter 3 Research Design 78

Orgci7iisatio7ial Change: the adoption of object-oriented methods may have

affected some aspects of the organisation's operation or may have affected the

analyst's /unction or place within the organisation.

Experience: an individual analyst may have had specific training in object-

oriented and non object-oriented requirements engineering methods and will

have specific experience with one or more methods for commercial system

specification and modelling.

3.3.4 The Research Approach

The research approach used for this project starts with a conceptual study and

then continues with a method which is a hybrid of action research methods

(Susman, 1983, Baskerville and Wood-Harper, 1996, Baskerville and Wood-

Harper, 1998) and case studies (Cavaye, 1996, Eisenhardt, 1989, Yin, 1994). The

hybrid approach is similar to case study research in that it relies on interviews

and/or observations in the field, it is non-interventionary (and non-

participatory), and it uses multiple sequential-cases. It is similar to action

research in that it is iterative (each case has its own cycle), and it relies on

learning and reflection on findings accumulated so far, both within individual

case cycles and between cycles of multiple sequential-cases, for refining

interview scripts and tiie conceptual process model. It differs from "action-case"

(Vidgen and Braa, 1997) and action research in that there is no intervention or

change as a result of the research process. The use of sequential-cases allows for

cumulatively building a theory based on the rich structured picture that

emerges, as more findings become evident. The intent is not to change what

the participants do but to actively explore and discover what they do and why.

The researcher is active in the data gathering process. The data is not gathered

using neutral or passive techniques like protocol analysis (Ericsson and Simon,

1980, Sutcliffe and Maiden, 1992, Chaiyasut and Shanks, 1994) or "thinking

aloud" protocols or recording interviews purely for later conversational

Chapter 3 Research Design 79

analysis as in grounded theory approaches (Strauss and Corbin, 1990). On the

other hand, the actual protocols used by the participants in going about their

work are of great interest, since it is these activities that the research approach is

trying to identify and describe.

The method uses multiple sequential case studies which involve structured

interviews with individual practising professional requirements engineers

within the specific research domain. The research domain is set by the

conceptual pi ess model (presented in Chapter 4) which is grounded in the

literature. Although a core set of interview questions remains the same for

each case study (especially contextual questions), each case seeks to refine the

conceptual process model by building on previous cases in two main ways:

• By testing for reinforcement of concepts already contained within the

conceptual model

• By revealing new areas for exploration and potential reinforcement

• By re-examining previous interview transcripts to find any further

reinforcement of an emerging category

Reflection on, and re-examination of data collected between cases leads to

learning in the form of revelations and then to revised case documents and

interview scripts. The cyclic and cumulative nature of the method allows for

reinforcement of previous revelations. Reinforced concepts are retained in the

conceptual process model. The process is ongoing but concluded when there

has been enough reinforcement for a representative model of the research

domain being investigated to stand alone or when theoretical saturation has

been reached (Eisenhardt, 1989). Therefore, the outcome of the research method

is a revised conceptual process model (with several revisions during the

process) which represents a theory about the area being investigated which is

initially grounded in the literature and then progressively grounded in data

Chapter 3 Research Design 80

gained from investigating the application of system development methods in

practice.

The purpose of the method (Dawson, 1997, Carroll et ah, 1998) is to provide an

environment for the development of a theory grounded in the iterative and

systematic gathering, structuring and classification of information. The starting

point is a set of research questions exploring the opinions, beliefs and

behaviours of the professional analysts and a conceptual process model

representing the object-oriented requirements engineering process. The

conceptual process model is iteratively refined in the light of accumulated

findings and reflection on those findings. The accumulated findings from

iterations within cases and from multiple cases contribute to a rich structured

picture of a real world situation which contribute to a theory about the use of

models in object-oriented rquirements engineering practice.

The Multiple Sequential-Case Research Cycle

The research approach is based on the theoretical foundations grounded in the

literature as discussed in Chapter 2 of this thesis. The formulation of an initial

conceptual process model (presented in Chapter 4) and research questions

(described above in section 3.3.1) are based on the definitions established from

the relevant literature. The conceptual process model together with the

research questions is used to set up, plan and initiate the subsequent research

cycle (Figure 3.2). This technique is adapted and extended from Miles and

Hubermann (1994) who call this "focussing the collection of data".

Each case study research cycle takes place in a different real world or field

situation. Each situation involves a different instance of the unit of analysis or

practitioner (as defined above in section 3.3.3). Each research cycle involves the

following activities: initiate the cycle, collect the data, evaluate the findings and

go back to the field situation with a refined interview script and questions.

Chapter 3 Research Design 81

After the evaluation of findings at any iteration, the current accumulated

findings and learning are reflected upon. This reflection activity provides two

things: possible further refinements of the conceptual process model and

possible refinements to the interview script in order to explore any emerging

categories.

Pre and Post
Case study
Research

Literature
Analysis
Chapter2

Research
Questions
Chapter 3

Conceptual Process
Model (CPM)
Chapter 4

r 1.Initiate
Case
Study

5. Revise
CPM

& Interview
Scripts

2. Collect
Data

Multiple Sequential-Case Study
Research Cycle

3. Evaluate &
analyse
findings

Theory &
Implications
Chapter!

4. Reflect &
Re-examine

Figure 3.2 - Structure of the Research

As the number of cases increases and the accumulated data increases, an

important part of the reflection process involves the re-examination of

previous cases. This re-examination allows the potential reinforcement of

emerging categories from the previous data.

Chapter 3 Research Design 82

Initiating the Cycle

The approach in this project was to use an evolving set of categories to

structure the qualitative data as it was gathered. Researchers have suggested

that, when using a qualitative approach, a set of initial seed categories may be

generated to guide the research (Miles and Huberman, 1994). This approach has

been used by Fitzgerald (1997) and Wynekoop and Russo (1997) in studies of

systems development methodologies.

In this project a set of seed categories was formulated (detailed in Chapter 5,

section 5.2.3) based on the research questions posed in section 3.3.1 above. These

seed categories together v/ith the initial conceptual process model led to the

design of the initial interview script built around a set of categorised interview

questions. Subsequently, the transcript of each interview was partitioned and

inserted into a template structure reflecting the current set of categories. In each

interview other categories and sub-categories emerged and were incorporated

into interview scripts and template for investigation in the following cases. So

the number of categories grew as the case dies continued.

Data Collection

Although the core of the data was gathered from taped and transcribed in-depth

interviews, several other data sources were used. The case study protocol

(described in detail in Chapter 5, section 5.2) provides five specific contact

and/or clarification points between the researcher and the participant. An

important aspect of this research method is that the case study protocol is

designed for multiple sequential-cases. Reflection between and within case

studies is critical to understanding, describing and categorising an accumulating

body of data.

Chapter 3 Research Design 83

Evaluation and Analysis of Data

Analysis of the data is based on a template into which the raw transcribed data

from the initial interviews was placed. The template was initially organised

into seed categories based on the research questions described above. The

transcription process brought to light emerging categories which were then

incorporated into the template and subsequently into future interview scripts.

The first step in the analysis process is the restructuring of the transcription

into a template under headings representing the categories derived from the

research questions and the conceptual process model. These headings provide

an initial categorisation of the raw data without losing any of the richness,

particularly useful quotes, from the original interview. Later the information

from a follow-up interview is incorporated into the categorisation document

where appropriate.

Reflection and Re-examination

Reflection in the form of examination of the data collected, its categorisation,

and new categories or sub-categories emerging from the transcript data allows

for a consideration of the kind of information being gathered and a

consequential refining of the conceptual process model which in turn leads to

modification of the interview script and template.

Revision of Conceptual Process model and Interview Script

The analysis and reflection on the data gathered for each case study leads to a

modification of the interview script so that emerging categories can be explored

in the next case study. Reflection also may result in the modification of the

conceptual process model if evidence has emerged to warrant such a

modification.

• • • I '• -.

Chapter 3 Research Design 84

3.4 Justification of the Research Approach

The philosophical perspective taken in this research project is a broadly

qualitative, interpretivist approach. The research domain centres on how

practitioners use object-oriented models and methods to specify information

systems. This project uses a descriptive model called a conceptual process

model as a vehicle for developing a theory about the use of object-oriented

models in requirements engineering practice. Data is inherently qualitative

since it is gathered from professional requirements engineers by interviews.

The analysis method is inherently interpretive since the findings are directly

derived by the researcher interpreting the interview transcripts (Walsham,

1995). The position taken by the researcher is that of "outside observer" rather

than "participant observer" (Walsham, 1995).

The approach to analysis taken in this project is broadly hermeneutic in that

the analysis is attempting to discover the meaning of a text analogue as

represented by interview transcripts. The use of sequential-case studies to revise

a conceptual process model can be considered to be an instance of a

hermeneutic circle where understanding is based on the movement from the

whole to the part and back to the whole and where descriptions are guided by

anticipated explanations (Gadamer, 1976). Although this research project uses

interview transcripts as the raw data, analysis is not based on conversational

analysis but on top down categorisations of how the transcripts represent a

description of the situation under study. Therefore, the hermeneutic flavour of

the approach is broad in the sense described by Klein and Myers (Klein and

Myers, 1999) "In Gadamer's description of the hermeneutic circle, the terms

'parts' and 'whole' should be given a broad and liberal interpretation. They can

be parts of a historical story, and then the whole is the proper perspective of the

historical context ...\tk? task] ...becomes one of seeking meaning in context."

Chapter 3 Research Design 85

The choice of research approach should be appropriate for the research being

undertaken (Miles and Huberman, 1994, Neuman, 1994). As discussed in

section 3.2 above several research approaches were considered. The chosen

research approach described in section 3.4 above is a qualitative interpretive

one comprising two components: a conceptual study and a set of multiple

sequential-case studies using qualitative data. This section provides a

justification for the selection of the chosen research methods within the

research design.

3.4.1 The Conceptual Study

The conceptual study component of the research project involves the

development of an initial conceptual process model of object-oriented

requirements engineering grounded in the literature. As discussed in section

3.2. above a conceptual study can be used to review a body of knowledge and

represent that body of knowledge in a conceptual model. The objective of the

conceptual study in this research project is to develop a well-grounded

conceptual process model representing object-oriented requirement

engineering. The emphasis in this model is on how object-oriented models are

used in object-oriented requirements engineering and how the models affect

the processes involved. This conceptual process model provides a description

of what the literature suggests is, or should be, happening in object-oriented

loquirements engineering practice and is used as a foundation for the case

studies that follow.

I
The model is grounded in the literature and as such is one representation of

the current state of theory about the object-oriented requirements engineering

process, its processes, and the relationships between the processes and

particularly the function of object-oriented models in the process and processes.

This model is refined in the case study phase of this research project.

Chapter 3 Research Design 86

3.4.2 The Multiple Sequential-Case Study

The objective of the multiple sequential-case study component of this research

project is to refine the conceptual process model and to address the research

questions.

The refinement of the conceptual process model is based on the sequential-case

studies which actively explore the components of the model with practising

professional requirements engineers thereby revising and further developing

the conceptual process model so that it represents object-oriented requirements

engineering in practice. The emphasis is on the function of object-oriented

models in the process and processes of requirements engineering.

The accumulated findings from iterations within cases and from multiple cases

contribute to a rich structured picture of object-oriented requirements

engineering as practiced which addresses the set of research questions exploring

the opinions, beliefs and behaviours of professional requirements engineers.

The main research question:

"How are object-oriented modelling methods used by practising professionals

in the process of requirements engineering?"

is addressed by three subquestions each of which addresses the use of models in

one of the three processes of the requirements engineering process:

Is elicitation influenced by the use of object-oriented modelling methods?

When, how and for whom is object-oriented modelling undertaken?

How is validation performed on object-oriented models?

Chapter 3 Research Design 87

Each of these research questions is addressed by questions in the interview

scripts used in the case studies.

Qualitative data collection and analysis methods are necessary to investigate

these questions. Ethnographic, action research and grounded theory approaches

were considered inappropriate for the reasons outlined above. The nature of

the research and the type of data needed to be collected determines the manner

in which it is collected. In this case it was decided that the most appropriate

method was sequential-case studies which could provide the accumulation of

data necessary to revise and develop the conceptual process model so that it

would provide a representation of requirements engineering practice. Case

studies, particularly post hoc case studies such as those undertaken for this

project, provide an appropriate way of presenting the researcher's

interpretation of other people's interpretations as expressed in interviews

(Walsham, 1995).

3.5 Summary

This chapter has presented and explained the research design used in this

research project. Candidate data collection and analysis methods were discussed

and the final choice of methods was justified in terms of the specific research

being undertaken in this project.

The research was designed as theory building research and is based on two

components: a conceptual study producing a conceptual process model

grounded in the literature and a set of qualitative case studies which refine the

initial conceptual process model based on findings grounded in practice and

address research questions regarding the opinions, beliefs and behaviour of

professional requirements engineers.

Chapter 4 An Initial Conceptual Process Model 88

Chapter 4

An Initial Conceptual Process Model

4.1 Overview

This chapter develops an initial conceptual process model of object-oriented

requirements engineering. Although there are several general requirements

engineering process models and several object-oriented development

methodologies described in the literature (and outlined in Chapter 2 of this

thesis) there are no specifically object-oriented requirements engineering

process models which exist independently of the system development

methodology in which the requirements engineering process is being used.

The conceptual process model is proposed as a means of describing the process

of object-oriented requirements engineering based on the literature in the two

key areas: object-oriented models and methods; and general (non object-

oriented) requirements engineering frameworks. The purpose of the initial

conceptual process model in the research project is to provide a theoretical

description of the object-oriented requirements engineering process as the basis

Chapter 4 An Initial Conceptual Process iModel 89

for subsequent fieldwork in the form of sequential-case studies. Interview

scripts and data gathering methods will be explicitly based on the research

questions and the view of object-oriented requirements engineering embodied

in the model.

The conceptual process model builds on the definitions of key concepts within

object-oriented requirements engineering as discussed in sections 2.5 of this

thesis. The concepts in the model will be incorporated in interview scripts and

then revised based on the findings from the fieldwork. This means that the

model will go through several revisions in the course of subsequent fieldwork

(described in Chapters 5 and 6 of this thesis) as it is modified to reflect the

findings concerning object-oriented requirements engineering in practice. The

final version of the conceptual process model will make a significant \

contribution to theory by providing a theoretical model for understanding and ;

describing the specific domain of object-oriented requirements engineering as it j

is practiced.

This chapter provides a more detailed discussion of the concepts first

introduced and outlined in Chapter 2 of this thesis. These concepts represent

the two domains encompassed by a conceptual process model of object-oriented

requirements engineering. That is, object-oriented modelling methods and

requirements engineering process models and frameworks. Firstly, there is a

deeper analysis of the object-oriented methods which were described in section

2.5 with a particular emphasis on modelling. The common characteristics of

models and modelling activities used in twelve object-oriented methods are

summarised in Tables 4.1a, 4.1b and 4.2. These tables provide considerably more

detail than Tables 2.1 and 2.2. This detail provides the necessary foundation for

the development of the conceptual process model. Secondly, several non

object-oriented process models or frameworks for requirements engineering are

described and analysed, again in greater detail than the outline provided in

section 2.2 of Chapter 2. Finally, the concepts in these two areas are used to

Chapter 4 An Initial Conceptual Process Model 90

develop an initial conceptual process model of object-oriented requirements

engineering.

4.2 Categorising Object-Oriented Models for Requirements

Engineering

All system development methodologies use various models in requirements

specification. Object-oriented models have been categorised in the literature in

various ways. Three major contributors to the categorisation of object-oriented

models are Ian Graham (1994), Brian Henderson-Sellers (1997) and Anthony

Simons (2000). The views of these authors are outlined in this section.

Regarding object-oriented methodologies, Graham (1994) suggests that the

conventional wisdom in software engineering holds that a system should be

described in three dimensions - data, process and dynamics or control. The data

dimension corresponds to logical, static data models such as entity-relationship

models. The process dimension covers Data Flow Diagrams (DFDs) or other

process diagrams and the dynamics or control dimension is described by state

diagrams or entity life history notation. Graham (1994) further suggests that

there are three types of object-oriented methods, ternary methods, unary

methods and hybrid methods of both types. Ternary methods mimic existing

system development methods and have three separate notations for data,

dynamics and process e.g. Object Modelling Technique, (Rumbaugh et al., 1991),

Ptech, (Martin and Odell, 1992). Unary methods have one notation since the

concept of an object inherently combines data and processes e.g. Responsibility

Driven Design (Wirfs-Brock et al., 1990), Object Oriented Analysis (Coad and

Yourdon, 1991). Hybrid methods encompass characteristics of both ternary and

unary models e.g. MOSES, (Henderson-Sellers and Edwards, 1994), SOMA,

(Graham, 1994).

Chapter 4 An Initial Conceptual Process Model 91

Henderson-Sellers (Henderson-Sellers, 1997) classifies object modelling

similarly but in two dimensions - static and dynamic. The static dimension

includes the data and process modelling defined by Graham and the dynamic

dimension corresponds directly to the dynamics and control dimension as

defined by Graham. Henderson-Sellers (Henderson-Sellers, 1997) describes

hybrid methodologies in terms of possible object-oriented/functional hybrid

approaches. Hybrid methodologies can either be F-O-O approaches based on

functional analysis which is transferred to an object-oriented view for design

and implementation or O-O-F approaches where object-oriented analysis and

design is followed by a functional (procedural) programming implementation

(Henderson-Sellers, 1997).

Simons (Simons, 1998) proposes several models as part of the Discovery

Method, a third generation development method for object-oriented systems.

In the Discovery method design models evolve from analysis models and

psychological reinforcement techniques are used to focus the developer's

attention on relevant aspects of the system at each stage. Task modelling and

narrative modelling, similar to use cases and scenarios, are heavily used. Data

modelling in Discovery uses the rules of entity-relationship modelling, and

responsibility analysis and interaction modelling is similar to the dynamic

modelling described by Graham (Graham, 1994) and Henderson-Sellers (1997)

All of the models identified by these three authors can be categorised as either

static data models or dynamic event and state transition models. These two

categories are used in the following section to structure the discussion and

summary of common modelling activities for object-oriented requirements

engineering.

Chapter 4 An Initial Conceptual Process Model 92

4.3 Static and Dynamic Modelling for Requirements Engineering

Several of the most commonly used object-oriented methods were described in

detail in Chapter 2, section 2.5. An analysis of the characteristics of these

methods reveals the following activities are often included in the static object-

oriented modelling process:

• identifying and modelling objects and/or classes

» identifying and modelling object interaction and relationships between

objects

• identifying and modelling inheritance relationships and hierarchies

• identifying and modelling responsibilities for objects and/or classes

• identifying and modelling processes and data flows

• modelling transactions using use cases, scenarios or task scripts.

Table 4.1a summarises the object/class, relationship/association and

inheritance models found in static modelling approaches. Table 4.1b

summarises the responsibility, process and use case/scenario models found in

static modelling approaches. It should be noted that most of the methodologies

categorise process models and use case/scenario models as static models as

distinct from dynamic models which are generally seen as event or state-

transition models.

Further analysis of the characteristics of these methods reveals the following

activities are often included in the dynamic object-oriented modelling process:

• identifying and modelling object states and transitions

• event modelling

• modelling message passing and communication between objects.

Chapter 4 An Initial Conceptual Process Model 93

Table 4.2 summarises the state and transition, event, and message-passing

models found in dynamic modelling approaches.

Method

Shlaer &
Mellor

Coad &
Yourdon
Responsibility
Driven Design
OMT
Booch Method

OOSE

MOSES
SOMA
Discovery

OPEN
UML

Objects/class models

Information
Structure Diagram;
Class Diagram
Class and objects
diagram - layers 1,4
Class card

Object model
Class diagram; object
diagram
Requirements model;
analysis model
Object/class model
Object model
Data model

OML Metamodel
Class diagram;
object diagram

Relationship or
association models
Information Structure
Diagram; Subsystem
Relationship Model
Class and objects
diagram - layers 2,4
Class card with
collaborations
Object model

Requirements model;
Analysis model
Object/class model
Object model
Collaborations;
system layering
OML Metamodel
Object diagram

Inheritance models

Inheritance Diagram

Whole-part hierarchy

Hierarchy graph

Object model

Inheritance hierarchy

Inheritance model
Object model
Data model

OML Metamodel
Object diagram

Table 4.1a A summary of object-oriented methods and their static models - part (a).

Method

Shlaer &
Mellor
Coad &
Yourdon
Responsibility
Driven Design
OMT
Booch Method
OOSE
MOSES

SOMA
Discoverv

OPEN
UML

Responsibility
models

Class card with
responsibilities

Analysis model
Service structure
model
Wrapper objects
Responsibility
cards

Object diagram;
use case

Process models

Action data-flow diagram

Class and objects diagram -
layer 3

Functional model
Process diagram
Graphical use case

Data flow diagrams

Use Case
Scenario models

Scenarios
Life cycle script
Use case
Scenarios

Task scripts
Narrative model;
Task scripts
Scenario class diagram
Use case

Table 4.1b A summary of object-oriented methods and their static models - part (b).

„ i

Chapter 4 An Initial Conceptual Process Model 94

Method
Shlaer & Mellor

Coad & Yourdon

Responsibility
Driven Design
OMT
Booch Method
OO3E

MOSES
Ptech
SOMA

Discovery

OPEN

UML

state & transition models
State Model; object life cycle

Object-state diagram; service
chart

Dynamic model; State chart
State transition diagram
State transition graph

Object charts
Event diagram
State transition diagram

State diagram; activity
diagram
State model

Statechart diagram; activity
diagram

event models
State transition
diagram;
Service chart

Dynamic model
Event diagram
Interaction
diagram
Event model
Event diagram
State transition
diagram
State diagram

State model

Event
hierarchies;

Message passing models
Object communication
model; object access model
Class and objects diagram
- layer 5
Class card with
collaborations

Class diagram
Interaction diagram

Event model
Event diagram
Layers and links

Interaction diagram

Collaboration diagram;
Sequence diagram
Interaction diagram;
message trace diagram

Table 4.2 A summary of object-oriented methods and their dynamic models

The static and dynamic models represented in Tables 4.1a, 4.1b and 4.2 are the

types of models this research project expects to find being used in practice by

professional requirements engineers. The concepts of static and dynamic

modelling will be incorporated into the initial conceptual process model

developed below in section 4.5.

4.4 Requirements Engineering Process Models and Frameworks

Having discussed the object-oriented modelling characteristics which need to be

considered for the development of a conceptual process model of object-

oriented requirements engineering it is also necessary to consider appropriate

characteristics from requirements engineering process models and frameworks.

As previously stated in Chapter 2 there are many definitions of requirements

engineering (Loucopoulos and Karakostas, 1995, Macaulay, 1996) and a useful

definition (Dawson et alv 1995) is:

Chapter 4 An Initial Conceptual Process Model 95

"Requirements engineering is a process of elicifation, modelling, and

validation of information system requirements which provides a

specification which is the basis for the design and implementation of

that information system."

It is generally agreed that requirements engineering involves the analysis of a

problem (Pohl, 1994) with a view to developing a set of unambiguous

statements of requirements (Loucopoulos and Karakostas, 1995) describing what

is to be designed rather than how it is to be designed (Macaulay, 1996).

Traditional systems development approaches incorporate requirements

specification as a separate phase within larger systems development

methodologies. More recently there have been proposals for specific

requirements engineering frameworks that can exist independently of the

system development methodology with which they are used. The following

sections describe some of the process models and frameworks used to describe

the requirements engineering process (sometimes called systems analysis).

4.4.1 Traditional Systems Development Frameworks

Traditional approaches to requirements definition within systems

development methodologies involve similar phases which attempt to

understand a specific system development problem within a specific scope or

problem domain and ultimately produce a specification or requirements

document which is the basis of subsequent design and implementation

(Avison and Fitzgerald, 1995). The traditional Systems Development Life Cycle

(SDLC) developed and recommended to the National Computing Centre in the

United Kingdom in the late 1960s (Avison and Fitzgerald, 1995) proposed three

phases for requirements determination: feasibility study, system investigation

and systems analysis. By the end of these three phases user requirements will

have been elicited from clients, functional requirements will have been defined

Chapter 4 An Initial Conceptual Process Model 96

and data and process models will have been developed for the design and

implementation phases. Similar top down approaches often described as

waterfall models such as Structured Systems Analysis (Gane and Sarson, 1978)

and Structured Systems Analysis and Design Method (SSADM) (Downs et al.,

1988) (see Figure 4.1), involve functional decomposition, feasibility or system

studies and systems analysis which result in requirements definitions based on

standard models such as data flow diagrams, entity-relationship models and

structured English.

Phase 1
Feasibility
study

Stage 01
Problem
definition

Stage 02
Project
identification

Stage 1
Analysis of systems
operations and
current problems

Stage 2
Specification of
requirements

Stage 3
Selection of
technical options

Stage 4
Data design

Phase 3
Systems
design

Stage 5
Process design

Stage 6
Physical design

Figure 4.1 SSADM Feasibility Hierarchy (Downs et al., 1988) page 13

4.4.2 Viewpoint Approaches

Viewpoint approaches to requirements engineering emphasise the

collaborative nature of requirements definition. These approaches specifically

Chapter 4 An Initial Conceptual Process Model 97

address issues associated with conventional requirements capture techniques

which "...result in a linear communication structure in which each stakeholder

group often understands and accepts responsibility only for the part of the

application domain relevant to their specific interests." (Darke and Shanks,

1997). Viewpoint development is the process of identifying and representing

requirements from multiple stakeholder perspectives (Finkelstein et al., 1992,

Darke and Shanks, 1996, Nuseibeh et al., 1994) and has been developed to

support the requirements capture and representation processes by providing a

mechanism for partitioning problem domains and accumulating domain

information and requirements expressions. The Darke and Shanks model

(Darke and Shanks, 1996) is reproduced in Figure 4.2. The elements of the

model are:

• Viewpoint development role: identifies the intended use of viewpoint

development - requirements acquisition, requirements modelling, or both

phases

• Viewpoint agent: a particular role or view of the problem domain adopted

by one or more stakeholders

• Viewpoint representation: an informal, semi-formal or formal

representation of a viewpoint associated with a particular agent

• Viewpoint development process: defines essential activities carried out in

viewpoint development - viewpoint identification, viewpoint

representation, intra-viewpoint analysis and inter-viewpoint comparison.

Chapter 4 An Initial Conceptual Process Model 98

viewpoint
development

role y

viewpoint
representation

Viewpoint
Development

viewpoint
agent

viewpoint
development

process

Figure 4.2 Viewpoint development framework (Darke and Shanks, 1996)

4.4.3 Macaulay's Model

Although Macaulay (1996) presents a general model of the requirements

process (see Figure 4.3) she suggests that there is not one single process model

and that "...different situations require different process models". As an

illustration Macaulay (1996) describes seven different models of the

requirements engineering process in Chapter 6 of her book Requirements

Engineering. These models are described in the context of a requirements

engineer's "portfolio" of techniques. She suggests that the customer-supplier

relationship will determine the nature of the requirements engineering process

and that the requirements engineering process will in turn determine the

contents of the portfolio. The different process models discussed include

prototyping, soft systems methodology, Joint Application Development (JAD),

Collaboration Responsibility Cards (CRC), focus groups and co-operative

evaluation.

Chapter 4 An Initial Conceptual Process Model 99

Problem
Analysis

I
Feasibility &
choice of
options

Analysis and
modelling

I
Requirements
documentation

Figure 4.3 Macaulay's general process model, (Macaulay, 1996) page 7

4.4.4 Pohl's framework

Pohl (1994) regards requirements engineering as an interdisciplinary research

area and presents a framework for requirements engineering which "... can be

applied to the analysis of existing RE practice ... a first step towards a common

understanding of RE". He proposes three dimensions of requirements

engineering: specification; representation; and agreement, arising from a study

of the literature.

1:1

Chapter 4 An Initial Conceptual Process Model 100

Specification

complete

opaque

desired
output

informal semi-formal formal
Representation

Figure 4.4 Pohl's three dimensions of requirements engineeriiig (Pohl, 1994), page 246

Pohl's specification dimension (see Figure 4.4) involves taking a specification

from the opaque (based on operational need) to a complete specification by an

iterative process of definition and validation. The requirement specification

should state what, not how, a system should be built and the specification

should be unambiguous, complete, verifiable, consistent, modifiable, traceable

and usable.

The representation dimension deals with possible different representations

based on three categories:

• Informal languages - arbitrary graphics, natural language, descriptions by

examples, sounds, and animations which provide the advantage of being

user-oriented and expressive

Chapter 4 An Initial Conceptual Process Model 101

I
i

I

I

• Semi-formal languages - ER diagrams, DFDs etc which provide the

advantage of structural graphical visualisation, clear representation ("a

picture is worth a thousand words"), a widely used quasi standard with

some formal semantics which can be used for reasoning

• Formal specification languages - e.g. VDM, Z, ERAE, and Telos which

provide the advantage of richer, system-oriented well-defined semantics

from which it is possible to generate code.

Pohl's (1994) model suggests that a specification becomes more formally

expressed as it is developed towards the final "desired output".

The agreement dimension has elements of the viewpoint approach discussed
•

above in section 4.4.2 in that some requirements are shared, but many

requirements exist only within the personal views of the people involved

stemming from various roles (systems analyst, user, manager, developer etc).

Pohl defines a "common system specification" or agreed specification as the

ultimate goal of the process. That is, that the requirements engineering process

tries to increase agreement. Co-existing specifications (from different personal

views) are expressed using different specification languages. He further suggests

that the identification of different views of the same system can have positive

effects. That is, they can provide a good basis for requirements elicitation and

assist in early validation and also in detecting additional requirements.

4.4.5 Loucopoulos and Karakostas' framework

A useful framework of the requirements engineering process has been

proposed by Loucopoulos and Karakostas (1995). It is shown in Figure 4.5. In

this framework the requirements engineering process can be broken down into

three sub-processes; elicitation, specification and validation, which deal with

two external entities; the user and the problem domain.

Chapter 4 An Initial Conceptual Process Model 102

The purpose of elicitation is to obtain as much knowledge as possible about the

problem in order to build a specification for the solution to the problem. Input

comes from the user and existing information about the problem domain.

Input to the requirements elicitation process includes:

« Specific user requirements

• Requirements of other stakeholders in the larger system (e.g. an

organisation) which will host the software system

• Domain expert knowledge including literature about the domain

• Existing and similar software systems in that domain or other domains

User
Requirements

User Feedback

Requirements
Specifications

Knowledge

Request more
knowledge

Models to
be validated
by user

Requirements
models

Domain
Knowledge

Problem
Domain

Validation
Results

Domain
Knowledge

Figure 4.5: A framework for requirements engineering processes: Loucopoulos and Karakostas
(1995) page 21

The deliverables from the elicitation process are usually not prescribed but

Loukopoulos and Karakostas suggest that the whole requirements engineering

process is a model creation process and the outcomes of the elicitation process

are the conceptual models which are domain-dependent. As the requirements

Chapter 4 An Initial Conceptual Process Model 103

ft

engineering process progresses, the conceptual models are seen to become more

software oriented than problem domain oriented.

The specification sub-process provides specifications and models for validation

by the user and against the original problem domain. The purpose according to

Loucopoulos and Karakostas is twofold:

• The specification model is used as an agreement between the software

developers and the users on what constitutes the problem which must be

solved by the software system

• The specification model is also a blueprint for the development of the

software system

This process involves both analysis of requirements knowledge and synthesis

of the knowledge into a coherent and logical requirements model.

I

The validation process is an ongoing process that proceeds in parallel with

elicitation and specification and aims to ensure consistency, accuracy and

relevance in the current models with the client's requirements. The validation

process usually involves setting up and performing tests on the current version

of the requirements model. The aim of validation is to produce a requirements

model that is consistent with the users' requirements and expectations.

In all three sub-processes, one process does not end when the next process

starts. Rather, each process relies on feedback from the other processes

throughout the requirements lifecycle.

Chapter 4 An Initial Conceptual Process Model 104

4.5 An Initial Conceptual Process Model

| The fieldwork for this research project is based on the refinement of a

conceptual process model of object-oriented requirements engineering. The

initial conceptual process model proposed in this section contains

characteristics of object-oriented methods as described in the literature and

summarised in Tables 4.1a, 4.1b and 4.2 above within a framework based on the

common characteristics of several requirements engineering process models

described in section 4.4 above. All the models or frameworks discussed in

section 4.4 include some or all of the activities, or processes, of knowledge

elicitation (or knowledge acquisition), requirements modelling (or

requirements representation) and requirements validation. These concepts are

incorporated into the initial conceptual process model. The model is most

heavily influenced by the framework proposed by Loucopoulos and Karakostas

(1995) because their framework deals specifically with models and the

modelling process which are concepts addressed in the research questions of

this project.

