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Errata

Page xv — Paragraph 2, lines 3 & 4: ‘2’ should be replaced by ‘two’.

Page 1 — Paragraph 2, line 4: ‘changing’ should be replaced by ‘change’.

Page 3 — Paragraph 3, line 5: ‘within the computer ...” should be replaced by ‘within computer vision ..."

Page 4 — Paragraph 5, line 4::*chapter 3 is used’ should be replaced by ‘chapter 3 used’.

Page 7 — Section 1.4.2, references (3) and (4): the journal name should be taken cut and ‘in preparation’

included within brackets.

Page 11 — Paragraph 3, line 2: ‘2’ should be replaced by ‘two’,

Page 35 — Section 3.2.1, line 3: *produce’ should be replaced by ‘product’.

Page 68 — Paragraph 5, line 2 & 3: “?” should be removed.

Page 73 — Figure caption, line 5: ‘theMabhalanobis....” should be replaced by ‘the Mahalanobls....‘.

Page 74 — Section 4.4, line 3; ‘approach is that, the ...’ should be replaced by ‘approach is that the ...".

Page 75 — Paragraph 2, line 2: ‘Under modeling, occurs...” should be replaced by ‘Under medeling
occurs...’.

Page 77 — Paragraph 1, lines 2: ‘the residual v; and estimated...’ be replaccd by ‘the residual v, and
estimated...’. Line 3: S; are . should be replaced by ‘S;, are ...". Line 3: ‘seeAppendix ...
should be replaced by ‘see Appendlx

Page 78 — Paragraph 2, line 1: ‘residuals v;, are ...’ should be replaced by ‘residuals, v;, are ...".

Page 79 — Section 4.5.2, line 1: ‘is that, their ...’ should be replaced by ‘is that their ...".

Page 103 — Section 4.10.1, paragraph 1, line 3: ‘can’t’ should be replaced by “can not’.

Page 104 — Paragraph 4, line 3: “S has ...” should be replaced by ‘S, has ...’. Line 6: ‘2’ should be replaced

by ‘two’,

Page 105 — Paragraph 3, line 2: ‘proposed my Mayback ...’ should be replaced by ‘proposed by Maybeck

Page 108 — Section 4.11, paragraph 2, line 3: *condition’ should be replaced by ‘conditions’; line 4: ‘or even
converge to ..." should be replaced by ‘or even result in convergence to ...".
Page 140 — Paragraph 1, line 5: ‘thus indicating to the ...’ should be replaced by ‘thus indicating the...”.
Page 149 — Paragraph 2, line 4: ‘o ..." should be replaced by ‘The value of 5 ...".
Page 153 — Paragraph 1, line 1: ‘4’ should be replaced by ‘four’ (in both instances), ‘gives’ shouid be
replaced by ‘give’; line 8: ‘2/3’s’ replaced by ‘2/3°,
Page 158 - Paragraph 3, line 6: ‘the 4 cones are ...° should be replaced by ‘the four cones is ...". Section
6.8, line 4: “Then by ..." should be replaced by “Then, by ...".
Page 175 — Section 7.8.1, paragraph 2, line 3. ‘Bake’ should be replaced by ‘Blake’.
Page 204 — Paragraph 2, line 1: ‘give extended ...” should be replaced by ‘give an extended ...’; line 2:
‘CONDESATION?’ should be replaced by ‘CONDENSATION’.
Page 206 -~ Paragraph 2, line 1: “CONDESATION’ should be replaced by ‘CONDENSATION’.
Page 210 — Section 8.4.3, paragraph 1, line 5: *All’ should be repiaced by ‘all’; line 9: ‘Where’ replaced by
‘where’.
Page 211 — Paragraph 1, line 1: ‘Where’ should be replaced by ‘Here’; line 3: ‘m’ should be replaced by
*The value m’.
Page 215 — Paragraph 1, line 5: “CONDESATION’ should be replaced by ‘CONDENSATION’. Section
8.5.3, line I: ‘condition’ should be replaced by ‘conditions’.
Page 216 — Paragraph 2, line 2: “test’ should be replaced by ‘tests’.
Page 217 - Paragraph 1, line 1: *CONSENSATION’ should be replaced by ‘CONDENSATION’.
Page 218 — Paragraph 3, line 2: ‘CONDENATION" should be replaced by ‘CONDENSATION’.
Page 272 — References {2), [4] and [18]): The abbreviation ‘IJCV should read ‘International Journal of
Computer Vision’.
Page 278 — References [121] and [123]: The abbreviation ‘IEEE PAMI should read ‘IEEE Transaction on
Pattern Analysis and Machine Intelligence’.
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Summary

This thesis focuses on developing efficient point feature and contour tracking algorithms to track
objects. A particular emphasis is on the incorporation of multiple motion models within the tracking
framework. The algoritlims presented are capable of automatically switching motion models in order
to track an object of interest within a sequence of images. The thesis qualitatively demonstrates the
promising performance of the trackers developed on a variety of image sequences. We also provide
empirical and theoretical techniques to quantitatively assess and support the performance of the

tracking algorithms.

The first part of the project deals with formulating an efficient ‘point feature’ tracking algorithm. We
initially carry out an empirical study on the selection of feature point detectors for point feature
tracking applications. Four well-known corner detectors are considered and their performance is

assessed against corner propesties such as ‘corner localization’ and ‘corner stability’.

We then select two corner detectors: those that were considered most suitable for point feature
tracking based upon the earlier work in the thesis. The comer detectors were employed as part of a
model switching point feature tracking algorithm that we proposed. The algorithm combines the
Multiple Hypothesis Tracking technique with an Interacting Multiple Modei filtering framework. The
resulting algorithm {named as MHT-IMM algorithm) is shown to provide promising results:
including the ability to track point (corner) featufes that move with variable motion. As a further
study, we address the question of how to assess the performance of tracking algorithms. We attempt
to formulate closed-formed solutions and empirical evaluation methods for predicting a feature
tracker’s performance when employing different motion models. The evaluation is considered under

varied levels of clutter and noise.

The second part of the thesis focuses on formulating an efficient ‘comtour tracking’ algorithm.
Initially an atternpt is made to extend the MHT based algorithm for contour tracking of rigid objects.
The MHT technique is applied in 2 stages. First, it is applied to group segmerits of edges that belong
to the same object (object identification stage), and this stage is followed by temporal tracking of ‘key
points’ from the object of interest using the MHT-IMM tracker (object tracking stage). This tracker

Xiv




presents several limitations and cannot be easily extended to track complex deformable objects. To
overcome the limitations of this tracker, a cubic B-spline based tracking algorithm is formulated to
track deformable object contours. Modified versions of Blake et al. and Hogg et al.’s trackers are
combined and then coupled with the IMM algorithm to track deformable objects. The new tracker is
capable of automatically switching motion models to track object contours that move with variable
motion. The resulting algorithm (named the CONT-IMM tracker) is shown to provide impressive

results.

Finally, the CONT-IMM algorithm’s performance is quantitatively assessed against the Condensation
algorithm of Blake and lsard and the Pedestrian tracker of Hogg and Baumberg. The results have
shown that the CONT-IMM tracker is comparable to the other 2 trackers in terms of the quality of

results, and in some cases outperforms the other 2 algorithms.
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Chapter 1

Introduction

The study of visual tracking has become a vital area of research within the computer vision and image
processing community within the last decade. One reason for the increased attention towards visual
motion study is because of the falling cost of computational power and the availability of sufficient
storage to process large amounts of image data (image sequences). Another reason is the development of

powerful algorithms that can be implemented in real or near-real time on relatively modest computers.

For a human, brain, identifying and tracking an object (static or dynamic) over a period of time is a
relatively simple task. For a machine vision system, such a seemingly simple problem is a highly
challenging task. The basic problem that needs solving in visual tracking is the correspondence of objects
over a number of image frames (the object can possibly changing shape and position over time). A
sequence of images collected at or near video rate typically does not change radically from frame to
frame, and this redundancy of information over multiple images can be extremely helpful in
disambiguating the visual input, whether to track individual objects or to perform a more general motion

segmentation.

1.1 Visual Tracking

A track is defined in terms of the clustering (association) of a set of measurements that originate with the

same target, and of the estimation of that target’s state trajectory:

“4 track is a state trajectory estimated from a set of measurements that have been associated with the

same target” — Bar-Shalom and Fortmann [6].

In visual tracking the targets are objects in the scene, and the measurements are of the 2D image positions
corresponding to 3D points on those objects. Visual tracking solves for the correspondence between

measurements made in the images of a motion sequence. The track is a description of the relative motion
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of the object over time, and this allows image features which originate from the same physical point on

the object to be associated.

The importance of tracking, as a visual competence, is illustrated by many potential applications
(described in chapter 2). In most caées, by solving the correspondence problem over a number of frames.
Tracking also allows high level abstraction from visual data, by recovering the trajectory of an object over
time. More recently computer vision researchers have focused their attention in areas such as the
monitoring and interpretation of scenes (including reconstruction of scenes), creating artificial
environments, learning human-computer interaction, and learning behavioral patterns of objects within a
scene using visual tracking techniques. Some details of these applications are discussed in the next

chapter.

A trivial form of visual tracking is based on the assumption that the target moves only a small distance
between each frame of the image sequence. This assumption results in a simple scheme whereby in each
image a search is made in the vicinity of the target’s location in the previous image. The small search

region means that this technique is fast, however it will fail if the target velocity becomes too large.

For larger target velocities, some form of prediction is required. This is achieved by introducing a model
of the dynamics of the target. The tracking task becomes that of finding the model which best fits the
target’s trajectory. For a full treatment of tracking, the noise properties of the measurements must also be
taken into account. High confidenc: measurements must be given greater weight than low confidence,
noisy measurements. But it is not enough to blindly include all measurements in the estimation of the
feature trajectory. Where measurements have sore discriminating attributes, such as orientation in the
case of curvature segments, these may be used to decide which measurements originate from which
target. This is known as data association, For the single target case, data association is simply deciding
when to reject observations that are unlikely to originate from the target. For a multiple target case, the
problem becomes somewhat complicated, and methods such as the multiple hypothesis approach have to

be considered to solve the data association problem for each of the targets considered.
1.2 Motivation for this Research

Despite the vast wealth of visual tracking material that is available in the literature, there is a lack of
~ knowledge concerning the performances of many tracking algorithms. Most of the algorithms published

have been reported to be successful for a narrow band of appfications. How those algorithms perform
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under different environments and how effective they are for a variety of different applications remains an
open question. The literature survey carried out at the beginning of the project revealed that very little
theoretical and empirical work has been done in the area of performance analysis and the assessment of

visual tracking algorithms,

Another area that is not sufficiently addressed in the literature is that of tracking objects that move with
multiple motions. A fundamental assumption of most tracking algorithms is that the object moves with a
constant motion {eg: constant velocity). Such an assumption may be computationally efficient, but cannot
cope with tracking objects that move with multiple motions. An example test case is to track a moving
pedestrian who might be walking, running or even standing still. In this example, a single model based

tracker (such as a single model Kalman filter) will invariably fail to track the person completely.

While visual tracking is a relatively new area of research for tlic computer vision community, the target
tracking researchers (mainly contro! and signal processing scientists) have studied tracking in general to a
large extent. Early contributions in tracking date back as far as the 1950°s and 60’s. Many powerful
tracking algorithms developed in particular within the last 3 decades have not received sufficient attention
within the computer vision researchers. This ts mainly because of the lack of computational power to run
vision algorithms in real or near real time. Sinct current day machines are able to process large amount of
data in fast times and can store large amounts of data, a review of some of these algorithm for vision

related applications seemed worthwhile.

This thesis address the issues mentioned above. We study visual tracking in two parts. The first part deals
with the study of tracking a single pixel (point features or corners) through an image sequence, while the
second part deals with temporal tracking of outlines of objects (contours of rigid and deformable objects).
Initially we attempt to formulate a point-feature tracking algorithm that is capable of switching motion
models according to the object’s motion (2 multiple motion model tracker). In the process we also
formulate performance prediction techniques thai can be applied to a tracker that employs different
motion models, We assess the tracker’s performance under varied clutter and noise, and where possible,
we have also assessed the tracker’s performance against other established point feature trackers. The latter
part of the thesis tries to address tracking contours of objects that move with variable motion (multiple
motion), Again, a motion-model switching tracker is introduced which can adapt to multiple motions of
deformable objects. Finally, we provide empirical evaluation methods to quantitatively assess the
" performance of a contour tracker. We have also compared the performance of our tracker with other

established contour trackers.




In focuss'in g on the model switching aspect of tracking algorithms (which is inadequately addressed in the
current literature), we introduce recursive tracking algorithims (previously, these were mainly reported in
the control literature) that can perform model switching operation very efficiently. We combine some of
these algorithms with computer vision techniques to formulate robust visual trackers. The visual tracking
algorithms developed in this thesis have been applied on artificial and real image sequences. The trackers

have been demonstrated to perform well with promising results.

1.3 Thesis Overview

Chapter 1 — Introduction — This chapter gives a general introduction to visual tracking and the
motivation for this research. It also provides the thesis overview with the contributions made towards

visual tracking. The chapter concludes by giving a list of published papers that arose from this research.

Chapter 2 - Visual Tracking: A Survey — Provides a literature survey on existing visual tracking
techniques. We provide brief description of well known research papers in the area of optical flow
tracking, point feature tracking, region tracking, curve tracking, model based tracking, and tracking
algorithms that are employed in computer vision research. Techniques that closely match our work are

elaborated more in the relevant chapters of this thesis.

Chapter 3 — Assessing the Performance of Coraner Detectors for Point Feature Tracking — The
chapter provides performance assessxﬁent methods for the suitability of corner extractors for tracking
point (corner) features in long image sequences. We propose empirical evaluation methods based on
simple statistical performance test to assess corner properties such ‘comer localization’ and ‘corner
stability” which are crucial for point feature tracking [179]. The assessment tests are conducted using

static image sequences {(without moving objects) and assessed at varied noise levels.

Chapter 4 ~ Point Feature Tracking with Automatic Motion Model Switching — In this chapter we
propose a feature tracker that can track features moving with multiple motions. The corner features are
extracted using detectors that were deemed suitable for tracking in long gequences (results from chapter 3
is used). The point feature tracker that we propose is based on the combination of the Multiple Hypothesis
_ Tracking (MHT) algorithm {58, 152] and the Interacting Muitiple Model (IMM) algorithm [5, 28], hence
the tracker is named the MHT-IMM algorithm. We demonstrate the model switching ability of the tracker
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by employing image sequences which contain objects that move with variable motion. Qualitative and

quantitative results are presented to support the promising performance of the tracker [180, 181, 185].

Chapter 5 — Performance Prediction Analysis of a Point Feature Tracker based on Different
Motion Models — The main focus of this chapter is an attempt to formulate theoretical closed form
solutions for predicting the performance of a feature point tracker under clutter., Formulations are
developed for 3 motion models (a constant position, a constant velocity and a constant acceleration
inodel) for predicting the correct data association at the “next time-step’, assuming that up to the ‘current
time-step’ data association hés been correct. We also make an attempt to provide closed form solutions
for a tracker when recovering from a false match and predicting a correct match at the *next time-step’
(based on each of the 3 motion models in turn). Theoretical and empirical formulations are evaluated
against Monte-Carlo simulations using synthetic and real image sequences. We show that the theoretical
performance predictions are a credible representation for experimental performance [183, 186]. The
performance prediction of a tracker is measured using 2 quantities: The ‘track-purity’ and ‘track-life’.
Finally the MHT-IMM tracker is assessed against an established tracker (the KLT tracker) under varied

noise levels to evaluate the robustress of the tracker.

Chapter 6 ~ Extension of a Point Feature Tracker for Rigid Object Tracking — The primary
objective of this chapter is to present a rigid object tracker based on the combination of a point feature
tracking algorithm [180] and a contour segmentation algorithm [57]. Both algorithms employed are based
on the MHT principle [58]. We have demonstrated the object tracker’s ability by tracking simple rigid
objects using real image sequences [182}. The primary contribution of this chapter is to apply the MHT

technique for object tracking (as opposed to tracking point features only).

Chapter 7 — Contour Tracking with Automatic Motion Model Switching — This chapter presents a
deformable contour-tracking algorithm for objects that move with multiple motion. The roots of the
tracker are based on Blake et al.’s [25, 24] and Hogg et al.’s [11] tracking algorithms. A decomposed
shape space is tracked using the IMM algorithm (similar to that reported in Chapter 4) to achieve muitiple
mode} switching, The resulting tracking algorithm is named the CONT-IMM tracker. We have
demonstrated the ability of the tracker to track deformable objects (including those that move with

muitiple motions) employing a variety of image sequences with promising results [184].

" Chapter 8 — Performance Measures for Assessing Contour Trackers — In this chapter the performance
of the CONT-IMM tracker is assessed against the Condensation algorithm of Blake and Isard {104] and




the Pedestrian tracker of Baumberg and Hogg {11, 10]. The chapter also provides empirical performance
measures 0 quantitatively assess the output of the trackers. We have shown that CONT-IMM

outperforms the other two trackers in terms of quality of results achieved for the experiments carried out.

Chapter 9 ~ Conclusion — Finally this chapter provides a genera! conclusion for the research undertaken.
We provide a general discussion on the merits and demerits of the algorithms developed, and where
possible propose methods for improvement. We also discuss possible avenues for future research

directions and possible approaches that can be taken to accomplish some of the tasks.

1.4 Publications Arising from this Project

The following papers have been published or are in the process of being reviewed for publication.

14.1 Natiopal and International Conferences
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(2) P. Tissainayagam and D. Suter, “Visual Tracking and Motion Determination using the IMM
Algorithm”, International Conference on Pattern Recognition (ICPR '98), pp. 289-291, Brisbane,
Australia. Aug. 1998.

(3) P. Tissainayagam and D. Suter, “Visual Feature Tracking with Automatic Motion Model Switching”,
First International Workshop on Computer Vision, Pattern Recognition and Image Processing
(CVPRIP '98), pp. 322-325, Durham, NC, USA. Oct. 1998.

(4) P. Tissainayagam and D. Suter, “Object Tracking in Image Sequences using the Multipie Hypothesis
Approach™, First International Workshop on Computer Vision, Pattern Recognition and Image
Processing (CVPRIP '98), pp. 473-475, Durham, NC, USA. Oct. 1998,

(5 P Tissainayagam and D. Suter, “Visval Tracking with Multiple Motion Models”, IAPR Machine
Vision Applications (MVA ‘98), pp. 414-417, Chiba, Japan. Nov. 1998.




(6) P.Tis-sainayagam and D. Suter, “Performance Prediction Analysis for Visual Tracking Algorithms®,
Irish Machine Vision and Image Processing Conference (IMVIP '99), pp.141-158, Dublin, Ireland.
Sept.1999.

(7) P.Tissainayagam and D. Suter, “Performance of Visual Tracking Algorithms”, Digital Image
Computing: Techniques and Application (DICTA '99), pp.206-211, Perth, Western Australia. Dec.
1999,

(8) P.Tissainayagam and D. Suter, “Contour Tracking in Image Sequences”, Digital Image Computing: -
Techniques and Application (DICTA '99), pp.110-115, Perth, Western Australia. Dec. 1999,

(9) P.Tissainayagam and D. Suter, “Tracking multiple object contours with automatic motion model
switching”, International Conference on Pattern Recognition (ICPR ‘2000), pp.1146-1149,
Barcelona, Spain. Sept. 2000.

1.4.2 Journal Publications

(1) P.Tissainayagam and D. Suter, “Visual Tracking with Automatic Motion Model Switching”,
International Journal of Pattern Recognition™, Elsevier Publications, Vol.(34), pp.641-660, 2001.

(2) P.Tissainayagam and D. Suter, "Performance Prediction Analysis of Linear Point Feature Trackers
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(1) P. Tissainayagam and D. Suter, “Performance Analysis of Corner Detectors for tracking Features in
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Engineering, Monash University, Clayton, Australia. 1527,

(2) P. Tissainayagam and D. Suter, “Motion Model Selection for Visual Feature Tracking”, Technical
Report MECSE-1997-4, Dept. of Electrical and Computer Systems Engineering, Monash University,
Clayton, Australia. 1997,

(3) P. Tissainayagam and D. Suter, “Variable Motion Determination and Tracking using the IMM
Algorithm”, Technical Report MECSE-1998-4, Dept. of Electrical and Computer Systems
Engineering, Monash University, Clayton, Australia. 1998.

(4) P. Tissainayagam and D. Suter, “Tracking Objects in Image Sequences”, Technical Report MECSE-
1998-3, Dept. of Electrical and Computer Systems Engineering, Monash University, Clayton,
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(5) P. Tissainayagam and D. Suter, “Performance analysis of Point-Feature Trackers”, Technical Report
MECSE-1998-6, Dept. of Electrical and Computer Systems Engineering, Monash University,
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(6) P. Tissainayagam and D. Suter, “Efficient Contour Tracking in Extended Image Sequences”,
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(7) P. Tissainayagam and D. Suter, “Performance Analysis of Contour Trackers”, Technical Report
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Chapter 2

Visual Tracking: A Literature Survey

2.1 Introduction

The literature on tracking tends to be split roughly into two broad categories - methods which track by
looking at flows in the image and methods which track by matching a model of the object being
tracked to part of the image. The flow based methods generally assume little or no prior knowledge of
the object being tracked, and tend to work by grouping together sets of small, low level image features
(single pixels, corners, etc., or even small regions) with consistent motion together. By following
these groupings over time they achieve tracking. Model-based methods hypothesize a model of either
the target's' shape, expected deformation, motion, intensity characteristics or other distinguishing
attributes. The tracking process is reduced to finding the parameters which make the model fit the
video tmage best (particularly of interest to us is tracking contours of rigid and deformable objects

that pertin to a model of interest).

2.2 Importance of Visual Tracking

Tracking has heen studied extensively in the computer vision literature, both because of its intrinsic
interest and because of the large number of applications. For example, tracking human movement for
security applications {11,154, 159, 76); tracking of human body organs such as the left-ventricle,
lungs etc. for medical diagnostics [1, 92, 94, 108]; tracking head and faces for people identification
[16, 122, 123, 195, 202]; tracking components in production line [51]; and tracking applications in
agriculture [155). Another area of tracking includes that of autonomous robots being able to follow
objects in their environment [153). One commonly studied special case of this concerns autonomous
guided vehicles for driving on roads [129], which must track the features of the road {66] and also
other moving vehicles [172, 173, 157, 72]. Static systems may also be used to track vehicles, either to
coliect traffic data from highway scenes [72, 117, 118] or to analyse complex environments such as
airports [3, 175, 69]. Tracking may also be used in robot arm applications to capture multiple views of
an object from a moving camera and thus compute trajectories for exploring free-space, or to select an

optimal grasp to pick up the object [27].




There is increasing interest in using computer vision for lip tracking to aid speech recognition [34,
114] and reliable hand tracking for a variety of applications [91] such as sign interpretation, Various
other systems have been proposed for both tracking [150, 15]; 25] and gesture recognition [30, 29,
20). Hand gestures are a special case of the developing field of “perception of action™ which attempts
to use tracking information to infer knowledge about a scene. This has roots in the tracking of people
[95, 10, 11, 13, 14, 20, 32, 83, 33] for surveillance applications, as well as creating artificial
environments [100, 101, 201] which respond to human actions, for example creating an interactive
playroom for children [101]. There is much current interest in learning to classify the output of such
trackers into behaviours, for example [30, 110, 29]. General techniques for tracking, not tied to any
particular application, include the use of optic-flow information, for example {96, 111, 37], rigid
three-dimensional models {84, 127] and contour outlines [113, 50, 51, 24]. Other successful tracking
methodologies which do not use an explicit object model include the Hausdorff-distance tracker [98],
and systems which track point features in an image stream and use geometrical rigid-body constraints
to group sets of features into clusters belonging to the same object [192, 193]. More details of some of

these techniques are given in the sections which follow.

We have infonnally classified our visual tracking survey into 5 main sections. They are: optical flow
tracking (general tracking of light flow without following any particular object of interest), point
feature tracking (tracking distinguished points from an object or a scene, such as corner points),
region tracking (tracking a region that contain objects of interest), curve/contour tracking (tracking the
silhouette of rigid and deformable objects), and model based tracking (tracking an object whose
characteristics are known prior to tracking). In the following sections we shall provide examples of

each of the tracking methods mentioned.

2.3 Optic Flow Tracking

Optic-ﬂow has long been used (Horn and Schunk [96], Black and Anandan {17], Juetal. [111]}as a
way both to estimate dense motion fields over the entire visible region of an image sequence
(e.g.Black and Anandan [17], Ju et al [111]), and to segment areas of consistent flow into discrete
objects {e.g. Black and Jepson [18], Weber and Malik [198]). In order to solve the optic-flow
constraint equation it is necessary to either apply regularisation, assuming change in motion is smooth
over an irage region, or parameterise the motion in an entire region using a low-dimensional model,
for example an affine model. Black et al. have developed a series of robust methods for determining
optic flow ([17], [109], [18], [111]). The “skin and bones” model Ju et al. [111] combines many of the
techniques in their earlier papers to determine a dense motion field as a tiling of the image. Each tile
may contain muitiple affine motions, and these motions are robustly regularised across adjoining tiles

to provide smooth motion information even in regions with little texture. Modern developments of
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correlation tracking employ similar techniques to parameterised optic-flow estimation. For example

the framework adopted by Hager and Toyoma [81] for correlation tracking of a rectanguiar image
patch undergoing affine deformations is closely related to parameterised optic-flow based methods;
where optic-flow methods estimate affine parameters of deformation between consecutive images, the
correlation tracker estimates parameters relative to an initial template image. A very efficient
algorithm is presented in [81] which transfers most of the computation to an off-line processing stage

and allows affine correlation tracking to proceed in real time.
Some weli-known papers in the literature are surveyed in the following paragraphs.

Most approaches for estimating optical flow assume that, within a finite image region, only a single
motion is present. This single motion assumption is violated in common situations involving
transparency, depth discontinuities, independently moving objects, shadows, and specular reflections.
To robustly estimate optical flow, the single motion assumption must be relaxed. Black and Anandan
[17] describe a framework based on robust estimation that addresses violations of the brightness
constancy and spatial smoothness assumptions caused by multiple motions. They show how the
robust estimation framework can be applied to standard formulations of the optical flow problem thus
reducing their sensitivity to violations of their underlying assumptions. The approach has been applied
to three standard techniques for recovering optical flow: area-based regression, correlation, and
regularization with motion discentinuities. This work focuses on the recovery of multiple parametric
motion models within a region as well as the recovery of piecewise-smooth flow fields and provides

examples with natural and synthetic image sequences.

Bab-Hadiashar and Suter [2] present a robust optical flow technique. The problem is formulated as a
set of over determined simultaneous linear equations. The authors introduce and study 2 new robust
optical flow methods. The first technique is based on using the Total Median of Squares to detect the
outliers. Then the inlier group is solved using the least squares technique. The second method
employs a new robust statistical method named the Least Median of Squares Orthogonal Distances to
identify the outliers and then uses total least squares to solve the optical flow problem. The
performances of the methods are studied on real and synthetic data. The authors indicate that the

results obtained outperform many of the other techniques published in the literature.

Weber and Malik [198) address the problem of segmenting images and then building three-
dimensional models of the objects in the image. They attempt to do this by using optic flow to provide
a dense displacement map for points in a scene (a mapping of the motion of individual points over
two or more frames). Clusters of points which share common fundamental matrices are grouped

together into individual objects. The inverse depth of these points is then recovered from their
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displacements and the fundamental matrix by using an affine camera approximation. This gives a 3D

surface map of the object.

Yacoob and Davis {202] provide an approach for learning and estimating temporal flow models from
image sequences. The temporal flow models are represented as a set of orthogonal temporal flow
bases that are learned using principal component analysis of instantaneous flow measurements.
Spatial constraints on the temporal flow are also developed for modelling the motion of regions in
rigid and coordinated motion. The performance of these models is demonstrated on several long

image sequences of rigid and articulated bodies of motion.

Black and Yacoob [20, 21] describe a system that explores the use of local parameterized models of
image motion for recovering and recognizing the non-rigid and articulated motion of human faces.
Parametric flow models (for example affine) are used for estimating motion in rigid scenes. They
observe that within local regions in space and time, such models not only accurately model non-rigid
facial motions but also provide a concise description of the motion in terms of a small number of
parameters. These parameters are intuitively related to the motion of facial features during facial
expressions and it is shown how expressions such as anger, happiness, surprise, fear, disgust, and
sadness can be recognized from the local parametric motions in the presence of significant head
motion. The motion tracking and expression recognition approach was reported to perform with high
accuracy in extensive laboratory experiments involving 40 subjects as well as in television and movie

sequences,

Black et. al. [18] also describe an approach named “Eigen Tracking” for tracking rigid and articulated
objects using a view-based representation. The approach builds on and extends work on eigenspace
representations, robust estimation techniques, and parameterized optical flow estimation. First, it is
noted that the least-squares image reconstruction of standard eigenspace techniques has a number of
problems and Black et. al. reformulate the reconstruction problem as one of robust estimation.
Second, a definition for a "subspace constancy assumption” is made that allows to exploit techniques
for parameterized optical flow estimation to solve for both, the view of an object and the affine
transformation between the eigenspace and the image. To account for large affine transformations
between the eigenspace and the image, Black et. al. define a multi-scale eigenspace representation and
a coarse-to-fine matching strategy. Finally, these techniques are used to track objects over long image
sequences in which the objects simultanecusly undergo both affine image motions and changes of
view. In particular this "EigenTracking" technique was used to track and recognize the gestures of a

moving hand.
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Jepson and Black [109] provide another approach to dealing with issues such as the treatment of out-

liers in component velocity measurements and the modelling of multiple motions within a patch
which “arise from occlusion boundaries or transparency. The algorithm is based on the use of a
probabilistic mixture model to explicitly represent multiple motions within a patch. The authors use a
simple extension of the EM algorithm to compute a maximum likelihood estimate for the various
motion parameters. The approach is reported to be computationally efficient and claims to provide

robust estimates of the optical flow values in the presence of out-liers and multiple motions.

Beauchemin and Barron [15] investigated the computation of optical flow in a survey they conducted.
Widely known methods for estimating optical flow are classified and examined by scrutinising the
hypothesis and assumptions they use. The survey concludes with a discussion of current research i
issues. In another paper, Barron et al. [4] also present a comprehensive performance analysis of 4

optical flow techniques. For a common set of real and synthetic image sequence, they report the

results of a number of regularly cited optic flow techniques, including instances of differential,
matching, energy-based, and phase-based methods. Their comparisons are primarily empirical and
concentrate on the accuracy, reliability, and density of velocity measurements. They show that

performance can differ significantly among the techniques they had considered.

2.4 Point Feature Tracking

Point features are distinctive image points corresponding to objective 3D scene elements that are in
most instances accurately locatable and recur in successive images, which makes them explicitly
trackable over time. The term “corners™ is used to refer to point features that are loci of two-

dimensional intensity change, i.e. ‘second-order features’. This includes points of occlusion (e.g. T, Y

and X junctions), structural discontinuities (e.g. L junctions) and various curvature maxima (e.g.
texture fiecks or surface markings). Corners impose more constraint on the motion parameters than
edges, therefore the full optic flow field is recoverable at corner locations [168). Comers are also
often more abundant than straight edges in the natural world making them ideal features to track in an
indoor and outdoor environment. To find further details on various comer detectors, the reader is
referred to [140, 134]. However, in this section we are interested in providing only a brief sur\}ey on

point feature tracking methods reported in the literature.

One of the earliest image registration technique was presented by Lucas and Kanade [128), that makes
use of the spatial intensity gradient of the images to find a good match using a type of Newton-
Ralphson iteration. The technique is fast, as it examines far fewer potential matches between the

images than other existing techniques. Furthermore, this registration technique can be generalised to



handle rotation, scating and shearing. The authors also showed how the technique could be adapted

for use in a stereo vision system.

No feature-based vision system can work ualess good features can be identified and tracked from
frame to frame. Although the problem of tracking itself is addressed to a large extent, selecting
features that can be tracked well and correspond to physical points in the world is stilt hard. A feature
selection criterion was presented by Shi and Tomasi in [171], that is optimal by construction because
it is based on how the tracker works. They also present a feature monitoring method that can detect
occlusions, dis-occlusions, and features that do not correspond to points in the world. The methods
provided are based on a new tracking algorithm that extends previous Newton-Raphson style search
methods to work under affine image transformations. A further improvement of this algorithm was
proposed by Tommasini et al. [191] which is reported to improve the quality of the results over Shi

and Tomast’s method.

Broida and Chellappa [36] proposed a method for estimating the kinematics and structure of a rigid
object from a sequence of monocular images. The problem they consider involves the use of a
sequence of noisy monocular images of a three-dimensional moving object to estimate both its
structure and kinematics. The object is assumed to be rigid, and its motion is assumed to be smooth. A
set of object match points is assumed to be available, consisting of fixed features on the object, the
image plane coordinates of which have been extracted from successive images in the sequence.
Structure is defined as the 3-D positions of these object feature points, relative to each other.

Rotational motion occurs about the origin of an object-centered coordinate system, while translational

motion is that of the origin of this coordinate system. Impressive results using real imagery is

presented. Other noteworthy contributions.by Chellappa et al. in the area of point feature tracking can
be found in [38, 203, 207].

Kang, Szeliski, and Shum [112] present a feature tracker for long image sequences based on
simultaneously eéti mating the motions and deformations of a collection of adjacent image patches. By
sharing common corner nodes, the patches achieve greater stability than independent patch trackers.
Modelling full bilinear deformations enables tracking in sequences that have large non-translational
motions and/or foreshortening effects. They demonstrate the superiority of their results with respect to
previous algorithms, One attraction of the system is that the feature detection and tracking procedures

complement each other, thus providing an efficient tracking algorithm,
Gennery [75) describe a method for tracking 2 known 3D object as it moves with 6 degrees of
freedom. The method uses the predicted position of known features on the object to find the features

in images from one or more cameras, then the system measures the position of the features in the
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images, and uses these measurements to update the estimates of position, orientation, linear velocity,
and angular velocity of the object mcdel. The features usually used are brightness edges that
correspond to markings or the edges of solid objects, although point features can also be used. The
solution for object position and orientation is a weighted least squares adjustment that includes
filtering over time, which reduces the effects of errors, allows extrapolation over times of missing
data, and allows the use of stereo information from multiple camera images that are not coincident in
time. The filtering action is derived so as to be optimum if the acceleration is random. The filtering is
equivalent to a Kalman filter, but for efficiency it is formulated differently in order to take advantage
of the dimensionality of the observations and the state vector which occur in this problem. The
method can track accurately with arbitrarily large velocities, as long as the angular acceleration is

small. Results are presented showing the successful tracking of partially obscured objects with ciutter.

