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Errata

pi9 last para, sentence 2: "units" for "untis"
p 53 caption to Figure 2.2: "ring plane through the centroid" for "ring centroid"
p 65 Table 2.4, heading of first column: "Conformer" for "Ligands"
p 69 para 3, last sentence: "Two compounds from the Philips dataset were not used" for
"Two compounds were not used"
p 100 Figure 2.23: "N"for"O"
p 109 caption to Figure 2.30: "G and G"' for "D and D"'
p 114 para 1, sentence 1: "spiperone (see Figure 3.13, page 180)" for "spiperone"
p 118 last para, sentence 1: "Figure 2.14" for "Figurel4"
p 119 para 1, last sentence: "in the" for "the in"
p 174 para 1, sentence 1: "chemists" for "chemist"
p 174 last para, sentence 6: "too" for "to"
p 176 para 1, sentence 3: "as it contained" for "as contained"
p 193 last para, sentence 3: "quite" for "quiet"
p 211 last para, sentence 1: "show" for "shows"
p 221 reference 13: "2002, 28, 865-888" for "2001, in press"
p 228 para 1, sentence 1: "processes" for "process"
p 229 para 2, sentence 1: "for" for "of
p 243 after equation (4): Omit "model"
p 246 last para, sentence 1: "for the reduced set" for "reduced set"
p 255 para 1, sentence 2: "rotatable" for "rotational"
p 257 last para, last sentence: "2,3,5,6-tetrachloro" for "2,3,5,6-dichloro"
p 262 para after equation (51), last sentence: "borne" for "bourn"
p 272 para 2, sentence 4: "were" for "was"
p 282 para 1, sentence 3: "conformers" for "conformer"

Addendum

p 232 para 1, sentence 4: Insert new sentence after "excluded." "An example of a toxic
functionality excluded from the analysis was 1,2-phenylenediamine."
p 232 para 2, after sentence 4 ending "within the datasets." Insert: "The ambiguous
compounds identified in Table 1, p 240 were identified initially as outliers in the
generation of equations. All outliers, compounds with a pKa more than 1-2 log units
outside the value predicted by the derived equation, were checked against the literature
where available."
p288 para 3, after sentence 3 ending "of spiperone." Insert: "The apparent contradiction
between the volumes at the active sites of the D2 and D4 models is due to the different
orientation of the space surrounding the active site in the two receptors. In the D.>
receptor model this space is above and below the /?-fluorophenyl group of spiperone,
whereas in the D4 receptor model it is adjacent to the fluoro atom of that same group.
This difference has potential to be used in the design of molecules with specificity for
one or other of these receptor sub-types."
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ABSTRACT

The primary aim of this work has been to develop D* selective antipsychotics, using a

number of complementary computational techniques, specifically ligand and

structure-based design, database mining and bioavailability assessment.

In chapter 1 a review is presented of the development of antipsychotics and the various

hypotheses proposed to explain their efficacy in controlling schizophrenia. One

enduring hypothesis is the involvement of dopamine receptor subtypes, mainly D2, and

this thesis explores the selective involvement of D4 relative to D2 receptors. An

overview is then presented of modern computational chemistry techniques in drug

design and development.

In chapter 2 tricyclic and extended pharmacophores were developed from

conformational analysis of high affinity antipsychotics and D2 and D4 active

compounds. These pharmacophore models were then used as the basis for developing

predictive CoMFA models for generating potentially D4 selective ligands.

Chapter 3 involved building homology models of the D2 and D4 receptors based on

rhodopsin with clozapine, and alternatively, spiperone bound in the proposed active site.

As part of the model building process, mutagenesis experiments were examined to

assess the likely binding orientation of the ligands within the receptors. Models were

then built of D2 and D4 receptors using the proposed binding orientations and

conformations deduced from the pharmacophores of chapter 2. All constructed models

were analysed and grouped into families and assessed against mutagenesis data. The

best resultant models were then used as templates for the superimposition of the

CoMFA models generated in chapter 2. The additional information from these analyses

aided in the generation of ideas for D4 selective compounds.

In order to provide some assessment of bioavailability, a comprehensive set of QSPR

models were developed in chapter 4. Compounds with experimentally determined pKa

values were extracted from the PHYSPROP® database and filtered so as to remove
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compounds that were not drug-like. Semi-empirical frontier electron theory descriptors

were calculated for all compounds and linear regression models constructed correlating

the descriptors and experimentally determined pKa values. The benefits and limitations

of this technique were then discussed in relation to published techniques and predictive

pKa methods. The derived models were used to predict the pKa's of compounds

proposed in chapter 5.

Chapter 5 involved using the information gained from chapters 2 and 3 in combination

with database searching using the pharmacophores derived from chapter 2, to propose

several series of compounds. The CoMFA models derived in chapter 2 were used to

predict the affinities of proposed compounds, showing that they are D4 selective, and

their pKa values were predicted using the linear regression models developed in chapter

4. The pKa's of all compounds were predicted to be within a suitable range to enable

them to be unionised for crossing the blood brain barrier, yet appropriately ionised for

interaction at target receptors.
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1.1 SCHIZOPHRENIA

Many people do not have a clear understanding of schizophrenia, which is a physical

| illness, just like diabetes or asthma. Schizophrenia has typical signs and symptoms that

'I are recognisable in patients with this illness, and like all illnesses, the symptoms vary
I
I from person to person. The symptoms of schizophrenia were initially classified by Emil

I Krasplin and later expanded upon by Eugene Bleuler, whereby the term schizophrenia

^ (Gr: 'split mind') was introduced. From this work and from contributions from many

] other eminent psychiatrists the disease state of schizophrenia has been categorised into

1 five distinct subtypes1'1; catatonic, paranoid, disorganised, simple and residual
l | schizophrenia.
V,
\
1

tj Schizophrenia affects approximately 1% of the population with the onset of the illness

j occurring between the ages of 15 to 30 and persisting in many cases for the lifetime of

*i the patient . There appears to be no distinct cultural or socio-economic boundaries for

the prevalence of schizophrenia and both sexes are equally affected, although onset

,i usually occurs earlier in men. Genetic factors play some part in developing

j schizophrenia: an identical twin of a schizophrenic will have a 48% chance of

| developing schizophrenia131; a child of a schizophrenic will have a 13% chance and a

grandchild of a schizophrenic will have a 5% chance. The symptoms of the disease are

split into two areas, positive symptoms and negative symptoms, consistent with the

) hypothesised areas of dysfunction within the brain. Positive symptoms, which are the

most recognisable symptoms of schizophrenia, are mental experiences that most people

> don't have[4] and take the form of hallucinations, delusions, disorganised speech and

disorganised behaviour. Negative symptoms are behaviours that are absent from a

person's regular behaviour141. They are the most common symptoms of schizophrenia

and include a lack of motivation, social withdrawal, poverty of speech, difficulty

concentrating and difficulty in showing or feeling emotion. Cognitive impairments are

'•* also classified under the negative symptoms but many psychiatrists believe that they

\ should be classified separately'41. All these symptoms are governed be various

| pathways of the broin, which are discussed at further length in the next section

| 'Receptor Hypotheses'. The devastating toll this disease takes on the quality of life of

) an individual is reflected in the high rate of suicide amongst schizophrenics.
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Individuals with schizophrenia have a rate of suicide between 4 and 13%, and between

25 and 50% of all schizophrenics attempt suicide151 at some stage of their life.

Despite decades of research the causes of schizophrenia are still unknown. Although

there is a strong genetic component to the inheritance of schizophrenia other non-

genetic factors implicated include: season of birth, place of birth, influenza infection

during pregnancy and obstetrical complications161. Although the causes of

schizophrenia remain unknown it is thought that the symptoms are due to a disturbance

or imbalance of the subject's brain chemistry.

H

1
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1.1.1 Receptor Hypotheses

Neural transmission in the brain takes place through a variety of small molecules and

peptides, or neurotransmitters, which interact with specific receptor sites to elicit a

response. Any abnormalities in neurotransmitter levels and binding can cause various

neurological problems, including schizophrenia. All the major neurotransmitters in the

brain have been linked in some way with schizophrenia. However the major

neurotransmitters associated with schizophrenia appear to be dopamine and serotonin.

1.1.1.1 Dopamine (DA) and its Receptors

Dopamine (see Figure 1.1) is one of the major catecholamines in the central nervous

system (CNS). It is involved in the regulation of a variety of functions, including

locomotor activity, emotion and effect, and neuroendocrine secretion.

Figure 1.1. Dopamine



Chapter 1

WQ

—t neostriaturn \
(basal ganglia)

Dopaminerqic pathways

(1) mesocortical pathway
(2) mesolimbic pathway
(3) nigrostriatal pathway

THALAMUS J

Sensory Input

Figure 1.2. Brain Diagram with various neurotransmitter pathways, adapted from

Schmidt et al./7y

Pathways181

i '

I i

In relation to schizophrenia, the significant dopaminergic pathways in the brain (Figure

1.2) emanate from groups of cells in the midbrain (A9 and A10) and hypothalamus.

Dopaminergic neurons, designated A9, ascend to the neostriatum and this pathway is

called the nigrostriatal pathway (see (3) in Figure 1.2). Dopaminergic neurons,

designated A10, innervate mesolimbic regions (nucleus accumbens, olfactory tubercle,

septum), and are called the mesolimbic pathway (see (2) in Figure 1.2). In addition,

A10 dopaminergic neurons innervate mesocortical sites (cingulate, entorhinal,

prefrontal, and pyriform cortices), and this is refened to as the mesocortical pathway

(see (1) in Figure 1.2). In the hypothalamus, groups of dopaminergic cell bodies project

to the pituitary and modulate neuroendocrine regulation of prolactin secretion; this
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projection is referred to as the tuberoinfimdibular pathway. Another group of neurons,

A8, are also located in the midbrain and contribute to the dopaminergic innervation of

striatal and mesolimbic, but not mesocortical, sites. Together, the A8 and A9 neurons

$ make up 70% of brain dopamine and are involved in the modulation of motor

behaviour.

The mesolimbic and mesocortical pathways are thought to play a prominer.. role in

psychiatric illness. The mesolimbic pathway plays a role in emotions, memory and

reward systems and therefore hyperdopaminergic activity of this pathway is associated

4 with psychosis and the positive symptomatology of schizophrenia. The mesocortical
f
| pathway is involved in cognition, motivation, emotional control and reasoning, so that

| hypodopaminergic activity in this pathway leads to the negative symptomatology of

j schizophrenia, In the treatment of schizophrenia blockade of the mesolimbic pathway

1 with antipsychotic drugs ameliorates positive symptoms. However concomitant

I blockade of the nigrostriatal and tuberoinfundibular pathways results in movement
i
I disorders and troublesome neuroendocrine side-effects (breast enlargement, excessive
1
I lactation and menstrual irregularities), respectively.

i

Receptors191

r } There are five main subtypes of dopaminergic receptor having a relative abundance in
! 1 the order Di>D2>D3>D5>D4. They are all G protein-coupled receptors (GPCRs), in

! * which signal transduction involves guanosine tri-phosphate, and are grouped into two

I \ main families, Di-like and D2-like, with the major difference being the ability to either

! ? up-regulate or down-regulate cyclic adenosine mono-phosphate (cAMP).
• i

> i

$ The Di-like group stimulate cAMP formation and consist of the receptors Di and D5.

; I The Dt receptor is the most common dopamine receptor and is expressed in higher
1

f i levels than any other dopamine receptor. It is located in areas of dopaminergic control

£ such as the striatum, nucleus accumbens, limbic system and hypothalamus. The D5
5
] receptor is expressed at a much lower level and shows a distribution restricted to the

i^y hippocampus and hypothalamus.
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The D2-like group inhibit cAMP formation and consist of the receptors D2LONG,

D2SHORT> D3 and D4 with various splice subtypes. The D2 receptor is mainly found in

the striatum, nucleus accumbens and olfactory tubercle where it is co-expressed with y-

aminobutyric acid (GABA) neurons. It is also found in the substantia nigra pars

compacta, A9, and the ventral tegmental area, A10, and in the pituitary where it

regulates the production and secretion of prolactin. The expression pattern of the long

and short D2 receptor isoforms appears to vary over regions specified, with the longer

isoform predominating in the striatum and nucleus accumbens and the shorter isoform

predominating in the dopaminergic cell bodies and axons. This strongly suggests that

the D2SHORT isoform is a dopamine autoreceptor, whereas the D2L0NG isoform is likely

to be a postsynaptic receptor110]. The D3 receptor is specifically distributed in limbic
j
1 areas like the shell of the nucleus accumbens, olfactory tubercle and the islands of
1

4g Calleja, and hence has received much attention. The D4 receptor, although the least
j abundant, is also of considerable interest due to its distribution within the limbic and
'} cortical regions and relatively low abundance in the striatum.

* 1.1.1.2 Dopamine Hypothesis
1 i

•$ Carlson and Lindqvist first postulated in 1963 the hypothesis that the dopaminergic

system is overactive in schizophrenics. This was based on the finding that the

\ administration of antipsychotics, haloperidol and chlorpromazine, lead to an increase in

I dopamine metabolites in mouse brain'1 IJ. This hypothesis was further strengthened by
V J the fact that psychostimulants, such as amphetamine, increase dopaminergic

I transmission by increasing release of dopamine, inducing psychotic states resembling

A those observed in the positive symptoms of schizophrenia'121. This hypothesis was
r 1 further substantiated based on the findings of a correlation between the potency of

t [ antipsychotics as dopamine D2 antagonists and their clinically effective doses'1^.
I \

I I Based on these findings it had been proposed that the symptoms of schizophrenia are

' " due to hyperdopaminergic activity within the brain. However a few observations
1 i challenge the dopamine hypothesis of schizophrenia, namely the slow onset of effect of

antipsychotics and the fact that some patients do not respond to conventional

antipsychotic medication. In addition to this, negative symptoms are usually not
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improved but worsened by typical antipsychotic drugs, indicating that these symptoms

are associated with a deficit of dopaminergic function.

A revised dopamine hypothesis was based on findings by Pycock et al[l4\ where they

were able to show that lesions of rat prefrontal cortex dopamine-containing neurons

resulted in a dopamine deficiency in the mesocortical pathway and enhanced

dopaminergic activity in the mesolimbic pathway. This work led researchers to

hypothesise that schizophrenia may result from damage to the frontal lobe during

development, causing dopamine deficiencies in the mesocortical pathways and the

observation of negative symptoms. The negative feedback from this mesocortical

dopamine deficiency to the ventral tegmental area results in hyperdopaminergic activity

of the mesolimbic system and observation of the positive symptoms of schizophrenia.

1.1.1.3 Dopamine D4 Hypothesis

The dopamine D4 hypothesis had its origins in the early nineties with the discovery of

the D4 receptor1151. The two main driving forces of the D4 hypothesis were the pattern

of distribution of the D4 receptors within the brain and the D4 selectivity exhibited by

the atypical antipsychotic drug clozapine. In addition to this a significant elevation of

D4 receptor density in post-mortem schizophrenic brain tissue had been reported by

Seeman et al[l6]. However other groups have failed to reproduce these findings'171,

although recently Stefanis et a/1181 have shown a three fold increase in D4 receptor

mRNA in the frontal cortex of schizophrenics compared to controls.

As mentioned earlier, the D4 receptors are located mainly in the mesocortical and

mesolimbic regions of the brain and antagonism of these pathways was thought to give

rise to the amelioration of the symptoms of schizophrenia without causing significant

side-effects through blockade of the nigrostriatal pathway. This train of thought

resulted in many companies putting significant resources into the development of D4

selective antagonists119'32'. A number of these compounds, (L-745870, U-101958 and

fananserin) made it to phase II trials. However L-745870 and U-101958 were later

shown to be partial agonists at the D4 receptor1'31 and thus trials were discontinued.

Fananserin trials have been stopped as no statistical difference was seen between this
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compound and placebo1341. Obviously the two partial agonists, L-745870 and

U-101958, are not ideal compounds with which to test the D4 antagonism hypothesis.

Fananserin, although D4 selective with respect to D2, is also one order of magnitude

more 5HT2A selective over D4[35]. This 5HT2A selectivity over D4 also may not be ideal

to test the D4 hypothesis alone. Interestingly another 5HT2A and D4 selective

compound, belaperidone, has shown some promise[36] with phase II trials being

completed and results from phase III trials pending. The results from further trials of

antagonists selective only for D4 will serve to determine whether or not this artefact of

clozapine is responsible for its favourable side-effect profile.

1

1.1.1.4 Serotonin (5HT) and its Receptors

It is widely known that the serotonergic pathways contribute to the regulation of a

variety of psychological and biological functions. Mood, anxiety, arousal, attention,

aggression, suicidality, and cognition are among the former, and sleep-wake cycle,

appetite, pain sensation, and brain maturation are among the latter.

Figure 1.3. Serotonin

Pathways

The serotonergic pathways (see Figure 1.2) primarily arise from the Raphe nuclei,

which are divided into two main areas, the dorsal (DRN) and median (MRN) Raphe

nuclei. The DRN project mainly to the substantia nigra pars compacta (SNC) (A9), the

striatum and the nucleus accumbens, whilst the MRN project mainly to the SNC (A9),

ventral tegmental area (A10) and prefrontal cortex.
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m Receptors1371

!

•is

There are at least 14 separate types of 5HT receptors existing in seven major families

5HT1-7. They are all members of the GPCR superfamily, except 5HT3 which is an ion-

channel receptor belonging to the GABA receptor superfamily.

Receptors belonging to the 5HTi family are adenyiate cyclase-linked GPCRs, sharing

40% amino acid sequence homology. These receptors are characterised by a high

j affinity for serotonin and their ability to down regulate adenyiate cyclase.

5HT2 receptors are coupled to G proteins, linked to phospholipase C, and stimulate

phosphoinositol turnover. They share 60% amino acid sequence homology and a low

affinity for serotonin. 5HT2A is often referred to as the classic 5HT2 receptor and is

present in high concentration in the olfactory bulb, hippocampus, frontal cortex, and

piriform and entorhinal cortices. 5HT2» is located primarily in peripheral tissue such as

the stomach or lungs. 5HT2C, previously known as 5HTic, has been reclassified on the

basis of its amino acid sequence and second messenger characteristics. It is present in

the choroid plexus, anterior olfactory nucleus, piriform and entorhinal cortices, striatum,

and amygdala.

5HT3 receptors are present in low density in limbic and striatal structures. They

facilitate the release of serotonin, dopamine, and GABA, and they inhibit acetylcholine

and noradrenaline release.

Other 5HT GPCRs, linked to adenyiate cyclase, include 5HT4,5HT5A, 5HT5B, 5HT6 and

5HT7. The role of these receptors and their pharmacological characterisation is still

under investigation'38'401. However, clozapine was found to have a high affinity for both

5HT6 and 5HT7, thus suggesting a potential role for these receptors in the future

development of atypical antipsychotics.
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1.1.1.5 Serotonergic Hypothesis

The observation of an LSD-induced psychosis in healthy subjects was the first

indication of a potential relationship between serotonin function and schizophrenia.

LSD-induced psychosis was later refined to be a potential model for some aspects of

schizophrenia (paranoid delusions, hallucinations, positive symptoms), but not for other

aspects (such as disorganisation and negative symptoms/411. The serotonergic

hypothesis is also strengthened by the effectiveness of 5HT2 antagonists, such as

ritanserin, against the negative symptoms of schizophrenia1421. In addition a genetic

association has been observed between a polymorphism at position 102 in the coding

region of 5HT2A and an increased risk of schizophrenia1 31. Therefore the serotonergic

receptors, and in particular 5HT2A, still remain a prominent biological target

Serotonin / Dopamine interaction:

Evidence indicates that 5HT fibers innervate those DA pathways thought to play a role

in both positive (mesolimbic) and negative (mesocortical) symptoms, as well as

movement disorders (nigrostriatal). For example more recently developed

antipsychotics have a greater potency at the 5HT receptors than the D2 receptors, and

this approximately 10 fold greater potency combined with the effects on the DA and

5HT pathways has been proposed as the basis for their reduced side-effects1441.

Ziprasidone and sertindole are good examples of this new type of atypical antipsychotic.

1.1.1.6 Other Hypotheses

There are many other hypotheses for the basis of schizophrenia, a few of which are

discussed below.

Glutamate Hypothesis145'461

The glutamate hypothesis of schizophrenia has been developed based on the observation

that psychotic symptoms induced by phencyclidine (PCP) and relate;' ugents, which are

antagonists of the NMDA glutamate receptor, closely resemble both the positive and
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1 '** negative symptoms of schizophrenia. Many studies have reported a dysfunction of the

glutamatergic system in schizophrenia, which is hypothesised to alter dopaminergic

neurotransmission as follows:

• hyperdopaminergic activity may be caused by hypofunctioning NMDA receptors

which are present on DA-containing nerve terminals where they act as

heteroreceptors mediating an inhibitory regulation of DA-release.

• dysfunction of the glutamatergic neurons projecting to the striatum and limbic

regions may cause the dopaminergic hyperactivity seen in schizophrenic brains, see

Figure 1.2.

Acetylcholine Hypothesis

Early studies by several investigators attributed the psychotic symptoms of

schizophrenia to dopaminergic-cholinergic imbalances147"481. This is based on the

following observations: infusion of physostigmine into normal patients leads to

behaviour similar to the negative symptoms of schizophrenia1471. Anticholinergic agents

have occasionally been reported to be effective in treating negative symptoms of

schizophrenia, though it is not clear if this was merely due to a reduction in the

side-effects of antipsychotics[48]. Antipsychotic drugs with high anticholinergic activity

(e.g., clozapine, fluperlapine, and zotepine) have reduced side-effect profiles and also

reduce the magnitude of negative symptoms.

Norepinephrine (Noradenaline) Hypothesis

Upon discontinuation of antipsychotic therapy, the rate of relapse correlates well with

the activation of the noradrenergic system, and a worsening of psychotic symptoms[49].

Studies with various noradrenergic agonists and antagonists reveal several findings of

interest: [3-adrenoceptor antagonists such as propranolol are ineffective alone but are

clearly beneficial for akathisial50], oti-adrenoceptor antagonists are generally devoid of

antipsychotin activity as demonstrated by negative studies using prazosin, and

ccz-adrenoceptor agonists such as clonidine may have moderate therapeutic effects[51)

while 0C2-adrenoceptor antagonists such as yohimbine generally worsen psychotic
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symptoms in acutely ill schizophrenics. Overall, a unifying hypothesis for the

involvement of adrenoceptors in schizophrenia remains elusive.

y-Aminobutyric Acid (GABA) Hypothesis

Interestingly, activation of GABAA receptors by isoguvacine or muscimol can produce

psychosis in humans. The GABA hypothesis of schizophrenia postulates that decreased

GABA inhibition of DA neurotransmission is responsible for schizophrenic

symptomst52]. This is seen in Figure 1.2 where decreased GABAergic inhibition will

lead to increased glutamatergic activity and hence increased dopaminergic activity.

However, clinical trials of GABAergic medications have been disappointing with a

general lack of positive results and some reports indicating a worsening of psychotic

symptoms1531.

1.1.2 Antipsychotic Drugs

Antipsychotic drugs may be defined as medications that alleviate delusions,

hallucinations and some aspects of thought disorder that occur in a variety of illnesses,

most notably schizophrenia. The mechanism of action of these drugs has focused on

their antagor.Hic interaction with the central nervous system (CNS) neurotransmitter

dopamine"31; however recent work strongly implicates the differing dopamine subtypes

and various other neurotransmitters as further targets of action.

In animals, antipsychotics were found to reduce or inhibit spontaneous movement,

exploratory behaviour, operant conditioning behaviour, an<̂  conditioned avoidance

behaviour. Also, amphetamine-induced hyperactivity, apomorphine induced

aggression, and dopamine agonist-induced stereotypies were all blocked by

antipsychotic medications. As with patients, antipsychotic medications were observed

to cause indifference in animals and to induce cataleptic immobility while not affecting

spinal reflexes. Each one of these effects along with many others were then

investigated in an attempt to identify which behavioural patterns would be most specific

with respect to predicting clinical efficacy1541.
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The results of tests studying the ability of antipsychotics to block conditioned avoidance

in both rats and monkeys demonstrated a high correlation between the potencies of the

medication and antipsychotics in mant55"57]. Additionally, the ability of antipsychotic

drugs to reduce amphetamine induced stereotypies, hyperactivity and aggression in

animal models was also found to be specific for predicting antipsychotic efficacy in

humans'541. Thus, the expectation developed that new antipsychotic agents should block

conditioned avoidance, and reduce or inhibit amphetamine-induced stereotypies,

hyperactivity, or aggression in animals. Another interesting note is that originally

catalepsy was also used as an indication of clinical efficacy, and drugs which exhibited

low incidence of catalepsy were labelled as weak APD's, as is the case for melperone.

However, with the advent of clozapine in the 1970's and its favourable side-effect

profile, a further classification of atypical and typical APDs emerged.

'I
1

Typical APD by definition are those that are most likely to induce so-called

extrapyramidal side effects (EPS); such APDs are termed neuroleptics. By contrast, one

of the major properties of atypical APDs is that they don't produce EPS. Initially

atypical antipsychotics were classified as a group of APD's that would produce little or

no catalepsy in doses that are effective in animal models at predicting antipsychotic

activity. This later changed to their reduced liability to produce EPS at clinically

effective doses. However as the scope of reduced EPS covers many areas theoretically

emanating from many different receptor interactions, it is possible for APD's with very

different receptor profiles to be assigned as atypical. Many people believe this is flawed

because it is believed possible to find some common biological features underlying the

effects of so-called atypical and typical APDs[58].

Atypical antipsychotics may be further classified into type A or type B[59]. Type A

atypical drugs produce neither EPS nor elevations in prolactin levels; many of these

compounds have been found to be potent 5HT? receptor antagonists as well as D2

antagonists. Type B atypical drugs produce mild EPS (at doses above those required for

efficacy) and transient increases in serum prolactin. Clozapine and fluperlapine are

examples of type A atypicals, while remoxipride and amisulpride may be classified as

type B atypical antipsychotics.

4
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Thus the term 'atypical' has evolved to now mean those APDs that exhibit the following

clinical properties: a lessening of the positive and negative symptoms of schizophrenia;

alleviation of neurocognitive deficits; devoid of extra pyramidal side-effects (discussed

next); cause little or no tardive dyskinesia; and do not produce a sustained elevation of

prolactin levels.

j 1.1.2.1 Extra Pyramidal Side-effects (EPS)

§ EPS are one major class of side effects of antipsychotic drugs and their metabolites and

I come in many forms, due to interactions with a range of receptors in the brain and other

* parts of the body. EPS include:

\ • Parkinsonism is the general term for Parkinson's disease-like symptoms which

I include general slowness of movement, rigidity, unsteadiness and tremor.

\ Reduction of the dose and use of anticholinergics reverse the symptoms.

3 • Dystonia consists of irregular spasms of facial, neck, and trunk muscles and

; sustained abnormal postures. These symptoms can occur early in the treatment and

\ they respond to anticholinergics.

• Akathisia is experienced by the patient as an irresistible urge to move within

minutes from any sitting, lying, or standing position. Akathisia is subjectively very

distressing and responds satisfactorily to dose reduction and propranolol.

, • Tardive Dyskinesia consists of oro-facio-lingual daytime movements, which may be

\ associated with larger movements of trunk and extremities. These can be induced

by long-term treatment with antipsychotics, but dyskinesia is also a feature of

chronic psychosis by itself. Dose adjustment can prevent or slowly reverse the

dyskinesia.

• Neuroleptic malignant syndrome is a rare and potentially fatal adverse affect with

symptoms of hyperthermia, rigidity, tachycardia, hypertension, stupor, and

leukocytosis. Antipsychotic treatment should be stopped and maximal supportive

care instituted.
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1.1.2.2 Other Side-effects

Many other side-effects have been reported to occur to varying degrees for different

APDs and these side-effects undoubtably result from the ability of these drugs to bind to

a whole range of receptors. Examples of these many side-effects are weight gain, sexual

dysfunction, hypersalivation, insomnia and tachycardia, to mention a few. Two of the

more serious side-effects, which have led to drugs being withdrawn from the market,

are prolongation of the QT interval, causing potentially fatal ventricular arrhythmia, and

agranulocytosis. Agranulocytosis is a drug induced decrease in white blood cell count,

stringent weekly monitoring of which is necessary to avoid the possibility of lethal

infection.

1.1.2.3 Chemical Classification of Antipsychotic Drugs

Antipsychotic drugs have long been classified according to their chemical structure.

This was originally devised to determine if certain structural features were related to

particular patterns of clinical efficacy or side effects'601.

Phenothiazines

Phenothiazines were the first major class of antipsychotics to be developed, with

Chlorprornazine (see Figure 1.4) introduced in France in 1951, still widely in use.

There are three main groups of this class, (1) aliphatics, (2) piperidines and (3)

piperazines, based on differences in the composition of the side chain linked to the

nitrogen atom in the phenothiazine tricyclic nucleus. For clinical activity, a rule of

thumb suggests there must be three carbon atoms between the nitrogen in the central

ring and the tertiary amine, and that substitution of an electron withdrawing substituent

at Ri increases the potency. Thioxanthenes are closely related to the phenothiazines,

differing by the substitution of the nitrogen by carbon in the central ring, resulting in

slightly less potency.
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Figure 1.4. Phcnothiazine substructure and chlorpromazine.

Butyrophenones

The general structure of a butyrophenone includes a tertiary amine containing at least

one aromatic ring linked to the amine nitrogen by a keto group attached to an

intermediate chain of three carbons. Substitution of an electron withdrawing substituent

at Ri increases the potency, and reduction of the keto group to an alcohol decreases

potency. Since its introduction into the United States in 1967, haloperidol (see Figure

1.5) has remained one of the most widely used front line therapies for schizophrenia. It

is classed as a typical APD since long term use results in EPS.

Diphenylbutylpiperidines (for example fluspirilenc) are closely related to

butyrophenones except that the keto group is replaced by another substituted phenyl

ring.

O

Rf v F
Figure 1.5. Butyrophenone substructure and haloperidol.

Benzamides

Benzamides (Figure 1.6) are also closely related to butyrophenones with an aromatic

ring, in most cases extensively substituted, linked to the tertiary amine nitrogen through

an amide group attached to a chain of two carbons. Some of this series of compounds

are D2 selective (remoxipride), and cause little EPS at clinically effective doses(6I].

1
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Figure 1.6. Benzamide substructure and remoxipride.

Dibenzepines

The dibenzepines have the general structure shown in Figure 1.7 in which Ri is carbon,

oxygen, sulfur or nitrogen, and invariably the side chain is a piperazine with a tertiary

distal nitrogen. Examples of these compounds are clozapine, Ri = N; loxapine, Ri = O

and clothiapine, Ri = S. Substitution of an electron withdrawing substituent at R2

increases the potency of the antipsychotic.

Figure 1.7. Dibenzepine substructure, clozapine (centre) and olanzapine (right).

The major member of this class, the dibenzodiazepine clozapine (see Figure 1.7), was

first introduced in the early 1970's but was subsequently withdrawn due to a high

incidence of agranulocytosis. It has recently been reintroduced as techniques for

monitoring white blood cell count have become possible. It is the most effective APD

for treatment-resistant or refractory schizophrenics1621, that is patients who do not

satisfactorily respond to first line treatment with typical APDs such as haloperidol.

Extensions of this class include the thienobenzodiazepines, like olanzapine (see Figure

1.7), which is a type B atypical as it induces dose-dependent EPS.
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Benzisoxazole

These compounds are a recent type of antipsychotic to be brought onto the market with

some success. They are similar to the piperidine subclass of phenothiazines in some

respects, with an aromatic ring linked to the tertiary nitrogen incorporated into a

piperidine ring (see Figure 1.8). Substitution of an electron withdrawing substituent at

Ri increases the potency of the antipsychotic. Although this series are proposed to be

atypical APDs, studies of risperidone (Figure 1.8) have shown that EPS is linearly

related to daily doset63].

Replacement of the oxygen in the indole ring with sulphur results in compounds called

benzisothiazoles, e.g. ziprasidone.

O

Figure 1.8. Benzisoxazole substructure and risperidone

Miscellaneous

Many indole derivatives have been synthesised and tested for antipsychotic activity, the

reduced indole molindone (see Figure 1.9) being one of the early more successful

compounds from this series. A number of newer types of antipsychotics are emerging

with differing substructural untis, the most significant of these being the APD

aripiprazole. Aripiprazole (Figure 1.9) has been shown to have high postsynaptic

dopaminergic antagonist activity and high dopaminergic autoreceptor agonist activity'641

and has just been given FDA approval in the United States for the treatment of

schizophrenia.
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Figure 1.9. Molindone (left) and Aripiprazole (right).
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1.1.2.4 Structure-Activity Relationships (SARs) of Antipsychotic Drugs

i

M

I

i

i

With many of the early series of APDs, which were analogues of intensively

investigated parent molecules, SARs were readily devised from the various potency

measures within the series. However, with the multitude of novel substructure! units as

the basis for new APDs, together with binding data at receptor subtypes, SAR analysis

has become more difficult. There have been many attempts to rationalise APD SAR[65],

with animal models being used to predict clinical effects of APDs as far back as 1966f66"
68]. In 1974 Gschwendl69] published an excellent review on the development of

tricyclic, butyrophenone, diarylbutylamine, and reserpine-like neuroleptic drugs. There

have also been many excellent SARs on the tricyclic substructure] compounds^70"721, in

one of which Schmutzl73] derives correlations between the Hansch constant n and the

relative partition coefficients; and the Hammett parameter (am) with both pKa, and

apomorphine antagonism. Rognan et al.[14] used optically active benzamides to map the

binding site of the D2 receptor and determine key features for this series of compounds.

One of the most recent SAR on antipsychotics and related compounds is the excellent

paper by Bostrom et al[15] which incorporates the tricyclics, benzamides and a number

of other different substructural units into a D4 pharmacophore. Surprisingly this D4

pharmacophore established by Bostrom et al[15] has many similarities to the general

antipsychotics model published by Gschwend[691, which serves to highlight how modern

computational techniques are now making pharmacophore mapping possible where only

rudimentary SAR could once be derived. This effect of technology is not only seen in

pharmacophore mapping but is also evident in all aspects of drug design from

crystallography to biotechnology and beyond.

m
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1.2 DRUG DESIGN

The process of drug design and development has shown a paradigm shift since the days

when sole reliance was placed on bench chemists making as many analogues as possible

for both developing and testing a theoretical model. This change has mainly been

driven by the need to ensure that as many lead compounds are generated in the shortest

possible time. Economic rationalisation in combination with advances in computational

technology have seen the field of computational chemistry become an essential part of

the drug design and discovery process. There are a number of ways to go about the

drug design and discovery process, with the most common methods being ligand-based

and structure-based design. Adjunct to these compound design methods are ADME/T

(adsorption, distribution, metabolism, excretion and toxicity) prediction and database

mining.

1.2.1 Ligand-Based Design

In traditional ligand-based design, a pharmacophore is constructed from a set of ligands,

the ligands are then superimposed and some type of statistical analysis is performed to

obtain a predictive model. The first step in construction of the pharmacophore model is

selection of a set of high affinity ligands with structural diversity and low flexibility.

Next, functional groups considered essential for biological activity (pharmacophoric

elements) are identified. The most important step is identification of the putative

receptor-bound conformation, usually done through a combination of manual and

automated conformational analysis. Once this is accomplished the ligands are

superimposed so that pharmacophoric elements overlap and a common template of key

binding groups, a pharmacophore model, is identified.

The original ligand-based design method for proposing a pharmacophore, the active

analogue approach'761 (AAA) was developed by Marshall. The global minimum energy

conformation of the tightest binding ligand was the proposed receptor-bound

conformation and used as a template for subsequent superimpositions and volume

comparisons. The pharmacophoric elements are the atoms of interest, for example a

benzene ring (hydrophobic region) and oxygen or nitrogen atoms (H-bond donors or
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11 acceptors). The AAA for compound alignment was later modified to alignment of

hypothetical points of interaction1771. Here phannacophoric elements are not only atoms

but also points of likely interaction with a hypothetical receptor. For example

commonly used distances used to model points of interaction are 2.8 angstrom along the

vector of the proposed H-bond donor or acceptor, and 3.5 angstrom above and below

the plane of the aromatic rings (indicating a n-n stacking arrangement). These

traditional methods of alignment are rapidly being replaced by more novel methods of

automated alignment. One of these methods is the field fit[n] method implemented in

the Sybyl Tripos1791 software, in which compounds are fitted into the steric and

electrostatic fields previously calculated from the tightest binding ligand or ligands.

This method has been used in a number of papers'80*831 with noticeable improvements in

the predictive abilities of these models. All these methods use manual conformational

analysis and only differ in the methods of compound alignment. Many other methods

for compound alignment that have been devised by several groups are covered in an

excellent review by Lemmen and Lengauer1841.

There are a number of methods of automated conformational analysis. One of these is

the alignment tool available within the Sybyl software suite, called GASP'85'861 (genetic

algorithm similarity program). GASP uses a genetic algorithm to explore

conformational space and discover the correspondence between functional groups in

different molecules and the alignment of these groups in a common geometry. It is able

to automatically identify rotatable bonds and pharmacophore features such as rings and

potential hydrogen-bonding sites. Results have shown that GASP is able to predict

pharmacophores similar to those derived by conventional conformational analysis'871.

Another popular automated conformational analysis method is Catalyst, contained

within the Insightll suite188'. Catalyst develops 3D pharmacophore models from a

collection of molecules possessing a range of diversity in both structures and activities.

These pharmacophores can be used to retrieve structures from 3D databases fitting the

hypotheses, or as models to predict the activities of novel compounds. Apex-3D,

available as an add-on to Insightll'881 also uses an automated conformational analysis

method for identification of biophores. These biophores, which represent the set of 3D

complementary binding sites present in the macromolecule, can be used for building

qualitative activity prediction rules and for creating search queries to identify new leads

in a 3D-database. Identified biophores can be used as starting points for constructing
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3D-QSAR models when good quantitative data are available. Another alignment tool

that explores conformational space is SEAL189'901 (steric and electrostatic alignment),

which optimises the overlap of molecular volumes as well as matching groups, assigned

on criteria such as hydrophobic interaction or hydrogen bond acceptor/donor capacity.

A very recent publication by Jewell et al.m] uses a modified version of a field-based

similarity searching (FBSS) method, originally developed for 3D searching in chemical

structure databases, to align compounds. The FBSS method calculates molecular field

values in a 3D grid surrounding compounds, which are then fed through a genetic

algorithm (GA) to maximise their similarity index and thus align the compounds. The

method allows for conformational flexibility by encoding torsional rotationst92] although

this may result in 'highly strained structures'. The authors have investigated inclusion of

an energy calculation in the GA's fitness function to account for strained structures, with

no great benefit, and are currently investigating other means of sampling conformational

space such as using multiple conformers. Pitman et ol.[93] also used the field-based

similarity search method. The FBSS method is implemented in a program called

FLASHFLOOD that is able to deal with the alignment of flexible compounds by

representing them in terms of fragments and torsional angles. An assembly algorithm is

used to reconstruct the compound from fragments. However one major difference from

the FBSS method presented by Jewell et al.m is that FLASHFLOOD is not confined to

a particular field, but enables derivation of a continuum of simple descriptive through to

quantum mechanical fields for use in searches. The group of Labute and Williams1941

have also devised a method that searches all conformational space for the compounds in

question. They use a Mont? Carlo related method to assign random dihedral angles to

all rotatable bonds which are then minimised and scored, hence making it suitable only

for small molecules.

Other novel methods of non-manual ligand alignment that have proved successful for

particular situations involve using the ligand alignment obtained from docking

simulations as the basis for a comparative field analysis. Sippl[95jl has shown that

improved predictive ability of their model was obtained using a docking alignment

rather than traditional ligand-based alignment methods. Predetermined alignment196'971

is also on the increase, due to the emergence of more and more crystal structures of

proteins with ligands bound in the active site. These give us a much better idea of the
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binding conformation of a drug, though of course there may be more than one way for a

ligand to bind into a particular active site.

Once an alignment has been generated there are many ways in which subsequent

quantitative structure-activity relationships (QSAR) can be derived. Originally QSAR

was based on using standard statistical analyses1981 in conjunction with multiple linear

regression (MLR) using physicochemical descriptors'"3. Later developments in this

field applied advanced statistical methods of analysis, with the partial least squares

(PLS)'100'1011 method gaining recognition in the early eighties.

In the late eighties one of the most significant methods developed for 3D-QSAR was

introduced, comparative molecular field analysis (CoMFA)1102]. Here compounds are

placed into a 3D grid box in which electrostatic and steric fields are calculated at each

point of the grid resulting from different interactions between a variety of probes and

the compounds under study. The fields are tabulated and the result' data are analysed

using principle component analysis (PCA) and PLS to give the tinal predictive model.

Although, in principle, CoMFA sounds simple enough to implement there are a number

of pitfalls that could lead to an incorrect model and conclusions, which may be avoided

by heeding the sound advice given in references'103"1051. CoMFA fields have also been

supplemented by additional fields, such as the hydrophobic interactions (HINT)'1061

field, which can give further insights into receptor interactions. Another later addition

to the PLS 3D-QSAR field was comparative molecular similarity indices analysis

(CoMSIA)'1071. The main differences between CoMFA and CoMSIA are that CoMSIA

maps highlight those regions within the grid box occupied by ligand skeleta requiring a

particular physicochemical property important for activity. In addition to this, CoMSIA

has a number of additional fields: hydrogen bond acceptor, hydrogen bond donor and

hydrophobic fields. The GRID'1081 program developed in the mid eighties by Goodford

also uses probes to find information about interaction capabilities. In GRID there are a

large number of probes available for the user to investigate a structure. For example a

protein that interacts with DNA could be analysed with a phosphate probe to determine

possible sites where DNA could bind. In the early stages CoMFA-like studies could not

be performed from GRID data as no simple PLS algorithm for generating predictive

models had been developed. This was overcome with the introduction of generating

optimal linear PLS estimations (GOLPE)'1091. GOLPE was originally developed in the

early nineties to enhance the quality of PLS models. GOLPE achieved this by using
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fractional factorial design (FFD) to select combinations of variables for which a PLS

model was derived. Only variables that significantly affected the predictive ability of a

model were kept. GOLPE was designed to work with CoMFA or GRID-based fields

and generate predictive models. Many papers have used GOLPE195'1101111, which has

been further improved using an algorithm called smart region definition (SRD)[111].

SRD groups descriptors into regions of neighbouring variables bearing the same

chemical and statistical information, so that the predictive ability of the model is

increased by reducing multicolinearity in 3D-QSAR.

One of the more recent novel 3D-QSAR techniques is GRID-independent descriptors

(GRIND)[112]. GRIND generates novel molecular descriptors from interaction fields

computed from programs such as GRID which are then reduced and encoded into

variables. The variables can be displayed as "correlograms", and used in chemometric

analysis. GRIND provides a fast and simple way of obtaining structure-activity

relationships without the need for compound alignment. A limitation is that the result is

still determined by the conformation of the structure. Another alignment independent

method is the hologram quantitative structure-activity relationships (HQSAR)11131

method developed by Tripos. Here molecules are described in 3D encoded fragments

(fingerprints) that contain explicit stereochemical information. These descriptors are

then used to build quantitative models that relate a biological activity or property to

chemical structure. The model generated shows which fragments make positive or

negative contributions to the model by appropriate colour coding. This has the benefit

that it can be applied to very large datasets of compounds, but the resultant models are

not as informative as those produced by CoMFA or CoMSIA. Alternatively HQSAR

can be used for other purposes such as testing combinatorial libraries for suitability by

performing virtual high throughput screening (vHTS).

Recently pharmacophore fingerprints have been developed and used in the construction

of molecular descriptors for similarity and diversity applications such as virtual

screening, library design1'14] and QSAR[115]. The reader is referred to the

comprehensive review by Mason et al.[U(>] for further insights.

Apart from the traditional linear methods of QSAR analysis, various non-linear methods

have emerged. With the advent of artificial intelligence methods, including neural
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network (non-linear) techniques, applied to statistical analysis it is possible to predict

the activity of new CNS compounds in cases where a simple linear relationship does not

exist. Some of these non-linear methods are forward-feed back-propagation, Bayesian,

Kohonen self organising maps (SOM) and Hopfield recurrent neural networks (NN),

with the most popular being the simple forward-feed NN.

Artificial neural networks (ANNs) were first developed in the 1940's but did not get

much attention until the 1980's when Hopfield addressed some of the initial problems

associated with their use[117]. Even then, when forward-feed back-propagation neural

networks (BPNN) were first ir.sd for quantitative structure activity relationship (QSAR)

purposes by Aoyama et a/.'1181, many problems were still evident. The main problems

associated with ANN use were network architecture, problems of chance effects'1191 and

overfitting and overtraining. Various groups have devised clever methods for the

elimination of these problems which involve techniques from clustering to genetic

algorithms'120'1211, to separating data into training, validation and test sets'1221. These

techniques and further extensions are well covered in greater detail with appropriate

references in the review by Manallack and Livingstone ].

m
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In the last few years since that review we have seen a number of new developments

dealing with these problems. The group of Burden et al.[U4] have coupled automatic

relevance determination (ARD) of network weights with their Bayesian regularised

artificial NN (BRANN)'1251. ARD, first developed in the mid 9O's'126ll27], effectively

turns off irrelevant variables by reducing their weights thus allowing all variables to be

included in the analysis without ill effect. This method has been applied to compounds

active at the benzodiazepine and muscarinic receptors as well as to analysis of some

toxicological data[124]. Tetko et «/.ll28) have developed a new QSAR method utilising

ANNs and CoMFA, called the volume learning algorithm (VLA). The VLA method

uses a Kohonen SOM to define cluster zones in space around the molecule, then the

mean values of these clusters are used to train a BPNN. This has the benefit of reducing

the number of input parameters whilst preserving the spatial and structural information

of the molecule. There are a number of advantages of this approach in that non-linear

relationships can be established and the predictive abilities of these models are higher as

there are fewer problems associated with multicolinearity of input variables. The



Chapter 1 27

method has been successfully applied to a series of cannabinoid CBj receptor
[128]

agonists

1.2.2 Structure-Based Design

The second main method of drug design and discovery mentioned earlier is

structure-based design. In structure based design the proposed receptor binding site

(biophore) is used for docking experiments or for building up compounds in a de novo

approach. The proposed receptor binding site can be obtained from nuclear magnetic

resonance (NMR), or X-ray analysis of the protein, or built using homology modelling

techniques based on crystal structures of structurally related proteins.

Both X-ray diffraction and NMR spectroscopy are well established methods of protein

structure prediction. There are currently 18,282 and 3,290 structures solved using X-ray

diffraction and NMR spectroscopy, respectively, deposited in the Protein Data Bank[I29]

(as of 1st July 2003). Although X-ray diffraction and NMR spectroscopy have made

much progress in the field of protein structure determination, large classes of proteins

still cannot be investigated with these methods. Either the proteins cannot be

crystallised to a sufficient crystal size for X-ray diffraction, or they cannot be brought

into a sufficiently concentrated solution for NMR spectroscopy. Therefore models are

constructed in silico based on known crystal structures of homologous proteins; this

process is termed homology modelling. This was first done on an insulin-like growth

factor in 197811301. Nowadays there are a number of programs capable of automatically

producing homology models of proteins. Once a protein with a proposed receptor

binding site is obtained it can be used for de novo building of ligands or as the basis for

docking experiments.

There are two main approaches to de novo drug design, the "inside out" method and the

"outside in" method. The "inside out" method11311 works by placing a fragment inside

the receptor cavity and then the ligand is built up from this fragment to interact with the

maximum number of possible interaction sites within the receptor. The "outside in"

method113I] works in the opposite manner, where interacting fragments are placed onto

the interaction sites within the receptor and the ligand is constructed by joining these
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fragments together inside the receptor cavity. The CONCERTS1132] program by

Pearlman and Murcko and the LUDIfl33J program by Bohm are good examples of this

type of de novo design.

Probably the most popular structure based design method is that of docking. Docking

works by taking the ligand and placing or building it inside the receptor cavity and then

applying some scoring function to asses the quality of the fit. There are a number of

programs that have been constructed to perform such tasks: DOCK11341, FlexX11351 and

Autodocktl36] are but a few. These programs can give variable results, with different

programs and scoring functions being best suited to differing situations; the reader is

referred to the comprehensive reviews by Bissantz et al[xyi] and Stahl et a/[138J for

details.

Bissantz et a/[139] have also published an excellent paper on the limitations and methods

[ for docking compounds into GPCRs built using homology modelling techniques. This

paper discusses the limitations of docking agonists into GPCR homology models

derived from the inactive state of rhodopsin, which is thought to be closer to an

"antagonist bound" state. Results from the docking of antagonists into Bissantz's GPCR

models indicated that the inactive state of rhodopsin is a suitable basis for these models.

1.2.2.1 GPCRs

GPCRs constitute the largest and most diverse group of transmembrane proteins

involved in signal transduction. They are activated by a wide range of extracellular

ligands including small biogenic amines, large protein hormones, neuropeptides and

chemokines. GPCRs are also fundamental receptors for the sensory perception of light,

taste and smell. They all share a common characteristic, the seven distinct hydrophobic

regions, each of which is 20 to 30 amino acids in length within their sequence1140].

These hydrophobic regions form the seven transmembrane domains of these receptors,

hence the alternative name for this family, 7TM receptors.

GPCRs are a primary agent by which cells sense and respond to their external

environment. Information from an extracellularly occurring receptor-ligand recognition
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event is transferred through conformational rearrangements within the receptor protein

to the intracellular compartment. The ligand induced activation of the receptor, leads to

an association of an intracellular G-protein that in turn triggers the catalysis of GDP-

GTP exchange on the G-protein. This leads to a multistep cascade of signal

transduction events. This multistep cascade involving intracellular effectors and

subsequent generation of second messengers is specific to the ligand type and the

distinct member of the GPCR family involved in the process. Typically G-proteins

either stimulate or inhibit the production of second messengers. All of this eventually

leads to the physiological response of the cell to the stimulus. The enormous diversity

of receptors, G-proteins and effectors, together with the widespread distribution of

receptors across many tissues, reflects the important role that this superfamily plays in

regulating physiological and pathophysiological processes.

I
1.2.3 Database Mining

Database Mining is a technique that is usually used in combination with ligand-based

and structure-based design. Database mining can be performed in a variety of ways.

Pharmacophores'87"1411, shape filters'1421 and/or physicochemical characteristics'1431 are

but a few ways to reduce the number of compounds being analysed or to aid in the

identification of new substructures for drug design. Typically in most pharmaceutical

docking analyses the compounds to be docked are filtered through Lipinski's 'rule of

five1'1431 to remove compounds with poor drug-like characteristics.

hi
V

1.2.4 ADME/T Prediction

1

In silico prediction of a compound's physicochemical characteristics plays an important

role in the drug discovery process, as this enables compounds with poor ADME/T

characteristics to be removed, saving valuable time and money. Poor ADME/T

characteristics are one of the major reason for the high attrition rates of compounds in

development, where more than 90% of all compounds fail"441.

There are a number of ways of going about in silico ADME/T prediction, with probably

the simplest way being to derive a quantitative structure property relationship (QSPR)
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between the property of interest and a set of descriptors. Semi-empirical[145"148] or ab

/m'f/o'149"1 21 descriptors are typically used, but fragment based approaches11531 and a

variety of other approaches11541 are possible. As with QSAR analyses, linear

regression1147'1481, non-linear regression1150'1541, genetic algorithms and classification

methods can be used to derive the relationship.

Some of the typical properties that are calculated are solubility, pKa, logP, blood brain

barrier (BBB) penetration and Caco-2 cell permeability. These calculated properties are

usually indicative of various aspects of a compound including:

• calculated Caco-2 cell permeability is useful as an estimation of oral intestinal drug

absorption11551

• predicted BBB penetration indicates likely CNS activity

• calculated relative solubility suggests the type of formulation necessary for optimum

adsorption and distribution

• calculated pKa of a compound will determine its percentage protonation at a

particular pH which may in turn reflect its ability to diffuse across a membrane

There is an extensive suite of off-the-shelf ADME prediction tools with pre-derived

QSPR relationships in various modules from Tripos, Accelrys and Schrodinger, to name

a few. There are also toxicological and metabolite databases^156'1571 able to predict

adverse effects and metabolites of a compound. The reader is referred to the recent

review by Butina et a/[158] for additional information on in silico ADME prediction.
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The primary aim of this work has been to develop D4 selective antipsychotics, using a

number of differing complementary computational techniques. The background and

methodologies are fully described in the following chapters of this thesis, with a brief

introductory summary of the studies performed given below.