I In the traditional SDLC process model, requirements definition is just one

phase of a larger methodology intended to address the entire system

development process and as such does not provide the detail required for a

requirements engineering process model. The viewpoint approach contains

concepts of knowledge acquisition or elicitation and requirements

representation or modelling together with a contextual element encompassing

stakeholder or user requirements within some problem domain. This model

was considered to be inappropriate for this research project and these research

questions since the emphasis in viewpoint development is on the early stages

of requirements definition and the framework is designed to support

acquisition and/or modelling activities rather than provide a description of the

modelling process itself within the requirements engineering process.

I ,

Chapter 4 An Initial Conceptual Process Model 105

I
1
I
I
1
I

I
I
I

Macaulay's (1996) general model does not provide modelling of the interaction

with stakeholders or users and the specific problem domain. This is necessary

in understanding the use of models and the modelling process. Pohl's (1994)

framework is comprehensive in terms of interaction and multiple dimensions

for understanding tho requirements engineering process but, like the

viewpoint approach, it is not a true process model in that it does not provide a

description of the modelling process itself within the requirements engineering

process.

The framework proposed by Loucopoulos and Karakostas (1995) provides a

comprehensive view of the requirements engineering process. It describes the

requirements engineering process as a "model creation process" as discussed in

section 4.3 above and incorporates a description of where the models are

produced in the process. It also incorporates most of the characteristics of the

other process models/frameworks, including the view of the users or

stakeholders within a specific problem domain and an identification of the

specific processes of elicitation, modelling and validation. The emphasis in this

project on the modelling aspects of the requirements engineering process as

embodied in the research questions points to the Loucopoulos and Karakostas

(1995) framework as being the most suitable process model to use as the basis

for the development of an object-oriented requirements engineering process

model to be used in field research.

The initial conceptual process model proposed in this research project, revised

from (Dawson and Swatman, 1998) and adapted from Loucopoulos and

Karakostas (1995), is presented in Figure 4.6. This model represents the

requirements engineering process as consisting of three processes: elicitation,

modelling and validation, which interact with users and a specific problem

domain. Each of these processes is described in detail later in this section.

Information and artifacts (e.g. model diagrams, documentation etc) produced in

Chapter 4 An Ini; tual Process Model 106

one process are often fed back into other processes for clarification or
refinement.

The initial conceptual process model in figure 4.6 should be read in

conjunction with the associated legend in figure 4.7. Much of the descriptive

power is in the symbols used in the model and depicted in the legend.

user
requirements

models

Predetermined &
Available Resources

oroblem
domain

object/class
identification

state transition/event
identification

Domain Models

static
models

dynamic
models

models
validation
results

domain
knowledqe

Figure 4.6 The Initial Conceptual Process Model

Chapter 4 An Initial Conceptual Process Model 107

Legend

an ill-defined information
source

a fairly well-defined
information source

the transformation of an ill-
defined information source
to a fairly well-defined
information source using
clarification and feedback

an RE subprocess

interaction between an
external actor or artefact (user
or problem domain) and the
analyst(s)

flow of ideas and information
within the cognitive domain of
the analyst or analysts

Figure 4.7 Legend for the Initial Conceptual Process Model

Each of the processes of the requirements engineering process is described in

the remainder of this section.

4.5.1 The Elicitation Process

This process is based on input from three sources:

• knowledge from (as yet) ill-defined user requirements;

• knowledge from an ill-defined problem domain;

• predetermined and available resources such as hardware and software

already available to the client or methods and tools already familiar to the

client and the analyst.

These sources are implicit in the Loucopoulos and Karakostas framework as

feedback loops and constraints based on existing systems, standards, and the

interests of other stakeholders.

Chapter 4 An Initial Conceptual Process Model 108

This elicitation process involves the transformation a n c j clarification of user

requirernents and problem domain knowledge based on feedback from both

domains until a view suitable for modelling is developed. This transformation

is represented explicitly in the model by the hollow arrows. This

transformation is analogous to the progressive Resolution of an image being

downloaded from the Internet from low resolution, containing iew pixels, to

higher and higher resolution.

4.5.2 The Object-Oriented Modelling Process

The acquired knowledge about the user requirements and the problem domain

(represented as rectangles in the model) is then Used as the basis of the object-

oriented modelling process. The initial conceptual process model explicitly

shows the static and dynamic models that are often produced during object-

oriented modelling. The static models represent information about objects,

classes, responsibilities and processes and include Use case or scenario models as

summarised in Tables 4.1a and 4.1b. The dynamic models represent state

transitions, events and message passing characteristics as summarised in Table

4.2.

4.5.3 The Validation Process

In the validation process the models produced during the object-oriented

modelling process are validated against the user's original requirements based

on the knowledge about the problem domain. The process of refining the

models by validation is based on feedback. Feedback from the user may

necessitate reassessment and revision of the models for further validation. This

is shown explicitly in the model. Also explicit in this process is internal

validation by the analyst or analysis team against the original user

requirements and problem domain information which was formulated during

the elicitation process.

Chapter 4 An Initial Conceptual Process Model 109

4.6 Summary

This chapter proposed an initial conceptual process model to be used in this

research project. This model represents what the literature suggests is, or

should be, happening in object-oriented requirements engineering. The initial

conceptual process model is developed from the static and dynamic

characteristics of object-oriented modelling and Loucopoulos and Karakostas1

general requirements engineering framework.

According to the research design this model will be progressively refined using

sequential-case studies of professional requirements engineers. The

consequence is that the final version of the model represents a view of

modelling activities in object-oriented requirements engineering that is not

only grounded in the literature but also grounded in practice.

The model is used in Chapter 5 to develop interview scripts and analysis

templates used in the case study field work. The progressive development of

several versions of the model is used in Chapter 6 as a method for

demonstrating and representing findings from the fieldwork.

Chapter 5 Case Studies 110

Chapter 5

A Multiple Sequential-Case Study of

Modelling for Object-Oriented

Requirements Engineering

5.1 Overview

The case study phase of this research project is intended to empirically validate

the concepts embodied in the conceptual process model developed in Chapter 4

of this thesis. Six case studies of object-oriented requirements engineering in

practice were conducted in order to investigate the applicability of the

conceptual process model and to revise the model where appropriate based on

the investigation of professional practice in requirements engineering. The case

studies were carried out in an explicitly sequential manner so that preliminary

analysis of the data from each case would contribute to the progressive

refinement of the conceptual process model by building on previous case study

findings. This progressive refinement was based on the following chain of

activities: first, looking for reinforcement of concepts already concerned within

the conceptual model; second, by following up any new or emerging concepts

Chapter 5 Case Studies
g • — • — •

revealed by a case; and third, by re-examining previous cases to find any further

reinforcement of an emerging category. This progressive data collection and

analysis is integral to the research methodology and is explicit in the case study

protocol described in section 5.2 below.

Whereas the initial conceptual process model developed in Chapter 4 of this

thesis provides a representation of object-oriented modelling for requirements

engineering as described in the literature, the research questions explore the

opinions, beliefs and behaviours of professional analysts engaged in object-

oriented requirements engineering. The research questions addressed by the

case study phase were formulated as one main research question and three sub

questions in Chapters 1 and 3 as follows:

How are object-oriented modelling methods used by practising professionals in

the process of requirements engineering?

• Is elicitation influenced by the use of object-oriented modelling

methods?

• When, how and for whom is object-oriented modelling

undertaken?

• How is validation performed on object-oriented models?

As described in Chapter 3, a multiple sequential-case study was used in order to

accumulate and progressively analyse data so that the conceptual model could

be revised based on findings in terms of reinforced or new concepts, as they

became evident. The purpose of this approach is to specifically incorporate

current findings and accumulated data into each case rather than collect the

same type of data from all the cases and analyse it post hoc in isolation. The case

studies were based on one-to-one interviews with practising requirements

engineers who variously described themselves as systems analysts, consultants

Chapter 5 Case Studies 112

or developers. A case protocol was developed and based on the research

method which was presented in section 3.3.4 of Chapter 3.

The two main documents used for collection and preliminary analysis of case

data were structured open interview scripts, which were modified for each case

based on the findings so far, and an analysis template containing specific

categories into which raw transcription data were placed. Data were also

collected before and after the main interview as described in section 5.2.3 below.

The sequential-case studies focus on the use of models by practising

professionals in the requirements engineering phase of systems development.

The sequential-case approach

• allowed the data collected from each case to inform subsequent cases in the

form of modified interview scripts and categorisation templates

• facilitated a proactive investigation of object-oriented requirements

engineering by an active exploration of emerging concepts from cases as they

became evident

• strengthened the research findings by allowing for later explicit cross-case

comparison.

Data collected was qualitative in the form of interviews, and qualitative data

analysis methods (Neuman, 1994, Miles and Huberman, 1994, Myers, 1999)

were employed for the analysis of the case study data. The main data collection

part of the interview was structured around the research questions and the

three processes represented in the conceptual process model proposed in

Chapter 4. The unit of analysis under study in any one case was a particular

requirements engineer or systems analyst within the context of a specific project

for a specific client. Interview transcripts and follow-up interviews provided a

rich picture of the perceptions of a participant's view of the requirements

engineering process and the concepts represented in the conceptual model.

Chapter 5 Case Studies 113

Preliminary cross-case analysis (Miles and Huberman, 1994, Cavaye, 1996)

identified similarities and differences in perceptions and provided categories

and concepts for further investigation in subsequent cases.

This chapter explains the case study protocol and the process that was followed,

including the selection of cases, the data collection methods used, and the

structure of the case study contexts in the form of case study descriptions. The

six case study descriptions are presented in sections 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 of

this chapter. The full cross-case analysis of the case study data which resulted in

the evolution of the conceptual model to its final version appears in Chapter 6.

Chapter 7 examines the implications of the findings embodied in the final

conceptual process model and proposes a theory for understanding the practice

of both to object-oriented requirements engineering in particular and

requirements engineering in general.

5.2 The Case Study Protocol

5.2.1 The Case Study Process

The six case studies were conducted in four different organisations during late

1998 and early 1999. For each case study the unit of analysis as described in

Chapter 3 was a professional consultant acting in the role of a systems analyst or

requirements engineer for a client outside the organisation. That is, for each

case the participant was representing two organisations: his or her own

consulting organisation and a client organisation for which the systems

development project was being undertaken. The four consulting organisations

participating in this study were small to medium consulting companies and the

six client organisations were from various industry sectors. The system

development projects themselves differed in size, in the way in which they

were conducted, and the nature of the systems being built.

Chapter 5 Case Studies 114

5.2.2 The Participants

As is common with this type of qualitative research, the case studies were

opportunistically selected in that the participants were used because they were

available and willing to be part of the study. Participants were recruited through

industry contacts. Some participants provided contacts for subsequent

participants. The lack of available professionals working in the field of object-

oriented requirements engineering in Melbourne where this study was

undertaken means that there was no attempt to select participants based on

specific background characteristics. The common factor is that all the

participants were currently working in the field of object-oriented requirements

specification and had recently completed an object-oriented requirements

specification which they were willing to discuss. Contextual information such

as job description, number of years spent doing requirements engineering,

number of years doing object-oriented requirements engineering, whether the

consultant had undergone formal training was gathered for each consultant.

This information and the projects each participant discussed are summarised in

Table 5.1.

Case

1
2

3
4
5
6

Job Title

Operations manager
Principal Consultant

Senior Consultant
Director & partner
Consultant
Technical Manager

Years
in RE

3.5 yrs
15 yrs

12 yrs
22 yrs
14 yrs
12 yrs

Years
in OORE

Oyrs
10 yrs

4 yrs
13 yrs
14 yrs
5 yrs

Client

Federal Govt
State Govt

Telecommunications
Software developer
Software developer
Software developer

Project

Complex Technical
Web based
transactions
Fault Mgt System
Insurance
Life Insurance
Stockbroking

Table 5.1 Background Information for each consultant

Chapter 5 Case Studies 115

5.2.3 The Data Collection and Analysis Method

The approach to data collection in this project was to use an evolving set of

categories to structure the qualitative data as it was gathered. Firstly, a set of

seed categories (Miles and Huberman, 1994, Fitzgerald, 1997, Wynekoop and

Russo, 1997) was formulated based on the initial conceptual process model (see

Table 5.2) and these were used to formulate the initial structured interview

script (see sample questions in column 2, Table 5.2 and complete script in

Appendix A). The seed categories are based directly on the research questions

posed in Chapter 3. These seed categories together with the initial conceptual

model led to the design of the initial interview script built around a set of

categorised interview questions.

Seed categories
Elicitation
How is knowledge elicitation
influenced by the use of object-
oriented modelling methods?

Modelling
When, how and for whom is
object-oriented modelling
undertaken?

Validation
How is validation performed
on object-oriented models?

Example questions
Is knowledge elicitation explicitly undertaken?
Is it seen as object-oriented?
Is it seen as sequential or opportunistic?

When does modelling begin?
Which (how many) models are produced?
How are the models used?
Who are they produced for?
Which models, if any, are shown to the user?

When does the validation process begin?
Which models are used in the validation process?
When is the validation process considered to be complete?

Table 5.2 Seed Categories and example questions

Subsequently, the transcript of each interview was partitioned and distilled into

a template structure or categorisation document reflecting the current set of

categories. In each interview new categories and subcategories emerged and

were incorporated into interview scripts and categorisation documents for

Chapter 5 Case Studies 116

investigation in following cases. So the number of categories grew as the case

studies continued.

The analysis of the findings for each case was based on the following chain of

processes:

• Revelation of emergent new categories, or sub categories, during an

interview

• Reinforcement of previously emergent or seed categories by explicit

questioning, during an interview

• Re-examination of previous interview templates and transcripts to find any

further reinforcement of an emerging category

For example, the question "Do you see knowledge elicitation as object-oriented?

That is, do you start thinking in terms of objects while you are doing

knozvledge elicitation?" in Case 3 led to a detailed discussion of mental

modelling by the analyst. Questions addressing this idea, oi' emergent category,

of "mental modelling" were incorporated into the subsequent interview scripts

for further investigation in subsequent cases. Further, previous case transcripts

were re-examined to see if evidence of mental modelling was apparent.

Although the core of the data was gathered from taped and transcribed in-depth

interviews, several other data sources were used. The types of data, sources of

data, and collection methods are summarised in Table 5.3

Chapter 5 Case Studies 117

Type of data
Overall contextual
data

Background data
Qualitative data
Clarification

Final clarification

Source of data
Initial interview

Core Interview
Core Interview
Follow-up interview

Summary report

Collection Method
Made by phone and followed up by email to set tine
context of the project and the participant's role in
the project
First part of taped interview
Major part of taped interview
Further questions in need of clarification which
emerged from the transcription process
A report submitted to the participant with a final
request for comment from participant

Table 5.3 Types and sources of data and their collection methods

Firstly, an initial contact was made with a person in an organisation where

requirements engineering might be taking place or, more often, where

requirements engineering had taken place. This initial contact often resulted in

setting up confidentiality agreements between the researcher, participant and

the participant's client.

This phase also involved an informal discussion with the participant or contact

person within the organisation outlining the research process that the

pa-ticipant was required to be part of. This often included preliminary

information about:

• the participant's professional history

• the participant's place in the organisation

• some quantitative information on the client organisation and business area.

Another outcome of this first discussion was an agreed plan of action in terms

of an agreed schedule and set of procedures.

The next step was to arrange an interview with the participant. The interview

was a structured, open style interview using a script based on the research

questions and the current version of the conceptual process model and usually

lasted for forty minutes to an hour. The final annotated interview script is

Chapter 5 Case Studies 118

included as Appendix A. The interview was taped with the participant's

permission. All participants agreed to taped interviews. As soon as possible

after the interview the interview tape was transcribed. During the transcription

process a list of questions and clarifications were noted for a follow-up

interview. This follow-up interview was conducted either over the phone or by

email depending on the participant. Most participants preferred email.

The transcript of the interview text was restructured into a template, or

categorisation document, under headings derived from the research questions

and interview script. The transcription process brought to light emerging

categories which were then incorporated into the template and subsequently

into future interview scripts. These headings provided categorisation of the raw

data without losing any of the richness, particularly useful quotes, from the

original interview. Later, the information from the foilow-up interview was

also incorporated into the categorisation document where appropriate.

After an individual categorisation document was finalised a summary was

written in "anonymous style" and sent to the participant for any final input or

comment. "Anonymous style" is a writing style which presents the material in

publishable state with regard to confidentiality so the participant can see how

the material will be presented when published. The concept of anonymous

style arose from Case 1 where the participant wanted to see how material

concerning a highly confidential government client might be published. This

style of presenting the final summary was explained to, and welcomed by, the

other participants and was used in all other cases.

Finally, there was reflection on the data collected and its categorisation,

particularly in the light of previous case studies. This allowed for a

consideration of the kind of information being gathered and a consequential

refining of the interview script, categorisation document and its set of

categories.

Chapter 5 Case Studies 119

This case study protocol provided at least four specific contact and/or

clarification points between the researcher and the participant which added

structure to the research process. An important aspect of this research method

is that the case study protocol is designed for multiple sequential-cases.

Reflection between and within case studies is critical to understanding,

describing and categorising an accumulating body of data.

5.2.4 The Structure of the Case Study Descriptions

The data collected in the six case studies have been compiled into six case

descriptions which each consist of five sections. The six case study descriptions

appear as sections 5.3, 5.4, 5.5, 5.6, 5.7, and 5.8 of this chapter.

The structure of each case study description is as follows:

1. The Consultant and Consulting Organisation

2. The Client and the Project

3. The Development Methodology

4. Project Documentation

5. The Requirements Engineering Process

• Elicitation

• Modelling

• Validation

The case study descriptions are structured into these five sections in order to

reflect the structure of the interview scripts and the categorisation document.

The first section deals directly with each unit of analysis or consultant in the

context of their professional history and current job description with their

employing organisation. The second section describes the project and any

specific client-based requirements. The third section describes the methodology

used in the particular project and how its choice and/or characteristics were

Chapter 5 Case Studies 120

influenced by the nature of the project and the consultant's experience and

preference. The fourth section describes any available project documentation

including in-house documents, company information, manuals or technical

documentation available to the development team etc. The fifth section

addresses the requirements engineering process in terms of the three processes

addressed in the research questions and embodied in the conceptual process

model with particular emphasis on the role of modelling in the overall process

and between processes. The progressive in-depth cross-case analysis and the

evolution of the conceptual process model presented in Chapter 6 are based

mainly on the data collected and presented in this section, although data from

other parts of the transcript relevant to the evolution of the conceptual model

was also incorporated.

The following seccions present the six case studies undertaken for this project.

The research method used, as described in Chapter 3, is cyclic in nature, where

the data, preliminary analysis and learning ,from each case informs the

subsequent case studies. For this reason the case studies are presented in the

chronological order in which they were undertaken. The data includes data

obtained prior to the main interview as well as data from follow-up interviews.

The presentation of each case is based on illustrated narrative style, or an oral

narrative told in the first person, as described by Miles and Huberman (1994)

and Myers (1999) and as used in Fitzgerald (1997) and Urquhart (1998). This

approach is described as (Miles and Huberman, 1994) "...each part of the

sequence is followed by a series of illustrative excerpts [quotes from the

transcripts]" which does not resort to explicit coding but looks for " ... key

words, themes, and sequences to find the most characteristic accounts." Where

transcript data is quoted directly the researcher's questions or interactions are

shown as bold italic and the participant's as plain italic.

Chapter 5 Case Studies 121

5.3 Case 1: A New Infrastructure for a Federal Government

Department Software System

Case 1 involved a small confidential project which had to be completed quickly

for a government department. The system was highly technical and involved

complex calculations and predictions. The consulting organisation in this case

used a commercial semi object-oriented template method (Robertson and

Robertson, 1997, Robertson and Robertson, 2001) which involved producing a

set of requirements cards on which the specification document was based. A

major consideration for the consulting organisation was the importance placed

on clients accepting that the requirements engineering process is vital for the

eventual working product.

5.3.1 The Consultant and Consulting Organisation

The consulting organisation was a small software development and consulting

organisation consisting of a managing director, research and development

manager, operations manager, business development manager and several

software engineers. This is a small organisation so no one has a narrow role.

Software engineers do requirements engineering, programming,

documentation and presentations. The research and development manager

was investigating current system development methods (in particular full

object-oriented methods and notations such as UML) for adoption by the

organisation. The business development manager is a recent addition to the

senior staff and his role is to be proactive in seeking out new business for the

organisation.

The consultant had been with the organisation for three and a half years. She

spent the first two years with the organisation as a software engineer. Her

current position is operations manager, in charge of the day-to-day running of

the business. For this project the consultant had been asked to temporarily take

Chapter 5 Case Studies 122

on the role of team leader, software/requirements engineer in order to train a

junior programmer in both requirements engineering and the new

methodology being adopted by the organisation (see below).

5.3.2 The Client and the Project

The project was initiated by public tender for a government department. The

project had tight timelines and deadlines (two weeks for the requirement

specification) because of a need to commit to budget expenditure. The

consulting organisation recommended that the requirements should be

tendered for first and that no quote should be accepted without a full

requirements specification. This had been the policy of the consulting

organisation for some years and the client agreed to tender for the requirements

specification first and then re-tender for the development as evidenced by the

following exchange (researcher's questions in bold, participant's responses in

plain italic):

"So how was this project initiated?

It was a public tender which we responded to. We told them that we did not

have sufficient information to give them a realistic quote and therefore could

not supply a quote. We recommended that they didn't accept any quote until

after a requirements analysis phase.

So you are actually doing that with all clients now? You are making a point of

saying that a requirements specification is very important?

It is actually the area that we specialise in, hut we just said to them, we

recommend that you do not accept any quote - go into the requirement analysis

phase then retender. It may be with us or someone else of your choice, but you

are taking a lot of risk by not doing a requirement analysis. It turned out they

Chapter 5 Case Studies 123

agreed and we are in the requirement phase, which is the documentation just

produced and it is going back to tender now."

The client had a set of software modules that had been developed in an ad hoc

manner over a number of years to provide complex probability calculations.

The original implementation and structure of the software was complex and

difficult to use and difficult to train others to use. The project required the

specification of a user interface (or "wrapper") to link the software modules

together. "They cannot afford the time and resources to train an entire division

so they want an interface written which will link all the modules together,

make them usable and provide a lot of on line documentation and simplify the

actual use of it as a tool."

The nature of the project meant that the hardware and operating system

environment was fixed since the calculation modules were not being rewritten.

The software ran on a HP 9000 under UNIX and this environment was seen as

a constraint identified in the requirements engineering process. The whole

system was to support about 20 users in two different states.

At the time of interview the requirements document had been produced and

handed to the client. The project was going back to tender for the development

phase. The consultant felt that the more tenders there were for the

development of the system then the more successful the team could consider

the requirements specification.

5.3.3 The Development Methodology

The methodology used for this project is called Volere (Robertson and

Robertson, 1997, Robertson and Robertson, 2001) which is a requirements

engineering-only methodology, not a full systems development method. The

methodology was new to the organisation and the consultant. The research and

Chapter 5 Case Studies 124

development manager had been doing research into developing an in-house

methodology based on current best practice and had attended a training course

on Volere. He was sufficiently impressed to recommend the methodology for

the organisation. Discussions took place between senior members of the

organisation ana it was decided to trial this method on a relatively small

project with a view to making it the standard methodology for requirements

engineering in the organisation. The methodology was described by the

consultant as structured, easy to use, self-documenting and " ... made it easy not

to miss information."

The methodology is based on a template and the use of cards to describe

requirements. The template is a booklet that provides guidelines for the tasks

which need to be undertaken during the process of requirements specification.

There is also provision for modelling using use-case models and entity-

relationship models. Every requirement that is documented is based on a

requirements card (see Figure 5.1). The cards are filled out in collaboration with

the client/users during the requirements specification process. Most of the

characteristics are self-explanatory. One special characteristic is the "fit criteria"

which is a user-defined test which ensures a requirement is a single functional

unit which can be tested. In the words of the consultant

"You need to identify how you are going to prove how this requirement is

being delivered. If you can't put a statement in there, or a test, then you have

proven to yourself that it is not a tangible requirement. It's too ambiguous, it's

not detailed enough, it is open to interpretation because you cannot definitely

state how you are going to test it, and if you can't state how you are going to test

it how are you going to deliver it. So it alloivs for identification up front which

is something that can often be missed in interviewing ... the typical one has to

be 'user friendly' zuhatever that means. How do you measure user friendly?"

Chapter 5 Case Studies 125

Requirement No: Requirement Type:
Unique Number Section number from the

template

Description:
A one-sentence statement of thie requirement
Purpose:
Why is this considered important?
Source:
Who raised this requirement?
Fit Criteria:
Unambiguous test of whether a solution meets the
requirement

Customer Satisfaction:
Degree of user satisfaction if the. requirement is
successfully implemented. Scale 1-5 (ambivalent to very
pleased)
Dependencies:
Other requirements that use the same
information, or have a change effect.

Supporting Materials: Pointer to definitions, models and

Event/Use Case No:
Event/Use Case. Number/s related to this
requirement

Customer Dissatisfaction:
Degree of user dissatisfaction if the
requirement is not met. Scale 1-5 (hardly
matters to very displeased)
Conflicts:
Other requirements that disagree with
this one - identifies a potential need for
negotiation.

documents that illustrate this requirement
History: date created, changed, deleted, passed its quality checks, and a rationale explaining
changes.

Figure 5.1 -Volere Requirements Card (Robertson and Robertson, 1997)

The Customer Satisfaction characteristic is based on how happy the customer

would be if the requirement was included and the Customer Dissatisfaction

characteristic is based on how unhappy the customer would be if the

requirement was not included. This allows the consultant and client to

prioritise any "wish list" the client might have. For this project, with a short

time frame, any requirement that could not be identified to be a core functional

requirement was not included in the specification.

The cards are self-documenting and go straight into the requirements

specification document. "When the cards are complete a Jot of the hard work is

done."

Chapter 5 Case Studies 126

When asked to comment on the effects of the methodology on the organisation

the consultant nominated the following points:

• it [ideally] removes some of the specialised skill from the RE process

• it provides structure and guidance via the template so that it "removes the

need for all knowledge to be in the head of one individual."

• specifications should be more consistent

• the RE process should be more repeatable

• each specification should be as complete as possible

• it assists in training since people are being trained in a structured and

repeatable process.

A technique used in the methodology is called "apprenticing" which involves

the consultant (or one of the team - in this case the programmer being trained

in requirements engineering) going into the client organisation and learning

the existing system, whether it be paper-based or computerised. This technique

was very effective in this project. The comment was that "The issues of what

we are trying to achieve become clean Because to sit and look at a system you

make assumptions but if you sit and use it, the purpose, the intention conies

out."

5.3.4 Project Documentation

The only documentation that the consultant was prepared to show the

researcher was a blank template and a blank requirements card (see Figure 5.1)

"I cannot give you the actual one just done, but I can give you a blank template,

that shows you the structure of what we are currently doing."

I

Chapter 5 Case Studies 127

5.3.5 The Requirements Engineering Process

Elicitation

The methodology starts with a "blast off" meeting where everyone (client/users

and requirements engineering team) are brought together to describe the

project in a high level manner. The idea is to get general information about the

purpose and goals of the system - an overview rather than specific

requirements. Among the issues addressed (using the Volere template) are:

purpose -"if you can't identify why you are doing the project then you

shouldn't be doing it"

who is the client? - i.e. who is responsible for the system and who is paying

for it.

what is a successful solution worth to the client - "if no tangible benefit can

be identified then why do it?"

what happens if we don't solve the problem - "if we don't solve the problem

then why do it?"

who are the users - users are categorised into levels of expertise and degree

of importance

naming conventions for data elements - in this case quite specific technical

terminology

relevant facts - the consultant described this as a "dead section". The only

relevant fact identified was that this was phase 1 of the project and that the

possibility of phase 2 etc needed to be kept in mind during the requirements

engineering process

constraints - hardware and operational

time frame - how long will the project take?

Chapter 5 Case Studies 128

The consultant described the blast off meeting as providing an overview to the

client - i.e. "everything a client should know before going into any project." The

consultant also commented that some of the client participants in the blast off

meeting seemed to feel that they were participating "... in order to get the

document done" rather than work towards a solution. The next step after the

blast off meeting was the apprenticing activity. The consultant commented that

this was very successful in this project and that "...zvatching was not enough -

actual doing what they do is the only way to understand".

From the blast off meeting and the apprenticing the team was able to write up

the SLOpe of the project. "From that we were able to write up the scope of the

existing system and its environment and from there we went into actually

identifying individual requirements. From that we actually got them to d o

screen dumps from the existing stuff and got them to just talk to us about what

they want." After the scope was documented the identification of specific

individual requirements began, using the requirements cards.

The requirements engineering team held regular project meetings in-house

where the research and development manager was used " ... as a kind of a

quality check, to see that we hadn't missed anything, ... because he had done the

training course, he xvas in a position to say where he felt we had missed

information and needed to ask questions" and on site meetings every second

day at the Department, where " ... we sat and talked and documented what was

learnt."

Modelling

Although use-case diagrams and entity-., itionship models were available and

recommended within the method the analyst (possibly because she was new to

object-oriented development) only produced models which were based on the

completed requirements cards and a simple flow chart. All requirement

Chapter 5 Osc Studies 129

specification was done with the clients using the cards. "We can't write

requirements. They (the clients) have to tell us their requirements. We don't

work with the cards, they do. ... There is no point in "•> '.'y^ig to tell them what

they need - they need to tell us." This was the only i:;~a where the consultant

felt that the methodology was ineffective. She felt that this was "mainly due to

me". She was not used to using the cards and had not had time to go through

all the training material. She felt that the cards were "...more a hindrance than

a help". She found it easier to supplement the use of requirements cards by

working with large sheets of paper (A3) on which the team could write

requirements as they came up and draw diagrams. "The cards were getting i n

the way. They (the clients) were too interested in what the cards were about and

why we were filling them in."

This project (possibly because it was a user interface to existing software

modules) had no high level modelling diagrams. Although the Volere

methodology uses standard models such as use-case diagrams and entity-

relationship models none of these were used in this project at the requirements

specification stage. The only diagram used by the team was a "flow chart" to

describe the interface.

"... all we were trying to do zuas identify the way the interface goes together in

system modules.

So the diagrams were really interaction diagrams?

Probably more like flow charts - flow of information.

Flow charts not diagrams or nothing like ...

A feel for flow of information through the system. Then first thing you need to

do is ABC and then you need access to the next step,, next step etc. It was just

creating an understanding of what the process is.

The Logic. Wtiat about structure charts?

No, nothing of anything of a defined type of document.

Chapter 5 Case Studies 130

The main product of the methodology was the requirements specification

document based on the cards and the template.

Validation

The process of validation of the requirements specification started early with

the definition of the fit criteria as described above. This definition for each

requirement "...validates that it is a workable requirement." A project meeting

was held in-house where there was a walk through by the research and

development manager, the trainee and the consultant prior to presenting it to

the client " ... to identify anything that may be missed". Further validation was

performed using a standard walkthrough approach by going through the

document "page by page ... every requirement" with the client. Typical

questions asked at this stage were:

"Is that what you meant?"

"Is that a fair statement of the requirement?"

"Is that what you intended to do?"

"Does the fit criteria describe what you are actually trying to achieve?"

"V\/e write the cards with the client, then we go away and write the document.

The cards are essentially self-documenting, but then we do a second level of

checking [to ensure] that we haven't misinterpreted [anything] by actually

stepping through it again. The only testing is the identification of the fit

criteria. "

So, according to the consultant the validation of the specification is based on

the client's agreement to the fit criteria.

When asked how she felt about the process after the requirements document

had been finally submitted to the client (for re-tender of the development

Chapter 5 Case Studies 131

phase) the consultant commented that she enjoyed the process, found the

Volere methodology well structured and "the benefits would even grow with a

bigger project" and " ... as always the requirements [document] when 1 delivered

it, even though we were working to a tight time frame, I could have quite

cheerfully spent another two weeks making sure we had plugged the holes, but

we just did not have the time. That is always the case with requirements

engineering, there is always something else you want clarifying and where do

you draw the line?"

5.4 Case 2: Developing a Transaction Specification Methodology for

Electronic Service Delivery for a State Government

Authority

Case 2 used object-oriented methods to develop in-house "lazy dog" templates

of identified "common transactions" for multiple clients who could then do

the't own requirements engineering with the assistance of an IT liaison person.