Chetverikov and Verestoy [44] present a point feature tracking algorithm that was designed to
efficiently track and resolve features that temporally disappear and appear from the field of view.
Correspondences between moving points are established in a competitive linking process that
develops as the trajectory grows. Appearing and disappearing points are treated in a natural way as the
points that do not link. The algorithm also addresses the issue of handling incomplete trajectories,
especially when the number of points and their speeds are large, and trajectory ambiguities are

frequent,

Sethi and Jain {167] formulate the point feature correspondence (between frames) problem as an
optimisation problem and propose an iterative algorithm to find trajectories of points in a monocular
image sequence. A modified form of this algorithm is also studied to handle occlusion. Resuits have

been reported on'a variety of scenes.

A way to recover a sparse image flow field, which doesn't rely on the motion constraint assumptions
is to track the motion of small distinct image features from frame to frame. One such image feature
often used is the corner, as this enables both components of the image flow field to be locally
determined. In the ASSET-2 system, Smith segments and tracks vehicles in real-time [172, 173] using
matched comers to obtain the optic-low field. Sets of points with similar motion are then clustered
together into individual objects. Following these groupings over time enables the relative motion of

objects in the real world to be inferred.

Reid and Murray [153] also track objects by following the motica of corners. Constant velocity

Kalman filters are used to track individual corners between frames. An interesting addition to the
usual corner tracking is that sets of corners matched over three frames are used to create an affine

coordinate basis and a fixation point located in this basis. The bases can be used to locate the fixation
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point in a new frame, even if no actual corner or feature exists at that point - it is only necessary to
match enough corners to re-create the basis. Different sets of points may be used to form the basis
used to locate the fixation point in'‘each frame. This allows corners to drop in and out (& well-known

property of corner detectors) without affecting the ability to localize the fixation point on the target.

Tracking line segments as opposed to tracking point features have also been considered by some
authors. Deriche and Faugeras [65] propose a line tracking system based on a prediction and matching
strategy, while Mirmehdi and Ellis [133] propose a parallel approach to tracking edge segments in

dynamic scenes using a modified version of Kalman filter.
2.5 Region Tracking

Region tracking in general refers to an area being tracked in the image plane. The area could contain
one or more objects of interest. One advantage of such techniques is that one does not have to
consider the shape or characteristics of the object being tracked. Another advantage is to save
computational cost. In the following sections we briefly discuss some well known region tracking

methods that have been presented in the literature.

Hager and Belhumeur [80] present an efficient region tracking algorithm which uses parametric
models of geometry and illumination. They first develop a computationally efficient method for
handling the geometric distortions produced by changes in pose. Then they combine geometry and
illumination into an algorithin that tracks large image regions using no more computation than would
be required to track with no accommodation for illumination changes. Finaily, they augment these
methods with techniques from robust statistics and treat occluded regions on the object as statistical

outliers. Experimental results are given to demonstrate the effectiveness of their methods.

Salama and Abbot [164] describe an approach to visual tracking for monocular and binocular image
sequences. The method combines Kalman type prediction with steepest descent search for
corresporidences, using 2D affine mapping between images. The approach differs from many recent
tracking systems, which emphasize the recovery of 3D motion structure of objects in the scene. The
authors argue that 2D area based matching is sufficient in many situations of interest. Results are

provided to support their argument,

Bascle, Bouthemy, Deriche, and Meyer [8, 132] describe an approach to track complex primitives

along image sequences — integrating snake based contour tracking and region based motion analysis.

First, a snake tracks the region outline and performs segmentation. Then the motion of the extracted

region is estimated by a dense analysis of the apparent motion over the region, using spatio-temporal

16




image gradients. Finally, this motion measurement is filtered to predict the region location in the next
frame, and thus to guide (initialize) the tracking snake in the next frame. The two approaches
collaborate and exchange information to overcome the limitations of each of them. The method is
illustrated by experimental resuits on real images. Extensions and further improvements of this work

can be found in [9].

Cohen and Medioni [46] address the problem of detecting and tracking of moving objects in a video
stream obtained from a moving airborne platform. The method proposed relies on a graph
representation of moving objects, which enables to derive and maintain a dynamic template of each
moving object by enforcing their temporal coherence. The template with the graph representation
provides characterisation of object trajectories as an optimal path in a graph. The tracker has
mechanisms to deal with partial occlusions, stop and go motion in very challenging situations. The

tracking algorithm has been applied to a number of real image sequences with promising results.

Sclaroff and Isidoro [165] present a new region-based approach to non-rigid motion tracking. Shape is
defined in terms of a deformable triangular mesh that captures object shape plus a color texture map
that captures object appearance. Photometric variations are also modelled. Non-rigid shape
registration and motion tracking are achieved by posing the problem as an energy-based, robust
minimization procedure. The approach provides robustness to occlusions, wrinkles, shadows, and
specular highlights. The formulation is tailored to take advantage of texture mapping hardware
avaijlable in many workstations, PC’s, and game consoles. This enables non-rigid tracking at speeds

approaching video rate.

Gil et. al. [77] provide a vehicle tracking method by combining estimates provided by multiple motion
models. Two tracking systems, based on the bounding-box and on the 2D partem of the targets,
provide individual motion parameter estimates to the combined method, which in turn produces a
global estimate. The algorithm is applied to image sequences that are taken under varying weather and
road conditions. Performances of the local and giobal estimates of the algorithm are also analyzed. In
another line of work [78], the authors also provide a feature selection criterion that is efficiently

utilized for the tracking of vehicles.

Shi and Malik [170] propose a motion segmentation algorithm that aims to break a scene into its most
prominent moving groups. A weighted graph is constructed on the image sequence by connecting
pixels that are in the spatio-temporal neighbourhood of each other. At each pixel they define motion
profile vectors which capture the probability distribution of the image velocity. The distance between
motion profiles is used to assign a weight on the graph edges. Using normalized cuts they find the

most salient partitions of the spatio-temporal graph formed by the image sequence. For segmenting
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tong image sequences, they have developed a recursive update procedure that incorporates knowledge

of segmentation in previous frames for efficiently finding the group correspondence in the new frame.

Bremond and Thonnat [35] propose a method of tracking multiple non-rigid objects in a cluttered
scene. First, the characteristics of non-rigid objects are considered. To cope with object
characteristics, a tracked target is defined as a moving region tracked individually or as a group of
moving regions tracked globally. Then they show how to compute the trajectory of a target and the
correspondences between known targets and moving regions newly detected. In the case of an
ambiguous correspondence, a compound track is defined to freeze the associations between targets

and moving regions until more accurate information is available. Promising results are provided.

Huwer and Niemann [99] provide a tracking system based on projection-histograms. They have
observed that tracking with projection histograms provided remarkable results compared with
standard correlation methods. In their work, a new template-based method relying on projection
histograms (RPH) is described and compared with two commonly known template-based methods
namely the normalized cross-correlation (NCC) and displaced-frame-distance {DFD) methods. The
input to the system consists of live or recorded video data where filter-based pre-processing can be
applied before tracking in order to enhance features such as edges, textures etc. A region of interest
(ROI) is taken as a template for tracking. In subsequent images tracking exploits a Kalman-filtered
local search in order to renew correspondence between the object template and the new object
location. Comparative tests are demonstrated with real-life image sequences taken in underground

stations.
2.6 Curve (Contour) tracking

Curve or contour tracking is the tracking of outlines of objects. The outlines (silhoueites) can be that
of a rigid object or a deformable object. Within the last two decades curve tracking has become one of
the main areas of research within the image processing and computer vision community. We describe

some of the methods that have been published in the literature.

The snake of Kass et al. {113] is the forerunner to a whole host of work on physics-based tracking. A
snake is a flexible contour with certain internal stiffness properties. It tracks by being ‘attracted’ to
various image features. The scenario is formulated in terms of energy: the image is abstracted as an
energy landscape, with desirable features (usually edges) having low energy. A snake, when placed on
such a landscape, locks onto features by sliding down into these energy minima whilst simultaneously
minimising its internal potential energy. In practical terms, the energy gradient is evaluated (via image

analysis) at a set of control points along the snake (the image first undergoes a Gausstan blur in order
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to widen the energy wells in the landscape) and the snake is deformed iteratively until it reaches a
stable position. The whole process can alternatively be thought of in terms of force-based tracking:
external gravity-like forces pull the snake downhill in the energy landscape and internal forces
maintain its smoothness. This is a Jocal optimisation process and so extends naturally from object
focation to object tracking. In addition, the physical properties of the snake can be extended to include
momentum, thus providing some form of temporal prediction. Terzopoulos and Szeliski reformulate
the snake dynamics within a probabilistic framework and introduce the Kalman snake {176] (based on
a Kalman filter) which, as well as predicting the snake's position, can provide confidence limits for

such predictions.

Another successful curve tracker is the active contour of Blake, Curwen et al [61, 27). They show
how snake technology can be used with B-spline contours, and also introduce a more efficient method
for feature search [163], whereby image edges are sought along contour normals using a
divide-and-conquer strategy. This avoids the need for the Gaussian blur and 2D gradient calculations.
In further work {22, 23, 60], Blake et ai also combine their approach with the Kalman Filter, which
affords several advantages. One benefit is that the spatial search scale is controlled automatically
according to certainty; if no feature is found, the search scale is increased. Also, the temporal scale
(i.e. memory) is adaptive; inertia is effectively reduced when features are lost, allowing fast recovery.

When features are found, the memory is extended to exploit motion coherence.

Blake, Isard and Reynard [25, 24, 102] went on to develop the adaptive contour from [22, 23} into one
able to learn an appropriate dynamical model (by a least squares analysis) and using the six
parameters necessary to specify an affine deformation as its state. They also generalized the; tracker so
that key-frames {prototypical non-affine deformations) could be incorporated into the tracker. The
reduction in the size of the state space allowed the tracker to come off specialized hardware and run at

frame rate on ordinary desktop workstations,

In another application, Ayache et al [1] use a snake based approach in order to track the mitral valve
and left auricle of a heart in ultrasound images. These images are typically very noisy, and so Ayache
sinoothes them both temporally and spatially. A finite element contour model is used to track the
global structures, and additional shape constraints used to localize specific points in the structure,
Among other medical tracking applications, the contribution by Jacob et al. [108] on tracking the left

ventricle in echocardiographic sequences is noteworthy.
Terzopoulos and Metaxas [177) propose an extension of Snakes to 3D objects. In their work they first
review the physically motivated formulation of snake models. They then propose a probabilistic

interpretation of the approach that leads to optimal estimation as a means of extracting reliable
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information from noisy observations. For the purposes of real-time tracking, estimation proceeds
sequentially as new observations become available. They show how to construct continuous Kalman
filters that incorporate the dynamic snake into their system and prior models. The promising
techniques of Kalman snakes for image-based tracking of rigid and, especially, non-rigid objects are

forged to create a [ink between the physical and probabilistic modelling approaches to active vision.

Terzopoulos and Metaxas [178] considered the use of 3D deformable models to track non-rigid and
articulated objects, such as human bodies, moving in three-dimensional space. They describe a class
of dynamic modelling primitives that can deform locally and globally as they move freely in space.
Although the primitives are useful for non-rigid motion tracking per se, the authors enhance their
capabilities by applying simulated physical constraints between them. These constraints enable them
to automatically construct dynamic models of articulated objects with deformable parts. Differential
equations of motion derived using Lagrangian dynamics make the models responsive to applied forces
derived from visual data, such as images that are sparse, noisy 3D observations. They employ these
differential equations as the system model of a recursive non-rigid motion estimator. The application
described employs a sophisticated model of non-rigid dynamics. The estimator syﬂthesizes non-rigid
motions using the system model. It expresses the discrepancy between the observations and the
estimated mode! state as generalised forces that formaliy account for uncertainty in the observations.
A Riccati procedure updates a covariance matrix that further transforms the forces due to the current

observations in accordance with the system dynamics and the prior observation history.

Cootes and Taylor describe Active Shape Models (ASMs or ‘Smart Snakes’) [S1, 47, 50]: the
application to tracking of the Point Distribution Model (PDM) [93]. The approach is similar to Lowe's
(discussed in section 2.7) in that image measurements are projected into the model parameter space
and parameter errors are then minimised. However, in this case the minimisation is linear
least-squares, which has a closed form solution and is thus faster to calculate. The maths involved is
further simplified by the fact that the PDM's deformation modes are orthonormal. Also, because there
are generally only a few model parameters, this approach is faster than previous snake-like
techniques. Performance and speed can be improved further still by employing a multi-resolution
search [47, 52] whereby earlier iterations proceed at lower image resolution and fewer shape

parameters are aliowed to vary, with refinetnent being permitted in the later stages.

Baumberg and Hogg show how ASMs can be coupled with a Kalman filtering framework to produce
a more robust system [12, 10, 14, 11]. This method is very efficient because the filters for each shape

parameter can be decoupled, allowing independent filtering of each parameter and thus avoiding large

matrix computations,




A recent development in curve tracking is the use of level-set snakes (Paragios and Deriche [142]) to
replace traditional B-spline based snakes. An energy function is defined over the image, and fast
atgorithms are used to track level sets of this function. An advantage of the approach is that the
topology of the level sets may change, aithough there is no parametric representation of the object, so
the problem addressed is more akin to motion segmentation than tracking. Also, existing methods
have only been applied where background subtraction can be used, and have not been demonstrated in

image clutter.

Extensions of ‘Snake’ type algorithms have been proposed by several other authors. Among them the
regularised Gsnake algorithm by Lai et al. [120, {21], the active rays of Denzier et al {62, 63], the
finite element based method for snakes and balloons by Cohen et al. [45], the velocity snakes [145,
146] and tae PDAF based active contours [147] by Peterfreund are noteworthy contributions.

2.7 Model Based Tracking

Model based tracking primarily requires the characteristics of the object prior to tracking. Tracking
techniques are formulated based on a 2D template of an oinject, or a 3D model of the object being
available. The advantage of incorporating model krniowledge into tracking is that clutter can be
rejected efficiently. The tracking algorithms are formulated assuming that the model deforms or
changes shape within acceptable limits from the template or model shape (eg: allow only affine
transformation of the template). In the following section we provide a short survey of some popular
model based tracking techniques. For clarity, we have informally classified the model based tracking
survey into the following groups: ‘general model’ tracking (can be applied to any model), and

‘specific model’ fracking (pertains to tracking a particular type of model, eg: vehicles only).

2.7.1 General Model-Template Tracking

A good example of a model based tracker is the RAPID (Real-time Attitude and Position
Determination) tracker of Harris et al [84, 86]. A 3D model of an object in the worid (the target which
is to be tracked) is built by hand. As each video frame arrives, the model is back-projected into the
image, using a prediction of its position. The perpendicular distance from image points, lying on high
contrast edges, to the predicted positions of such edges are then used as input to a Kalman filter, This
filter updates a six degree of freedom model state corresponding to the target's position in the real
world. Perpendicular distances are used because the aperture problem only allows motion
perpendicular to an image boundary to be determined. The tracker works at video rate, but relies on

being able to reliably locate the high contrast edges, and on a well calibrated camera.
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Baumberg and Hogg [12] build on the work of Cootes et al [93], providing a way of automatically
generating PDM's from video sequences. The models are built by subtracting each video frame from a
median filtered background image, and then thresholding to give a binary image of the target. Points
are placed equally spaced around the target, and indexed, based on their position relative to the
principal axis of the target. Several such point sets are collected over time and the principal
components of the shape variation extracted to give the PDM. In [10, 14] Baumberg introduces learnt
dynamics into the PDM, connecting parts of the PDM together with springs and dampers. This

dynamical model enables a tracker to predict the motion of the target forward through time, allowing

tracking to continue in the temporary absence of image measurements. -

Baumberg and Hogg [10] also show how to construct temporal models from training sequences using
FEM model analysis [143, 144]. The models produced exhibit a number of independent modes of
vibration which reflect the motions experienced in the training sequences. These motions can then be 2
used directly as prediction modeis for tracking, again, within a Kalman filtering framework. The use

of modal analysis means that, unlike Blake et al 's model, the Kalman filter can be decoupled for extra
speed.

Huttenlocher et al [98) developed a target tracking systefn based around matching a binary template
image of the target. This template image is the output of an edge detector, and is updated each frame.

Tracking proceeds by finding the region of a new image which is most likely to contain the template.

This is done by computing the generalized Hausdorff distance, between the template and each
possible target position within the image. The image location with the minimum Hausdorff distance is E
taken as being the target's new location. Various fall back strategies and alternative templates are A

employed to enable the tracker to continue, even if no positions in the image match the template
satisfactory.

Huttenlocher et. al. (97] describe a model-based method for tracking non-rigid objects moving in a

complex scene. The method operates by extracting two-dimensional models of an cbject from a

sequence of images. The basic idea underlying the technique is to decompose the image of a solid
object moving in space into two components: a two-dimensional motion and a two-dimensional shape
change. The motion component is factored out and the shape change is represented explicitly by a
sequence of two-dimensional models, one corresponding to each image frame. The major assumption
underlying the method is that the two-dimensional shape of an object will change slowly from one

frame to the next. There is no assumption, however, that the two-dimensional image motion between
successive frames will be small.



Lowe [127] developed a computer vision system for real-time motion tracking of 3D objects,
including those with variable internal parameters. This system provides for the integrated treatment of
matching and measurement errors that arise during motion tracking. These two sources of error have
very different distributions and are best handled by separate computational mechanisms. These errors
can be treated in an integrated way by using the computation of variance in predicted feature
measurements to determine the probability of correctness for each potential matching feature. In turn,
a best-first search procedure uses these probabilities to find consistent sets of matches, which
eliminates the need to treat outliers during the analysis of measurement errors. The most reliable
initial matches are used to reduce the parameter variance on further iterations, thus minimizing the
amount of searching required for matching more ambiguous features. These methods allow for mﬁch
larger frame-to-frame motions than most previous approaches. The resulting system can robustly track
models with many degrees of freedom while running on relatively inexpensive hardware. These same

techniques can be used to speed up verification during model -based recognition.

2.7.2 Eye Tracking

Yuille and Hallinan [204] explore the problem of accurately locating an object in an image. The
object they attempt to locate is the eye. A detailed model is built representing the various parts of the
eye (the whites, iris and pupil), and this model has the degrees of freedom of the various parts of the
eye built into it - the iris and pupil are allowed to move round the white of the eye together for
instance. The model is fitted to an image by performing an energy minimization. This minimization is
based around both shape deformation constraints and intensity constraints — the iris and pupil are
assigned a low energy when they lie over dark parts of the image and the whites of the eye a low

energy when they lie in light regions.
2.7.3 Vehicle Tracking

Another excelient example of a model based tracking system is that developed by Sullivan and
Worrall [175, 200, 3]. The problem they attack is the tracking of vehicles. Accurate three-dimensional
wire-frame models of prototypical cars are used, together with a model of the behavioural

characteristics of the vehicles. The tracker has the ground plane constraint implicitly built in - the only

free parameters in the tracker are the X, Y position and the vertical rotation of the car. The tracker

predicts a position for the car on the ground plane, and an evaluation score is calculated based on how
well the first and second spatial derivatives of the image fit a back-projection of the car model. The
predicted pose is then refined by one-dimensional linear searches on each free parameter of the model,
evaluating the pose score at each position. The pose with the highest score is then used as input to a

Kalman filter. The tracker has been successfully applied to views of cars on a road, and also to the




tracking of service vehicles attending to a large aeroplane. In {73] the 3D models are enhanced by

principal component analysis of manually sampled car data, allowing cars to be more generically

fitted. A more complex model evaluation score is also used, based on the positions and orientations of

prominent lines in the image, relative to the model.

Koller et.al. [118] address the problem of occlusion in tracking multiple 3D objects in a known
environment. For that purpose they employ a contour tracker based on intensity and motion
boundaries. The motion of a contour enclosing the image of a vehicle is assumed to be well
describable by an affme motion medel with a translation and a change in scale. Contours are
represented by closed cubic splines, the position and motion of which are estimated along the image
sequence. In order to employ linear Kalman Filters they decompose the estimation process in two
filters: one for estimating the affine motion parameters and one for estimating the shape of the
contours of the vehicles. Occlusion detection is performed by intersecting the depth ordered regions
associated to the objects. The intersection part is then excluded in the motion and shape estimation.
Occlusion reasoning also improves the shape estimation in case of adjacent objects where shape
estimates can be corrupted by image data of other objects. In this way they obtain robust motion
estimates and trajectories for vehicles even in the case of occlusions, as they show in some
experiments with real world traffic scenes. This work by the authors follows their previous research in

robust vehicle tracking [117].

Dickmanns [66] addresses the problem of real-time guidance of a moving vehicle along roads.
Kaiman filters are used together with sophisticated non-linear models of the vehicle's motion, camera
calibration and the road. The road model is used to determine what features are expected to be found
where in the scene, and then this expectation used to direct a feature search towards these regions.
Specifically line segments are searched for which match the expected orientation of the road. The
difference between the orientations expected and those measured is used as a measure of the
likelihood that the measurements originate from the side of the road, and this probability used to

weight the inputs to the filter.
2.7.4 Human Tracking

Intille and Bobick [100, 101] discuss a system for tracking American football players as they move
around a field, viewed with a panning and tilting zoom camera. The camera motion is assumed to be
unknown, however the fine markings on the field provide an excellent and consistent set of features
from which the plane/plane projectivity between the view of the field, and an overhead view of the
field is calculated. A detailed model of football field is built up, and areas of the field which are likely
to cause tracking problems (the markings on the field, for example) highlighted. A gray level image of




each player on the rectified image of the field is built, and used for correlation matching from one
frame to the next. Areas of the image which contain strong features are masked out before the
correlation is done, otherwise they ténd to pull the template of the players. Variations in the views of
the players are accommodated by updating the template at each frame. As each player on the field is
being tracked, it is possible to detect when occlusions/collisions are likely to be happening (and hence
the comrelation search fail} and switch to a different tracking algorithm for that period of time. The
algorithm suggested for dealing with potential occlusions is bright spot tracking of the player's
helmets. The tracking results presented by Intille are impressive, however, there is a tendency for the
adaptive templates to slip off the players. No motion mode! is used which, while enabling them to

track abrupt changes in a player's velocity, means that motion coherence is not exploited.

Haritaoglu, Harwood, and Davies [83] describe a real time visual surveillance system for detecting
and tracking people and monitoring their activities in an outdoor environment by integrating real time
stereo computation into an intensity based detection and tracking system. Unlike many systems for
tracking people, their system makes no use of colour cues, instead employs a combination of stereo,
shape analysis and tracking to locate people and their parts, and create models of people’s appearance
so that they can be tracked through interactions such as occlusions. The authors claim that the system

is capable of simultaneously tracking muitiple people even with occlusion.

Bregler et. al. [32] describes a probabilistic decomposition of human dynamics at multiple

abstractions, and shows how to propagate hypotheses across space, time, and abstraction levels.
Recognition in this framework is the succession of very general low level grouping mechanisms to
increased specific and learned model based grouping techniques at higher levels. Hard decision
thresholds are delayed and resolved by higher level statistical models and temporal context. Low-level
primitives are areas of coherent motion found by EM clustering, mid-level categories are simple
movements represented by dynamical systems, and high-level complex gestures are represented by
Hidden Markov Models as successive phases of ample movements. They show how such a
representation can be leamed from training data, and apply it to the example of human gait

recognition.

Rosales and Sclaroff [160, 161] provide a combined 2D, 3D approach that allows for robust tracking
of moving bodies in a given environment as observed via a single un-calibrated video camera. The
method combines low level (image processing) and mid-level (recursive trajectory estimation)
information obtained during the tracking process. The resuiting system can segment and maintain the
tracking of moving objects before, during, and after occlusion. At each frame, the system also extracts

a stabilized coordinate frame of the moving objects. This stabilized frame can be used as input to




motion recognition modules. The approach enables robust tracking without constraining the system to

know the shape of the objects being tracked beforehand.

2.7.5 Lip Tracking

In {34], Bregler and Omohundro have applied tracking techniques for speech recognition. A technique
for representing and learning smooth nonlinear manifolds was presented and applied to several lip
reading tasks. Given a set of points drawn from a smooth manifold in an abstract feature space, the
technique is capable of determining the structure of the surface and of finding the closest manifold
point to a given query point. They use this technique o learn the "space of lips" in a visual speech
recognition task. The learned manifold is used for tracking and extracting the lips, for interpolating
between frames in an image sequence and for providing features for recognition. They describe a
system based on hidden Markov models and this learned lip manifold that significantly improves the
performance of acoustic speech recognizers in degraded environments. Other noteworthy
contributions on lip motion include the work of Kaucic et al [114], who have demonstrated the use of

real-time lip tracking for audio-visual speech recognition.

2.7.6 Face Tracking

An attractive approach for face tracking was proposed by Lanitis et al. [122, 123]. They describe an
application where an active shape model (ASM) (also called a point distribution model (PDM) [50]) is
used to track facial features. This PDM is derived from a principal component analysis of the shape
variations of an object (the target) in a series of images. In [122] the features making up a face are
located by using local gray level models and then used to fit the PDM to the image. This fitted PDM
is then used to warp the video image of a face to a canonical frame. An eigenface decomposition is
then performed to transform the face image into a set of principal gray level components. These
components, together with the parameters of the PDM, describe the entire facial appearance of
subjects with only 79 parameters. This work is based on Cootes, Taylor et al 's earlier work on PDM's
[49, 50, 52]. Information about the local gray level structure of the target is incorporated into the
model fitting procedure by building a simple statistical template of the gray level values along search
lines perpendicular to the line sections of the model. The model is then located by searching for

positions which minimize a Mahalanobis distance between the gray level template and the image.

Cootes, Edwards, and Taylor [53] recently have demonstrate a novel method of interpreting images

using Active Appearance Model (AAM). An AAM contains a statistical model of the shape and grey-
level appearance of the object of interest that can generalize to almost any valid exampie. During a

training phase the relationship between model parameter displacements and the residual errors




induced between a training image and a synthesized mode! example is learnt. To match to an image

they measure the current residuals and use the model to predict changes to the current parameters,
leading to a better fit. A good overall match is obtained in a few iterations, even from poor starting

estimates. A successful application of face recognition using AAM is reported in [71].

2.7.7 Articulated Object Tracking

Computer sensing of hand and limb motion is an important problem for applications in human
computer interaction and computer graphics. Rehg et al [150, 151] describe a framework for local
tracking of self occluding motion, in which one part of an object obstructs the visibility of another.
The approach uses a kinematic model to predict occlusions and windowed templates to track partially
occluded objects. They present offline 3D tracking results for hand motion with significant self

occlusion.

Hogg's well known ‘Walker’ model [95] is an early example of a non-trivial temporal model. The
kinematics are coupled to a pre-leamed periodic walk sequence, modelled via a series of cubic

B-splines, which is used to derive predictions for plausible object states in each successive frame.

Bregler and Malik [33] also demonstrate a new visual motion estimation technique that is able to
recover high degree-of-freedom articulated human body configurations in complex video sequences.
They introduce the use of a novel mathematical technique, the product of exponential maps and twist
motions, and its integration into a differential ﬁlotion estimation. This results in solving s.imple linear
systems, and enables the algorithm to recover robustly the kinematic degrees-of-freedom in noise and
complex self occluded configurations. They demonstrate this on several image sequences of people
doing articulated full body movements, and visualize the results in re-animating an artificial 3D
human model. They are also able to recover and re-animate the famous movements of Eadweard

Muybridge's motion studies from the last century [33).

Pentland and Horowitz [143] introduce a physically correct model of elastic non-rigid motion. This
model is based on the finite element method, but decouples the degrees of freedom by breaking down
object motion into rigid and non-rigid vibration or deformation modes. The result is an accurate
representation for both rigid and non-rigid motion that has greatly reduced dimensionality, capturing
the intuition that non-rigid motion is norméily coherent and not chaotic. Because of the smail number
of parameters involved, this representation is used to obtain accurate overstrained estimates of both
rigid and non-rigid global motion. It is also shown that these estimates can be integrated over time by
use of an extended Kalman filter, resulting in stable and accurate estimates of both three-dimensional

shape and three-dimensional velocity. The formulation is then extended to include constrained non-
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rigid motion. Examples of tracking single non-rigid objects and multiple constrained objects were also

demonstrated.

Several other model based tracking methodologies are also worth mentioning. Among them the
LAFTER algorithm of Oliver et al [141], Wren et al.’s Pfinder [201}, Wacheter et al.’s human
tracking algorithm [197], Cai and Aggarwal’s indoor person tracker [39], Heap and Hogg’s 3D hand
tracking [91, 88], and Birchfield’s head tracking algorithm [16] are note worthy contributions.

2.8 Data Association and Tracking Algorithms

In this section we survey some of the tracking algorithms that are employed in computer vision and

target tracking research.

2.8.1 Data association

When using visual features to track a target against a cluttered background, there is a significant
chance that part of the background may be mistaken for the target. A simple feature or target detection
scheme will either correctly identify the target, fail to identify anything or identify part of the
background as the target. The scheme may also find that several objects (or parts of the image) meet
its criteria for being part of the object being tracked. The data-association problem is to correctly
determine which observation (if any) actually corresponds to the target. A whole range of tracking
algorithms, to resolve the above issue, has been developed over a number of years. Among them the
Kalman Filter (KF), and algorithms which stemmed from KFs, have been popular within the
computer vision community [149}. More recently, the proposal of the Condensation algorithm [103,
104] has opened a way for a whole range of new tracking applicatioﬁs. In the following sections we

survey some of the well know tracking techniques.

2.8.2 Kalman Filter based Tracking Algorithms

Spatio-temporal estimation, the tracking of shape and position over time, has been dealt with
thoroughly by Kalman filtering [5, 6, 74, 199, 130], in the case in which the state's probability density
function (p.d.f)) can satisfactorily be modelled as Gaussian ([66], [84], [75], [150]). In this case the
Kalman filter can be applied to track image curves (176, 22, 23, 25]). For the state density to remain
Gaussian it is necessaﬁy that the prior, process and measurement densities be Gaussian also (in the
usnal case the measurement and process noise are Gaussian and the update equations are linear, which

results in a Gaussian state density as required).
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Bar-Shalom and Fortmann [6] describe a number of standard extensions to the Kalman filter for
dealing with situations where non-Gaussian densities may be encountered. The Extended Kalman
Filter (EKF) is appropriate in the case .of a non-line::r but unimodal process which can be well
approximated over the length of a single time step by its local linearization. The EXF has been used in
visual tracking, e.g. ({84, 157]). In some cases an exact filter may be derived even in the case that the
dynamics are non-linear, for example Maybank et al. [129] construct a filter for tracking a car based
on position and steering angle parameters. The introduction of clutter can cause the observation
density to be highly non-Gaussian, by introducing multiple modes corresponding to the clutter
features. A multi-modal measurement density necessarily induces multi-modality into the state

density.

The “Probabilistic Data Association Filter” (PDAF) (Bar-Shalom and Fortmann {6}) is designed for
the case of image clutter where the process is linear and Gaussian, and the observation density is a
mixture of Gaussians. The PDAF continues to use the standard Kalman filter framework by
approximating all the visible measurements, weighted by their predicted likelihoods, into a single
Gaussian-distributed feature, and so it continues to represent the state density as a single Gaussian.
When a multi-modal state density is required, one solution is to use a mixture of Gaussians to

represent the state density.

The Joint PDAF (JPDAF) (Bar-Shalom and. Fortmann [6]) is an extension of the PDAF where in
principle the state density is evaluated exactly and represented as a mixture of Gaussians [82]. The
number of terms in the mixture increases exponentially, however, so pruning and merging of
hypotheses is required to run within a fixed computational bound. A multi-modal process density also
results in the state density becoming multi-modal. The Interacting Multiple Model (IMM) filter (Blom
and Bar-Shalom [5], [28]) is analogous to the JPDAF when it is the process rather than (or as well as)
the observation density which is multi-modal. The details of IMM are further discussed in chapters 4
and 7 of this thesis.

2.8.3 Condensation Algorithm

Isard and Blake's Condensation algorithin [103, 104} provides a much richer environment for
temporal prediction. The model state is represented not as a single, deterministic set of model
parameters, but as a probability density function over the whole parameter space. This allows for
non-Gaussian (arbitrary, in fact) uncertainty and multiple hypotheses. A model of conditional
probability (learned from training sequences) is used to prbpagate the pdf over time. Propagation
dynamics are learned from training sequences; Isard and Blake [104] demonstrate the construction of

second order models which can predict constant velocity, oscillatory and decaying dynamics. The
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result is highly robust tracking of agile motion. Notwithstanding the use of stochastic methods, the
algorithm is reported to run in near real-time. Further details and evaluation of Condensation is

discussed in Chapter 8.

The benefits of Condensation are as follows: It can support multiple hypotheses; this is represented by
a pdf with multiple peaks. It recovers well from failure; the stochastic nature of the algorithm allows it
to escape from local maxima. It incorporates a level of prediction, which improves the speed of

convergence and the quality of results over, for example, a Genetic Algorithm [83].

The prediction aspect of Condensation is embedded in the propagation equations. Currently these
have two elements; a deterministic term which allows for simple drifting of the pdf, and a stochastic
term which encourages spreading of the pdf. Although the tracker can escape from local maximu (due
to the stochastic term), the underlying dynamical model is still based on an assumption of smooth,

continuous object movement. Such an assumption is not always valid [88].
2.8.4 Exiensions of Condensation

Isard and Blake {107) further improve their Condensation algorithm by introducing a smoothing filter
at the output. Clutter can cause the probability distribution to split temporarily into multiple peaks,
each representing a different hypothesis about the object configuration. When measurements become
unambiguous again, all but one peak, corresponding to the true object position, die out. While several
peaks persist, estimating the object position is problematic. ‘Smoothing’ in this context is interpreted
to be a statistical iechnique of conditioning the state distribution on both past and future
measurements once tracking is complete. After smoothing, peaks corresponding to clutter are reduced,

since these trajectories eventually die out. The result can be a much improved state-estimate during

ambiguous time-steps.