1.3.1 Ligand-Based Design (Chapter 2)

In this chapter a tricyclic pharmacophore was developed from conformational analysis

of high affinity tricyclic antipsychotics and D2 and D4 active compounds. This

pharmacophore was used as the initial basis for the construction of CoMFA models.

Differing charges, charge states, alignments, and alignments within the CoMFA grid

were then considered in the generation of optimum models. Analysis of the tricyclic

CoMFA model aided in the generation of ideas for the construction of D4 selective

tricyclic ligands. An extended pharmacophore was then developed from conformational

analysis of high-affinity extended antipsychotics and D? and D4 active compounds.

This extended pharmacophore was then compared to a pharmacophore generated

automatically from GASP[85'861. The two pharmacophores, tricyclic and extended, were

then combined and refined using a published model from Bostrom et alP5]. This

combined pharmacophore model was then used as the basis for further CoMFA models.

The optimum alignment method, charges and charged state, as determined earlier, were

used in the generation of the final CoMFA models. Analysis of these CoMFA models

aided in the generation of ideas for differing D4 selective compounds.

7.3.2 Structure-Based Design (Chapter 3)

Pail A of chapter 3 involved the generation of homology models of the dopamine D2

receptor using Modeller1159'1001. Initially threader database files of bacteriorhodopsin'1611

and rhodopsin[162] were created to perform a threaded alignment of the D2 sequence onto

these sequences. The aligned sequences were then checked against previous

alignments11631 and against highly conserved residues within all GPCRs[l64]. Homology

models of dopamine D2 were then built with and without dopamine bound in the active
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site. The bound and unbound bacteriorhodopsin-based models were then compared

against each other and against the published D2 model based on bacteriorhodopsin,

1I15I163]. Rhodopsin-based D2 models were compared to one another and to the

bacteriorhodopsin-based D2 models. All models were analysed with respect to proline

kinks, solvent accessible residues, proposed sodium binding sites, proposed ligand

binding sites and overall stereochemical quality.

Part B of chapter 3 involved building models of the D2 and D4 receptors based on

rhodopsin with clozapine and spiperone bound in the proposed active site. Before these

models were built, mutagenesis experiments'165'1771 were examined to assess the likely

binding orientation of the ligands within the receptors. Models were then built of the D2

and D4 receptors using these proposed binding orientations and conformations deduced

from the pharmacophores of chapter 2. All constructed models were analysed and

grouped into families and assessed against mutagenesis data. The best resultant models

were then used as templates for the superimposition of the CoMFA models generated in

chapter 2. The additional information from these analyses aided in the generation of

ideas for D4 selective compounds.

1.3.3 pKa Prediction (Chapter 4)

Compounds with experimentally determined pKa values were extracted from the

PHYSPROP® database'1781 and filtered so as to remove compounds that were not

drug-like. Semi-empirical frontier electron theory descriptors11791 were then calculated

for all of the compounds. Linear regression models were then constructed between the

descriptors and their experimentally determined pKa values. The benefits and

limitations of this technique were then discussed in relation to a number of other

papers1145'180'1811 and techniques'1821 on predictive pKa methods. The predictive models

derived were used to predict the pKa's of compounds proposed in chapter 5.

1.3.4 Compound Design (Chapter 5)

Using the information gained from chapters 2 and 3 in combination with database

searching using the pharmacophores derived from chapter 2, a number of series of



Chapter 1 33

compounds were proposed. The CoMFA models derived in chapter 2 were used to

predict the affinities of proposed compounds, and the pKa values were predicted using

the linear regression models developed in chapter 4.
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Chapter 2

Ligand-Based Design
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2.1 TRICYCLIC MODEL INTRODUCTION

50

Many structural classes of antipsychotics have been developed and prominent among

these classes is the dibenzepine type, in which the central seven membered ring is

substituted with oxygen, nitrogen, sulphur or carbon111. A significant number of these

dibenzepines also contain a piperidine or piperazine ring attached to the seven

membered ring. One recently re-introduced atypical antipsychotic drug of the

dibenzepine type, clozapine (Figure 2.1), has shown the most promise, particularly in

treatment-resistant schizophrenia12', due to its low incidence of EPS[3]. The exact basis

for the activity of clozapine is unknown, but the fact that it acts at a range of CNS

receptors and their subtypes (Hi, 5HT2A, 5HTic, cxi, Mi, D2, D4,)[4], suggests a complex

blend of interactions is required for its atypical antipsychotic drug efficacy. One

consequence of clozapine's affinity to such a large variety of receptors is the production

of several, clinically limiting side effects such as sedation (due to potent H|

antagonism), hypersalivation (due to Mi antagonism) and tachycardia151. It is thought

that clozapine's atypical antipsychotic profile is due to its relatively low affinity for the

DT receptors and high affinity for D4 and 5HT2A receptors. Meltzer et a/.[61 proposed

that atypicality arises when an APD's 5HT2A activity is over ten fold greater than that of

D2. It has also been proposed that clozapine's preference for D4 receptors and their

location mainly in the mesolimbic regions171 gives rise to its atypicality, as there is less

blockade of the nigrostriatal pathway which is associated with movement disorders. In

an effort to try and better understand these complex interactions, we have focused on

the dopaminergic receptors most often implicated in the aetiology of this disease: the

dopaminergic receptors D2 and D4. The serotonergic receptor 5HT2A is also

investigated in relation to the tricyclic dibenzepine compounds.
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2.2 METHOD DEVELOPMENT

2.2.1 Tricyclic Pharmacophore

rni

The pharmacophore model was based on (R)- and (S)-octoclothepin1 \ as representative

molecules of the dibenzepine type, and tefludazine181 (Figure 2.1). These molecules

have high potency at dopaminergic and serotonergic receptors and their differing

stereoselective potencies have potential in establishing a binding pattern191. The

octoclothepin isomers also provide a similar overall framework to clozapine, to which

clozapine should presumably conform closely in its binding at the D2, D4 and 5HT2A

receptors. The structurally dissimilar tefludazine, whose potency resides in just one

diastereomer (1R,3S), provides a flexible template for reducing the wide range of

pharmacophore models produced by the octoclothepin conformers.

D

Figure 2.1. A clozapine, B (lR,3S)-tefludazine, C (R)-octoclothepin, D (S)-

octoclothepin.
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2.2.1.1 Conformational Analysis

Structures for (R)- and (S)-octoclothepin[101 enantiomers were obtained from the

Cambridge Crystallographic Database'11] (CCDC). Conformational analysis of the

central tricyclic ring was simulated with a seven-membered ring using the subroutine

Find Transition State in the program CAChe[U] version 3.1. Simulated annealing for

ten cycles to 1000 degrees using default parameters for base temperature and cooling

rate, was undertaken with Sybyl[13) version 6.5 to reveal other possible conformations of

the tricyclic structure.

Using ten different local minimum arrangements , a systematic search was performed

using the Tripos force field[14] in Sybyl. Van der Waals radius scale factors were set at

0.65 with charges assigned by the Gasteiger and Marsili methodfl5]. The search was

performed in 1° increments on all conformations and configurations of octoclothepin

around the bond to the piperazine ring. Torsion angle versus energy plots were then

produced showing the location of the local and global minima.

These local and global minima were further analysed using MacroModel[16] version 5

and Amsol[l71 version 6.6. The MacroModel parameters used were the OPLS force field

and water as solvent. The Amsol parameters used were the AMI semi-empirical

method with water as solvent, and heptane as solvent. This was undertaken to compare

and contrast the conformational energies in various solutions.

2.2.1.2 Superimposition: Defining the Pharmacophore

To develop a pharmacophore for D2 antagonist interaction, the different conformations

and configurations generated from the previous analysis were compared by

superimposition. Dummy atoms were used to represent points of likely interaction1181 at

the D2 receptor, as shown in Figure 2.2 for (S)-octoclothepin. To mimic 71-71

interactions, dummy atoms were built 3.5 A above and below the planes of each

aromatic ringtl9]. An additional dummy atom was built 2.8 A from the distal nitrogen of

the piperazine ring, along the vector of the ammonium hydrogen, representing a proton

donor/acceptor interaction1191. The pKa of the distal nitrogen was calculated to be 8.4 ±
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0.7, using ACDl20] version 3 pKa calculator, and octoclothepin isomers are therefore

likely to consist of an equilibrium mixture containing approximately 90% protonated

molecules at a physiological pH of 7.4. All conformations were then superimposed

onto selected differing configurations, using the root mean square (RMS) fit procedure

within Sybyl. A weighting of 1 was assigned to the dummy atom pairs from the distal

nitrogen, and weightings of 0.3 were assigned to the dummy atom pairs above and

below the planes of each aromatic ring. This was done so that the tricyclic ring of the

enantiomers, with four dummy superimposition points, had approximately the same

priority as the dummy atom emanating from the distal nitrogen.

Dummy atom X

t

Du Du
Figure 2.2. (S)-octoclothepin showing dummy atoms. X and Du are 2.8 angstrom and

3.5 angstrom from the nitrogen atom and perpendicular to the benzene ring centroid,

respectively.

The active (1R,3S) tefludazine diastereomer[21] was built in Sybyl using standard

geometries, then had dummy atoms assigned to its points of likely interaction.

Superimpositioning using similar weightings of dummy atoms, of its low energy

conformers upon the resulting octoclothepin pharmacophore models was undertaken. A

search of the CCDC was performed to confirm that conformations proposed as

i
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biologically active were also energetically feasible. From this a pharmacophore model

was defined.

All different combinations and conformations of key functional groups were considered

in the superimposition process, with the aim of developing a consensus pharmacophore.

However it is recognised that less likely alternatives may exist for isolated compounds.

2.2.2 Tricyclic Molecular Field Analysis

In this section, comparative molecular field analysis (CoMFA) is used to develop a

pseudoreceptor model for D2, D4 and 5HT2A antagonist activity using published data

from a series of clozapine analogues122"241, in an attempt to elucidate some aspects of

clozapine's favourable receptor binding profile.

CoMFA was carried out on the series of clozapine analogues given in Tables 2.1, 2.2

and 2.3 using their published receptor binding affinitiest22*24].

ii 1
3'i £
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Table 2.1. Receptor binding affinities (Ki, nM) of piperazine analogues from Phillips et

al.[22,23]

Compound

1A

clozapine

IB

isoclozapine

1C

ID

IE

lh

loxapine

2A

3A

3B

3C

3D

3F

3G

3H

31

3J

PS*

X

Cl

H

H

Cl

Cl

H

Cl

Cl

H

H

H

Cl

H

Cl

H

H

H

Y

H

Cl

H

H

H

Cl

H

H

Cl

H

H

H

H

H

Cl

H

H

Zf

NH

NH

NH

NCH3

0

0

CH2

CH2

CH2

CHCH3

C=CH2

C=C(CH3)2

C=C(CH3)2

0

0

0

0

A

N

N

N

N

N

N

CH

CH

CH

CH

CH

CH

CH

CH

CH

CH

CH

B

N

N

N

N

N

N

CH

N

N

N

N

N

N

N

N

N

CH

C

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

D2

220

47

2500

1100

150

21

560

520

1

94

57

690

290

8.7

2.5

21

82

D4

21

16

420

120

23

4.9

2700

2900

1

12

47

930

2700

0.9

0.54

2

9.5

5HT2A

8

7

39

140

11

N/A

3

3

2

47

11

230

250

3

3

4

3

* indicates compound from Phillips et al 1995, numbered P1-P8 in order of new compounds presented

t bold atom represents the atom in ring (Z)

iii
I 3.

il 1
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Table 2.2. Receptor binding affinities (K*, nM) of piperidine analogues from Phillips et

al.[22'23]

Compound

4A

4B(r)

4B(s)

4C(pRapSb)

PI*

P2*

P3*

P4*

P5*

P6*

P7*

Y

H

H

H

H

H

Cl

H

H

H

H

H

Z+

C=CH2

CHCH3

CHCH3

C=C(CH3)2

CH2

C=C(CH3)2

CH2

CH2

0

0

0

Q

CH3

CH3

CH3

CH3

CH3

CH3

CH2CH3

CH2CH=CH2

CH3

CH2CH3

CH2CH=CH2

D2

250

640

730

520

89

440

44

83

230

61

110

D4

330

190

400

150

12

100

28

60

29

26

37

5HT2A

30

74

200

2200

6

760

4.5

20

6

6

22

* indicates compound from Phillips et al 1995, numbered P1-P8 in order of new compounds presented

t bold atom represents the atom in ring (Z)

m



Chapter 2

Table 2.3. Receptor binding affinities (K;, nM) of analogues from Liegeois et al.

57
[24]

13-16

NMP

Compound

8

9

10

11

12

13

14

15

16

clozapine

isoclozapine

clothiapine

isoclothiapine

fluperlapine

Z

0

0

s
s
s
0

0

0
c

X

H

H

H

H

H

H

Cl

CH3

H

Y

H

Cl

H

Cl

H

H

H

H

H

DT
10965

363

6607

263

2291

14791

1202

1230

4074

45.7

12.6

4.5

30.2

132

5HT2A"

22387

45

1148

45

282

1413

65

98

513

3.9

1.8

0.59

4.2

3.V

*NMP denotes N-methylpiperazine

**Binding affinities calculated from pKj values

t 2.2?2.1 Molecular Field Analysis

Quantitative structure activity relationships (QSAR) were created for all the data sets

developed in the following sections using the method outlined here. The values for

CoMFA used were: a grid spacing of 1.5A, an sp3 carbon probe with a +1 charge, bo&

smoothing and standard CoMFA scaling. CoMFA electrostatic and steric fields were

generated with a grid spacing of 1.5A to ensure no atoms of interest were missed, as the

approximate carbon-carbon bond length is around 1.5A. When a grid spacing of lA

was used for the CoMFA electrostatic and steric fields large quantities of smaller areas

of supposed interaction were generated, and this only served to obscure key points in

the model. A grid spacing of 2A was also tried for the CoMFA electrostatic and steric

fields. This produced models with similar statistics to 1.5A spacing but their predictive

abilities were not as good, due to the larger spacing between the grid points. Partial
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least squares (PLS) analysis was carried out on each database. Leave one out (LOO)

cross-validation was used to select the number of principal components for cross-

validated statistics with column filtering set at 2.0 kcal/mol. The final CoMFA model

was generated using no cross-validation and the number of components suggested by

the LOO validation run[25].

2.2.2.2 Compound Alignments

Several alternative alignments of the analogues were developed using RMS

superimpositioning and field fitting of the ligands. The RMS fit procedure within Sybyl

was used to align the ligands to the pharmacophore developed from the conformational

analysis and superimpositions described above. Additional alignments were developed

using the field fit method1261 from Sybyl. where molecules are minimised with respect to

the electronic and steric environment of the tightest binding ligand.

In addition to looking at the alignment of the compounds on one another, the effect of

charge on the calculation of the electrostatic fields, and the effect this had on the

resultant CoMFA models was examined. The effect of rotating the database of

compounds within the CoMFA grid space was also analysed, to see whether or not any

significant improvements could be made in the predictive nature of the model.

Template Alignment

All compounds were built within Sybyl using standard geometries, and minimised using

the Powell minimisation method for 1000 iterations or until they reached a RMS-

displacement termination criteria of 0.01 A with MMFF94S127'281 force field and

MM94FF charges.

In this model, dummy atoms to mimic TT-TT interactions dummy atoms were built 3.5 A

above and below the planes of each aromatic ring1191. An additional dummy atom was

built 2.8 A from the distal nitrogen of the piperazine ring, along the vector of the

ammonium hydrogen, for a proton donor/acceptor interaction1191. These dummy atoms,

Du and dummy atom X, shown in Figure 2.2 were used for superimpositioning. Whilst
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this method worked extremely well for the tricyclic set of compounds, it was discovered

later that for compounds without the tricyclic substructure, this method placed too much

emphasis on the orientation of the planes of these aromatic groups. Therefore for the

final superimpositions analysed in this work only the centroids of the aromatic groups,

centroids A and B, and point of interaction for the protonated nitrogen were considered

for superimposition. This method is justified by past analysis*291 of ligand binding

orientations within the protein data bank, showing that in many cases n-n interactions of

aromatic groups are not parallel to one another but may take a variety of orientations.

However the planarity of the phenyl rings is important for other charge/charge

interactions such as those of aromatic hydrogens and oxygen atoms. Thus, attempts

were made to ensure some planarity of the superimposed phenyl rings, as long as the

energy penalties in doing so were not too high. This early knowledge-based analysis of

ligand binding orientations has been expanded on and is now implemented in such

programs as Iso-starl30].

Field Fitting Alignment

For the D2 and 5HT2A models, compound 3B Table 2.1 was used for the field fitting

alignment whereas for the D4 model, compound 31 Table 2.1 was used for the field

fitting alignment. Minimisations were performed using MAXIMIN2 with field fit on and

the Tripos force field using the Powell minimisation method for 500 iterations or until
0

compounds reached an RMS-displacement termination criterion of 0.01 A. A further

quick minimisation for 50 iterations with the Powell minimisation method, MMFF94S

force field and MMFF94 charges was undertaken to ensure reasonable geometries.

During a minimisation involving field fitting, the derivatives of the field fit penalty with

respect to the co-ordinates of each individual atom are added to the other force field

derivatives. This results in the compound being minimised to adopt the steric and

electronic environment it is being fitted to, in order to minimise the total energy. The

field fit steric energy penalty is calculated by the following expression, with the

electrostatic field fit penalty being of a similar form1131.
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SFF
steric

where:

• p is a lattice point

• T(p) is the value of the steric template field at lattice point p

• V(i,p) is the steric energy of interaction between the ith atom in the target molecule

and a probe atom at lattice point p

• V is the sum over all atoms in the target molecule

• W(p) is a user supplied weight for lattice point p

• V i s the sum over all points in the lattice

• SFF is a user-supplied overall weight for the field fit term

The user supplied overall weight for the field fit term (SFF), is the weight of the field Jit

penalty compared with the energy and derivatives found using the Tripos force field'131.

If the value given to overall weight term (SFF) during a field fitting minimisation is too

large, the compounds being field fitted may be unreasonably distorted to accommodate

the large value from the field fit penalty. If the overall weight term (SFF) is too low

there will be little influence from the procedure. Thus a number of different values for

SFF were analysed. The resulting databases were also subjected to CoMFA to see if

any improvements in their squared correlation coefficients and predictive abilities could

be seen.

Analyses of Different Charges and Charged States

M
7 In addition to MMFF94 charges that were on the compounds from earlier minimisation,

Gasteiger and Marsili, AMI and ESP charges were analysed within CoMFA. Non-

scaled semi empirical ESP charges were added to the compounds using the Mopac 6

module within Sybyl, with the keywords AMI, ESP, MMOK and the compounds

corresponding charge. Non-scaled ESP charges were also calculated using the PM3

Hamiltonian for comparison. Mopac AMI charges were calculated with the keywords



! i

Chapter 2 61

AMI, NOINTER, LET, 1SCF, MMOK. This analysis of different charges was

undertaken whilst the compounds were in both the neutral and protonated form.

Rotations within the CoMFA grid space

As the molecules being analysed within the CoMFA module contain a fair degree of

planarity due to the presence of aromatic rings, there is always a chance that during an

analysis the compounds in question may not be interacting in an optimum fashion with

the CoMFA grid points. Therefore in order to assess whether or not this is a significant

factor, all the molecules in the database were rotated 360 degrees in 10 degree

increments around the x y and z axes, whilst calculating the q2 or predictive capabilities

of the model at each point.
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2.3 RESULTS AND DISCUSSION

2.3.1 Tricyclic Pharmacophore

2.3.1.1 Conformational Analysis

All conformations of (R)- and (S)-octoclothepin were examined because, although often

considered to be rigid, the octoclothepin structures exhibit flexibility in several regions.

Firstly the piperazine ring is able to rotate around the connecting bond that attaches it to

the central seven membered ring of the tricyclic structure (Figure 2.3). Concomitantly,

the tricyclic structure is also able to undergo a ring inversion1311 resulting in A-fold and

B-fold types (Figure 2.3) as shown from the simulated annealing process. Irurre[321 et

al. experimentally determined the conformational energy inversion barrier for

dibenzo[b,e]azepine derivatives to be around 12 kcal/mol. This suggests that this ring

inversion will occur under physiological conditions. This is evidenced 6y both

atropisomers of clozapine being found in the crystal structure^33'341.

H

Figure 2.3. Piperazine ring rotation and tricyclic ring system inversion.

Secondly, the piperazine ring is able to adopt either a pseudo-axial or pseudo-equatorial

state with respect to the tricyclic structure, shown in Figure 2.4. This was calculated to

require an energy input of approximately 9 kcal/mole using the find transition state
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process in CAChe. This compares favourably with results obtained previously by

Hendrickson(31], who calculate that the chair/twist-chair and boat/twist-boat families in

cycloheptane can be interconverted by passing over a barrier of 8.5 kcal/mol.

Figure 2.4. A-fold confonner of (R)-octoclothepin showing alternative pseudo-

equatorial and pseudo- axial orientations of the piperaz'me ring. H* or N* denotes

equatorial position.

The conformational analysis gave ten low energy conformations for the enantiomers,

shown in Figure 2.5. The relative energies of the differing conformations using

different methods of calculation and different solvents are shown in Table 2.3.
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ci a

a

D

Figure 2.5, Ten main local and global minimum energy confonners of (R)- and (S)-

octoclothepin A. (S)- A-fold equatorial; B. (R)- B-fold equatorial; C. (S)- A-fold axial;

D. (R)- B-fold axial; E. (R)- A-fold equatorial; F. (S)- B-fold equatorial; G. (R)- A-fold

2 equatorial; H. (S)- B-fold 2 equatorial; I. (R)- A-fold axial; J. (S)- B-fold axial.

k
: 1
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The first column of Table 2.4 shows the heat of formation in vacuo calculated using the

Tripos force field with Gasteiger and Marsili charges, indicating the global minimum of

(R)- and (S)-octoclothepin are the A-fold pseudo-equatorial conformer (A) and the

B-fold pseudo-equatorial conformer (B), respectively.

Table 2.4. Relative Energies in kcal./mol using Differing Methods and Solvents

Ligands

A & B

C & D

E & F

G & H

I&J

Tripos (SS)

Vacuum

0

0.3

0.8

2.1

5.0

Amsol

Vacuum

3.0

0.4

0

3.4

3.9

Amsol

Water

0

3.3

2.7

0.6

0.8

Amsoi

Heptane

0

1.7

1.8

0.2

0.4

MacroModel

Vacuum

0

5.4

2.7

3.4

2.4

MacroModel

Water

0

4.2

3.1

3.0

3.0

(SS) denotes energies from systematic searches

The results for the final heat of formation in vacuo from Amsol were in a different order

of increasing energy compared to those from the Tripos force field, although there was

only a 3.9 kcal./mol difference between the lowest and highest energy conformations.

The results for the conformational energies in solution (water) from Amsol gave a

similar order to MacroModel (water), with a 3.7 kcal./mol range between the lowest and

highest energy conformations, compared to a 4.2 kcal./mol range from MacroModel.

The results for conformational energies in solution (heptane) from Amsol also showed a

range of less than 5 kcal./mol between lowest and highest energy conformations, and

gave the same global minimum as most other methods.

The results obtained from MacroModel for the conformational energies in vacuo were

different from those obtained with the Tripos force field with respect to the order of

increasing energy. However the global minima were the same for both (R)- and

(S)-octoclothepin.

These semi-empirical and molecular mechanics calculations are in good agreement with

one another, with all having a range of less than 5 kcal./mol between all conformations

and five out of six methods giving the same global minimum.

The global minimum of (S)-octoclothepin, conformer (B), was consistent with the

crystal structure obtained from the Cambridge Crystallographic Database1'I].

i I
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2.3.1.2 Supcrimposition

As (R)- and (S)-octoclothepin are both active at the dopaminergic and serotonergic

receptors, it is assumed here that they are acting in a conformationally similar manner.

The binding affinities in nM of the (R)- and (S)-octoclothepin enantiomers for the D2

receptor1351 are 7.1 and 4.5, for the D4 receptor(35] are 2.8 and 1.5, and for the 5HT2A

receptor1361 are 0.33 and 0.14, respectively. Therefore superimpositions were performed

and the measured RMS fit of the R conformers on to the S conformers was examined to

find pairs of conformers that were capable of interacting with common sites in the

receptor.

The best RMS fit, with a value of 0.45 A, resulted from the superimposition of all five

dummy atoms of the A-fold (S)-octoclothepin pseudo-equatorial, conformer G, on to

the global minimum A-fold (R)-octoclothepin pseudo-equatorial, conformer A, and the

mirror image B-fold (R)-octoclothepin pseudo-equatorial, conformer H, on to the global

minima B-fold (S)-octoclothepin, conformer B (see Figure 2.5). This indicates that

these are strong candidates for the relevant conformation mediating antipsychotic"

activity.

Figure 2.6. Superimposition of A-fold (R)-, light shading, and (S)-, dark shading,

octoclothepin showing dummy atoms.

• i
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2.3,1.3 Defining the Pharmacophore

To differentiate between the mirror image pharmacophore models generated above, we

superimposed low energy conformations of the D2 and D4 active compound (1R,3S)-

tefludazine onto the pharmacophores. D2, and D4 binding affinities(j5] for tefludazine

are 4.6 and 15 nM, respectively. This gave a better fit with the A-fold conformation,

suggesting that this conformation is more likely to represent the biologically active one.

Figure 2.7 shows the resulting superimposition of the R and S enantiomers of

octoclothepin and (lR,3S)-tefludazine.

Figure 2.7. Tefludazine, black, superimposed on A-fold (R)-octoclothepin, light

shading, and (S)-octoclothepin, dark shading.

A search of the Cambridge Crystallographic Database revealed one conjugated pyridine,

1,2,3,6-tetrahydro-l-Q- of the type in the Phillips1221 dataset (Table 2.2), with an A-fold

conformation matching that deduced in this work. All other structures of conjugated

dienes[37"4l] similar to the type in Table 2.2, that were neither sterically hindered nor co-

crystallised with counter ions, crystallised in a pseudo-Ivans arrangement about their

single bond.
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2.3.1.4 Comparison with other D2, D4 and 5HT 2 A Antagonist Pharmacophores

68

Figure 2.8 shows the distances between the likely points of interaction in the derived

D2, D4 and 5HT2A pharmacophore.

7.8-8.1 Angstrom

8-8.5 Angstrom

3.5 Angstrom

Du Du
Figure 2.8. Proposed pharmacophore.

This model is consistent with the model developed by B0ges0181 et al. However the

global minimum energy conformation of (R)-octoclothepin was used with dummy

atoms representing likely points of interaction for superimpositions. Differing

weightings of the superimposition points -vere also used in the RMS alignment of the

ligands. In addition, the position of the distal nitrogen in the model generated here

covers a circular area of approximately 2.0A diameter, resulting in distances from the

centre of the aromatic ring, centroid A, to the nitrogen of between 5.4 and 6.7A. These

distances are in agreement with some of the older models for antipsychotic activity that

have been generated, such as the generalised model for antipsychotics of Lloyd and

Andrewsf42), which has a distance of 5.2A from nitrogen to aromatic centroid. The D4

model is also consistent with that of Bostrom et alf35], although the range of compounds

examined in Bostrom's paper far exceeds the range looked at in this section of the

chapter and is discussed in greater detail later in "Extended Pharmacophore:

Comparison with other D2 and D4 antagonist pharmacophores".
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2.3.2 Tricyclic Molecular Field Analysis

2.3.2.1 Data Selection

Compounds were chosen on the basis of binding affinity and close structural similarity.

The main difficulties in the development of reliable alignments is not only ligand

flexibility but also the ambiguity of postulated receptor-ligand interactions and the

possibility of more than one binding site or binding mode. Therefore we preferred to

obtain a model based on a set of congeners that acted in a similar fashion, rather than

trying to fit compounds that were too structurally dissimilar.

The three datasets used in the tricyclic model development were taken from Phillips et

fl/.[22l23]andLiegeois^a/.[24].

Tables 2.1 and 2.2 contain the 5H-dibenzo[£,e][l,4]diazepine, dibenz[&,/Joxepin and

chiral 5H-dibenzo[a,<i]cycloheptene analogues from Phillips et al.[22'23]. The binding

affinities for the D2 and D4 receptors were determined by inhibition of [3H]spiperone

from COS-7 cells transfected with a gene expressing the human D2(long) and D4

receptors, in the presence of sodium chloride. The binding affinities for the 5HT2A

receptor were determined by inhibition of 125I-labelled lysergic acid diethylamide

binding to membranes containing the cloned rat 5HT2A receptor. The compounds from

these two papers were considered as ideal candidates for modelling together, due to the

fact they were from the same laboratory and had identical procedures for determination

of their binding affinities. Two compounds were not used in the CoMFA models

generated: 2B, as it did not possess a distal nitrogen, (pRapSb)-(-)-4c, as it was in the 13-

fold conformation and thus the incorrect atropisomeric form for the pharmacophore.

Table 2.3 contains a series of pyridobenzoxazepine and pyridobenzothiazepine

derivatives as well as a number of well known antipsychotic drugs and their iso-

counterparts from the paper of Liegeois et al.[24\ Their binding affinities for the 5HT2A

receptor were determined by inhibition of [3H]-labelled ketanserin binding to pretreated

prefrontal cortex brain tissue from female Wistar rats[43]. The binding affinities for the

D2 receptor were determined.
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These compounds were considered as good candidates for modelling with the previous

datasets of Phillips et al.[2223\ as they also contained the 6-7-6 tricyclic substructure.

The inclusion of a heteroatom into this substructure by Liegeois et al.[24\ should also

shed more light on the electrostatic interactions required for potency. However when

comparing the binding affinities of identical compounds, clozapine and isoclozapine,

from the Liegeois and Phillips datasets, it can be seen that the binding affinities reported

by Liegeois et a/.[24] are similar for the 5HT2A receptor and marginally tighter for the D2

receptor. This must be kept in mind when analysing the CoMFA predictions of these

compounds.

2.3.2.2 Compound Alignments

Template Alignment

When the compounds were minimised using the MMFF94S force field and MM94FF

charges and then superimposed onto the proposed pharmacophore (see Figure 2.8), it

could be seen that compounds with a similar substructural unit all superimposed on one

another in 3D space (see Figure 2.9). These substructural units could be roughly

divided into four main groups depending on the seven membered ring and the group

attached: diazepine attached to piperazine; cycloheptene attached to piperidine;

cycloheptene attached to piperazine and cycloheptene attached to pyridine, 1,2,3,6-

tetrahydro.

The CoMFA analysis on these compounds was performed using the MMFF94 charges

and a grid spacing of 1.5 angstrom. The resultant model had four components giving q2

of 0.472 and r2 of 0.807; the relative contributions to the model were 43% and 57%

from the steric and electrostatic fields, respectively.

I
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Figure 2.9. Template based alignment of the tricyclic compounds showing the

grouping of the substructural units.

The two cycloheptene attached to piperidine compounds, 2A and P8, were both outliers,

which was not surprising as they were the only two representative compounds of this

substructure and were not well aligned with the other compounds. The compound that

was most poorly predicted was 3A with a residual of 1.3 log units. This was initially

surprising, however upon closer inspection of the source of the binding affinity for this

compound'44' it was shown that a different method involving rat caudate nuclei was

used for compounds 3A and 3B which may explain some discrepancies.

Field Fitting

In the field fitting procedure within Sybyl, molecules are minimised with respect to the

electronic and stenc environment of the tightest binding ligand (see Figure 2.10).



Figure 2.10. Sleric and electrostatic fields, respectively, of compound 3B Table 2.1,

from which the Di and 5HTJA alignments were generated. Favoured region for the

steric field is shown in yellow. Favoured regions for positive and negative charge for

the electrostatic fields are shown in red and green, respectively.

As the field fitting procedure caused the ligands being analysed to adopt high-energy

conformations, they subsequently had to be reminimised to obtain reasonable

geometries. It was found that insufficient minimisation produced conformations that

were 15 kcal/mole or more above their local minimum. A 10 kcal/mole

difference between a conformer and its local minima is considered to be a reasonable

cutoff14*1 and these conformers were not considered reasonable. Alternatively, when the

molecules in the databases were minimised for too many iterations, the piperazine ring

often rotated relative to the seven-membered ring so that the dummy atom from the

distal nitrogen no longer fitted within the constraints of the pharmacophore. After

several trials the best results came from a quick minimisation of 50 iterations. In

addition, one must also consider the effect of altering the weight of the field fit penalty

in the field fitting procedure. If the user supplied overall weight - SFF value - is too

high, the compounds being minimised may become significantly distorted and if the

SFF value is too low there is little inliuence from the procedure. Thus it was necessary

to find a complementary balance between the SFF value and a quick minimisation

performed post field fitting.
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Average energy (kcal/mol) above

SFF=1 SFF = 5 SFF=10

global minima

SFF = 20

before

SFF =50

and after

SFF =

73

field

100

! V \

without

minimisation*

with

minimisation*

distance**

22.42

0.76

7.7

42.65

1.19

7.8

65.80

1.64

7.8

101.83

1.25

7.8

198.62

1.45

7.9

347.72

1.92

7.9

* alone and after fieldfitting and minimisation for 50 iterations, whilst varying the SFF factor for all the

compounds from the Tricyclic dataset with the D2 binding affinities.

** average distance between dummy atoms X and A

Table 2.5, which shows the average energies after minimisation, indicates that the

compounds all return to a conformation that is realistic, without deviating too far from

the constraints of the pharmacophore. Table 2.5 also shows that setting the SFF factor

to 1 causes the least structural deformations. As the average energies of this dataset

were lower, thus less movement of the compounds into the steric and electrostatic fields

of the tightest binding compounds was seen in comparison to datasets with higher SFF

values. Consequently there was really little or no influence from the procedure as is

evident when comparing the q2 values obtained for no field fitting with field fitting and

SFF set to 1 (see Table 2.6).

Table 2.6. Adjusting the SFF variable in the field fitting algorithm and calculating the

q and r with default settings for the tricyclic dataset with D2 binding affinities.

n

r2

no field

fitting

0.430

3

0.699

SFF=i

0.499

3

0.800

SFF = 5

0.558

3

0.817

SFF = 10

0.559

3

0.831

SFF = 20

0.512

6

0.912

SFF = 50

0.423

2

0.687

SFF =100

0.442

3

0.783

From these analyses it is difficult to see which SFF value offers the most improvement

in the CoMFA analyses as SFF values of 5, 10 and 20 all perform well, although there

are twice as many components in the SFF 20 model. Therefore in all subsequent field

fitting procedures a SFF value of 10 in combination with a post field-fitting

minimisation of 50 iterations was used, as this method provided the most predictive

model as indicated by the q" value.
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The field fitting method offered significant improvements in all areas of the CoMFA

model generation when compared to the template alignment method; thus this method

was used for all subsequent analyses.

Charge Analysis

The tricyclic dataset was analysed within CoMFA using four differing methods of

calculating charge on the compounds to assess which method worked best. Gasteiger

and Marsili charges were used because much of my early CoMFA work was done using

these charges. With the release of Sybyl 6.4 and the addition of the Merck molecular

Force Field and its corresponding charges, these MMFF94 charges were also analysed.

Mopac AMI charges were also calculated to assess whether or not semiempirical

charges were significantly better. The ESP semiempirical charges were also assessed to

see if the charges calculated from a distribution over the compounds surface affected

results to any degree.

The difference in charge distribution between the methods is quite evident (see Figure

2.11), indicating how the CoMFA electrostatic fields differ.
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Figure 2.11. Isopotential surface calculation of clozapine using AMI, ESP, MMFF94

and Gasteiger and Marsili charges. Blue and red indicate negative and positive

charge, respectively.

The correlation between the charges from the two MM methods is r = 0.482, resulting in

the distinctly different isopotential surfaces. The correlation between the charges from

the two semi-empirical methods is r = 0.852, which may explain why the isopotential

surfaces look similar. There are subtle differences bu,veen the two semi-empirical

methods specifically in some of the atoms of interest such as the distal nitrogen, the

methyl carbon attached lo the distal nitrogen as well as many atoms in the tricyclic

substructure. It can also be seen in Figure 2.11 that the positively charged distal

nitrogen has a dominant effect and effectively shields the negative regions of the

molecule.

The CoMFA electrostatic fields did differ, although the only significant difference in

the contributions from these fields was from the AMI charges. In the AMI CoMFA

analysis the relative contributions from the two fields were 56% and 44% for steric and

electrostatic respectively, whereas for all other analyses the contributions were
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approximately 48% and 52% for steric and electrostatic, respectively. Interestingly the

fields derived using Mopac AMI charges gave the poorest correlation to binding

affinity when used in CoMFA followed by the two molecular mechanics methods of

charge calculation (see Table 2.7). In addition to this there also seemed to be no

correlation between the magnitude of the charges on the atoms and the predictive ability

obtained by the models, indicating that charge distribution over the compound was the

most important feature in calculation of the electrostatic fields. This is why it was

reassuring to see that ESP charges performed best, as point charges calculated to

represent the charge distribution over the surface of the compound should be expected

to perform better than charges calculated from simplistic atom types. ESPf46J calculates

the expectation values of the electrostatic potential of a molecule on a uniform

distribution of points. The resultant ESP surface is then fitted to atom centred charges

that best reproduce the distribution, in a least squares sense.

Table 2.7. Analysis of CoMFA using differing charges on the field fitted tricyclic

dataset with SEF set to 10 and D2 binding affinities.

Charge method

MMFF94

Gasteiger & Marsili

AMI

ESPAMI

ESPpM3

components (n)

4

7

6

4

4

0.597

0.617

0.5S0

0.685

0.674

x1

0.887

0.952

0.933

0.927

0.908

As the positively charged distal nitrogen has a dominant effect, the charge analysis was

also performed for the same datasets in a neutral form. The dominant effect of the

positively charged nitrogen is easily evident when viewing the isopotential surfaces of

the charged and uncharged clozapine compounds (see Figures 2.11 and 2.12,

respectively). This dominant effect of the positively charged nitrogen is also evident

when looking at the charge distribution from the semi-empirical AMI method. In

Figure 2.11 the positively charged nitrogen effectively shields the chlorine substituent

resulting in a net charge of zero, whereas for the uncharged compound the charge on the

chlorine is -0.026. This results in an isopotential surface for the uncharged AMI

clozapine compound that is more like the MM methods of charge distribution, indeed



Chapter 2 77

even the correlation between AMI charges and Gasteiger & Marsili charges increases

fromr=0.64tor=0.79.

A similar order of prediction was seen when looking at the uncharged CoMFA models,

with the fields derived from the AMI method giving the poorest correlation to binding

affinity, the two MM methods next and the ESP model being the most predictive model

(see Table 2.8). However the relative contributions from the fields did change

noticeably from approximately 5 0% each to a 33% steric and 66% electrostatic field

contribution, although when viewing the resulting CoMFA fields no additional

information could be gained in comparison to the CoMFA fields generated from the

charged compounds.

Figure 2.12. Isopotential surface calculation of clozapine, with a net zero charge,

using AMI, ESP, MMFF94 and Gasteiger & Marsili charges. Blue and red indicate

negative and positive charge, respectively.
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Table 2.8. Analysis

dataset with SFF set to

Charge method

MMFF94

Gasteiger & Marsili

AMI

ESPAMI

of CoMFA using differing charges on the

10 and D2 binding affinities.

components (n)

10

10

4

4

q2

0.692

0.664

0.565

0.712

field fitted tricyclic

r2

0.986

0.983

0.880

0.921

So although analysis of both the charged and uncharged datasets was interesting to see,

in the difference that charge can have on the electrostatic characteristics of a compound,

it did not highlight any additional regions of interest in the CoMFA models. As the

compounds are expected to be in a protonated state under physiological conditions,

charged or protonated compounds were used in all following datasets.

It was reassuring to see some continuity in the CoMFA models generated using both the

charged and uncharged compounds, for the different methods of charge calculation.

And as the ESP method of charge calculation performed best in both situations it was

used in the generation of all subsequent CoMFA models.

Rotations within the CoMFA grid space

Rotating the Tricyclic template database model around the x, y and z-axes in 10°

increments did show there was the possibility of improving the model obtained in terms

of its predictive nature (see Figure 2.13). The database used in this analysis v/as the

field fitted database with the SFF value set at 10.

i
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0.725 0.75

Figure 2.13. Histogram of cf values obtained from '"•" <:g the field-fitted tricyclic

database model around the x, y and z axes in 10° increments. Note: only q~ values

obtained with the same number of components (4) were chosen.

An improvement from the initial q2 value of 0.685 to 0.75 was gained by rotating the

molecules in the database v/ithin the CoMFA grid. The predictive ability of the various

orientations of the molecules within the CoMFA grid shows a normal distribution. The

initial q2 obtained could easily have been at either end of this distribution demonstrating

the importance of doing such an analysis. Thus such an analysis was performed for all

final models developed, with the most predictive model being chosen for inspection of

its electrostatic and steric fields.

2.3.2.3 CoMFA Field Interpretations

All fields shown in this section were generated using the method outlined immediately

above. The contour levels for visualisation of the CoMFA fields were set to represent

50% of the relative contribution of each factor involved in correlating the

pharmacophore model to activity. This must be done, because if the distribution of the

factors involved in the whole field signal are not symmetrical, the default contour

settings will give a display that may lead to a wrong interpretation of the results'47'.
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D2 Dopaminergic model

When the database of compounds was rotated -30° around the z-axis relative to the

starting orientation, the best model with the highest q2, r2 and the lowest standard error

of prediction was found. The resultant model had 4 components giving a q2 of 0.75 and

a r2 of 0.927 with a standard error of estimate of 0.268; the relative contributions to the

model were 45% and 5 5% from the steric and electrostatic fields, respectively. T he

predicted activities of all compounds were within ±0.75 pKj log units of their measured

values.

Figure 2.14. CoMFA fields showing electrostatic (left) and steric (right) contributions

from analysis of the D2 binding affinities.

The electrostatic map, Figure 2.14, shows two regions where partial negative charge

enhances activity (red), Rl and R2. The region at position Rl shows the detrimental

effect that a nitrogen in position A or B can have on D2 binding affinity, as the nitrogen

atom will draw electrons from the carbon at Rl leaving it with a partial positive charge.

This detrimental effect can be clearly seen when comparing the binding affinities of

compounds IE and IF to compounds 3H and 31 from Table 2.1. This region at Rl may

also indicate that piperidine rings, compared to piperazine rings, are preferential for D2

binding, however there are not enough compounds with a piperidine ring to draw a solid

conclusion. The second region where partial negative charge enhances activity is at R2;

this region is due to the presence of a nitrogen atom in position 6 on the compounds 13-

16 in Table 2.3. The nitrogen is withdrawing electrons from the neighbouring carbon
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and imparting a partial positive charge, which is detrimental to D2 binding affinity.

This can be more clearly seen when comparing compound IE to compound 14,

resulting in binding affinities that differ by almost an order of magnitude.

The electrostatic map, Figure 2.14, also shows two regions where a partial positive

charge enhances activity at the D2 receptor. The region at Bl is easily explained by

comparing compounds IF and 9, where the presence of hydrogen with a partial positive

charge or absence of nitrogen in ring B increases binding affinity. The second region

where partial positive charge enhances activity is on ring A labelled B2. The

explanation of such a region is not immediately evident until the ESP charge

distribution on ring A is examined. As ESP charges are calculated from the expectation

values of the electrostatic potential on the surface of a molecule, the final point charges

assigned to the atoms may differ significantly from the AMI hamiltonian whence they

were derived initially and its corresponding charges, see Figure 2.15. This method of

charge calculation ends up assigning a partial positive charge to the chlorine substituent

and the carbon atoms at positions 1 and 3 of ring A. These partial positive charges at

positions 1 and 3 are caused by the presence of a chlorine substituent at position 2

showing the benefits of having a chlorine substituent for enhancing D2 activity.

Figure 2.15. Diagram showing the differing charge distributions calculated by the ESP

charge calculation method (left) and the MOPAC AMI method (right). The ESP partial

positive charges on carbons in position 1 and 3 are 0.191 and 0.144, respectively.
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The steric map (Figure 2.14) shows a yellow region indicating areas where steric

hindrance occurs at Yl, indicative of the unfavourable interactions that are occurring

with bulky alkyl groups. This can easily be seen when comparing compounds 4B(R)

and 4B(S) with compound PI, where the activity drops almost ten fold with the addition

of a methyl group at position Z. The other region where additional bulk is unfavourable

is at Y2: this region emanates from the fieldfitting of compounds with a large

substituent at position Q into the steric field of compound 3B. Whilst fieldfitting these

larger substituents into this smaller steric field the compounds are moved across to the

left to occupy this region, Y2. The poorer affinity of compounds with a large

substituent at position Q is seen when looking at Table 2.2.

The steric map (Figure 2.14) also shows two regions where extra bulk is favourable at

Gl and G3. The region at Gl is indicative of the benefits of a chlorine substituent

occupying this region for D2 binding affinity. The region G3 is caused by hydrogen

occupying this region and the absence of nitrogen in ring B, the detrimental effect of

nitrogen in ring B to D2 binding affinity being obvious when looking at compounds 8 to

11 in Table 2.3.

D4 Dopaminergic model

As there was no D4 dopaminergic binding data for the Liegeois dataset, these

compounds were not included in the D4 tricyclic model. The best model was found

when the database of compounds was rotated 60° around the x-axis relative to the

starting orientation. The best resultant model had 2 components giving a q of 0.351

and a r2 of 0.721; the relative contributions to the model were 56% and 44% from the

steric and electrostatic fields, respectively. Further improvement of the model was

gained by reanalysing the QSAR model by region focusing using default values and the

weight by discriminant power set to 0.3. This significantly improved the predictive

ability of the model, increasing to 0.401 and a r2 0.723 with 2 components, the relative

contributions of the model changing slightly to 55% and 45% from the steric and

electrostatic fields, respectively. The predicted activities of all compounds were within

±1 pKi log units of their measured values with the exception of compound 3H, which

had a residual of 1.3 log units. Interestingly the next two poorly predicted compounds

i H i 1
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were 1A and 2A with residuals of 0.9 and -0.9 log units, respectively, which indicates

that the model was not predicting 8-chloro substituted compounds well. Even though

the model did not show very good predictive statistical results it is still of some interest,

as i t h as b een s hown t hat C oMFA m odels s howing a q 2 h igher t han 0.3 h ave a 1 ow

probability of chance correlation'481.

Further attempts to improve the model by altering the grid size spacing gave minor

improvements, although for consistency these were omitted and only the CoMFA

procedure of region focussing was employed. Region focusing is an iterative procedure

that refines a model by increasing the weight for those lattice points that are most

pertinent to the model. Region focusing did significantly improve the model on this

occasion although this was not always the case. In the case for the optimum D2 binding

affinity dataset the model was only marginally improved from a q2 of 0.75 to 0.753 with

the further complication of introducing two additional components. This was not seen

as an improvement of the model, only a complication. In addition, region focusing did

not prove to be as successful in increasing the predictive ability of the models in

comparison to rotation of the database around the xyz axes. As when region focusing

was applied to the original D2 binding dataset which had a q" of 0.685, an improvement

to only 0.733 was seen with this technique. This improvement fell short of the

improvement to 0.75 gained by dataset rotation, therefore region focusing was only

used as a final measure and only mentioned if the gains were significant.

Figure 2.16. CoMFA fields showing electrostatic (left) and steric (right) contributions

from analysis of the D4 binding affinities.



Chapter 2 84

The electrostatic map, Figure 2.16, also shows two regions where a partial positive

charge enhances activity at the D4 receptor at Bl and B2. Both these areas arise from

the presence of a chlorine substituent in position 2 of ring A. The chlorine substituent

in position 2 has the effect of altering the charge distribution around ring A, resulting in

partial positive charges on carbons in regions Bl and B2. This was shown earlier when

looking at the D2 electrostatic fields and is easily evident when viewing Figure 2.15.

The electrostatic map, Figure 2.16, shows two regions where partial negative charge

enhances activity (red), both labelled Rl. These regions also seem to be an artefact of

the chlorine in position 8 altering charge distribution on ring B, indicating that chlorine

here is detrimental to D4 activity. However when comparing compounds 1A and 1C in

Table 2.1 the opposite is seen, although the predicted affinities from the CoMFA model

do indeed predict 1C to have greater activity than 1A. This indicates that D4 activity

predictions for compounds containing electron withdrawing substituents at position 8 on

ring B may be prone to error.

The steric map, Figure 2.16, shows two yellow regions indicating areas where steric

bulk hinders binding affinity at region Yl and Y3. Region Yl is due to unfavourable

interactions that are occurring with bulky alkyl groups. Region Y3 is indicating that

large substituents present, such as chlorine, are reducing binding affinity. This region at

Y3 is similar in priciple to the electrostatic region Rl, in that our D4 model is predicting

compounds with a chloro substituent at position 8 of ring B poorly. Indeed the model is

predicting 1C and 3J to have greater activity than 1A and 3H, respectively, when this is

not the case. Thus it appears as though predictions for compounds containing large

substituents at position 8 on ring B are prone to error.

r • •

The steric map, Figure 2.16, also shows two regions (green) where extra bulk is

favourable at G4 and G5. The region G5 shows the benefits of an ethyl as opposed to a

methyl substituent (see compound P5 compared to P6 in Table 2.2), however it should

be noted that further extensions to propylene derivatives do marginally reduce binding

affinities. The second area of favourable steric interaction is in the plane of the tricyclic

structure labelled G4. The favourable steric interactions here are more evident when

comparing compounds 4B(r) and 4B(s), where the methyl group is in the plane of the

tricyclic structure for 4B(r) resulting in 2-fold greater affinity.
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The high degree of similarity between the interpretations of the steric and electrostatic

fields for D4 and D2 is not surprising, as the correlation between the binding affinities

for the two sets of compounds is r = 0.85.

5HT2A Serotonergic model

The starting orientation of the database of compounds gave the best model with the

highest q2, r2 and the lowest standard error of prediction. The resultant model had 5

components giving a q2 of 0.70 and a r of 0.952; the relative contributions to the model

were 51% and 49% from the steric and electrostatic fields, respectively. The predicted

activities of all compounds were within ±0.6 pKj log units of their measured values.

Figure 2.17. CoMFA fields showing electrostatic (left) and steric (right) contributions

from analysis of the 5HT2/\ binding affinities.

The electrostatic map, Figure 2.17, shows three regions where a partial positive charge

enhances activity at the 5HT2A receptor. In region Bl, demonstrating the benefits of

hydrogen in this position, see compound 3J compared to 8. At B2 there is a small

region where positive charge enhances activity which is due to modifications in the

charge distribution on ring B from chlorine in position 8 having a beneficial effect to

binding. Similarly there is a small region at Rl, where partial negative charge enhances

activity, also due to an 8-chloro substituent modifying charge distribution. The third

region where a partial positive charge enhances activity is B3 located on ring A. Region

B3 is due to the effect of nitrogen in ring A, as in compounds 13-16, changing the
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charge distribution around the ring and imparting a greater negative charge in this area,

which is detrimental to binding affinity. This modification of charge distribution by

nitrogen is also partly the cause for the favourable electronegative region where the

piperidine ring joins the tricyclic substructure. Another contribution to this favourable

electronegative region is the absence of a nitrogen in position A, as a nitrogen would

withdraw electrons imparting a partial positive charge which is detrimental to activity

(see compound IE compared to 3H).

The sieric map (see Figure 2.17), shows three distinct regions where activity is

enhanced by larger substituents. In regions Gl and G2, showing the benefits of a chloro

substituent in these positions, and in region G3 where the hydrogen interacts. The

region G3, similar to Bl, is due to the effect of replacing the carbon with nitrogen,

which reduces binding affinity at the 5HT2A receptor. The detrimental effects of bulky

alkyl substituents in region Yl are again evident.

it u
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2.4 CONCLUSIONS: TRICYCLIC MODEL

We developed a pharmacophore model that shows how (R)- and (S)-octoclothepin can

fit together using superimpositioning of the points of interaction of the compounds.