These templates were called "lazy dog" because they were partly completed

specification templates containing use cases (both scripts and graphs) and OMT

diagrams which the client (via the IT liaison person) could alter by addition of

or striking out of appropriate elements.

5.4.1 The Consultant and Consulting Organisation

The consulting organisation is a business consultancy which provides IT

consultancy and educational services to a broad range of clients, both from the

public and private sectors. The organisation's philosophy is outlined on their

web site as: "We do not subscribe to a single, rigid methodology. Each

assignment is treated as a unique challenge. We tailor our approach to meet the

specific requirements of each client, drazving on a wide range of zvell-researched

techniques and the combined experience of our consultants."

Chapter 5 Case Studies 132

The organisation employs 50 staff in Melbourne, Sydney and Canberra,

covering a wide range of business and technology disciplines. The structure of

the organisation is built around senior consultants - experts in their fields with

a minimum of ten years experience. The majority of consultants have

postgraduate qualifications in business and technology disciplines and are

regular contributors to conferences, publications and industry forums.

The consulting analyst interviewed for this study holds the position of

principal consultant in the consulting organisation. She leads the e-business

and online government practice and has been with the organisation five years.

She has been involved in systems development for 15 years, both in the US and

Australia and over that time has undertaken requirements specification for

various projects including projects where she has been part of the complete

system development process. She holds B.Sc. and M.Sc. degrees in engineering

management.

The consultant has been developing object-oriented systems for about 10 years

and is self-taught in object-oriented system design and has given courses on

object-oriented system development. She feels that "00 is a very natural way

for me."

5.4.2 The Client and the Project

The client was a central support group within government which was helping

or facilitating other departments or client organisations (similar to business

units) with the implementation of on-line service delivery to the general

public. The client organisations were independent organisations within the

government that provide or sell products or services to the general public.

Some services available to the general public included:

* Payment of municipal rates

Chapter 5 Case Studies 133

• Notification of change of address

• Acauisition of a driver's licence

• Acquisition of a liquor licence

• Booking roadworthy vehicle testing

• Information about transport services

• Feedback to government agencies.

This created a three tiered client/user structure as shown in Figure 5.2. The

client support group had its own clients who were the departments or client

organisations and the "end clients" of the final systems were the general public

who buy or use the products and/or services of the client organisations.

The client support group functions included:

• IT support for client organisations

• Information Management

• development of IT strategies for the whole of government

• development of IT policies a,id standards for whole of government

• development of system development toolkits for client organisations

• purchasing of group licences for whole of government.

Chapter 5 Case Studies 134

Central Client
Support Group
- IT support
- IT mgt
- IT policy
- IT strategy
- IT purchasing

Client
Organisation

Client
Organisation

Client
Organisation

Client
Organisation

7
End Clients (General Public)

Figure 5.2 the client/user structure

The brief for the analysis group from the client support group was to develop a

methodology for specifying requirements for a transaction management system

which could be adapted by each of the client organisations according to their

specific needs. The project was not about providing the actual requirements

specification but about developing a methodology and a set of tools for

specifying requirements. The brief did not ask for templates, it asked for a

methodology. The concept of a template-based methodology using common

transactions grew out of the development process within the analysis group.

The implementation development was tendered for separately from the

specification methodology. At the time that the methodology and tools were

developed the vendor was not known and the tendering process was still in

progress. So the platform was not known and platform considerations were not

taken into account.

Chapter 5 Case Studies 135

The main aim of the specification methodology was to identify common

infrastructure elements or to look for a common infrastructure that could be

put into place to deliver on-line services for several different client

organisations.

The objectives centred around economy of scale and included:

• improving customer service

• improving accessibility to government services

• lowering the cost of doing business

• developing local industry.

In the course of the methodology development about six client organisations

were used who provided real examples of transactions. These were developed

into example use cases with a minimum data set that was incorporated from

the real examples. These six organisations had all their transactions specified as

part of the development.

For the implementation side of the project the central client support group put

out a public tender to vendors requesting a common architecture to deliver

transactions across various channels. The available delivery mechanisms

investigated which provide public access were public kiosks, telephone systems

using interactive voice response (IVR), human-assisted call centres (this was a

good idea but there was not the funding to explore it), and the Internet. The

specification methodology described here was developed for the Internet

channel.

The implementation tender was won by a hardware /software vendor

consortium that developed a public kiosk system which provided a common

Chapter 5 Case Studies 136

engine for all three channels. This meant that there was a general architecture

and different presentation methods.

The end users of the system(s) were the general public who could choose to use

the system services or not. Officially the target user was "the average person" so

the user interface provided by the software vendor consortium was a very

simple design ("push-buttony") - the kiosk kind of look and feel. It was also

designed specifically for people who are vision impaired - large letters, high

contrast etc.

1

2

3

4

5

6

7

Common Transaction

Obtain information
Information from all organisations

Make a Payment
Utility bills, Rates, Fines, Vehicle Registration

Monitor Progress
Check progress of applications and accounts

Book a Service
Tests, Building Inspections, Venues, Events

Provide Feedback
Community Action, Comments

Buy/Order a Product
Reports, Certificates, Permits

Change Client Details
Name, Home Address, Mailing Address

Table 5.4 The Seven Common Transactions

The analysis group examined how the government agencies were going to

specify their requirements for implementation across this infrastructure. The

first thing was to identify and scope the transactions and then identify the most

common transactions that the agencies were likely to implement. Originally six

common transactions were identified and then another giving seven common

transactions all together (see Table 5.4).

The vendor consortium implemented service packages for those transactions

and the system was designed around those transactions. The transactions

Chapter 5 Case Studies 137

became very important in the specification process because they had a pricing

schedule associated with them and variations to a common transaction cost the

client organisation extra.

5.4.3 The Development Methodology

In keeping with the consulting organisation's philosophy outlined in section

5.4.1 above ?he methodology developed for this project was in-house and

specific to the objectives of the project. The methodology was based on use cases

Qacobson et al., 1992) and a generic object model using Rumbaugh et al's

(Rumbaugh et al., 1991) Object Modelling Technique (OMT) notation,

jacobson's full development methodology was considered too open-ended,

with too many decisions for client organisations to make. It was also assumed

that there was someone in the client organisation who knew what an object

model was - an IT liaison person. "We give them [the client] tools for their IT

person to do a specification with ...not for an end user to sit down and specify

with ... and in some cases ... it's just easier for them to hire someone to go in

and do it."

The analysis group could not make the methodology specific to a particular

client organisation because every client organisation ran differently. It took

some time to arrive at a tool kit and specifications that not only explained the

methodology and how to use it but also partially specified the common

transactions. The partial specification was presented with a use case

methodology i.e. " ... the standard pathzvay, the exceptions, maybe an

alternative for the generic case - much the way Jacobson might describe [it]".

When ordering a product - an end-client might say "I want it to be red with

blue stripes, I want 6 of them, I want them delivered to my home, I am going to

pay by credit card etc.". That is, most client organisations had some kind of

"product" to "sell" so there was a general flow to a transaction. For example,

payment is based on order quantity and unit price - i.e. there is a general set of

Chapter 5 Case Studies 138

rules for payment calculation. After looking at variations a general pattern was

arrived at for the use case along with documentation and some common data

elements. Client organisations were invited (optionally) to supply elements for

a minimum data set. The client organisations were given a general pattern for a

transaction that could be configured to how the client/end client wanted it.

These partial specifications were called "lazy dog" templates. "There is one

general methodology, one [generic] object model and there are a set of seven

different templates, for each [common] transaction type that you can use and

you can tailor the templates in what I call "lazy dog" templates - i.e. they are

half filled out - it is not a blank form." The concept of "lazy dog" templates is

used in engineering specification. There is a standard technical specification

which is half filled out and variations are added.

The partial specification, or "lazy dog" template, was presented to the client

organisation (specifically to the IT liaison person or team within the client

organisation). This template could be configured to the client/end client's

specific needs. Other common transaction types could be added at any time.

This may have meant adding another object to the model.

5.4.4 Project Documentation

In-house documentation was sighted: blank and filled out templates. These

were booklets containing how to use the template, the generic use case, the

generic object model, interaction diagram etc. "We ran workshops to actually

detail the transactions with a number of groups and then we reverse

engineered..." to a common pattern and set of common transactions. The

methodology evolved slowly from sets of reports.

Chapter 5 Case Studies 139

5.4,5 The Requirements Engineering Process

The application of the specification methodology was based on booklets sent to

the client organisations containing instructions on how to use the template, the

generic use case (diagram and script), the generic object model, interaction

diagram etc. All business rules were required to be documented. The

methodology " ... should be thought of as a methodology for specifying a

transaction management system not a full on-line system -so it was a very

controlled process."

The first task for the client was to work through the general use case flow

diagram and instructions to see how well their transaction matched the

common model. This test is called a "goodness of fit" test. Goodness of fit was

important because pricing was based on it. The more variation from the

common model the more it cost the client organisation. "We had no idea zvhen

we worked with the specs that they'd be used in that way but it has become very

important to actually using them ...we knew there were going to be variations

because we were just going for the 80/20 rule, the most likely case."

Customising the template involved modifying the basic flow diagram (based on

the "goodness of fit") and the object model, modifying the use case script by

striking out (not removing) elements,, so that someone could look acros.. the

page and see what had been changed. Few modifications were made to the

object model by client organisations. The generic model seemed to apply to

most situations.

Elicitation

The IT liaison person within the client organisation sometimes did the

knowledge elicitation Vi- requirements gathering based on the template

documentation. He/she may have needed some preliminary coaching in

p
Chapter 5 Case Studies 140

understanding how it all worked. Some client organisations hired outside

consultants to do requirements gathering if they were going to hire a contractor

to implement the final system anyway. Client organisations received the

documentation ahead of time and could choose to consult another client

organisation that had already been through the process.

The elicitation process was not seen as specifically object-oriented but this

consultant claimed to think in terms of objects at this stage because "...that's the

way I think ...so it's hard for me to unbundle it... we don't say to them [the

client] we are really talking about objects and zue are using an 00 methodology.

We just do it and they just want to specify their transactions". Another

consultant in one of the teams, who was not an object-oriented person, helped

one organisation to specify a suite of these transactions. He had a hard time

with a couple of concepts. One is that he wanted to "... see in the model all the

data components [which were] really more like patterns than objects. We

wanted him to think of ... going through the flow of how someone purchased a

product that it fitted within the model of acquiring a product". He was thinking

about implementing the system not about managing the transactions. "And I

don't think that is particular to 00 or not - it's more to do with what the

nature of the system is that we are dealing with. But those are the kinds of

concepts that I had trouble getting across aside from the terminology - it's a

system thing you know".

If the consulting organisation was assisting the client or doing all the

knowledge elicitation for the client the first contact is upper management to set

the scene and scope the project. Then if they already have a data model,

documentation, data dictionary, etc on the current system then that can be used

as a starting point for the data definition. The basic techniques used are

interviewing and working with use cases/scenarios. It is an iterative process.

The consultant might go back to the client, on average, three times.

Chapter 5 Case Studies 141

The whole transaction specification would take about a week. Information

gathering generally took place on an initial half day and then was followed up

with an hour in the next consecutive two days. Probably a week after the start

the specification was given back to the client for review and the consultant

walked them through it.

Modelling

The generic object model was a standard Rumbaugh et al (Rumbaugh et al.,

1991) OMT model and the rest of the methodology was built around Jacobson

use cases (Jacobson et al., 1992). The IT liaison person within the client

organisation communicated the information from the model back to the client

users. The client focus was on the use cases rather than the object model and

the model was not explained to the users (because they would probably find it

difficult to understand), but just to the IT person. "We tell them I the users] that

the model is technical mumbo jumbo...".

The clients fill in the use case template: e.g. product name, ID number,

description, pricing information and then they document any exceptions. For

example, "...we don't have an ID number, we've got payment up front, we don't

do that etc". Elsewhere the client can add notes about business rules or other

identified data elements or attributes. The client actually edits the template to

customise it to their own version of the common transactions. It is only the IT

person who might go through the object model. OMT-style- interaction

diagrams were used but were put into the appendices and were rarely used with

the users. So the users did not see the model, just the structured dialog (of the

use case) and the basic flow.

When asked, '7s that in general your experience that object type models can't

really be shown to users." The consultant replied "Well you know I wouldn't

show them a data model either ...the closest I've gotten is ivorking with this

type of flow diagram (use case flow diagram)... they can follow that pretty well

Chapter 5 Case Studies 142

but they don't usually have the patience to really work through the interaction

diagrams or the model. It just takes too much explanation."

There was a standard process modelled as a flow diagram and use case and the

client was asked to tick a box if there was a goodness of fit. There was one object

model that covered the whole transaction. The client organisation, via the IT

liaison person, identified the parts of the transaction common object model

that applied to their transaction and could black out any unnecessary objects in

the model in a similar way to striking out unnecessary parts of the use case

script.

The consulting analyst believed that the use case/template approach worked

well but "... you still need the middle man [the IT person]. The overall approach

is quite complex and quite rich. It is different in that they I the clients] need to

think differently about the fact that they are managing their transactions in

terms of the specification."

Validation

Validation was not formally done on the fine-tuned (resulting) transactions. "//

there is any validation, it's iigainst case files - but it's just a normal

walkthrough really. It's not a rigorous cross validation more of a backtracking

looking for omissions and inconsistencies. So it is firstly a formal walkthrough

and then the client can take away the specification and case files and look at and

discuss them. They might come back with things that have been missed."

5.5 Case 3 A Fault Management System for a Telecommunications

Organisation

The consultant in Case 3 used object-oriented methods to specify and build a

fault management system for a telecommunications organisation. Models were

Chapter 5 Case Studies 143

based on use case scripts, OMT class models and interaction diagrams although

the interaction diagrams were not used much until the design phase. The

consulting organisation for Case 3 is the same as the consulting organisation for

Case 2. The analyst/consultant is different and the client and project are

different.

5.5.1 The Consultant and the Consulting Organisation

The consulting analyst who was interviewed for this case study holds the

position of Senior Consultant within the consulting organisation. The

consulting organisation as described for Case 2 is a flat organisation in that

there are senior consultants, principal consultants and the managing director so

the majority of employees are senior consultants. Most senior consultants are

self-motivating and are required to bid for projects and then organise and carry

out the work.

The consulting analyst had been three and a half years with the company - two

and a half on this project. Previous experience included working on an Open

User Interface product for nine months, in a small group of people, building

network management frameworks for open systems. Before that the consultant

worked for Unisys for six years and was involved in software product

development including requirements analysis. He also did contract software

development for two years.

The consultant considers himself to be a very experienced developer who has

spent more time than the average developer in requirements engineering. He

has been doing object-oriented systems development for about four years and

has delivered formal courses in Object Oriented Analysis and Design through

the consulting organisation. When asked to comment on the main advantages

of an object-oriented approach to system development he replied: "The key

points to me come from my experience, and this is borne out by the [system]

Chapter 5 Case Studies 144

project. The ability to evolve code in isolation behind interfaces just seems to

be the keif benefit ... the ability to make significant changes to significant

amounts of code and not destabilise parts of the system which you are not

directly working in."

5.5.2 The Client and the Project

The client was a large telecommunications organisation. The project began in-

house for the client and then was outsourced to a third party management

client acting for the original client.

The project is a fault management system for managing planned and

unplanned outages in a transmission network. It was a five-year project and

has involved two and a half years of serious development work for this

consulting analyst. The project was funded incrementally and for the first stage

the deliverables were a suite of requirements and analysis specifications. The

requirements model was a use case model and there was also a prototype.

The consultant classified the project as pseudo real time. There are some real

time "feeds" into the system. It is real time in the sense that there is a

component which manages service interruptions. Once the equipment starts

setting off alarms and those alarms are brought to the attention of operators in

the work management centres, the operators have to immediately notify all the

appropriate parties. That involves raising an exception event within the system

and providing as much information as is available to all involved parties. The

system had to do some complex reports and they had to come back within 30

seconds to 2 minutes. Further to that, there were some real time "feeds" in the

database, which were constantly triggering update transactions.

The hardware platform for the system was UNIX with 4 servers. The database

was Objectstore 5. The operating system was HPUX 10.1 with Open UI as the

Chapter 5 Case Studies 145

front-end and it was deployed on HPUX workstations and also Windows NT

4.0.

5.5.3 The Development Methodology

The development team (including members from the consulting organisation

and members from the client organisation) was mostly a team of 12 and peaked

at a membership of 15. There were two subteams to do a lot of the early work

and the insulting analyst supervised one of those subteams. There were

project meetings for the entire duration of the project, on Monday mornings,

which would run from one to three hours.

The methodology used for system development was an in-house object-

oriented method. It was based on other methodologies that members of the

team were familiar with. "We sampled from methodologies tliat we were

familiar with. We used bits of other methodologies as appropriate.... five of the

developers had significant experience of building similar systems elsewhere...

What that meant was there were three or four people who were able to

contribute to a methodology that picked up bits and pieces from a number of

influences... They just all brought their biases and their interests and thoughts."

The development process was heavily influenced by the people who were

available, and the fact that they had come with quite considerable industry

experience in this kind of software development.

5.5.4 Project Documentation

There was no proposal or a written outline of the project available. "The client

didn't specify the system that way". The client employed a group of people to

come up with the specification, in this case the consulting organisation.

Chapter 5 Case Studies 146

In-house documentation was considered confidential. There was no available

in-house documentation since the consulting analyst was not able to take any

documentation away from the project when he left "I probably couldn't even

sketch them out for you now. I have got a general idea of what they looked like

and how many there were and how the relationships flowed and so forth."

5.5.5 The Requirements Engineering Process

Elicitation

Knowledge elicitation and information gathering was done explicitly. There

was a small group selected from the user community to be sponsors, who got

involved early and stayed on to lead the transition from the development into

a field trial and into the production environment. Two of them were in

Brisbane, one of them was in Melbourne. There was a team of eight altogether

in this user group. They were drawn from other management centres as well.

"There were three guys who we had most of our dealings with and we were

free to ring these guys up and discuss things with them. They were always o n

the end of the phone and they were very helpful and very positive." One of the

main members of the user group (the main business contact) was a network

manager with about 25 years experience in transmission management who was

one year from retirement. He knew all there was to know about the client's

management of their transmission network. He was involved wherever

possible and he played a user liaison role and a business expert role. He was

called a "subject matter expert" in the client organisation's terminology ''...there

was probably nothing you could ask him about transmission or about the

business domain, that he could not answer. A lot of the requirements model

was drawn by talking to these guys and verified as well through the

development phase."

Chapter 5 Case Studies 147

The consultant felt that the project was a joint application development style of

project where the users are so involved that they almost owned the project as

much as the developers.

Elicitation started early on and the user group was involved right from the

start. The specifications were drawn up after the consulting analyst joined the

team and the user group was part of that process.

When asked "Do you think object oriented when you are gathering your

information or does it become object oriented later on when you start building

the requirements?" the consultant replied:

"/ think you think object oriented right from the start. One of the things that

pushes you that way is that you may or may not be prototyping. So in our case

we were prototyping and that meant developing a reasonably functional

prototype of every view or every screen. Some of the screens were quite

complex and so there was a lot to be worked through or to be got right. But theif

formed the basis of the use cases and also the basis of the first cut of the

production graphical interface. And if you're prototyping a graphical interface

prototype and zvorking through and developing use cases, you are talking about

graphical objects and you naturally extend that and start talking about business

objects as well."

Knowledge elicitation was done using interviews with users and the special

user group. It was highly iterative to the degree where the subject matter expert

would be calling in every couple of days. "// would have just been a

conventional sort of thing, throw some prototype together ... and that can be

done very quickly. Get the guy in, sit down and work through our current

prototype and that might have happened once a week for twenty weeks."

Chapter 5 Case Studies 148

Working on this project was one of the subject matter expert's main job

responsibilities. He was freed up from some of his network management

responsibilities to come and work with the system team. He probably had a day

or two a week at some stages to actually come and spend with the team. It

involved substantial commitment from the business side. " ... even after the

analysis phase finished and the requirements models and the prototype were

delivered, there was still a great deal of contact and a great deal of iterative

development and feedback with these guys - all the way through the

development. A lot of that wasn't changing the requirements spec, a lot of that

was to resolve missing detail in the requirements spec."

Modelling

Requirements models were based on the textual versions of Jacobson's use case

models (Jacobson and Christerson, 1995), OMT object modelling graphical

notation (Rumbaugh et al., 1991) and Software Through Pictures (STP) which

was the case tool available to the team. Interaction models were used for

dynamic modelling. The team saw a need for a static type of model and a

dynamic type of model and use cases. The consultant described it this way:

"We saw a need for a static type of model and a dynamic type of model and use

cases ... the use case model was more stand alone and really became the

functional statement that went behind or reinforced the user requirements

prototype ... The interaction models weren't drawn until three months into the

development phase, so discount them las requirements models], the class

models were refined considerably to static models, they were refined

considerably again, two - three months into the development phase but a

pretty good first cut ivas developed at the end of this analysis phase as a sort of

business model. But really most of the first phase of the work developed a use

case model and a prototype to go 'with it. Those were the key vehicles for

delivering the requirements."

Chapter 5 Case Studies 149

Software Through Pictures generalised the characteristics of a number of

methodologies and allowed simple drawing of diagrams - so that "... didn't tie

the team down to strictly OMT models". It did support OMT in that the STP

classes used the Rumbaugh symbols and all the symbols were consistent with

Rumbaugh. But it was a fairly generic kind of object interaction graphic editor.

STP was used because of its availability - "/ think zoe would have done static

class models, we would have done those regardless of hoxv we would have

drawn them. We would have done object interaction models regardless of

what we had available to draw them as well."

Use case models were used extensively. There were approximately 80 use cases,

which were expressed in tables on an A4 page in 10 or 11 point font. They were

quite extensive and no use case was less than three-quarters of a page. Some

went for 2-3 pages.

When asked: "...did you do modelling sequentially that is, after the

information gathering, or did you sketch out models whilst you are gathering

information?" the consultant replied: "There was a very definite distinction

between the first class model and its completion and delivery and then we all

got to zcork on interaction models as a way of refining the class model. The real

sort of main deliverable in terms of the class model is the business model and it

was really a first cut class model from which the application schema would be

cast [from the use cases}.

/ would say that [the class model] was drawn up quickly within the space of

probably a week to two weeks. But 1 would say that there were fragments of

tti.it model getting developed in a couple of people's heads for probably three

mouths beforehand. The development of that model was not done publicly, or

the first cut of it, so after that it was tossed to the team and it just diverged. The

development of that model urns done as these discussions were going on. As

the requirements were being collected as the requirements modelling zvas being

Chapter 5 Case Studies 150

done. But I would say that it was being done largely privately and it was not

written down until the last minute when it was just a dump."

Further questioning on mental modelling followed: "How and when do these

mental models start forming inside your mind. I mean, you have said that this

is what happens and at some point it gets turned into hard copy or whatever,

do you think in general people doing this kind of work are mulling around

mental models in their head?"

"Firstly, when we talked about requirements and collecting requirements and

putting them into the requirements model, we talked about thinking of objects,

and someone needs to be identified, there will be someone or there will be

people whose responsibility it will be a little bit down the track to start casting

bits of models together and someone will be tasked with that. They will be

thinking about a business model at that :>tage. So as they go through they will

be listening to discussions and zoorking on the requirements model and they

may or may not be zuriting things down, but this is my viezu and this is how I

work in this situation. You zuill be listening very carefully and collecting and

cataloguing constraints and refining the abstractions in your mind."

This information that is used to build the mental models would come from the

group of users and from project meetings and the general requirements

gathering process and activities. There was an element of the client or user

contributing to the mental model of the object model and then the

refinements, the more technical aspects, are done later on with discussion with

other members of the analysis team.

Some more comments on mental modelling from the consultant:

"You see what you zvill come up ivith will be an abstraction in your ozvn mind,

which you probably cannot fully express, but you might feel you can express it

Chapter 5 Case Studies 151

but you wouldn't want to. For me anyway it's a mistake to try and rush in and

write that down and stick it into a case model. Because you know its going to

change so you shouldn't do that until you have resolved enough, not all, but

enough of the question marks in your mind as to what that needs to look like.

So you might carry round an event or an account or a customer object or

something, you carry around a picture of how that is shaping in your mind.

Someone in a meeting or a discussion will say, 'Of course, you know we only

ever had one of these, and that will change' and you can say Ah! Test tliat

against my understanding of what a customer, or event or a facility or whatever

the abstraction is going to be and that might either verify or it might contradict

it. If it verifies it you probably let things go and move on to the next point. If it

contradicts it, you need to pick it up and mine that and get to the bottom of

that."

In summary, the requirements specification process started with requirements

models based on the textual use cases. At some point, there come the class

definitions and the object model (the OMT static model) and then later on, the

interaction models.

A further exploration of the use of use cases, particularly any limitations, led to

the following comments:

"...for instance, the requirement that it will initially support 20 userc but one

day it may scale to 200. That's a requirement that should come out of your

requirements modelling, hopefully there is a use case, there's something

somewhere in a use case that captures that kind of thing although I feel that use

cases if used in isolation with no other requirements modelling can miss some

of these system wide axioms."

"I actually think they [use cases] are useful, you have got to do them as a

mechanism of exercising your requirements, your understanding of your

Chapter5 Case Studios 152

requirements, exercising the business model and even going further and

exercising your design model land understanding it} ...but it is dangerous

because you can go through create a patient or bill a customer use case a

thousand times and never hear the exceptions or never hear bits that you've

missed."

So, the three main models produced were use case models, the static class

models, and the dynamic interaction models. There was a prototype as well

which included the use case model. The use case model was categorised as a

dynamic requirements model, a functional model. In this case the group of

users only ever dealt with use case type models - they never had to understand

the OMT model or interaction models. The object model and interaction

model are models only used within the analysis team and understood by

members of the team. This idea is illustrated by the following exchange:

Would you, at any point, have shown this group [the user group] ... object

models or use case? Yes. Did they understand Jiow use cases worked and so on?

Yes. And what about the OMT model or the interaction model? We would

have stopped short there. Is this because you do not think that the users/clients

would be able to understand the OMT models (say without extensive

explanation or training), ... Yes. Unless the 'users' were IT-literate people,

which most aren't. ... or is it because you have tried showing these types of

models to users/clients in the past and they haven't understood them? I don't

think I have ever tried, at least not with real business users. I presented an

Object Modelling Workshop for several years, and I can assure you that it takes

i? surprising number of IT people several days to understand the basics of

conceptual modelling (class versus instance, relationships). Do you believe it is

not necessary to show them? I believe it is not only not necessary, but

potentially dangerous. It is the analyst's job to perform the use case to business

object model translation.

Chapter 5 Case Studies 153

Validation

Validation of requirements was based on revisiting the use cases with the users

and the prototype, particularly the subject matter expert and user group "So zve

expected each other, we expected them, to pick up errors and omissions." No

formal validation models or processes were used "... there was a framework in

which this use case model sat, so there zvas the high level project flow

framework if you like, there was no other validation model designed in the

sense that zee had a requirements model, zve had a prototype."

There was a separate acceptance test suite developed by the users, but that was

not set up until well into the development stage approximately six months

before acceptance testing was due to start. "That zvas completely separate from

our use case model. All the zvay through zve used our use case model to test

things as zve were developing as zve zvere showing users." So the test suite was

used for testing the final implementation not validating the requirements

specification.

Validating the specification was done mostly by walkthrough based on the use

case models and the prototype.

"There zvas no formal validation. There zvas an over reliance on the use cases,

so if anyone had said, and I am sure it zvas signed off by these guys at the time,

'Is this a complete and accurate requirements model?' they zvould have said

'Sure, zue use the prototype everyday, zve showed it to all our colleagues, looks

pretty good'. They produced 5 inches of documentation and zve zvorked through

enough of their use cases so that zve think they are pretty accurate and at the

right level of detail. No-one zvould have gone through it from start to end, and

no one zvould have separately tried to create a validation model or validate

according to the criteria."

Chapter 5 Case Studies 154

¥\

5.6 Case 4: A Generic Insurance Package

The consultant in Case 4 had extensive experience in using object-oriented

methods to specify and build actuarial and insurance systems. The models

which were shown to users were based on adhoc diagrams, rich pictures and

screen simulations rather than OMT class models or interaction diagrams,

although the diagrams based on more formal notations were used within the

team and in the design phase.

5.6.1 The Consultant and the Consulting Organisation

The consulting organisation is a small group of three people. The participating

consultant is a director and a partner. The members of the consulting

organisation work as consultants in the object-oriented field but are also

mathematicians " ... with a particular view on life".

The consulting analyst has been with the consulting organisation for just on a

year and has been doing requirements engineering for about 22 years. He

originally managed an operations research department where the group was

formally charged with large-scale software development, solving organisational

problems and often built software as solutions to those problems and therefore

had to develop users' requirements.

The consultant's background is in mathematical modelling and he believes

that he has been doing object-oriented analysis longer than anyone else in

Australia. He also believes that he was one of the first commercial users of

object-oriented systems, SmallTalk, in 1985. Although the consultant has not

taken any formal courses in object-oriented systems development, he has

delivered them including the first course in Australia. He trained as a

mathematician then did a postgraduate diploma in computer science in 1980.

1 ' " • !

"vi

Chapter 5 Case Studies 155

He came to object-oriented systems when working in the operations research

department where he was a member of a group which built custom made

software tools for users. The group developed specialised languages for

insurance problems and built a compiler for an actuarial notation language and

another specialised compiler for a language called the 'benefit definition

language'. Both of those projects were extremely successful, one of them still

delivers a commercial advantage to the organisation. The other did for about a

decade.

5.6.2 The Client and Project

The project discussed here is a receipting system. It is a subproject in a much

larger project where the consulting organisation is building a particular class of

administration system for insurance applications. The consultant came to work

on this project because his colleagues had already worked there and the

consultants were invited to work on the project because of a personal contact.

The client is a commercial software developer that builds generic packages and

then sells them to clients in the financial sector. This system is meant to be a

first stage. The organisation believes that it needs to move into object-oriented

systems. The consultant was engaged " ... not so much as a requirements analyst

but more as an 00 mentor. Noiu in that role one of the first things we did was

requirements and then moiled on to design and so forth."

The objective of the project is to produce a receipting component for a larger

insurance system and for it to be a commercially saleable product that can

stand-alone. There are also two other objectives. One is to take a group of the

best programmers in the organisation and move them from conventional to

object-oriented systems development (a training aspect). The other is to get

some experience in producing a larger, more comprehensive administration

system from other component systems. That is, a modular approach where the

saleable components will be built in a modular fashion.

Chapter 5 Case Studies 156

The client organisation has a very high retention rate. It is considered to be a

good environment in which to work and the staff is highly motivated. The

people who work in the client organisation tend to stay on for 5 years or more

" . . . it's part of their thinking, moving into the new world and everyone's keen

to... The project I'm on now is the plum project, everybody wants to work on it

and it's only the chosen few who are."

The need to move into object-oriented development was driven by the

expectations of clients and commercial demands. The client already had some

very successful products in the marketplace but " ... they are aware that these

products are aging and the presentation layer is fairly old-fashioned and they

know that they need now to handle a wider range of products and provide extra

facilities and many of their clients have been talking about object-oriented

architectures and they want to conform to that."

The project is a transaction-based one which started about a year before this

interview and there was a first release due at the time of interview. The

consultant believes that it has been well put together although there w ire some

technical problems with the database. Otherwise the system is ready for limited

release. The twelve month time frame is "... considerably longer than they

would have spent if they had been using conventional technology rather than

moving to 00. They are using a completely new technology."

The project is targetted towards a range of hardware and operating systems and

a range of databases - it is a generic portable system. This portability has also

added to the length of the development time frame. Operating systems are

standard mainframe operating systems particularly IBM and their style -AS400

machines, UNIX boxes, Windows, etc. Databases include Sybase, Oracle etc "...

relational databases because that's what the clients ivant."

As a packaged system the number of users could be quite large because of the

different types of processing since the targets are financial clients " . . . well let m e

Chapter 5 Case Studios 157

you an example... [potential clients] like [a motorists association] will have

a portfolio of business services which includes insurance - will require a

relatively small, a modest number of operators to do that processing whereas if

you go to one of the large banks or one of the large financial institutions you

might have 5 times that processing. So it's meant to be a scalable system and it's

meir.' io be ...to accommodate large numbers of users especially the final

administration system."

There are relatively informal project meetings for the team. They occur a

minimum of monthly but usually more regularly than that on a need to know

basis. There are actually two projects going on simultaneously - one is the

development of this system and the other is a parallel infrastructure project.