The tracking research community has diverged into two camps; those using low-level approaches
which are typically fast and robust but provide little fine-scale information, and those using high-level
approaches which track compiex deformations in high-dimensional spaces but must trade off speed
against robustness. Real-time high-level systems perform poorly in clutter, and initialisation for most
high-level systems is either performed manually or by a separate module. Isard and Blake {105]
extend their Condensation technique to combine low and high-level information in a consistent
probabilistic framework, using the statistical technique of importance sampling combined with the
Condensation algorithm. The general framework, which they call the I-Condensation, is applied on a
hand tracker which combines colour blob-tracking with a contour model. The resulting tracker is

reported to be robust to rapid motion, heavy clutter and hand-coloured distracters, and re-initialises
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automatically. The system is also claimed to run comfortably, in real time, on an entry-level desktop

workstation.

Condensation tracker can also be extended to cope with automatic model-switching for objects that
move with variable motion (Jsard and Blake [106, 102]). The authors present a significant
development of random sampling methods to allow automatic switching between multiple motion
models as a natural extension of the tracking process. The Bayesian mixed state framework is
described in its generality, and the example of a bouncing ball is used to demonstrate that a mixed
state model can significantly imp_rove tracking performance in heavy clutter. The relevance of the
approach to the problem of gesture recognition is then investigated using a tracker which is able to
follow the natural drawing action of a hand holding a pen, and switches state according to the hand’s

motion.

As a further improvement to [106], Rittscher and Blake [156] have developed ‘Partial Importance
Sampling’ to enhance the efficiency of the mixed state Condensation filter [ 106]. They also show that
the importance sampling can be done in linear time. “Tying’ of discrete states is used to obtain further
efficiency improvements. Automatic segmentation is demonstrated on video sequences of aerobic
exercises. Performance is reported to be promising, but there remains a residual mis-classification

rate, and possible explanations for this are also discussed in [156].

2.8.5 Applications of Condensation

Biack and Jepson [19}: propose an incremental recognition strategy that is based on the Condensation
algorithm. Gestures are modelled as temporal trajectories of some estimated parameter over time
(velocity in this case). The Condensation algorithm is used to incrementally match the gesture models
to the input data. The method is demonstrated with an example of an augmented office whiteboard in

which a user makes simple hand gestures to grab regions of the board, print them, save them, ctc.

Standard techniques (Yule-Walker) are available for leaming Auto-Regressive mocess models of
dynamical processes. When sensor noise means that dynamics are observed only approximately,
learning has still been achieved via Expectation-Maximisation (EM) together with Kalman Filtering.
This cannot handle more complex dynamics, involving multiple classes of motion. For that case, Bake
et al [26] demonstrate how EM can be combined with the Condensation algorithm, which is based on
propagation of random sample-sets. Experiments have been performed with visually observed

Jjuggling, and plausible dynamical models are found to emerge from the learning process.




Existing object tracking algorithms generally use some form of local optimisation, assuming that an
vbject's position and shape change smoothly over time. In some situations this assumption is not
valid: the trackable shape of an object‘rnay change discontinuously, for example if it is the 2D
silhouette of a 3D object. Heap and Hogg [89] propose a novel method for modeiling temporal shape
discontinuities explicitly. Allowable shapes are represented as a union of (learned) bounded regions
within a shape space. Discontinuous shape changes are described in terms of transitions between these
regions. Transition probabilities are learned from training sequences and stored in a Markov model. In
this way they show how to create wormholes in shape space. Tracking with such models is via an

adaptation, of the Condensation algorithm.

2.9 Conclusion

Our survey has revealed certain areas of visual tracking which are insufficiently addressed in the
literature. One area that needs consideration is a multiple motion model framework within a tracking
system. Though a single model assumption (this is the case for most tracking applications) is
computationally efficient, such a tracking system does not cope with multiple motions that are
captured within a sequence of images. Another area that is not adequately addressed is the
performance analysis of tracking algorithms. Most of the performance analysis techniques given in
the literature are specific to a narrow band of applications, and cannot be easily extended for different
types of object tracking. Finally knowledge already existing in other areas of engineering (control,

signal processing etc.) seems new (unknown) within the computer vision community.

This thesis therefore tries to address most of these issues in two broad categories. The first section of
the thesis (Chapters 3, 4, and 5) deals with point feature tracking algorithms and their performances.
The second section (Chapters 6, 7, and 8) deals with contour tracking algorithms and their
performances. In addressing these areas, we have also considered the multiple motion model

framework within a tracking system.
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Chapter 3

Assessing the Performance of Corner Detectors for
Point Feature Tracking

Abstract

In this chapter we assess the performance of corner feature detecting algorithms for feature tracking
applications. We analyze four different types of corner extractors, which have been widely used for a variety of
applications. They are the Kitchen-Rosenfeld corner detector [116], the Harris corner detector [83], the
Kanade-Lucas-Tomasi detector [190] and the Smith corner detector [173]. We use the corner stability and
corner localization properties as measures to evaluate the quality of the features extracted by the 4 detectors.
For effective assessment of the corner detectors, we emploved image sequences with no motion (simply static
image sequences), so that the appearance and disappearance of corners in each frame is purely due to image
plane noise and illumination conditions. Such a setup is ideal to analyze the stability and localization properties
of the corners. The corners extracted from the initial frame are then tracked (matched) through the sequence
using a corner matching strategy. We employed 2 different types of maichers, namely the GVM (Gradient
Vector Maicher) and the Product Moment Coefficient Matcher (PMCUM). Each of the corner detectors was
tested with each of the matching algorithms to evaluate their performance in tracking the features. The
experiments were carried out on a variety of image sequences. They included indoor and outdoor sequences.

3.1 Introduction

Low-ievel descriptors may be broadly classified into three main types: region-based, edge-based and
point-based [168].

Regions {or “blobs™) {194, 168, 169} normaily correspond to smooth surface patches. Tracking such
regions is not always easy, since minor differences between frames (due to image noise or image
motion) can lead to very different segmentation in consecutive image frames [168]. Despite recent
progress (for example: Meyer and Bouthemy [132] tracked convex-hull approximations to region
boundaries, Etch and Shirai [70] used advanced statistical region descriptors), further theoretical and

empirical work is needed before reliable region tracking becomes feasible.

Edges are loci of one-dimensional spatial change [168], located where the change in intensity is
significant in one direction. They are generally detected by finding either maxima in the first image
derivative [40], or zero-crossings in the Laplacian of the Gaussian of the image [79]. Their usefulness

in motion algorithms is limited by the “aperture problem”, which arises from a locally linear
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expansion of the spatio-temporal image intensity function; without assumptions about the nature of
the flow, only the component of flow perpendicular to the edge element can be found [68).
Unfortonately, these assumptions invariably lead to inaccuracies in the estimated flow, particularly at
motion boundaries [168]. The use of higher order derivatives is unsatisfactory since differentiation
accentuates noise. Moreover, until the advent of snakes [113, 24, 27], arbitrarily curving edges were
difficult to describe and track, and simultaneous tracking of multiple open edge contours with
automatic snake initialization still largely remains an open problem [168, 24] (discussed more in
chapters 6-8). An additional problem with tracking edges through image sequences is that edge

segments tend to splir and merge, which complicates the tracking process considerably.

Point features are distinctive image points corresponding to objective 3D scene elements that are in
most instances accurately locatable and recur in successive images, which makes them explicitly
trackable over time. The term “corners” is used to refer to point features that are loci of two-
dimensional intensity change, i.e. second-order features. This includes points of occlusion (e.g. T, Y
and X junctions), structural discontinuities (¢.g. L junctions) and various curvature maxima (e.g.
texture flecks or surface markings). Comers impose more constraint on the motion parameters than
edges, therefore the fall optic flow field is recoverable at corner locations [168). Comners are also often
more abundant than straight edges in the natural world making them ideal features to track in an
indoor and outdoor environment. To find further details on vartous corner detectors, the reader is
referred to [134, 168].

Despite the large amount of material reported in the literature in the area of low level feature tracking,
very little has been published in terms of a performance analysis for many of these algorithms. Our
primary contribution in this chapter is to evaluate the suitability of corners extracted by 4 different
corner detectors for tracking purposes. For point (corner) feature tracking it is essential that corners
extracted in each frame be well localized and temporally stable throughout an image sequence. To test
these corner properties it is preferred to use static image sequences where object (or camera) motion
will not be a concern. Using indoor and outdoor static image sequences with varied levels of
illumination, we assess the quality of corners extracted by the Kanade-Lucas-Tomasi (KLT), the

Harris, the Kitchen-Rosenfeld and the Smith corner detectors in the presence of varied noise.

A direct comparison of the performance of comer detectors is difficult because establishing ground
truth for ‘corner points’ is non-trivial, particularly for complex scenes (as studied in this chapter).
Even for human eyes declaring the best N comers from a complex scene is very difficult and the
choice of selection can vary from person to person. Therefore, for each comer detector considered in
this chapter, we provide the ailowance of selecting ‘their best N corners’. The quality of comers

extracted by each detector is then assessed against the locatization and stability properties (discussed
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later). The assessment based on these 2 measures will reveal the number of corners that are most

resilient to image plane noise,

This chapter is organized as follows. Section 3.2 briefly describes the 4 comer detectors that we
analyze. Section 3.3 provides the performance measures that we employ for our analysis. Section 3.4
gives the inter-frame corner matching strategies employed. Section 3.5 derives the tests that are
applied for empirical evaluation of the corner detectors. Section 3.6 gives the results and section 3.7

provides a discussion on the evaluation outcome. Finally section 3.8 gives the conclusion.

3.2 Corner (Point) Features as Tracking Tokens

A number of algorithms for corner detection have been reported in recent years [64, 67, 70, 85, 116,
134, 140, 162, 168, 169, 171, 173, 190]. They can be divided into two groups. Algorithms in the first
group involve extracting edges and then finding the points having maxima curvature or searching for
points wherg edge segments intersect. The second, and largest group, consists of algorithms that
search for corners directly from the grey-level image. In this chapter we focus on the second group of

feature detectors.

We decided to assess the performance of the Kitchen-Rosenfeld [116), the Harris [84,85], the XLT

[190] and the Smith [173] corner detectors when applied on reai data. The choice of these 4 comer

detectors was made because, the Kitchen-Rosenfeld method uses second and first order derivatives in
calculating the cornerness value, while Harris method uses only first order derivatives. The Smith
method uses a geometrical criteria in calculating the cornerness value (no derivations are required),
while XLT detector uses information from an inter-frame point displacement technique to declare
corners. Therefore an assessment in terms of the localization and stability properties for these 4 corner
detection methods seemed useful when they are applied to a variety of image sequences. The

following sub-sections briefly describe the corner detectors employed.

3.2.1 The Kitchen-Rosenfeld Corner Detector

Kitchen-Rosenfeld algorithm [116] is one of the earliest corner detectors reported in the literature,
hence it has been used as a bench mark for future researchers developing corer detection algorithms.
This algorithm calculates the ‘cornerness’ value C as the produce of the local gradient magnitude and

the rate of change of gradient direction. The quantity C is given by,
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where 1 is the grey-level value, and I, is the second derivative of I, etc. Points in an image are
declared comers if the ‘cornerness value’ meets some threshold requirement (ie. the lower the value of
C, better the corner). Many well-known corner detectors use this threshold (eg:[25,10}). The primary
reason for considering this detector is to use it as a 'bench mark' to evaluate the performances of the

Harris, the KLT, and the Smith corner detectors.

3.2.2 The Harris Corner Detector

This algorithm, known as the Harris comer detector [85] is based on an underlying assumption that
corners are associated with maxima of the local autocorrelation function. It is less sensitive to noise
in the image than most other algorithms, because the computations are based entirely on first
derivatives. The algorithm has proved popular due to its high reliability in finding L junctions and its
good tempoi'él stability [140], making it an attractive comer detector for tracking. It should be noted
that because these algorithms rely on spatial derivatives, image smoothing is often required to
improve their perforrmance. While improving the detection reliability, it has been shown that
smoothing may result in poor localization accuracy [157). The Harris corner detector was used
successfully to detect features for the DROID 3D vision project [85, 84].

The Harris corner detector also computes a cornerness value, C, for each pixel in an image. A pixel is
declared a corner if the value of C is below a certain threshold. Where C is calculated as follows:

 Calculate the intensity x-gradient, 1 , and the intensity y-gradients, i, using 3x3 convolution
masks.
2 g2
¢ Calculate LI LK.
¢ Using a Gaussian smoothing kernel of standard deviation o, calculate the sampled means

<I;><I; >and< LI, >. SeeFig. 3.1.

» Calculate the comerness value of a pixel, C as follows:

_ <I§>+<li> (3.2)

- 2 2 2
<I[><I[>-<Li, >

A good corner is defined as having a small value of C; the best corner thus having the lowest value of

C. The number of surrounding pixels required to calculate C is determined by the size of the Gaussian
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smoothing kernel, A 3x3 pixel smoothing kernel gives a 5x5 pixel computation area, a 5x5 pixel

- smoothing kernel gives a 7x7 pixel computation area, efc. (Figure 3.1).

Computation area

| 7&' et —p-{pixels used) .

S BERR
SRR » Corner pixel -
L5 BiE ??
£ [

Figure 3.1: Pixel area used when calculating the Harris cornerness C, assuming a Gaussian smoothing kernel

of 3x3 pixels.

3.2.3 The Smith (SUSAN) Corner Detector

Smith [173] developed a very simple corner detector that uses no spatia} derivatives at all. The Smith
comner detector does not require any smoothing and so there is no degradation in localization accuracy
due to smoothing. This detector has been implemented as part of a scene segmentation aigorithm
ASSET (A Scene Segmenter Establishing Tracking) [172].

Nucleus of mask
Boundary of mask

Section of mask where
pixels have different

brightness from nucleus

Section of mask where

pixels have similar . g
brightness to nucleus ;
Light background - USAN area
Figure 3.2: Four Smith corner finding masks at different positions in an image. B 4

The Smith comer detector [173] is different from the other detectors in nature. Each pixel in an

image is used as the center of a small circular mask. The greyscale values of all the pixels within this




circular mask are compared with that of the center pixel (the nucleus). All pixels with similar

brightness to that of the nucleus are assumed to be part of the same structure in the image.

Figure 3.2 shows the masks with pixels of similar brightness to the nucleus coloured black, and pixels
with different brightness coloured white. Smith calls the black image area the Univalue Segment
Assimilating Nucleus (USAN). He argues that the USAN corresponding to a corner (case (a) in
Figure 3.3) has an USAN area of less than half the total mask area. It is clear from Figure 3.3 that a

jocal minimum in USAN area will find the exact point of the comer.

EErS > Approximation 16 the
circular mask
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Figure 3.3: The Smith USAN (SUSAN) corner finding mask.

In practice, the circular mask is approximated using a 5 x 5 pixel square with 3 pixels added on to the
center of each edge (Figure 3.3). The intensity of the nucleus is then compared with the intensity of

every other pixel within the mask using the following comparison function:

Hn-Un) Y
c(r,rb)=100e_( ‘ ]

(3.3)
where 7, is the position of the nucleus, r is the position of any other point within the mask, 1) is the
brightness of any pixel, and ¢ is the so-called brightness difference threshold. Eq. (3.3} is chosen to
allow a pixel’s brightness to vary slightly without having too large an effect on ¢, even if it is near the
threshold position. The sixth power is used to obtain the .theoretica! optimum, see [173] for details.
This comparison is done for each pixel in the circular mask, and a running total, n, of the outputs, ¢, is
made:

n= Zc(r, %) (G4
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The total » is 100 times the USAN’s area (the factor of 100 coming from Equation 3.3). The USAN
area 71 is then thresholded to extract the corners, A pixel is declared a corner if its USAN area, n, is
less thun half the maximum possible USAN area (The maximum USAN area is given by the area of
the circular mask times 100, which ts 3700). The geometric threshold, g, therefore sits at 1850
[(25+12)*100/2]. Smith points out that the value of g affects the shape of the comers detected, and
that reducing the value of & -esults in only the sharpest corners being detected [173]. The brightness
difference threshold 1, affects the quantity of comers detected by determining the allowed variation in
brightness within the USAN.

Finally, an intermediate image is created from the value # calculated for each pixel in the image. If n
is greater than the geometric threshold, g, then a zero is placed in the intermediate image, otherwise
the value (g-nfx,y)) is used. The intermediate image is then searched over a square 5 pixel by 5 pixel

region for focal maxima, and it is these local maxima pixels that are declared corners.

3.2.4 The.Kanade-Lucas-Tomasi (KLT) Corner Detector (includes the Tracker)

The KLT comer detector [190] operates by comparing a patch of image information in 2 consecutive
frames of an image sequence (developed for the KLT tracking algorithm [190, 171]). It assumes that
images taken at near time instants are usually strongly related to each other, because they refer to the
same scene taken from only slightly different view points. This property can be explained by the

following equation:
I{x,y,t+7)=Mx—Ax,y - Ay, 1)

where 1 is the image intensity function having 3 parameters (space and time variables x, y & 1). The

inter-frame displacement d = (Ax,Ay)is the disp!acement of point x = (x, y) between time instants ¢

and (7+ 7). For the rest of this section, the notation x, y, 7 are dropped for convenience.

An important problem in finding the displacement d of a point from one frame to the next is that a
single pixel cannot be reliably tracked, unless it has a very distinct character with respect to all of its
neighbors. This is because of image plane noise, clutter etc. Because of these problems, KL.T does not
track a single pixel, but windows of pixels, and windows are looked for that contain sufficient texture,
Using small window size is considered important because only small amount of change would have

been accounted for within a small area. Any discrepancy between successive windows that cannot be
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explained by a translation is considered to. be an error, and the displacement vector is chosen to

minimize this residue error. This is expressed for a given window size W as:

£= I[I(x -d)- J(:t:)]2 wdx

where J(x) = X(x —d)+n(x), with noise n. Assuming the inter-frame displacement vector is small,

using Taylor series (truncated to linear term) expansion, the following is possible:

I(x—d)=Kx)—gd. Now the residue equation reduces to,

&= [ (h-gd) wix,

i

where h =I(x)— J(x). Differentiating the residue equation with respect to d and setting the result

equal to zero provides the following easily solvable expression:

Gd=e,
where the 2x2 matrix G = I ge’wdd, and the 2 dimensional vector e = .[(I - J)gwdA. With these
W W

expressions, d can be evaluated (see [190] for complete details). For a stabie system, the 2x2
coefficient matrix G must be both above the image noise level and be well-conditioned. In turn, the
noise requirement implies that both eigenvalues of G must be large, while the conditioning
requirement means that they cannot differ by several orders of magnitude. If the two eigenvalues of G

are A,and A,, then a corner is accepted in 2 window if min(A4,,4,)> A, where A is a predefined

threshold. The KLT comer detector and tracker (the process of corner detection and tracking are
interrelated) complement each other and have been reported to perform well [190]. In our
implementation of KLT, we independently extracted comers from each frame, thus eliminating any

bias that might be introduced by the KLT tracker.

3.3 Performance Measures for Assessing the Quality of Corners for
Tracking

A requirement for point feature tracking is that, having found corners in one frame, the same corners
should be found and matched in successive frames, thereby constructing a time history of corners and
allowing their motion to be analyzed. The ability to consistently find and match corners in this way

relies on the corners being temporally stable and well localized [157]:
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* Good temporal stability - corners should appear in every frame of a sequence (from the time they

are first detected), and shouid not flicker (turn on and off) between frames.

* Accurate localization - the calculated image-plane position of a corner, given by the detector,

should be as close to the actual position of the corner as possible.

Apart from the above two properties that are crucial for tracking features, a good corner detector

should also be robust with respect to noise, and be efficient (computationally cheap to calculate) to

run in real-time (or near real-time).

The Kitchen-Rosenfeld, The KLT, the Harris and the Smith corner detectors have been used for
tracking applications in the past and have been reported to have good corner detection properties
[134]). The Harris detector was originally developed as part of the DROID 3D vision algorithm [84]
and was designed to be temporally stable. The Smith detector was used in the ASSET series projects
[172). ASSET used the 2D image-plane flow of comers to segment a scene into independently
moVihg objects, The Kitchen-Rosenfeld detector is widely reported and has been used in many varied
applications [162, 67]. The Lucas-Kanade-Tomasi detector was employed for the KLT tracker [190]
successfully. Cox et al have also used a variant of this detector for their MHT tracker [58). All four

corner detectors were reported to perform wel! as part of their respective motion algorithms.

In this chapter, we use the corner localization and comner temporal stability properties to assess the
quality of corner detectors for tracking applications (it is worth noting here that the internal
parameters of each corner detector were adjusted to give the best possible result). A common ground
to assess these corner detectors was essential. The best possible scenario was to use static image
sequences. By definition, static scenes contain no moving objects and therefore no moving corners. If
images could be captured with zero noise, all corners in a static scene would remain completely
stationary in the image and would be seen in every frame. Unfortunately, this is not the case, and
noise is always present in an image. A static scene is therefore an ideal way to assess the performance
of corner detectors, because the motion induced by the movements of the camera are knowa to be zero

and any failures of the detectors are due entirely to image-plane (sensor) noise.

The experiments were carried out on a variety of image sequences. First, an indoor image sequence of
atoy dog is used with only artificial light interference (page 51). Secondly, an outdoor sequence of a
building is considered (illuminated only with natural lighting, page 56). Then we considered an indoor
lab sequence (page 60) with plenty of identifiable comers (also contained direct light sources).
Finally, we used a computer image sequence {page 62) with lots of light reflections and curved

objects. Al! four sequences (30 frames in length) were static (with no motion), so that the appearance
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and disappearance of corners in each frame was purely due to image plane noise and illumination
conditions. Such a setup is ideal to analyze the stability and localization properties of the corners.
Finally we considered 2 sequences with very small motion'(about a pixel per frame motion) to assess
the robustness of the corner detectors under very small motion (the Coke and the Rubic sequences, see
Appendix G). Since the analysis was based on an automated tracking process, matching a corner in
every frame required a suitable comner matcher (we avoided manual matching to emulate a true
tracking scenario). In the following section we discuss two corner matchers, and later in the chapter

we evaluate their effectiveness (reliability) for comer matching.

3.4 Matching Corners

The feature tracking process is implemented by first extracting corner features from every frame of a
static image sequence using a corner detector, and then finding a match between every corner in the
initial frame and the subsequent frames. Therefore, it is important to employ a reliable feature
matching strategy to correlate features between frame (no special tracking algorithms were required
for this experiment).

Feature motion prediction is never completelir accurate due to image ~oise, poor motion prediction or
random motions of the camera. It is therefore very common to search for 2 matched feature in a
Region of Interest (RO}, around the predicted position of the feature in the image-plane [168]. The
simplest method of corner matching is to declare the strongest corner within the ROl as being the
same corner feature as the one in the previous frame using only comner positional information
(commonly known as the nearest neighbor block matching technicue). Although this is
computationally very efficient, it is not very robust due to the presence of noise, and more
significantly due to the presence of other (stronger) corners that may enter the ROI. A more reliable
matching scheme is therefore required to prevent mismatches occurring. In the following sub-sections
we discuss 2 matching schemes that have been successfully employed in many tracking applications.
They are the Gradient Vector Matcher [84, 157] and the Product Moment Coefficient Matcher [168].

3.4.1 Gradient Vector Matcher (GVM)

The GVM was developed as part of the DROID project [84]. The DROID algorithm generated a
match confidence by comparing the image-plane intensities and spatial gradients of the corner pixels
to be matched. All corners with a low value of C (i.e. strong corners) are considered candidate corners

for a match with the current comer. The philosophy behind this matcher is that as much of the
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information as possible aiready available via the feature extraction process should be used. Three

image attributes are compared, these being 1 (grey-level intensity), 1, (average grey-level x-gradient),

and 1:'_- (average grey-level y-gradient). I, and I':_\_ are calculated by taking the square roots of

<I!>and < If, > at each pixel, and by averaging over a 3 x 3 neighborhood.

Grey level intensities tend to vary from frame to frame, and so directly comparing I,1, and I, of the

candidate corner’s pixels is not very robust. Most cameras have an automatic iris which regulates the
-amount of light falling on to the CCD, preventing it from becoming flooded. The implication of this
is that bright objects in one part of an image will effect the grey-level values of objects in other

regions of the same image. A vector is constructed from the three components, I, I and 1"_ and

compared to the equivalent vector of the current corner (see Fig. 3.4). A match cenfidence value
m(v,zw) may then be calculated by comparing the normalised magnitude of the difference vectors
between each candidate corner vector (w) and the current corner’s vector (v). As shown by Equation
(3.5).

lv—w]|

W= I

(3.5)

Because linear changes in I result in linear changes in both X, and I, this method is invariant to

linear changes in lighting conditions. The candidate corner which has the minimum value of ni(v,w),
as long as it is below a predefined threshold, is then declared the matched corner. This threshold
therefore sets the quality of the match.

Current comer

Candidate corner

Figure 3.4: The Gradient Vector Matcher (GVM) - match vecior

43




3.4.2 Product Moment Coefficient Matcher (PMCM)

Shapiro, e al. [168] used a template matching technique to find corner matches. The confidence

measure used was the product moment coefficient, given by Equation (3.6).

S, ~T)p, - P)

cor = =1 s ~1<cor<l, (3.6)

n

PAEDDACES

=)

Where ¢, and p, are the intensity values of the template and patch respectively (the temptate is the

area of image about the corner to be matched, and the patch is the area of image about the candidate
corner pixel in the subsequent image), 7 and p are their means. As with the gradient vector matcher,

this measure is also invariant to lighting changes and therefore compares the strucrure of the patches.
rather than their absolute intensities. Only positive values of cor are considered since a negative value
would imply an intensity inversion. A perfect correlation is obtained when cor = 1. As with the GVM,
a threshold is used to set the quality of the matches. Only matches having a value of cor above this

threshold are therefore considered successful matches.

3.5 The Localization and Stability Tests of Corners

The temporal stability test/comparison was constructed so that a stable comer was defined as a corner
that had been successfully tracked throughout the image sequence from the first frame until the
current frame. The localization accuracy test differed from the temporal stability test, in that corners
that had been successfully tracked for 4 frames (d = 3 in the experiments reported in this chapter) up
to and including the current one were used 1o compare the positional accuracy of the corner detectors.
The temporal stability (number of stable corners) and the localization accuracy (corner displacement-

CD) measures were defined as follows:

The number of stable corners is defined by Eq. (3.7),

F N ’
No. of stable corners = Z Z a(i,t), 3.7

1=l =]

where,
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1if the i - th corner has been tracked for ¢ frames
0 otherwise

a(i,y) = {

where N equals the total number of corners and F the total number of frames in the image sequence.

The Corner Displacement-CD (pixels) is given by Eq. (3.8) for the -th frame.

>0, x ([ (0D — x,¢ — DF + 1y, () - y,(t - D)) |
CD, = . (3.8)
Db,

f=

where,

1if thei - th comer has been tracked for d frames, and has appeared in frames -7 and ¢
0 otherwise

by = {
The mean comer displacement — g variance of corner displacement - &, the percentage of stable
comers () successfully tracked, and the number of corner matches in a frame are also useful
indicators of the overall performance of each of the corner detectors. These measures are defined as

given below.

The Mean Corner Displacement (MCD):
F

1
= 3.
pCD (F_d)ZCD, (3.9

t=d

The variance of corner displacement (¢°):

F
1 > (CD, - uCDY (3.10)

c*(CD) = D
- t=d

Note: The value d (taken to be 3 in this chapter, but can be set to any value) appears because we

declare a track valid only if it has been tracked for more than 4 frames.




The percentage of stable corners at the f-th frame:

-

_ Number of stable corners in frame t « 100 (3.11)

+
Total no of corners in frame 1

The number of corner matches:;

The number of corners found in each frame of a sequence that appeared in the initial frame (not
necessarily stable corners). The mean matches - yfmat), is simply the average of matches across the

image sequence, and o® (mar), is the variance for the comer matches.

These overall performance measures are calculated for each corner detector using both matching

methods (GVM and PMCM) for the test image sequences considered.

3.6 Results

1. Corner stability result: The corner stability result reveals the number of stable corners identified
throughout the sequence. In other words, the corners that appeared in every frame of the sequence
are considered stable corners. The result is given as a percentage of the total number of corners

extracted in the initia) frame,

2. First frame corner matches result: This quantity indicates the number of corners found in the
initial frame that appeared in the subsequent frames. These corners might not have appeared in
every frame (appeared and disappeared throughout the sequence), but might have made their
appearance in most number of frames. The mean of this quantity will give the average number of
corners that were matched throughout the sequence. The first frame corner matches along with

corner stability result gives a good indication of the corner detector’s stability property.

Ll

Corner displacement result: The corner displacement resuit reveals the displacement of a corner
in the n-th frame from its position in the initial frame (assuming that the corner considered
appeared in the »n-th frame). If the corner considered did not make an appearance in any one of the
subsequent frames, then a vaiue of CD = 3 pixels (displaced by 3 pixels) are assigned, indicating
poor localization of that corner. The mean comer displacement value will indicate the average

displacement of a corner from its initial position. An important aspect to notice for this test is the
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assumption that the positions of the corners in the first frame of a sequence are considered correct.
Such an assumption may not be correct from a theoretical point of view, but from a practical
sense, it is acceptable. This is because one would normally like to track object features from the
initial frame that they view, therefore it makes sense to make the positions of the comers in the

initial frame as the reference positions.

The following experiments are carried out using the above measures to assess the quality of comers

extracted by the 4 corner detectors.

Experiment 1 - General performance: The above properties (1-3) are measured for each of the

sequences considered.

Experiment 2 - Performance under noise: Uncorrelated Gaussian noise is added to each frame of a
sequence at a specified level (experiments were carried out with noise variance ranging from 0 — 25).
The 4 corner detectors are applied on the noisy sequence, and the 3 corner properties are observed at

each noise level considered.

Experiment 3 - Performance with very small motion: Two sequences (the Coke and the Rubic
sequence) with very small motion (around | pixel inter-frame motion) are considered {The results are
reported in Appendix A). The 3 corner properties are measured to assess the quality of comers

extracted by each detector when a small motion is present.

The complete results for all the experiments carried out are tabulated in Tables 3:1 — 3.12. The results

are also quantitatively and qualitatively displayed in Figures 3.5 - 3.14.
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Dog Sequence Results (Comparing 2 different patch sizes)

Detectors Harris KLT Kiichen-Rosenfeld SUSAN

Threshold gvm-0.009/ pmem-0.7 | gvm-0.009/pmcm-0.7 | gum-0.009/pmem-0.7 | gm-0.008 7 pmem-0.7

Patch size 5x5 7x7 5x5 7 5x5 7x7 5x5 7x7
GVM | »(CD) § 0.4928 | 0.4928 | 0.3038 | 0.3038 | 0.3875 | 03875 { 1.1894 | 1.18%4
GVM | ¢'(CD) | 0.0073 § 0.0073 | 0.0017 | 0.0017 | 0.0036 | 0.0036 | 0.0141 | 0.0141
GVM | n(ma) | 91.6897 | 91.6897 | 97.2759 } 97.275% | 92.1379 ] 92.1379 | 81.5862 | 81.5862
GVM | o'may | 2.69 2.69 0.61 0.61 1.70 1.70 4.44 4.44
GVM | 1 (%) 82.5 82.5 93.0 93.0 79.8 79.8 62.2 622
PMCM { n(CD) | 0.4465 | 0.4523 | 0.3329 | 0.3323 | 0.3407 | 03407 | 1.3716 | 1.3517
PMCM | o%(CD) | 0.0034 | 0.0034 | 0.0010 | 0.0006 | 0.0005 | 0.0005 | 0.0051 | 0.0041
PMCM | p(may | 91.8276 | 92.2069 | 94.6897 | 94.2069 | 93.0345 | 93.0345 | 74.7241 § 74.5500
PMCM | o’may | 2.76 2.71 1.38 1.06 1.89 1.89 6.61 5.69
PMCM | r (%} 82.5 82.5 88.0 88.0 82.8 82.8 49.0 50.0

Tabie 3.1: Dog sequence result. The performance of the 4 corner detectors using di _ﬁ'erem image patch sizes to

match the corners in successive frames.

Building Sequence Results (Comparing 2 different patch sizes)

Detectors Harris KLT Kitchen-Rosenfeld SUSAN

Threshold gvm-0.009/ pmem-0.7 | gvm-0.009/pmem-0.7 § gvm-0.00%/pmem-0.7 | gvm-0.009/ pmem-0.7

Patch size 5x5 7x7 5x5 7x7 5x5 7x7 8x5 x7
GVM ] u(CD) | 0.5515 | 0.5515 | 0.2756 | 0.2756 | 0.8817 | 0.8817 | 1.2463 | 1.2463
GVM [ <(CD) § 0.0029 | 0.0029 | 0.0010 | 0.0010 { 0.0073 | 0.0073 } 0.0048 | 0.0048
GVM | n(mat) | 130.68 | 130.68 | 141.03 | 141.03 | 115.8% | 11589 { 11831 | 118.31
GVM |l dmay | 517 5.17 3.82 3.82 32.50 32.50 18.28 18.28
GVM | r(%) 76.82 76.82 84.6 846 53.7 53.7 49.0 49.0
PMCM | u(CD) | 0.5779 | 0.5029 | 0.4509 | 0.4160 { 0.8164 | 0.8013 | 1.3986 | 1.3366
PMCM | &°(CD) | 0.0012 | 0.0005 | 0.0008 | 0.0008 | 0.0078 | 0.0070 | 0.0098 | 0.006]
PMCM | n{mat) | 126.62 § 129.27 | 130.48 | 133.51 | 11420 § 11475 { 103.41 | 106.00
PMCM | o’(may | 7.54 6.61 7.76 5.00 32.78 29.35 23.55 21.58
PMCM { (%) 70.2 72.8 70.0 740 51.6 53.0 384 41.7

Table 3.2: Building sequence result. The performance of the 4 corner detectors using different image patch
sizes Lo match the corners in successive frames.
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Dog Sequence Resuits (effect of synthetic noise)

Comer Detector KLT
Patch Size 5x5
Noise Variance c=0 c=5 c=10 c=15 c=20 c=25
Threshold T1 T2 Ti T2 T1 T2 T1 T2 Tl T2 T1 T2
GVM p{CD) | 06154 | 03038 | 1 .693;3 0.5753 | 2.5644 § 10194 | 2.3511 | 1.3481 | 2.9669 | 1.7534 | 2.9992 | 1.968]
GVM o (CD) | 0.00i1 | 0.0017 | 0.6229 | 0.0058 | 0.0150 ] 0.0121 | 0.0080 } 0.01561 | 0.0018 | 0.0094 | 0.0090 | 0.0079
GVM | nemat) J 8582 | 9727 | 62358 | 9337 | 3765 | 87.86 | 2075 | 8244 | 1386 | 7717 | 955 | 7193
GVM | o*(mat) | 365 | 6136 | 1458 | 326 § 2663 | 480 | 1004 | 885 | 618 | 1138 [ 92818 | 613
GVM | yeo) | 690 | 930 | 270 | 800 | 20 [ 670 1.0 | 350 00 | 440 1 o0 | 420
PMCM | r(CD) | 03329 | 0.4463 | 0.8426 | 1.6325 | 1.5879 | 2.6482 ] 2.3133 | 2.9498 | 2.7082 [ 3.0000 ]| 2.8887 § 3.0000
PMCM | o2(CD) ] 0.0010 | 0.0007 | 0.0034 | 0.0166 | 0.0072 | 0.0128 | 0.0047 | 0.0002 | 0.0047 | 0.0000 | 0.0024 | 0.0000
PMCM | n(ma) | 9468 | 9024 | 2389 | 6068 | 6206 § 2917 | 4303 | 896 [ 2610 | 224 | 1620 { 05517
PMCM | o (map 138 411 278 1424 6.47 10,07 996 313 3.54 225 6.85 0.5922
PMCM | 1@ § 880 | 770 | 650 | 320 | 400 | 70 | 210 10 9.0 0.0 20 0.0

Table 3.3: Indoor Dog Sequence result using KLT: Comparison of GVM (T1=0.0007, T2=0.009) and PMCM
(T1=0.7, T2=0.9) performances at varied noise levels for the KLT corner detector. The corner displacement
(CD), number of matches (mat) and the percentage of features at the end of tracking ff are performance

measures for the comparison.

