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Page 4 - Paragraph 5, line 4:''chapter 3 is used' should be replaced by 'chapter 3 used'.
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Page 11 — Paragraph 3, line 2: '2 ' should be replaced by 'two'.
Page 35 - Section 3.2.1, line 3: 'produce' should be replaced by 'product'.
Page 68 - Paragraph 5, line 2 & 3: '? ' should be removed.
Page 73 - Figure caption, line 5: 'theMahalanobis....' should be replaced by 'the Mahalanobis....'.
Page 74 - Section 4.4, line 3: 'approach is that, the ... ' should be replaced by 'approach is that the . . . ' .
Page 75 - Paragraph 2, line 2: 'Under modeling, occurs...' should be replaced by 'Under modeling

occurs...'.
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Page 103 - Section 4.10.1, paragraph 1, line 3: 'can't' should be replaced by 'can not'.
Page 104 - Paragraph 4, line 3: 'S has ... ' should be replaced by 'S, has . . . ' . Line 6: '2 ' should be replaced
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Page 105 - Paragraph 3, line 2: 'proposed my Mayback ... ' should be replaced by 'proposed by Maybeck

Page 108 - Section 4.11, paragraph 2, line 3: 'condition' should be replaced by 'conditions'; line 4: 'or even
converge to ... ' should be replaced by 'or even result in convergence to ...'.

Page 140 - Paragraph 1, line 5: 'thus indicating to the ... ' should be replaced by 'thus indicating the... '.
Page 149 - Paragraph 2, line 4: ' a ... ' should be replaced by 'The value of a ... ' .
Page 153 - Paragraph 1, line 1: '4 ' should be replaced by 'four' (in both instances), 'gives' should be

replaced by 'give'; line 8: '2/3's' replaced by '2/3'.
Page 158 - Paragraph 3, line 6: 'the 4 cones are ...' should be replaced by 'the four cones is ... ' . Section

6.8, line 4: 'Then by ... ' should be replaced by 'Then, by .. . ' .
Page 175 - Section 7.8.1, paragraph 2, line 3: 'Bake' should be replaced by 'Blake'.
Page 204 - Paragraph 2, line 1: 'give extended ... ' should be replaced by 'give an extended ... '; line 2:

'CONDESATION' should be replaced by 'CONDENSATION'.
Page 206 - Paragraph 2, line 1: 'CONDESATION' should be replaced by 'CONDENSATION'.
Page 210 - Section 8.4.3, paragraph 1, line 5: 'AH' should be replaced by 'all'; line 9: 'Where' replaced by

'where'.
Page 211 - Paragraph 1, line 1: 'Where' should be replaced by 'Here'; line 3: 'm' should be replaced by
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Page 215 - Paragraph 1, line 5: 'CONDESATION' should be replaced by 'CONDENSATION'. Section

8.5.3, line 1: 'condition' should be replaced by 'conditions'.
Page 216 - Paragraph 2, line 2: 'test' should be replaced by 'tests'.
Page 217 - Paragraph 1, line 1: 'CONSENSATION' should be replaced by 'CONDENSATION'.
Page 218 - Paragraph 3, line 2: 'CONDENATION' should be replaced by 'CONDENSATION'.
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Summary

pi1tote
W

S-'ftV.

This thesis focuses on developing efficient point feature and contour tracking algorithms to track

objects. A particular emphasis is on the incorporation of multiple motion models within the tracking

framework. The algorithms presented are capable of automatically switching motion models in order

to track an object of interest within a sequence of images. The thesis qualitatively demonstrates the

promising performance of the trackers developed on a variety of image sequences. We also provide

empirical and theoretical techniques to quantitatively assess and support the performance of the

tracking algorithms.
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The first part of the project deals with formulating an efficient 'point feature' tracking algorithm. We

initially carry out an empirical study on the selection of feature point detectors for point feature

tracking applications. Four well-known corner detectors are considered and their performance is

assessed against corner properties such as 'corner localization' and 'corner stability'.

We then select two corner detectors: those that were considered most suitable for point feature

tracking based upon the earlier work in the thesis. The corner detectors were employed as part of a

model switching point feature tracking algorithm that we proposed. The algorithm combines the

Multiple Hypothesis Tracking technique with an Interacting Multiple Model filtering framework. The

resulting algorithm {named as MHT-IMM algorithm) is shown to provide promising results:

including the ability to track point (corner) features that move with variable motion. As a further

study, we address the question of how to assess the performance of tracking algorithms. We attempt

to formulate closed-formed solutions and empirical evaluation methods for predicting a feature

tracker's performance when employing different motion models. The evaluation is considered under

varied levels of clutter and noise.

§§
I
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The second part of the thesis focuses on formulating an efficient 'contour tracking" algorithm.

Initially an attempt is made to extend the MHT based algorithm for contour tracking of rigid objects.

The MHT technique is applied in 2 stages. First, it is applied to group segments of edges that belong

to the same object (object identification stage), and this stage is followed by temporal tracking of'key

points' from the object of interest using the MHT-IMM tracker (object tracking stage). This tracker

XIV
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presents several limitations and cannot be easily extended to track complex deformable objects. To

overcome the limitations of this tracker, a cubic B-spline based tracking algorithm is formulated to

track deformable object contours. Modified versions of Blake et al. and Hogg et al.'s trackers are

combined and then coupled with the IMM algorithm to track deformable objects. The new tracker is

capable of automatically switching motion models to track object contours that move with variable

motion. The resulting algorithm (named the CONT-IMM tracker) is shown to provide impressive

results.

Finally, the CONT-IMM algorithm's performance is quantitatively assessed against the Condensation

algorithm of Blake and Isard and the Pedestrian tracker of Hogg and Baumberg. The results have

shown that the CONT-IMM tracker is comparable to the other 2 trackers in terms of the quality of

results, and in some cases outperforms the other 2 algorithms.
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Chapter 1

Introduction

The study of visual tracking has become a vital area of research within the computer vision and image ;,

processing community within the last decade. One reason for the increased attention towards visual (,

motion study is because of the falling cost of computational power and the availability of sufficient ri

storage to process large amounts of image data (image sequences). Another reason is the development of <

powerful algorithms that can be implemented in real or near-real time on relatively modest computers.
o

For a human, brain, identifying and tracking an object (static or dynamic) over a period of time is a !

relatively simple task. For a machine vision system, such a seemingly simple problem is a highly
h

challenging task. The basic problem that needs solving in visual tracking is the correspondence of objects [
I

over a number of image frames (the object can possibly changing shape and position over time). A '•

sequence of images collected at or near video rate typically does not change radically from frame to 1,

frame, and this redundancy of information over multiple images can be extremely helpful in \
?

disambiguating the visual input, whether to track individual objects or to perform a more general motion \
i,

segmentation. I

1.1 Visual Tracking \

A track is defined in terms of the clustering (association) of a set of measurements that originate with the

same target, and of the estimation of that target's state trajectory:

t
"A track is a state trajectory estimated from a set of measurements that have been associated with the '

t

same target" — Bar-Shalom and Fortmann [6]. \
i

i
In visual tracking the targets are objects in the scene, and the measurements are of the 2D image positions I
corresponding to 3D points on those objects. Visual tracking solves for the correspondence between I
measurements made in the images of a motion sequence. The track is a description of the relative motion



of the object over time, and this allows image features which originate from the same physical point on

the object to be associated.

The importance of tracking, as a visual competence, is illustrated by many potential applications

(described in chapter 2). In most cases, by solving the correspondence problem over a number of frames.

Tracking also allows high level abstraction from visual data, by recovering the trajectory of an object over

time. More recently computer vision researchers have focused their attention in areas such as the

monitoring and interpretation of scenes (including reconstruction of scenes), creating artificial

environments, learning human-computer interaction, and learning behavioral patterns of objects within a

scene using visual tracking techniques. Some details of these applications are discussed in the next

chapter.

A trivial form of visual tracking is based on the assumption that the target moves only a small distance

between each frame of the image sequence. This assumption results in a simple scheme whereby in each

image a search is made in the vicinity of the target's location in the previous image. The small search

region means that this technique is fast, however it will fail if the target velocity becomes too large.

For larger target velocities, some form of prediction is required. This is achieved by introducing a model

of the dynamics of the target. The tracking task becomes that of finding the model which best fits the

target's trajectory. For a full treatment of tracking, the noise properties of the measurements must also be

taken into account. High confidence measurements must be given greater weight than low confidence,

noisy measurements. But it is not enough to blindly include all measurements in the estimation of the

feature trajectory. Where measurements have sonc discriminating attributes, such as orientation in the

case of curvature segments, these may be used to decide which measurements originate from which

target. This is known as data association. For the single target case, data association is simply deciding

when to reject observations that are unlikely to originate from the target. For a multiple target case, the

problem becomes somewhat complicated, and methods such as the multiple hypothesis approach have to

be considered to solve the data association problem for each of the targets considered.

1.2 Motivation for this Research

Despite the vast wealth of visual tracking material that is available in the literature, there is a lack of

knowledge concerning the performances of many tracking algorithms. Most of the algorithms published

have been reported to be successful for a narrow band of applications. How those algorithms perform



under different environments and how effective they are for a variety of different applications remains an

open question. The literature survey carried out at the beginning of the project revealed that very little

theoretical and empirical work has been done in the area of performance analysis and the assessment of

visual tracking algorithms.

Another area that is not sufficiently addressed in the literature is that of tracking objects that move with

multiple motions. A fundamental assumption of most tracking algorithms is that the object moves with a

constant motion (eg: constant velocity). Such an assumption may be computationally efficient, but cannot

cope with tracking objects that move with multiple motions. An example test case is to track a moving

pedestrian who might be walking, running or even standing still. In this example, a single model based

tracker (such as a single model Kalman filter) will invariably fail to track the person completely.

While visual tracking is a relatively new area of research for the computer vision community, the target

tracking researchers (mainly control arid signal processing scientists) have studied tracking in general to a

large extent. Early contributions in tracking date back as far as the 1950's and 60's. Many powerful

tracking algorithms developed in particular within the last 3 decades have not received sufficient attention

within the computer vision researchers. This is mainly because of the lack of computational power to run

vision algorithms in real or near real time. Since current day machines are able to process large amount of

data in fast times and can store large amounts of data, a review of some of these algorithm for vision

related applications seemed worthwhile.

This thesis address the issues mentioned above. We study visual tracking in two parts. The first part deals

with the study of tracking a single pixel (point features or corners) through an image sequence, while the

second part deals with temporal tracking of outlines of objects (contours of rigid and deformable objects).

Initially we attempt to formulate a point-feature tracking algorithm that is capable of switching motion

models according to the object's motion (a multiple motion model tracker). In the process we also

formulate performance prediction techniques that can be applied to a tracker that employs different

motion models. We assess the tracker's performance under varied clutter and noise, and where possible,

we have also assessed the tracker's performance against other established point feature trackers. The latter

part of the thesis tries to address tracking contours of objects that move with variable motion (multiple

motion). Again, a motion-model switching tracker is introduced which can adapt to multiple motions of

deformable objects. Finally, we provide empirical evaluation methods to quantitatively assess the

performance of a contour tracker. We have also compared the performance of our tracker with other

established contour trackers.



In focussing on the model switching aspect of tracking algorithms (which is inadequately addressed in the

current literature), we introduce recursive tracking algorithms (previously, these were mainly reported in

the control literature) that can perform model switching operation very efficiently. We combine some of

these algorithms with computer vision techniques to formulate robust visual trackers. The visual tracking

algorithms developed in this thesis have been applied on artificial and real image sequences. The trackers

have been demonstrated to perform well with promising results.

1.3 Thesis Overview

Chapter 1 — Introduction - This chapter gives a general introduction to visual tracking and the

motivation for this research. It also provides the thesis overview with the contributions made towards

visual tracking. The chapter concludes by giving a list of published papers that arose from this research.

Chapter 2 - Visual Tracking: A Survey - Provides a literature survey on existing visual tracking

techniques. We provide brief description of well known research papers in the area of optical flow

tracking, point feature tracking, region tracking, curve tracking, model based tracking, and tracking

algorithms that are employed in computer vision research. Techniques that closely match our work are

elaborated more in the relevant chapters of this thesis.

Chapter 3 - Assessing the Performance of Corner Detectors for Point Feature Tracking — The

chapter provides performance assessment methods for the suitability of corner extractors for tracking

point (corner) features in long image sequences. We propose empirical evaluation methods based on

simple statistical performance test to assess corner properties such 'corner localization' and 'corner

stability' which are crucial for point feature tracking [179]. The assessment tests are conducted using

static image sequences (without moving objects) and assessed at varied noise levels.

Chapter 4 - Point Feature Tracking with Automatic Motion Model Switching - In this chapter we

propose a feature tracker that can track features moving with multiple motions. The corner features are

extracted using detectors that were deemed suitable for tracking in long sequences (results from chapter 3

is used). The point feature tracker that we propose is based on the combination of the Multiple Hypothesis

Tracking (MHT) algorithm [58, 152] and the Interacting Multiple Model (IMM) algorithm [5, 28], hence

the tracker is named the MHT-IMM algorithm. We demonstrate the model switching ability of the tracker



by employing image sequences which contain objects that move with variable motion. Qualitative and

quantitative results are presented to support the promising performance of the tracker [180, 181,185].

Chapter 5 - Performance Prediction Analysis of a Point Feature Tracker based on Different

Motion Models - The main focus of this chapter is an attempt to formulate theoretical closed form

solutions for predicting the performance of a feature point tracker under clutter. Formulations are

developed for 3 motion models (a constant position, a constant velocity and a constant acceleration

model) for predicting the correct data association at the 'next time-step', assuming that up to the 'current

time-step' data association has been correct. We also make an attempt to provide closed form solutions

for a tracker when recovering from a false match and predicting a correct match at the 'next time-step'

(based on each of the 3 motion modeb in turn). Theoretical and empirical formulations are evaluated

against Monte-Carlo simulations using synthetic and real image sequences. We show that the theoretical

performance predictions are a credible representation for experimental performance [183, 186]. The

performance prediction of a tracker is measured using 2 quantities: The 'track-purity' and 'track-life'.

Finally the MHT-1MM tracker is assessed against an established tracker (the KLT tracker) under varied

noise levels to evaluate the robustness of the tracker.

Chapter 6 - Extension of a Point Feature Tracker for Rigid Object Tracking - The primary

objective of this chapter is to present a rigid object tracker based on the combination of a point feature

tracking algorithm [180] and a contour segmentation algorithm [57]. Both algorithms employed are based

on the MHT principle [58]. We have demonstrated the object tracker's ability by tracking simple rigid

objects using real image sequences [182]. The primary contribution of this chapter is to apply the MHT

technique for object tracking (as opposed to tracking point features only).

Chapter 7 - Contour Tracking with Automatic Motion Model Switching - This chapter presents a

deformable contour-tracking algorithm for objects that move with multiple motion. The roots of the

tracker are based on Blake et al.'s [25, 24] and Hogg et al.'s [11] tracking algorithms. A decomposed

shape space is tracked using the IMM algorithm (similar to that reported in Chapter 4) to achieve multiple

model switching. The resulting tracking algorithm is named the CONT-1MM tracker. We have

demonstrated the ability of the tracker to track deformable objects (including those that move with

multiple motions) employing a variety of image sequences with promising results [184].

Chapter 8 - Performance Measures for Assessing Contour Trackers - In this chapter the performance

of the CONT-IMM tracker is assessed against the Condensation algorithm of Blake and Isard [104] and



the Pedestrian tracker of Baumberg and Hogg [11, 10]. The chapter also provides empirical performance

measures to quantitatively assess the output of the trackers. We have shown that CONT-IMM

outperforms the other two trackers in terms of quality of results achieved for the experiments carried out.

Chapter 9 - Conclusion — Finally this chapter provides a general conclusion for the research undertaken.

We provide a general discussion on the merits and demerits of the algorithms developed, and where

possible propose methods for improvement. We also discuss possible avenues for future research

directions and possible approaches that can be taken to accomplish some of the tasks.
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Chapter 2

Visual Tracking: A Literature Survey

2.1 Introduction

The literature on tracking tends to be split roughly into two broad categories - methods which track by

looking at flows in the image and methods which track by matching a model of the object being

tracked to part of the image. The flow based methods generally assume little or no prior knowledge of

the object being tracked, and tend to work by grouping together sets of small, low level image features

(single pixels, corners, etc., or even small regions) with consistent motion together. By following

these groupings over time they achieve tracking. Model-based methods hypothesize a model of either

the target's shape, expected deformation, motion, intensity characteristics or other distinguishing

attributes. The tracking process is reduced to finding the parameters which make the model fit the

video i/nage best (particularly of interest to us is tracking contours of rigid and deformable objects

that pert tin to a model of interest).

2.2 Importance of Visual Tracking

Tracking has been studied extensively in the computer vision literature, both because of its intrinsic

interest and because of the large number of applications. For example, tracking human movement for

security applications [11,154, 159, 76]; tracking of human body organs such as the left-ventricle,

lungs etc. for medical diagnostics [1, 92, 94, 108]; tracking head and faces for people identification

[16, 122, 123, 195, 202]; tracking components in production line [51]; and tracking applications in

agriculture [155]. Another area of tracking includes that of autonomous robots being able to follow

objects in their environment [153]. One commonly studied special case of this concerns autonomous

guided vehicles for driving on roads [129], which must track the features of the road [66] and also

other moving vehicles [172, 173, 157, 72]. Static systems may also be used to track vehicles, either to

collect traffic data from highway scenes [72, 117, 118] or to analyse complex environments such as

airports [3,175,69]. Tracking may also be used in robot arm applications to capture multiple views of

an object from a moving camera and thus compute trajectories for exploring free-space, or to select an

optimal grasp to pick up the object [27].



There is increasing interest in using computer vision for lip tracking to aid speech recognition [34,

114] and reliable hand tracking for a variety of applications [91] such as sign interpretation. Various

other systems have been proposed for both tracking [150, 151, 25] and gesture recognition [30, 29,

20]. Hand gestures are a special case of the developing field of "perception of action'" which attempts

to use tracking information to infer knowledge about a scene. This has roots in the tracking of people

[95, 10, 11, 13, 14, 20, 32, 83, 33] for surveillance applications, as well as creating artificial

environments [100, 101, 201] which respond to human actions, for example creating an interactive

playroom for children [101]. There is much current interest in learning to classify the output of such

trackers into behaviours, for example [30, 110, 29]. General techniques for tracking, not tied to any

particular application, include the use of optic-flow information, for example [96, 111, 37], rigid

three-dimensional models [84, 127] and contour outlines [113, 50, 51, 24]. Other successful tracking

methodologies which do not use an explicit object model include the Hausdorff-distance tracker [98],

and systems which track point features in an image stream and use geometrical rigid-body constraints

to group sets of features into clusters belonging to the same object [192, 193]. More details of some of

these techniques are given in the sections which follow.

We have informally classified our visual tracking survey into 5 main sections. They are: optical flow

tracking (general tracking of light flow without following any particular object of interest), point

feature tracking (tracking distinguished points from an object or a scene, such as corner points),

region tracking (tracking a region that contain objects of interest), curve/contour tracking (tracking the

silhouette of rigid and deformable objects), and model based tracking (tracking an object whose

characteristics are known prior to tracking). In the following sections we shall provide examples of

each of the tracking methods mentioned.

2.3 Optic Flow Tracking

Optic-flow has long been used (Horn and Schunk [96], Black and Anandan [17], Ju et al. [111]) as a

way both to estimate dense motion fields over the entire visible region of an image sequence

(e.g.Black and Anandan [17], Ju et al [111]), and to segment areas of consistent flow into discrete

objects (e.g. Black and Jepson [18], Weber and Malik [198]). In order to solve the optic-flow

constraint equation it is necessary to either apply regularisation, assuming change in motion is smooth

over an image region, or parameterise the motion in an entire region using a low-dimensional model,

for example an affine model. Black et al. have developed a series of robust methods for determining

optic flow ([17], [109], [18], [111]). The "skin and bones" model Ju et al. [111] combines many of the

techniques in their earlier papers to determine a dense motion field as a tiling of the image. Each tile

may contain multiple affine motions, and these motions are robustly regularised across adjoining tiles

to provide smooth motion information even in regions with little texture. Modern developments of
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correlation tracking employ similar techniques to parameterised optic-flow estimation. For example

the framework adopted by Hager and Toyoma [81] for correlation tracking of a rectangular image

patch undergoing affine deformations is closely related to parameterised optic-flow based methods;

where optic-flow methods estimate affine parameters of deformation between consecutive images, the

correlation tracker estimates parameters relative to an initial template image. A very efficient

algorithm is presented in [81] which transfers most of the computation to an off-line processing stage

and allows affine correlation tracking to proceed in real time.

Some well-known papers in the literature are surveyed in the following paragraphs.

Most approaches for estimating optical flow assume that, within a finite image region, only a single

motion is present. This single motion assumption is violated in common situations involving

transparency, depth discontinuities, independently moving objects, shadows, and specular reflections.

To robustly estimate optical flow, the single motion assumption must be relaxed. Black and Anandan

[17] describe a framework based on robust estimation that addresses violations of the brightness

constancy and spatial smoothness assumptions caused by multiple motions. They show how the

robust estimation framework can be applied to standard formulations of the optical flow problem thus

reducing their sensitivity to violations of their underlying assumptions. The approach has been applied

to three standard techniques for recovering optical flow: area-based regression, correlation, and

regularization with motion discontinuities. This work focuses on the recovery of multiple parametric

motion models within a region as well as the recovery of piecewise-smooth flow fields and provides

examples with natural and synthetic image sequences.

Bab-Hadiashar and Suter [2] present a robust optical flow technique. The problem is formulated as a

set of over determined simultaneous Linear equations. The authors introduce and study 2 new robust

optical flow methods. The first technique is based on using the Total Median of Squares to detect the

outliers. Then the inlier group is solved using the least squares technique. The second method

employs a new robust statistical method named the Least Median of Squares Orthogonal Distances to

identify the outliers and then uses total least squares to solve the optical flow problem. The

performances of the methods are studied on real and synthetic data. The authors indicate that the

results obtained outperform many of the other techniques published in the literature.

Weber and Malik [198] address the problem of segmenting images and then building three-

dimensional models of the objects in the image. They attempt to do this by using optic flow to provide

a dense displacement map for points in a scene (a mapping of the motion of individual points over

two or more frames). Clusters of points which share common fundamental matrices are grouped

together into individual objects. The inverse depth of these points is then recovered from their

11



displacements and the fundamental matrix by using an affine camera approximation. This gives a 3D

surface map of the object.

Yacoob and Davis [202] provide an approach for learning and estimating temporal flow models from

image sequences. The temporal flow models are represented as a set of orthogonal temporal flow

bases that are learned using principal component analysis of instantaneous flow measurements.

Spatial constraints on the temporal flow are also developed for modelling the motion of regions in

rigid and coordinated motion. The performance of these models is demonstrated on several long

image sequences of rigid and articulated bodies of motion.

Black and Yacoob [20, 21] describe a system that explores the use of local parameterized models of

image motion for recovering and recognizing the non-rigid and articulated motion of human faces.

Parametric flow models (for example affine) are used for estimating motion in rigid scenes. They

observe that within local regions in space and time, such models not only accurately model non-rigid

facial motions but also provide a concise description of the motion in terms of a small number of

parameters. These parameters are intuitively related to the motion of facial features during facial

expressions and it is shown how expressions such as anger, happiness, surprise, fear, disgust, and

sadness can be recognized from the local parametric motions in the presence of significant head

motion. The motion tracking and expression recognition approach was reported to perform with high

accuracy in extensive laboratory experiments involving 40 subjects as well as in television and movie

sequences.

Black et. al. [18] also describe an approach named "Eigen Tracking" for tracking rigid and articulated

objects using a view-based representation. The approach builds on and extends work on eigenspace

representations, robust estimation techniques, and parameterized optical flow estimation. First, it is

noted that the least-squares image reconstruction of standard eigenspace techniques has a number of

problems and Black et. al. reformulate the reconstruction problem as one of robust estimation.

Second, a definition for a "subspace constancy assumption" is made that allows to exploit techniques

for parameterized optical flow estimation to solve for both, the view of an object and the affine

transformation between the eigenspace and the image. To account for large affine transformations

between the eigenspace and the image, Black et. al. define a multi-scale eigenspace representation and

a coarse-to-fine matching strategy. Finally, these techniques are used to track objects over long image

sequences in which the objects simultaneously undergo both affine image motions and changes of

view. In particular this "EigenTracking" technique was used to track and recognize the gestures of a

moving hand.
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Jepson and Black [109] provide another approach to dealing with issues such as the treatment of out-

liers in component velocity measurements and the modelling of multiple motions within a patch

which "arise from occlusion boundaries or transparency. The algorithm is based on the use of a

probabilistic mixture model to explicitly represent multiple motions within a patch. The authors use a

simple extension of the EM algorithm to compute a maximum likelihood estimate for the various

motion parameters. The approach is reported to be computationally efficient and claims to provide

robust estimates of the optical flow values in the presence of out-liers and multiple motions.

Beauchemin and Barron [15] investigated the computation of optical flow in a survey they conducted.

Widely known methods for estimating optical flow are classified and examined by scrutinising the

hypothesis and assumptions they use. The survey concludes with a discussion of current research

issues. In another paper, Barron et al. [4] also present a comprehensive performance analysis of

optical flow techniques. For a common set of real and synthetic image sequence, they report the

results of a number of regularly cited optic flow techniques, including instances of differential,

matching, energy-based, and phase-based methods. Their comparisons are primarily empirical and

concentrate, on the accuracy, reliability, and density of velocity measurements. They show that

performance can differ significantly among the techniques they had considered.

2.4 Point Feature Tracking

Point features are distinctive image points corresponding to objective 3D scene elements that are in

most instances accurately locatable and recur in successive images, which makes them explicitly

trackable over time. The term "corners" is used to refer to point features that are loci of two-

dimensional intensity change, i.e. 'second-order features'. This includes points of occlusion (e.g. T, Y

and X junctions), structural discontinuities (e.g. L junctions) and various curvature maxima (e.g.

texture flecks or surface markings). Corners impose more constraint on the motion parameters than

edges, therefore the full optic flow field is recoverable at corner locations [168]. Corners are also

often more abundant than straight edges in the natural world making them ideal features to track in an

indoor and outdoor environment. To find further details on various corner detectors, the reader is

referred to [140, 134]. However, in this section we are interested in providing only a brief survey on

point feature tracking methods reported in the literature.

One of the earliest image registration technique was presented by Lucas and Kanade [128], that makes

use of the spatial intensity gradient of the images to find a good match using a type of Newton-

Ralphson iteration. The technique is fast, as it examines far fewer potential matches between the

images than other existing techniques. Furthermore, this registration technique can be generalised to
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handle rotation, scaling and shearing. The authors also showed how the technique could be adapted

for use in a stereo vision system.

No feature-based vision system can work unless good features can be identified and tracked from

frame to frame. Although the problem of tracking itself is addressed to a large extent, selecting

features that can be tracked well and correspond to physical points in the world is still hard. A feature

selection criterion was presented by Shi and Tomasi in [171], that is optimal by construction because

it is based on how the tracker works. They also present a feature monitoring method that can detect

occlusions, dis-occlusions, and features that do not correspond to points in the world. The methods

provided are based on a new tracking algorithm that extends previous Newton-Raphson style search

methods to work under affine image transformations. A further improvement of this algorithm was

proposed by Tommasini et al. [191] which is reported to improve the quality of the results over Shi

and Tomasi's method.

Broida and Chellappa [36] proposed a method for estimating the kinematics and structure of a rigid

object from a sequence of monocular images. The problem they consider involves the use of a

sequence of noisy monocular images of a three-dimensional moving object to estimate both its

structure and kinematics. The object is assumed to be rigid, and its motion is assumed to be smooth. A

set of object match points is assumed to be available, consisting of fixed features on the object, the

image plane coordinates of which have been extracted from successive images in the sequence.

Structure is defined as the 3-D positions of these object feature points, relative to each other.

Rotational motion occurs about the origin of an object-centered coordinate system, while translational

motion is that of the origin of this coordinate system. Impressive results using real imagery is

presented. Other noteworthy contributions by Chellappa et al. in the area of point feature tracking can

be found in [38,203,207].

Kang, Szeliski, and Shum [112] present a feature tracker for long image sequences based on

simultaneously estimating the motions and deformations of a collection of adjacent image patches. By

sharing common corner nodes, the patches achieve greater stability than independent patch trackers.

Modelling full bilinear deformations enables tracking in sequences that have large non-translational

motions and/or foreshortening effects. They demonstrate the superiority of their results with respect to

previous algorithms. One attraction of the system is that the feature detection and tracking procedures

complement each other, thus providing an efficient tracking algorithm.

Gennery [75] describe a method for tracking a known 3D object as it moves with 6 degrees of

freedom. The method uses the predicted position of known features on the object to find the features

in images from one or more cameras, then the system measures the position of the features in the
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images, and uses these measurements to update the estimates of position, orientation, linear velocity,

and angular velocity of the object model. The features usually used are brightness edges that

correspond to markings or the edges of solid objects, although point features can also be used. The

solution for object position and orientation is a weighted least squares adjustment that includes

filtering over time, which reduces the effects of errors, ailows extrapolation over times of missing

data, and allows the use of stereo information from multiple camera images that are not coincident in

time. The filtering action is derived so as to be optimum if the acceleration is random. The filtering is

equivalent to a Kalman filter, but for efficiency it is formulated differently in order to take advantage

of the dimensionality of the observations and the state vector which occur in this problem. The

method can track accurately with arbitrarily large velocities, as long as the angular acceleration is

small. Results are presented showing the successful tracking of partially obscured objects with clutter.

Chetverikov and Verestoy [44] present a point feature tracking algorithm that was designed to

efficiently track and resolve features that temporally disappear and appear from the field of view.

Correspondences between moving points are established in a competitive linking process that

develops as the trajectory grows. Appearing and disappearing points are treated in a natural way as the

points that do not link. The algorithm also addresses the issue of handling incomplete trajectories,

especially when the number of points and their speeds are large, and trajectory ambiguities are

frequent.

Sethi and Jain [167] formulate the point feature correspondence (between frames) problem as an

optimisation problem and propose an iterative algorithm to find trajectories of points in a monocular

image sequence. A modified form of this algorithm is also studied to handle occlusion. Results have

been reported on a variety of scenes.

A way to recover a sparse image flow field, which doesn't rely on the motion constraint assumptions

is to track the motion of small distinct image features from frame to frame. One such image feature

often used is the corner, as this enables both components of the image flow field to be locally

determined. In the ASSET-2 system, Smith segments and tracks vehicles in real-time [172, 173] using

matched corners to obtain the optic-low field. Sets of points with similar motion are then clustered

together into individual objects. Following these groupings over time enables the relative motion of

objects in the real world to be inferred.

Reid and Murray [153] also track objects by following the motion of corners. Constant velocity

Kalman filters are used to track individual corners between frames. An interesting addition to the

usual corner tracking is that sets of corners matched over three frames are used to create an affine

coordinate basis and a fixation point located in this basis. The bases can be used to locate the fixation

15



point in a new frame, even if no actual corner or feature exists at that point - it is only necessary to

match enough corners to re-create the basis. Different sets of points may be used to form the basis

used to" locate the fixation point in each frame. This allows corners to drop in and out (a well-known

property of corner detectors) without affecting the ability to localize the fixation point on the target.

Tracking line segments as opposed to tracking point features have also been considered by some

authors. Deriche and Faugeras [65] propose a line tracking system based on a prediction and matching

strategy, while Mirmehdi and Ellis [133] propose a parallel approach to tracking edge segments in

dynamic scenes using a modified version of Kalman filter.

2.5 Region Tracking

Region tracking in general refers to an area being tracked in the image plane. The area could contain

one or more objects of interest. One advantage of such techniques is that one does not have to

consider the shape or characteristics of the object being tracked. Another advantage is to save

computational cost. In the following sections we briefly discuss some well known region tracking

methods that have been presented in the literature.

Hager and Belhumeur [80] present an efficient region tracking algorithm which uses parametric

models of geometry and illumination. They first develop a computationally efficient method for

handling the geometric distortions produced by changes in pose. Then they combine geometry and

illumination into an algorithm that tracks large image regions using no more computation than would

be required to track with no accommodation for illumination changes. Finally, they augment these

methods with techniques from robust statistics and treat occluded regions on the object as statistical

outliers. Experimental results are given to demonstrate the effectiveness of their methods.

Salama and Abbot [164] describe an approach to visual tracking for monocular and binocular image

sequences. The method combines Kalman type prediction with steepest descent search for

correspondences, using 2D affine mapping between images. The approach differs from many recent

tracking systems, which emphasize the recovery of 3D motion structure of objects in the scene. The

authors argue that 2D area based matching is sufficient in many situations of interest. Results are

provided to support their argument.

Bascle, Bouthemy, Deriche, and Meyer [8, 132] describe an approach to track complex primitives

along image sequences — integrating snake based contour tracking and region based motion analysis.

First, a snake tracks the region outline and performs segmentation. Then the motion of the extracted

region is estimated by a dense analysis of the apparent motion over the region, using spatio-temporal
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image gradients. Finally, this motion measurement is filtered to predict the region location in the next

frame, and thus to guide (initialize) the tracking snake in the next frame. The two approaches

collaborate and exchange information to overcome the limitations of each of them. The method is

illustrated by experimental results on real images. Extensions and further improvements of this work

can be found in [9].

Cohen and Medioni [46] address the problem of detecting and tracking of moving objects in a video

stream obtained from a moving airborne platform. The method proposed relies on a graph

representation of moving objects, which enables to derive and maintain a dynamic template of each

moving obj'ect by enforcing their temporal coherence. The template with the graph representation

provides characterisation of object trajectories as an optimal path in a graph. The tracker has

mechanisms to deal with partial occlusions, stop and go motion in very challenging situations. The

tracking algorithm has been applied to a number of real image sequences with promising results.

Sclaroff and Isidoro [165] present a new region-based approach to non-rigid motion tracking. Shape is

defined in terms of a deformable triangular mesh that captures object shape plus a color texture map

that captures object appearance. Photometric variations are also modelled. Non-rigid shape

registration and motion tracking are achieved by posing the problem as an energy-based, robust

minimization procedure. The approach provides robustness to occlusions, wrinkles, shadows, and

specular highlights. The formulation is tailored to take advantage of texture mapping hardware

available in many workstations, PC's, and game consoles. This enables non-rigid tracking at speeds

approaching video rate.

Gil et. al. [77] provide a vehicle tracking method by combining estimates provided by multiple motion

models. Two tracking systems, based on the bounding-box and on the 2D pattern of the targets,

provide individual motion parameter estimates to the combined method, which in turn produces a

global estimate. The algorithm is applied to image sequences that are taken under varying weather and

road conditions. Performances of the local and global estimates of the algorithm are also analyzed. In

another line of work [78], the authors also provide a feature selection criterion that is efficiently

utilized for the tracking of vehicles.

Shi and Malik [170] propose a motion segmentation algorithm that aims to break a scene into its most

prominent moving groups. A weighted graph is constructed on the image sequence by connecting

pixels that are in the spatio-temporal neighbourhood of each other. At each pixel they define motion

profile vectors which capture the probability distribution of the image velocity. The distance between

motion profiles is used to assign a weight on the graph edges. Using normalized cuts they find the

most salient partitions of the spatio-temporal graph formed by the image sequence. For segmenting
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long image sequences, they have developed a recursive update procedure that incorporates knowledge

of segmentation in previous frames for efficiently finding the group correspondence in the new frame.

Bremond and Thonnat [35] propose a method of tracking multiple non-rigid objects in a cluttered

scene. First, the characteristics of non-rigid objects are considered. To cope with object

characteristics, a tracked target is defined as a moving region tracked individually or as a group of

moving regions tracked globally. Then they show how to compute the trajectory of a target and the

correspondences between known targets and moving regions newly detected. In the case of an

ambiguous correspondence, a compound track is defined to freeze the associations between targets

and moving regions until more accurate information is available. Promising results are provided.

Huwer and Niemann [99] provide a tracking system based on projection-histograms. They have

observed that tracking with projection histograms provided remarkable results compared with

standard correlation methods. In their work, a new template-based method relying on projection

histograms (RPH) is described and compared with two commonly known template-based methods

namely the. normalized cross-correlation (NCC) and displaced-frame-distance (DFD) methods. The

input to the system consists of live or recorded video data where filter-based pre-processing can be

applied before tracking in order to enhance features such as edges, textures etc. A region of interest

(ROI) is taken as a template for tracking. In subsequent images tracking exploits a Kalman-filtered

local search in order to renew correspondence between the object template and the new object

location. Comparative tests are demonstrated with real-life image sequences taken in underground

stations.

2.6 Curve (Contour) tracking

Curve or contour tracking is the tracking of outlines of objects. The outlines (silhouettes) can be that

of a rigid object or a deformable object. Within the last two decades curve tracking has become one of

the main areas of research within the image processing and computer vision community. We describe

some of the methods that have been published in the literature.

The snake of Kass et al. [113] is the forerunner to a whole host of work on physics-based tracking. A

snake is a flexible contour with certain internal stiffness properties. It tracks by being 'attracted' to

various image features. The scenario is formulated in terms of energy: the image is abstracted as an

energy landscape, with desirable features (usually edges) having low energy. A snake, when placed on

such a landscape, locks onto features by sliding down into these energy minima whilst simultaneously

minimising its internal potential energy. In practical terms, the energy gradient is evaluated (via image

analysis) at a set of control points along the snake (the image first undergoes a Gaussian blur in order
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to widen the energy wells in the landscape) and the snake is deformed iteratively until it reaches a

stable position. The whole process can alternatively be thought of in terms of force-based tracking:

external gravity-like forces pull the snake downhill in the energy landscape and internal forces

maintain its smoothness. This is a local optimisation process and so extends naturally from object

location to object tracking. In addition, the physical properties of the snake can be extended to include

momentum, thus providing some form of temporal prediction. Terzopoulos and Szeliski reformulate

the snake dynamics within a probabilistic framework and introduce the Kalman snake [176] (based on

a Kalman filter) which, as well as predicting the snake's position, can provide confidence limits for

such predictions.

Another successful curve tracker is the active contour of Blake, Curwen et al [61, 27]. They show

how snake technology can be used with B-spline contours, and also introduce a more efficient method

for feature search [163], whereby image edges are sought along contour normals using a

divide-and-conquer strategy. This avoids the need for the Gaussian blur and 2D gradient calculations.

In further work [22, 23, 60], Blake et al also combine their approach with the Kalman Filter, which

affords several advantages. One benefit is that the spatial search scale is controlled automatically

according to certainty; if no feature is found, the search scale is increased. Also, the temporal scale

(i.e. memory) is adaptive; inertia is effectively reduced when features are lost, allowing fast recovery.

When features are found, the memory is extended to exploit motion coherence.

Blake, Isard and Reynard [25,24, 102] went on to develop the adaptive contour from [22,23] into one

able to learn an appropriate dynamical model (by a least squares analysis) and using the six

parameters necessary to specify an affine deformation as its state. They also generalized the tracker so

that key-frames (prototypical non-affine deformations) could be incorporated into the tracker. The

reduction in the size of the state space allowed the tracker to come off specialized hardware and run at

frame rate on ordinary desktop workstations.

In another application, Ayache et al [1] use a snake based approach in order to track the mitral valve

and left auricle of a heart in ultrasound images. These images are typically very noisy, and so Ayache

smoothes them both temporally and spatially. A finite element contour model is used to track the

global structures, and additional shape constraints used to localize specific points in the structure.

Among other medical tracking applications, the contribution by Jacob et al. [108] on tracking the left

ventricle in echocardiographic sequences is noteworthy.

Terzopoulos and Metaxas [177] propose an extension of Snakes to 3D objects. In their work they first

review the physically motivated formulation of snake models. They then propose a probabilistic

interpretation of the approach that leads to optimal estimation as a means of extracting reliable
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information from noisy observations. For the purposes of real-time tracking, estimation proceeds

sequentially as new observations become available. They show how to construct continuous Kalman

filters that incorporate the dynamic snake into their system and prior models. The promising

techniques of Kalman snakes for image-based tracking of rigid and, especially, non-rigid objects are

forged to create a link between the physical and probabilistic modelling approaches to active vision.

Terzopoulos and Metaxas [178] considered the use of 3D deformable models to track non-rigid and

articulated objects, such as human bodies, moving in three-dimensional space. They describe a class

of dynamic modelling primitives that can deform locally and globally as they move freely in space.

Although the primitives are useful for non-rigid motion tracking per se, the authors enhance their

capabilities by applying simulated physical constraints between them. These constraints enable them

to automatically construct dynamic models of articulated objects with deformable parts. Differential

equations of motion derived using Lagrangian dynamics make the models responsive to applied forces

derived from visual data, such as images that are sparse, noisy 3D observations. They employ these

differential equations as the system model of a recursive non-rigid motion estimator. The application

described employs a sophisticated model of non-rigid dynamics. The estimator synthesizes non-rigid

motions using the system model. It expresses the discrepancy between the observations and the

estimated model state as generalised forces that formally account for uncertainty in the observations.

A Riccati procedure updates a covariance matrix that further transforms the forces due to the current

observations in accordance with the system dynamics and the prior observation history.

Cootes and Taylor describe Active Shape Models (ASMs or 'Smart Snakes') [51, 47, 50]: the

application to tracking of the Point Distribution Model (PDM) [93]. The approach is similar to Lowe's

(discussed in section 2.7) in that image measurements are projected into the model parameter space

and parameter errors are then minimised. However, in this case the minimisation is linear

least-squares, which has a closed form solution and is thus faster to calculate. The maths involved is

further simplified by the fact that the PDM's deformation modes are orthonormal. Also, because there

are generally only a few model parameters, this approach is faster than previous snake-like

techniques. Performance and speed can be improved further still by employing a multi-resolution

search [47, 52] whereby earlier iterations proceed at lower image resolution and fewer shape

parameters are allowed to vary, with refinement being permitted in the later stages.

Baumberg and Hogg show how ASMs can be coupled with a Kalman filtering framework to produce

a more robust system [12, 10, 14, 11]. This method is very efficient because the filters for each shape

parameter can be decoupled, allowing independent filtering of each parameter and thus avoiding large

matrix computations.
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A recent development in curve tracking is the use of level-set snakes (Paragios and Deriche [142]) to

replace traditional B-spline based snakes. An energy function is defined over the image, and fast

algorithms are used to track level sets of this function. An advantage of the approach is that the

topology of the level sets may change, although there is no parametric representation of the object, so

the problem addressed is more akin to motion segmentation than tracking. Also, existing methods

have only been applied where background subtraction can be used, and have not been demonstrated in

image clutter.

Extensions of 'Snake' type algorithms have been proposed by several other authors. Among them the

regularised Gsnake algorithm by Lai et al. [120, 121], the active rays of Denzler et al [62, 63], the

finite element based method for snakes and balloons by Cohen et al. [45], the velocity snakes [145,

146] and the PDAF based active contours [147] by Peterfreund are noteworthy contributions.

2.7 Model Based Tracking

Mode! based tracking primarily requires the characteristics of the object prior to tracking. Tracking

techniques are formulated based on a 2D template of an object, or a 3D model of the object being

available. The advantage of incorporating model knowledge into tracking is that clutter can be

rejected efficiently. The tracking algorithms are formulated assuming that the model deforms or

changes shape within acceptable limits from the template or model shape (eg: ailow only affine

transformation of the template). In the following section we provide a short survey of some popular

model based tracking techniques. For clarity, we have informally classified the model based tracking

survey into the following groups: 'general model' tracking (can be applied to any model), and

'specific model' tracking (pertains to tracking a particular type of model, eg: vehicles only).

2.7.1 General Model-Template Tracking

A good example of a nodel based tracker is the RAPID (Real-time Attitude and Position

Determination) tracker of Harris et al [84, 86]. A 3D model of an object in the world (the target which

is to be tracked) is built by hand. As each video frame arrives, the model is back-projected into the

image, using a prediction of its position. The perpendicular distance from image points, lying on high

contrast edges, to the predicted positions of such edges are then used as input to a Kalman filter. This

filter updates a six degree of freedom model state corresponding to the target's position in the real

world. Perpendicular distances are used because the aperture problem only allows motion

perpendicular to an image boundary to be determined. The tracker works at video rate, but relies on

being able to reliably locate the high contrast edges, and on a well calibrated camera.
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Baumberg and Hogg [12] build on the work of Cootes et al [93], providing a way of automatically

generating PDM's from video sequences. The models are built by subtracting each video frame from a

median filtered background image, and then thresholding to give a binary image of the target. Points

are placed equally spaced around the target, and indexed, based on their position relative to the

principal axis of the target. Several such point sets are collected over time and the principal

components of the shape variation extracted to give the PDM. In [10, 14] Baumberg introduces learnt

dynamics into the PDM, connecting parts of the PDM together with springs and dampers. This

dynamical model enables a tracker to predict the motion of the target forward through time, allowing

tracking to continue in the temporary absence of image measurements.

Baumberg and Hogg [10] also show how to construct temporal models from training sequences using

FEM model analysis [143, 144]. The models produced exhibit a number of independent modes of

vibration which reflect the motions experienced in the training sequences. These motions can then be

used directly as prediction models for tracking, again, within a Kalman filtering framework. The use

of modal analysis means that, unlike Blake et al's model, the Kalman filter can be decoupled for extra

speed.

Huttenlocher et al [98] developed a target tracking system based around matching a binary template

image of the target. This template image is the output of an edge detector, and is updated each frame.

Tracking proceeds by finding the region of a new image which is most likely to contain the template.

This is done by computing the generalized Hausdorff distance, between the template and each

possible target position within the image. The image location with the minimum Hausdorff distance is

taken as being the target's, new location. Various fall back strategies and alternative templates are

employed to enable the tracker to continue, even if no positions in the image match the template

satisfactory.

Huttenlocher et. al. [97] describe a model-based method for tracking non-rigid objects moving in a

complex scene. The method operates by extracting two-dimensional models of an object from a

sequence of images. The basic idea underlying the technique is to decompose the image of a solid

object moving in space into two components: a two-dimensional motion and a two-dimensional shape

change. The motion component is factored out and the shape change is represented explicitly by a

sequence of two-dimensional models, one corresponding to each image frame. The major assumption

underlying the method is that the two-dimensional shape of an object will change slowly from one

frame to the next. There is no assumption, however, that the two-dimensional image motion between

successive frames will be small.
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Lowe [127] developed a computer vision system for real-time motion tracking of 3D objects,

including those with variable internal parameters. This system provides for the integrated treatment of

matching and measurement errors that arise during motion tracking. These two sources of error have

very different distributions and are best handled by separate computational mechanisms. These errors

can be treated in an integrated way by using the computation of variance in predicted feature

measurements to determine the probability of correctness for each potential matching feature. In turn,

a best-first search procedure uses these probabilities to find consistent sets of matches, which

eliminates the need to treat outliers during the analysis of measurement errors. The most reliable

initial matches are used to reduce the parameter variance on further iterations, thus minimizing the

amount of searching required for matching more ambiguous features. These methods allow for much

larger frame-to-frame motions than most previous approaches. The resulting system can robustly track

models with many degrees of freedom while running on relatively inexpensive hardware. These same

techniques can be used to speed up verification during model -based recognition.

2.7.2 Eye Tracking

Yuille and Hallinan [204] explore the problem of accurately locating an object in an image. The

object they attempt to locate is the eye. A detailed model is built representing the various parts of the

eye (the whites, iris and pupil), and this model has the degrees of freedom of the various parts of the

eye built into it - the iris and pupil are allowed to move round the white of the eye together for

instance. The model is fitted to an image by performing an energy minimization. This minimization is

based around both shape deformation constraints and intensity constraints — the iris and pupil are

assigned a low energy when they lie over dark parts of the image and the whites of the eye a low

energy when they lie in light regions.

2.7.3 Vehicle Tracking

Another excellent example of a model based tracking system is that developed by Sullivan and

Worrall [175,200, 3]. The problem they attack is the tracking of vehicles. Accurate three-dimensional

wire-frame models of prototypical cars are used, together with a model of the behavioural

characteristics of the vehicles. The tracker has the ground plane constraint implicitly built in - the only

free parameters in the tracker are the X, Y position and the vertical rotation of the car. The tracker

predicts a position for the car on the ground plane, and an evaluation score is calculated based on how

well the first and second spatial derivatives of the image fit a back-projection of the car model. The

predicted pose is then refined by one-dimensional linear searches on each free parameter of the model,

evaluating the pose score at each position. The pose with the highest score is then used as input to a

Kalman filter. The tracker has been successfully applied to views of cars on a road, and also to the
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tracking of service vehicles attending to a large aeroplane. In [73] the 3D models are enhanced by

principal component analysis of manually sampled car data, allowing cars to be more generically

fitted. A more complex model evaluation score is also used, based on the positions and orientations of

prominent lines in the image, relative to the model.

Koller et.al. [118] address the problem of occlusion in tracking multiple 3D objects in a known

environment. For that purpose they employ a contour tracker based on intensity and motion

boundaries. The motion of a contour enclosing the image of a vehicle is assumed to be well

describable by an affine motion model with a translation and a change in scale. Contours are

represented by closed cubic splines, the position and motion of which are estimated along the image

sequence. In order to employ linear Kalman Filters they decompose the estimation process in two

filters: one for estimating the affine motion parameters and one for estimating the shape of the

contours of the vehicles. Occlusion detection is performed by intersecting the depth ordered regions

associated to the objects. The intersection part is then excluded in the motion and shape estimation.