The key piece of infrastructure has been built and is maintained by the

consultant's partner. So the project management has to be for the individual

modules and the larger infrastructure project.

5.6.3 The Development Methodology

The consultant does not use any specific methodology in this project or any

other projects. In his position before his current one he worked for an

organisation which was " . . . not aligned with a particular methodology though

one came across methodologies all the time so one used those techniques in

various ways. ... / haven't been, let's say, an advocate of any particular

methodology from start to finish ... See I don't believe in methods as such ...

What I talk about is a underlying concept rather than a methodology. A

methodology seeks to impose a concept - when it's used badly it certainly does

-1 think methodologies and parts of methodologies are useful but they're just

props and tools and can be picked up and thrown away as required ... I think a

methodology is only as good as the deep understanding that people have of the

concepts that it's built on ... a methodology is no good on its own.... you need to

Chapter 5 Case Studies 158

have rigour and the diagramming notations and the steps in the

methodologies give you that but you also need to play in the sandpit"

The consultant sees object-oriented modelling as "... a superb xuay of modelling

the real world" which allows a high level of abstraction " ... I'm unlearning

some of my [data modelling] prejudices being back with [my old colleagues] and

starting to look at objects and classes more in terms of services than as data and

deferring the internal structure later and later and later into the design."

In this project the team has been fairly rigorously applying the use case concept

and traceability comes from the use cases. The team started with the

requirements, moved onto design, and then became involved in other parts of

the development. " ... the single thread through the whole thing has been the

use cases and a lot of the objects are still there and they ...well they've got the

same name but the way they're organised is quite different."

Prototyping is also an important aspect of this project " ... at [my former firm] I

didn't have the luxury of being able to cut code. I tended to give advice and

build models in the abstract and they'd be very elegant in the abstract but until

you try it you don't know whether it works ... to test even your requirements let

alone your design is to actually implement something and watch it fall over -

tear up the paper and start again. So again this is a lesson I'm relearning. That

in the quantitative research dept ... I joined in 1977 and I zvas prototyping in the

first couple of weeks and I've never stopped."

5.6.4 Project Documentation

There was no documentation available at all for this project since it was

considered confidential.

Chapter 5 Case Studies 159

5.6.5 The Requirements Engineering Process

Requirements engineering in this project where the same team is undertaking

the whole development process is seen as ongoing even at the final testing

stage. " ... it doesn't end either. I mean in a way now that we are testing we are

still gathering our requirements - not so much the business requirements but...

a rather vague requirement is being heavily reinforced when we've actually got

to use what we've produced."

Elicitation

Elicitation is done explicitly where possible but because this project is not an in-

house development the users are not captive to the organisation. It is very

difficult to get user involvement until the package is complete. There has been

quite an effort to gather user requirements but it has been quite unsuccessful.

So, for the purposes of elicitation, the users are business analysts and pre-sales

people in the client organisation and that means that there is a question mark

over the validity of the information.

Prototyping, particularly using illustrative methods and tools like PowerPoint

slides to mimic input screens, is seen as enhancing requirements gathering and

later acceptance of the requirements "If you get, as part of the requirements

gathering, a prototype you get much better sense of requirements. One of the

things I've done on this project which I've actually done before is I've used

PowerPoint before we had an interface to simulate an interface and the thing is

that it's not just having a picture of a screen, you can run a slide show and see

how you interact with the screen and I actually threw away the text use cases

when I got to the design phase and just did it all that way. The interface

developers were using that as a guide."

pi

Chapter 5 Case Studies 160

When asked, "Do you think "object-oriented" when you are gathering user

requirements? That is, arc you thinking in terms of identifying key objects at

that stage or building mental models of the system? Or does the object-oriented

nature of the system and the models grow later during formal modelling and

design?" he replied "I think that I do immediately start thinking of key objects

during requirements gathering, not in any formal way, they just pop into one's

head. I don't agree with the implication ...that identifying objects and 'building

mental models of the system' are mutually exclusive. One can help the other."

When asked whether he is explicitly conscious of implementation details when

doing requirements specification he replied " Yes ...you can't avoid it. And

that's really another sort of aspect of having objects in the use cases that you can

zoom up and down. You can simultaneously be doing implementation, design

and requirements. The cost of going back is much less than it is in the

conventional method where you have to model the machine rather than

model the real world."

Modelling

In this project, when the consultant arrived a requirements document had

already been started and there was an entity relationship diagram and some

processes as well. " ...and we just circled around those tzuo things over and

over again refining and refining and arguing about how tilings should be

expressed."

Both entity relationship modelling and the UML notation were used to

produce requirements models as precursors to design and implementation

models. There is a perception of two categories of models, static models and

dynamic models, or class models and state-transition type interaction models.

"I've used Booch, that is Booch pre 'the marriage'. I don't think there's ...these

notations only differ in the fine detail ... and when you actually flipping

between the design and the implementation they are really good anchor points

Chapter 5 Case Studies 161

provided you don't go bananas about state-transition diagrams and

everything."

A discussion about how the consultant went about initial modelling of

requirements led to the following illustrative comment about the usefulness

and necessity of ad hoc or informal models " ...and in every project I've ever

worked on be it a mathematical project or software development project there's

been a few key pictures. The one I'm working on at the moment is the billing

cycle - it's a wheel and its got the steps in the billing cycle on it and that's in

even/body's head and everybody talks in those terms and it's just the key base

thing - it's the conceptual core of the thing ... /';;/ a great believer in ad hoc

diagrams that give the picture that springs from your understanding of the

problem and in a lot of OO work the process of development hinges on one or

two of these pictures. ...land] the trouble with that [using ad hoc diagrams] as a

methodology is that its difficulty is that you can't capture it, you can't describe it

in some way that anyone [else] can really use it and that's precisely its strength

because it handles those parts of the things that don't fit in the normal

descriptions and every project's got an aspect like that."

Further discussion about how the consultant would model real world

situations for users led to a description of his use of 'rich pictures'. These rich

pictures are similar to the rich pictures in the soft systems methodology

(Checkland and Scholes, 1990) but they are used by the consultant in a more

simplistic manner. At this point in the interview he drew an example of a rich

picture that he would show the users and the corresponding OMT fragment

that he would not show the users. This example is in Figure 5.3.

Chapter 5 Case Studies 162

o

A o
o

A
o

(a)

Customer
Service
Officer

Customer

(b)

Figure 5.3a) Rich picture diagram for users (b) corresponding OMT fragment not shown to users

"I would have tended to build those rich pictures very early on and fed them

back to them and adapted a description of the requirements." This i n f o r m a l

modelling using rich pictures is based on artifacts that belong to the system

itself, that is, a specific thing that belongs to that system and is not in any formal

methodology. "Apparently that strikes a chord with the user too. I mean if you

draw a picture and that doesn't make any sense to them then you draw another

one. But once they start talking back to you... part of the problem is evolving a

Chapter 5 Case Studies 163

common terminology that then packages concepts up and you agree on that

and then you keep going. That's what you are seeking to do. So what 1 ...you

have to be flexible."

In addition to ad hoc diagrams and rich pictures the other main vehicle for

developing requirements with the users were use cases "Well, according to the

theory they are the backbone - you start with them and they go right through to

the testing and so forth and I think that's reasonable. Generally speaking 1 think

it's a good way to use them."

Use case types of models together with rich pictures are the models that were

used to communicate ideas to the users, that is, to people who are not

computing professionals. Full blown class models or interaction diagrams are

not shown to the user, only the informal use case, rich picture version. When

asked the following clarification question: "Wliat I'm interested in is how yon

communicate your specification back to the users, an OO specification, how it's

actually communicated back to people ivho are not trained in OO modelling.

That is, how do you explain your specification to your clients?" he replied "A

requirements specification has to be in the terms that they [the users]

understand and those three mechanisms we've already mentioned are the way.

The use case, the ad hoc diagrams, and dynamic screen simulations. And

encompassing text too, you don't write your requirements document in use

case speak from start to finish. You talk about the general context and

background. I also use context diagrams as well ...like there's a box and there's

what's in the system and how it reacts to other things outside the system -just

simple stuff but that's helpful too."

The following exchange was used to clarify the issue of showing models to the

user: "When you described your use of various models you said that you would

show the users/clients an ad hoc diagram, a prototype screen using PowerPoint

or a use case as a way of explaining or describing the requirements but you

would not show them an OMT/UML type class or interaction model. Is this

Chapter 5 Case Studies 164

because you do not think that the users/clients would be able to understand the

OMT models (say without extensive explanation or training)?

Yes, but based on experience...

or is it because you have tried showing these types of models to users/clients in

the past and they haven't understood them?"

I have tried showing these models to users and it hasn't worked well because

many people find such abstractions hard to relate to. My former colleagues at

IX] found ti 2 same thing with data models. One consultant tried replacing the

entity boxe with evocative pictures and achieved better communication.

I am not saying one should do azuay with the formalisms. They are a powerful

aid to one's own understanding and analysis but they are not a good tool for

feeding requirements back to the users. It's much better to bend the formalism

to the user than the user to the formalism."

Validation

The consultant agrees that it is necessary to validate the specification once the

models or the specification have been produced. Validation was undertaken

based on walkthroughs (role playing based on use cases) and the prototype " . . .

use your prototype - early - then you've really got something that you can feed

back. And the other way is to take all the use cases, all of them and throw them

azuay and talk about zvhat you do - a sort of role playing..."

The consultant sees the role of validation as being ongoing throughout a

systems development project and highly dependent on continuous feedback "I

think it is a continuous process. Really zuhen you go into requirements

somebody is trying to explain to you an idea or describe to you something they

Chapter 5 Case Studies 165

do. Nozv you've got to feed back your understanding of what they are telling

you on a continuous basis and then you might decide that they are talking

about direct debit processing and receipts and you talk about whether the tape

goes to the individual banks or the clearing house and then they tell you

something that they haven't told you before. You keep asking questions and

you get to a point where you say 7 think I understand it now let's go through it

again'. And then later on you'll get to the same point if you like for the whole

system and you'll say 'Alright now let's go through the whole system again' and

you'll go over some of the ground you went over before as part of the process.

So you are constantly doing that. But you do it in small steps and you do it at

obvious milestones and you do it for the whole thing at the end."

No acceptance testing was done or planned for this project "I've not done it, no.

Maybe one should." The use cases together with the prototype were seen as

important validation tools. The use cases are "alive" from right at the very

beginning and they are used at the end to revisit the specification " ... and say

this is what we think we've got, this is what we are going to build ... Izvoiildn't

assert that when you build your prototype you take a particular use case and

implement it at some level. 1 think you implement the system at some level

and that would give you a capacity to traverse it using some use case." In this

system prototyping was not an implementation of use cases. Use cases were

used to focus on a critical class or a critical cluster of classes for the prototype.

Use cases on their own are not seen as adequate for defining or validating

requirements.

Requirements were revisited right through the design and implementation

because there are always ambiguities, inconsistencies and omissions which did

not show up until prototyping and testing "Do you usually expect to revisit or

revise the specification during design and implementation due to unforeseen

omissions and ambiguities? ... Bet your boots!"

Chapter 5 Case Studies 166

This case revealed the use of pictures, adhoc diagrams and PowerPoint

simulations for discussing the requirements with users. This idea is followed

up in subsequent cases.

5.7 Case 5: A Life Insurance System

The consultant in Case 5 professed to using an object-oriented approach to

specifying and building a life insurance system but claimed not to use any

models either based on use cases or diagrams of specific modelling notations.

The consulting organisation for Case 5 is the same as the consulting

organisation for Case 4. The analyst/consultant is different and the client and

project are different.

5.7.1 The Consultant and the Consulting Organisation

The consulting organisation for Case 5 is the same as the consulting

organisation for Case 4. The analyst/consultant is different (another partner)

and the client and project are different. This case study is less detailed than the

others are because there was a technical problem with the tape recorder at the

interview. Unknown to the researcher, the tape was not recording even though

it appeared to be. The data is based on an email interview based on the

interview script, notes, recollection by the researcher and follow up questions.

The consultant interviewed for this project describes himself as a director and

consultant. He has been with the organisation for about two years and has been

doing requirements engineering/systems analysis for approximately fourteen

years.

The consultant has never undertaken any formal course in requirements

engineering or object-oriented systems. When asked about what methods he

used he replied "The method I always use is to THINK about the specific

Chapter 5 Case Studies 167

problem from first principles, this applies equally to business-domain and

technical aspects of the problem."

Prototyping can play an important part in the consultant's system development

approach. "Prototyping (in terms of screens to play with) is valuable to support

client/development understanding and strengthen sponsorship. Otherzuise it

is an unhelpful diversion of development effort. Prototyping in terms of

getting something running and then changing it is what we always do."

When asked about the object-oriented concept that an object remains the same

from analysis right through design to implementation as being a strength of

object-oriented methods he replied "Objects are only stable near the end. I've

never seen ANYONE get an object right first time."

5.7.2 The Client and The Project

The project is a life insurance system where the objectives are to provide

software to implement all the systems required to support a life-insurance

business. The project was initiated directly by the client which is the Australian

arm of a large international insurance organisation.

It is a transaction-based system with an initial phase of twelve months. If

successful, the project may become ongoing over several years. It runs on

Sun/Solaris servers, Intel boxes with Windows NT frontends. The number of

users will initially be 20 - 50. If the project becomes ongoing and is globally

deployed it is envisaged that there will be " ... thousands of users not counting

Web-accessible components." The project team is a team of seven who has

weekly " ... ad hoc sit around and say what we're doing meetings." The

consultant is not currently working on any other projects.

Chapter 5 Case Studies 168

5.7.3 The Development Methodology

There was no specific methodology being used on this project. The specification

was text-based and grew from the requirements gathering process "Ad hoc

notes from whiteboards onto loose-leaf and/or bound notebooks. Typed up

'processed' versions of these in an adhoc, as needed, fashion. Many ideas get

'documented' in the code (use of Javadoc to include design ideas in code)." This

approach was used because "... it works well".

Requirements specification is seen as a process that is always being revisited.

"Ongoing throughout project -- it's the development team's responsibility to

make the final product satisfy the business, and as a means to this end, ongoing

consultation, discussion, and sessions at the pub are very important." .

5.7.4 Project Documentation

There was no relevant in-house documentation available "Each team member

has a range of books they find useful. Some are more bookish than others."

Documents available from the client were used as part of requirements

specification "... the artifacts that they use in their business - internal memos,

instructions, reports, also spreadsheets etc. do all the requirements

documentation."

5.7.5 The Requirements Engineering Process

Elicitation

When gathering and specifying requirements the consultant said he was

definitely not conscious of implementation details and that the specification

and modelling process was completely implementation independent. The

Chapter 5 Case Studies 169

general approach to requirements gathering is illustrated by the following

comment "When talking to business, we have to BE good business people.

Being a good requirements gatherer and analyst requires the skill to be able to

think in the same way as a wide range of business people and being good

enough at understanding the business so you build trust and rapport. The only

way to get good requirements is to get the business representatives to feel that

you understand their problem and are bright enough and competent enough to

be able to solve them."

Knowledge elicitation was explicitly undertaken and started early "Yes. Lots of

talking early, but ongoing through project." The elicitation process involves

senior members of the team "Senior developers run the analysis. Junior

developers do more leg-work in requirements gathering."

When asked "Is requirements gathering seen as specifically object-oriented, i.e.

do you think "OO"from the start? "he commented "No. Think 'business' all

the way. (Compare OO thinking to 'Microsoft Word thinking' — it's only when

we come to tidy up and express ideas in Word that we think — oh I'll try this as

a list of bullet points, yes that looks right...) 'OO thinking' sounds weird ...it's

really all about just thinking what the best thing to do is with the particular

tools at your disposal."

Modelling

This consultant professed to using no specific methodology or notation and

doing no modelling at all since he found it unnecessary. When questioned

about whether he did any mental modelling (following up from cases 3 and 4)

he was non-committal "This is really about how people think. Some of us

more conscious of the models, others not."

Chapter 5 Case Studies 170

t

Neither did he use any informal models - pictures or diagrams to communicate

the specification with the users "No. The users are business people." or any use

cases "Not really. Use cases are good for focussing attention for a short time up

front on the whole range of actors... that's about it."

Knowledge elicitation was seen as iterative. The team went back to the users

several times where some piece of information triggered the need to explore

some new feature or aspect.

As stated above this consultant professed to do no modelling at all. His

emohasis in conversation was on abstraction. He put it succinctly in the

following exchange, "When does formal modelling begin? It doesn't." Since

there was no use of a method or notation the consultant seemed averse to

using the terms model or modelling until he redefined them. He saw a model

as a set of concepts "What we have to build is a system that embodies a set of

concepts. These concepts are the model. In order to build the system well (so

the concepts are clear and clean) it is important for the team to have a clear,

unified view of Hie set of concepts (the model) and so far as the team needs it

we use artifacts such as Microsoft Word documents to describe the model.

What zve are always doing is trying to get a better understanding of the problem

domain and our own implementation of that domain. Understanding is often

improved via abstraction (= metaphorical thinking)..."

The models or descriptions that were produced were "Very very few. On a n

entirely ad hoc basis and were produced with tools like Microsoft Word and

Javadoc,..." and were only for the team not the users or clients as illustrated by

the following exchange: "Who uses them [the models]? The team for their own

purposes. Who are they produced for? The team Which models, if any, are

shown to the user? None ... the user gets much more 'sales-oriented'

presentations."

Chapter 5 Case Studies 171

Use cases were only used sparingly in the specification process "... good for the

focus on actors, generally too cumbersome, inexpressive, and often dangerous

because of the heavy investment in particulars soaks up time needed for

abstraction and reasoning about the business." And consequently there was no

perceived relationship between use cases and any more formal static and

dynamic models.

Validation

Explicit validation of requirements was viewed with some suspicion

"Validation is often a way of attempting to absolve the development team from

truly owning the responsibility for the nature of the product they deliver. It is

the development team's onus to make sure they are building the right thing.

Early validation does not mean that the thing will turn out to be right or

useful, although it can avoid a certain class of disaster. We are always worried

about building the right thing. We have to be advocates for our ideas and test

them out in discussion with the business."

Acceptance testing was advocated as useful but use cases and prototypes were

not seen as playing an important part in the testing or validation of the

requirements. Regarding the finalising of the requirements engineering process

the following exchange is indicative "Who is involved in the validation

process? The development team and the business representatives. When is the

validation process considered to be complete? Never? Do you usually expect to

revise or revisit the specification during design and implementation due to

unforeseen omissions, ambiguities etc? Yes!!!!"

5.8 Case 6 A Stockbroking System

The consultant in Case 6 was a senior project manager for a software

development organisation which develops custom-built systems for individual

Chapter 5 Caso Studies 172

clients and generic packaged software systems for the stockbroking industry.

The consultant was experienced in many methods, both object-oriented and

non object-oriented, for specifying and building business systems. In this project

a generic stockbroking package was being developed using an in-house object-

oriented methodology. Models shown to users were based on prototypes, screen

simulations and animations with use case models used mainly at the

validation phase.

5.8.1 The Consultant and the Consulting Organisation

The consultant's official title is Technical Development manager. All system

administrators report to him and he also acts as a system architect from a

software perspective and so is responsible for all designs and all analysis of the

software that the organisation develops. He also fills the role of general

troubleshooter within system development and assists as an additional

resource on the business analysis side.

The consultant has been involved in object-oriented systems for about five

ytci *s and has worked for the organisation for twelve and a half years. He has

spent all of that time doing systems analysis and requirements engineering.

Although he has not done any formal training in object-oriented systems he

was involved in an in-house course given by a lecturer from Swinburne

University of Technology who gave an object-oriented analysis and design

course.

The consultant had used non object-oriented methods before moving into

object-oriented based systems. He used a relational database management

systems (RDBMS) approach based on INGRES and before that he developed

COBOL-based systems using traditional structured techniques. Data Flow

Diagrams and Structured Systems Analysis and Design Method (SSADM)

techniques were used in the RDBMS approach. He believes that although

Chapter 5 Case Studies 173

object-oriented approaches have certain advantages they also have some

limitations for developing systems "It [the object-oriented approach] has some

advantages in some of its approaches and the encapsulation concepts work

well, however, in many regards we were already doing that even back in the

COBOL days by using ...proper use of subprograms and reusable code and

...modular design ... The problem with using DFDs and that is that the models

were far too data-centric which was fine if you were doing a lot of retrieval but

to do good transaction processing zuas quite azokzuard and you really did need

very high levels of expertise to get it right in the RDBMS zvorld. That is much

less so [in 00] and therefore you can actually end up with much simpler

solutions with 00 techniques as long as you keep the propeller head so to speak

away, you actually end up with systems which are very easy to understand and

easy to maintain and that's the big plus."

He disagreed with the notion that one of the strengths of the object-oriented

approach was the delaying of design decisions, that it made for much simpler

structures. "Its interesting because to some extent I zvould disagree with that. I

find that some of the design decisions you have to make, you have to make

much earlier and you have to pay more attention to the design because if you

get that wrong then everything you do afterwards zvill simply not zuork,

zvhereas in the old forms particularly the RDBMS that zvas certainly not true. ...

One of the problems that I find zvith large 00 systems, and effectively zvhat w e

build here are very large 00 systems, is that unless you pay an azvful lot of

attention very early on to the design and particularly [to] zvhai other objects are

being involved - zuho zvrote them and hozv they are used - you can end up

with a much larger mess."

Regarding effective traceability being available in object-oriented systems

because an object remains the same from the time it is identified at the

beginning of requirements specification through to the design into the

implementation phase he also disagreed with the common wisdom and the

Chapter 5 Case Studies 174

literature " ...my question would be what do you mean by "stays the same". I

mean invariably I've found that the base, or perhaps the core of an object may

remain very similar. Often what happens is if you are using any form of deep

hierarchy, the inheritance trees will change ... recently we've just made a major

change to the inheritance model and the particular part of the object structure.

Now, on that basis, no the object has not remained th: same ~ it has actually

just gone through a major transformation. And a lot of that is because of the

way you work in 00 - you tend to identify a particular problem domain and

you model through it and come out with your object structure. ... Arid to

integrate it best you actually need to change your inheritance model ...and

there are a lot of changes back to the original code because of the domino

effect."

5.8.2 The Client and the Project

The consultant is currently working on several projects. The proiect which he

is spending the majority of his time on is a new flagship software package being

developed in Australia. It is a stockbroking package, a back office system for

stockbrokers which is configurable to individual client needs. It is neither an off

the shelf package nor a one-off to each client so there is a set of core

requirements. Assistance is provided by the organisation to clients in

customisation and ongoing support.

The project arose as both an in-house project and as a response to an identified

need to update an existing product already in the marketplace. It was

commenced as a jomt development with a major stockbroker. The

stockbroking client was in the market for a new system which they put out for

tender. The organisation responded and based the development on some

software that already existed and then worked with the client in developing the

new package, liic clienfs long term objectives were almost identical to the

consulting organisation's and so they worked together fairly closely on

producing the original version of the software. The software is not customised

Chapter 5 Case Studies 175

towards the client's solution but takes a broader view of general stockbroking

package software.

The project is being developed from scratch. "While we have existing products

and we obviously gained a great deal of product knowledge, leverage from that

and that also helped on our analysis side because we knew what we were ...we

knew the business that we were writing the software for. Effectively we started

from a clean slate."

As expected it is a transaction-based system and the project is ongoing. The

initial release of the product is already in production outside Australia. The

initial development was in Hong Kong where the initial client was based and

they wanted an international solution. Currently the Australian version is

being developed and they are also working on UK versions. The software is

built primarily with Windows NT clients in mind. There is also some

background processing which will run on any NT platform but is

recommended to run on UNIX platforms. The main database servers could be

on NT but are more often on large UNIX processors predominantly Sun

Microsystems.

The number of users depends on the client. For the Australian client there are

350 users. The operation in Hong Kong has in the vicinity of 200 plus users.

The product could go global via the Internet and then there could be potentially

thousands of users.

The number of people in the team has varied. At one stage the Hong Kong

office had about 30 people and there were 15 or so in Australia and another 10

or 15 in the UK. The numbers in the various countries fluctuated depending on

the workload. Since the initial set up the numbers in Hong Kong have

d r o p p e d . "At the moment, Hong Kong has just dropped ...I'm just organising

an additional resources for them. The UK office has about probably 30 plus now

Chapter 5 Case Studies 176

because we are leading up to putting in a number of UK clients, so there's a big

emphasis there on completing the UK zvork so they can go to production." The

development team here has a weekly meeting that is scheduled at the start of

every week. ''It's really aimed at being a general catch up about what people

have been doing so everybody on the team knows basically what's going on.

Also they raise issues of what's coming up. Are there any major deadlines

coming up? How do we approach those? And lastly the issue of are there any

problems that we don't already know about?"

The consultant is also working on adhoc projects, which are based loosely

around the stockbroking projects, and is also involved in a project with a major

automobile manufacturer in New Zealand.

5.8.3 The Development Methodology

The methodology is an in-house methodology based on UML notation but not

the complete Rational development method. " ...there may an ITT (invitation

to tender) or something of that nature zvhich we start off with ...out of that

document we do business requirements. We have a business rules document.

And from that we go to a top level design, detailed design and then again from

that there are a number of different levels of testing zvhich are to be put in place

through integration testing, system testing, and then user acceptance testing."

Prototyping in the form of a GUI prototype for the users is used in the project.

"We actually do a prototype and then zvork through the users with that and

then gain sign off at that level."

The consultant believes that prototypes are not always appropriate and can

cause problems. "Invariably prototypes are not thrown azvay. In practice if you

spend a lot of time and effort on prototypes it is very hard to convince

executive management zvhy you are throzving them azvay. So my main

criticism of prototypes, particularly in 00 environments, is that they then tend

Chapter 5 Case Studies 177

to impact the design, ... because invariably the people who do the prototypes are

not up with what 00 is all about and have absolutely no idea of what the

underlying design will be and therefore what they are asking for may be ...well

not impossible ... may be exceedingly difficult to do."

An integrated development tool called ModelWorks has been used in this

project. It is an active modelling animation tool which allows developers to

describe the business processes and model them using the modelling tool and

then animate the model. It is possible to build the skeleton of an application or

a prototype as the analysis is being undertaken.

5.8.4 Project Documentation

Documentation was not available for this project "nearly all the documentation

is in fact provided by us so we actually write the business requirements

document ourselves although we do it in conjunction with the users, we

actually produce the document and then get them to sign it off."

5.8.5 The Requirements Engineering Process

Elicitation

Knowledge elicitation or requirements gathering is explicitly undertaken.

There is usually a gap analysis providing a list of the major features that need

to be buf.it for the client. Following on from there is a business requirements

document. In association with that there is a business rule document which

says for each requirement what the rules for that requirement are and that is

very explicit.

Knowledge elicitation is undertaken by conducting interviews with the users

and is iterative. A normal "gap" analysis would probably take 2 to 4 weeks. The

Chapter 5 Case Studies 178

users are interviewed several times to clarify points though not for a gap

because it is high level. To create a business requirements document requires 2

to 4 weeks of work.

Si
SIIi

I

"The requirements are done to quite a detailed level. There are certainly

iterations. We go back. It can be in a number of forms. What we may do is in

fact have a larger group of v*ers where we get a large quantity of information.

Then a lot of the interaction may be with only one or two [users] with again

follow up presentations to a larger audience. ...we like to identify key users.

What often happens is ...if we are doing a lot of development rather than a

straight implementation we would encourage the users to set up within their

IT group if they have an IT group or within their business unit if they don't. So

they would be charged with perhaps sometimes collecting 8 or 10 various viezvs

from within the company consolidating and working with us."

There is a group of users who is the development team's interface into the

company. "What it does is that it tends to give them control within their

environment in terms of co-ordinating views so that we don't go, and

hopefully we don't go, into a room where there are 15 different viezvs. Some of

that has already been resolved and what we're doing is just a fine tuning of

slightly different requirements which we know users ... that they are not

completely opposed in their viewpoint."

Elicitation is seen by this consultant as explicitly object-oriented "When 1 do

requirements documents I do [think object-oriented] if it's requirements

[gathered about] something that already exists. If it's something new again I

probably do, I start to think about zuhat they are really after and then hozv to

group things together." The consultant starts to identify high level abstract

objects at the elicitation stage "I certainly zvould but the majority of the business

analysts and some of the other more IT oriented people probably not. The aim

Chapter 5 Case Studies 179

of the document is not really to be object-oriented in any way. It is simply

gathering what the requirements are."

The following exchange illustrates the consultant's response to the notion of

mental modelling "A couple of other consultants have said that they actually

start building mental models at this [knowledge elicitation] stage."..."Correct." ...

"That they don't put anything on paper - that these mental models are sort of

living in the back of their mind and as new information comes in that it sort of

alters or adds to that mental model they have" ... "I do" ... " and its very abstract

and not really anything that they would put on paper or show anyone. Do you

do that?" ... "I do that. ...That's not true of some of the others. You can tell when

you look at their work that they've not actually thought about any form of

underlying structure at all. All they've really done is try to gather the business

requirements."

Modelling

It is not until the requirements gathering is finished that the consultant or

team starts modelling "....all through requirements gathering we are talking

textual, primarily." There are several models developed depending on the

project. "We are using UML and we don't use a lot of the diagrams and we are

slowly trying to use more but at the moment the pressure is to deliver, not to

model. Modelling takes time and that's difficult on highly commercial projects.

Invariably the delivery date precludes detailed modelling. We do class

diagrams. We are trying to do more interaction diagrams, or collaboration

diagrams and we do at the very lowest level, we resolve an entity model."

There are static models and dynamic models. And the static or class diagrams

models tend to come first, "...the static model, the object model, class diagram,

however you want to describe it, is the core. Everything starts there. That is the

original component with these models. And then from that springs

Chapter 5 Case Studies 180

collaboration diagrams and interaction diagrams, if you want to go through and

do state change diagrams etc."

Modelling is based on the UML notation not the complete Rational

development method. "All of the diagramming is UML. UML is a notation; it's

not a development methodology. Rational will sell you, I forget what their

other tool is but, which is a development methodology and my understanding

is that Jacobson is currently putting together a new one which is all based

around use cases. So it is a formal development life cycle methodology about

how to go through the whole process using UML as the documentation

method. "

The consultant has not and does not use a complete proprietary or commercial

methodology because he believes that they are too expensive and too complex

"But in most areas ... I've not seen anybody use the big methodologies. I think

there are two reasons. (A) If you buy the professional ones they charge too

much, zuhich is also why I think why everyone talks about Rational, although

we tend to use a competitive product, Select, mainly because it's a little cheaper.

And even then I don't have as many copies as I should have because it's so

expensive. They are VERY high cost and if you put on the process flow

modelling, all the methodology on top of that ... What happens is that the cost

of setting up a developer starts to become prohibitive and there's no return on

that so either you escalate the price of your product to cover that high cost or

you hope you work for a multi billion dollar company that can afford to simply

write cheques and say 'yeah we will spend all this money'. The other reason

certainly why we tend to use our own methodologies which have short cuts

and work arounds and all sorts of different things and why even

methodologies where you are supposed to follow them [in our easel there are

odd documents missing and some are much shorter than they should be. There

is simply not enough time to follozv the whole box and dice and produce all of

the documents. You produce those documents where, if you've got to get a user

Chapter 5 Case Studies 181

to sign off do those. Why, because that affects the bottom line and that's really

what it's about."

When asked if he or the team ever showed UML type models to the users he

said that it depended on the users and in his case he has only shown models to

users who are familiar with the notation "No. We would probably not show ... 1

don't believe we zvould show, a user any of the modelling that we would do as

part of a top level design or a detailed design. We may show them some very

high level diagrams but that's more to get operations people a view of what

processing is about. ... The end user is invariably, if the data is not on a GUI

somewhere they probably wouldn't have a clue that we were storing it."

In this case the class models and interaction models were never shown to the

users because they were not designed as end user models but are designed for

the development team, and were passed on to the design and implementation

phase.

This also led to a discussion on how difficult it is for some people, users as well

as professional developers, to think in object-oriented terms "The biggest, if you

like, misnomer that I've found with 00 techniques is they're not faster, they

are slower. I've worked with COBOL systems, RDBMS based systems, 00

systems using a very advanced IEM artificial intelligence based 4GL and then

C++ and COBOL and the 4GL, an AI based one which is an object...based around

objects, i.e. 00, are the fastest in development but for some simple things, some

simple solution you could build it an awful lot faster out of COBOL than you

could out of C++ and with a much lower, I won't say level of developer, but

your developers don't need to be so bright and smart using some of the other

tools." ... "They can be trained up to produce a solution with ... " ... "Correct.