This was then used to develop a CoMFA model. A number of parameters were

explored in the construction of CoMFA models. It was shown that by using the field

fitting method for compound alignment, models with a higher predictive ability could

be gained than models obtained by the template alignment method. The weightings

associated with the field fit method were also explored, and it was shown that an overall

weight term of 10 resulted in the most predictive model. Analysis of different charged

states and methods for charge generation of our compounds showed that ESP charges

gave the most predictive resultant CoMFA model, which was consistent for both

charged states. No additional insights were gained by performing CoMFA on neutral

compounds, thus the protonation state most likely under physiological condition, +1,

was used. Rotating the compounds within the CoMFA grid space gave a normal

distribution for the leave one out (LOO) cross-validation, demonstrating that the

predictive ability can be improved by doing such an analysis. By exploring such

parameters in the generation of CoMFA models, optimum models were generated that

provide an excellent framework to aid in the design of new antipsychotics.

2.4.1 Designing Compounds

Extensions of the themes produced by the D2 model could be undertaken to increase or

decrease binding affinity so as to attain a binding profile similar to clozapine. Adding

larger more electronegative substituents in region G1D2, ensuring there are no

heteroatoms in aromatic ring B could increase binding affinity. In turn D2 binding

affinity could be reduced by bulky alkyl substituents occupying Y1D2 or the presence of

nitrogen in position A. More novel methods of altering the binding affinity could also

be achieved by modifying the type of aromatic ring present as ring A, to change the

electronic environment. This modification of ring A has already been carried out by

Liegeois et al[49] with compounds showing appreciable D2 affinity and excellent

CoMFA models being generated from the series. Unfortunately the CoMFA models

were generated using IC50 values and could not be used in our model. This

! « •



' " ' • :

Chapter 2 88

modification of ring A has also been carried out with much success resulting in the

atypical antipsychotic olanzapine.

Extensions of the themes produced by the D4 model are similar to those of the D2

model, although no compounds from Table 2.3 were included in this analysis.

Therefore the effect on D4 binding affinity upon removal or addition of heteroatoms in

rings A and B is unknown. A number of additional steric themes are present in the D4

model, which suggest slightly larger substituents may be added at position 4 of ring A

to occupy region G4D4. Indeed if a chlorine or similarly large electronegative

substituent were added at position 4, a similar electronic distribution around ring A to

substitution at position 2 would be maintained whilst occupying this additional area.

There is also scope for increasing D4 binding affinity by adding slightly larger

substituents at position Q to occupy region G5D4, indeed one could expand upon this

theme to bicyclodecane compounds.

Again there are similarities from the themes extending from the 5HT2A model to those

shown in the D2 model, with the addition of larger more electronegative substituents

occupying region GI5HT2A and the removal of heteroatoms in the aromatic rings

increasing binding affinity. However the 5HT2A model introduces a number of

additional themes with the presence of larger more electronegative substituents at

position 8 of ring B occupying region G2SHT2A and also increases binding affinity.

The results of these CoMFA studies also suggest that a nitrogen substituent in position

Z is not essential for a comparable profile to that of clozapine. A consequence of

removal of this nitrogen could be the potential to diminish clozapine's major clinical

side effect, since there is evidence that formation of a nitrenium ion at this position is

involved in the mechanism of agranulocytosis[50].

Clozapine medications usually require a high dose regiment511 compared with typical

antipsychotic drugs. By manipulating the balance between electronic and steric

requirements at different positions in accordance with this CoMFA analysis, it may be

possible to develop a clozapine analogue with optimal bioavailability at reduced dose.

In turn this may have the advantage of reducing side effects through increased binding

:
i
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with the correct receptors and decreased binding with those receptors causing side

effects. I i

Overall, this work will ideally lead to the development of novel antipsychotics that have

greater efficacy against treatment-resistant schizophrenia and would be devoid of some

of clozapine's clinically limiting side effects.
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The other main groups of antipsychotics are the elongated or extended structures. These

APDs usually consist of an aromatic group connected to a protonated nitrogen and

followed by a further aromatic group (see Figure 2.18). There are many structural

classes of extended APDs ranging from butyrophenones and benzamides to

heterocyclylpiperidines.

Figure 2.18.

structure.

aromatic
group

Simplified representation of extended or elongated antipsychotic

These types of compounds have received much attention during the last decade, as they

provide additional areas in which to explore conformational space in the hope of

designing compounds with greater selectivity and specificity towards various receptors

implicated in schizophrenia. Much of the impetus behind this work has stemmed from

the reintroduction of the antipsychotic drug clozapine that exhibits a low incidence of

EPS[3], which has been proposed to be due to its high selectivity for the D4 receptor

compared to the D2 receptor. Therefore an antipsychotic targeting the D4 receptor

should theoretically show efficacy and be devoid of EPS.

Many drug companies have explored this approach during the 1990's, shown by the

recent introduction and development of several structure activity relationships (SARs)

for D4 antagonists152'671.
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2.6 METHOD
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2.5.7 Extended Pharmacophore

At the commencement of this investigation we were unable to find a D4 pharmacophore

model which would amass all this data. Therefore we developed a pharmacophore

based on published data sets in several papers on D4 antagonism*52'53'55'561. These were

chosen on the basis of binding affinity and close structural similarity. The main

difficulties in the development of reliable alignments is not only ligand flexibility but

also the ambiguity of postulated receptor-ligand interactions and the possibility of more

than one binding site or binding mode. Therefore we preferred to obtain a model based

on a set of congeners that acted in a similar fashion, rather than trying to fit compounds

that were too structurally dissimilar.

The pharmacophore was designed using tight binding D2 and D4 receptor ligands as

well as ligands exhibiting intramolecular hydrogen bonding or that were

conformationally constrained (see Table 2.9 and Figure 2.19).

Table 2.9. Binding affinities of compounds used in pharmacophore elucidation.

Compound D4 binding affinity (nM) D2 binding affinity (nM)

1 (Moore #4)

2 (nemonapride)

3 (Unangst #5)

4 (Rowley #28)

5 (Rowley #29)

6 (Rowley #30)

7 (Carling #8)

8 (Rowley #32)

0.39

0.21

1.5

930

44

3.6

0.6

1.6

6.1

0.16

436

690

160

130

56

200
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Figure 2.19. Ligand structures used to determine pharmacophore.

2.6.1.1 Conformational Analysis

As most compounds were not available in the Cambridge Crystallographic Databasetn]

(CCDC) they were built in Sybyl[13] by combining and altering standard fragments

using standard geometries. Compounds were initially built in an extended

conformation, then minimised using the MMFF94s force field, MMFF94 charges and

the Powell minimisation method for 1000 iterations, or until a termination gradient of

0.01 kcal/(molA) was reached.

Most of the compounds containing nitrogens are expected to be protonated at

physiological pH and as this can influence conformation, they were modelled in the

protonated state. The pKa value of each ligand used in defining the pharmacophore was

ill
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calculated using ACD pKa calculator1201, and then their percent protonation at

physiological pH was determined (Table 2.11).

Some compounds show a strong probability for intramolecular hydrogen bonding.

Examples are all compounds in the Ohmori set and some of the Carling data set. The

influence of intramolecular hydrogen bonding must be considered when conformational

analysis is undertaken. Therefore a search of the CCDC for compounds with

intramolecular hydrogen bonding similar to that of the ligands used was undertaken to

obtain probable conformations.

1 and 2 (see Figure 2.18) were subjected to conformational analysis using a systematic

search around the bonds shown in Figure 2.18. The Tripos force field[ 81 was used with

van der Waals radius scale factors set at 0.65, charges were assigned by the Gasteiger

and Marselli method and two degree increments were used to locate positions of local

and global minima. The lowest energy conformations within each of the local minima

of the potential energy surface were identified as potential binding conformations.

Mopacl69>70] calculations were done in five-degree increments around the same bonds

used in the systematic searches of 1 to verify energy differences or similarities from

those obtained by the molecular mechanics systematic search.

Simulated annealing for ten cycles, starting at 1000 degrees using default parameters for

the base temperature (200 °C) and cooling rate (exponential decay), was used to

generate a number of structures. These were minimised within Sybyl to reveal the full

range of conformations of the protonated pyrrole ring of 2 and other possible

conformations of the semi-rigid chromenone, 3.

The large number of possibilities that the benzyl substituents attached to the tertiary

nitrogen of piperidine or pyrrole (see Figure 2.19) could adopt was explored via a

conformational energy map constructed to identify any minima. The conformational

minima were compared to relevant crystal structures from the CCDC, and those shown

in Figure 2 of the paper by Rowley et al.

A search of the CCDC for compounds having a phenyl ring joined to a pyrazole ring

was undertaken to check the relative orientation of the aromatic rings. The range of
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conformations generated from conformational searching for each compound was

reduced further by comparing them to compounds 3 to 6. These latter compounds

provide a filter for the conformational space due to the presence of additional structural

moieties (fused tricycle, 3; spiro ring system, 4; isoxazoles in 5 and 6).

2.6.1.2 Superimposition: Defining the Pharmacophore

To develop a possible pharmacophore for D4 antagonist interaction, the different

conformations generated from the above analyses, were compared by superimposition.

Dummy atoms, used to represent points of likely receptor interaction (as shown in

Figure 2.20 for 1) were used to study superimpositions. Superimpositions were

undertaken using the centroids of the aromatic rings in question. An additional dummy
0

atom was built 2.8 A from the distal nitrogen of the piperidine ring, along the vector of

the ammonium hydrogen, to represent a proton donor or acceptor interaction119].

Another additional dummy atom was built 2.8 A from the nitrogen of the pyrazole ring,

along the vector of the lone pair for appropriate ligands. For ligands with a

2-methoxybenzamide ring structure, the dummy atom was built 2.8A from the oxygen

along a vector angle of 128ot7I], eight degrees away from the direction of the idealised

sp2 lone pair. If only one hydrogen bonding interaction with oxygen is envisaged, it

may still be further away from the direction of the idealised sp2 lone pairf72]. Therefore

additional dummy atoms were built along a vector in further 10° increments (see Figure

2.21), to assess whether the pharmacophore could be refined. The dummy atom for the

chromen-2-one moiety of 3 was built 2.8A along the vector of the lone pair, from the

sp3 oxygen involved in the ring structure. All dummy atoms used in the

superimpositioning are postulated to represent proton donor or acceptor interactions.

hin-
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:N
H3C \2.8A

c>
Figure 2.20. Dummy atoms, B, C, X and G used in the superimposition studies, are

represented by solid circles. Dummy atoms B and G are at the benzene ring centroids.

jdummy atom C \\.'> jdummy atom C

Figure 2.21. Angular variation of dummy atoms at oxygen illustrated for 2.

The weightings of the dummy atoms for superimpositioning were adjusted so that

greatest weight was given to dummy atoms attached to the ring nitrogens, in particular

dummy atom X that is essential for specific ligand binding. This was done to

emphasise these interactions that are more site specific compared with those

representing hydrophobic interactions of aromatic rings (see Table 2.10).

Table 2.10. Dummy atom weightings.

Ligand

1

2

3

dummy B

0.3

0.3
**

dummy C

0.7

0.7

0.5

dummy X

1

1

1

dummy G

0.3

0.3

0.5

** indicates that there is no ring near this position to create a centroid.

2.6.1.3 Pharmacophore Validation using GASP

Genetic algorithm similarity program (GASP)[73'74] is a module available within the

Sybyl software suite that uses a genetic algorithm to discover the correspondence

between functional groups in different molecules and the alignment of these groups in a

i 1
5 ;
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common geometry. GASP was run on the D4 antagonists 1, 2, 7, and 8 in both ring

flexible and rigid modes to assess the possible binding conformations of these

compounds.

2.6.2 Extended Molecular Field Analysis i
z 'i

In this section Comparative Molecular Field Analysis (CoMFA) is used to develop a

pseudoreceptor model for D2, and D4 antagonist activity using published data from a

series of extended structures152'53'55'563, in an attempt to elucidate some aspects of

selectivity and specificity within the D2 and D4 receptors.

CoMFA was carried out on the series of extended analogues given in Tables Moore,

Rowley, Carling, Ohmori, Kesten, Sanner, Belliotti and Thurkauf (Appendix) using the

published receptor binding affinities.

2.6.2.1 Molecular Field Analysis

QSAR were created for all the data sets developed in the following sections using the

method outlined earlier.

The values for CoMFA used were: a grid spacing of 1.5A, an sp3 carbon probe with a

+1 charge, box smoothing and standard CoMFA scaling. CoMFA electrostatic and

steric fields were generated with a grid spacing of 1.5A. Partial Least Squares (PLS)

analysis was carried out on each database. Leave one out (LOO) cross-validation was

used to select the number of principal components for cross-validated statistics with

column filtering set at 2.0 kcal/mol. The final CoMFA model was generated using no

cross-validation and the number of components suggested by the LOO validation

run[25].

Compounds were aligned using the fieldfit method, which minimises the compound in

question into the steric and electrostatic fields of the tightest binding ligand. The

overall weight term, SFF value, for this procedure was set at 10. This was followed by

a quick minimisation for 50 iterations to obtain the final alignment.

p ''
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Earlier analysis of different charged states and methods for charge generation of our

compounds, showed that ESP charges gave the best resultant CoMFA models for both

charged states. No additional insights were gained by performing CoMFA on neutral

compounds, thus the protonation state most likely under physiological condition, +1,

was used. Rotation of the compounds within the CoMFA grid was also performed to

obtain optimum final models.

!; j
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2.7 RESULTS AND DISCUSSION

2.7.1 Extended Pharmacophore

2.7.1.1 Conformational Analysis

The results for the computed protonated states of the ligands used in the development

are shown in Table 2.11, which emphasises the importance of modelling ligands in a

protonated state as five of the six ligands are predominantly protonated at physiological

pH. The exception is 3 whose pKa is dubious, particularly since the pKa of mono-

unsaturated piperidines, a part of 3, have pKa values of the order of 7.75, giving

approximately 70% protonation at pH 7.4.

LogD (Table 2.11), the octanol/water partition coefficient at a selected pH which is a

measure of a compound's permeability or lipophilicityt75], was calculated using the

logD calculator from ACD. LogD gives an indication as to absorption or permeation of

the blood brain barrier (BBB), with compounds having a log D greater than five

expecting poor absorption or permeation^7 .

Table 2.11. Characteristics of Ligands Used for Defining Proposed Pharmacophore

pKj %protonation logD
Ligand Kj(nM) logP

(pyrrole/piperidine) at pH=7.4 (pH=7.4)

1

2

3

4

5

6

0.39

0.21

1.5

930

44

3.6

8.06

8.3

5.91

8.75

7.69

7.83

82

89

3

96

66

73

4.96

3.66

4.30

6.65

5.58

5.27

4.21

2.72

4.28

4.92

5.11

4.70

pKa, logP and logD calculated using ACD labs version 3

A survey of the CCDC for compounds containing the 2-methoxybenzamide structure'77"
J without additional substituents, showed an almost planar conformation of the

hydrogen bonded six membered rings in 100% of these compounds. Therefore planar

conformations were used in the generation of conformers for further work. However it

"i i
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should be noted that 2-methoxybenzamides may not always be planar in solution and

this must be kept in mind during the analysis.

The molecular mechanics systematic search conducted on 1 generated three main

families: gauche -ve, gauche +ve and antiperiplanar, shown in Figure 2.22. Mopac

systematic search calculations on 1 gave a similar profile although only relative energies

are shown in Figure 2.22. The global minimum from Mopac calculations was found to

be located at a torsion angle of 240 degrees, corresponding to the periplanar confonner.

This gave four main starting conformations considered as possible binding modes,

shown in Figure 2.23.

i l
I if
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27-
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Torsion (degrees)

Figure 2.22. Systematic search of 1. Circles represent the antiperiplanar confonner,

diamonds represent the gauche -ve confonner, triangles represent the periplanar

confonner and squares represents the gauche +ve confonner.
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100
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gauche+ve periplanar antiperiplanar gauche-ve
Figure 2.23. Newman-like projections of four initial binding modes.

Table 2.12. Relative energies of 1 conformations with different force fields and

solvents

AE Conformations (kcal/mol)

Force Field

(solvent)

Tripos

Systematic Search

MM94S

Amsol

(vacuum)

Amsol

(water)

Amsol

(alkane)

gauche -ve

0

2.07*

0+

2.16+

0.511

gauche i

0.21

2.21*

0.0 lf

2.14f

0.51*

periplanar antiperiplanar

0.25

0

0.02

2.13

0.51

0.75

3.45

2.76

0

* indicates that the protonated nitrogen and the pyrrole ring nitrogen were held as aggregates due to

significant conformational changes,

indicates that the comjjounds adopted a periplanar conformation due to minimisation.

A study of the relative energies of these four starting conformers of 1, Table 2.12, was

undertaken. The different force fields and solvents show that all possible binding

modes are energetically feasible. In the presence of a solvent, the antiperiplanar

conformer appeals energetically more favourable as a possible binding mode; however

the energy differences between all conformations are minimal. The gauche -ve and

gauche +ve conformations, despite being minimised into the periplanar conformation by

Amsol, are less than 3kcal/mol higher in energy than this conformation.
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For the simulated annealing of the protonated pyrrole ring of 2 we used the four

structures shown in Figure 2.24 as separate starting conformations This is because the

simulated annealing process within Sybyl is known to have problems in modelling the

inversion of the nitrogen atom[911.

T
l

t L

f !
{ i

i

CIS

protonation ":N—Bz trans
protonation

high energy
planar conformation

/ Bz

Figure 2.24. Starting conformations for simulated annealing. In each case R

represents 2-methoxy benzamide.

When the nitrogen in the pyrrole ring is protonated the hydrogen can attack from either

the cis or trans side (see Figure 2.24), with respect to the methyl substituent at position

2 on the ring. Although attack is expected from both sides of the ring, attack from the

cis side would be a lot more unfavourable due to steric interaction between both the

methyl and amide substituents present in positions 2 and 3 respectively.

Simulated annealing of a fragment of 2 containing the protonated pyrrole ring and

benzyl, methyl and amide substituents followed by minimization, gave five significantly

different envelope conformations, with the benzyl substituent in an equatorial position.

All conformations generated with the benzyl group in an axial position were over five

kcal/mol higher in energy than the highest energy equatorial benzyl conformation that

was considered, thus they were not considered for further conformational analyses.

;• i
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The fragment with the lowest energy of all the fragments considered, by about four

kcal/mol, due to another intramolecular hydrogen bond forming a seven membered

hydrogen bonded ring is shown in the extended form in Figure 2.25. This conformation

of 2 was not considered as a possible binding mode as the protonated nitrogen is

inaccessible for binding at a postulated receptor binding site, and also didn't fit with any

of the existing binding modes from 1.

Figure 2.25. Lowest MM energy conformation of 2.

As 2 is such a tight binding ligand it is expected to adopt a low energy conformation,

which would have to be an extension of one of the remaining four low energy fragments

elucidated from simulated annealing.

Comparing distances between important pharmacophoric elements from systematic

searches of the four remaining low energy fragments of 2 with those from 1, revealed

that only one of the fragments could account for all possible binding conformations.

Therefore the extension of this fragment, Figure 2.26, was used in further

conformational analyses.

\n\
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NO

Figure 2.26. 3-D structure of 2, showing relevant hydrogens only.
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Table 2.13. Relative energies of 2 conformations with different force fields and

solvents

AE Conformations (kcal/mol)

Force Field

(solvent)
gauche -ve gauche +ve periplanar anti peri planar

Tripos

Systematic Search

MM94S

Amsol

(vacuum)

Amsol

(water)

Amsol

(alkane)

0.67

5.23

13.76

0

0

0

0

10.08

2.52

4.55

2.97

7.01!

5.22

3.79

4.71

11.67

5.19*

**0

11.95

7.43

* indicates that protonated nitrogen and amide group were held as aggregates due to significant

conformational changes,

** indicates significantly different conformation due to minimisation.

Again a systematic study of the relative energies of the four starting conformers of 2,

Table 2.13, was undertaken. The different force fields and solvents show that all

possible conformations generated are energetically feasible, with the gauche -ve and

gauche +ve seeming to be the best candidates as binding modes in four out of five

cases.

A conformational potential energy surface was constructed for the benzyl substituent on

1, to give an idea as to its likely position.

T f
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Figure 2.27. Conformational potential energy surface. Squares, diamonds an3 circles

indicate the position of the global and local minima, respectively, of the benzyl

substituent of 1. RBI and RB2 represent the two rotatable bonds joining the benzyl

substituent.

The conformational potential energy surface map (Figure 2.27) shows that there are six

main minima. However because a 180° rotation of the phenyl ring gives the same

result, there are only three distinct minima. The conformers at (190°, 807260°)

representing the global minima are 0.33 and 0.96 kcal/mol lower in energy than the

conformers at (305°, 1057285°) and (70°, 907270°) respectively.

•• i

A similar conformational potential energy surface map for the benzyl substituent of 2

(not shown) gave two minima, corresponding to those at (190°, 807260°) and (305°,

1057285°) in Figure 2.27. The conformation represented by (190°, 807260°) in Figure

2.27 is in agreement with the crystal structures of conformations presented in the paper

by Rowley et al and the crystal conformed88'92'951 from the CCDC. The conformation

represented by (305°, 1057285°) in Figure 2.27 is in agreement with the crystal

conformers[89>95'%1 from the CCDC. Therefore both low energy arrangements of the
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benzyl ring seem possible as a binding mode. The global minimum conformation

represented by (190°, 807260°) was used in further analyses.

A search of the CCDC for compounds with a phenyl pyrrole moiety, showed that these

aromatic moieties were not coplanar. A number of structures197"103] were found with the

torsion angle ABCD (see Figure 2.28) varying between ±(13 to 77) degrees, with an

absolute average of 48°. Therefore the most energetically favourable positive and

negative torsion angles obtained from Mopac minimisations of ligands with the phenyl

pyrrole moiety were chosen as the two initial conformations.

i n

III
i-

V fi
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Figure 2.28. Phenyl/Pyrrole Torsion Angle

2.7.1.2 Superimposition: Defining the Pharmacophore

In order to reduce the number of possible conformations the phenyl ring could adopt, 1

and 2 were compared. With its intramolecularly constrained conformation, 2 gave some

idea as to the position of the plane of the phenyl ring. The best fit with the 2 conformer

was seen when the torsion angle ABCD (see Figure 2.28) was in the negative

orientation for the gauche +ve conformer, with a RMS fit of 0.691 A, and in the positive

orientation for the gauche -ve confonner, with a RMS fit of 0.653A. Therefore these

torsions were used for further modelling. The fits for the periplanar and antiperiplanar

confonners were not improved by altering this torsion angle, thus taking away some

significance from these as possible binding modes.

The periplanar conformer already shown to be less likely as a binding mode due to the

displacement of the phenyl planes from differing compounds was eliminated by

comparing 4 to the existing periplanar model. Compound 4 (see Figure 2.19) which is

a conformationally constrained molecule due to its spiro ring system, has the nitrogen

!• is

I ill
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lone pair pointing directly upwards parallel with the protonated piperidine hydrogen, as

in the periplanar conformation. The binding affinity of 930 nM for 4 indicates that this

is not a favourable conformation for binding.

Therefore in order to accommodate all the ligands analysed so far, only the gauche -ve,

gauche +ve and antiperiplanar conformations could be possible.

To further reduce the conformational space, conformational searching was performed

on the chromenone system. Simulated annealing of 3 gave two possible conformations

for binding that fitted with the existing models. The two possible conformations were

the gauche +ve (see Figure 2.29) and gauche -ve confonner models. The

antiperiplanar confonner model was unable to satisfactorily accommodate any

conformation of 3 without the chromenone plane being too far displaced from the

existing planes. Thus if compound 3 is binding in the same site as compounds 1 and 2 it

is unlikely that the antiperiplanar confonner is a binding mode. Therefore from

analyses so far the gauche +ve and gauche -ve confonner models seem jnost viable

from the original possibilities. However when superimposing compound 3 onto these

models the lone pair from the oxygen included in the ring of 3 is not pointing to the

same location in space as that of the existing gauche +ve and gauche -ve models and is

separated by a distance of 1.25A from the lone pairs of the model. Therefore a

hydrogen bond from this region would not be as strong unless the binding site is capable

of some movement. However when 3 is translated to the left or right, so as to align the

protonated nitrogen, the distance between the dummy atoms from the nitrogen on the

pyrrole ring and the ring oxygen in the chromenone was found to be approximately

2.1 A (see Figure 2.11). This distance of 2.1 A is consistent with rotation of a carboxylic

acid group on the receptor with which the oxygen included in the ring of 3 could

interact.
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Figure 2.29. 3 (orange) superimposed on 1 (white) in the gauche +ve conformation

showing the placement of a possible carboxylic acid interaction site.

The previous analyses established that if the molecules studied were binding in the same

binding site, the most likely binding modes were gauche -ve and gauche +ve

conformations. In order to distinguish which conformer is a more likely candidate for a

possible binding mechanism, 5 and 6 were examined. The crystal structures of these

compounds'5:>l show that 5 adopts the gauche +ve conformer orientation and 6 an

orientation midway between an antiperiplanar and gauche -ve conformer orientation.

As 6 has a binding affinity 10 times greater than that of 5 it can be said that this ligand

does not need to undergo such a large energy rotation penalty in comparison to 5, to

achieve the correct orientation. Therefore the gauche -ve conformer orientation that it is

closer to is more likely to be the biologically active conformer. However, this increased

affinity could also be due to a more favourable logD, as 5's logD is greater than five

indicating poor absorption or permeation of the BBB. 6's increased affinity could also

be due to better directionality of the lone pairs from the participating oxygen atom or

even due to overly strong hydrogen bonding. Although when compared to similar

compounds from the same paper (Rowley #35 and Rowley #36) where there is also an

oxygen atom present, the binding affinity is only 0.5-fold greater. This suggests that the

oxygen atom alone does not account for the 10-fold greater activity exhibited by 6

compared to 5 and that some other properties are at play. In addition to this the most

stable hydrogen bond to the isoxazole ring is with the nitrogen, which is consistent with

the CSD scatterplot'30' that shows that the majority of H-bonds in crystal structures go
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to the ring N, not the ring O. Thus we can tentatively say there is a greater probability

that the gauche -ve conformer orientation, which is similar to the crystal structure of 6,

is a more likely candidate for binding, unless other factors are at play.

Figure 2.30 shows he models generated here accommodate all the tight binding ligands

from the papers mentioned throughout. 1 fits extremely well into the model and has a

distance of 3.90A between dummy atoms B and C, the dummy atom from the pyrrole

ring and protonated nitrogen respectively. The distance between dummy atoms B and C

for 2 is 2.11k and the placement of its plane from the phenyl ring and hydrogen bonded

six membered ring is marginally askew compared to 1. This minor discrepancy in plane

placement might explain the higher binding affinity for 2 compared to the other

compounds analysed

The only compound that did not initially fit into the model was 3. However after

translation to align the protonated nitrogens it was shown to fit well into the model. The

directionality of the lone pair from the oxygen atom was roughly parallel with the lone

pairs from the other ligands (see Figure 2.31).

X / u m m y atoms

OH

dummy atom C>>

heteroatom
[N,O]

Figure 2.30. The gauche -ve orientation model, with dummy atoms D and D'

corresponding to benzyl conformations square and diamond from Figure 2.27,
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respectively- Distances for proposed pharmacophore: BC = 6.4 ± 0.5A, BX = 9.4 ±

0.5A, CX=3.S ± O.lA. XG=XG' = 4.2 ± 0.3A

Figure 2.31. gauche -ve orientation model, looking along the plane of the rings.

The model constructed here is subject to some limitations, as all ligands were initially

constructed in a low energy extended conformation and this may not be the case in-vivo,

although the conformational analysis was used to counteract this problem. All

modelling was done //; vacuo, which may not be the case under physiological

conditions. However the energies we calculated in different solvents, (Tables 2.12 and

2,13), demonstrate that the proposed conformations are realistic for different media.

Use of intramolecular hydrogen bonding in the modelling assumes a constraint that may

not exist under biological conditions. In addition the benzyl substituents of the ligands

could not be definitively placed into a particular region; however these findings were

supported by a survey of the CCDC and comparing conformations to crystal structures

and global minima, respectively.

2.7.1.3 Phajmacophore Validation using GASP

GASP was run on the antagonists 1, 2, 7, and 8 in both ring flexible and rigid modes to

assess the possible binding conformations of these compounds. The highest scoring

pharmacophore with obvious similarities to the model constructed via conformational

analysis is shown below in Figure 2.32. The distances between ring B and position X,

and ring G and position X are 9.37A and 4.21 A, respectively. These distances compare
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favourably with the distances derived from conformational analysis model with BX =

9.4 ± 0.5 and GX = 4.2 ± 0.3 (see Figure 2.30).

Figure 2.32. The highest scoring resultant pharmacophore from the GASP analysis of

compounds 1, 2, 7 and 8.

2.7.1.4 Comparison with other D: and D4 Antagonist Phannacophores

At the commencement of this work there was little published material on D4

phannacophores, apart from the tricycle model, derived from octoclothepin and

tefludazine, proposed by Bostrom et u/'10"4'. However at the same time that this model

was first shown at the 13th European Symposium on QSAR, Jonas Bostrom presented a

model combining both the tricyclic and elongated phannacophores and this work was

later published in JCAMD in November 2000. The model developed here has some

similarities to the combined model developed by Bostrom et al)35\ although different

ligands were used in its development and only regions B and G were explored, see

Figure 2.30. The model proposed by Bostrom et al. aids in the refinement of the model

presented here allowing for differing placements of the chromenone moiety within the
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model. Indeed it would seem more likely that the chromenone occupies regions A and

G of the Bostrom et al. model'35', see Figure 2.33.

Figure 2.33. Different possible binding modes of chromenone (white) shown with

spiperone (magenta) and clozapine (orange) superimposed on pharmacophore.

Given that the chromenone moiety is preferentially located in regions A and G, the

reasoning for the removal of the antiperiplanar orientation is flawed. In addition to this

when compound 1 used in the pharmacophore elucidation is placed in a gauche -ve

orientation onto the CoMFA fields derived in the tricyclic analysis, unfavourable

interactions can be seen with sterically prohibited areas, see Figure 2.34.



Figure 2.34. Compound 1 placed onto the D2 CoMFA steric fields from the tricyclic

analysis, showing the unfavourable interaction between (he methyl group from the

pyrazole ring and the sterically prohibited areas.

Therefore although the phannaeophore proposed may be a possible binding mode for

compounds without large substituenls from position 3 on the pyrazole ring, it appears

energetically more favourable for compounds similar in structure to compound 1 to

adopt an antiperiplanar orientation. This preference for an antiperiplanar orientation is

seen when looking at compound 1 whilst solvated (see Table 2.12) "relative energies of

1". However compound 2 with its methoxy-benzamide structure still fits best into the

phannaeophore when in the gauche -\>e orientation (see Figure 2.35), and no

unfavourable steric interactions are observed. In fact, in contrast to compound 1

unfavourable steric interactions are seen when compound 2 is in an antiperiplanar

orientation. Moreover, compound 2 is preferentially orientated in a gauche -ve

orientation whilst solvated (see Table 2.13) "relative energies of 2". Therefore changes

were made to the orientation of compounds similar in structure to I, thus compounds 1,

5, 6, 7 and 8 were modified to adopt an antiperiplanar orientation for their subsequent

CoMFA analyses.



Figure 2.35. LEFT: Compounds 1 (orange) and 2 (magenta) superimposed, with 1 in

an antiperiplanar orientation and 2 in a gauche -ve orientation, only relevant

hydrogens are shown. RIGHT: Final pharmacophore model with regions A, B, G, and

the hypothetical point of interaction, X, shown.

The model presented by Bostrom et al. also allowed for further refinement of the model

generated here in regards to the placement of the benzyl substituent, by comparison to

the semi-rigid compound, spiperone with its spiro ring system (see Figure 2.33). The

excellent work by Bostrom et al. and the range of compounds covered in this paper was

the i mpetus for extending the range o fcompounds analysed i n the following section

Extended Molecular Field Analysis.

2.7.2 Extended Molecular Field Analysis

Initially only compounds covering areas B and G of the pharmacophore from the

datasets of Carling et al)5A\ Rowley et a/.'55', Moore et <r//.'53J and Ohmori et c;/.|52] were

analysed. With the expansion of the pharmacophore model to include the tricyclic

pharmacophore developed earlier, we were able to analyse the compounds mentioned in
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the tricyclic section as well as a number of additional datasets from Sanner1605,

Kesten[63], Belliotti[66] and Thurkauf1671. This increased the area being analysed within

the CoMFA model to include compounds covering regions A and B, and regions A and

G in addition to regions B and G (see Figure 2.35). This brought the total number of

compounds being analysed to 178 and 187 for the D4 and D2 binding activities,

respectively.

2.7.2.1 Data Selection

The compounds used in the final CoMFA model are from the data sets of Phillips et

al.l2223], Liegeois et alP*\ Carling et a/.1541, Rowley et alP\ Moore et a/.[53], Ohmori et

al.[52i Sanner et al.m, Kesten et al.m, Belliotti et al.m and Thurkauf et al.m. The

datasets of Phillips et a/.l22>23] and Liegeois et al.[2A] cover regions A and B. the datasets

of Carling et al.lSA\ Rowley et al.l55\ Moore et al.[53] and Ohmori et al.[52] cover regions

B and G and the datasets of Sanner et al.m, Kesten et al.m, Belliotti et al.m and

Thurkauf et a/.t67' cover regions A and G.

The first three new datasets of Carling et a/.[54], Rowley et al.[55] and Moore et al.[53] are

from the same laboratory, Merck Sharp and Dohme U.K., and contain ligands with

intramolecular hydrogen bonding and sub nanomolar binding affinities.

The paper of Carling et al. contains a series of 4-ureido-N-benzylpiperidines with some

interesting intramolecular hydrogen bonding possibilities as well some

Imidazol-2-one-N-benzylpiperidines with sub-nanomolar binding affinities. The

binding affinities were obtained by displacement of [3H]spiperone from cloned human

D4 receptors expressed stably in HEK-393 cells. All 30 new compounds presented in

this paper were modelled.

The paper of Rowley et al. contains a series of heterocyclylpiperidines consisting

mainly of pyrazole- and isoxazole-piperidines moieties. The binding affinities were

obtained by displacement of [3H]spiperone from cloned human D4 receptors expressed

stably in HEK-393 cells. Of the 35 new compounds presented in this paper 32 were

modelled, compounds 20, 21 & 26 were not included in the model because of
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incompatible structural arrangements and poor binding affinities. In compounds 20 and

21 the different placement of the nitrogen in the piperidine ring gave differing

directional vectors to the other compounds and thus differing distances between the

pharmacophoric elements of interest. For compound 26 the addition of a methyl group

into the piperidine ring forced the diketone to an axial conformation. This is similar to

compound 27 however it is stated for compound 27 that, "there is little energy

difference between the two ring flip conformations, and the pyrazole-equatorial

conformation required for binding is energetically accessible"1551. Therefore the

pyrazole-equatorial conformation of compound 27 was added to the model.

r
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The paper of Moore et al. contains a series of 4-N-/m/:ed-heterocyclic piperidine

compounds very similar to those in the paper by Rowley et al. All 16 new compounds

presented in the paper were modelled. The binding affinities again were obtained by

displacement of [3H]spiperone from cloned human D4 receptors expressed stably in

HEK-393 cells.

The Ohmori data set is from the Yamanouchi Pharmaceutical Company, which

manufactures the D4 radioligand nemonapride (YM-09151-2). The Ohmori et al. paper

contains the racemic radioligand nemonapride as well as 22 new

N-(l-Benzyl-3-pyrrolidinyl)-5-chloro-4-[(cyclopropylcarbonyl)amino]-2-

methoxybenamide derivatives and reference compounds. The binding affinities were

obtained by displacement of [ H]nemonapride from cloned human D4.7 receptors

expressed stably in CHO cells. The reference compound haloperidol shows comparable

binding affinities at D4 and D2. However D4 and D2 binding affinities for clozapine are

approximately 4-fold higher indicating that the binding affinities in the high nanomolar

range, as is the case for clozapine, may actually be tighter than those reported compared

to the testing by the Merck Sharp and Dohme laboratories. All new Iigands reported

and nemonapride were modelled.

The Sanner dataset is from Pfizer Central Research in Groton U.S.A. and presents 15

new pyrido[l,2-a]pyrazine analogues. The binding affinities were obtained by

displacement of quinpirole from cloned human D2 and D4 receptors expressed stably in

CHO cells. The binding affinities of the reference compounds haloperidol and

1 A
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clozapine were similar to those in the Merck Sharp and Dohme papers. All compounds

were modelled with the exception of the optical isomers (±)3a and (±)10a.

The Belliotti and Kesten datasets are both from the same laboratories, Parke-Davis

Pharmaceutical Research Michigan U.S.A. The binding affinities for the Belliotti

dataset were obtained by displacement of haloperidol from cloned human D2L and D4.2

receptors expressed stably in CHO cells. All new compounds presented in the Belliotti

paper were modelled. The binding affinities for the Kesten dataset were obtained by

displacement of [3H]spiperone from cloned human D:L and D42 receptors expressed in

CH0-K1 cells. All new compounds with the exception of compounds 22 to 31 were

modelled where binding data was available. Compounds 22 to 31 were not modelled

due to their highly flexible nature.

The Thurkauf dataset is from the Neurogen Corporation and contains 8 new

2-Phenyl-4-(piperazine-l-ylmethyl)imidazole analogues, all of which were added to our

analyses. The binding affinities for the Thurkauf dataset were obtained by displacement

of [3H]YM 09151, nemonapride, from cloned human D2 and D4 receptors expressed in

CHO cells. The binding of the reference compounds clozapine and haloperidol are

comparable to those of the Phillips datasets and marginally higher than those presented

by the Merck Sharp and Dohme group.

2.7.2.2 CoMFA Field Interpretations

All fields shown in this section were generated using the method outlined in Molecular

Field Analysis. The contour levels for visualisation of the CoMFA fields were set to

represent 50% of the relative contribution of each factor involved in correlating the

pharmacophore model to activity.

D2 Dopaminergic model

When the database of compounds was rotated 30° around the y-axis relative to the

starting orientation, the best model with the highest q2, r2 and the lowest standard error

of prediction was found. The resultant model built from 187 compounds had 8

I fl
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components giving a q2 of 0.54 and a r of 0.859 with a standard error of estimate of

0.336; the relative contributions to the model were 43% and 57% from the steric and

electrostatic fields, respectively. The 187 compounds spanned a pKj range of almost 5

log units. The predicted activities of all compounds were within ±0.85 pKj log units of

their measured values. An improvement in the predictive ability of the model to 0.56

was seen when region focussing was applied to the analysis, although this was with the

inclusion of an additional component. In actual fact the F statistic for the region

focussed model was lower than that of the original analysis, indicating that region

focussing did not improve the model.

Figure 2.36. CoMFA fields showing steric contributions from analysis of all the Dj

binding affinities for the 1S7 compounds. The diagram on the left shows clozapine with

Carling #75, the diagram on the right shows clozapine (orange), nemonapride (left) and

Belliotti #16. Green areas indicate where additional steric bulk is favourable, and

yellow areas where it is not favourable for Di binding.

There are a number of similarities between the previously developed tricyclic model

(see Figure 14), and this complete analysis (see Figure 2.36). Region Gl where

additional bulk is provided by the chlorine substituent in the tricyclic model is again

present in this complete model. Interestingly the detrimental effect of additional bulk

from the bulky alkyl substituents of the tricyclic model seems to be tolerated in this
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complete model which may be due to the additional range of compounds not having this

feature in common yet also exhibiting poor D2 binding affinities. Steric bulk is also

shown as favourable for increasing binding in two regions above ring B, G3 and G4.

These regions are a result of the tightly binding compounds from the Ohmori dataset

occupying this area due to a different planarity of their hydrophobic ring system. The

methoxy substituent of compounds from the Ohmori dataset occupies region G2. The

Ohmori compounds are again implicated in the region Y2 where additional steric bulk is

unfavourable to D2 binding. The logic behind this is easily seen when looking at the

Ohmori dataset with the binding affinity of compounds decreasing with increasing size

of substituent in this area. Another feature of the steric contours shown in Figure 2.36

is the detrimental effect of bulky substituents in region Yl; this position corresponds to

positions 3 and 4 of ring A, for the compounds in the Belliotti, Thurkauf and Sanner

datasets. This is easily seen the in right hand side of Figure 2.36 with the bulky

3,4-di-methyl substituent of Belliotti #16 reducing its binding affinity in comparison to

compounds from the same dataset with only a para methyl substituent.

Figure 2.37. CoMFA fields showing electrostatic contributions from analysis of all the

D2 binding affinities for the 187 compounds. The diagram on the left shows clozapine

with Carl ing #15, the diagram on the right shows clozapine (orange), nemonapride

(left) and Belliotti #16. Blue regions indicate where partial positive charge increases

affinity and red regions indicate where partial negative charge increases affinity.
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The electrostatic fields, shown in Figure 2.37, show a number of regions where partial

positive charge enhances activity. Again the detrimental effect that a nitrogen in

position A. region B2, can have on D2 binding affinity, as shown in the tricyclic model,

is represented in this complete model. In addition to this a nitrogen present in region

B3, position B of the piperazine ring, is also shown to be detrimental to D2 binding

affinity. This position also corresponds to the position of the nitrogen in piperazine ring

for compounds that bind in regions A to G, such as those compounds from the Belliotti,

Sanner, Thurkauf and Kesten datasets. The detrimental effect of the nitrogen can be

seen when comparing Belliotti #16 to Belliotti #20, (Appendix Table Belliotti), where

the presence of nitrogen in region B3 reduces binding 4-fold. The detrimental effect of

electronegative substituents in region Bl, the para position of ring A, is evident in this

model. This is easily seen when looking at compounds Sanner #10j and #101 compared

to Sanner #10c and #10i, respectively, with their electronegative substituents occupying

region and reducing binding affinity (Appendix Table Sanner).

There are a number of regions where partial negative charge enhances activity, located

around the piperazine ring substructure. These regions, Rl and R2, around the

piperazine ring appear to be due to the charge distribution of this substructure. This

emanates from the different electronic environments of the piperazine and piperidine

substructures. The piperazine ring with its additional nitrogen withdraws electrons from

the neighbouring carbons, thus imparting on them a partial positive charge relative to

the same carbons on a piperidine ring. This indicates that a piperidine ring is

preferential for increasing D2 binding affinity, and this is evident when comparing

compounds Belliotti #16 to Belliotti #20 and Kesten #19 to Kesten #5 (Appendix Table

Kesten). Region Rl may also be due in part to the compounds from the Ohmori and

Carling datasets that both have oxygen located in this vicinity and are in general tighter

binding compounds than those present in many other datasets (Appendix Tables Ofemori

and Carling).

D4 Dopaminergic model

When the database of compounds was rotated 60° around the x-axis relative to the

starting orientation, the best model with the highest q2, r2 and the lowest standard error
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of prediction was found. The resultant model had 8 components giving a q~ of 0.52 and

a r2 of 0.862 with a standard error of estimate of 0.366; the relative contributions to the

model were 4 8% and 5 2% from the steric and electrostatic fields, respectively. T he

predicted activities of all compounds were within ±0.85 pKj log units of their measured

values, with the exception of compounds 3 A and PI that had residuals of-1.28 and 1.16

log units respectively. An improvement in the predictive ability of the model to 0.534

was seen when region focussing was applied to the analysis, although this was with the

inclusion of two additional components. In actual fact the F statistic for the region

focussed model was lower than that of the original analysis, indicating that region

focussing did not improve the model.

Figure 2.38. CoMFA fields showing steric contributions from analysis of all the Dj

binding affinities for the 178 compounds overlayed. The diagram on the left shows

clozapine with Carl ing #15, the diagram on the right shows clozapine (orange),

nemonapride (left) ami Belliotti #16. Green areas indicate where additional steric bulk

is favourable, and yellow areas where it is not favourable for D4 binding.

The steric fields from the complete CoMFA model show a multitude of smaller areas,

due to the large number of components used in the model. There are some similarities

to the tricyclic model developed earlier, in particular the region where large alkyl group

groups were reducing binding affinity in region VI from the tricyclic model. The
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region where additional bulk is favourable to binding affinity in region G4 is again

present in this complete D4 model. There are a number of other regions where

additional steric bulk is favourable to binding affinity, for example in region G5 where

the extra hydrophobic group sits. Additional bulk in region G3, corresponding to the

methyl substituent from the imidazolone ring of Carling #15, also increases binding

affinity. This can be seen when comparing compounds Carling #10 to Carling #11,

where the addition of an ethyl substituent increases binding affinity over one order of

magnitude. Not unlike the D2 steric model the Ohmori compounds are implicated in the

region Y2 where additional steric bulk is unfavourable to D2 binding. It also appears as

though large substituents on ring A occupying region Y3 are not as well tolerated in this

D4 model compared to the D2 model.

Figure 2.39. CoMFA fields showing electrostatic contributions from the complete Dj

model. The diagram on the left shows clozapine with Carling #15, the diagram on the

right shows clozapine (orange), nemonapride (left) and Belliotti #J6 (right). Blue

regions indicate where partial positive charge increases affinity and red regions

indicate where partial negative charge increases affinity.

The electrostatic contributions for D4 from the complete model differ slightly to those

obtained from the trL/clic model, with the exception of the region of partial positive

charge Bl. However in this model the partial positive charge extends from near
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position 1 on ring A back underneath the carbon linked to the piperazine ring. This

additional region where partial positive charge enhances activity is due to the beneficial

effects of the proximal nitrogen in the piperazine ring substructure withdrawing

electrons and imparting a partial positive charge in this area. This indicates that the D4

model favours piperazine rings over piperidine rings when attached to the tricyclic

substructure! unit. This can be seen when comparing compounds 3J and P8 from Table

2.1. Interestingly this does not hold true for all compounds, as when looking at the

compounds from the Belliotti dataset a preference for piperidine rings can be seen, see

compound Belliotti #24 compared to Belliotti #31. However this serves to highlight the

fact that these two differing families of compounds, those that bind in regions A and G

and those that bind in regions A and B, do indeed bind in slightly different orientations

with respect to their piperidine and piperazine rings. The second region where partial

positive charge enhances activity is region B2. This region could be due to

electronegative heteroatoms at position Z imparting a partial positive charge in this

region. Although when looking at compounds 3a and 3b compared to 3h and 3i Table

2.1, respectively, in one instance we see a significant drop in affinity when the CH2 is

substituted for O and in the other instance only a small change, indicating that other

factors are also at play. Upon closer inspection of these compounds it appears as

though the chloro substituent in position 8 in conjunction with the heteroatom is having

a significant effect on the electronic environment of ring B, and aiding in binding

affinity.

The only area w'-ire partial negative charge enhances activity is region Rl, located

around the nitrogen of the amino linkage for compounds from the Ohmori dataset. This

region is due to the combined effects of the electronegative amino linkage and the

electronegative pyrazole, imidazolone and isoxazole linkages present in the Carling,

Rowley and Moore datasets, and their relatively tight binding affinities.
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We developed a D2 and D4 pharmacophore model that was able to accommodate all the

aforementioned ligands. After analysis of the model presented by Bostrom et al. and

subsequent refinement of the placement of the chromenone it was shown however that

compounds similar in structure to 1 would adopt an antiperiplanar conformation whilst

methoxy-benzamide compounds would bind in the gauche -ve conformation. The main

requirements for the pharmacophore are protonated tertiary nitrogen at position X and

two of the possible three areas of hydrophobic interaction around dummy atoms A, B

andG.

2.8.1 Designing Compounds

Extensions of the themes produced by the D2 model could be undertaken to increase or

decrease bidding affinity at the D2 receptor or to modify the binding profile of a

compound so as to attain greater selectivity between the two dopaminergic receptors.

The additional bulk in region G1D2 present in this analysis could be further explored

with other halides, methyl or even triflouromethyl substituents, as has been shown by

Liao et al
[105'1061 with their series of 2- or 8-trifluoromethylsulfonyloxy (TfO) substituted

compounds. The other areas where additional bulk increases affinity are regions G3D2

and G4D2 above ring B, due to the different planarity of the Ohmori compounds. This

area could be occupied by designing compounds with a similar framework to that of the

Ohmori dataset, by using a pyrrolidine ring instead of a piperidine or piperazine ring as

the ring that contains the basic nitrogen. This preferred planarity of this aromatic ring

could be partially realised in the tricyclic compounds by altering the angle between the

two planes of these compounds. This would be best achieved by placing a sulphur atom

in position X between the two ring planes, as compounds with sulphur have a smaller

angle between the two planes compared to oxygen and nitrogenI33'107'I08]. This smaller

angle would place ring B in a theoretically preferential plane for binding and increased

binding affinity. Further extensions of the theme to attain greater selectivity between

the two receptors could be achieved by ensuring that compounds were designed with

substituents that occupied region Y1D2 or G4D4 off ring A. It was shown again that

substituents are not well tolerated here in the D2 model, region Y1D2, however they are
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shown to be beneficial in the D4 model, region G4D4, making this region an ideal area to

exploit for increasing D4 selectivity. The electrostatic fields show that either the

presence or absence of an electronegative substituent at position A can also control D2

binding. Indeed this region where partial positive charge enhances activity, region

B2D2, is in direct contrast to what we see in the electrostatic fields generated from D4

binding affinity data, region R1D4. This area is thus an ideal area to exploit for

designing compounds with greater selectivity between these two dopaminergic

receptors. Another area that is ideal to exploit in regards to increasing selectivity is the

ring containing the basic nitrogen. Most compounds with a piperidine ring bind better

at the D2 receptor compared to compounds with a piperazine ring and vice versa for the

D4 receptor. This gives an indication that there are differing residues with different

electronic characteristics interacting with this area of the ligands for the two receptors.

This could be exploited by designing compounds with different electronic

characteristics in this region, by using 1,3-morpholine or 1,3-thiomorpholine

derivatives, however this may come at the expense of reducing the basicity of the distal

nitrogen which may reduce binding affinities and thus would have to be carefully

monitored.

Extensions of the themes produced by the D4 receptors could be explored to tailor D4

binding affinity or to increase selectivity between the D4 and D2 receptors. Region

Y1D4 where bulky alkyl groups were reducing binding affinities could be used to

increase selectivity between the two receptors. Additional space here seems to be

tolerated better in the D2 model and this could be exploited to increase D2 selectivity if

desired. Further areas that might possibly be exploited to increase selectivity would be

the region G3D4, corresponding to the methyl substituent from the imidazolone ring of

Carling #15, and also region G5D4, corresponding to the area around ring G. These

areas have been shown to increase binding affinity for the D4 model and are not present

to the same extent in the steric fields produced from the D2 model.

\ 1
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3.1 GPCR MODELS: INTRODUCTION

GPCRs represent one of the most important families of drug targets for the

pharmaceutical industry. A survey done in 1995 by GlaxoWellcome states that of the

top 100 best selling prescription drugs, more than 20% exert their therapeutic effect by

targeting GPCRs111, whilst over 50% of all modern drugs are targeted at GPCRs[2). For

every GPCR that has been purified, expressed and subsequently had an active ligand

found for it, this ligand has been of great pharmaceutical benefit. Building theoretical

models for GPCRs, which represent one of the most prominent classes of validated drug

targets, is important for modern drug discovery.

There are a number of ways of building theoretical GPCR models. Initially these

models were built using idea! helices of the sequence in question13'41, using electron

microscopy structural data from bacteriorhodopsin to align the helices. Later models

were built by using the X-ray structure of bacteriorhodopsin[5"7], and even more recently

rhodopsint8>9], as a template. Using these templates, residues are mutated to the aligned

sequence residues resulting in a model. Clearly the main drawback of using a template

in any model construction is that the model is biased towards the conformation of the

model it is based on. This problem can be overcome by careful consideration of the

various factors in play[7].

Another method used for GPCR model development is comparative modelling'10"1.

This method was originally developed in the late eighties by Sali et a/.'101 in a program

called Modeller (versions 1-4) and due to its many successes'11"131 has recently been

incorporated into the Insightll suite by Accelrys under the name Modeler. This method

enables a model to be built from the sequence alignment of a structure with one or more

related structures. This is done by satisfying both local molecular geometry and spatial

restraints, derived empirically from a database"41 of protein structures. This is the

method employed in construction of GPCR models in this chapter, and is discussed in

more detail later.