Occlusion reasoning also improves the shape estimation in case of adjacent objects where shape

estimates can be corrupted by image data of other objects. In this way they obtain robust motion

estimates and trajectories for vehicles even in the case of occlusions, as they show in some

experiments with real world traffic scenes. This work by the authors follows their previous research in

robust vehicle tracking [117].

Dickmanns [66] addresses the problem of real-time guidance of a moving vehicle along roads.

Kalman filters are used together with sophisticated non-linear models of the vehicle's motion, camera

calibration and the road. The road model is used to determine what features are expected to be found

where in the scene, and then this expectation used to direct a feature search towards these regions.

Specifically line segments are searched for which match the expected orientation of the road. The

difference between the orientations expected and those measured is used as a measure of the

likelihood that the measurements originate from the side of the road, and this probability used to

weight the inputs to the filter.

2.7.4 Human Tracking

Intille and Bobick [100, 101] discuss a system for tracking American football players as they move

around a field, viewed with a panning and tilting zoom camera. The camera motion is assumed to be

unknown, however the line markings on the field provide an excellent and consistent set of features

from which the plane/plane projectivity between the view of the field, and an overhead view of the

field is calculated. A detailed model of football field is built up, and areas of the field which are likely

to cause tracking problems (the markings on the field, for example) highlighted. A gray level image of
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each player on the rectified image of the field is built, and used for correlation matching from one

frame to the next. Areas of the image which contain strong features are masked out before the

correlation is done, otherwise they tend to pull the template of the players. Variations in the views of

the players are accommodated by updating the template at each frame. As each player on the field is

being tracked, it is possible to detect when occlusions/collisions are likely to be happening (and hence

the correlation search fail) and switch to a different tracking algorithm for that period of time. The

algorithm suggested for dealing with potential occlusions is bright spot tracking of the player's

helmets. The tracking results presented by Intille are impressive, however, there is a tendency for the

adaptive templates to slip off the players. No motion model is used which, while enabling them to

track abrupt changes in a player's velocity, means that motion coherence is not exploited.

Haritaoglu, Harwood, and Davies [83] describe a real time visual surveillance system for detecting

and tracking people and monitoring their activities in an outdoor environment by integrating real time

stereo computation into an intensity based detection and tracking system. Unlike many systems for

tracking people, their system makes no use of colour cues, instead employs a combination of stereo,

shape analysis and tracking to locate people and their parts, and create models of people's appearance

so that they can be tracked through interactions such as occlusions. The authors claim that the system

is capable of simultaneously tracking multiple people even with occlusion.

Bregler et. al. [32] describes a probabilistic decomposition of human dynamics at multiple

abstractions, and shows how to propagate hypotheses across space, time, and abstraction levels.

Recognition in this framework is the succession of very general low level grouping mechanisms to

increased specific and learned model based grouping techniques at higher levels. Hard decision

thresholds are delayed and resolved by higher level statistical models and temporal context. Low-level

primitives are areas of coherent motion found by EM clustering, mid-level categories are simple

movements represented by dynamical systems, and high-level complex gestures are represented by

Hidden Markov Models as successive phases of ample movements. They show how such a

representation can be learned from training data, and apply it to the example of human gait

recognition.

Rosales and Sclaroff [160, 161] provide a combined 2D, 3D approach that allows for robust tracking

of moving bodies in a given environment as observed via a single un-calibrated video camera. The

method combines low level (image processing) and mid-level (recursive trajectory estimation)

information obtained during the tracking process. The resulting system can segment and maintain the

tracking of moving objects before, during, and after occlusion. At each frame, the system also extracts

a stabilized coordinate frame of the moving objects. This stabilized frame can be used as input to
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motion recognition modules. The approach enables robust tracking without constraining the system to

know the shape of the objects being tracked beforehand.

2.7.5 Lip Tracking

In [34], Bregler and Omohundro have applied tracking techniques for speech recognition. A technique

for representing and learning smooth nonlinear manifolds was presented and applied to several lip

reading tasks. Given a set of points drawn from a smooth manifold in an abstract feature space, the

technique is capable of determining the structure of the surface and of finding the closest manifold

point to a given query point. They use this technique to learn the "space of lips" in a visual speech

recognition task. The learned manifold is used for tracking and extracting the lips, for interpolating

between frames in an image sequence and for providing features for recognition. They describe a

system based on hidden Markov models and this learned lip manifold that significantly improves the

performance of acoustic speech recognizers in degraded environments. Other noteworthy

contributions on lip motion include the work of Kaucic et al [114], who have demonstrated the use of

real-time lip tracking for audio-visual speech recognition.

2.7.6 Face Tracking

An attractive approach for face tracking was proposed by Lanitis et al. [122, 123]. They describe an

application where an active shape model (ASM) (also called a point distribution model (PDM) [50]) is

used to track facial features. This PDM is derived from a principal component analysis of the shape

variations of an object (the target) in a series of images. In [122] the features making up a face are

located by using local gray level models and then used to fit the PDM to the image. This fitted PDM

is then used to warp the video image of a face to a canonical frame. An eigenface decomposition is

then performed to transform the face image into a set of principal gray level components. These

components, together with the parameters of the PDM, describe the entire facial appearance of

subjects with only 79 parameters. This work is based on Cootes, Taylor et al 's earlier work on PDM's

[49, 50, 52]. Information about the local gray level structure of the target is incorporated into the

model fitting procedure by building a simple statistical template of the gray level values along search

lines perpendicular to the line sections of the model. The model is then located by searching for

positions which minimize a Mahalanobis distance between the gray level template and the image.

Cootes, Edwards, and Taylor [53] recently have demonstrate a novel method of interpreting images

using Active Appearance Model (AAM). An AAM contains a statistical model of the shape and grey-

level appearance of the object of interest that can generalize to almost any valid example. During a

training phase the relationship between model parameter displacements and the residual errors
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induced between a training image and a synthesized model example is learnt. To match to an image

they measure the current residuals and use the model to predict changes to the current parameters,

leading to a better fit. A good overall match is obtained in a few iterations, even from poor starting

estimates. A successful application of face recognition using AAM is reported in [71].

2.7.7 Articulated Object Tracking

Computer sensing of hand and limb motion is an important problem for applications in human

computer interaction and computer graphics. Rehg et al [150, 151] describe a framework for local

tracking of self occluding motion, in which one part of an object obstructs the visibility of another.

The approach uses a kinematic model to predict occlusions and windowed templates to track partially

occluded objects. They present offline 3D tracking results for hand motion with significant self

occlusion.

Hogg's well known 'Walker' model [95] is an early example of a non-trivial temporal model. The

kinematics are coupled to a pre-learned periodic walk sequence, modelled via a series of cubic

B-splines, which is used to derive predictions for plausible object states in each successive frame.

Bregler and Malik [33] also demonstrate a new visual motion estimation technique that, is able to

recover high degree-of-freedom articulated human body configurations in complex video sequences.

They introduce the use of a novel mathematical technique, the product of exponential maps and twist

motions, and its integration into a differential motion estimation. This results in solving simple linear

systems, and enables the algorithm to recover robustly the kinematic degrees-of-freedom in noise and

complex self occluded configurations. They demonstrate this on several image sequences of people

doing articulated full body movements, and visualize the results in re-animating an artificial 3D

human model. They are also able to recover and re-animate the famous movements of Eadweard

Muybridge's motion studies from the last century [33].

Pentland and Horowitz [143] introduce a physically correct model of elastic non-rigid motion. This

model is based on the finite element method, but decouples the degrees of freedom by breaking down

object motion into rigid and non-rigid vibration or deformation modes. The result is an accurate

representation for both rigid and non-rigid motion that has greatly reduced dimensionality, capturing

the intuition that non-rigid motion is normally coherent and not chaotic. Because of the small number

of parameters involved, this representation is used to obtain accurate overstrained estimates of both

rigid and non-rigid global motion. It is also shown that these estimates can be integrated over time by

use of an extended Kalman filter, resulting in stable and accurate estimates of both three-dimensional

shape and three-dimensional velocity. The formulation is then extended to include constrained non-
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rigid motion. Examples of tracking single non-rigid objects and multiple constrained objects were also

demonstrated.

Several other model based tracking methodologies are also worth mentioning. Among them the

LAFTER algorithm of Oliver et al [141], Wren et al.'s Pfinder [201], Wacheter et al.'s human

tracking algorithm [197], Cai and AggarwaFs indoor person tracker [39], Heap and Hogg's 3D hand

tracking [91, 88], and Birchfield's head tracking algorithm [16] are note worthy contributions.

2.8 Data Association and Tracking Algorithms

In this section we survey some of the tracking algorithms that are employed in computer vision and

target tracking research.

2.8.1 Data association

When using visual features to track a target against a cluttered background, there is a significant

chance that part of the background may be mistaken for the target. A simple feature or target detection

scheme will either correctly identify the target, fail to identify anything or identify part of the

background as the target. The scheme may also find that several objects (or parts of the image) meet

its criteria for being part of the object being tracked. The data-association problem is to correctly

determine which observation (if any) actually corresponds to the target. A whole range of tracking

algorithms, to resolve the above issue, has been developed over a number of years. Among them the

Kalman Filter (KF), and algorithms which stemmed from KFs, have been popular within the

computer vision community [149]. More recently, the proposal of the Condensation algorithm [103,

104] has opened a way for a whole range of new tracking applications. In the following sections we

survey some of the well know tracking techniques.

2.8.2 Kalman Filter based Tracking Algorithms

Spatio-temporal estimation, the tracking of shape and position over time, has been dealt with

thoroughly by Kalman filtering [5, 6, 74, 199, 130], in the case in which the state's probability density

function (p.d.f.) can satisfactorily be modelled as Gaussian ([66], [84], [75], [150]). In this case the

Kalman filter can be applied to track image curves ([176, 22, 23, 25]). For the state density to remain

Gaussian it is necessary that the prior, process and measurement densities be Gaussian also (in the

usual case the measurement and process noise are Gaussian and the update equations are linear, which

results in a Gaussian state density as required).
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Bar-Shalom and Fortmann [6] describe a number of standard extensions to the Kalman filter for

dealing with situations where non-Gaussian densities may be encountered. The Extended Kalman-

Filter (EKF) is appropriate in the case of a non-line::r but unimodal process which can be well

approximated over the length of a single time step by its local linearization. The EKF has been used in

visual tracking, e.g. ([84, 157]). In some cases an exact filter may be derived even in the case that the

dynamics are non-linear, for example Maybank et al. [129] construct a filter for tracking a car based

on position and steering angle parameters. The introduction of clutter can cause the observation

density to be highly non-Gaussian, by introducing multiple modes corresponding to the clutter

features. A multi-modal measurement density necessarily induces multi-modality into the state

density.

The "Probabilistic Data Association Filter'" (PDAF) (Bar-Shalom and Fortmann [6]) is designed for

the case of image clutter where the process is linear and Gaussian, and the observation density is a

mixture of Gaussians. The PDAF continues to use the standard Kalman filter framework by

approximating all the visible measurements, weighted by their predicted likelihoods, into a single

Gaussian-distributed feature, and so it continues to represent the state density as a single Gaussian.

When a multi-modal state density is required, one solution is to use a mixture of Gaussians to

represent the state density.

The Joint PDAF (JPDAF) (Bar-Shalom and Fortmann [6]) is an extension of the PDAF where in

principle the state density is evaluated exactly and represented as a mixture of Gaussians [82]. The

number of terms in the mixture increases exponentially, however, so pruning and merging of

hypotheses is required to run within, a fixed computational bound. A multi-modal process density also

results in the state density becoming multi-modal. The Interacting Multiple Model (IMM) filter (Blom

and Bar-Shalom [5], [28]) is analogous to the JPDAF when it is the process rather than (or as well as)

the observation density which is multi-modal. The details of IMM are further discussed in chapters 4

and 7 of this thesis.

2.8.3 Condensation Algorithm

Isard and Blake's Condensation algorithm [103, 104] provides a much richer environment for

temporal prediction. The model state is represented not as a single, deterministic set of model

parameters, but as a probability density function over the whole parameter space. This allows for

non-Gaussian (arbitrary, in fact) uncertainty and multiple hypotheses. A model of conditional

probability (learned from training sequences) is used to propagate the pdf over time. Propagation

dynamics are learned from training sequences; Isard and Blake [104] demonstrate the construction of

second order models which can predict constant velocity, oscillatory and decaying dynamics. The

29



result is highly robust tracking of agile motion. Notwithstanding the use of stochastic methods, the

algorithm is reported to run in near real-time. Further details and evaluation of Condensation is

discussed in Chapter 8.

The benefits of Condensation are as follows: It can support multiple hypotheses; this is represented by

a pdf with multiple peaks. It recovers well from failure; the stochastic nature of the algorithm allows it

to escape from local maxima. It incorporates a level of prediction, which improves the speed of

convergence and the. quality of results over, for example, a Genetic Algorithm [88].

The prediction aspect of Condensation is embedded in the propagation equations. Currently these

have two elements; a deterministic term which allows for simple drifting of the pdf, and a stochastic

term which encourages spreading of the pdf. Although the tracker can escape from local maxima (due

to the stochastic term), the underlying dynamical model is still based on an assumption of smooth,

continuous object movement. Such an assumption is not always valid [88].

2.8.4 Extensions of Condensation

Isard and Blake [107] further improve their Condensation algorithm by introducing a smoothing filter

at the output. Clutter can cause the probability distribution to split temporarily into multiple peaks,

each representing a different hypothesis about the object configuration. When measurements become

unambiguous again, all but one peak, corresponding to the true object position, die out. While several

peaks persist, estimating the object position is problematic. 'Smoothing' in this context is interpreted

to be a statistical technique of conditioning the state distribution on both past and future

measurements once tracking is complete. After smoothing, peaks corresponding to clutter are reduced,

since these trajectories eventually die out. The result can be a much improved state-estimate during

ambiguous time-steps.

The tracking research community has diverged into two camps; those using low-level approaches

which are typically fast and robust but provide little fine-scale information, and those using high-level

approaches which track complex deformations in high-dimensional spaces but must trade off speed

against robustness. Real-time high-level systems perform poorly in clutter, and initialisation for most

high-level systems is either performed manually or by a separate module. Isard and Blake [105]

extend their Condensation technique to combine low and high-level information in a consistent

probabilistic framework, using the statistical technique of importance sampling combined with the

Condensation algorithm. The general framework, which they call the I-Condensation, is applied on a

hand tracker which combines colour blob-tracking with a contour model. The resulting tracker is

reported to be robust to rapid motion, heavy clutter and hand-coloured distracters, and re-initialises
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automatically. The system is also claimed to run comfortably, in real time, on an entry-level desktop

workstation.

Condensation tracker can also ba extended to cope with automatic model-switching for objects that

move with variable motion (Jsard and Blake [106, 102]). The authors present a significant

development of random sampling methods to allow automatic switching between multiple motion

models as a natural extension of the tracking process. The Bayesian mixed state framework is

described in its generality, and the example of a bouncing ball is used to demonstrate that a mixed

state model can significantly improve tracking performance in heavy clutter. The relevance of the

approach to the problem of gesture recognition is then investigated using a tracker which is able to

follow the natural drawing action of a hand holding a pen, and switches state according to the hand's

motion.

As a further improvement to [106], Rittscher and Blake [156] have developed 'Partial Importance

Sampling' to enhance the efficiency of the mixed state Condensation filter [106]. They also show that

the importance sampling can be done in linear time. 'Tying' of discrete states is used to obtain further

efficiency improvements. Automatic segmentation is demonstrated on video sequences of aerobic

exercises. Performance is reported to be promising, but there remains a residual mis-classification

rate, and possible explanations for this are also discussed in [156].

2.8.5 Applications of Condensation

Black and Jepson [19] propose an incremental recognition strategy that is based on the Condensation

algorithm. Gestures are modelled as temporal trajectories of some estimated parameter over time

(velocity in this case). The Condensation algorithm is used to incrementally match the gesture models

to the input data. The method is demonstrated with an example of an augmented office whiteboard in

which a user makes simple hand gestures to grab regions of the board, print them, save them, etc.

Standard techniques (Yule-Walker) are available for learning Auto-Regressive process models of

dynamical processes. When sensor noise means that dynamics are observed only approximately,

learning has still been achieved via Expectation-Maximisation (EM) together with Kalman Filtering.

This cannot handle more complex dynamics, involving multiple classes of motion. For that case, Bake

et al [26] demonstrate how EM can be combined with the Condensation algorithm, which is based on

propagation of random sample-sets. Experiments have been performed with visually observed

juggling, and plausible dynamical models are found to emerge from the learning process.



Existing object tracking algorithms generally use some form of local optimisation, assuming that an

object's position and shape change smoothly over time. In some situations this assumption is not

valid: the trackable shape of an object may change discontinuously, for example if it is the 2D

silhouette of a 3D object. Heap and Hogg [89] propose a novel method for modelling temporal shape

discontinuities explicitly. Allowable shapes are represented as a union of (learned) bounded regions

within a shape space. Discontinuous shape changes are described in terms of transitions between these

regions. Transition probabilities are learned from training sequences and stored in a Markov model. In

this way they show how to create wormholes in shape space. Tracking with such models is via an

adaptation, of the Condensation algorithm.

2.9 Conclusion

Our survey has revealed certain areas of visual tracking which are insufficiently addressed in the

literature. One area that needs consideration is a multiple motion model framework within a tracking

system. Though a single model assumption (this is the case for most tracking applications) is

computationally efficient, such a tracking system does not cope with multiple motions that are

captured within a sequence of images. Another area that is not adequately addressed is the

performance analysis of tracking algorithms. Most of the performance analysis techniques given in

the literature are specific to a narrow band of applications, and cannot be easily extended for different

types of object tracking. Finally knowledge already existing in other areas of engineering (control,

signal processing etc.) seems new (unknown) within the computer vision community.

This thesis therefore tries to address most of these issues in two broad categories. The first section of

the thesis (Chapters 3, 4, and 5) deals with point feature tracking algorithms and their performances.

The second section (Chapters 6, 7, and 8) deals with contour tracking algorithms and their

performances. In addressing these areas, we have also considered the multiple motion model

framework within a tracking system.
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Chapter 3

Assessing the Performance of Corner Detectors for
Point Feature Tracking

Abstract

In this chapter we assess the performance of corner feature detecting algorithms for feature tracking
applications. We analyze four different types of corner extractors, which have been widely used for a variety of
applications. They are the Kilchen-Rosenfeld corner detector [116], the Harris corner detector [85], the
Kanade-Lucas-Tomasi detector [190] and the Smith corner detector [173]. We use the corner stability and
corner localization properties as measures to evaluate the quality of the features extracted by the 4 detectors.
For effective assessment of the corner detectors, we employed image sequences with no motion (simply static
image sequences), so that the appearance and disappearance of corners in each frame is purely due to image
plane noise and illumination conditions. Such a setup is ideal to analyze the stability and localization properties
of the corners. The corners extracted from the initial frame are then tracked (matched) through the sequence
using a corner matching strategy. We employed 2 different types of matchers, namely the GVM (Gradient
Vector Matcher) and the Product Moment Coefficient Matcher (PMCM). Each of the corner detectors was
tested with each of the matching algorithms to evaluate their performance in tracking the features. The
experiments were carried out on a variety of image sequences. They included indoor and outdoor sequences.

3.1 Introduction

Low-level descriptors may be broadly classified into three main types: region-based, edge-based and

point-based [168].

Regions (or "blobs") [194, 168, 169] normally correspond to smooth surface patches. Tracking such

regions is not always easy, since minor differences between frames (due to image noise or image

motion) can lead to very different segmentation in consecutive image frames [168]. Despite recent

progress (for example: Meyer and Bouthemy [132] tracked convex-hull approximations to region

boundaries, Etoh and Shirai [70] used advanced statistical region descriptors), further theoretical and

empirical work is needed before reliable region tracking becomes feasible.

Edges are loci of one-dimensional spatial change [168], located where the change in intensity is

significant in one direction. They are generally detected by finding either maxima in the first image

derivative [40], or zero-crossings in the Laplacian of the Gaussian of the image [79]. Their usefulness

in motion algorithms is limited by the "'aperture problem", which arises from a locally linear
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expansion of the spatio-temporal image intensity function; without assumptions about the nature of

the flow, only the component of flow perpendicular to the edge element can be found [68].

Unfortunately, these assumptions invariably lead tc inaccuracies in the estimated flow, particularly at

motion boundaries [168]. The use of higher order derivatives is unsatisfactory since differentiation

accentuates noise. Moreover, until the advent of snakes [113, 24, 27], arbitrarily curving edges were

difficult to describe and track, and simultaneous tracking of multiple open edge contours with

automatic snake initialization still largely remains an open problem [168, 24] (discussed more in

chapters 6-8). An additional problem with tracking edges through image sequences is that edge

segments tend to split and merge, which complicates the tracking process considerably.

Point features are distinctive image points corresponding to objective 3D scene elements that are in

most instances accurately locatable and recur in successive images, which makes them explicitly

trackable over time. The term "corners" is used to refer to point features that are loci of two-

dimensional intensity change, i.e. second-order features. This includes points of occlusion (e.g. T, Y

and X junctions), structural discontinuities (e.g. L junctions) and various curvature maxima (e.g.

texture flecks or surface markings). Corners impose more constraint on the motion parameters than

edges, therefore the full optic flow field is recoverable at corner locations [168]. Corners are also often

more abundant than straight edges in the natural world making them ideal features to track in an

indoor and outdoor environment. To find further details on various corner detectors, the reader is

referred to [134, 168].

Despite the large amount of material reported in the literature in the area of low level feature tracking,

very little has been published in terms of a performance analysis for many of these algorithms. Our

primary contribution in this chapter is to evaluate the suitability of corners extracted by 4 different

corner detectors for tracking purposes. For point (corner) feature tracking it is essential that corners

extracted in each frame be well localized and temporally stable throughout an image sequence. To test

these corner properties it is preferred to use static image sequences where object (or camera) motion

will not be a concern. Using indoor and outdoor static image sequences with varied levels of

illumination, we assess the quality of corners extracted by the Kanade-Lucas-Tomasi (KLT), the

Harris, the Kitchen-Rosenfeld and the Smith corner detectors in the presence of varied noise.

A direct comparison of the performance of corner detectors is difficult because establishing ground

truth for 'corner points' is non-trivial, particularly for complex scenes (as studied in this chapter).

Even for human eyes declaring the best TV corners from a complex scene is very difficult and the

choice of selection can vary from person to person. Therefore, for each corner detector considered in

this chapter, we provide the allowance of selecting 'their best N corners'. The quality of corners

extracted by each detector is then assessed against the localization and stability properties (discussed
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later). The assessment based on these 2 measures will reveal the number of corners that are most

resilient to image plane noise.

This chapter is organized as follows. Section 3.2 briefly describes the 4 corner detectors that we

analyze. Section 3.3 provides the performance measures that we employ for our analysis. Section 3.4

gives the inter-frame corner matching strategies employed. Section 3.5 derives the tests that are

applied for empirical evaluation of the corner detectors. Section 3.6 gives the results and section 3.7

provides a discussion on the evaluation outcome. Finally section 3.8 gives the conclusion.

3.2 Corner (Point) Features as Tracking Tokens

A number of algorithms for corner detection have been reported in recent years [64, 67, 70, 85, 116,

134, 140, 162, 168, 169, 171, 173, 190]. They can be divided into two groups. Algorithms in the first

group involve extracting edges and then finding the points having maxima curvature or searching for

points where edge segments intersect. The second, and largest group, consists of algorithms that

search for corners directly from the grey-level image. In this chapter we focus on the second group of

feature detectors.

We decided to assess the performance of the Kitchen-Rosenfeld [116], the Harris [84,85], the KLT

[190] and the Smith [173] corner detectors when applied on real data. The choice of these 4 corner

detectors was made because, the Kitchen-Rosenfeld method uses second and first order derivatives in

calculating the cornerness value, while Harris method uses only first order derivatives. The Smith

method uses a geometrical criteria in calculating the cornerness value (no derivations are required),

while KLT detector uses information from an inter-frame point displacement technique to declare

corners. Therefore an assessment in terms of the localization and stability properties for these 4 corner

detection methods seemed useful when they are applied to a variety of image sequences. The

following sub-sections briefly describe the corner detectors employed.

3.2.1 The Kitchen-Rosenfeld Corner Detector

Kitchen-Rosenfeld algorithm [116] is one of the earliest corner detectors reported in the literature,

hence it has been used as a bench mark for future researchers developing corner detection algorithms.

This algorithm calculates the 'cornerness' value C as ihe produce of the local gradient magnitude and

the rate of change of gradient direction. The quantity C is given by,
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where I is the grey-level value, and Ixr is the second derivative of I, etc. Points in an image are

declared corners if the 'cornerness value' meets some threshold requirement (ie. the lower the value of

C, better the comer). Many well-known comer detectors use this threshold (eg:[25,10]). The primary

reason for considering this detector is to use it as a 'bench mark' to evaluate the performances of the

Harris, the KLT, and the Smith corner detectors.

3.2.2 The Harris Corner Detector

This algorithm, known as the Harris comer detector [85] is based on an underlying assumption that

corners are associated with maxima of the local autocorrelation function. It is less sensitive to noise

in the image than most other algorithms, because the computations are based entirely on first

derivatives. The algorithm has proved popular due to its high reliability in finding L junctions and its

good temporal stability [140], making it an attractive comer detector for tracking. It should be noted

that because these algorithms rely on spatial derivatives, image smoothing is often required to

improve their performance. While improving the detection reliability, it has been shown that

smoothing may result in poor localization accuracy [157]. The Harris corner detector was used

successfully to detect features for the DROID 3D vision project [85, 84].

The Harris comer detector also computes a cornerness value, C, for each pixel in an image. A pixel is

declared a corner if the value of C is below a certain threshold. Where C is calculated as follows:

• Calculate the intensity ^-gradient, lx, and the intensity >>-gradients, I using 3x3 convolution

masks.

• Calculate I^lJ.,1,1^..

• Using a Gaussian smoothing kernel of standard deviation a, calculate the sampled means

< I; >,< I; >,and < 1,1^ >. See Fig. 3.1.

• Calculate the cornerness value of a pixel, C as follows:

C~
< i* > + < (3.2)

A good comer is defined as having a small value of C; the best comer thus having the lowest value of

C. The number of surrounding pixels required to calculate C is determined by the size of the Gaussian

36



smoothing kernel. A 3x3 pixel smoothing kernel gives a 5x5 pixel computation area, a 5x5 pixel

smoothing kernel gives a 7x7 pixel computation area, etc. (Figure 3.1).

E

Computation area
-•(pixels used)

Corner pixel

Figure 3.1: Pixel area used when calculating the Harris cornerness C, assuming a Gaussian smoothing kernel

of 3x3 pixels.

3.2.3 The Smith (SUSAN) Corner Detector

Smith [173] developeu a very simple corner detector that uses no spatial derivatives at all. The Smith

corner detector does not require any smoothing and so there is no degradation in localization accuracy

due to smoothing. This detector has been implemented as part of a scene segmentation algorithm

ASSET (A Scene Segmenter Establishing Tracking) [172].

Nucleus of mask

Boundary of mask

Light background

Section of mask where
^ pixels have different

brightness from nucleus

Section of mask where
pixels have similar
brightness to nucleus
- USAN area

Figure 3.2: Four Smith corner finding masks at different positions in an image.

The Smith corner detector [173] is different from the other detectors in nature. Each pixel in an

image is used as the center of a small circular mask. The greyscale values of all the pixels within this
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circular mask are compared with that of the center pixel (the nucleus). All pixels with similar

brightness to that of the nucleus are assumed to be part of the same structure in the image.

Figure 3.2 shows the masks with pixels of similar brightness to the nucleus coloured black, and pixels

with different brightness coloured white. Smith calls the black image area the Univalue Segment

Assimilating Nucleus (USAN). He argues that the USAN corresponding to a corner (case (a) in

Figure 3.3) has an USAN area of less than half the total mask area. It is clear from Figure 3.3 that a

local minimum in USAN area will find the exact point of the corner.

w Approximation to the
circular mask

Nucleus

Figure 3.3: The Smith USAN (SUSAN) corner finding mask.

In practice, the circular mask is approximated using a 5 x 5 pixel square with 3 pixels added on to the

center of each edge (Figure 3.3). The intensity of the nucleus is then compared with the intensity of

every other pixel within the mask using the following comparison function:

(3.3)

where r0 is the position of the nucleus, r is the position of any other point within the mask, \(r) is the

brightness of any pixel, and t is the so-called brightness difference threshold. Eq. (3.3) is chosen to

allow a pixel's brightness to vary slightly without having too large an effect on c, even if it is near the

threshold position. The sixth power is used to obtain the theoretical optimum, see [173] for details.

This comparison is done for each pixel in the circular mask, and a running total, 77, of the outputs, c, is

made:

(r,r0) (3.4)
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The total n is 100 times the USAN's area (the factor of 100 coming from Equation 3.3). The USAN

area n is then thresholded to extract the corners. A pixel is declared a corner if its USAN area, n, is

less thun half the maximum possible USAN area (The maximum USAN area is given by the area of

the circular mask times 100, which is 3700). The geometric threshold, g, therefore sits at 1850

[(25+12)* 100/2]. Smith points out that the value of g affects the shape of the corners detected, and

that reducing the value o f f "esults in only the sharpest corners being detected [173]. The brightness

difference threshold /, affects the quantity of corners detected by determining the allowed variation in

brightness within the USAN.

Finally, an intermediate image is created from the value n calculated for each pixel in the image. If 77

is greater than the geometric threshold, g, then a zero is placed in the intermediate image, otherwise

the value (g-n(x,y)) is used. The intermediate image is then searched over a square 5 pixel by 5 pixel

region for local maxima, and it is these local maxima pixels that are declared corners.

3.2.4 The Kanade-Lucas-Toraasi (KLT) Corner Detector (includes the Tracker) I

The KLT corner detector [190] operates by comparing a patch of image information in 2 consecutive

frames of an image sequence (developed for the KLT tracking algorithm [190, 171]). It assumes that

images taken at near time instants are usually strongly related to each other, because they refer to the

same scene taken from only slightly different view points. This property can be explained by the

following equation:

I(x,y,t + r) = l(x - Ax,y - Ay,t)

where I is the image intensity function having 3 parameters (space and time variables x, y & t). The

inter-frame displacement d = (Ax, Ay) is the displacement of point x = (x, y) between time instants /

and (t+r). For the rest of this section, the notation x, y, t are dropped for convenience.

An important problem in finding the displacement d of a point from one frame to the next is that a

single pixel cannot be reliably tracked, unless it has a very distinct character with respect to all of its

neighbors. This is because of image plane noise, clutter etc. Because of these problems, KLT does not

track a single pixel, but windows of pixels, and windows are looked for that contain sufficient texture.

Using small window size is considered important because only small amount of change would have

been accounted for within a small area. Any discrepancy between successive windows that cannot be
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explained by a translation is considered to be an error, and the displacement vector is chosen to

minimize this residue error. This is expressed for a given window size Was:

e = j[l(x-d)-J(x)]2wdx
w

where J(x) = I (x-d) + w(x), with noise n. Assuming the inter-frame displacement vector is small,

using Taylor series (truncated to linear term) expansion, the following is possible:

I (x-d) = I(x)-g.d. Now the residue equation reduces to,

£=\(h-g.d)2wdx,
w

where h = I(x) — J ( x ) . Differentiating the residue equation with respect to d and setting the result

equal to zero provides the following easily solvable expression:

Gd = e,

where the 2x2 matrix G = \ggTwdA, and the 2 dimensional vector e = f (I - J)g\vdA • With these

if w

expressions, d can be evaluated (see [190] for complete details). For a stable system, the 2x2

coefficient matrix G must be both above the image noise level and be well-conditioned. In turn, the

noise requirement implies that both eigenvalues of G must be large, while the conditioning

requirement means that they cannot differ by several orders of magnitude. If the two eigenvalues of G

are /I,and/l2 , then a corner is accepted in a window if min(A,,/t2) > X, where X is a predefined

threshold. The KLT corner detector and tracker (the process of corner detection and tracking are

interrelated) complement each other and have been reported to perform well [190]. In our

implementation of KLT, we independently extracted corners from each frame, thus eliminating any

bias that might be introduced by the KLT tracker.

3.3 Performance Measures for Assessing the Quality of Corners for \
Tracking j

j .
A requirement for point feature tracking is that, having found corners in one frame, the same corners

should be found and matched in successive frames, thereby constructing a time history of corners and j

allowing their motion to be analyzed. The ability to consistently find and match corners in this way

relies on the corners being temporally stable and well localized [157]:
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• Good temporal stability - corners should appear in every frame of a sequence (from the time they

are first detected), and should not flicker (turn on and off) between frames.

• Accurate localization - the calculated image-plane position of a corner, given by the detector,

should be as close to the actual position of the corner as possible.

Apart from the above two properties that are crucial for tracking features, a good corner detector

should also be robust with respect to noise, and be efficient (computationally cheap to calculate) to

run in real-time (or near real-time).

The Kitchen-Rosenfeld, The KLT, the Harris and the Smith corner detectors have been used for

tracking applications in the past and have been reported to have good corner detection properties

[134]. The Harris detector was originally developed as part of the DROID 3D vision algorithm [84]

and was designed to be temporally stable. The Smith detector was used in the ASSET series projects

[172]. ASSET used the 2D image-plane flow of corners to segment a scene into independently

moving objects. The Kitchen-Rosenfeld detector is widely reported and has been used in many varied

applications [162, 67]. The Lucas-Kanade-Tomasi detector was employed for the KLT tracker [190]

successfully. Cox et al have also used a variant of this detector for their MHT tracker [58]. All four

corner detectors were reported to perform well as part of their respective motion algorithms.

In this chapter, we use the corner localization and corner temporal stability properties to assess the

quality of corner detectors for tracking applications (it is worth noting here that the internal

parameters of each corner detector were adjusted to give the best possible result). A common ground

to assess these corner detectors was essential. The best possible scenario was to use static image

sequences. By definition, static scenes contain no moving objects and therefore no moving corners. If

images could be captured with zero noise, all corners in a static scene would remain completely

stationary in the image and would be seen in every frame. Unfortunately, this is not the case, and

noise is always present in an image. A static scene is therefore an ideal way to assess the performance

of corner detectors, because the motion induced by the movements of the camera are known to be zero

and any failures of the detectors are due entirely to image-plane (sensor) noise.

j
j.

The experiments were carried out on a variety of image sequences. First, an indoor image sequence of \

a toy dog is used with only artificial light interference (page 51). Secondly, an outdoor sequence of a j

building is considered (illuminated only with natural lighting, page 56). Then we considered an indoor j

lab sequence (page 60) with plenty of identifiable corners (also contained direct light sources).

Finally, we used a computer image sequence (page 62) with lots of light reflections and curved \

objects. All four sequences (30 frames in length) were static (with no motion), so that the appearance j
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and disappearance of comers in each frame was purely due to image plane noise and illumination

conditions. Such a setup is ideal to analyze the stability and localization properties of the comers.

Finally we considered 2 sequences with very small motion (about a pixel per frame motion) to assess

the robustness of the comer detectors under very small motion (the Coke and the Rubic sequences, see

Appendix G). Since the analysis was based on an automated tracking process, matching a comer in

every frame required a suitable comer matcher (we avoided manual matching to emulate a true

tracking scenario). In the following section we discuss two comer matchers, and later in the chapter

we evaluate their effectiveness (reliability) for comer matching.

3.4 Matching Corners

The feature tracking process is implemented by first extracting comer features from every frame of a

static image sequence using a comer detector, and then finding a match between every comer in the

initial frame and the subsequent frames. Therefore, it is important to employ a reliable feature

matching strategy to correlate features between frame (no special tracking algorithms were required

for this experiment).

Feature motion prediction is never completely accurate due to image i?oise, poor motion prediction or

random motions of the camera. It is therefore very common to search for a matched feature in a

Region of Interest (ROI), around the predicted position of the feature in the image-plane [168]. The

simplest method of comer matching is to declare the strongest comer within the ROI as being the

same comer feature as the one in the previous frame using only comer positional information

(commonly known as the nearest neighbor block matching technique). Although this is

computationally very efficient, it is not very robust due to the presence of noise, and more

significantly due to the presence of other (stronger) comers that may enter the ROI. A more reliable

matching scheme is therefore required to prevent mismatches occurring. In the following sub-sections

we discuss 2 matching schemes that have been successfully employed in many tracking applications.

They are the Gradient Vector Matcher [84, 157] and the Product Moment Coefficient Matcher [168].

3.4.1 Gradient Vector Matcher (GVM)

The GVM was developed as part of the DROID project [84]. The DROID algorithm generated a

match confidence by comparing the image-plane intensities and spatial gradients of the comer pixels

to be matched. All comers with a low value of C {i.e. strong comers) are considered candidate comers

for a match with the current comer. The philosophy behind this matcher is that as much of the
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information as possible already available via the feature extraction process should be used. Three

image attributes are compared, these being I (grey-level intensity), î  {average grey-level x-gradient),

and i'v {average grey-level y-gradient). 1^ and l'v are calculated by taking the square roots of

< 1̂  > and < I* > at each pixel, and by averaging over a 3 x 3 neighborhood.

Grey level intensities tend to vary from frame to frame, and so directly comparing I , IV and Iv of the

candidate corner's pixels is not very robust. Most cameras have an automatic iris which regulates the

amount of light falling on to the CCD, preventing it from becoming flooded. The implication of this

is that bright objects in one part of an image will effect the grey-level values of objects in other

regions of the same image. A vector is constructed from the three components, I , 1̂  and I', and

compared to the equivalent vector of the current corner (see Fig. 3.4). A match confidence value

w(v,w) may then be calculated by comparing the normalised magnitude of the difference vectors

between each candidate corner vector (w) and the current corner's vector (v). As shown by Equation

(3.5).

|v-w|
m(v,w) = (3.5)

Because linear changes in I result in linear changes in both 1̂  and 1^,, this method is invariant to

linear changes in lighting conditions. The candidate corner which has the minimum value of w?(v,w),

as long as it is below a predefined threshold, is then declared the matched corner. This threshold

therefore sets the quality of the match.

Current corner

Candidate comer

I.

Figure 3.4: The Gradient Vector Matcher (GVM) - match vector
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3.4.2 Product Moment Coefficient Matcher (PMCM)

Shapiro, et ah [168] used a template matching technique to find corner matches. The confidence

measure used was the product moment coefficient, given by Equation (3.6).

cor —
i=\ -\<cor<\, (3.6)

-=\2

Where t; and pt are the intensity values of the template and patch respectively (the template is the

area of image about the corner to be matched, and the patch is the area of image about the candidate

corner pixel in the subsequent image), I and p are their means. As with the gradient vector matcher,

this measure is also invariant to lighting changes and therefore compares the structure of the patches.,

rather than their absolute intensities. Only positive values of cor are considered since a negative value

would imply an intensity inversion. A perfect correlation is obtained when cor = 1. As with the GVM,

a threshold is used to set the quality of the matches. Only matches having a value of cor above this

threshold are therefore considered successful matches.

3.5 The Localization and Stability Tests of Corners

The temporal stability test/comparison was constructed so that a stable corner was defined as a corner

that had been successfully tracked throughout the image sequence from the first frame until the

current frame. The localization accuracy test differed from the temporal stability test, in that corners

that had been successfully tracked for d frames (d = 3 in the experiments reported in this chapter) up

to and including the current one were used to compare the positional accuracy of the corner detectors.

The temporal stability (number of stable corners) and the localization accuracy (corner displacement-

CD) measures were defined as follows:

The number of stable corners is defined by Eq. (3.7),

F U

No. of stable corners = ^ 2_j a 0> ' (3.7)

where,
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f 1 if the / - th corner has been tracked for / frames
a(U) = {

0 otherwise

where N equals the total number of corners and Fthe total number of frames in the image sequence.

The Corner Displacement-CD (pixels) is given by Eq. (3.8) for the Mh frame.

t,{b(i,t)x([xi(t)-xi(t-\)]
2
+[yi(t)-yi(t-l)f)

U2}
CD, = ̂  j (3-3)

where.

[l if the / - th corner has been tracked for d frames, and has appeared in frames /-/ and t
b(i,t) = <

[0 otherwise

The mean corner displacement - fx, variance of corner displacement - cr, the percentage of stable

corners (/) successfully tracked, and the number of corner matches in a frame are also useful

indicators of the overall performance of each of the corner detectors. These measures are defined as

given below.

The Mean Corner Displacement (MCD):

1 F

CD, (3.9)

The variance of corner displacement (<f):

a2(CD) = —^—fj(CDl-MCD) (3.10)

Note: The value d (taken to be 3 in this chapter, but can be set to any value) appears because we

declare a track valid only if it has been tracked for more than d frames.
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The percentage of stable corners at the /-th frame:

r,=
Number of stable corners in frame t

K Total no of corners in frame 1 J

x/00 (3-11)

The number of corner matches:

The number of comers found in each frame of a sequence that appeared in the initial frame (not

necessarily stable corners). The mean matches - jufmat), is simply the average of matches across the

image sequence, and cr (mat), is the variance for the comer matches.

These overall performance measures are calculated for each comer detector using both matching

methods (GVM and PMCM) for the test image sequences considered.

3.6 Results

1. Corner stability result: The comer stability result reveals the number of stable comers identified

throughout the sequence. In other words, the comers that appeared in every frame of the sequence

are considered stable comers. The result is given as a percentage of the total number of comers

extracted in the initial frame.

2. First frame corner matches result: This quantity indicates the number of comers found in the

initial frame that appeared in the subsequent frames. These comers might not have appeared in

every frame (appeared and disappeared throughout the sequence), but might have made their

appearance in most number of frames. The mean of this quantity will give the average number of

comers that were matched throughout the sequence. The first frame comer matches along with

comer stability result gives a good indication of the comer detector's stability property.

3. Corner displacement result: The comer displacement result reveals the displacement of a comer

in the n-th frame from its position in the initial frame (assuming that the comer considered

appeared in the 77-th frame). If the corner considered did not make an appearance in any one of the

subsequent frames, then a vaiue of CD = 3 pixels (displaced by 3 pixels) are assigned, indicating

poor localization of that comer. The mean comer displacement value will indicate the average

displacement of a comer from its initial position. An important aspect to notice for this test is the
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assumption that the positions of the comers in the first frame of a sequence are considered correct.

Such an assumption may not be correct from a theoretical point of view, but from a practical

sense, it is acceptable. This is because one would normally like to track object features from the

initial frame that they view, therefore it makes sense to make the positions of the corners in the

initial frame as the reference positions.

The following experiments are carried out using the above measures to assess the quality of comers

extracted by the 4 comer detectors.

Experiment 1 - General performance: The above properties (1-3) are measured for each of the

sequences considered.

Experiment 2 - Performance under noise: Uncorrelated Gaussian noise is added to each frame of a

sequence at a specified level (experiments were carried out with noise variance ranging from 0 - 25).

The 4 comer detectors are applied on the noisy sequence, and the 3 comer properties are observed at

each noise level considered.

Experiment 3 - Performance with very small motion: Two sequences (the Coke and the Rubic

sequence) with very small motion (around 1 pixel inter-frame motion) are considered (The results are

reported in Appendix A). The 3 comer properties are measured to assess the quality of comers

extracted by each detector when a small motion is present.

The complete results for all the experiments carried out are tabulated in Tables 3.1 - 3.12. The results

are also quantitatively and qualitatively displayed in Figures 3.5 - 3.14.
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Dog Sequence Results (Comparing 2 different patch sizes)

Detectors

Threshold

Patch size

GVM

GVM

GVM

GVM

GVM

PMCM

PMCM

PMCM

PMCM

PMCM

p(CD)

cr^CD)

H (mat)

(^(mat)

7(%)

H(CD)

o^CD)

(i (mat)

tf^mat)

y(%)

Harris

g\'m-0.009 /pmcm-0.7

5x5

0.4928

0.0073

91.6897

2.69

82.5

0.4465

0.0034

91.8276

2.76

82.5

7x7

0.4928

0.0073

91.6897

2.69

82.5

0.4523

0.0034

92.2069

2.71

82.5

KIT .

gvm-0.009 /pmcm-0.7

5x5

0.3038

0.0017

97.2759

0.61

93.0

0.3329

0.0010

94.6897

1.38

88.0

7x7

0.3038

0.0017

97.2759

0.61

93.0

0.3323

0.0006

94.2069

1.06

88.0

Kitchen-Rosenfeld

gvm-0.009 /pmcm-0.7

5x5

0.3875

0.0036

92.1379

1.70

79.8

0.3407

0.0005

93.0345

1.89

82.8

7x7

0.3875

0.0036

92.1379

1.70

79.8

0.3407

0.0005

93.0345

1.89

82.8

SUSAN

gvm-0.009 /pmcm-0.7

5x5

1.1894

0.0141

81.5862

4.44

62.2

1.3716

0.0051

74.7241

6.61

49.0

7x7

1.1894

0.0141

81.5862

4.44

62.2

1.3517

0.0041

74.5500

5.69

50.0

Table 3.1: Dog sequence result. The performance of the 4 corner detectors using different image patch sizes to
match the corners in successive frames.

Building Sequence Results (Comparing 2 different patch sizes)

Detectors

Threshold

Patch size

GVM

GVM

GVM

GVM

GVM

PMCM

PMCM

PMCM

PMCM

PMCM

n(CD)

o*(CD)

H (mat)

o^mat)

Y(%)

H(CD)

c2(CD)

H (mat)

a2(mat)

Y(%)

Harris

gvm-0.009 /pmcm-0.7

5x5

0.5515

0.0029

130.68

5.17

76.82

0.5779

0.0012

126.62

7.54

70.2

7x7

0.5515

0.0029

130.68

5.17

76.82

0.5029

0.0005

129.27

6.61

72.8

KLT

gvm-0.009 /pmcm-0.7

5x5

0.2756

0.0010

141.03

3.82

84.6

0.4509

0.0008

130.48

7.76

70.0

7x7

0.2756

0.0010

141.03

3.82

84.6

0.4160

0.0008

133.51

5.00

74.0

Kitchen-Rosenfeld

gvm-0.009 /pmcm-0.7

5x5

0.8817

0.0073

115.89

32.50

53.7

0.8164

0.0078

114.20

32.78

51.6

7x7

0.8817

0.0073

115.89

32.50

53.7

0.8013

0.0070

114.75

29.35

53.0

SUSAN

gvm-0.009 /pmcm-0.7

5x5

1.2463

0.0048

118.31

18.28

49.0

1.3986

0.0098

103.41

23.55

38.4

7x7

1.2463

0.0048

118.31

18.28

49.0

1.3366

0.0061

106.00

21.58

41.7

Table 3.2: Building sequence result. The performance of the 4 corner detectors using different image patch
sizes to match the corners in successive frames.
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Dog Sequence Results (effect of synthetic noise)

Corner Detector

Patch Size

Noise Variance

Threshold

GVM

GVM

GVM

GVM

GVM

PMCM

PMCM

PMCM

PMCM

PMCM

H(CD)

a2 (CD)

(i (mat)

CT^mat)

y(%)

Ji(CD)

a1 (CD)

(i (mat)

cr^mat)

Y(%)

KLT

5 x 5

a = 0

Tl

0.6154

0.0011

85.82

3.65

69.0

0.3329

0.0010

94.68

1.38

88.0

T2

0.3038

0.0017

97.27

61.36

93.0

0.4463

0.0007

90.24

4.11

77.0

CT = 5

Tl

1.6935

0.0229

62.58

14.58

27.0

0.8426

0.0034

83.89

2.78

65.0

T2

0.5753

0.0058

93.37

3.26

80.0

1.6325

0.0166

60.68

14.21

32.0

a = 10

Tl

2.5644

0.0150

37.65

26.63

8.0

1.5879

0.0072

62.06

6.47

40.0

T2

1.0194

0.0121

87.86

4.80

67.0

2.6482

0.0128

29.17

10.07

7.0

c=15

Tl

2.8511

0.0080

20.75

10.04

1.0

2.3133

0.0047

43.03

9.96

21.0

T2

13481

0.0161

82.44

8.86

55.0

2.9498

0.0002

8.96

5.13

1.0

a = 20

Tl

2.9669

0.0018

13.86

6.18

0.0

2.7082

0.0047

26.10

3.54

9.0

T2

1.7534

0.0094

77.17

11.38

44.0

3.0000

0.0000

224

2.25

0.0

a = 25

Tl

2.9992

0.0000

9.55

9.2818

0.0

2.8887

0.0024

16.20

6.85

2.0

T2

1.9681

0.0079

71.93

6.13

42.0

3.0000

0.0000

0.5517

0.5922

0.0

Table 3.3: Indoor Dog Sequence result using KLT: Comparison of GVM (Tl^O.0007, T2=0.009) and PMCM
(Tl=0.7, T2=0.9) performances at varied noise levels for the KLT corner detector. The corner displacement
(CD), number of matches (mat) and the percentage of features at the end of tracking $ are performance
measures for the comparison.