You can get people who are good solid developers, who are very productive

and will do an excellent job much more easily out of some of those tools. I have

found particularly with the main, or what's now regarded as the main 00

Chapter 5 Case Studies 182

language, being the dreaded C++ is that it is difficult to learn. It requires

particularly bright people in order to do things. They tend to zoander. They tend

to have their own agenda about what they want to do and how they want

things to work. You can't be...1 always consider myself as more of a purist and

try and think 00 rather than think C++and they don't, they think C++ ..."...

"the mentality of the old hacker programmer" ... "Absolutely. And it's very-

much like that, whereas I thought we were getting away from that and we were

trying to have, from my perspective, language independent softzvare solutions

are where we should be going and we are not doing that. We are not getting to

language independent because everybody now likes C++. UML was originally

based on C++ implementations so it forces you down this programmer, hacker

mentality not thinking about business objects or how they interrelate and how

they react and actually build them from that perspective and then who cares

what the language is." ... "It is so easy to just set up a prototype of the screen,

stick a few components on it and a bit of code behind it and that is not the way

to build systems although I think a lot of systems are being built that way

because ..."... " I would suggest that probably 80+% of systems at the moment

are built exactly in that manner."

Use cases are not used much by this consultant except at the validation stage

"We certainly do some when we are walking through, perhaps later once we

get down and perhaps have got a prototype and some rules and requirements

the users now start saying well, what if ... We verbalise or walk through a

scenario and then say well how does this system handle this. They may write it

in an email but it's not a formal scenario driven approach." Further

questioning on the use of use cases led to the following exchange

"... / like them and I wish we could use them more often. There are not a lot of

tools that support them, if you want to interact at the tool level. They can work

if you document them and effectively they become a test scenario and they are

certainly very good for that. And I certainly would try and get users to come up

Chapter 5 Case Studies 183

with a specific case to actually document and if you have a formal test

environment (they do) or test cases all documented and all of that. Using use

cases to help elaborate the solution is often a little more difficult. Again it relies

very heavily on having, using the full raft of tool sets and again 1 would say

that most people don't use the full raft of the toolsets. They use the toolsets for

as much or as little as you need in order to build the solution. At the end of the

day, the built solution is what is important and enough documentation to

support that,"

"1 had one consultant say that he thought that they were very useful and

necessary but they could be dangerous when depended on in isolation because

they seem to be becoming popular in some of the smaller consultancies to use

them alone (as the model) because the users can understand it."

"We certainly wouldn't ...we certainly us°. them to highlight specific cases that

the user has ...a scenario with the user has come up where they say this is really

some complex or unusual process. I tried to use them for some more simple

one? but they become, I think, then too simple I actually quite like the OOIE

event diagrams because effectively you are process modelling. And users can

miderstand process models much, much better than ... I mean you show them a

class diagram with all it's interactions and they go 'What does it mean?' because

they can't navigate through that zuhereas with an event diagram in the OOIE

which is more of a process model they can follozv it through. They can see we

are doing this operation. Which object does this operation live on? They don't

care and therefore you can conceal that from them and all they are interested in

is 'When we do this, this causes this to happen' and they can follow process

flow through. What interactions are occurring underneath..."

Active questioning about how equirements are communicated back to the

users/clients led to the following exchange:

Chapter 5 Case Studies 184

"I'm interested in how professional people communicate their specification or

their models back to the users and say 'this is what we are building for you'.

And in some cases it's use cases ...and some people use ad hoc diagrams and

pictures and some people just use textual specifications. So I'm jus* r h*< sted

in that communication back to the client of 'what we are building'".

"Initially what the users are expecting is really based on the business rules, the

requirements and the prototype if there is a prototype. We do a large part of the

sessions with the prototype with the users, the screen prototype, and the users

get used to that zvhich is the other reason why you can't throw it away. Because

at the end of the day they know what it looks like and therefore when you go in

to testing that is what they expect to see. In fact they complain if there is even

the slightest change. They actually ..."

"Yes. . This is a different colour to last time'..."

"Absolutely. Reccitly one of the guys in Hong KongIdid the prototype and

the Business Requirements and Business Rules, set the whole thing up to be

built and they moved two non-eaitable fields and the users when they went up

to Hong Kong /: have a sort of quick check said 'where are those two fields?'

{Laughs} 'Oh we put them on a different tab'...'But why?' So they are very

much keyed into if you work with them heavily on the prototype that's what

they expect to see as the final design regardless of what anybody maintains or

says 'Oh no, no, no it can be different' at the end of the day it's got to not be.

Again that's probably... back to your other questio^i as to why it is perhaps

helpful if 1 get involved and do them because I do think a little bit about the

objects. I tend to get the GUIs reflecting perhaps a little bit more as to zvhat the

underlying structure will he and therefore it is less prone to have ...for

someone to say 'It's just too hard, we need to build it a different way'."

Instead of object-oriented models various diagrams were shown to users

Chapter 5 Case Studies 185

"We would walk through all of those diagrams with the users and in fact you

can store canned scenarios {using Modehvorks} that will show the navigation

through and we actually will with users come up with complex cases and

business cases ... You zvould actually walk through the end solution because the

event diagram is what is built into the solution so they can very much see what

they've got. Using UML the requirements and the business rules. (A) We don't

have a business process model like that so there is really nothing you can show

ihc user. Use cases would be good but again it relies on having all of the other

models done because you have so many models. Again they tend to get left out.

I'd like to see them used more."

The consultant believes that as a professional much of his requirements

technique comes from knowledge and experience on other projects He believes

that it is a cumulative thing where having seen something or solved a problem

before he can solve another similar problem. "It works in two ways. There is

using your experience to recognise 'Hang on I've seen something like that

before ...Yes, I recognise what it's doing therefore I can do it'. Secondly I know ...

1 don't have the same view of the business as a user because I'm used to the

view from the software development side. Most of the users I talk to have not

been in it for eight and a half years so I actually have a fairly good

understanding of the development and SE or IT or whatever you want to call it,

that the softzvare development side of the business I understand and therefore

zvhen I'm requirements gathering I actually understand what the user is talking

about and can actually relate that to softzvare development so therefore I can

make sure I try and zvork my requirements gathering around 'OK, if I had to

build that zvhat information zvould I need? Have they given me enough? If I

built that zvhat are the exception caseo? Are there this, this this...' There arc

some of the questions about zvhat they zvant to do if it doesn't meet these

criteria, all of that. And that's predominantly drazun on a nearly 20 year career

and 12 years in the same environment."

Chapter 5 Case Studies 186

Validation

When asked, the consultant believed that it is necessary to validate the

specification itself, not Ihe just the implementation but the specification, once

there are some models or the specification itself has been developed.

"Absolutely, that's exactly what we do. We asked the users to sign in blood, not

that even if they sign it they will then swear black and blue that it was

documented wrong. And you say 'But you signed it off, blah blah, you got it

wrong, {laughs} Here's your signature' 'No, no, no ...you guys got it wrong. You

told us ... how did you ever convince us that that should happen?'"

Validation is undertaken by doing formal walkthroughs with the users "And

I've still had users sign things and then two weeks later claim that we got it

wrong despite the fact that's what's in it and they said, and they agreed and

signed on the specification that that zvas correct. And they will come back and

say 'No, it's not' and at the end of the day you can't argue because you just end

up with more trouble than it's worth if you highlight too heavily the fact that

they had signed off."

Walkthroughs, either with use cases or a textual based specification document

is the only validation method. There is no formal validation of formal proofs

performed on the specification. " ... we go through the requirements, generally

not the rules as much but mainly the requirements and probably the prototype

and we would get formal sign off"

Validator i and acceptance testing are ongoing and are done at specific points

during the development process "We have ...the methodology has in it the

specific points when testing is done. You build that into your test plan and you

build it into your development plan as well as you know that developers are

supposed to do unit testing as part of their development. At the end of the cycle

you have integration or internal testing and then you have full user acceptance

Chapter 5 Case Studies 187

testing. We try and at some points through the development process, try and

have some form of review with the users although that's not always possible

and not always done. But we try just to ensure that they don't change their

mind half way through, or if they do we find out about it early."

The prototype is used more in validation than use cases. The prototype is

invariably used to walk through the specification with the users and use cases

are used for exceptional or special cases "The last major one I did we were

looking at the requirements document but as we were looking at the

requirements document we had the prototype running and projected up on a

big screen and we actually walked through the prototype in relation to the

requirements and when they said 'Here's a requirement that says you've got to

be able to do something' you go through the prototype and say well this is h o w

you do it." The people involved were the same users that were interviewed

during requirements gathering.

Again in this case requirements gathering is seen as ongoing throughout the

system development and the consultant expects to revise or revisit the

specification during the design and implementation stages. "We know that the

users will always come up with a new scenario or something thai has changed

or somebody forgot something. A lot of the time it's something which came up

as an original requirement and everybody agreed was not important and then 3

months into development suddenly somebody thought of one particular

business case which is why they had that requirement in there and that is

absolutely important, it's critical. So suddenly now it is have to do it rather than

be able to defer it to a later date so there is certainly a lot of that. Users get things

wrong. A user will tell you that black is white or whatever. It's all perception.

We certainly get a lot of that where occasionally you get the wrong user.

Finding the right users I've always found to be probably the biggest trick. If you

get wrong users you get the wrong answers to the right questions and then

when you've built the system and you display it to perhaps a wider body

Chapter 5 Case Studies 188

suddenly somebody says 'Why did you do it that way, that's stupid because...'

And you say 'Well that's not what we were told'. 'Oh, you couldn't have been

told anything else because this is the rule that says in this piece of legislation'

{laughs} or 'This is the policy manual that says that we do it some other way'."

The consultant also does not believe that automated tools solve these problems

"1 can't see how ANY tool can ever protect you from a user giving you or

telling you how something is ...what the rules for something are or the rules

for a particular intei'action is and simply telling you the wrong thing and not

knowing that they are telling you the wrong thing. And then at the end of the

day your system does the wrong thing. It does EXACTLY what you were told but

its wrong and another user as soon as they see it will tell you that it is wrong.

And it is simply impossible to protect from that and you always get that. I can't

see how, using a tool, how you can eliminate unfactual information."

5.9 Summary

This chapter has described a multiple sequential-case study of modelling for

object-oriented requirements engineering. This case study was undertaken to

answer the research questions posed in Chapter 3 and investigate the validity of

the concepts in the conceptual process model proposed in Chapter 4. The data

collected in the six case studies has been organised into six case study

descriptions which were presented in this chapter. Cross-case analysis of the

case study data appears in the next chapter.

Each of the cases involved the investigation of the use of models in the

requirements engineering process within the context of a specific project, the

methodology used and the approach of the analyst or consultant. The case study

descriptions show that in Case 2 it emerged that use case models were the main

vehicle for describing and communicating the requirements to users. This use

of use case models was not explicit in the initial conceptual model and was

Chapter 5 Case Studies 189

followed up in subsequent cases. Case 3 revealed a comprehensive description

of the development of mental models during the elicitation phase and this

concept was explored in subsequent case studies. Case 4 revealed extensive use

of rich pictures, adhoc diagrams and screen simulation prototypes for describing

and communicating the requirements with users and this was also followed

up. Case 5 and Case 6 provided more rich detail and also reinforced some of

these concepts contained in or emerging from the conceptual process model

(such as mental modelling, proton ping and the use of informal models to help

users understand and discuss the requirements) but did not reveal new areas

for exploration.

The next chapter analyses the case study data in terms of addressing the

research questions, investigating the empirical validity of the initial conceptual

process model and its revisions.

Chapter 6 Case Study Analysis 190

Chapter 6

Case Study Analysis

6.1 Overview

Chapter 6 presents the qualitative analysis of the sequential-case study data in

terms of three objectives. The first objective is to determine the empirical

validity of the initial conceptual process model presented in Chapter 4 of this

thesis. This analysis is described in section 6.2. The second objective is to

analyse the emerging characteristics of the evolving versions of the conceptual

process model that are revealed and/or reinforced by the sequential-case study.

Each new version of the conceptual process model and the case study data that

produced it are described in sect1'on 6.3. The third objective is to describe and

discuss findings from the sequential-case study data that relate directly to the

research questions which explore the opinions, beliefs and behaviours of the

professional analysts engaged in object-oriented requirements engineering. The

analysis of vhese findings is described in section 6.4. The overall findings are

summarised in section 6.5.

The conceptual process model presented in Chapter 4 of this thesis was based

on the literature regarding object-oriented requirements engineering and

Chapter 6 Case Study Analysis 191

together with the research questions presented in Chapter 3 of this thesis

provided the basis for the interview scripts used in the sequential-case study

described in Chapter 5 of this thesis. The categories used in the sequential-case

study represent the technical, cognitive and social concepts embodied in the

conceptual process model and the research questions. The concepts in the

conceptual process model emphasise the technical aspects of the object-oriented

requirements engineering process and the concepts in the research questions

emphasise the cognitive and social aspects including the opinions, beliefs and

behaviours of the professional analysts who undertake object-oriented

requirements engineering. Both the conceptual process model and the research

questions address aspects of the three processes of object-oriented requirements

engineering: elicitation, modelling and validation.

Qualitative data analysis methods based on Miles and Huberman (Miles and

Huberman, 1994), Fitzgerald (1997) and Wynekoop and Russo (1997) have been

used to organise and classify the sequential-case study data. The analysis

presents the researcher's understanding and interpretation of other peoples

interpretations and perceptions as expressed in a number of iterations and

interviews (Walsham, 1995). Both within-case analysis and cross-case analysis

(Cavaye, 1996, Miles and Huberman, 1994) have been used to highlight

reinforcement of existing conceptual categories and to identify emerging

conceptual categories.

The two main documents used in the data analysis are the interview script and

the categorisation document. The initial interview script (see Appendix A.I)

was partitioned into seed categories based on the initial conceptual process

model as outlined in Chapter 4 and the research questions as proposed in

Chapter 3. The initial categorisation document contained the same categories as

the interview script. For each case the transcript data was placed into the

categorisation document under the appropriate category headings. The process

of transcribing the data and placing the transcript data into the categorisation

Chapter 6 Case Study Analysis 192

document revealed new categories or sub-categories. These new categories or

sub-categories were then incorporated into the subsequent interview script so

that as the sequential-case studies progressed the interview script grew to

incorporate emerging categories and corresponding questions for the

participant. The final interview script (see Appendix A.2) shows the extra

categories and corresponding questions that emerged during the six sequential-

case studies.

6.2 Validation of the Initial Conceptual Process Model

As stated above the first objective of the qualitative analysis is to empirically

validate the initial conceptual process model (see Figure 6.1) presented in

Chapter 4 of this thesis. The initial categories identified from the initial

conceptual model and associated interview questions are given in Appendix

A.I. The main categories addressed in the initial conceptual process model

were:

• The use of three pocesses: elicitation, modelling and validation

• The use of feedback in elicitation for clarification

• The identification and use of explicit static and dynamic models

These categories were addressed in all six cases. The following three sections

present the analysis of each of these categories and the findings are summarised

in Table 6.1

Chapter 6 Case Study Analysis 193

user
requirements

models

Predetermined &
Available Resources

object/class
identification

problem
domain

state transition/event
identification

Domain Models

static
models

dynamic
models

modsls
validation
results

domain
knowledge

Figure 6.1 Initial Conceptual Process Model

6.2.1 The use of three processes: elicitation, modelling and validation

One of the major concepts embodied in the conceptual process model is that

there are three identifiable processes in the object-oriented requirements

engineering process. Those processes are elicitation. object-oriented modelling

and validation of the models. The specific questions addressing this concept

taken from the interview scripts are:

• Is elicitation explicitly undertaken and when does it start?

• When does modelling begin? That is, when do you start drawing object

models?

Chapter 6 Case Study Analysis 194

• Dc you think it is necessary to validate the specification once the models

have been produced?

• When does the validation process start?

The three processes of elicitation, modelling and validation were identified in

all six cases. In Case 1 there were three stages within the elicitation process.

Elicitation started with a "blast-off" meeting and continued with regular

interviews with the users and meetings of the project team. This was followed

by an apprenticing activity and the specification of individual requirements

using requirements cards as described in section 5.3.3. There was little

traditional modelling although cards were used to represent requirements and

their characteristics. Validation was based on walkthrough techniques.

In Case 2 elicitation was initiated by interviews with upper management to

"scope the project". Existing documentation and data models were used as a

starting point for interviews and setting up use case scenarios. Modelling was

based on standard OMT models and use cases. Validation was based on

walkthrough techniques.

In Case 3 elicitation was done by interview and prototyping with a small group

of selected users and a specific "subject matter expert" as described in section

5.5.5. Modelling was based on OMT object/class models and comprehensive

textual use cases. Modelling and prototyping were supplemented with a case

tool called Software Through Pictures (STP). Validation was based on

walkthroughs and revisiting the use cases and the prototype with the user

group and subject matter expert.

In Case 4 elicitation was done explicitly where possible but because this project

was a generic package the users wvre not captive to the organisation. For the

purposes of elicitation, in-house business analysts and pre-sales people played

the role of users in a client organisation, both entity-relationship modelling

Chapter 6 Case Study Analysis 195

and UML models were used to produce requirements models. The consultant

also used some use cases together with ad hoc diagrams and rich pictures as

models with the users. Validation was done as walkthroughs with the

prototype and role-playing based on use cases.

In Case 5 elicitation was done by interviews with an emphasis on building trust

and rapport. There was no use of specific modelling techniques or notation.

The specification was based on a document which embodied concepts that

could be directly implemented by experienced system developers. This appeared

to be based on a "programmer-oriented" approach to system development.

Specific validation was not seen as necessary if the team has "built the right

thing" although some acceptance testing was seen as useful.

In Case 6 elicitation was explicitly undertaken using interviews and involved

gap analysis and the production of a business requirements document.

Modelling was based on entity-relationship models and UML notation though

not a lot of models were produced. Use cases were not used extensively because

there are not a lot of tools to support them. Use cases were seen as useful in the

validation process where the team can "verbalise or walk through a scenario".

Prototype demonstrations were also considered useful for validation.

The analysis of findings for each case are summarised in Table 6.1. They show

that although the methods used in each process in each case were different, the

three processes could be identified in all cases and so the existence of three

processes was empirically validated.

Chapter 6 Case Study Analysis 196

Case No
Casel

Case 2

Case 3

Case 4

Case 5

Case 6

Elicitation
Blast off meeting
Apprenticing
Requirements cards
Interviews and
graphical use cases
User group
Subject matter expert
Interviews
Prototype
Role playing by in-
house business analysts

Interviews with a
business focus

Interviews
Gap analysis
Business requirements
document

Modelling
Flow charts

OMT models and use
cases
OMT models
Textual use cases
Case tool
Prototype
ER and UML models
Ad hoc diagrams and
pictures
Sparing use of use cases
Prototype
No specific models
Text-based
specification
ER and UML models
Some use cases
Prototype

Validation
Walkthrough

Walkthrough

Revisiting use cases
and prototype
Walkthroughs

Walkthroughs based
on prototype and use
cases

No formal validation
Some acceptance
testing
Walkthroughs
Some use cases
Prototype
demonstration

Table 6.1 The three processes of object-oriented requirements engineering

6.2.2 The explicit use of feedback in elicitation

The explicit use of feedback in the elicitation process of object-oriented

requirements engineering as depicted in the initial conceptual process model as

a double-headed arrow was actively explored with the following question taken

from the interview scripts:

• Is knowledge elicitation iterative? That is, do you go back to the users

several times?

In Case 1 there was feedback and elicitation was iterative. On-site meetings were

held every second day with the clients and these meetings were interspersed

with in-house project team meetings.

Chapter 6 Case Stud}' Analysis 197

In Case 2 elicitation was an iterative process. The analyst would go back to the

client, on average, three times so that the whole transaction specification took

about a week. Information gathering usually took place on an initial half-day

with some follow-up over the next two days. A week after the start the

specification was given back to the client for review and the analyst walked

them through it.

In Case 3 elicitation was considered to be "highly iterative" and included

contact with the subject matter expert every couple of days.

The generic nature of the package being developed in Case 4 meant that there

were no actual users available and elicitation was done using role-playing. It is

not clear whether the role-playing involved iteration.

In Case 5 knowledge elicitation was seen as iterative and based on feedback. The

team went back to the users several times where some piece of information

triggered the need to explore some new feature or aspect.

In Case 6 users were interviewed several times to clarify points and produce the

business requirements document. Different groups of users may be involved in

each iteration including large groups and subsets of key users.

The analysis of findings for each case is summarised in Table 6.2. They show

that in all but one case the analyst saw the elicitation process as iterative and

based on feedback for acquiring and clarifying requirements. The feedback loop

in elicitation as shown in the conceptual process model was empirically

validated.

Chapter 6 Case Study Analysis 198

Case No
Case 1
Case 2
Case 3
Case 4

Case 5
Case 6

Feedback in eliciiation
Feedback from an iterative cycle of client and project team meetings
Elicitation based on feedback from several meetings with clients
Elicitation seen as highly iterative with the subject matter expert
Difficult to say since elicitation based en role-playing by in-house business
analysts
Feedback from an iterative cycle to follow up specific points
Iterative process with various groups of users

Table 6.2 Feedback and iteration in elicitation

6.2.3 Identification and use of static and dynamic models

A major concept in the literature regarding object-oriented modelling is that

there is a need for both static and dynamic models for the representation of

object-oriented concepts. Tlie nature of, and types of, static and dynamic models

produced in object-oriented requirements engineering were actively explored

using the following questions taken from the interview scripts:

• Which models are produced during specification?

• Do you produce class models, use case models or interaction models?

• Would you categorise models as static or dynamic?

Case 1 did not make extensive use of object-oriented models although these

models were available as part of the Volere methodology. The main vehicle for

representing requirements was the requirements cards and the modelling that

was done was based on flow charts. In Case 2 both static OMT object/class

models and dynamic interaction models were produced although the dynamic

models were put into the appendices and were rarely used with the users or for

requirements specification.

In Case 3 static OMT object/class models and dynamic interaction models were

developed but the interaction models were used later in the system

Chapter 6 Case Study Analysis 199

development process rather than in requirements specification. Case 4 included

entity-relationship models and static OMT object/class models. The dynamic

models included state-transition models and interaction models.

In Case 5 models were viewed as "a set of concepts" and these models were

classed as dynamic by the analyst. In Case 6 several types of static and dynamic

models were used including entity-relationship models, object models, state

transition models and interaction models " ... the static model, their object

model, class diagram, however you want to describe it, is the core. Everything

starts there. That is what is the original component with these models. And

then from that springs forth collaboration diagrams and interaction diagrams, if

you want to go through and do state change diagrams etc."

The analysis of findings for each case is summarised in Table 6.3. They show

that in four of the six cases models were produced and that they were

specifically defined as static and dynamic models. The concept of separate static

and dynamic modelling for object-oriented requirements engineering was

empirically validated.

Case No
Casel

Case 2
Case 3

Case 4

Case 5
Case 6

Static Models
Requirements cards
Flow charts
OMT object/class diagrams
OMT object/class diagrams

ER diagrams
OMT object/class diagram
None reported
ER diagrams
OMT object/class diagram

Dynamic Models
none

OMT interaction diagrams
OMT interaction diagrams (but not in
requirements specification)
OMT interaction diagrams
State-transition diagrams
Models seen as a set of concepts
OMT interaction diagrams
State-transition diagrams

Table 6.3 Static and Dynamic Models

Chapter 6 Case Study Analysis 200

6.2.4 Summary - validation of the initial conceptual process model

Overall, the characteristics of the initial conceptual process model were

empirically validated by the results contained in the data from the six cases.

There was no evidence for removing any of the major concepts from the initial

conceptual model. The main characteristics analysed in this section were

reinforced in five of the six cases where the five cases were different for each

concept.

Table 6.4 shows a summary of the cross-case analysis of the overall findings

from each of the six cases regarding the initial conceptual process model. The

analysis of the findings produced several emerging concepts that were added to

the initial conceptual model in three revisions of the model as discussed in the

next section.

Casel
Case 2
Case 3
Case 4
Case 5
Case 6

Three
processes
reinforced
reinforced
reinforced
reinforced

reinforced

Feedback within the
elicitation process
reinforced
reinforced
reinforced

reinforced
reinforced

Explicit
static models
reinforced
reinforced
reinforced
reinforced

reinforced

Explicit
dynamic models

reinforced
reinforced
reinforced
reinforced
reinforced

Table 6.4 Cross-case analysis of concepts embodied in initial conceptual process model

6.3 Evolution of the Conceptual Process Model

The following sections outline the findings of each of the six case studies with

reference to the research questions and the evolution of the conceptual model.

The major emergent categories which were reinforced by subsequent cases

were:

Chapter 6 Case Study Analysis 201

• Evidence of the use of use case models as distinct models for requirements

representation

• Evidence of mental modelling by analysts during elicitation before any

models were committed to paper

• Evidence of the use of separate formal and informal models where informal

models were the only models shown to users by analysts when discussing

requirements.

6.3.1 Additional Model Type: Use Cases

Although use cases or scenarios are described as ways of modelling

requirements and transactions for object-oriented systems in several

methodologies, they are difficult to classify as specifically static or dynamic

models. Use cases can come in textual forms, graphical forms or both. In the

analysis of the characteristics of object-oriented models in Chapter 4 of this

thesis, Table 4.1b, use case models were classified as static models because of

their textual characteristics. They could have been classified as dynamic models

based on the graphical, process-oriented representation. As a result use case

models were not explicitly shown in the initial conceptual process model. The

use of use case models (both textual and graphic) as requirements models

distinct from the static and dynamic models emerged as a category worth

exploring in Case 2. The following summary of a selection of quotes from the

transcript illustrates the emergence of this category:

"The generic object model is a standard Rumbaugh et al OMT model and the

rest of the methodology is built around Jacobson use cases ...The clients tend to

focus on the use case components and look at the flow and the data ... In the

course of the methodology development about six client organisations were

used who provided real examples of transactions. These were developed into

example use cases with a minimum data set that was incorporated from the

Chapter 6 Case Study Analysis 202

real examples.... The partial specification was presented with a use case

methodology - standard pathway, exceptions, maybe an alternative for the

generic case (a la Jacobson) ... The basic techniques are interviezoing and

working with use cases/scenarios...."

The questions incorporated in subsequent interview scripts exploring the use of

use case models were:

• Do you use use case models at this stage [elicitation]? What form do they

take, textual or graphical?

• Could you comment on the role and/or importance of use cases in the

specification process?

• Could you comment on the relationship between use cases and static and

dynamic models?

Case 1 used a methodology that potentially included use cases but the analyst

did not use them in the project under study. In Case 2 the use of simplified use

cases as models in requirements specification emerged as a significant

technique. "The generic object model is a standard OMT model and the rest of

the methodology is built around Jacobson use cases. The IT [liaison] person

communicates the information from the model to the client users. The focus is

on use cases. There is a standard process modelled as a use case flow diagram

and a use case [structured dialog] and the client has to tick the box if there is a

good fit."

Subsequently, Case 3 and to a lesser extent Cases 4 and 6 gave evidence of the

use of use cases for requirements modelling. "We sazo the need for a static type

of model and a dynamic type of model and use cases...the use case model was

more stand alone and really became the functional statement that went behind

or reinforced the UR [user requirements] prototype ...really most of the first

Chapter 6 Case Study Analysis 203

phase of the work developed our use case model and a prototype to go with it.

Those were the key vehicles for delivering the requirements." [Case 3]

"Well, that's ...according to the theory they [use cases] are the backbone - you

start with them and they go right through to the testing and so forth and I think

that's reasonable. Generally speaking I think it's a good way to use them." [Case

4]

"I zoouldn't assert that when you build your prototype you take a particular use

case and implement it at some level. I think you implement the system at some

level and that zuould g'we you a capacity to traverse it using some use case."

[Case 4]

"We do [use use cases] a little bit but not greatly ...We certainly do some zvhen

we have got a prototype and some rules and requirements the users nozv start

saying zvell, what if ...We verbalise or zualk through a scenario and then say

well hozv does this system handle this. They may zvrite it'in an email but it's

not a formal scenario driven approach." [Case 6]

Table 6.5 summarises the evidence for the use of use cases for requirements

modelling. Use cases were used to model requirements in four of the six cases.

Case No.

Casel

Case 2

Case 3

Case 4

Case 5

Case 6

Use of use cases as requirements models

Didn't use use cases

Simplified use case diagrams and simplified use case dialogues in an in-

house template requirements specification methodology

Use case scripts together with a prototype

Use cases occasionally used together with a prototype and ad hoc diagrams

Didn't use use cases

Used use cases for dealing with exceptions or in special cases

Table 6.5 Evidence of use cases for requirements modelling

Chapter 6 Case Study Analysis 204

This provided sufficient reinforcement to include use cases as a separate type of

model in the conceptual process model. Figure 6.2 shows version 2 of the

conceptual process model which incorporates use case modelling explicitly.

models

Predetermined &
Available Resources

object/class
identification

state transition/event
identification

Domain Models

use case
Models

static
models

dynamic
models

models
validation
results

domain
knowledge

Figure 6.2 Version 2 of conceptual process model

6.3.2 Mental Modelling

Mental modelling in the process of requirements elicitation and specification

was previously addressed in section 2.3.3 in Chapter 2. The concept of mental

modelling during elicitation by an analyst emerged in Case 3 as the following

selection of quotes from the transcript illustrates: "...there were fragments of

that [business] model getting developed in a couple of people's heads for

Chapter 6 Case Study Analysis 205

probably three months...I would say that it was being done largely privately and

it was not written down until the last minute when it was just a dump"

"You zvill be listening very carefully [in project meetings] and collecting and

cataloguing constraints and refining the abstractions in your mind."

This concept was explored in subsequent case study interviews with the

following question:

• Do you start developing mental models during elicitation?

Overall four of the six analysts believed that they were continually "modelling

in the mind" during the elicitation process and that these mental models were

further refined in the mind before they were communicated to others (users or

fellow analysis team members) or before they were committed to paper.

In Case 4 creating mental models involving key objects was seen as a natural

part of requirements elicitation and modelling "I think that I do immediately

start thinking of key objects during requirements gathering, not in any formal

zvay, they just pop into one's head. I don't agree with the implication ...that

identifying objects and 'building mental models of the system' are mutually

exclusive. One can help the other."

In Case 5 mental modelling was perceived as an integral part of abstraction

"This is really about how people think. Some of us more conscious of the

models, others not."

In Case 6 producing mental models during elicitation was seen as a natural way

of thinking for that particular analyst although he thought it was a personal

thing and that other analysts might not work that way "I do that. ...That's not

true of some of the others. You can tell when you look at their work that

Chapter 6 Case Study Analysis 206

they've not actually thought about any form of underlying structure at all. All

they've really done is try to gather the business requirements."

Mental modelling emerged as significant in Case 3 and was subsequently

reinforced in Cases 4, 5 and 6. Table 6.6 summarises the findings regarding

mental modelling.

Case
No.
Case
Case
Case
Case
Case
Case

1
2
3
4
5
6

Use of mental modelling

Didn't mention mental modelling
Didn't mention mental modelling
Mental modelling emerged as significant
Mental modelling seen as a natural part of requirements modelling
Mental modelling perceived specifically in terms of abstraction
Mental modelling seen as natural to analyst personally (not necessarily for
other professional analysts)

Table 6.6 Evidence of mental modelling

There was sufficient reinforcement to incorporate mental modelling explicitly

in the conceptual process model. Figure 6.3 shows version 3 of the conceptual

process model incorporating mental modelling.

6.3.3 "Formal" and "informal" models

As described above, when asked when the modelling process began, most

analysts said they were building models in their heads long before any formal

models were written down. "Formal" in this context is not used in the same

way as in mathematical or computer science literature where it means a

mathematically based model. It is also not used in the same way as Pohl (1994)

or Jarke (1993) use the term where it refers to formal specification languages

such as Z (Spivey, 1989) and VDM (Bjorner and Jones, 1987)\ Rather, it is used

to indicate models which use specific notation eg. OMT or UML diagrams.

Chapter 6 Case Study Analysis 207

user
requirements

models

Predetermined &
Available Resources

object/class
identification

state transition/event
identification

Domain Models

use case
Models

static
models

dynamic
models

models
validation
results

modelling

Object- \Jr
oriented

domain
knowledge

Figure 6.3 Version 3 of the conceptual process model

Evidence of the use of informal models (simple use case models, adhoc

pictures, diagrams, animations etc) instead of formal notated models

(OMT/UML object /class diagrams) for communicating the specification to

clients and users emerged in Case 4. Subsequent reflection and re-examination

of the transcripts of Cases 1, 2 and 3 revealed further evidence of this

"separation of models". For the purpose of discussion formal models and

informal models are distinguished in the following way. Formal models are

considered to be those models that require training in order to be understood or

explained. That is, models that contain specific, often graphical notations such

as OMT models, UML models, interaction models or state models. Informal

models are considered to be models that can be understood and explained

without specific training. In this category are natural language models

Chapter 6 Case Study Analysis 208

including text descriptions, use case scripts, ad hoc diagrams and interactive

demonstration models as often produced for prototypes.