Another method for GPCR model construction developed recently by Shacham et a/.'151,

called PREDICT, employs a concept similar to ab initio protein folding approaches.
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This method is similar to ab initio techniques in that it takes into account both internal

protein-protein interactions (i.e., the amino acid sequence) and the protein-membrane

interactions. This method has been validated by construction of the rhodopsin structure
Q

from amino-acid sequence alone, resulting in a model with a RMS fit of 3.87A

compared to the original. This technique has the benefits that GPCR models that may

not be similar to rhodopsin can be constructed with reasonable accuracy.

Apart from theoretical modelling techniques that are available for GPCR model

construction there is another practical method developed by Yeagle et al. . In this

method the tertiary structure of rhodopsin is derived using solution structures of peptide

fragments to define the secondary structure and long range experimental distance

constraints from the intact protein to pack the secondary structures into a full tertiary

structure. This method has also been applied to the cytoplasmic face of the activated

(metarhodopsin II) receptor, to show differences between the two structures and suggest

how the receptor is activated to couple with transducin.

Constructed GPCR models created are able to be validated using data from mutagenesis

studies15'7'9'17"251 and substituted cysteine accessibility method (SCAM) studies" 9"22>25"29],

to ensure that they comply with experimental data. The SCAM method'301 identifies

water accessible residues, that are proposed to exist on the interior of the receptor.

The wide variety of techniques available for GPCR model construction and validation

are likely to increase in the future since drugs targeted at GPCRs are currently a large

source of income for pharmaceutical companies. Additionally with the multitude of

new receptors being found due to the unravelling of the human genome, the need for

modelling tertiary structures of these new sequences and subsequent structure based

design from these models will become even more important.
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3A.1 HOMOLOGY MODELLING

140

It is well known that high levels of amino acid sequence homology leads to similar 3D

structure. Model building of a target structure based on homologous sequences with

known structures is termed comparative modelling. All current comparative modelling

methods consist of four steps: template selection; template-target alignment; model

building; and model evaluation.

Originally, searches of homologous sequences to the target were done with alignment

programs such as FASTA[31] or BLAST1321. However in the last decade other

approaches, such as Threader1331, have been developed to recognise similar protein folds

and sequences. Once a suitable template has been found the target and template are

aligned using one of the above mentioned methods. The target and template arc likely

to be correctly aligned if sharing more than 40% sequence identity however they may

need to be realigned if they share less than 30% identity1341.

When an alignment is thought to be correct the model building begins, this can be done

with a number of programs such as COMPOSER1351, JIG-SAW1361 or Modeller110'141.

COMPOSER and JIG-SAW work by first identifying structurally conserved regions,

regions where the target and template align, and building these. Next structurally

variable regions, regions were there is no alignment with the target, are built using

either systematic conformational searches, molecular dynamics, genetic algorithms or

even by searching through loop databases and identifying homologous loops that fit

within the constraints of the model. Side chains are then added to the model so as

minimise the energy of the system and to conform with allowed side chain angles found

in rotamer libraries. The model building process of Modeller is discussed in greater

detail later.

Model evaluation is done with programs such as PROCHECK1371 or WHATCHECK[38],

which examine the stereochemical integrity of the constructed models. Further

refinement of the models can be performed via minimisation or molecular dynamics

using programs like CHARMM[39], NAMD[40] . X-PLOR or various Tripos or Accelrys

modules. However this final refinement step on the modelling process has to be done 'iM
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cautiously so that the resultant structures are of good quality. For example, poor quality

structures may result if the wrong environment, such as the absence of counter ions or

the incorrect solvent is used.

Comparative modelling using Modeller110"111, is different from programs such as

COMPOSER and JIG-SAW as it involves satisfaction of spatial restraints. Initially the

modelling procedure begins with alignment of the target sequence onto a known, related

3-D structure. Then many distance and dihedral restraints are derived from the

alignment of the target sequence on the template 3-D structure. The form of these

restraints is obtained from the statistical analysis of the relationships between many

pairs of homologous structures. Modeller relies on a database of 105 family alignments

that includes 416 proteins of known 3-D structure1141. A spatial restraint or probability

density function (pdf) on a given Coci-Ca2 distance, d, is obtained by least-squares

fitting a sum of a number of Gaussian functions to a histogram of CcX|-Ca2 distances

derived from the database of protein alignments. In practice more complicated spatial

restraints are used that depend upon additional information derived from such things as

similarity between the proteins, solvent accessibility and distance from a gap in the

alignment. For example, the likelihood of a particular mainchain dihedral will depend

on the type of residue, the dihedral of its equivalent residue in the sequence and the

sequence similarity between the two proteins. These spatial restraints are combined

with CHARMMt39] energy terms enforcing correct stereochemistry to make up the

objective function1101. Finally optimisation of the objective function in Cartesian space

produces the 3-D model. The optimisation initially uses the variable target function

method14'1 employing conjugate gradient methods then switches to molecular dynamics

with simulated annealing to refine the model.

The Modeller approach does have some limitations when dealing with GPCRs, since the

database that the restraints are derived from does not include any GPCRs, although this

is not surprising, as the first 3-D structure of a true GPCR was determined in 2000[42].

The benefits of such a method are that a number of different structures can be used to

derive the initial distance and dihedral spatial restraints. However this benefit was not

realised, as only one structure was available for use in these analyses. Other benefits of

Modeller are that alignments over areas such as proline kinks do not force the generated

I
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protein to adopt this conformation, as is the case in using a template. Additionally,

sidechains are positioned to minimise the objective function, which is further

complemented by molecular dynamics and simulated annealing methods. Furthermore,

models can be constructed with relative ease with ligands bound in the active site and

without the need for additional docking programs. The disadvantages of this additional

feature are that the model may be biased by the initial placement of the ligand and

additional constraints must be added to the construction of the model. Therefore one

must be careful not to place too many constraints on the model construction and hence

bias this process. In addition careful visualisation of the ligand and the surrounding

residues in the proposed active site must be undertaken to check their stereochemical

integrity.

Taking these pitfalls into account, Modeller was used to construct D2 models with

bacteriorhodopsin as the template. Models were built (a) without any ligands bound in

the active site and (b) with the endogenous agonist, dopamine, bound in the active site

for comparison to the recently released bacteriorhodopsin based D2 model (1I15)(7].

Unfortunately the bacteriorhodopsin structure (1BRD)[43] that the theoretical D2 model

(1115) of Teeter et af\ was based on was of poor resolution, 3.5A in the X and Y

directions and 10A in the Z direction. Therefore the bacteriorhodopsin structure

(1C3W)[441 at 1.55A resolution was used. This structure was exactly the same strain of

bacteriorhodopsin as IBRD and therefore had 100% residue identity and 100%

similarity of the alignment1451. Additionally D2 models were constructed using bovine

rhodopsin1421, 1F88 at 2.8A resolution, as the basis. Models were constructed (a)

without any ligands bound in the active site and (b) with dopamine bound in the active

site for comparison to the bacteriorhodopsin-based D2 models.

i !•
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3A.2 METHOD: HOMOLOGY MODELLING

3A.2.1 Method Overview

Figure 3.1. Schematic of method overview
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Figure 3.1 shows a schematic of the method overview that is discussed below.

Dopaminergic receptor models were constructed using crystal structures of

bacteriorhodopsin and rhodopsin as starting points. Models were constructed by

initially creating a threader database file from the ground state wild type

bacteriorhodopsin (lC3W)f44] and bovine rhodopsin (1F88)[421, by running

Procheck137'461, naccess[47] and strsum[33] on the structure. Threader1331 was then used to

align the sequence of D2 onto the sequence of bacteriorhodopsin and rhodopsin. The

alignment file of bacteriorhodopsin was altered so as to comply with the alignment

presented by Teeter et alP] and mostly comply with the alignment of GPCR's according

to Trump-Kallmeyer'61. The alignment file of rhodopsin was altered so as to comply

with Trump-Kallmeyer. Modeller110111 was then run on the alignment files to create

tertiary structures of the D2 receptor. The resulting structures were then minimised

within Sybyl 6.71481 using Kollman all-atom charges and force field149'. Th:1 models

created were analysed within Sybyl to check their compliance with mutagenesis1231 and

substituted cysteine accessibility method (SCAM) studies119'22'25'27"291 and their

stereochemical quality was checked within Procheck1'7'461. The bound and unbound

models based on the differing crystal structures were then compared against one another

and the published theoretical D2 model, 1115, from Teeter et al}1] to assess their

suitability. A complete table showing the alignment of D2, bacteriorhodopsin and

rhodopsin sequences with their numbering is shown in Table 3.1. Where the Ballesteros

and Weinstein numbering system does not account for residues, in cytoplasmic and

extracellular loops, the numbering scheme based on that of the D2 long sequence

(P14416) from Swiss-Prot[50] is used.

3A.2.2 Generating the Alignment of D2 onto Bacteriorhodopsin and

Rhodopsin

3A.2.2.1 Construction of the Threader database file

The threader database file created contains a numerical representation of the

bacteriorhodopsin and rhodopsin crystal structure from which it was derived. This gives

an indication as to the type, volume and characteristics of the residues within the

sequence of the protein. This information is crucial for the threading of the D2 sequence

p
a
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onto that of rhodopsin or bacteriorhodopsin. However before this can be done a number

of files must be created within Procheck.

Procheck checks the stereochemical quality of a protein structure, producing a number

of postscript plots analysing its overall and residue-by-residue geometry. It also

produces two files needed to create a threader database file. One file holds the

'cleaned-up' version of the original PDB file, with any wrong atom-labels corrected in

accordance with the IUPAC naming conventions. The other file contains residue

information used by the phi/psi plotting programs. Procheck also produces a number of

log files that give an indication as to which residues are causing problems in

construction of the database file.

Naccess, a stand alone program that calculates the atomic accessible surface defined by

rolling a probe of given size around a van der Waals surface, was then run to create a

residue accessibility file. The residue accessibility file contains summed atomic

accessible surface areas over each protein or nucleic acid residue; this file is necessary

for creating a threader database file.

Strsum, which is short for structure summariser, is used to generate the tdb (Threader

database) files so that users can include their own structures in the threader fold library.

Strsum combines the three output files to generate the threader database file.

The resulting tdb file is then placed into the fold library directory and Threader is ready

to be run on the Threader database file created.

3A.2.2.2 Running Threader

Threader was run with the depth flag set to 1000 to obtain the best result. The print

alignment in modeller format was set to obtain an output for putting into Modeller. The

sequence similarity (-S flag) was adjusted to 100 so that the alignment of the sequences

was not based purely on threading, giving a 50-50 mixture of threading and sequence

alignment.
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The modeller alignment file created in Threader is checked within Seaview1511 to see if

there is a good correlation between positive, negative, hydrophobic and hydrophilic

residues for the two sequences. The alignment file is also checked against the

alignments presented by Teeter171 and Trump-Kallmeyer161 to see if further adjustments

need to be made. The alignment is then ready for input into Modeller.

3A.2.3 Three-dimensional D2 Model Generation

In a process termed comparative modelling, Modeller calculates a 3-D full-atom model

from an aiignment of two sequences and one corresponding known structure. Modeller

does this by satisfying specific spatial restraints. In this case restraints are partially

derived from the bacteriorhodopsin or rhodopsin crystal structure and the protein

database, mentioned earlier to create a 3-D structure of the dopaminergic D2 receptor.

Modeller requires an alignment file, a restraints file and an input file in order to run, as

well as the pdb structure on which the model is to be based. The alignment file obtained

from threader must be further altered to include breaks within the sequence alignments.

The input file contains pointers to the alignment file, the pdb structure onto which the

model is based, various subroutines to be called and additional data such as the number

of models to be constructed. The deviation parameter in the input file was set high so as

to ensure a high degree of randomisation in the models created. The resulting output

files of modeller that are of interest are in protein data bank (pdb) format.

3A.2.4 Minimising the Potential Energy of the Protein

All pdb files were minimised in three steps in. order to lower the proteins chances of

being caught in local minima and to remove drastic and local clashes:

• minimise only hydrogens, holding the rest of molecule fixed,

• minimise only sidechains, holding the backbone fixed,

• minimise the whole molecule.

Each minimisation step was for 1000 iterations or until a RMS gradient of 0.01 kcal/mol

was reached using Kollman all atom charges and Kollman force field. The endogenous

if
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ligand dopamine had Gasteiger and Marsili charges and Kollman atom types assigned to

it before minimisation. Additional constraints were added in the minimisation of the

bound receptor. The m-hydroxy and nitrogen of dopamine were constrained to be

within hydrogen bonding distance, 2.8 angstrom, of Ser5'46 and Asp332 respectively17'235,

to mimic the important interactions of these groups at the receptor.

3A.2.5 Analysing the dopamine bound and unbound receptor states of

bacteriorhodopsin based models relative to 1115.

The two groups of ten resulting pdb files, five without the agonist dopamine bound and

five with dopamine bound, were then compared amongst each group and to the model

1I15[71. This was done using the following criteria:

• Analysis of the modeller objective function, which gives an indication as to the

quality of the model produced.

• The RMS fit for all atoms and for Ca carbons was calculated for the differing

groups. These was done using 'fit monomer1 and by selecting all residues that were

in common with the D2 model 1115. as the residues of interest. '

• The energies (kcal/mol) of the two groups before and after minimisation were

examined using Kollman all atom force field and Kollman charges.

• The Ramachandran plot statistics, from Procheck, of the two groups and the D2

model 1115 were examined.

• Areas of possible incorrect model building, such as removal and building proline

kinks, were examined in detail.

© Models had their secondary structure predicted, by 'assign secondary structure'

within Sybyl, and this was compared to theoretical predictions.

• The active site and sodium-binding site of the models were compared to the

proposed active site and sodium-binding site of 1115.

3A.2.6 Analysing the bound and unbound receptor states of rhodopsin

based models relative to bacteriorhodopsin based models.

is s fit
it* &
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The groups of ten resulting pdb files, five without the agonist dopamine bound and five

with dopamine bound, were then compared amongst one another and to the

bacteriorhodopsin based models. This was done using the following criteria.

• Analysis of the modeller objective function, which gives an indication as to the

quality of the model produced.

• The Ramachandran plot statistics, from Procheck, of the two groups and rhodopsin

were examined.

• Models had their secondary structure predicted, by 'assign secondary structure1

within Sybyl, and this was compared to theoretical predictions.

• The active site and sodium-binding site of the models were compared to the

proposed active site and sodium-binding site from bacteriorhodopsin based models.

• The rhodopsin and bacteriorhodopsin models were also visualised with SCAM data

highlighted, from a number of papers119"22'25"27'291, to see if they all complied with

these practical analyses and to see if there were any significant differences.
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Table 3.1. Numbering scheme of the bacteriorhodopsin, rhodopsin and D2 dopaminergic receptor.

TM1
Rho

Bac
D2

TM2
Rho
Bac
D2

TM3
Rho
Bac
D2

TM4
Rho

Bac
D2

TM5
Rho
Bac
D2

TM6
Rho

Bac

D2

TM7
Rho
Bac
D 2

First
1.30
35
9
32

2.38
71
38
68

3.22
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4.38
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^residues highlighted in bold italics are highly conserved across all GPCRs, they mark the X.50 point (where X is the transmembrane number).
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3A.3.1 Analysis of Bacteriorhodopsin and Rhodopsin

The statistics of the phi and psi region plots for the bacteriorhodopsin structure indicate

a very good stereochemical quality of the protein structure, see Table 3.2, where a good

quality structure has over 90% of residues in most favoured regions137"461. The procheck

statistics of the bacteriorhodopsin structure are clearly much better than those of

rhodopsin. However this is expected, as the resolution of this crystal structure is 1.55A

compared to 2.8A for rhodopsin. Although the statistics of the rhodopsin model are not

as good, it was the only X-ray crystal structure of a true GPCR, when this work was

started. Therefore both structures were acceptable starting points for further analyses.

Table 3.2. Ramachandran plot statistics of residues from the bacteriorhodopsin

structure 1C3W and rhodopsin structure 1F88 from the Protein DataBase.

% in most % in additional % in generously % in disallowed

favoured regions allowed regions allowed regions regions

bacteriorhodopsin 97.9 2.1 0.0 0.0

rhodopsin 77.7 20.3 1.7 0.3

3A.3.2 Generating the Alignment of D2 onto Bacteriorhodopsin and

Rhodopsin

3A.3.2.1 Construction of the Threader database file

Analyses of the crystal structure of rhodopsin revealed two chain breaks between

• A235 and S240, missing residues QQQE.

• P327 and S334, missing residues LGDDEA.

Break 1 is located eight residues after H5 in the cytoplasmic loop C3. The complete C3

loop, although not included in the original model, is said not to fold over the helical

region. Break 2 is located 4 residues after the cysteine linkages at the end of helix loop

H8. This missing section is said to cover H8 from the solvent region1421. This was taken

into consideration when remodelling these sections of the protein.
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Additional to the two chain breaks present in the crystal structure, there were a number

of incorrect residues present in the structure. T335 was missing the sidechain of this

residue and S334 was missing the hydroxy group of its sidechain. These were added

according to allowed chi angles of the sidechain and steric constraints of the protein.

The resulting structure was then subjected to local minimisations in the areas where the

structure was modified and then run through procheck again.

The RMS fit of the modified and original rhodopsin models, see Table 3.3, show an

extremely close match over the 333 residues that the structures had in common, the

main discrepancies occurring near the chain breaks where the additional residues were

placed.

Table 3.3.

Modified

Modified

structure

structure of rhodopsin compared

RMS fit (A2) of Ca carbons

0.0975

to the

RMS

original

fit (A2) of

crystal structure.

whole structure

0.1580

3A.3.2.2 Running Threader

Usually when analysing the statistical output from Threader the weighted pairwise

energy Z-score, the ((energy - mean) / standard_deviation), is used as the primary field

for selecting a correct match, and a value greater than two would indicate a possible

match. The Z-score is a standardised score with predefined limits set from analyses

using the complete fold library. Therefore when using a small library of folds, as in this

case, it is stated the Z-scores from pairwise energy may not be a useful measure of

significance and checking the core-shuffled Z-scores is advised1331.

Both the mean and minimum core-shuffled Z-scores have the implication that a large

positive value indicates a correct match and a negative value indicates probably an

incorrect match. The native core-shuffled Z-score denotes how low the model energy is

in comparison to the native energy of the template structure, where a value greater than

one indicate.s a probably incorrect match. From analysis of the core-shuffled Z-scores

obtained, see Table 3.4, 1F88 is a better match than that of 1C3W, and that the latter

may be incorrect. 1F8800 is the threader database file created from the crystal structure
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of rhodopsin'421. The poor alignment of the sequence of D2 onto bacteriorhodopsin is

most likely due to the low sequence homology, -6-11%[5\ between these two whereas

the alignment of D2 onto rhodopsin seems more plausible due to the >25% sequence

homology within transmembrane segments.

Table 3.4. Statistical output from Threader where the sequence of D2 is threaded onto

the threader database file of 1C3W, created in the procedure outlined in the method.

pairwise

energy

-490.73

-332.53

Z-score

(native)

core-

shuffled

-0.84

-4.29

Z-score

(mean)

core-

shuffled

2.72

2.24

Z-score

(minimum)

core-

shuffled

0.64

-0.52

Z-score

(mean)

pairwise

energy

0.86

-9.99

Z-score

(weighted)

pairwise

energy

0.87

-9.99

%of

structure

aligned

85.9

98.7

%of

sequence

aligned

67.5

53.0

Pdb

code

lf88OO

lc3w00

* Only 9 of the 17 columns are shown

A recent practical evaluation of comparative modelling and threading methods1121 states

that where there is low homology between the target and template sequences, threading

performs much better than fully automated comparative modelling. The example used

in the paper'121 having 7% sequence homology resulted in a model with a RMS

deviation of 8A using standard threader methods. Fully automated comparative

modelling involves using Modeller to generate a tertiary structure without the aid of an

alignment file. As the bacteriorhodopsin based model under construction was also of

low sequence homology, the alignment that was returned from threader was carefully

examined in comparison to previous alignments obtained by other groups16'71. The

threader alignment of D2 onto 1C3W was not at all similar to other predicted alignments

and the statistics indicated an incorrect alignment, therefore this alignment was

discarded. The alignment presented in the paper by Teeter et a/.171 was used as a starting

point and was compared to those proposed by Trump-Kallmeyer et al.[G]. Most

transmembrane helices were very similar with the exception of helices three and four.

The alignment of Teeter differed by four residues in TM3 and by seven residues in

TM4, compared to that of Trump-Kallmeyer. As comparisons were being made to the

theoretical model 1115, constructed by Teeter et al., the alignment presented by Teeter

et al. was used in conjunction with comparative modelling, not the fully automated

comparative modelling procedure of Modeller.
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The alignment of D2 onto rhodopsin returned from Threader was of remarkable

similarity to the alignment proposed by Trump-Kallmeyer. The only changes to the

alignment were that TM4 had to be shifted two residues so as to align the highly

conserved tryptophan (Trp4:)0), and TM6 had to be shifted one residue so as to align the

highly conserved tryptophan (Trp648) and proline (Pro650) residues. Importantly, the

cysteine in the second extracellular loop (CysE2) had to be adjusted to align with the

corresponding cysteine (CysE2) of rhodopsin that is involved in the disulfide linkage

wiih the highly conserved TM3 cysteine (Cys3'25). This disulfide linkage constrains the

second extracellular loop (E2) of rhodopsin and D2. In the crystal structure of

rhodopsin this loop folds deeply into the centre of rhodopsin and places this loop in

contact with retinal. This is thought to be the case for D2 and most other GPCRs, with

this loop being implicated as being proximal to the binding site1421.

The resultant alignment of D2 onto rhodopsin (Figure 3.2), shown in single amino acid

nomenclature, shows a high degree of hydrophobicity in the transmembrane regions, as

would be expected for membrane bound receptors.
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1F88
d2dr

1F88
d2dr

1F88 TTTliTS

1F88 Pl-S
d2dr P

1F88 iifrp
d2dr

IF 8 8 SA1

d2dr

TM5

d2dr

1F88
d2dr P

1F88
d2dr

1F88
d2dr

Figure 3.2. Final alignment of dopamine D? sequence with rhodopsin 1FS8 after

adjusting the alignment output from Threader. The highly conserved residues used in

the alignment of the sequences are marked with a small black box beneath them, these

residues correspond to X.50, where X is the helix number. A blue line connecting the

corresponding cysteines shows the highly conserved disulfide linkage between

extracellular loop E2 and TM3. The transmembrane regions are shown sequentially

with a thin black line below them. Gaps within the sequence alignments are represented

by a -.

3A.3.3 Three-dimensional D2 Model Generation

As fully automated comparative modelling does not result in an accurate structure

where there is low sequence homology1121, comparative modelling using the previously
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aligned sequence of Teeter for bacteriorhodopsin and the modified alignment of

rhodopsin was undertaken to generate the tertiary structures.

3A.3.3.1 Adjusting the alignment file

The alignment files from rhodopsin and bacteriorhodopsin must be further altered to

include breaks within the sequence alignments, where no alignment takes place. In the

alignment file construction over 150 non-aligned residues between heHces 5 and 6 were

removed. This was because Modeller is unable to deal with more than 100 non-aligned

residues and the residues were of no significance to the models being constructed.

3A.3.3.2 Additional Constraints

The disulfide linkage between C399DZ and C401DZ, that has been shown to exist in DT

dopaminergic receptor1191, was added as a constraint. Further constraints were added in

construction of the model with dopamine bound in the active site these were obtained

from the Di mutagenesis paper of Mansour et al}23] and the modelling paper by Teeter

et alF\ The wi-hydroxy and nitrogen of dopamine were constrained to be within

hydrogen bonding distance of Ser546 and Asp332 respectively.

3A.3.4 Analysing the bound and unbound receptor states of the

bacteriorhodopsin based models in comparison to 1115

The modeller function initially serves as a comparison within each set of bound and

unbound models produced, thus if a model with an objective function a few orders of

magnitude higher is produced, it could quickly be seen incorrect. The quality of the

models produced, judged by examination of the modeller objective function, does vary

slightly amongst each set of models, see Table 3.5. However there are no orders of

magnitude difference in each set of bound and unbound models produced. The quality

of the bound receptor models does appear to be much lower, as indicated by a large

objective function. However the inclusion of the ligand, dopamine, is responsible for

this deviation, as the modeller objective function tries to accommodate dopamine into

spatial restraints where none exist.
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Table 3.5. Modeller objective function of bacteriorhodopsin-based models for both the

bound and unbound states

Model unbound receptor bound receptor

1
2

3

4

5

1382

1819

1476

1582

1797

132530

94988

132087

66328

117040

mean ± S.D. 1611 ±193 108594. 28141

Table 3.6. RMS fit for bacteriorhodopsin based models onto the theoretical D2 model

1115, prior to minimisation.

Model

1

2

3

4

5

average

RMS fit for

Ca carbons

1.7503

1.7195

1.6447

1.7181

1.7543

1.7174

unbound receptor

All atoms

2.8172

2.7283

2.5327

2.6565

2.6327

2.6735

RMS fit for

Ca carbons

1.6795

1.6494

1.6853

1.7225

1.7208

1.6915

bound receptor

All atoms

2.5499

2.5241

2.5790

2.6343

2.6286

2.5832

Table 3.7. RMS fit for minimised bacteriorhodopsin based models onto the theoretical

D2 model 1115

Model

1

2

3

4

5

average

RMS fit for

Ca carbons

2.0136

1.7135

1.8523

1.9448

1.9561

1.8961

unbound receptor

All atoms

3.1180

2.7440

2.6244

2.8082

2.6791

2.7947

RMS fit for

Co carbons

1.7223

1.8394

1.6877

1.9801

1.7865

1.8032

bound receptor

All atoms

2.5788

2.7274

2.6127

2.7409

2.7002

2.6720

In their original comparative protein modelling paper, Sali and Blundell1111 state that

minimisation does not significantly improve the overall quality of the model produced.

Tables 6 and 7 are consistent with this observation as the RMS fit of the models

decreases after minimisation. The slight decrease in RMS fit of the models, -0.2A on

average, is a small price to pay for the dramatic improvement in energy of the models in
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question. The energies of the models can improve by up to 5 orders of magnitude, see

Table 3.8. In unbound model 1 there is approximately a 90,000 kcal/mol improvement

from minimisation of the hydrogens, over 2000 kcal/mol improvement in sidechain

minimisation and over 1000 kcal/mol improvement in the final step of the minimisation

where no atoms were constrained. These data conform to previous observations by Sali

and Blundell1111 where they indicate that most of the improvement in energy of the

model is due to relaxation of the structures that were strained in some positions by the

addition of the hydrogen atoms. The difference in energy of the bound and unbound

models originates from the fact that some hydrogen are added to the unbound models in

a strange fashion. For example hydrogens added to the histidine residues are not added

at correct bond angles or bond lengths, resulting in unusually high-energy structures.

Table 3.8. Calculated energies (kcal/mol) of models using Kollman all atom charges

and Kollman force field before minimisation and after minimisation.

Models

1

2

3

4

5

Unbound

Pre-minimisation

95240

51195

76681

73937

79231

receptor

Post-minimisation

-2340

-2379

-2372

-2367

-2316

Bound

Pre-minimisation

18173

14578

15605

10620

12795

Receptor

Post-minimisation

-2494

-2424

-2403

-2433

-2433

Tables 6 and 7, are in agreement with previous observations by Schoonman1121 who

state that a more accurate model is obtained if the model is built with a ligand in the

active site, This method of building a model is said to be better as it stops the

unrealistic filling of active site areas. This artefact of Modeller is seen when comparing

the RMS deviation between the bound and unbound receptor states, with an

improvement of -0.1 A2 over bound compared to unbound models.

3A.3.4.1 Procheck stereochemical quality check

All the models constructed have a good stereochemical quality with over 90% of

residues in most favoured regions (Figure 3.3). The residues implicated in the
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disallowed regions are located at the ends of the helices and are not part of either the

proposed binding site or the sodium-binding site[7].
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Figure 3.3. Procheck phi andpsi region plot statistics of residues of the five bound and

unbound bacteriorhodopsin based Di models and the theoretical model 1115.

3A.3.4.2 Proline Kinks

Two of the major drawbacks of using a template in the development of a GPCR model

are the alignment of the sequence over helices where there is a kink due to the presence

of a proline residue and also trying to force a proline kink where there is none in the

template model. Proline kinks were generated in 1115 by designing a template for

helical proline residues from the bacteriorhodopsin helices that contained proline kinks.

Areas around the proline residues were then minimised in a local minimisation

procedure resulting in removal of most close contacts and a proline kink. Removal of

proline kinks was done in a similar fashion using a local minimisation procedure on

residues that had been aligned onto bacteriorhodopsin proline kinks resulting in a

straightened helixl?]. One of the pitfalls of using automated modelling packages is that

they use ideal helix angles[7), which would result in an elongated helix. The method

used by Modeller for establishing and removing proline kinks comes from satisfaction
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of spatial and empirical restraints derived from the initial alignment, a database of

protein structures as well as various other factors. Thus the procedure used by Modeller

should result in similar lengths of helices and similar distances between proline / and i-4

residues as were obtained by Teeter et al., as Modeller does not primarily use ideal

helical angles. Tables 9 and 10 show that the method employed by Modeller in deriving

and removing proline kinks does agree very well with the method employed by Teeter

et al. The one exception to this, see Table 3.9, is the removal of the proline kink at

Phe6'52. Although the kink is removed, the distance between / and i-4 still remains

relatively large which is indicative of a kink. Not surprisingly there is a proline residue,

Pro6'50, involved in a kink just two residues away from Phe6'52 which is forcing the

residues further apart than expected. Interestingly the distances between i and i-4

residues for the placement of proline residues do increase after minimisation and, vice

versa, decrease after minimisation for i and i-4 residues in areas of removal of the

proline residues. These data indicate that some minimisation after generation of the

initial model is advisable, even though most initial / and i-4 values are similar to those

obtained by Teeter.

Table 3.9. Average distance (A) between Ca carbons of i and i-4 residues

corresponding to either the insertion or removal of a proline residue for all bound

models.

Residue 1115 (Teeter model) pre-minimisation post-minimisation

Pro

Pro

Pro'

Ala

Z59

5.50

6.50

2.54

Thr

Phe

3.37

6.52

7.420

6.185

6.997

7.362

6.474

5.832

6.945

6.590

7.003

7.342

6.949

7.720

7.681

6.969

7.422

6.043

6.558

7.877

Table 3.10. Average length (A) from first to last Ca carbon of helices containing

proline kinks from all bound models.

Helix

2

5

6

1115

38.1

30.4

37.1

Constructed

pre-minimisation

37.7

28.7

36.6

Models

post-minimisation

37.8

28.9

36.4



Chapter 3 16O_

3A.3.4.3 Secondary Structure Prediction

The secondary structure of the models was predicted using "assign secondary structure"

within Sybyl, a method that uses standard Kabasch and Sander assignment criteria. Of

the five bound models only one model had all seven helices predicted correctly, while

the other 4 models had at least one break within one helix. In the four models with

breaks within helices, every model had a break of alpha helical periodicity at Tyr7 43 in

TM7. This break in alpha helical nature is located just above the sodium-binding site,

which may be what is causing these phenomena, as a number of electronegative

residues in the area are not counterbalanced by a sodium ion or water molecules during

minimisation. Another break in alpha helical nature occurs in two models in TM6 at

residues Leu649 - Pro650. The presence of proline here is the cause of this break.

3A.3.4.4 Proposed Binding Site

In all the D2 models constructed without any ligand in the active site, a number of

residues are incorrectly placed. The tryptophan (Trp450) has a different chi angle to

1115 resulting in the sidechain facing out into the lipid bilayer and thus not matching the

proposed model. SCAM data indicates that this residue, Trp4'50, is in a water accessible

environment and not facing out into the lipid bilayer1291. This differing placement of

Trp4'50 in the unbound models also enables other residues to encroach further into the

binding site area resulting in a few more slight differences between these models. This

poor arrangement of the binding site residues in the unbound models is expected, as it

has been proposed earlier that the model should be built with a ligand in the active site

in order to stop unrealistic filling of the binding site[12]. When this is the case and

models are constructed with the ligand in the active site, the resulting models are of

remarkable similarity to each other (Figure 3.4).
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Figure 3.4. Residues implicated in binding site from Teeter et al. Orange residues are

from 1115 (Teeter et al.) and the white residues are from a model generated with

dopamine bound in the proposed active site. For clarity only helices 3, 4 and 5 are

shown from the model constructed.

The RMS fit for the 12 residues implicated in the binding site is 1.80A for all atoms

present. The two residues that deviate most from the 1115 model, are Phe(o~ and

Trp4'50, and it can be seen from Figure 3.4 that they only differ in the orientation of their

respective aromatic planes. This deviation is not to such a great extent as to cause

problems in the packing of the other residues, as was the case for the active site of the

unbound models.

3A.3.4.5 Proposed Sodium-Binding Site

G protein coupled receptors interact with the G proteins, Got, and Ga0, to modulate

several intracellular effectors and subsequent second messenger systems. An important

feature of Gotj-coupled receptors, such as the D2 dopaminergic receptor, is that they are

sensitive to pH and sodium. Sodium has been shown to enhance the affinity of some

antagonists and reduce the binding affinity of agonists and the benzamide family of

antagonists152'53' at the D2 receptor. Central to the DT dopaminergic receptors sensitivity
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to sodium is Asp250, it has been shown that mutation of this residue abolishes the

receptors sensitivity to sodium'53'. Therefore the putative sodium-binding site as

identified by Teeter et al. was examined in relation to the models constructed.

The RMS fit to the Teeter et al. model for the residues implicated in the sodium-binding

site is 1.144 A for all atoms present. Modifying the chi angles on a number of residues

(Figure 3.5) could easily further reduce the deviation between the models produced and

the theoretical structure 1115. The two residues Asn7'49 and Asp250 could easily have

their side chain angles modified to fit well with the proposed model at little energy cost.
2.50 3.3') .3.42 7.40

The pyramidal sodium-binding site is defined by Asp*" , Ser" , Asn" \ Ser ' and
7.49

Asn ' at each vertex of the site.

Figure 3.5. Lateral view of superimposition of proposed sodium-binding site of

bacteriorhodopsin based Di model, residues shown in white and helices shown in

magenta line trace, and of III5 (residues shown in orange). Sodium and helices 4, 5

and 6 have been removed for clarity.
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3A.3.5 Analysing the bound and unbound receptor states of rhodopsin

based models relative to bacteriorhodopsin based models.

The quality of the rhodopsin based models produced, judged by examination of the

modeller objective function, see Table 3.11, is not as high for each set as those obtained

for the bacteriorhodopsin models. The higher objective function for each set is due to

the fact that the D2 models based on rhodopsin are being aligned to a greater number of

residues. The average of the objective function is 2370 for unbound rhodopsin models

compared to 1611 for unbound bacteriorhodopsin models. The average of the objective

function for the bound rhodopsin models is 176946 compared to 108594 for bound

bacteriorhodopsin models. Again the higher objective function for bound models

compared to unbound models comes from trying to accommodate dopamine into the

spatial restraints where none exist.

Table 3.11. Modeller objective function of rhodopsin based models for both the bound

and unbound states

Model unbound receptor bound receptor

1
2

3

4

5

2770

2336

1829

2959

1954

133917

187197

192452

176946

163930

mean ± S.D. 2370 ±490 176946 ±23361

3A.3.5.1 Procheck stereochemical quality check

All the rhodopsin based models constructed have a fair stereochemical quality with over

90% of residues in most favoured and allowed regions (Figure 3.6). Most residues

implicated in the disallowed regions are located in the intra and extracellular loops as

well as at the ends of the helices and are not part of either the proposed binding site. A

few models constructed, unbound model 1 and bound model 3, did have residues in

disallowed regions that were in close vicinity to the proposed sodium-binding site and

proposed active site respectively.
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Figure 3.6. Ramachandran plot statistics from the five bound and unbound rhodopsin

based Di models and the rhodopsin crystal structure they are based upon.

3A.3.5.2 Secondary Structure Prediction

The secondary structure of the models was predicted using "assign secondary structure"

within Sybyl, a method that uses standard Kabasch and Sander assignment criterion.

Out of the five bound models not one model had all seven helices predicted as complete

helices. Every model produced had a break in alpha helical periodicity in TM2 and

TM5 at residues Leu2'56 - Val2 57 and Ser546 - Phe5'47, respectively. Both of these breaks

in alpha helical nature correspond to i-4 regions where a proline is present in the

sequence being aligned, in addition to this the two breaks both correspond to a Tt-helical

segment in the rhodopsin structure1541. The 7i-helical segment of TM5 in rhodopsin is

due to the presence of a proline in the i-4 region of the structure. The Tt-helical segment

of TM2 in rhodopsin is due to the presence of two sequential glycines, Gly5'46 and

Gly547, in the sequence. Thus it is not unusual that these two breaks in alpha helical

nature of the receptors being constructed are present and actually correspond to

7i-helical segments. Another area where in two of the five models constructed there is a

break in alpha helical nature is in TM7 located around Gly742 - Val7'44. This break is

probably due to Modeller trying to align the D2 sequence over an extended "eclipsed" or
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"Pauling" 3io-helix that is present in the rhodopsin model'541 from Pro738 - Val747.

Additionally this break in alpha helical nature in TM7 is located just above the sodium-

binding site, which could be causing this phenomenon, as the large number of

electronegative residues i n the area, even though being counterbalanced b y a sodium

ion, could still be causing problems. Additionally kinks in helices 2, 6 and 7 force the

top half of their helices to bend into the plane of the page in a clockwise fashion.

Helices 3 and 5 are also entirely tilted into the plane of the page in a clockwise fashion

(Figure 3.7). The models produced also show that the antiparallel beta sheets present in

extracellular loop E2 of the rhodopsin model are also present in the models constructed.

This extracellular loop penetrates deep into the helices and is within six angstrom of the

aspartate residue that is implicated in binding compounds, which is consistent with

mutagenesis studies implicating this loop as being in close proximity to the binding

site120'. The loop is held in place by a highly conserved disulfide bond that is between

the top of TM3 and the extracellular loop E2, (Figure 3.7).

Figure 3.7. Cartoon display of secondary structure of rhodopsin based model, using

"assign secondary structure" from within Sybyl. Asp"", shown in space filling mode,

and the highly conserved disulfide linkage between loop E2 and TM3 is also shown in

capped stick mode. Breaks in a-helices two, five and seven can be seen at Leu" ' -
1/ i2.57 ( , 5.46 rii 5.47 , ^i 7.J2 w ,7.J4 .• ,

Val . Ser - Phe , and Gly - Val , respectively.
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3A.3.5.3 Proposed Binding Site

In all the D2 models constructed, with and without any ligand, there was a very similar

arrangement of residues in the proposed binding site. There were not the large

differences seen between the bound and unbound bacteriorhodopsin based models, due

to unrealistic filling of the active site. However in the unbound models we found that

the hydrophobic arms of two isoleucine residues, from loop E2, orientated themselves

into the hydrophobic binding cavity and hence displaced His6 5 relative to the bound

models. When dopamine was present His6'55 was able to penetrate further into the

binding cavity and be within binding range of a suitable ligand. His6'55 has been

proposed to form a hydrogen bond with the 5-sulfonamide of the antagonist sulpiride1281.

The main differences between the rhodopsin active site and the bacteriorhodopsin active

site (Figure 3.8) were the placement of TM4 and its residues and also the placement of

Tip648 on TM6. However in D2 models constructed with antagonists in the binding site

we have seen Trp6"48 on TM6 adopt a similar conformation to that of bacteriorhodopsin-

based models, forming the base of the binding cavity. When fitting the active sites

together a RMS fit of 2.217A for backbone atoms was obtained when excluding the

residues on TM4. The residues on TM4 of the rhodopsin model are located

approximately 1-2 turns further down the helix and in the case of Trp450 on rhodopsin

are pointing into the lipid bilayer. Additionally the axis of helices three, five and

partially six of the rhodopsin model are tilted clockwise into the page when viewing

them from the extracellular side, whereas the axes of helices on the bacteriorhodopsin

model are not tilted at all.
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Figure 3.S. Extracellular view of the active site of bacteriorhodopsin-based D: model,

residues shown in orange and helices shown in pink line traces, superimposed over the

active site of rhodopsin-based Dj model, residues shown in white and helices shown in

yellow line (races. For clarity helices one, two and seven are omitted.

3A.3.5.4 Proposed Sodium-Binding Site

2.50The Di dopaminergic receptor proposed sodium binding site and in particular Asp

was examined in relation to previous bacteriorhodopsin model. The RMS fit for the

residues implicated in the sodium-binding site is 2.815A for backbone atoms. The

deviation between the rhodopsin and bacteriorhodopsin based D2 models produced,

(Figure 3.9) is mainly due to Asp"M) on the rhodopsin-based model being approximately

a turn higher on TM2. As the Asp2'50 is a turn higher on TM2 it makes the distance

between this residue and Asn3 42 too large for the Asn3'42 to be involved in the sodium-

binding site. This data in consistent with recent modelling of the D2 sodium binding

site were it is proposed that Ser3 Jl>, Ser7Ab and Asp2 M3 are the crucial residues involved

in the binding of sodium'xS|. However the two models still show a remarkable similarity

considering the different basis used to produce both models (Figure 3.9).



Figure 3.9. Supehmposition of sodium binding site of rhodopsin based Di model

residues shown in white and helices shown in magenta line trace, onto sodium binding

site of bacteriorhodopsin based D: model 1115, residues shown in orange. Helices 4, 5

and 6 have been removed for clarity. Oxygen and nitrogen are shown in red and blue,

respectively.

3A.3.5.5 Substituted Cysteine Accessibility Method (SCAM)

The SCAM method (Figure 3.10) identifies water accessible residues within the binding

site cavity by assessing the binding of methanthiosulfonate to the ionised form of

cysteine. This binding to the ionised form o f cysteine takes place approximately one

billion times faster than to the unionised form. As cysteine is more likely to be ionised

in an aqueous environment, this method indicates on the cysteine substituted residues

where this reaction takes place, the likely location of an aqueous environment.
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Figure 3.10. Reaction of MTS to ionised cysteine.

Of the circa 30 residues identified as being in an aqueous environment119'22'25'27"291,

about twelve seem not to be facing into the centre of the receptor as expected, but out

into the lipid bilayer (Figure 3.11). Of these twelve residues most are located on the

lipid side of TM5 that is thought to unravel during activation of the receptor1201. The

other residues that do not comply with the data collected from this technique are mainly

located on the intracellular half of TM7, Ala7"37, Asn745, Asn7'49, facing the lipid bilayer

along with Pro2 59 from TM2 and He6"39 from TM6 that are also facing the lipid bilayer.

The data from the SCAM studies was exactly the same for 1115 as for the

bacteriorhodopsin-based models when the data were applied to this theoretical model.

The non-compliance of a number of residues could be for a number of reasons, these

being that the cysteine substitution could alter the secondary structure of the protein

making the substituted cysteine water accessible whereas in the wild type protein this

may not be the case. The more likely reason for this discrepancy in the models

constructed here is that the bacteriorhodopsin structure these models are based on may

not be the ideal choice.



Figure 3.11. Tube depiction of helical wheels of bacteriorhodopsin based Dj model

showing SCAM affected residues coloured in red and unaffected residues in white,

viewed from the extracellular side of the receptor.

The rhodopsin-based model has fewer SCAM residues facing out into the lipid bilayer

(Figure 3.12) than the bacteriorhodopsin-bascd model. Again the residues on the top of

TM5, that is proposed to unravel, are all water accessible. The significant differences

between the two models are that the residues on TM7 in the rhodopsin model that are

water accessible are predominantly facing into the receptor whereas this is not the case

for bacteriorhodopsin based models. Also another major difference is that Tip4'50 on the

rhodopsin model is facing out into the lipid bilayer whereas in the case of

bacteriorhodopsin this is not the case as SCAM data suggests. However preliminary

studies whereby Trp4'50 is substituted for Cys and minimised inside a bilayer show that

the cysteine residue does indeed orientate itself inwards and away from the lipid bilayer,

thus making it solvent accessible.
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Figure 3.12. Tube depiction of helical wheels of rhodopsin based D> model showing

SCAM affected residues coloured in orange and unaffected residues in white, viewed

from the extracellular side of the receptor.

U
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3A.4 CONCLUSION: HOMOLOGY MODELLING

From the analyses conducted it has been shown that the use of comparative modelling

techniques to build GPCRs is a viable technique. One downfall of the technique is that

models constructed without any ligand in the active site are not as good as models built

with the ligand in the active site, due to unrealistic filling of the active site. This

unrealistic filling of the active site in unbound bacteriorhodopsin-based models resulted

in structures that had a higher RMS deviation and had different arrangements of

residues implicated in binding compared to bound models. All bacteriorhodopsin-based

bound models constructed compared very favourably with 1115, with similar residue

arrangements around the ligand and sodium binding sites. The bound and unbound

models also had similar proline kinks within their helices that were of comparable

lengths to 1115. It should be noted that the agonist dopamine is not the most suitable

compound to be built into the inactive state of bovine rhodopsin and bacteriorhodopsin,

which are both thought to resemble the "antagonist bound" state. However the presence

of dopamine in the active site does stop the unrealistic filling of the site.

The bacteriorhodopsin and rhodopsin-based models compared well to one another, with

remarkable similarity around important areas such as ligand and sodium binding sites.

The rhodopsin based models, however, were the better set of models of the two types as

| they contained extra information such as extracellular loops that are implicated in ligand
•J,

I selectivity, and binding of ligands in the active site. In addition to this the rhodopsin
I

| models conformed to more of the data from the SCAM technique, and areas where non

I alpha helical architecture of the rhodopsin crystal structure were present were well

1 accounted for by the presence of proline residues in the D2 sequence being aligned. The
"i
'a

% general statistics of the rhodopsin-based models are of lower quality in comparison to

'• the bacteriorhodopsin-based models. However this seems to be an artefact of the

I starting structures they were based upon and the fact that more residues are being

accommodated in the model construction. In the future as higher quality X-ray

structures of rhodopsin are produced it is likely that the statistics of models based upon

these structures will approach those of models based upon bacteriorhodopsin.

I
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With the multitude of sequences for orphan receptors being currently deduced, it is

surprising that this technique is not being used to a greater extent, as comparative

modelling using Modeller performs as well as, and if not better than, traditional

template model generation techniques.

Further work has already been done using this technique on the DT and D4 GPCRs with

rhodopsin1421 as the basis of the models and varying the types in ligands in the active

site, this is discussed in the following section.
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3B.1 STRUCTURE-BASED DESIGN
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Structure Based Design along with Ligand Based Design are the two principal methods

of drug design and discovery used by computational chemist. In structure based design

the proposed receptor binding site (biophore) is used for docking experiments or for

building up compounds in a de novo approach.

The method of ligand docking that is explored in this chapter is not conventional

docking whereby a ligand is fitted inside a receptor cavity. The docking procedure of

Modeller involves building a homology model of your receptor with your ligand inside.

This method is more similar to an induced fit method whereby induced flexibility of

protein side chains is modelled by generating a protein model with a ligand bound

whilst trying to minimise the objective function. Unlike some induced fit docking

methods however Modeller does not take into account conformational changes of the

ligand in order to minimise the energy of the system created.

3B. 1.1 Method Overview: Structure-Based Design

The docking procedure of Modeller has two major problems associated with it, as it

does not start with a predefined structure into which your compounds are docked. The

"brute force" way in which these receptor-ligand complexes are built, in that the

homology model is created with the ligand bound in it, can cause problems if the initial

ligand placement is incorrect. The problems associated with doing such a "brute force"

docking procedure are that the ligand is biased by its original placement inside the

template receptor. This can be overcome by initially placing the ligand into areas where

it has been proposed to bind as shown by mutagenesis experiments. The next step is to

place constraints on the model generation, such as indicating which atoms should be

within hydrogen bonding distance of one another. However one must be careful not to

place to many constraints in the model generation procedure otherwise this will most

definitely bias the procedure. The conformations of all ligands used in this section of

work are all directly from the conformations used in the pharmacophore modelling and

CoMFA models of Chapter 2.
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The second major problem associated with this technique is that these receptor ligand

complexes are in actual fact homology models in the first place, which immediately

lends them to problems of variability. The problem of model variability can be

overcome by building numerous models and inspecting all the models together. Once

all the models are created, visual analysis of all the models together usually reveals one

or two dominant families of ligand placement within the receptor. To assess their

validity ligand placements were compared to mutagenesis data indicating which

residues should be protected by the bound ligand. Finally the ligand-receptor models

were then compared with the CoMFA models generated in chapter 2. From this we

were able to postulate which residues were responsible for various interactions in our

CoMFA models, and identify new areas that could be explored within the cavity of our

binding site.
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3B.2 METHOD: STRUCTURE-BASED DESIGN

3B.2.1 Placement of ligands within the receptor

Various papers looking at the mutagenesis of residues in the D2 and D4 receptor were

examined in detail to gain some insight into the placement of clozapine and spiperone

within the receptors. These papers included one of the original D2 mutagenesis papers

by Mansour et a/., which examined the tricyclics clozapine and chlorpromazine as well

as the high affinity D2 compounds spiperone and raclopride. The paper by Simpson et

al. which examined residues implicated in D2 and D4 selectivity was also examined in

detail as contained a wealth of mutagenesis data for both N-methylspiperone and

clozapine. The excellent papers by Javitch and co-workers were also examined in detail

as they contained further information which gave indication as to which residues were

protected by or in proximity to the antagonist binding site. Analysis of this data

allowed a number of assumptions to be made as to the likely binding sites of these

compounds.

3B.2.2 Model variability

The problem of model variability was overcome by generating ten models for each

orientation of the ligand in each receptor in question. Models were constructed with

Modeller using bovine rhodopsin (1F88) as the basis and the alignment shown in Table

3.12, the only constraint added during the generation of the models was thai the

protonated nitrogen of the ligand be within hydrogen bonding distance of the essential

aspartate residue Asp3'32. All models were then minimised according to the procedure

set out in "3A.2.4 Minimising the Potential Energy of the Protein" with an additional

constraint being that the ligand was fixed in the conformation used in the CoMFA

models of Chapter 2. Each group of ten models was then superimposed onto one

another using the Align Homologous Structures' algorithm within Sybyl. Using the

aligned receptor models as a basis, ligands within each model were then compared to

one another and ligands with a RMS difference of less than 3A2 were classified into a

single family. The frequency of family types and number of contributing conformations
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were then examined in conjunction with the- mutagenesis data from all papers to asses

the validity of each model.

3B.2.3 Comparisons to CoMFA models

The model that conformed best to all the data available was chosen as the basis for

superimposition of the CoMFA models. The D2 and D4 tricyclic CoMFA models were

then superimposed, using clozapine as the basis for superimposition, onto the best

resultant D2 and D4 receptor models containing clozapine, respectively. And the

extended D2 and D4 CoMFA models were superimposed, using spiperone as the basis

for superimposition, onto the best resultant D2 and D4 receptor models containing

spiperone, respectively. The extended CoMFA models \.~ superimposed onto

receptor models containing spiperone because the largest amount of mutational data for

the D2 and D4 receptors was from mutations analysed using spiperone and

N-methylspiperone.
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Table 3.12. Numbering
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D2

D4
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D2

D4
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D2

D4
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Rho
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D2
D4

^residues hi,
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3B.3 RESULTS AND DISCUSSION: STRUCTURE-BASED DESIGN

Table 3.12. Numbering scheme of the rhodopsin and the Dj and D4 dopaminergic

receptors.

FOLD OUT
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3B.3.1 Binding Modes of Antagonists

3B.3.1.1 Mansour et al.

[23]
The paper by Mansour et al.' investigated the effects on ligand binding at the D 2

.3.32 •3.35receptor for mutations on AspJJ~ to Asn and Gly; MetJ"" to Cys and Gly; Ser543 to Ala;

and Ser'46 to Ala. The ligands studied in this analysis relate to the antagonists

examined in Chapter 2, which included chlorpromazine, ra'clopride, clozapine and

spiperone. Chlorpromazine is structurally similar to the tricyclics, raclopride is

structurally similar to the benzamides, while clozapine and spiperone were used in the

pharmacophore elucidation {see Chapter 2).

The paper by Mansour et a/.!??! shows that Asp332 is critical for binding for both

agonists and antagonists, and that Met335 mutations did not effect the binding of

raclopride (data not shown).