Corner Detector

Patch Size

Noise Variance

Threshold

GVM

GVM

GVM

GVM

GVM

PMCM

PMCM

PMCM

PMCM

PMCM

It (CD)

a1 (CD)

H (mat)

a2 (mat)

y(%)

H(CD)

a2 (CD)

\i (mat)

a2 (mat)

Y(%)

Harris

5 x 5

a = 0

Tl

0.3934

0.0104

83.24

6.45

68.0

0.3641

0.0060

90.96

2.51

86.0

T2 ,

0.3403

0.0083

90.41

1.27

86.0

0.3114

0.0038

88.48

3.00

79.0

a = 5

Tl

2.0322

0.1415

38.24

28.99

8.0

1.2724

0.0742

73.24

19.01

41.0

T2

1.2753

0.0256

80.65

8.91

60.0

1.7583

0.2150

24.51

7.56

7.0

a = 10

Tl

2.5305

0.0984

35.34

16.91

5.0

1.5822

0.0293

71.72

12.06

37.0

T2

1.6972

0.0120

74.48

7.83

46.0

2.2304

0.0764

35.89

25.81

8.0

a=15

Tl

2.3553

0.1880

25.24

24.39

3.0

2.0836

0.0744

56.13

31.84

19.0

T2

2.1034

0.0247

68.86

19.77

34.0

2.2716

0.1*45

13.10

7.05

2.0

a = 20

Tl

2.9470

0.0008

16.20

10.44

2.0

2.7022

0.0161

38.89

15.61

6.0

T2

2.5024

0.0089

58.13

19.36

23.0

2.9958

0.0001

3.86

2.94

0.0

CT = 25

T l

2.9420

0.0029

14.75

10.73

1.0

2.6502

0.0068

37.17

12.69

10.0

T2

2.6703

0.0050

44.03

19.06

14.0

2.9543

0.0028

19.58

14.03

0.0

Table 3.4: Indoor Dog Sequence result using Harris: Comparison of GVM (TI=0.0007, T2=0.009) and PMCM
(Tl=0.7, T2-0.9) performances at varied noise levels for the Harris corner detector. The corner displacement
(CD), number of matches (mat) and the percentage of features at the end of tracking $ are performance
measures for the comparison.
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Corner 1

Patch

Detector

Size

Noise Variance

Threshold

GVM

GVM

GVM

GVM

GVM

PMCM

PMCM

PMCM

PMCM

PMCM

H(CD)

a2 (CD)

fi (mat)

a2 (mat)

y(%)

ji(CD)

a2 (CD)

{i (mat)

a2 (mat)

Y(%)

Dog Sequence 1Results (effect of synthetic noise) Cont.

Kitchen-Rosenfeld

u-

Tl

0.3205

0.0100

86.68

2.21

74.7

0.2779

0.0075

93.03

1.89

82.8

= 0

T2

0.3814

0.0083

92.13

1.70

79.8

0.3616

0.0176

89.86

3.08

74.7

a =

Tl

2.2135

0.1487

38.27

19.57

8.1

1.4155

0.0802

63.17

11.86

31.3

= 5

T2

1.4076

0.0411

71.96

13.48

46.4

2.1143

02044

20.10

8.98

5.0

a =

Tl

2.5095

0.1623

36.10

21.12

3.0

1.9138

0.0541

60.86

19.63

25.2

5 ?

10

T2

2.0331

0.0207

63.13

19.22

30.3

2.2344

0.0811

33.58

27.22

6.0

c5

u =

Tl

2.4975

0.1094

24.13

18.18

3.0

22036

0.0798

43.44

15.00

is.:

15

T2

2.2025

0.0391

54.96

14.37

24.24

2.5165

0.1951

11.44

5.14

1.0

CT =

Tl

2.6869

0.0280

15.58

8.86

1.0

2.8421

0.0091

28.20

18.85

4.0

20

T2

2.5025

0.0290

46.13

16.32

13.1

3.0000

0.0000

2.3793

2.2354

0.0000

a = 25

Tl

2.9684

0.0008

13.37

18.02

0.0

2.8773

0.0073

25.93

21.65

4.0

T2

2.8622

0.0058

32.10

30J6

5.0

2.9543

0.0029

13.68

23.38

1.0

Table 3.5: Indoor Dog Sequence result using KitchenRosenfeld: Comparison of GVM (Tl =0.0007, T2=0.009)
and PMCM (TJ=0.7, T2=0.9) performances at varied noise levels for the KitchenRosenfeld corner detector.
The corner displacement (CD), number of matches (mat) and the percentage of features at the end of tracking
(y) are performance measures for the comparison.

Comer Detector

Patch Size

Noise Variance

Threshold

GVM

GVM

GVM

GVM

GVM

PMCM

PMCM

PMCM

PMCM

PMCM

H(CD)

a1 (CD)

H (mat)

a2 (mat)

Y(%)

H(CD)

cr^CD)

p. (mat)

cr^mat)

r(%)

SUSAN

5 x 5

CT = 0

Tl

1.4463

0.0847

60.82

11.72

28.5

1.1751

0.0232

74.72

6.61

48.9

T2

1.1466

0.0222

81.58

4.44

62.2

1.3405

0.0428

62.51

15.90

31.6

a = S

Tl

2.8709

0.1195

19.00

28.62

0.0

2.5527

0.0726

40.72

30.68

5.1

T2

2.3452

0.0211

69.10

19.67

21.4

2.9301

0.0375

12.20

18.64

0.0

CT = 10

Tl

2.9810

0.0046

10.58

12.72

0.0

2.8621

2.0203

31.75

18.32

1.0

T2

2.5889

0.0271

54.34

9.19

11.2

2.9575

0.0147

11.0

7.10

0.0

c = 15

Tl

2.8080

0.2359

6.27

7.44

0.0

2.8499

0.1057

19.72

25.99

0.0

T2

2.7320

0.0453

46.10

16.78

7.1

2.9259

0.1427

2.34

2.70

0.0

a = 20

Tl

3.0000

0.0000

3.62

6.51

0.0

3.0007

0.0001

11.48

16.04

0.0

T2

2.9413

0.0045

36.68

34.48

4.0

3.0000

0.0000

0.31

0.62

0.0

a = 25

Tl

3.0000

0.0000

3.96

3.75

0.00

2.9932

0.0004

20.10

16.92

0.0

T2

2.9667

0.0031

34.51

19.28

1.0

2.9991

0.0000

6.34

12.15

0.0

Table 3.6: Indoor Dog Sequence result using SUSAN: Comparison of GVM (Tl=0.0007, T2=0.009) and PMCM
(Tl=0.7, T2=0.9) performances at varied noise levels for the SUSAN corner detector. The corner displacement
(CD), number of matches (mat) and the percentage of features at the end of tracking $ are performance
measures for the comparison.
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(c) Using Kitchen-Rosenfeld (d) Using SUSAN

Figure 3.5: The best 100 corners extracted from the indoor static dog sequence, (a) Using KLT corner detector, (b) Using Harris corner detector, (c) Using Kitchen-
Rosenfeld corner detector, (d) Using SUSAN corner detector.
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Dog Sequence Results (Performance vs. Number of Frames)
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Figure 3.6: Corner detector performance-test for the 'static dog' sequence (the best 100 corners as seen by each
detector are extracted from each frame), (a) The KLT, Harris, Kitchen-Rosenfeld and SUSAN comer detectors
are assessed for stable comers (percentage) using GVM matcher, (b) Stable comers compared using the
PMCM matcher, (c) Comer displacement test using GVM matcher, (d) Comer displacement test using PMCM
matcher, (e) Number of successful first frame comer matches using GVM. (f) Number of successful first frame
comer matches using PMCM. In all 3 tests the KLT comer detector gives the best performance (for both
matchers) followed by Harris, Kitchen-Rosenfeld and SUSAN detectors.
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Dog Sequence Results (variation with noise)

10 15
Noise variance
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Figure 3.7: Performance of the comer detectors when applied to the static dog sequence at varied noise levels
(noise variance ranging from 0 - 25). (a) The percentage stable comers using GVM matcher, (b) The
percentage stable comers using PMCM matcher, (c) The number of first frame comer matches using GVM. (d)
The number of first frame comer matches using PMCM. (e) Comer displacement using the GVM. (f) Comer
displacement using the PMCM.
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Building Sequence Results (effect of synthetic noise)

Comer Detector

Patch Size

Noise Variance

Threshold

GVM

GVM

GVM

GVM

GVM

PMCM

PMCM

PMCM

PMCM

PMCM

H(CD)

a2 (CD)

|i (mat)

a2 (mat)

y(%)

H(CD)

CT^CD)

p. (mat)

a2 (mat)

T(%)

KLT

5x5

CT = 0

Tl

0.8852

0.0041

109.96

29.68

46.6

0.4556

0.0008

130.24

8.25

69.3

T2

0.2782

0.0009

140.82

4.48

83.3

0.8026

0.0031

112.79

20.92

52.0

a = 5

Tl

2.6980

0.0171

43.27

38.82

4.6

1.8354

0.0135

79.86

33.70

25.3

T2

0.8931

0.0030

130.06

9.37

64.0

2.6074

0.0137

38.82

18.55

7.3

(J=10

Tl

2.9343

0.0010

14.41

14.10

1.3

2.8133

0.0055

29.10

9.88

4.6

T2

1.5726

0.0035

117.48

17.90

48.6

2.9896

0.0002

3.9310

1.58

0.0

a = 15

Tl

2.9671

0.0001

6.7586

10.87

0.6

2.9642

0.0001

8.5862

5.2081

0.6

T2

2.0177

0.0056

103.31

31.45

30.6

3.0000

0.0000

0.6207

0.4423

0.0

a = 20

Tl

2.9897

0.0001

3.4828

7.42

0.0

2.9934

0.0001

2.9310

1.2366

0.0

T2

2.4095

0.0047

89.82

33.65

19.3

3.0000

0.0000

0.2414

0.2521

0.0

a = 25

Tl

2.9946

0.0001

2.4483

1.8335

0.0

3.0000

0.0000

0.8966

0.4376

0.0

T2

2.6025

0.0040

75.65

57.46

16.0

3.0000

0.0000

0.0345

0.0333

0.0

Table 3.7: Outdoor Building Sequence using KLT: Comparison of GVM (Tl=0.0007, T2=0.009) and PMCM
{Tl=0.7, T2—0.9) performances at varied noise levels for the KLT corner detector. The corner displacement
(CD), number of matches (mat) and the percentage of features at the end of tracking H) are performance
measures for the comparison.

Corner Detector

Patch Size

Noise Variance

Threshold

GVM

GVM

GVM

GVM

GVM

PMCM

PMCM

PMCM

PMCM

PMCM

n(CD)

^(CD)

H (mat)

c^Onat)

y(%)

H(CD)

a2 (CD)

\\ (mat)

a : (mat)

y(%)

Harris

5x5

a = 0

Tl

0.5255

0.0253

117.89

17.26

62.2

0.4822

0.0180

126.62

7.54

70.19

T2

0.4416

0.0122

130.68

5.17

76.8

0.5094

0.0263

120.93

10.89

64.2

a = 5

Tl

2.4286

0.0364

68.82

42.41

7.2

1.4535

0.0127

103.51

18.18

34.4

T2

1.3513

0.0104

115.10

16.98

50.3

2.2332

0.0244

76.62

24.78

15.2

o = 10

Tl

2.9414

0.0036

26.34

28.63

0.6

2.5327

0.0215

61.10

50.92

9.9

T2

2.7288

0.0177

87.51

33.28

22.5

2.9641

0.0028

15.89

18.43

0.0

a = 15

Tl

3.0135

0.1150

13.17

19.72

0.6

2.9123

0.0023

26.31

28.00

2.0

T2

2.7603

0.1451

72.82

44.14

9.2

2.9978

0.0001

2.2759

1.9929

0.0

a = 20

Tl

2.9975

0.0001

6.6897

4.00

0.0

2.9908

0.0002

11.89

12.23

0.0

T2

2.8751

0.0027

52.68

46.42

3.9

2.9995

0.0000

1.06

0.61

0.0

a = 25

Tl

2.9965

0.0001

4.2414

3.2176

0.0

2.9911

0.0005

5.3793

7.8216

0.0

T2

2.9490

0.0007

38.86

58.73

2.6

3.0000

0.0000

0.0000

0.0000

0.0

Table 3.8: Outdoor Building Sequence result using Harris: Comparison of GVM (Tl=0.0007, T2=0.009) and
PMCM (Tl=0.7, T2=0.9) performances at varied noise levels for the Harris corner detector. The corner
displacement (CD), number of matches (mat) and the percentage of features at the end of tracking rf are
performance measures for the comparison.
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Building Sequence Results (effect of synthetic noise) Cont.

Corner Detector

Patch Size

Noise Variance

Threshold

GVM

GVM

GVM

GVM

GVM

PMCM

PMCM

PMCM

PMCM

PMCM

H(CD)

f'(CD)

JJ (mat)

(^(mat)

y(%)

H(CD)

CT^CD)

\i (mat)

a2 (mat)

y(%)

Kitchen-Rosenfeld

5x5

a = 0

Tl

0.8621

0.0824

107.89

44.09

46.9

0.8224

0.0801

114.20

32.78

51.6

T2

0.9031

0.0573

115.89

32.50

53.6

0.8465

0.1010

109.34

45.53

46.3

cr = 5

Tl

2.6223

0.0101

53.24

55.97

8.7

2.3928

0.0211

66.93

52.13

10.7

T2

2.3226

0.0131

75.41

41.34

17.44

2.6107

0.0127

50.03

45.6

7.3

a=10

Tl

2.8746

0.0016

25.06

18.47

33

2.8486

0.0058

36.13

34.32

3.3

T2

2.7730

0.0027

52.00

43.24

8.0

2.8915

0.0015

19.13

7.36

2.0

a=15

Tl

2.9377

0.0020

16.34

18.43

1.3

2.9069

0.0010

21.03

18.72

2.6

T2

2.8623

0.0018

38.55

57.14

4.7

2.9820

0.0016

9.5172

4.1807

0.0

a = 20

Tl

2.9708

0.0005

10.96

12.37

0.6

2.9625

0.0010

13.48

4.9394

0.6

T2

2.8804

0.0014

37.44

32.17

4.7

2.9955

0.0001

3.10

1.47

0.0

a = 25

Tl

2.9806

0.0000

6.82

5.52

0.6

2.9797

0.0000

6.7586

9.1486

0.6

T2

2.9610

0.0006

22.03

22.51

2.0

3.0000

0.0000

0.4828

0.3187

0.0

Table 3.9: Outdoor Building Sequence result using KitchenRosenfeld: Comparison of GVM (Tl=0.0007,
T2=0.009) and PMCM (77=0.7, T2=0.9) performances at varied noise levels for the KitchenRosenfeld corner
detector. The corner displacement (CD), number of matches (mat) and the percentage of features at the end of
tracking (y) are performance measures for the comparison.

Comer Detector

Patch Size

Noise Variance

Threshold

GVM

GVM

GVM

GVM

GVM

PMCM

PMCM

PMCM

PMCM

PMCM

n(CD)

a2 (CD)

H (mat)

a2 (mat)

y(%)

H(CD)

(^(CD)

H (mat)

a2 (mat)

Y(%)

SUSAN

5 x 5

a = 0

Tl

1.4536

0.1444

87.41

27.82

25.1

1.2676

0.0768

103.41

23.55

38.41

T2

1.1980

0.0572

118.31

18.28

49.0

1.3243

0.1020

91.51

34.11

31.78

a = 5

Tl

2.9560

0.0015

36.93

23.99

1.3

2.7669

0.0175

69.86

36.73

3.3

T2

2.4322

0.0147

94.96

30.44

13.9

2.9494

0.0067

40.93

28.96

0.0

a=10

Tl

2.9948

0.0002

14.06

15.23

0.0

2.9684

0.0012

35.86

37.22

0.0

T2

2.8880

0.0082

66.17

58.69

3.9

2.9875

0.0002

11.34

11.19

0.0

CT=15

Tl

2.9940

0.0001

8.0690

25.65

0.0

2.9937

0.0002

19.44

30.17

0.0

T2

2.9871

0.0024

48.96

59.55

0.0

2.9936

0.0000

3.1034

5.95

0.0

a = 20

Tl

2.9934

0.0001

3.8276

4.9013

0.0

2.9926

0.0001

10.55

16.38

0.0

T2

2.9910

0.0006

37.72

47.71

0.6

3.0000

0.0000

0.7931

1.1986

0.0

G = 25

Tl

2.9993

0.0000

5.44

6.31

0.0

2.9985

0.0000

9.6552

8.9845

0.0

T2

3.0067

0.0006

36.96

53.89

0.0

3.0000

0.0000

0.4483

0.5922

0.0

Table 3.10: Outdoor Building Sequence result using SUSAN: Comparison of GVM (Tl=0.0007, T2=0.009) and
PMCM (Tl=0.7, T2=0.9) performances at varied noise levels for the SUSAN corner detector. The corner
displacement (CD), number of matches (mat) and the percentage of features at the end of tracking tf are
performance measures for the comparison.
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(c) Using Kitchen-Rosenfeld (d) Using SUSAN

Figure 3.8: The best 150 corners extracted from the outdoor static building sequence, (a) Using KLT corner detector, (b) Using Harris corner detector, (c) Using Kitchen-
Rosenfeld corner detector, (d) Using SUSAN corner detector
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Building Sequence Results (Performance vs. Number of Frames)
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Figure 3.9: Corner detector performance-test for the 'static building' sequence (the best 150 comers as seen by
each detector are extracted from each frame), (a) The KLT, Harris, Kitchen-Rosen)'eld and SUSANcorner detectors
are assessed for stable comers (percentage) using GVM matcher, (b) Stable corners compared using the PMCM
matcher, (c) Comer displacement test using GVM matcher, (d) Comer displacement test using PMCM matcher, (e)
Number of successful first frame comer matches using GVM. (f) Number of successful first frame corner matches
using PMCM. In all 3 tests the KLT comer detector gives the best performance (for both matchers) followed by
Harris, Kitchen-Rosenfeld and SUSAN detectors.
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Building Sequence Results (variation with noise)
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Figure 3.10: Performance of the corner detectors when applied to the static building sequence at varied noise levels
(noise variance ranging from 0 - 25). (a) The percentage stable corners using GVM matcher, (b) The percentage
stable corners using PMCM matcher, (c) The number of first frame corner matches using GVM. (d) The number of
first frame comer matches using PMCM. (e) Comer displacement using the GVM. (f) Corner displacement using
the PMCM.
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Lab Sequence Results

Comer Detector

Patch Size

Threshold {GVM/PMCM)

GVM

GVM

GVM

GVM

GVM

PMCM

PMCM

PMCM

PMCM

PMCM

fi(CD)

a2 {CD)

u (matches)

a2 (matches)

y(%)

H(CD)

a2 (CD)

H (matches)

CT2 (matches)

Y(%)

KLT

5x5

T=0.004

0.3386

0.0005

184.89

4.36

82.5

-

-

-

-

-

T=0.8

-

-

-

-

-

0.4079

0.0003

178.27

5.71

78.0

Harris

5x5

T=0.004

0.2493

0.0014

191.86

3.56

87.0

-

-

-

-

-

T=0.8

-

-

-

-

-

0.2071

0.0003

191.51

4.87

85.5

Kitch-Rosen

5x5

T=0.004

0.5047

0.0053

179.13

11.42

78.9

-

-

-

-

-

T=0.8

-

-

-

-

-

0.4416

0.0023

Ml.21

11.44

76.8

SUSAN

5x5

T=0.004

0.7039

0.0034

176.10

15.47

67.0

-

-

-

-

-

T=0.8

-

-

-

-

-

0.9449

0.0030

157.93

26.13

51.5

Table 3.11: Performance of the 4 corner detectors for the static lab sequence (only a single threshold value is

used for the 2 matchers employed).

Computer Sequence Results

Comer Detector

Patch Size

Threshold (GVM/PMCM)

GVM

GVM

GVM

GVM

GVM

PMCM

PMCM

PMCM

PMCM

PMCM

H(CD)

a2 (CD)

H (matches)

a2 (matches)

Y(%)

H(CD)

a2 (CD)

H (matches)

a2 (matches)

Y(%)

KLT

5x5

T=0.004

0.6212

0.0009

223.44

21.35

73.6

-

-

-

-

-

T=0.8

-

-

-

• -

-

0.9669

0.0021

192.31

67.59

53.6

Harris

5x5

T=0.004

0.3720

0.0015

237.93

14.96

84.2

-

-

-

-

-

T=0.8

-

-

-

-

-

0.3915

0.0002

229.20

12.71

77.0

Kitch-Rosen

5x5

T=0.004

0.8542

0.0067

210.10

15.54

64.9

-

-

-

-

-

T=0.8

-

-

-

-

-

0.7040

0.0014

205.72

21.23

60.5

SUSAN

5x5

T=0.004

1.5328

0.0064

196.86

30.67

43.7

-

-

-

-

-

T=0.8

-

-

-

-

-

1.8518

0.0204

157.41

41.82

27.7

Table 3.12: Performance of the 4 corner detectors for the static computer sequence (only a single threshold

value is used for the 2 matchers employed).
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(c) Using Kitchen-Rosenfeld Q>) Using SUSAN

Figure 3.11: The best 200 corners extracted from the static lab sequence, (a) Using KIT corner detector, (b) Using Harris corner detector, (c) Using Kitchen-Rosenfeld

corner detector, (d) Using SUSAN corner detector.
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Lab Sequence Results (Performance vs. Number of Frames)
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Figure 3.12: Corner detector performance-test for the 'static lab' sequence (the best 200 comers as seen by each
detector are extracted from each frame), (a) The KLT, Harris, Kitchen-Rosenfeld and SUSAN comer detectors are
assessed for stable comers (percentage) using GVM matcher, (b) Stable comers compared using the PMCM
matcher, (c) Comer displacement test using GVM matcher, (d) Corner displacement test using PMCM matcher, (e)
Number of successful first frame comer matches using GVM. (f) Number of successful first frame corner matches
using PMCM. In all 3 tests the Harris corner detector gives the best performance (for both matchers) followed by
KLT, Kitchen-Rosenfeld and SUSAN detectors.
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(c) Using Kitchen-Rosenfeld (d) Using SUSAN

Figure 3.13: The best 250 corners extracted from the static computer sequence, (a) Using KLT corner detector (b) Using Harris corner detector, (c) Using Kitchen-Rosenfeld
corner detector, (d) Using SUSAN corner detector.
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Computer Sequence Results (Performance vs. Number of Frames)
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Figure 3.14: Comer detector performance-test for the 'static computer' sequence (the best 250 corners as seen by
each detector are extracted from each frame), (a) The KLT, Harris, Kitchen-Rosenfeld and SUSAN corner detectors
are assessed for stable corners (percentage) using GVM matcher, (b) Stable corners compared using the PMCM
matcher, (c) Comer displacement test using GVM matcher, (d) Corner displacement test using PMCM matcher, (e)
Number of successful first frame comer matches using GVM. (f) Number of successful first frame corner matches
using PMCM. In all 3 tests the Harris comer detector gives the best performance (for both matchers) followed by
KLT, Kitchen-Rosenfeld and SUSAN detectors.
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3.7 Discussion

The following sub-sections give detail results on the empirical evaluations carried on the four image

sequences considered.

3.7.1 Test Results for Indoor Dog Sequence

A 30 frame static dog sequence was considered. The 100 best comers as seen by each of the comer

detectors were extracted. Fig. (3.5) shows the qualitative results obtained by applying the 4 comer

detectors with the 100 comers superimposed on the first frame.

3.7.1.1 General Performance

From the results reported in Fig. (3.6) and Tables 3.1, 3.3-3.6, it can be seen that the KLT detector

provided the largest number of stable comers using the GVM matcher with a 0.009 threshold (93%

stable comers) and using the PMCM matcher with a 0.7 threshold (88% stable comers). The number

of first frame comer matches also indicate that KLT provided the best result (Fig. (3.6e,f), Table

(3.3)). About 97% of matches are reported using GVM matcher and about 95% matches are reported

employing the PMCM matcher. The mean comer displacement result indicates that the KLT provided

about 0.3 pixel displacement using both matchers (Fig. (3.6c,d)). Both matchers were also tested with

a more stringent threshold values (0.0007 for GVM and 0.9 for PMCM), and for complete details see

Tables 3.3-3.6. The 2 matchers were tested with 2 different sizes of patches (5x5 and 7x7), but no

significant differences were observed (Table 3.1).

The Harris comer detector also provided equally good results. Fig. (3.6) indicates that 86% stable

comers are detected using GVM matcher (with 0.009 threshold) and about 87% stable comers are

reported using the PMCM matcher (with 0.7 threshold). The first frame comer matches also shows

that about 90% matches are found using GVM and PMCM matchers for the same threshold values.

The mean comer displacement result suggest that the Harris detector is as good as the KLT detector in

providing around 0.3 pixel displacement for both matchers, which indicate good comer localization

property. Tests carried out using tighter threshold values (GVM wit 0.0007 and PMCM with 0.9) are

reported in Table 3.4, which shows that Harris detector performed better than the KLT detector. As

before, the difference in patch sizes did not result in significant difference for each of the tests carried

out (Table 3.1).
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Kitchen-Rosenfeld detector resulted with about 82% stable comers using GVM with a threshold of

0.009 and about 84% using PMCM with a 0.7 threshold. The number of first frame matches and mean

corner displacement are as good as for the Harris detector (Fig. (3.6)). Again with tighter thresholds,

the performance results are refined as one might expect (see Table (3.1)).

The SUSAN detector is the least impressive of the 4 detectors (Fig. 3.6). Only around 62% stable

corners are reported using GVM 'with 0.009 threshold) and about 50% using PMCM matcher (with

0.7 threshold). The mean first frame comer matches also indicate that on average only about 80%

corners are matched throughout the sequence using GVM, and about 75% using PMCM matcher. The

mean comer displacement result shows that about 1.2 pixel displacement is observed using GVM, and

about 1.35 pixels using PMCM. This suggests poor localization of comers for the sequence

considered. Tighter matching constraints resulted in 0% stable comers detected (for both matchers)

and a poor mean comer displacement (see Table (3.6)). A value of 3 pixels is assigned (indicating

poor localization property) for comer displacement if there was no valid match of a comer is reported.

3.7.1.2 Performance under Noise

We observed the results of the 4 comer detection algorithms on the same sequence, after adding

Gaussian noise to each frame (apart from frame 1) at varied noise levels (with noise variance ranging

from 0 - 25) prior to applying the detectors. The results are reported in Tables (3.3)-(3.6) and Fig.

(3.7). As expected the quality of result decreases rapidly with added noise. The stable comers using

KLT dropped from 90% (at a2 = 0) to about 40% (at a2 = 25) using GVM (at threshold 0.004), while

Harris performance dropped from around 83% to 15%, Kitchen-Rosenfeld dropped from about 80%

to 8%, and SUSAN dropped from 60% to 0 %. Added noise has more effect using the PMCM

matcher (0.8 threshold), because it uses an image patch correlation technique to match comers in

consecutive frames, thus the result can be somewhat inaccurate (See Fig. (3.7b,d,f)). The number of

first frame comer matches also follows similar trend as the stable comers. The mean comer

displacement also deteriorates rapidly with noise. KLT provided around 0.3 pixels at a2 = 0, which

increased to nearly 2 pixels at a2 =25, while Harris result jumped from around 0.3 pixel to 2.5 pixels

for the same range of noise variation. Kitchen-Rosenfeld detector reported similar comer

displacement values to Harris method, while using SUSAN, the displacement increased from 1.2

pixels to nearly 3 pixels. Similar trends are also reported using the PMCM matcher (Fig (3.7)). The

overall experiments suggest that KLT and Harris comer detectors still outperform the Kitchen-

Rosenfeld and SUSAN detectors under noise.
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3.7.2 Test Results for Outdoor Building Sequence

A 30 friame 'static outdoor building' sequence with only natural lighting was considered. The 150 best

comers as seen by each of the comer detectors were extracted. Fig. (3.8) shows the qualitative results

obtained by applying the 4 comer detectors.

3.7.2.1 General Performance

From results reported in Fig. (3.9) and Tables (3.7-3.10), it is clear, that in general the number of

percentage stable comers tracked by all 4 detectors are less than for the dog sequence. The KLT

provided the best result using GVM matcher (with 0.009 threshold) with about 85% stable comers,

followed by Harris detector with around 80%, Kitchen-Rosenfeld with 55%, and SUSAN with only

50% stable comers. Using PMCM matcher (with 0.7 threshold), KLT and Harris provided around

70% stable comers, followed by Kitchen Rosenfeld (50%) and SUSAN (40%) detectors. The average

number of first frame comer matches using GVM is significantly higher for KLT (with around 140

corner matches), followed by Harris (with 130), then Kitchen-Rosenfeld and SUSAN with each

around 117 matches. Using PMCM matcher, the KLT and Harris provide around equal number of

match (130), followed by Kitchen-Rosenfeld (110) and SUSAN (100) detectors. The comer

displacement test again reveals that KLT provides the best localization property with around 0.25

pixel displacement, which is followed by Harris (0.4 pixels), Kitchen-Rosenfeld (1 pixel), and

SUSAN (1.5 pixels) detectors. Comer displacement test using PMCM (with 0.7 threshold) revealed

that, KLT and Harris provide around 0.4 pixel displacement, followed by Kitchen-Rosenfeld (0.8

pixel), and SUSAN (1.4 pixels) detectors.

3.7.2.2 Performance under Noise

All 4 comer detectors were subject to extract comers from noisy frames of the building sequence

(Gaussian noise is added at different variances ranging from 0 - 25). The results observed are

tabulated in Tables (3.7-3.10) and Figure 3.10. KLT still provided the best result for the most number

of stable comers using GVM (at 0.004 threshold), providing around 20% stable comers at noise

variance a2 = 25, while the other 3 detectors provided only around 5% at a2 = 25. With PMCM (at 0.8

threshold), all four comer detectors resulted with 0% stable comers at a2 = 25. This is expected, as

outdoor sequences already have image plane noise, and by adding extra noise, causes the PMCM

correlation matcher to result in very low match coefficient. The number of first frame comer matches

using GVM resulted with KLT having around 80 matches at noise variance at a2 = 25, followed by

Harris (40 matches), Kitchen-Rosenfeld (40 matches), and SUSAN (with 0 matches). Using PMCM

(with 0.8 threshold) provided around 10 matches for all 4 detectors at a2 = 25. The mean comer
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displacement for KLT at a2 = 25 is around 2.1 pixels, which is followed by the other 3 detectors

providing around 3 pixels displacement. The same experiment using PMCM results with all 4

detectors providing 3 pixels displacement, indicating poor quality corner localization under

considerable noise.

3.7.3 Test Results for the Static Lab Sequence

A 30 frame lab sequence with direct light interference was considered. The 200 best comers as seen

by each of the detectors are extracted, and are qualitatively displayed in Fig. (3.11).

3.7.3.1 General Performance

The results reported in Table 3.11 and Figure (3.12) indicate that Harris detector provided the best

result for this sequence. Harris provide nearly 90% stable comers while KLT provided about 82%

stable comers. Kitchen-Rosenfeld and SUSAN detectors resulted with 80% and 67% stable comers

respectively using the GVM matcher (with 0.004 threshold). The number of iirst-frame comer

matches also indicate that Harris gives the highest number of matches than the other detectors (a mean

of 192 for Harris, 185 for KLT, 177 for Kitchen-Rosenfeld and 173 for SUSAN) using the GVM

matcher. The mean comer displacement result also shows that Harris provides the best result with

around 0.25 pixel displacement, followed by KLT with 0.3 pixel, Kitchen-Rosenfeld with 0.5 pixel,

and SUSAN with 0.7 pixel displacement using GVM matcher. The trends in observations are

consistent when employing the PMCM matcher with a 0.8 threshold.

3.7.4 Test Results for the Static Computer Sequence

A 30 frame computer sequence with light reflections was considered. This sequence had plenty of

curved objects, with less easily definable comers, thus presenting a challenge for each of the comer

detectors. The 250 best comers extracted using each comer detector are displayed in Fig. (3.13).

3.7.4.1 General Performance

Figure (3.14) and Table 3.12 shows that Harris detector again provided the best result for the most

number of stable comers (85%), followed by KLT (75%), which is followed by Kitchen-Rosenfeld

(65%) and SUSAN (45%) detectors using the GVM matcher (0.004 threshold). The observations are

similar for PMCM (0.8 threshold) except Kitchen-Rosenfeld performed better than KLT detector (see

Fig. (3.17b,d,f)). The number of first frame matches also show that Harris with around 240 matches

on average outperformed the KLT (220 matches), the Kitchen-Rosenfeld (210) and the SUSAN (195)
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detectors for both matchers. The mean corner displacement result also suggest that Harris provides the

lowest displacement with 0.4 pixel, followed by KLT with 0.6 pixel, followed by Kitchen-Rosenfeld

(0.9 pixel) and SUSAN (1.4 pixel) detectors for the GVM matcher. The results are consistent when

using the PMCM matcher.

3.7.5 Overall Observation of Results

The overall observation of the results suggest that the KLT and Harris corner detectors are more

suitable for tracking features in long sequences, while Kitchen-Rosenfeld and SUSAN are less

reliable for long term corner tracking.

Further tests carried out (not reported in this chapter due to space limitations) also suggest that for

tracking large number of corner points, Harris provides slightly better result than KLT, while for

tracking small number of corners, KLT provides better quality results. It is also observed that for

sequences with varying light sources, Harris detector provides better quality results than KLT. The

qualitative results also show (Figs. 3.5, 3.8, 3.11, 3.13) that KLT picks the best N corners from all

parts of the image frame (which is highly desirable for multiple object tracking) while the other

detectors tend to pick corners from objects where there is significant difference in contrast. Kitchen-

Rosenfeld and SUSAN detectors also tend to pick several corners from edges (despite 'edge

suppression' applied to the detectors), which is undesirable for point feature tracking applications.

The empirical evaluations also shed some insight into the matcher's ability to correctly associate

corners. The overall results suggest that for an indoor sequence, GVM or PMCM give equally good

results, but for an outdoor sequence the GVM provides better quality result. This is expected, because

the PMCM matcher compares a patch of image information surrounding the corner in two frames.

With image plane noise (generally the case for outdoor images) one would expect a reduced

correlation coefficient, which in turn leads to less reliable results. The two patch sizes examined did

not make a significant difference, which indicates that a 5 x 5 image patch size is adequate for most

applications. Setting matcher threshold is more of a design issue. It is important that threshold chosen

should impose restraints for dis-allowing false corners being accepted as correct match.

These results pose the question; which is best, a matcher that produces a few good matches per frame

?, or a slightly less accurate matcher that produces more matches, but also produces a few bad

matches ?. It is the opinion of the author that a matcher that produces a high number of matches (also

with high percentage of stable corners) is preferable, even if the data generated contained bad

matches. A good tracking algorithm will be able to discard bad matches over a period of time.
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From the results reported in this chapter, it is reasonably clear that the KLT and Harris detectors are

appropriate corner extractors to track point features in long image sequences, with GVM as the

preferred matcher particularly for outdoor sequences, and PMCM for indoor sequences (easier to

implement than GVM). Further feature tracking examples with considerable motion in image

sequences are discussed in the next chapter in detail. In such cases we employ tracking algorithms to

estimate the likely position of features in subsequent frames.

3.8 Conclusion

The results are interesting because unlike the Harris and Kitchen-Rosenfeld detector, the Smith

detector uses no spatial derivatives. Spatial derivatives are normally associated with poor performance

in the presence of noise since they magnify its effect, and hence it would be expected that the Smith

detector would perform better than the Harris and the Kitchen-Rosenfeld detectors in the presence of

noise (assuming that both detectors perform equally as well when there is no noise present). This is

clearly not the case. A possible explanation for these results is that the Harris detector has a built-in

smoothing function as part of its formulation. The products of the intensity gradients used to calculate

the cornerness C are first Gaussian smoothed over a 3x3 pixel image patch. It is this smoothing that

makes the Harris detector more robust to noise than the Smith detector even though it uses noise

sensitive first derivatives.

Because of its poor performance in the presence of image-plane noise and hence its very temporally

unstable corners, the Smith corner detector is not an appropriate feature detector for tracking in long

sequences. It performed well in the ASSET project because there, segmentation was performed using

2 frame matching, which was good enough to produce good number of matches in consecutive

frames.

The Kitchen-Rosenfeld method does not use a built-in smoothing function and also has second order

derivatives, and as a result its' performance is poorer than the Harris method (K-R was used only as a

bench-mark). The KLT detector on the other hand is aided by its tracking framework (the tracking

process cannot be easily decoupled from the corner detection process). The KLT tracker and corner

detectors work together to provide high quality corners as indicated by the results. The overall

empirical results revealed that the KLT and Harris detectors provided the best quality corners

(qualitatively and quantitatively). The corners extracted by the Kitchen-Rosenfeld and the Smith

(SUSAN) detectors are less desirable for point feature tracking in long image sequences.
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Chapter 4

Point Feature Tracking with Automatic Motion
Model Switching

Abstract

This chapter provides a novel technique of efficiently and reliably tracking features in a sequence of images. The
method we provide for tracking features is based on theBayesian Multiple Hypothesis Tracking (MHT) technique
coupled [58] with a Multiple Model Filtering algorithm. We show the results of our work comparing it with some
of the existing single model based trackers using a variety of video sequences. Initially we demonstrate the ability
of the MHT-MMF tracker developed (Fixedform of the filter), and later in the chapter we extend the MMF based
tracker to the Interacting Multiple Model (IMM) tracker [5, 28] and show the superiority of the latter in handling
motion switching of features efficiently. The primary purpose of this chapter is to show how the I MM algorithm
combined with an extension of the classical MHT framework can be used in a visual tracking scenario. The study
shows that the method proposed can distinguish between different motions depicted in an image sequence with
good feature tracking results.

4.1 Introduction

In this chapter we propose a feature tracking algorithm based on the combination of Multiple

Hypothesis Tracking (MHT) and Multiple Model filtering technique. The combination of these two

methods provides an attractive feature tracker that has the capability of switching motion models

according to the object's motion.

The surveillance tracking community has studied target tracking techniques for a number of years,

mainly in the context of finding efficient methods to track missiles, aircraft etc. and tracking targets

of unknown motion. Their work has been used for a variety of applications [54-56, 5, 6, 41-43, 152,

125,126]. In the recent years there has been an interest in using surveillance tracking techniques for

visual tracking applications such as tracking features in a video sequence. One such proposal is

outlined in [58] by Cox et a!. Cox et al use a modified version of the MHT tracker, based on the

assumption of a single motion model. We extend the modified MHT tracker to track features that

move with multiple motions. The proposed "multiple model based" MHT tracker is shown to

outperform visual trackers based on a single motion model as demonstrated in this chapter.
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Multiple hypothesis based tracking methods have been shown to provide reliable results for a variety

of tracking applications [55, 58, 180, 184, 185]. An important reason for considering the MHT

technique for point feature tracking is because the MHT technique is a statistical data association

algorithms that integrates all the capabilities such as track initiation, track termination, track

continuation, explicit modelling of spurious measurements, and explicit modelling of uniqueness

constraints. Unfortunately, the classical MHT technique [152] by itself is computationally

exponential both in time and memory. Therefore, we use an algorithm which is an efficient

approximation to the MHT algorithm [58] (originally developed by Murty [137]) to generate directly

the \£-best' hypotheses in approximately polynomial time without explicitly enumerating all possible

hypotheses. This is a significant contribution to the practical application for the MHT methodology

and has recently been shown to be approximately three orders of magnitude faster than previous

hypothesis generation strategies [56].

The advantage of using a multiple-model based tracking is that the varied motion of features captured

in an image sequence can be tracked reliably. The motion model switching capability of a multiple

model framework has been demonstrated to track features much more accurately than a tracker based

on a single motion model [5, 77,206]. Amongst the many type of multiple model filters available [5],

we consider two types of filters in this chapter. First, we demonstrate the performance of the more

generally used fixed form of the filter, which we refer to as the MMF in this chapter, and later we

introduce an extended version of MMF, which is referred to as the Interacting Multiple Model (IMM)

algorithm. The fixed form of the filter assumes that there is no model switching during the estimation

process. It operates in one of many modes (models) available from a bank of filters. A further

improvement of the MMF filter is the IMM algorithm [5, 28]. The IMM is a sub-optimal tracking

algorithm, which can automatically switch motion models according to a Markov chain process. The

IMM by itself was originally developed for surveillance applications such as radar tracking, air craft

tracking etc. and has been shown to track a target of varying motion efficiently. In this chapter we

refer to MHT coupled with MMF as the MHT-MMF tracker, and MHT coupled with IMM as the

MHT-IMMtracker. Details of these trackers are discussed in sections 4.5 and 4.6 respectively.

The tracking technique we propose relies on features (corners) extracted from each of the frames of a

given image sequence. The tracking process is virtually independent of the feature extraction

procedure. Therefore, as a first step we extract corner-point features from every frame of a sequence

(details discussed in section 4.3) prior to tracking the features of interest. It is important that the

corner features extracted are well localised and stable for reliable tracking as discussed in chapter 3.

The extracted corners (in each frame) are later used as measurements for the tracking filter, to guide

the tracker to follow the correct feature trajectory.
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We demonstrate our results based on a variety of image sequences. The sequences considered are the

PUMA" sequence (30 frames), the Toy car sequence (9 frames), the Walking Man sequence (50

frames), The Rubic sequence (20 frames), the Road sequence (48 frames), and a Waving Hand

sequence (75 frames).

This chapter is organised as follows: Section 4.2 briefly details the MHT methodology. Section 4.3

provides details of the corner extraction procedure. Section 4.4 details the problems in relation to

single model based tracking and the necessity for a multiple model method for reliable tracking.

Section 4.5 outlines the general fixed form of the multiple model algorithm (MMF), and Section 4.6

details the basic operation of the IMM algorithm. In Section 4.7 we provide the motion models used

for MMF and IMM filters. In section 4.8 we provide our results. In section 4.9 we give a direct

comparison of the 2 types of trackers considered. Section 4.10 gives a general discussion, and finally

Section 4.11 provides the conclusion.

4.2 Multiple Hypothesis Algorithm

The Multiple Hypothesis Tracking (MHT) algorithm was originally developed by Reid [152] in the

context of multi-target tracking. Fig. (4.1) outlines the basic operation of the MHT algorithm. The

overall procedure is an iterative process that forms a feedback loop as shown by Fig. (4.1). Iteration k

begins with the set of current hypotheses from iteration (k-\). Each hypothesis represents a different

set of assignments of measurements to features. The extracted measurements are matched to

predictions based on some distance metric such as the Mahalanobis distance (see [58] for details).

After matching, each global hypothesis (from iteration (k-\)) has an associated ambiguity matrix Q,

which is generated as shown by Fig. (4.2b) for a simple example with 2 known geometric features

and four new measurements. From Q it is necessary to generate a set of legal assignments (In Fig.

(4.2a), the black elliptical blobs are the current position of the features Tj and T2, and the white

elliptical regions correspond to the validation gate within which possible measurements are searched

for the respective features). Each subsequent child hypothesis represents one possible interpretation

of the new set of measurements and, together with its parent hypothesis, represents one possible

interpretation of all past measurements (the reader is referred to [58, 152, 187] for complete details of

MHT). The hypothesis generation procedure and a brief mathematical framework for MHT

underlying our work are given in Appendix B.
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Figure 4.2: (a) Predicted target locations and elliptical validation regions for a situation with hvo known
geometric features (Ti and TJ and four new measurements £i(k), z2(k), z3(k), z4(k)) which are shown with black
dots. The white dots are the estimated positions of 1} and T2. (b) Hypothesis matrix for the situation depicted in
Fig. 4.2(a). Note that, as summarised byQ Tj has valid measurementsz^k), z2(k), and T2 has valid measurements
z2(k), Z}(k). z4(k) is out of the validation region (calculated by theMahalanobis distance) and not considered by Tj
andT2. In 4.2(b) the 1st and last columns entries are always 1, that is, a false alarm f$ or a new feature
appearing (7^ is possible at any given time k. See Appendix B for further details.

Because of the exponential complexity of the multiple hypothesis approach, only an approximation to

the MHT algorithm can be practically implemented. In particular, it is simply not feasible to search

the entire space of hypotheses in order to determine the most likely set of assignments. In order to
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contain the growth of the tree, it is necessary to prune unlikely branches. To do this intelligently, the

probability of each hypothesis can be used to guide a pruning strategy efficiently (see [54, 55] for

details "on pruning mechanism). An approximation of the classical MHT, using Murty's algorithm

[137] (we call it the modified MHT algorithm) has been shown to limit the combinatorial explosion

of the classical MHT algorithm [152] and also shown to resolve data association uncertainty reliably.

The successful application of such an algorithm has been reported in [58, 180]. For the remainder of

this paper all references to MHT refers to the modified version of the MHT algorithm as provided by

Cox etal [58].

4.3 Feature Extraction

Extraction of accurate, well localised, and stable comer features are essential for reliable tracking.

While this is a current research issue, our earlier study on comparison on comer detectors for tracking

(reported in chapter 3 [179]), revealed that Harris [85] and Lucas-Kanade comer detectors [190]

provide stable enough features for tracking in long sequences. Therefore, we have used these 2 comer

detectors for the tracking applications reported in this chapter. In our application, the position of

features that appear in the first frame of a sequence are predicted in the subsequent frames (matched

/discarded) by the MHT framework. The implementation of the MHT uses the Mahalanobis distance

as the main validation gate, and further, to supplement the search area, a correlation matching

strategy (based on a 5x5 patch size, as explained in chapter 3.4.2) is employed.

For the PUMA, the Walking man and the Road sequences, we used the comer detector proposed by

Harris [85]. For the Toy car, the Waving Hand, and the Rubic sequences we used the KLT comer

detector [190] (the reason for 2 different comer detectors is that these provide the best comers

representing all parts of a given frame). We maintained the number of comers extracted per frame to

around 40-60. This is achieved by adjusting the appropriate parameters of the comer detection

algorithm. Limiting the number of corners to a reasonable quantity is preferable purely for clarity and

computational purposes.

4.4 Tracking Features

Prior to the work presented in this chapter, we used a single model Kalman Filter (KF) [199, 74, 5, 6]

based on a known motion model to track the features of interest (employing the MHT framework

within the tracker). But one of the drawbacks of this approach is that, the correct motion model needs
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to be presented to the KF in order for the tracking to be successful. Often, one does not know the

motion described by the image sequence in advance. To avoid such a problem it is advisable to use a

more robust and flexible approach to identify the correct motion model in order for the KF to track

the features correctly and reliably.

It is also quite well known that a potential weakness of an estimator based on a single motion model

is that it can lead to under-modelling and over-modelling [157]. Under-modelling, occurs when the

Kalman filter state model does not describe the actual state adequately. It is possible to construct a

Kalman filter that adequately describes any type of motion likely to be observed in feature tracking

scenario, thus removing the under-modelling problem. Such a Kalman filter would have a large

number of states and have a complex state model. A Kalman filter of this type, although possible to

construct, would not be practical in a noisy environment. High order Kalman filters containing states

that are derivatives of derivatives tend to be very sensitive to noise, Kalman filters consisting of large

numbers of states may also be over complex for the majority of the time when the observed signal

may be filtered using simpler Kalman filters.

To overcome this limitation, one solution is to use a number of filters based on different motion

models, (sub-models) covering the range of possible expected observed motions, and to some how

combine the estimates from these filters based on the expectation of each model being the correct

descriptors of the features' motion. Such a system can be achieved by using a multiple model filtering

based algorithms [5, 130]. As well as improving estimation accuracy, such systems could also help in

segmenting a scene into independently moving objects. It has been proposed [157] that the

segmentation process may be performed by utilising the confidence/belief measures generated by the

individual filters that make up the multiple motion model system (for example segmenting/grouping

cars that move with similar velocities). If all objects in a scene are assumed to be rigid, all points on a

single object will move in an identical fashion, i.e, with the same motion model. Further description

of the multiple model filtering algorithm is given in the next section.

4.5 The Multiple Model Filtering Algorithm

In the multiple model approach, it is assumed that the system obeys one of a finite number of models.

Such systems are called hybrid because they have both continuous (noise) uncertainties as well as

discrete uncertainties [5]. The system uses a Bayesian framework to calculate the probability of each
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model in operation. That is, starting with prior probabilities of each model being correct (ie., the

system is in a particular mode), the corresponding posterior probabilities are obtained.

Initially we consider the case where the model the system obeys is fixed, that is no switching from

one mode to another occurs during the estimation process. In this chapter we name such a system as

the Multiple Model Fixed (MMF) algorithm. A typical MMF is shown in Fig. 4.3 (for further

description refer to [5, 187]). The MMF consists of r separate Kalman filters, each based on a

particular state model. The model (M), assumed to be in effect throughout the process, is one of r

possible models (the system is in one of r modes):

The prior probability that My is correct (the system is in modey) is

where Z° is the prior information and

since the correct model (or a model closest to the correct model) is among the assumed r possible

models (^(0) corresponds to the probability that they-th model being correct at time step 0). It will

be assumed that all models are linear Gaussian.

The overall stats estimate is the linear combination of the state estimates generated by the individual

Kalman filters, and is calculated using the following equation (for the state and covariance updates).

where xj is the state vector of the_/-th Kalman filter, Mj(k) is the probability that the actual system

model, M, equals they-th model M. at time k given the past observations, z " . r is the total number

of filters considered. The weighting factors /*_,•(*) are recursively updated using:
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^

(4.2)

Figure 4.3: A typical MMFfor rfilters.

To prevent ^(*) from becoming too small, effectively "turning off' they-th filter, values of MjW

should be limited to a minimum value, /4,in [5,157]. The residuals, y,and estimated covariance of the

residual's, Sj are given by (seeAppendix B for the full KF recursion that was employed),

z(k)-Hjx
J\k)

HJP(k)(Hj)
T+RJ

(4.3)

(4.4)

where H,P & R are the observation, state covariance, and the measurement noise matrices

respectively. These quantities are used to compute the likelihood function of the r-filters. The

probability density is assumed Gaussian if a model is linear [5], and with this assumption, the

likelihood function for modey at time k is given by:
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= N[v,(*);O;Sy(*)] (4-5)

1

where m is the number of measurements at time k. The extra computation in updating the weighting

factors compared to the normal Kalman filter is therefore negligible. It should be noted that the

separate Kalman filters may be run simultaneously and in parallel.