Questions regarding types of models which were part of the original interview

script were:

• Which (how many) models are produced during specification?

• Who uses them?

• Who are they produced for?

• Which models, if any, are shown to the user?

• Which models are used internally by the development team?

Questions regarding types of models asked in interviews subsequent to Case 4

were:

Which (how many) models are produced during specification? Do you

produce class models, use case models or interaction models?

Do you use informal models (pictures etc) to communicate with the users?

Do you use use case models at this stage? What form do they take?

Chapter 6 Case Study Analysis 209

Evidence of the use of separate models is shown in Table 6.7.

Case
No.
Casel

Case 2

Case 3
Case 4

Case 5

Case 6

Models shown to users

Requirements cards that were part of
the methodology
Simplified use case diagrams &
dialogues
Use case scripts & prototype
Ad hoc diagrams, a prototype (in
PowerPoint) and some use cases
Text document only

Simplified Odell event diagrams,
animations, prototype and use cases
for exceptions & special cases

Models used in design and
implementation (not shown to users)
Unknown

OMT class & interaction models

OMT class & interaction models
OMT models

No models - the system was
implemented directly from text
document
OMT class & interaction models

Table 6.7 Evidence of the separation of models

Three of the cases (Cases 3, 4 and 6) used prototypes early in the specification

process. In another case (Case 6) an animation package was used. Another case

(Case 4) used a standard presentation package (Power Point) to produce sample

screens that were worked through with the users. All but one of the object-

oriented analysts produced use case scripts and one also used use case diagrams

for informal modelling with clients. Some (Cases 1 and 4) also used ad hoc

diagrams and one (Case 6) used rich pictures (Checkland and Scholes, 1990) to

explain and communicate the specification to users.

In the case studies there seemed to be two different kinds of modelling taking

place. Firstly, there were the informal models that were used to communicate

with the users. Secondly, more formal models were developed which were not

shown to the users because it was believed that the users would not understand

them. The formal models were developed primarily for design purposes and

were private to the analyst or team of analysts. In effect these formal models

were the analysts' internal version of informal models.

Chapter 6 Case Study Analysis 210

The mapping process of informal models to formal models appeared to be

based on using the informal models to clarify requirements with the users and

then to refine the formal models accordingly. When asked how this mapping

process was carried out most analysts had difficulty describing the process. It

was described as being able to think in terms of either type of model depending

on whom the analyst was talking to at the time. It was also described as "an

automatic translation process", going from one model or group of models to

the other as appropriate.

In Case 1 requirements cards were used directly with the users to represent or

"model" requirements and it was not made clear which models, if any were

used in the design and implementation process "The card is pretty much self

documenting ...straight into the actual requirement spec. So once you have the

cards complete, a lot of the hard work is done ... we cannot write the

requirements, they must tell us the requirements ... we work with them on the

cards. No point in us trying to tell them what they need. They need to Jell us

to allow us to document it."

In Case 2 only simplified use case diagram and dialogues were shown to the

users when describing requirements. Models based on formal notation (OMT)

were considered too complex for users to understand "We tell them [the users]

that the model is technical mumbo jumbo." ... Is that in general your

experience that object type models can't really be shown to users ... Well you

know I wouldn't show them a data model either ...the closest I've gotten is

working with this type of flow diagram (use case flow diagram)...they can

follow that pretty well but they don't usually have the patience to really work

through the interaction diagrams or the model. It just takes too much

explanation."

In Case 3 use case scripts and a prototype were used to develop the

requirements with users and formal OMT models were not shown to users

Chapter 6 Case Study Analysis 211

Would you, at any point, have shown this group [the user group] ... object

models or use case? Yes. Did they understand how use cases worked and so on?

Yes. And what about the OMT model or the interaction model? We would

have stopped short there. Is this because you do not think that the users/clients

would be able to understand the OMT models (say without extensive

explanation or training), ... Yes. Unless the 'users' were IT-Hterate people,

which most aren't. ... or is it because you have tried showing these types of

models to users/clients in the past and they haven't understood them? I don't

think I have ever tried, at least not with real business users. I presented an

Object Modelling Workshop for several years, and I can assure you that it takes

a surprising number of IT people several days to understand the basics of

conceptual modelling (class versus instayice, relationships). Do you believe it is

not necessary to show them? I believe it is not only not necessary, but

potentially dangerous. It is the analyst's job to perform the use case to business

object model translation.

In Case 4 the analyst was explicit about using various ad hoc diagrams, pictures,

PowerPoint simulations and some use cases to communicate the requirements

to users "I mean if you draw a picture and that doesn't make any sense to them

then you draw another one ... A requirements specification has to be in terms

that they understand and those three mechanisms we've already mentioned

are the way: the use case, the ad hoc diagrams and the dynamic screen

simulations... and the encompassing text too, you don't write your

requirements document in use case speak from start to finish."

"I have tried showing these models to users and it hasn't worked well because

many people find such abstractions hard to relate to. My former colleagues at

[X]found the same thing with data models. One consultant... tried replacing

the entity boxes with evocative pictures and achieved better communication.

Chapter 6 Case Study Analysis 212

7 am not saying one should do away with the formalisms. They are a powerful

aid to one's own understanding and analysis but they are not a good tool for

feeding requirements back to the users. It's much better to bend the formalism

to the user than the user to the formalism."

The consultant in Case 5 did not use models or explicit diagrams. Most of the

specification was based on text-only documents.

In Case 6 the most important objective was to get the users or clients to sign off

on the specification "...we would have a formal walkthrough with the users

where we go through the requirements, generally not the rules as much, but

mainly the requirements and probably the prototype and we would get formal

sign off". In this case the prototype was the most used tool for validation and

use cases were only used for exceptions or special cases "...as we were looking at

the requirements document we had the prototype running and projected up o n

a big screen and we actually walked through the prototype in relation to the

requirements".

Figure 6.4 shows version 4 of the conceptual process model showing the

separation of formal and informal models in the object-oriented requirements

engineering process. The feedback from the validation process for formal

modelling in the problem domain is via the ad hoc mapping of informal

models to formal models for use in design and implementation.

Chapter 6 Case Study Analysis 213

user
requirements

models

Predetermined &
Available Resources

problem
domain

s s
s*-^ /
^ v user \ Elicitation) requirements J

^ ^

/ /

Object-
oriented
Modelling

state transition/event
dentification

Informal Models

pictures,
diagrams

use case
models

ad hoc mappinq
•< •

models

Formal Models

static
models

dynamic
models

models

I models

design and implentation

Figure 6.4 Version 4 of Conceptual Process Model

6.3.4 Summary - evolution of the conceptual model

This section summarises the evolution of the conceptual process model case by

case. Case 1 provided reinforcement of the initial conceptual model. Case 2

revealed the use of use cases as an informal modelling method. Case 3

reinforced the use of use cases as informal models and revealed the use of

mental modelling by the analyst before any formal modelling began. This led to

version 2 of the conceptual process model. Case 4 reinforced the use of use cases

and mental modelling and revealed the use of rich pictures for informal

modelling which reinforced version 2 and led to version 3 of the conceptual

process model. Cases 5 and 6 reinforced the notions of mental modelling, the

use of informal models based on use cases and diagrams and pictures for

Chapter 6 Case Study Analysis 214

communicating the requirements to the users and the use of formal models

based on the standard notations of ER, OMT and UML for modelling the

requirements for design and implementation. The last two cases also did not

reveal new avenues for exploration in relation to the conceptual process model

or the research questions although there were some other interesting areas

worthy of investigation outside the boundaries of this project. These further

potential areas of research are discussed in Chapter 8.

Table 6.8 Summarises the evolution of the conceptual process model from

emerging categories that we a incorporated into subsequent interview scripts.

Reflection and re-examination of the transcript data revealed reinforcement of

the use of separate models for communicating the specification to users and

design and implementation professionals.

Casel

Case 2

Case 3

Case 4

Case 5
Case 6

use case
models

revealed

reinforced

weakly
reinforced
reinforced
weakly
reinforced V

er
si

on
 2

 o
f c

on
ce

pt
ua

l
pr

oc
es

s
m

od
el

mental models

revealed '
: ,- A

reinforced

reinforced
reinforced

V
er

si
on

 3
 o

f c
on

ce
pt

ua
l p

ro
ce

ss
 m

od
el

formal and informal
models
informal models for
users reinforced by
reflection and re-
examination
reinforced by reflection
and re-examination
reinforced by reflection
and re-examination

L revealed *

weakly reinforced
reinforced

V
er

si
on

 4
 o

f
co

nc
ep

tu
al

 p
ro

ce
ss

 m
od

el

Table 6.8 Emerging concepts from sequential-case studies as incorporated in the conceptual process
model (Figure 6.4)

Chapter 6 Case Study Analysis 215

6.4 Findings related to the cognitive and social aspects of the

requirements engineering process

Although the research questions proposed in Chapter 3 were developed to aid

in the empirical validation of the conceptual process model as discussed in

sections 6.2 and 6.3 above, the research questions were also designed to explore

the opinions, beliefs and behaviours of the professional analysts engaged in

object-oriented requirements engineering. The following sections describe and

discuss the cognitive and social concepts that arose in the sequential-case

studies which were independent of the conceptual process model. The main

categories were:

• The analyst always thinking in object-oriented terms

• The use of in-house methodologies

• Evidence of opportunistic approaches to elicitation

6.4.1 Analyst always thinking in object-oriented terms

One concept specifically explored by the research questions was the notion that

object-oriented system development involves a new way of thinking about

system development (Budd, 1997). The question asked in interviews was: i-

Is elicitation specifically object-oriented, i.e. do you think "GO" from the

start?

The analyst in Case 1 did not think in object-oriented terms at all. In Case 2

elicitation in general was not seen as specifically object-oriented but the analyst

did see elicitation as object-oriented for her personally because "...that's the way

I think ...so it's hard for me to unbundle it... we don't say to them we are really

Chapter 6 Cast Analysis 216

talking about objects and we are using an 00 methodology. We just do it and

they just want to specify their transactions".

In Case 3 the consultant was thinking object oriented " ... right from the start"

often because he was developing a prototype " ... and that meant developing a

reasonably functional prototype of every view or every screen. Some of the

screens were quite complex and ... they formed the basis of the use cases and

also the basis of the first cut of the production graphical interface. And if you're

prototyping a graphical interface prototype and working through and

developing use cases, you are talking about graphical objects and you naturally

extend that and start talking about business objects as well."

Case 4 saw the object-oriented nature of initial modelling in elicitation as

linkc?d to the concept of mental modelling "I think that I do immediately start

thinking of key objects during requirements gathering, not in any formal way,

they just pop into one's head."

In Case 5 the consultant did not believe he was looking at elicitation in object-

oriented terms but in business terms "No. Think 'business' all the way.

(Compare 00 thinking to 'Microsoft Word thinking' — it's only when we come

to tidy up and express ideas in Word that we think — oh I'll try this as a list of

bullet points, yes that looks right...) '00 thinking' sounds weird ... it's really all

about just thinking what the best thing to do is with the particular tools at your

disposal."

Case 6 believed that he thought in object-oriented terms from the start of the

requirements engineering process but that other object-oriented analysts might

not necessarily think that way. He saw it as a personal thing. "When I do

requirements documents I do [think 00]. If it's really requirements around

something that already exists. If it's something new I start to think about what

they are really after and then how to group together perhaps some of the

requirements."

Chapter 6 Case Study Analysis 217

So you are actually identifying objects at that stage - high level abstract objects?

Yes. A little. I certainly would. The majority of the BAs [Business Analysts] and

some of the other more IT oriented people probably not. The aim of the

document is not really to be object-oriented in any way. It is simply gathering

what the requirements are."

Table 6.9 summarises the findings regarding the concept of analysts thinking in

object-oriented terms during elicitation.

Case No
Casel
Case 2
Case 3
Case 4
Case 5
Case 6

Analyst always thinking in object-oriented terms
No, did not "think object-oriented" at all
Yes, but it was a personal tiling
Yes, in order to produce a prototype
Yes, key objects
No, only business concepts
Yes, but it was a personal thing

Table 6.9 Thinking object-oriented during elicitation

6.4.2 Use of a specific methodology

Another concept that emerged indirectly from necessary background questions

was that of which methodology was used by an individual consultant and why.

The questions which addressed this issue were:

Which method(ology) is being used on this project?

Why that method(ology)?

Where does requirements specification fit within the methodology?

Has this methodology been adopted across the organisation or only for this

project?

Comment on the advantages of the current methodology (if any) over

previously used methods.

Chapter 6 Case Study Analysis 218

Case 1 used a proprietary method called Volere (Robertson and Robertson, 1997,

Robertson and Robertson, 2001) which is a requirements-only methodology.

The methodology is based on a template and the use of cards (called the

requirements shell) to describe requirements. The template is a booklet that

provides guidelines for the 24 types of requirements and the tasks which need

to be undertaken during the process of requirements specification in order to

develop both functional and non-functional requirements. Requirements

cards, as described in section 5.3.3, are filled out in collaboration with the

client/users during the requirements specification process. The methodology

was described by the analyst as structured, easy to use and self-documenting.

Case 2 used an in-house methodology based on use cases and OMT models but

not the whole Rumbaugh method and not the whole Jacobson use case method

since Jacobson's method in full was considered " ... too open-ended, too many

decisions for clients to make."

Case 3 also used an in-house method based on various methodologies that

team members were familiar with or had found useful or successful in the past.

Its main elements were OMT models, use cases and the Software Through

Pictures (STP) case tool "We sampled from methodologies that we were

familiar with ... three or four people [who] were able to contribute to a

methodology that picked up bits and pieces from a number of influences... They

just all brought their biases and their interests and thoughts."

Case 4 did not use any specific methodologies. The consultant professed to

using a combination of entity-relationship and UML notation, ad hoc diagrams,

pictures, use cases etc. '7 haven't been, let's say, an advocate of any particular

methodology from start to finish...See I don't believe in methods as such ...

What I talk about is a underlying concept rather than a methodology".

Chapter 6 Case Study Analysis 219

Case 5 used no methodology at all. The development was based around ad hoc

notes from whiteboards written up in loose-leaf and/or bound notebooks and

"Typed up 'processed' versions of these in an ad hoc, as needed, fashion. Many

ideas get 'documented' in the code (use of [sic] Javadoc to include design ideas

in code)."

Case 6 used an in-house methodology based on UML notation. This consultant

was the most discursive on the use of methodologies "All of the diagramming

is UML. UML is a notation, it's not a development methodology ... [Rational] is

a formal development life cycle methodology about how to go through the

whole process using UML as the documentation method ... I've not seen

anybody use the big methodologies. I think there are two reasons. (A) If you buy

the professional ones they charge too much, which is also why I think why

everyone talks about Rational, although we tend to use a competitive product,

Select, mainly because it's a little cheaper. And even then I don't have as many

copies as I should have because it's so expensive. They are VERY high cost and

if you put on the process flow modelling, all the methodology on top of that ...

What happens is that the cost of setting up a developer starts to become

prohibitive and there's no return on that so either you escalate the price of your

product to cover that high cost or you hope you work for a multi billion dollar

company that can afford to simply write cheques and say 'yeah we will spend all

this money'. The other reason certainly why we tend to use our own

methodologies which have short cuts and work arounds and all sorts of

different things and why even methodologies where you are supposed to

follow them {as in our case) there are odd documents missing and some are

much shorter than they should be. There is simply not enough time to follozv

the whole box and dice and produce all of the documents. You produce those

documents where, if you've got to get a user to sign off do those. 'V/n/, because

that affects the bottom line and that's really what it's about."

Chapter 6 Case Study Analysis 220

Four of the six cases used methodologies that were developed in-house rather

than purchasing commercial or proprietary methodologies. Table 6.10

summarises the methodologies used in the six cases.

Case No
Casel
Case 2
Case 3

Case 4

Case 5

Case 6

Methodology
Volere, proprietary requirements-only methodology (free)
In-house based on OMT and use cases
In-house from team members experience based on OMT models, use case and
Software Through Pictures (STP)
In-house methodology based on ER, OMT, use cases, ad hoc diagrams,
prototypes etc
No methodology, ad hoc notes and diagrams were developed on a whiteboard
and transferred to notebooks
In-house based on ER, UML notation and use cases

Table 6.10 Use of a specific methodology

6.4.3 Evidence of opportunistic approaches to elicitation

Some of the literature discussing opportunistic approaches to analysis and

design (Carroll and Swatman, 1997, Khushalani et al., 1994) was discussed in

section 2.3.3 in Chapter 2. The concept of opportunistic approaches to elicitation

in the sequential-case study emerged from questions about feedback in

knowledge elicitation. The exploration of the amount of feedback and what

triggered it during Case 3 produced the following statement "Someone in a

meeting or a discussion will say, 'Of course you know we only ever had one of

these, and that will change' and you can say 'Ah! Test that against my

understanding of what a customer, or event or a facility or whatever the

abstraction is' and that might either verify or it might contradict it. If it verifies

it you probably let things go and move on to the next point. If it contradicts it,

you need to pick it up and mine that and get to the bottom of that." This led to

the formulation of the following question in subsequent interview scripts:

Do you see the elicitation process as being sequential or does some piece of

information trigger the need to explore some new feature or aspect?

Chapter 6 Case Study Analysis 221

On reflection Case 1 and Case 2 provided no evidence of opportunistic feedback

and the participants were not asked explicitly about it. The analyst in Case 3 was

the first participant to bring up the concept of opportunistic feedback in

elicitation as evidenced by the quote above. He also linked opportunism in

elicitation wi th menta l models "So you might cany round an event or an

account or a customer object or something, you cany around a picture of how

that is shaping in your mind.

When explicitly asked about opportunism in elicitation the consultant in Case

4 greed that he operated that way as evidenced in the following exchange " Do

you get that sort of feeling that as you are exploring the requirements that some

user might say of course we need blah blah blah and then you say Ah! We

should go and think about that and then come back maybe later to it.

Certainly, yeah, yeah. The thing about gathering requirements is that you don't,

a priori, you don't know what you're going to get so you've got to be

opportunistic."

The consultant in Case 5 responded to the question directly and succinctly

"Very very much the things triggering further questions style."

By Case 6 the question had become more embellished "Now the last question

here is sort of again a bit about how you think and it's been prompted by talking

to other consultants. And basically whether you could comment on the idea of

this requirements gathering process, whether you see it as sequential or do you

see it as more opportunistic where, some piece of information that you get

might trigger the need to explore some other aspect or feature and you tend to

sort of jump around inside the domain building up the requirements picture."

and brought the following response "It's probably a mixture of the two. There is

certainly some aim at trying to be sequential. I certainly try and do that when I

start with the users, and try and build up a broad outline of everything first and

then it becomes more opportunistic as working through...'Oh we need to

Chapter 6 Case Study Analysis 222

expand this more', 'Ah, this has brought out a requirement that is in a

completely different part of the system but I better go and resolve that now

because that's how it's connected up'.

Evidence of opportunism in requirements elicitation emerged in Case 3 and

was subsequently reinforced in Cases 4, 5 and 6. Table 6.11 summarises the

findings regarding analysts acting opportunistically during elicitation.

Case No
Casel
Case 2
Case 3
Case 4
Case 5
Case 6

Evidence of opportunistic approaches to requirements elicitation
No evidence
No evidence
Opportunism in elicitation emerged as worth exploring
Evidence of opportunism in elicitation on explicit questioning
Evidence of opportunism in elicitation on explicit questioning
Evidence of opportunism in elicitation on explicit questioning but not from the
beginning of the elicitation process

Table 6.11 Opportunism in knowledge elicitation

6.4.4 Summary

Specific findings related to the exploration of the opinions, beliefs and

behaviours of the professional analysts engaged in object-oriented

requirements engineering as posed in the research questions produced three

major concepts which were reinforced in at least three other cases: analysts

always thinking in object-oriented terms, the predominant use of in-house

methodologies over commercial or proprietary methodologies and evidence of

analysts acting opportunistically during requirements elicitation. The findings

regarding these three concepts are summarised in Table 6.12.

Chapter 6 Case Study Analysis 223

Casel
Case 2
Case 3
Case 4
Case 5
Case 6

Analyst always thinking
in object-oriented terms

reinforced
reinforced
reinforced

reinforced

In-house methodology

No, commercial

reinforced
reinforced
reinforced
reinforced

Opportunism in
elicitation

jtre,yvea.icci^%5-jiia^rtr >;>:;.§:%-

reinforced
reinforced
reinforced

Table 6.12 Concepts related to the research questions but not directly related to the conceptual
process model

6.5 Chapter Summary

This chapter has presented the sequential-case study findings relating to the

three objectives:

• to determine the empirical validity of the initial conceptual process model

presented in Chapter 4 of this thesis.

• to analyse the emerging characteristics of the evolving versions of the

conceptual process model that are revealed and/or reinforced by the

sequential-case study data presented in Chapter 5.

• to describe and discuss findings from the sequential-case study data that

relate to the cognitive and social aspects of the research questions but do not

relate directly to the conceptual process model.

The case study analysis has provided strong evidence (five out of six cases for

all categories) for the empirical validation of the concepts in the initial

conceptual process model.

The sequential-case studies provided data which allowed the initial conceptual

process model to evolve through several versions which revealed and

reinforced several concepts that were not present in the initial version of the

conceptual process model. This analysis demonstrates findings grounded in the

Chapter 6 Case Study Analysis 224

examination of professional practice in requirements engineering as

represented in the six sequential-case studies.

Finally, there was an analysis of the cognitive and social concepts that arose in

the sequential-case studies based on the research questions which explore the

opinions, beliefs and behaviours of the professional analysts engaged in object-

oriented requirements engineering. The concept that elicitation was inherently

object-oriented in object-oriented requirements engineering was explored in all

six cases and in the five cases where object-oriented notations, techniques or

methods were used this concept was reinforced. An investigation of the specific

methodology used in each case revealed strong evidence for the use of in-house

methodologies based on the analysts' own experience and personal preferences.

The investigation of the use of iterative feedback for clarification in elicitation

in the original conceptual model and interview questions revealed the use of

opportunistic approaches to requirements gathering in four of the six cases.

The sequential-case study has contributed to understanding how object-

oriented models are used in practice. The study has helped to clarify the

situations in which certain types of models are used and why they are used in

those situations. The study has produced a conceptual process model grounded

first in the literature regarding object-oriented requirements engineering and

then grounded in the professional practice of object-oriented requirements

engineering as observed in the case studies. Chapter 7 of this thesis discusses

the implications of the case study findings for practice and for the concepts of

the conceptual process model.

Chapter 7 Implications of the Case Study Findings 225

Chapter 7

Implications of the Case Study Findings

7.1 Overview

This chapter discusses the implications of the case study findings in three main

sections. The first section considers t n e implications of the findings for the

structure of the conceptual process model initially proposed in Chapter 4 and

refined in Chapter 6 of this thesis. The second section considers the implications of

the findings for practice and for the study of professional practice in requirements

engineering. The third section considers the implications of the findings for the

education and training of professionals in requirements engineering. The chapter

concludes with a discussion of the limitations of the research results.

7.2 Implications for the Conceptual Process Model

The case study analysis in Chapter 6 of this thesis has confirmed the empirical

validity of the components of the initial conceptual process model proposed in

Chapter 4 of this thesis. Relationships between the components of the conceptual

process model, where applicable to the case data, were also confirmed by the case

study findings. The findings also suggested additional components and features of

Chapter 7 Implications of the Case Study Findings 226

the conceptual process model that led to a revised conceptual process model (see

Figure 7.1).

user
requirements

models

Predetermined &
Available Resources

state transition/event
identification

Informal Models

pictures,
diagrams

use case
• models'; s •

ad hoc mapping
^ *,

models

Formal Models

static
models

dynamic
models

models

I models

design and implentation

Figure 7.1 Final Revised Conceptual Model

For each of the fundamental concepts contained in the conceptual process model

and analysed in section 6.2 of this thesis five of the six cases confirmed the initial

concepts contained in the conceptual process model. It should be noted that it was

a different set of five out of six cases for each concept as summarised in table 6.10.

J

Chapter 7 Implications of the Case Study Findings 227

• Five of the cases showed evidence of three distinct processes within the

requirements engineering process. These five consultants explicitly performed

elicitation (also called requirements gathering, informaton gathering and

knowledge acquisition), modelling (also called requirements modelling or

requirements representation) and validation (also called requirements testing

or requirements validation).

• Five of the consultants reported that elicitation was always an iterative process

and that elicitation relied on feedback.

• Five of the six consultants used static models for object-oriented requirements

modelling and five consultants used dynamic models in object-oriented

requirements modelling.

All of these fundamental components and relationships were retained from the

initial conceptual process model. Additional components and features that-

emerged from the sequential-case studies are:

• In four of the six case studies a process of mental modelling occurred during

elicitation. The consultants saw this mental modelling as natural to the

elicitation and modelling processes and private to the individual analyst. This

is now shown explicitly in the revised conceptual process model.

• In all cases except Case 5 there was evidence that the modelling process

produced two types of models: informal models in the form of pictures, texc

and diagrams, and/or use cases, and prototypes, i.e. models that can be

understood and explained without specific training; and formal models which

are based on specific modelling notations such as entity-relationship modelling,

OMT and UML modelling. These took the form of class models, object models

and to a lesser extent interaction and event models that require training in

order to be understood or explained. This separation of formal and informal

models is also shown explicitly in the revised conceptual process model.

• The two types of models were used for different purposes. The informal

models were used in the validation of the specification with the clients and

users and the formal models were used internally within the analysis team and

passed on to the design phase of the development. The use of the informal

Chapter 7 Implications of the Case Study Findings 228

models for feedback to the users for validation and the use of formal models for

the design and implementation processes is also shown explicitly in the revised

conceptual process model.

• There was also evidence of a less well-defined mapping of the informal models

to the formal models. This appeared to be a two way process where each group

of models was developed in parallel and where each group of models

"informed" the other as they were developed by the analysts. The validation

process was informal and formal models were not used in this process. This

mapping is shown as a two-way communication path and the lack of definition

is indicated by a dotted line in the revised conceptual process model.

These findings indicate that analysts believe that users or clients find formal

models much too complex, both conceptually and technically, to understand and

that the use of informal models such as rich pictures, diagrams and use cases,

particularly use case scripts which are closer to natural language models, are

perceived to be better models for communicating and validating specifications

with clients. Further research is necessary to determine the validity of this

perception.

The revised conceptual process model now embodies all the concepts of the initial

conceptual process model which were proposed in Chapter 4 based on the

literature regarding object-oriented requirements engineering together with the

concepts that emerged from the sequential-case studies presented in Chapter 5 and

analysed in Chapter 6 of this thesis. This revised conceptual process model

provides a theoretical representation of the object-oriented requirements

engineering process grounded in the literature and in professional requirements

engineering practice.

7.3 Implications for Requirements Engineering Practice

The basis for the perceived need for both informal and formal models in object-

oriented requirements engineering as found in this study may lie in the fact that

the requirements engineering process is fundamentally a social process involving

Chapter 7 Implications of the Case Study Findings 229

two main groups: the users/clients and the professional consultants (Urquhart,

1998, Loucopoulos and Karakostas, 1995, Macaulay, 1996). This section presents

implications for both object-oriented and non object-oriented professional

requirements engineering. These implications relate directly to, and are based on,

the findings of the six sequential-case studies presented in Chapter 6 of this thesis.

It is not claimed that the implications discussed here are new or exhaustive, rather

that the findings from this research project strengthen the idea that requirement

engineering is a social, creative, and cognitive process (Darke and Shanks, 1997,

K;nn and Warhurst, 1994, Galal and McDonnell, 1998, Hawryszkiewycz, 1994,

Lockwood and Lamp, 2000, Urquhart, 1998). A major finding of this research

project is the use of informal models for representing the requirements to users

because they are easier to understand as distinct from the formal models built by

the analyst and based on specific notations which are passed on to the developers

ef the design and implementation phases of system development. This finding has

the following implications for requirements engineering practice. Each

follows from the one before:

Requirements engineering is a social process and this social process requires

understanding by all parties to reach agreement. Understanding requires

communication skills and agreement requires negotiation skills.

The facilitation of understanding and agreement requires creative modelling

skills on the part on the analyst to produce understandable informal models.

These models are developed during elicitation, refined during modelling and

used for validation of requirements before sign-off or ?gre«3v.ent to go ahead

with design and implementation.

Creative informal modelling as demonstrated by the analysts in this study

relied on cognitive skills including

• abstraction and mental modelling and,

• problem-solving and reasoning skills particularly analogical reasoning skills

(defined in section 2.3.2 as abstracting a solution strategy from one problem

and relating that information to a new problem) on the part of the analyst.

Chapter 7 Implications of the Case Study Findings 230

Understanding &
Agreement of
Requirements

Informal
Modelling

Communication &
negotiation

/^Social
Processes

Creative
Processes

Mental
Modelling &
Problem
Solving

Cognitive
Processes

Figure 7.2 A theoretical model of the contribution of social, creative and cognitive processes to
requirements engineering

These concepts and their relationships are represented in thetheoretical model

shown in Figure 7.2. This model contains features for defining a theoretical model

as defined by Dubin (Dubin, 1976) and Bacharach (Bacharach, 1988) i.e. the

interactions or relations between defined units or concepts within a set of

boundaries or constraints depicting a limited portion of the world.

In this model the main social goal of successful requirements engineering is to

achieve agreement and understanding about requirements between users/clients

and the professional developer or development team. The achievement of this goal

depends on three processes. The social process involves the users and the analysts

in communication and negotiation which brings about the understanding and

agreement. This social interaction is influenced by the professional input of the

analyst in the role of problem-solver and mental modeller. Further, the analyst also

has to express the solutions to the problems and the models arrived at in his/her

mind in a concrete manner which faciltates the understanding and agreement. This

Chapter 7 Implications of the Case Study Findings 231

creative process involves the development of informal models (such as diagrams,

simulations, animations or textual explanations) that can be understood and

discussed by the users and analysts in their social communications and

negotiations. These implications are discussed further in the following two

sections.

7.3.1 Requirements Engineering as a Social Process

The social aspects of the requirements engineering process have been well-

documented (Urquhart, 1998, Macaulay, 1996, Loucopoulos and Karakostas, 1995,

Galal and McDonnell, 1998).

Viewing the requirements engineering process as a social process implies the

following: If the product of the requirements engineering process is the

specification document on which the design and implementation of the system is

based, then this product has to be agreed upon by both parties. Thai- is, the

specification needs to be validated as correct or acceptable from both points of

view - the formal or consultant's point of view and the client's informal point of

view.

The perception of the analysts in this study seems to be that for this agreement to

take place there needs to be two types of models: informal models for

communicating the specification to the user for information and validation; and

formal models developed by the analyst team to pass on to the design and

implementation team.

As discussed in Chapter 2 of this thesis it has been generally recognised that many

of the errors that lead to costly maintenance and/or failure of information systems

can be traced to ommissions, inconsistencies and ambiguities in the initial

requirements specification. If, as the findings of this research project suggest, the

models used for validation of the specification with the clients are different to the

models used in design and implementation, then this may indicate one of the areas

where these inconsistencies, omissions and ambiguities might arise. Recognising

Chapter 7 Implications of the Case Study Findings 232

and understanding this issue requires further research and provides a step

towards building the right tools and techniques to assist the requirements

engineering process.

7.3.2 Requirements Engineering as a Creative and Cognitive Process

As with many professional activities involving analysis and design (Schon, 1983,

Khushalani et al., 1994, Johnston, 1999, Galal, 1998), object-oriented requirements

engineering and requirements engineering in general can be considered to be a

creative process particularly on the part of the requirements engineer or the

analyst undertaking the requirements specification. Recently work has been

undertaken to develop tools and techniques to support the requirements

engineering process (Haywood and Dart, 1999, Cybulski and Reed, 1999). For this

kind of development of requirements engineering support environments to take

place in the appropriate context, research such as the research undertaken in this

research project is needed to provide the theoretical and contextual foundations for

the development of new tools and techniques. That is, there is a need to investigate

various aspects of the requirements engineering process in practice, as in this

project, in order to understand the process and how it is currently being carried

out by practising professionals so that tools and techniques can be developed to

support the process.