Table 3.13. Kj values (nM ± S.D.) of dopamine receptor antagonists competing with

[3H]raclopride bound to various D2 receptor mutants.

Ser543 to Ala Ser"0 to Ala Wild type

raclopride*

clozapine

chlorpromazine

spiperone

0.235±0.020

75.6±6.8

0.788+0.143

0.079±0.008

0.714±0.044

27.7+2.1

0.227+0.040

0.298±0.01

0.166±0.015

41.2±5.8

0.472+0.028

0.096±0.046

*Kd values (nM ± S.D.) ofpH]racIopride

From i'able 3.13 it can be seen that mutations of Ser5'46 significantly affects the binding

affinities of both raclopride and spiperone, indicating that there is some interaction

between this residue and the ligands in question. From these data and from computer

modelling of the D2 receptor, Mansour et al.[22] have proposed that Ser546 interacts with

the carbonyl oxygen of raclopride and the lactam proton of spiperone. However it

should be noted that these suggestions are only speculative and that this modelling was

done in 1992 when the basis of these receptor models was bacteriorhodopsin.
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3.32

Sef.5.46

o

3.32

Figure 3.13. Binding modes as proposed by Mansour et al.

Table 3.13 also gives some indication as to interactions between Ser543 and the tricyclic

compounds, as when Ser543 is mutated to Ala we see a two-fold decrease in binding

affinity. In conjunction with the moderate increase in binding affinity when Ser546 is

mutated to Ala, this may indicate that the tricyclic substructure is around the same

height within the helix as that of Ser5'43. If the tricyclic substructure is around the same

height as Ser543 then there would be favourable interactions between this residue and

the heteroatoms contained within the tricyclic substructure. Additionally mutation of

Ser5'46 to Ala would create a slightly more hydrophobic region below the plane of the

tricyclic substructure and aid in its binding.

From the analysis of this paper and analysis of the D2 models created earlier we are able

to tentatively say that spiperone binds in the conformation shown in Figure 3.13.

However we are also not able to discount the fact that the carbonyl oxygen of spiperone

would be able to bind with Ser5'46 and would in fact have spiperone bound in the reverse

orientation to that proposed by Mansour et al. When looking at the binding mode of

raclopride we see from previously created D2 models that the distance between Ser5'46

and Asp332 varies between 8 - 11 A which does not fit with the distance between the

amide oxygen and tertiary nitrogen of raclopride. Instead this larger distance fits better
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with the distance between the hydroxyl oxygen and tertiary nitrogen of raclopride which

is approximately 8 A. For the binding mode of clozapine we see the distance between

the distal nitrogen and tricyclic substructure heteroatom of clozapine fits well with the

distance between Ser5'43 and Asp?32. Therefore we can tentatively say that clozapine

binds with its tricyclic substructure in approximately the same plane as Ser543 in the D2

receptor.

3B.3.1.2 Simpson et al.

The paper by Simpson et al.[25] looks at D4/D2 receptor selectivity by mutating the

solvent accessible residues of the D2 and D4 receptors that differ from one another and

then assessing these changes by examining the binding affinities of different

compounds. The compounds used to investigate D2/Di selectivity included

/V-methylspiperone, CPPMA (L-745870), clozapine and three other Roche in house

compounds. The investigation of clozapine in this paper is of significant interest and

the yV-methylspiperone compound has obvious similarities to the compounds under

investigation here. The D4 selective compound CPPMA is of limited interest because it

was shown to display no clinical efficacy'561, possibly due to its partial agonist

properties1571, and thus was not considered further.
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Table 3.14. Comparison of affinities of antagonists for wild-type D ; and D4 receptors

and mutant D? receptors. Mutant D2 receptors have their corresponding D4 amino acid

present in the mutation.

Mutants

D4

D2

D2W16OL

D2V2 6 1F

D 2L 2 6 4S

D2F3 2 8L

D2V329M

D2F454A/S457A

D2L460V/F4-6:C

D,F538Y

D2V545C

D2T654V

D2Y735V

D2F738V

/V-methylspiperone

KD (pM) ± S.D.

360+70

79±8

15O±7

28±17

300±10

230±10

910±40

112±12

110±13

33±23

110+10

110±10

31O±7

102±ll

KDD2/KDmut

0.2

1

0.5

2.8

0.3

0.3

0.1

0.7

0.7

2.4

0.7

0.7

0.3

0.8

Clozapine

K, (nM) ± S.D.

12.4±0.6

280±30

106±2

5.7+0.9

780±20

560±110

370+90

430±90

1650±1250

51 + 1

370+210

28O±180

60±4

2OO±8O

K|D2/Kimut

23

1

2.5

49

0.4

0.5

0.8

0.7

0.2

5.5

0.8

1

4.7

1.4

The mutational data for clozapine (Table 3.14) is of much interest as we see much larger

increases in mutant D2 affinity for single amino acid mutations. The most significant of

the clozapine mutational data is that of D2 V261F, where we see almost a fifty fold

increase in binding affinity. This large change would most certainly indicate that

clozapine is interacting with this residue in the D4 receptor, and that the aromatic

stacking that this mutation would provide is interacting with the aromatic tricyclic

substructure of clozapine. The other two interesting mutations from Table 3.14 are

F538Y and Y735V, where we see in both car-es close to a five-fold increase in binding

affinity. The first of these two mutations, F538Y, may be explained in that the electron

withdrawing hydroxyl substituent will enhance the TC-TT interactions with adjacent

aromatic rings. However when we look at this aromatic interaction, F Y, and that of

V26IF we see that both residues are on opposite sides of the receptor, indicating that

there may be more than one possible binding mode for clozapine at the D4 receptor.

The Y735V mutation is interesting because there is an opposite effect to that for

spiperone which may be due to the fact that clozapine is a larger, more globular ligand

and benefits from the additional space that this mutation would provide. So although
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this mutation, Y735V, may not directly affect clozapine's binding it would most likely

affect the packing of residues in its vicinity. There is one significant dual mutation of

the D2 receptor that reduces the affinity of clozapine, namely L4^V/F^^C. These two

residues are at the top of TM4 and although the single mutation L460V is a conservative

mutation the F4 62C mutation is rather significant. Loss of aromatic binding through the

F* 62C mutation would indicate that some portion of the aromatic tricyclic substructure

is indeed interacting with F462 in the D2 receptor.

When looking at the mutational binding data for spiperone in Table 3.14 we can see that

two of the mutations V261F and FD38Y actually increase spiperones binding affinity at

these mutant D2 receptors. This would indicate that the increase in aromatic character

of the two substituents aids in binding aromatic portions of the ligand, spiperone. The

F538Y mutation, although an aromatic mutation, can be rationalised by the electron

withdrawing effect of the hydroxyl substituent which will enhance the stacking

interactions with adjacent aromatic rings. These mutations give an indication as to

where the aromatic portions of spiperone may reside in the D4 receptor. Interestingly

both these mutations lie on opposite sides of the receptor, indicating that more than one

possible binding mode may exist for spiperone at the D4 receptor or that the ligand is

binding in an extended conformation. There are three significant mutations of the D2

receptor that reduce the affinity of spiperone, L264S, V329M and Y735V. All these

mutations result in a net loss of hydrophobicity to the corresponding mutant receptor

and in the first two mutations a change in electronic character of the amino acid. This

would indicate that some hydrophobic portion of spiperone is binding in this region of

the D2 receptor. These three residues, L264, V j29 and Y735 are actually in close

proximity to one another on helices 2, 3 and 7, respectively. The unfavourable

interaction these corresponding D4 counterparts S264, M329 and V7'35 have with

N-methylspiperone also explains why the binding of N-methylspiperone is less at the D4

receptor even though the V26IF and F538Y mutations increase binding affinity.
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Table 3.15. Comparison of affinities of A/-methylspiperone for wild-type D4 and D:

receptors and mutant D4 receptors. Mutant D4 receptors have their corresponding D2

amino acid present in the mutation.

Mutants

D4

D2

D4 V
7 35Y

D4 L3-28F/M329V

D4 L 2 ^/ /F 1 6 1 V/S 2 M L

D4 L2jOW/F161V/S26417L3-28F/M3-29V

D4 L2"V/F26IV/S2M1VL3-28F/M3-29V/V7-35Y

jV-methylspiperone

KD (pM)

360±70

79±8

65O±8O

178±2O

22O±3O

790±164

1070±160

KDD2/KDmut

0.22

1

0.12

0.45

0.35

0.1

0.1

The mutations at the D4 receptor were only examined with two ligands

N-methyl spiperone and CPPMA, but as CPPMA is a partial agonist it was not

considered. When looking at the mutational binding data in Table 3.15 we see that both

the double mutation L3-28F/M329V and the triple mutation L260W/F2-6IV/S264L gave

tighter binding affinities for N-methylspiperone compared to the wild-type D4 receptor.

This was similar to that observed earlier for /V-methylspiperone when we saw the Di

mutations V329M and F328L decrease /V-methylspiperone's binding affinity due to the

change in electronic character and decrease in hydrophobicity, respectively, of the

binding site. On this occasion with the removal of this electronic character and increase

in hydrophobicity we see the binding affinity of spiperone increase, indicating that

spiperone is interacting with these residue in both the D2 and D4 receptors. The triple

mutation, L2l60W/F2>61V/S2"64L, is rather complicated as earlier we saw the V261F

mutation increase the binding affinity of /V-methylspiperone on the D2 mutant whereas

the W260L and L264S mutations both decreased binding affinity. Although we see a

moderate increase in N-methylspiperone's binding affinity it would be difficult to say

which mutation this is due to, as the increase in hydrophobicity from the S264L and

L" W mutations should both increase N-methylspiperone's binding affinity whereas the

F"•' V mutation should decrease //-methylspiperone's binding affinity. The further

mutations involving five and six amino acids a'so are a little complicated to interpret

with any great degree of confidence. These multiple mutations could cause significant

changes in the packing arrangement of the helices and even the backbone bends of the

helices and thus further interpretation would be contentious.
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Overall the paper by Simpson et al. does explain some selectivity exhibited by the D?

and D4 receptors for extended compounds, due to the aromatic microdomain between

helices two, three and seven. However the binding mode and selectivity for D4

exhibited by clozapine was not examined in any great detail in this paper, although it

would appear that there are multiple or at least different binding modes for clozapine at

the D4 and D? receptors. It appears that the high affinity binding site for clozapine at the

D4 receptor is in the region between helices two, three and seven, whereas for the D2

receptor appears to be between helices three, four, five and six.

From these two papers and from the analysis of a number of other modelling papers

22,26-29] j t j s pOssjbie t 0 propose the binding modes of clozapine, shown in Figure 3.14.
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Figure 3.14. Possible binding modes ofclozapine at ami no acids in the D? (top) and D4

(bottom) receptors. The essential amino acid Asp ' ' is shown in red, the other residues

implicated in binding clozapine are shown in blue.

The possible binding modes for spiperone are slightly more difficult to deduce due to

the flexible nature of spiperone and the number of hydrogen bonds it is capable of

forming with the receptor. The proposal put forward by Mansour, that the lactam

proton of spiperone interacts with Ser5*46, would indicate that methylation of nitrogen

would give a drop in affinity from loss of a hydrogen bond. However from the data of

Simpson et al. this is not the case where the binding affinity of jV-methylspiperone,

79±8 pM[25), is tighter than that of spiperone, 96±46 pM|23]. Actually the binding

affinity of spiperone reported by Mansour et al. may be artificially low compared to that

of TV-methylspiperone because there is a noticeable disparity in the binding affinity of
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clozapine from the two groups. The clozapine affinity reported by Mansour et al.

(41.2±5.8 nM) is four times tighter than that of Simpson et al. (280±30 nM). On this

basis, then, it is proposed that it is not the lactam proton of spiperone that is interacting

with Ser5'46. However, this does not exclude a water-mediated hydrogen bond with the

carbonyl oxygen of the lactam or even just electronic stabilisation of the amide linkage

by Ser546. In addition it still cannot be ruled out the that the carbonyl oxygen of

spiperone would be able to bind with Ser5M and would in fact have spipercne bound in

the reverse orientation to that proposed by Mansour et al. Thus it is difficult to say

which end of spiperone binds closest to Ser5 46, as either orientation would satisfy the

data available. The possible binding modes for spiperone at the D2 and D4 receptors are

shown in Figure 3.15.
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Figure 3.15. Possible binding modes of spiperone at amino acids of the D2 (top) and

D4 (bottom) receptors, the essential amino acid Asp ' is shown in red, the other

residues implicated in binding spiperone are shown in blue.
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3B.3.1.3 Sulpiride Protection of Residues
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In addition to the two previous papers looking at various mutations within the binding

site of the D2 and D4 receptors there have been a number of excellent papers'19"22'26"2 ]

looking at identifying solvent accessible residues within the D2 receptor. Apart from

only identifying residues that were solvent accessible, a number of other experiments

were carried out to shed more light on the binding site of the D2 receptor. In this

experiment all residues along each helix were in turn mutated to cysteine and then the

antagonist sulpiride was added. Methanthiosulfonate (MTS) was then added and any

cysteine residues still able to react with MTS (Figure 3.10), and thus not protected by

the binding of the antagonist, were identified (Table 3.16). Protection of a substituted

cysteine is most simply explained by its proximity to the sulpiride and

[}H]'-N-methylspiperone binding site[21K Not all residues identified are in proximity to

the sulpiride-binding site as residues further inside the receptor are protected from the

extracellular route that MTS is taking.

Table 3.16. Sulpiride protection of residues in the D2 receptor.

TMl

Asn1-50

TM2

Asp2'50

Leu251

Val1 5 3

Val257

Pro2 5 9

Trp2 6 0

Val2'6'

Leu 2 w

Glu265

TM3

Asp3 2 6

He327

Phe3 2 8

Val3 2 9

Val3 3 3

Cys3 3 6

Ser339

He340

Leu343

TM4

Trp4 5 0

Ser453

Phe4 5 4

He456

Ser457

Leu4 6 0

Leu461

Gly4 6 3

Asn4 6 5

TM5

Phe5 3 8

Val5 3 9

Val5 4 0

Tyr541

5-er542

Ser543

He544

Val5 4 5

Ser546

TM6

Val640

Phe6 4 4

Pro6 5 0

Phe6 5 2

Thr654

He656

TM7

Leu734

Phe7 3 8

Thr7 3 9

Trp 7 4 0

Tyr7 4 3

Asn7 4 5

Asn7 4 9

Pro 7 5 0

Tvr7 5 3

Ser3.47 Phe

Val

Pro

Tyr5'

5.47

5.49

5.50

58



Chapter 3 190

Figure 3.16. Sulpiride protected residues from Table 3.16 shown in orange on a D2

receptor model with a proposed bound orientation of spiperone shown in spacefill

rendering.

From Figure 3.16 it can be seen that spiperone binds in an extended fashion from

between helices two, three and seven across to between helices four, five and six. This

data is consistent with the previous mutational data of Mansour et al. and Simpson el al.

The larger number of residues being protected at the top of the receptor would indicate

that sulpiride and A'-methylspiperone bind relatively close to the extracellular surface of

the receptor and almost perpendicular to the helices.

From this information we are able to confidently place the ligands clozapine and

spiperone into the binding site of the Di and D4 receptors. In turn, this placement of

these ligands can be used as a template for placement of the pharmacophore and

Co\4FA models derived previously.

3B.3.2 Mode! Generation

Over one hundred models were created of ligands bound in the D2 and D4 receptors,

with the only constraint used in all model generation being that the protonated distal

nitrogen was placed within hydrogen bonding distance of the essential Asp332. The two

starting orientations of clozapine (Figure 3.14) and spiperone (Figure 3.15) were used

for the initial placement of all ligands in the template. Once all the models were created

for each receptor and its differing starting placement of ligand, the models were

overlayed to see if a particular arrangement of ligand and contacting residues inside the
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receptor was favoured. The orientations were also checked against the initial data that

determined the placement of the ligand.

3B.3.2.1 Receptor Models with Clozapine

Clozapine bound in region TM4, TM5 and TM6 of the D2 dopaniincrgic model

From the ten models created with clozapine initially placed in the region between

helices four, five and six, there was one main family of ligand placements derived from

six of the ten models. The other four models placed clozapine into differing

orientations with the exception of two models that had clozapine's tricyclic substructure

parallel with the helices of the models produced. These two families of models were

assessed to see if the placement of clozapine conformed to the mutagenesis data

available. The smaller family of models with clozapine parallel to the helices did not

conform to the mutagenesis data and thus was excluded. The larger family of models

with clozapine almost perpendicular to the axes of the helices (Figure 3.17) conformed

well to the mutagenesis data available.

Figure 3.17. Optimum placement of clozapine in the region between helices four, five

and six, as derived from six of the ten models produced. Residues implicated in the

binding of clozapine from mutagenesis experiments are shown.
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When comparing the proposed binding site with mutagenesis data it can be seen from

Figure 3.17 that the tricyclic substructure of clozapine is positioned at the same height

as Ser5'43 in the receptor. It can also be seen how the mutation of Ser 4 to Ala would

increase hydrophobicity in the binding site and thus aid in the binding of clozapine.

The mutation of Phe4 62 to Cys and the consequent loss of affinity at the D2 receptor can

be rationalised by the Phe462 residue stabilising the Phe5'38 on TM5 that interacts with

the tricyclic substructure. The removal of Asp3'32 would also result in a total loss of

clozapine's binding affinity as there would no longer be a hydrogen bond to the

protonated distal nitrogen. The complete set of interactions for clozapine in this

orientation in the binding site can be seen in the ligplot-generated diagram (Figure 3.18)

which shows a two-dimensional representation of all residues within 4 angstrom of the

ligand. The Ligplot generated diagram shows the hydrophobic contacts that the

tricyclic substructure is making with Phe6'52, Phe538 and Ilel84loopE2. The interaction of

Ser543 with tricyclic substructure atoms, CIO and Cl 1, of clozapine can also be seen,

indicating that the tricyclic substructure is almost in the same plane as this residue. The

piperazine ring can be seen to be interacting with a number of hydrophobic residues,

Phe65!, Trp648 and Val3'33. The additional hydrogen bond between His655 and the N4

nitrogen of the tricyclic substructure can also be seen. It has been proposed that His6'55

forms a hydrogen bond with the 5-sulfonamide of sulpiride, as mutation of His6'55 to

Cys results in a decrease in the binding affinity of sulpiride. Unfortunately this same

experiment has not been carried out with clozapine, and it would be a good test of this

proposed binding site to see if a decrease in clozapine's affinity was seen with the

mutation of His6 55 to Cys.
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V

332

Figure 3.18. Ligplot analysis of the binding site interactions ofclozapine bound in the

region between helices four, five and six of the D2 receptor model. The red fan-like

representations show the hydrophobic contacts between residues and corresponding

Hgand atoms.

Clozapine bound in region TM2, TM3 and TM7 of the D2 dopaminergic model

There were two families derived from the ten models produced of clozapine bound in

the region between helices two, three and seven. One family contained four models

with a similar placement of clozapine within the TM2, TM3 and TM7 region. This

family (Figure 3.19) had an orientation ofclozapine that interacted quiet significantly

with the backbone of TM7 and caused this helix to rotate a further third of a turn

anticlockwise, thus leaving the Tyr735 facing out into the lipid bilayer. Tyr7'35 had been

proposed to interact with the packing arrangement of the binding site as shown by the

increase in binding affinity ofclozapine when this residue was mutated to valine. Since

this proposed binding mode is not explained by mutational data it was discarded.
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Figure 3.19. Placement of clozapine in the region between helices two, three and

seven, as derived from four of the ten D2 models produced.

The second family ofclozapine's placement within the binding site was seen in three of

the ten models created. Although less models were produced with clozapine in this

orientation, the binding profile (Figure 3.20) fits better with the mutagenesis data. From

looking at Figure 3.20 it can be seen how the mutation of Val261 to Phe would increase

the binding of clozapine through a favourable 7T-TI interacton arrangement with the

tricyclic substructure. In addition to this, the mutation of Tyr735 to Val would mean that

the aromatic 7T-7I interaction arrangement of Tyr7'35 with Phe6'51 would be lest giving the

binding site more flexibility and space, which would aid in binding of clozapine. As

stated earlier, Tyr735 had been proposed to interact with the packing arrangement of the

binding site.
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Figure 3.20. Placement of clozapine in (he region between helices two, three and

seven, as derived from three of the ten models produced. Residues implicated in the

binding of clozapine from mutagenesis experiments are shown.

The complete set of interactions of clozapine in this binding orientation are shown in

the ligplot-generated diagram (Figure 3.21). The interactions of Tip048 and Phe651,

which appear to be partly controlled by Tyr7'35, can be seen with the piperazine ring of

clozapine. Tyr735 which is located above Phe051 and Tip048 and hence not seen in

Figure 3.21 are in a triple TI-TT interaction arrangement, which is creating a relatively

rigid barrier and limiting the size of the binding site. Thus any disturbance to this triple

7T-7T interaction arrangement should aid in the binding by giving more flexibility where

it is needed. Apart from the hydrophobic interaction of Val261 with the tricyclic

substructure we can also see hydrophobic interactions from Leu1'29, Val2y7, Trp7'40,
7.43 3.28Tyr''"4-1 and PhcJ- .
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clozapine

Phe6-5 1

Glu 181
loopE2

c
, 3 32

Figure 3.21. Ligplot analysis of the binding site interactions of clozapine bound in the

region between helices two, three and seven of the D2 receptor model.

When looking at the two proposed binding mechanisms of clozapine n the D2 receptor

we see two mechanisms that are both in part supported by mutagenesis data. This

would indicate that there are definitely two clozapine-binding sites in the D2 receptor.

However it appears as though they are not of equal affinity. The rather crowded binding

site between helices two, three and seven appears to be the lower affinity site due to

steric considerations and the lack of an ideally placed residue through which a n-n

interaction arrangement can be made with the tricyclic substructure.

Clozapine bound in region TM4, TM5 and TM6 of the D4 dopaminergic model

There was one main family derived from seven of the ten models produced of clozapine

bound in the region between helices four, five and six of the D4 receptor. Another small

family made up of two models with clozapine bound parallel to the helices was also

present but this model did not conform with the mutagenesis data and was excluded.

The main family orientation (Figure 3.22) shows clozapine in a similar orientation as
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for the D2 model (Figure 3.17). Clozapine is again almost perpendicular to the helices

in approximately the same plane as Ser543. The mutational data that indicates a

favourable interaction between clozapine and Tyr" can be seen in Figure 3.22.

However, for the D4 model, we do not have the stabilising interaction on Tyr ' from

Phe462 as is the case for the D2 receptor model. In the D4 receptor model the Phe4 62 is a

Cys which would not stabilise Tyr538. With no stabilising interaction the binding of

clozapine in the model may not be as tight in this region as it is in the D2 model. This

may indicate that this region between helices four, five and six is the lower-affinity

binding site for clozapine in the D4 receptor model.

Figure 3.22. Clozapine bound in the region between helices four, five and six, as

derived from seven of the ten D4 models produced. Residues implicated in the binding

of clozapine from mutagenesis experiments are shown.

The ligplot-generated diagram (Figure 3.23) shows the complete set of interactions for

clozapine in the D4 receptor model. The interactions are almost identical between the

D4 and D2 receptor models, see Figure 3.18 compared to Figure 3.23, although the

corresponding D4 residues are implicated. The only two differences are that the

interactions w ith r esidues i n t he e xtracellular 1 oop E 2 d iffer b y one p lace, s ee T able

3.12. The D2 model shows clozapine interacting with Ilel84loopl£2 which corresponds to

Argl86loop ll2 on the D4 model, whereas the D4 model is interacting with Leul87loop E2.
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The only other difference between the two models is that the D2 model is interacting

with one more residue, Phe6'52. The ligplot-generated diagram shows the hydrophobic

contacts that the tricyclic substructure is making with Tyr5'38 and Leul87'oop E2. The

interaction of Ser543 with tricyclic substructure atoms, C9 and CIO, of clozapine can be

seen, indicating that the tricyclic substructure is almost in the same plane as this residue.

The piperazine ring can be seen to be interacting with a number of hydrophobic

residues, Phe651, Tip648 and Val333. The additional hydrogen bond between His655 and

the proximal nitrogen of the tricyclic substructure can also be seen.

Va!3 33

Cy.3.36

Phe 6.61
Tip 6.48

Figure 3.23. Ligplot analysis of the binding site interactions of clozapine bound in the

region between helices four, five and six of the D4 receptor model.

Clozapine bound in region TM2, TM3 and TM7 of the D4 dopaminergic model

in nine of the ten models created a very similar arrangement of clozapine in the region

between helices two, three and seven of the D4 receptor models was seen (Figure 3.24).

This high percentage of similar clozapine orientations within the models is in stark

contrast to what was seen in the D2 receptor models created with clozapine bound
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between helices two, three and seven. This would indicate that the orientation of

clozapine in this region of the D4 model is a much more stable orientation compared to

the D2 models. This added stability of the DA models is most likely due to the

favourable n-n interactions between Phe2'01 and the aromatic tricyclic substructure of

clozapine. This favourable interaction is supported by the mutational data that shows

the binding affinity of clozapine increase when Val2 M oi' the D2 model is mutated to

phenylalanine. In addition to this favourable interaction the extra space that is available

in this region of the D4 model due to the Val73s allows clozapine to fit neatly within the

binding site without some of the steric clashes that are seen in the D2 model.

Figure 3.24. Clozapine in the region between helices two, three and seven, as derived

from nine of the ten D4 models produced. Residues implicated in the binding of

clozapine from mutagenesis experiments are shown

The full set of interactions for clozapine bound in this orientation as shown in the

ligplot-generated diagram (Figure 3.25) show a remarkable similarity to those of the D2

model (Figure 3.21). The hydrophobic interactions with the tricyclic substructure from

residues Tip 'A0 and Val"57 are seen in both diagrams. However there are also a number

of different interactions with the tricyclic substructure. In the D4 model we see that the

Leu"8 corresponds to a Met"8 in the D2 model and this might provide an area to

explore in order to gain selectivity between the two receptors. In addition to this we see
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that the tricyclic substructure in the D2 model is virtually hemmed in the binding site by

Leu139, which corresponds to a Gly1'39 in the D4 model. This is more evident when

comparing F igure 3 .21 with F igure 3 .25, w here t here a re n o i nteractions w ith a mino

acids from TM1. The much smaller size of Gly compared to Leu would provide

additional space to explore in the D4 model that should aid in developing a D4 selective

compound.

Tip 7.40

p 3 3 2

Trp6.48 fcl

Figure 3.25. Ligplot analysis of the binding site interactions of clozapine bound in the

region between helices two, three and seven of the D4 receptor model.

Other differences between the two binding sites include the interacting residues from

the extracellular loop E2. In the Di model (Figure 3.21) we see a negatively charged

Glul81loopl:2 interacting with the piperazine ring of clozapine which is not present in the

D4 model. From the previous CoMFA result that showed piperidine compared to

piperazine rings were preferential for D2 binding indicating, that the less negative

piperidine ring may be better tolerated in the Di receptor, and thus aid in selectivity.
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3B.3.2.2 Receptor Models with Spiperone

Spiperone bound in the D2 dopaminergic model

In the initial placement of spiperone in the DT dopaminergic binding site, spiperone was

orientated so that the para-fluovo end of spiperone was in the region between helices

four, five and six. Spiperone may be placed with either the spiro ring system closer to

the extracellular or intracellular sides and both of these starting orientations were

investigated. In seven of the ten models generated with spiperone bound, where the

starting orientation had the spiro ring system closer to the intracellular side, a similar

final orientation was seen (Figure 3.26).

Figure 3.26. Spiperone bound in the D2 dopaminergic receptor, with the para-fluoro

end i n t he re gion b etween h el ices four, five a nd s i.x. T he re sidues i niplicated i n t he

binding region are shown labelled.

In nine of the ten models produced with the initial placement of the spiro-ring system

facing out to the extracellular side, spiperone was completely reorientated so that the

spiro-r'mg system was again closer to the intracellular side of the receptor. This

indicated that spiperone did not preferentially bind with the spiro-nng system orientated

towards the extracellular side. In fact the nine inverted orientations found here

compared very favourably with the seven orientations found concurrently in which the
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starting orientation had the spiro ring system closer to the intracellular side. The full set

of interactions for spiperone bound in this orientation are shown in Figure 3.27,

generated using Ligplot. The interactions implicated in mutagenesis experiments can be

seen with the fluoro substituent and Ser5'43 interacting, the hydrophobic interaction

between spiperone and Phe3'28 and the electrostatic interaction between spiperone and

Asp332. An additional hydrogen bond is also seen between the lactam oxygen of

spiperone and Asn7'45. There are a number of other hydrophobic contacts with

spiperone and Val261 and Tyr743 in the region between helices two, three and seven and

with Val3'33, Phe6'31 and Ilel84loop ll2 in the region between helices four, five and six.

The interactions between spiperone and Val329 and Tyr735, as implicated from

mutagenesis experiments, are not seen. However these residues may be involved in

secondary packing around spiperone as both Val3'29 and Tyr7'35 are in close proximity to

residues interacting with spiperone.

His 6.66

Ulu 181

V,|261

Asp3 3 2

spiperone

Figure 3.27. Ligplot analysis of the binding site interactions of spiperone bound with

the para-fluoro end in the region between helices four, five and six of the Dj receptor

model.
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Alternative orientation of Spiperone bound in the D2 dopaminergic model
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In an alternative placement of spiperone in the D2 dopaminergic binding site, spiperone

was orientated so that the /;ara-fluoro end of spiperone was in the region between

helices two, three and seven (Figure 3.28). Both starting orientations ofspiperone, with

the spiro-ring system facing inwards and outwards were also investigated. The

orientation ofspiperone with the spiro-ring system closer to the intracellular side is the

same as that proposed by Mansour et c//.'23', see Figure 3.13. Of the models generated

with the spiro-ring system facing inwards and outwards a similar orientation was seen

six and seven times, respectively, for each set. In none of these models was the inverted

spiperone seen, in which the spiro-ring system was facing in the opposite direction to

which it was initially placed. This result was not surprising, as the bulky end of

spiperone was not in the crowded region between helices two, three and seven.

Figure 3.28. Spiperone bound in the Dj dopaminergic receptor, with the para-fluoro

end in the region between helices two, three and seven. The residues implicated in the

binding region are shown labelled.

Each preferred orientation ofspiperone also conformed well to the residues implicated

in mutagenesis studies, see Figure 3.29. Both orientations showed interactions with
.1.32 ,3.28 _5.46Asp""", Phe' ' and Ser ', and the spiperone conformation with the intracellular

spiro-ring had an additional hydrogen bond between the lactam nitrogen and Ser5.40
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The resultant orientations also had a number of hydrophobic and polar interactions in

common, with spiperone interacting with Tyr743, Phe651, Val333 and Cys336, His655,

respectively. The similarity between the two alignments made it difficult to work out

which was the more likely orientation of spiperone in the binding site of the D2 models

created.

SlT !

Thr'

Figure 3.29. Diagrams generated from Ligplot analysis of the binding site interactions

of spiperone bound with the para-fluoro end in the region between helices two, three

and seven of the Di receptor model. The diagram on the left was from the placement of

spiperone with the spiro-ring system closer to the extracellular surface, and the

diagram on the right with the spiro-ring system closer to the intracellular side.

As it was difficult to decide on the orientation of spiperone in the binding site the

placement of spiperone in relation to all the residues implicated in the mutagenesis

experiments was examined in greater detail. From this analysis it could be seen that the

spiperone conformation with the spiro-ring system closer to the extracellular surface

was in much closer contact with all residues implicated in mutagenesis. Figure 3.30

shows spiperone in much closer contact to the Leu204 residue when the spiro-r'xng

system is closer to the extracellular side. When the intracellular orientation is observed

it can be seen that spiperone is almost two turns further down TM2 than Leu2'64. In
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addition to this it was seen that the extracellular spiro-nng orientation was able to

protect all the residues that were proposed to be in close proximity to the sulpiride or

jV-methylspiperone binding site.

Figure 3.30. Placement of spiperone in (he Dj models with the spiro-ring system closer

to the extracellular side (left) and closer to the intracellular side (right). The

orientation on the right is similar to that proposed by Mansour et al.

Therefore for the final placement of spiperone in the D2 receptor models there were only

two possibilities, shown in Figures 3.26 and 3.30 (left). However when the initial

niodei (Figure 3.26) was examined in relation to the suipiride protection of residues, it

could be seen that this orientation would not be able to protect all the residues

implicated in sulpiride protection, as it was too far inside the receptor, see Figure 3.31.

Therefore the orientation of spiperone that was used as the basis for extended

pharmacophore superimposition was the orientation shown in Figure 3.30 (left), as it

was in closer proximity to sulpiride protected residues.
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Figure 3.31. Placements of spiperone in the D2 model with the para-fluoro end in the

region between helices four, five and six, and the spiro-ring system closer to the

intracelhdar side. The diagram on the right shows spiperone in spacefill mode and the

residues identified to be protected by the binding of sulpiride or N-methylspiperone

coloured in orange.

Spiperone bound in the D4 dopaminergic model

For the initial placement of spiperone in the D4 receptor models, spiperone was

orientated so that the /wra-fluoro end of spiperone was in the region between helices

four, five and six. Both intra and extracellular orientations of the spiro-ring system

were also investigated. As was seen in the D2 analysis with spiperone bound in this

orientation, there was again only one significant family of orientations (Figure 3.32).

As when models were built with the spiro-r'mg system of spiperone closer to the

extracellular surface we again saw the inversion of spiperone in four of the ten models

created. In four other models created the phenyl-spiro end of spiperone was orientated

to be perpendicular the axis of the helices, resulting in severe steric clashes with helices

two and seven. The extra space in the region between helices two, three and seven in

the D4 models compared to the D2 models was not able to accommodate the

phenyksy;/ra end of spiperone satisfactorily. As was seen with the D2 models,

spiperone was thought to be too far inside the receptor to protect residues implicated in

proximity to the sulpiride or M-methylspiperone binding site.



Figure 3.32. Spiperone bound in the D4 receptor model, with the para-fluoro end in the

region between helices four, five and six. The residues implicated in the binding region

are shown labelled.

Alternative orientation of Spiperone bound in the D4 dopaminergic model

In this placement of spiperone in the D4 dopaminergic-binding site, spiperone was

orientated so that the /wra-fluoro end of spiperone was in the region between helices

two, three and seven. Both starting orientations of spiperone, with the spiro-nng system

facing inwards and outwards were also investigated. The most significant families of

orientations from the analyses conformed well to the residues implicated in mutagenesis

studies. Both orientations showed interactions with Asp3'32 and were in close proximity

to Ser546, Phe261 and Tyr5'38, see Figure 3 .33. The spiperone conformation with the

extracellular spiro-ving orientation had a number of hydrophobic contacts with Trp7'40,

Tyr7'43, Leu3'28 and Val3'33 and an additional hydrogen bond between the keto oxygen

and Tyr7'39. The resultant orientations also had a number of hydrophobic and polar

interactions in common, with spiperone interacting with Phe6 51 and Cys3'36, respectively

(Figure 3.33)
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Lru 187

Figure 3.33. D4 ligplot analysis diagrams. Diagram on left is from the placement of

spiperone with the spiro-ring system closer to the extracellular surface, and the

diagram on the right with the spiro-ring system closer to the intracellular side.

However again a similar theme to what was seen in the D2 models produced, was also

evident here. That is, when the spiro-ring system was closer to the intracellular side it

appeared as though spiperone was too far inside the receptor to adequately protect

residues t hought 10 b e n ear t he s ulpiride 0 r TV-methyl s piperone b inding site, (Figure

3.34)

Figure 3.34. S piperone bound with the spiro-ring system closer to the extracellular

surface (left) and closer to the intracellular surface (right.
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Therefore a similar orientation of spiperone in the D4 binding site, as compared to the

D2 binding site, was obtained. This orientation was used as the basis for

superimposition of the extended D4 CoMFA model onto the D4 receptor models.

3B.3.3 Analysis of the CoMFA Models in the Receptors

3B.3.3.1 Tricyclic CoMFA model

Clozapine bound in the D2 dopaminergic receptor model

From the analysis of the D2 models created it appears as though clozapine could bind in

either orientation deduced. However the orientation between helices four, five and six

is the proposed high affinity binding site as it conforms to the majority of the published

mutagenesis data. Therefore this orientation was used as the basis for the

superimposition of the D2 tricyclic CoMFA model developed in chapter 2, and the

resultant model with steric and electrostatic fields is shown in Figure 3.35.

Figure 3.35. D? CoMFA model superimposed into (he D2 model receptor. The diagram

on (he left shows the extracellular view of the CoMFA model with residues within 3A of

clozapine, shown with carbons in orange, depicted. The helices of the receptor are

shown in magenta line trace. The diagram on the right is the same depiction rotated

90° into the plane of the page.

The steric hindrance predicted in the model is easily seen with the large area above

clozapine being due to the presence of His655 and the smaller area past the distal
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The steric hindrance predicted in the model is easily seen with the large area above

clozapine being due to the presence of His655 and the smaller area past the distal

nitrogen being due to an unfavourable interaction with the backbone of TM3. The areas

where additional bulk would be favourable, shown in green, are also seen not to be

overlapping with any of the residues within 3A of clozapine. The concordance of the

steric fields from the CoMFA model with the receptor model indicates that this is a

likely orientation of clozapine in the D2 receptor.

The electrostatic fields from the CoMFA model are more difficult to explain within the

confines of the receptor model. Although the regions where partial positive charge

increases affinity (blue areas) on the tricyclic substructure indicate that carbon atoms are

favoured here as opposed to nitrogen, as was seen in some compounds from Table 2.3

chapter 2. Carbon atoms within the tricyclic substructure would be preferentially

tolerated within the hydrophobic cavity that clozapine is binding in. The red region on

the hydrogenated nitrogen of the tricyclic substructure is a good indication that an

electronegative heteroatom here would be favourable for binding, which is reiterated by

the hydrogen bond placement between the nitrogen and His6 55~ (Figure 3.23).

This orientation of clozapine, and all tricyclic substructural compounds, in the D2

receptor model aids in the generation of ideas for exploration of the groups that could be

tolerated within the cavity of the model.

Clozapine bound in the D4 dopaminergic receptor model

The analysis of the D4 models created revealed that clozapine could bind in both

orientations presented, although the highly favourable interaction of clozapine with

Phe261, as shown from mutagenesis data (Table 3.14) indicated that the bound

orientation between helices two, three and seven was the high affinity binding site. The

orientation of clozapine between helices two, three and seven was used as the template

for the superimposition of the D4 tricyclic CoMFA model generated in chapter 2 with

the resultant model being shown in Figure 3.36.



Figure 3.36. D4 CoMFA model superimposed onto clozapine in the D4 receptor model.

The diagram on the left shows the extracellular view depicted with residues within 3A of

clozapine, clozapine shown with carbons in orange. The helices of the receptor are

shown in magenta line trace. The diagram on the right is the same depiction rotated

90° into the plane of the page.

Figure 3.36 reveals two unfavourable steric regions from the CoMFA model, shown in

yellow. The largest of these regions is located on top of Tyr ' just off TM7 and the

smaller region located between helices two and three near Leu . Both unfavourable

steric areas are in inaccessible areas of the receptor. The two regions where additional

bulk is favourable to the binding affinity of compounds are shown in green. There is

one area at the back of the tricyclic substructure surrounded by Tyr743 and Trp7'40,

which would be ideal to explore in order to gain D4 selectivity. The second region

where steric bulk would be favourable is between TM6 and TM7 near Trp648 and

Phe651. Both of the regions where additional bulk is favourable do not lie on top of any

of the residues within 3 A of clozapine.

The electrostatic regions of the CoMFA model shows that partial positive charge is

favourable on the hydrogenated nitrogen of the tricyclic substructure, which is an

indication that a carbon would be preferential for increasing binding affinity. This is

supported by the fact that there is no hydrogen bond to this atom, unlike what was seen

in the Di model, and by the fact that this atom is sitting directly between two

hydrophobic residues, Tyr743 and Phe261. This extremely hydrophobic area would

indicate that a carbon would be preferable in this position.
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3B.3.3.2 Extended CoMFA model

Spiperone bound in the D2 dopaminergic receptor model

Analysis of the D2 models created with spiperone bound revealed one dominant

orientation that adhered to available mutagenesis data, (Figure 3.30 (left)). This

orientation was used as the basis for the superimposition of the extended D2 CoMFA

model from chapter 2, giving the combined model shown in Figure 3.37.

Figure 3.37. Extended Di CoMFA model superimposed onto spiperone in the D2

receptor model. The diagram on the left shows the extracellular view depicted with

residues within 3A of spiperone. The helices of the receptor are shown in magenta line

trace. The diagram on the right is the same depiction rotated 90° into the plane of the

page.

Figure 3.37 shows that the steric fields conform to the homology model presented

however the multitude of small areas of favourable and unfavourable steric interaction

make it difficult to gain any real understanding from the model. These are due to the

large number of components used in the generation of the model initially. However it

appears as though unfavourable steric interactions (yellow regions) between helices '

two, three and seven are due to clashes with Asn and the backbone of TM7. The two

areas of favourable steric bulk, which are devoid of overlapping residues, are near

Phe and in the vicinity of the spiro ring system. The electrostatic regions from the

extended CoMFA model are also difficult to interpret, again due to the multitude of

small areas of interaction. In general it appears as though the CoMFA fields generated

from the extended CoMFA model are not particularly suited to superimpositioning

within the D2 receptor models created. Therefore a CoMFA model generated from a
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smaller set of compounds that only occupied regions B and G of the pharmacophore

model was superimposed onto the placement of spiperone in the D2 receptor model. A

CoMFA model that only covers regions B and G was generated, as spiperone is only

proposed to reside in these areas of the pharmacophore model. This CoMFA model,

generated from 94 compounds that only occupied regions B and G, had q2 of 0.486, r2

of 0.893 and was generated from five components. The smaller number of components

made it easier to interpret, as there were not so many small areas of postulated

interaction. Figure 3.38 shows the reduced CoMFA model superimposed within the D2

receptor m odel. A s imilar a rrangement 0 f s teric c ontributions c an b e s een i n F igure

3.38 compared to Figure 3.37 however there is a large area of favourable steric bulk that

overlaps with Glu181 on the extracellular loop E2. This anomaly with Glu181 is due to

the reduced number of compounds being analysed within the model. In addition to this

the steric contributions (Figure 3.38) occupy much larger areas and the unfavourable

interaction at the para-fluoro end o f spiperone now can be seen to be encompassing

Leu204 as well as Asn180 from loop E2. The electrostatic contributions (Figure 3.38)

also appear easier to interpret as the large area of favourable partial positive charge

above spiperone can now be seen to interact with the Glu181. The negative charge on

the glutamic acid would interact favourably with any partial positive charge in this area.

Figure 3.38. D? CoMFA model generated from compounds residing in areas B and G

of the pharmacophore superimposed onto spiperone in the D? receptor model. The

diagram on the left shows the extracellular view depicted with residues within 3A of

spiperone. The helices of the receptor are shown in magenta line trace. The diagram

on the right is the same depiction rotated 90° into the plane of the page. Residues are
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not labelled, as they are the same as those depicted in Figure 3.37, with the exception of

Leu2'64, which is labelled.

Despite the relative conformity of the reduced B/G CoMFA model within the receptor,

when clozapine is placed into this spiperone bound D2 receptor model in the same

orientation as that seen in the pharmacophore relative to spiperone, a significant steric

clash is seen between clozapine and TM7 (Figure 3.39). This would indicate that

superimposition of the extended pharmacophore model using only spiperone as the

basis may give spurious results. The inconsistency of the pharmacophore model, and in

particular region A, may be due to a number of reasons, one being that when building

homology models with Modeller it has a tendency to unrealistically fill the active site of

a model when a ligand is not present.

Figure 3.39. Clozapine superimposed onto spiperone, as from the pharmacophore

model of chapter 2, with spiperone in the orientation deduced from the homology

models.

Another more likely reason that region A does not fit strictly within the region defined

by the pharmacophore is that regions A and B of the pharmacophore model are not

strictly defined areas in which this portion of the ligand must reside. As regions A and

B of the pharmacophore model are both hydrophobic regions the interactions there are

likely to be amorphous in nature and not defined to a particular geometry as a hydrogen

bond may be. It is likely that their interactions within the receptor will move about to a
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likely to be amorphous in nature and not defined to a particular geometry as a hydrogen

bond may be. It is likely that their interactions within the receptor will move about to a

moderate extent in order to find the lowest possible energy well for them and the

receptor to reside in. This is what appears to have happened in the construction of

spiperone in the D2 receptor model. In fact, this non-conformity of the pharmacophore

within the D2 model is not that surprising, as we saw earlier that in the binding of

clozapine within TM2, TM3 and TM7 the region here was extremely crowded. This

crowded region would cause any compound not occupying both regions A and B to

adopt a position that would be somewhere between the two. Thus when the

pharmacophore from chapter 2 is superimposed back onto a docked compound not

occupying both regions A and B we would expect to see some overlap with the

surrounding residues. As a continuation of this logic we might expect the extended

pharmacophore to superimpose well onto the models constructed with clozapine bound

in the region between helices two, three and seven. Unfortunately this is not the case as

we have the problem of the unrealistic filling of region G in the models constructed

here. Therefore to accurately superimpose the extended CoMFA model into a D2 or D4

receptor model, models should be built with a ligand that occupies all regions A, B and"

G of the pharmacophore. There are a number of types of antipsychotic ligands that fit

within this criterion, namely some of the diphenylbutylpiperidines such as fluspirilene

or some of the older dihydrodibenzo[b,f]azepines such as carpipramine. However these

were not looked at in this body of work, although these compounds do give insights into

the design of new types of compounds that may be able to occupy regions A, B and G.

Thus although the extended CoMFA model does not fit ideally into the receptor model

created, we can see that by also comparing the B/G CoMFA model we are able to gain

some further insight. These additional insights aid in deciding which areas maybe

explored in the design of new compounds.

Spiperone bound in the D4 dopaminergic receptor model

Analysis of the D4 models created with spiperone bound revealed one dominant

orientation that conformed with the mutagenesis data available (Figure 3.34 (left)).

This orientation was used as the basis for the superimposition of the extended D4
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occupying regions B and G only, giving the combined models shown in Figures 3.40

and 3.41.

The D4 CoMFA model for regions B and G generated from 93 compounds, had 5

components giving q2 of 0.52 and r of 0.86. The predicted activities of all compounds

were within ±0.9 pKj log units of their measured values

Figure 3J0. Extended D4 CoMFA model superimposed onto spiperone in the

receptor model. The diagram on the left shows the extracellular view depicted with

residues within 3A of spiperone. The helices of the receptor are shown in magenta line

trace. The diagram on the right is the same depiction rotated 90° into the page.

Figure 3.41. D4 QoMFA model generated from compounds residing in areas B and G

of the pharniacophore superimposed onto spiperone in the D4 receptor model, showing

si eric fields only. The depictions and residue labels are the same Figure 3.40.
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A similar placement of steric fields between the D4 and D2 B/G CoMFA models is seen

when comparing Figures 3.38 and 3.41, although it appears as though greater steric bulk

is more favourable for region G near helices three and four for the D4 B/G CoMFA

model. The greater availability of space within this region for the D4 receptor model

would be due to the presence of two valine residues, Val456 and Val4'60, which

correspond to He4'56 and Leu4"60, respectively, in the D2 model. In addition to this

difference the region where additional steric bulk is favourable near TM7 is much

greater in the D4 B/G CoMFA model compared to the D2 model. The reasoning behind

this is not due to any residues in TM7, as the TM7 interacting residues are identical

between D4 and D2, but due to Leu1'39 in the D2 model occupying a much greater space

compared to the Gly1'39 on the D4 model. The Leu1'39 on the D2 receptor not only

occupies a much greater area but also affects the packing of residues in its vicinity,

including Tyr743, which encroaches further into the binding site. Another favourable

steric region in common between the two B/G CoMFA models is the region interacting

with the extracellular loop E2. This anomaly is seen in both the B/G CoMFA models

but not in both the extended CoMFA models, see Figures 3.37 and 3.40, indicating the

compounds left out of the analysis are important for validating fields seen in the B/G

CoMFA model. The electrostatic fields, see Figure 3.40, indicate that some of the

atoms in the backbone of the extracellular loop E2 are interacting favourably with the

bound ligand. However the multitude of small regions make it difficult to assign these

regions to any particular residue. Some of the electrostatic differences between the D4

and D2 receptors in this region could be due to the presence of Met3'35 in the D4 receptor

model, which corresponds to a Leu3'35 in the D2 receptor. Met3'35 can be seen to be

interacting with the top of the ligand spiperone when bound in the D4 receptor.

A similar problem was seen as for the D2 receptor model, with the steric clash between

clozapine and TM7 when clozapine is placed into this spiperone bound D4 receptor

model in the same orientation as that seen in the pharmacophore relative to spiperone.

This is due to the same reason as was mentioned for the D2 receptor, that the

hydrophobic interactions are amorphous in nature and not defined to a particular point.

Thus although the extended CoMFA model does not fit ideally into the receptor model

created we again see that the B/G CoMFA model supports both the position of
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spiperone in the receptor and the smaller fields from the extended CoMFA model. This

will aid in the design of new compounds and their fine-tuning for the D4 receptor.
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3B.4.1 Model Generation

3B.4.1.1 Tricyclic model

The placement of clozapine in the D2 and D4 receptor models differed quite

significantly. The most significant D2 model as seen in six of the ten models created,

had clozapine placed in the region between helices four, five and six (Figure 3.17); this

model was also consistent with the majority of the mutational data.

The most significant D4 model, as seen in nine of the ten models created, had clozapine

bound between helices two, three and seven (Figure 3.24). Although in seven of the ten

models we saw a similar placement of clozapine between helices four, five and six, this

model did not conform to most of the mutational data. In addition to this when we saw

the Phe462Cys D2 mutation (Table 3.14) we saw a 10 fold drop in the affinity of

clozapine at the mutant D2 receptor. The reason behind this is that the Phe4 62 stabilises

the placement of F5'38 in the D2 receptor that interacts with clozapine. As Phe462 is

Cys4'62 in the D4 receptor we do not have this additional stabilisation, making this site a

lower affinity binding site at the D4 receptor.

3B.4.1.2 Extended Model

The final placement of spiperone in the D2 (Figure 3.30, left) and D4. (Figure 3.34, left)

receptor models did not differ in the manner that was seen for the binding of clozapine.

Both final models with spiperone bound conformed well to the mutational data and

were able to protect all the residues implicated in the 'protection by sulpiride'.

However it should be noted that the conformation of spiperone bound in the models

produced here was that used in the pharmacophore elucidation. It is highly likely that

other possible conformations of spiperone may bind in the D4 and D2 receptors. Indeed

when looking at one of the excellent papers[26] by Javitchs' group they have spiperone
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bound in a different conformation to that proposed to fit within the constraints of the

pharmacophore developed in Chapter 2. Even the orientation of spiperone bound in the

model presented by Shi et alP6] is different from that proposed here.

Unfortunately not all the possible conformations of spiperone can be looked at and built

into receptor models in the body of this work.

38.4.2 Analysis of the CoMFA Models in the Receptors

3B.4.2.1 Tricyclic Model

The tricyclic CoMFA model conformed well to the two different placements of

clozapine in the receptors. The areas of additional space present in the D4 CoMFA

model were seen in the placement of clozapine in the D4 receptor.

3B.4.2.2 Extended Model

The extended CoMFA models conformed reasonably well to the receptor models

created but the overlapping of some areas with TM7 indicated these were not ideal. The

subsequent generation of CoMFA models occupying regions B and G conformed well

in regards to the lack of overlap with TM regions. However the overlap of other steric

regions with the extracellular loop E2 indicated that B/G CoMFA models alone did not

generate ideal fields. Overall when looking at the regions the two differing models had

in common, a good agreement could be seen between the receptor and CoMFA models.
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4.1 pKa INTRODUCTION

It has long been recognised that the pKa, see inset box, of a compound plays a key role

in affecting many process involved in its pharmacokinetics and pharmacodynamics[1].

Indeed, in order for a drug to get to a site of action it may need to cross many

membranes and/or barriers. The ability of a drug to cross a membrane by lipid diffusion

will depend on its partition
r

coefficient between the

aqueous phase and the lipid

phase of a membrane. In

general the higher the

partition coefficient, the

higher will be the affinity for

the lipid membrane and the

more rapidly the drug is

absorbed. In reality there are

many other processes such as

active transport that also

What is pKa?