Equation (4.5) assumes that the residuals v,, are Gaussian and zero mean. Hence, the MMF algorithm

effectively chooses between filters based on the size of the mean of their residuals, with the one

having the smallest mean (i.e. the one nearest to zero) being the correct filter (in other words, MMF

chooses the most appropriate filter based on the likelihood functions). This is because, a filter which

has been modelled correctly will produce residuals with near-zero mean (see [130, 157] for more

details). From a mathematical point of view, the probability of each model being correct is obtained

according to Eq. (4.2) based on its likelihood function (Eq. 4.5) relative to the other filters' likelihood

functions.

An alternative version of the MMF algorithm was proposed by Mealy and Tang [131]. They applied

the multiple model estimation technique to a terrain height correlation system using a bank of

identical Extended Kalman Filters (EKFs) each initialised with different state estimates. The

difference between this implementation and the MMF described above, is that after the initial

transients settle down, the filter with the highest probability, /*,(*) was used to estimate the feature

position, i.e. there was no combination of the individual filter state estimates (usually performed

using equation 4.1). Instead, the filter with the highest probability was allowed to track the

subsequent object (features) alone, and all other filters were turned off. This decision to switch

between a multiple model tracking mode and a single model tracking mode was performed based on a

comparison of the residuals between filters. The advantage of such a system is that the computational

overhead loads required by r filters was eliminated. However, the danger of this strategy is that the

adaptive properties of the MMF algorithm are lost when switching to a single model mode. Tobin and

Maybeck [189] also proposed using the filters with the highest probability alone as the state

estimator, except that in their implementation all the filters remained active ensuring that the MMF's

adaptive capabilities remain.

78



4.5.1 Multiple Model Algorithm to Cope with Multi-Order States

The MMF algorithm assumes that each separate KF has identical states and is of the same order. This

can be seen from equation 4.1, where combination of the individual estimates requires all the states to

be present in each filter. However, this restriction is not imposed when calculating the hypothesis

conditional probability (equation 4.2). This equation requires the separate KFs to have common

measurement state variables only; the conditional probability (equation 4.5) is composed entirely

from measurement states.

Since it is only the state estimate combination equation that requires common state variables among

all the KFs, the standard MMF algorithm may be extended to cope with filters having different

structures and different orders (but with common measurement states). Such a multi-order/differing

state multiple model adaptive estimator uses the same probability equations (Eqs. 4.2, 4.5) as the

standard MMF algorithm, but requires the state estimate combination equation to be re-written to

account for any missing states. This is done as follows:

where, / is the state considered,

r - total number of Kalman filters,

Xji (*) - the z'-th state of they-th Kalman filter,

Pi (*) - the weighting factor of they-th filter,

M(k) - the vector of weighting factors for all r filters,

Dji - the membership value (one or zero) of they-th filter for the z'-th state,

Dt - the z-th column of the membership matrix D [187].

4.5.2 Limitations of MMF

A problem with the MMF based systems is that, their fundamental design does not cater for motion

model switching automatically, which can cause problems in tracking a target whose motion is

varying. In cases where a target switches to a different motion model during the course of tracking,
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the MMF based methods can fail or even converge to the wrong motion model [5, 185] (see section

4.8.3 for an example). However, there are ad-hoc modifications which are available (mentioned in

section'4.8) for MMF algorithms to cope with model switching [5] as we have demonstrated in the

results section. In spite of these modifications, the mismatched filter's errors can still grow to

unacceptable levels. Thus, re-initialization of the filters that are mismatched is in general needed (see

also the discussion in section 4.10 for further explanation).

To overcome the drawbacks of MMF based algorithms, an enhanced algorithm that could cope with

automatic mc'el switching called the Interacting Multiple Model (IMM) was proposed by Bar-

Shalom et al. [5,28]. The IMM algorithm is able to cope with mode changes during motion transition

and is capable of switching from one mode of motion to another efficiently (including tracking of

manoeuvring feature targets) during the course tracking. The operation of the IMM is discussed

further in the next section.

4.6 The IMM Algorithm

The Interacting Multiple Model (IMM) approach is a sub-optimal technique for switching motion

models (mode (model) jumping process) during the estimation process [5]. The system model at time

k is assumed to be among the possible r modes

The motion mode switching process is assumed to be a Markov process [6, 5] with known mode

transition probabilities (these are design parameters).

In the IMM approach, at time k the state estimate is computed under each possible current model

using r filters, with each filter using a different combination of the previous model-conditioned

estimates (mixed initial condition).

A typical IMM is shown in Fig. 4.4. For further description refer to [5]. The r separate filters are each

based on a different motion model (each model can be of a different order).
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x\k-\\k-V.P\k-l\k-\) i2(A-l|*-1),/>3(*-l|*-l) ... i'{k-\\k-]),p'{k-i\k-\)

i°'(k-1\k-i),P°\k-\\k-\) xa(k-\\k-]),P'a(k-]\k-\) ... i'"(k-]\k-l),P'"(k-\\k-\)

Figure 4.4: IMM Algorithm with r filters (one cycle).

One cycle of the IMM algorithm consists of the following:

1) Calculation of the mixing probabilities (i, j=l,...,rj. The probability that mode M is in effect at

time k conditioned on Z*'; (measurements) is given by,

(4.7)

where the mode transition probability is ̂ (assumed known), and the nonnalising constants are:
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c, = y pHfi,{k-l) / = l,...,r (4.8)

2) Mixing (j=l,...,r). Starting with x\k-\\k-\) one computes the mixed initial condition for the filter

matched to M, (k) is,

x°J\k-\\k-\)= £ x'\k-\\k-l)Mil dk-\\k-\) j=\,...,r (4-9)
/=!

The covariance corresponding to the above is,

P°J(k-\\k-\) = £ pni(k-\\k-l){ P'ik-\\k-\) + [x'(k-\\k-\)-xoJ(k-\\k-l)].

3) Mode-matched filtering (j=l,...,r). The estimate Equation (4.9) & (4.10) are used as input to the

filter matched to Mj(k), which uses z(k) to yield xi(k\k) and PJ(k\k). The likelihood functions

corresponding to the r filters are given by,

A

^ Mode probability update (j=l,...,r). This is given by,

(4-12)

where Cj is same as Eq. (4.8) and, c= E ^-JWCJ \s the normalisation constant for equation (4.12).

5)' Estimate and covariance combination. Combination of the model-conditioned estimates and

covariances is done according to the mixture equations:

j ( 4
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> z Pj

Equations (4.13) & (4.14) are only for output purposes (they are the same as in Eq. (4.1)). It is not

part of the algorithm recursions.

In our tracking implementation, each point feature of interest is applied with a coupled tracking

algorithm (MHT & IMM). The resulting tracker is referred to as the MHT-IMMalgorithm.

4.7 Motion Models

To test our complete tracking system we employed motion models from the following:

(i) A first order constant position model (M5)

(ii) A second order constant acceleration model (Ml)

(iii) A second order constant velocity model (M2)

(iv) A second order constant turn model (M3)

(v) A third order acceleration model (M4)

The description of each motion model is briefly discussed in the following sections.

4.7.1 First Order Motion Model (M5)

The state vector x(k) at time k, the measurement matrix H, and the state transition matrix (FMj) for a

first order model is given as follows:

]T> H =
1 0

0 1

1 0

0 1

The only measurement required is the feature position (x, y). The initial values for x(k) are set to the

feature position in the first frame.

The process noise matrix Q is set to, Q=
T 0

q, where T is the sampling time and q is a small
0 T_

power spectral density for the process noise (see Appendix B.5 for a Kalman filter diagram).
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4.7.2 Second Order Motion Models (Ml - M3)

The state vector x(k) at time k, and the measurement matrix H for the tracking filter is set as follows

for the second order models.

"1 0 0 01

0 0 1 0x{k) = [x x y y\ ,

Velocity (x and y direction) estimates were initialised to zero. Alternatively if the initial velocity is

known, one can set the filter initial velocity to the known value.

The state transition matrices (F) chosen for the Models M1-M3 are given below. Note that Ml, M2

employ the same F. A near acceleration model (Ml) is obtained by choosing a larger value for the

power spectral density q (~10) of the process noise [5]. A small q (--0.1) results in a constant

velocity model - M2 (that is, the changes in the velocity have to be small compared to the actual

velocity). A second order constant turn model (M3) is obtained by using a state transition matrix

(FMJ) as shown below, where T is the sampling time and co is a constant turn rate for M3.

1 M\,M1

1

0

0

0

T
1

0

0

0

0

1

0

0'

0

T

1

1
COSCJT-1

co co
0 coscoT 0 -smcoT

1-cosoiT
0 1

0
co

sin coT 0
CO

cos coT

The process noise matrix (Q) is set as follows for all second order models (but different values of

q are used):

Q =

3

±7"
0

0

2

T

0

0

0

0

jrT2

0 "

0

T

4.7.3 Third Order Motion Models (M4)

For the third order motion model, an acceleration component (x, y) is included as part of the state

vector x(k), and initialised to zero. The state transition and process noise matrices were set as follows,

where <7 is s e t to a small value (typically -0.01). See [5] for further details on specific motion

models.
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4.8 Results

This section provides the results obtained for the trackers mentioned in sections 4.5 and 4.6. We

initially provide the results using a tracker based on a single motion model and show instances where

such a tracker can provide poor quality trajectories or even fail. We then provide results for the

MHT-MMF and MHT-IMM trackers. Finally we provide a direct comparison (with regards to model

switching capability) of the two trackers based on a simulated feature trajectory. We complete the

experimental evaluation by applying the MHT-IMM tracker to a real sequence of a waving hand

moving with multiple motion. The result for the latter is given in Section 4.9.

4.8.1 MHT with a Single Motion Model

The first stage of our tracking process was to extract corner features reliably, which was essential for

good tracking performance as discussed before. Figure 4.5 shows the corner features extracted for

selected frames from each of the image sequence considered.

Figures (4.6)-(4.10) show tracking results obtained by using the MHT algorithm based on a single

motion model Kalman filter (for each of the motion models in turn, as described by the figure

captions). In Figures (4.6)-(4.10), on the right side are 3 tracks picked out from the many tracks

displayed on the left side. These are shown to illustrate that the inappropriate motion model selected

for the tracker can result with a shorter feature trajectory or even a wrong trajectory, thus

emphasising the need for a correct motion model for accurate and reliable tracking.

From these figures, it is quite clear to the naked eye that a constant acceleration model gives the best

tracking performance for the PUMA and the Toy car sequences, and a constant velocity model gives
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the best tracking performance for the Walking man and the Road sequences (in terms of the quality

and length of the trajectories obtained). When the inter-frame motion is relatively small, a constant

velocity model is adequate, but for larger inter-frame motion (like the PUMA sequence) a constant

acceleration model provides better results. For the Rubic sequence, the inter-frame motion is very

small (as seen from Fig. 4.5e), and as a result, a constant position model (M5) tracker is able to

provide feature trajectories as good as Ml or M2 (see Fig. 4.10).

An advantage of the MHT based trackers is the ability to track objects which are temporarily

occluded. For example, it can be seen for the Toy car sequence, the MHT framework provides good

tracking results in spite of occlusion. Fig. 4.5(b) shows the jeep and the van are occluded in part in

frames 5,6 (see Appendix G), but despite occlusion the tracker retains the trajectory (Figures 4.7c,d)

of the van and jeep until the final frame (assuming a correct motion model is in operation).

4.8.2 MHT with Multiple Motion Models

For experiments with r motion models in the filter bank, we initialised the probability of selecting a

model to (J/r). That is, at the start all models have an equal chance of getting selected. All motion

models were also initialised with the same state to eliminate any bias. The following sub-sections

provide tracking results for the 2 trackers presented in this chapter (MHT-MMF and MHT-IMM).

4.8.2.1 MHT-MMF Tracker Performance

The quantitative results obtained by using the MHT-MMF tracker are shown in Figs. (4.11)-(4.14). In

these graphs we plot the model selection probability against the frame number. The probability of the

correct model (most appropriate model) getting selected confirms our observation of Figs. (4.6)-

(4.10). It is clear that an acceleration model is indeed the most suitable model for the PUMA and the

Toy car sequences, and a velocity model is more suitable for the walking man and road sequences,

and a constant position model is adequate for the Rubic sequence. We experimented with multi-order

multi-type motion models in the MMF filter bank, but the final observation (that is the correct model

being selected) did not depend on the combinations of models employed in the filter bank. Provided

the correct model (model closest to the object's motion) is one of the models considered, the result is

consistent. When only 2 models (which are similar) are used in a filter bank, care must be taken to

tune the filters, as false tracking results might occur (details in section 4.10). Conditions under which

the MMF algorithm might fail and the precautions to be taken are discussed in Section 4.10.

MMF framework assumes that the correct motion model is among the models in the filter bank. If ihe

correct motion model is absent, then the tracker will converge to the model closest to the correct
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motion model in the filter bank. It should be noted that in the implementation of the MMF based

tracker, a lower bound for Juy(=//mjn) was set in order to keep the incorrect motion models alive.

Otherwise the MMF framework does not have a mechanism to "revive" a model once it approaches a

near zero selection probability. See the Discussion section (Section 4.10) and [157] for further

explanation. We also examined the state covariance matrix associated with each motion mode! after

every cycle to check for possible divergence, if a divergence is detected, the filter concerned is

reinitialised. These undesirable ad-hoc modifications are necessary for the MHT-MMF tracker to be

able to switch motion models. In spite of these modifications, the MHT-MMF tracker fails where

multiple model switching is required, such an example is illustrated in Figs. (4.20)-(4.24) and

discussed further in sub-section 4.8.3.

4.8.2.2 MHT-IMM Tracker Performance

The MHT-IMM tracker overcomes most of the limitations that MHT-MMF tracker present. For the

MHT-IMM tracker, there are no requirements for any modifications or assumptions for the basic

IMM algorithm to cope with multiple model switching. This is one of the main advantages over using

MMF trackers. The other advantage of this tracker is that the switching from one model to another is

possible during the estimation process (using a Markov chain procedure), which provides faster

responses to model changes.

The results for MHT-IMM tracker are given in Figures (4.15)-(4.19) (model selection probability vs.

frame number). As expected the MHT-IMM tracker converges to the "most correct" model presented.

It is clearly seen from the results that after the initial transient dies, the probability for the correct

model approaches one while the probability for the incorrect models decreases to zero. It can be

observed that the convergence to the correct motion model is fast and smoother for the MHT-IMM

tracker than the MHT-MMF tracker in almost all the examples considered. It is worth noting the

results for the walking man sequence (Fig. 4.17) where the person's motion is not always constant,

and there appear 'dips' in the model selection probability curve, which indicates temporary model

changes (or as a weighted combination of motion models in operation). The tracker performance in

terms of position (error between true and estimated) and velocity are shown in Figs. (4.15c,d)-

(4.18c,d) and Fig. (4.19a,b) for one feature trajectory, and the track statistics are tabulated in Tables

4.1-4.5 (for 3 arbitrarily chosen feature tracks) for the image sequences tested. The evidence of faster

model switching of MHT-IMM over MHT-MMF can be observed in Figs. 4.11 — 4.19 (compare the

MHT-MMF results with MHT-IMM results). In all experimental cases considered promising tracking

results are obtained (qualitatively and quantitatively).
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Examples of Corners Extracted

Figure 4.5: (a) Frames 1, 10, 20 and 30 of the PUMA sequence with corners extracted superimposed on the
respective frames, (b) Frames 1,4,7 and 9 of the Toy car sequence, (c) Frames 1, 17, 35 and 50 of the Walking
man sequence, (d) Frames 1, 16, 32 and 48 of the Road sequence, (e) Frames 1, 5, 9, 15 of the Rubic sequence.
Only the best 25-50 corners were extracted from each frame of a sequence for clarity.



Tracks Obtained Usin Different Motion Models

(e) (f)
Figure 4.6: PUMA sequence track results (displayed on frame-1 for tracks which survived for length more than
6). The circle indicates the end of track: (a) Tracking performance obtained by using a constant acceleration
model (Ml), (b) Selected 3 tracks from (a) for illustration, (c) Tracking performance using a constant velocity
model (M2). (d) The 3 tracks from (c),for the same features as shown in (b). (e) Tracking performance obtained
by using a constant turn model (M3). (f) Selected 3 tracks from (e).
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Tracks Obtained Usme Different Motion Models (Toy Car)

(e) (f)
Figure 4.7: Toy car sequence track results (displayed onframe-1 for tracks which survived for length more than
5). The circle indicates the end of track: (a) Tracking performance obtained by using a constant acceleration
model (Ml), (b) Selected 3 tracks from (a) for illustration, (c) Tracking performance using a constant velocity
model (M2). (d) The 3 tracks from (c),for the same features as shown in (b). (e) Tracking performance obtained
by using a constant turn model (M3). (f) Selected 3 tracks from (e).
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Tracks Obtained Using Different Motion Models (Walking Man)

Figure 4.8: Walking man sequence track results (displayed on frame-1 for tracks which survived for length
more than 12). The circle indicates the end of track: (a) Tracking performance obtained by using a constant
acceleration model (Ml), (b) Selected 3 tracks from (a) for illustration, (c) Tracking performance using a
constant velocity model (M2). (d) The 3 tracks from (c), for the same features shown in (b). (e) Tracking
performance obtained by using a constant turn model (M3). (f) Selected 3 tracks from (e).

91



Tracks Obtained Using Different Motion Models (Road)

(e) (f)
Figure 4.9: Road sequence track results (displayed on frame-1 for tracks which survived for length more than
20). The circle indicates the end of track: (a) Tracking performance obtained by using a constant acceleration
model (Ml), (b) Selected 3 tracks from (a) for illustration, (c) Tracking performance using a constant velocity
model (M2). (d) The 3 tracks from (c),for the same features as shown in (b). (e) Tracking performance obtained
by using a constant turn model (M3). (j) Selected 3 tracks from (e).
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Tracks Obtained Using Different Motion Models (Rubic)

Figure 4.10. Rubic sequence track results (displayed on frame-1 for tracks which survived for length more than
5). The circle indicates the end of track: (a) Tracking performance obtained by using a constant acceleration
model (Ml), (b) Selected 3 tracks from (a) for illustration, (c) Tracking performance using a constant velocity
model (M2). (d) The 3 tracks from (c),for the same features as shown in (b). (e) Tracking performance obtained
by using a constant position model (M5). (f) The best 3 tracks from (e).
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MHT-MMF Tracker Result
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Figure 4.11: PUMA sequence using the MHT-MMF
tracker, (a) M1,M2 and M3 (all 2nd order models)
competing for the correct motion model. The
constant acceleration model (Ml) is chosen as the
most appropriate model, as confirmed by Fig. 4.6a.
(b) M4 (3rd order acceleration model) preferred
over Ml.
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Figure 4.13: Walking man sequence using the MHT-
MMF tracker, (a) M1,M2 and M3 (all 2nd order
models) competing for the correct motion model. The
constant velocity model (M2) is chosen as the most
appropriate model, as confirmed by Fig. 4.8c. (b) M2
preferred over M4 (3rd order acceleration model).
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Figure 4.12: Toy car sequence using the MHT-MMF
tracker, (a) Ml, M2 and M3 competing for the
correct motion model. The constant acceleration
model (Ml) is chosen as the most appropriate model,
as confirmed by Fig. 4.7a. (b) M2 preferred over M4
(3rd order acceleration model).

v
velocity model (M2>

turn model (M3)

. model (M1)

20 3O
Frame number

4 0 SO

(a)

0 .1

velocity model (M2)

nccel. model <M4)

1O 20 30
Frame number

4 0 SO

(b)

Figure 4.14: Road sequence using the MHT-MMF
tracker (a) Ml, M2 and M3 (all 2nd order models)
competing for the correct motion model. The
constant velocity model (M2) is chosen as the most
appropriate model, as confirmed by Fig. 4.9c. (b) M2
preferred over M4 (3rd order acceleration model).
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MHT-EMM Tracker Results
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Figure 4.15: PUMA sequence results using MHT-
IMM tracker, (a) Model selection probabilities:
constant acceleration model (Ml) selected as the
correct motion model (three 2nd order models
compared), (b) 3rd and a 2nd order model
compared. M4 preferred over Ml as the correct
motion model (c) Measured and estimated position
(d) Estimated velocity.
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Figure 4.16: Toy car sequence results using MHT-
IMM tracker, (a) Model selection probabilities:
constant acceleration model (Ml) selected as the
correct motion model (all 2nd order models
compared), (b) 3rd and a 2nd order model
compared. M2 preferred over M4 as the correct
motion model, (c) Measured and estimated position
(d) Estimated velocity.
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MHT-IMM Tracker Results (Cont...)
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Figure 4.17: Walking man results using MHT-IMM
tracker, (a) Model selection probabilities: Constant
velocity model (M2) selected as the correct motion
model (Ml, M2, MS compared), (b) M2 preferred
over M.4. (c) Measured and estimated position of
the feature considered, (d) Velocity estimates for
the feature considered.
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Figure 4.18: Road sequence results using MHT-
IMM tracker, (a) Model selection probabilities:
Constant velocity model (M2) selected as the
correct motion model (Ml, M2, M3 compared), (b)
M2 preferred over M4. (c) Measured and estimated
position of the feature considered, (d) Velocity
estimates for the feature considered
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MHT-IMM Tracker Results (Cont...)
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Figure 4.19: Rubic sequence results using MHT-IMM. (a) True and estimated position of a feature trajectory,
(b) Estimated vebcitv and acceleration of the feature, (c) Model selection probability of the tracker. The
constant position moael is selected as the most appropriate motion model Since the inter-frame displacement is
very small, the results confirmed our expectation (see Fig. 4.10).

Note: The following tables provide the MHT-IMM tracking performance statistics. The error is measured
between the measured (true) and the estimated position (x andy direction) and the velocity is obtained from the
tracker filter estimate. The mean value (in pixels) is calculated by taking the average over the given image
sequence length. It should be noted that the MHT-MMF tracker also gave good tracking results, provided the
tracker was tuned properly.

Filters in bank for the IMM aigorithm

Track 1
with models Ml, M2, M3
with models Ml, M4

Track 2
with models Ml, M2, M3
with models Ml, M4

Track 3
with models Ml, M2, M3
with models Ml, M4

mean
absolute
error (x)

mean
absolute
error (y)

MSE
(Position,
in pixels)

mean
velocity
(x-dir.)

mean
velocity
(v-dir.)

mean
velocity
(mag.)

0.1016

0.2932

0.1247

0.1111

0.0419

0.1741

3.7236

4.2015

2.2390

2.2791

4.6532

5.0553

0.2668

0.2933

0.1940

0.2060

0.1783

0.2074

4.0444

4.5252

9.3946

10.0700

10.5599

11.3737

0.1527

0.2938

0.1691

0.1172

0.0785

0.1834

5.9186

6.5815

2.5892

2.4579

6.7550

7.2827

Table 4.1: Track performance statistics for the PUMA sequence for 3 selected tracks
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Filters in bank for the IMM algorithm

Track 1
with models Ml, M2, M3
with models M2, M4

Track 2
with models Ml, M2, M3
with models M2, M4

Track 3
with models Ml, M2,M3
with models M2, M4

mean
absolute
error (x)

mean
absolute
error (v)

MSE
(Position,
in pixels)

mean
velocity
(x-dir.)

mean
velocity
(v-dir.)

mean
velocity
(mac)

0.5552

0.6916

0.7289

0.2902

2.1916

0.9942

14.5615

18.2450

5.3467

2.3869

15.5272

18.4034

0.7816

0.3815

0.6824

0.2470

1.8746

0.3658

13.6980

16.9096

3.6053

0.5008

14.1712

16.9192

0.6539

0.3347

0.7693

0.1145

1.6643

0.2214

11.7574

13.9348

0.9493

2.0419

11.8101

14.0841

Table 4.2: Track performance statistics for the Toy car sequence for 3 selected tracks.

Filters in bank for the IMM algorithm

Track 1
with models Ml, M2, M3
with models M2, M4

Track 2
with models Ml, M2, M3
with models M2, M4

Track 3
with models Ml, M2,M3
with models M2, M4

mean
absolute
error (x)

mean
absolute
error (y)

MSE
(Position,
in pixels)

mean
velocity
(x-dir.)

mean
velocity
(y-dir.)

mean
velocity
(mas.)

0.3086

0.8379

0.3965

0.8034

0.5478

1.2948

6.1275

5.8074
1.4169

1.5451

6.3280

6.3272

0.9425

0.9556

1.1464

1.2767

1.6424

1.7500

5.6698

5.7341

1.0798

1.2152

5.8016

5.9075

1.2888

1.3531

1.0865

1.1846

1.9419

2.0859

5.4369

5.5535

1.2369

1.3905

5.6206

5.8081

Table 4.3: Track performance statistics for the Walking man sequence for 3 selected tracks.

Filters in bank for the IMM algorithm

Track 1
with models Ml, M2, M3
with models M2, M4

Track 2
with models Ml, M2,M3
with models M2, M4

Track 3
with models Ml, M2, M3
with models M2, M4

mean
absolute
error (x)

mean
absolute
error (y)

MSE
(Position,
in pixels)

mean
velocity
(x-dir.)

mean
velocity
(y-dir.)

mean
velocity
(mag.)

0.0764

0.1229

0.1586

0.1967

0.1952

0.2559

0.0620

0.0535

0.4856

0.4729

0.4994

0.4791

0.0112

0.0000

0.4994

0.5159

0.5011

0.5159

0.0076

0.0000

0.9189

0.9665

0.9201

0.9665

0.4671

0.4952

0.7326

0.8103

0.9127

0.9906

0.5535

0.5638

0.6720

0.6902

0.8"06

0.9229

Table 4.4: Track performance statistics for the Road sequence for 3 selected tracks.

Filters in bank for the IMM algorithm

Track 1
with models M2, M4, M5

Track 2
with models M2, M4, M5

Track 3
with models M2, M4, M5

mean
absolute
error (x)

mean
absolute
error (v)

MSE
(Position,
in pixels)

mean
velocity
(x-dir.)

mean
velocity
(v-dir.)

mean
velocity
(mag.)

1.16 0.71 1.36 0.23 -0.07 0.24

0.55 0.01 0.5517 -0.0025 0.0816 0.0817

1.40 0.33 1.43 0.27 0.03 0.2775

Table 4.5: Track performance statistics for the Rubic sequence for 3 selected tracks.
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4.9 MHT-IMM versus MHT-MMF Tracker

4.9.1 A Simulated Example of a Feature Moving with Multiple Motions

In this section we provide a crucial test of the two trackers discussed To do so, we simulated a

trajectory of a feature as shown by Fig. (4.20) (the feature path is along A -> B -> C -> D -> E)

consisting of 30 frames. The feature moves with a constant velocity for the first 10 frames (A -> B)

then a manoeuvre occurs with a constant turn from frames 11 to 18 (B -> C), then the feature travels

with a constant acceleration from frames 19 - 25 (C -> D), and finally travels with a constant velocity

for the last 5 frames (D -> E). Both the trackers were applied to track the feature motion, and the

results for the model selection probabilities are shown in Figs. (4.21)-(4.22). Fig. (4.21) shows the

model switching ability of the MHT-MMF tracker. It can be observed that the constant velocity model

(M2) operates until frame 11 (when the first model switching occurs), then we can see a dip in the

model selection probability for M2, and the constant turn model (M3) takes over for a short period

(about 3 frames), thereafter the incorrect model M2 is selected giving the incorrect feature motion.

The reason for incorrect model selection is because Ml never 'revives' despite modifications made to

the algorithm as discussed in section 4.5 and section 4.8.2.1. The model switching problem is rectified

by using the MHT-IMM tracker. Fig. 4.22 shows the MHT-IMM model selection probability result.

It can be clearly seen that the model switching occurs correctly almost at the appropriate time giving

the desired result.

40 60 80 100
x - position

120 140

Figure 4.20: A simulated trajectory of a feature which travels with varied motion. The feature travels with
constant velocity from A -> B, with a constant turn from B -> C, with constant acceleration from C -> D, and
finally with constant velocity from D -> E. The continuous line (red) shows the true trajectory while the dashed
line (green) is the estimated trajectory obtained by the MHT-IMM tracker.
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Figure 4.21: The motion model selection probability versus fratne number for the MHT-MMF tracker when
tracking the feature in Fig. 4.20. The models used are: (1) - M2 (constant velocity model), (2) - M3 (constant
turn model), (3) - Ml (constant acceleration model). It can be observed that after the first model switching
(around frame 12 at position B) the MMFframe work fails to switch motion models at positions Cand D.

0.2
10 15 20

Frame Number

Figure 4.22: The model selection probability versus frame number for the MHT-IMM tracker. The same motion
models are used as for the MHT-MMF case. The model switching occurs as expected at around frame 13
(position B), around 18 (position C) and around 26 (position D). The tracker correctly switches motion model,
and tracks the feature as shown by the trajectory (green lines) in Figure 4.20.

4.9.2 A Real Example of a Feature Moving with Multiple Motions

A waving hand sequence was captured at 15 frames/sec. The motion of the hand was variable to test
the agility of the MHT-IMM tracker. The hand starts to move from a stationary position towards the
right. It picks up speed rapidly and then comes to a halt. It then moves again towards the left gaining
speed, then slows down and comes to a rest. The process is repeated 2 times. The motion models that
were employed for the MHT-IMM algorithm included a constant acceleration model (Ml), a constant
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velocity model (M2) and a constant position model (M5). The last model assumes that the current

position of the feature is the best estimate for the next time step, such a model is useful to describe a

feature at rest (More of this model is discussed in the next chapter).

Figures 4.23(a) shows the qualitative results of the trajectories obtained. A total of 25 corners were

tracked to keep the tracking complexity to a minimum. The corners were extracted using the KLT

detector [190]. Figure 4.23(b) shows 3 of the trajectories to clearly show the path of the hand

movement. A feature that was successfully tracked for a considerable length of time was further

examined to verify the model selection changes. Figure 4.24(a) shows the trajectory of the feature of

interest (true and estimated positions of the x and y coordinates). Figs. 4.24(b),(c) show the estimated

velocity and acceleration respectively. From Fig. 4.24(d) it can be seen that model switching occurs

around the 13th, 20th, 24th, 30th, 40th, 45th, 53rd, 60* and 70* frames. This result closely corresponds to

the actual motion changes of the hand (actual motion was manually assessed).

Figure 4.23: The qualitative results of the trajectories obtained for the waving hand sequence, (a) Displays
trajectories which survived more than 10 frames. The small circle indicates the end of track, (b) 3 tracks
displayed to illustrate the movement of the hand clearly (these 3 tracks survived for more than 50 frames).
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Figure 4.24: Tracking result for the waving hand sequence, (a) The true and estimated position of the corner
feature of interest, (b) The estimated velocity of the feature, (c) Estimated acceleration of the feature, (d) The
probabilty of the motion model/s in operation during the course of tracking. As expected the MHT-IMM
switches motion models automatically according to thefeatur's motion. Note the constant postion model (M5) in
operation periodically, which corresponds to the change of hand direction (20h, 40h and 6Cfh frames).
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4.10 Discussion

In this-section we discuss some issues that need to be taken care of when implementing the multiple

motion model filtering algorithm. Some limitations of the multiple model filtering framework are also

discussed. Most of the issues discussed are applicable to the MHT-MMF algorithm, but some aspects

mentioned need to be considered when implementing the MHT-IMMalgorithm.

4.10.1 Model Selection for Two Models of Similar Type

When there are only 2 models in a bank of filters, and if they are of 'similar type', that is they have

very comparable residuals (v), then there is a possibility that the multiple mode! filtering (the MHT-

MMF tracker) method might fail [130, 157]. In this particular case, we can't effectively use the

multiple model algorithms in the conventional way (as discussed in section 4.5). A modified version

of the tracker is required to discriminate between the most appropriate (correct) and the unlikely

(incorrect) models.

For example, consider the case where only Ml (2nd order near constant acceleration model) and M2

(2nd order constant velocity model) are the 2 models to exist in a bank of filters. If the multiple model

tracker is applied to track a feature that move with a motion described by model Ml, then there is a

chance that M2 will be selected as the correct motion model despite the actual motion being constant

acceleration (Ml). Why ?

Maybeck [130] states that one would expect that the residuals, Vj (for they-th model), of the Kalman

filter based upon the correct model (most appropriate model) will be consistently smaller than the

residuals of the other mismatched (incorrect) filters, which, will cause the correct probability to

increase, while causing the others to decrease. The performance of the multiple model algorithm is

dependant upon a significant difference between the residual characteristics [130] of the correct and

the incorrect filter models, and that if the residuals instead are consistently of the same magnitude,

then the algorithm results in the growth of the probability, fij(k) associated with the filter with the

smallest value of S, . Lund et al. [124] explain the effect as follows:

When the system model, M, equals the /-th model M, (i.e. M = Mt), one would expect that the

exponential term in Eq. (4.5) would be lower for the correct filter (the /-th filter in this case), i.e.

«/)(*), V (4.15)
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where r /(/:)is defined as:

(4.16)

Hence, as //,(£) increases towards unity, the probabilities of the mismatched filters will decrease

towards zero if the condition described by equation (4.15) persists over several measurements. If

however, the system model does not equal any of the r models that form the multiple model algorithm

and /or the filters are tuned improperly it is possible that:

(4.17)

Then pij(k) is now governed by S,(k)\ ,j=J,...,r and jjj,(k) increases if \Si(k)\ is less than Sj(k)\,

i* j , while 1^(^)1, j ^ i decreases. For Kalman filters and Extended Kalman filters, 1^(^)1 is not

dependent on which model is correct, and erroneous decisions upon the correct model may result.

The situation described by equation (4.17) is undesirable.

Focussing on the example of having Ml and M2 motion models in a bank (both have identical state

vectors, and state transition matrices, but have different process noise matrices), one would expect

the magnitude of residuals for both models to be identical. In this case M2 will always give a smaller

value of SyC^) , because it employs a lower value of process noise ( 0 . The effect of this is the same

as a lower order filter being selected while the other is a higher order filter (i.e., when both their

residuals are comparable). When the magnitude of the residuals are similai, the lowest order filter

will always have the smallest value of ^-(A:) as discussed in [157]. Hence, the MMF algorithm will

choose M2 as the most correctly modelled filter irrespective of the true motion. The probability that a

model is correct is therefore determined solely by the covariance Sj when the magnitudes of the

residuals are similar.

Robert et al. [157] in their study of multiple model filtering (using MMF type algorithms) for vehicle

tracking have shown that the value of residual, v, has very little effect on the likelihood function

value A (in equation (4.5)). In contrast, the value of the estimated residual covariance, S has a large

effect on A. It must be concluded that the MMF algorithm does not discriminate effectively when

presented with motion models of residual values that are small, or of similar magnitude, and separate

filters of different dimension, and (or) have different states. In the next 2 sub-sections we consider
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methods which will aid the multiple model algorithm {MMF) to resolve the correct motion model

when presented with 2 similar types of motion models.

4.10.2 Modelling the System Noise ( 0

Lund et al. [124] addressed the problem in Section 4.10.1 by using a method called Inter-Residual

Distance Feedback (IRDF), where the filters are modified on-line in such a way as to de-tune them

through the modulation of one of the filter parameters. The modulation is governed by a scalar

quantity calculated from a distance measure between residuals. The main principle of the method is

to keep an inter-residual distance measure above a specified limit by adjusting the filter gains. This is

achieved by varying the system noise covariance, Qj (for they-th model). In the filter equation, Q, is

simply replaced by a modulated system noise covariance matrix Q'j, where Q, is defined as:

.7 = 1,2 (4.18)

where Tj(k) is the modulating variable [124, 157]. It must be noted that the number of filters is

restricted to two when using the IRDF method as stated in [124]. A method allowing more filters to

be used is also outlined which consists of considering only the inter-residual distance between the

'two most probable models'. However, it must be remembered that the motivation behind the IRDF

algorithm is to overcome the problem of unreliable probability values, JUj(k). A method relying on

JUj{k) values to discriminate between the most probable models therefore seems unwise.

For the vehicle tracking project, Robert et al. [157] had used the above method along with the

empirically generated covariance of the residuals S(k) (proposed my Mayback [130] for tuning Q)

which is defined as,

(4.19)

where TV" is the most recent time step. Robert et al. [157] describe the empirically generated

covariance as more reliable than using the theoretical S(k). Their simulations suggest that using this

method selected the correct motion model, which the traditional MMF method failed to do.

In the example discussed in section 4.10.1 (where Ml, M2 are used in a filter bank), we cannot tune

Q, since Q is used to distinguish between a velocity and a near acceleration model, and is kept
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constant. Therefore, we need another method to overcome this problem. A possible method is to tune

the measurement noise matrix R, which is discussed in the following section.

4.10.3 Modelling the Measurement Noise (R)

In the following section we introduce a tunable measurement noise in the Kalman filter which can

discriminate between similar models provided the initial condition for R is a reasonable estimate to

the actual measurement noise.

Maybeck [130] states that if R or Q is to be estimated separately, a reasonable solution is usually

achievable. It is generally true, for all algorithms and not just those based upon the maximum

likelihood concept, that the R parameter estimates are more precise than the Q parameter estimates.

Since O is fixed in our case, we have to tune R, which needs to be updated adaptively. Maybeck [130]

proposed a possible tuning method for R as given below:

N
-H(k)P(k)HT(k), for k>N (4.20)

Maybeck's liming method

The estimation process is essentially time-invariant over the most recent N steps, ie, S{k)~l remains

almost a constant over these steps, provided Q is known completely (as in the case of the example).

For the experiments given in this chapter, where there were only 2 motion models, the above

modelling methods have been followed, so that the final result reflected the true motion of the feature

considered. Further examples of 2 model filtering process can be found in [187].

4.10.4 Limitations of the Multiple Model Filter

A Kalman filter's performance is extremely sensitive to initialisation. Good initial state estimates will

ensure fast convergence, while poor estimates give rise to slow convergence, sometimes even filter

divergence. Both Kalman filters and EKFs are prone to divergence. That is, although it is an optimal

filter, there are practical limitations to Kalman filters that may lead to its divergence [130]. Three

types of divergence exist:
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1) True divergence - due to unbounded system modelling errors, which lead to some elements of the

state covariance matrix, P, increasing without limit. This is the most severe divergence since

errors become unbounded very quickly.

2) Apparent divergence - due to the mis-modelling of plant excitation, measurement noise variances,

and the effects of system biases. Here, a steady state is reached but the associated errors are too

large to allow the estimates to be useful.

3) Numerical divergence - due to filter computation round-off errors and finite precision arithmetic.
t

Both true and apparent divergences were observed during our simulations. Apparent divergence tends

to manifest itself as a constant bias in the estimates (see [187] for examples). In this case the state

covariance matrix has to be initialised (when a divergence is detected) in order for correct tracking to

occur (particularly true for the MHT-MMF tracker). The explanation for this phenomenon is that the

calculated covariance matrix becomes unrealistically small, so that undue confidence is placed in the

estimates and subsequent measurements are effectively ignored. The phenomenon of apparent

divergence is critical to the operation of the multiple model algorithm. It is this effect that provides

J14MF the mechanism with which to choose the most appropriate filter from its component filters.

Apparent divergence shows itself when the residuals have a non-zero mean (a correctly converged

filter will have near zero-mean residuals). It is therefore true divergence that adversely effects

multiple model filtering performance (for MMF type filters).

True divergence leads to error magnitudes that become unbounded very quickly. It is therefore

important to detect the occurrence of true divergence as quickly as possible. In this algorithm

implementation, true divergence is detected by analysing the values of the leading diagonal of the

state covariance matrix P. When the value of any one of these elements exceed a pre-set threshold the

filter is said to have truly diverged and it is re-started and re-initialised at that time. The estimate

produced at the point of detected true divergence is therefore the observed estimate. The effects of re-

starting the diverged filter is to set its probability, /Jj(k), to zero (this is achieved automatically

using the standard MMF equations because the covariance of the residuals for that filter will be zero).

If the divergent filter is the correct filter, there will be a significant time delay before its estimates

converge again and hence a lag before it is recognised as the correct filter. The problem of poor

initialisation is hence an issue after true divergence.

However most of these limitations caused by MMF based algorithms are alleviated by using the IMM

algorithm. This is because of the interaction and mixing between each filter at the start of the

algorithm recursion (see Fig. 4.4 and Eq. 4.9 and 4.10), which is not the case with the MMF
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algorithm. It also worth noting that the likelihood functions for both these algorithms are quite

different (compare Eq. 4.5 and Eq. 4.11). Despite IMM's slight computational cost over MMF, the

advantages of IMM is far more than the MMF algorithm (see Table 4.6).

Multiple Model Filter Type
Number of filters
Number of combinations of r estimates and covariances
Number of probability calculations

MMF
r
1
r

IMM
r

r+ 1
r* + r

Table 4.6: Comparison of complexities of the multiple model algorithms

4.11 Conclusion

Our study has shown how the Multiple Hypothesis Tracking (MHT) technique combined with an

Interacting Multiple Model (IMM) algorithm can discriminate between different motions described

by an image sequence. The results have provided evidence of our method being able to identify

different motions while maintaining good tracking results. With the increasing power and availability

of parallel machines, the parallel nature of the MHT-IMM algorithm provides an attractive solution

for many real time visual processing applications. The tracking technique presented can also be used

to segment objects moving with varied motion into separate groups.

A difficulty with the MHT-MMF tracker is to tune the Kalman filters at the initialisation stage. Since

KFs (and hence the MMFs) are sensitive to initial conditions, reasonable initial parameters need to be

provided in order for the tracker to perform well. Bad orimproper initial condition can lead to filter

divergence, or even converge to the wrong motion model [130]. Another drawback of the MHT-

MMF algorithm is the ad-hoc modifications required for the base algorithm in order to cope with

model switching tracking applications, which demands extra computational cost. However, by

employing the IMM algorithm most of the limitations caused by MMF are alleviated to a great extent.

All tracking systems have limitations. This system is no exception. In any image sequence, if one

wants to track several objects, each feature on each object needs to have a separate tracking algorithm

in order to identify the motion correctly. This will be computationally expensive. The other drawback

is that the features need to be extracted independently of the MHT. A coupled feature detection and

tracking mechanism, perhaps along the lines of Zheng and Chellappa [207], Shapiro et al [169] or

Kang et al [112] is worth investigating. In such a coupled system one could use information as a

feedback between tracking and feature extraction to improve the performance of the latter.
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Chapter 5

Performance Prediction Analysis of a Point
Feature Tracker Based on Different Motion
Models

Abstract

This chapter provides performance prediction analysis techniques for a linear point feature tracking algorithm
based on different motion models. We provide closed form expressions to evaluate the probability of correct data
association of a tracker (analysed with different motion models), when tracking under clutter. We also extend our
analysis for the prediction of correct data association when a tracker recovers from a false match to regain
correct tracking. The simple mathematical expressions provided here, can be used to implement performance
analysis procedures that are fast, easy, and are reasonably accurate (compared with conventional
computationally expensive Monte-Carlo tracking experiments employed to predict the performance of a tracker).
We have also demonstrated the importance of using a correct motion model for a visual tracker to get optimum
tracking performance, based on empirical evaluation techniques. The performance of a tracker's robustness under
varied noise has also been investigated.

5.1 Introduction

For the last two decades the target tracking community has been focussing on the performance of

various target tracking algorithms [5, 6, 41, 42, 43, 125, 126, 135, 136, 138, 139, 158]. In most cases

the applications of these algorithms are for specific purposes (mostly defence oriented), such as

tracking missiles and satellites, to analyse aircraft manoeuvres, space-craft trajectory analysis etc.

Our survey shows that in the area of image processing and pattern recognition there are very few

published papers which provide performance analysis techniques for tracking algorithms for

computer vision related applications. The relatively small amount of performance analysis work

reported in the literature, relating to visual tracking, are (in most cases) for a narrow band of

applications. For example, analysing the tracking performance of a walking person [11], tracking of

the left ventricle [27], evaluation of vehicle tracking [118], [3], tracking of faces [24], [52] and body

motions [25], medical diagnostics [24] etc. Most of these evaluation techniques presented are for

non-point feature tracking algorithms.
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Work reported in [196] uses more generalised comparison techniques to compare 4 point feature

trackers. The performance of the trackers are compared only on the basis of the speed of the tracking

algorithm in relation to the number of points tracked using a cost function strategy. In [138], [139]

Ngan et. al. presented a more versatile tracker performance prediction measure called the Probability

of Correct Association (PCA) for 2 trackers (a zero velocity and a constant acceleration tracker) when

tracking in clutter. They also introduced the PCA concept for a tracker when recovering from a False

Match (referred to as PCA-FM in this chapter), but they only considered the case for the zero velocity

tracker (also referred to as the constant position tracker). In this paper we review their work (for

completeness) and we then extend the performance prediction measures PCA and PCA-FM to a

tracker based on the 3 different motion models (a constant acceleration, a constant velocity and a

constant position (zero velocity) model). Thus we provide the extra 3 important performance

measures missing in Ngan et. al.'s work (ie. PCA for a constant velocity model, and PCA-FM for a

constant velocity and constant acceleration model) to complete the performance prediction study. In

addition, we demonstrate that the theoretical closed form performance measures are a credible

representation for track results obtained by independent Monte-Carlo simulations, using real dynamic

image sequences. We also empirically evaluate the performance of a complete feature tracker, the

Multiple Hypothesis Tracker - MHT [58] (as discussed in chapter 4) using the different motion

models considered to emphasise the importance of choosing the correct motion model for optimal

tracker performance (with supporting results). We have also compared MHT's performance with a

non-prediction based tracker (the KLT tracker discussed in Chapter 3) to assess the effectiveness of

the prediction scheme (based on the different motion models) in the presence of varied noise.

Since our primary task is to compare the performance of a point feature tracker with different motion

models, the corner features (each occupying 1 pixel in the image plane) that we track are extracted

independently in each frame of a given image sequence, by using the KLT corner detector [190] (It is

also possible to manually label corner points of interest in each frame for this analysis). By doing so

we totally isolate the tracking procedure from the corner extraction procedure purely to focus on the

performance of the prediction and tracking process.

The performance of a tracker is evaluated at different clutter density levels. This is achieved by

artificially inserting clutter points at different densities around the actual corner features extracted

(within a specified area centred at each feature). This process is employed to see whether a tracker

based on a particular motion model is robust enough to associate the predicted feature point with the

actual feature. Each experiment is carried out at a different clutter density level to evaluate the tracker

performance.
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5.1.1 Tracking Performance

An important property of any type of tracker is its performance in the presence of clutter. A tracker

would ideally always choose the actual target point feature over a clutter point feature at the data

association step. In practice differences between the modelled target motion and the actual target

motion compromise the effectiveness of the estimation step, and the random distribution of clutter

points leads to a non-zero probability of false data associations occurring. The issue of false data

association is of particular importance in tracking systems which choose only one data point to

continue the object trajectory (such as the nearest neighbour method), because the unselected true

data point is discarded from contention and is never considered in future data associations. Therefore,

the analysis presented in this chapter will also consider the probability of a tracker to regain track of

the moving object (corner feature) at the next step if at the current step a false association has

occurred.

The second important factor emphasised in this chapter is motion model selection for optimum

tracking performance. Most tracking algorithms use a single motion model in its framework mainly

because of computational advantages [58, 11]. Such an assumption is valid provided the tracked

feature of interest moves with a similar motion to that of the motion model. If the motion of the

feature is different, or if the feature changes motion during the course of tracking; then the tracker

fails to provide the best quality trajectories. We therefore, have included an empirical evaluation of a

real point feature tracker (the Multiple Hypothesis Tracker - MHT [58]), tracking with varied motion

models (the motion models as studied in chapter 4). The results presented emphasise the importance

of motion model selection for optimal feature trajectories.

This chapter is organised as follows: Section 5.2 provides the assumptions that are required for the

analysis. Section 5.3 provides the performance measures used. In section 5.4 and 5.5 the derivation of

expressions for the probability of correct data association (PCA and PCA-FM) for the three trackers

are considered. Section 5.6 outlines the experimental evaluation procedure employed. Section 5.7

provides the results and discussion, and finally Section 5.8 gives the conclusion.
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5.1.2 Nomenclature

a*

p(vk)

Po

Pm{k + \}

PaAk + V

p;IT{k+\}

P^Ak + l}

True position of object at time k

Velocity of object at time k

Acceleration of object at time k

Gaussian distributed random variable at time k

Probability density function of J]k

Probability that a pixel is a clutter point

Probability that a pixel is not a clutter point

Probability of correct association at time k+1 for a Zero Velocity Tracker (ZVT)

Probability of correct association at time k+1 for a Constant Velocity Tracker (CVT)

Probability of correct association at time k+1 for a Constant Acceleration Tracker (CAT)

Probability of correct association at time k+1 for a ZVT, when a false match occurred at

time A:

Probability of correct association at time k+1 for a CVT, when a false match occurred at

time k

Probability of correct association at time k+1 for a CAT, when a false match occurred at

time k

5.2 Assumptions for Tracking Analysis

The initial objective of this chapter is to develop closed form performance prediction techniques for a

tracker (based on 3 linear motion models: a Zero Velocity Tracker (ZVT), a Constant Velocity

Tracker (CVT) and a Constant Acceleration Tracker (CAT)).

(1) Zero Velocity Tracker (ZVT): This tracker assumes that the object position at any point in time

originated from a Wiener process and so it's positional increment from one time instant to the next

is independent of all preceding position increments (based on a constant position motion model).

Under such circumstances, since the next positional increment could be equally in any direction,

the best estimate of the object at time step k is by default its last observed position (given by Eq.