Corner Detector Harris

Patch Size 5x5
Noise Variance c=0 c=5 c=10 c=15 o=20 c=25

Threshold Tl T2, ] T1 T2 T1 T2 Ti T2 Tl T2 T1 T2
GVM p(CD} | 03934 § 03403 | 2.0322 | 12753 | 25305 | 1.6972 { 23353 | 2.1034 | 29470 ¢ 2.5024 | 2.9420 | 2.6703
GVM o (CD) | 0.0104 | 0.0083 | 0.1415 | 0.0256 { 0.0984 | 0.0320 | 0.1880 | 0.0247 | 0.0008 | 0.008% | 0.0029 { 0.0050
GVM p {mat) 83.24 50.41 38.24 80.65 3534 74,48 2524 68.86 16.20 38.13 175 44.03
GVM o (mat) 645 1.27 28.99 8.9 16.91 7.83 24,39 19.77 10.44 19.36 10.73 19.06
GVM ¥ {%o) 68.0 85.0 3.0 60.0 5.0 46.0 3.0 340 20 23.0 1.0 14.0
PMCM { n(CD) | 03641 | 03114 | 1.2724 | 1.7583 | 1.5822 | 22304 | 2.0836 | 2.2716 | 2,7022 | 29958 § 2.6502 | 29543
PMCM | <*CD) | 0.0060 | 0.0038 | 0.0742 ] 02150 | 0.0293 ] 0.0764 | 0.0744 | 0.1445 | 0.016]1 | 0.0001 | 0.0068 | 0.0628
PMCM [ u{mar) 90.956 8848 7324 24.51 7172 35.89 36.13 13.10 38.89 3.86 37.17 19.58
PMCM | &*(mat) 23] 3.00 19.0t 1.36 12.06 25.31 31.34 1.03 15.61 294 12.69 14.03
PMCM | v(%) 860 } 790 | 410 7.0 37.0 2.0 19.0 20 6.0 0.0 10.0 0.0

Table 3.4; Indoor Dog Sequence resuit using Harris: Comparison of GVM (T1=0.0007, T2=0.009} and PMCM
(T1=0.7, T2=0.9) performances at varied noise levels for the Harris corner detector. The corner displacement

(CD), number of maiches (mat) and the percentage of features at the end of tracking y) are performance
measures for the comparison.




Dog Sequence Results (effect of synthetic noise) Cont.

Comer Detector Kitchen-Rosenfeld
Patch Size " 5x5

Noise Variance c=0 g=8§ =10 =15 oc=20 =15
Threshold T1 T2 T1 T2 Tl T2 T1 T2 T1 T2 T1 T2

GVM p(CD} | 03205 | 03814 § 22135 § 1.4076 | 2.5005 ]| 2.0331 | 24975 | 2.2025 | 2.6869 | 2.5025 | 2.9684 | 2.8622

GVM | <€Dy | 0.0100 | 0.0083 | 0.1487 | 0.0411 [ 0.1623 | 0.0207 | 0.1094 | 0.0351 | 0.0280 | 0.0290 | 0.0008 | 0.0058

GVM p {mat} 86.68 | 9213 1 3827 } 7196 | 3610 | 63.13 | 24.13 | 5496 | 1558 | 46.13 13.37 | 3210

GVM |} o*@may | 221 | 170 [ 1957 F 1348 [ 2102 [ 1922 [ 1818 | 1437 | 886 | 1632 | 1802 | 3036

GVM v(%) 4.7 7.8 8.1 46.4 kX4 303 3.0 24.24 1.0 13.1 0.0 5.0

PMCM | n(CD) { 02779 | 03616 | 14155 | 2.1143 | 19138 [ 2.2344 | 22036 | 2.5165 | 2.8421 | 3.0000 | 2.8773 | 29543

PMCM | &*(CD) | 0.0075 | 0.0176 | 0.0802 | 02044 [ 0.0541 [ 0.0811 | 0.0798 | 0.1951 | 0.0091 | ¢.0000 | 0.0073 | 0.0029

PMCM | nimat) | 93.03 | 89.86 | 63.17 | 2010 } 60.86 | 3358 § 4344 | 1144 { 2820 | 23793 | 2593 13.68

PMCM | o*(mat) | 189 | 308 | 1186 | 898 | 1963 | 2722 [ 15.00 | 514 | 1885 | 22354 | 21.65 | 2338

PMCM ¥ (%) 828 4.7 313 50 252 6.0 15.1 1.0 4.0 0.0000 4.0 1.0

Table 3.3: Indoor Dog Sequence result using KitchenRosenfeld: Comparison of GVM (T1=0.0007, T2=0.009}
and PMCM (T1=0.7, T2=0.9} performances at varied noise levels for the KitchenRosenfeld corner detector.
The corner displacement (CD), number of matches (mat) and the percentage of features at the end of tracking
(y) are performance measures for the comparison.

Comer Detector SUSAN
Patch Size 5x5

Noise Variance c=0 c=35 c=10 c=15 c=20 c=25
Threshold Tl T2 T T2 T1 T2 T1 T2 T1 T2 T1 T2

GVM u(CD) | 1.4463 | 1.1466 | 2.8709 | 2.3452 | 2.9810 | 2.5889 | 2.8080 | 2.7320 | 3.0000 | 2.9413 § 3.0000 | 2.9667

GVM | o*(CD) | 0.0847 | 0.0222 } 0.1195 | 0.0211 | 0.0046 | 0.0271 | 0.2359 § 0.0453 | 0.0000 ] 0.0045 | 0.0000 { 0.0031

GVM mi(maty | 6082 | 8158 19.00 § 69.10 | 1058 | 54.34 6.27 46.10 362 36.68 3.96 34.51

GVM | o’(may) | 1172 4.44 28.62 19.67 1272 9.19 7.4 16.78 6.51 34.48 373 19.28

GVM ¥ (%) 28.5 622 0.0 214 0.0 112 0.0 7.1 0.0 4.0 0.00 1.0

PMCM | w{(CD) | 1.1751 | 1.3405 | 2.5527 | 2.9301 § 2.8621 | 29575 | 2.8499 [ 2.925¢ | 3.0007 | 3.0000 | 2.9932 | 2.9991

PMCM | o*CD) { 0.0232 | 0.0428 § 0.0726 | 0.0375 | 2.0203 | 0.0147 | 0.1057 ] 0.1427 | 0.0001 § 0.0000 } 0.0004 | 0.0000

PMCM | n(ma) | 7472 | 6251 4072 | 1220 | 3135 1.0 19.72 234 11.48 0.31 20.10 6.34

PMCM | o’(mat) 6.61 1590 | 30.68 18.64 | 1832 710 25.99 270 16.04 0.62 1692 | 12.15

PMCM | %) | 489 | 316 | 5.1 0.0 10 [ oo [ oo [ 0o F oo | 00 | oo | 0o

Table 3.6: Indoor Dog Sequence result using SUSAN: Comparison of GVM (T1=0.0007, T2=0.009) and PMCM
(T1=0.7, T2=0.9) performances at varied noise levels for the SUSAN corner detector. The corner displacement

(CD), number of matches (mat}) and the percentage of features at the end of tracking y) are performance
measures for the comparison.

50




(c) Using K ftchen-Rosenfe! | (d) Using S UAN

Figure 3.5: The best 100 corners extracted from the indoor static dog sequence. (a) Using KLT corner detector. (b) Using Harris corner detector. (c) Using Kitchen-
Rosenfeld corner detector. (d} Using SUSAN corner detector.




Dog Sequence Results (Performance vs, Number of Frames)
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Figure 3.6: Corner detector performance-test for the 'static dog' sequence (the best 100 comers as seen by each
detector are extracted from each frame). (a} The KLT, Harris, Kitchen-Rosenfeld and SUSAN corner detectors
are assessed for stable corners (percentage) using GVM matcher. (b) Stable corners compared using the k
PMCM matcher. (¢) Corner displacement test using GVM matcher. (d) Corner displacemens test using PMCM ;
matcher. (e) Number of successful first frame corner maiches using GVM. (f) Number of successful first frame

corner matches using PMCM. In all 3 tests the KLT comer detector gives the best performance (for both
matchers) followed by Harris, Kitchen-Rosenfeld and SUSAN detectors.
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Dog Sequence Results (variation with noise)

100 T x -

3

Stable comers (%)
Stable corners (%)

g

% 5 16 15 20 25 % 5 W 15 20 2%
. Noise variance Noise varance
(a) Using GVM (Thresh=0.004) (b) Using PMCM (Thresh = 0.8)

Number of matches

%y 5 16 15 20 2 % 5 W 15 20 25
Moise vartance MNoise varance
(c) Using GVM (Thresh=0.004) (d) Using PMCM (Thresh = 0.8}
3
25
=
g 2
its
5|
05},
0 i " L — c " M "
0 5 10 15 20 25 0 5 10 15 20 25
Noise varance Noioe variance
(e) Using GVM (Thresh=0.004} () Using PMCM (Thresh = 0.8)

Figure 3.7: Performance of the corner detectors when applied to the static dog sequence at varied noise levels
(noise variance ranging from 0 - 25). (a) The percentage stable corners using GVM matcher. (b) The
percentage stable corners using PMCM metcher. (c) The number of first frame corner masches using GVM. (d)
The number of first frame corner matches using PMCM, (e) Corner displacement using the GVM. (f) Corner
displacement using the PMCM.




Building Sequence Results (effect of synthetic noise)

Corner Detector : KLT
Patch Size 5x5

Noise Variance =0 c=5 c=10 c=15 o=20 c=25
Threshold T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

GVM u(CD) | 0.8852 | 02782 | 2.6980 | 0.8931 | 2.9343 | 1.5726 | 2.9671 | 2.0177 | 2.9897 | 24095 | 2.9946 | 2.6025

GVM | <(CD) | 0.0041 | 0.0009 } 0017} | D.0030 | 0.0010 | 0.0035 | 0.0001 | 0.0056 | 0.0001 | 0.0047 | 0.0001 | 0.0040

GVM | p(may) [ 10996 | 14082 | 4327 | 13006 | 1441 | (1748 | 6.7586 | 10331 | 3.4828 | 89.82 | 24483 | 75.65

GVM | o(mat) | 29.68 | 448 [ 3882 ] 937 | 1410 | 1790 | 1087 | 31.45 | 742 | 33.65 § 1.8335 | 57.46

GVM 1 (%) 46.6 833 46 64.0 1.3 48.6 0.6 30.6 0.0 153 0.0 16.0

PMCM | w(CD) | 04556 | 0.8026 | 1.8354 { 2.6074 | 2.8133 | 2.9896 [ 2.9642 | 3.0000 | 2.9934 | 3.0000 | 3.0000 | 3.0000

PMCM | &*(D) | 0.0008 | 0.0033 | 0.0135 | 0.0137 | 0.0055 | 0.0002 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000

PMCM | n(may § 13024 | 11279 | 79.86 | 3882 | 20.10 | 39310 | 85862 | 0.6207 | 29310 | 0.2414 | 0.8966 | 0.0345

PMCM | o (may) 825 2092 | 3370 | 1855 9.88 1.58 ] 52081 | 04423 | 1.2366 | 0.2521 | 04376 | 0.0333

PMCM | v | 693 | 520 | 253 | 73 26 0.0 06 0.0 0.0 0.0 00 | oo

Table 3.7: Outdoor Building Sequence using KLT: Comparison of GVM (T1=0.0007, T2=0.009) and PMCM
J1=0.7, T2=0.9) performances at varied noise levels for the KLT corner detector. The corner displacement

(CD), number of matches (mat) and the percentage of features af the end of tracking ¥} are performance
measures for the comparison.

Comer Detector Harris
Patch Size 5x5

Noise Variance c=0 c=5 c=10 c=15 c=20 c=25
Threshold T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

GVM u(CD) § 05255 | 0.4416 | 2.4286 | 13513 | 2.9414 | 2.7288 | 3.0135 | 2.7603 | 2.9975 | 2.8751 | 29965 | 2.9490

GVM o*{CD) | 0.0253 | 0.0122 | 0.0364 | 0.0104 ] 0.0036 | €.0177 § 0.1150 | 0.J451 | 0.0001 | 0.0027 | 0.0001 | 0.0007

GVvM pi(mat) | 117.89 | 130.68 1 68.82 | 11510 | 26.34 §7.51 13.17 | 72.82 | 66897 | 5268 § 42414 | 38.86

GVM | o*(maty | 1726 5.17 42.4 1698 | 2863 | 3328 19.72 | 44.14 4.00 4642 | 3.2176 | 58.73

GVM | veo) 8 622 | 768 | 72 | 503 | 06 | 225 | 06 9.2 0.0 39 0.0 26

PMCM | p(CD) | 04822 | 0.5094 | 1.4535 | 22332 | 2.5327 § 2.9541 { 2.9123 | 29978 | 2.9908 | 2.9995 | 2.9911 ] 3.0000

PMCM | o'(CD) | 0.0180 | 0.0263 { 0.0127 | 0.0244 | 0.0215 | 0.0028 | 0.0023 | 0.0001 | 0.0002 | 0.0000 { 0.0005 | 0.0000

PMCM ¥ p(mat) | i2662 | 12093 | 103.51 | 76.62 [ 6110 15.89 | 2631 | 22759 | 1189 1.06 | 53793 | 0.0000

PMCM | o*(mat) | 7.54 1089 | 18.18 | 2478 | 50.92 18.43 | 28.00 | 1.9929 { 12.23 6.61 7.6216 | 0.0000

PMCM | voa | 7008 | 642 | 344 | 152 § 99 0.0 2.0 0.0 0.0 0.0 0.0 0.0

Table 3.8: Outdoor Building Sequence resuit using Harris: Comparison of GVM (T1=0.0007, T2=0.009} and
PMCM (T1=0.7, T2=0.9} performances at varied noise levels for the Harris corner detector. The corner

displacement (CD), number of matches (mat} and the percentage of features at the end of trackingy are
performance measures for the comparison,
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Building Sequence Results (effect of synthetic noise) Cont.

Corner Detector Kitchen-Rosenfeld
Patch Size 5x5
Noise Variance c=0 c=5 o=10 c=15 =20 c=25
Threshold T1 T2 T1 T2 Tt T2 T1 T2 T1 T2 T1 T2
GVM | n(CDy | 08621 } 09031 | 26223 | 23226 | 28746 | 2.7730 | 2.9377 [ 2.8623 | 2.9708 | 2.8804 | 2.9806 | 2.9610
GVM | «*«cD)y { 0.0824 { 0.0573 | 0.0101 | 0.0131 | 0.0016 | 0.0027 | 0.0020 | 0.0018 | 0.0005 | 0.0014 | 0.0000 | 0.0006
GVM | pimat) | 107.89 | 11580 | 5324 ] 7541 | 2506 ¥ 5200 | 1634 | 3855 | 1096 | 3744 | 6582 | 22.03
GVM | o*(mat) | 44.09 | 3250 § 5397 | 4134 | 1847 | 4324 | 1843 | 5704 | 1237 | 3217 | 552 | 2231
GVM | 1% 469 | 336 87 ] 1744 } 33 8.0 1.3 4.7 0.6 47 0.6 2.0
PMCM | u(cp) | 0.8224 0.8465 23928 § 2.6107 | 2.8486 | 2.8915 § 2.9069 | 2.9820 | 2.9625 | 2.9955 | 2.9797 | 3.0000
PMCM | o*(cD) | 0.0801 | 0.1010 | 0.0211 | 0.0127 | 0.0058 | 0.0015 § 0.0010 | 0.0016 | 0.0010 | 0.0001 | 0.0000 | 0.0000
PMCM | n(ma) | 13420 | 10934 | 6693 { 5003 | 3613 | 1913 | 21,03 | 95172 | 1348 | 310 [ 67586 | 0.9828
PMCM | o*(mat) | 3278 | 4553 | 5213 | 456 | 3432 | 736 | 1872 | 4.1807 | 49394 { 147 | 9.1486 | 03187
PMCM | y(%) 516 | 463 | 107 73 33 20 26 0.0 0.6 0.0 0.6 0.0

Table 3.9: Outdoor Building Sequence result using KitchenRosenfeld: Comparison of GVM (T1=0.0007,
12=0.009) and PMCM (T1=0.7, T2=0.9) performances at varied noise levels for the KitcherRosenfeld corner
detector. The corner displacement (CD), number of matches (mat) and the percentage of features at the end of
tracking (y) are performance measures for the comparison.

Comer Detector SUSAN
Patch Size 5x35
Noise Variance c=0 c=5 c=10 c=15 c=20 c=25
Threshold T1 T2 Ti T2 T1 T2 T1 T2 T1 T2 T1 T2
GVM p(CD) 1.4536 1.1980 | 2.9560 | 2.4322 | 2.9948 | 2.B880 | 2.9940 | 29871 | 29934 | 29910 } 29993 | 3.0067
GVM {CD) | 0.1444 ] 0.0572 | 0.0015 | 0.0147 | 0.0002 | 0.0082 | 0.0001 | 0.0024 | 0.0001 | 0.0006 } 0.0000 | 0.0006
GVM p (mat} 87.41 118,31 | 3693 94.96 14.06 66,17 | 80690 | 4896 § 3.8276 | 3772 544 36.96
GVM of(mat) | 27.82 | 1828 2399 | 3044 15.23 3869 | 25.65 59.55 ] 49013 | 47.71 6.31 33.89
GVM ¥ (%) 251 49.0 1.3 13.9 0.0 39 0.0 0.0 0.0 0.6 0.0 0.0
PMCM §J p{CD) 12676 | 1.3243 | 2.7669 ] 2.9494 | 29684 | 2.9875 | 2.9937 | 2.9936 | 2.9926 | 3.0000 | 2.9985 | 3.0000
PMCM | (D) | 00768 | 0.1020 | 0.0175 { 0.0067 | 0.0012 } 0.0002 {1 ¢.0002 | 0.0000 | 0.0001 | 0.0000 } 0.0000 | 0.0000
PMCM | u(mat) § 10341 | 91.5] 69.86 | 40.93 35.86 11.34 1944 ] 31034 | 1055 | 0.7931 | 9.6552 | 0.4483
PMCM | o*(mat) 23.55. 34.11 3673 | 2896 37.22 11.19 3017 595 1638 | 1.1986 | 89845 | 0.5922
PMCM | v | 3841 | 3178 | 33 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 3.10: Outdoor Building Sequence result using SUSAN: Comparison of GVM (T1=0.0007, T2=0.009) and
PMCM (T1=0.7, T2=0.9) performances at varied noise levels for the SUSAN corner detector. The corner
displacement (CD), number of matches (mat) and the percentage of features at the end of tracking yf are

performance measures for the comparison.
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Figure 3.8: The best 150 corners extracted from the outdoor static building sequence. (a) Using KLT corner detector. (b) Using Harris corner detector. {c) Using K itchen-
Rosenfeld corner detector. (d) Using SUSAN corner detector




Building Sequence Results (Performance vs. Number of Frames)
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Figure 3.9: Comer detector performance-test for the ‘static building’ sequence (the best 150 corners as seen by
each detector are extracted from each frame). (a) The KLT, Harris, Kitchen-Rosenfeld and SUSAN corner detectors ;
are assessed for stable corners (percentage) using GVM maicher. (b) Stable corners compared using the PMCM .
matcher. (¢) Corner displacement test using GVM matcher. (d) Corner displacement test using PMCM matcher. (e)
Number of successful first frame corner matches using GVM, (f} Number of successful first frame corner matches
using PMCM, In all 3 tests the KLT comer detector gives the best performance (for both matchers} followed by
Harris, Kitchen-Rosenfeld and SUSAN detectors.
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E Figure 3.10: Performance of the corner detectors when applied to the static building sequence at varied noise levels

{noise variance ranging from 0 — 25). (a) The percentage stable corners using GVM matcher. (b) The percentage
stable corners using PMCM matcher. (¢} The number of first frame corner matches using GVM. (d) The number of
first frame corner matches using PMCM. (e) Corner displacement using the GVM. (f) Corner displacement using
the PMCM.
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Lab Sequence Results

Comner Detector KLT Harris Kitch-Rosen SUSAN
“Patch Size 5%5 5% 5%5 5%
Threshold (GVM/PMCM) | T=0.004 | T=0.8 | T=0.004 | T=0.8 | T=0.004 | T=0.8 | T=0.004 | T=0.8

GVM # (CD) 0.3386 - 0.2493 - 0.5047 - 0.7039 -
GVM o’ (CD) 0.0005 - 0.0014 - 0.0053 - 0.0034 -
GVM | . u (matches) 184.89 - 191.86 - 179.13 - 176.10 .
GVM o’ (matches) 436 - 3.56 - 1142 . 15.47 -
GVM y (%) 82.5 - 87.0 - 78.9 - 67.0 -
PMCM p (CD) - 0.4079 - 0.2071 - 0.4416 - 0.9449
PMCM ¢ (CD) - 0.0003 - 0.0003 - 0.0023 - 0.0030
PMCM p (matches) - 178.27 - 191.51 - 177.27 - 157.93
PMCM o’ (matches) - 3.7 - 4.87 - 11.44 - 26.13
PMCM ¥ (%) - 78.0 - 855 . 76.8 - 51.5

Table 3.11: Performance of the 4 corner detectors for the static lab sequence (only a single threshold value is

used for the 2 matchers employed).

Computer Sequence Results

Corner Detector KLT Harris Kitch-Rosen SUSAN
Patch Size 5x5 x5 5%5 5x5
Threshold (GVAM/PMCM) | T=0.004 | T=0.8 } T=0.004 | T=0.8 | T=0.004 | T=08 | T=0.004 { T=0.8

GVM u (CD) 0.6212 - 0.3720 - 0.8542 - 1.5328 -
GVM o* (CD) 0.0009 - 0.0015 - 0.0067 - 0.0064 -
GVM u {matches) | 223.44 . 237.93 - 210.10 - 196.86 -
GVM o’ (matches) 21.33 . 14.96 - 15.54 - 30.67 -
GVM ¥ (%) 73.6 - 84.2 - 64.9 - 43.7 -
PMCM p {(CD) - 0.9669 - 0.3915 - 0.7040 - 1.8518
PMCM c*(CD) - 0.0021 - 0.0002 . 0.0014 - 0.0204
PMCM u (matches) - 192.31 - 229.20 . 205.72 - 157.41
PMCM o? (matches) - 67.59 - 12.71 - 21.23 - 41.82
PMCM ¥ (%) - 53.6 - 77.0 - 60.5 - 277

value is used for the 2 matchers employed).

9

Table 3.12: Performance of the 4 corner detectors for the static computer sequence (only a single threshold
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(b) Using SUSAN

(¢) Using ilchen—Rosenfeld

|
!
| Figure 3.11: The best 200 corners extracted from the static lab sequence. (a) Using KLT corner detector. (b) Using Harris corner detector. (c) Using Kitchen-Rosenfeld

corner detector. (d} Using SUSAN corner detector.




Lab Sequence Results (Performance vs. Number of Frames)
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Figure 3.12: Corner detector performance-test for the 'static lab' sequence (the best 200 corners as seen by each
detector are extracted from each frame). (a} The KLT, Harris, Kitchen-Rosenfeld and SUSAN comer detectors are
assessed for stable corners (percentage) using GVM maicher. (b} Stable corners compared using the PMCM
matcher. (c) Corer displacemeni test using GVM matcher. {d) Corner displacement test using PMCM matcher. (e)
Number of successful first frame corner matches using GVM., (f) Number of successful first frame corner matches
using PMCM, In all 3 tests the Hariis corner detector gives the best performance (for both matchers) followed by
KLT, Kitchen-Rosenfeld and SUSAN detectors.
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(c) Using Kitchen-Rosenfeld (d) Using SUSAN

Figure 3.13: The best 250 corners exiracted from the static computer sequence. (a) Using KLT corner detector (b) Using Harris corner detector. (c) Using Kitchen-Rosenfeld
corner detector. (d) Using SUSAN corner detector.
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Computer Sequence Results (Performance vs, Number of Frames)
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Figure 3.14: Corner detector performance-test for the 'static computer’ sequence (the best 250 corners as seen by
each detector are extracted from each frame). (a) The KLT, Harris, Kitchen-Rosenfeld and SUSAN comer deteciors
are assessed for stable corners (percentage) using GVM matcher. (b) Stable corners compared using the PMCM
matcher. (c) Corner displacement test using GVM matcher. (d) Corner displacement test using PMCM matcher. (e)
Number of successful first frame corner maiches using GVM. (f} Number of successful first frame comer matches
using PMCM, In all 3 tests the Harris comer detector gives the best performance (for both maichers} followed by

KLT, Kitchen-Rosenfeld and SUSAN detectors.
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3.7 Discussion

The following sub-sections give detail results on the empirical evaluations carried on the four image

sequences considered.
3.7.1 Test Results for Indoor Dog Sequence

A 30 frame static dog sequence was considered. The 100 best corners as seen by each of the corner
detectors were extracted. Fig. (3.5) shows the qualitative results obtained by applying the 4 corner

detectors with the 100 corners superimposed on the first frame.
3.7.1.1 General Performance

From the results reported in Fig. (3.6) and Tables 3.1, 3.3-3.6, it can be seen that the KLT detector
provided the largest number of stable corners using the GVM matcher with a 0.009 threshold (93%
stable comefs) and vsing the PMCM matcher with a 0.7 threshold (88% stable corners). The number
of first frame comer matches also indicate that KLT provided the best result (Fig. (3.6¢,f), Table
(3.3)). About 97% of matches are reported using GVM matcher and about 95% matches are reported
employing the PMCM matcher. The mean corner displacement result indicates that the KLT provided
about 0.3 pixel displacement using both matchers (Fig. (3.6¢,d)). Both matchers were also tested with
a more stringent threshold values (0.0007 for GVM and 0.9 for PMCM)}, and for complete details see
Tables 3.3-3.6. The 2 matchers were tested with 2 different sizes of patches (5x5 and 7x7), but no

significant differences were observed (Table 3.1).

The Harris corner detector also provided equally good results. Fig. (3.6) indicates that 86% stable
corners are detected using GVM matcher (with 0.009 threshold) and about 87% stable comers are
reported using the PMCM matcher (with 0.7 threshold). The first frame corner matches also shows
that about 90% matches are found using GVM and PMCM matchers for the same threshold values.
The mean corner displacement result suggest that the Harris detector is as good as the KLT detector in
providing around 0.3 pixel displacement for both matchers, which indicate good corner localization
property. Tests carried out using tighter threshold values (GVM wit 0.0007 and PMCM with 0.9) are
reported in Table 3.4, which shows that Harris detector performed better than the KLT detector. As
before, the difference in patch sizes did not result in significant difference for each of the tests carried
out (Table 3.1).
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Kitchen-Rosenfeld detector resulted with about 82% stable corners using GVM with a threshold of
(.009 and about 84% using PMCM with a 0.7 threshold. The number of first frame matches and mean

comer displacement are as good as for the Harris detector (Fig. (3.6)). Agafn with tighter thresholds,

the performance results are refined as one might expect {(see Table (3.1)).

The SUSAN detector is the least impressive of the 4 detectors (Fig. 3.6). Only around 62% stable
corness are reported using GVM {with 0.009 threshold) and about 50% using PMCM matcher (with
0.7 threshold). The mean first frame comer matches also indicate that on average only about 80%
corners are matched throughout the sequence using GVM, and about 75% using PMCM matcher. The
mean corner displacement result shows that about 1.2 pixef displacement is observed using GVM, and
about 135 pixels using PMCM. This suggests poor localization of corners for the sequence
considered. Tighter matching constraints resulted in 0% stable comers detected (for both matchers)
and a poor mean comer displacement (see Table (3.6)). A value of 3 pixels is assigned (indicating

poor localization property) for corner displacement if there was no valid match of a corner is reported.

3.7.1.2 Performance under Noise

We observed the results of the 4 corner detection algorithms on the same sequence, after adding
Gaussian noise to each frame (apart from frame 1) at varied noise levels (with noise variance ranging
from 0 - 25) prior to applying the detectors. The resuits are reported in Tables (3.3)-(3.6) and Fig.
(3.7). As expected the quality of result decreases rapidly with added noise. The stable corners using
KLT dropped from 90% (at o® = 0) to about 40% (at ¢° = 25) using GVM (at threshold 0.004), while
Harris performance dropped from around 83% to 15%, Kitchen-Rosenfeld dropped from about 80%
to 8%, and SUSAN dropped from 60% to 0 %. Added noise has more effe‘ct using the PMCM
matcher (0.8 thre.shold), because it uses an image patch correlation technique to match comers in
consecutive frames, thus the result can be somewhat inaccurate (See Fig. (3.7b,d,f)). The number of
first frame corner matches also follows simifar trend as the stable cormers. The mean corner
displacement also deteriorates rapidly with noise. KLT provided around 0.3 pixels at ® = 0, which
increased to nearly 2 pixels at ° =25, while Harris result jumped from around 0.3 pixel to 2.5 pixels
for the same range of noise variation. Kitchen-Rosenfeld detector reported similar corner
displacement values to Harris method, while using SUSAN, the displacement increased from 1.2
pixels to nearly 3 pixels. Similar trends are also reported using the PMCM matcher (Fig (3.7)). The
overall experiments suggest that KLT and Harris corner detectors still outperform the Kitchen-

Rosenfeld and SUSAN detectors under noise.
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3.7.2 Test Results for Outdoor Building Sequence

A 30 frame “static outdoor building’ sequence with only natural lighting was considered. The 150 best
corners as seen by each of the corner detectors were extracted. Fig. (3.8) shows the qualitative results

obtained by applying the 4 corner detectors.

3.7.2.1 General Performance

From resuits reported in Fig. (3.9} and Tables (3.7-3.10), it is clear, that in general the number of
percentage stable comers tracked by all 4 detectors are less than for the dog sequence. The KLT
provided the best result using GVM matcher (with 0.009 threshold) with about 85% stable corners,
followed by Harris detector with around 80%, Kitchen-Rosenfeld with 55%, and SUSAN with only
50% stable corners. Using PMCM matcher (with 0.7 threshold), KLT and Harris provided around
70% stable comers, foliowed by Kitchen Rosenfeld (50%) and SUSAN (40%) detectors. The average
number of first frame corner matches using GVM is significantly higher for KLT (with around 140
corner matches), followed by Harris (with 130), then Kitchen-Rosenfeld and SUSAN with each
around 117 matches. Using PMCM matcher, the KLT and Harris provide around equal number of
match (130), followed by Kitchen-Rosenfeld (110) and SUSAN (100) detectors. The corner
displacement test again reveals that KLT provides the best localization property with around 0.25
pixel displacement, which is followed by Harris (0.4 pixels), Kitchen-Rosenfeld {1 pixel), and
SUSAN (1.5 pixels) detectors. Corner displacement test using PMCM (with 0.7 threshoid) revealed
that, KLT and Harris provide around 0.4 pixel displacement, followed by Kitchen-Rosenfeld (0.8
pixel), and SUSAN (1.4 pixels) detectors.

3.7.2.2 Performance under Noise

All 4 corner detectors were subject to extract corners from noisy frames of the building sequence
(Gaussian noise is added at different variances ranging from 0 — 25). The results observed are
tabulated in Tables (3.7-3.10) and Figure 3.10. KLT stil} provided the best result for the most number
of stable comers using GVM (at 0.004 threshold), providing around 20% stable corners at noise
variance 6> = 25, while the other 3 detectors provided only around 5% at o® =25. With PMCM (at 0.8
threshold), all four comer detectors resulted with 0% stable corners at o’ = 25. This is expected, as
outdoor sequences already have image plane noise, and by adding extra noise, causes the PMCM
correlation matcher to result in very low match coefficient. The number of first frame corner matches
using GVM resulted with KLT having around 80 matches at noise variance at o® = 25, followed by
Harris (40 matches), Kitchen-Rosenfeld (40 matches), and SUSAN (with 0 matches). Using PMCM

(with 0.8 tivzshold) provided around 10 matches for all 4 detectors at o° = 25. The mean comner
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displacement for KLT at ¢® = 25 is around 2.1 pixels, which is followed by the other 3 detectors
providing around 3 pixels displacement. The same experiment using PMCM results with all 4
deiectors providing 3 pixels displacement, indicating poor quality corner localization under

considerable noise.
3.7.3 Test Results for the Static Lab Sequence

A 30 frame lab sequence with direct light interference was considered. The 200 best corners as seen

by each of the detectors are extracted, and are qualitatively displayed in Fig. (3.11).

3.7.3.1 General Performance

The results reported in Table 3.11 and Figure (3.12) indicate that Harris detector provided the best
result for this sequence. Harris provide nearly 90% stable comers while KLT provided about 82%
stable corners. Kitchen-Rosenfeld and SUSAN detectors resulted with 80% and 67% stable corners
respectively using the GVM matcher (with 0.004 threshold). The number of f{irst-frame comer
matches also indicate that Harris gives the highest number of matches than the other detectors (a mean
of 192 for Harris, 185 for KLT, 177 for Kitchen-Rosenfeld and 173 for SUSAN) using the GVM
matcher. The mean corner displacement result also shows that Harris provides the best result with
around 0.25 pixel displacement, followed by KLT with 0.3 pixel, Kitchen-Rosenfeld with 0.5 pixel,
and SUSAN with 0.7 pixel displacement using GVM matcher. The trends in observations are
consistent when employing the PMCM matcher with a 0.8 threshold.