According to the Henderson-Hasselbalch equation,

the relationship between pH, pKa, and the relative

concentrations of an acid and its salt is as follows:

M
[HA]

where [A"] is the molar concentration of the salt

(dissociated species) and [HA] is the concentration

of the undissociated acid. Therefore when the

concentrations of the salt and acid are equal, the pH

of the system equals the pKa of the acid.

affect this process. However, as the non-ionised form of the drug is of main concern in

the equilibrium between the lipid and aqueous phases, the pH of the aqueous phase will

affect the overall partition coefficient of an ionisable substance.

The relationship between the observed overall partition coefficient (Po) and the partition

coefficient for the non-ionised form (PN) is given by the equation111.

l o d ^ - l =pH-pKa

Of key importance to the pharmaceutical industry are membranes that affect the

bioavailability of a compound (i.e. in the gut), partitioning within the body (e.g. blood

brain barrier (BBB)) and those associated with various ADME (adsorption, distribution,

metabolism and excretion) characteristics. These membrane crossing properties are

extremely important when designing effective antipsychotics (APDs), because in order

to cross the BBB an APD should preferentially be in an unionised state, and to act on
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the target receptor an ionic state is most often required. Therefore the pKa window that

an APD should possess is rather limited, effectively 1-2 pKa log units, and thus this

must be carefully controlled.

Therefore as pKa prediction is so important in the modern drug discovery process, it

seems only a natural extension of the computational chemist to be able to predict these

properties of their virtual compounds and also to advise ways of fine tuning a

compound for optimum bioavailability. This is a very difficult process for APDs as
r-

many are amines and heterocyclic compounds, however a feasible method is discussed

later.

There are a number of ways to measure and predict the pKa of a compound. Well

established titrimetric methods121 of measuring pKa are available, but these all require

samples of the compound itself. Current trends are such that it is becoming more

important to determine the pKa and other characteristics associated with a drug, before

synthetic work is undertaken with the aim of avoiding making compounds that are

predicted to have poor pharmacokinetics. A variety of theoretical prediction methods

have been established based on semi-empirical and ab initio quantum mechanical

calculations as well as linear free energy relationships (LFER).

Programs such as ACD Labs[3] pKa predictor and Pallas' pKalc[4] use LFER, which

although very fast, requires prederivation of a vast number of fragment constants and

correction factors to be used in the estimation. Additionally LFER can be prone to large

errors if compound fragments are not contained within the fragment library used to

calculate the pKa.

Programs such as Jaguarf5] utilise ab initio quantum mechanical calculations employing

self consistent reaction field (SCRF) continuum treatment of solvation and systematic

corrections to predict pKa. Whilst these methods are very reliable they are very

expensive in the computational time required for such predictions, with drug-sized

compounds taking approximately half a day depending on their size and the speed of the

computer.
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Other methods that have also been explored have used classically derived semi-

empirical quantum chemistry descriptors. The first of these studies, by Griiber and

Buss, emerged in the late 1980's and used the energies of the HOMO and LUMO as

well as atomic charges in combination with differences in free energy of the neutral and

anionic states[6] for pKa prediction. More recently Citral7J from the Syracuse

organisation used Coulson charges and bond orders to predict pKa. These methods are

almost as fast as fragment based methods with compounds taking approximately a few

minutes per pKa prediction. These studies will be outlined in full in the discussion.

We also have used semi-empirical methods in our prediction of pKa, as they are very

fast and reasonably accurate, although our method differs from those of Griiber and

Busst6] and Citral7] in so far as we have used descriptors derived from frontier electron

theory and not classical semi-empirical methods.

Frontier electron theory^ is based on the assumption that a chemical reaction should

occur at the position of largest density of the electrons in the frontier orbitals. The

frontier orbitals are defined according to the type of the reaction, the highest occupied

molecular orbital in the electrophilic reaction, the lowest unoccupied molecular orbital

in the nucleophilic reaction, and both of the above in a radical reaction. The theory is

based on splitting the energy of the whole system into its a- and 7t- components.

During the process of a chemical reaction the CT-part of the energy of the system reaches

a maximum, at which point a transition state is defined. Whilst in this transition state,

hyperconjugation takes place between the initial 7i-electron system and the

pseudo-ic-orbital located at the reaction centre (Figure 4.1).
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Figure 4.1. The transition state of the conjugated compound showing the

pseudo-n-orbitals, X and B, located at the reaction centre.

By means of a perturbation method, the 7t-part of the energy of the system involvingihe

pseudo-Tt-orbital is obtained. The frontier electron theory is then derived from an

approximate expression of this perturbation energy. This enables us to understand

many of the features of the transition state and the many dynamic processes that involve

transition states. One of the dynamic processes that has already been looked at is

hydrogen bonding191, where a correlation between a number of frontier electron theory

descriptors, (electrophilic superdelocalisability and atom self polarisability) was found

with hydrogen bond strength. From this we envisaged that it should be possible to look

at other dynamic processes such as disassociation constants with frontier electron

theory descriptors.
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4.2.1 Datasets

The experimental pKa datasets were extracted from the PHYSPROP® database1101 (April

2001) which contains physical and chemical properties for over 24,950 compounds, of

which 1847 compounds have pKa values. As our interest was in predicting pKa of

molecules (or molecular fragments) with relevance to the pharmaceutical industry, a

variety of filters were applied to the 1847 compounds to reduce the dataset in size. This

included a molecular weight cut-off of 700, and that most drugs fall below a molecular

weight of 500 l"l Those compounds which contained toxic functionality were also

excluded. In addition, all the mixtures of compounds and salts were removed. It was

also decided that only compounds whose pKa was experimentally determined between a

10°C - 30°C temperature range should be considered for the basis of our analyses.

The remaining 1,671 compounds were imported into a Unity1131 database to allow for

substructure searching. Our initial efforts were aimed at exploring the functional .groups

studied by Gruber and Busst6]. This included phenols, benzoic acids and aliphatic acids.

Later work included anilines, amines and heterocyclic compounds to expand the range

of functional groups investigated. Simple substructure searches were conducted to

extract the compounds of interest and these searches were refined to ensure no

ambiguity within the datasets. For example compounds that contained more than one

functional group from those described above (e.g. anilinophenols) were analysed to

ensure the pKa value given was for the functional group of interest (see Table 1). If the

pKa value could not be definitively assigned to the group under study the compound

was removed. Additionally if more than one identical functional group of interest

existed on the compound in question, they were removed, as the pKa value could not be

reliably assigned to one particular group, except in cases where an identical electronic

environment existed for both groups.

Gruber and Buss161 also demonstrated that further splitting of the datasets resulted in

improved prediction of pKa values. Therefore the substituted aromatic datasets

(phenols, benzoic acids and anilines) were split into two main groups, ortho substituted
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compounds and para/meta substituted compounds. The ortho substituted compounds of

the phenols and benzoic acids were again divided into three smaller subsets of

intramolecularly hydrogen bonded compounds, sterically constrained compounds and

the remaining ortho substituted compounds.

Criteria for inclusion into the intramolecularly hydrogen bonded subset involved the

substituent of interest being next to a suitable heteroatom, see Figure 4.2. This excluded

ortho-nitro substituted groups as they are poor hydrogen bond acceptors^ .

group of interest

acids phenols
Figure 4.2. Examples of aromatic intramolecularly hydrogen bonded compounds.

Criteria for inclusion into the sterically constrained subset of ortho substituted

compounds required that 2,6 substitution be present with substituents of a sufficient size

to hinder the group of interest. This excluded 2,6-diflouro substituted compounds but

included 2,6-dichloro substituted compounds and substituents of this size or greater, see

Figure 4.3. Visual analysis shows that 2,6 substituents with a van der Waals radius of

1.75A[15] or greater demonstrated a steric clash between the phenolic or anilinic

hydrogen and the ortho substituent. Only 2,6-dimethyl groups or larger were

considered for the sterically constrained subset of the aromatic carboxylic acids.



Chapter 4 234

Figure 4.3. 2,6-diflourophenol and 2,6-dichlorophenol with van der Waals radius dot

surfaces shown. The larger van der Waals radius of chlorine, 1.75A, is seen to be

sterically hindering the hydroxy group.

Subdivision of the aliphatic carboxylic acids into amino acids and remaining carboxylic

acids along with subdivision of the amines into primary, secondary and tertiary groups

was also undertaken to shed more light on these diverse sets.

The heterocyclic compounds were divided into groups depending on the main ring

system within the compound. This resulted in five main groups of heterocyclic

pyridines, pyrimidines, imidazoles, benzimidazoles and quinolines. The pyridines were

further split into ortho substituted and meta, para substituted subsets. Unfortunately

there were not large enough groups of other heterocyclic ring systems, complying to our

selection criteria, contained within the database for regression analyses. A number of

other heterocyclic ring systems were also considered for study, however, as these often

contained only a few examples they were not examined to maintain good statistical

practices.

The six main sets comprised over 700 compounds with 175 phenols, 99 benzoic acids,

185 aliphatic acids, 55 anilines, 77 amines and 150 nitrogen containing heterocyclic

compounds.

These compounds and their further subdivisions are available as supplementary material

in the appendix.
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4.2.2 Software

All the structures were initially extracted as 2D MOL SD files and converted into 3D

models using Corina1161. The QM calculations were carried out with a modified version

of Mopac 6.01 (Peter Bladon, Interchem Chemical Services, Glasgow), able to calculate

additional atomic properties (keyword: PROPER)1171. Both the Sybyl[13] and Tsar1181

software packages were used for data manipulation and statistical analyses, primarily

using the default parameters.

The modified version of Mopac 6.01 has been interfaced to Sybyl through an in-house

SPL (Sybyl Programming Language) script. The script works on a Sybyl molecular

database, creating the Mopac input file for each molecule in the databases and running

Mopac. Once the QM calculation is completed for all the structures, a Sybyl

spreadsheet is created and the relevant properties are imported. Subsequent QSPR

(quantitative structure-property relationship) analyses are relatively straightforward.

4.2.3 Theoretical Descriptors

All the structures were fully optimised (EF routine, PRECISE), prior to any parameter

calculation using the AM1[191 Hamiltonian. The PM3 Hamiltonian is also available

within Mopac, although previous work examining hydrogen bonding strength191 showed

that AMI and PM3 were very similar, with AMI performing slightly better at times.

Therefore PM3 was not considered any further.

Beside the charge (Q), as defined in Mopac, some additional atomic properties181 were

computed from the eigenvectors c^ and the eigenvalues A, where a refers to the atomic

orbital (i.e. s, px, py and pz) andy to the molecular orbital. Given a molecule with N

molecular orbitals, whose levels from 1 to m are occupied, and an atom p with q atomic

orbitals, these properties are defined as follows.

Electrophilic frontier electron density (FE)

,,2
'con

a=l.<7

is the sum of all the squared eigenvectors of p on the HOMO.

!'
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Nucleophilic frontier electron density (FN)

FN(p) =
a=\,q

is the sum of all the squared eigenvectors of p on the LUMO.

Electrophilic superdelocalisability (SE)

j=l,m a=\.q

where the sum is over all the atomic orbitals of p and all the occupied molecular

orbitals.

Nucleophilic superdelocalisability (SN)

where the sum is over all the atomic orbitals of p and all the unoccupied

molecular orbitals.

Radical superdelocalisability (SR)

y=l.m a=l,<7 y=m+l,iVa=l,(7

Atom self-polarisability (ALP)

Z E
where the sum is over all the atomic orbitals of p and all the occupied and

unoccupied molecular orbitals.

Al! the above properties have been calculated on and around all atoms in the groups of

interest, see Figure 4.4.

The following molecular properties were also taken into account:

Energy of the highest occupied molecular orbital (EHOMO)

Energy of the lowest unoccupied molecular orbital (ELUMO)-
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phenols

4

R3s
J

,R2

aromatic
carboxylic acids

2J{

aliphatic
carboxylic acids

10
anilines

amines pyridines pyrimidines imidazoles

R2. ,R1

T
benzimidazoles quinolines barbituates

Figure 4.4. Numbering of atoms contained on the groups of interest.

4.2.4 Method application

The six main datasets of over 700 compounds were analysed in the following manner.

Correlation matrices between experimentally determined pKa values and all the QM

parameters were initially calculated and viewed within Tsar. Using this information we

were able to determine the most highly correlated descriptors. Scatter plots of

experimental pKa values versus the most highly correlated properties were then

analysed and regression equations were derived for these single descriptors. Finally by

applying multiple 1 inear regression (MLR) on a 11 o f the descriptors further equations

were derived containing up to four descriptors.

MLR, as implemented in Tsar, was used to derive the equations. The default

parameters were used in most cases although both forward and backward stepwise
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regression analyses were also examined by adjusting the 'F to enter' and 'F to leave'

parameters. In some cases this approach was adopted to include a term involving

electrophilic superdelocalisability which consistently appeared to be correlated with

pKa. Moreover we were able to ensure that no more than four terms were included in

our regression models. Our objective was to obtain statistically significant models,

while keeping the number of parameters as low as possible. The cross-validated result

(rcv
2) refers to the leave-one-out protocol.

Additionally any compounds whose residual was greater than 2 pKa log units following

the derivation of the regression equations were further scrutinised. Typically this

occurred in only one to two compounds in a limited number of equations. Where it was

felt justified to leave these compounds out of the analyses, further regression equations

were developed.
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4,3 RESULTS

Histogram of pKa temperatures
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Figure 4.5. Histogram of the temperatures at which thepKa 's were determined. -

On examination, the majority of the compounds studied had the pKa determined at 20°C

to 25°C (see Figure 4.5). Moreover, pKa does not appear to vary considerably over this

temperature range of 10°C - 30°C (e.g. 6-aminopurine 0.2 units'121, leucine 0.05

units'121, piperazine 0.31 units'121).
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Table 1. Ambiguities between pKa values from the Syracuse1101

Name

Fenoprofen

Asparagine

Tryptophan

3-Chloro-4-

Hydroxybenzoic Acid

2-Aminobenzoic acid

3-Aminobenzoic acid

4-Aminobenzoic acid

4-Aminosalicylic acid

2-Aminoplienol

3-Aminophenol

4-Aminophenol

4-nitro-aminophenol

Nicotine

Anabasine

N,N-Dimethyl-3-

Pyridylmethylamine

Nicotinic Acid

Isonicotinic Acid

Picolinic Acid

3-Hydroxypyridine

Papaverine

CAS Code

031879-05-7

000070-47-3

000073-22-3

003964-58-7

000118-92-3

000099-05-8

" 000150-13-0

000065-49-6

000095-55-6

000591-27-5

000123-30-8

000099-57-0

000054-11-5

000494-52-0

002055-21-2

000059-67-6

000055-22-1

000098-98-6

000109-00-2

000058-74-2

Syracuse pKa

7.3

8.82

7.38

7.52

2.14

3.07

2.38

2.05

4.84

4.37

5.48

3.1

3.1

11

8

4.75

4.9

5.39

8.72

8.07

pK,

4.5UU]

322I2O,

-

-

2 . 1 1 1 2 0 1

312 ,20,

2.411201

2.05120'

4.84"21

4.37"21

5.48"21

3.12"21

3.551121

3.21"21

4.31" 2 '

2.07112'

1 7 H2|

1.061121

4 . 8 1 " 2 1

6.411121

database and

pK2

8.221201

9 2 SI2O|

7.52120 '

4.951201

4.741201

4.851201

3.661201

10.451201

9.86120 '

975I2O,

7.62112'

8.13"2 '

I I " 2 1

8.86112'

4.73"21

4.89112'

5.37'12'

8.74"21

8.011121

literature.

pK3

16.821201

13.741201

- indicates the value was not found

After the changes to the pKa values for the compounds listed in Table 1, the analyses

were carried out and the most significant findings are reported as follows.

4.3.1 Phenols

Following the removal of compounds that were unsuitable for our analyses, the final

phenol dataset consisted of 175 compounds. The range of substituents on the phenols

included; aldehydes, alkyl chains, amides, amines, carboxylic acids, halides, esters,

ethers, nitrates, oximes, sulphonamides and sulphonates, with a pKa range of 12 log

units.

1 1 ;a
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The correlation between each electronic property and the experimental pKa values was

calculated for the entire dataset. A number of calculated properties showed a good

correlation to pKa.

4.3.1.1 All phenols

• model with one descriptor i

(SEi is the electrophilic superdelocalisability for atom 1, where 1 refers to the atom

number in Figure 4.4 corresponding to the appropriate analysis)

pKa = -7.46*SEi-61.65 (1)

n=175, r=0.90, r2=0.81, rcv
2=0.81, F=736.12, s= 1.003

From this result we were indeed encouraged to see the good correlation between the

electrophilic superdelocalisability on atom 1 (SEi) with pKa using a single term

equation (1).

• model with four descriptors

pKa = - 45.20*AQ, + 9.77*FE, + 3.39*ALP2 - 6.34*SE2 + 27.21

n=175, r=0.97, r2=0.93, rcv
2=0.93, F=594.74, s=0.599

(2)

There was an increase in both the squared correlation coefficient (r") and the

cross-validated squared correlation coefficient (rcv
2) when going from one to four

descriptors for the entire dataset of phenols, c.f. equations (1) and (2). It was interesting

to note that SE( was replaced by SE2, but this was entirely feasible as the two terms

were within 0.01 units of each other in respect to their correlations with pKa. The plot

of pKa observed versus predicted, according to equation (2) is reported in Figure 4.6.

The following two compounds had residuals greater than 2 pKa log units:

3,5-dichloro-2'-methyl-4'-nitrosalicylanilide (090426-03-2) and 2-ami.no-

4,6-nitrophenol (000096-91-3)

It is interesting to speculate on why these compounds were not predicted as well as the

others and it may be that our semi-qualitative method is unable to model complex

'* * i
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phenols with multiple substituents. After removing these compounds and reanalysi

the dataset, the increase in r2 and rcv
2 was only 0.02 units.
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Figure 4,6. Predicted against observed pKa for all phenols using equation (2) with four

descriptors.

As previous work'61 using quantum chemical descriptors to explain pKa's had shown

that improvements could be made in dividing the data into smaller subsets, we adopted

a similar approach. The phenol dataset was divided into a meta/para substituted dataset

of 58 compounds and an ortho substituted dataset of 118 compounds. The ortho subset

was further split using the method outlined previously, into three smaller classes:

intramolecularly hydrogen bonded compounds, sterically constrained compounds and

the remaining ortho compounds giving 26, 34 and 58 compounds in the three classes,

respectively.

The correlation between each electronic property and the experimental p'Ka values was

calculated for each single class. When considering the whole data set, a number of

calculated properties had shown a good correlation to pKa and on separately analysing

the subsets improved statistics were found in most cases.
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meta/para substituted phenols

• model with one descriptor

= -5.21*SE,-39.87
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(3)

n=58, r=0.96, r=0.92, rcv
2=0.91, F=644.74, s=0.315

The prediction of pKa's for meta/para substituted phenols did not improve by including

additional descriptors. There is an obvious improvement over the one term equation for

all phenols, with the r2 going from 0.80 to 0.92, showing the benefits of placing the data

into subsets,

ortho substituted phenols

• intramolecularly hydrogen bonded

• model with one descriptor SEi

pKa = -11.33*SE, -99.31 (4)

n=26, r=0.91, r2=0.83, rcv
2=0.81, F= 119.92, s=0.68S

A three term equation was also generated model with an improved r2. However the

predictive ability as judged by the rcv
2 did not improve (result not shown). Removing

one compound from the dataset, methyl salicylate (000119-36-8), did give a significant

improvement.

• model with one descriptor SEi

pKa = -10.37*SE|- 90.48 (5)

n=25, r=0.93, r:=0.87, rcv
2=0.86, F=158.80, s=0.537

The inconsistencies with prediction of methyl salicylate may result from the fact it is

able to form hydrogen bonds with either oxygen on the ester substituent, while this is

not the case with any other compound. These results for the hydrogen bonded subset

make significant improvements over the dataset containing all the phenols, especially

when looking at equation (1) with only one descriptor.

I
3 i
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sterically constrained

• model with one descriptor SEi

pKa = -8.38*SE, -70.30

n=34, r=0.96, r2=0.91, rcv
2=0.90, F=343.50, s=0.965

244

(6)

The improvement in the one term equation, (6), in comparison to that for all phenols,

equation (1), is easily evident. There is a slight additional improvement in introducing

an extra term into equation (6) (results not shown), although this is at the expense of

simplicity of interpretation of the model.

remaining ortho

• model with one descriptor SE|

pKa = - 6.48*SE, - 52.25

n=58, r=0.95, r2=0.91, rcv
2=0.90, F=551.43, s=0.575

(7)

I
m

Only minor improvements are seen when adding two extra terms to equation (7) (results

not shown). The results from equation (7) are better than those obtained for all phenols

with one descriptor, equation (1), and comparable to those obtained using four

descriptors, equation (2).

4.3.2 Benzoic Acids

The benzoic acid dataset consisted of 99 compounds. The range of substituents on the

benzoic acids included; alcohols, aldehydes, alkyl chains, amides, amines, halides,

esters, ethers, nitrates, sulphonamides and sulphonates, with a pKa range of 4.5 log

units.

The correlation between each electronic property and the experimental pKa values was

calculated for the entire dataset. Again electrophilic superdelocalisability on atoms 1, 2

and 3 showed a good correlation to pKa.
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4.3.2.1 All benzoic acids

• model with one descriptor SEj

= -9.60*SEj-41.74 (8)

n=99, r=0.81, r2=0.66, rcv
2=0.64, F=I85.08, s=0.567

• model with four descriptors

pKa = - 0.86*LUMO - 7.73*SE, + 3.04* ALP4 - 2.33*SE4 + 16.35

n=99, r=0.93, r2=0.87, rcv
2=0.85, F=153.99, s=0.357

(9)

It was interesting to observe that electrophilic superdelocalisability was the single

descriptor with the highest correlation to experimental pKa values. However, while

there was a good correlation with the oxygen atom (atom 2), see Figure 4.4, the best

correlation was with the carbon yl carbon (atom 1). This may be due to the electronic

effects of substituents on the ring affecting the carbonyl carbon to a greater extent than

the oxygen (atom 2). Interestingly the order of correlation with pKa was SEi > SE3 >

SE2 with values going from 0.81 > 0.78 > 0.72, respectively.

There was a substantial improvement in the regression equation when adding three

further descriptors to give equation (9).

4.3.2.2 Benzoic acid subsets

The aromatic carboxylic acids were divided into a meta/para subset and an ortho subset

giving 46 and 53 compounds, respectively. The ortho subset was further divided into

the intramolecularly hydrogen bonded group and the remaining ortho compounds,

giving 31 and 22 compounds per group, respectively. Only two compounds (2,6-

dinitrobenzoic acid and 2,6-ditertbutylbenzoic acid) were classified as sterically

constrained and these were studied within the 'remaining ortho' compounds subset.

meta/para substituted compounds

• model with one descriptor SE3

pKa = -1.98*SE3-16.69

n=46, r=0.86, r2=0.75, rcv
2=0.72, F=131.61, s=0.228

(10)
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without 3,4-diaminobenzoic acid (000619-05-6)

pKa = -2.14*SE3-18.27

n=45, r=0.93, r2=0.86, rcv
2=0.85, F=274.94, s=0.167
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(11)

Equation (11) was obtained by omitting 3,4-diaminobenzoic acid (000619-05-6). This

result is difficult to explain and we may speculate that problems in predicting this

compound may be due to factors which can not be modelled accurately using this

approach such as intermolecular hydrogen bonding. There was a large improvement

when the 3,4-diaminobenzoic acid was removed from the regression equation, see

equations (10) and (11). The descriptor with the greatest correlation was found to be

self-atom polarisability on atom 3 (ALP3) followed by SE4, SE3, SE2 and SEi all with

correlations greater than r2 = 0.82. Improvements were not seen in rcv
2 of the regression

equation with multiple descriptors for the meta/para subset.

ortho substituted compounds

• intramolecularly hydrogen bonded

• model with one descriptor SEi

pKa = -9.52*SE,-41.51

n=31, r=0.90, r2=0.80, rcv
2=0.76, F=118.19, s=0.447

(12)

Inclusion of additional descriptors did not improve the predictive capabilities of

equation (12) (results not shown). Removal of the only compound able to form

hydrogen bonds with both 2,6-ortho substituents, 2,6-dihydroxybenzoicacid

(000303-07-1), improved the predictive abilities of the model, see equation (13)

• model with one descriptor

= -9.04*SE,-39.20 (13)

n=30, P=0.9 1, r2=0.83, rcv
2=0.82, F= 140.02, s=0.383

There is a significant improvement in the statistics of the single descriptor equation (13)

reduced set of hydrogen bonded benzoic acids compared to the single descriptor

equation (8) complete set. Also equation (13) is comparable to equation (9) and much

easier 10 interpret.
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remaining ortho substituted compounds

• model with one descriptor SEi

pKa = -8.76*SE,-38.43

n=22, r=0.87, r=0.76, rcv
2=0.74, F=63.72, s=0.429

• model with three descriptors

pKa = - 6.74*SE, - 5.34*AQ4 + 3.13*ALP4 + 38.20

n=22, r=0.95, r=0.90, rcv
2=0.81, F=53.78, s=0.293
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(14)
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There is a reasonable improvement in both r2 and rcv
2 when going from equation (14) to

(15). The inclusion of the charge (AQ4) and atom self-polarisability (ALP4) on atom 4

improves the predictive ability of the model and gives results that are comparable to

those for all benzoic acids, see equation (9), although both models are somewhat more

difficult to interpret than single term superdelocalisability equations.

4.3.3 Aliphatic Carboxylic Acids

The aliphatic carboxylic acid dataset consisted of 186 compounds. The range of

substituents on the aliphatic carboxylic acids included; alcohols, aldehydes, alkyl

chains, amides, amines, aromatic ring systems, carboxylic acids, halides, esters, ethers,

nitrates, sulpnonamides, sulphinates, sulphonates and others, with a pKa range of just

over 5 log units.

The correlation between each electronic property and the experimental pKa values was

calculated for the entire dataset. No correlation was found between any of the

descriptors and pKa for all of the atoms investigated.

4.3.3.1 All aliphatic carboxylic acids

The correlation matrix showed there were only poor correlations between pKa and any

of the descriptors present. There were tenuous correlations with both SE2 and SE3 with

a value just over 0.5.
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• model with four descriptors

pKa = 4.29*ALP, - 41.77*AQ2 - 30.03*AQ3 + 0.71*FE3 + 56.06

n=185, r=0.83, r2=0.69, rcv
2=0.67, F=101.28, s=0.564

248

(16)

Equation (16) was the best that could be obtained between pKa and the descriptors,

indicating that the set may be too diverse for analysis on its own and may benefit from

further subdivision.

Visual analysis of the graph of predicted against observed pKa from equation (16), see

Figure 4.7, shows the poor predictive ability of this model. This is reiterated by

comparing the differing slopes of the lines of best fit for the different subsets, discussed

below.

I

h
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0

-1

aliphatic carboxylic acids

pKa amino
pKa normal

4 1 2 3 4 5 6 7

pKa (actual)

Figure 4.7. pKa actual versus predicted from equation (16) for all aliphatic carboxylic

acids with the different subsets coloured accordingly.
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4.3.3.2 Aliphatic carboxylic acid subsets

Pit

The aliphatic acids were split into two smaller subsets in order to gain more

information. The 185 aliphatic acids were split into a subset of 42 amino acids and the

remaining 143 carboxylic acids. The amino acids were separated to mimic the

hydrogen bonded sets of the previously analysed aromatic compounds. However no

simple way could be found to classify highly branched or flexible compounds that could

mimic the sterically constrained subset.

remaining aliphatic compounds

r,'

The correlation matrix again showed there were only poor correlations between pKa and

any of the descriptors present, therefore a two term equation was developed.

• model with two descriptors

pKa = 3.24*ALP3 - 2.80 *SE3 -19.43

n=143, r=0.84, r=0.70, rcv
2=0.69, F=165.80, s=0.510

(17)

With the removal of two significant outliers, MCPB (000094-81-5) and trinexapac

(104273-73-6), we were able to improve the statistics somewhat, see equation (18).

• model with two descriptors

pKa = 3.53*ALP3 - 2.65*SE3 + 25.01

n=141, r=0.90, r2=0.80, rcv
2=0,80, F=282.85, s=0.394

(18)

It was interesting to note that the outlier (MCPB) has a pKa value 0.5 log units higher

than any of the other compounds in the dataset. The unusually high pKa of 6.2 may be

compounded by the highly flexible nature of this compound causing it to be modelled

incorrectly, Trinexapac also has a high pKa and other heteroatoms, such as hydroxy and

multiple carbonyl groups, contained within its structure which may cause intermolecular

hydrogen bonding to occur that cannot be accounted for in this method.



Chapter 4 250

amino acids

The correlation matrix showed there were no reasonable correlations between pKa and

any of the descriptors present, the highest correlation being r = 0.5 for SE3.

While we tried to find correlations between pKa and all the descriptors, the best

equation, (20), was unacceptably poor.

• model with three descriptors

pKa = - 28.75*AQ3 + 12.17*SE3 - 2.87*AQ3 + 2.46

n=42, r=0.68, r2=0.46, rcv
2=0.34, F=10.24, s=0.411

(20)

r

This indicates that these descriptors alone do not appear to be able to model the pKa of

amino acids. This may be due to the amphoteric nature of these compounds.

4.3.4 Anilines

The aniline dataset comprised 55 compounds. The range of substituents on the anilines

included; alcohols, aldehydes, alkyl chains, aromatic ring systems, carboxylic acids,

halides, esters, ethers, nitrates and sulphonates, covering a pKa range of almost 11 log

units.

The correlation between each electronic property and the experimental pKa values was

calculated for the entire dataset. Electrophilic superdelocalisability on atoms 1 and 2

showed the best correlation to pKa.

4.3.4.1 AH anilines

• model with one descriptor

pKa = -7.83*SE,-66.64

n=55, r=0.88, r=0.77, rcv
2=0.75, F=178.88, s=0.958

(21)

Again the addition of one more descriptor to equation (21), AQ2, only improved the

predictive aspects (rcv
2) of the model by 0.04 units (results not shown).

h
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4.3.4.2 Aniline subsets

The anilines were divided into a meta/para subset and an ortho subset, which gave 26

and 30 compounds, respectively.

pi
Hi

meta/para substituted anilines

• model with one descriptor

pKa = -3.04*SE,- 50.43

n=26, r=0.85, r2=0.72, rcv
2=O.7O, F=62.46, s=0.641

• model with two descriptors

pKa = 1.99*LUMO - 9.76* AQ2 + 4.13

n=26, r=0.91, r=0.83, rcv
2=0.75, F=54.93, s=0.517

(22)

(23)

The changing of descriptors to LUMO and AQ2 improved the regression equation

statistics for the meta/para anilines, see equations (22) and (23). Additionally when the

compound 2-nitro-p-toluidine (000089-62-3) was removed from equation (23) the

statistics improved even further.

• model with two descriptors

pKa = 1.74*LUMO - 13.08*AQ2 + 4.47 - (24)

n=25, r=0.94, r=0.88, rcv
2=0.85, F=81.O8, s=0.401

Subdivision into the meta/para set did therefore improve the statistics of the model

produced when comparing this model to the equation for all aniline compounds,

(compare equations (24) to (21)). However, this was at the expense of ease of

interpretation.

ortho substituted anilines

The ortho subset was not further divided into the intramolecularly hydrogen bonded and

sterically constrained subsets, as there were only eight cases of these all together.

Suitable ami statistically relevant models could not be derived and thus the ortho

compounds were studied as a single group.

k
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The three hydrogen bonded cases contained within ortho subset were ethyl-anthranilate

(000134-20-3), o-aminobenzoic acid ethyl ester (000087-25-2) and 2-aminobenzoic

acid (000118-92-3).

The five sterically constrained cases contained within ortho subset were 2,6-dimethyl-4-

nitroaniline (016947-63-0), 2,6-dichloro-4-nitroaniline (000099-30-9),

2,6-dichloroaniline (000608-31-1), 2,3,5,6-tetrametyl-4-nitroaniline (013171-61-4) and

2,4,6-trichloroaniline (000636-30-6).

F
it

• model with one descriptor

pKa = -7.67*SEi- 65.55

n=30, r=0.88, r2=0.78, rcv
2=0.75, F=100.90, s= 1.060

• model with two descriptors

pKa = - 6.38*AQ2 - 9.98*SE, - 53.09

n=30, r=0.91, r2=0.83, rcv
2=0.80, F=68.06, s=0.942

(25)

(26)

An improvement in the statistics of regression equation (25) compared to (26) was seen

when two descriptors were used to model the pKa. Including another descriptor, charge

on atom 2 (AQ2), improves both the squared correlation and the predictive ability.

Additionally, when the outlier 3-nitro-4-toluidine (000119-32-4) was removed from the

analyses a noticeable improvement was seen, see equation (27).

• model with two descriptors

pKa = - 6.22*AQ2 - 12.35*SE, -51.59

n=29, r=0.95, r2=0.90, rcv
2=0.90, F=l 18.632, s=0.733

(27)

!
f '

P

The predictive capability of equation (27) exceeds that for the entire anilines set

(equation (21)). This is even when the eight intramolecularly hydrogen bonded and

sterically constrained compounds are included in the ortho analysis.

It is interesting to note that the charge residing on the carbon joined to the anilinic

nitrogen plays an important role in all equations.
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4.3.5 Amines

The amine dataset comprised 77 compounds. The range of substituents on the amines

included; alkyl chains, aromatic ring systems, aliphatic ring systems, morpholine ring

systems, halides, esters and ethers, with a pKa range of almost 6 log units.

The correlation between each electronic property and the experimental pKa values was

calculated for the entire dataset. Electrophilic superdelocalisability on atom 1 showed

the best correlation to pKa.

7
pi
I*
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r

4.3.5.1 AH amines

• model with one descriptor

pKa = -8.01*SE, -65.78

n=77, r=0.85, r2=0.72, rcv
2=0.72, F=193.80, s=0.650

(28)

The predictive ability of the regression equations increased when the two compounds,

azetidine (000503-29-7) and pyrrolidine (000123-75-1), were removed from the original

equation (28) resulting in equation (29). These compounds may not be well predicted""

due to the strain on the bond angles of the four and five membered ring systems.

• model with one descriptor

pKa = -7.93*SE,-65.07

n=75, r=0.88, r2=0.77, rcv
2=0.76, F=252.28, s=0.567

(29)

4.3.5.2 Amine subsets

The 77 amines were divided into primary, secondary and tertiary amine subsets

possessing 23, 23 and 31 compounds, respectively. Attempts were not made to divide

these subsets any further, as this would have resulted in subsets too small to analyse.

primary amines

• model with one descriptor SEi

pKa= -8.05*SE,-66.56 (30)

n=23, r=0.93, r2=0.86, rcv
2=0.85, F=136.84, s=0.404
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The addition of two further descriptors in equation (30) improves the predictive ability

of the regression model by a modest amount (results not shown). The regression model

obtained for the primary amines, equation (30), was noticeably better than the final

model obtained for all amines, equation (29).

secondary amines

• model with one descriptor FNi

pKa = 5.77*FNi + 9.48 (31)

n=23, r=0.76, r=0.58, rcv
2=0.55, F=28.76, s=0.593

• model with three descriptors

pKa = - 4.94*HOMO - 6.86*SE, + 0.76*SN, - S9.14 (32)

n=23, r=0.88, r2=0.77, rcv
2=0.67, F=21.12, s=0.461

5'c

r

The regression model obtained using three descriptors, equation (32), has a higher r2

and rcv
2 than that of equation (31). An inspection of the plot of predicted against

observed pKa values using equation (31) demonstrates that the compounds fell into two

distinct regions with the line of best fit passing between each region. In this case FN(

was suspected of having a non-normal distribution and has resulted in a model of poor

predictive ability. The non-normal distribution was made up of two distinct classes,

purely aliphatic compounds and those containing at least one or more double bonds.

These two classes were separated and analysed again however no correlation could be

found with any of the descriptors. Equation (32) however, has a normal distribution of

values over the 2 pKa log units. Equation (32) was also improved substantially by

removal of the outlier morpholine (000110-91-8).

• model with three descriptors

pKa = - 5.19*HOMO - 5.23*SE, + 0.82*SN, - 74.96

n=22, r=0.91, r2=0.84, rcv
2=0.75. F=30.37, s=0.353

(33)

It is interesting that morpholine is an outlier, as in the original analysis containing all

amines, morpholine and its derivatives are well predicted. Thus it seems the outlier

status of morpholine may be an artefact of the descriptors used in equation (33)

compared to (29), or all morpholines may need to be put into a further subset.
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tertiary amines

• model with one descriptor SEi

pKa = -9.72*SEi-81.71

n=31, r=0.89, r2=0.79, rcv
2=0.77, F=l 12.04, s=0.559

255

(34)

i
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Only a slight improvement was seen with the addition of descriptors, FNi and ALPi, to

the original equation (34) (results not shown), for the tertiary amines, although removal

of fenpropimorph (067564-91-4) gave a larger improvement, see equation (35), with a

much less complicated interpretation. Fenpropimorph may not be well predicted due to

the eight rotational bonds and morpholine subunit, all of which may be involved in

additional intermolecular interactions that are unaccounted for in this method.

• model with one descriptor

= -9.32*SE1- 77.91
2=

(35)

n=30, r=0.92, r2=0.84, rcv
2=0.82, F=l 50.08, s=0.462
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Figure 4.8 pKa obsemed versus predicted for primary secondary and tertiary amines

using equations (30), (33) and (35), respectively.
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4.3.6 Heterocyclic compounds

The heterocyclic dataset consisted of 150 compounds. Some of the substituents on the

heterocycles included; alcohols, aldehydes, alkyl chains, amides, amines, aromatic ring

systems, aliphatic ring systems, carboxylic acids, cyanos, esters, ethers, halides,

ketones, nitrates and thioethers, with a pKa range of over 11 log units.

The correlation between each electronic property and the experimental pKa values was

calculated for the entire dataset. Electrophilic superdelocalisability on the nitrogen

atom, (atom 1) of the four heterocycles, showed the best correlation to pKa.

I n

i>

4.3.6.1 All heterocycles

model with one descriptor SE;

= -6.61*SEi-54.35

n=150, r=0.74, r2=0.55, rcv
2=0.54, F=182.51, s= 1.460

• model with three descriptors

pKa = 32.58*AQ, + 3.61*ALP, - 8.59*SE, + 5.17

n=150, r=0.85, r2=0.72, rcv
2=0.69, F=123.41, s=1.168

(36)

(37)

There were improvements in using additional descriptors to predict pKa for the

heterocyclic compounds; however there was a large spread of predicted values,

reiterated in the high standard deviation shown in both equations (36) and (37). The

high standard deviation of prediction may result from trying to simultaneously analyse

four heterocyclic systems with subtle differences in their electronic nature (pyridines,

pyrimidines, imidazoles and benzimidazoles).

The 150 heterocyclic compounds were then separated into five main groups, according

to Figure 4.3, giving 82 pyridines, 14 pyrimidines, 16 imidazoles, 10 benzimidazoles

and 28 quinolines.
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4.3.6.2 All pyridines

The 82 pyridines contained the same range of substituents as the complete heterocyclic

set, and covered a pKa range of 11 log units.

31

• model with one descriptor SEi

pKa = - 8.02*SE| - 66.52

n=82, r=0.76, r2=0.57, rcv
2=0.55, F=107.65, s=1.456

(38)
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• model with three descriptors

pKa = 52.71*AQ! + 6.45*ALP, - 10.26*SEi + 49.84

n=82, r=0.88, r2=0.78, rcv
2=0.77, F=92.62, s=l.O53

(39)

Equation (39) shows an improvement over equation (38) with the inclusion of three

descriptors and there is a noticeable improvement over the analysis of all the

heterocycles, equation (37). Worringly, the standard deviation of equation (39) is still

over 1 log unit, which is largely due to the three outliers detected in the analyses.

The three outliers: 2,6-dichloropyridine (002402-78-0), nicotine (000054-11-5) and

anabasine (000494-52-0) were removed and further regression models were constructed.

Outliers 2 and 3 both contain a meta substituted aliphatic heterocyclic ring system, and

are the only two compounds of this type in the data set, indicating that these compounds

are not predicted well.

• model with four descriptors

pKa = - l.S4*LUMO + 57.93*AQ, + 6.76*ALP, - 13.88*SE, + 24.70

n=79, r=0.92, r2=0.84, rcv
2=0.82, F=100.48, s=0.851

(40)

After removal of the three outliers the predictive ability of the regression equation

improves substantially and an extra term, LUMO, was included in the descriptor

selection process. All other statistics parameters from equation (40) have been

improved compared to equation (39). However it is interesting to note that in the new

regression equation the compound with the greatest residual is 2,3,5,6-dichloropyridine

(002402-79-1), which would indicate that both regression equations, (39) and (40), have

r:
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problems in predicting 2,6-dichloro substituted pyridines. This may be due to steric

considerations with the bulky chlorine groups hindering the pyridyl nitrogen.

4.3.6.3 Pyridine subsets

The pyridines were further subdivided into a meta/para subset and an ortho subset,

giving 48 and 34 compounds, respectively.

i

i „

t

\

meta/para substitution

• model with one descriptor SEi

pKa = -7.83*SE,-64.317

n=48, r=0.86, r=0.74, rcv
2=0.72, F=128.84, s=0.790

(41)

No improvement was seen with the inclusion of additional descriptors. However the

same two meta/para substituted outliers that weie present in equation (39) are also

present in this analysis.

The two outliers: nicotine (000054-11-5) and anabasine (000494-52-0) were removed.

• model with one descriptor SEi

pKa = -8.63*SEi-71.2O

n=46, r=0.93, r2=0.86, rcv
2=0.85, F=279.39, s=0.581

(42)

The removal of the two outliers from equation (41) provided a significant improvement

to give equation (42). Additionally, there is an improvement over equation (40) which

models the complete pyridine set using four descriptors thus, demonstrating the benefits

of subdividing this set.

ortho substitution

• model with one descriptor SEi

pKa = -9.19*SE, -77.51

n=34. r=0.78, r2=0.61, rcv
2=0.56, F=50.49, s=1.849

(43)

F

I
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• model with two descriptors

pKa = 55.60*AQ, - 14.69*SE, - 118.32

n=34, r=0.93, r=0.87, rcv
2=0.82, F=101.71, s=1.097

259 h

(44)

A marked improvement was seen over equation (43), with the addition of the descriptor

(AQi) to give equation (44). There were three outliers present here, two of which were

mentioned earlier in relation to equations (39) and (40). The three outliers:

2,6-dichloropyridine (002402-78-0), 2,3,4,5,6-pentachloropyridine (002176-62-7) and

2,6-ditertbutylpyridine (000585-48-8) were removed.

I I

K'

>-J • model with three descriptors

pKa = 56.27* AQ, - 14.8i*SE, - 119.95

n=31, r=0.96, r2=0.93, rcv
2=0.86, F= 115.26, s=0.747

(45)

After removal of the 2,6-dichloro and 2,6-ditert butyl compounds an excellent

correlation was achieved, demonstrating that steric hindrance appears to affect the pKa

of these pyridine compounds. Unfortunately, there were not enough stencally hindered

compounds to construct a statistically significant model.

4.3.6.4 Pyrimidines

4

There were 14 pyrimidine compounds present in the heterocyclic dataset Substituents

on the pyrimidines included alkyls, amines, aromatic ring systems, ethers, esters,

halides and nitrates, spanning a pKa range of 9 log units. The initial correlation matrix

showed that there was a greater correlation with one nitrogen (atom number 3) than the

other (atom number 1) see Figure 4.4. This was investigated further as both nitrogens

were expected to be equivalent. Analysis of the AMI minimised structures revealed

that the greatest correlation was indeed with the nitrogen that was not sterically

hindered by substituents attached to atom 2, see Figure 4.9. As only a number of

compounds had substituents of this nature, these were removed and when the

correlation matrix was recalculated it showed that both nitrogens were almost identical

in an electronic sense. This demonstrated the importance of molecular conformation in

pursuing these studies.
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2-ethoxypyrimidine pyrimethanil
Figure 4.9. Examples of substituents from atom 2 that were causing steric hindrance of

nitrogen atom 1, 2-ethoxypyrimidine and pyrimethanil.

The highest correlation from the correlation matrix was shown to be the charge on atom

3, AQ3, followed closely by the electrophilic superdelocalisability, SE3.

• model with one descriptor AQ3

pKa = -39.79*AQ3-5.14

n=14, r=0.88, r2=0.78, rcv
2=0.66, F=42.09, s=1.100

(46)

No improvement in rcv
2 was seen with additional descriptors, although after the removal

of the outlier, fenclorim (003740-92-9). a marked improvement was seen, see equation

(47).

• model with one descriptor AQ3

pKa = -41.11*AQ3-5.59

n=13, r=0.94, r2=0.88, rcv
2=0.84, F=83.17, s=0.805

(47)

'i*

The discrepancy in fenclorim's prediction may be due to the phenyl substituent attached

to atom 2 sterically interfering with both nitrogens. Indeed, steric and conformational

considerations have already been shown to affect pKa in both the pyridine and

pyrimidine datasets.

ill
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4.3.6.5 Imidazoles

M
\
P

The imidazole dataset comprised 16 compounds. Some of the substituents on the

imidazoles included: alcohols, aldehydes, alkyl chains, amines, aromatic ring systems,

aliphatic ring systems, carboxylic acids, esters, ethers, halides, ketones, thioethers and

nitrates, with a pKa range of almost 9 log units.

The correlation between each electronic property and the experimental pKa values was

calculated for the entire dataset. Electrophilic superdelocalisability on the nitrogen

atom, atom 1 (see Figure 4.4), showed the best correlation to pKa.

model with one descriptor SEi

= -8.21*SE,-69.05

n=16, r=0.95, r2=0.91, rcv
2=0.90, F=155.49, s=0.864

• model with two descriptors

pKa = 1.04* AQj - 6.72*SE, - 55.55

n=16, r=0.98, r=0.95, rcv
2=0.94, F=137.36, s=0.664

(48)

(49)

There was a slight improvement on what was already a good correlation when

comparing equations (48) and (49). The introduction of the descriptor, AQi, reduced

the standard deviation by almost a third and the F statistic marginally. This would

enable us to make predictions with much greater confidence even though the dataset

was of limited size.

4.3.6.6 Benzirnidazoles

The benzimidazole dataset was of a limited size with only 10 compounds satisfying the

selection criteria. The substituents present in the dataset include; alkyl chains, amines,

amides, aromatic ring systems, ethers, halides and nitrates, with a pKa range of just over

3 log units.

The correlation between each electronic property and the experimental pKa values was

calculated for all the benzimidazoles. Electrophilic superdelocalisability on the nitrogen
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atom, atom 1 (see Figure 4.4), showed the best correlation to pKa, followed closely by

energy of the highest occupied molecular orbital, HOMO.

• model with one descriptor SEj

pKa = -4.33*SE,-33.33

n=10, r=0.77, r2=0.59, rcv
2=0.55, F=13.12, s=0.748 (50)

Hi
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• model with three descriptors

pKa = 16.59*FNi - 4.82*SE, + 0.02*SNi - 38.13

n=10, r=0.95, r2=0.91, rcv
2=0.83, F=23.41, s=0.400

(51) I

m

There is improvement in the predictive ability of equation (51) when compared to

equation (50). The F statistic, while statistically significant, is considerably smaller

than in our other analyses but remains adequate for the number of compounds being

analysed. Of course, for this analysis 9 descriptors were considered for these 10

compounds and it must be bourn in mind that the relationship may have been derived by

chance1211.

To try and account for the fact that our benzimidazole equation may have been derived

by chance, a single term equation was derived using both the imidazoles and

benzimidazoles.

• model with one descriptor

pKa = - 7.79*SE, - 65.09

n=26, r=0.93, r2=0.87, rcv
2=0.85, F= 161.04, s=O.8O5 (52)

The similarities of this single term equation (52) to that derived for the imidazoles

alone, equation (48), are immediately evident however there is a significant difference

between equation (52) and equation (50) derived from the benzimidazoles alone. The

difference between equations (52) and (50) may arise from the fact that only a range of

3 log units of pKa are available for the benzimidazoles. Indeed it would be of great

interest to see what similarities there may be if a greater range of compound pKa's were

available.
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Figure 4.10. Plot of actual versus predicted for both benzimidazoles and imidazoles

4.3.6.7 Quinolines

The quinoline dataset consisted of 28 compounds with substituents ranging from; alkyl

chains, alcohols, ethers, halides to nitrates, with a pKa range of just over 3 log units.

The correlation between each electronic property and the experimental pKa values was

calculated for all the quinolines. LUMO on the nitrogen atom, atom 1 (see Figure 4.4),

showed the best correlation to pKa, followed by electrophilic superdelocalisability.

• model with one descriptor LUMO

pKa = 5.71 *LUMO- 7.86

n=28, r=0.89, r2=0.80, rcv
2=0.77, F=l 04.81, s=0.432 (53)

No improvement in the predictive capabilities of equation (53) was seen with the

addition of further descriptors (results not shown).
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4.3.6.8 Barbiturates

i
_i
J
1

An analysis was also attempted on a series of 14 di-substituted barbiturates,

unfortunately no significant correlation was found with any of the descriptors present.

There was a general trend with the HOMO energy and the pKa for the series, shown in

equation (54)

• model with one descriptor HOMO

pKa = - 0.29*HOMO - 4.70

n=l4, r=0.74, r2=0.55, rcv
2=0.34, F=14.95, s=0.164

(54)

1I
I
I
|

The poor result of this analysis is probably due to the fact that the series of compounds

only covers a pKa range of 1 log unit. No improvement was found in regression

equation (54) when additional descriptors were used in this analysis.

11

i •
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Current trends are such that it is becoming more important to determine the pKa and

other characteristics associated with a drug, before synthetic work is undertaken with

the aim of avoiding making compounds that are predicted to have poor

pharmacokinetics. Being able to do this accurately and in a reasonable amount of time

is also of extreme importance so that these filters can be applied to lead compounds,

virtual libraries and database collections to give an indication as to a compounds

qualities.

p?

Predicting the pKa of a compound is a very important characteristic, as it gives an

indication as to a compound's membrane and/or barrier permeability. A fast and

reasonably accurate way of doing this is using semi-empirical quantum mechanical

methods. This has been done before by a number of groups[6J'22], although only

carboxylic acids, alcohols and phenols have been studied. We have studied these

groups and have extended our work to investigate anilines, amines and other

heterocyclic compounds, with a novel set of semi-empirically derived frontier electron

theory descriptors.

4.4.1 Gruber and Buss

I I

i »•?

The first group to use semi-empirical methods for pKa determination were Gruber and

Buss'61. The MNDO method was used as it was the most widespread method of the

time; AMI was released not long after they finished all their MNDO calculations. In

total 183 compounds were analysed by Gruber and Buss161 consisting of 99 phenols, 52

benzoic acids and 32 aliphatic carboxylic acids. The descriptors calculated were

HOMO energies of the anion and neutral species, atomic charges at all atoms and the

energy difference between the anion and neutral species.

4.4.1.1 Phenols

Gruber and Buss161 obtained good results for all phenols in a six term equation using

atomic charges and HOMO energy. Their equation with an r2 of 0.94 for 99 compounds
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was comparable to our equation (2) with an r2 of 0.92 for 180 compounds using a four

term equation, see Figure 4.1. Unfortunately no rcv
2 is reported in the paper of Griiber

and Buss161, so it is hard to judge the predictive ability of their model in comparison to

ours; however the F statistics indicate both models are of high quality.

Results for the meta/para substituted phenols for Griiber and Buss[6] again were similar

to our findings. While our r2 was slightly lower, equation (3), we were encouraged by

the results as our study has been applied to twice the number of compounds.

Additionally, our result was with the use of a single descriptor, electrophilic

superdelocalisability of the phenolic oxygen.

The results of the three ortho subsets (equations (5), (6) and (7)) are comparable to those

of Griiber and Buss[61 and in most cases much easier to interpret as only one descriptor

is needed, electrophilic superdelocalisability. Griiber and Buss161 however did not split

their ortho substituted phenols into smaller subsets thus making it difficult to compare

the results.