5.1). Such a prediction scheme would yield perfect predictions if the object remained in its last

observed position, and therefore it can also be considered a zero velocity predictor.
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(2) Constant Velocity Tracker (CVT): This tracker assumes that the target object moves with

constant velocity. Velocity is defined as the vector difference between two successive position

vectors, as described by Eq. 5.2.

(3) Constant Acceleration Tracker (CAT): This tracker assumes that the target object moves with

constant acceleration. Acceleration is defined as the vector difference (a finite difference

approximation) between two successive velocity vectors (Eq. 5.3).

The formulation of closed form expressions for the probability of correct association (PCA) for each

tracker requires a number of assumptions to be made, which are listed as follows.

Assumption 1: Only a single moving corner point is considered at a time, and the selected corner is

assumed present in every frame (this is verified by a manual check following corner detection). The

motion of the point feature behaves according to the following dynamic motion equations (for ZVT,

CVT, and CAT respectively)

P * = P * - I + 7 A (5.1)

P*=P*-i

= 2P*-I ~P*-2 + Tlk
(5.2)

(5.3)

where pk,vk(=pk -p t . ,),aJ t(= v* - v ^ , ) are the position, velocity and acceleration at time k

respectively (per unit time) and rjk is a Gaussian distributed noise.

Assumption 2: Data association is performed by the nearest neighbour method. No drift is assumed in

the prediction phase when estimating the position of a feature.

Assumption 3: Clutter is present in every frame. A new set of clutter points is generated for each

frame, and the clutter points are uniformly distributed in two-dimensional space for performance

evaluation.
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5.3 Performance Measures for Tracking

k+\

Disk of association

Figure 5.1: Definition of prediction error.

A natural choice for a measurement of tracking performance is the track purity of the output

trajectory generated by the tracking system. This is the average percentage of correctly associated

measurements in each track, see Chang et. al. [4i]-[43]. However, an analytical expression for track

purity is very difficult to derive. An alternative measurement is called the Probability of Correct

Association (PCA) [138], which as its name suggests is the probability, at any given step, that the

tracking system will make a correct data association in the presence of clutter.

The following PCA' s are presented (as performance prediction measures) in this chapter.

1. The probability of obtaining the correct association at / = k+1 for all three trackers given that a

correct association has been made at the previous time steps (referred as PCA).

2. The probability of making a correct association at t = k+1 for all three trackers given that an

incorrect association has been made at / = k, but that a correct association has been made at

previous time steps (referred as PCA-FM).

5.3.1 Nearest Neighbour Data Association

Denote the probability that a given pixel is not a clutter point by Po (and its complement by P}), the

true position of the object at / = k+1 by p t + 1 , and the predicted position of the object at / = k+1'

given track positions up to and including / = k by pk+]Vc. Then the prediction error is defined by

[138]. See Fig. (5.1).
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e*+l = k+l\k (5.4)

An overhead tilde is used to denote values derived from an incorrectly associated measurement made

at / = k, thus giving rise to, p4+I | t, and e i+I.

A correct association is attained when no clutter point occurs within the region of association, which

is defined to be a disk with radius ei+I centred at pk+l{k, as shown in Fig. (5.1). The probability of the

event of correct association is equal to the probability that no clutter point exists within a radius of

e1+1of pk+l\k. This probability is given by the probability Po to the power of the number of pixels in

a disk of radius eM [138], namely,

P{correct association at time k +1} = />**e**«l" (5.5)

Thus the derivation for the probability of correct association for ZVT, CVT, CAT begins with the

determination of an appropriate expression for et+1 for each case.

5.4 Probability of Correct Data Association (PCA)

This section describes the method to obtain an expression for the probability of correct association (at

time step k+1) for each of the trackers (ZVT, CVT and CAT) assuming the tracker has not made a

false match, up to the current time step k.

5.4.1 Derivation of PCA for the Zero Velocity Tracker (ZVT)

This tracker assumes that the best prediction for the point feature in the next frame is the current

point in the trajectory. Therefore, the following relationship holds for the ZVT (can also be termed

the constant position tracker).

e ,+ l=v i + l (5.6)

Substituting Eq. (5.6) into Eq. (5.5) yields the expression for the probability of correct association at

time step k+1 (denoted as Pzir{k + \}) in terms of the velocity from p^to pA+1. In this case the error is

caused by a small velocity vi+I (For the ZVT, it is assumed that vi+I »t]k- Therefore, the random
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noise component is neglected). If this assumption is taken into account, then the PCA for ZVT is

given by

11T (5.7)

5.4.2 Derivation of PCA for the Constant Velocity Tracker (CVT)

The constant velocity tracker assumes correct data associations have been made at t = k, and t = k-1.

The reason is that the CVT requires past positions of the feature at time k and £-1 to predict the

position at k+\. If any one of these past 2 positions represent a clutter point, the calculated velocity

value will not reflect the true velocity of the feature at t = k+1.

Using the error definition and the dynamic equations for constant velocity (section 5.2), we have,

~ Pi+I
(5.8)

Assume that for a non ideal case, a*+1 is non zero (say a small constant acceleration error component

ai+I=a is present) and rjk is a sample from a Gaussian distributed noise. Therefore, using Equations

(5.5) and (5.8) the probability of correct association for CVT (denoted as PCVT {k +1} ) can be given

as follows:

PCVT {k (5.9)

Since CVT is more accurate than ZVT in terms of prediction, r\k is assumed non-negligible compared

with the acceleration error term. Now using the total probability theorem [5], for the CVT, we obtain,

Pen {̂  +11 a} = IpCf7 {k +11 r)k, a} .p(7jk )Jrjk (5.10)

where p(rjk) is the pdf of the Gaussian distributed random variable rjk.
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Expanding equation (5.10) with suitable substitution, and integrating out, produces the following

expression (see Appendix C for proof):

(5.11)

,r,

a312

with ax = -I In Pox T), fix = 2ax In Pox, yx = a/ In Pon • &x, «T are the Gaussian noise variance
V 2crx)

and acceleration (a) component in the x direction respectively. A similar expression can also be

obtained for Iy.

5.4.3 Derivation of PCA for the Constant Acceleration Tracker (CAT)

Recall from section 3 that the constant acceleration tracker assumes correct data associations have

been made at / = k, k-1, k-2. The reason for this is that the acceleration term is calculated using the

previous three positions of the trajectory. If any one of these three position terms represents a clutter

point, the calculated acceleration value will not reflect the true acceleration of the feature point at / =

k+1.

The prediction error for the constant acceleration tracker is as follows (using similar approach as

before).

(5.12)

Under the constant acceleration assumption, ai+l * â  {higher order motion terms are assumed

negligible compared with the noise term, therefore not considered in (5.12)). Using equation (5.12),

the probability of correct association for CAT (denoted as PCAT {k +1}) is given by;

_ D "\ik\~ (5.13)
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The probability of correct association for CAT can be derived by setting a = 0 in Equations (5.9) -

(5.11), and further simplifying the expression reduces to (see Appendix C for proof),

PCAT
(5.14)

Alternatively, the expression (5.14) can be obtained by expanding (5.13) and then simplifying using

the fact that the area under a density function is unity (see Appendix C for a detail derivation).

5.5 Probability of Correct Association for Recovering from a False

Match (PCA-FM)

This section describes the method to obtain an expression for the probability of correct association

for each of the trackers (ZVT, CVT and CAT) when they recover from a mismatch to regain correct

track (after a false match occurring in the previous time step k). An analytical derivation for ZVT is

provided, but for CVT and CAT, PCA-FM expressions are provided using a combination of

analytical derivation and Monte-Carlo experiments.

k+\

k+l

isk of association (A)

Figure 5.2: Prediction error vi+1 includes the offset due to data association error Sk.
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5.5.1 Derivation of PCA-FM for the Zero Velocity Tracker (ZVT)

If a clutter point occurs within the disk shown in Fig. (5.2) at / = k, then that clutter point would be

selected for the trajectory at / = k. The probability of correct association when recovering from a

false match (PCA-FM), denoted as P'zn{k + \}, is a measure of the likelihood that the ZVT will

perform a correct data association at / = k+1 given that an incorrect association had occurred at / = k.

This situation is illustrated in Fig. (5.2).

Assume the existence of a clutter point n* inside the disk of association at time t = k. The nearest

neighbour criterion would associate nk with the trajectory at / = k, which is designated the symbol

p,., where the tilde denotes an incorrect association. When applying the zero velocity prediction

scheme, the incorrectly associated point also becomes the new prediction point, ie. pJl+1^ = pk, and

thus leading to a prediction error given by the following equation.

= v. (5.15)

From Fig. (5.2) it can be seen that vt+1 is the vector difference of the true velocity vk+l and the two-

dimensional random variable sk as given by equation (5.16).

VJt+! ~ V*+l ek (5.16)

Substituting the prediction error into equation (5.5) yields the probability of correct association given

as follows.

v = P *'7*+l' = P ;rlv*+l~c*l (5.17)

The probability P^T{k + \ |v i+l}can be formed from equation (5.17) by integrating out the random

term^ using the total probability theorem. The probability density function ofsk is a uniform

distribution inside the disk of association A, and zero outside. That is, p(sk) = \/n§vkf if £k is

inside^, and 0 otherwise [139].
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For mathematical convenience, the disk of association (A) is approximated by a square (5) as shown

in Fig. (5.3), which is centred at pt_, and has sides of length 2vmaKk, where vmax k is defined as:

Square region of integration (S) Disk of association (A)

Figure 5.3: Approximating the circular region of integration A by a square region S.

With suitable substitution and integration, the final expression can be given by (see Appendix C for

proof):

(5.18)

'* - -*))]
with a = \nP0K and b = -2vx. A similar expression can also be found for / . Note that this

expression is only valid for a small velocity v (to approximate a zero velocity tracker).
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5.5.2 Derivation of PCA-FM for the Constant Acceleration Tracker (CAT)

A complete expression for the probability of correct association for a constant acceleration tracker

recovering from a false match (prediction for / = k+J given that at / = k there was a mismatch) is

rather more complicated than the zero velocity case. However, we provide a geometrical derivation

using a similar vector diagram to Fig. (5.2). An expression can be found fo; a variable disk size

(instead of a fixed disk size as in Fig. 5.2) as shown in Fig. 5.4. For the ZVT it is known that the

radius of disk of association (A) is a constant velocity error (eA+1 =| VA+, | ) . But for a CAT we model

the radius r (with components rxiry in the x, y direction) of A as a variable quantity.

•< /

Disk of association (A)

Figure 5.4: Vector diagram for the probability of correct association for CAT and CVTwhen recovering from a

mismatch (the radius of the disk of association is modelled as a variable quantity).

From vector diagram (Fig. 5.4), and with the motion equation for CAT it can be shown (with

assumptions (i), (ii) given below) that:

(5.19)

where ek (= r) is the radius of the disk of association (the error) for the matching at / = k.

Assumptions for deriving (5.19):

(i) Tk is a random error term (non Gaussian) between the actual position of the feature and the

selected mismatched feature (at / = k).
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(ii) Tk » Tjk (for low noise levels).

By a similar analysis as to that carried out for the ZVT, the probability of correct association for

PCA-FM (recovering from a false match), denoted as P^AT{k + \ \r}, can be given by (see Appendix

C for details):

(5.20)

where 2rmx is the length of the square (whose area approximates that of the circle, as for the ZVT

case) and rmax = max(\r,\,\ryjj. The Ix is given by,

/ = «-'•*>)]

with a = -\nP0—
 an<^ r

x
 1S t n e x component of r, and can be given by the following expression.

rx=[a + J3exp{-(bh2 + ch + d))

= f(K,hy).hx

(5.21)

where h is an error quantity (a higher order motion, considered as an error term) of the dynamic

system (hz\s the x component of h), and a,/3,b,c,d are constants. The expression for r^was

evaluated by performing extensive Monte-Carlo simulations (a mathematical closed form expression

for /-jis very difficult to derive). The following approximate values for the constants were also

obtained by Monte-Carlo methods; a = 2, /? = 28, b = 15, c = 2, d = 0.03 for CAT. A similar expression

to Eq. (5.21) can be given for/ and ry.

Equation (5.20) is very similar to equation (5.18) except that r is a variable size in this case. Through

a series of Monte Carlo simulations, using a range of modelled error terms (such as the rate of change

of acceleration) and disk radius values (r), we were able to create close matches between the

experimental probability of correct association (PCA-FM) and the theoretical expression given in

equation (5.20). The result of these experiments is given in the plot in Fig. 5.5. This shows the

variation of f(hx,hy) with h. A perfect CAT is obtained when h -> 0. Conversely, with the use of this
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plot for a given error term (eg: a constant higher order motion term) we can find r (using equation

5.21), and in turn be able to find the probability of correct data association using Equation (5.20).

5.5.3 Derivation of PCA-FM for the Constant Velocity Tracker (CVT)

For the derivation of PCA-FM for CVT (denoted as P'CVT {k +11 r}), a similar analysis can be carried

out as for the CAT. In this case a constant velocity model is assumed with a constant acceleration

error term added to the dynamic motion equation. The probability of correct association (recovering

from a mismatch) is still given by equation (5.20), but rx is now given by the following expression.

rx = [ a + 0exp{-(bg + c)} ]. gx (5.22)

where g is the acceleration (modelled error term) of the dynamic system (gx is the x component ofg),

and a, J3,b,c are constants (as before) and were found to be approximately:

a = 22,0=\Z,b = 25,c = O.Q3 through a series of simulations. The variation of f{gx,gy) with g is

shown in Fig. 5.6. As before a perfect CVT is obtained when g -> 0.
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Figure 5.5: Variation off(hx, h.) with the error term (h). As h->0 a perfect CAT model is obtained

FigureS. 6: Variation of f(gx,g}.) with the error term (g). As g->0, a perfect CVT model is obtained.
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5.6 Experimental Procedure

This section describes the experimental procedure used to empirically validate the probabilities of

correct association.

5.6.1 Simulation Method

In the tracking experiments, the probabilistic component relates to the generation of random comer

points that clutter the scene in which tracking occurs. The steps involved in the Monte-Carlo

experiments for the analysis are shown in the following pseudo code.

Generate reference trajectory (applying the tracker with no clutter

points)

For each level of clutter

For each N trials

Create cluttered point set from reference trajectory.

Apply tracking algorithm to noisy token set.

Compare output trajectory with reference trajectory.

End

End

End

Calculate probability of correct associations.

5.6.2 Generation of Reference Trajectory

Separate reference trajectories (trajectory of the comer feature) were created using the ZVT, CVT

and CAT for each of the image sequences considered. The estimated (predicted and tracked) position

of a feature point is generated by applying the dynamic equations given in section 5.2 for each tracker

without considering clutter points. The position estimation step is followed by a manual check to

verify the existence of a feature in every frame. Each of the image sequences considered (details

given in section 5.7.1) had at least a small (non-zero) motion component due either to feature motion

or camera motion. Even to evaluate the ZVT, a small motion is necessary, because the performance

measures developed for the ZVT is velocity dependent (as given by the theoretical expression in

section 4.1), and it makes sense to evaluate the measure at a given velocity (small value). The
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reference trajectory generated by using a CAT is based on the dynamic motion equation (5.3) with a

random error component added (noise and a small constant higher order motion term). Similarly for

the CVT tracker, the dynamic equation (5.2) is used with a random component, consisting of a noise

term and a small constant acceleration.

5.6.3 Generation of Clutter Points

For each frame of a sequence, a set of random tokens is added to represent clutter. The random tokens

are uniformly distributed in each frame using a specified clutter density pt (see section 5.3.1 for

definition of />). The spatial region over which the new tokens are deposited is centred at the

reference corner point and is a square region with a sufficient number of pixels so that the expected

number of deposited (within the region) clutter tokens is N. In the experiments N was set to 10. The

value of N cannot be set too high because the extent of the clutter region grows very large with small

values of Px. Having N large can be computationally impractical in the current implementation. The

set of pt values used, were (0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.156 0.277

0.625). These are the 13 clutter levels at which the probability of correct association is evaluated.

5.6.4 Calculation of Probability of Correct Association

The probabilities of correct association (PCA and PCA-FM) for simulations are calculated using the

following expressions for each tracker (where event types A, B, C, and D are defined below):

A

A + B

C

C + D

Type A: Indicates correct tracking at time k

Type B: Incorrect tracking at time k

Type C: Indicates recovery from incorrect tracking at time k

Type D: Continuation of error due to incorrect tracking at time k

Table 5.1 gives the requirement for each tracker to obtain event types A, B, C, and D.
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Time

k

k-1

k-2

k-3

k-4

ZVT

A

1

1

X

X

X

B

0

1

X

X

X

c
1

0

1

X

X

D

0

0

1

X

X

CVT

A

1

1

1

X

X

B

0

1

1

X

X

c
1

0

1

1

X

D

0

0

1

1

X

CAT

A

1

1

I

X

B

0

I

I

I

X

c
I

0

I

I

I

D

0

0

I

I

I

Table 5.1. Event types (A, B, C, D) for each tracker, -where a 7 ' indicates correct matching at time k, and a '0'

indicates incorrect matching at time k. An 'X' indicates a don't care.

5.7 Results

The following sub-sections describe the qualitative and quantitative results obtained for the various

empirical evaluations presented. The simulated tracking performance is evaluated under 2 categories.

The track life (Total number of correct trajectory points regardless of trajectory order) and track

purity (Number of frames to first incorrect trajectory point). Our analysis as discussed below shows

that the PCA and PCA-FM derived (for each separate motion model) are a good representation for the

simulated track life and track purity, respectively, for each image sequence considered. All our

experiments presented here are based on real life dynamic image sequences (some frames of each

sequence are displayed in Appendix G). Finally, we employ a complete feature tracker (the Multiple

Hypothesis Tracker [58] is chosen for demonstration) and show the quality of feature trajectories

obtained using different motion models described. The MHT is also compared with the KLT tracker

(a non-prediction based tracker) at varied noise levels to test the robustness of the tracker.

5.7.1 Track Life and Track Purity Results Under Clutter

The results presented in Figs. (5.7-5.12) shows that the closed form expressions (PCA and PCA-FM)

are a reasonable match to the Monte Carlo experiments (using synthetic data), provided there is no

violation of assumptions made in deriving the theoretical expressions (as given in sections 5.4 and

5.5). This suggests that the theoretical expressions are a credible representation of tracker
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performance (for each separate motion model) under varied clutter level. For each experiment more

than 100 separate Monte Carlo runs were made and the average considered.

The trackers (ZVT, CVT, CAT) were applied to track corner features (extracted independently of the

tracker, using the KLT and Harris corner detection algorithms) for image sequences ranging from

about 10 to 50 frames. We used a variety of different image sequences with the feature to be tracked

moving with varied motion (due either to feature motion or camera motion). Figures (5.13)-(5.16) and

(5.17)-(5.20) shows the track life and track purity results for the PUMA (30 frames), Toy-Car (9

frames), Walking-Man (50 frames) and RUBIC (20 frames) image sequences respectively. From

these results it is reasonably clear that a CAT or a CVT tracker gives the best tracking results for the

PUMA sequence, while a CVT seems more suitable for the Walking man and Toy car sequences. A

ZVT is adequate for the RUBIC sequence, this is because the inter-frame motion for the RUBIC

sequence is very small, thus a zero velocity tracker is able to produce feature trajectories that are

comparable to CVT and CAT. The same results are independently verified by visually inspecting the

qualitative results given in Fig. 5.21 (these tracks are obtained by using the MHT employing the 3

different motion models discussed. They are the same figures as shown in Chapter 4 with the addition

of ZVT applied to each of the sequences). The motion model that gives the best quality trajectories

(for each image sequence) is the same as the ones revealed by the quantitative results displayed in

Figs. 5.13-5.20), thus confirming the consistency of the results presented.

Another noteworthy observation is that the ZVT recovers better from a false match than CVT or

CAT. A CVT recovers better than a CAT. The reason is that the ZVT requires only 1 past position to

predict the next estimated position, where as a CVT requires 2 past position and a CAT requires 3

past positions. For example, for a CAT to completely recover from a mismatch, it needs to wait 3

time steps (requiring correct association at each of the 3 time steps) to make the next correct

prediction.

5.7.2 MHT versus KLT in the Presence of Noise

In this section we provide a direct comparison between two types of feature point trackers. The 2

trackers considered are totally different in nature. The first tracker, the MHT uses a prediction (and

matching) strategy for tracking features. The second tracker, the Kanade-Lucas-Tomasi (KLT) uses a

non-prediction scheme (KLT uses an 'image patch comparison' strategy, the detail of the tracker was

described in Chapter 3). The purpose of the comparison was to evaluate the robustness of the trackers

in the presence of varied noise. The noise (uncorrelated noise) is artificially added to each frame
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r
(except the first frame) of a sequence at specified noise variances. The process was followed by

feature extraction prior to applying the trackers.

For the MHT tracker, the most suitable motion model as applicable to each of the image sequence

considered (obtained from results reported in sections 5.7.1) was employed. The number of features

extracted in the initial frame for each sequence was limited to around 25 for clarity. The features

were detected using the KLT feature detector [190]. Figures (5.22)-(5.25) shows the qualitative

tracking results for both trackers, while Figure (5.26) shows the quantitative track-life results.

For the PUMA sequence, both trackers perform well at low noise levels (CT < 10), but the MHT

provides better quality feature trajectories (longer trajectories) at higher noise levels than the KLT.

This is clear from the results reported in Figs. (5.22) and (5.26a,b). For the Rubic sequence, both

trackers provide equally good track results up to a noise level of around a = 20 (Fig. 5.23), mainly

because of the small inter frame displacement. At higher noise levels (noise variance a > 20), MHT

results in longer trajectories, this is evident from Fig. (5.26c,d), but not clearly observable from Fig.

5.23.

For the Walking man sequence MHT gives good track results at all noise levels considered, compared

with the KLT tracker (see Figs. 5.24 and 5.26e,f). Since this is an outdoor sequence (generally prone

to more image plane noise), added synthetic noise has a greater impact on the quality of trajectories

obtained. It should also be noted that the features extracted from the walking person are not uniform

throughout the sequence, because of the non-rigid nature of the object (walking man). As a result, the

KLT tracker fails to produce good quality trajectories even at low noise levels due to failure of its

image patch matching technique.

For the Toy car sequence, up to a noise level of a = 10, the MHT gives good quality results (Fig.

5.25), but at higher noise levels, several incorrect trajectories are reported. The KLT, on the other

hand gives shorter trajectories but are more reliable than the one obtained using MHT (see also Fig.

5.26c,d). The reason for this observation is because of occlusion (the jeep and the van are occluded

between frames 4-6, see Appendix G). KLT cannot cope with occlusion because of its patch

comparison strategy in consecutive frames, while MHT can cope with occlusion, but during

occlusion added noise can distract the MHT tracker due to spurious measurements in the absence of

the occluded object.

A general observation of the track results indicate that, MHT outperforms KLT in a noisy

environment (for the examples considered), mainly because of its prediction /matching strategy. One
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reason for trackers breaking down at higher noise levels is because, the robustness of the corner

detector employed (KL detector) decreases with the increase of noise (this fact is tnie for any corner

detector). As the noise increases the number of false corners detected increases rapidly, which in turn

results in high clutter density. Increase in clutter density lead to poor quality trajectories as discussed

in the previous sections. Another reason, particularly for KLT, is the patch comparison mechanism it

employs to match and track features in consecutive frames. Unfortunately the correlation technique

that KLT employs is not suitable when considerable amount of noise is present in the image plane.

Because of uncorrelated noise added to the sequences, the correlation match obtained between frames

are very low, giving rise to poor quality trajectories (the KLT gives up tracking a feature if the match

of image patches containing the feature between frames fall below a certain predefined threshold).

5.7.3 Theoretical versus Experimental Results

From the plots given in Figures 5.7-5.20, it is clear that there is deviation between the theoretical and

experimental (simulation) results. The reasons for the deviation could be attributed to the following.

(a) In deriving the theoretical expressions, many assumptions were made (as described in sections

5.4.1-5.4.3 and 5.5.1-5.5.3). These were necessary in order to obtain feasible mathematical

formulations. Whereas the simulated experiments were all based on the true dynamic motion

models. Failure to meet these assumptions could have caused discrepancy.

(b) Obtaining PCA and PCA-FM using simulations were based on several hundreds of Mote Carlo

runs (100-300). The number of runs might not have been sufficient for true representation of event

types A, B, C and D. Particularly, the conditions required for event types C and D are rather

restricted and thus the probabilities of events C and D occurring is very low, which in turn could

have led to the calculation of less reliable probability values. This could have caused some

deviation between the theoretical and simulated results.

(c) Numerical approximation and compromises in simulation implementation methods could also

have caused some deviation, which were not accounted for in the analytical study.

However, despite these factors, the correspondence between the theoretical formulation and

experimental results are close for low and high values of clutter density.
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Theoretical versus experimental results (using synthetic data)
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Figure 5.7
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Figure 5.9

Figure 5. 7: Probability of correct association (PCA)for the ZVT. Pi is shown on a log scale. A velocity error
(v) of 6.25 pixels/unit time was modelled as an error term for the ZVT tracker.

Figure 5.8: Probability of correct association (PCA)for the CVT. The Gaussian noise variance 0=1.3 with an
added acceleration error of 0.01 pixels/unit time/unit time (modelled as an error).

Figure 5.9: Probability of correct association (PCA)for the CAT. The Noise variance is set to o=1.3.
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Theoretical versus experimental results Cont
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Figure 5.12

Figure 5.10: Probability of correct association for the ZVT for recovering from a mismatch (PCA-FM). Pt is
shown on a log scale. A velocity error v=1.0pixels/unit time is applied for this example.

Figure 5.11: Probability of correct association for the CVTfor recovering from a mismatch (PCA-FM). A 'disk
of association' radius r = 4.4, (with f(gx ,g ) =2.2) is applied for this experiment. See text for details.

Figure 5.12: Probability of correct association for the CAT for recovering from a mismatch (PCA-FM). A 'disk
of association' radius r = 2.9, (withf(hx,h ) = 2) is applied for this experiment. See text for details.
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Track-life results (using real data)
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Figure 5.13: Track-life for the PUMA sequence plotted against clutter probability (shown in log scale). The
theoretical model presented for the probability of correct association (for CAT) closely matches the track life
obtained using a constant acceleration tracker (CAT) experimentally. The plot shows that a CAT or CVT
provides the best quality trajectories under clutter for the PUMA sequence.

Figure 5.14: Track-life for Walking man sequence (shown in log scale). The track-life obtained by experiments
for walking man sequence using a constant velocity model (CVT) gives the best match for the theoretical CVT
model.
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Figure 5.15 Figure 5.16

Figure 5.15: Track-life for the RUBIC sequence plotted against clutter probability (shown in log scale). The
theoretical model presented for the probability of correct association (for ZVT) matches track-life obtained by
all 3 trackers. Since the motion is very small between frames, a ZVT tracker seems adequate.

Figure 5.16: Track-life for Toy car sequence (shown in log scale). The track-life obtained for toy car sequence
using a constant velocity model (CVT) gives the best match for the theoretical CVT model presented
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Track-purity results (using real data)
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Figure 5.17: Track-purity for the PUMA sequence plotted against clutter probability (shown in log scale). The
theoretical model presented for the probability of correct association for recovering from a mismatch (for CAT)
is a reasonable approximation to the track-purity obtained using a constant acceleration tracker (CAT) by
simulations. This is an indication that for feature tracking for the PUMA sequence a CAT or CVT provides the
best track result.

Figure 5.18: Track-purity for Walking man sequence (shown in log scale). The track-purity obtained for
walking man sequence (by simulations) using a constant velocity model (CVT) gives the best match for the
theoretical CVT model.
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Figure: 5.19 Figure: 5.20

Figure 5.19: Track-purity for the RUBIC sequence plotted against clutter probability (shown in log scale). The
theoretical model presented for the probability of correct association (for ZVT) when recovering from a
mistnatch is a reasonable match for tracks obtained by all 3 trackers (using simulations). Since the motion is
very small between frames, a ZVT tracker is adequate.

Figure 5.20: Track-purity for Toy car sequence (shown in log scale). The track-purity obtained (by simulations)
for toy car sequence using a constant velocity model (CVT) is reasonably a good match for the theoretical CVT
model presented.

Note: The track-purity results are consistent with the track-life results (Fig. 5.13-Fig. 5.16).
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Tracks Obtained Using Different Motion Models

(j) (k)

Figure 5.21. Qualitative results of trajectories obtained by employing the MHT tracker with different motion
model. For each sequence the tracks are displayed on frame-]. The circle indicates the end or termination of a
track, (a) PUMA using a CAT, (b) PUMA using a CVT (shorter tracks than using CAT), (c) PUMA using a ZVT.
(d) Toy-car using a CA T (observe the number of false trajectories despite longer tracks), (e) Toy-car using a
CVT, (j) Toy-car using a ZVT (g) Walking man using a CAT (large number of false tracks due to over-
constraint), (h) Walking man using a CVT, (i) Walking man using a ZVT. (j) Rubic using a CAT, (k) Rubic using
a CVT, (I) Rubic using a ZVT (similar residts to using CAT or CVT). The results show that the quality of
trajectories obtained for each image sequence is influenced by the motion model employed. Thus choosing the
most appropriate motion model is of importance for good tracking result.
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Tracks Obtained at Varied Noise Levels (PUMA)

(g)MHT, at a = 30 (h)KLT,ata=30

Figure 5.22: Qualitative results for the PUMA sequence tinder noise: Performances of MHT (using CAT) at
noise variance (a) a- 0, (c) a=10, (e) cr =20 and (g) a =30. Performances ofKLTat noise variance (b) a= 0,
(d) a = 10, (f) a =20 and (h) a =30.
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Tracks Obtained at Varied Noise Levels (Rubic)

(g)MHT, at a =30 (h)KLT,ato-=30

' noiseFigure 5.23: Qualitative results for the Rubic sequence under noise: Performances of MHT (using ZVT) at.
variance (a) a=0, (c) a=10, (e) a =20 and (g) a =30. Performances of KIT at noise variance (b)o=0 (d)a
=10, (f) a =20 and (h) a =30.
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Tracks Obtained at Varied Noise Levels (Walking Man)

(g)MHT, at a =30 (h)KLT, at a =30

Figure 5.24: Qualitative results for the Walking man sequence under noise: Performances ofMHT (using CVT)
at noise variance (a) cr= 0, (c) a=10, (e) a =20 and (g) a =30. Performances ofKLTat noise variance (b) a =
0, (d) a=10, (f) a =20 and fh) a =30.
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Tracks Obtained at Varied Noise Levels (Toy Car

(g)MHT, at a= 30 (h) KIT, at a = 30

Figure 5.25: Qualitative results for toy car sequence under noise: Performances ofMHT (using CVT) at noise
variance (a) a = 0, (c) cr=10, (e) a =20 and (g) a =30. Performances ofKLTat noise variance (b) a=0, (d) a
= 10, (f) a =20 and (h) a =30.
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Track-Life Results
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Figure 5.26: Track life for the 4 image sequences considered (s refers to noise variance), (a) Using MHT
tracker for the PUMA sequence, (b) Using KLT tracker for the PUMA sequence, (c) Using MHT tracker for the
Rubic sequence, (d) Using KLT tracker for the Rubic sequence, (e) Using MHT tracker for the Walking man
sequence, (f) Using KLT tracker for the Walking man sequence, (g) Using MHT tracker for the Toy-car
sequence, (h) Using KLT tracker for the Toy-car sequence.
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5.8 Conclusion

We have provided a performance prediction scheme for simple linear trackers based on different

motion models when tracking under clutter. The closed form expressions provided for performance

prediction have been shown to be more efficient than the conventional Monte-Carlo experiments. The

method provided is useful to compare the performances of a visual tracker based on different motion

models, thus indicating to the motion model that gives the best quality trajectories. We have also

experimentally demonstrated that choosing the most appropriate motion model is important for any

tracker to provide good tracking results. The tracker performance under noise has revealed the degree

of robustness of the trackers. This was demonstrated by applying the MHT and KLT trackers to track

features at varied noise levels.

It is also worth noting that the best motion model selected for the image sequences considered in

Chapter 4 are consistent with the results reported in this Chapter, thus confirming the consistency of

motion model selection results for each sequence considered.
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Chapter 6

Extension of a Point Feature Tracker for Rigid

Object Tracking

Abstract

This chapter presents an object tracking technique based on the Bayesian Multiple Hypothesis Tracking (MHT)
approach. Two algorithms, both based on the MHT technique are combined to generate an object tracker
[182]. The first MHT algorithm is employed for contour segmentation [57]. The segmentation of contours is
based on an edge map. The segmented contours are then merged to form recognisable objects. The second MHT
algorithm is used in the temporal tracking of a selected object from the initial frame (as explained in chapter 4).
An object is represented by key feature points that are extracted from it. The key points (mostly corner points)
are detected using information obtained from the edge map. These key points are then tracked through the
sequence. To confirm the correctness of the tracked key points, the location of the key points on the trajectory
are verified against the segmented object identified in each frame. If an acceptable number of key-points lie on
or near the contour of the object in a particular frame (say n-th frame), we conclude that the selected object has
been tracked (identified) successfully in frame n.

6.1 Introduction

The primary purpose of this chapter is to track a selected object (as opposed to a single point feature)

from the initial frame through the image sequence. The process is an attempt to extend the point

feature tracking introduced in chapter 4 to object tracking. In this case, key points from the object are

selected using a curvature scale space technique [134] to represent that object. The key points are

temporally tracked and are validated against the object contour (obtained by grouping edge segments)

in each frame. The tracking technique involves applying the MHT algorithm in two stages: The first

stage is for contour grouping (object identification based on segmented edges) and the second stage is

for temporal tracking of key features (from the object of interest). For the contour grouping process,

we employed the algorithm developed by Cox et al [57], and for the key point tracking procedure we

used the tracker introduced in chapter 4. Both algorithms combine to provide a rigid-object tracker

(the tracker cannot effectively be applied to deformable objects for reasons explained later in this

chapter).
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The set of image contours produced by objects in a scene, encode important information about their

shape/position, and orientation. Image contours arise from discontinuities in the underlying intensity

pattern, due to the interaction of surface geometry and illumination. A large body of work, from such

areas as model-based object recognition and contour motion flow (as discussed in chapter 2), depend

critically on the reliable extraction of image contours. Reliable image contours are necessary to

identify an object with certainty, which in turn is necessary for tracking the object over a period of

time in a sequence of images. We use the term 'object' for a group of edge segments that form a

recognisable object (identified as belonging to the same object). The object will be identified by an

enclosed {or near-enclosed) contour.

This chapter is organised as follows: Section 6.2 gives a brief description of the Multiple Hypothesis

Tracking (MHT) approach relating to edge segmentation. Section 6.3 shows how the multiple

hypothesis approach can be used for object recognition. In section 6.4 we briefly show the process to

extract key points from an object, and the MHT approach for tracking key point features through an

image sequence. Section 6.5 provides the object-tracking framework employed using methods

described in section 6.3 and 6.4. Section 6.6 gives results obtained from experiments. Section 6.7

gives a general discussion, and finally section 6.8 provides the conclusion.

6.2 Multiple Hypothesis Framework for Contour Grouping

This section briefly describes the multiple hypothesis approach in relation to contour segmentation.

The details of which were discussed in chapter 4.

Fig. 6.1 outlines the basic operation of the MHT algorithm for contour grouping (observe the minor

difference to that of Fig. 4.1. Instead of corners, edges are extracted). At each iteration, there are a set

of hypotheses (initially null), each one representing a different interpretation of the edge points. Each

hypothesis is a collection of contours, and at each iteration each contour predicts the location of the

next edgel as the algorithm follows the contour in unit increments of arc length. An adaptive search

region is created about each of these predicted locations as shown in Figure 6.2 [57]. Measurements

are extracted from these surveillance regions and matched to predictions based on the statistical

Mahalanobis distance (similar to that discussed in chapter 4). This matching process reveals

ambiguities in the assignment of measurements to contours. This procedure provides an associated

ambiguity matrix (Q) for each global hypothesis from which it is necessary to generate a set of legal
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assignments. As a result, the hypothesis tree grow another level in depth, a parent hypothesis

generating a series of hypotheses each being a possible interpretation of the measurements. The

probability of each new hypothesis is calculated based on assumptions described in chapter 4.

Finally, a pruning stage is invoked to constrain the exponentially growing hypothesis tree. This

completes one iteration of the algorithm. Appendix B contains the required mathematical formulation

for this application.

Hypothesis at time it—1 _ Q. '

For each Hypothesis
generate predictions

Predicted Edges Z(k)

Delay Hypotheses at time k, Q.

HypothesisMi.'.'iagement
(pruning, merging)

Hypothesis Generation

Ambiguity Matrix
Z(k) Observed Edges

Edge Extraction

Intensity Image t

Figure 6.1: Outline of the multiple hypothesis algorithm for edge grouping

In the following sections we briefly describe the contour grouping algorithm employed, and the key

point selection and tracking process used. Both these methods are based on the multiple hypothesis

approach.

6.3 Object Recognition

6.3.1 Contour Segmentation

The contour grouping problem examined in this chapter, involves assigning edge pixels produced by

an edge detector [40, 31] to a set of continuous curves. Associating edge points with contours is

difficult because the input data (from edge detectors) is noisy; there is uncertainty in the position of

the edge, there may be false and / or missing points, and contours may intersect and interfere with one

another. There are four basic requirements for a successful contour segmentation algorithm. First,
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there must be a mechanism for integrating information in the neighbourhood of an edgel to avoid

making irrevocable grouping decisions based on insufficient data. Second, there must be a prior

model for the smoothness of the curve to base grouping decisions on. This model must have an

intuitive parameterisation and sufficient generality to describe arbitrary curves of interest. Third, it

must incorporate noise models for the edge detector, to optimally incorporate noisy measurements,

and detect and remove spurious edges. And finally, since intersecting curves are common, the

algorithm must be able to handle these as well. The algorithm due to Cox et.al. [57, 59] is one which

has a unified framework that incorporates these four requirements, and we will use this algorithm for

contour segmentation.

The contour grouping is formulated as a Bayesian multiple hypothesis 'tracking' problem (as in

[152]). The algorithm has 3 main components. A dynamic contour model that encodes the

smoothness prior, a measurement model that incorporates edge-detector noise characteristics, and a

Bayesian hypothesis tree that encodes the likelihood of each possible edge assignment and permits

multiple hypothesis to develop in parallel until sufficient information is available to make a decision.

A key step in assigning probabilities to segmentation hypothesis is the computation of the likelihood

that a given measurement originated from a certain contour. This likelihood computation depends on

two things: a dynamic model that describes the evolution of the curve in the image, and a

measurement model that describes how curves produce edgels. In this formulation, the curve state

vector is [x x y y] (where (x, y) are the position in a Cartesian coordinate) and its dynamics are

described by a linear noise-driven acceleration model common in the tracking literature [5, 6] (also

discussed in chapter 4). The autocorrelation of the white Gaussian acceleration noise can be varied to

model curves of arbitrary smoothness. Thus the tip (end point) of the contour as a function of arc

length, u, is (x(u), y(u)) and has tangent (x(u), y(u)). Since many edge detectors provide gradient

information, it is assumed that the entire state vector is available for measurement (a good edge

detector such as Canny [40], Boie-Cox algorithm [31] etc. which provide both position and coarse

gradient information (horizontal, vertical, and two diagonals) is employable for this application). A

Kalman filter is then employed to estimate curve state and predict the location of edgels. These

predictions are combined with actual measurements to produce likelihoods.
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zl

Figure 6.2: Predicted contour locations, a surveillance region and .statistical Mahalanobis (elliptical) regions

for a situation with two known contours (tl andt2) and three new measurements (zl, z2 andz3).

Once the location of a given curve has been predicted by the Kalman filter and discretized to image

coordinates, a surveillance region is employed to extract measurements. A surveillance region is an

adaptive variable sized window that travels with the tip of the contour and is used to extract

measurements from the edge map. Every iteration, each contour searches for edge points in a series of

circles of increasing diameter centred at the predicted contour endpoint. The search halts as soon as at

least one measurement is found, or the maximum search radius is reached. The size of the

surveillance region determines the distance the curve must travel in that time period, and is reflected

in the step size for the curve. The use of a set of windows of increasing size ensures that no more than

one measurement from the given contour will be found in a single time period.

The search for measurements takes place after the prediction phase of the state estimator generates an

extrapolated endpoint location, (x, y), for the contour. This location determines the discrete image

coordinates, (*,, yj), at which the surveillance region is centred. If there is no edge at the predicted

location, concentric circles (see Fig. 6.3), of radius 1,-^2,2,^15 , are searched for edgels (the radii

define discrete pixel neighbourhoods). These surveillance regions are labelled 1 to 5 in Fig. 6.3 (It

should be, noted that the surveillance region of a contour is not equivalent to its validation region,

which is defined by the Mahalanobis distance and is depicted in Fig. 6.3 as an ellipse). It is these
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measurements that form segmentation hypothesis whose probabilities are computed. See Appendix B

and [57] for details.

T

4

Figure 6.3: A contour, its surveillance region (labelled 1-5) and its validation region.

6.3.2 Contour Merging

The grouped contours resulting from the above mentioned process still might have breaks and gaps

between segments of the same object. A further refinement process can be employed to merge

segments to form identifiable objects. A merging technique is employed by using a distance test (eg:

Mahalanobis distance) applied to the end points of contours (assuming a non-closed contour). In this

case the multiple contours can be merged to recover the correct segmentation, compensating for the

incorrect initial conditions. Two contours with state estimates x, and Xj at common boundary are

merged if dx y T'tj dx(j < 5, where dxtj = Jc;. - Xj. TV is the covariance, and Sis obtained from x*

tables or set appropriately as a threshold. This test is applied after the algorithm produces an initial

segmentation. The procedure resolves many ambiguities left by the contour segmentation algorithm.

A simpler algorithm can also be used by just using the end-point positions and derivatives of the end

points of each curve (produced by the edge detector) as shown below.
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Algorithm for merging contours

1) (i) Read Contour Segmentation map (this is the map which has details such as contour length, start and

end positions of contours etc. for every contour).

* Get number of contours (no_contours).

* Get start and end positions of every contour.

* Get the 'initial' and 'end' position, and their positional derivatives for every contour.

2) (i) for i = 1 -> no_contours

{

for j = i -> no_contours

{

if (contour j (start or end position) - contour j+1 (start or end position) < POS_THRESHOLD) &&

if (contour j (derivative of start or end position) - contour j+1 (derivative of start or end position)

< DERIVJTHRESHOLD)

/* check the start and end position of every contour with the start and end position of every

other contour, could use Mahalanobis distance for setting thresholds (see text) */

{

contour j will merge with contour j+1

enter mergeable contour id, length, start, finish position etc. in a contour_merge_table

3) Read the contour_merge_table and merge the contours which had passed the merge test in 2).

6.4 Temporal Tracking of Key Feature Points

In this section we discuss the process to extract key points from the object of interest and we also

discuss the procedure to track them temporally.

6.4.1 Extracting Key Feature Points from Objects

In order to temporally track the object of interest, key points from the object are extracted to

represent the object. The key point extraction method should ensure that only true corner points (or
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any clearly identifiable and definable points) are extracted. Extraction of multiple points within a

small region should be avoided (eg: in a curved object, ideally only 1 point should be selected from

the curved portion) for good tracking. Since contour grouping (discussed in the previous section) is

based on an edge-map, it is desirable that key points should also be selected from the same edge map.

Such a process will be efficient and will eliminate the requirement to employ a separate corner

detection algorithm. Because of these limitations, we cannot effectively use any of the corner

extraction algorithms mentioned in Chapter 3 (these calculate corner values directly from the raw

image). Instead we have employed a method.called the curvature scale space technique [134], which

selects key points directly from an edge map efficiently. In the next section the curvature scale space

technique is discussed in brief.

6.4.2 The Curvature Scale Space Algorithm (CSS)

The CSS technique is suitable for recovering invariant geometric features (curvature zero-crossing

points and / or extrema) of a planar curve at multiple scales. To compute it, a curve F is first

parameterised by the arc length parameter u:

T(u) = (x(u),y(u))

An evolved version F of F can then be computed. F is defined by [134]:

where

Z(u, a) = x(u) ® g(u, <J) y{u, a) = y(u) <8> g(u, &)

where <8> is the convolution operator and g(u, a) denotes a Gaussian of width a (CT is also referred

to as the scale parameter). The process of generating evolved versions of F as a increases from zero

to infinity is referred to as the evolution of F . This technique is suitable for removing noise from,

and smoothing a planar curve as well as gradual simplification of its shape. In order to find curvature

zero-crossings or extrema from evolved versions of the input curve, one needs to compute the

curvature accurately and directly on an evolved version F . Curvature KOI\ F^ is given by [134]:
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where

Xu («, cr) = x(u) ® gu (K, cr)

+y(u,(ry)

("> cr) = *(«) ® ?„„ (w, cr)

„ O> o-) = y(ju) ® ^ u (M, cr) /„„ («, <7) = ^(11 (w,

6.4.3 CSS Key Point Detection Method

6.4.3.1 Brief Overview

The comers (key points) are defined as the local maxima of the absolute value of curvature. At a very

fine scale, there exist many such maxima due to noise on the digital contour. As the scale i«>

increased, the noise is smoothed away and only the maxima corresponding to the real comers remain.

The CSS detection method finds the corners at these local maxima.

As the contour evolves, the actual locations of the comers change. If the detection is achieved at a

large scale the localisation of the comers may be poor. To overcome this problem, local tracking is

introduced in the detection. The comers are located at a high scale ahjgh, assuring that the comer

detection is not affected by noise, a is then reduced and the same comer points are examined at lower

scales. As a result, location of comers may be updated. This is continued until the scale is very low

and the operation is very local. This improves localisation and the computational cost is low, as

curvature values at scales lower than a^h do not need to be computed at every contour point but only

in a small neighbourhood of the detected comers.

There are local maxima on the evolved contours due to rounded comers or noise. These can be

removed by introducing a threshold value t. The curvature of a sharp comer is higher than that of a

rounded corner. The final stage to the candidate comer declaration is that each local maximum of the

curvature is compared to its two neighbouring local minima. The curvature of a comer point should

be double the curvature of a neighbouring extremum. This is necessary since if the contour is

continuous and round, the curvature values can be well above the threshold value t and false comers

may be declared.
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6.4.3.2 CSS Detection Process

The CSS key point detection process can be given by the following steps:

1. Utilise an Edge detector (such as Canny [40] or Boie-Cox [31] etc.) to extract edges from the

original image.

2. Extract the edge contours from the edge image:

- Fill gaps in the edge contours

- Find the T-junctions and mark them as T-corners

3. Compute the curvature at highest scale â gh and determine the corner candidates by comparing

the maxima of curvature to the threshold / and the neighbouring minima.

4. Track the corners to the lowest scale to improve localisation.

5. Compare the T-corners to the corners found using the curvature procedure, and remove corners

which are very close.

The details of the CSS process can be found in [134].

6.4.4 Tracking Point Features

The MHT-IMM (MHT coupled with a multiple model Kalman filter, as discussed in chapter 4)

algorithm can be applied for tracking key point features through an image sequence. The procedure

for this was analysed in detail in chapter 4. The measurements for the tracking filter in this case will

be the key features extracted (from and near the object of interest) from every frame of a given image

sequence (key points are searched within a region of interest surrounding the estimated object

centroid). The object centroid position is initially calculated in the first frame by taking the mean of

the sum of object key point positions. In the subsequent frames the object centroid is estimated using

the MHT-IMM tracker. The extracted measurements are then matched to predictions based on the

Mahalanobis distance.

The advantage in using the key point tracking algorithm is that we can verify each of the temporally

translated key points on the object (selected) against the likely contour of that object in every frame.

By doing so, we examine to see whether the object as a whole is tracked correctly (the process for

doing this is explained in the next section). In the next section we give the procedure involved in

combining the point feature tracking algorithm and the contour grouping algorithm for object

tracking.
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6.5 Object Tracking

This section shows how the contour grouping and key point feature tracking procedures combined

can be applied for object tracking in image sequences. One cycle of the algorithm recursion is

displayed in Fig. (6.4).

The object tracking principle underlying this algorithm is shown in Fig. 6.5. For every frame in an

image sequence we first apply the contour segmentation algorithm. This process will group segments

of edges that are likely to be from the same object. The result of such a process applied to our test

sequences are given in Figures 6.6(a) - 6.9(a). The procedure as seen from these figures, fail at high

curvature contour regions, or is unable to bridge a gap in edgels extracted. As a result, contours from

the same object are often broken or separated. To overcome this limitation we applied the contour

merging algorithm, which resulted with recognisable object contours (Fig. 6.6b - 6.9b).

Once the object contours are categorised separately, we can now track a selected object (selection of

object can be automated by using a snake type algorithm (eg: Gsnake [120, 121]) or any other

suitable algorithm) from the initial frame through the sequence. To track the selected object, we first

select some key features (points) from the object (these are selected using the edge map information

and then applying the CSS algorithm) as discussed section (6.4).