3.74 Test Results for the Static Computer Sequence

A 30 frame computer sequence with light reflections was considered. This sequence had plenty of
curved objects, with less easily definable corners, thus presenting a challenge for each of the corner

detectors. The 250 best corners extracted using each corner detector are displayed in Fig. (3.13).

3.74.1 General Performance

Figure (3.14) and Table 3.12 shows that Harris detector again provided the best result for the most
number of stable comers (85%), followed by KLT (75%), which is followed by Kitchen-Rosenfeid
(65%) and SUSAN (45%) detectors using the GVM matcher (0.004 threshold). The observations are
similar for PMCM (0.8 threshold) except Kitchen-Rosenfeld performed better than KLT detector (see
Fig. (3.17b,d,1)). The number of first frame matches also show that Harris with around 240 matches
on average outperformed the KLT (220 matches), the Kitchen-Rosenfeld (210) and the SUSAN (195)
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detectors for both matchers. The mean corner displacement result also suggest that Harris provides the
lowest displacement with 0.4 pixel, followed by KLT with 0.6 pixel, followed by Kitchen-Rosenfeld

(0.9 pixel) and SUSAN (1.4 pixel) detectors for the GVM matcher. The results are consistent when
using the PMCM matcher.

3.7.5 Overall Observation of Results

The overall observation of the results suggest that the KT and Harris comer detectors are more
suitable for tracking features in long sequences, while Kitchen-Rosenfeld and SUSAN are less

reliable for long term corner tracking.

Further tests carried out (not reported in this chapter due to space limitations) also suggest that for
tracking large number of corner points, Harris provides slightly better result than KLT, while for
tracking smali number of corners, KLT provides better quality results. It is also observed that for
sequences with varying light sources, Harris detector provides better guality results than KLT. The
qualitative results aiso show (Figs. 3.5, 3.8, 3.11, 3.13) that KL.T picks the best N corners from all
parts of the image frame (which is highly desirable for muitiple object tracking) while the other
detectors tend to pick corners from objects where there is significant difference in contrast. Kitchen-
Rosenfeld and SUSAN detectors also tend to pick several comners from edges (despite ‘edge

suppression’ applied to the detectors), which is undesirable for point feature tracking applications.

The empirical evaluations also shed some insight into the matcher's ability to correctly associate
corners. The overall results suggest that for an indoor sequence, GVM or PMCM give equally good
results, but for an outdoor sequence the GVM provides better quality result. This is expected, because
the PMCM matcher compares a patch of image information surrounding the comer in two frames.
With image plane noise (generally the case for outdoor images) one would expect a reduced
correlation coefficient, which in turn leads to fess reliable results. The two patch sizes examined did
not make a significant difference, which indicates that a 5 x 5 image patch size is adequate for most
applications. Setting matcher threshold is more of a design issue. 1t is important that threshold chosen

should impose restraints for dis-allowing false corners being accepted as correct match.

These results pose the question; which is best, a matcher that produces a few good matches per frame
?, or a slightly less accurate matcher that produces more matches, but also produces a few bad
matches ?. It is the opinion of the author that a matcher that produces a high number of matches (also
with high percéntage of stable corners) is preferable, even if the data generated contained bad |

matches. A good tracking algorithm will be able to discard bad matches over a period of time.
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From the results reported in this chapter, it is reasonably clear that the KLT and Harris detectors are
appropriate corner extractors to track point features in lorig image sequences, with GVM as the
preferred matcher particularly for outdoor sequences, and PMCM for indoor sequences (easier to
implement than GVM). Further feature tracking examples with considerable motion in image
sequences are discussed in the next chapter in detail. In such cases we employ tracking algorithms to

estimate the likely position of features in subsequent frames.

3.8 Conclusion

The results are interesting because unlike the Harris and Kirchen-Rosenfeld detector, the Smith
detector uses no spatial derivatives. Spatial derivatives are normally associated with poor performance
in the presence of noise since they magnify its effect, and hence it would be expected that the Smith
detector would perform better than the Harris and the Kitchen-Rosenfeld detectors in the presence of
noise (assuming that both detectors perform equaily as well when there is no noise present). This is
clearly not the case. A possible explanation for these results is that the Harris detector has 2 built-in
smoothing function as part of its formulation. The products of the intensity gradients used to calculate
the cornerness C are first Gaussian smoothed over a 3x3 pixel image patch. It is this smoothing that
makes the Harris detector more robust to noise than the Smith detector even though it uses noise

sensitive first derivatives.

Because of its poor performance in the presence of image-plane noise and hence its very temporally
unstable corners, the Smith corner detector is not an appropriate feature detector for tracking in long
sequences. It performed well in the ASSET project because there, segmentation was performed using
2 frame matching, which was good enough to produce good number of matches in consecutive

frames.

The Kitchen-Rosenfeld method does not use a built-in smoothing function and also has second order
derivatives, and as a result its” performance is poorer than the Harris method (X-R was used only as a
bench-mark), The KLT detector on the other hand is aided by its tracking framework (the tracking
process cannot be easily decoupled from the comer detection process). The KLT tracker and corner
detectors work together to provide high quality corners as indicated by the results. The overall
empirical results revealed that the KLT and Harris detectors provided the best quality comers
(quaiitatively and quantitatively). The corners extracted by the Kitchen-Rosenfeld and the Smith

(SUSAN) detectors are less desirable for point feature tracking in Jong image sequences.
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Chapter 4

Point Feature Tracking with Automatic Motion
Model Switching

Abstract |

This chapter provides a novel technique of efficiently and reliably tracking features in a sequence of images. The
method we provide for tracking features is based on theBayesian Multiple Hypothesis Tracking (MHT) technique
coupled [58] with a Multiple Model Filtering algorithm. We show the resuits of our work comparing it with some
of the existing single model based trackers using a variety of video sequences. Initially we demonstrate the ability
of the MHT-MMF tracker developed (Fixed form of the filter), and later in the chapter we extend the MMF based
tracker to the Interacting Multiple Model (IMM) tracker [3, 28] and show the superiority of the latter in handling
motion switching of features efficiently. The primary purpose of this chapter is to show how the IMM algorithm
combined with an extension of the classical MHT framework can be used in a visual tracking scenario. The study
shows that the method proposed can distinguish between different motions depicted in an image sequence with
good feature tracking results.

4.1 Introduction

In this chapter we propose a feature tracking algorithm based on the combination of Multiple
Hypothests Tracking (MHT) and Multiple Mode! filtering technigue. The combination of these two
methods provides an attractive feature tracker that has the capability of switching motion models

according to the object’s motion.

The surveillance tracking community has studied target tracking techniques for a number of years,
mainly in the context of finding efficient methods to track missiles, aircraft etc. and tracking targets
of unknown motion. Their work has been used for a variety of applications [54-56, 5, 6, 41-43, 152,
125,126). In the recent years there has been an interest in using surveillance tracking techniques for
visual tracking applications such as tracking features in a video sequence. One such proposal is
outlined in [58] by Cox ef al. Cox et al use a modified version of the MHT tracker, based on the
assumption of a single motion model. We extend the modified MHT tracker to track features that
move with multiple motions. The proposed “multiple model based” MHT tracker is shown to

outperform visual trackers based on a single motion model as demonstrated in this chapter.
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Multiple hypothesis based tracking methods have been shown to provide reliable results for a variety
of tracking applications [55, 58, 180, 184, 185]. An important reason for considering the MHT
technique for point feature tracking is because the MHT technique is a statistical data association
algorithms that integrates all the capabilities such as track initiation, track termination, track
continuation, explicit modelling of spurious measurements, and explicit modelling of uniqueness
constraints. Unfortunately, the classical MHT technique {152] by itself is computationally
exponential both in time and memory. Therefore, we use an algorithm which is an efficient
approximation to the MHT algorithm [58) (originally developed by Murty [137]) to generate directly
the ‘K-best’ hypotheses in approximately polynomial time without explicitly enumerating all possible
hypotheses. This is a significant contribution to the practical application for the MHT methodology
and has recently been shown to be approximately three orders of magnitude faéter than previous

hypothesis generation strategies [56].

The advantage of using a multiple-mode] based tracking is that the varied motion of features captured
in an image sequence can be tracked reliably. The motion model switching capability of a multiple
model framework has been demonstrated to track features much more accurately than a tracker based
on a single motion model [5, 77, 206]. Amongst the many type of muitiple model fiiters available [5],
we consider two types of filters in this chapter. First, we demonstrate the performance of the more
generally used fixed form of the filter, which we refer to as the MMF in this chapter, and later we
introduce an extended version of MMF, which is referred to as the Interacting Multiple Model (IMM)
algorithm. The fixed form of the filter assumes that there is no model switching during the estimation
process. It operates in one of many modes (models) available from a bank of filters. A further
improvement of the MMF filter is the IMM algorithm (5, 28]. The IMM is a sub-optimal tracking
algorithm, which can automatically switch motion models according to a Markov chain process. The
IMM by itself was originally developed for surveillance applications such as radar tracking, air craft
tracking etc. and has been shown to track a target of varying motion efficiently. In this chapter we
refer to MHT coupled with MMF as the MHT-MMF tracker, and MHT coupled with IMM as the
MHT-IMM tracker. Details of these trackers are discussed in sections 4.5 and 4.6 respectively.

The tracking technique we propose relies on features (corners) extracted from each of the frames of a
given image sequence. The tracking process is virtually independent of the feature extraction
procedure. Therefore, as a first step we extract corner-point features from every frame of a sequence
(details discussed in section 4.3) prior to tracking the features of interest. It is important that the
comer features extracted are well localised and stable for reliable tracking as discussed in chapter 3.
The extracted corners (in each frame) are later used as measurements for the tracking filter, to guide

the tracker to follow the correct feature trajectory.
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We demonstrate our results based on a variety of image sequences. The sequences considered are the
PUMA sequence (30 frames), the Toy car sequence (9 frames), the Walking Man sequence (50
frames), The Rubic sequence (20 frames), the Road sequence (48 frames), and a Waving Hand

sequence (75 frames).

This chapter is organised as follows: Section 4.2 briefly details the MHT methodology. Section 4.3
provides details of the cox:ner extraction procedure. Section 4.4 details the problems in relation to
single model based tracking and the necessity for a multiple model method for reliable tracking,
Section 4.5 outlines the general fixed form of the multiple model algorithm (MMF), and Section 4.6
details the basic operation of the IMM algorithm. In Section 4.7 we provide the motion models used
for MMF and IMM filters. In section 4.8 we provide our results. In section 4.9 we give a direct
comparison of the 2 types of trackers considered. Section 4.10 gives a general discussion, and finally

Section 4.11 provides the conclusion.

4.2 Mulﬁple Hypothesis Algorithm

The Multiple Hypothesis Tracking (MHT) algorithm was originally developed by Reid [152] in the
context of multi-target tracking. Fig. (4.1) outlines the basic operation of the MHT aigorithm. The
overall procedure is an iterative process that forms a feedback loop as shown by Fig. (4.1). Iteration £
begins with the set of current hypotheses from iteration (4-1). Each hypothesis represents a different
set of assignments of measurements to features. The extracted measurements are matched to
predictions based on some distance metric such as the Mahalanobis distance (see [58] for details).
After matching, each giobal hypothesis (from iteration (k-1)) has an associated ambiguity matrix Q,
which is generated as shown by Fig. (4.2b) for a simple example with 2 known geometric features
and four new measurements. From Q it is necessary to generate a set of legal assignments (In Fig,
(4.2a), the black elliptical blobs are the current position of the features T; and T, and the white
elliptical regions correspond to the validation gate within which possible measurements are searched
for the respective features). Each subsequent child hypothesis represents one possible interpretation
of the new set of measurements and, together with its parent hypothesis, represents one possible
interpr;etation of all past measurements (the reader is referred to [58, 152, 187] for complete details of |
MHT). The hypothesis generation procedure and a brief mathematical framework for MHT

underlying our work are given in Appendix B.
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Figure 4.2: (a) Predicted target locations and elliptical validation regions for a situation with two known
geometric features (T, and Ty and four new measurements €,(k), za(k), zs(k), z4(k})) which are shown with black
dots. The white dots are the estimated positions of T and Ts. (b) Hypothesis matrix for the situation depicted in
Fig. 4.2(a). Note that, as summarised by$2 T, has valid measurementsz,(k), zy(k), and T; has valid measurements :
za(k), za(k). z4(k)} is out of the validation region (calculated by theMahalanobis distance) and not considered by T 1
and Ty, In 4.2(b} the Ist and last columns entries are always 1, that is, a false alarm () or a new feature
appearing (Ty) is possible at any given time k. See Appendix B for further details.

Because of the exponential complexity of the multiple hypothesis approach, only an approximatibn to
the MHT algorithm can be practically implemented. In particular, it is simply not feasible to search

the entire space of hypotheses in order to determine the most likely set of assignments. In order to
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contain the growth of the tree, it is necessary to prune unlikely branches. To do this intelligently, the
probability of each hypothesis can be used to guide a pruning strategy efficiently (see [54, 55] for
details ‘on pruning mechanism). An approximation of ti1e classical MHT, using Murty’s algorithm
[137] (we call it the modified MHT algorithm) has been shown to limit the combinatorial explosion
of the classical MHT algorithm [152] and also shown to resolve data association uncertainty reliably.
The successful application of such an algorithm has been reported in {58, 180]. For the remainder of
this paper all references to MHT refers to the modified version of the MHT algorithm as provided by
Cox et al. [58).

4.3 Feature Extraction

Extraction of accurate, well lccalised, and stable comner features are essential for reliable tracking.
While this is a current research issue, our earlier study on comparison on corner detectors for tracking
(reported in chapter 3 [179]), revealed that Harris [85] and Lucas-Kanade comer detectors [190)
provide stable enough features for tracking in long sequences. Therefore, we have used these 2 corner
detectors fo:r. the tracking applications reported in this chapter. In our application, the position of
features that appear in the first frame of a sequence are predicted in the subsequent frames {matched
/discarded) by the MHT framework. The implementation of the MHT uses the Mahalanobis distance
as the main validation gate, and further, to supplement the search area, a correlation matching

strategy (based on a 5x5 patch size, as explained in chapter 3.4.2) is employed.

For the PUMA, the Walking man and the Road sequences, we used the corner detector proposed by
Harris [85]. For the Toy car, the Waving Hand, and the Rubic sequences we used the KLT corner
detector [190] (the reason for 2 different corner detectors is that these provide the best comers
representing all parts of a given frame). We maintained the number of corners extracted per frame to
around 40-60. This is achieved by adjusting the appropriate parameters of the corner detection
algorithm. Limiting the number of comers to a reasonable quantity is preferable purely for clarity and

computational purposes.

4.4 Tracking Features

Prior to the work presented in this chapter, we used a single model Kalman Filter (KF) [199, 74, 5, 6]
based on a known motion model to track the features of interest (employing the MHT framework

within the tracker). But one of the drawbacks of this approach is that, the correct motion model needs
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to be presented to the KF in order for the tracking to be successful. Ofien, one does not know the
motion described by the image sequence in advance. To avoid such a problem it is advisable to use a
more robust and flexible approach to identify the correct motion model in order for the KF to track

the features correctly and reliably.

It is also quite well known that a potential weakness of an estimator based on a single motion model
is that it can lead to under-modelling and over-modelling [157). Under-modelling, occurs when the
Kalman filter state model does not describe the actual state adequately. It is possible to construct a
Kalman filter that adequately describes any type of motion likely to be observed in feature tracking
scenario, thus removing the under-modelling problem. Such a Kalman filter would have a large
number of states and have a complex state model. A Kalman filter of this type, although possible to
construct, would not be practical in a noisy environment. High order Kalman filters containing states
that are derivauives of derivatives tend to be very sensitive to noise. Kalman filters consisting of large
numbers of states may also be over complex for the majority of the time when the observed signal

may be filtered using simpler Kalman filters.

To overcome this limitation, one solution is to use a number of filters based on different motion
models, (sub-models) covering the range of possible expected observed motions, and to some how
combine the estimates from these filters based on the expectation of each model being the correct
descriptors of the features’ motion. Such a system can be achieved by using a muitiple mode! filtering
based algorithms [5, 130]. As well as improving estimation accuracy, such systems could also help in
segmenting a scene into independently moving objects. It has been proposed [157] that the
segmentation process may be performed by utilising the confidence/belief measures generated by the
individual filters that make up the multiple motion model sysiem (for example segmenting/grouping
cars that move with similar velocities). If all objects in a scene are assumed to be rigid, all points on a
single object will move in an identical fashion, i.e, with the same motion model. Further description

of the multiple model filtering aigorithm is given in the next section.

4.5 The Multiple Model Filtering Algorithm

In the multiple model approach, it is assumed that the system obeys one of a finite number of models.
Such systems are called hybrid because they have both continuous (noise) uncertainties as well as

discrete uncertainties [5]. The system uses a Bayesian framework to calculate the probability of each
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model in operation. That is, starting with prior probabilities of each model being correct (ie., the

system is in a particular mode), the corresponding posierior probabilities are obtained.

Initially we consider the case where the model the system cbeys is fixed, that is no switching from
one mode to another occurs during the estimation process. In this chapter we name such a system as
the Multiple Model Fixed (MMF) algorithm. A typical MMF is shown in Fig. 4.3 (for further
description refer to [5, 187]). The MMF consists of » separate Kalman filters, each based on a
particular state model. The model (M), assumed to be in effect throughout the process, is one of

possible models (the system is in one of  modes):

Me {Mj};_l

The prior probabilify that M  is correct (the system is in mode ) is

PM)Z° )= 11,(0) J=har

where Z° is the prior information and

3 u,(0)=1

=l

since the correct model (or a model closest to the correct model) is among the assumed r possible

models ( #,(0) corresponds to the probability that the j-th model being correct at time step 0). It will

be assumed that all models are linear Gaussian.

The overall stais estimate is the linear combination of the state estimates generated by the individual

Kalman filters, and is caiculated using the following equation (for the state and covariance updates).

R(MkY = 2 p(k).37 (KIk) @.1)

J=1

P(kik)= 2#;(15){1" Ck{K) + [/ (klR) - (RN (klk) - 2GEIR)Y |

=

where X/ is the state vector of the j-th Kalman filter, # ;&) is the probability that the actual system

model, M, equals the j-th model &, at time k given the past observations, 2" r is the total number

of filters considered. The weighting factors #; (k) are recursively updated using:
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Figure 4.3: A typical MMF for r filters.

To prevent (k) from becoming too small, effectively “turning off” the j-th filter, values of #; (%)

should be limited to a minimum value, i, [5,157]. The residuals, v;and estimated covariance of the

residual’s, S; are given by (seeAppendix B for the full KF recursion that was employed),

v,(k)=z(k)—H &' (k) (4.3)
S;(k)=H P(kXH,) +R, (4.4)

where HP & R are the observation, state covariance, and the measurement noise matrices
respectively. These quantities are used to compute the likelihood function of the r-filters. The
probability density is assumed Gaussian if a model is linear [5], and with this assumption, the

likelihood function for mode f at time k is given by:
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A, (k) = plz(k)| 24, M, ] = plv, (k)]
= N[v, (£);0; §,(k)] (4.5)

_ 1
(2z)"?|s, (k)|

rexpl 1T (ST k), ()

where m is the number of measurements at time k. The extra computation in updating the weighting
factors compared to the normal Kalman filter is therefore negligible. It should be noted that the

separate Kalman filters may be run simultaneously and in parallel.

Equation (4.5) assumes that the residuals v, are Gaussian and zero mean. Hence, the MMF algorithm
effectively chooses between filters based on the size of the mean of their residuals, with the one
having the smallest mean {i.e. the one nearest to zero) being the correct filter (in other words, MMF
chooses the most appropriate filter based on the likelihood functions). This is because, a filter which
has been modelled correctly will produce residuals with near-zero mean (see [130, 157] for more
details). From a mathematical point of view, the probability of each model being correct is obtained
according to Eq. (4.2) based on its likelihood function (Eq. 4.5) relative to the other filters’ likelihood

functions.

An alternative version of the MMF algorithm was proposed by Mealy and Tang [131]. They applied
the multiple model estimation technique to a terrain height correlation system using a bank of
identical Extended Kalman Filters (EKFs) each initialised with different state estimates. The

difference between this impliementation and the MMF described 'above, is that after the initial
transients settle down, the filter with the highest probability, #,(k) was used to estimate the feature

position. i.e. there was no combination of the individual filter state estimates (usually performed
using equation 4.1). Instead, the filter with the highest probability was allowed to track the
subsequent object (features) alone, and ali other filters were turned off. This decision to switch
between a multiple model tracking mode and a single modet tracking mode was performed based on a
comparison of the residuals between filters. The advantage of such a system is that the computational
overhead loads required by r filters was eliminated. However, the danger of this strategy is that the
adaptive properties of the MMF algorithm are lost when switching to a single model mode. Tobin and
Maybeck [189] also proposed using the filters with the highest probability alone as the state
estimator, except that in their implementation all the filters remained active ensuring that the MMF’s

adaptive capabilities remain.
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4.5.1 Maultiple Model Algorithm to Cope with Multi-Order States

The MMF algorithm assumes that each separate KF has identical states and is of the same order. This
can be seen from equation 4.1, where combination of the individual estimates requires all the states to
be present in each fiiter. However, this restriction is not imposed when calculating the hypothesis
conditional probability (equation 4.2). This equation requires the separate KFs to have common
measurement state variables only; the conditional probability (equation 4.5) is composed entirely

from measurement states.

Since it is only the state estimate combination equation that requires common state variables among
all the KFs, the standard MMF algorithm may be extended to cope with fiiters having different
structures and different orders (but with common measurement states). Such a multi-order/differing
state multiple model adaptive estimator uses the same probability equations (Eqs. 4.2, 4.5) as the
standard MMF algorithm, but requires the state estimate combination equation to be re~written to

account for any missing states. This is done as follows:

Zﬂj(k)Dﬁfﬁ (5

X, == 4.6
W= (46)

where, i is the state considered,

r - total number of Kalman filters,

%, (k) - the i-th state of the j-th Kalman filter,

# (k) - the weighting factor of the j-th filter,
#(k) - the vector of weighting factors for all r filters,
D, - the membership value {one or zero) of the j-th filter for the i-th state,

D - the i-th column of the membership matrix D [187].

t

4.5.2 Limitations of MV

A problem with the MMF based systems is that, their fundamental design does not cater for motion
mode! switching automatically, which can cause problems in tracking a target whose motion is

varying. In cases where a target switches to a different motion model during the course of tracking,




the MMF based methods can fail or even converge to the wrong motion model [5, 185] (see section
4.8.3 for an example). However, there are ad-hoc modifications which are available (mentioned in
section 4.8) for MMF algorithms t3 cope with model switching [5] as we have demonstrated in the
results section. In spite of these rnodifications, the mismatched filter’s errors can still grow to
unacceptable levels. Thus, re-initialization of the filters that are mismatched is in general needed (see

also the discussion in section 4.10 for further explanation).

To overcome the drawbacks of MMF based algorithms, an enhanced algorithm that could cope with
automatic mor’el switching called the Interacting Muitiple Model (IMM) was proposed by Bar-
Shalom et al. [5, 28). The IMM algorithm is able to cope with mode changes during motion transition
and is capable of switching from one mode of motion to another efficiently (including tracking of
manoeuvring feature targets) during the course tracking. The operation of the IMM is discussed

further in the next section.

4.6 The IMM Algorithm

The Interacting Multiple Model (IMM) approach is a sub-optimal technique for switching motion
models (mode (model) jumping process) during the estimation process [5]. The system model at time

k is assumed to be among the possible r modes

M(kye{M,}

j=1 )

The motion mode switching process is assumed to be a Markov process [6, 5] with known mode

transition probabilities (these are design parameters).
In the IMM approach, at time k the state estimate is computed under each possible current model
using r filters, with each filter using a different combination of the previous model-conditioned

estimates (mixed initial condition).

A typical IMM is shown in Fig. 4.4. For further description refer to [5]. The r separate filters are each

based on a different motion model (each model can be of a different order).
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Figure 4.4: IMM Algorithm with r filters (one cycle).

One cycle of the IMM algorithm consists of the following:

1) Calculation of the mixing probabilities (i, j=1....,r). The probability that mode M; is in effect at

time k conditioned on Z*/ (measurements) is given by,
4.7)

1
ik —_ -_—— —_ fof == .
J1.:I.|j\14: 11k—=1) &_j Pk, (k=1) i,j=l..r

where the mode transition probability is p; (assumed known), and the normalising constants are:
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T,= pyu(k=1)  j=l..,r 4.8)

=

2) Mixing (j=1,...,r). Starting with & (k-1lk-1) one computes the mixed initial condition for the filter
matched to M; (k) is,

f°j(k-llk-1)=£x‘f(k—llk-z)p (k-Yk~1)  j=1,.,r (4.9)

P ij

The covariance corresponding to the above is,

PYk-11k-T)= pig k== P (k=Nk=1)+ [ (k =11k ~1) = 2% (k=1 [k = 1)),
=1

[fi(k-llk—l)—fq(k—]]k_mr } 4.10)

J=l..,r

3) Mode-matched filtering (j=1,...,r). The estimate Equation (4.9) & (4.10) are used as input to the
filter matched to M{(k), which uses z(?c) to yield #/(kk) and P/(kik). The likelihood functions

corresponding to the » filters are given by,

- Y e _wr—ty T _Nk—
Aj(k)—N[x(k),z (klk~1:2% Ge=1k-1),87 [k PY (k11K 1)]], @.11)

4) Mode probability update (j=1,...,r). This is given by,

1 -
pj)==A JKE; =l 4.12)

r
where ¢; is same as Eq. (4.8) and, = ZIA ;{K)E; is the normalisation constant for equation (4.12).
j= ,

5} Estimate and covariance combination. Combination of the model-conditioned estimates and

covariances is done according to the mixture equations:

r .
2(kli)= T %/ (kllyu (k) (4.13)
j=! |
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r . . .
PU)= . 1 j(k){PJ (ke Y27 (k-2 CROIR ik )-2 (k0T } @.14)
J= B

Equations (4.13) & (4.14) are only for output purposes (they are the same as in Eq. (4.1)). It is not

part of the algorithm recursions.

In our tracking implementation, each point feature of interest is applied with a coupled tracking

algorithm (MHT & IMM). The resulting tracker is referred to as the MHT-IMM algorithm.

4.7 Motion Models

To test our complete tracking system we employed motion models from the fellowing;

(i) A first order constant position modei (M5)

(i) A second order constant acceleration model (M1)
(iii) A second order constant velocity model (M2)

(iv) A second order constant turn model (M3)

v) A third order acceleration model (M4)

The description of each motion model is briefly discussed in the following sections.
4.7.1 First Order Motion Model (M5)

The state vector x(k) at time £, the measurement matrix H, and the state transition matrix (Fy) for a

first order model is given as follows:

'X(k)=[x y]T, H:[l 01|, FM5=[1 O:I

01 01

The only measurement required is the feature position (x, ¥). The initiat values for x(k) are set to the

feature position in the first frame.

The process noise matrix Q is set to, Q=[§ g:la, where T is the sampling time and § is a small

power spectral density for the process noise (see Appendix B.5 for a Kalman filter diagram).
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4.7.2 Second Order Motion Models (M1 ~ M3)

The state vector x(k) at time &, and the measurement matrix H for the tracking filter is set as follows

for the second order models.

. . 1000

Velocity (x and y direction) estimates were initialised to zero. Alternatively if the initial velocity is

known, one can set the filter initial velocity to the known value.

The state transition matrices (F) chosen for the Models M1-M3 are given below. Note that M1, M2
employ the same F. A near acceleration model (M1) is obtained by choosing a larger value for the
power spectral density § (~10) of the process noise [5]. A small § (~0.1) results in a constant
velocity model - M2 (that is, the changes in the velocity have to be small compared to the actual
velocity). A second order constant turn model (M3) is obtained by using a state transition matrix

(Fy;) as shown below, where T is the sampling time and @ is a constant turn rate for M3.

1 T 0 0 1 sinwl” 0 cosad =1
) @
F, = 01 oo F. = 0 cosail 0 -—sinal
MMITl0 0 1 T[] TeT 0 T-cosawl 1 sin@l’
0 0 0 1

@ @
0 sineT 0 cosal |

The process noise matrix (Q) is set as follows for all second order models (but different values of

g are used):

7P i 0 0
177 T 0 0 |
Q= 3 2
0 0 7T iT
0 o0 4i7* T

4.7.3 Third Order Motion Models (M4)

For the third order motion model, an acceleration component (X, ) is included as part of the state

vector x(k), and initialised to zero. The state transition and process noise matrices were set as foliows,
where § is set to a small value (typically ~0.01). See [5] for further details on specific motion

models.
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1 T ir* 0 0 0 ]
0 1 T 0 0 0 H 1 0 0 00 0
0o 0 1 0 0 | =
F,, = 0 , 000100
0 0 o0 1 T 47
o0 o0 o0 1 T
0 0 0 0 0 1 |
L7 4T i 0 0 o]
it 1T Tt 0 0 0
0= iTP TP T 0 0 0 .
0 0 0 L7 4T LT
0 0 0 T 47 4T
0 0 0 T 47 T

4.8 Results

This section provides the results obtained for the trackers mentioned in sections 4.5 and 4.6. We
initially provide the results using a tracker based on a single motion mode! and show instances where
such a tracker can provide poor quality trajectories or even fail. We then provide results for the
MHT-MMF and MHT-IMM trackers. Finally we provide a direct comparison {with regards to model
switching capability) of the two trackers based on a simulated feature trajectory. We complete the
experimental evaluation by applying the MHT-IMM tracker to a real sequence of a waving hand

moving with multiple motion. The result for the latter is given in Section 4.9.

4.8.1 MHT with a Single Motion Model

The first stage of our tracking process was to extract corner features reliably, which was essential for
good tracking performance as discussed before. Figure 4.5 shows the comer features extracted for

selected frames from each of the image sequence considered.

Figures (4.6)-{(4.10) show tracking results obtained by using the MHT algorithm based on 2 single
motion model Kalman filter (for each of the motion models in tum, as described by the figure
captions). In Figures (4.6)}-(4.10), on the right side are 3 tracks picked out from the many tracks
displayed on the left side. These are shown to iltustrate that the inappropriate motion model selected
for the tracker can result with a shorter feature trajectory or eveﬁ a wrong trajectory, thus

emphasising the need for a correct motion model for accurate and reliable tracking.

From these figures, it is quite clear to the naked eye that a constant acceleration model gives the best

tracking performance for the PUMA and the Toy car sequences, and a constant velocity model gives
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the best tracking performance for the Walking man and the Road sequer.:es (in terms of the quality
and length of the trajectories obtained). When the inter-frame motion is relatively small, a constant
velocity model is adequate, but for larger inter-frame mo‘tion (like the PUMA sequence) a constant
acceleration model provides better results. For the Rubic sequence, the inter-frame motion is very
small (as seen from Fig. 4.5e), and as a result, a constant position model (M5) tracker is able to

provide feature trajectories as good as M1 or M2 (see Fig. 4.10).

An advantage of the MHT based trackers is the ability to track objects which are temporarily
occluded. For example, it can be seen for the Toy car sequence, the MHT framework provides good
tracking results in spite of occlusion. Fig. 4.5(b) shows the jeep and the van are occluded in part in
frames 5,6 (see Appendix G), but despite occlusion the tracker retains the trajectory (Figures 4.7¢,d)

of the van and jeep untii the final frame (assuming a correct motion model is in operation).

4.8.2 MHT with Multiple Motion Models

For experiments with r motion models in the filter bank, we initialised the probability of selecting a
model to (//7). That is, at the start ali models have an equal chance of getting selected. AH motion
models were also initialised with the same state to eliminate any bias. The following sub-sections

provide tracking results for the 2 trackers presented in this chapter (MHT-MMF and MHT-IMM).
4.8.2.1 MHT-MMF Tracker Performance

The quantitative results obtained by using the MHT-MMF tracker are shown in Figs. (4.11)-(4.14). In
these graphs we plot the model selection probability against the frame number. The probability of the
coirect model (mbst appropriate model) getting selected confirms our observation of Figs. -(4.6)-
(4.10). It is clear that an acceleration model is indeed the most suitable model for the PUMA and the
Toy car sequences, and a velocity model is more suitable for the walking man and road sequences,
and a constant position model is adequate for the Rubic sequence. We experimented with multi-order
multi-type motion models in the MMEF filter bank, but the final observation (that is the correct model
being selected) did not depend on the combinations of models employed in the filter bank. Provided
the correct model (mddel closest to the object’s motion) is one of the models considered, the result is
consistent. When only 2 models (which are similar) are used in a filter bank, care must be taken to
tune the filters, as false tracking resulis might occur (details in section 4.10). Conditions under which

the MMF algorithm might fail and the precautions to be taken are discussed in Section 4.10.

MMF framework assumes that the correct motion model is among the models in the filter bank. If the

correct motion model is absent, then the tracker wil! converge to the model closest to the correct
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motion model in the filter bank. It should be noted that in the implementation of the MMF based

tracker, a lower bound for 4 (=) was set in order to keep the incorrect motion medels alive.

Otherwise the MMF framework does not have a mechanism to “revive” a mode] once it approaches a
near zero selection probability. See the Discussion section (Section 4.10) and {157] for further
explanation. We also examined the state covariance matrix associated with each motion model after
every cycle to check for possible divergence, if a divergence is detected, the filter concerned is
reinitialised. These undesirable ad-hoc modifications are necessary for the MHT-MMF tracker to be
able to switch motion models. In spite of these modifications, the MHT-MMF tracker fails where
muitiple model switching is required, such an example is illustrated in Figs. (4.20)-(4.24) and

discussed further in sub-section 4.8.3,

4.8.2.2 MHT-IMM Tracker Performance

The MHT-IMM tracker overcomes most of the limitations that MHT-MMF tracker present. For the
MHT-IMM tracker, there are no requirements for any modifications or assumptions for the basic
IMM algorithm to cope with multiple model switching. This is one of the main advantages over using
MMF trackers. The other advantage of this tracker is that the switching from one model to another is
possible during the estimation process (using a Markov chain procedure), which provides faster

responses to model changes.