4.4.1.2 Benzoic Acids

Reasonable results were obtained by Griiber and Buss[61 for a series of substituted

benzoic acids and these were improved with the removal of four outliers. This gave a 5

term equation, consisting of atomic charges, resulting in an r2 = 0.88 for the 48

compounds. Our results compared favourably to those obtained by Griiber and Buss16'

as we were able to examine 99 molecules under consideration giving us a dataset twice

as large, see equation (9).

The meta/para subset was predicted well by Griiber and Buss161 with a 4 term equation,

consisting of HOMO energy and atomic charges, with an r2 = 0.93 for 25 compounds.

The results of our study here are not as good as those of Griiber and Buss161 for this

subset, although removal of the 3,4-diaminobenzoic acid gave a reasonable one term

equation, (11), with atom self-polarisability as the descriptor.
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The removal of two outliers from the ortho set of Griiber and Buss161 gave a 4 term

equation, consisting of atomic charges and anion/neutral state energy differences, with

an r2 = 0.92 for 25 compounds. Our results were comparable, see equation (13),

although again it is difficult to compare as Griiber and Busst6] have not split their

compounds into further subsets.

Again as no rcv
2 is reported in the paper of Griiber and Buss161, it is hard to judge the

predictive ability of their model in comparison to ours. However the F statistics

indicate both models are of high quality, although in most cases our F statistic is

significantly higher due to the much larger number of compounds being analysed.

4.4.1.3 Aliphatic Carboxylic Acids

Griiber and Busst6] managed to get reasonable results for the aliphatic acids, with a three

term equation which was improved with the removal of two outliers to give a four term

equation with an r2 = 0.86. This was a good result as there are a lot of problems

associated with the flexibility of these compounds. Our normal subset of the aliphatic

carboxylic acids, see equation (18), can be directly compared with those of Griiber and

Buss161, as their group of aliphatic carboxylic acids also did not contain amino acids or

a-hydroxy carboxylic acids. Our findings do compare favourable with those of Griiber

and Buss161 even though our r2 value is not as high. We have analysed over three times

as many compounds which also provides a significant model that is very simple to

interpret as it has a single descriptor, electrophilic superdelocalisability.

Electrophilic superdelocalisability features prominently in all equations, and is usually

the descriptor with the highest correlation to pKa. This is not that surprising, as SE is

proportional to the sum of the squared coefficients of the occupied orbitals and thus this

parameter is proportional to the electron density over the atom. In other words, the

lower the electron density on the atom bonded to the hydrogen, the more easily the

hydrogen will be abstracted and thus the more acidic the compound. This is reiterated

in the negative slope for all equations of SE versus pKa and can be seen in Figure 4.11

for the subsets of the phenols.
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electrophilic superdelocalisability versus pKa (actual)
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Figure 4.11. Electrophilic superdelocalisability of the phenolic oxygen atom versus

measured pKa, using equations (3), (5), (6) and (7).

4.4.2 Citra

The second study exploiting semi-empirical quantum mechanical descriptors to predict

pKa was conducted by Citra171 from the Syracuse research corporation. Rather than

focus on the differences in energy of the anion and neutral acid, his work focused on

descriptors associated with the neutral acid. The descriptors chosen by Citrat7] were

bond order of the O-H bond as well as partial atomic charges on the oxygen and

hydrogen atoms. Adjunct to this he also performed multiple geometry optimisations for

which the above descriptors were calculated for each geometry. The values of the

descriptors used in the analysis are the weighted average of properties computed for all

optimised conformations.

4.4.2 1 Phenols

For the 100 phenols analysed from the Syracuse database a three term equation with an

r of 0.96 was found. This was using the charge on the hydrogen and oxygen and their
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For the 100 phenols analysed from the Syracuse database a three term equation with an

r2 of 0.96 was found. This was using the charge on the hydrogen and oxygen and their

bond order. Although the three terms are probably unnecessary here as one term the

Coulson charge on the oxygen is shown to have an r2 = 0.95.

We attempted to reproduce (in part) the work done here by Citra17] on our group of 180

phenols, extracted from the Syracuse database, although without doing any

conformational analysis. Unfortunately we were not able to achieve similar results to

Citra171: for our 180 phenols we obtained an r2 of 0.66 for Coulson charges on the

oxygen alone and r2 of 0.88 using Coulson charges and bond orders. This did not

compare as well as our single and multiple term equations, see equations (1) and (2), for

the same dataset; however no conformational analysis had been performed. We thought

that some of the larger phenol derivatives, such as salicylanilides and

thiophenesulfonamides, could be causing additional problems here, so we decided only

to look at the compounds that both our dataset and those of Citrat7] had in common.

This resulted in a dataset of 66 compounds that were also analysed in the same manner

as had been done by Citra171, although with no conformational analyses. Although the r2

for Coulson charges did improve from 0.66 to 0.82, see Figure 4.12, and the result for

two descriptors improved from 0.88 to 0.90, this was still less than the r2 of 0.92, see

Figure 4.11, obtained by just electrophilic superdelocalisability on the oxygen alone.
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pKa observed versus predicted
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Figure 4.12. Analysis of the dataset that we had in common with Citra' ' using the

single best descriptor from each analyses, electrophilic superdelocalisability and

Coulson charges from the oxygen.

This data indicated that doing conformational analysis on the series of compounds that

you have is a very good idea, although this may come at the expense of additional time

required.

4.4.2.2 Benzoic Acids

Good results were obtained by Citra1?1 for the analyses of the 31 benzoic acids in their

dataset, giving a 3 term equation with an r2 = 0.89 using the charge on the hydrogen and

oxygen and their bond order. Our results compared favourably to those obtained by

Citra171, with a four term equation giving an r2 = 0.86 for three times as many

compounds, see equation (9). Using descriptors with multiple conformation weighted

values does not make a large improvement in this case. Unfortunately further splitting

of this data was not performed, therefore it is difficult to compare further equations.
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4.4.2.3 Aliphatic CarboxyHc Acids

It appears again that using weighted conformational values for the descriptors does give

an improvement in the regression equation, with an r2 = 0.84 obtained by Citra171

compared to our r2 = 0.79, see equation (18). It is not surprising that descriptor values

derived from multiple conformations make an improvement, as there are a lot of

problems associated with the flexibility of these compounds.

Interestingly it was found that Coulson charge, the most significant descriptor from the

analyses of Citra[7], has a very high correlation (r>0.99) with atom self-polarisability

(ALP) for identical atoms.

The correlation between Coulson charges and atom self-polarisability (ALP) is not

surprising as both descriptors are calculated by summing up contributions from atomic

and molecular orbitals.

Coulson charge distribution1235 is calculated by determining the charge distribution for

each orbital separately, and then summing distributions for all the occupied molecular

orbitals. In a particular molecular orbital

the normalisation condition is

5>; =
and the familiar interpretation of \}/2 as a density shows us that we may associate

fractional charges Ci2, C22,..., cn
2 of an electron with the nuclei 1, 2,..., n. The

normalisation condition ensures that the complete electron is thus accounted for. By

summing Ci2 for each occupied orbital, we obtain the total electronic charge on nucleus

1.
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4.4.3 Schuurmann

Schuurmann1221 estimated pKa using semi-empirical quantum mechanical gas-phase and

solution-phase calculations, for a series of 16 carboxylic acids and 15 phenols. A

method employing Gibbs free energy for one-molar solution at 298 K was used for

estimation. It was noted that semi-empirical continuum-solvation models predict pKa in

qualitative agreement with experiment; however they were not accurate enough to yield

absolute values, although scaling through linear regression for specific compound

classes did result in models that were highly predictive. Squared correlation

coefficients greater than 0.9 were achieved for both datasets using pKa versus AHC0SM0

and AGSM2, calculated from the continuum-solvation models AMI-COSMO and

AM1-SM2, respectively. The datasets chosen are of a limited size although they show

the obvious benefits of linear scaling for specific compound classes in pKa prediction.

As the descriptors studied here vary from gas-phase to continuum-solvation to small-

cluster models, it is difficult to compare all these directly to the frontier electron theory

descriptors. However the gas-phase models can be directly compared to the frontier

electron theory descriptors which were also calculated in a gaseous state. Our results

for carboxylic acids, see equation (18), is comparable to results obtained by

Schuurmann16'7'221 with six times as many compounds being analysed. The results

obtained from the phenol dataset, see equation (2), was comparable with over ten times

as many compounds being analysed. Additionally our splitting of the phenol dataset

into intramolecularly hydrogen bonded compounds and other subsets, showed there was

a difference between the compounds in differing subsets (see Figure 4.7). This was not

easily evident in this smaller analysis of Schuurmann'6'7'221 where they stated, "there is

almost no difference between the conformations with and without intramolecular

hydrogen bonding". This statement is most likely an artefact of the small number of

compounds that were analysed by Schuumnann'6'7'221, and not the descriptors used.

The extension by Schuurmann'6'7'221 into continuum-solvation models is a good logical

progression that leads to significant improvements. The results obtained here are

excellent for both phenols and carboxylic acids, and it would be interesting to see how

frontier electron theory descriptors calculated from the output of AMSOL (using AMI-
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COSMO or AM1-SM2) compared to the heats of formation (AH005^0) and Gibbs free

energy (AG M2) equations obtained already.

4.4.4 Gross

Prediction of pKa values for nitrogen containing compounds has not been attempted

using semi-empirical methods although there have been a number of excellent papers

from the group of Gross et a/.[24>25] using ab initio techniques to predic pKa values of

anilines. Here natural charge (Qn), relative proton-transfer enthalpy (AHprot), minimum

electrostatic potential (Vmin) and minimum local ionisation energy on the molecular

surface (Is.min) all correlated well with experimental pKa values with the squared

correlation coefficient being greater than 0.85 in all models. This paper(24] also showed

noticeable improvements when the complete set of compounds was split into further

subsets.

The results obtained by Gross et al.[2A] are noticeably better than our results, especially

when looking at the results using only one descriptor, see equations (21), (22) and (25).

With the inclusion of additional descriptors in our models we were able to achieve

results with only marginally lower squared correlation coefficients after having analysed

almost twice as many compounds, see equations (24) and (27). An interesting point

raised in the discussion by Gross et al.[24] suggests that for p-hydroxyaniline, a hydrogen

bond between the hydroxyl hydrogen and a water molecule enhances the substituents

election donating character. As such phenomena cannot be accounted for using semi-

empirical techniques it may well explain some discrepancies associated with

hydroxylated compounds.

Surprisingly no ortho-substituted anilines were present in the analyses of Gross et al}24\

this may have been because they wanted to compare their results with those obtained

using Hammett a values. Therefore we attempted a similar exercise whereby we

summed Hammett parameters, assuming they were additive and where they were

available, for 20 meta/para substituted anilines.
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The following equation was derived:

pKa = -3.1o + 4.3 (55)

n = 20, r = 0.87, r2 = 0.75, r2
cv = 0.74, F = 55.37, s = 0.684

This equation was similar to that obtained by Gross et ai[2A\ shown below:

pKa = -3.03(±0.13)*a + 4.46(±0.06)

n = 36, r = 0.94, F = 530, s = 0.310

The difference in the statistics of the two equations may be due to the fact that our

substituents also included a sulfone group and iodine groups.

Equation (55) derived from the Hammett parameters was directly compared to an

analysis of the 20 meta/para substituted anilines using SE\ which gave an r2 of 0.735.

This indicated to us that our technique is comparable to using Hammett parameters;

however it has the added benefit of being applicable to not only meta/para substituted

compounds.
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This work has shown that descriptors derived from frontier electron theory are able to

predict the pKa of a variety of compound classes. This method can be used as an

alternative to LFER methods, where unknown fragments are present in the compound,

or to more computationally intensive ab initio methods, where time is of the essence.

This method also has the advantage that it is comparable to Hammett parameters with

the added benefit of being applicable to ortho substituted compounds.

J

t

There are a number of ways that this method could be improved, by calculating the

descriptors as an energy weighted average of properties computed for all of the

optimised conformations, as was done by Citra171. However weighted contributions

would also come at the expense of additional computational time. Another way to

improve this method may be in the calculation of frontier electron theory descriptors

initially. It would be interesting to see how frontier electron theory descriptors

calculated from the output of AMSOL, using AMI-COSMO or AM1-SM2, and not

traditional AMI would compare to the results obtained here.

&
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5.1 COMPOUND DESIGN
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Rational compound design probably first began in the late 19th century with John

Langley and Paul Ehrlich. Around this time Langley first proposed that drugs interact

with specific receptors and Ehrlich proposed the concept of receptors, as being the

"binding group of the protoplasmic molecule to which a foreign newly introduced group

binds"11]. Although drugs had been around for a lot longer than this, these concepts

marked the beginning of the end for trial and error as the only approach to drug design.

Now at the turn of the millennium, although trial and error still exists in the drug design

process, intelligent drug design strategies aim to minimise detrimental outcomes. An

integral part of intelligent drug design strategies are the in silico processes of

ligand-based design, structure-based design, ADME/T (adsorption, distribution,

metabolism, excretion and toxicity) prediction and database mining. Although not all

aspects of the drug design process were able to be explored in the course of this work a

number were utilised to design compounds that are D4/D2 selective with the potential to

act as atypical antipsychotic drugs.
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To best design D^-selective antipsychotic drugs, clozapine and spiperone and the

pharmacophores deduced from these compounds (Chapter 2) in conjunction with the

receptors built \vith these compounds were used. Clozapine and spiperone bind potently

at the D4 receptor, with clozapine probably being the most significant atypical

antipsychotic available to date. In addition to this, there is a wealth of binding data for

both these compounds at mutant D2 and D4 receptors, which enables more tangible

conclusions to be drawn from what is a rather complicated picture. Database mining

using the pharmacophores from chapter 2 aided in the generation of ideas for compound

design along with a number of papers that discuss the most common chemical

substituent replacements for producing drug-like compounds12"51.

Each compound was built within Sybyl'41 using standard geometries and angles;

compounds Were then minimised for 10,000 iterations or until the RMS gradient fell

below O.Olkcal using the MMFF94s force field15'61 and MMFF94 charges1561. The

MMFF94 charges where then replaced with ESP charges on the minimised compound,

as these were shown to perform best in CoMFA analyses. Compounds were then

aligned to the pharmacophore using the RMS fit procedure within Sybyl. The affinities

at the differing receptors for each compound were predicted via input into the CoMFA

models created. The pKa of each compound was predicted by calculating the frontier

electron theory descriptors171, using the AMI Hamiltonian[8], for each compound which

were then input into the linear regression models developed. For all tertiary amines the

regression equation (35) from chapter 4 was used for calculating pKa values.

Equation (35) pKa = -9.32*SE, -77.91
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5.3 RESULTS AND DISCUSSION

5.3.1 Database Searching

To aid in the generation of ideas for the design of new compounds, the pharmacophores

generated in chapter 2 were used to search the ISIS mddr3d database. All searches of

the mddr3d database were done in a fully flexible search mode, so all rotatable bonds of

compounds being searched were fully explored. Although a fully flexible search mode

requires additional time, this is necessary as a compound's conformer in the database are

generated automatically b y Concord and these various conformers may not fit within

the constraints of the proposed search.

5.3.1.1 Tricyclic Pharmacophore

Both the simple and advanced search models in Figure 5.1 revealed all the compounds

used in the elucidation of the tricyclic pharmacophore. The simp!? model retrieved

1276 antipsychotic compounds including a number of extended antipsychotic structures

such as haloperidol. As the 1276 compounds from the simple search model were too

numerous to analyse in detail, the simple search model was refined using the detailed

model shown in Figure 5.1.

104.5- 124.5

7.88 - 8.8

7.43 - 8.43 A

50 - 7Q

[C,N,O,S} 1 6 A

104.5-

0.5

Figure 5.1. Tricyclic pharmacophore queries used in the searching of the ISIS mddr3D

database. Simple query (left), refined query (right), based on Figure 2.8 (Chapter 2).
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These searches revealed a number of new substructures that could be used in de

construction of novel antipsychotics. In particular a number of interesting bicyclo

compounds were retrieved including a series of l,4-diazabicyclo[4.4.0]decane and

l,4-diazabicyclo[4.3.0]nonane compounds (see Figure 5.2) bound to an oxazepine

tricyclic substructure.

N

Figure 5.2. Interesting substructures from database search and possible variations

5,3.1.2 Extended Pharmacophore

0.5 A

Figure 5.3. Extended pharmacophore search model used to search the ISIS mddr3d

database, based on Figure 2.35 (Chapter 2).

The extended query shown in Figure 5.3 was used to mine the ISIS mddr3d database,

and retrieved 606 compounds of which 54 were classified-as being antipsychotics. The

search revealed a number of older typical antipsychotics such as fluspirilene and

pimozide as well as a number of interesting D4-selective clozapine analogues (see
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Figure 5.4). It is proposed that by modifying the typical antipsychotics so as to achieve

greater D4 selectivity we may see reduced side effects in such a series. Using the

compounds in Figure 5.4 as the basis for designing new ligands that occupy the A, B

and G regions of the pharmacophore, a series of compounds was proposed for synthesis.

0

l-[4-(1.3-Benzodioxol-5-ylmethyl)pipera/in-!-yl]-8-chlnrndihe^'.[h,f][l,4]nxa7epine

Figure 5.4. Compounds retrieved from the extended phannacophore search and Wo

compounds similar to the proposed ABG series.

The main concern with the extended pharmacophore search is that all the requirements

of the search must be met in order for a compound to be retrieved. As most of the

compounds used in the extended CoMFA analyses only occupied two of the three

regions, they were not retrieved in this search. It should be noted however that many of

these compounds were retrieved in the simple tricyclic pharmacophore search.

Therefore additional searches were made of the ISIS database using only queries that

consisted of regions A and G and regions B and G. The search using the B and G

region query identified all the Merck Sharpe and Dohme compounds used earlier in

chapter 2 for the pharmacophore and CoMFA modelling. Although the A and G region

search did identify over 50 known antipsychotics, none of the compounds used in our
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CoMFA model were identified. Upon closer inspection of the database none of the

compounds used in our CoMFA model occupying regions A & G were present in the

database.

5.3.2 Ligand-Based Design: CoMFA models

5.3.2.1 Tricyclic CoMFA Overview

The tncyclic CoMFA analycss from chapter 2 revealed that the addition of larger, more

electronegative substituents at Y (Figure 5.5) would increase D2 binding affinity. In

turn, D2 binding affinity could be reduced by having bulky alkyl substituents occupying

position Z or by the presence of nitrogen in position A. More novel methods of altering

tho binding affinity could also be achieved by modifying the type of aromatic ring

present as ring A, to change the electronic environment. Steric regions produced by the

U'4 CoMFA model from chapter 2 were similar to those of the D2 model; however a

number of additional favourable steric regions were present in the D4 model, which

suggested slightly larger substituents may be added at position W to increase affinity.

There is also scope for increasing D4 binding affinity by adding slightly larger

substituents at position Q, which as stated earlier one could exploit using bicyclo

compounds.

Figure 5.5. Tncyclic structure showing sites of possible variation for compound design.
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5.3.2.2 Extended CoMFA Overview

The extended CoMFA analyses from chapter 2 revealed greater D4 selectivity could be

achieved by ensuring that compounds were designed with substituents that occupied

position W (Figure 5.5). It was shown that substituents are beneficial in the D4 model,

region G4D4 (Figure 2.38), and not well tolerated here in the D2 model, region Y1D2

(Figure 2.36). The D2 electrostatic fields also show that either the presence or absence

of an electronegative substituent at position A (Figure 5.5) can modify D2 binding. This

region where partial positive charge enhances activity is in direct contrast to what we

see in the electrostatic fields generated from D4 binding affinity data. Another

worthwhile area to exploit for increasing selectivity is the ring containing the basic

nitrogen. Most compounds with a piperidine ring bind better at the D2 receptor

compared to compounds with a piperazine ring and vice versa for the D4 receptor. This

could be exploited by designing compounds with a piperazine ring or substituent with

similar electronic characteristics. Morpholine or thiomorpholine ring systems could be

used but this may come at the expense of reducing the basicity of the distal nitrogen,

which may reduce binding affinities and thus would have to be carefully monitored.

Further areas that have been shown to increase binding affinity for the D4 model which

are not present to the same extent in the steric fields produced from the D2 model are;

region G3D4 (Figure 2.38) which is above and out from position A (Figure 5.5), and

region G5D4 (Figure 2.38), corresponding to the area around ring G (Figure 5.3). In

addition D4 selectivity could be managed via the position Z (Region Y1D4 (Figure 2.38))

where bulky alkyl groups reduce D4 binding affinities. Additional bulk here seems to

be tolerated better in the D2 model and this could be exploited to modulate D4

selectivity if desired.

5.3.3 Structure-Based Design: Receptor Models

5.3.3.1 Tricyclic models

The placement of clozapine differed quite significantly between the D2 and D4 receptor

models created. The most significant D2 model had clozapine placed in the region

between helices four, five and six. This model was also consistent with the majority of
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the mutational data, whereas the most likely position for the binding of clozapine within

the D4 receptor model, deduced from the receptor models and mutational data, is

between helices two, three and seven. Surface plots of clozapine bound in the different

receptors were then created (see Figures 5.6 and 5.7) to assess further differences that

maybe exploited in the design of D4 selective atypical antipsychotics.

Figure 5.6. Surfaces generated from the extracellular view of the D2 receptor with

clozapine bound between helices four, five and six (labelled in red).

Lipophilic (green —> brown increasing hydrophobicity) left,

Electrostatic (orange —> blue increasing electronegativity) centre.

Hydrogen-bonding (blue acceptor, red donor) right.

Figure 5.7. Surfaces generated from the extracellular view of the D4 receptor with

clozapine bound between helices two, three and seven (labelled in red).

Lipophilic (green -> brown increasing hydrophobicity) left,

Electrostatic (orange —> blue increasing electronegativity) centre,

Hydrogen-bonding (blue acceptor, red donor) right.

The differing surface plots of clozapine bound at the D2 receptor (see Figure 5.6) show

that there is little room for additional substituents at position W (Figure 5.5) whereas the

plot of clozapine in the D4 receptor (see Figure 5.7) shows there is room here for

additional substituents. The D2 and D4 diagrams also show differences in
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hydrophobicity at position Y and around ring A. The D4 lipophilic surface plot

indicates that different types of aromatic rings may be beneficial for D4 selectivity. The

region around the piperazine ring of clozapine also differs in regards to hydrophobicity,

showing that a less hydrophobic ring would aid D4 selectivity. In both the D2 and D4

diagrams we see similar features around position X indicating that selectivity would

probably not be gained by varying substituents at this position. The region

corresponding to position Q (Figure 5.5) however, does differ between the D2 and D4

diagrams, showing that there is more space in this area for the D4 receptor. It appears as

though bicyclo compounds would be preferentially tolerated here in the D4 receptor

compared to the D2 receptor.

5.3.3.2 Extended Models

The final placement of spiperone in the D2 and D4 receptor models did not differ in the

manner that was seen for the binding of clozapine; however differing interactions were

still seen when looking at the models.

The two diagrams (Figures 5.8 and 5.9) show that the binding site of the D2 receptor is

overall more hydrophobic in nature. In addition there is more room around the /7-fluoro

end of spiperone in the D2 model which is consistent with previous hypotheses that this

area is involved in D4/D2 selectivity191. Although there is less room in the D4 receptor

between helices two, three and seven, it appears as though slightly longer compounds

may still be preferentially accommodated here, due to the additional space near the

fluoro substituent of spiperone. This observation corresponds well to the different

amino acids located at 1.39, where the larger Leu139 of the D2 model occupies

additional space here and modifies the packing of adjacent residues. One significant

difference between the two electrostatic surfaces generated is the presence of a partial

positive region located near the phenyl portion of ring G in the D4 diagram. This may

indicate that electronegative substituents, such as cyano groups, attached to the phenyl

ring or even different aromatic rings, such as indole, may aid in D4 selectivity. This

exploitation of the partial positive charge has already been carried out with the addition

of methoxy and cyano groups to phenyl ring G, (compounds #30 to #32, Table Carling

(Appendix)) reducing D2 affinity substantially whilst only slightly reducing D4 affinity.



Figure 5.8. Surfaces generated from the extracellular view of the Dj receptor with

spiperone bound, approximate position of helices labelled in red.

Lipophilic (green —>• brown increasing hydrophobicity) left,

Electrostatic (orange —> blue increasing electronegativity) centre,

Hydrogen-bonding (blue acceptor, red donor) right.

Figure 5.9. Surfaces generated from the extracellular view of the D4 receptor with

spiperone bound, approximate position of helices labelled in red.

Lipophilic (green -> brown increasing hydrophobicity) left,

Electrostatic (orange —> blue increasing electronegativity) centre,

Hydrogen-bonding (blue acceptor, red donor) right.

5.3.4 Proposed Compounds

Taking into account all the information from the different /// silico methods, several

series of compounds have been proposed for synthesis. The three main series of

compounds were designed to occupy regions A/B, regions B/G and regions A/B/G.

5.3.4.1 A/B Series

The A/B series or tricyclic compounds were designed whilst keeping in mind the

significant differences between the binding of clozapine at the D2 and D4 receptors and
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the d ifferent s ubstructural v ariations s een from t he d atabase s earching. T he t ricyclic

CoMFA analyses also gave further insight into variations that would be preferentially

tolerated in D4 binding.

Table 5.1. Compounds designed to occupy the A and B regions of the pharmacophore

with their predicted D2 and D4 affinities (pKj) and pKa's.

Compound

AB_1

AB_2

AB_3

AB_4

AB_5

AB_6

AB_7

AB_8

AB_9

AB_10

AB_11

AB_12

Z

CH2

CH2

CH2

CH2

NH

NH

NH

NH

0

0

0

0

w
methyl

chloro

fluoro

cyano

methyl

chloro

fluoro

cyano

methyl

chloro

fluoro

cyano

pKi(D2)

5.96

6.58

6.18

5.71

6.16

6.44

6.35

5.93

6.08

6.43

6.17

5.64

Predicted

pKi(D4)

7.48

7.85

7.79

7.89

7.65

7.82

7.73

7.86

7.74

8.16

7.93

8.11

pKa

8.27

7.87

7.77

7.35

8.66

8.24

8.15

7.75

8.18

7.78

7.69

7.30

Only positions W and Z were varied in the design of new compounds as it had already

been shown that electronegative atoms at positions A and B aid in D4 selectivity, thus

nitrogen was kept in positions A and B. Position X was not varied as this position had

been shown to affect both D2 and D4 affinities in the same manner. Position Y also was

not varied as substitution at position W will have the same electronic effects on ring A.

The positions not varied here (A, B, X and Y), had been altered and shown to increase

D2 and D4 affinity in a similar manner; however as D4 selectivity was the primary goal

this is not included. The series of compounds (Table 5.1) show that the bulkier

electronegative substituent, cyano compared to fluoro, at position W gives high affinity

t f*
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and the greatest selectivity at the D4 receptor. However it can also be seen from looking

at the series that the presence of a cyano group also reduces the pKa of the compound

the most, and therefore this must be carefully monitored. There is a general trend in

regards to the prediction of pKa values with the more electron withdrawing groups

reducing the pKa values the most. However predicted pKa values are still in a

favourable range to enable the APD to be unionised for crossing the BBB and ionised to

act on the receptor. The most selective of the cyano substituted compounds is the

oxazepine derivative, and this compound was used as the basis for further structural

modifications.

Table 5.2. Compounds designed to occupy the A and B regions of the pharmacophore

with their predicted D2 and D4 affinities (pKj) and pKa's.

CN
compounds AB_12 #1,2

/

N=<

compound AB_12#6

CN
compound AB_12#7

CN CN CN
compounds AB_12 #3-5 compound AB_12#8 compound AB_12#9

Compound

ABJ2J
AB_12_2

AB_12_3

AB_12_4

AB_12_5

ABJ2J5

AB_12_7

AB_12_8

AB_12_9

R

0

S

NH

0

S

PKi(D2)

5.27

4.93

5.19

5.44

5.48

5.27

5.44

5.05*

5.08

Predicted

pKi(D4)

8.08

8.15

8.05

8.03

8.23

8.20

8.37

8.19

8.18

pKa

7.29

6.36

7.47

6.84

7.25

8.34

8.31

7.17

6.40
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The modifications to compound AB_12 (Table 5,1) show that selectivity between the

two receptors can be increased by further modifications. The morpholine and

thiomorpholine compounds (AB_12 #1,2) increase selectivity marginally by reducing

D2 affinity, although the pKa's of these compounds is reduced. The pKa of the

morpholine compound is thought to be too high as a similar compound in the regression

analysis was predicted to be too high from equation (34), chapter 4, and was removed as

an outlier. This reduction of pKa of these compounds would not appear to be significant

enough to effect their value as potential APDs; however the synthesis of such

compounds could be difficult. The modification of ring A of compound AB_12 did

increase selectivity marginally through a reduction in D2 affinity and in the case of the

thiazole compound (AB_12_5, Table 5.2) an increase in D4 affinity. The thiazole ring

system has already shown much promise with the APD olanzapine. D4 selectivity was

also increased with the incorporation of an additional ring system onto the piperazine

ring, with a reduction in D2 affinity and an increase in D4 affinity for all compounds. In

reality compounds AB_12_6 and AB_12_7 are identical but placement of the ring

system in the CoMFA models was investigated by looking at the differing orientations it

could take. The pKa of compound AB_12_9 is most likely predicted slightly lower than

would be expected, since pyrrolidine compounds were shown to be predicted lower than

expected from equation (35); see compounds 020173-28-8 and 000120-94-5, Table 10,

Appendix.

5.3.4.2 B/G Series

The B/G series were designed whilst keeping in mind the significant differences

between the binding of spiperone at the D2 and D4 receptors. The additional length

available within the D4 receptor in conjunction with the partial positive charge near

region G were both utilised to design D4 selective compounds.
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Table 5.3. Compounds designed to occupy the B and G regions of the pharmacophore

Nk J*

compounds #1-6 compounds #7-12

Me

compounds #13-18

with their predicted D2 and D4 affinities (pKj) and pKa's.

Compound

BG_1

BG_2

BG_3

BG_4

BG_5

BG_6

BG_7

BG_8

BG_9

BG_10

BG_11

BG_12

BG_13

BG_14

BG_15

BG_16

BG_17

BG_18

P

H

H

Cl

Cl

CL

Cl

H

H

Cl

Cl

CL

Cl

H

H

Cl

Cl

CL

Cl

R

phenyl

2-cyanophenyl

phenyl

2-cyanophenyl

indole

isoindole

phenyl

2-cyanophenyl

phenyl

2-cyanophenyl

indole

isoindole

phenyl

2-cyanophenyl

phenyl

2-cyanophenyl

indole

isoindole

pK|(D2)

7.88

7.21

7.75

7.09

6.94

6.95

7.50

6.80

7.23

6.53

6.53

6.51

8.54

7.92

8.47

7.85

7.90

7.82

Predicted

pKi(D4)

7.99

8.51

8.15

8.67

8.83

9.03

7.56

8.02

7.73

8.20

8.52

8.83

7.71

7.82

7.83

7.93

8.86

9.00

pKa

7.38

5.97

6.99

5.60

7.52

8.38

8.20

6.73

7.84

6.39

8.31

9.18

8.30

6.83

7.92

6.47 \

8.38 !

9-25 J

The three substructures from the B/G series show that by careful consideration of the

factors i nvolved i n 1 igand b hiding, c ompounds c an b e t ailored 10 a s pecific r eceptor.

With the three B/G substructures we see that the additional length in the form of the

p-chloro s ubstituent a nd t he i nteraction w ith t he p artial p ositive c harge by t he c yano

group both increase D4 affinity and reduce D2 affinity. The theme of the interaction

with the partial positive near ring G is explored further by the modification of the



Chapter 5 294

phenyl ring to indole and isoindole. These modifications again increase D4 selectivity.

The isoindole compared to the indole compound, when visualised is best positioned for

optimal interaction with the partial positive charge, and this is reiterated by its higher

predicted affinity. These modifications were also able to take a D2 selective compound

(BG_13) and turn it into a D4 selective compound (BG_18). The final compounds from

these structural modifications (BG_6, BG_12 and BG_18) are all D4 selective

compounds, and in the first two instances by over two orders of magnitude. A similar

theme is seen in regards to the predicted pKa values seen here compared to the pKa

predictions from the AB series: that is that the electronegative cyano substituent

significantly reduces the predicted pKa value. The predicted pKa value for these

five-membered ring systems varies almost three log units for each substructural series.

Whether or not this large pKa range would be realised is uncertain, as no tertiary amines

with /soindole substituents were present in the original analysis from which the

regression equation was derived. In addition to this it is likely the predicted pKa values

for five membered tertiary amines may be artificially low (see compounds 020173-28-8

and 000120-94-5, Table 10, Appendix).

5.3.4.3 A/B/G series

The A/B/G series of compounds were based on an extension of the compounds

proposed in Figure 5.4. The combination of the D4 selective oxazepine with the typical

antipsychotic fluspirilene should give a D4 selective compounds with antipsychotic

properties. Interestingly in the development of this series of compounds it was found

that the attachment of the tricyclic substructure with an A-fold (Figure 2.3) resulted in a

compound that did not fit within the constraints of the pharmacophore. The B-fold

compound, however, did fit well into the model although this adds some confusion to

the interpretation of the various positions and rings identified earlier. Figure 5.10 serves

to clarify this problem. Only positions A1, B1, Z and W were varied in the construction

of the compounds. Position X was not varied, as it was not seen to be appreciably

different in the analysis of the receptor models. Position Y was also seen to give a

similar electronic environment around ring A when compared to position W and thus

was also not varied. As positions A and Z had been shown to give rise to selectivity,

they were varied. However as position A did not exactly conform to position A', both
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A' and B' were varied to judge their effect. Only heteroatoms were substituted at

position B' to reproduce the effect of a piperazine ring.

w
Figure 5. JO. Structural basis of compounds in the A/B/G series(right) and the

corresponding positions shown on the tricyclic substructure(lefl).

The table of compounds (Table 5.4) exhibits compounds which, in many cases show

over three orders of magnitude in selectivity towards the D4 receptor. The reason for

this is the B-fold conformation that is adopted and the relatively different attachment of

the tricyclic portion. The differing attachment and B-fold cause the tricyclic

substructure to rotate in a slight clockwise manner compared to clozapine. This in turn

causes ring A to partly occupy the region around position W. This also is why we do

not see any significant improvement in D4 affinity when the larger chloro substituent is

added at position W, as ring A already occupies this region. When a cyano substituent

was added at position W the additional bulk of this group compared with hydrogen

significantly reduced D4 binding affinity, and for this reason this series of compounds

was r ermsved. A s t he r egion around p osition W w as s hown t o b e d etrimental 10 D 2

binding affinity and the proposed compounds occupy this region all subsequent D2

binding affinities are poor. Whether or not this is what would happen in the receptor is

not entirely certain, as one might expect some flexing of both the receptor and the

compounds in question to accommodate them further. Unfortunately we are not able to

model these additional factors into our predictions of the D2 binding affinities. It would

be very interesting to see if indeed these proposed detrimental D2 interactions are

realised in the receptor binding assays.
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Table 5.4. Compounds designed to occupy the A, B and G regions

pharmacophore with their predicted D2 and D4 affinities (pKi) and pKa's.

of the

Predicted

Compound

ABG_1

ABG_2

ABG_3

ABG_4

ABG_5

ABG_6

ABG_7

ABG_8

ABG_9

ABG_10

ABG_11

ABG_12

ABG_13

ABG_14

ABG_15

ABG_16

ABG_17

ABG_18

ABG_19

ABG_20

ABG.21

ABG_22

ABG_23

ABG_24

Z

CH2

CH2

CH2

CH2

CH2

CH2

CH2

CH2

NH

NH

NH

NH

NH

NH

NH

NH

O

0

O

O

0

O

O

O

A1

CH

CH

CH

CH

N

N

N

N

CH

CH

CH

CH

N

N

N

N

CH

CH

CH

CH

N

N

N

N

B1

NH

NH

0

0

NH

NH

0

0

NH

NH

0

0

NH

NH

0

0

NH

NH

0

0

NH

NH

0

0

W

H

Cl

H

Cl

H

Cl

H

Cl

H

Cl

H

Cl

H

Cl

H

Cl

H

Cl

H

Cl

H

Cl

H

Cl

D2

5.22

4.86

5.51

5.06

5.53

4.98

5.73

5.28

5.27

5.23

5.67

5.54

5.79

5.63

5.76

5.65

5.55

5.13

6.06

5.71

6.20

5.72

6.54

6.10

D4

8.71

8.75

8.91

8.78

8.56

8.52

8.65

8.38

8.45

8.57

8.35

8.22

8.37

8.49

8.15

8.01

9.16

8.83

9.33

8.50

9.12

9.01

9.06

8.95

pKa

8.08

7.75

8.00

7.68

8.48

8.15

8.51

8.21

8.45

8.16

8.37

8.08

8.78

8.45

8.72

8.41

8.05

7.78

7.98

7.72

8.40

8.1C

8.34

8.06

The compounds w«th the greatest D4 selectivity in this series are the compounds with a

CH2 moiety in position Z and a CH moiety in position A1. The chloro substituent at

position W is shown to increase D4 selectivity in most cases by reducing the affinity at

the D2 receptor by more than it does at the D4 receptor. However the full potential of

this substituent is not realised due to the rotation of the tricyclic substructure. All

predicted pKa values are in a favourable range so as enable the APD to be unionised to

cross the BBB, and ionised to act on the receptor.
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5.4 CONCLUSION

297

Utilising the information gained from the ligand and structure based design strategies

reported in this thesis, in conjunction with database mining, a number of compounds

have been proposed and predicted to be D4 selective. The pKa's of all compounds are

predicted to be within a suitable range to enable them to be unionised for crossing the

BBB, yet appropriately ionised for interaction at target receptors.

The overall approach has been both comprehensive and novel since it incorporates and

integrates deep consideration of SAR studies of known ligands with knowledge of the

SAR characteristics of the receptor subtypes, D2 and D4, with which they selectively

interact. The novelty lies in the two-fold consideration given to the complementary

binding of ligands within the GPCR models for D2 and D4 receptor subtypes to explore

selectivity; and consideration of bioavailability as expressed by the extent of ionisation

of the basic nitrogen groups. In addition, the proposed molecules, having been

constructed from moieties within drug databases, and used as replacements in drug-like

compounds, have a strong likelihood of possessing other drug-like properties, an

extremely important requirement for new chemical entities.

However, further exploration of this overall drug design approach is dependent on

investigation of the synthetic feasibility and pharmacological properties of the proposed

compounds.

vr

1
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Table Carling. Receptor binding affinities (Ki, nM) of analogues from Carling et al.

Carling, compound #3

Carling, compound #4

Carling, compound #5

Carling, compound #6

Carling, compound #7

R3'

N

o
/

Carling, compounds #8-22,24

N-Ri

Carling, compounds #23,25-32

Compound

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Ri

methyl

phenyl

H

ethyl

H

methyl

methyl

methyl

methyl

methyl

methyl

methyl

methyl

R2

phenyl

methyl

phenyl

phenyl

phenyl

phenyl

phenyl

4-chlorophenyl

3-chlorophenyl

2-chlorophenyl

4-methoxyphenyl

4-fluorophenyl

4-methylphenyl

R3

H

H

H

H

methyl

methyl

phenyl

H

H

H

H

H

II

R4

phenyl

phenyl

phenyl

phenyl

phenyl

phenyl

phenyl

phenyl

phenyl

phenyl

phenyl

phenyl

phenyl

D2

1700

86

1600

190

150

56

280

82

26

11

15

8.8

170

73

38

110

290

52

D4

34

390

2700 '

150

5.5

0.60

71 ;

18 ',

0.36

0.84

0.75

4.5

0.71

5.2

1.1

12

1.7

1.1
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21

22

23

24

25

26

27

28

29

30

31

32

methyl

methyl

methyl

methyl

methyl

methyl

methyl

methyl

methyl

methyl

methyl

methyl

2-thienyl

2-pyridinyl

phenyl

phenyl

phenyl

phenyl

phenyl

phenyl

phenyl

phenyl

phenyl

phenyl

H

H

H

H

H

H

H

H

H

H

H

H

phenyl

phenyl

methyl

cyclohexyl

3-phenylpropyl

4-phenylbutyl

2-(2-chlorophenyl)ethyl

2-(3-chlorophenyl)ethyl

2-(4-chlorophenyl)ethyl

2-(3-methylphenyl)ethyl

2-(3-methoxyphenyl)ethyl

2-(3-cyanophenyl)ethyl

7.8

270

1600

83

220

330

1500

1300

60

95

900

1900

1.0

4.5

2500

2.0

0.56

5.5

2.1

0.46

1.3

0.33

0.64

0.96

Table Rowley. Receptor binding affinities (Kj, nM) of analogues from Rowley et al.

N-R,

Rowley, compounds #3-19, 29, 32-34, 36

Rowley, compound #22

HN-H
Rowley, compound #23

HN-N

Rowley, compound #24

Rowley, compound #25

HN~N

Rowley, compound #27

HN-N

Rowley, compound #28

N-a.
N-d

Rowley, compounds #30,35

Rowley, compounds #31,37
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Compound

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

22

23

24

25

27

28

29

30

31

32

33

34

35

36

37

R.

4-chlorophenyl

4-chlorophenyl

4-chlorophenyl

4-chlorophenyl

4-chlorophenyl

4-chlorophenyl

4-chlorophenyl

4-chlorophenyl

4-chlorophenyl

methyl

phenyl

benzyl

cyclohexyl

2-thienyl

2-pyridinyl

3-pyridinyl

4-pyridinyI

4-chlorophenyl

H

H

4-chlorophenyl

4-chlorophenyl

4-chlorophenyl

methyl

4-chlorophenyl

methyl

R2

NH

NH

NH

NH

NH

NH

NH

NH

NH

NH

NK

NH

NH

NH

NH

NH

NH

0

NH

NH

NH

NH

Rj

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

R4

2-(4-chlorophenyl)ethyl

H

methyl

cyclohexylethyl

2-(3-chlorophenyl)ethyl

2-(2-chlorophenyl)ethyl

2-phenylethyl

3-phenylpropyl

4-phenylbutyl

benzyl

benzyl

benzyl

2-phenylethyl

2-phenylethyl

2-phenylethyl

2-phenylethyl

2-phenylethyl

4-chlorobenzyI

4-chlorobenzyl

benzyl

benzyl

benzyl

2-phenylethyl

2-phenylethyl

2-phenylethyl

D2

240

1800

590

120

570

700

125

520

560

650

66

310

61

65

860

900

1300

120

90

1900

120

240

690

160

130

8.6

200

35

290

1700

1700

1500

D4

61

3300

1200

13

60

20

9.1

5.5

110

470

11

160

10

19

22

23

52

no
3.1

23

12

47

930

44

3.6

1.0

1.6

1.5

1.2

2.5

3.5

4.7



Appendix

Table Moore. Receptor binding affinities (Ki, nM) of analogues from Moore et al.

HN-N

Moore compounds #1,2 Moore compounds #8-10

Moore compounds #3-6,13-16 Moore compound #11

Moore compound #7 Moore compound #12

Compound

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Ri

phenyi

phenyl

H

methyl

methyl

H

phenyl

methyl

phenyl

phenyl

H

H

methyl

methyl

R2

H

methyl

phenyl

phenyl

H

H

phenyl

methyl

H

phenyl

phenyl

phenyl

phenyl

R3

methyl

H

phenyl

phenyl

methyl

methyl

H

H

R4

H

H

H

H

cyano

chloro

cyano

chloro

D2

66

90

140

6.1

310

510

450

1200

1600

460

1800

1100

1700

370

15

15

D4

11

4.7

2.5

0.39

140

15

40

18

17

32

1200

27

5.2

3.1

1.2

3.1



Appendix

Table Ohmori. Receptor binding affinities (Kj, nM) of analogues from Ohmori et al.

Me-N
H

O

sOMe Me

nemonapride

Ri-N OMe

Ohmori compounds #1,2a-d,5a-l,7

Compound

1

(R)-l

2a

2b

2c

2d

5a

5b

5c

(R)-5c

5d

(R)-5d

5e

(R)-5e

5f

5g

5h

5i

5j

5k

51

7

nemonapride

Ri

H

H

trifl uoromethy lcarbonyl

ethenylcarbonyl

cyclohexylcarbonyl

phenylcarbonyl

ethylcarbonyl

isopropylcarbonyl

cyclopropylcarbonyl

cyclopropylcarbonyl

cyclobutylcarbonyl

cyclobutylcarbonyl

cyclopentylcarbonyl

cyclopentylcarbonyl

cyclopropylcarbonyl

cyclopropylcarbonyl

cyclopropylcarbonyl

cyclopropylcarbonyl

cyclopropylcarbonyl

cyclopropylcarbonyl

methyl

cyclopropylcarbonyl

R2

benzyl

benzyl

benzyl

benzyl

benzyl

benzyl

benzyl

benzyl

benzyl

benzyl

benzyl

benzyl

benzyl

benzyl

cyclohexyl

cycloheptyl

BCN*

2-adamantyl

l-( 1-methylcyclohexyl)

2-phenylethyl

BCN*

H

D2

0.98

1.2

12

27

1200

630

32

50

220

190

170

240

740

690

84

20

140

110

32

82

0.81

14000

0.16

D4

1.1

0.55

1.9

1.3

110

87

1.5

3.0

2.1

5.6

5.2

7.0

20

18

2.1

2.7

3.8

4.4

3.3

3.4

0.67

2200

0.21

*BCN bicyclo[3.3.1]non-9-yl



Appendix

Table Sanner. Receptor binding affinities (K-,, nM) of analogues from Sanner el al.

8

Sanner compounds #3b,c
Sanner compound #3d

Sanner compounds #10m Sanner compounds #10a-l

Compound

3b

3c

3d

10b

10c

lOd

lOe

lOf

10g

lOh

lOi

lOj

10k

101

10m

Ri

H

fluoro

fluoro

H

fluoro

methoxy

tert-butyl

methoxycarbonyl

jV-acetyl

H

H

fluoro

fluoro

fluoro

fluoro

R2

N

N

N

N

N

N

N

N

N

CH

CH

N

CH

CH

N

R3

N

N

N

N

N

N

N

N

N

N

CH

N

N

CH

N

R4

H

fluoro

fluoro

H

H

H

H

H

H

H

H

fluoro

chloro

fluoro

fluoro

D2

38

68

980

1140

1196

918

1720

254

948

187

44

3310

1880

206

195

D4

1.7

2.0

39

3.5

2.8

18

20

127

316

1.7

1.6

3.4

3.2

5.3

106
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Table Belliotti. Receptor binding affinities (Kj, nM) of analogues from Belliotti et al.

Belliotti compounds #16-23 Belliotti compounds #24-31

Compound

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

R.

3,4-dimethyl

4-methyl

4-methoxy

4-methyl

3,4-dimethyl

4-methoxy

H

4-chloro

4-methyl

3,4-dimethyl

4-chloro

4-methoxy

H

4-methoxy

3,4-dimethyl

4-methyl

R2

CH

CH

CH

N

N

N

N

N

CH

CH

N

N

N

CH

N

N

D2

572

52.5

698

493

2340

5590

2200

5880

287

610

413

5880

129

1130

346

2980

D4

i.S

2.8

3.8

4.3

5.1

12.3

18.3

62.4

2.6

2.6

4.3

5.0

6.1

6.7

6.9

107
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Table Kesten. Receptor binding affinities (Ki, nM) of analogues from Kesten et al

10

Kesten compounds #6,8,10,12 Kesten compounds #5,7,9,11,13-18

Kesten compounds #19,21 Kesten compound #20

Compound

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

R.

H

H

4-methyl

4-methyl

2-methyl

2-methyl

3-methyl

3-methyl

3-chloro,4-methyl

3,4-dimethyl

4-fluoro

4-chloro

4-methoxy

t-butyl

CH

N

R2

phenyl

benzyl

D2

5300

2170

5700

5836

1940

1212

4400

NT

5882

433

NT

NT

NT

NT

91

121

NT

D4

27

30

17

11

16

63

32

74

6.9

14

59

93

75

227

19

4.4

2700

NT not tested

V,*
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Table Thurkauf. Receptor binding affinities (Kj, nM) of analogues from Thurkauf et

al.

Compound

3a

3b

3c

3d

3e

3f

3g

3h

R.

CH

CH

CH

CH

N

CH

N

N

R2

CH

N

CH

CH

CH

N

N

N

R3

CH

CH

N

CH

N

CH

CH

CH

R4

CH

CH

CH

N

CH

N

CH

CH

R5

H

H

H

H

H

H

H

methyl

D2

254

2190

296

3500

4130

4130

2250

1440

D4

5.2

8.5

73

7300

50

1400

3.8

6.0



Appendix 12

Table 1. Meta/para-substituted phenols

Observed and calculated pKa values for the meta/para-substituted phenols dataset using

eq. (3).

CAS no.

000051-67-2

000059-50-7

000080-46-6

000088-30-2

000088-04-0

000092-69-3

000094-26-8

000095-77-2

000095-65-8

000098-54-4

000098-17-9

000099-93-4

000099-89-8

000100-83-4

000100-02-7

000103-90-2

000106-48-9

000106-44-5

000106-41-2

000108-95-2

000108-68-9

000108-43-0

000108-39-4

000120-47-8

000121-71-1

000123-30-8

000123-08-0

000123-07-9

000150-76-5

000150-19-6

000371-41-5

000372-20-3

000402-45-9

000500-99-2

000540-38-5

Chemical name

4-(2-aminoethyl)phenolT

3-methyl-4-chlorophenol

4-tert-amylphenol

3-trifluoromethyl-4-nitrophenol

4-chloro-3,5-dimethyl phenol

4-phenylphenol

4-hydroxy butyl benzoate

3,4-dichlorophenol

3,4-dimcthylphenol

4-t-butylyphenol

3-trifluoromethylphenol

4-hydroxyacetophenone

4-isopropylphenol

3-hydroxybenzaIdehyde

4-nitrophenol

n-(4-hydroxyphenyl)acetamide

4-chlorophenol

4-cresol

4-bromophenol

pheno!

3,5-dimethylphenol

3-chlorophenol

3-cresol

4-hydroxybenzoic acid,ethyl ester

3-hydroxyacetophenone

4-aminophenol

4-hydroxybenzaldehyde

4-ethylphenol

4-methoxvphenol

3-methoxyphenoI

4-fluorophcnol

3-fluorophenol

4-trifluoromethylphenol

3,5-dimethoxyphenol

4-iodophenol

Exp pKa

9.77

9.20*

10.43

6.07

9.70

9.55

8.47

8.63

10.36

10.39

8.95

8.05

10.24

8.98

7.15

9.38

9.41

10.26

9.17

9.99

10.19

9.12

10.09

8.34

9.25

10.45

7.61

10.00

10.10

9.65

9.91

9.21

8.68

9.34

9.21

Calc pKa

9.88

9.31

10.09

6.18

9.47
»"\ ~~. —

. O

J.58

8.63

10.14

10.09

8.48

8.74

10.04

9.00

7.17

9.20

9.15

10.04

8.94

9.93

10.14

9.15

10.04

8.58

9.36

10.51

8.58

10.04

10.14

9.78

9.26

9.05

8.11

9.41

8.94
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000554-84-7

000577-71-9

OOO58O-51-8

000585-34-2

000586-11-8

000591-35-5

000591-27-5

000591-20-8

000609-19-8

000618-45-1

000620-17-7

000621-34-1

000622-62-8

000626-41-5

000626-02-8

000645-56-7

000698-71-5

000767-00-0

000873-62-1

001073-72-9

001470-94-6

002042-14-0

007339-87-9

3-nitrophenol

3,4-dinitrophenol

3-phenylphenol

3-( 1,1 -dimethylethyl)-phenol

3,5-dinitrophenol

3,5-dichIorophenol

3-aminophenol

3-bromophenol

3,4,5-trichlorophenol

3-isopropylphenol

3-ethylphenol

3-ethoxyphenol

4-ethoxyphenol

3,5-dibromophenol

3-iodophenol

4-propylphenol

3-ethyl-5-methylphenol

4-cyanophenol

3-cyanophenol

4-methiophenol

5-indanol

3-nitro-4-cresoI

hydroxyacetophenone

8.36

5.42

9.64

10.12

6.69

8.18

9.86

9.03

7.84

10.16

9.90

9.65

10.13

8.06

9.03

10.34

10.10

7.97

8.61

9.53

10.32

8.62

8.05

7.80

5.66

9.88

10.14

6.08

8.53

10.09

9.15

8.11

10.09

10.04

9.83

10.25

8.48

9.15

10.04

10.14

8.32

8.68

9.57

10.19

8.06

8.74

This compound may be partially in a zwitterionic form. However, it has been modelled in the neutral

form.