The key features of the object are extracted in every frame and the object centroid calculated (this is

the mean position of the sum of key points of the object contour). The key points (and the centroid)

from the first frame are now tracked through the sequence using the MHT-IMM algorithm (as

discussed in chapter 4). The tracking process is achieved by predicting the object centroid position in

the following frame, and then searching a region of interest surrounding the centroid to look for the

key points, this process is followed by matching the key points to a grouped object contour within

that region. This procedure will provide trajectories for every key point of the object. Each trajectory

point is validated against a grouped contour in each frame. By imposing a distance threshold between

the tracked key points and the key points on the segmented contour (in each frame), we can verify

whether the points have been tracked to an acceptable level of precision. If an acceptable number of

key points tracked are identified to lie on or near the object contour (that is passing the threshold test)

in each of the frames, we conclude that the object has been tracked successfully. If a key point fails

the threshold test, then that point will not be considered as part of that feature trajectory any further.
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Figure 6.4: Overview (1 cycle) of the object tracker proposed
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frame -1

The object tracked (triangle)

frame-2 frame-3 —

Key feature points

frame-N

Figure 6.5: A graphical illustration of the object tracking principle. The object (triangle) contour is formed by
the key feature points PI, P2, P3 (black blobs inframe-1). The object formed in every frame is achieved using
contour segmentation coupled with a contour merging technique (section 6.3). Tl, T2, T3 are the trajectories of
the key points. The trajectories are obtained by using the MHT-1MM tracking algorithm (section 6.4). If the. key
points tracked (trajectories T1-T3) in every frame lie on or near the contour (triangle) in each frame, then we
have the object itself tracked through the image sequence (up to frame N).

6.6 Results

Image Sequence

(frames length)

UMASSLab(ll)

PUMA (30)

Indoor cones (8)

Outdoor cones (20)

Number of key

points selected to

be tracked

8

4

12

Attempted number

of points tracked (&

percentage)

8

4

3

10

100%

100%

100%

83.3%

Number of features tracked

for more than 2/3's of the

seq. length (& percentage)

8

4

10

100%

100%

100%

100%

Table 6.1: Object tracking statistics for the 4 test image sequences considered.

The 4 sequences considered gives a variety of scenarios to test our algorithm. In all 4 cases the

tracking results are promising (see Figures 6.6 - 6.9). Table 6.1 provides quantitative performance

values for the object tracker. For the UMASS lab sequence 100% of the key-points selected as

forming the object (posters) in the first frame are successfully tracked for the entire sequence length.

Similar observations can be made for the PUMA and the indoor cone sequences. Finally a multiple

object example is demonstrated. For the outdoor cone sequence, 4 cones are considered as part of an

object. As the result suggests, 10 out of the 12 key corner features are tracked successfully for more

than 2/3's of the sequence length.
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(c)

Figure 6.6: UMASS lab sequence result, (a) Contours grouped by applying the contour segmentation algorithm
based on the edge map obtained (one frame of the sequence is displayed). Each segmented contour (grouped
edges) is shown with a different color, (b) Result after the application of segment merging algorithm (observe
ttiat the segments that are identified as forming the same object are merged together in most instances), (c) The
trajectory of the 8 key points by applying the MHT-IMM algorithm. The 'x' shows the start of the trajectory
while the little white circle indicates the end of trajectory, (d) The identified object trajectory (poster). The white
contours (identified as belonging to the same object in each frame) are superimposed on the first frame of the
sequence to show the motion of the object.
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i
1
in

I
I Figure 6.7: PUMA lab sequence result, (a) Contours grouped by applying the contour segmentation algorithm

based on the edge map obtained (one frame of the sequence is displayed). Each segmented contour (grouped
edges) is shown with a different color, (b) Result after the application of segment merging algorithm (observe
that the segments that are identified as forming the same object are merged together in most instances), (c) The
trajectory of the 4 key points by applying the MHT-IMM algorithm. The 'x' shows the start of the trajectory
while the little white circle indicates the end of trajectory, (d) The identified object trajectory (window). The
white contours (identified as belonging to the same object in each frame) are superimposed on the first frame of
the sequence to show the motion of the object.
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(c)

Figure 6.8: Indoor cone sequence result, (a) Contours grouped by applying the contour segmentation algorithm
based on the edge map obtained (one frame of the sequence is displayed). Each segmented contour (grouped
edges) is shown with a different color, (b) Result after the application of segment merging algorithm (observe
that the segments that are identified as forming the same object are merged together in most instances), (c) The
trajectory of the 3 key points by applying the MHT-IMM algorithm. The 'x' shows the start of the trajectory
while the little white circle indicates the end of trajectory, (d) The identified object trajectory (cone). The white
contours (identified as belonging to the same object in each frame) are superimposed on the first frame of the
sequence to show the motion of the object.
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Figure 6.9: Outdoor cone sequence result, (a) Contours grouped by applying the contour segmentation
algorithm based on the edge map obtained (one frame of the sequence is displayed). Each segmented contour
(grouped edges) is shown with a different color, (b) Result after the application of segment merging algorithm
(observe that the segments that are identified as forming the same object are merged together in most
instances), (c) Hie trajectory of the 10 key points by applying the MHT-IMM algorithm. Tlie 'x' shows the start
of the trajectory while the little white circle indicates the end of trajectory, (d) The identified object trajectory (4
cones). The white contours (identified as belonging to the same object in eachfi-ame) are superimposed on the
first frame of the sequence to show the motion of the objects.
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6.7 Discussion

Figure 6.6(a) - 6.9(a) shows the result of applying the contour segmentation algorithm. It can be seen

that the segmentation algorithm fails to group segments of the same edge around sharp curves. Since

the algorithm scans the edge image by "walking" along the contours, it may encounter a new contour

at any point along its length. When tracking begins in the interior of a curve, it is usually partitioned,

erroneously into two or more segments sharing common boundary points. As a result of this,

contours belonging to the same object can be grouped as separate objects. To overcome this

limitation we applied the contour-merging algorithm (as described in section 6.4) which provided

better results (Fig. 6.6(b) - 6.9(b)). It can be clearly seen that most of the segments belonging to the

same object have now been grouped together successfully (the quality of the segmentation also

depends on the thresholds that are used for both algorithms [57-59]).

For the PUMA sequence, the window on the top left corner of frame 1 (see Figure 6.7) was tracked

through the sequence. The result of the tracking is given in Figure 6.7(d) and the corresponding

trajectories of the key points are given in Figure 6.7(c). From visual inspection the results are

promising. Similar results are observed for the UMASS lab sequence (Fig. 6.6(c,d)), despite the short

irregular translation of the posters (top right corner of frame 1). The qualitative results are supported

by quantitative results presented in Table 6.1.

For the indoor cone sequence, a cone on the left side (middle) is tracked. As can be observed from the

results (6.8a,b), the cone is identified as a separate object and the 3 key points are tracked

successfully. The qualitative result is shown in Fig. (6.8). Figure (6.9) shows the result of the outdoor

cone sequence. In this case, multiple objects are tracked (4 cones on the right). Each cone is treated

as a separate entity, while all 4 cones combine to form a 'grouped-object'. Each of the key points

from the 4 cones are tracked and matched to the segmented shape (the 4 cones). Apart from the last

frame, where the cone in the front gets segmented with the road, 83% of the key points have been

tracked correctly (see Table (6.2)), thus successfully tracking the 4 cones.

6.8 Conclusion

In this chapter we have shown how the multiple hypothesis technique can be used for rigid object

tracking in image sequences. The contour of object tracked is achieved by first applying the MHT

approach to group segments of the same object. This process is followed by applying the contour

merging algorithm to identify recognisable object contours. Then by selecting key point features of
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this object, temporal tracking (matching) of key points is achieved by using the MHT again. The

validity of the trajectory of the key points is verified by inspecting whether the key points were lying

on or near the contour of the tracked object (searched within a region of interest). The results are

promising for objects that are not occluded and can be recognised clearly in every frame.

One of the main drawbacks of the system is that the contour grouping process can break down due to

occlusion of the object being tracked. The MHT can predict possible trajectory for the key points

despite the occlusion [58] and thus retain the trajectory (as shown in chapter 4). But the contour

segmentation and grouping process will fail, as it looks only at the edge map to group contours. As a

result the object tracker fails in its primary purpose. The tracking process presented can also fail for

deforming objects. This is because the key point tracking phase will not be robust enough to track

unexpected deformation of object contours.

Recognising and tracking objects using point features as presented in this chapter is possible for

relatively simple objects (as demonstrated in the results). For complex objects the process is

inefficient, and can lead to errors in object identification and tracking. A more versatile method of

object tracking will require an object contour to be represented using a parameterised curve, such as

using Snakes [113, 120], Deformable templates [27], or using B-splines [12, 61, 23, 24]. In the next

chapter we provide an efficient algorithm to track multiple objects (contours of multiple deformable

objects) in extended image sequences. The algorithm is also capable of tracking objects that move

with variable motion.

_
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Chapter 7

Contour Tracking with Automatic Motion Model

Switching

Abstract

In this chapter we present an efficient contour- tracking algorithm which can track 2D silhouettes of objects in
extended image sequences. We demonstrate the ability of the tracker by tracking highly deformable contours
(such as people walking) captured by a static camera. We represent contours (silhouette) of moving objects by
using a cubic B-spline. The tracking algorithm is based on tracking a lower dimensional shape space (as
opposed to tracking in spline space). Tracking the lower dimensional space has proved to be fast and efficient.
The tracker is also coupled with an automatic motion-model switching algorithm (JMM), which makes the
tracker robust and reliable when the object of interest is moving with multiple motion. The model based
technique provided is capable of tracking rigid and non-rigid object contours with good tracking accuracy
[184].

7.1 Introduction

Most contour tracking methods reported in the literature assume that the changes of shape of objects,

between frames, are very small. They also assume that the object of interest is moving with a constant

motion model (examples in Chapter 2). Provided these conditions are satisfied the reported

algorithms are claimed to perform well for their respective applications. However, in reality one

cannot make such assumptions for applications such as tracking a walking/running person. The

motion of a walking person can be variable and also the inter-frame shape changes cannot be assumed

to be 'very small', particularly for objects captured by a camera at low frame rates (eg: 10-15

frames/sec). Our contribution in this chapter primarily addresses these issues. We provide a shape

space decomposition technique (for highly deformable object contours) which makes the contour

tracking process easier and robust. The entire tracking mechanism evolves around the decomposed

shape space, thus reducing computational burden to a large extent. The contour tracker introduced

can also cope with larger inter-frame displacements and can automatically switch motion models

according to the motion of the object of interest.
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This chapter is organized as follows: Section 7.2 provides an overview of general contour

representation schemes, while section 7.3 focuses specifically on using B-splines for contour

representation. Section 7.4 describes a rigid body shape representation method using B-splines, and

section 7.5 provides a method for non-rigid shape representation using a 'shape training-set' analysis.

Section 7.6 gives an efficient shape space decomposition technique, which enables the tracking

process to be robust and efficient. Section 7.7 gives an overall description of the dynamic system

employed. Section 7.8 outlines the tracking filter, describing the measurement and prediction models

used. Section 7.9 extends the tracking analysis to cope with automatic motion model switching.

Section 7.10 describes the object detection and separation process employed (including occlusion

handling). Section 7.11 gives the main results and provides a brief discussion. Finally section 7.12

gives the conclusion and possible future research directions.

7.2 Contour Representation

There are several ways of representing a 2D contour of an object (rigid and non-rigid). Among the

many representations, edge based methods [97, 127], snakes [113], active shape models [204], and B-

spline methods have been used for contour tracking as discussed in chapter 2.

Edgi based methods primarily depend on using some reliable edge detection algorithm [40, 97]. Once

the edges are detected, the different objects are separated using some segmentation scheme [174]. A

common problem with edge based methods (to represent objects) is that edges extracted are not

continuous around corners (broken or split) and the quality of edges are limited by threshold values

used in most edge detection algorithms. The discontinuous nature of edges makes these approaches

less desirable for contour (object) tracking applications [24].

Snakes on the other hand are based on an elastic-energy minimization principle [113] (also discussed

in chapter 2), the result of which attract snakes to some feature of interest such as edges, valleys or

ridges [113]. Snakes are also not perfectly smooth since the energy functions employed in snake

algorithms have first and second order differentials, and for any practical purpose they have to be

approximated by some finite difference method which makes them less smooth [24].

The prior shape constraints implicit in a snake model are soft in general: encouraging rather than

enforcing a particular class of favored shapes, and these favored shapes have rather limited variety.

To overcome such limitations a parametric shape model with relatively few degrees of freedom can

be employed. The resulting template is known as 'deformable template' [204] (discussed in chapter
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2). One down side to this approach is that the template is parameterized to fit some apriori shape

using a number of geometric parameters which can vary non-linearly with a parametric vector [24].

The number of parameters used depends on the complexity of the shape of interest. For any real time

temporal shape tracking, such methods, in general, are not efficient.

The use of B-splines for curve representation has been shown to overcome most of the limitations

caused by using other contour representation methods. B-splines are a parametric curve passing

through (or nearly passing through) N control points. B-splines in general maintain a degree of

smoothness and continuity which is essential for object representation in tracking applications. B-

splines also provide computational advantages over other representations [24, 27, 60]. Particularly for

tracking purposes, prior knowledge can be incorporated into a tracker by an elastic coupling with a

template B-spline [25]. This persistent template mechanism improves stability by incorporating shape

memory: restricting the prior distribution of the contour shape. In this chapter we will use cubic B-

splines to represent 2D contours (also referred as silhouettes in this chapter).

7.3 Contour Representation using B-splines

B-splines are an efficient representation of curves with limited degrees of freedom. They have a

number of desirable properties including the fact that they obey the constraint that all the curve lies

within the convex hull of control points. They can also be made continuous even at break points, up

to a certain desired order. Large image features may be represented by a B-spline using a few control

points, rather than as a list of pixels (this was the case in chapter 6), and this reduction in degrees of

freedom enables real-time (or near real-time) implementation of tracking algorithms feasible.

The following notation for the contour is used throughout this chapter. The continuous curve

parameter is s, which in general varies over 0 < s < N along the length of the curve. For simplicity,

we assume that each span (between control points) has unit length in 5. Hence the w-th span is defined

over the interval n — 1 < s < n. The continuous curve for a spline of order d is then given by [23, 60]:

(7.1)

where Q(f) is the vector of control points of size 2Nxl (and / is the instant of time in which the

control points are considered), ie.
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and

Q(0 =
X(0

h(s) 0 '

0 h(s)
0<s<l, 0<n<N

In this notation:

• Bn is the shape matrix (B-spline basis matrix) for the «-th span, derived from the number of knots

at break-points around the span as in [7].

• Gn describes the controllability of each span by selecting from the global control point vector

Q(/) only those control points which control the w-th span, thus Gn is a shifted identity matrix

augmented by zero columns [23].

• s = (l, s, ... ,sdy contains thepolynomial terms in the spline parameter s up to the spline

order d (eg: d=3 for cubic B-splines).

For the rest of this chapter the subscript / is omitted for notational convenience.

7.4 Rigid Contour Shape Representation for Tracking

Blake et. al.'s [22, 23] pioneering work in proposing B-splines to represent contour shapes has made

contour tracking in general much efficient and reliable than the better know "snake" approach [113].

Any contour can be approximated by N control points using a B-spline of order d (as discussed in the

previous section). A tracker now could conceivably be designed to allow arbitrary variations in

control point positions over time. This would allow maximum flexibility in deforming to

accommodate moving shapes. However, particularly for complex shapes requiring many control

points to describe them, this is known to lead to instability in tracking [25]. The instability occurs

when features are temporarily obscured and the tracker is 'bumped out' of its steady state. The more

complex the shape to be tracked, the worse is the instability that occurs when the lock to the shape is

lost.

Fortunately, it is not necessary to allow so much freedom for the control points. An image of a

moving hand, for instance, provided the fingers are not flexing, is a rigid, approximately planar
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shape. Provided perspective effects are not too strong, a good approximation to the curve shape as it

changes over time can therefore be obtained by specifying Q, a linear vector valued function of the

B-spline coordinates (X,Y). The Q-parameterization of the curve embodies the reduced degrees of

freedom for motion, which vary online, leaving intact the full set (X,Y) of geometrical parameters to

do justice to the detail of complex shapes and to be varied offline only [25]. Such a representation

can be achieved by reducing the number of degrees of freedom to a lower dimension and preserving

the original base-shape of object. As an example, for a planar affine transform of a template shape,

the degrees of freedom are six. That is, the Degrees of Freedom are limited to: translation (2 DOF),

scaling (2 DOF), rotation (1 DOF) and shear (1 DOF).

In mathematical terms: if a known template spline Qo = (x o , Yo) is allowed to undergo planar affine

transformation, the resulting vector spline can be expressed by [12,50, 51]:

(7.2)

where U (2N x 1) represents the translation (2 DOF) vector of control points, while D (27V x 2N)

represents an alignment matrix (scaling and rotation) and these are given by,

D

0

0
and = [ux,ux,...,uy,uy]

T

N times

where

0 =
fx cos i9 - fy sin &

fy sin # fx cos «9
ax -ay

<£> is the alignment matrix for each control point. The scaling factor fx,f (in the x and y direction

respectively) and rotation & are in relation to a template shape.

The planar affine transformation of the template (equation (7.2)) can be expressed as [24],

= W T + Q 0 (7.3)
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which is a linear mapping between a spline control point vector and a lower dimensional vector space

T. The lower dimensional space is also referred to as a "shape space". The shape matrix W for the

planar affine case is given by [24],

W = i o x0 o o Y ;
.0 1 0 Yo Xo 0 ,

(7.4)

where the 1st two columns correspond to translation (wherel = [l,l,...,l]r, 0 = [0,0,...,0]r), and the last

4 columns correspond to changes in scaling, rotation and shear.

In equation (7.3), the elements of T acts as weights on the columns of W. The interpretation of T in

terms of planar affine transform can be explained as follows.

T = [ux,uy,(fx cos,9-1),(/; cos,9-1),/, sin&-fy sin&].

Conversely, given a known spline Q, the shape space vector T can be recovered by using the

following expression [25]:

= V[Q-Q0] (7.5)

where

V = ( w r JW) W r J , where J is the 'metric matrix' defined in [24, 60] and is given by,

N

o
0

N

where P=f,GT
nB

T
n

TBT

n=l

j ssTds

The affine transformation of a template limits the shape matrix W (and T) to only rigid body shape

changes (6 DOF). For deformable (non-rigid) object tracking, W.has to be extended to accommodate

for non-rigid shape changes. We provide a method to efficiently extend the matrix W, based on the

work reported in [51, 52,14]. The details of which are explained in the next section.
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7.5 Deformable Contour Shape Representation for Tracking

There are several methods reported in the literature to account for the deformation of non-rigid

objects (some methods were briefly discussed in chapter 2). Blake et. al. proposed a 'key frame'

techniques [24] where known poses of shape variation can be accommodated into the shape matrix. A

potential problem in this method is that a shape can be captured in several poses, and to accommodate

all different pose variation becomes less efficient. Another method is to capture a short sequence of

the object in motion and then learn the dynamic parameters from this test sequence and apply them to

the actual tracker. Though efficient, such a 'learning tracker' can be useful only to a narrow variety of

applications. It also presents the problem of capturing a short image sequence prior to tracking the

object of interest every time [25]. Other methods include articulated motion models using kinematic

motion models [151]. Such a method causes non linearity in the tracking system, thus requiring non

linear dynamic systems modeling. Then there are the statistical models such as learning shape

variation from a prior distribution of known shapes [12, 14, 50, 51]. These techniques primarily

employ a Principal Component Analysis (PCA), which reveals the most significant variations of a

given training set (against a mean shape) in a lower dimensional subspace. We adapt this method to

account for deformable changes of objects because of its generality.

7.5.1 Shape Training Analysis

Cootes et. al. [50, 51] provided a 'shape training' method termed Linear Point Distribution Model

(LPDM) where a training set of varied shapes (different poses of a similar objects) are analyzed

(mentioned in chapter 2). Each training shape (in spline space) is represented as Q (as in Eq. 7.2).

Where each point is the position of the /-th 'landmark point' (specific point) on the training shape.

The training shapes are then aligned (scaled, rotated, and translated to a mean shape or any other

standard shape size) using a Generalized Procrustes Analysis technique [10]. The process is in fact

similar to using a weighted least square method to align each shape to a mean shape. The weights are

chosen so that more significance is given to more 'stable' landmark points (clearly identifiable

points). This process of marking landmark points for each shape manually is laborious. To overcome

this difficulty Baumberg et. al. [11-14] proposed an automated method of labeling points by placing

N B-spIine control points along the contour of interest starting from a reference point and placing the

points in a clock-wise direction. The N control points are approximately equally spaced along the

contour. Fig. 7.1 shows some example shapes of walking persons (as part of a training set) captured

in different poses and Fig. 7.2 provides a scheme to automatically generate a training set (A process

that Baumberg et al. followed [10]).
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Once the shapes are aligned and the control points assigned, then a statistical analysis can be

performed on the training shape set. This process results in a mean shape-vector Qand a set of

aligned training shape vectors Qk(k = J.....M). In mathematical terms, given the training data

Q,,.. . ,QA/ , then the mean and covariance of the training set is given by the following equations

respectively.

Finding the m significant eigenvectors (m « M) corresponding to m most significant eigenvalues

(Ao > A, >... > /Lm_, > 0) of SJ will give the m most significant mode of variation of the training set

(the reason for using SJ instead of S is given in Appendix D, and also explained in [10]). Therefore,

any shape in the entire training set sequence can be approximately represented by the following

equation.

Q = Q + Pb (7.7)

where P is a 2N x m matrix whose columns are the m most significant eigenvectors of SJ and

b = [60,...,6m_,]r is a shape parameter vector with m coefficients. N is the number of control points

representing the contour. By varying the shape parameters within suitable limits, different feasible

shapes can be generated [49, 11]. Explicitly, for the /-th mode shape-vectors, Q(7) are calculated

using,

Q ^ Q + rfe/J-iJe, (7.8)

where j varies between -k and k (eg: -2, -1, 0, 1, 2) and step is a suitable step size in standard

deviations, e, is the eigenvector for the /-th mode. Fig. 7.3 shows an example of shape variation for

the first 10 eigenvetors of a training set (containing walking people). It is quite evident that only the

first few eigenvectors provide the most significant shape variation of the training set (against the

mean shape).

Conversely, given an aligned shape vector Q1, the minimum least squares approximation to the shape

in the model space is given by a linear projection,

b = P r (Q ' -Q) (7.9)
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Figure 7.1: Examples of some training shape vectors of a pedestrian sequence.
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Figure 7.2: Overview of a system to obtain a 'shape training set' [10].
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A

Figure 7.3: The effect ofdeformable (non rigid) shape variation of a training sequence. The 1st, 2nd, 3rd, 4th,
5th, 6th, 8th and 10th principal component variation of a traning set comprising about 600 different human
shapes captured at different poses. The diagrams are plotted according to equation (7.8), with 5 possible
variations for each principal model The mean shape is marked with the stars (*). This illustrates that the first
few principal vectors of a traing sequnece account for most non rigid shape varaitions. Note that the figures
are not to scale.

7.5.2 Extension of Shape Matrix

If we assume that a template contour Q o (or any contour) can be expressed by equation (7.7), then it

is reasonable to use the relation,

Q Q P (7.10)

Substituting Eq. (7.10) in equation (7.2), we get the following expression:

(7.11)
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where Q = f Q r , Q v j is the mean of the training set.

Equation (7.11) can now be expanded, and by using simple mathematical manipulation it can be

shown that it reduces to the following expression.

(7.12a)

where

1 0 Q, _0 J)
0 1 0 Qv (X

P - P
JC y0 Pv

^AD = Wx,uv,fx cos9-\,fy cos0-l,fx s\n6-fy sin0,fx

AD stands for planar Affine and Deformable shape changes.

Equation (7.12) shows that the m most significant eigenvectors of SJ can now be accommodated in

the shape matrix to account for m non-rigid deformations. Where p = (PJ5P ) r contains the columns

of the m most eigenvectors of SJ, and b = [bo,...,bm_}]
T are the.deformable (non-rigid) shape

parameters. Any deformable shape can now be reasonably represented by equation (7.12a).

For most tracking applications the scale in thex andy direction are taken to be equal ( / = fx = fy)

any shear effects are disregarded as a planar affine change (absorbed by the non-rigid shape changes).

In this case, the planar affine transformation (for the rigid part of shape) reduces to Euclidean

similarity transformation. In which case Eq. (7.12a) can be expressed as:

where

1 0 Q, - Q

o i Qv Q,

+ Q

p —p

(7.12b)

ED stands for Euclidean similarity and Deformable shape changes.
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One can define a state vector of size 1AD (or T£D) as reported in [25, 24] and track the shape space

over time using a second order dynamic system, whose deterministic and stochastic components are

learned from test image sequences. The tracker employed for such a contour tracking is either based

on a Kalman filter [6] or Condensation [104] filter. A potential problem that appears with such a high

dimensional tracking system is that the elements of TAD cause linear dependence between the

columns of W ^ , especially for larger inter-frame displacements with highly deformable shape

changes [24]. This is because the proportionality of change in translation, scaling, rotation and non-

rigid shape parameters can have widely varying magnitudes. Such a scenario presents difficulty for

the tracking algorithm to cope with varying degree of changes, and causes numerical instability in the

tracking system.

Another problem with a multi-dimensional learned dynamic system is that, the second order

unconstrained complex stochastic model generated cannot, in general, be decoupled into a set of

independent orthogonal modes, nor can it be reduced to lower dimensional sub-spaces easily [10].

Hence the resulting tracking system will be computationally expensive, particularly for complex

objects that deform in high dimensional shape spaces (eg: tracking a walking person captured at low

frame rates) and be less reliable.

To avoid the problems discussed, and also in the interest of tracker speed, it is desirable to

decompose W ^ into suitable components (thus also decomposing TAD) which will eliminate (or

reduce) the linear dependencies on the columns of W ^ . In the next section we introduce an

effective shape space decomposition and tracking technique to overcome the limitations presented by

high dimensional shape spaces.

7.6 Decomposition of Shape Matrix and Shape Space

In the interest of speed (to avoid high dimensional computation) and stability, it is best to separate

translation, scaling, rotation and non-rigid shape changes into separate components. The result of

such a decomposition (separation) procedure is discussed in this section.

Equation (7.12a) can be separated and represented as follows,
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Q =
-i oT, 1

"i 0T7;]
o 1J7J

0 QJ/,COS0-1J 0)b .%] (7.13a)

where E, = [P,,,.....P,v,,?y>i,...,P,v, f, and V, = [-PV|(,....-P,v,,Px>t.....?Xyi f . where p.,are

components of P, and a = fx cos9, p - f s\n6 respectively.

Assuming the contour undergoes Euclidean similarity and deformable shape changes, then Eq.

(7.13a) can be given as,

Q=
(7.13b)

If the observation (measurement) process for the tracker can be separated for translation, scaling,

rotation and deformable changes (non-rigid shape changes) separately, then the corresponding state

vectors can also be separately grouped and defined as shown below.

T — F5 = [/-!], TK = [sm9], T ^ ^ i J

Note that in the above representation, T5(scaling shape space) is defined free of rotational effects (0

- 0), TR (rotation shape space) is defined disregarding scaling changes (f = J), and TSP (deformable

shape space) is defined disregarding scaling and rotational effects if = 1 and 9 = 0). From a

theoretical point of view the separation of scaling and rotational changes are not possible (because of

the non-linearity in Eq. 7.2), but for practical purposes it is reasonable to separate them to some

extent as shown in section (7.8.1).

If T7.,TS,TR,T5P can be tracked separately, then at any instant in time step k, the contour Q can be

recovered using Eq. (7.13b). This procedure is expected to provide better numerical stability and

maintains linear independence between the columns of the shape matrix. One of the advantages of

shape space separation is that, for the rigid part of shape change, only a 2 element state vector is

required, thus limiting the maximum matrix size to be 2x2 in the tracking filter update calculation
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(assuming that a constant velocity model is employed). In the case of non-rigid (deformable) shape

transformation, we assume that each shape parameter vary independently (and the noise process is

isotropic) [10]. With this assumption (supported in section 7.8.2), it can be shown that each element

of shape parameter vector b can also be separated into m independent shape parameters (see also

[11]). Thus each shape parameter can now be defined as a scalar state parameter, requiring only

scalar calculations in the filter update process.

The decomposition method introduced reduces the computational burden of the tracking system

(described next) to a great extent, thus making real time tracking applications possible. Another

advantage of using separate filters is that each separated filter (T7.,Ty,TR,T,s/,) can employ a

different motion model(s) in the tracking process. Such a system allows more freedom for each filter

and provides better quality results, as shown in section 7.11.

7.7 Dynamic System

A dynamic system is employed which in the general case follows an M-th order AR process, where M

depends on the order of motion model used for the tracker. The dynamic model for the M-th order is

given by,

X T * - y + i ? o W * (7.14)

where Aj,Boare the deterministic and stochastic part of the dynamic system respectively, and T

corresponds to the separated shape space (TT,TS,TR,TSF).

For an M-th order motion model, equation (7.14) can be expressed more compactly by defining a

'state vector'

Xk = \Tk_M, Tt_A/+I,..., Tk_], Tk) which can then be written as,

(7.15)

where, A —

0

0 0

0

I
, and B =

0

a i / V*oy
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Where matrix^ defines the deterministic part of the dynamics and B determines the stochactic part of

dynamics. For the proposed tracker, the sizes of identity matrix / and 0 are 2x2 for each of the planar

affine parameter filters (and a scalar for each of the Euclidean similarity parameter filters), and a

scalar for the deformable (non-rigid) shape parameter filter.

Different motion models can be obtained by choosing suitable values for motion parameters

Ahf,..., Ai,B0. For any practical purposes, up to a motion model order of 3 (M = 3) is sufficient for

most applications. Three motion models (a constant acceleration, a constant velocity, and a constant

position model) were considered for the proposed tracker for applications reported in this chapter

(refer to Appendix E for model details).

7.8 Tracking Filter

The entire tracking process is based on a multiple model filtering scheme (similar to what was

reported in Chapter 4). The multiple model filtering framework provides the tracker with the ability

to switch motion models according to the object's motion. Each filter in the multiple model

framework uses a Kalman filter, and each filter is based on a different motion model. The final

estimate of the state parameters considered are a weighted combination of the output of each filter.

Details of the multiple model scheme employed is discussed in detail in section 7.9. The Kalman

filtering process required for each of the individual filters is discussed in section 7.8.

In the interest of speed and stability, translation, scaling, rotation and non-rigid shape effects are

filtered separately as discussed before. Because of this separation of transformation parameters (rigid

and non-rigid parameters), the observation provided for each filter also need to be separated from the

overall observation of contour (this procedure is required for the Kalman filter recursion to function

effectively). Taking these factors into consideration, the basis on which the entire tracking system

evolves is shown by the following steps at a given time step k (similar to the process in [10,11 ]).

1. Assume the non-rigid shape, scaling and rotation parameters are fixed

2. Estimate the translational changes (making use of the object centroid)

3. Remove the effects of the translation from observation

4. Estimate the change in rotation

5. Remove the effects of rotation from observation

6. Estimate the change in scale

174



7. Remove the effects of scale from observation

8. Update each non-rigid shape parameter independently

9. Once all the transformation changes (rigid and non-rigid) are complete, combine the separated

shape space to construct T to recover the new updated contour.

Note: Theoretically changes in scaling and rotational effects cannot be separated due to non-linearity

of equation 7.2, but from a practical point of view they can be separated to some degree (not with

high accuracy) for the tracking applications that we are interested in (details given later).

The measurement and prediction process required for each filter {rTT,r£s,
rTR,TSP) of the tracking

process is discussed in the following sub-sections.

7.8.1 Measurement Model

The effectiveness and reliability of the tracker depends on reasonable measurements (observations)

being provided to the tracker. In the following sections we explain the procedure used to obtain

contour measurements.

For the application reported in this chapter, we obtain contour measurements by using the image

differencing technique as opposed to obtaining them by casting normals to the estimated contour, and

then selecting the high contrast points around the contour (as implemented by Bake et al. [24, 25, 60]

and Baumberg et. al. [10, 11]).

Since our image sequences are captured by using a static camera (with known background without

any moving objects), image differencing technique can be used to separate the moving objects from

the background. The differenced image is later blurred using standard Gaussian blur filter, and the

resulting blurred differenced image is thresholded to produce black and white images as shown by

Fig. 7.4.

Figure 7.4: Moving objects detected after image differencing and thresholding.

.
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When there is poor contrast between the moving object and the background, fragmentation can occur,

resulting in several foreground regions where there should only be one connected region (if only one

person is walking). This effect can be reduced by applying morphological filters to fill in the gaps

(see [10] for further details). To further reduce and refine the binary image, techniques such as

removing pixel clusters of less than a specific quantity can be used. A more advanced model based

method like specifying the height to width ratio (for a walking person) or similar shape constraint can

also be applied. However, these methods are required only for a noisy set of data.

Each moving object of a reasonable size (eliminating any noise) is now separated and labeled using a

search and separate procedure as described in section (7.10). This procedure is applicable if multiple

moving objects are detected. The top most point of each moving object's silhouette (for pedestrian

tracking example) is assigned a reference point. Starting from the reference point, the N control

points of a B-spline are now assigned (equally spaced) along the contour of each of the objects

detected in a clock wise manner (see Fig. 7.5, similar to the shape training set process explained in

section 7.5.1). This measurement procedure is followed for every frame with the same number of

control points for each moving object. For the example of a pedestrian, the top most point in the

contour is assumed to be the top of head as shown by Fig. 7.5. This is assuming that pedestrians are

always walking in an upright position! For other type of object contours suitable reference point can

be assigned (as long as they are uniquely identifiable).

Re£ Poinr

(a)

Figure 7.5: Assigning reference point and placing control points along the extracted silhouette.(a) original
contour (b) B-spline approximated contour.

If the same number of control points are used to represent object contours in each frame, then it is

reasonable to assume that for a given object contour, control point Nt of frame k will nearly
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correspond to control point N, of frame (k+1). This is illustrated in Fig. 7.6 (not to scale). The

control points of frame (k+J) will now be used as measurements for estimating the actual contour

shape at frame (k+1).

Frame N Frame N+1

Figure 7.6: Control point correspondence between frames.

7.8.1.1 Separation of Measurements for Each Tracking Filter

Since measurements are made for the entire contour, they need to be reformulated in order to be

applied to each of the separated filters. This process ensures that each tracking filter is fed with only

the measurements that are relevant to them. Ideally the measurements for translation filter should be

free of scaling, rotation, and deformable (non-rigid) shape changes. Similarly the measurements for

rotation and scaling filters need to be free of translation and deformable shape changes. The

deformable shape parameter filter should be free of translation, rotation and scaling changes.

To mathematically illustrate the measurement separation principle, let the overall contour

measurements obtained at time step k be Zk and measurements for translation, scaling, rotation,,and

deformable shape parameter filters be denoted by ZT ,ZS ,ZR ,ZSP respectively. Each filter

measurement procedure indicated can be obtained as described in the following sub-sections (See

Fig. 7.7 for an overall illustration).
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Overall contour measurements

Apply measurements

Apply measurements
ior S only(Z5 j)

Apply measurements

separately (Zsp )

Figure 7.7: One cycle of the measurement application process for each separate filter. The symbols T, S, R, and
SP stand for Translation, Scaling, Rotation and non-rigid Shape Parameters respectively.

7.8.1.2 Measurement for Translation

For the translation filter it is assumed that all other transformation parameters are constant while the

translation filter is updated (that is, object translation is only considered for this filter). Therefore, the

effects caused by scaling, rotation and non-rigid shape changes are excluded from the overall

measurements. In other words, the translation filter is made to 'see' only the mean shape being

translated across the sequence. This process can be achieved by only observing the object centroid

(Eq. 7.17). Once the object centroid measurement is known, the translation filter sees the mean shape

centered at cent(Zk) (The object centroid is measured in relation to the mean shape centroid).

Mathematically for the £-th time step and /-th control point of the contour, the translation

measurement process is given by,

Z'Tk = cent(Zk) - cent(Q) (7.16)
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where cent{*) is the centroid point (with x, y coordinates) of the object contour. It is obtained as

follows.

cent(Zk) =
• 1 N i N

i_Y7' J_V7' (7.17)

where Z\ ,Z[.t are the x and y coordinates of the measured control point / at time step k, and N is the

number of control points used to represent the object contour. Normally cent(Q) is the origin

(center of the mean shape). It should be noted that, as far as the translation filter is concerned each

control point of the contour undergoes translation by the same distance as shown by equation (7.16).

The measurement matrix for the /-th control point is given by,

),Wr 0] (7.18)

where H ( J ) , is the matrix (size 2 x 2N) contributed by the /-th control point defined as in section

"1 0"
7.3. W r is the translation part of the shape matrix. For the planar affine case, W r =

0 1
, which is

of size (2Nx2). The 0 inequation (7.18) is a 2 x2(<9-1) matrix of zeros, where O is the order of the

motion model considered. For example, 0=2 for a second order model and 0=3 for a third order

model.

7.8.1.3 Measurement for Scaling

By using a similar principle as for the translation filter, the effects of translation, rotation and

deformable shape changes are excluded for the scaling filter. This is achieved by placing the mean

shape scaled to the same size as the overall measurement Zk at cent(Q) (normally aligned at the

origin), so that scaling filter measurements are taken with respect to the mean shape. The only

measurement required is the scaling factor, which is given by Eq. (7.20). In effect, the scaling filter

'sees' only the scaling changes in relation to the mean shape size. For the /-th control point of the

contour (at time step k), the measurement is given by,
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(7.19)

where scale{*) is the scaling factor obtained as,

scale(Zk) =
max(Z.. )-miJ> (7.20)
max(Q>.)-min(Q;.)

Note that only the height of the object is taken as the scaling factor for both x and y direction

(particularly for human tracking). The same scaling factor is applied to each control point of the

contour as shown by Eq. (7.19).

The measurement matrix for the /-th control point is given by,

0] (7.21)

where H(51), is the matrix (size 2 x 2N) contributed by the /-th control point defined as in section

7.3. W 5 is the scaling part of the shape matrix. For the planar affine case, W 5 =
0 O.

, which

is of size (2Nx 2). The 0 in equation (7.21) is a 2 x 2{O - 1) matrix of zeros, where O is the order of

the model considered.

7.8.1.4 Measurement for Rotation

Again by a similar method, for the rotation filter, changes due to translation, scaling and non-rigid

shape changes are excluded, thus allowing the filter to 'see' only the rotational effects. The

observation for the rotation filter is obtained by rotating the mean shape by the measured rotation

angle 6. The rotation angle is defined as the angle between the vertical line (The mean shape is

always vertical) and the line that connect the object centroid and the reference control point of the

object contour. The reference point might be the top most or the bottom most control point of the

object (the reference point should be identifiable despite rotation, which is object dependant). This

method of measuring 6 is only applicable (effective) for small angles. Mathematically the

measurement process for the /-th control point of the contour is given by,
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= [ro/(zJ]Q'- Q'

(7.22)

where rot(Zk) =
cos 9k - sin Gk

s,m9k cosGk j
and 6 is the rotation angle.

As before, only a single measurement is required (9), and is applied to each control point of the

contour as given by Eq. (7.22). For the walking pedestrian examples reported in this report the

objects are assumed to appear vertical and thus rotational effects are ignored.

The measurement matrix for the /-th control point of the contour is given by,

H'R = )twR o] (7.23)

where H(s), is the B-spline matrix (size 2 x 2N) contributed by the /-th control point. WA. is the

rotation part of the shape matrix. For the planar affine case, W^ =

x2). The size of 0 is as for the scaling filter.

Q / , which is of size (2 N

7.8.1.5 Measurement for Deformable (Non-Rigid) Shape Parameters

Once the rigid transformation effects are removed from the overall contour measurements, then the

appropriate non rigid shape parameter changes can be measured by using equation (7.24). This

process will ensure that only the deformable shape change are considered.

\h =[Z; -cent{Zk)][scale(Zkyot{Zk)Y
x - Q ' (7.24)

where Z\p is the measurement for they-th deformable shape parameter for the /-th control point at

time step k (or frame k). Equation (7.24) is described as the overall measurement (Zk) of the contour

at time k, translated, scaled and rotated, so that (ZSPt) and the mean shape ( Q ) are aligned at the

origin. The difference of the 2 shapes will now give the measurements for the non-rigid (deformable)

shape variation only.
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The deformable shape parameter measurement matrix for they-th non-rigid shape parameter for the /-

th control point of the contour is simply,

Hi = piJ (7.25)

where p'-'is the element belonging to the7-th column eigenvector of P (matrix containing the m

principal eigenvectors, see Eq. (7.7)) corresponding to the contribution made by the /-th control point.

7.8.2 Prediction Model

Prediction is applied to each filter once at each time step. The stages involved in the prediction phase

are discussed in this section (the algorithm recursion is also displayed in Fig. 7.8).

7.8.2.1 Prediction for Translation, Scaling and Rotation Filters

The state vector for the filter based on an M-th order motion model is expressed as,

where FT refers to Filter Type, and T, S, and R stand for Translation, Scaling and Rotation

respectively.

For example, the state vectors at time step k for Translation, Scaling and Rotation filters are given by,

Xr, =(TW i , . . . . , ly, / , XSt =(TWi,....,T5. JT.and X,, = ( T W I , . . . , T ^ } respectively.

Similar notations apply to the state covariance matrix P, state transition matrix A, Process noise

matrix G, Measurement noise matrix R, Kalman gain K and the measurement matrix H for each type

of filter as described in the following sections.

The prediction process for each type of filters (T, S, and R) for time step k is shown below.

^ ^ , T i i = T,S,R (7.26)

and
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)PFTk.x (Apr ) T + GFr FT = T,S, (7.27)

Where the process noise Gpj can be appropriately set (only a 2x2 matrix is required when

considering Euclidean similarity case using a constant velocity model), or learned from a training

sequence [24,25], see Appendix E for some details.

Following the prediction step for a given time step, a number of measurements can be made (as

explained before). For each measurement, the curve estimate is updated as follows:

+KFTVFT = T,S,R (7.28)

where Vpj (= Zpr ~ HFT^-FT ) ' s *^e innovation obtained separately for each filter (as applicable

to each filter). The Kalman gain for the measurement is given by:

(7.29)

where Rpj is the measurement noise matrix, set suitably (only a 2x2 matrix is required) or obtained

by using the procedure given in [10, 24, 60]. After the measurement has been applied via the Kalman

gain to the estimated state x ^ , its covariance must be updated using:

^ ={I-KFTHFT)PFTk = T,S,R (7.30)

where H^ is the measurement matrix as applicable to each filter as given in the previous section,

and / is the identity matrix whose size will depend on the order of the motion model employed. .

The initial values for P and R can be selected manually for each filter type (for example, P, R will

only be a 2x2 matrix if a constant velocity model is used) or selected by some other method [10, 60].
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Figure 7.8: One cycle of the prediction process of the tracking system based on a single motion model.

7.8.2.2 Prediction for Non-Rigid (Deformable) Shape Parameter Filter

In this section we provide the state vector representation for the non-rigid shape parameters

(deformable parameters) and the filter update process that is required for tracking deformable

changes of objects.

7.8.2.2.1 State Vector Representation

The multidimensional (w-th order) state vector for non-rigid shape parameters can be decomposed

into single state vectors (for each shape parameter).

The multidimensional state vector (assuming an M-th order motion model is employed) is given by,

XSPt =\TSP ( ,....,TSPt) where T ^ = ( ^ , . . . . , 7 ^ ) . If each of the deformable parameter is

separated (basis for decoupling is given in the next section), then the reduced order state vector is

given by,
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j _ (TJ -pj Y

This is the state representation for they-th non-rigid shape parameter.

Experiments suggest that the non-rigid shape parameters vary randomly between frames. Therefore,

the assumption of a first order motion model was adequate for most of our tracking applications

(though this is not a requirement). In this case, the state dynamic equation for the y-th non-rigid

parameter now becomes:

where the state scalar is now represented by xJ
SP = \T^ ) , and a ~ 1, and w is a Gaussian distributed

noise at time step k. A finite element based technique to estimate a with reasonably high accuracy

was given in [10], but the method requires additional computational cost for the extra accuracy in

prediction.

7.8.2.2.2 State Covariance Update

The theoretical basis for decoupling the deformable shape parameters is briefly given below (see

Appendix D, [10] for details).

Assuming that the effects of translation, scaling and rotation are filtered out, the covariance update

equation (prior to decoupling each shape parameter) is given as [10]:

(7.31)

where P is the matrix containing the m principal eigenvectors corresponding to the m most significant

eigenvalues. J is the metric matrix as discussed in section (7.4), r is a scalar measurement variance

constant (RSP =/"J~1).

Note: The matrix of eigenvectors P was derived such that P r J P = / (see Appendix D).

Assuming P^} ( - ) is diagonal, then after applying the measurements for this filter, the updated

covariance matrix is still diagonal. Assuming Po is diagonal, the covariance matrix is always
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diagonal. Thus the system can be decoupled into /;; independent ID Kalman filters. The covariance

update equation (with scalar values) for they-th filter (1 < j < m ) now becomes [10]:

(7.32)

where crJ = [Pk ]JJ is simply the variance of the current estimate for non rigid shape parameter xJ.

The scalar r can be manually set. The update process for each non-rigid shape parameter (/) now

follows a normal Kalman filtering process as given by the following steps.

x{ = axJ
k_x, a{ = aaii a + g, x£, = xJ

k + Kjvj

where KJ = aJ
kp

J[pJaJ
kp

J) + (rj)2]-], and aJ
M ={\-KJpJ)aJ

k

where a is normally set to 1 (or estimated using a learning process such as in [10, 25]), the process

noise scalar g is set to an appropriate value (1-20). The state variance a, the innovation v, and the

Kalman gain K are all scalars. pJ is the element belonging to the y-th column eigenvector of P

(matrix containing the m principal eigenvectors).

7.9 Automatic Motion Model Switching

Conventionally the tracking process is generally based on a single motion model known a priori. The

disadvantage of such a tracking system is that, when the object of interest changes motion, the tracker

becomes less reliable and possibly loses track eventually. For example, when tracking a pedestrian,

the pedestrian can be walking, running or can suddenly halt. To accommodate all possible motions of

the object, the tracker should be able to adapt (switch) between different motion models. In other

words an automatic model switching capability should be included in ti'.-c .racking mechanism to cope

with variable motion of objects. Such a model switching process can b& achieved by incorporating a

multiple model filtering technique (as explained in chapter 4). Amongst the many model switching

algorithms available [5], the Interacting Multiple Model (IMM) algorithm has been shown to give

good model switching results [184, 185] for visual tracking applications (also demonstrated in

chapter 4 for point feature tracking).

With IMM embedded in the contour tracking framework, the tracker is capable of adapting to the

closest motion model (or a combination of motion models) available from the bank of models that

. best describes the object's actual motion. The steps involved in the IMM algorithm are given in detail

in Chapter 4.
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7.9.1 The application of IMM in the Contour Tracking Framework

The application of IMM for the proposed tracking system is illustrated in Fig. (7.9). Each of the

filters follows a Kalman filter recursion as described in previous sections. Note that the IMM is

separately applied to the translation, scaling, rotation and deformable shape parameter filters. The

advantage is that each of the IMM implemented can employ different motion models. For example,

the translation filter can use 3 motion models, while the scaling and rotation filters can use 2 motion

models and the deformable shape parameter filter can use only 1 model. Such a freedom provided for

the tracking filters give excellent tracking results while providing model switching ability for the

tracker. A variety of contour tracking examples are shown in the results section to illustrate the

principles discussed.

L •,

"1"
m
WHBm

I
1

***

SPt' 'SPt

Figure 7.9: One iteration of the tracking system for updating the "tate vectors and state covariance matrices
based on multiple motion models. The system shows that r motion models are utilized for each IMM algorithm.
The tracking system has automatic motion model switching capability. Note that the superscript of variables
indicate the model identity of the filter (the identity ranges from 1 - r).
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7.10 Object Searching and Separation

Moving objects are identified by background subtraction method. The foreground objects are labeled

separately (if more than 1 object is detected). To search for an object in the subsequent frame, the

estimated object centroid is used. Once the object centroid is estimated for the following frame, then

an enlarged bounding box (say 110%-120% of the current bounding box size) is created centered at

the estimated bounding box center (see Fig. 7.10). A search for the moving object is now carried out

within this box, by looking for the foreground grouped-pixels (white in our case as opposed to black

for the background) of reasonable size (not considering noisy elements). If an object exists, then

measurements are obtained for that object contour. This process will not be applicable when there is

occlusion. To detect occlusion, one has to impose more stringent model based constraints. Some

possible examples of constraints for a walking person sequence will be to introduce a height/width

ratio or/(and) imposing a range for possible human height in the image plane (assuming the scene is

some known meters from the camera) etc. If an extracted foreground region (representing the moving

object) violates such conditions, then one can reasonably conclude that there is occlusion (eg:

foreground region is unusually large). Another method is to monitor the object centroid values. If

there is an unusual change in object centroid (the difference between the measured object centroid

and the estimated object centroid), then a possible occlusion might have occurred. During occlusion

measurements are abandoned and the last estimated contour is placed at the estimated object centroid.

Such a process identifies the number of objects involved in an occlusion, and keeps track of the

objects separately. In situations like this, the contour shapes might not fully reflect the objects of

interest. When occlusion disappears, the correct measurements are applied once again and the tracker

is able to recover from occlusion.
xl,y2 ,

xi, y1

Figure 7.10: A bounding box encompassing the contour.
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7.11 Result and Discussion

The tracking algorithm introduced in this chapter (we name it CONT-IMM) has been applied to a

variety of image sequences to test the trackers ability to copy with rigid and non-rigid shape changes.

The image sequences were captured at 10-15 frames/sec, mainly to make the inter-frame shape

changes of some significance. For each sequence, the number of deformable parameters for non rigid

shape changes were selected between 10-12, which account for about 90 % of shape variations of the

training sequence considered. For each of the sequence considered, we employed 3 motion models

for the rigid part of shape filter (CPM, CVM and CAM) and a single model for the non-rigid shape

filter (CPM). The initial mode probability (//) required by the IMM was set to 1/r (r is the number of

models in operation) for each filter, thus eliminating any bias between the filters. For a 2 and a 3

model IMM filter, the mode probability and mode transition probability (Eq. 7.33) were set as

follows respectively.