The resuits for MHT-IMM tracker are given in Figures (4.15)-(4.19) (model selection probability vs.
frame number). As expected the MHT-IMM tracker converges to the “most correct” model presented.
It is clearly seen from the results that after the initial transient dies, the probability for the correct
model approaches one while the probability for the incorrect models decreases to zero. It can be
observed that the convergence to the correct motion m»del is fast and smoother for the MHT-IMM
tracker than the MHT-MMF tracker in almost all the examples considered. It is worth noting the
results for the walking man sequence (Fig. 4.17) where the person’s motion is not always constant,
and there appear ‘dips’ in the model selection probability curve, which indicates temporary model
changes (or as a weighted combination of motion models in operation). The tracker performance in
terms of position (error between true and estimated) and velocity are shown in Figs. (4.15¢,d)-
(4.18c,d) and Fig. (4.19a,b) for one feature trajectory, and the track statistics are tabulated in Tables
4.1-4.5 (for 3 arbitrarily chiosen feature tracks) for the image sequences tested. The evidence of faster
model switching of MHT-IMM over MHT-MMF can be observed in Figs. 4.11 — 4.19 (compare the
MHT-MMF results with MHT-IMM results). In all experimental cases considered promising tracking

results are obtained (qualitatively and quantitatively).
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Examples of Corners Extracted

Figure 4.5: (a) Frames 1, 10, 20 and 30 of the PUMA sequence with corners extracted superimposed on the
respective frames. (b) Frames 1,4,7 and 9 of the Toy car sequence. (¢) Frames 1, 17, 35 and 30 of the Walking
man sequence. (d) Frames 1, 16, 32 and 48 of the Road sequence. (&) Frames 1, 3, 9, 15 of the Rubic sequence.
Only the best 25-30 corners were extracted from each frame of a sequence for clarity.
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Figure 4.6: PUMA sequence track resulis (displayed on frame-1 for tracks which survived for length more than
6). The circle indicates the end of track: (a) Tracking performance obtained by using a constant acceleration
model (M1). (b) Selected 3 tracks from {a) for illustration. (¢} Tracking performance using a constant velocity
model (M2). (d) The 3 tracks from (c), for the same features as shown in (b). (e} Tracking performance obtained
by using a constant turn model (M3). (f) Selected 3 tracks from (e).
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(e 0
Figure 4.7: Toy car sequence track resulis (displayed on frame-1 for tracks which survived for length more than
5). The circle indicates the end of track: (a) Tracking performance obtained by using a constant acceleration
model (M1). (b) Selected 3 tracks from (a) for illustration. (c) Tracking performance using a constant velocity
model (M2). (d) The 3 tracks from (c), for the same features as shown in (b). (¢) Tracking performance obtained
by using a constant turn model (M3). (f} Selected 3 tracks from (e).
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Tracks Obtained Using Different Motion Models (Walking Man)

©

Figure 4.8: Walking man sequence track results (displayed on frame-1 for tracks which survived for length
more than 12). The circle indicates the end of track: (a) Tracking performance obtained by using a constant
acceleration model (M1). (b) Selected 3 tracks from (a) for illustration. (¢} Tracking performance using a
constant velocity model (M2). (d} The 3 tracks from (c), for the same features shown in (b). (e} Tracking
performance obtained by using a constant turn model (M3). (f) Selected 3 tracks from (e).




nt Motion Models (Road)

(e)
Figure 4.9: Road sequence track results (displayed on frame-1I for tracks which survived for length more than
20). The circle indicates the end of track: (a) Tracking performance obtained by using a constant acceleration
model (M1). (b) Selected 3 tracks from (a) for illustration. (c) Tracking performance using a constant velocity
model (M2). (d) The 3 tracks from (c), for the same features as shown in (b). (e) Tracking performance obtained
by using a constant turn model (M3). () Selected 3 tracks from (e).
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Tracks Obtained Using Different Motion Models (Rubic)

Figure 4.10. Rubic sequence track results (displayed on frame-1 for tracks which survived for length more than
3). The circle indicates the end of track: (a) Tracking performance obtained by using a constant acceleration
model (M1). (b) Selected 3 tracks from (a) for illustration. (c) Tracking performance using a constant velocily
model (MZ}. {d) The 3 tracks from (c), for the same features as shown in (b). (e) Tracking performance obtained
by using a constant position model (M3). (f) The best 3 tracks from (e).
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MHT-MMF Tracker Result
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Figure 4.11: PUMA sequence using the MHT-MMF
tracker. (a) M1,M2 and M3 (all 2nd order models)
competing for the correct motion model. The
constant acceleration model (M1} is chosen as the
most appropriate model, as confirmed by Fig, 4.6a.
(b) M4 (3rd order acceleration model) preferred
over M1,
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Figure 4.12; Toy car sequence using the MHT-MMF
tracker. (a) M1, M2 and M3 competing for the
cotrect motion model The constant acceleration
model (M1) is chosen as the most appropriate model,
as confirmed by Fig. 4.7a. (b) M2 preferred over M4
(3rd order acceleration model).
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Figure 4.13: Walking man sequence using the MHT-
MMF (racker, (a) MI.M2 and M3 (all 2nd order
models) competing for the correct motion model. The
constant velocity model (M2) is chosen as the most
appropriate model, as confirmed by Fig. 4.8c. (b) M2
preferred over M4 (3rd order acceleration model).

0.0

i

walooity model (M2)

tn modal {M3)

o.2| Q:c\ model (M1)
% 10 50 30 a0 30
Frame number
(a)
0.9
o8 velocity model (M2)
07
ool
g o.sf
0.4
ol
0.2} acest. mods! (M4)
015 10 30 20 o

20
Frame number

(b)

Figure 4.14: Road sequence using the MHT-MMF
tracker (a) M1, M2 and M3 (all 2nd order models)
competing for the correct motion model. The
constant velocity model (M2) is chosen as the most
appropriate model, as confirmed by Fig. 4.9¢. (b) M2
preferred over M4 (3rd order acceleration model).
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Figure 4.15: PUMA sequence results using MHT-
IMM tracker. (a) Model selection probabilities:
constant acceleration model (M1) selected as the
correct motion model (three 2nd order models
compared). (b) 3rd and a 2nd order model
compared. M4 preferred over M1 as the correct
motion model. (c) Measured and estimated position
(d) Estimased velocity.
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Figure 4.16: Toy car sequence results using MHT-
IMM tracker. (a) Model selection probabilities:
constant acceleration model (M1) selected as the
correct motion model (all 2nd order models
compared). (b) 3rd and a 2nd order model
compared. M2 preferred over M4 as the correct
motion model. {c) Measured and estimated position
(d) Estimated velocity.




MHT-IMM Tracker Results (Cont...)
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Figure 4.17: Walking man results using MHT-IMM
tracker. (a} Model selection probabilities: Constant
velocity model (M2} selected as the correct motion
model (M1, M2, M3 compared). (b) M2 preferred
over M4. (c) Measured and estimated position of
the feature considered, {d} Velocity estimates for
the feature considered,
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Figure 4.18: Road sequence results using MHT-
IMM rracker. (a) Model selection probabilities:
Constant velocity model (M2} selected as the
correct motion model (M1, M2, M3 compared). (b)
M2 preferred over M4, (¢c) Measured and estimated
position of the feature considered, (d) Velocity
estimates for the feature considered




MHT-IMM Tracker Results (Cont...)
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Figure 4.19: Rubic sequence results using MHT-IMM. (a) True and estimated position of a feature trajectory.
(b) Estimated velocitv and acceleration of the feature. (c} Model selection probability of the tracker. The
constant position moael is selected as the most appropriate motion model. Since the inter-frame displacement is
very small, the results confirmed our expectation (see Fig. 4.10).

Note: The following tables provide the MHT-IMM tracking performance statistics. The error is measured
between the measured (true) and the estimated position (x and y direction) and the velocity is obtained from the
tracker filter estimate. The mean value (in pixels) is calculated by taking the average over the given image
sequence length. It should be noted that the MEBT-MMF tracker also gave good tracking results, provided the
tracker was tuned properly.

Filters in bank for the IMM aigorithm | mean mean MSE mean mean mezn
absolute | absolute | (Position, | velocity | velocity | velocity
crror (x) emror () in pixels) (x-;dir.) {y-dir.) _S.‘.'.'-’EL.
Track 1
with models M1, M2, M3 0.1016 01247 0.0419 3.7236 2.23%0 4.6532
with models M1, M4 0.2932 0.1111 0.1741 4.2015 221 5.0553
Track 2
with models M1, M2, M3 0.2668 0.1940 0.1783 4.0444 9.3946 10.5599 :
with models M1, M4 02933 0.2060 02074 45252 10,0700 | 11.3737 . J
Track 3 '
with models M1, M2, M3 0.1527 0.1691 0.0785 59186 25892 6.7550
with models M1, M4 0.2938 0.1172 0.1834 6.5815 24579 7.2827

Table 4.1; Track performance siatistics for the PUMA sequence for 3 selected tracks
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Filters in bank for the IMM algorithm | mean mean MSE mean mean mean
absolute | absolute (Position, velocity | velocity | velocity
erros (X) | error (V) in pixels) {x-dir.) (v-dir.} (mag.) |

Track 1
with models M1, M2, M3 0.5552 0.7289 2.1916 14,5615 33467 15.5272
with models M2, M4 0.6916 0.2902 0.9942 18.2450 2,3869 18.4034
Track 2
with models M1, M2, M3 0.7816 0.6824 1.8746 13.6980 3.6053 14.1712
with models M2, M4 0.3815 w2470 0.3638 16.90%6 0.5008 16.9192
Track 3
with models M1, M2, M3 0.6539 0.7693 1.6643 11,7574 0.9493 11.8101
with models M2, M4 0.3347 0.1145 0.2214 13.9348 2.041¢9 14.0841

Table 4.2: Track performance statistics for the Toy car seguence for 3 selected tracks.

ur

| Filters in bank for the IMM algorithm [ mean mean MSE mean mean mean
i absolute | absolute } (Position, | velecity | velocity | velocity
ertor {X) error (v) in pixels) {x-dir.) | (v-dir) {mag.) |
Track 1
with models M1, M2, M3 0.3086 | 0.3965 05478 6.1275 | 14169 | 6.3280
with models M2, M4 0.8379 | 0.8034 12948 | 58074 | 15451 | 63272
Track 2
with models M1, M2, M3 0.9423 1.1464 1.6424 5.6698 1.0798 38016
with models M2, M4 0.9556 1.2767 17500 | 5.7341 | 12152 | 59075
Track 3
with models M1, M2, M3 1.2888 | 1.0865 19419 | 54369 | 1.2369 | 5.6206
with models M2, M4 1.353) 1.1846 20859 | 55535 | 1.3905 | 5.3081
Table 4.3: Track performance statistics for the Walking man sequence for 3 selected tracks.
Filters in bank for the IMM algorithm | mesn mean MSE mean mean mean g
absolute | absolute | (Position, | velocity | velocity | velocity 3
error {x) | emor{y) in pixels) (x-dir.) | dv-dir) (mag.) 3
Track 1 ;
with models M1. M2, M3 0.0764 | 0.1586 0.1552 | 00620 | 04856 | 0.4994
with models M2, M4 03229 | 0.1967 02559 | 0.0535 | 04729 | 04791 _ };
Track 2
with models M1, M2, M3 _ 00112 | 0.4994 05011 | 00076 | 05189 | 09201
with models M2. M4 0.0000 0.5159 0.5159 0.0000 0.96635 0.9665 ﬁ
Track 3 :
with models M1, M2, M3 04671 | 0.7326 09127 05535 | 06720 | 08w6 '
with models M2, M4 04952 | 03103 09906 | 05638 | 06902 | 09229

Table 4.4: Track performance statistics for the Road sequence for 3 selected tracks.

Filters in bank for the IMM algorithm | mean mean MSE mean mean mean
absolute | absolute | (Position, | veloeity | velocity | velocity
error (X) | error (v} in pixels) (x-dir.} {v-dir.) {mag,) |
Track 1
with models M2, M4, M5 116 | o7 [ 136 | 023 | 007 | 024
Track 2
with models M2, M4, M5 055 | oot | 05517 | -00025 | 00816 | 00817
Track 3 ;
with models M2, M4, M5 140 | 033 | 143 ] 027 | 003 | 02775 ;

Table 4.5: Track performance statistics for the Rubic sequence for 3 selected fracks.
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4.9 MHT-IMM versus MHT-MMF Tracker

4.9.1 A Simulated Example of a Feature Moving with Multiple Motions

In this section we provide a crucial test of the two trackers discussed. To do so, we simulated a
trajectory of a feature as shown by Fig. (4.20) (the feature path is along A -> B -> C -> D -> E)
consisting of 30 frames. The feature moves with a constant velocity for the first 10 frames (A -> B)
then a manoenvre occurs with a constant turn from frames 11 to 18 (B -> C), then the feature travels
with a corstant acceleration from fcames 19 - 25 (C -> D), and finally travels with a constant velocity
for the last 5 frames (D -> E). Both the trackers were applied to track the feature motion, and the
results for the model selection piobabilities are shown in Figs. (4.21)-(4.22). Fig. (4.21) shows the
model switching ability of the MHT-MMF tracker, It can be observed that ihe constant velocity model
(M2) operates unti} frame 11 (when the first model switching occurs), then we can see a dip in the
model selection probability for M2, and the constant turn model (M3) takes over for a short period
(about 3 frames), thereatter the incorrect model M2 is selected giving the incorrect feature motion.
The reason for incorrect model selection is because M1 never ‘revives’ despite modifications made to
the algorithm as discussed in section 4.5 and section 4.8.2.1. The model switching problem is rectified
by using the MHT-IMM tracker. Fig. 4.22 shows the MHT-IMM model selection probability resuit.
It can be clearly seen that the model switching occurs correctly almost at the appropriate time giving
the desired result.

14 v v . - A
%0 40 60 80 100 120 140
X - position
Figure 4.20: A simulated trajectory of a feature which travels with varied motion. The feature travels with
constant velocity from A -> B, with a constant turn from B -> C, with constant acceleration from C -> D, and

Jinally with constant velocity from D -> E. The continuous line (red) shows the true trajectory while the dashed
line (green) is the estimated trajectory obtained by the MHT-IMM tracker.
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Figure 4.21: The motion model selection probability versus frame number for the MHT-MMF tracker when
tracking the feature in Fig. 4.20. The models used are: (1) - M2 (constant velocity model), (2) - M3 (constant
turn model), (3) - MI (constant acceleration model). It can be observed that afier the first model switching
(around frame 12 at position B) the MMF frame work fails to switch mation models at positions C and D.
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Figure 4.22: The model selection probability versus frame number for the MHT-IMM tracker. The same motion
models are used as for the MHT-MMF case. The model switching occurs as expecied at around frame 13
(position B), around 18 (position C) and around 26 (position D). The tracker correctly switches motion model,
and tracks the feature as shown by the trajectory (green lines) in Figure 4.20.

4.9.2 A Real Example of a Feature Moving with Multiple Motions

A waving hand sequence was captured at 15 frames/sec. The motion of the hand was variable to test
the agility of the MHT-IMM tracker. The hand starts to move from a stationary position towards the
right. It picks up speed rapidly and then comes to a halt. It then moves again towards the left gaining
speed, then slows down and comes to a rest. The process is repeated 2 times. The motion models that
were employed for the MHT-IMM algorithm included a constant acceleration model (M1), a constant
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velocity model (M2) and a constant position model (M5). The last model assumes that the current
position of the feature is the best estimate for the next time step, such a model is useful to describe a

feature at rest (More of this model is discussed in the next chapter).

Figures 4.23(a) shows the qualitative results of the trajectories obtained. A total of 25 corners were
tracked to keep the tracking complexity to a minimum. The corners were extracted using the KLT
detector [190]. Figure 4.23(b) shows 3 of the trajectories to clearly show the path of the hand
movement. A feature that was successfully tracked for a considerable length of time was further
examined to verify the model selection changes. Figure 4.24(a) shows the trajectory of the feature of
interest (true and estimated positions of the x and y coordinates). Figs. 4.24(b),(c) show the estimated
velocity and acceleration respectively. From Fig. 4.24(d) it can be seen that model switching occurs
around the 13" 20™ 24", 30®, 40", 45", 53 60™ and 70" frames. This result closely corresponds to

the actual motion changes of the hand (actual motion was manually assessed).

@)

Figure 4.23: The qualitative results of the trajectories obtained for the waving hand sequence. (a) Displays
trajectories which survived more than 10 frames. The small circle indicates the end of track. (b} 3 tracks
displayed to illustrate the movement of the hand clearly (these 3 tracks survived for more than 50 frames).
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Figure 4,24: Tracking resuli for the waving hand sequence. (a) The true and estimated position of the cormer
Jeature of interest. (b) The estimated velocity of the feature. (c} Estimated acceleration of the feature. (d) The
probabilty of the motion model/s in operation during the course of tracking. As expected the MHT-IMM
switches motion models automatically according 1o the featur's motion, Note the constant postion model (M5) in
operation periodically, which corresponds to the change of hand direction (20", 40" and 60" frames).
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4.10 Discussion

In this section we: discuss some issues that need to be taken care of when implementing the multiple
motion model filtering algorithm. Some limitations of the multiple model filtering framework are also
discussed. Most of the issues discussed are applicable to the MHT-MMF algorithm, but some aspects
mentioned need to be considered when implementing the MHT-IMM aigorithm.

4.16.1 Model Selection for Two Models of Similar Type

When there are only 2 models in a bank of filters, and if they are of ‘similar type’, that is they have
very comparable residuals (v), then there is a possibility that the multiple mode! filtering (the MHT-
MMEF tracker) method might fail [130, 157]. In this particular case, we car’t effectively use the
multiple mode! algorithms in the conventional way (as discussed in section 4.5). A modified version
of the tracker is required to discriminate between the most appropriate (correct) and the unlikely

(incorrect) models.

For examplé, consider the case where only M1 (2™ order near constant acceleration model) and M2
(2% order constant velocity model) are the 2 models to exist in a bank of filters. If the multipie model
tracker is applied to track a feature that move with a motion described by model M1, then there is a
chance that M2 will be selected as the correct motion model despite the actual motion being constant
acceleration (M1). Why ?

Maybeck [130] states that one would expect that the residuals, v; (for the j-th model), of the Kalman

filter based upon the correcr model (most appropriate model) will be consistently smaller than the
residuals of the other mismatched (incorrect) filters, which, will cause the correct probability to
increase, while causing the others to decrease. The performance of the multiple model algorithm is
dependant upon a significant difference between the residual characteristics [130] of the correct and

the incorrect filter models, and that if the residuals instead are consistently of the same magnitude,

then the algorithm results in the growth of the probability, x,(k) associated with the filter with the

smallest value of |S }-| . Lund et al. [124] explain the effect as follows:

When the system model, M, equals the i-th model M, (i.e. M= M), one would expect that the

exponential term in Eq. (4.5) would be lower for the correct filter (the i-th filter in this case). i.e.

1, (k) << ri(k), Vv o j#i 4.15)
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where 7;(k)is defined as:

18 =5V} (S (B, () (4.16)

Hence, as u,(k) increases towards unity, the probabilities of the mismatched filters will decrease

towards zero if the condition described by equation (4.15) persists over several measurements. If
however, the system model does not equal any of the r models that form the multiple model algorithm

and /or the filters are tuned improperly it is possible that:
r(k) = (k)= =ry (k) | (4.17)

Then #,(k) is now governed by I.S‘(k)l »j=1,...r and u,(k) increases if 'S,. (k)l is less than ,S j(k)l,
i# j,while IS ; (k)l , J # idecreases. For Kalman filters and Extended Kalman filters, |S y (k), is not

dependent on which model is correct, and erroneous decisions upon the correct model may resuls.

The situatiop described by equation (4.17) is undesirable.

Focussing on the example of having M1 and M2 motion models in a bank (both have identical state
vectors, and state transition matrices, but have different process noise matrices), one would expect

the magnitude of residuals for both modeis to be identical. In this case M2 will always give a smaller

value of |S f (k)l , because it employs a lower value of process noise (). The effect of this is the same

as a lower order filter being selected while the other is a higher order filter (i.e., when both their

residuals are comparable). When the magnitude of the residuals are similai, the lowest order filter

will always have the smallest value of |.S' f (k)l as discussed in [157]. Hence, the MMF algorithm will

choose M2 as the most correctly modelled filter irrespective of the true motion. The probability that a
model is correct is therefore determined solely by the covariance S; when the magnitudes of the

residuals are similar.

Robert et al. [157] in their study of multiple model filtering (using MMF type algorithms) for vehicle
tracking have shown that the value of residual, v, has very little effect on the likelihood function
value A (in equation (4.5)). In contrast, the value of the estimated residual covariance, S has a large
effect on A. It must be concluded that the MAMF algorithm does not discriminate effectively when
presented with motion models of residual values that are small, or of similar magnitude, and separate

_filters of different dimension, and (or) have different states. In the next 2 sub-sections we consider
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methods which will aid the multiple model algorithm (MMF) to resolve the correct motion model

when presented with 2 similar types of motion models.

4.10.2 Modelling the System Neise ()

Lund et al. [124] addressed the problem in Section 4.10.1 by using a method called Inter-Residual
Distance Feedback (IRDF), where the filters are modified on-line in such a way as to de-tune them
through the modulation of one of the filter parameters. The modulation is governed by a scalar
quantity calculated from a distance measure between residuals. The main principle of the method is
to keep an inter-residual distance measure above a specified limit by adjusting the filter gains. This is

achieved by varying the system noise covariance, @, {for the j-th model). In the filter equation, O ; is

simply replaced by a modulated system noise covariance matrix Q' , where Q' ; is defined as:

0, (ky=n(k)Q,;,, Jj=12 (4.18)

where 7(k)‘is the modulating variable {124, 157]. It must be noted that the number of filters is
restricted to two when using the IRDF method as stated in [124]. A method allowing more filters to
be used is also outlined which consists of considering only the inter-residual distance between the

‘two most probable models’. However, it must be remembered that the motivation behind the IRDF

algorithm is to overcome the problem of unreliable probability values, u;(k). A method relying on

H,;(k) values to discriminate between the most probable models therefore seems unwise.

For the vehicle tracking project, Robert et al. [157] had used the above method along with the

empirically generated covariance of the residuals S (k) (proposed my Mayback [130] for tuning O)

which is defined as,

N k
Sk) = -}-;— > v, (4.19)

n=k-N+i
where N is the most recent time step. Robert et al. [157] describe the empirically generated
covariance as more reliable than using the theoretical S(k). Their simulations suggest that using this

method selected the correct motion model, which the traditional MMF method failed to do.

" In the example discussed in section 4.10.1 (where M1, M2 are used in a filter bank), we cannot tune

Q, since Q is used to distinguish between a velocity and a near acceleration model, and is kept
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constant. Therefore, we need another method to overcome this problem. A possible method is to tune

the measurement noise matrix R, which is discussed in the following section.

4.10.3 Modelling the Measurement Noise (R)

In the following section we introduce a funable measurement noise in the Kalman filter which can
discriminate between similar models provided the initial condition for R is a reasonable estimate to

the actual measurement noise.

Maybeck [130] states that if R or 0 is to be estimated separately, a reasonable solution is usually
achievable. It is generally true, for all algorithms and not just those based upon the maximum
likelihood concept, that the R parameter estimates are more precise than the O parameter estimates.
Since Q is fixed in our case, we have to tune R, which needs to be updated adaptively. Maybeck [130]

proposed 2 possible tuning method for R as given below:

R(k):%r-[ ivjvj.’]-ﬂ(k)P(k)HT(k), for k2 N (4.20)

Jek=N+1

-+

v

Maybeck's tuning method

The estimation process is essentially time-invariant over the most recent N steps, ie, S(k)™' remains

almost a constant over these steps, provided { is known completely (as in the case of the example).

For the experiménts given in this chapter, where there were only 2 motion models, the above
modelling methods have been followed, so that the final result refiected the true motion of the feature

considered. Further examples of 2 model filtering process can be found in [187].

4.10.4 Limitations of the Multiple Model Filter

A Kalman filter’s performance is extremely sensitive to initialisation. Good initial state estimates will
ensure fast convergence, while poor estimates give rise to slow convergence, sometimes even filter
divergence. Both Kalman filters and EKFs are prone to divergence. That is, although it is an optimal
filter, there are practical limitations to Kalman filters that may lead to its divergence [130]. Three

types of divergence exist:
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1) True divergence - due to unbounded system modelling errors, which lead to some elements of the
state covariance matrix, P, increasing without limit. This is the most severe divergence since
errors become unbounded very quickly.

2) Apparent divergence - due to the mis-modelling of plant excitation, measurement noise variances,
and the effects of system biases. Here, a steady state ts reached but the associated errors are too
large to allow the estimates to be useful.

3) Numerical divergence - due to filter computation round-off errors and finite precision arithmetic.

Both true and apparent divergences were observed during our simulations. Apparent divergence tends

to manifest itself as a constant bias in the estimates (see [187] for examples). In this case the state

covariance matrix has to be initialised (when a divergence is detected) in order for correct tracking to
occur (particularly true for the MHT-MMF tracker). The explanation for this phenomenon is that the
calculated covariance matrix becomes unrealistically small, so that undue confidence is placed in the
estimates and subsequent measurements are effectively ignored. The phenomenon of apparent
divergence is critical to the operation of the multiple model aigorithm. It is this effect that provides

MMF the mechanism with which to choose the most appropriate filter from its component filters.

Apparent divergence shows itself when the residuals have a non-zero mean (a correctly converged

filter will have near zero-mean residuals). It is therefore true divergence that adversely effects

multiple model filtering performance (for MMF type filters).

True divergence leads to error magnitudes that become unbounded very quickly. It is therefore
important to detect the occurrence of true divergence as quickly as possible. In this algorithm
implementation, true divergence is detected by analysing the vaiues of the leading diagonal of the
state covariance lflatrix P. When the value of any one of these elements exceed a pre-set threshold the
filter is said to have truly diverged and it is re-started and re-initialised at that time. The estimate

produced at the point of detected true divergence is therefore the observed estimate. The effects of re-

starting the diverged filter is to set its probability, u,(k), to zero (this is achieved automatically

using the standard MMF equations because the covariance of the residuals for that filter will be zero).
If the divergent filter is the correct fiiter, there will be a significant time delay before its estimates
converge again and hence a lag before it is recognised as the correct fiiter. The problem of poor

initialisation is hence an issue after true divergence.
However most of these limitations caused by MMF based algorithms are alieviated by using the JMM

algorithm. This is because of the interaction and mixing between each filter at the start of the

algorithm recursion (see Fig. 4.4 and Eq. 4.9 and 4.10), which is not the case with the MMF
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algorithm. It also worth noting that the likelihood functions for both these algorithms are quite
different (compare Eq. 4.5 and Eq. 4.11). Despite IMM’s slight computational cost over MMF, the
advantages of IMM is far more than the MMF algorithm (see Table 4.6).

Multiple Model Filter Type MMF IMM
Number of filters y r
Number of combinations of r estimates and covariances ] r+/
Number of probability calculations r P +r

Table 4.6: Comparison of complexities of the multiple model algorithms

4,11 Conclusion

Our study has shown how the Multiple Hypothesis Tracking (MHT) technique combined with an
Interacting Multiple Model (IMM) aigorithm can discriminate between different motions described
by an image sequence. The results have provided evidence of our method being able to identify
different motions while maintaining good tracking results. With the increasing power and availability
bf parallel machines, the parallel nature of the MHT-IMM algorithm provides an attractive solution
for many real time visual processing applications. The tracking technique presented can also be used

to segment objects moving with varied motion into separate groups.

A difficulty with the MHT-MMF tracker is to tune the Kalman filters at the initialisation stage. Since
KFs (and hence the MMFs) are sensitive to initial cond ifions, reasonable initial parameters need to be
provided in order for the tracker to perform well. Bad or-improper initial condition can lead to filter
divergence, or even converge io the wrong motion model {130]. Another drawback of the MHT-
MMF algorithm is the ad-hoc modifications required for the base algorithm in order to cope with
model switching tracking applications, which demands extra computational cost. However, by

employing the IMM algorithm most of the limitations caused by MMF are alleviated to a great extent.

Al tracking systems have limitations. This system is no exception. In any image sequence, if one
wants to track several objects, each feature on each object needs to have a separate tracking algorithm
in order to identify the motion correctly. This will be computationally expensive. The other drawback
is that the features need to be extracted independently of the MHT. A coupled feature detection and
tracking mechanism, perhaps along the lines of Zheng and Chellappa [207], Shapiro ef al [169] or
Kang ef al {112] is worth investigating. In such a coupled system one could use information as a

feedback between tracking and feature extraction to improve the performance of the latter.
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Chapter 5

Performance Prediction Analysis of a Point
Feature Tracker Based on Different Motion
Models

Abstract

This chapter provides performance prediction analysis techniques for a linear point feature tracking aigorithm
based on different motion models. We provide closed form expressions to evaluate the probability of correct data
association of a tracker (analysed with different motion models), when tracking under clutter. We also extend our
analysis for the prediction of correct data association when a tracker recovers from a false match to regain
correct tracking. The simple mathematical expressions provided here, can be used to implement performance
analysis procedures that are fast, easy, and are reasonably accurate (compared with conventional
computationally expensive Monte-Carlo tracking experiments employed to predict the performance of a tracker).
We have also demonstrated the importance of using a correct motion model for a visual tracker to get optimum
tracking performance, based on empirical evaluation techniques. The performance of a tracker’s robustness under
varied noise has also been investigated.

5.1 Introduction

For the last two decades the target tracking community has been focussing on the performance of
various target tracking algorithms [5, 6, 41, 42, 43, 125, 126, 135, 136, 138, 139, 158]. In most cases
the applications of these algorithms are for specific purposes (mostly defence oriented), such as
tracking missiles and satellites, to analyse aircraft manoeuvres, space-craft trajectory analysis etc.
Our survey shows that in the area of image processing and pattern recognition there are very few
published papers which provide performance analysis techniques for tracking algorithms for
computer vision related applications. The relatively small amount of performance analysis work
reported in the literature, relating to visual tracking, are (in most cases) for a narrow band of
applications. For example, analysing the tracking performance of a walking person [11], tracking of
the left ventricte {27], evaluation of vehicle tracking [118], [3], tracking of faces [24], [52] and body
motions [25], medical diagnostics {24] etc. Most of these evaluation techniques presented are for

non-point feature tracking algorithms.
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Work reported in [196] uses more generalised comparisen techniques to compare 4 point feature
trackers. The performance of the trackers are compared only on the basis of the speed of the tracking
algoritlim in refation to the number of points tracked using a cost function strategy. In [138], {139)]
Ngan et. al. presented a more versatile tracker performance prediction measure called the Probability
of Correct Association (PCA) for 2 trackers (a zero velocity and a constant acceleration tracker) when
tracking in clutter. They also introduced the PCA concept for a tracker when recovering from a False
Match (referred to as PCA-FM in this chapter), but they only considered the case for the zero velocity
tracker (also referred to as the constant position tracker). In this paper we review their work (for
completeness) and we then extend the performance prediction measures PCA and PCA-FM to a
tracker based on the 3 different motion models (a constant acceleration, a constant velocity and a
constant position (zero velocity) model). Thus we provide the extra 3 important performance
measures missing in Ngan et. al.’s work (ie. PCA for a constant velocity model, and PCA-FM for a
constant velocity and constant acceleration model) to complete the performance prediction study. In
addition, we demonstrate that the theoretical closed form performance measures are a credible
representation for track results obtained by independent Monte-Carlo simulations, using real dynamic
image sequences. We also empirically evaluate the performancs of a complete feature tracker, the
Multiple Hypothesis Tracker - MHT [58] (as discussed in chapter 4) using the different motion
models considered to emphasise the importance of choosing the correct motion model for optimal
tracker performance (with supporting results). We have aiso compared MHT’s performance with a
non-prediction based tracker (the KLT tracker discussed in Chapter 3) to assess the effectiveness of

the prediction scheme (based on the different motion models) in the presence of varied noise.

Since our primary task s to compare the performance of a point feature tracker with different motion
models, the comner features (each occupying 1 pixel in the image plane) that we track are extracted
independently in each frame of a given image sequence, by using the KL T comer detector [190) (It is
also possible to manually label corner points of interest in each frame for this analysis). By doing so
we totally isolate the tracking procedure from the corner extraction procedure purely to focus on the

performance of the prediction and tracking process.

The performance of a tracker is evaluated at different clutter density levels. This is achieved by
artificially inserting clutter points at different densities around the actual corner features extracted
(within a specified area centred at each feature). This process is employed to see whether a tracker
based on a particular motion model is robust encugh to associate the predicted feature point with the
actual feature. Each experiment is carried out at a different clutter density level to evaluate the tracker

- performance.

110




5.1.1 Tracking Performance

An important property of any type of tracker is its performance in the presence of clutter. A tracker
would ideally always choose the actual target point feature over a clutter point feature at the data
association step. In practice differences between the modelled target motion and the actual target
motion compromise the effectiveness of the estimation step, and the random distribution of clutter
points leads to a non-zero probability of false data associations occurring. The issue of false data
association is of particular importance in tracking systems which choose only one data point to
continue the object trajecfory (such as the nearest neighbour method), because the unselected true
data point is discarded from contention and is never considered in future data associations. Therefore,
the analysis presented in this chapter will also consider the probability of a tracker to regain track of
the moving object (comer feature) at the next step if at the current step a false association has

occurred.

The second ifnportant factor emphasised in this chapter is motion model selection for optimur:
tracking performance. Most tracking algorithms use a single motion model in its framework mainly
because of computational advantages {58, 11]. Such an assumption is valid provided the tracked
feature of interest moves with a similar motion to that of the motion model. If the motion of the
feature is different, or if the feature changes motion during the course of tracking; then the tracker
fails to provide the best quality trajectories. We therefore, have included an empirical evaluation of a
real point feature tracker (the Multiple Hypothesis Tracker - MHT [58]), tracking with varied motion
models (the motion models as studied in chapter 4). The results presented emphasise the importance

of motion model selection for optimal feature trajectories.

This chapter is organised as follows: Section 5.2 provides the assumptions that are required for the
analysis. Section 5.3 provides the performance measures used. In section 5.4 and 5.5 the derivation of
expressions for the probability of correct data association (PCA and PCA-FM) for the three trackers
are considered. Section 5.6 outlines the experimental evaluation procedure employed. Section 5.7

provides the results and discussion, and finally Section 5.8 gives the conclusion.
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5.1.2 Nomenclature

Py ) True position of object at time &

v, Velocity of object at time &

a, Acceleration of object at time £

73 Gaussian distributed random variabie at time %

() Probability density function of 7,

P Probability that a pixel is a clutter point

P Probability that a pixel is not a clutter point

Pyt +1} Probability of correct association at time &+7 for a Zero Velocity Tracker (ZVT)

Prr ik +1} Probability of correct association at time k+7 for 2 Constant Velocity Tracker (CVT)

Poyp {41} Probability of correct association at time 4+/ for a Constant Acceleration Tracker (CAT)

P fk+1} Probability of correct association at time &+7 for a ZVT, when a false match occurred at
time &

Pl tk+1y Probability of correct association at time k+/ for a CVT, when a false match occurred at
time k

Flplk+1} Probability of correct association at time k+7 for a CAT, when a false match occurred at
time &

5.2 Assumptions for Tracking Analysis

The initial objective of this chapter is to develop closed form performance prediction techniques for a
tracker (based on 3 linear motion models: a Zero Velocity Tracker (ZVT), a Constant Velocity
Tracker (CVT) and a Constant Acceleration Tracker (CAT)).