The case studies showed evidence of recognition on the part of the practising

professionals that they had to be able to model or represent what the users wanted

in some diagrammatic form. The findings suggest all of the analysts who used

formal object-oriented notations such as OMT or UML or other formal notations

like entity-relationship diagrams would not use diagrams based on these notations

with the users or clients because: they believed the users would not understand

them. For all of the analysts in this study this meant that they had to find creative

solutions to the representation problem. The creative solutions provided by the

analysts are the informal models as defined in this thesis (section 6.3.3) and were

considerably diverse: simple use cases, adhoc diagrams, rich pictures, animations,

PowerPoint simulations and text based explanations. Each analyst had his/her

Chapter 7 Implications of the Case Study Findings 233

own creative approach to informal user modelling. There is enough evidence

provided in the case studies to imply that this creative approach to user modelling

is common in professional requirements engineering practice. This suggests that

the variety and use of such informal models should be systematically described in

detail, which would be useful to professionals, educators and students (see below).

As described in section 2.3.3, closely related to the creative aspects of requirements

engineering are the cognitive aspects of requirements engineering as evidenced in

the findings of this research project. Requirements specification can be considered

as a high level cognitive process (Khushalani et al., 1994, Schon, 1983, Mayer, 1992,

Sutcliffe and Maiden, 1992, Gick and Holyoak, 1980). In four of the six cases

reported in this thesis requirements specification involved mental modelling

during the transformation from elicitation to concrete models for design and

implementation. The consultant examined and discussed problems encountered

with the users during elicitation and then modelled the solutions to those problems

in their own minds before committing to concrete models used for design and

implementation. This mental modelling process appeared to involve abstraction

and analogous reasoning as well as problem-solving activity.

7.4 Implications for Education and Training

Typical undergraduate courses in information systems or related disciplines

involve some exposure for students to systems analysis methodologies, techniques

and tools. Often students are required to participate in a project where the

principles of systems analysis can be applied to an example of an industrial or

commercial style systems development project. The challenge for academics

designing these courses or writing textbooks to accompany these courses is often

how to relate theory and project work to real professional practice. Successful

programmes in these areas have provided projects with real clients, project team

environments (Keen et al., 1998, Lamp and Lockwood, 2000, Lockwood and Lamp,

2000) and more recently studio-based environments (Carbone et al., 2000).

Chapter 7 Implications of the Case Study Findings 234

The findings from the case studies in this research project have several

implications for education and training. Based on the findings presented in this

thesis, courses seeking to provide realistic commercial project environments

should include the following elements and ideas:

• There are many tools and techniques for requirements analysis and

specification and as this research project has shown:

• In practice analysts often develop their own in-house methodologies based

on diverse tools and techniques rather than adhere to a single prescribed or

commercial methodology

• Many professional analysts build their own "conceptual toolkit" or personal

methodology by trying out and adapting those techniques and tools that

suit their way of thinking and their way of interacting with clients and the

particular projects that they are working on.

• There are many models for representing requirements and as this research

project has shown:

• Users may not understand formal notations like ER, OMT and UML

diagrams

• Some professional analysts develop informal models based on adhoc

diagrams, rich pictures, animations, PowerPoint simulations, text based

explanations, simple use cases, and simple use cases for explaining

requirements to users/clients.

• Informal models which are not based on formal notations like ER, OMT and

UML are often the basis for agreement and sign-off for requirements

specifications

The implication for education and training from these ideas {and suggested by the

case study findings) is that for students to be able to undertake a major project they

need to be encouraged to build their own conceptual toolkit after being exposed to

as many tools and techniques as possible. This also implies that students should be

encouraged to experiment with and develop some informal modelling techniques

for communicating requirements to users/clients. This also concurs with the work

of Haywood and Dart (1999) which suggests that there are many different

Chapter 7 Implications of the Case Study Findings 235

modelling methods and notations available and that some are more appropriate

for certain types of projects than others.

7.5 Limitations of Research Results

The research method used in this thesis produced rich qualitative data which was

analysed using interpretive, qualitative techniques. The conceptual process model

presented in Chapter 4 of this thesis was grounded in the literature with regard to

object-oriented requirements engineering. The construction of the initial version of

this model and its subsequent refinement, based on sequential-case studies actively

seeking information based on using leading questions to clarify prior findings, can

be described as subjective. This subjective nature means that there is potential for

biased interpretations on the part of the researcher (Neuman, 1994, Galliers, 1992,

Shanks et al., 1993).

The value and quality of research using the conceptual study approach and based

on subjectively developed models is difficult to assess. Possible criteria for

determining the value of this research include:

• the internal consistency of the theoretical concepts proposed in the conceptual

process model (Figure 7.1) and the theoretical model (Figure 7.2) described

above

• the degree to which the conceptual model was grounded in the literature in the

first place

• the degree to which the final conceptual model is grounded first in the existing

literature and then in the findings from practice. This is related to the degree of

theoretical saturation (Eisenhardt, 1989) reached based on six sequential-case

studies

• the degree to which the theoretical model is grounded in the literature and the

findings from practice.

$

Chapter 7 Implications of the Case Study Findings 236

The strength of the validity of the findings can be examined by addressing the

following specific issues:

The conceptual process model was subjectively and selectively constructed but it

can be argued that it was well-grounded in the literature.

The number of case studies in this project was six and was not intended to

provide quantitative or statistical data. The nature of the research project and

research questions suggested that the data would have to be qualitative and

the analysis interpretive. Qualitative interview-based data was therefore

gathered in these case studies. The case study findings suggest that a level of

theoretical saturation (Eisenhardt, 1989) was reached since no new categories

emerged after Case 4. However, additional cases studies would add to the

evidence gathered in the six cases examined in this research project and

would further strengthen the results if confirmatory evidence were found.

The subjective nature of the data collection which was based on semi-structured

interviews with practising professionals. The data is based on perceived

behaviour on the part of the analyst/participants. There was no attempt to

collect data based on demonstrated or observed behaviour. There is scope for

future research in this area.

The interpretive nature of the data analysis which was based on categorised

transcription. The rich qualitative nature of the data collected meant that an

interpretive approach to analysis was required. The limitations of interpretive

analysis were recognised and attempts were made to minimise the problems

associated with interpretive analysis by using a structured top-down

categorisation approach where initial categories for investigation and analysis

were formulated based on the conceptual process model and the research

questions.

The top down nature of the categorisation of the data provided significant

structure to the collection and analysis of the data but is constrained by the

need to make initial assumptions about the data in order to formulate the

initial categories.

The in-situ parts of the data analysis inherent in the sequential-case study

approach allowed findings to influence subsequent data collection. This

Chapter 7 Implications of the Case Study Findings 237

potential limitation is bound to the research approach of using sequential-

case studies to actively explore emerging categories and concepts which arise

in one case in subsequent cases. From the perspective of exploratory research

this potential limitation could be regarded as a necessary and defining

characteristic of the research approach.

The cumulative nature of the data collection means some data could be missed in

earlier cases. This limitation is based on the concept that interview transcripts

in the sequential-case approach grow as the number of cases increases. This is

because each case is exploring additional emerging concepts until theoretical

saturation or sufficient closure is reached.

Although the nature of this research approach means that results can never be

statistically exhaustive, it can be suggested that evidence for the conceptual

process model and other findings which have addressed the research questions has

been found and documented in a structured and systematic way. It can therefore

be argued that this research project has contributed to the body of knowledge

about object-oriented requirements engineering.

7.6 Summary

This chapter has identified the implications of the case study findings for the

theoretical concepts proposed in the conceptual process model in Chapter 4 of this

thesis. Implications of the case study findings for the use of object-oriented models

in requirements engineering practice have also been identified and discussed. This

discussion led to a theoretical model of the processes and influences involved in

the object-oriented requirements engineering process with respect to the

development and use of informal models for reaching understanding and

agreement between users and consultants. The case study findings also suggest a

need to examine education and training methods for requirements engineers and

systems analysts with respect to developing diverse approaches to the use of

models, methodologies, techniques and tools for elicitation, modelling and

validation of user requirements. The chapter has also identified some of the

limitations of the findings in this research project.

Chapter 8 Conclusions and Future Work 239

Chapter 8

Conclusion and Future Work

8.1 Summary of this Research Project

Few empirical studies have been published which investigate how practising

professionals use object-oriented methods and models in requirements

engineering. This research project has addressed this gap in the literature and

has described the findings from a set of six case studies which examined the use

of object-oriented models in professional requirements engineering practice.

This research project has sought first to define and describe the key theoretical

concepts in object-oriented requirements engineering, particularly with respect

to the use of object-oriented models to support the requirements engineering

process. An extensive literature analysis and review of existing approaches to

and models of requirements engineering in general and object-oriented

requirements engineering in particular was undertaken. This revealed that,

although there are several conceptual fram Torks or theoretical models of

requirements engineering in general (Darke and Shanks, 1996, Loucopoulos

and Karakostas, 1995, Macaulay, 1996, Pohl, 1994), very little research has been

Chapter 8 Conclusions and Future Work 240

directed at developing a specifically object-oriented conceptual model or

framework. A substantial contribution of this research project has been to

develop such a conceptual process model. The empirical validity of the

concepts in the model was evaluated by examining oiv?ct-oriented

requirements engineering practice using a sequential-case study method

The two major

follows:

research components of this project can be summarised as

The Conceptual Study

This research component established a well-grounded conceptual

understanding of object-oriented requirements engineering. A conceptual

process model was developed from an analysis of the existing literature

using the conceptual study research method (Shanks et al., 1993, Galliers,

1992). The conceptual process model identifies and describes the key

concepts, Processes and relationships of object-oriented requirements

engineering as described in the literature. The conceptual process model is

an important contribution to theory within object-oriented requirements

engineering.

The Multiple Sequential-Case Study

The research questions proposed in Chapter 3 of this thesis and the conceptual

process model proposed in Chapter 4 and refined in Chapter 6 provided the

basis for the design and conduct of the sequential-case study in Chapter 5. The

multiple sequential-case study comprised six cases which examined the use of

models in object-oriented requirements engineering in practice in order to

determine the empirical validity of the conceptual process model. The

conceptual process model together with the research questions provided the

basis for the interview scripts used in the sequential-case study. The sequential-

Chapter 8 Conclusions and Future Work 241

case study also sought to further refine the conceptual process model by actively

exploring concepts that were evident in each case in subsequent cases.

8.2 Research Results

This thesis makes several contributions to the theory and understanding of the

use of object-oriented modelling methods in requirements engineering.

The case study results

• confirmed the empirical validity of the concepts and relationships embodied

in the initial conceptual process model

• revealed new characteristics of the evolving versions of the conceptual

process model as they emerged during the conduct of the sequential-case

study.

• provided research findings of interest concerning reuirements engineering

that were independent of the conceptual process model.

The case study findings also answered the three major research questions. The

aggregation of the answers to these questions address the broad research theme

proposed in Chapters 1 and 3 of this thesis:

"How are object-oriented modelling methods used by practising professionals

in the process of requirements engineering?"

This section outlines research findings in terms of answers to the research

questions. The first major research question

Is clicitation influenced by the use of object-oriented modelling methods?

was addressed in the case study by responses to the interview question:

Chapter 8 Conclusions and Future Work 242

Is knowledge elicitation specifically object-oriented, i.e. do you think "OO" from

the start?

The concept of analysts thinking in specifically object-oriented terms was

confirmed by the findings. Four of the six analysts believed that they were

always thinking in object-oriented terms while carrying out elicitation of user

requirements. The case study data provided evidence that elicitation is

specifically object-oriented.

The second major research question

When, how and for whom is object-oriented modelling undertaken?

was addressed in the case study by responses to the following interview

questions:

Which (how many) models are produced during specification?

Do you produce class models, use case models or interaction models?

Would you categorise models as static or dynamic?

Who uses them?

Who are they produced for?

Which models, if any, are shown to the user?

Which models are used internally by the development team?

The findings provided evidence of the use of two different types of models.

Informal models were used to represent the requirements in terms the users

could understand. These models took the form of adhoc diagrams, pictures,

animations, PowerPoint mock-ups, use case scripts etc. Formal models based on

specific modelling notations were only used within the analysis team or with

the professional developers. The case study data revealed that object-oriented

models (written in specific notations) are only used within the analysis and/or

Chapter 8 Conclusions and Future Work 243

system development team. Object-oriented models based on formal notations

are never, or rarely, developed for or shown to users.

The third major research question:

How is validation performed on object-oriented models?

is addressed in the case study by responses to several interview questions:

Which (how many) models are produced during specification?

Who uses them?

Who are they produced for?

Which models, if any, are shown to the user?

Which models are used internally by the development team?

Do you think it is necessary to validate the specification once the models have

been produced?

When does the validation process start?

Could you comment on the role and/or importance of use cases in the

specification process?

The case study findings provided evidence that no formal processes were used

for the validation of the requirements with users in practice. None of the

analysts used any mathematical proofs or formal methods in validation. All

analysts used walkthroughs to some extent, together with the informal models

described above for validation.

The case study data provided evidence that validation of object-oriented

models used in requirements specification is not generally carried out using

formal methods. Rather the validation process is based on informal models

representing the formal models or mapped from the formal models in an

Chapter 8 Conclusions and Future Work 244

adhoc way. The informal models are the models used in walkthroughs with

the users for validation and sign off of a requirements specification.

8.3 Future Work

Several issues arising from the research reported in this thesis have been

identified for further research and investigation. The following sections

describe six areas of future research including suggestions for specific research

projects to address these areas.

8.3.1 Mapping Formal Models to Informal Models

As discussed in Chapters 6 and 7 of this thesis, one of the major findings of this

research is the identification of the use of separate models for the

representation of requirements depending on who is the target audience for the

models. No formal models are developed for communicating requirements to

users and clients. Formal models based on specific notations are used only with

trained professionals, usually the analysis and /or development: team. These

separate models are explicitly represented in the final version of the conceptual

process model in Figure 7.1. The least defined concept in the final conceptual

process model is the mapping of the informal models to the formal models and

vice versa. The most common description of this mapping process given by the

analysts in the case study was that it was a "natural" or "automatic" process for

which professional analysts had to develop the skills. This aspect of the

modelling process may be further investigated using an ethnographic study or

by using protocol analysis techniques where practising analysts are asked to

describe what they are thinking and doing while they are explaining models to

users or other analysts.

Chapter 8 Conclusions and Future Work 245

8.3.2 Comparing perceived and demonstrated behaviours in professional

requirements engineers

The sequential-case study carried out for this research project included post hoc

interviews with individual analysts .'escribing the approaches they used in a

single system development project. This form of study captured rich data about

the perceived behaviours, opinions, beliefs and recollections of professional

analysts. Thi-. lata, as argued in this thesis, provides a useful perspective on

professional requirements engineering practice. Further investigation could be

undertaken using observational studies of analysts as they are working on

system development projects in progress. These studies could provide rich data

about demonstrated behaviour rather than perceived behaviour. "Perceived"

refers to the activities and protocols the analyst believes he/she is undertaking

whilst "demonstrated" refers to the activities and protocols that the analyst can

be observed to be undertaking.

8.3.3 Migration to Object-Oriented Systems

One of the motivations for this research project is that many organisations are

choosing to move from traditional software development methods to object-

oriented methods for the development of information systems. Understanding

why and how organisations are performing this migration would add to the

body of knowledge about information systems development methodologies.

For such a research project, the interest would focus on the organisation's

motivation for change: why and how they migrate to object-oriented methods

and the specific methods that they choose. Some potential research questions

could be:

• Why has this organisation chosen to use object-oriented methods for system

development?

• Has this organisation used traditional methods in the past? Which

methods?

; 6

.. ...&»

Chapter 8 Conclusions and Future Work 246

• Which object-oriented methodology has been chosen, and why?

In addressing these and other isties concerning the migration to object-

oriented methods, such a research project could use case studies and/or surveys

of organisations that have undertaken or are currently undertaking the

migration process.

8.3.4 Cognitive Processes in Requirements Engineering

The research project reported in this thesis attempted to gather evidence in

order to better understand behaviour and practices of professional system

developers and requirements engineers. Further information about the

cognitive processes involved in requirements engineering and systems

development would contribute to the body of knowledge about requirements

egineering and system development practice. In order to understand what

successful system developers do, how they do it, why they do what they do and

when they do what they do, further investigation is needed. Key areas include:

» the application of past experience by professional analysts to new problems

• investigation of commercial-scale information system development projects

and the methods used by individual analysts and teams of analysts in

managing these projects

• investigation of the techniques and methods used by practising

professionals, including work patterns (time slicing or "multi-tasking"),

action plans and other work activities

Studies of practising professionals working on large projects over the life of the

project would need to be undertaken in order to fully explore these areas. This

is because studying the behaviour of system developers over short time periods

on a single task may not provide an adequate understanding of developers'

Chapter 8 Conclusions and Future Work 247

choices of, and success with, particular methods. Longitudinal studies may

provide a better understanding. The sample sizes of both analysts and tasks

used in many published studies of developers' behaviours may provide limited

indicative results. More general, and possibly more useful, results may be

obtained using larger sample sizes where possible.

The application of past experience to new problems

Several studies have been undertaken to measure differences in problem

solving and system specification activities using novice (student) subjects in

short sessions working on one problem (Chaiyasut and Shanks, 1994, Morris et

al., 1996, Sutcliffe and Maiden, 1992). Even where "experts" are used these

experts are often senior students who have passed specified courses (Guindon,

1990, Chaiyasut and Shanks, 1994). However, these experts can still be

considered to be novices. The performance of "true" experts or experienced

professional system developers needs to be investigated since successful use of a

modelling or development method may only be developed over time. A

method which may at first appear to be difficult to use may become easier and

more effective over time. Also, a more experienced analyst may use more of a

method's advanced features or may more effectively select appropriate

techniques within the method during the requirements engineering process.

Gaining experience during a complex project or several projects may require

the building of a "conceptual toolkit" or set of reusable tools and techniques

which in turn may make a method more effective long-term than another

method. Potential issues are:

* L>oes an analyst's preferred method become more effective the more often it

is used?

• Does that method become easier to use the more often it is used?

Chapter 8 Conclusions and Future Work 248

• Does that method produce a better product the more often it is used?

• Does that method assist an analyst to reuse concepts and frameworks which

have been successful in the past?

• Have analysts who have learnt new methods (by choice or necessity) found

new techniques and tools that are better than the ones they used previously?

Investigating commercial-scale system development projects

Existing studies of system development have rarely involved large projects

(Chaiyasut and Shanks, 1994, Guindon, 1990, Morris et al., 1996, Sutcliffe and

Maiden, 1992, Vessey and Conger, 1994). Most studies focus on time periods of

hours (at most) of work on a single, simple task (specification, modelling or

programming problem). Studies of larger scale problems involving complete

specifications of complex information systems need to be undertaken. Potential

research questions associated with this issue are:

• Are some development methods better for small problems than other

methods?

• Are some development methods better for large problems than other

methods?

• Do experienced analysts use different development methods (or parts of

methods) for different problem sizes?

Effects of work practices on the effectiveness of system development methods

Practising system developers tend to be working on more than one task or even

more than one project at a given period in time. The integration of a specific

task with other work activities may have an effect on the effectiveness of a

chosen or preferred system development method. It may be necessary for

developers to "multitask" or "time-slice" their work activities so that attention

Chapter 8 Conclusions and Future Work 249

is given to various tasks at different times. This type of work pattern may

impact on the application of a new method or may have an impact on the

choice of method for a particular phase of system modelling or specification.

The actual choice of time-slice (when and how long) may also he an important

factor. Of interest is how quickly a developer can resume productive work

using a method after having spent some time away from the task whilst

engaged in other activities. Potential research questions associated with this

issue are:

• Are some development methods more effective for continuous work

patterns than time-sliced work patterns?

• Do analysts use development methods that are easy to come back to for

short time spans because of work patterns?

• Do analysts avoid development methods that require "relearning" after a

period away from a problem?

8.3.5 Applying Usability Metrics to the use of Information System Development

Methodologies

Evaluating the effectiveness of different system development methodologies is

difficult. Usability metrics are used to measure the usability of human-

computer interfaces and software systems. It should be possible to apply

usability metrics to system development methodologies.

Usability is defined as

"... a measure of people's ability and motivation to use a product in practice.

This definition must be applied in context. It depends on the user, the task to be

done and the environment in which the product is used. The environment, in

particular, can be complex; it is a combination of physical, social and technical

Chapter 8 Conclusions and Future Work 250

factors. It is meaningless to talk about the 'usability of a product' alone; a

product may be perfectly usable but only by the product's developers."

(Dresner, 1996)

The MUSiC project (part of the European Community ESPRIT group of

projects) identifies four kinds of metrics for human-computer interfaces

(Hawryszkiewycz, 1994, MUSiC, 1993):

• analytical metrics, which can be directly described;

• performance metrics, which include things like the time used to perform a

task, system robustness or how easy it is to make the system fail;

• cognitive xvorkload metrics or the mental effort required of the user to use

the system. It covers aspects such as how closely the interface approximates

the user's mental model; and

• user satisfaction metrics, which include such things as how helpful the

system is or how easy it is to learn.

A requirements specification method can be considered to be an "interface"

between the developer and the developing system, so an adaptation of the

metrics above could be useful in determining the effectiveness or "usability" of

a specification method.

In examining this issue, usability would be addressed at a meta-level. The focus

would be on the usability of one or more methodologies rather than the

usability of the product that is produced by that methodology, i.e. the usability

of the process, not the product of that process.

As outlined ab^'e, usability metrics for Human Computer Interface (HCI)

design address kv.n areas and could be adapted to provide usability metrics for

information system development methods (ISM) as outlined below:

Chapter 8 Conclusions and Future Work 251

1. analytical metrics - what can be directly described

e.g. HCI: "Is all information needed by the user available on the screen(s)?"

e.g. ISM: "Is all information needed by the analyst to model and specify the

system available from the user and problem domain?"

2. performance metrics - timing, robustness

e.g. HCI: "How long does it take to perform a task?" "How easy is it for the

interface to fail?"

e.g. ISM: "How long does it take to perform a task?" "How easy is it for the

method to fail to produce a useful specification, design or implementation?"

3. cognitive workload metrics - matching the interface with the user's mental

model

e.g. HCI: "Does the interface match the user's mental model?"; "What is the

mental effort required by the user to use the interface?"

e.g. ISM: "Does the specification method match the developer's and user's

mental model?"; "What is the mental effort required by the user and developer

to model and specify the system?"

4. user satisfaction metrics - satisfaction with, and willingness to use the

interface

e.g. KCI: "How easy is the interface to learn and use?"; "How helpful is the

interface and its prompts?"

e.g. ISM: "How easy is the method to learn and use?"; "How helpful is the

method and its tools and techniques?"

8.4 Conclusion

This thesis has described the first significant study of the use of object-oriented

modelling methods in requirements engineering practice. The thesis makes

Chapter 8 Conclusions and Future Work 252

contributions to the theory of object-oriented requirements engineering and

requirements engineering in general in four specific areas:

• the development and refinement of a conceptual process model

representing the key concepts and their relationships in the object-oriented

requirements engineering process. This model was initially grounded in the

existing requirements engineering literature and then refined and

emprically validated by in-depth case studies of current practice.

• the proposition of a theoretical model based on the findings from the case

studies which assists in explaining current requirements engineering

practice and the implications of the findings for practice and for training in

requirements engineering

• the formulation and demonstration of a research approach specifically

tailored to this research project but which provides a useful research

framework for similar theory building research, particularly in information

svstems.

• a platform for extensive further research programmes which are either

directly related to this work or that flow from findings associated with this

work.

253

References

Avison, D., Lau, F., Myers, M. and Nielsen, P. A. (1999) Action Research,
Communications of the ACM, 42, (1) pp. 94-97.

Avison, D. E. and Fitzgerald, G. (1995) Information Si/stems Development:
Methodologies, Tecliniques and Tools, McGraw Hill.

Bacharach, S. (1988) Organizational Theories: Some Criteria for Evaluation,
Academy of Management Review, 14, (4) pp. 496-515.

Banville, C. and Landry, M. (1989) Can the Field of IS be Disciplined?, In
Information Systems Research: Issues, Methods and Practical Guidelines (Ed. R. D.
Galliers) Blackwell Scientific Publications, Oxford, pp. 61-88.

Bartlett, F. C. (1958) Thinking, Allen and Unwin, London.

Baskerville, R. and Wood-Harper, A. T. (1998) Diversity in information systems
action research methods, European Journal of Information Systems, 7, pp. 90-107.

Baskerville, R. L. and Wood-Harper, A. T. (1996) A critical perspective on action
research as a method for information systems research, Journal of Information
Technology, 11, (3) pp. 235-246.

Beck, K. and Cunningham, W. (1989) A Laboratory for Teaching Object-Oriented
Thinking, SIGPLAN Notices, 24, (10) pp. 1-6.

Benbasat, I. (1984) An Analysis of Research methodologies, In The Information
Systems Research Challenge (Ed. F. W. McFarlan) Harvard Business School
Press, Boston, pp. 47-85.

Benbasat, I., Goldstein, D. K. and Mead, M. (1987) The Case Research Strategy in
Studies of Information Systems, MIS Quarterly, 11, (3) pp. 369-386.

Bjorner, D. and Jones, C. B. (1987) The Vienna Development Method: TheMeta-
Language, Springer Verlag, Berlin.

Blaha, M. and Premerlani, W. (1998) Object-Oriented Modeling and Design for
Database Applications, Prentice-Hall, Upper Saddle River, NJ.

254

Boehm, B. W. (1976) Software Engineering, IEEE Transactions on Computers, 25, (12)
pp. 1226-1241.

Boehm, B. W. (1981) Software Engineering Economics, Prentice-Hall, Englewood
Cliffs.

Boehm, B. W. (1984) Verifying and Validating Software Requirements and Design
Specifications, IEEE Software, 1, (1) pp. 75-88.

Boehm, B. W. (1988) A spiral model of software development and enhancement,
IEEE Computer, 25, (5) pp. 61-72.

Boehm-Davis, D. and Ross, L. (1992) Program design methodologies and the
software development process, International Journal of Man-Machine Studies,
36, pp. 1-19.

Booch, G. (1987) Software Engineering with Ada, Benjamin/Cummings, Menlo Park,
CA.

Booch, G. (1991) Object-Oriented Design, Benjamin/Cummings, Menlo Park, CA.

Booch, G. (1994) Object-Oriented Analysis and Design with Applications,
Benjamin/Cummings, Redwood City.

Booch, G., Rumbaugh, J. and Jacobson, I. (1999) The Unified Modeling Language User
Guide, Addison-Wesley, Reading, MA.

Bruner, J. S., Goodnow, J. J. and Austin, G. A. (1956) A study of thinking, Wiley,
New York.

Bubenko, J. and Wangler, B. (1991) Research Directions in Conceptual Specification
Development, In Conceptual Modelling, Databases, & CASE: An integrated view
of information systems development (Eds, P. Loucopoulos and R. Zicari)
Addison-Wesley, Reading, pp. 389-412.

Budd, T. (1997) An Introduction to Object-Oriented Programming, Addison-Wesley,
Reading MA.

Carbone, A., Lynch, K., Arnott, D. and Jamieson, P. (2000) Adopting a studio-based
education approach into Information Technology, In Proceedings of Fourth
Australasian Computing Education Conference (ACE2000), Melbourne.

Carroll, J. and Swatman, P. (1997) How Can the Requirements Engineering Process
be Improved?, In Proceedings of Eighth Australasian Conference on Information
Systems, (Ed. D. J. Sutton) University of South Australia, Adelaide, South
Australia, pp. 458-470.

Carroll, J. M., L.L., D. and Swatman, P. A. (1998) Using Case Studies to Build
Theory: Structure and Rigour, In Proceedings of Ninth Australian Conference on

255

Information Systems, University of New South Wales, Sydney, Australia, pp.
64-76.

Cavaye, A. (1996) Case study research: a multi-faceted research approach for IS,
Information Systems Journal, 6, (3) pp. 227-242.

Chaiyasut, P. and Shanks, G. (1994) Conceptual Data Modelling Process: A Study
of Novice and Expert Data Modellers, In Proceedings of First International
Conference on Object Role Modelling, Magnetic Island, Australia, pp. 310-333.

Checkland, P. (1981) Systems Thinking, Systems Practice, Wiley, Chichester.

Checkland, P. and Scholes, J. (1990) Soft Systems Methodology in Practice, Wiley,
Chichester.

Chen, P. (1976) The entity-relationship model:toward a unified view of data, ACM
Transactions on Database Systems, 1, (1) pp. 9-36.

Chua, W. F. (1986) Radical Developments in Accounting Thought, The Accounting
Reviezv, 61, pp. 601-632.

Coad, P. and Yourdon, E. (1990) Object-Oriented Analysis, Yourdon Press/Prentice
Hall, New York, USA.

Coad, P. and Yourdon, E. (1991) Object-Oriented Analysis, Yourdon Press/Prentice-
Hall, Englewood Cliffs, NJ.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C, Gilchrist, H., Hayes, F. and
Jeremaes, P. (1994) Object-Oriented Development: the Fusion Method, Prentice
Hall, Englewood Cliffs, NJ.

Craik, K. J. W. (1943) The Nature of Explanation, Cambridge University Press,
Cambridge.

Cybulski, J. and Reed, K. (1998) Computer Assisted Analysis and Refinement of
Informal Software Requirements Documents, In Proceedings of Asia-Pacific
Software Engineering Conference (APSEC98), Taipei, Taiwan, pp. 128-135.

Cybulski, J. and Reed, K. (1999) Automating requirements refinement with cross-
domain requirements classification, In Proceedings of Fourth Australasian
Conference on Requirements Engineering, Sydney, Australia, pp. 131-145.

Darke, P. and Shanks, G. (1996) Stakeholder Viewpoints in Requirements
Definition: A Framework for understanding Viewpoint Development
Approaches, Requirements Engineering, 1, pp. 88-105.

Darke, P. and Shanks, G. (1997) Managing User Viewpoints in Requirements
Definition, In Proceedings of Eighth Australasian Conference on Information
Systems, Adelaide, pp. 1-14.

• I 1 / 1

256

Darke, P., Shanks, G. and Broadbent, M. (1998) Successfully completing case study
research: combining rigour, relevance and pragmatism, Information Systems
Journal, 8, (4) pp. 273-289.

Dawson, L. (1997) Active, Non-interventionary Research into Object-Oriented
Requirements Engineering, Seminar, Swinburne University of Technology,
Melbourne.

Dawson, L. and Swatman, P. (1999a) The use of Object-oriented Models in
Requirements Engineering: a Field Study, In Proceedings of Twentieth
International Conference on Information Systems, (Eds, P. De and J. I. DeGross)
Charlotte, NC, pp. 260-273.

Dawson, L. L., Milton, S. K. and Keen, C. D. (1995) A Functional Specification
System for Information Systems, Technical Report 221, Department of
Computer Science, Monash University, Melbourne, Australia.

Dawson, L. L. and Swatman, P. A. (1997) Object-Oriented Requirements
Engineering in Practice, In Proceedings of Fifth European Conference on
Information Systems, Cork, Ireland, pp. 1103-1112.

Dawson, L. L. and Swatman, P. A. (1998) The role of object-oriented modelling
methods in requirements engineering, In Proceedings ofBCS Information
Systems Methodologies, (Ed. N. Jayaratna) University of Salford, Salford, UK,
pp. 353-368.

Dawson, L. L. and Swatman, P. A. (1999b) The Role of Object-Oriented Modelling
Methods in Requirements Engineering, In Methodologies for Developing and
Managing Emerging Technology Based Information Systems (Eds, A. T. Wood-
Harper, N. Jayaratna and J. R. G. Woods) Springer-Verlag, London, pp. 353-
368.

DeMarco, T. (1978) Structured Analysis and System Specification, Yourdon Press,
New York.

DeMarco, T. (1982) Controlling Software Projects: Management, Measurement and
Estimation, Yourdon Press, New York.

Dey, I. (1993) Qualitative Data Analysis: A User-Friendly Guide for Social Scientists,
Routledge, London.

Dorfman, M. and Thayer, R. H. (1990) Standards, Guidelines and Examples on System
and Software Requirements Engineering, IEEE Computer Society Press, Los
Alamitos, CA.

Downs, E., Clare, P. and Coe, I. (1988) Structured Systems Analysis and Design
Method: Application and Context, Prentice Hall, Hemel Hempstead.

Dresner, D. C. (1996) Can anyone else use it?, World Wide Web, Accessed: Dec,
1996, http://www.avnet.co.uk/SQM/QiC/articles/Dresner/15/html.