1/2'

1/2 P =
0.95 0.05'

0.05 0.95

2 Model IMM

1/3
1/3

1/3
P =

0.95
0.05

0

0.05
0.90

0.05

3 Model IMM

0

0

0
.05

.95

As illustrated in the following sections, the tracker has been demonstrated to track well in a variety of

conditions.

7.11.1 Sean Sequence

This is an indoor sequence to demonstrate the tracker's ability to track significant scaling changes. As

the person approaches the camera, large scaling changes are observed, and as Figs. (7.11) & (7.12)

shows the tracker is able to cope with the scaling changes well. Referring to Figs. (7.13 c,d), we see

that a CVM is adequate for the first third of the sequence to capture the slowly increasing scale

changes, then around halfway through the sequence an automatic model switching occurs selecting a

CAM to cope with larger scale changes. Such changes cannot be effectively tracked using a single

model based tracker [187].
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The translation filter tracks the position of the person very well (Fig. 7.13a,b). It should be noted that

the translation values plotted in Fig. (7.13a) are the positions of the object centroid. Non-rigid shape

changes are also tracked well apart for the last few frames where the legs of the person are not fully

recovered (Fig. 7.11). This is partly because of inadequate number of control points selected to

represent the object. 32 points were selected for this sequence, but a larger number would have given

better shape tracking results at the expense of computational cost. Fig. (7.13e) shows the first 10

tracked non-rigid (deformable) shape parameters, while Fig. (7.13f) shows the absolute error between

the actual and tracked (estimated) non-rigid shape parameters.

7.11.2 Outdoor pedestrian sequence

This is a sequence captured by a static camera (15 frames/sec.) at the entrance to a building. We

represented the objects using 32 control points (seemed adequate for this application). As can be seen

from Figs. (7.14 & 7.15), the tracker tracks both pedestrians with good tracking results (see Figs.

7.16a,b). In some frames the head of the pedestrian is missing, this is because the threshold (fixed for

these experiments) at the image differencing and thresholding stage was set too high, hence part of

the head disappeared. Fig. (7.16c) shows that the pedestrian on the left is moving fast, thus a CAM is

chosen as the most appropriate motion model for the translation filter. Since there is not much scaling

of the object (very little change) a CVM is chosen as the best model for the scaling filter (Fig. 7.16d).

Rotational effects were not taken into account for the human tracking experiments. Any rotational

changes were included in the deformable shape tracking filter. For the human tracking experiments

the best 10 principal components (PC) were selected to represent the variation in non-rigid shapes

(the best 10 PCs accounted for about 93% of shape variations of the training sequence). As can be

seen from Fig. (7.14), most deformable shape variations have been tracked well. Figure (7.16c) shows

the non-rigid shape parameters (bj) varying with time. The first few (particularly the first) parameter

variations are more significant than the less significant ones. Fig. (7.16d) shows the absolute error

between the actual and the tracked non-rigid shape parameters. The error observed is less than 5% of

the actual magnitude of the non-rigid (deformable) shape parameters, which indicates good tracking

performance.

7.11.3 Outdoor pedestrians with occlusion

This pedestrian sequence is considered to illustrate tracking under occlusion (see Fig. 7.17). The 2

pedestrians occlude each other towards the end of the sequence. The occlusion is modeled as
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explained in section (7.10 ). During the occlusion period the last object shape tracked (when there's

no occlusion) is placed at the estimated centroid in the following frame. Doing so is computationally

attractive but does not recover the actual shapes well. However, the tracker identifies both objects

separately and recovers well from occlusion. To recover the shapes better during occlusion, a method

can be followed as explained in [118], [161]. It is also reasonable to consider the fact that the object

that appears at the bottom of the frame occludes the ones above them, this was assumed reasonable in

the research work reported in [118]. We have adapted this principle in our tracking algorithm.

7.11.4 Waving hand sequence

This is a sequence taken at 10 frames/sec, to account for larger shape variations between frames. The

shape of the hand was represented using 50 control points. The hand was moving with variable

motion, pausing for a few seconds at the change of direction (at each end). The waving hand was

specifically maneuvered in order to test the tracker's ability to cope with large transformational

changes, and to test the tracker's automatic model switching capability. Translation, scaling, rotation

and non-rigid shape changes were all taken into account for this experiment.

A three-model IMM filter was employed to account for constant acceleration, constant velocity, and

constant position changes. All three motion-models were in operation at some part of the duration of

the sequence (especially for the translation filter). Figures (7.18-7.19) shows the qualitative tracking

results for the hand sequence. As Fig. (7.21a) shows, the translation filter correctly model switches as

expected, switching to the most appropriate motion model (confirmed by manual inspection). Fig.

(7.20a,b) shows the accuracy of the translation filter. The tracker accuracy in scaling and rotation are

displayed in Figs. (7.20c,d). As can be seen from Figs. 7.2 l(b, c) a combination of motion models are

in operation for the scaling filter while a CAM is mostly in operation for the rotation filter (to cope

with erratic rotational changes).

The best 12 principal components were selected to account for the non-rigid shape variations. This

seemed adequate to capture most of the deformable shape variations. Fig. (7.20e) shows the first 12

tracked non-rigid shape parameters, while Fig. (7.20f) shows the absolute error between the actual

and tracked (estimated) non-rigid shape parameters. The accuracy observed was as good as the

pedestrian sequence results (~ 1% error). It is also worth comparing the waving hand contour tracking

result with that obtained in Chapter 4 for point feature tracking (see Section 4.9.2).
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7.11.5 Discussion

The results (quantitative and qualitative) show that the performance of the tracking system is affected

by the system parameters and more importantly by the suitaoility of the linear shape model used. The

errors observed (the differences between the true and the tracked contour) could have come from

several possible sources.

• Smoothing error — due to the smoothing of the spline representation.

• Truncation error - cased by ignoring the less significant deformable shape modes.

• Modeling error — due to an inaccurate a priori probability distribution (due to segmentation errors

and spline approximation errors in the training shapes considered). Also due to inaccurate a priori

assumptions in the stochastic model (eg: unexpected large shape changes).

• Filtering error - due to ignoring the off diagonal elements of the deformable shape parameter

covariance matrix. Also prior assumptions in fixing the initial state covariance and measurement

noise matrices for the rigid transformation filters.

• Poor correspondence - even in the absence of image noise the measurement process is prone to

errors as the contour can lock onto the wrong part of the image feature (due to image plane noise

or occlusion). This can also be due to the pre-selected value of threshold used at the image

differencing and thresholding stage. A too high or a too low threshold value can result in poor

quality image measurements, which can in turn lead to poor tracking results. This is a limitation

of the tracker presented.

• Numerical error - numerical approximations and compromises made in tracker implementation

procedure.

• Contour quality - limitation of the number of control points used in representing the object

contour. The same number of control points are used to represent all the moving objects, which

limits the quality of track result (particularly when the number of control points are inadequate).

Despite all the reasons mentioned above the tracker proposed gave good contour tracking results.

Further performance analysis of the tracker (such as tracking under noise etc.) is discussed in the next

chapter.
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Figure 7.11: Some frames of the indoor walking man sequence (Sean sequence captured at 1 Oframes/sec.) with
the tracked contour (white) superimposed on top of the walking person. The tracker has successfully tracked the
scaling changes of the person.
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Figure 7.12: Motion of the indoor walking Man (Sean). The tracked silhouettes (white outline) are
superimposed onto the first frame of the sequence.
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Figure 7.13: Sean sequence tracking results (captured at 10 frames/sec), (a) Estimated and true position
plotted against frame number. The position value is the position of the object centroid. (b) Corresponding
estimated and true velocities plotted against frame numbers, (c) Estimated and true scaling changes of the
object (in relation to the mean shape), (d) Motion model selection for the scaling filter, the scaling changes in
the first third of the sequence are small, therefore a CVM is adequate for correct tracking. The scale changes
are significant towards the latter part of the sequence and rightly a model switching takes place (around the
25th frame) to select a CAM for the rest of the sequence, (e) Non-rigid (deformable) shape parameters tracked
for Sean sequence: the first 10 tracked non-rigid (deformable) shape parameters corresponding to the largest
10 eigenvalues^ see text for details) plotted against frame nutnber. The parameter with the highest deviation
from 0 relates to the first shape parameter (corresponding to the largest eigenvalue), the lowest deviation shape
parameter corresponds to the 10th largest eigenvalue, (f) Absolute error between the tracked and the true non-
rigid shape parameter values. The larger error values correspond to the first few deformable shape parameters.
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Figure 7. .: Some frames of the outdoor pedestrian sequence (captured at 15 frames/sec): Multiple objects
tracked with partial occlusion. The partial occlusion is modelled by introducing a height to width ratio
constraint. If this value is violated the tracker gives up on the object. Note that the tracker has abandoned
tracking the pedestrian on the right while the person on the left is tracked, despite part of his legs disappearing.
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Figure 7.15: Motion of outdoor pedestrians. The tracked silhouettes (white outline) are superimposed on the
initial frame.
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F/gwre 7.16: Pedestrian sequence 1 tracking results (for pedestrian on the left) captured at 15 frames/sec, (a)
Estimated and true position plotted against frame number. The position value is the position of the object
centroid. (b) Corresponding estimated and true velocities plotted against frame numbers, (c) Motion model
selection for the translation filter: a Constant Acceleration Model (CAM) is selected as the most appropriate
motion tnodel, to cope with larger displacements, (d) For the scaling filter, a velocity motion model seems to be
adequate to capture small scaling changes, (e) The best 10 tracked non-rigid shape parameters plotted against
frame number, (f) Absolute error between the tracked and the true deformable (non-rigid) shape parameter
values.
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Figure 7.17: Modelling occlusion (captured at 15 frames/sec). When occlusion is detected (either by a sudden
change in the object centroid or by verijying the height to width ratio of the object), the measurements are
ignored and the current object shape is retained and placed on the estimated object centroid in the following
frame. By doing so, the total shape of object cannot be fully recovered (image 7), but the 2 pedestrians are
identified separately. As can be observed from the last frame, the tracker recovers from the occlusion well.
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Figure 7.18: Some frames of the waving hand sequence (captured at 10 frames/sec.) showing the tracked
silhouette (white outline) superimposed on the hand. The tracker automatically model switches to the most
appropriate motion model (chosen from a bank of models) that best describe the waving hand's motion.
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Figure 7.19: The waving hand in motion: The tracked silhouettes are superimposed on the initial frame. The
hand initially moves towards the right then to the left and so forth.
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Figure 7.20: Waving hand sequence tracking results (captured at 10 frames/sec), (a) Estimated and true
position plotted against frame number. The position values shown are the position of the object centroid (b)
Corresponding estimated and true velocities plotted against frame numbers, (c) Estimated and true scaling
(measured in relation to the mean shape size) changes over time, (d) Estimated and true rotational (measured in
relation to the mean shape orientation) changes over time, (e) The best 12 non-rigid shape parameters tracked
(f) Absolute error between the tracked and the true non-rigid shape parameter values.
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F/gwre 7.27: Motion model switching probabilities for waving hand sequence, (a) Model switching for
translation filter: Tfie translation filter automatically switches motion model according to the hand's motion.
The hand starts from a nearly stationary position, then moves with a constant velocity (towards the right) then
slightly accelerates and comes to a stationary position. The process is repeated towards the left side, and finally
comes to a stationary position shortly after moving towards the right. As expected the translation filter model
switches automatically at appropriate times, (b) Model switching for scaling filter: According to the changes in
scaling, a combination of CAM and CVM are in operation for most of the duration, except when the hand
reaches a stationary position, (c) Model switching for rotational filter: CAM is preferred over other models to
cope with small but erratic rotational changes.
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7.12 Conclusion

We have provided a contour tracking method (named CONT-IMM) for applications where the inter-

frame displacements can no longer be considered very small, and for objects that move with variable

motion. Tracking of a walking person is a classic example of such a case, and we have demonstrated

the ability of the tracker to cope with rigid and non-rigid shape changes using a variety of

applications. The tracking algorithm in general can be applied to any deformable object in motion,

providing attractive computational advantages.

In the next chapter we give extended performance analysis of the CONT-IMM tracker comparing its

performance (particularly in terms of quality) with the well-known CONDESATION algorithm of

Isard and Blake [104], and the pedestrian tracker of Baumberg and Hogg [11].
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Chapter 8

Performance Measures for Assessing Contour
Trackers

Abstract

In this chapter we present techniques to compare the quality of tracking performances of contour trackers.
Three trackers reported to give good tracking performance have been considered for our empirical evaluation.
They are the CONT-IMM tracker (chapter 7, [184]), the CONDESAT1ON tracker [24, 104] and the Baumberg
tracker [11, 10]. Four different test conditions were set and for each test, the tracking performance of each
tracker was measured against four performance measures. The results presented have revealed some interesting
findings about the performance of the trackers.

8.1 Introduction

This chapter primarily focuses in comparing the performance of the CONT-IMM tracker (reported in

chapter 7) with Baumberg and Hogg's Leeds tracking algorithm [11] and Isard and Blake's

Condensation algorithm [104]. The empirical performance measures provided in this chapter is used

to assess the quality of the contours tracked by the 3 tracking algorithms.

The literature survey carried out in the area of performance of contour tracking (some aspects were

discussed in chapter 2) reveals that very little work has been published to compare the quality of

tracker output. Most performance comparison methods presented are specific for the tracker

considered, thus cannot be easily employed to compare the performances of other trackers. Examples

of such methods can be found in [3, 63, 77, 108, 117]. Formulating closed form performance

measures for tracking is very difficult given the complexity involved, and can give inaccurate results

under varied tracking environments. Therefore, in this chapter, empirical evaluation methods have

been described. The methods cater for a variety of applications and conditions under which the tracker

performance can be analyzed. The results presented reveal some interesting facts about the trackers.

We use a test image sequence of a walking person to carry out various tracking performance tests. The

test image sequence considered was relatively free of clutter and occlusion, so that the focus of the

experiments designed was to purely assess the quality of the contour tracked. For the experiments

reported in this chapter, the internal parameters of each tracker was tuned to give the best possible

result, so that the observations obtained are a fair representation of the performance of the trackers.
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The tests that we employ include tracking objects under varied noise conditions (using SNR test

measure), tracking objects captured at varied frame rates, tracking using varied number of non-rigid

shape parameters to account for contour deformation, and using varied number of control points to

represent object shape. The result of each of the trackers was measured against 4 performance

measures. Namely: the contour distance error, the contour origin error, the deformable shape

parameter error, and the SNR. The description of test methods and performance measures employed

are given in sections 8.4 and 8.5.

This chapter is organized as follows: Section 8.2 describes the CONDESATION algorithm in brief.

Section 8.3 describes the Baumberg's tracker in brief. Section 8.4 describes the performance

comparison methods used to compare the tracker performance. Section 8.5 gives the results obtained,

and Section 8.6 gives a discussion and interpretation on the results presented. Finally section 8.7

provides the conclusion.

8.2 The Condensation Algorithm

The Condensation algorithm [104] is based on the factored sampling method [102], but extended to

apply iteratively to successive images in a sequence. The following diagram (Fig. 8.1) displays the

principle of the algorithm recursion, and Fig. 8.2 shows one iteration of the Condensation tracker.

Details of the algorithm are given in Appendix F.I (see also [102, 104] for complete details).

—o~
Observation
density

\
o-—ocr>

Figure 8.1: One time step in the CON DENS A TION algorithm.
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Iterate

From the 'old' sample-set {(sj"*,/^"/,^"/),/* = 1,...,N} at time step (fc-1),

construct a 'new' sample set {(s\n),7r}n),c}n)),n = l,...,N} for time t.

Construct the n th of N new samples as follows:

1. Select a sample set S, as follows:

(a) generate a random number r G [0,1],uniformly distributed.

(b) Find by binary subdivision, the smallest j for which c,_/ > r

(c) set S'!n) = s ^

2. Predict by sampling from

to choose each S; . For instance, in the case that the dynamics are

governed by a linear stochastic differential equation, the new sample

value may be generated as: sjn) = As'\n)+BYi{'") where w[n) is a vector of

standard normal random variates, and BB is the process noise
covariance.

3. Measure and weight the new position in terms of the measured features

Z, :

then normalize so that ^^", — 1 and store together with cumulative
n

probability as ( s ^ , ^ , ^ )

where

,(0) = 0,

7t\
n)

Once the N samples have been constructed: estimate, if desired, moments of
the tracked position at time step t as

obtaining, for instance, a mean position using f(x) = X.

Figure 8.2: One Iteration of the CONDENSATION tracker [104].
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8.3 Baumiberg's Tracker

Baumberg and Hogg's tracker [11, 10] was primarily devised for tracking pedestrians, but the

principle of the base method can be applied to track any object contour. An overview of tracking

mechanism is shown in Fig. 8.3 (The tracker details are given in Appendix F.2).

Expected positions
p,, uncertainties,

normal directions

Select subset of n,U]

regularly spaced
feature points

Observations
Covariance R

New observations q'j

Figure 8.3: Diagram illustrating the tracking mechanism of Baumberg's tracking filter [10].

8.4 Performance Measures

8.4.1 Contour Distance Test

A simple distance metric to measure the distance between two sets of landmarks x = (xj,yj)and

x' = (x'f, y\ ) can be given by,

f(x x1) = x — x'

/•»• i \ 1/2 fo i\

/=o

Unfortunately for contours represented by B-splines, this measure does not take into account the B-

spline metric parameters [60]. For 2 contours represented by B-splines, a better distance metric can be

formulated by including the B-spline metric matrix as given in [10, 60].
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Given two cubic B-splines P ( J ) and P'(s) defined by their Ncontrol points (*,,}>,) and (JC'; ,y\ ) , a

more accurate error metric d, measures the difference between corresponding points on each spline,

sampled densely and uniformly over the parametric curves. The distance metric is given by,

rN ,1/2

J 2 d s

NN-\

I
.0 '=0 o '=o

1/2

d s

(8.2)

where Bt (s) h the cubic B-spline basis matrix.

Equation (8.2) simplifies to the following form [10]:

where J is the 2Nx2N symmetric metric matrix (as described in chapter 7, section 7.4).

There is a unique inner product associated with this metric given by,

such that

(x,xf):=x7'Jx'

= (x-x',x-x')I/2=[(x-x')rJ(x-x')J/2

We define the distance error as the average of d across the image sequence (F frames), which is given

by,

F1
Distance _ error - — ̂  | d(x, x') \k

(8.3)

8.4.2 Object Origin Test

The object origin is simply the center of gravity of a closed contour, which is calculated for the object

of interest (actual and tracked) at each frame (k) of a sequence, then the difference of the origin error

(at each frame) is averaged over the number of frames (F). The origin error is defines as,
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Origin_ error = — j[(0°c '"al - Otracked \ 2
x )k

» actual j tracked \ J (8.4)

with

actual \ actual / o actual \Actual object origin 0 ™ =(0fmo/ ,0;
N

actual
N

actual

'racked 'rackcd O':ackctJ)Tracked object origin O'k
racked =(0'x

rackcd ,O':ackctJ)

'tracked 'actual
where X ™CKCa, X°""a' are the B-spline vectors (with N control points) for the tracked contour and the

actual contour respectively. A low value of origin error will reveal the tracked contour-centroid is

close to the origmal contour-centroid in terms of position. The origin error can be used as a secondary

measure to the distance error measure.

8.4.3 Shape Deformation Test

The shape deformation test is a test measure to assess the deviation of non-rigid shape variation from

a mean shape. The quantity reveals how much the object shape at k-th frame has deformed from the

mean shape. In our analysis we have devised an error measure for the difference in non-rigid shape

changes between the tracked shape and the actual shape in terms of the Mahalanobis Distance (MD)

measure (All affine changes of shape are disregarded for this test). The non-rigid (deformable) shape

parameter error is calculated for the object at every frame (k), then the error between the actual and

tracked MD is averaged over the number of frames (F). This is given by,

tracked (8.5)

Where NRSPE stands for: Non Rigid Shape Parameter Error. The Mahalanobis distance measure for

actual and tracked contours are given by [52, 87],

^b,
.1/2

£M

m L 2

MDaaual = Y,~t > ^tracked = E T " r e S P e C t J V e l y-
• * ;

KM Aj
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Where A.l,bi,bl, are the eigenvalue, deformable (non-rigid) shape parameter for the actual contour,

and the deformable shape parameter for the estimated (tracked) contour, corresponding to the /-th

principal vector respectively, m is the number of principal components considered for non-rigid object

tracking. It should be noted that to evaluate MD, the object in k-th frame has to be translated, scaled

and rotated (if required) to align with the mean shape. This process ensures that only the deformable

shape changes of the object are measured (disregarding changes in translation, scaling and rotation).

8.4.4 Signal to Noise Ratio (SNR) Test

The SNR performance evaluation is a B-spline independent image based method that uses the 'SNR

out' measure for tracking performance (similar to that reported in [10]). To evaluate the performance

of the trackers under varied noise, a 'SNR in' measure can also be formulated. Both these measures

can be determined as explained in the following sections.

8.4.4.1 Measuring the Accuracy of Tracking

An additional performance measure employed to assess the accuracy of the tracking process (ie. The

accuracy of shape, position and orientation of the tracked contour) is an image processing based

measure. Thus the error measure is independent of the parameterization of the contour representation

[10]. The contour resulting from the tracking process is rendered flat filled in the 'foreground' color

(moving object colored with white) into the image Itrack.

The tracking process is 'local' so that the signal far from the object is never sampled. Hence, in this

case, it is more appropriate to measure the signal in terms of the area of 'foreground' pixels in the

ground truth image. The signal and noise are calculated using the following quantities [10].

signal = 2

noise = YJ yZjUre/(x,y)-Ilrack(x,y)]

imascsx'y (8.6)

images x,y

where Iref{x,y) is the pixel value at (x, y) for the ground truth image. The pixel value for a

'background' pixel is 0. The scale factor of 2 in the signal value was chosen so that a SNR of 0 (ie.

signal = noise) would occur if the tracker silhouette consisted of a shape of the same area as the

ground truth shape but inaccurately placed so that there is no overlap between the two [10]. This is the
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'worst case' scenario where the tracker has completely failed to track the object. The output SNR (in

dB) denoted as SNR0UI is calculated by using the following equation.

SNRoul(dB) = 10\o,
[signal

g — : —|_ noise
(8.7)

An example for finding 'SNR out' is illustrated in Fig. 8.4 for the 3 trackers considered.

8.4.4.2 Adding Noise to Input Test Sequence

Noisy images were generated by adding Gaussian noise to the test image sequence. This type of noise

was chosen to test the robustness of the system, for several reasons. Firstly, the noise added

(particularly at high levels) can't be thresholded out easily. Secondly, the noise process will result in

significant errors in contour measurements over whole sections of the curve. Hence these noisy

images are suitable for a rigorous test of the tracking system. Some corrupted images are shown in

Fig. (8.5). It can be seen that the silhouette shape can be disrupted by the noise, and a conventional

non-model based approach such as the 'snake' of Kass et al [113] would be unable to recover the

object shape correctly.

The signal to noise ratio (SNR;n) of the noisy images is calculated over the test image sequence using

SNRin(dB) = \0log
signall
noise J

(8.8)

with

signal = (*»y) - JoY
image; x,y

noise =
(8.9)

images x,y

where Ircf(x,y) is the pixel value at (x, y) for the ground truth image and P{x,y)\s the

corresponding pixel in the corrupted image (the noisy image is binarised for 'SNR in' calculation).

The constant / 0 is set to halfway between the 'background' and 'foreground' pixel values, so that a

patch of foreground and a patch of background both have the same signal strength, thus ensuring the

SNR is independent of the relative image and object size.
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Using CONT-IMM Tracker

Using CONDENSA TION Tracker

(J)
Using Baumberg Tracker

Figure 8.4: An example ofSNR output results, (a) Contour tracked by CONT-IMM fiat filled (b) The true object
contour flat filled with tracked contour superimposed, (c) Contour tracked by CONDENSATION fiat filled (d)
The true object contour flat filled with tracked contour superimposed (e) Contour tracked by Baumberg tracked

fiat filled (f) The true object contour flat filled with tracked contour superimposed.
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Figure 8.5: Effects of adding artificial noise (binarised for SNR input calculation). With Gaussian noise
variance (a) at 50 (b) at 75 (c) at 100, and (d) at 130.
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8.5 Results

8.5.1 Tracker Implementation Method

The CONT-IMM tracker was implemented as described in chapter 7. The CONDENSATION

algorithm was implemented (as described in Appendix F.I) using 1000 samples per iteration. A

second order dynamic motion model was applied to the CONDENSATION translation parameters.

The deformable changes were assumed to follow a first order Markov process (for full details of

CONDESATION implementation refer to [102]). The Baumberg's tracker was implemented as

outlined in Appendix F.2 (for full details refer to [10]).

8.5.2 Frame Rate Test

The frame rate test method was devised to analyze the performance of trackers at varied frame rates.

In order to carry out the experiment, test image sequences of a walking man was captured at four

different frames rates: 5, 10, 20 and 30 frames/second. Each tracker was allowed to track the man

independently at each frame rate. For each test, the B-spline irised error measures and the 'SNR out'

performance measures were calculated. The results obtained are tabulated in Table (8.1) and

illustrated in Fig. (8.6).

8.5.3 Noise Test

This is a test to evaluate the trackers' capability to track objects under noisy condition. The test

sequence captured at 10 frames/sec was corrupted with Gaussian noise at various levels. At each noise

level, the trackers were applied to track the walking man. For each test the B-spline based error

measures and the 'SNR out' values were calculated. Results obtained are tabulated in Tables (8.2)-

(8.6), quantitatively illustrated in Fig. (8.7), and qualitatively displayed in Figs. (8.8)-(8.9).

8.5.4 Control Point Test

The object of interest is represented by varying number of control points. We tested and compared the

performance of each tracker by employing control points ranging from 1 2 - 6 4 . Since B-spline error

measures are unreliable for comparing performance for this test (see details in section 8.6) only the

'SNR out' test was carried out, which is shown in Fig. (8.10). The results are tabulated in Table (8.7)

and the qualitative results displayed in Fig. (8.11).
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8.5.5 Shape Deformation Test

The non-rigid (deformable) shape parameter test is to assess the error in deformable shape changes of

objects (between the actual and the tracked shape). The number of shape parameters (in other words

the number of principal components used) employed has a direct impact on the quality of tracked

shapes. We carried out experiments by using 1, 2, 3, 4, 5, 10, 15, 20, and 25 non-rigid shape

parameters to account for deformable shape variations of the object contour. The results obtained are

tabulated in Table 8.8 and illustrated quantitatively by Fig. 8.12 and qualitatively by Figs. (8.13). It

should be noted that for this experiment the deformable shape parameter error quantity (equation

(8.5)) was assessed by averaging the Mahalanobis distance by the number of shape parameters used

(for other tests discussed in this chapter, this process is not required).

S.6 Discussion

In this section we discuss the results obtained in section 8.5. We interpret the results under the four

different performance test carried out.

8.6.1 Tracker Performance Under Varying Frame Rates

All 3 trackers were employed to track an indoor walking person, where the moving person was

captured at different frame rates. The purpose of the test was to analyze the robustness of the trackers

when the inter- frame shape differences are varied.

The distance, the origin, and the shape parameter error measures clearly show that the CONT-IMM

and the BAUMBERG trackers are less sensitive to frame rate changes (though the CONT-IMM gives

much smaller errors, Fig. (8.6)). The CONDENSATION tracker is observed to be sensitive to

changing frame rates. Particularly at lower frame rates, the CONDENSATION gives poor quality

results, but at higher rates (at video rates) the performance is remarkable, and does approach the

performance of CONT-IMM tracker. The reason for poor quality results for CONDENSATION is

that, one of the assumptions for this algorithm is to have small inter-frame shape changes (particularly

for the measurement process to be effective [24]), which is a reasonable assumption at high frame

rates (eg: 30 frames/sec).

Focussing on the SNR test results, the CONT-IMM provides an average 'SNR out' of around 9.5 -

9.75 (db) for the range of frame rates considered ( 5 - 3 0 frames/sec), where as the 'SNR out' for the

BAUMBERG tracker varied between 7.75 - 8.00 (db). The CONDENSATION SNR output varied

from about 4.5 (db) at 5 frames/sec to around 9.5 (db) at rates of 30 frames/sec. The empirical

observations suggest that the CONT-IMM method give the best frame rate results followed by
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CONSENSATION (at high frame rates) and BAUMBERG trackers. It should be noted that the

observations obtained from B-spline based error measures are consistent with the SNR output results.

8.6.2 Tracker Performance Under Varying Noise Condition

This test is a method to evaluate the performance of the trackers under noisy environment.

Uncorrelated noise is added (Gaussian distributed) to each frame of a sequence prior to tracking. The

performances of the trackers are assessed at varied noise levels using the performance measures

described. The results again show that the CONT-IMM tracker gives the best result under noise

followed by CONDENSATION and the BAUMBERG trackers. Remarkably all 3 trackers perform

well up to a noise variance level of around 50. At very high noise levels, the performance of all 3

trackers starts to deteriorate. This is because each tracker has its own mechanism to eliminate spurious

measurements by employing some noise thresholding (filtering) techniques, but such techniques break

down at high noise levels as evident from the results. The poor performances at high noise levels are

directly attributed to obtaining erronious measurements (for all 3 trackers), which in turn leads to poor

quality track results.

An important tracking performance test not covered in this chapter is the ability of the trackers to

track objects in cluttered environments. Unfortunately clutter level cannot be measured witl

reasonable precision, and therefore was not considered in the series of experiments that we carried

out. However, as Blake et. al. [24] demonstrated, the CONDENSATION has been shown to track well

in cluttered background. This is because CONDENSATION supports multiple hypothesis of pdfs for

its observation process (as discussed in Appendix F.I), and as a result is able to disregard false

measurements efficiently. Baumberg tracker was also shown to be agile enough to track under short

periods of clutter [10], but was prone to heavy background clutter because of high false contour

measurements. CONT-IMM tracker is prone to heavy clutter due to its contour measurement process.

Since CONT-IMM uses background subtraction for contour measurements, heavy clutter results in

poor quality measurements being obtained, despite having mechanism to reduce noise. Incorrect

measurement in turn leads to poor tracking results.

8.6.3 Tracker Performance by Varying the Number of Object Control Points

For this particular test, the spline based performance measures are not useful, because the tracked

contour can only be compared with the actual contour, provided both object contours have the same

number of control points. Varying the number of control points on the actual and the tracked contours

gives rise to an approximation error (particularly at lower number of control points). Therefore, spline

based performance measures do not reveal the true quality of the trackers' output.
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In this case, only the SNR output performance was measured, which is an ideal test for this

experiment. The number of control points to represent the object is varied from 16 - 64 to test the

tracker robustness to control point variation. The tracked 'SNR out' is compared with the theoretical

maximum 'SNR out' possible. This value (Max SNR out) is calculated by taking the actual object and

approximating the contour by the number of control points considered, and then flat filling the

contour with white, while the background remains black. This foreground flat filled area is then used

to calculate the maximum SNR output (using Eq. (8.7)).

As can be seen from Fig. (8.10) the trackers achieve their best performance level when the number of

control points are around 30 (for this particular object). By extending the controi points beyond 30

brings little improvement. Therefore, striking a balance between speed of the tracker and the accuracy

of the tracker, it is best to maintain the number of control points to around 30.

Observation of the result shows that the Baumberg tracker is very sensitive to the number of control

points used, particularly at lower values. The CONDENATION tracker is the least sensitive among

the trackers, which maintains an 'SNR out' value of around 8 db for the range of control points

considered. The CONT-IMM gives the best result reaching an output SNR of around 10.5 db between

28-40 control points and 1 ldb with 64 control points, but at lower number of control points (< 16) the

performance is observed to be rather poor.

The theoretical maximum possible SNR output is a guide to show how well the trackers perform in

relation to optimum expectation for the range of control points considered (Fig. 8.10). It is almost

impossible for a tracker to get an SNR output anywhere near the theoretical mark. This is because, a 1

pixel displacement between the tracked object and the actual object can cause about 3-4 % of the flat

filled area (object area) to be mis-aligned. This mismatch alone accounts for about 3.5 - 4 db of'SNR

out' (for the object size we considered). It is also worth noting that the SNR output is dependent on

the object size, therefore only the relative SNR output values ought to be taken into account when

comparing the results.

8.6.4 Tracker Performance by Varying the Number of Deformable Shape Parameters

This test is used purely for measuring the deformable shape changes, and therefore, does not take into

account any affine contour shape changes (disregarding changes in translation, scaling and rotation).

Varying the number of shape parameters directly corresponds to the number of principal components

(PCs) employed in tracking deformable shape changes. The training sequence that we used comprised
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about 750 different object shapes of moving pedestrians. Our offline analysis showed that about 90%

of the shape changes can be accounted for, by using the 10 most significant principal components.

For the experiments reported here, we tested by using 1, 2, 3, 4, 5, 10, 15, 20 and 25 PCs. As can be

seen from the results (Fig. 8.12), increasing the number of shape parameters beyond 10 results in very

little improvement. Considering the tracker speed into account, using beyond 10 deformable shape

parameters can also be computationally expensive. In terms of quality of results, the CONT-IMM

provides better quality results at all levels compared with the other 2 trackers. It should be noted that

the shape deformation test is model dependent, and therefore, the number of deformable parameters

used for tracking can vary from object to object depending on the object shape size and complexity.

CONT-IMM (Error measures)

Frame rate
Dist. Error - u
Dist. Error - a

Origin Error - u
Origin Error - a

NRSPE - u
NRSPE - a

SNR out (db)

5 frames/sec

2.73
0.62
0.93
0.29
6.61
4.17
9.46

10 frames/sec

2.63
0.27
0.95
0.74
5.96
3.39
9.40

20 frames/sec

2.61
0.32
1.07
0.57
5.89
2.92
9.43

30 frames/sec

2.51
0.25
1.11
0.38
5.26
2.87
9.64

CONDENSATION (Error measures)

Frame rate
Dist. Error - u
Dist. Error - a

Origin Error - u
Origin Error - a

NRSPE - u
NRSPE - a

SNR out (db)

5 frames/sec

11.25
23.80

[ 10.15
26.06
11.84
8.10
4.51

10 frames/sec
4.54
6.02
3.66
7.61
7.77
6.17
7.76

20 frames/sec

3.20
5.21
2.35
6.71
6.93
4.28
9.11

30 frames/sec
2.92
3.50
1.90
4.93
6.47
3.45
9.42

BAUMBERG (Error measures)

Frame rate
Dist. Error - u
Dist. Error - a

Origin Error - u
Origin Error - a

NRSPE - u
NRSPE - a

SNR out (db)

5 frames/sec

11.18
11.82
6.42
5.44
18.96
4.75
7.71

10 frames/sec

9.25
6.78
5.60
8.93
18.02
4.33
7.95

20 frames/sec

8.41
5.27
4.80
7.84
17.49
7.08
8.20

30 frames/sec

8.27
4.71
5.04
6.20
16.65
3.81
8.10

Table 8.1: Performance of the 3 trackers at varied frame rates. The symbols /J and a indicates the mean error
and variance over the frame length respectively (in pixels). NRSPE refers to Non-Rigid Shape Parameter Error.
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Figure 8.6: Frame rate test for the 3 trackers. The error quantities are measured in pixels, (a) Perormance using the distance error measure, (b) Performnace using the
origin error test, (c) Performance using the non-rigid shape parameter error test, (d) Performance using the tracked output SNR (db). All 4 tests suggest that the CONT-IMM
tracker outperforms the other two trackers.
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Noise
Variance

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

Distance
error mean

2.99
3.21
3.37
3.10
3.45
3.08
3.31
3.42
3.41
3.58
4.20
3.93
4.22
4.96
4.88
5.85
5.88
6.07
8.41
9.77
12.68

Distance
error van

0.26
0.41
0.36
0.34
1.12
0.26
0.42
0.39
0.50
0.94
2.07
1.97
2.29
2.56
2.56
4.44
2.13
4.90
13.41
20.49
16.70

Origin
error mean

0.88
1.25
1.22
0.98
1.12
0.98
1.19
1.04
1.04
0.99
1.06
0.97
1.08
0.88
1.15
1.17
0.87
0.98
1.24
1.02
0.99

Origin
error var.

0.35
1.06
0.60
0.52
0.69
0.40
0.79
0.46
0.64
0.53
0.58
0.36
0.63
0.30
0.57
0.67
0.62 •
0.34
0.53
0.72
0.48

NRSPE
mean
5.70
7.98
9.15
8.08
8.92
7.96
8.84
9.98
10.28
10.47
12.70
11.62
11.76
14.73
15.08

' 15.79
16.00 .
16.01
19.50
23.80
28.60

NRSPE
var.
4.50
3.06
4.30
5.43
6.43
4.69
3.05
5.04
8.20
5.98
11.60
10.21 •
9.46

22.13
11.92
15.91
10.90
16.70
60.84
41.80
70.44

Table. 8.2: CONT-IMM Tracker performance under varying noise. NRSPE refers to Non-Rigid Shape Parameter
Error.

Noise
Variance

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

Distance
error mean

5.26
6.48
6.53
6.53
6.65
6.46
6.65
6.75
6.72
6.83
7.56
7.36
7.21
8.09
8.01
8.68
8.72
9.39
11.69
12.98
16.84

Distance
error var.

6.12
7.28
7.42
7.37
8.65
7.66
7.57
7.00
8.12
7.56
9.28
8.74
7.21
6.52
8.54
6.91
6.78
8.92
37.27
24.73
19.95

Origin
error mean

3.71
3.68
3.68
3.76
3.70
3.67
3.76
3.67
3.80
3.67
3.95
3.90
3.80
3.94
4.10
3.92
4.42
4.33
4.67
4.83
6.93

Origin
error var.

7.75
6.48
6.53
6.53
6.92
6.81
6.84
7.00
7.72
7.17
7.40
6.76
5.80
5.06
6.50
5.41
7.45
6.47
6.73
8.84
10.17

NRSPE
mean
9.86
11.07
11.75
11.33
11.63
11.10
11.70
12.40
12.43
13.39
14.20
14.41
14.25
16.60
16.82
17.75
18.30
18.87
22.50
22.57
30.66

NRSPE
var.
8.31
8.97
10.98
10.06
15.24
11.18
11.21
10.21
13.12
12.48
18.39
19.47
14.75
24.75
17.28
16.82
13.30
22.85
60.37
44.53
75.95

Table 8.3: CONDENSATION Tracker performance under varying noise. NRSPE refers to Non-Rigid Shape
Parameter Error.
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Noise
Variance

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

Distance
error mean

9.04
8.92
8.58
8.78
8.92
8.77
8.84
8.91
8.61
8.80
8.92
8.72
8.96
9.25
9.61
9.50
10.17
10.48
12.51
12.31
13.27

Distance
error var.

7.96
7.25
6.50
7.61
7.79
7.76
9.12
9.12
6.60
8.80
7.63
5.72
7.51
9.95
6.05
6.12
8.27
11.62
23.97
13.86
6.34

Origin
error mean

5.54
5.21
4.96
5.33
5.51
5.46
5.40
5.36
5.50
5.34
5.44

^_ 5.70
6.08
5.88
6.67
6.46
6.48
6.78
6.71
7.11
7.30

Origin
error var.

8.93
6.01
7.40
6.70
7.28
8.60
6.98
7.90
8.28
6.88
7.98
11.12
9.07
8.18
17.41
9.52
12.86
9.52
9.51
10.25
22.84

NRSPE
mean
18.02
18.42
17.60
17.70
17.86
17.45
17.80
17.50
17.56
17.24
17.54
17.44
17.71
17.73
18.36
19.00
19.86
19.78
22.31
21.16
26.00 >

NRSPE
var.
4.33
4.18
4.46
3.96
3.54
4.20
4.82
4.93
3.68
6.13
5.06
5.73
5.26
5.10
5.77
6.00
5.17
3.67
8.47
5.78
7.00

Table 8.4: BAUMBERG Tracker performance under varying noise. NRSPE refers to Non-Rigid Shape
Parameter Error.

Noise
variance

0
10
20
30
40
50
60
70
80
90
100

CONT-IMM
SNR out (db)

10.17
10.20
10.55
10.65
10.27
9.70
9.74
9.24
8.60
7.38
5.90

CONDENSATION
SNR out (db)

7.90
8.08
7.97
8.15
7.82
7.15
7.70
7.45
6.97
6.52
3.40

BAUMBERG
SNR out (db)

7.98
8.01
8.05
7.95
7.88
7.89
7.52
7.19
6.80
5.79
2.87

Table 8.5: SNR output achieved by the 3 trackers with varying noise.

Noise
variance

10
20
30
40
50
60
70
80
90
100

SNR in (db)

22.47
16.29
12.71
10.18
8.23
6.64
5.29
4.13
3.14
2.26

Table 8.6: Noise variance correspondence to SNR input.
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Figure 8.7: Noise performance test conducted by adding artificial noise (uncorrelated) to the test image
sequence, (a) Distance error test result, (b) Origin error test result, (c) Non-rigid shape parameter error test
result, (d) SNR output result, (e) SNR input versus SNR out results (see text for details). The results reveal that
upto a noise variance level of 30 (~5db SNR in), the trackers produce tracking results as good as in a noise free
environment. At variance levels greater than 50 (~10db SNR in), the performance of trackers deteriorates
rapidly. The CONT-MM tracker in general gives better quality results at all the noise levels considered than
the other 2 trackers.

223

.



CONT-IMM
(a)

CONDENSATION
(b)

Baumberg tracker
(c)

Figure 8.8: Tracking performance of the 3 trackers (with no added noise). 4 frames of a test sequence are
shown with the tracked contour superimposed on top of the object (walking person). Figures are read column
wise, (a) Using CONT-IMM tracker (b) Using CONDENSATION tracker (c) Using BAUMBERG'S tracker.
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CONDENSATION
(b)

Baumberg tracker
(c)

Figure 8.9: Tracking performance under noise (at variance = SO). Figures are read column wise, (a) Using
CONT-IMM tracker (b) Using CONDENSA TION tracker (c) Using BA UMBERG's tracker.
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Control
Points

8
12
16
20
24
28
32
40
48
56
64

CONT-IMM
SNR out (db)

7.94
9.21
9.75
9.86
10.13
10.47
10.72
10.50
11.00
10.54
11.10

CONDENSATION
SNR out (db)

7.13
7.64
7.70
7.77
7.85
7.80
7.77
7.88
7.86
7.86
7.88

BAUMBERG
SNR out (db)

3.00
4.64
5.32
6.96
7.10
7.50
7.75
7.77
7.79
7.80
7.80

OPTIMUM
SNR out (db)

8.70
10.41
11.77
12.70
13.98
14.51
15.43
16.90
17.85
18.60
19.40

Table 8.7: Performance of the 3 trackers with varying number of control point representation of the object. The
optimum SNR is the maximum possible that can be achieved by any one of the trackers (see text for details).
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Figure 8.10: SNR output achieved by the trackers when using varied number of control points to represent the
object. The theoretical maximum is the best possible tracking performance achievable (See text for detail). It is
shown to indicate how well the trackers perform with varied number of control points. It is clear from the plot,
that all 3 trackers achieve their best possible result when the number ofcontorl points are around 30. Little gain
is achieved by using more than 30 control points to represent the object considered. In comparison, the CONT-
IMM tracker outperforms the CONDENSATION and BAUMBERG trackers by about 2db margin.

.
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CONT-IMM
(a-1)

CONDENSATION
(b-1)

Baumberg tracker
(c-1)

CONT-IMM
(a-2)

CONDENSATION
(b-2)

Baumberg tracker
(c-2)

Figure 8.11: Tracking performance when varying the number of control points (Frame 10 displayed). Figures
are read column wise, (al) with 16 control points using CONT-IMM, (bl) with 16 control points using
CONDENSATION, (cl) with 16 control points using BAUMBERG, (a2) with 32 control points using CONT-
IMM, (b2) with 32 control points using CONDENSATION, (c2) with 32 control points using BAUMBERG.

PCs 1 2 3 4 5 10 15 20 25
CONT-IMM

Dist. Error - u
Dist. Error - a
Orig. Error - u
Orig. Error - a

NRSPE - \i
NRSPE - a

SNR out (db)

8.38
1.06
0.87
0.44
1.25
0.80
6.79

7.78
1.05
0.94
0.55
0.70
0.20
6.93

4.38
0.43
0.85
0.44
1.17
0.21
7.10

4.07
0.49
1.00
0.60
0.90
0.14
7.60

3.67
0.28
1.24
0.53
0.77
0.08
8.22

2.81
0.37
1.11
0.60
0.59
0.02
10.10

2.14
0.37
1.03
0.56
0.46
0.01
9.98

1.88
0.35
1.01
0.71
0.47
0.02
10.76

1.61
0.65
0.91
0.52
0.47
0.01
10.80

CONDEN.
Dist. Error - u
Dist. Error - a
Orig. Error - u
Orig. Error - o

NRSPE - \i
NRSPE - a

SNR out (db)

5.75
5.64
3.71
7.22
1.57
1.04
6.94

5.48
4.61
3.68
7.38
0.87
0 . 2 8 ^
6.99

5.33
4.78
3.73
6.91
1.34
0.35
7.25

5.23
5.01
3.80
7.42
1.12
0.21
7.34

5.11
5.25
3.76
7.64
0.90
0.14
7.30

4.60
5.74
3.72
7.14
0.81
0.05
7.82

4.50
6.28
3.76
7.36
0.80
0.05
7.86

4.17
6.54
3.76
7.22
0.81
0.06
8.05

4.06
7.10
3.71
7.75
0.81
0.07
8.05

BAUMBERG
Dist. Error - u
Dist. Error - a
Orig. Error - (i
Orig. Error - a

NRSPE - n
NRSPE- a

SNR out (db)

9.54
11.30
5.62
6.83
5.23
5.45
7.33

9.03
9.84
5.63
6.41
3.35
1.48
7.44

9.13
9.12
5.55
10.58
3.22
0.26
7.60

9.10
7.50
5.92
8.56
2.67
0.22
7.55

9.02
8.54
5.99
7.65
2.41
0.05
7.96

9.02
8.54
5.99
7.65
1.66
0.04
7.96

9.02
8.54
5.99
7.65
1.51
0.02
7.96

9.02
8.54
5.99
7.65
1.47
0.03
7.96

9.02
8.54
5.99
7.65
1.47
0.03
7.96

Table 8.8: Performance of the 3 trackers with varying number of non-rigid shape parameters (Principal
Components - PCs). The symbols f.i and cr indicates the mean error and variance over the frame length
respectively (in pixels). NRSPE refers to Non-Rigid Shape Parameter Error.
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(C) (d)
Figure 8.12: Number of non-rigid shape parameters used (number of principal components) versus error measures, (a) Performance using the distance error measure, (b)
Performnace using the origin error test, (c) Performnace using the non rigid shape parameter error test, (d) Performance using the tracked output SNR (db). The results
show (particularly the shape parameter error test) that by increasing the number of shape parameters, the tracking results improves (for all 3 trackers), but the relative
benefit achieved by increasing the number of PCs beyond 10 is less significant.
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CONT-IMM
(a-1)

CONDENSATION
(b-1)

Baumberg tracker
(c-1)

CONT-IMM
(a-2)

CONDENSATION
(b-2)

Baumberg tracker
(c-2)

Figure 8.13: Tracking performance when varying the number of defonnable shape parameters (frame 10 is
displayed). Figures are read column wise (al) with 3 parameters using CONT-IMM, (bl) with 3 parameters
using CONDENSATION, (cl) with 3 parameters using BAUMBERG, (a2) with 25 parameters using CONT-
IMM, (b2) with 25 parameters using CONDENSA TION, (c2) with 25 parameters using BA UMBERG.

8.7 Conclusion

In this chapter we have presented empirical techniques for assessing the quality of contour tracker

performance. In almost all the tests carried out, the B-spline based error measures were consistent

with the SNR output results, which suggests that the performance measures are a credible

representation to assess the quality of contours tracked by the three trackers concerned. The

experimental methods provided can be utilized for any type of B-spline represented shape comparison

test, assuming no re-parameterization of the contour control points are required. The SNR test method

is a totally spline independent method, which uses only image processing techniques to evaluate

performance, and therefore, can be used to analyze the output of any contour tracking algorithm with

reasonable accuracy.

Though the experimental methods are restricted to the tests described in this chapter, the evaluation

has revealed that the CONT-IMM method outperforms the other 2 trackers (in terms of the quality of

output) in almost all the performance tests carried out.
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Chapter 9

Conclusion

9.1 Summary

This thesis has examined the merits of providing a model switching ability within a visual-tracking

framework. It has successfully demonstrated a model switching capability for a point feature tracker

and a contour tracker, deployed on a variety of image sequences. The primary advantage of having

multiple motion models is that the tracker can cope with several types of motion captured in the same

image sequence, giving better quality trajectory results. The performances of the tracking algorithms

(point feature tracking and contour tracking) in terms of quality and quantity have also been

considered in this thesis. We have presented theoretical performance prediction methods for a point

feature tracker (based on different motion models) and have provided empirical performance

prediction methods for a contour tracker.

Though the performances of the tracking algorithms developed in our work have yielded promising

results, there are still improvements and advancements that can be incorporated into the algorithms to

enhance the tracker. In the following section we provide possible improvements that can be

considered. Finally we also include possible directions for future research work.

9.2 Areas of Improvement

Although the original aim of this research was fulfilled to a great extent, there are methods presented

which lack an in-depth analysis. Mainly due to the time limitation of the project, some areas have not

been sufficiently addressed. In the following section we show some of the weaknesses of the methods

provided, and where possible, show directions for improvement.