(1) Zero Velocity Tracker (ZVT): This tracker assumes that the object position at any point in time
originated from a Wiener process and so it’s positional increment from one time instant to the next
is independent of all preceding position increments (based on a constant position motion model).
Under such circumstances, since the next positional increment could be equally in any direction,
the best estimate of the object at time step k is by default its last observed position (given by Eq.
5.1). Such a prediction scheme would yield perfect predictions if the object remained in its last

observed position, and therefore it can also be considered a zero velocity predictor.
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(2) Constant Velocity Tracker (CVT): This tracker assumes that the target object moves with
constant velocity. Velocity is defined as the vector difference between two successive position
vectors, as described by Eq. 5.2.

(3) Constant Acceleratien Tracker (CAT): This tracker assumes that the target object moves with
constant acceleration. Acceleration is defined as the vector difference (a finite difference

approximation) between two successive velocity vectors (Eq. 5.3).

The formutation of closed form expressions for the probability of correct association (PCA) for each

tracker requires a nember of assumptions to be made, which are listed as follows.

Assumption 1. Only a single moving corner point is considered at a time, and the selected corner is
assumed present in every frame (this is verified by a manual check following corner detection). The
motion of the point feature behaves according to the feliowing dynamic motion equations (for ZVT,

CVT, and CAT respectively)

Pi =Py 7 (5.1)

Pi =Ppay TV + (5.2)
=2p4q =Pia +

P =Py TV a1, (53)

=3Py — 3P F P 1

where p,.v,(=p, -p,,)a,(=v, ~v,.,) are the position, velocity and acceleration at time &

respectively (per unit time) and n, is a Gaussian distributed noise.

Assumption 2: Data association is performed by the nearest neighbour method. No drift is assumed in

the prediction phase when estimating the position of a feature.
Assumption 3: Clutter is present in every frame. A new set of clutter points is generated for each

frame, and the clutter points are uniformly distributed in two-dimensional space for performance

evaluation.
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5.3 Performance Measures for Tracking

Disk of association (A4)

Figure 3.1: Definition of prediction error.,

A natural choice for a measurement of tracking performance is the track purity of the output
trajectory generated by the tracking system. This is the average percentage of correctly associated
measurements in each track, see Chang et. al. [41]-[43]. However, an analytical expression for track
purity is very difficult to derive. An alternative measurement is called the Probability of Correct
Association (PCA) [138], which as its name suggests is the probability, at any given step, that the
tracking system will make a correct data association in the presence of clutter.

The following PCA '’ s are presented (as performance prediction measures) in this chapter.

1. The probability of obtaining the correct association at f = k+1 for all three trackers given that a
correct association has been made at the previous time steps (referred as PCA).

2. The probability of making a correct association at ¢ = k+1 for all three trackers given that an
incorrect association has been made at ¢ = k, but that a correct association has been made at

previous time steps (referred as PCA-FM).

3.3.1 Nearest Neighbour Data Association

Denote the probability that a given pixel is not a clutter point by F, (and its complement by F), the
true position of the object at ¢ = &+ by p,,,, and the predicted position of the object at ¢ = k+1"
_given track positions up to and including ¢ = & by p,,,, . Then the prediction error is defined by

[138]. See Fig. (5.1).
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€0 T Pryy —Prap (5.4)

An overhead tilde is used to denote values derived from an incorrectly associated measurement made

att =k, thus giving rise to, p,,,, ,and %,,,.

A correct association is attained when no clutter point occurs within the region of association, which

is defined to be a disk with radius e, centred at p,,, , as shown in Fig. (5.1). The probability of the

event of correct association is equal to the probability that no clutter point exists within a radius of

e;.,0f Py, - This probability is given by the probability R,‘ to the power of the number of pixels in

a disk of radiuse,,, [138], namely,
P{correct association at time k+1}= R)ﬂ““lz (5.5)

Thus the derivation for the probability of correct association for ZVT, CVT, CAT begins with the

determination of an appropriate expression for e, , for each case.

5.4 Probability of Correct Data Association (PCA)

This section describes the method to obtain an expression for the probability of correct association (at
time step k+7) for each of the trackers (ZVT, CVT and CAT) assuming the tracker has not made a

false match, up to the current time step £.

54.1 Derivation of PCA for the Zero Velocity Tracker (ZVT)

This tracker assumes that the best prediction for the point feature in the next frame is the current
point in the trajectory. Therefore, the following relationship holds for the ZVT (can also be termed

the constant position tracker).

€ra = Vau (5.6)
Substituting Eq. (5.6) into Eq. (5.5) yields the expression for the probability of correct association at

_time step k+1 (denoted as p,_{k +1}) in terms of the velocity from p, to p, . In this case the error is

caused by a small velocity v, | (For the ZVT, it is assumed that v, >>75,. Therefore, the random
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noise component is neglected). If this assumption is taken into account, then the PCA for ZVT is

given by

Py {k+1{v,,,} = BT 5.7)

5.4.2 Derivation of PCA for the Constant Velocity Tracker (CVT)

The constant velocity tracker assumes correct data associations have been made at 7 = &, and ¢ = k-1,
The reason is that the CVT requires past positions of the feature at time & and 4-1 to predict the
position at £+1. If any one of these past 2 positions represent a clutter point, the calcnlated velocity

value will not reflect the true velocity of the feature at 7 = k+1.

Using the error definition and the dynamic equations for constant velocity (section 5.2), we have,

€t = Pra ~ Prap
=P~ PtV +77,) (5.8)

SV~ Yt =a,,+ 1,

Assume that for a non ideal case, a,,, is non zero (say a small constant acceleration error component
a,,=a is present) and 7, is a sample from a Gaussian distribuied noise. Therefore, using Equations
(5.5) and (5.8) the probability of correct association for CVT (denoted as Py, {k +1} ) can be given

as follows:

PCVT {e+1 I’?kaak} - Poflemr = &Hlﬂaﬂtr (5.9)

Since CVT is more accurate than ZVT in terms of prediction, 5, is assumed non-negligible compared

with the acceleration error term. Now using the total probability theorem [5], for the CVT, we obtain,
Portk+1\a}= {poy{k+1|7,,8}.p07,)dn, (5.10)

where p(7, ) is the pdf of the Gaussian distributed random variable 7, .
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Expanding equation (5.10) with suitable substitution, and integrating out, produces the following

expression {(see Appendix C for proof):

Pyrlk+1|ay=1..1, (5.11)

e’ ]
h e e . -
where [_= Foroa® [4%‘\!7’4‘4«/%@ + /5. J;r]

withg = —(ln Po;r-%l B.=2a,nPx, y,= af InPx. O,.a, are the Gaussian noise variance
J

x

and acceleration (a) component in the x direction respectively. A similar expression can also be

obtained for [ i

5.4.3 Derivation of PCA for the Constant Acceleration Tracker (CAT)

Recall from section 3 that the constant acceleration tracker assumes correct data associations have
been made at ¢ = k, k-1, k-2. The reason for this is that the acceleration term is calculated using the
previous three positions of the trajectory. If any one of these three position terms represents a clutter
point, the calculated acceleration value will not reflect the true acceleration of the feature point at £ =
k+1.

The prediction error for the constant acceleration tracker is as follows (using similar approach as
hefore).

€rt TPait ~Praip

=Py —(Pe +Vi +2, +1,) (5.12)
=V, —(v,+a, +n)=a,, -(a, +1,)
=1 I

Under the constant acceleration assumption, a,, ~a, (higher order motion terms are assumed

negligible compared with the noise term, therefore not considered in (3.12)). Using equation (5.12),

the probability of correct association for CAT (denoted as P, {k +1}) is given by;

P tk+1)n) =Pl (5.13)
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The probability of correct association for CAT can be derived by setting a = 0 in Equations (5.9) -
(5.11), and further simplifying the expression reduces to (see Appendix C for proof),

]
Porlhk+1}= (5.14)
rtlx ) Ji-2707 0P J1-2702 nR,)

Alternatively, the expresston (5.14) can be obtained by expanding (5.13) and then simplifying using

the fact that the area under a density function is unity (see Appendix C for a detail derivation).

5.5 Probability of Correct Association for Recovering from a False

Match (PCA-FM)

This section describes the method to obtain an expression for the probability of correct association
for each of the trackers (ZVT, CVT and CAT) when they recover from a mismatch to regain correct
track (after a false match occurring in the previous time step k). An analytical derivation for ZVT is
provided, but for CVT and CAT, PCA-FM expressions are provided using a combination of

analytical derivation and Monte-Carlo experiments.

pk-i-]

ka1 = 76

Disk of association (4)

Figure 5.2: Prediction error v, includes the offset due to data association error £,
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5.5.1 Derivation of PCA-FM for the Zero Velocity Tracker (ZVT)

If a clutter point occurs within the disk shown in Fig. (5.2) at 7 = k, then that clutter point would be
selected for the trajectory at 7 = k. The probability of correct association when recovering from a

false match (PCA-FM), denoted as P, {k +1}, is a measure of the likelthood that the ZVT will

perform a correct data association at ¢ = k+7 given that an incorrect association had occurred at 7 = k.

This situation is illustrated in Fig. (5.2).

Assume the existence of a clutter point n, inside the disk of association at time ¢ = k. The nearest
neighbour criterion would associate n, with the trajectory at ¢ = k, which is designated the symbol
p,» where the tilde denotes an incorrect association. When applying the zero velocity prediction

scheme, the incorrectly associated point also becomes the new prediction point, ie. §,,,, =§,, and

thus leading to a prediction error given by the following equation.
€1 =Pin — E’uuk =Vin (5.15)
From Fig. (5.2) it can be seen that ¥, is the vector difference of the true velocity v,,, and the two-
dimensional random variable £, as given by equation (5.16).
Vi =V — & (5.16)

Substituting the prediction error into equation (5.5) yields the probability of correct association given

as follows,

Pop{k +1[V,,,81) = Poxl?"*'l = Poxlv“'-s&l- (5.17)

The probability 2, {k+1|v,,,}can be formed from equation (5.17) by integrating out the random
term g, using the total probability theorem. The probability density function of g, is a uniform
distribution inside the disk of association 4, and zero outside. That is, p(a‘*):lfﬂuv*“z if & is

inside 4, and 0 otherwise [139].
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For mathematical convenience, the disk of association (4) is approximated by a square (S) as shown

in Fig. (5.3), which is centred at p,_ and has sides of length 2v must s Where v

maxt 15 defined as:

Vg = max(lv,l,lv,l]-

."’-.
ety
£

- ~
e tann
%

...

Square region of integration () Disk of association (4)

Figure 3.3: Approximating the circular region of integration 4 by a square region S.

With suitable substitution and integration, the final expression can be given by (see Appendix C for
proof):

ik +1]v) =—-1—P;'"'" 11 (5.18)

Qv )

where, ;- Zf— exp{~ab* J{erf (V= (5 pay + )+ rf (V=G(¥ o, - B))]

-a
with g=InAx and b=-2v,. A similar expression can also be found for 7 . Note that this

expression is only valid for a small velocity v (to approximate a zero velocity tracker).
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5.5.2 Derivation of PCA-FM for the Constant Acceleration Tracker (CAT)

A complete expression for the probability of correct association for a constant acceleration tracker
recovering from a false match (prediction for ¢ = k+1 given that at t = k there was a mismatch) is
rather more complicated than the zero velocity case. However, we provide a geometrical derivation
using a similar vector diagram to Fig. (5.2). An expression can be found fo: a variable disk size
(instead of a fixed disk size as in Fig. 5.2) as shown in Fig. 5.4. For the ZVT it is known that the

radius of disk of association (4) is a constant velocity error (€4, =l V,,]). But for a CAT we model

the radius » (with components 7., r, in the x, y direction) of 4 as a variable quantity.

Disk of association (4)

Figure 5.4: Vector diagram jfor the probability of correct association for CAT and CVT when recovering from a

mismatch (the radius of the disk of association is modelled as a variable quantity).

From vector diagram (Fig. 5.4), and with the motion equation for CAT it can be shown (with

assumptions (i), (it) given below) that:
ek+,=(r+r,{)!2 | (5.19)

where e, (=) is the radius of the disk of association (the error) for the matching at 7 = k.

Assumptions for deriving (5.19):

() 7, is a random error term (non Gaussian) between the actual position of the feature and the

selected mismatched feature (at ¢ = k).
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(i) 7, >> 1, (for low noise levels).

By a s}miiar analysis as to that carried out for the ZVT, the probability of correct association for
PCA-FM (recovering from a false match), denoted as B, . {k+1|r}, can be given by (see Appendix
C for details):

2a
Pl tk+1r) =-;1—1£-}{,‘* LI, (5.20)
¥,

max

where 2r, is the length of the square (whose area approximates that of the circle, as for the ZVT

case)and r_ = max(lr,],|ry|) . The I_ is given by,

i, |
I, = —{—j‘;—exp{arx }[erf (JE (Fowx ¥ )) +erf («G (s — rx))]
with 4= —In po.;f and r, is the x component of 7, and can be given by the following expressidn.

r, =[ a+Bexp{-(bh* + ch+ d)} 14,
=f(hx:hy)'hx

(5.21)

where his an error quantity (a higher order motion, considered as an error term) of the dynamic
system (A, is the x component of %), and «,f,b,c,d are constants. The expression for r, was
evaluated by performing extensive Monte-Carlo simufations (a mathematical closed form expression

for r.is very difficult to derive). The foliowing approximate values for the constants were also
obtained by Monte-Carlo methods; o =2, 8=28,b=15,c=2,d =003 for CAT. A similar expression

to Eq. (5.21) can be given for I and 7,,.

Equation (5.20) is very similar to equation (5.18) except that r is a variable size in this case. Through
a series of Monte Carlo simulations, using a range of modelled ervor terms (such as the rate of change
of acceleration) and disk radius values (»), we were able to create close matches between the
experimental probability of correct association {PCA-FM) and the theoretical expression given in
. equation (5.20). The result of these experiments is given in the plot in Fig. 5.5. This shows the
variation of f(h,,h ) with k. A perfect CAT is obtained when & -> 0. Conversely, with the use of this
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plot for a given error term (eg: a constant higher order motion term) we can find r (using equation

5.21), and in turn be able to find the probability of correct data association using Equation (5.20).

5.5.3 Derivation of PCA-FM for the Constant Velocity Tracker (CVT)

For the derivation of PCA-FM for CVT (denoted as P/, {k +1|r}), a similar analysis can be carried

out as for the CAT. In this case a constant velocity model is assumed with a constant acceleration
error term added to the dynamic motion equation. The probability of correct association (recovering

from a mismatch) is still given by equation (5.20), but r, is now given by the following expression.

7, =[ a + fexp{—(bg + )} ) s.

5.22
=f(gngy)'gx ( )

where g is the acceleration (modelled error term) of the dynamic system ( g, is the x component of g),
ande, B,b,c are constants (as before) and were found to be approximately:
a=22,5=18,b=25,c=003 through a series of simulations. The variation of f(g,,g,) with g is

shown in Fig. 5.6, As before a perfect CVT is obtained when g -> 0.

20 ; ' ' 14
- - -~ experimental '
« = = « theoretical - -~ - experimental
12t \ « e theoretical
15 4
10}
F B |
A
5 N\, \
M 4t ‘\_‘.
. e et e \ “\\_.*

o 1 2 3 " 5 0 1 2 3 4. 5
emor term {k) error term (g)
Figure 5.5 Figure 5.6

Figure 5.5: Variation of f(h_, h,) with the error term (%). As h->0 a perfect CAT model is obtained

Figures. 6: Variation of f(g,_, g, ) with the error term (g). As g->0, a perfect CVT model is obtained.,
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5.6 Experimental Procedure

This section describes the experimental procedure used to empirically validate the probabilities of

correct association.

3.6.1 Simulation Method

In the tracking experiments, the probabilistic component relates to the generation of random corner
points that clutter the scene in which tracking occurs. The steps involved in the Monte-Carlo

experiments for the analysis are shown in the following pseudo code.

Generate reference trajectory {applying the tracker with no clutter
points)
For each level of clutter
For each N trials
Create cluttered point set from reference trajectory.
Apply tracking algorithm to noisy token set.
Compare output trajectory with reference trajectory.
End
End
End
Calculate pr_obability of correct associations.

5.6.2 Generation of Reference Trajectory

Separate reference trajectories (trajectory of the comer feature) were created using the ZVT, CVT
and CAT for each of the image sequences considered. The estimated (predicted and tracked) position
of a feature point is generated by applying the dynamic equations given in section 5.2 for each tracker
without considering clutter points. The position estimation step is followed by a manual check to
verify the existence of a feature in every frame. Each of the image sequences considered (details
given in section 5.7.1) had at least a small (non-zero) motion component due either to feature motion
or camera motion. Even to evaluate the ZVT, a small motion is necessary, because the performance
measures developed for the ZVT is velocity dependent (as given by the theoretical expression in

section 4.1), and it makes sense to evaluate the measure at a given velocity (small value). The
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reference trajectory generated by using a CAT is based on the dynamic motion equation (5.3) with a
random error component added (noise and a small constant higher order motion term). Similarly for
the CVT tracker, the dynamic equation (5.2) is used with a random component, consisting of a noise

term and a small constant acceleration.

5.6.3 Generation of Clutter Points

For each frame of a sequence, a set of random tokens is added to represent clutter. The random tokens

are uniformly distributed in each frame using a specified clutter density p (see section 5.3.1 for
definition of p). The spatial region over which the new tokens are deposited is centred at the

reference corner point and is a square region with a sufficient number of pixels so that the expected
number of deposited (within the region) clutter tokens is N. In the experiments N was set to 10. The
value of N cannot be set too high because the extent of the clutter region grows very large with small
values of F,. Having N large can be computationally impractical in the current implementation. The

set of P values used, were (0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.156 0.277

0.625). These are the 13 clutter levels at which the probability of correct association is evaluated.

5.6.4 Calculation of Probability of Correct Association

The probabilities of correct association (PCA and PCA-FM) for simulations are calculated using the

following expreséions for each tracker (where event types 4, B, C, and D are defined below):

A
P {l+1,v, 1P gk + 1}, Pop{h+ 1} = A+B
d 4 ' C
Prplk+ 5V Papth w1}, P th+ 1} = Yo W)

Type A:Indicates correct tracking at time &
Type B:Incorrect tracking at time &
Type C: Indicates recovery from incorrect tracking at time k£

Type D: Continuation of error due to incorrect tracking at time &

- Table 5.1 gives the requirement for each tracker to obtain event types 4, B, C, and D.
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ZVT CVT CAT

Time | A|B| C|D|A|B|C|D|A]|B|C|D
k |1]lo|t]oj1]o|t]o|1]o]1]o0
k1 | t]1|0joj1l1|olo|1]{1]0]o0
2 | X X111 11|t ]1]1]1]1]1
M| XX | XX |X|IX|1]|1[1]t1]1][1
4 X[ X X[ X[ X[X[X[X[X[X]1]1

Table 5.1. Event types (A, B, C, D) for each tracker, where a ‘1’ indicates correct matching at time k, and a 0’

indicates incorrect matching at time k. An X’ indicates a don’'t care.

5.7 Results

The following sub-sections describe the qualitative and quantitative resuits obtained for the various
empirical evaluations presented. The simulated tracking performance is evaluated under 2 categories.
The track life (Total number of correct trajectory points regardless of trajectory order) and mrack
purity (Number of frames to first incorrect trajectory point). Our analysis as discussed below shows
that the PCA and PCA-FM derived (for each separate motion model) are a good representation for the
simulated track life and frack purity, respectively, for each image sequence cousidered.rAll our
experiments presented here are based on real life dynamic image sequences (some frames of each
sequence are displayed in Appendix G). Finally, we employ a complete feature tracker (the Multiple
Hypothesis Tracker [58] is chosen for demonstration) and show the quality of feature trajectories
obtained using different motion models described. The MHT is also compared with the KLT tracker

(a non-prediction based tracker) at varied notse levels to test the robustness of the tracker.

3.7.1 Track Life and Track Purity Results Under Clutter

The results presented in Figs. (5.7-5.12) shows that the closed form expressions (PCA and PCA-FM)
are a reasonable match to the Monte Carlo experiments (using synthetic data), provided there is no
violation of assumptions made in deriving the theoretical expressions (as given in sections 5.4 and

'5.5). This suggests that the theoretical expressions are a credible representation of tracker
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performance (for each separate motion model) under varied clutter level. For each experiment more

than 100 separate Monte Carlo runs were made and the average considered.

The trackers (ZVT, CVT, CAT) were applied to track corner features (extracted independently of the
tracker, using the KLT and Harris corner detection algorithms) for image sequences ranging from
about 10 to 50 frames. We used a variety of different image sequences with the feature to be tracked
moving with varied motion (due either to feature motion or camera motion). Figures (5.13)-(5.16) and
(5.17)-(5.20) shows the track life and track purity results for the PUMA (30 frames), Toy-Car (9
frames), Walking-Man (50 frames) and RUBIC (20 frames) image sequences respectively. From
these results it is reasonably clear that a CAT or a CVT tracker gives the best tracking results for the
PUMA s;equence, while a CVT seems more suitable for the Walking man and Toy car sequences, A
ZVT is adequate for the RUBIC sequence, this is because the inter-frame motion for the RUBIC
sequence is very small, thus a zero velocity tracker is able to produce feature trajectories that are
comparable to CVT and CAT. The same results are independently verified by visually inspecting the
qualitative results given in Fig. 5.21 (these tracks are obtained by using the MHT employing the 3
different motion models discussed. They are the same figures as shown in Chapter 4 with the addition
of ZVT applied to each of the sequences). The motion model that gives the best quality trajectories
(for each image sequence) is the same as the ones revealed by the quantitative resulis displayed in

Figs. 5.13-5.20), thus confirming the consistency of the results presented.

Another noteworthy observation is that the ZVT recovers better from a false maich than CVT or
CAT. A CVT recovers better than a CAT. The reason is that the ZVT requires only 1 past position to
predict the next estimated position, where as a CVT requires 2 past position and a CAT requires 3
past positions. For example, for a CAT to completely recover from a mismatch, it needs to wait 3
time steps (requiring correct association at each of the 3 time steps) to make the next correct

prediction.

5.7.2 MHT versus KLT in the Presence of Noise

In this section we provide a direct comparison between two types of feature point trackers. The 2
trackers considered are totally different in nature. The first tracker, the MHT uses a prediction (and
matching) strategy for tracking features. The second tracker, the Kanade-Lucas-Tomasi (KLT) uses a
non-prediction scheme (KLT uses an ‘image patch comparison’ strategy, the detail of the tracker was
described in Chapter 3). The purpose of the comparison was to evaluate the robustness of the trackers

in the presence of varied noise. The noise {(uncorrelated noise) is artificially added to each frame

127




(except the first frame) of a sequence at specified noise variances. The process was followed by

feature extraction prior to applying the trackers.

For the MHT tracker, the most suitable motion model as applicable to each of the image sequence
considered (obtained from results reported in sections 5.7.1) was employed. The number of features
extracted in the initial frame for each sequence was limited to around 25 for clarity. The features
were detected using the KLT feature detector [190]. Figures (5.22)-(5.25) shows the gqualitative
tracking results for both trackers, while Figure (5.26) shows the quantitative track-life results.

For the PUMA sequence, both trackers perform well at low noise levels (¢ < 10), but the MHT
provides betier quality feature trajectories (longer trajectories) at higher noise levels than the KLT.
This is clear from the results reported in Figs. (5.22) and (5.26a,b). For the Rubic sequence, both
trackers provide equally good track results up to a noise level of around o = 20 (Fig. 5.23), mainly
because of the small inter frame displacement. At higher noise levels (noise variance o > 20), MHT
results in longer trajectories, this is evident from Fig. (5.26¢,d), but not clearly observable from Fig.
5.23.

For the Walking man sequence MHT gives good track results at all noise levels considered, compared
with the KLT tracker (see Figs. 5.24 and 5.26e,f). Since this is an outdoor sequence (generally prone
to more image plane noise), added synthetic noise has a greater impact on the quality of trajectories
obtained. It should also be noted that the features extracted from the walking person are not uniform
throughout the sequence, because of the non-rigid nature of the object (walking man). As a result, the
KLT tracker fails to produce good quality trajectories even at low noise levels due to failure of its

image patch matching technique.

For the Toy car sequence, up to a noise level of ¢ = 10, the MHT gives good quality results (Fig.
53.25), but at higher noise levels, several incorrect trajectories are reported. The KLT, on the other
hand gives shorter trajectories but are more reliable than the one obtained using MHT (see also Fig,
5.26¢,d). The reason for this observation is because of occlusion (the jeep and the van are occluded
between frames 4-6, see Appendix G). KLT cannot cope with occlusion because of its patch
comparison strategy in consecutive frames, while MHT can cope with occlusion, but during
occlusion added noise can distract the MHT tracker due to spurious measurements in the absence of

the occluded object.

" A general observation of the track resuits indicate that, MHT outperforms KLT in a noisy

environment (for the examples considered), mainly because of its prediction /matching strategy. One
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reason for trackers breaking down at higher noise levels is because, the robustness of the corner
detector employed (KL detector) decreases with the increase of noise (this fact is true for any corner
detector). As the noise increases the number of false corners detected increases rapidly, which in turn
results in high clutter density. Increase in clutter density lead to poor quality trajectories as discussed
in the previous sections. Another reason, particularly for KLT, is the patch comparison mechanism it
employs to match and track features in consecutive frames. Unfortunately the correlation technique
that KLT employs is not suitable when considerable amount of noise is present in the image plane.
Because of uncorrelated noise added to the sequences, the correlation match obtained between frames
are very low, giving rise to poor quality trajectories (the KLT gives up tracking a feature if the match

of image patches containing the feature between frames fal} below a certain predefined threshold).

5.7.3 Theoretical versus Experimental Results

From the plots given in Figures 5.7-5.20, it is clear that there is deviation between the theoretical and

experimental (simulation) results. The reasons for the deviation could be attributed to the following.

{a) In deriving the theoretical expressions, many assumptions were made (as described in sections
54.1-54.3 and 5.5.1-5.5.3). These were necessary in order to obtain feasible mathematical
formulations. Whereas the simulated experiments were all based on the true dynamic motion

models. Failure to meet these assumptions could have caused discrepancy.

(b) Obtaining PCA and PCA-FM using simulations were based on several hundreds of Mote Carlo
runs (100-300). The number of runs miglit not have been sufficient for true representation of event
types 4, B, C and D. Particularly, the conditions required for event types C and D are rather
restricted and thus the probabilities of events C and D occurring is very low, which in tum could
have led to the calculation of less reliable probability values. This could have caused some

deviation between the theoretical and simulated results.

(c) Numerical approximation and compromises in simulation implementation methods could also

have caused some deviation, which were not accounted for in the analytical study.

However, despite these factors, the correspondence between the theoretical formulation and

experimental resuits are close for low and high values of clutter density.
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Theoretical versus experimental results (using synthetic data)
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Figure 5. 7: Probability of correct association (PCA) for the ZVT. P, is shown on a log scale. A velocity error
(v) of 6.25 pixels/unit time was modelled as an error term for the ZVT tracker. 3
Figure 5.8: Probability of correct association (PCA) for the CVT. The Gaussian noise variance ¢=1.3 with an
added acceleration error of 0.01 pixels/unit time/unit time (modelled as an error). 3
Figure 5.9: Probability of correct association (PCA) for the CAT. The Noise variance is set to 0=1.3. :
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Theoretical versus experimental results Cont,
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Figure 5.10: Probability of correct association for the ZVT for recovering from a mismatch (PCA-FM). P, is
shown on a log scale. A velocity error v=1.0 pixels/unit time is applied for this example.

Figure 5.11; Probability of correct association for the CVT for recovering from a mismatch (PCA-FM). A ‘disk
of association’ radius r = 4.4, (with f(g_, g,) = 2.2} is applied for this experiment, See text for details.

Figure 5.12: Prababimy of correct association for the CAT for recovering from a mismatch (PCA-FM). A “disk
of association’ radius r = 2.9, (with f(h_,h ,) =2}is applied for this experiment, See text for details.
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Track-life results (using real data)
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Figure 5.13: Track-life for the PUMA sequence plotted against clutter probability (shown in log scale). The
theoretical model presented for the probability of correct association (for CAT) closely matches the track life
obtained using a constant acceleration tracker (CAT) experimentally. The plot shows that a CAT or CVT
provides the best quality trajectories under clutter for the PUMA sequence,

Figure 5.14: Track-life for Walking man sequence (shown in log scale). The track-life obtained by experiments
Jor walking man sequence using a constant velocity model (CVT} gives the best masch for the theoretical CVT

model.
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Figure 5.15: Track-life for the RUBIC sequence plotted against clutter probability (shown in log scale). The
theoretical model presented for the probability of correct association (for ZVT) matches track-life obtained by
all 3 trackers. Since the motion is very small between frames, a ZVT tracker seems adequate.

Figure 5.16: Track-life for Toy car sequence (shown in log scale), The track-life obtained for toy car sequence
using a constant velocity model (CVT) gives the best match for the theoretical CVT model presented.
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Track-purity results (using real data)
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Figure 5.17: Track-purity for the PUMA sequence plotted against clutter probability (shown in log scale). The
theoretical model presented for the probability of correct association for recovering from a mismatch (for CAT)
is a reasonable approximation to the. track-purity obtained using a constant acceleration tracker (CAT) by

simulations. This is an indication that for feature tracking for the PUMA seguence a CAT or CVT provides the
best track resuls,

Figure 5.18: Track-purity for Walking man sequence (shown in log scale). The track-purity obtained for

walking man sequence (by simulations) using a constant velocity model (CVT) gives the best match for the
theoretical CVT model. -
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Figure 5.19: Track-purity for the RUBIC sequence plotted against clutter probability (shown in log scale). The
theoretical model presented for the probability of correct association (for ZVT) when recovering from a
mismatch is a reasonable match for tracks obtained by all 3 trackers (using simulations). Since the motion is
very small between frames, a ZVT tracker is adequate.

Figure 5.20: Track-purity for Toy car sequence (shown in log scale). The track-purity obtained (by simulations)

for 1oy car sequence using a constant velocity model (CVT) is reasonably a good match for the theoretical CVT
model presented.

Note: The track-purity results are consistent with the track-life results (Fig. 5.13-Fig. 5.16).




Tracks Obtained Using Different Motion Models

Figure 5.21. Qualitative results of trajectories obtained by employing the MHT tracker with different motion
model. For each sequence the tracks are displayed on frame-1. The circle indicates the end or termination of a
track. (a) PUMA using a CAT, () PUMA using a CVT (shorter tracks than using CAT), (c) PUMA using a ZVT.
(d} Toy-car using a CAT (observe the number of false trajectories despite longer tracks), (e) Toy-car using a
C¥T, () Toy-car using a ZVT. (g} Walking man using a CAT (large number of false tracks due 1o over-
constraint), (h) Walking man using a CVT, (i) Walking man using a ZVT. (j} Rubic using a CAT, (k) Rubic using
a CVT, () Rubic using a ZVT (similar results to using CAT or CVT). The results show that the quality of
trajectories obtained for each image sequence is influenced by the motion model employed. Thus choosing the
most appropriate motion model is of importance for good tracking resuit.
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Tracks Obtained at Varied Noise Levels

i Y

() MHT, at o = 30 | (W KLT, at &= 30

Figure 3.22: Qualitative results for the PUMA sequence- under noise: Performances of MHT (using CAT) at
noise variance (a) 6= 0, (c) 6 =10, (e) =20 and (g) & =30. Performances of KLT at noise variance (b} o= 0,
() a=10, () =20 and (h) o =30.
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Figure 5.23: Qualitative results for the Rubic sequence under noise; Performances of MHT (using ZVT) at noise

variance {a) =0, (¢} o =10, (¢) =20 and (g} o =30. Performances of KLT at noise variance b)o=0(d o
=10, (f) =20 and () o =30.




Tracks Obtained at Varied Noise Levels (Walking Man)

)

(@) MHT, at 6= 30 (W) KLT, at o= 30

Figure 5.24: Qualitative results for the Walking mian sequence under noise: Performances of MHT (using CVT)
at noise variance {a) =0, (¢c) o0 =10, (¢) o =20 and (g) o =30. Performances of KLT at noise variance (b) =
0, (d} o=10, (f) o=20and (h) o =30.
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Tracks Obtained at Varied Noise Levels (Toy Car

{a) MHT, at c=0

/..
(g) MHT, at o= 30 (h) KLT, ur o= 30

Figure 5.25: Qualitative results for toy car sequence under noise: Performances of MHT (using CVT) at noise

variance (a} o =0, (c) o =10, (¢) =20 and (g) ¢ =30. Performances of KLT at noise variance (b) o= 0, (d) ¢
=10, (f} 6 =20 and (h) o =30.
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Track-Life Results
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Figure 5.26: Track life for the 4 image sequences considered (s refers to noise variance). (a) Using MHT
tracker for the PUMA sequence. (b) Using KLT tracker for the PUMA sequence. (c) Using MHAT tracker for the
Rubic sequence. (d) Using KLT tracker for the Rubic sequence. (e} Using MHT tracker for the Walking man
sequence. (f) Using KLT tracker for the Walking man sequence. (g) Using MHT tracker for the Toy-car
sequence. (h) Using KLT tracker for the Toy-car sequence.
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5.8 Conclusion

We have provided a performance prediction scheme for simple linear trackefs based on different
motion models when tracking under clutter. The closed form expressions provided for performance
prediction have been shown to be more efficient than the conventional Monte-Carlo experiments. The
method provided is useful to compare the performances of a visual tracker based on different motion
models, thus indicating to the motion model that gives the best quality trajectories. We have also
experimentally demonstrated that choosing the most appropriate lhotion model is important for any
tracker to provide good tracking results. The tracker performance under noise has revealed the degree
of robustness of the trackers. This was demonstrated by applying the MHT and KLT trackers to track

features at varied noise levels.
It is also worth noting that the best motion model selected for the image sequences considered in

Chapter 4 are consistent with the results reported in this Chapter, thus confirming the consistency of

motion mode] selection results for each sequence considered.
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Chapter 6

Extension of a Point Feature Tracker for Rigid

Object Tracking

Abstract

This chapter presents an object tracking technigue based on the Bayesian Multiple Hypothesis Tracking (MHT)
approach. Two algorithms, both based on the MHT technique are combined to generate an object tracker
[182]. The first MHT algorithm is employed for contour segmentation [37]. The segmentation of contours is
based on an edge map. The segmented contours are then merged to form recognisable objects. The second MHT
algorithm is used in the temporal tracking of a selected object from the initial frame (as explained in chapter 4).
An object is represented by key feature points that are exiracted from it, The key points (mostly corner points)
are detected using information obtained from the edge map. These key points are then tracked through the
sequence. To confirm the correctness of the tracked key points, the location of the key points on the trajectory
are verified against the segmented object identified in each frame. If an acceptable number of key-points lie on
or near the contour of the object in a particular frame (say n-th frame), we conclude that the selected object has
been tracked (identified) successfully in frame n.