257

Dubin, R. (1976) Theory Building in Applied Areas, In Handbook of Industrial and
Organisational Psychology (Ed. M. Dunnette) Rand McNally College
Publications, Chicago, pp. 17-39.

Duke, R., King, P., Rose, G. and Smith, G. (1991) The Object-Z specification
language: Version 1, Technical Report, Software Verification Research Centre,
Department of Computer Science, University of Queensland, Australia,
Brisbane.

Duncker, K. (1945) On problem solving, Psychological Monographs, 58, (5).

Easterbrook, S. (1993) Domain Modelling with Hierarchies of Alternative
Viewpoints, In Proceedings of IEEE International Symposium on Requirements
Engineering, San Diego.

Eisenhardt, K. M. (1989) Building Theories from Case Study Research, Academy of
Management Review, 14, (4) pp. 532-550.

Ericsson, K. A. and Simon, H. A. (1980) Verbal Reports as Data, Psychological
Reviezv, 87, (3) pp. 215-251.

Fichman, R. G. and Kemerer, C. F. (1992) Object-Oriented and Conventional
Analysis and Design Methodologies, IEEE Computer, 25, (10) pp. 22-39.

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L. and Goedicke, M. (1992)
Viewpoints: A Framework for Integrating Multiple Perspectives in System
Development, International journal of Software and Knowledge Engineering, 2,
pp. 31-57.

Fitzgerald, B. (1997) The use of systems development methodologies in practice: a
field study, Information Systems Journal, 7, pp. 201-212.

Fitzgerald, B. (1998) An Empirically-Grounded Framework for the Information
Systems Development Process, In Proceedings of Nineteenth International
Conference on Information Systems, (Eds, R. Hirschheim, M. Newman and J. I.
DeGross) Helsinki, Finland, pp. 103-114.

Fitzgerald, B. and Howcroft, D. (1998) Competing Dichotomies in IS Research and
Possible Strategies for Resolution, In Proceedings of Nineteenth International
Conference on Information Systems, (Eds, R. Hirschheim, M. Newman and J. I.
DeGross) Helsinki, Finland, pp. 155-164.

Fitzgerald, G., Hirschheim, R. A., Murnford, E. and Wood-Harper, A. T. (1985)
Information Systems Research methodology: An Introduction to the Debate,
In Research Methods in Information Systems (Eds, E. Mumford, R. A.
Hirschheim, G. Fitzgerald and A. T. Wood-Harper) North-Holland,
Amsterdam, pp. 3-9.

258

Flynn, D. J. and Warhurst, R. (1994) An empirical study of the validation process
within requirements determination, Information Systems Journal, 4, pp. 185-
212.

Gadamer, H.-G. (1976) Philosophical Hermeneutics, University of California Press,
Berkeley, CA.

Galal, G. (1998) Software Architecting:from requirements to building blocks within
an architectural style, In Proceedings of 12th European Conference on Object-
Oriented Programming: ECOOP'98, (Eds, I. Borne, M. Prieto, F. Brito e Abreu
and W, De Meuter) Brussels.

Galai, G. and McDonnell, J. T. (1998) A Qualitative View of Requirements
Engineering, In Proceedings of Third Australian Conference on Requirements
Engijieering, (Eds, D. Fowler and L. Dawson) Geelong, Australia, pp. 167-176.

Galliers, R. (1992) Choosing information systems research approaches, In
Information Systems Research: Issues, Methods and Practical Guidelines (Ed. R.
Galliers) Blackwell Scientific, Oxford, pp. 144-162.

Galliers, R. D. (1985) In Search of a Paradigm for Information Systems Research, In
Research Methods in Information Systems (Eds, E. Mumford, R. A. Hirschheim,
G. Fitzgerald and A. T. Wood-Harper) North-Holland, Amsterdam, pp. 281-
298.

Galliers, R. D. and Land, F. F. (1987) Choosing appropriate information systems
research methodologies, Communications of the ACM, 30, (11) pp. 900-902.

Gane, C. and Sarson, T. (1978) Structured Systems Analysis: Tools and Techniques,
Prentice Hall, Englewood Cliffs, NJ.

Gardner, H. (1985) The mind's new science: A history of the cognitive revolution, Basic
Books, New York.

Gentner, D. (1983) Structure mapping: A theoretical framework, Cognitive Science,
7, pp. 155-170.

Gentner, D. (1989) The mechanisms of analogical learning, In Similarity and
analogical reasoning (Eds, S. Vosniadou and A. Ortony) Cambridge University
Press, Cambridge, England.

Ghezzi, C, Jazayeri, M. and Mandrioli, D. (1991) Fundamentals ofSoftzuare
Engineering, Prentice-Hall, Englewood Cliffs, NJ.

Giarratano, J. and Riley, G. (1989) Expert Systems: Principles and Programming, PWS-
Kent, Boston.

Gick, M. L. and Holyoak, K. J. (1980) Analogical problem solving, Cognitive
Psychology, 12, pp. 306-355.

r

259

Glaser, B. (1992) Basics of Grounded Theory Analysis, Sociology Press, Mill Valley,
CA.

Graham, I. (1994) Object Oriented Methods, Addison-Wesley, Wokingham, UK.

Graham, L, Henderson-Sellers, B. and Younessi, H. (1997) The OPEN process
Specification, Addison Wesley, New York.

Greeno,}. G. and Simon, H. A. (1988) Problem Solving and reasoning, Li Stevens'
handbook of experimental psychology (Eds, R. C. Atkinson, R. J. Hernstein, G.
Lindzey and R. D. Luce) Wiley, New York.

Greenspan, S., Mylopoulos, J. and Borgida, A. (1994) On Formal Requirements
Modelling Languages: RM Revisited, In Proceedings of16th International
Conference on Software Engineering, Sorrento.

Guindon, R. (1990) Knowledge exploited by experts during software system
design, International Journal of Man-Machine Studies, 33, pp. 279-304.

Hamilton, J. A. and Pooch, U. W. (1995) A survey of object-oriented
methodologies, Journal of the Association of Computing Machinery, pp. 226-234.

Hamilton, S. and Ives, B. (1982) MIS Research Strategies, Information and
Management^, pp. 339-347.

Harel, D. (1987) Statecharts:a Visual Formation for Complex Systems, Science of
Computer Programming, 8, pp. 231-274.

Hawryszkiewycz, I. T. (1994) Introduction to Systems Analysis and Design, Prentice
Hall, Englewood Cliffs, NJ.

Haywood, E. and Dart, P. (1999) Analysing projects to decide how to model the
requirements, In Proceedings of Fourth Australasian Conference on Requirements
Engineering, Sydney, Australia, pp. 149-159.

Henderson-Sellers, B. (1997) A Book of Object-Oriented Knowledge, Prentice-Hall,
Upper Saddle River, NJ.

Henderson-Sellers, B. and Edwards, J. (1994) BOOKTWO of Object-Oriented
Knozvledge: The Working Object, Prentice Hall, Englewood Cliffs, NJ.

Henderson-Sellers, B. and Simons, A. J. H. (2000) OPEN-a third generation object-
oriented methodology, Journal of Research and Practice in Information
Technology, 32, (1) pp. 47-68.

Henderson-Sellers, B., Simons, A. J. H. and Younessi, H. (1998) The OPEN Toolbox
of Techniques, Addison-Wesley Longman, Wokingham.

Hirschheim, R. and Klein, H. K. (1992) A Research Agenda for Future Information
Systems Development Methodologies, In Challenges and Strategies for Research

$ 260

/?2 Systems Development (Eds, W. W. Cotterman and J. A. Senn) John Wiley and
Sons, Chichester, pp. 235-255.

Hirschheim, R. A. (1985) Information Systems Epistemology: An Historical
Perspective, In Information Systems Research: Issues, Methods and Practical
Guidelines (Ed. R. D. Galliers) Blackwell Scientific Publications, Oxford, pp.
28-60.

Hirschheim, R. A. and Klein, H. K. (1989) Four paradigms of Information Systems
Development, Communications of the ACM, 32, pp. 1199-1216.

Holyoak, K. J. and Koh, K. (1987) Surface and Structural Similarity in Analogical
Transfer, Memory and Cognition, 15, pp. 337-340.

Hult, M. and Lennung, S.-A. (1980) Towards a definition of action research: a note
and bibliography, Journal of Management Studies, 17, (May) pp. 241-250.

Humphrey, G. (1963) Thinking: An introduction to its experimental psychology, Wiley,
New York.

IEEE-Std. (1990) IEEE Standard Glossary of Software Engineering Terminology,
Institute of Electrical and Electronic Engineers, New York.

Jackson, M. C. (1997) Critical Systems Thinking and Information Systems
Development, In Proceedings of Eighth Australasian Conference on Information
Systems, (Ed. D. J. Sutton) University of South Australia, Adelaide, South
Australia, pp. 1-20.

Jackson, P. (1990) Introduction to Expert Systems, Addison-Wesley, Wokingham, UK.

Jacobson, I. (1995) The Use-Case Construct in Object-Oriented Software
Engineering, In Scenario-Based Design: Envisioning Work and Technology in
System Development (Ed. J. M. Carroll) John Wiley and Sons, Inc, New York,
pp. 309-336.

Jacobson, I., Booch, G. and Rumbaugh, J. (1999) The Unified Softzvare Development
Process, Addison Wesley Longman, Reading, MA.

Jacobson, I. and Christerson, M. (1995) Modeling with use cases: A growing
concensus on use cases, Journal of Object-Oriented Programming, 8, (1) pp. 15-
19.

Jacobson, I., Christerson, M., Jonsson, P. and Overgaard, G. (1992) Object-Oriented
Software Engineering: A Use Case Driven Approach, Addison-Wesley/ACM,
New York.

Jarke, M., Bubenko, J., Rolland, C, Sutcliffe, A. and Vassiliou, Y. (1993) Theories
Underlying Requirements Engineering: An Overview of NATURE at Genesis,
In Proceedings of IEEE International Symposium on Requirements Engineering, San
Diego.

261

Johnson-Laird, P. N. (1983) Mental Models, Cambridge University Press,
Cambridge.

Johnston, L. (1999) The Requirements Engineer as Architect?, In Proceedings of
Fourth Australasian Conference on Requirements Engineering, Sydney, Australia.

Kaplan, B. and Duchon, D. (1988) Combining Qualitative and Quantitative
Methods in Information Systems Research: A Case Study, MIS Quarterly, 12,
(4) pp. 571-586.

Kaplan, B. and Maxwell, J. A. (1994) Qualitative Research Methods for Evaluating
Computer Information Systems, In Evaluating Health Care Information Systems:
Methods and Applications (Eds, J. G. Anderson, C. E. Aydin and S. J. Jay) Sage,
Thousand Oaks, CA, pp. 45-68.

Keen, C. D., Lockwood, C. and Lamp, J. (1998) A Client-focussed, Team-of-Teams
Approach to Software Development Projects, In Proceedings ofSoftivare
Engineering: Education and Practice, IEEE Computer Society Press, Dunedin,
New Zealand, pp. 34-41.

Keen, P. G. W. (1987) MIS Research: current status, trends and needs, In Information
Systems Education: Recommendations and Implementation (Eds, R. A.
Buckingham, R. A. Hirschheim, F. F. Land and C. J. Tully) Cambridge
University Press, Cambridge, pp. 1-K>.

Keen, P. G. W. (1991) Relevance and Rigor in Information Systems Research:
Improving Quality, Confidence, Cohesion and Impact, In Information Systems
Research: Contemporary Approaches and Emergent Traditions (Eds, H.-E. Nissen,
H. K. Klein and R. Hirschheim) North-Holland, Amsterdam, pp. 27-49.

Khushalani, A., Smith, R. and Howard, S. (1994) What happens when designers
don't play by the rules: Towards a model of opportunistic behaviour and
design, Australian Journal of Information Systems, 1, (2) pp. 2-31.

Klahr, D. and Dunbar, K. (1988) Dual space search during scientific reasoning,
Cognitive Science, 12, pp. 1-48,

Klein, H. K. and Myers, M. (1999) A Set of Principles for Conducting and
Evaluating Interpretive Field Studies in Information Systems, MIS Quarterly,
23, (1) pp. 67-93.

Kobryn, C. (1999) UML 2001: A Standardization Odyssey, Communications of the
ACM, 42, (10) pp. 29-37.

Kotonya, G. and Sommerville, I. (1998) Requirements Engineering: processes and
techniques, John Wiley and Sons, Chichester, UK.

Lamp, J., Keen, C D. and Urquhart, C. (1996) Integrating Professional Skills into
the Curriculum, In Proceedings of First Australasian Conference on Computer
Science Education. Sydney, Australia, pp. 309-316.

262

Lamp, J. and Lockwood, C. (2000) Creating Realistic Experience of an IS Project:
The Team of Teams Approach, In Proceedings of'2000IRMA International
Conference, Idea Group Publishing, USA, Alaska, pp. 737-740.

Lee, A. (1989) A Scientific Methodology for MIS Case Studies, MIS Quarterly, 13, (1)
pp. 33-52.

Lee, Y. and Pennington, N. (1994) The effects of paradigm on cognitive activities in
design, International Journal of Human-Computer Studies, 40, pp. 577-601.

Lockwood, C. and Lamp, J. (2000) Enhancing interpersonal skills in Information
Technology Projects, In Proceedings of Fourth World Multiconference on
Systemics, Cybernetics and Informatics, International Institute of Informatics
and Systemics, USA, pp. 164-167.

Loosley, C, Mimo, A., Richards, D. and Winsberg, P. (1994) A Survey of Object-
Oriented Methods, infoDB, 9, (1) pp. 31-36.

Loucopoulos, P. and Karakostas, V. (1995) Systems Requirements Engineering,
McGraw-Hill, London, UK.

Luchins, A. S. (1942) Mechanization in problem solving, Psychological Monographs,
54, (6).

Lyytinen, K. and Hirschheim, R. (1987) Information System Failures - A Survey
and Classification of the Empirical Literature, Oxford Surveys in Information
Technology, 4, pp. 257-309.

Macaulay, L. (1996) Requirements Engineering, Springer-Verlag, London.

Martin, J. and Odell, J. (1992) Object-Oriented Analysis and Design, Prentice-Hall,
Englewood Cliffs, NJ.

Mayer, R. E. (1992) Thinking, Problem Solving, Cognition, W.H. Freeman and
Company, New York.

Mayer, R. E. and Gallini, J. (1990) When is an illustration worth a thousand words?,
Journal of Educational Psychology, 82, pp. 715-726.

Menzies, T. and Compton, P. (1995) The (Extensive) Implications of Evaluation on
the Development of Knowledge-Based Systems, In Proceedings of 9th AAAI-
Sponsored Banff Knozvledge Acquisition of Knozuledge-based systems, Banff.

Meyer, B. (1988) Object-Oriented Software Construction, Prentice-Hall, Englewood
Cliffs, NJ.

Miles, M. B. and Huberman, A. M. (1994) Qualitative Data Analysis: An Expanded
Sourcebook, Sage Publications Inc, Thousand Oaks, CA.

263

Monarchi, D. E. and Puhr, G. I. (1992) A Research Typology for Object-Oriented
Analysis and Design, Communications of the ACM, 35, (9) pp. 35-47.

Morris, M., Speier, C. and Hoffer, J. (1996) The impact of experience on individual
performance and workload differences using object-oriented and process-
oriented systems analysis techniques, In Proceedings of 29th Hawaii
International Conference on System Sciences, Maui, Hawaii.

Mumford, E., Hirschheim, R., Fitzgerald, G. and Wood-Harper, T. (1985) Research
Methods in Information Systems, North Holland, Amsterdam.

MUSiC (1993) Metrics for usability standards in computing, World Wide Web,
Accessed: October, 1996, http://newcastle.cabernet.esprit.ec.org/esp-
syn/text/5429.html.

Myers, M. (1999) Qualitative Research in Information Systems, World Wide Web,
Accessed: September, 10,1999, http://www.auckland.ac.nz/msis/isworld/.

Nerson, J.-M. (1992) Applying Object-Oriented Analysis and Design,
Communications of the ACM, 35, (9) pp. 63-74.

Neuman, W. L. (1994) Social Research Methods: Qualitative and Quantitative
Approaches, Allyn and Bacon, Boston.

Norman, D. A. (1983) Some observations on mental models, In Mental Models (Eds,
D. Gentner and A. L. Stevens) Lawrence Erlbaum Associates, Hillsdales, NJ,
pp. 7-14.

Norman, D. A. (1988) The Psychology of Everyday Things, Basic Books, New York.

Nuseibeh, B., Kramer, J. and Finkelstein, A. (1994) A Framework for Expressing the
Relationships Between Multiple Views in Requirements Specification, IEEE
Transactions on Softzuare Engineering, 20, pp. 760-771.

OASIG (1996) Why do IT Projects so often Fail?", In OR Newsletter, Vol. 309, pp. 12-
16.

Orlikowski, W. (1993) CASE tools are organisational change: Investigating
Incremental and Radical Changes in Systems Development, MIS Quarterly,
17, (3) pp. 309-340.

Orlikowski, W. J. and Baroudi, J. J. (1991) Studying Information Technology in
Organisations: Research Approaches and Assumptions, Information Systems
Research, 2, pp. 1-28.

Pandit, M. R. (1996) The Creation of Theory: A Recent Application of the
Grounded Theory Method, The Qualitative Report, 2, (4).

Pohl, K. (1993) The three dimensions of requirements engineering, In Proceedings of
Fifth International Conference on Advanced Information Systems Engineering

264

(CAiSE'93), (Eds, C. Rolland, F. Bodart and C. Cauvet) Springer-Verlag, Paris,
pp. 275-292.

Pohl, K. (1994) The Three Dimensions of Requirements Engineering: A framework
and its applications, Information Systems, 19, (3) pp. 243-258.

Polya, G. (1957) How to solve it, Doubleday/Anchor, Garden City, New York.

Preece, J. (1994) Human-Computer Interaction, Addison-Wesley, Wokingham, UK.

Rapoport, R. N. (1970) Three Dilerr&s in Action Research, Human Relations, 23, (4)
pp. 499-513.

Reggia, J. (1985) Abductive Inference, In Proceedings of Expert Systems in Government
Symposium, (Ed. K. Kama) IEEE Press, pp. 484-489.

Reitman, W. R. (1965) Cognition and thought: An information processing approach,
Wiley, New York.

Robertson, J. and Robertson, S. (1997) Volere Requirements Specification Template,
Atlantic Systems Guild, London, Aachen and New York.

Robertson, J. and Robertson, S. (2001^ Volere Product Summary, World Wide Web,
Accessed: Jan 23,2001,
http://www.atlsysguild.com/GuildSite/Robs/volprod.html.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991) Object-
Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs, NJ.

Schon, D. A. (1983) The Reflective Practitioner: How Professionals Think in Action,
Basic Books, New York.

Shanks, G., Rouse, A. and Arnott, D. (1993) A Review of Approaches to Research
and Scholarship in Information Systems, In Proceedings of 4th Australasian
Conference on Information Systems, Brisbane.

Shlaer, S. and Mellor, S. J. (1988) Object-Oriented Systems Analysis - Modelling the
World in Data, Yourdon Press, Englewood Cliffs, NJ.

Shlaer, S. and Mellor, S. J. (1991) Modelling the World in States, Yourdon Press,
Englewood Cliffs, NJ.

Simons, A. (2000) Discovery, World Wide Web, Accessed: Feb, 2001,
http://www.dcs.shef.ac.uk/~ajhs/discovery/discover.html.

Simons, A. J. H. (1998) Object Discovery - A process for developing medium-sized
applications, In Proceedings ofECOOP'98, AITO/ACM, Brussels, pp. 109.

265

Simons, A. J. H. and Graham, I. (1998) 37 Things that don't work in object
modelling with UML, In Proceedings of 2nd. ECOOP Workshop on Precise
Behavioural Semantics, (Eds, H. Kilov and B. Rumpe) TU Munich, Brussels.

Simons, A. J. H. and Graham, I. (1999) 30 Things that go wrong in object modelling
with UML 1.3, In Behavioral Specifications of Businesses and Systems (Ed. B. R. H
Kilov, I Simmonds) Kluwer Academic Publishers, pp. 237-257.

Simons, A. J. H. and Swatman, P. (1997) Engineering the Object-Oriented Software
Process: OPEN and MeNtOR, In Proceedings of ECOOP'97 Tutorials,
AITO/ACM Press, Jyvaskyla.

Sommerville, I. (1996) Softzuare Engineering, Addison-Wesley, Wokingham.

Sommerville, I. and Sawyer, P. (1997) Requirements Engineering: A good practice
guide, John Wiley and Sons, Chichester.

Song, X. and Osterweil, L. J. (1994) Experience with an Approach to Comparing
Software Design Methodologies, IEEE Transactions on Software Engineering, 20,
(5) pp. 364-384.

Spivey, J. M. (1989) The Z Notation: A Reference Manual, Prentice Hall, Hemel
Hempstead, UK.

Staudenmayer, H. (1975) Understanding conditional reasoning with meaningful
propositions, In Reasoning: Representation and process in children and adults (Ed.
R. J. Falmagne) Erlbaum, Hillsdale, NJ.

Staudenmayer, H. and Bourne, L. E. (1978) The nature of denied propositions in
the conditional sentence reasoning task: Interpretation and learning, In
Human Reasoning (Eds, R. Revlin and R. E. Mayer) Wiley/Winston, New
York.

Strauss, A. and Corbin, J. (1990) Basics of Qualitative Research: Grounded Theory
Procedures and Techniques, Sage Publications, Newbury Park, CA.

Susman, G. I. (1983) Action Research. A Sociotechnical Systems Perspective, In
Beyond Method: Strategies for Social Research (Ed. G. Morgan) Sage, Newbury
Park, pp. 95-113.

Susman, G. I. and Evered, R. D. (1978) An Assessment of the Scientific Merits of
Action Research, Administrative Science Quarterly, 23, (4) pp. 582-603.

Sutcliffe, A. G. and Maiden, N. A. M. (1992) Analysing the novice analyst:
cognitive models in software engineering, International Journal of Man-Machine
Studies, 36, pp. 719-740.

Swatman, P. A. (1996) Formal object-oriented method - FOOM, In Specification of
Behavioural Semantics in Object-Oriented Information Systems (Ed. W. Harvey)
Kluwer Academic Publishers, Norwell, Massachucetts.

266

Swatman, P. A. and Swatman, P. M. C. (1992) Formal Specification - an analytical
tool for (management) information systems, Journal of Information Systems, 2,
pp. 121-160.

Taplin, J. E. and Staudenmayer, H. (1973) Interpretation of abstract conditional
sentences in deductive reasoning, Journal of Verbal Learning and Verbal
Behaviour, 12, pp. 530-542.

Taylor, D. A. (1992) Object-Oriented Information Systems, John Wiley and Sons, New
York.

The Concise Oxford Dictionary, (1976) Oxford University Press, Oxford.

The OPEN web page, (2000) URL, Accessed: 16/6/2000,2000,
http: / / www.open.org.au/.

Thorndike, E. L. (1898) Animal Intelligence: An experimental study of the
associative processes in animals, Psychological Monographs, 2, (8).

Urquhart, C. (1998) Analysts and Clients in Conversation: Cases in Early
Requirements Gathering, In Proceedings of Nineteenth International Conference
on Information Systems, (Eds, R. Hirschheim, M. Newman and J. I. DeGross)
Helsinki, Finland, pp. 115-127.

Vessey, I. and Conger, S. (1994) Requirements specification: Learning object,
process, and data methodologies, Communications of the ACM, 37, (5).

Vidgen, R. and Braa, K. (1997) Balancing Interpretation and Intervention in
Information Systems Research: The Action Case Approach, In Proceedings of
IFIP WG8.2 Working Conference on Information Systems and Qualitative Research,
(Ed. J. Liebenau) Philadelphia, USA.

Vitalari, N. P. and Dickson, G. W. (1983) Problem Solving for effective systems
analysis: an experimental exploration, Communications of the ACM, 26, (11).

Walden, K. and Nerson, J.-M. (1995) Seamless Object-Oriented Software Architecture.
Analysis and Design of Reliable Systems., Prentice Hall, Hemel Hempstead, UK.

Walsham, G. (1995) Interpretive case studies in IS research: nature and method,
European Journal of Information Systems, 4, pp. 74-81.

Wegner, P. (1987) Dimensions of object-based language design, In Proceedings of
OOPSLA, ACM, New York.

Weidenhaupt, K., Pohl, K., Jarke, M. and Haumer, P. (1998) Scenarios in System
Development: Current Practice, IEEE Softzvare, 15, (2) pp. 34-45.

White, B. Y. and Frederoksen, J. R. (1987) Qualitative models and intelligent
learning environments, In Artificial Intelligence and education: Learning

267

environments and tutoring systems (Eds, R. W. Lawler and M. Yazdani) Ablex,
Norwood.

Winblad, A. L., Edwards, S. D. and King, D. R. (1990) Object-Oriented Software,
Addison-Wesley, Reading, MA.

Wirfs-Brock, R.]., Wilkerson, B. and Wiener, L. (1990) Designing Object-Oriented
Software, Prentice Hall, New York, USA.

Wynekoop, J. L. and Russo, N. L. (1997) Studying system development
methodologies: an examination of research methods, Information Systems
Journal, 7, pp. 47-65.

Yin, R. K. (1994) Case Study Research: Design and Methods, Sage Publications Inc.,
Thousand Oaks, CA.

i

268

Appendix A

The Categorised Interview Questions

Appendix A.I: The Initial Categorised Interview Questions

Category
THE PERSON

THE PROJECT

METHODOLOGY

DOCUMENTATION

THE RE PROCESS
KNOWLEDGE ELICITATION

Object-oriented elicitation

Feedback in elicitation

Associated Interview Questions
What is your name/ position/ job description
How long havejrou worked for organisation name>?
How long have you been doing requirements
engineering/systems analysis?
Are you doing any object-oriented RE?
How long have you been doing object-oriented RE?
Have you done any formal course in RE/OO?
What other methodologies have you used for system
modelling and specification?
How long have/did you used non-object-oriented
modelling methods?
Please comment on the advantages of the object-oriented
methods (if any) over previously used methods.
What is the title of the project you are currently working
on?
Briefly describe the project.
How was the project initiated?
Who is the client(s)?
What are the objectives of the project/system?
How would you classify the project (eg real-time,
transaction-based, etc?)
What is the estimated time frame for this project?
What platform/machine/OS will this project be running
on?
How many users will there be for this project?
Are you the sole developer or are you part of a team?
Do you have regular project meetings?
Are you currently working on any other projects?
Which method(ology) is being used?
Why that method(ology)?
Where does requirements specification fit within the
methodology?
Has this methodology been adopted across the
organisation or only for this project?
What sort of documents do you start with (eg from the
client)?
Do you have any relevant in-house documentation that
might help me understand your organisation and what it
does?
Do you use specific manuals, textbooks etc for reference?

Is knowledge elicitation explicitly undertaken?
When does knowledge elicitation begin?
Is it seen as specifically object-oriented?
What techniques and tools are used?
Is knowledge elicitation iterative?
What is the time frame?

; A »

269

MODELLING

Which models
Static and dynamic models
Which models shown to
users/development team

VALIDATION

When does modelling begin? That is, when do
you start drawing object models?
What techniques and tools are used?
Which models are produced?
Would you categorise models as static or dynamic?
How are the models used?
Who are they produced for?
Which models, if any, are shown to the user?
When does the validation process begin?
What are the protocols? (hi what order do you perform
activities/tasks?)
What techniques and tools are used?
Who is involved in the valid ation process?
When is the validation process considered to be complete?

270

Appendix A.2: The Final Categorised Interview Questions

Category
THE PERSON

THE PROJECT

THE METHODOLOGY

Methodology

Prototyping

Implementation detail

DOCUMENTATION

THE RE PROCESS
KNOWLEDGE ELICITATION

Thinking object-oriented from
the beginning
Mental models
Informal models

Associated Interview Questions

What is your position/ job description in <organisation>
How long have you worked for <organisation>?
How long have you been doing requirements
engineering/systems analysis?
How long have you been doing object-oriented RE?
Have you done any formal course in RE/OO?
Have vou used other (non-object-oriented) modelling
methods for system modelling and specification?

What is the title of the project?
Can you give me a brief description of the project?
How was the project initiated? By tender?
Who is the client(s)?
What are the objectives of the project/ system?
'; (ow would you classify the project (eg real-time,
transaction-based, etc?)
What is the estimated time frame for this project?
What platform/machine/OS will this project be running on?
How many users will there be for this project?
Are you the sole developer or are you part of a team?
Do you have regular project meetings?
Are you currently working on any other projects?

Which method(ology) is being used on this project?
Why that method(ology)?
Where does requirements specification fit within the
methodology?
Has this methodology been adopted across the organisation
or only for this project?
Comment on the advantages of the current methodology (if
any) over previously used methods.
Does prototyping play a large part in your system
devtlopment method?
Are you explicitly conscious of implementation details when
you are doing requirements specification, or is the
specification and modelling process completely
implementation independent?

What sort of documents do you start with (eg from the
client)?
Do you have any relevant in-house documentation that
might help me understand your organisation and what it
does?
Do you use specific manuals, textbooks etc for reference?

Is knowledge elicitation explicitly undertaken and when does
it start?
Who is involved in the elicitation stage?
Is it seen as specifically object-oriented, ie do you think "OO"
from the start?
Do you start developing mental models during elicitation?
Do you use informal models (pictures) to communicate with
the users?

WTT"!^!'

271

Use case models

Feedback in elicitation

Opportunism in elicitation

MODELLING

Which models

Static and dynamic models
Which models shown to
users/develooment team

Use case models

Precedent and experience

VALIDATION

Prototypes in validation

RE as an ongoing process

Do you use use case models at this stage? What form do they
take?
What techniques and tools are used? Interviews etc?
Is knowledge elicitation iterative? That is, do you go back to
the users several times?
Do you see the elicitation process as being sequential or does
some piece of information trigger the need to explore some
new feature or aspect?
What is the usual time frame for the elicitation process?

When does modelling begin? That is, when do you
start drawing object models?
What techniques and tools are used?
Which models are produced during specification? Class
models, use case models, interaction models, other?
Would you categorise these models as static or dynamic?
How are the models used?
Who are they produced for?
Which models, if any, are shown to the user?
Which models are used internally by the development team?
Could you comment on the role and/or importance of use
cases in the specification process?
Could you comment on the relationship between use cases
and the more formal static and dynamic models?
How much of your requirements modelling technique, do
you consider, comes from your knowledge and experience in
other projects?

Do you think it is necessary to validate the specification once
the models have been produced?
If so,
How do you go about validating the specification or the
models?
When are you first prompted to start thiriking about
validation?
When does the validation process start?
What techniques and tools are used? Do you set up
acceptance testing?
How important are use cases in the validation process?
How important are prototypes in the validation process?
Who is involved in the validationj^rocess?
When is the validation process considered to be complete?
Do you usually expect to revise or revisit the specification
during design and implementation due to unforseen
omissions, ambiguities etc?

272

Appendix B Published Papers Resulting

from this Research

Dawson, L. (2001) "The use of Formal and Informal Models in Object-Oriented

Requirements Engineering", in Proceedings of 3rd International Conference on

Enterprise Information Systems, Setubal, Portugal, July 2001.

Dawson, L. (2001) "Template-Based Requirements Specification: A Case Study",

in Proceedings of 3rd International Conference on Enterprise Information

Systems, Setubal, Portugal, July 2001.

Dawson, L.L. and Silvas, A. (2000) "Requirements Specification for Electronic

Service Delivery Applications Using 'Lazy Dog' Templates", in Proceedings of

2nd International Conference on Enterprise Information Systems, Stafford, UK,

July 2000.

Dawson, L.L. and Swatman, P.A. (1999) "The use of object-oriented methods in

requirements engineering: a field study", in Proceedings of 20th International

Conference on Information Systems, Charlotte, USA, December 1999.

Dawson, L.L. and Swatman, P.A. (1999) "The role of object-oriented modelling

methods in requirements engineering", in Methodologies for Developing and

Managing Emerging Technology Based Information Systems, A.T. Wood-

Harper, N. Jayaratna and J.R.G. Wood (Eds), Springer-Verlag, London, UK,

1999.

Dawson, L.L. and Swatman, P.A. (1997) "Object-oriented requirements

engineering in practice", in Proceedings of 5th European Conference on

Information Systems, Cork, Ireland, 1997.

Dawson, L.L. and Swatman, P.A. (1996) "Investigating the efficacy of object-

oriented methods for requirements engineering", in Proceedings of First

Australian Workshop for Requirements Engineering, Melbourne, September,

1996.

,̂ ^