Chapter 3 - A fundamental issue that needs addressing when comparing the performance of corner

detectors is establishing a sound ground truth. For simple objects such a task is reasonably trivial

[134], but for complex scenes, as studied in this chapter, establishing ground truth is extremely

difficult. Even for a human brain, to determine the best 'TV corners from a complex scene is non-

trivial. Nevertheless, a bottom line has to be drawn to decide whether a corner is 'true' or 'false' for a
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definite analysis. Once such a decision has been made, formulating a comparison technique becomes

relatively simple. Another area that needs to be considered is the development of proper theoretical

performance measures (as opposed to empirical techniques) for more stringent performance analysis.

Another interesting line of work worth pursuing is to assess the performance of corner detectors under

different views of the same scene. Such a process requires some form of motion model included in the

analysis, which makes the comparison task much harder. For the applications we considered, a solid

comparison technique was not absolutely essential, mainly because the purpose of this work was to

select a good corner detector for temporal feature tracking in the subsequent phase of the project

(reported in chapter 4), therefore further analysis was not considered.

Chapter 4 - The tracker (MHT-IMM) presented in this chapter was demonstrated to have the

capability of automatically changing motion models. Though the results were impressive, a drawback

of the tracker is the independence of corner detection and tracking processes. A coupled tracking

scheme along the lines of [207, 169, 112] will enhance the quality and efficiency of the tracking

algorithm. Using MHT technique for tracking has its advantages (as described in the introduction of

chapter 4), but the downside is the computational cost involved. Despite Murty's algorithm [137]

incorporated into the MHT framework [54, 58], the pruning of unnecessary branches in the track tree

is still required. Another problem with the tracker is the use of a separate tracker for every single point

feature considered. If several features (> 250) are to be tracked, then the algorithm performs poorly

due to the complex management of a large number of hypothesis trees.

Chapter 5 - In this chapter we provided closed form solutions for predicting the performance of a

point feature tracker under clutter using different motion models. We showed that the theoretical and

empirical results presented closely matched the Mote-Carlo simulations, provided the assumptions

listed were maintained. Due to the complexity of the problem, a number of assumptions were made in

order to formulate the closed form representations. The assumptions taken do compromise the final

results obtained to some extent as observed from the results. To minimize the number of assumptions,

a deeper, rigorous theoretical study along the lines of [125, 126] would be required. An area that was

not fully covered by theoretical formulations is the analysis for a tracker (that employs a constant

velocity or a constant acceleration model) when recovering from a false match (we have provided a

technique which is a combination of theoretical and empirical methods, but a complete theoretical

formulation will be very useful). In this chapter we have considered only 3 simple linear motion

models for performance prediction. It would be interesting to formulate solutions for other type of

motion models (eg: a constant turn model, non-linear motion models, oscillatory motion models etc.).

Chapter 6 - The object tracking method described in this chapter is adequate only for simple objects

that are not occluded. Despite the attractiveness of the algorithm, it suffers from lack of efficiency for
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real time purposes. The main reason for inefficiency is the application of MHT in two stages: the first

for contour segmentation, and the second for temporal point tracking. A better method for object

tracking would be to formulate the tracking problem along the lines of Torr et al. [192, 193] (use of

geometric information criteria for motion segmentation), Reid et al. [153] (uses optic flow methods to

group points belong to the same object), or Smith et. al. [172] (use of motion estimates to group point

features that are of the same object). It is also useful to track objects that are far more complex than

the ones that were considered in this chapter. In complex objects one would have to take into account

the corner points that might appear within the object of interest, in which case the algorithm presented

in this chapter might fail, because it considers only the contour (the boundary) of an object.

Chapter 7 - The CONT-IMM tracker presented in this chapter was demonstrated to track well with

automatic motion model switching when applied on a variety of sequences. One area where the

tracker is vulnerable is when tracking under heavy clutter. Since the tracking technique uses

background subtraction to obtain contour measurements, heavy clutter can cause spurious contour

measurements, thus resulting in poor quality contour tracking. A way around this problem is to use an

efficient feature search method such as the methods reported in [163, 24], where suitable statistical

background and foreground models are developed to reduce the effect of clutter.

For the experiments reported in this chapter we considered only 3 motion models to test the model

switching ability of the tracker. For a more rigorous evaluation of the tracker, it is worth testing the

CONT-IMM algorithm with other types of motion models (eg: non-linear motion models, oscillatory

motion models, learned motion models that pertain to a type of object etc.). It is also worth trying the

algorithm to track other objects such as animals, vehicles etc.

Chapter 8 - An important part missing in chapter 8 is a sound theoretical basis for comparing the

performance of contour trackers. The methods that we have employed are simple empirical techniques

to assess the output of the contour trackers. The methods provided do not give any prediction

measures (as in chapter 5). Due to time constraints further theoretical performance analysis work

could not be carried out. An important area of research worth considering to improve the work

reported in this chapter is to provide closed form expressions for theoretically assessing the

performance of contour trackers (to the author's knowledge there are no comprehensive techniques

reported in the literature for comparing the performance of different types of contour trackers). One

possible thought is to enhance the work presented in chapter 5 (performance prediction techniques for

point feature trackers) for contour tracking algorithms. Another area that needs addressing is a sound

comparison technique without using B-spIine related measures. For contour trackers that do not

employ splines, the B-spline performance measures presented cannot be employed. The SNR method
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used is also inadequate, since it depends on the foreground area of the moving object. Therefore an

image processing technique that is independent of moving object size will be of valuable use.

9.3 Future Research Directions

As noted before a problem with MHT based tracking techniques is the high computational cost. One

method to avoid costly computational time is to reduce the complexity of the tracking algorithm. A

possible future direction of work is to consider extending the KLT tracker. As discussed in chapter 3,

the KLT tracker does not employ a motion model within its tracking framework [190J, but uses the

corner detection process to complement the tracking task. A possible extension for this tracker is to

consider embedding a motion model/s into the KLT tracker (similar to [164]). Such a tracker would

be expected to perform better than the MHT-IMM algorithm in terms of efficiency.

An efficient method of point feature tracking can also be developed using similar techniques to the

Condensation algorithm (with an appropriate feature detection process embedded within the tracking

system). Such a tracker would be expected to run faster than a MHT based algorithm. Possible model

switching can also be achieved by following similar techniques to Blake et al. [106, 156].

An extension of contour tracking method is to track not only the contour of the object but also the

grey-levels contained within the object of interest. If achievable, such a technique will provide

valuable information from the image sequence. Cootes et al [53, 71] have used Active Appearance

Models for recovering faces using such methods, but to the author's knowledge very little work has

been done in recovering the full deformable object using temporal tracking. Some success has been

reported in [165], where small blobs are tracked, but further work has to be undertaken to track a

complex deformable object such as a walking pedestrian.

Other possible areas of research include the following: Track 3D objects as opposed to 2D contours

with motion model switching (using ideas from [91, 177, 178]). Use tracking techniques to

reconstruct a scene from sequence of images (panoramic scene understanding), interpretation of

scenes using tracking methods (similar to [100]), and the possibility of employing tracking concepts

for the restoration of damaged sequences that contain moving objects.



Appendix A

Corner Detector Performance with Small Motion

This section gives extra information to that which was reported in chapter 3 (page 47).

A.I Image Sequences with Very Small Motion

Two sequences were considered with very small motion component in them. First, a 30 frame Coke sequence

was used, where there is a small camera motion towards the scene. Secondly, a 20 frame Rubic sequence is

considered with a small rotational motion of the Rubic. In both sequences the maximum inter-frame

displacement due to motion was around 1 pixel (see Appendix G).

A.1.1 Test Results for the Coke Sequence

The best 100 corners extracted by each of the corner detectors are qualitatively displayed in Fig. (A.I). The

quantitative results show that the KLT and Harris provide equally good number of stable corners (55% each),

while SUSAN resulted with around 35% and Kitchen-Rosenfeld gave only 20% stable corners using the GVM

matcher (0.004 threshold). For the same experiment using PMCM matcher (0.8 threshold), Harris (30%) gave a

better result than KLT (20%), while SUSAN and Kitchen-Rosenfeld provided only around 10% stable corners.

The number of first frame comer matches also suggests that Harris and KLT provide more matches than

SUSAN and Kitchen-Rosenfeld detectors for both matchers (Fig. (A.2)). The mean corner displacement result

shows that the corners extracted by the Harris and the KLT (with around 1 pixel displacement) detectors are

more localized than the corners detected by the SUSAN (1.7 pixels) and the Kitchen-Rosenfeld (2 pixels)

detectors using the GVM matcher. With the PMCM matcher, Harris gives around 0.7 pixel displacement, KLT

provides 1.25 pixels, while SUSAN and Kitchen-Rosenfeld provides more than 2 pixels displacement (Fig.

A.2).

A.1.2 Test Results for the Rubic Sequence

The best 100 corners extracted by each of the corner detectors are qualitatively displayed in Fig. (A.3). The

result reported in Fig. (A.4) shows that KLT, Harris and SUSAN give approximately 50% stable corners using

GVM (0.004 threshold), and around 10%-15% using PMCM (0.8 threshold). The Kitchen-Rosenfeld gives the

least stable corners using both matchers, about 25% and 8% respectively. The number of first frame corner

matches is between 60-75 for all four detectors using GVM matcher, and around 40-50 matches using PMCM

matcher. The comer displacement result clearly shows that KLT with around 1.5 pixel displacement is better

localized than Harris (2 pixel), SUSAN (2.5 pixel) and Kitchen-Rosenfeld (2.6 pixels) detectors using the GVM

matcher. Similar observations can also be noted using the PMCM matcher (Fig. (A.4 b,d,f))-

-

234



(a) Is'frame using KLT

(c) Is' frame using Harris

(e) I"1frame using Kitchen-Rosen

(g) r frame using SUSAN

(b) last frame using KLT

(d) Last frame using Harris

(f) Last frame using Kitchen-Rosen

(h) Last frame using SUSAN

Figure A. I: First and last frame (row wise) of the Coke sequence showing the best 100 corners as seen by each
of the 4 corner detectors.
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Coke Sequence Performance Results

Coke

5 10 15 20 25 30
Frame number

(a) Using GVM (Viresh=0.004)

Coke
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Frame number

(c) Using GVM (Thresh=0.004)

Coke

10 15 20
Frame number

25 30

(e) Using GVM (Thresh=0.004)

Coke
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Frame number

(b) Using PMCM (Thresh = 0.8)

Coke

10 15 20
Frame number

25 30

(d) Using PMCM (Thresh = 0.8)

Coke

10 15 20
Frame number

(f) Using PMCM (Thresh = 0.8)

Figure A. 2: Performance of the 4 comer detectors when applied to the Coke sequence, (a) The percenrtage
stable comers using GVM matcher, (b) The percenrtage stable corners using PMCM matcher, (c) The number
of first frame comer matches using GVM macther. (d) The number of first frame corner matches using PMCM
macther. (e) The comer displacment (in pixels) using GVM matcher, (f) The comer displacment (in pixels)
using PMCM matcher.

236



(a) Vframe using KLT

(c) Is' frame using Harris

(g) Is'frame using SUSAN

(b) last frame using KLT

(d) Last frame using Harris

(e) Is'frame using Kitchen-Rosen (f) Last frame using Kitchen-Rosen

(h) Last frame using SUSAN

Figure A.3: First and last frame (row wise) of the Rubic sequence showing the best 100 corners as seen by each
of the 4 corner detectors.
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Rubic Sequence Performance Results

Rubic
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(f) Using PMCM (Thresh = 0.8)
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Figure A.4: Performance of the 4 comer detectors when applied to the Rubic sequence, (a) The percenrtage
stable corners using GVM matcher, (b) The percenrtage stable corners using PMCM matcher, (c) The number
of first frame comer matches using GVM macther. (d) The number of first frame comer matches using PMCM
macther. (e) The comer displacment (in pixels) using GVM matcher, (f) Tfie comer displacment (in pixels)
using PMCM matcher.
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Appendix B

Multiple Hypothesis Algorithm

B.I MHT Overview

This section briefly describes the MHT Algorithm (the details of which are given in [152], [54], [58]). In

section B.2 we look at the hypothesis generation. In section B.3 the mathematical framework for this

algorithm is presented and finally in section B.4 the method of generation of the .K-best hypothesis is given.

The concepts presented in the whole of this section are used to predict and match features for our feature

tracking analysis presented in Chapter 4.

The Multiple Hypothesis Tracking (MHT) algorithm was originally developed by Reid [152] in the context

of multi-target tracking. Fig. 4.1 in chapter 4 outlined the basic operation of the MHT algorithm. An

iteration begins with the set of current hypotheses from iteration (k-\). Each hypothesis represents a

different set of assignments of measurements to features, i.e., it is a collection of disjoint tracks. A track is

defined to be a sequence of measurements that are assumed to originate from the same geometric feature. A

dummy track in each global hypothesis denotes spurious measurements.

Different sets of assignments expect to see different sets of measurements. Thus, each hypothesis predicts

the location (in the image plane) of a set of expected geometric features (specifically corners) and these are

compared with actual measurements detected in the next camera frame on the basis of their Mahalanobis

distance [58, 6]. These comparisons are represented in the form of an ambiguity matrix (was defined in

Chapter 4.2), which concisely models the ambiguities present in assigning measurements to features.

Each measurement may either 1) belong to a previously known geometric feature, 2) be the start of a new

geometric feature, e.g., a previously unseen corner that has entered the field of view of the camera, 3) be a

spurious measurement (also called a false alarm). In addition, for geometric features that are not assigned

measurements, there is the possibility of 4) deletion of the geometric feature. This situation may arise when

say a comer feature leaves the field of view of the camera. Alternatively, 5) there is the possibility of

continuation of a geometric feature, the missed measurement perhaps being due to either noise or a

temporary occlusion caused by the motions of the camera and objects in the scene.
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After matching, each global hypothesis (from iteration (£-1)), has an associated ambiguity matrix from

which it is necessary to generate a set of legal assignments (see Chapter 4.2). Each subsequent child

hypothesis represents one possible interpretation of the new set of measurements and, together with its

parent hypothesis, represents one possible interpretation of all past measurements.

Finally in order to contain the growth of the tree, it is necessary to prune unlikely branches (see [58] for

further details on pruning mechanism). In order to do this intelligently, one needs to evaluate the likelihood

of each hypothesis. Section B.2 and B.3 provides the mathematical framework for estimating the

probability of each leaf in the tree.

B.2 Hypothesis Generation

The /-th practical global hypothesis at time k is denoted by 0 , , and Z{k) the set of measurements at time k.

Let ©t(/) denote the parent hypothesis from which 0 * is derived, and 6m(k) denote the specific set of

assumed assignments (events) that map \©^,yZ^k)\xo 0 , . That is, 0m(h) is a set of assignments of

the origins of all measurements received at time k with all the geometric features postulated by the parent

hypothesis, 0 w m at time k. The event 6t (k) based on the current measurements is defined to consist of r

measurements from known geometric features, v measurements from new geometric features, <fr spurious

measurements (false alarms), and x deleted (or obsolete) geometric features from the parent hypothesis.

A set of current assignments or events 9, (k) can be generated by first creating an ambiguity matrix in

which known geometric features are represented by the columns of the matrix and the current

measurements by the rows. A non zero element at matrix position ctj denotes that measurement z,{k) is

contained in the validation region of geometric feature /,. In addition to the total number, T, of known

geometric features postulated by a hypothesis, the hypothesis matrix has appended to it a column 0 (TF)

denoting false alarms and a column T+l (TN) denoting new geometric features. The situation depicted in

Fig. 4.2 (a) in chapter 4 is represented by the hypothesis matrix shown in Fig 4.2 (b).

It is desired to constrain the legal set of assignments to be disjoint so that 1) a measurement originates from

only one source feature and that 2) a geometric feature has at most one associated measurement per

iteration. This is equivalent to restricting an ambiguity matrix to have only a single non-zero value in any

row or column, except for the first and last columns since any number of measurements might be false

alarms or new geometric features. If the first and last columns of the ambiguity matrix are replicated nit

times for each of the ntt measurements, then there is only a single nonzero in any row or column and the

ambiguity matrix can be thought of as a cost matrix in a linear assignment problem (or weighted bipartite
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graph matching [137]). Enumeration of all legal sets of assignments, 0t(k), is straight forward [58], but

impractical for anything other than a trivial example. Section B.4 describes briefly how the ambiguity

matrix can be modified to represent a classical assignment matrix from which the A-best assignments

(hypotheses) can be generated using an algorithm due to Murty [137],

B.3 Probability Calculations

The new hypothesis at time k, &, is made up of the current set of assignments (also called an ev. ?),

9, (k), and a previous hypothesis, ©*,̂ /) based on measurements up to and including time k - 1 , i.e.,

The probability of an hypothesis, P\&t Z > can be calculated using Bayes' rule, so that

(B.2)

where c is a normalisation constant. The last term of this equation, P\Q^ Z ~ >, represents the

probability of the parent global hypothesis and is therefore available from the previous iteration. The

remaining two terms may be evaluated as follows.

The second factor of (B.2) is obtained by combining results from [6] and [152] to yield [58],

where JJF(0) and / /A . (v) are the prior probability mass function (PMFs) of the number of spurious

measurements and new geometric features (v is the number of measurements from new geometric features,

</> is number of spurious measurements (false alarms) and m* is the total number of measurements at time k),

P'D and P' are the probabilities of detection and termination (deletion) of track / and 8, and Xi a r e

indicator variables defined by

1 // geometric feature t (in Q*^) is detected at time k

10 otherwise
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l ' / geometric feature t (in ©

0 otherwise

is deleted at time k

To determine the first term on the right hand side of (B.2) it is assumed that a measurement z,(A) has a

Gaussian probability density function (pdf)

(B.4)

Nti = N[z, (*)] ̂  N[z, (k); z, (*| k -1), S" (k)]

= 2nS''(k)\~* -^z^~iWk-^T^''{l)^'^k^i^k-]^}

if it is associated with geometric feature /,-, where Zj(k\k — 1) denotes the predicted measurement for

geometric feature r,and S''(k) is the associated innovation covariance. If the measurement is spurious (a

false alarm), then it's pdf is assumed uniform in the observation volume, V. The probability of a new

geometric feature is also taken to be uniform with pdf of value Vx. Under these assumptions, one has,

/ = ]
(B.5)

(=1

where r , is an indicator variable defined as

{1 zt{k) came from a known geometric feature

0 otherwise

and v and 0are the total number of new geometric features and false alarms, respectively.

Substituting (B.5) and (B.3) into (B.2) yields the final expression for the conditional probability of an

association hypothesis [58]

c , = 1

(B.6)

If the number of false alarms and new features are assumed to be Poisson distributed with densities AFand

^N respectively, then (B.6) reduces to
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^
(B.7)

* - ' \
J

The probability of each hypothesis can be used to guide a pruning strategy [58].

B.4 Generating the &-Best Hypothesis (Murty's Algorithm)

Because of the exponential complexity of the multiple hypothesis approach only an approximation to the

MHT algorithm can be implemented. In particular, it is simply not feasible to search the entire space of

hypotheses in order to determine the most likely set of assignments. Several implementation strategies were

employed in order to contain the growth of the hypothesis tree and reduce the number of hypotheses that

must be considered.

In order to generate the ^-best hypotheses (from a problem size > K), Cox et. al. [54] used an algorithm due

to Murty [137] to optimally determine the AT-best assignments in polynomial time. The number of linear

assignment problems that must then be solved is linear in k. In fact, "the computations required at each

stage are the solving of at most («-l) assignment problems, each of sizes 2,5,...,/?" [137]. The algorithm

avoids solving duplicate assignment problems [54] (see later for definition), thereby eliminating the need to

compare and delete duplicate hypotheses. Finally, in the average case, the dimension of the assignment

problems that must be examined decreases with increasing k.

Consider first the problem of finding the single most probable hypothesis. This can be cast as a weighted

bipartite matching problem by constructing a bipartite graph in which each node on one side represents one

of the measurements, each node on the other represents one of the targets, and each arc, < zh tj, I >, gives

the log likelihood , /, that measurement z, should be assigned to target tj. The log of the likelihood of a given

assignment can be found by summing the log likelihoods of all the arcs that it specifies. These log

likelihoods can be calculated from equation B.7.

Finding the best hypothesis, then, is a matter of finding the assignment that maximizes this sum. This is an

instance of the classical assignment problem from combinatorial optimization, and can be approximately

solved very efficiently in polynomial time [54, 58]. Murty's algorithm is also guaranteed to find the /T-best

assignments in polynomial time. A brief description of Murty's algorithm follows:

1) The set of valid solutions for any one of the problems in the list doesn't intersect with the set of solutions

for any other problem in the list. That is, there are no duplicate problems.
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2) The union of the sets of valid solutions for all the problems in the list is exactly the set of solutions for

problem P, minus solution S [137].

Murty gives a method for computing this partitioning in OCA'3) time, where N is the dimension of the

problem. For the A-best algorithm, a list of problem/solution pairs is kept. Each pair consists of an

assignment problem and its best solution. The list is initialised with the initial problem to be solved. In each

iteration, the best solution is found, then removed from the list, and replaced with its partitioning. So, in the

first iteration, the single best solution, So, is found to the problem, and the list is altered so the set of

possible solutions no-longer contains So, The next iteration gives the next best solution, Si, and changes the

list so that possible subsequent solutions no-longer include Si or So, and so on. The following steps outline

the algorithm. The partitioning is performed by the loop in step 4.4. See [137], [58] for more details.

1) Find the best solution, So, to P0(this can be done using a standard algorithm like the Hungarian method

2) Initialize the list of problem / solution pairs with < So, Po>

3) Clear the list of solutions to be returned

4) For / = 1 to k, or until the list of problem / solution pairs is empty

4.1 Search through the list of problems / solution pairs, and find the pair, < P, S> that has the

best solution value

4.2 Remove < P, S> from the list of problem / solution pairs

4.3 Add S to the list of solutions to be returned

4.4 For each triple, < /, z, />, found in S

4.4.1 LetP' = P

4.4.2 Remove the triple <t,z,l> from P'

4.4.3 Look for the best solution, S , to P

4.4.4 If S'exists

4.4.4.1 Add < P , S > to the set of problem / solution pairs

4.4.5 From P, remove all triples that include /, and all triples that include z, except

<t,z, l> itself. (This reduces the dimension of the problem by one)

J'iigure B. 1: Murty's algorithm for finding the k-best solutions to an assignment problem, Po-

NOTE:It is also worth noting that, to supplement the Mahalanobis distance in the MHT technique, Cox et

al. [58] also introduced a cross correlation test [168]. This was used in order to reduce the total number of

possible initial matches (and also increase the number of disjoint clusters).
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B.5 The Kalman Filter Recursion

State at tk

x(k)

Transition to tk.l

x(k+l)=Fx(k)+v(k)

v(V

State estimate at tk

x(k\k)

State prediction

x(k+l\k) = F(k)x(k\k)

Measurement at tk.t

z(k+IJ=H(k+l)x(k+l)

w(k-

Measurement prediction

z(k+l\kj = H(k+l)x(k+l\k)

—I

Measurement residual

• v(k+l)=z(k+lj-z(k+l\k)

Updated state estimate

x(k+l\k+1)=x(k+l\k) +
W(k+lJv(k+lJ

State covariance at tk

P(k\k)

State prediction covariance

P(k+l\k) = F(k)P(k\k)FT(k) + Q(k)

•\

Innovation covariance

S(k+1) = H(k+])P(k+l\k)Hr(k+l)

T

Filter gain

W(k+]) = P(k+l\k)HT(k+1) S'(k+1)

Updated state covariance

P(k+l\k+l)=P(k+l\k)-
W(k+l)S(k+l)WT(k+l)

Figure B.2: One Cycle of the Kalman Filter [5]
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Appendix C

Proof for the Probability of Correct Association
This section contains proofs for the material reported in Chapter 5.

C.I Proof for the Probability of Correct Association (PCA) for Constant
Velocity Tracker (CVT)

Starting from equation (5.9) in chapter 5

Using the total probability theorem [5, 6], for the constant velocity model (CVT) we get,

Pcn{k + ]}= jp{k + l\rJk,a}.P(j7k).djJk

—00

Therefore the expression we require can be given by the following equation:

(C.I)

where P(rjk) = •expi - -

Expanding equation C.I using the total probability theorem gives

•I +00

= j ^ J exp{- arji + Plk + Y
* - C O

(C.2)
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where the following definitions are used for a, ft, y.

a = -\

r}k , a (That is noise and acceleration as given before) are 2 dimensional vectors (They have a x and y

component). Therefore equation C.2 can be expressed in terms of the x and y components.

Pen

, +00+00

I f f / 2 l / ? \ j In \J J

-2 _ 2where TJX, rjy are the x and ^ elements of the random variable r], and cr~, ay are the x and j / variances of the

Gaussian distribution.

Lets evaluate the integrand associated with x component of the above expression (say Ix),

Y +00

J expl-a^il-expj^

For small values ax (x component of the error acceleration) the second exp{.} in the above equation can be

indapproximated up to 2" order terms. Therefore the above equation becomes,

•jYx

PxT?x+ + higher order terms

With suitable substitution and ignoring higher order terms for small a , the above integral reduces to,

j -
2e r' r(0.5)

2ax

where the F function is define as follows:

(a>0)

we also make use of the following gamma function relations.

(C3)
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r(0.5) = 4TT, T(l .0) = 1, T{a +1) = aT{a)

With these relations substituted in equation C3, the final expression for / becomes:

A similar expression can be obtained for / . From these expressions we can evaluate Par {k +1} by:

f*y

C.I Proof for the Probability of Correct Association (PCA) for Constant
Acceleration Tracker (CAT)

The Alternate Method is given:

Starting from equation (5.13) in chapter 5

(C.4)

Note that this probability is conditioned on the random component f]k which can be integrated out by applying

the total probability theorem.

p(ljk ) is the two-dimensional probability density function (pdf) of the random variable rjk .

l I l
(C.5)

.2 _ 2
where rjx, 7] are the x and y elements of the random variable rjk, and G"x , <J are the JC and y variances of the

Gaussian distribution.

With the above given equations C.4 and C.5, the total probability theorem expands to the following form.
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[

y2 /

X&Y

einA-i^
21(7,

(C.6)

The separated integrals with respect to 7^, T]y are density functions which can be evaluated to closed form

solutions using the fact that the area under a density function is unity. The integral with respect to x reduces to

the following equation.

i
which when substituted into equation C.6, along with its / counterpart gives,

In Po \l - 2na; In ^

C.3 Proof for the Probability of Correct Association for Recovering from
a False Match (PCA-FM) for Zero Velocity Tracker (ZVT)

Starting from equation 5.17 in chapter 5:

(C7)

The probability P'ZI.T {k +11 Vk+]} can be formed from equation C.7 by integrating out the random term £k

using the total probability theorem. The probability density function of Ek is a uniform distribution inside the

disk of association A, and zero outside.
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0

/ / ek is inside A

othei'wise

(C.8)

when substituting equation C.8 into the total probability theorem, the integral requiring evaluation is constructed

as follows.

However, a closed form solution for this integral is difficult to determine because, although

P ZIT {k +11 \k+l, £k } and the region of integration A are both circularly symmetric, both have different

centers. If the integrand is simplified, the expression for the domain is made more complicated, and vice versa.

To evaluate this integral, the circular domain of integration is approximated by a square region S (Fig. 5.4 in

chapter 5) which is centered at pA_j and has sides of length 2vmaxJt where vmaxk is defined as follows:

vm« = m a x v i,|vv.

The pdf for Sk over the square region S is:

0

if £k is inside S

othei-wise

The total probability integral is therefore transformed to,

(A9)

This integral is still not in a form that can be evaluated because the variable^ has its origin at p ^ while the

region of integration is defined with respect to an origin at pk+l. However, if V^ = Vk+1 — Vc is assumed,

that is a constant velocity of Vc between frames, a change of variable from £ to Tk is possible and doing so

yields a tractable integral. From Fig. 5.3 it can be seen that £ and Tk are related by £k = Tk — Vcand also

dtk = d£k.
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Changing the variable of integration of equation C.9 from E to rk results in an integral that can be evaluated

to a closed form solution.

7 r ^
(2vmax) 5

•I "*"

2

^ V m a x / -v

J exp)̂ - In Po (4v; - 4v .̂ry + r)

•max

The integral with respect to x can be evaluates to the following form.

-»))]

where a = In J F ^ and ?̂ = - 2 v x .

A similar expression can be found for Iy .

Therefore the final expression for the total probability is given as follows:

(2v_)
2 r0 J x1 y

Note that this expression is only valid for a small constant velocity v.
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C.4 Proof for the Probability of Correct Association for Recovering from
a False Match (PCA-FM) for Constant Acceleration and Constant
Velocity Trackers (CAT and CVT)

Using Fig. 5.4 in chapter 5:

* = P* -

i = P*+i (CIO)

From vector graph in Fig. 5.5 (chapter 5), it can be shown that,

Substituting equation C.I 1 in CIO gives,

= -ek + vk+l - 2vk rjk

(Cll)
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Appendix D

A modified Principal Component Model

This section contains extra information for the material presented in Chapter 7 and 8.

I D.I Principal Component Analysis

PCA aims to transform a correlated set of observed shape-vectors to a basis of linearly uncorrelated parameters.

This is equivalent to diagonalizing the shape vector covariance matrix using a similarity transform. The vector

dx = (x — x) is transformed to a new basis using [10]

2A'-1

/=0

= Pb

where b = (V--.*2A'-i) a n d P > = [ e * ] y

Assuming P is invertible, the covariance matrix for b is simply

£(bbr) = P

In order to enforce linear independence, the above covariance matrix for b is diagonalized by appropriate choice

of P~ . This does not uniquely define P. A further orthogonality condition is required, namely [10]

(D.I)

which is equivalent to P = P .

D.2 Distance Metric for Splines

Equation (D.I) represents only one possible orthogonality condition. The scalar product corresponds to a choice

of a standard Euclidean distance metric f(...,...) to measure the error between two sets of landmarks

(xity,)and ( * ' , , / , ) where,
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' A ' - l vl/2

./=o

Given two cubic B-splines P(s) and P'(.v) defined by their N control points (x^y^and (x\ , 7 ' , ) , a more

accurate error metric d, measures the difference between corresponding points on each spline, sampled densely

and uniformly over the parametric curves. The distance metric is given by (also given in chapter 8, [10]),

All

' " A ' - l

. 0 '=0

J/2
(D.2)

,(.))• y, - y\ )Bi {sjf dsj
0 / = 0

where the Bt (s) is the B-spline basis matrix elements. Eq. (D.2) simplifies to the following form:

d(x, x1) = [(x - x' )r J(x - x1 )}/2
(D.3)

where the 2Nx2N symmetric metric matrix J is defined by (see chapter 7 for details)

J2,2j

iJ

and the ./vxAr symmetric matrix H is given by,

There is a unique inner product associated with this metric given by,

such that
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x',x-x ')
1/2

= [(x-x')rJ(x-x')]"

The inner product is used in place of the scalar product in equation (D.I) to give a more suitable orthogonality

condition.

D.3 Eigenshape Analysis

The desired transformation to a set of linearly independent J-orthogonal eigenvectors is found by solving the

eigenproblem (see [10] for details)

SJe,. =^.e,. (D.4)

where S is the training set covariance matrix i s (dxdx ) .

Using the notation of Eq. (D.4) the following results can be easily verified.

• The vectors e, are orthogonal with respect to the inner product <...,...>.

• Hence by suitable normalisation

or equivalently P J P = /

• Each shape coefficient bt is given by projecting the shape-vector dx onto the line spanned by the /-th

eigenvector (minimizing the square distance d~ to the line), i.e

b, =<dx,e, >

• The shape coefficients are linearly uncorrelated over the training set.

,bj) = efJSJc, =<e,,ly

Assuming an unbiased, homogeneous, isotropic Gaussian measurement noise model (with dense

measurements uniformly spaced over the contour) as described by Blake et. al [24, 60], measurements for

the shape parameters are uncorrelated.
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Appendix E

Learning Motion Model Parameters
This section contains extra information for the material presented in Chapter 7.

E.I Third Order AR Process

A third order system depends on 3 previous time steps. The dynamic motion equation is given by the following

equation for a system where the mean shape space of the training set also has to be learnt,

T(r4) - T = A3 (T(*M) - T) + A2 (T(tk_2 ) - w ) - T) (E.I)

where T is the shape space state vector and T is the mean shape space; A3,A2,AX, Bo are all matrices of size

{6 + m). That is, 6 degrees of freedom for the affine transformation and m number of principal components for

the non-rigid shape variation. Eq. (E.I) can be represented compactly as follows [24,25].

X(tk) - X = A(X(tk_,) - X)

where

X(tk) =

~T(tk_2)~

T(tk_})

T(r,) _
, X —

T

T

T
A~

0

0

h

1

0

a2

0

1
a\

B =
"o"
A .

The coefficients of A are chosen to correspond to the damped exponential (in terms of frequency/and damping

coefficient P) for a time step r.

For a one dimensional problem, a3,a2,a] can be given by the following expressions.

a, = exp(-2/?r) + exp(-/?r + Infx) + exp(-/?r -

a2=- exp(-2 J3T) - exp(-/?r

b0 can be ^elected suitably according to a method described in [24]. For a higher dimensional shape space

A3,A2,Al,30 becomes
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A3 = a3I,A2 = a2I,A} = axI,BQ = ab0H -1/2

A sub case of harmonic motion, useful particularly for translational motion, as reported in this thesis, is the

constant acceleration model in which/=/? = 0, which gives the following motion model parameter values.

A3 = / , A2= -31, 4 = 3 / .

E.I.I Learning Model Parameters from a Sequence of Images

The model parameters can be learnt from a known image sequence as described by Blake et. al. [24, 25] for a

second order model. This method can be easily extended to a third order model as summarised below.

Given a training set { T , , . . . , T M } of shapes spaces from an image sequence, learn the parameters

A3, A2 ,A\,BQ for a third order AR process that describes the dynamics of the moving shape.

The log-likelihood function for the multi-variate normal distribution of the 3rd order dynamic system is given by

(assuming the mean T is unknown),

(E.2)

-(M-3)log(det50)

where

B0B0
T

The form of equation (E.2) is non-linear since the mean also has to be estimated. The non-linearity can be

removed by the following substitution,

T> = (I-A3-A2-Ai)T

Now the motion parameters can be estimated by minimizing the following expression,

M

-(Af-3)log(det50)
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Minimising the log-likelihood L leads to the estimation of the dynamical parameters A3,A-,,Ax,B0.

Maximising first with respect to A3,A2,A]t it will be shown that separability holds. Maxima with respect to

A3,A2,Al turn out to be independent of the values of C. Equivalently to maximising L, tr(Z) can be

minimised with respect to A3, A2, Ax.

If

this can be expressed as

where

M

Jt=4
k-3 ~^2^k-2 ~A^k-\)\

" A3Tk_3 - A2Tk_2 - AxTk_x -D)(T, - A3Tk_3 - A2Tk_2 - A,Tk_, -D)r

For the purpose of finding A3,A2,AX, Bo can be effectively set to the identity matrix ( Bo =1) for minimizing

tr(Z); where

M 2

1HZ) = - A2Tk_2 -

Setting to 0 the derivatives of tr(Z) with respect to A3,A2,A] respectively shows that the minimum must satisfy

the following simultaneous equations.

where

R02 - A3R32 - A2R22 - A,Rl2 -VR2=0

Ro, - A3R31 - A2R2] - AXRU - D / J , = 0

Ro - A3R3 ~A2R2- AXRX - (M - 3)D = 0

M M I

9

eliminating D gives the following 3 equations
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- 4*33*-4*23*-

~ AiRu - A2R2l' -

Solving the above equations gives the following estimates.

=0

= 0

3 ~ "̂ 02 (-̂ 32 ) -^33l[^23 ~-^2l(-^3l
4='

A — •

•>' \ - I

3 3 ~
{R^-^(R;2r

]R'5][R']3-

1 \-l
1 (-̂ 31 ) "̂ 33 H-fes ~ ^22 (-̂ 32 )

If required for the standard form of the AR process, the mean T is estimated from

It remains to estimate Bo which is obtained as the square root of C = B0B0 . Rewriting (E.3) as

L = -hr{ZC'x) + ̂ (M - 3) log(det C'1) ,

s *\ /^ ŝ. .

and fixing v42 = A2,At = AX,A1> = Ai,D = D, and extremising with respect to C~ (using the identity

M)im = (det M) M"1 ) gives

1
r-3

E.2 Second Order System AR Process

Similar to the third order process, a second order AR process is given by the following equation,

-T = A2 (T(tk_2 ) - _,) - T) + Bo

Where the current state estimate depends only on the past 2 time steps.

259



T(t. .)" _ "T"

T

ro r
_a2 a,

, 5 —
~o~
A .

By a similar procedure given above, the state transition matrix A is given by,

*('*) =

where for a one dimensional state, the motion parameters are given by,

a, = 2 exp(-/?r) cos(2nfz),

a2 = exp(-2/?r)

For a higher dimensional shape space the parameters are simply,

A2 =a2I,Al =axI,B0=ccb0
r-l/2

A constant velocity model is obtained by setting f = (5 = 0 , which gives,

A2 =-I,A] =21

where the size of the identity matrix (7) depends on the size of the state (example: 6 for an affine shape space).

E.2.1 Learning Motion Parameters for a Second Order Model

Using similar procedure as for the third order model, the second order model motion parameters can be shown to

be as follows [24],

The mean of the training set and C = BB are estimated as follows,

f = (/-^2-i1)-
ID

- 2
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E.3 First Order AR Process

First order AR process is given by the following equation,

Where the current state estimate depends only on the past one time step.

By a similar procedure given above, the state transition matrix A is given by,

= [bQ]

where for a one dimensional state, the motion parameters are given by,

fl, = exp( - / ? r )

For a higher dimensional shape space the parameters are simply (same process as for the other models),

A] =0,1

A constant position model is obtained by setting J3 = 0 , which gives,

E.3.1 Learning Motion Parameters for a First Order Model

Using similar procedure as before, it can be shown that,

The mean of the training set and C = BB are estimated as follows,

f = (/-
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Appendix F

Two Contour Trackers

We give details of the Condensation and the Baumberg's tracker in this section. A brief introduction was only

given in Chapter 8 due to space constraints.

F.I Condensation Algorithm

Given that the tracking process at each time step is a self contained iteration of factored sampling [24, 102, 104],

the output of an iteration will be a weighted, time stamped sample set, denoted {s|n),n = 1,...,JV} with weights

7if , representing approximately the conditional state density p(\t \Z,) at time /, where X , , Z , represent the

curve state at time step t, and measurement history up to time step / respectively.

The sample set is obtained by using a prior density, and the effective prior for time step / is p(\t | Z,_,). It is

derived from the sample set representation {(s\"l,7rj^),n = 1,....N} of p(x,_, |Z,_,), the output from the

previous time step, to which prediction must then be applied (see Figs. 8.1 & 8.2 in chapter 8, and [104] for

details).

The iterative process begins from the output from time-step /-/, which is the weighted sample set

{(s\li,ftj!!.\),n = lj—>-W} • Appropriate initial values for sample set and weights are chosen before the iteration

commences. The aim is to maintain, at successive time-steps, sample sets of fixed size N, so that the algorithm

can be guaranteed to run within a given computational resource. The first operation therefore is to sample (with

replacement) N times from the set (s)",} , choosing a given element with probability ;r,_, . Some elements,

especially those with high weights, may be chosen several times, leading to identical copies of elements in the

new set. Others with relatively low weights may not be chosen at all.

Each element chosen from the new set is now subject to the predictive steps. First, an element undergoes drift

and, since this is deterministic, identical elements in the new set undergo the same drift. The second predictive

step, diffusion, is random and identical elements now split because each undergoes its own independent

Brownian motion step. At this stage, the sample set {s; } for the new time step has been generated but, as yet,

without its weights; it is approximately a fair random sample from the effective prior density p(x, | Z,_,) for

time step /. Finally, the observation step from factored sampling is applied, generating weights from the
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observation density p{\t | Z,) to obtain the sample set representation {(s*"),;rl
("))} of state density for time /.

See [24] for more details.

Figure (8.1) in chapter 8 gives a synopsis of the algorithm. Note the use of the cumulative weights {c\!}}

(constructed in step 3) to achieve efficient sampling in step 1. After any time step, it is possible to report on the

current state, for example by evaluating some moment of the state density as shown.

One ofihe striking properties of the Condensation algorithm is its simplicity, compared with the Kalman filter,

despite its generality. Largely this is due to the absence of the Riccati equation, which appears in the Kalman

filter for the propagation of covariance [5, 6]. The Riccati equation is relatively complex computationally but is

not required in the Condensation algorithm, which instead deals with variability by sampling, involving the

repeated computation of a relatively simple propagation formula.

F.I.I Curve Motion

Contours are represented by using second order B-splines. A typical curve r(s,t) is given by

for 0<s<L (F.I)

where the vector B(s) is the vector containing the quadratic B-spline basis functions, Q ^ , Q^. are vectors of B-

spline control point coordinates, and L is the number of spans.

The spline space is transformed into shape space using the following expression,

£)--•(£)• (F.2)

where W is the shape matrix and T is the shape space. See [24, 25, 102] for details. Q ^ , Qy are the x and y

control points of a template shape. In this chapter we refer T as the 'shape space' including rigid and non rigid

components. The space which includes only non-rigid (deformable) components is referred to as 'non-rigid

shape space' or non-rigid (deformable) shape parameters. The space which includes only the rigid components

is referred to as 'rigid shape space' or rigid shape parameters.

F.1.2 Dynamic Model

The dynamic model employed is a second order process, represented as
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x, - x = ,_, - x) + Bwt (F.3)

where W; are independent vectors of independent standard normal variables, the state-vector is given by,

and X is the mean value of the state, and A, B are matrices representing the deterministic and stochastic

components of the dynamic model respectively, and ideally they are learned from test sequences [25]. See

Appendix E for learning process.

F.1.3 Observation model

In one dimension, observations reduce to a set of scalar positions {z = (z],z2,...,zM)} and the observation

density has the form p(z | x) where x is one-dimensional position. This can be given by,

/?(z | x) oc 1 +

naa 2a'
(F.4)

where (X — qX and vm = zm — x. Peaks in the density function corresponds to measured features and the state

density will tend to be reinforced in the Condensation algorithm at such points.

In a two dimensional image (as in contour tracking), the set of observations z is, in principle, the entire set of

features visible in the image. However, an important aspect of earlier systems in achieving real time

performance ([127], [84], [11], [23]) has been the restriction of measurement to a sparse set of lines normal to

the tracked curve. The two apparently conflicting ideas can be resolved as follows.

The observation density p(z | x ) in two dimensions describes the distribution of a (linearly) parameterized

image curve z{s), given a hypothetical shape in the form of a curve r(s) 0 < s < 1, (with L spans) represented by

a shape parameter x. The two dimensional density be derived as an extension of the one dimensional case. It is

assumed that a mapping g(s) is known that associates each point z(s) on the image curve with a point r(g(s)) on

the shape. In practice this mapping is set up by tracing normals from the curve r. Next, the one-dimensional

density (F.4) is approximated in a more amenable form that neglects the possibility of more than one feature

lying inside the search interval:

p(z\x)ccQxp-—jf(v];^) where /(v;/i) = min(v2,/r), (F.5)
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/ / = V2crlog(l /V2;rarcr) is a spatial scale constant, and \\ is the vm (for each measurement on the curve)

with smallest magnitude, representing the feature lying closest to the hypothesized position x. A natural

extension to two dimension is then,

p(z I x) = Z exp- — f /(z, (s) - r(s); n)ds
2ri

in which r is a variance constant and Z, ( j ) is the closest associated feature to r(s):

z,Cs) = z(.y') where 5f=arg{ min \r{s)-z(s')\ }

(F.6)

(F.7)

The assumption is made that the variation of Z with x is slow compared with the other term in (F.6) so that Z can

be treated as constant [102].

The observation density (F.6) can be computed via a discrete approximation, the simplest being:

M

p(z | x) oc exp< -
I ;

where sm =ml M. This is simply the product of one-dimensional densities (F.4) with <J =

independently along M curve normals.

(F.8)

rM , evaluated

Despite the attractiveness of the Condensation algorithm, there are factors that limit the performance of this

algorithm. The reader is referred to [115, 148] for details.

F.2 Baumberg's aiid Hogg's Tracker

F.2.1 Spline Representation

The tracking framework for Baumberg's tracker was given in Fig. 8.3 in chapter 8. The contour is represented

by a cubic B-spline with JV control points (equally spaced around the contour) as follows:

Q = Pb + Q (F.9)

where P is an 2N x m matrix of eigenvectors (see chapter 7 for details) and Q is the mean contour shape of a

training sequence. The non-rigid shape parameters are given by b = (b0,..., bm_x) .

A contour in the model frame is projected into the image frame by rotation, scaling and translation using the

expression
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where the 2 x 2 alignment matrix O is given by,

~a ff cos 9 -fsin9s\
fcosO)

where f, 9 are the scaling and rotation factor in relation to the mean shape respectively.

The contour is given by (in spline space, represented by control points)

Q -

(F.10)

(F.ll)

(F.12)

which represents the 2D control points of the B spline contour in the image frame. Hence the state space

consists of m non-rigid shape parameters bn the origin of the object (ox,o) and the alignment parameters

O-X,dy incorporating rotation and scaling. The state parameters are related to the spline vector Q by

(F.13)

where

= (ox,oy,...,ox,oy)
T

and D =

A'/JIBM I 0 O

D is a 2N x 2N rotation and scaline matrix.

F.2.2 Stochastic Model

F.2.2.1 Non-Rigid Shape Parameters

The shape part of the state vector is modeled as a simple discrete stochastic process as follows:

(F.14)

where w ; ~ N(0, fd,) and 6, models the /'th deformable (non-rigid) parameter value at frame k and the noise

term w, is a zero mean, normally distributed random variable with variance jdi.
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F.2.2.2 Origin (Object Centroid) Model

The origin of the object is assumed to follow the dynamic equation (a simple constant velocity model)

d[o
dtU.

)rVrr
0

(F.15)

where v r — A^(0, qv) and wx ~ 7^(0, qw ) . A corresponding model is used for o

F.2.2.3 Alignment Parameters

The alignment parameters (scaling and rotation) follow the following motion model.

w
w°y.

where N(0, qa ) .

(F.16)

F.2.3 Filter Update Process

F.2.3.1 Non-Rigid (Deformable) Shape Filter Covariance Update

The following recursive equation is used to update the covariance matrix for the non-rigid shape filter. See [10]

for details.

P? (+) = P? H + [DPf [rJ"1 ]"• [DP] (F.17)

where J is the metric matrix (discussed in chapter 7). Using appropriate assumptions (refer [10]), the above

equation reduces to,

(F.I 8)

I
where/is the scaling factor and r is the measurement variance constant.

Assuming P[ (—), Po are diagonal, the system can be decoupled into m independent 1D Kalman filters. The

covariance update equation for the /'th filter n JW becomes
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(F.I 9)

where /;."' = f2r~], and cr,. = [Pk ],.,. is simply the variance of the current estimate for bt.

The corresponding shape parameter update equation is given by,

(F.20)

T T A

where <#?(. = [P D Q],. — Z>, (—) is the observed change in the /"th non-rigid shape parameter.

F.2.3.2 Updating the Origin

The A: and y component of the origin are filtered independently. The measurement model for the x component of

the origin, assuming all other parameters are fixed at their current estimates, is given by

where the noise term vk ~ N(0, Rk ) , and Rk is the contour measurement noise matrix.

Similarly for the y component,

(F-22)

The measurements p ' are calculated from the observed contour points p (these are obtained by casting normals

to the estimated contour and then selecting the best point available, or alternatively obtained by some other

suitable process) using

p 1 - p - D ( f l , , f l , ) ( ? ( / * + Q ) (F.23)

where G is a 2n x 2N sparse matrix mapping the control points to regularly spaced points («) on the curve [11].

The update equations for the origin follow a standard Kalman Filter.
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F.2.3.3 Updating the Alignment

If the origin and the shape parameters are fixed at their current estimates, the measurement model for the

alignment parameters is given by,

(F.24)

where H is the 2nx2 measurement matrix defined by

#2/.O H2i,\ 1 ( S

-"2 /+

2i

S2i+\ S2i

\, where s = G(Pb

The estimates ox,a and the 2 x 2 covariance matrix are updated with the corresponding Kalman filter

equations. The alignment parameters are not assumed to be independent although for simplicity the system noise

is assumed isotropic.

F.2.3.4 Updating Non-Rigid Shape Parameters

Each shape parameter is filtered independently for computational convenience [11].

Writing Ap = p — p , the measurement model for the /'th non-rigid shape filter is given by

(F.25)

where the vector h is an 2n x J measurement matrix given by

The covariance update equation for each filter is given by equation (F.19), where the measurement variance for

the /-th shape parameter, r{, is now defined by,

r~] =(h(i))TR;lhin (F.26)

The state update equation for each filter is given by

\T n-1 (F.27)

where Rk is the contour measurement noise matrix [60]. Further details of the tracker can be found in [10].

269



Appendix G

&
g

'a.i

I

Continued on the next page.
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Figure G.I: Some frames of image sequences considered for the project: (a) 'ndoor cone (8 frames), (b) UMASS
Lab (11 frames), (c) Coke (20 frames), (d) Outdoor cone (20 frames), and (e) PUMA (30 frames), (j) Road (50
frames), (g) Rubic (20 frames), (h) Toy car (9 frames), (i) Hand (75 frames), and (j) Walking man (50 frames)
sequences.
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