* Value taken from Albert, A., Serjeant, E.P. The Determination of Ionization Constants: A Laboratory

Manual; 3rd ed.; Chapman and Hall: London, 1984.

Table 2. Ortho-substituted phenols: hydrogen bonded

Observed and calculated pKa values for the ortho-substituted phenols dataset (capable of

forming internal hydrogen bonds) using eq. (4).

CAS no.

000065-45-2

000087-17-2

000119-36-8

000148-53-8

001151-51-5

001697-18-3

Chemical name

2-hydroxybenzamide

salicylanilide

methyl salicylate

2-vanillin

3,5,4'-trichloro salicylanilide

2'-chloro salicylanilide

Exp pKa

8.89*

7.40

9.87

7.91

4.70

7.31

Calc pKa

9.10

8.19

7.74

6.83

5.25

7.85
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002389-37-9 5-nitro salicylanilide

002627-77-2 4-bromo salicylanilide

003679-64-9 41- chloro-5-bromo salicylanilide

003679-63-8 4'-chloro salicylanilide

004214-48-6 3,5-dichloro salicylanilide

004638-48-6 5-chlorosalicylanilide

025933-30-6 5- chloro-2'-methyl salicylanilide

037183-28-1 2\4'-dichloro salicylanilide

037183-26-9 2'-nitro salicylanilide

037399-40-9 2'-nitro-4'-chloro salicylanilide

040912-87-6 5-bromo-2-hydroxy-n,3-dimethyl-benzamide

054850-02-1 3,5-dichloro-4'-fluoro salicylanilide

072699-09-3 3,5-dibromo-2'-nitro-4'-chloro salicylanilide

077067-91-5 2'-methyl-4'-chloro salicylanilide

077068-04-3 5-fluoro-2'-methyl-4'-bromo salicyanilide

077068-02-1 5-fluoro-2'-methyl-4'-chloro salicyanilide

079402-07-6 3,5-dibromo-2',4'-difluoro salicylanilide

080033-99-4 3,5-dichloro-2',4'-difluoro salicylanilide

090426-05-4 3,5,-4'-trichloro-4'-nitro salicylanilide

090426-03-2 3,5-dichloro-2'-methyl-4'-nitro salicylanilide

3.03

7.31

6.00

7.30

4.70

6.17

6.60

7.14

6.91

6.74

7.52

4.80

4.11

7.43

7.10

7.30

4.77

4.77

4.11

4.41

» Constants:

2.76

7.40

5.81

7.51

5.70

6.72

6.83

7.29

7.06

6.61

7.40

5.25

3.66

7.63

6.27

6.49

4.34

5.02

4.34

5.25

A Laboratory* Value taken from Albert, A., Serjeant, E.P. The Determination of lonization Constants: A

Manual; 3rd ed.; Chapman and Hall: London, 1984.

Table 3. Ortho-substituted phenols: no hydrogen bonds

Observed and calculated pKa values for the ortho-substituted phenols dataset (excluding

those forming intra-molecular hydrogen bonds) using eq. (7).

CAS no.

000051-28-5

000058-90-2

000066-56-8

000087-86-5

000087-65-0

000087-64-9

000088-89-1

000088-87-9

000088-85-7

000088-75-5

000088-69-7

Chemical name

2,4-dinitrophenol

2,3,4,6-tetrachlorophenol

2,3-dinitrophenol

pentachlorophenol

2,6-dichIorophenol

2-methyl-6-chlorophenol

2,4,6-trinitrophenol

4-chloro-2,6-dinitrophenol

2-sec-butyl-4,6-dinitrophenol

2-nitrophenol

2-isopropylphenol

Exp pKa

4.09

5.22

4.96

4.70

6.79

8.69

0.38

2.96

4.62

7.23

10.47

Calc pKa

3.30

6.56

4.28

6.03

7.99

9.05

0.80

3.00

3.83

6.63

10.26



000088-18-6

000088-06-2

000089-83-8

000089-68-9

000089-64-5

000090-43-7

000090-05-1

000090-00-6

000093-51-6

000094-71-3

000095-95-4

000095-87-4

000095-57-8

000095-56-7

000095-55-6

000095-48-7

000096-76-4

000097-54-1

000097-53-0

000098-28-2

000098-27-1

000099-57-0

000099-28-5

000105-67-9

000118-79-6

000119-34-6

000119-33-5

000120-83-2

000121-33-5

000128-39-2

000128-37-0

000131-89-5

000329-71-5

000367-12-4

000446-36-6

000496-78-6

000526-75-0

000527-60-6

000533-58-4

000534-52-1

Appendix

2-t-butylphenol

2,4,6-trichlorophenol

thymol

chlorothymol

4-chloro-2-nitrophenol

2-phenylphenol

2-methoxyphenol

2-ethylphenoI

4-methyl-2-methoxyphenol

2-ethoxyphenol

2,4,5-trichlorophenol

2,5-dimethylphenol

2-chlorophenol

2-bromophenol

2-aminophenol

2-cresol

2,4-di-t-butylphenol

2-methoxy-4-( l-propenyl)phenol

eugenol

4-(tert-butyl)-2-chlorophenol

4-(t-butyl)-2-cresol

2-ami no-4-nitrophenol

2,6-dibromo-4-nitrophenoI

2,4-dimethylphenol

2,4,6-tribromophenol

phenol, 4-amino-2-nitro-

4-methyl-2-nitrophenol

2,4-dichlorophenol

vanillin

2,6-di-t-butylphenol

2,6-di-t-butyl-4-methylphenol(bht)

2-cyclohexyl-4,6-dinitrophenol

2,5-dinitrophenol

2-fluorophenol

5-fluoro-2-nitrophenol

2,4,5-trimethylphenol

2,3-dimethylphenol

2,4,6-trimethylphenol

2-iodophenol

4,6-dinitro-o-cresol

10.28

6.23

10.62

9.98

6.46

9.92

9.98

10.20

10.28

10.11

7.40

10.41

8.56

8.45

9.75

10.28

11.72

9.88

10.19

8.58

10.59

7.60

3.39

10.60

6.80

7.81

7.40*

7.89

7.40

11.70

12.23

4.52

5.21

8.70

6.07

10.57

10.54

10.86

8.51

4.31

15

10.11

7.09

10.49

9.43

5.80

10.11

10.72

10.19

10.87

10.79

7.16

10.26

8.83

8.67

11.32

10.04

10.34

10.64

10.72

9.13

10.26

6.56

4.13

10.19

6.48

7.62

6.86

7.84

8.67

11.10

11.25

3.83

4.13

8.83

5.65

10.42

10.26

10.42

8.52

3.53

f £*:

! *

i

j .

t

t

>

t

S

s

1

>

i

i

t
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000554-52-9

000573-56-8

000576-26-1

000576-24-9

O0O583-78-8

000603-86-1

000608-71-9

000608-33-3

000609-93-8

000611-20-1

000611-07-4

000615-58-7

000618-80-4

000619-08-9

000621-59-0

000644-35-9

000697-82-5

000700-38-9

000731-92-0

000732-26-3

000771-61-9

000885-82-5

000933-75-5

000935-95-5

000946-31-6

001568-70-3

001570-64-5

001689-84-5

001879-09-0

002078-54-8

002409-55-4

002423-71-4

002432-12-4

003217-15-0

003555-18-8

003964-58-7

004901-51-3

005428-54-6

006640-27-3

013181-17-4

2-methyldopamine

2,6-dinitrophenol

2,6-dimethylphenol

2,3-dichlorophenol

2,5-dichlorophenol

6-chloro-2-nitrophenol

pentabromophenol

2,6-dibromophenol

2,6-dinitro-p-cresol

2-cyanophenol

5-chloro-2-nitrophenol

2,4-dibromophenol

2,6-dichloro-4-nitrophenoi

2-chloro-4-nitrophenoI

isovanillin

2-propylphenol

2,3,5-trimethylphenol

5-methyl-2-nitrophenol

2,4-dinitro-6-phenylphenol

2,4,6-tri(tert-butyl)phenol

pentafluorophenol

4-phenyl-2-nitrophenol

2,3,6-trichlorophenol

2,3,5,6-tetrachlorophenol

6-chloro-2,4-dinitrophenol

4-methoxy-2-nitrophenol

2- methyl-4-chlorophenol

bromoxynil

2-(l,l-dimethylethyl)-4,6-dimethylphenol

phenol, 2,6-bis(l-methylethyl)-

2-(tert-butyl)-4-methylphenol

2,6-dimethyl-4-nitrophenol

4-methyI-2,6-dichlorophenol

4-bromo-2,6-dichIorophenol

4-(sec-butyl)-2-nitrophenol

3-chloro-4-hydroxybenzoic acid

2,3,4,5-tetrachlorophenol

phenol, 2-methyl-5-nitro-

2-methyl-4-chlorophenol

bromofenoxim

9.54

3.97

10.62

7.70

7.51

5.48

4.62

6.67

4.23

6.86

6.05

7.79

3.55

5.45

8.89

10.47

10.67

7.41

3.85

12.19

5.53

6.73

5.80

5.14

2.10

7.31

9.71

3.86

12.04

11.10

11.72

7.07

7.19

6.21

7.59

7.52

6.35

8.59

8.74

5.46

10.64

3.60

10.19

7.99

7.92

5.95

5.57

7.62

3.83

7.54

5.87

7.39

4.44

5.12

9.43

10.19

10.42

6.86

3.75

11.32

4.81

6.63

7.24

6.56

2.77

7.24

8.98

5.65

10.57

10.57

10.26

6.33

8.22

6.86

6.93

6.71

6.56

7.01

8.98

5.87



Appendix 17

* This compound may be partially in a zwitterionic form. However, it has been modelled in the neutral

form.

* Value taken from Rapoport, M., Kinney Hancock, C , and Meyers, E.A. J. Am. Chem. Soc. 83, 3489-

3494(1961).

Table 4. Meta/para-substituted benzoic acids

Observed and calculated pKa values for the meta/para-substituted benzoic acids dataset

using eq. (11).

CAS no.

000051-44-5

000051-36-5

000057-66-9

000062-23-7

000065-85-0

000074-11-3

000093-09-4

000093-07-2

000098-73-7

000099-96-7

000099-94-5

000099-50-3

000099-34-3

000099-10-5

000099-05-8

000099-04-7

000100-09-4

000121-92-6

000121-34-6

000149-91-7

OOO15O-13-O

000455-38-9

000456-22-4

000528-45-0

000530-57-4

000535-80-8

000536-66-3

000585-76-2

000586-89-0

Chemical name

3,4-dichlorobenzoic acid

3,5-dichlorobenzoic acid

probenecid

p-nitrobenzoic acid

benzoic acid

4-chlorobenzoic acid

2-naphthoic acid

3,4-dimethoxybenzoic acid

4-(tert-butyl)- benzoic acid

p-hydroxybenzoic acid

p-toluic acid

3,4-dihydroxybenzoic acid

3,5-dinitrobenzoic acid

3,5-dihydroxybenzoic acid

3-aminobenzoic acid

m-toluic acid

p-methoxybenzoic acid

m-nitrobenzoic acid

4-hydroxy-3-methoxybenzoic acid

3,4,5-trihydroxybenzoic acid

4-aminobenzoic acid

m-fluorobenzoic acid

p-fluorobenzoic acid

3,4-dinitrobenzoic acid

4-OH-3,5-dimethoxybenzioc acid

m-ch'orobenzoic acid

cumic acid

m-bromobenzoic acid

p-acetylbenzoic acid

Exp pKa

3.64

3.54

3.40

3.44

4.19

3.98

4.17

4.36

4.40

4.54

4.37

4.48*

2.82

4.04

4.74

4.27

4.47

3.46

4.51

4.21**

4.85

3.86

4.14

2.82

4.34

3.81

4.35

3.81

3.70

Calc pKa

3.79

3.75

3.65

3.33

4.21

3.99

4.23

4.30

4.32

4.28

4.30

4.15

2.81

3.97

4.28

4.25

4.36

3.43

4.23

3.93

4.62

3.91

4.01

2.77

4.15

3.97

4.30

3.95

3.87



Appendix 18

000586-76-5

OOO586-38-9

000618-51-9

000619-86-3

000619-66-9

000619-65-8

000619-64-7

000619-58-9

000619-21-6

000619-05-6

001132-21-4

001877-72-1

002215-77-2

003739-38-6

004052-30-6

005438-19-7

007496-53-9

p-bromobenzoic acid

m-methoxybenzoic acid

3-iodobenzoic acid

p-ethoxybenzoic acid

4-formylbenzoic acid

p-cyanobenzoic acid

4-ethylbenzoic acid

4-iodobenzoic acid

3-formylbenzoic acid

3,4-diamino-benzoic acid ++

3,5-dimethoxybenzoic acid

m-cyanobenzoic acid

p-phenoxybenzoic acid

m-phenoxybenzoic acid

p-methylsulfonylbenzoic acid

4-propoxybenzoic acid

4-[(acetylamino)amino]-benzoic acid

4.00

4.09

3.85

4.45***

3.77

3.55

4.35

4.00

3.84

3.49

3.97

3.60

4.52

3.92

3.64

446***

4.20

3.93

4.19

3.97

4.40

3.85

3.71

4.28

3.91

3.85

4.50

4.19

3.75

4.28

4.09

3.49

4.40

4.52

This compound may be partially in a zwitterionic form. However, it has been modelled in the neutral

form.

** pKa predicted using equation (10)

* Value taken from Shorter, J., and Stubbs, F.J. J. Chem. Soc. 1180 (1949).

** Value taken from http://www.sirius-analytical.com.

*** Value taken from Brown, H.C. et at., in Determination of Organic Structures by Physical Methods;

E.A. Braude, F.C. Nachod (Eds.); Academic Press: New York, 1995; Cavill, G.W.K., Gibson, N.A., and

Nyholm, R.S. J. Chem. Soc. 2466 (1949).

Table 5. Ortho-substituted benzoic acids

Observed and calculated pKa values for the ortho-substituted benzoic acids dataset using

eq. (14).

CAS no. Chemical name Exp pKa Calc pKa

000050-85-1

000050-84-0

000050-79-3

000050-^8-2

000050-31-7

000050-30-6

000059-07-4

000061-68-7

4-methylsalicylic acid

2,4-dichlorobenzoic acid

2,5-dichlorobenzoic acid

acetylsalicylic acid

2,3,6-trichlorobenzoic acid

2,6-dichlorobenzoic acid

2-ethoxy-4-aminobenzoic acid

mefenamic acid

3.40

2.68

2.47

3.49

1.50

1.59

5.09

4.20

3.21

2.85

2.82

3.31

2.33

2.64

4.96

3.87



Appendix 19

000065-49-6

000069-72-7

000083-40-9

000088-67-5

000088-65-3

000089-86-1

000089-56-5

000089-55-4

000089-52-1

000091-52-1

000091-40-7

000092-70-6

000096-97-9

000099-60-5

000118-92-3

000118-91-2

000118-90-1

000119-30-2

000129-66-8

000133-91-5

000133-90-4

000303-38-8

000303-07-1

000321-14-2

000445-29-4

000490-79-9

000552-16-9

000577-56-0

000579-75-9

000609-99-4

000610-30-0

000632-46-2

000652-32-4

000947-84-2

001466-76-8

001521-38-6

001918-00-9

002243-42-7

002438-04-2

002516-96-3

p-aminosalicylic acid

salicylic acid

3-methylsalicylic acid

2-iodobenzoic acid

o-bromobenzoic acid

2,4-dihydroxybenzoic acid

5-methylsalicylic acid

5-bromosalicylic acid

n-acetyl o-aminobenzoic acid

2,4-dimethoxybenzoic acid

n-phenyl o-aminobenzoic acid

2-naphthalenecarboxylic acid, 3-hydroxy-

5-nitrosalicylic acid

2-chloro-4-nitro-benzoic acid

2-aminobenzoic acid

2-chlorobenzoic acid

o-toluic acid

2-hydroxy-5-iodo-benzoic acid

2,4,6-trinitrobenzoic acid

3,5-diiodosalicylic acid

3-amino-2,5-dichlorobenzoic acid*

2,3-dihydroxybenzoic acid

2,6-dihydroxybenzoic acid

5-chlorosalicylic acid

2-fluorobenzoic acid

2,5-dihydroxybenzoic acid

2-nitrobenzoic acid

o-acetylbenzoic acid

o-methoxybenzoic acid

2-hydroxy-3,5-dinitro-benzoic acid

2,4-dinitrobenzoic acid

2,6-dimethylbenzoic acid

2,3,5,6-tetrafluoro-4-methyl-benzoic acid

[l,l'-biphenyl]-2-carboxylic acid

2,6-dimethoxybenzoic acid

2,3-dimethoxybenzoic acid

3,6-dichloro-2-methoxybenzoic acid

o-pbenoxybenzoic acid

o-isopropylbenzoic acid

2-chloro-5-nitrobenzoic acid

3.66

2.97

2.95

2.93

2.88

3.11

3.15

2.66

3.40

4.36

3.99

2.79

2.12

2.14

4.95

2.89

3.98

2.62

0.65

2.30

3.40

2.91

1.05

2.65

3.27

2.95

2.17*

4.13

3.90

0.70

1.42

3.35

2.00

3.46

3.44

3.98

1.97

' 3.53

3.63

2.17

3.84

3.07

3.10

2.68

3.10

3.21

3.14

2.19

3.00

4.40

3.77

2.82

1.70

1.73

4.08

3.21

3.63

2.61

0.75

2.22

2.78

2.71

2.50

2.64

3.28

2.89

2.26

3.00

4.15

0.60

1.09

3.59

2.33

3.21

4.19

3.52

2.64

3.84

3.42

1.80



003970-35-2

00477.7-29-1

005344-49-0

021327-86-6

src003-73-5

Appendix

2-chloro-3-nitrobenzoic acid

n-phenylphthalamic acid

2-chloro-6-nitro-benzoic acid

2-chloro-6-methyl-benzoic acid

2-[(acetylamino)amino]-benzoic acid

20

2.02**

2.50

1.34

2.75

4.20

1.77

2.12

2.26

2.96

4.05

This compound may be partially in a zwitterionic form. However, it has been modelled in the neutral

form.

* Value taken from Albert, A., Serjeant, E.P. The Determination of lonization Conz'ants: A Laboratory

Manual; 3rd ed.; Chapman and Hall: London, 1984.

** Value from Dippy, J.F.J., and Hughes, S.R.H. Tetrahedron, 19, 1527 (1963).

Table 6. Aliphatic carboxylic acids: excluding amino acids

Observed and calculated pKa values for the aliphatic carboxylic acids dataset (excluding

amino acids) using eq. (18).

CAS no. Chemical name Exp pKa Calc pKa

000050-21-5

000053-86-1

000061-78-9

000061-33-6

000061-32-5

000064-69-7

000064-19-7

000068-11-1

000075-99-0

000075-98-9

000076-93-7

000076-05-1

000076-03-9

000077-06-5

000079-43-6

000079-31-2

000079-14-1

000079-11-8

000079-09-4

000079-08-3

000081-25-4

000085-34-7

000086-87-3

lactic acid

indomethacin

glycine, n-(4-aminobenzoyl)-

benzylpenicillin

methicillin

iodo-acetic acid

acetic acid

mercaptoacetic acid

2,2-dichloro-proprionic acid

2,2-dimethyl propanoic acid

benzilic acid

trifluoroacetic acid

trichloroacetic acid

gibberellic acid

dichloroacetic acid

isobutyric acid

hydroxyacetic acid

chloroacetic acid

propionic acid

bromoacetic acid

cholic acid

(2,3,6-trichlorophenyl)acetic acid

naphthaleneacetic acid

3.86

4.50

3.80

2.74

2.77

3.15

4.76

3.55

1.79

5.03

3.05

0.52

0.51

4.00

1.26

4.84

3.83

2.87

4.88

2.89

4.98

3.70

4.23

3.89

4.70

3.78

2.52

3.14

3.17

4.43

3.62

1.89

4.60

3.94

0.04

1.01

3.76

1.68

4.54

3.72

2.84

4.46

2.81

4.74

3.85

4.18
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000087-51-4

000087-08-1

000088-09-5

000090-64-2

000093-76-5

000093-72-1

000094-82-6

000094-81-5

000094-75-7

000094-74-6

000097-61-0

000098-89-5

000099-66-1

000102-32-9

000103-82-2

000104-03-0

000104-01-8

000107-94-8

000107-92-6

000116-53-0

000117-34-0

000120-36-5

000122-88-3

000122-59-8

000123-76-2

000141-82-2

000141-76-4

000144-49-0

000300-85-6

000305-03-3

000306-08-1

000327-97-9

000331-25-9

000348-10-7

000372-09-8

000404-98-8

000405-79-8

000405-50-5

000462-60-2

000467-69-6

indole-3-acetic acid

phenoxymethylpenicillin

2-ethylbutyric acid

a-hydroxyphenylacetic acid

2,4,5-trichlorophenoxyacetic acid

2-(2,4,5-trichlorophenoxy)propionic acid

4-(2,4-dichlorophenoxy)butyricacid

4-(4-chloro-o-tolyloxy)butyric acid (MCPB)4*

2,4-dichlorophenoxyacetic acid

2-methyl-4-chlorophenoxyacetic acid

2-methyl- pentanoic acid

cyclohexanecarboxylic acid

valproic acid

3,4-dihydroxyphenylacetic acid

phenylacetic acid

p-nitrophenylacetic acid

p-methoxyphenylacetic acid

3-chloropropionic acid

butyric acid

2-methyl- butanoic acid

diphenylacetic acid

2-(2,4-dichlorophenoxy)propanoic acid

p-chlorophenoxyacetic acid

phenoxyacetic acid

levulinic acid

malonic acid

3-iodopropionic acid

fluoroacetic acid

(3-hydroxybutyric acid

chlorambucil

4-OH-3-methoxy- benzeneacetic acid

chlorogenic acid

m-fluorophenylacetic acid

o-fluorophenoxyacetic acid

cyanoacetic acid

m-fluorophenoxyacetic acid

p-fluorophenoxyacetic acid

p-fluorophenylacetic acid

n-(aminocarbonyl)glycine

flurenol

4.75

2.79

4.71

3.41

2.83

2.84

4.95

6.20

2.73

3.13

4.79

4.90

4.60

4.25

4.31

3.85

4.36

3.99

4.82

4.81

3.94

3.10

3.10*

3.17

4.64

2 85

4.09

2.59

4.41

5.75

4.41

2.66

4.13

3.08

2.45

3.13

3.13

4.24

3.89

1.09

4.87

2.73

4.72

3.70

3.11

3.10

3.84

3.90

3.32

3.42

4.57

4.57

4.69

4.31

4.44

3.08

4.56

3.77

4.48

4.57

4.51

3.27

2.83

3.06

4.33

2.74

3.85

2.78

4.33

4.39

4.43

3.38

4.09

3.49

2.59

3.61

3.61

4.15

2.94

4.18
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000473-81-4

000501-52-0

000503-74-2

000503-66-2

000515-30-0

000516-05-2

000539-35-5

000581-96-4

000588-32-9

000588-22-7

000594-61-6

000595-46-0

000595-37-9

000598-78-7

000598-72-1

000601-75-2

000614-61-9

000616-62-6

000617-31-2

000622-47-9

000646-07-1

000689-13-4

000940-64-7

001643-15-8

001759-53-1

001798-99-8

001798-11-4

001798-06-7

001821-12-1

001877-75-4

1 001877-73-2
a

001878-94-0

001878-93-9

001878-92-8

1 001878-91-7

001878-88-2

001878-87-1

001878-85-9

001878-82-6

001878-69-9

Appendix

glyceric acid

beta-phenylpropionic acid

isovaleric acid

hydracrylic acid

a-hydroxy-a-methyl benzeneacetic acid

methyl malonic acid

mycobacidin

2-naphthaleneacetic acid

m-chlorophenoxyacetic acid

3,4-dichlorophenoxyacetic acid

a-hydroxy-i-butyric acid

dimethylmalonic acid

2,2-dimethyl butyric acid

2-chloropropionic acid

a-bromopropionic acid

ethylmalonic acid

o-chlorophenoxyacetic acid

propylpropanedioic acid

2-hydroxy- pentanoic acid

p-methylphenylacetic acid

4-methylpentanoic acid

hadacidin

p-methylphenoxyacetic acid

m-methylphenoxyacetic

cyclopropanecarboxylic acid

m-bromophenoxyacetic acid

p-nitrophenoxyacetic acid

p-iodophenylacetic acid

4-phenylbutyric acid

p-methoxyphenoxyacetic acid

m-nitrophenylacetic acid

p-iodophenoxyacetic acid

m-iodophenoxyacetic acid

o-iodophenoxyacetic acid

p-bromophenoxyacetic acid

m-nitrophenoxyacetic acid

o-nitrophenoxyacetic acid

o-methoxy phenoxyacetic acid

p-cyanophenoxyacetic acid

m-iodophenylacetic acid

3.55

4.66

4.77

4.51

3.53

3.12

5.10

4.25

3.07

2.92

3.61

3.15

5.03

2.80

2.97

2.96

3.05

2.99

3.89**

4.37

4.84

3.50

3.21

3.20

4.83

3.09

2.89

4.18

4.76

3.21

3.97

3.16

3.13

3.17

3.13

2.95

2.90

3.23

2.93

4.16

22

3.35

4.40

4.57

3.99

3.94

2.86

4.17

4.38

2.92

2.65

4.07

3.22

4.66

3.17

3.17

3.33

3.55

3.22

3.95

4.49

4.54

3.32

3.86

3.08

4.63

3.57

2.16

4.06

4.39

3.89

3.56

2.74

3.57

3.42

2.69

3.05

3.01

4.01

2.54

4.12
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001878-68-8

001878-66-6

001878-65-5

001878-49-5

001879-58-9

001879-56-7

002088-24-6

002270-20-4

002976-75-2

003813-05-6

005292-21-7

006324-11-4

010502-44-0

014387-10-1

015307-86-5

015687-27-1

016484-77-8

016563-41-0

018046-21-4

018698-96-9

020225-24-5

022071-15-4

022131-79-9

022204-53-1

031879-05-7

032857-63-9

036330-85-5

038194-50-2

040828-46-4

040843-25-2

O538O8-88-1

055335-06-3

055863-26-8

058667-63-3

069335-91-7

069806-34-4

074103-06-3

089894-13-3

p-bromophenylacetic acid

p-chlorophenylacetic acid

m-chlorophenylacetic acid

o-methylphenoxyacetic acid

m-cyanophenoxyacetic acid

o-bromophenoxyacetic acid

m-methoxyphenoxyacetic acid

5-phenylpentanoic acid

(l-naphthalenyloxy)-acetic acid

4-chIoro-2-oxo-3(2H)-bcnzothiazolcaceticacid

cyclohexylacetic acid

o-hydroxyphenoxyacetic acid

2-hydroxy-2-(4-methoxyphenyl)aceticacid

4-ethyl- benzeneacetic acid

diclofenac

ibuprofen

(R)-2-(4-chloro-o-tolyloxy)propionic acid

3-( l-naphthalenyloxy)-propanoic acid

fentiazac

2-iodo- benzeneacetic acid

2-ethylpentanoic acid

ketoprofen

alcofenac

naprosyn

fenoprofen

4-( 1,1 -dimsthylethyl)-benzeneacetic acid

fenbufen

sulindac

suprofen

2-[4-(2,4-dichlorophcnoxy)phcnoxy]propanoicacid

lonazolac

3,5,6-trichloro-2-pyridyloxyacetic acid

tiopinac

N-benzoyl-N-(3-chloro-4-fluorophenyI)-DL-alanine

2-[4-[[5-(trifluoromethyl)-2-

pyridinyl]oxy]phenoxy]propanoic acid

2-[4-[[3-chloro-5-(trifluoromethyl)-2-

pyridinyl]oxy]phenoxy]propanoic acid

ketorolac

phenoxyacetic acid, 4-chloro-3-nitro

4.19

4.19

4.14

3.23

3.03

3.13

3.14

4.88

3.20

3.04

4.80

3.02

3.42

4.37

4.15

4.45***

3.68

4.00

3.60

4.04

4.71

4.45

429****

4.15

4.50

4.42

4.51

4.70

3.91

3.43

4.30

2 68*****

3.71

3.72

3.12

2.90

3.49

2.96

4.06

4.12

4.15

3.67

3.41

3.52

3.05

4.43

3.00

3.50

4.57

3.58

3.79

4.49

4.16

4.61

3.53

3.95

4.02

4.24

4.66

4.38

4.30

4.52

4.38

4.52

4.42

4.30

4.11

2.96

4.27

2.83

4.20

3.55

3.66

2.90

3.84

2.77
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4-(cyclopropylhydroxymcthylcne)-3,5-

dioxocyclohexanecarboxylic acid*4

4-methyl-umbelliferyl (3-d-glucuronide

24

5.32

2.82

3.79

2.75

* Value taken from CRC Handbook of Chemistry and Physics; 81st ed.; Lide, D.R., and Lide, Jr. (Eds.),

Chapman and Hall: London, 2001.

** Value from H. C. Brown et al. E.A. Braude, F.C. Nachod (Eds.), Determination of Organic Structures

by Physical Methods, Academic Press, N.Y., 1955,567-662.

*** Value from Avdeef A., Box, K.J., Comer, J.E., Hibbert, C, and Tarn, K.Y. Pharm. Res. 15, 209-215

(1998); Balon, K., Riebesehl, B.U., and Muller, B.W. Pharm. Res. 16, 882-888 (1999).

**** y a i u e frorn Hansch, C. (Ed.), Comprehensive Medicinal Chemistry1; Vol. 6.; Pergamon Press:

Oxford, 1990.

***** Value from Martindale - The Extra Pharmacopoeia; 31st ed.; The Pharmaceutical Press: London,

1996.
44 value predicted using eq. (17)

Table 7. Anilines

Observed and calculated pKa values for the aniline dataset using eq. (21).

CAS no.

000099-05-8

000150-13-0

000065-49-6

000123-30-8

000591-27-5

000618-87-1

000626-43-7

000092-67-1

000611-05-2

001137-41-3

034761-82-5

000089-62-3

005470-49-5

000635-22-3

000455-14-1

000619-45-4

000094-25-7

000094-12-2

000094-09-7

000095-76-1

Chemical name

3-aminobenzoic acid

4-aminobenzoic acid

p-aminosalicylic acid

4-amino-phenol

3-amino-phenol

3,5-dinitroaniline

3,5-dichloroaniline

4-aminobiphenyl

3-methyl-4-nitroaniline

4-benzoylaniline

3,5-dimethyl-4-nitrobenzenamine

2-nitro-p-toluidine

4-methylsulfonylaniline

4-chIoro-3-nitro-benzenamine

p-trifluoromethylaniline

methyl p-aminobenzoate

butyl-p-aminobenzoate

propyl-p-aminobenzoate

p-aminobenzoic acid, ethyl ester

3,4-dichloroaniline

Exp pKa

3.07*

2.38

2.05

5.48

4.37

0.30

2.51

4.35

1.64

2.24

2.54

0.40

1.35

1.90

2.45

2.47

2.47

2.49

2.51

2.97

Calc pKa

3.76

2.45

2.02

5.72

4.85

-2.12

2.89

5.18

0.39

3.44

0.82

1.91

0.49

0.28

2.02

2.89

3.00

3.00

3.00

3.11
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000098-16-8 3-trifluoromethylaniline

000591-19-5 m-bromoaniline

000626-01-7 3-iodo-benzenamine

000540-37-4 4-iodo-benzenamine

000106-40-1 p-bromoaniline

006933-10-4 3-methyl-4-bromoaniline

000118-92-3 2-aminobenzoic acidt

000095-55-6 o-aminophenol

000099-57-0 2-amino-4-nitrophenol

000615-57-6 2,4-dibromoaniline

000119-32-4 3-nitro-4-toluidine

000090-41-5 2-aminobiphenyl

000099-30-9 2,6-dichloro-4-nitroaniline

016947-63-0 2,6-dimethyl-4-nitrobenzenamine

000095-82-9 2,5-dichloroaniline

000097-02-9 2,4-dinitroaniline

000089-63-4 4-chloro-2-nitroaniline

000121-87-9 2-chloro-4-nitroaniIine

000771-60-8 2,3,4,5,6-pentafluoroaniline

000608-31-1 2,6-dichloroaniline

000096-96-8 4-methoxy-2-nitro-benzenamine

000099-52-5 4-nitro-2-toluidine

000608-27-5 2,3-dichloroaniline

000554-00-7 2,4-dichloroaniline

000087-25-2 o-aminobenzoic acid, ethyl ester

000134-20-3 methyl anthranilate

000099-55-8 5-nitro-2-toluidine

013171-61-4 2,3,5,6-tetramethyl-4-nitrobenzenamine

000099-59-2 2-methoxy-5-nitroaniline

000615-36-1 o-bromoaniline

000615-43-0 2-iodoaniline

000606-22-4 2,6-dinitroaniline

000634-93-5 2,4,6-trichloroaniline

000636-30-6 2,4,5-trichloroaniline

000102-56-7 2,5-dimethoxyaniline

* Macro pKa (Schulman, S. G., Rosenberg, L. S., and Sturgeon, R. J., J. Pharm. Sci. 67, 334-337 (1978)).

t This compound may be partially in a zvvitterionic form, however, it has been modelled in the neutral

form.

3.49

3.58

3.61

3.78

3.86

4.05

2.14

4.84

3.10

2.30

3.03

3.83

-2.55

0.98

2.05

-4.25

-1.02

-0.94

-0.28

0.42

0.77

1.04

1.76

2.00

2.18

2.23

2.35

2.36

2.49

2.53

2.60

-5.00

-0.03

1.09

3.93

2.78

4.20

5.94

3.76

3.87

4.20

3.76

4.52

2.02

3.11

0.71

5.94

-2.45

0.49

3.22

-5.49

-1.03

-1.14

-0.49

3.44

1.26

0.49

3.33

3.11

4.42

4.20

1.69

1.91

2.45

4.31

4.31

-4.95

2.02

2.02

5.18
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Table 8. Primary amines

Observed and calculated pKa values for the primary amine

CAS no.

002954-50-9

000064-04-0

000156-34-3

000107-10-8

000109-73-9

000075-04-7

000108-91-8

000100-46-9

000104-84-7

000064-13-1

004764-17-4

022374-89-6

OO2O38-57-5

013214-66-9

000078-81-9

000617-89-0

000753-90-2

000054-04-6

000107-11-9

000513-49-5

000074-89-5

000075-31-0

000075-64-9

Chemical name

2-naphthalenamine, 1,2,3,4-tetrahydro-

2-phenylethylamine

benzeneethanamine, a-methyl-, (R)-

propylamine

n-butylamine

ethylamine

cyclohexanamine

benzylamine

benzenemethanamine, 4-methyl-

p-methoxyamphetamine

3,4-methylenedioxyamphetamine

benzenepropanamine, a-methyl-

3-phenyl propylamine

4-phenylbutylamine

isobutylamine

2-aminomethylfuran

2,2,2-trifluoroethylamine

mescaline

allylamine

sec-butylamine

methylamine

isopropylamine

t-butylamine

dataset using eq.

Exp pKa

9.93

9.96

10.13

10.71

10.78

10.87

10.63

9.33

9.36

9.53

9.67

9.79

10.16

10.36

10.68

8.89

5.70

9.56

9.70

10.56

10.62

10.63

10.68

(30).

Calc pKa

9.86

10.40

10.51

11.06

10.95

11.06

10.73

10.40

10.51

10.51

11.17

10.30

10.62

10.73

11.17

8.34

4.74

9.75

10.51

10.95

10.40

10.84

11.17

Table 9. Secondary amines

Observed and calculated pKa values for the secondary amine dataset using eq. (29)

CAS no.

000589-08-2

000109-89-7

000110-89-4

000111-92-2

000110-91-8

000124-02-7

000103-67-3

Chemical name

benzeneethanamine, n-methyl-

diethylamine

piperidine

dibutylamine

morpholine

diallylamine

n-methylbenzylamine

Exp pKa

10.08

11.09

11.28

11.39

8.49

9.29

9.54

Calc pKa

9.32

10.51

10.19

10.40

7.90

9.42

9.21



014321-27-8

000093-88-9

000537-46-2

000110-68-9

000142-84-7

000111-49-9

000108-18-9

000768-66-1

000109-05-7

000503-29-7

000123-75-1

000494-52-0

001006-64-0

000124-40-3

000458-88-8

000101-83-7

Appendix

benzenemethanamine, n-ethyl-

benzeneethanamine, n,P-dimethyl-

methamphetamine

methylbutylamine

dipropylamine

hexamethyleneimine

diisopropylamine

piperidine, 2,2,6,6-tetramethyl-

2-methylpiperidine

azetidine

pyrrolidine

anabasine

pyrrolidine, 2-phenyl-

dimethylamine

2-propylpiperidine

dicyclohexylamine

27

9.64

9.87

9.87

10.90

11.00

11.07

11.07

11.72*

11.08

11.29

11.31

8.70

9.40

10.73

11.00

10.40

9.86

9.64

9.64

9.75

10.40

11.28

11.38

12.04

10.73

8.99

8.99

8.88

9.21

9.21

10.84

11.38

* Value from Sosnovsky, G., Life Sci. 62, 639-648 (1989).

Table 10. Tertiary amines

Observed and calculated pKa values for the tertiary amine dataset using eq (35)

CAS no. Chemical name Exp pKa Calc pKa

000100-74-3

067564-91-4

000598-56-1

000927-62-8

000109-02-4

002055-21-2

000102-70-5

006304-27-4

013450-66-3

020173-26-6

000103-83-3

000076-99-3

000132-22-9

020173-28-8

000626-67-5

000120-94-5

000121-44-8

4-ethylmorphohne

fenpropimorph

ethyl dimethylamine

dimethylbutylamine

n-methylmorpholine

n,n-dimethyl-3-pyridylmethylamine

2-propen-1-amine, n,n-di-2-propenyl-

2-pyridineethanarnine, n,n-dimethyl-

3-pyridylethyl-2-n-piperidine

n,n-dimethyl-2-(3-pyridyl)ethylarnine

n,n-dimethylbenzylarni ne

methadone

chlorpheniramine

3-pyridylethyl-2-(n-pyrrolidine)

n-methylpiperidine

1 -methyl-pyrrolidine

triethylamine

7.67*

6.98

10.16

10.19

7.38

8.00

8.31

8.75

8.81

8.86

8.91

8.94

9.13

9.28

10.08

10.32

10.78

7.68

8.01

8.88

8.77

7.03

6.81

8.34

8.77

8.44

7.46

8.12

8.66

8.55

8.44

9.32

9.10

10.40
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005470-02-0

000079-55-0

000054-11-5

000538-07-8

000063-75-2

000091-46-3

000054-32-0

003478-94-2

000083-98-7

000058-73-1

000075-50-3

067306-00-7

000102-69-2

000102-82-9

1-propylpiperidine

piperidine, 1,2,2,6,6-pentamethyl-

nicotine

bis(2-chloroethyl)ethy!amine

arecoline

ethanamine, n,n-dimethyl-2-[5-methyl-2-(l-methyl)]

moxisylyte

piperalin

orphenadrine

diphenhydramine

trimethylamine

fenpropidin

tripropylamine

tri n-butylamine

10.41

11.25

8.18**

6.57

7.16

8.66

8.72

8.90

8.91

8.98

9.80

10.10

10.65

10.89

9.86

11.82

7.79

5.94

7.03

8.01

7.90

8.66

8.77

8.77

8.34

9.75

10.51

10.40

* Value taken from Albert, A., Serjeant, E.P. The Determination of lonization Constants: A Laboratory

Manual; 3rd ed.; Chapman and Hall: London, 1984.

** Value from Chamberlain, K., Evans, A. A. and Bromilow, R. H., Pestic. Sci. 43, 167-169 (1995).

Table 11. Meta/para pyridines

Observed and calculated pKa values for the pyridine (meta/para) dataset using eq. (42).

CAS no.

001122-54-9

000626-55-1

000614-18-6

001570-45-2

001120-87-2

000500-22-1

000626-61-9

000872-85-5

000553-26-4

000093-60-7

002459-09-8

002457-47-8

000499-81-0

000626-60-8

000372-47-4

000350-03-8

001120-90-7

Chemical name

4-acetylpyridine

3-bromopyridine

nicotinic acid, ethyl ester

isonicotinic acid, ethyl ester

4-bromopyridine

3-formyIpyridine

4-chloropyridine

4-formylpyridine

4,4'-dipyridyl

nicotinic acid, methyl ester

i-nicotinic acid, methyl ester

3,5-dichloropyridine

dinicotinic acidf

3-chloropyridine

3-fluoropyridine

3-acetyIpyridine

3-iodopyridine

Exp pKa Calc pKa

3.59

2.91

3.35

3.45

3.78

3.80

3.84

4.77

4.82

3.13

3.26

0.67

1.10

2.84

2.97

3.18

3.25

3.24

3.57

3.53

2.91

3.49

3.53

3.93

2.93

4.19

3.41

2.79

2.12

1.29

3.56

2.99

3.65

3.72

' „ , ]
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1

000059-67-6

000100-55-0

000586-95-8

002859-67-8

000536-78-7

002116-65-6

005344-27-4

000100-43-6

000108-99-6

002629-72-3

000536-75-4

000108-89-4

003978-81-2

001122-81-2

000591-22-0

000583-58-4

000620-08-6

020173-26-6

000494-52-0

000100-48-1

000054-11-5

000059-26-7

109151-40-8

001008-88-4

000055-22-1

000110-86-1

000939-23-1

003731-52-0

002530-26-9

000109-00-2

007295-76-3

nicotinic acid

3-pyridinemethanol

4-pyridinemethanol

3-pyridinepropanol

3-ethylpyridine

4-benzylpyridine

4-pyridineethanol

4-vinylpyridine

3-methylpyridine

4-pyridinepropanol

4-ethylpyridine

4-methylpyridine

4-(tert-butyl)pyridine

4-propylpyridine

3,5-dimethylpyridine

3,4-dimethylpyridine

4-methoxypyridine

n,n-dimethyl-2-(3-pyridyl)ethylaminet

anabasinet ++

4-cyanopyridine

nicotinef **

nikethamide

(E)-3-nicotinoylacrylic acidt

3-phenylpyridine

isonicotinic acid

pyridine

4-phenylpyridine

3-pyridinemethaneaminet

3-nitropyridine

3-hydroxypyridine

3-methyoxypyridine

2.07*

4.90

5.33

5.47

5.56

5.59

5.60

5.62

5.63

5.84

5.87

5.98

5.99

6.05

6.15

6.46

6.47

4.30

3.21

1.90

3.10

3.50

3.82

4.80

1.70*

5.23

5.55

5.96

1.18

4.80**

4.91

3.08

4.49

5.54

5.18

5.35

5.63

5.12

5.37

5.30

5.45

5.65

5.67

5.78

5.65

5.42

5.78

6.15

5.23

5.50

2.41

5.86

3.89

3.00

4.95

2.44

5.18

5.28

5.24

0.71

3.79

4.31

t This compound may be partially in a zwitterionic form, however, it has been modelled in the neutral

form.

^ pKa predicted using equation (41)

* Macro pKa (Halle, J.-C, Lelievre, J., and Terrior, F., Can. J. Chem.

** Macro pKa (Metzler, D.E., and Snell, E. E., J. Am. Chem. Soc. 77,:

74, 613-616 (1996)).

2431-2437(1955)).
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Table 12. Ortho pyridines

Observed and calculated pKa values for the pyridine (ortho)

CAS no.

000104-90-5

003748-84-3

000372-48-5

000109-09-1

000109-04-6

000100-69-6

000101-82-6

000103-74-2

002859-68-9

000140-76-1

005944-41-2

000100-71-0

000589-93-5

000583-61-9

000108-48-5

000108-47-4

000108-75-8

002402-78-0

002176-62-7

002402-77-9

002402-79-1

001008-89-5

000109-06-8

000366-18-7

000586-98-1

001603-41-4

018438-38-5

000142-08-5

001628-89-3

006231-18-1

001122-62-9

001121-60-4

002459-07-6

000098-98-6

* Value taken from Albert,

Manual; 3rd ed.; Chapman

Chemical name

5-ethyl-2-methylpyridine

2,3,5,6-tetramethylpyridine

2-fluoropyridine

2-chloropyridine

2-bromopyridine

2-vinylpyridine

2-benzylpyridine

2-pyridineethanol

2-pyridinepropanol

2-methyl-5-vinylpyridine

2-t-butylpyridine

2-ethylpyridine

2,5-dimethylpyridine

2,3-dimethylpyridine

2,6-lutidine

2,4-dimethylpyridine

2,4,6-collidine

2,6-dichloropyridine

2,3,4,5,6-pentachlorpyridine

2,3-dichloropyridine

2,3,5,6-tetrachlorpyridine

2-phenylpyridine

2-methylpyridine

2,2-bipyridine

2-pyridinemethanol

2-amino-5-methylpyridine

2-methylthiopyridine

2-hydroxypyridine

2-methoxypyridine

pyridine, 2,6-dimethoxy-

2-acetylpyridine

2-pyridinecarboxyaldehyde

picolinic acid, methyl ester

picoUnic acid

dataset using eq

Exp pKa

6.51

7.90

-0.44

0.49

0.90

4.98

5.13

5.31

5.61

5.67

5.76

5.8°

6.40

6.57

6.60

6.99

7.43

-2.86

-1.00

-0.85

-0.80

4.48

6.00

4.33

4.86

7.22

3.59

0.75*

3.06

1.60

2.73

3.80

2.21

1.06**

A., Serjeant, E.P. The Determination of lonization Constants: A

and Hall: London, 1984.

.(44).

Calc pKa

5.99

7.59

1.11

2.14

2.20

5.64

5.14

4.45

5.28

5.26

6.07

5.69

5.96

6.02

6.89

6.31

7.57

0.27

-3.60

0.35

-2.71

5.22

5.62

4.35

3.84

5.98

4.30

1.52

2.98

1.31

1.92

3.22

2.32

1.67
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** Macro pKa (Takacs-Novak, K., Kokosi, J., Podanyi, B., Noszal, B., Tsai, R, S., Lisa, G., Carrupt, P.

A., and Testa, B., Heiv. Chim. Ada 78, 553-558 (1995)).

Table 13. Pyrimidines

Observed and calculated pKa values for the pyrimidine dataset using eq. (47)

CAS no.

004595-60-2

034253-03-7

000823-09-6

014080-32-1

000289-95-2

003739-82-0

003438-46-8

014001-64-0

001558-17-4

005469-70-5

053112-28-0

003740-92-9

000767-15-7

001004-38-2

Chemical name

pyrimidine, 2-bromo-

2-pyrimidinecarboxylic acid, methyl ester

pyrimidine, 2-fmethylthio)-

pyrimidine, 5-nitro-

pyrimidine

pyrimidine, 2-ethoxy-

4-methylpyrimidine

2-SMe-4,6-dimethylpyrimidine

4,6-dimethylpyrimidine

2-aminopyrimidine

pyrimethanil

fenclorim**

2-amino-4,6-dimethyIpyrimidine

2,4,6-pyrimidinetriamine

Exp pKa

-1.63

-0.68

0.59

0.72

1.23

1.27

1.91

2.12

2.70

3.45

3.52

4.23

4.82

6.81

Calc pKa

0.59

0.22

2.20

-0.88

1.50

2.37

1.58

2.98

2.38

3.31

3.63

1.02

4.05

6.10

** using equation (46)

Table 14. Imidazole and benzimidazoles

Observed and calculated pKa values for the imidazole and benzimidazole dataset using

eq. (52).

CAS no.

Imidazoles

003034-41-1

003034-38-6

003034-42-2

002466-76-4

068694-11-1

000670-96-2

000616-47-7

000288-32-4

000693-98-1

Chemical name

l-methyl-4-nitro-lH-imidazole

4-nitroimidazole

l-methyl-5-nitroimidazole

lH-imidazole, 1-acetyl-

triflumizole

lH-imidazole, 2-phenyl-

lH-imidazole, 1-methyl-

imidazole

IH-imidazole, 2-methyl-

Exp pKa

-0.53

-0.05

2.13

3.60

3.70

6.48

6.95

6.95

7.85

Calc pKa

0.38

-0.05

1.82

3.95

4.59

6.77

7.01

6.66

7.39

&



000584-85-0

067747-09-5

053910-25-1

004238-71-5

000092-13-7

051481-61-9

035554-44-0

Benzimidazoles

000051-17-2

117994-51-1

115583-15-8

001571-92-2

163192-67-4

033138-16-8

000120-03-6

111526-85-3

006528-85-4

119691-79-1

Appendix

anserinet 7.04

prochloraz 3.80

pentostatin 5.20

lH-imidazole, l-(phenylmethyl)- 6.70

pilocarpol 6.78

cimetidine 6.80

imazalil base 6.53

benzimidazole 5.53*

2-(4-methoxyphenylmethyl)-5-nitrobenzimidazole 4.26

2-(4-chlorphenylmethyl)-5-chlorobenzimidazole 4.86

2-(2-methylphenyl)-5-nitrobenzimidazole 4.87

2-(2,4-dimethylphenyl)-5-nitrobenzimidazole 5.29

2-(4-bromophenylmethyl)-5-chlorobenzimidazole 5.42

2-(4-methylphenyl)-benzimidazole 6.90

2-(4-methylphenylmethyl)-5-chlorobenzimidazole 7.09

2-(2-methoxyphenyl)-benzimidazole 7.17

2-(4-aminophenylmethyl)-5-chlorobenzimidazo!e 7.47

32

6.40

5.92

6.00

7.15

5.37

6.42

7.41

6.00

3.55

5.54

4.13

4.16

5.43

6.80

6.21

7.28

6.50

t This compound may be partially in a zwitterionic form, however, it has been modelled in the neutral

form.

* Value taken from Albert, A., Serjeant, E.P. The Determination of lonization Constants: A Laboratory

Manual; 3rd ed.; Chapman and Hall: London, 1984.

Table 15. Quinolines

Observed and calculated pKa values for the quinoline dataset using eq. (53).

CAS no.

000091-22-5

000578-67-6

004964-76-5

005263-87-6

000611-32-5

000612-58-8

000091-62-3

000612-60-2

000580-16-5

000580-20-1

000491-35-0

000091-63-4

Chemical name

quinoline

5-quinolinol

7-methoxyquinoline

6-methoxyquinoline

8-methylquinoline

3-methylquinoline

6-methylquinoline

7-methylquinoline

6-hydroxyquinoline

7-quinolinol

4-methylquinoline

2-methylquinoline

Exp pKa

4.90

5.02

5.03

5.03

5.05

5.17

5.34

5.34

5.15*

5.46

5.67

5.71

Calc pKa

5.20

4.57

5.07

5.12

5.30

5.41

5.40

5.41

4.77

4.76

5.23

5.50

i
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005332-24-1

000086-98-6

000611-33-6

000394-68-3

000612-57-7

004965-36-0

005332-25-2

000877-43-0

001198-37-4

000580-18-7

000148-24-3

000130-16-5

000938-33-0

000826-81-3

003846-73-9

099607-70-2

Appendix

3-bromoquinoline

4,7-dichloro-quinoIine

8-chloroquinoline

8-fluoroquinoline

6-chloroquinoline

7-bromoquinoline

6-bromoquinoline

2,6-dimethylquinoline

2,4-dimethylquinoline

3-quinolinol

8-quinolinol

8-quinolinol,5-chloro-

8-methoxyquinoline

2-methyl 8-quinolonol

4-methyl-8-quinolinol

cloquintocet-mexyl

33

2.69

2.80

3.12

3.34

3.85

3.87

3.87

6.10

5.12

4.28

4.90

3.56

5.01

5.55

5.56

3.75

3.54

2.49

3.89

3.84

3.85

3.63

3.59

5.67

5.53

4.80

4.84

3.54

5.69

5.16

4.87

3.56

* Value taken from Albert, A., Serjeant, E.P. The Determination of lonization Constants: A Laboratory

Manual; 3rd ed.; Chapman and Hall: London, 1984.
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