_6.1 Introduction

The primary purpose of this chapter is to track a selected object (as opposed to a single point feature)
from the initial frame through the image set;uence. The process is an attempt to extend the point
feature tracking introduced in chapter 4 to object tracking. In this case, key points from the object are
selected using a curvature scale space technique [134] to represent that object. The key points are
temporally tracked and are validated against the object contour (obtained by grouping edge segments)
in each frame. The tracking technique involves applying the MHT algorithm in two stages: The first
stage is for contour grouping (object identification based on segmented edges) and the second stage is
for temporal tracking of key features (from the object of interest). For the contour grouping process,
we employed the aigorithm developed by Cox et al {57], and for the key point tracking procedure we
used the tracker introduced in chapter 4. Both algorithms combine to provide a rigid-object tracker
(the tracker cannot effectively be applied to deformable objects for reasons explained later in this

chapter).
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The set of image contours produced by objects in a scene, encode important information about their
shape, position, and orientation. Image contours arise from discontinuities in the underlying intensity
pattern, due to the interaction of surface geometry and illumination. A large body of work, from such
areas as model-based object recognition and contour motion flow (as discussed in chapter 2), depend
critically on the reliable extraction of image contours. Reliable image contours are necessary to
identify an object with certainty, which in turn is necessary for tracking the object over a period of
time in a sequence of images. We use the term ‘object’ for a group of edge segments that form a
recognisable object (identified as belonging to the same object). The object will be identified by an

enclosed (or near-enclosed) contour.

This chapter is organised as follows: Section 6.2 gives a brief description of the Multiple Hypothesis
Tracking (MHT) approach relating to edge segmentation. Section 6.3 shows how the multiple
hypothesis approach can be used for object recognition. In section 6.4 we briefly show the process to
extract key points from an object, and the MHT approach for tracking key point features through an
image sequence. Section 6.5 provides the object-tracking framework employed using methods
described in section 6.3 and 6.4. Section 6.6 gives results obtained from experiments. Section 6.7

gives a general discussion, and finally section 6.8 provides the conclusion.

6.2 Multiple Hypothesis Framework for Contour Grouping

This section briefly describes the multiple hypothesis approach in relation to contour segmentation.

The details of which were discussed in chapter 4.

Fig. 6.1 outlines the basic operation of the MHT algorithm for contour grouping (observe the minor
difference to that of Fig. 4.1. Instead of corners, edges are extracted). At each iteration, there are a set
of hypotheses (initially null), each one representing a different interpretation of the edge points. Each
hypothesis is a collection of contours, and at each iteration each contour predicts the location of the
next edgel as the algorithm follows the contour in unit increments of arc length. An adaptive search
region is created about each of these predicted locations as shown in Figure 6.2 [57]. Measurements
are extracted from these surveillance regions and matched to predictions based on the statistical
Mahalanobis distance (similar to that discussed in chapter 4). This matching process reveals
ambiguities in the assignment of measursments td contours. This procedure provides an associated

ambiguity matrix (Q) for each global hypothesis from which it is necessary to generate a set of legal
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assighments. As a result, the hypothesis tree grow another level in depth, a parent hypothesis
generating a series of hypotheses each being a possible interpretation of the measurements. The
probability of each new hypothesis is calculated based on assumptions described in chapter 4.
Finally, a pruning stage is invoked to constrain the exponentially growing hypothesis tree. This

completes one iteration of the algorithm. Appendix B contains the required mathematical formulation

for this application.

Fiypothesis at time £-1, Q' Delay Hypotheses at time £, o
For each Hypothesis Hypothesis Minagement
generate predictions {pruning, merging)

I

Hypothesis Generation

— ®
Predicted Edges Z(k) Ambiguity Matrix Q
Z(ky Observed Edges

Edge Extraction

Intensity Image T

Figure 6.1: Qutline of the multiple hypothesis algorithm jfor edge grouping

In the following sections we briefly describe the contour grouping algorithin employed, and the key

point sefection and tracking process used. Both these methods are based on the multiple hypothesis

approach.

6.3 Object Recognition
6.3.1 Contour Segmentation

The contour grouping problem examined in this chapter, involves assigning edge pixels produced by
an edge detector [40, 31] to a set of continuous curves. Associating edge points with contours is
difficult because the input data (from edge detectors) is noisy; there is uncertainty in the position of
the edge, there may be false and / or missing points, and contours may intersect and interfere with one

another, There are four basic requirements for a successful contour segmentation algorithm. First,
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there must be a mechanism for integrating information in the neighbourhood of an edgel to avoid
making irrevocable grouping decisions based on insufficient data. Second, there must be a prior
model for the smoothness of the curve to base grouping decisions on. This model must have an
intuitive parameterisation and sufficient generality to describe arbitrary curves of interest. Third, it
must incorporate noise models for the edge detector, to optimally incorporate noisy measurements,
and detect and remove spurious edges. And finally, since intersecting curves are common, the
algorithm must be able to handle these as well. The algorithm due to Cox et.al. [57, 59] is one which
has a unified framework that incorporates these four requirements, and we will use this algorithm for

contour segmentation.

The contour grouping is formulated as a Bayesian multiple hypothesis ‘tracking’ problem (as in
[152]). The algorithm has 3 main components. A dynamic contour model that encodes the
smoothness prior, a measurement model that incorporates edge-detector noise characteristics, and a
Bayesian hypothesis tree that encodes the likelihood of each possible edge assignment and permits

multiple hypothesis to develop in paralle] until sufficient information is available to make a decision.

A key step in assigning probabilities to segmentation hypothesis is the computation of the likelihood
that a given measurement originated from a certain contour. This likelihood computation depends on
two things: a dynamic model that describes the evolution of the curve in the image, and a
measurement model that describes how curves produce edgels. In this formulation, the curve state
vectoris [x X y jf]r(where (x, y) are the position in a Cartesian coordinate) and its dynamics are
described by a linear noise-driven acceleration model common in the tracking literature {5, 6] (also
discussed in chapter 4). The autocorrelation of the white Gaussian acceleration noise can be varied to
model curves of arbitrary smoothness. Thus the tip (end point) of the contour as a function of arc
length, u, is (x(u), y(u)) and has tangent (x(x), y(u)) . Since many edge detectors provide gradient
information, it is assumed that the entire state vecior is available for measurement (a good edge
detector such as Canny [40], Boie-Cox algorithm [31] etc. which provide both position and coarse
gradient information (horizontal, vertical, and two diagonals) is employable for this application). A
Kalman filter is then employed to estimate curve state and predict the location of edgels. These

predictions are combined with actual measurements to produce likelihoods.
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Figure 6.2: Predicted contour locations, a surveillance region and statistical Mahalanobis (elliptical) regions

for a situation with two known contours (t1 and 12} and three new measuremenis (z1, z2 and z3).

Once the location of a given curve has been predicted by the Kalman filter and discretized to image
coordinates, a surveillance region is .employed to extract measurements. A surveillance region is an
adaptive variable sized window that travels with the tip of the contour and is used to extract
measurements from the edge map. Every iteration, each contour searches for edge points in a series of
circles of increasing diameter centred at the predicted contour endpoint. The search halts as soon as at
least one measurement is found, or the maxitnum search radius is rzached. The size of the
surveillance region determines the distance the curve must travel in that time period, and is reflected
in the step size for the curve. The use of a set of windows of incieasing size ensures that no more than

one measurement from the given contour will be found in a single time period.

The search for measurements takes place after the prediction phase of the state estimator generates an
extrapolated endpoint location, (x, »), for the contour. This location determines the discrete image
coordinates, (x; y;), at which the surveillance region is centred. If there is no edge at the predicted
location, concentric circles (see Fig. 6.3), of radius 1, \/2_, 2,«/3 , are searched for edgels (the radii

define discrete pixel neighbourhoods). These surveillance regions are labelled 1 to 5 in Fig. 6.3 (it

should be noted that the surveillance region of a contour is not equivalent to its validation region,

~ which is defined by the Mahalarobis distance and is depicted in Fig. 6.3 as an ellipse). It is these

145




i Lt sl bl S les Ly -

P

measurements that form segmentation hypothesis whose probabilities are computed. See Appendix B
and [57] for details.

5 5
5 | 3 3|5
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Figure 6.3: 4 contour, its surveillance region (labelled 1 - 3} and its validation region.

6.3.2 Contour Merging

The grouped contours resulting from the above mentioned process still might have breaks and gaps
between segments of the same object. A further refinement process can be employed to merge
segments to form identifiable objects. A merging technique is employed by using a distance test (eg:
Mabhalanobis distance) applied to the end poi'nts of contours (assuming a non-closed contour). In this
case the muitiple contours can be merged to recover the correct segmentation, compensating for the

incorrect initial conditions. Two contours with state estimates X; and X, at common boundary are
merged if dx ; T~y dx, £ 5, where dx; =i, —~%,. T is the covariance, and & is obtained from 7

tables or set appropriately as a threshold. This test is applied after the algorithm produces an initial
segmentation. The procedure resolves many ambiguities left by the contour segmentation algorithm.
A simpler algorithm can also be used by just using the end-point positions and derivatives of the end

points of each curve (produced by the edge detector) as shown below.
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Algorithm for merging contours

1) (i) Read Contour Segmentation map (this is the map which has details such as contour length, start and
end positions of contours etc. for every contour),
* Get number of contours (no_contours).
* Get start and end positions of every contour,

* Get the ‘initial’ and ‘end’ position, and their positional derivatives fer every contour,

2} (i) fori=1->no_contours
{

for } =i -> no_contours

{
if (contour j (start or end position} -~ contour j+1 (start or end position) < POS_THRESHOLD) &&

if (contour j (derivative of start or end position) — contour j+1 {derivative of start or end position)
< DERIV_THRESHOLD)

* check the start and end position of every contour with the start and end position of every

other contour, could use Mahalanobis distance for setting thresholds (see text) */

{

hY
contour j will merge with contour j+1

enter mergeable contour id, length, start, finish position etc. in a contour_merge_table

3) Read the contour_merge table and merge the contours which had passed the merge test in 2).

6.4 Temporal Tracking of Key Feature Points

In this section we discuss the process to extract key points from the object of interest and we also

discuss the procedure to track them temporally.

0.4.1 Extracting Key Feature Points from Objects

In order to temporally track the object of interest, key points from the object are extracted to

represent the object. The key point extraction method should ensure that only true corner points (or
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any clearly identifiable and definable points) are extracted. Extraction of multiple points within a
small region should be avoided (eg: in a curved object, ideally only 1 point should be selected from
the curved portion) for good tracking. Since contour grouping (discussed in the previous section) is
based on an edge-map, it is desirable that key points should also be selected from the same edge map.
Such a process will be efficient and will eliminate the requirement to employ a separate corner
detection algorithm. Because of these limitations, we cannot effectively use any of the cormer
extraction algorithms mentioned in Chapter 3 (these calculate corner values directly from the raw
image). Instead we have employed a method called the curvature scale sp;':lce technique [134], which

selects key points directly from an edge map efficiently. In the next section the curvature scale space

technique is discussed in brief.

6.4.2 The Curvature Scale Space Algorithm (CSS)

The CSS technique is suitable for recovering invariant geometric features (curvature zero-crossing

points and / or extrema) of a planar curve at multiple scales. To compute it, 2 curve I'is first

parameterised by the arc length parameter u:

F(u) = (x(u), y(u))

An evolved version I', of I" can then be computed. T, is defined by [134):

I,(w)=(x(u,0),y(u,0)),

where

y(u0)=xW@g(u,0)  yu,0)=yu)®@gu,0),

where @ is the convolution operator and g(u,0) denotes a Gaussian of width o (o is also referred

1o as the scale parameter). The process of generating evolved versions of I' as o increases from zero
to infinity is referred 10 as the evolution of I'. This technique is suitable for removing noise from,
and smoothing a planar curve as well as gradual simplification of its shape. In order to find curvature

zere-crossings or extrema from evolved versions of the input curve, onec needs to compute the

curvature accurately and directly on an evolved version [,. Curvature xon I' | is given by [134]:
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X (4, 0)Y (4, 0) = X (4,001 (4, 0)
(z.(w,0) + y(u, o))"

x(u,c)=
where
Z.(,0)=x(u)® g, (u,0)  fn(u,0)=x(u)® ¢, (4,0)

7. (,0)=yu)®g,(u,0)  7,00)=yu)®g,(u0)

6.4.3 CSS Key Point Detection Method

6.4.3.1 Brief Overview

The corners (key points) are defined as the local maxima of the absolute value of curvature. At a very
fine scale, there exist many such maxima due to noise on the digital contour. As the scale s
increased, the noise is smoothed away and only the maxima corresponding to the real corners remain.

The CSS detection method finds the corners at these local maxima.

As the contour evolves, the actual locrtions of the corners change. If the detection is achieved at a
large scale the localisation of the corners may be poor. To overcome this problem, local tracking is
introduced in the detection. The comers are located at a high scale Gy, assuring that the corner
detection is not affected by noise. ¢ is then reduced and the same corner points are examined at lower
scales. As a result, location of corners may be updated. This is continued until the scale is very low
and the operation is very lJocal. This improves localisation and the computational cost is low, as

curvature values at scales lower than o, do not need to be computed at every contour point but only

in a small neighbourhood of the detected corners.

There are local maxima on the evolved contours due to rounded corners or noise. These can be
removed by introducing a threshold value 7. The curvature of a sharp corner is higher than that of a
rounded corner, The final stage to the candidate corner declaration is that each local maximum of the
curvature is compared to its two neighbouring local minima. The curvature of a comer point should
be double the curvature of a neighbouring extremum. This is necessary since if the contour is

continuous and round, the curvature values can be well above the threshold value ¢ and false corners
may be declared.
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6.4.3.2 CSS Detection Process
The CSS key point detection process can be given by the following steps:

1. Utilise an Edge detector (such as Canny {40] or Boie-Cox [31] etc.) to extract edges from the
original image.

2. Extract the edge contours from the edge image:
- Fill gaps in the edge contours
- Find the T-junctions and mark them as T-corners

3. Compute the curvature at highest scale o1y, and determine the corner candidates by comparing
the maxima of curvature to the threshold 7 and the neighbouring minima.

4, Track the corners to the lowest scale to improve localisation.

5. Compare the T-corners to the corners found using the curvature procedure, and remove corners

which are very close.
The details of the CSS process can be found in [134].

6.4.4 Tracking Point Features

The MHT-IMM (MHT coupled with a multiple model Kalman filter, as discussed in chapter 4)
algorithm can be applied for tracking key point features through an image sequence. The procedure
for this was analysed in detail‘in chapter 4. The measurements for the tracking filter in this case will
be the key features extracted (from and near thé object of interest) from every frame of a given image-
sequence (key points are searched within a region of interest surrounding the estimated object
centroid). The object centroid position is initially calculated .in the first frame by taking the mean of
the sum of object key point positions. In the subsequent frames the object centroid is estimated using
the MHT-IMM tracker. The extracted measurements are then matched to predictions based on the

Mahalanobis distance.

The advantage in using the key point tracking algorithm is that we can verify each of the temporally
translated key points on the object (selected) against the likely contour of that object in every frame.
By doing so, we examine to sce whether the object as a whole is tracked correctly (the process for
doing this is explained in the next section). In the next section we give the procedure involved in
~combining the point feature tracking algorithm and the contour grouping algorithm for object

tracking.
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6.5 Object Tracking

This section shows how the contour grouping and key point feature tracking procedures combined
can be applied for object tracking in image sequences. One cycle of the algorithm recursion is
displayed in Fig. (6.4).

The object tracking principle underlying this algorithm is shown in Fig. 6.5. For every frame in an
image sequence we first apply the contour segmentation algorithm, This process will group segments
of edges that are likely to be from the same object. The resuit of such a process applied to our test
sequences are given in Figures 6.6(a) — 6.9(a). The procedure as seen from these figures, fail at high
curvature contour regions, or is unable to bridge a gap in edgels extracted. As a result, contours from
the same object are often broken or separated. To overcome this limitation we applied the contour

merging algorithm, which resulted with recognisable object contours {Fig. 6.6b — 6.9b).

Once the object contours are categorised separateiy, we can now track a selected object (selection of
object can be automated by using a snake type algorithm (eg: Gsnake [120, 121]) or any other
suitable algorithm) from the initial frame through the sequence. To track the selected object, we first
select some key features (points) from the object (these are selected using the edge map information

and then applying the CSS algorithm) as discussed section (6.4).

The key features of the object are extracted in every frame and the object centroid calculated (this is
the mean position of the sum of key points of the object contour). The key points (émd the centroid)
from the first frame are now tracked through the sequence using the MHT-IMM algorithm (as
discussed in chapter 4). The tracking process is achieved by predicting the object centroid position in
the following frame, and then searching a region of interest suri‘ounding the centroid to Jook for the
key points, this process is followed by matching the key points t0 a grouped object contour within
that region. This procedure will provide trajectories for every key point of the object. Each trajectory
point is validated against a grouped contour in each frame. By imposing a distance threshold between
the tracked key points and the key points on the segmented contour (in each frame), we can verify
whether the points have been tracked to an scceptable level of precision. If an acceptable number of
key points tracked are identified to lie on or near the object contour {that is passing the threshold test)
in each of the frames, we conclude that the object has been tracked successfully. If a key point fails

the threshold test, then that point will not be considered as part of that feature trajectory any further.
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Figure 6.4: Overview (I cycle) of the object tracker proposed
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Figure 6.5: A graphical illustration of the object tracking principle. The object (triangle) contour is formed by
the key feature points P1, P2, P3 (black blobs in frame-I). The object formed in every frame is achieved using
contour segmentation coupled with a confour merging technique (section 6.3). T1, T2, T3 are the trajectories of
the key points. The trajectories are obtained by using the MHT-IMM tracking algorithm (section 6.4). If the key
points tracked (irajeciories T1-T3) in every frame lie on or near the contour (triangle) in each frame, then we
have the object itself tracked through the image sequence (up to frame N),

6.6 Results

Image Sequence Number of key Attempted number | Number of features tracked
{(frames length) points selected to | of points tracked (& for more than 2/3’s of the
be tracked percentage) seq. length (& percentage)
UMASS Lab (11) 8 8 100 % 8 100 %
PUMA (30) 4 4 100 % 4 100 %
Indoor cones (8) 3 3 100 % 3 100 %
Qutdoor cones (20) 1z 10 83.3% 10 100 %

Table 6.1: Object tracking statistics for the 4 test image sequences considered.

The 4 sequences considered gives a variety of scenarios to test our algorithm. In all 4 cases the
tracking resuits are promising (see Figures 6.6 — 6.9). Table 6.1 provides quantitative performance
values for the object tracker. For the UMASS lab sequence 100% of the key-points selected as
forming the object (posters) in the first frame are successfully tracked for the entire sequence length.
Similar observations can be made for the PUMA and the indoor cone sequences. Finally a multiple
. object example is demonstrated. For the outdoor cone sequence, 4 cones are considered as part of an
object. As the result suggests, 10 out of the 12 key corner features are tracked successfully for more

than 2/3°s of the sequence length.
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Figure 6.6: UMASS lab sequence result. (a) Contours grouped by applying the contour segmentation algorithm
based on the edge map obtained (one frame of the sequence is displayed). Each segmented contour (grouped
edges) is shown with a different color. (b) Result after the application of segment merging algorithm (observe
that the segntents that are identified as forming the same object are merged together in most instances). {c) The
trgjectory of the 8 key points by applying the MHT-IMM algorithm. The 'x’ shows the start of the trajectory
while the little white circle indicates the end of trajectory. {d) The identified object trajectory (poster). The white
contours {identified as belonging 10 the same object in each frame) are superimposed on the first frame of the
Sequence 1o show the motion of the object.
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Figure 6.7: PUMA lab sequence result. (a) Contours grouped by applying the contour segmentation algorithm
based on the edge map obtained (one frame of the sequence is displayed). Each segmented contour (grouped
edges) is shown with a different color. (b) Result after the application of segment merging algorithm (observe
that the segments that are identified as forming the same object are merged together in most instances). (c) The
trajectory of the 4 key points by applying the MHT-IMM algorithm. The ‘x’ shows the start of the trajectory
while the little white circle indicates the end of trajectory. (d} The identified object trajectory (window). The
white contours (identified as belonging to the same object in each frame) are superimposed on the first frame of
the sequence to show the motion of the object.
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Figure 6.8: Indoor cone sequence result. (a) Contours grouped by applying the contour segmentation algorithm
based on the edge map obtained (one frame of the sequence is displayed). Each segmented contour (grouped
edges) is shown with a different color. (b) Result after the application of segment merging algorithm (observe
that the segments that are identified as forming the same object are merged together in most instances), (c) The
trajectory of the 3 key points by applying the MHT-IMM algorithm. The ‘x’ shows the start of the trajectory
while the little white circle indicates the end of trajectory. (d) The identified object trajectory (cone). The white
contours (identified as belonging to the same object in each frame) are superimposed on the first frame of the
sequence o show the motion of the object.
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Figure 6.9: Outdoor cone sequence result. (a) Contours grouped by applying the contour segmentation
algorithm based on the edge map obtained (one frame of the sequence is displayed). Each segmented contour
(grouped edges) is shown with a different color. (b) Result afier the application of segment merging algorithm
(observe that the segments rthat are identified as forming the same object are merged together in most
instances). (¢} The trajectory of the 10 key points by applying the MHT-IMM algorithm, The ‘X’ shows the start
of the trajectory while the little white circle indicates the end of trajectory. (d) The identified object trajectory (4
cones). The white contours (identified as belonging 1o the same object in each frame) are superimposed on the
Jirst frame of the sequence to show the motion of the objects.
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6.7 Discussion

Figure 6.6(a) — 6.9(a) shows the result of applying the contour segmentation algorithm. It can be seen
that the segmentation algorithm fails to group segments of the same edge around sharp curves. Since
the algorithm scans the edge image by “walking” along the contours, it may encounter a new contour
at any point along its length. When tracking begins in the interior of a curve, it is usually partitioned,
erroneously into two or more segments sharing common boundary points. As a result of this,
contours belonging to the same object can be grouped as separate objects. To overcome this
limitation we applied the contour-merging algorithm (as described in.section 6.4) which provided
better results (Fig. 6.6(b) - 6.9(b)). It can be clearly seen that most of the segments belonging to the
same object have now been grouped together successfully (the quality of the segmentation also

depends on the thresholds that are used for both algorithms [57-59]).

For the PUMA sequence, the window on the top left comer of frame 1 (see Figure 6.7) was tracked
through the sequence. The result of the tracking is given in Figure 6.7(d) and the corresponding
trajectories of the key points are given tn Figure 6.7(c). From visual inspection the results are
promising. Stmilar results are observed for the UMASS lab sequence (Fig. 6.6(c,d)), despite the short
trregular translation of the posters (top right comer of frame 1). The qualitative results are supported

by quantitative results presented in Table 6.1,

For the indoor cone sequence, a cone on the left side (middle) is tracked. As can be observed from the
results (6.8a,b), the cone is identified as a separate object and the 3 key points are tracked
successfully. The qualitative result is shown in Fig. (6.8). Figure (6.9) shows the result of the outdoor
cone sequence. In this case, multiple objects are tracked {4 cones on the right). Each cone is treated
as a separate entity, while all 4 cones combine to form a ‘grouped-object’. Each of the key points
from the 4 cones are tracked and matched to the segmented shape (the 4 cones). Apart from the last
frame, where the cone in the front gets segmented with the road, 83% of the key points have been

tracked correctly (see Table (6.2)), thus successfully tracking the 4 cones.

6.8 Conclusion

In this chapter we have shown how the multiple hypothesis technique can be used for rigid object
tracking in image sequences. The contour of object tracked is achieved by first applying the MHT
approach to group segments of the same object. This process is followed by applying the contour

merging algorithm to identify recognisable object contours. Then by selecting key point features of
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this object, temporal tracking (matching) of key points is achieved by using the MHT again. The
validity of the trajectory of the key points is verified by inspecting whether the key points were lying
on or near the contour of the tracked object (searched within a region of interest). The results are

promising for objects that are not occluded and can be recognised clearly in every frame.

One of the main drawbacks of the system is that the contour grouping process can break down due to
occluston of the olject being tracked. The MHT can predict possible trajectory for the key points
despite the occlusion [58} and thus retain the trajectory (as shown in chapter 4). But the contour
segmentation and grouping process will fail, as it looks only at the edge map to group contours. As a
result the object tracker fails in its primary purpose. The tracking process presented can also fail for

deforming objects. This is because the key point tracking phase will not be robust enough to track

unexpected deformation of object contours.

Recognising and tracking objects using point features as presented in this chapter is possible for
relatively simple objects (as demonstrated in the results). For complex objects the process is
inefficient, and can lead to errors in object identification and tracking. A more versatile method of
object tracking will require an object contour to be represented using a parameterised curve, such as
using Snakes [113, 120], Deformable templates [27], or using B-splines [12, 61, 23, 24]. In the next
chapter we provide an efficient algorithm to track multiple objects (contours of multiple deformable

objects) in extended image sequences. The algorithm is also capable of tracking objects that move

with variable motion.
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Chapter 7

Contour Tracking with Automatic Motion Model
Switching

Abstract

{n this chapter we present an efficient contour- tracking algorithm which can track 2D silhouettes of objects in
extended image sequences. We demonstrate the ability of the tracker by tracking highly deformable contours
(such as people walking) captured by a static camera. We represent contours {(silhouette) of moving objects by
using a cubic B-spline. The tracking algorithm is based on tracking a lower dimensional shape space (as
opposed to tracking in spline space). Tracking the lower dimensional space has proved to be fast and efficient.
The tracker is also coupled with an automatic motion-model switching algorithm (IMM), which makes the
tracker robust and reliable when the object of interest is moving with multiple motion. The model based
technique provided is capable of tracking rigid and non-rigid object contours with good tracking accuracy
[184].

7.1 Introduction

Most contour tracking methods reported in the literature assume that the chaages of shape of objects,
between frames, are very small. They also assume that the object of interest is moving with a constant
motion model {(examples in Chapter 2). Provided these conditions are satisfied the reported
algorithms are claimed to perform well for their respective applications. However, in reality one

cannot make such assumptions for applications such as tracking a walking/running person. The

b
8
i..
i

motion of a walking person can be variable and also the inter-frame shape changes cannot be assumed

to be ‘very small’, particularly for objects captured by a camera at low frame rates (eg: 10-15
frames/sec). Our contribution in this chapter primarily addresses these issues. We provide a shape
space decomposition technique (for highly deformable object contours) which makes the contour
tracking process easier and robust. The entire tracking mechanism evolves around the decomposed
shape space, thus reducing computational burden to a large extent. The contour tracker introduced
can also cope with larger inter-frame displacements and can automatically switch motion models

according to the motion of the object of interest.
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This chapter is organized as follows: Section 7.2 provides an overview of general contour
representation schemes, while section 7.3 focuses specifically on using B-splines for contour
representation. Section 7.4 describes a rigid body shape representation method using B-splines, and
section 7.5 provides a method for non-rigid shape representation using a ‘shape training-set’> analysis.
Section 7.6 gives an efficient shape space decomposition tecimnique, which enables the tracking
process to be robust and efficient. Section 7.7 gives an overall description of the dynamic system
employed. Section 7.8 outlines the tracking filter, describing the measurement and prediction models
used. Section 7.9 extends the tracking analysis to cope with automatic motion model switching.
Section 7.10 describes the object detection and separation process emploved (including occlusion
handling). Section 7.11 gives the main results and provides a brief discussion. Finally section 7.12

gives the conclusion and possible future research directions.

7.2 Contour Representation

There are several ways_'af; representing a 2D contour of an object (rigid and non-rigid). Among the
many representations, edge based methods {97, 127], snakes [113], active shape models [204], and B-

spline methods have been used for contour tracking as discussed in chapter 2.

Edgz based methods primarily depend on using some reliable edge detection algorithm {40, 97}. Once
the edges are detected, the different objects are separated using some.segmentation scheme [174]. A
common problem with edge based methods (to represent objects) is that edges extracted are not
continuous around corners (broken or spiit) and the quality of edges are limited by threshold vatues
used in most edge detection algorithms. The discontinuous nature of edges makes these approaches

less desirable for contour (object) tracking applications [24].

Snakes on the other hand are based on an elastic-energy minimization principle [113] (also discussed
in chapter 2), the resuit of which attract snakes to some feature of interest such as edges, valleys or
ridges [113]. Snakes are also not perfectly smooth since the energy functions employed in snake
algorithms have first and second order differentials, and for any practical purpose they have to be

approximated by some finite difference method which makes them less smooth [24].

The prior shape constraints implicit in a snake model are soft in general: encouraging rather than

enforcing a particular class of favored shapes, and these favored shapes have rather limited variety.
To overcome such limitations a parametric shape model with relatively few degrees of freedom can

be employed. The resulting template is known as ‘deformable template’ {204] (discussed in chapter
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2). One down side to this approach is that the templaie is parameterized to fit some apriori shape
using a number of geometric parameters which can vary non-linearly with a parametric vector {24].
The number of parameters used depends on the complexity of the shape of interest. For any real time

temporal shape tracking, such methods, in general, are not efficient.

The use of B-splines for curve representation has been shown to overcome most of the limitations
caused by using other contour representation methods. B-splines are a parametric curve passing
through {or nearly passing through) N control points. B-splines in general maintain a degree of
smoothness and continuity which is essential for object representation in tracking applications. B-
splines also provide computational advantages over other representations [24, 27, 60). Particularly for
tracking purposes, prior knowledge can be incorporated into a tracker by an elastic coupling with a
template B-spiine [25]. This persistent template mechanism improves stability by incorporating shape
mesory: restricting the prior distribution of the contour shape. In this chapter we will use cubic B-

splines to represent 2D contours (also referred as silhouettes in this chapter).

7.3 Contour Representatior using B-splines

B-splines are an efficient representation of curves with limited degrees of freedom. They have a
number of desirable properties including the fact that they obey the constraint that all the curve lies
within the convex hull of control points. They can also be made continuous even at break points, up
to a certain desired order. Large image features may be represented by a B-spline using a few control
points, rather than as a list of pixels (this was the case in chapter 6), and this reduction in degrees of

freedom enables real-time (or near real-time) implementation of tracking algorithms feasible.
The following notation for the contour is used throughout this chapter. The continuous curve
parameter is s, which in general varies over 0 <5 < N along the length of the curve. For simplicity,

we assume that each span (between control points) has unit length in s. Hence the #-th span is defined

over the interval 7 —1< 5 < n. The continuous curve for a spline of order 4 is then given by [23, 60]:
Q(s, 1) = H(s)Q(?), .1
where Q(#) is the vector of control points of size 2NxJ (and ¢ is the instant of time in which the

. control points are considered), ie.
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In this notation:

s B is the shape matrix (B-spline basis matrix) for the n-th span, derived from the number of knots
at break-points around the span as in [7).

+ G, describes the controllability of each span by selecting from the global control point vector
Q(?) only those control points which control the »-th span, thus G, is a shifted identity matrix
augmented by zero columns {23).

e s=(l, 5, .. ,sd)r contains the polynomial terms in the spline parameter s up to the spline

order d (eg: d=3 for cubic B-splines).

For the rest of this chapter the subscript ¢ is omitted for notational convenience.

7.4 Rigid Contour Shape Representation for Tracking

Blake et. al.’s {22, 23] pioneering work in proposing B-splines to represent contour shapes has made
contour tracking in general much efficient and reliable than the better know “snake” approach [113].
Any contour can be approximated by N control points using a B-spline of order 4 (as discussed in the
previous section). A tracker now could conceivably be designed to allow arbitrary variations in
control point positions over time. This would allow maximum flexibility in -deforming to
accommodate moving shapes. However, particularly for complex shapés requiring many control
points to describe them, this is known to lead to instability in tracking [25]. The instability occurs
when features are temporarily obscured and the tracker is ‘bumped out’ of its steady state. The more
complex the shape to be tracked, the worse is the instability that occurs when the lock to the shape is

lost,

Fortunately, it is not necessary to atlow so much freedom for the control points. An image of a

moving hand, for instance, provided the fingers are not flexing, is a rigid, approximately planar

163




shape. Provided perspective effects are not too strong, a good approximation to the curve shape as it
changes over time can therefore be obtained by specifving Q, a linear vector valued functior of the
B-spline coordinates (X,Y). The Q-parameterization of the curve embodies the reduced degrees of
freedom for motion, which vary online, leaving intact the full set (X,Y) of geometrical parameters to
do justice to the detail of complex shapes and to be varied ofiline only [25]. Such a representation
can be achieved by reducing the number of degrees of freedom to a lower dimension and preserving
the original base-shape of object. As an example, for a planar affine transform of a template shape,
the degrees of ireedom are six. That is, the Degrees of Freedom are limited to: translation (2 DOF),
scaling (2 DOF), rotation (1 DOF) and shear (1 DOF).

In mathematica} terms: if a known template spline Q, = (XD,Y', )r is allowed to undergo planar affine

transformation, the resuiting vector spline can be expressed by {12, 50, 51}:
Q=D(a,,a,)Q, +U (7.2)

where U (2N x 1) represents the translation (2 DOF) vector of control points, while D (2N x 2N)

represents an alignment matrix (scaling and rotation) and these are given by,

o - 0
D={: . | and U=(u,u,..,u,u]
o . @ N times

where
©= f,cosd '—fy sin & _le 4
Sf,sind  f cosd a, a,
@ is the alignment matrix for each control point. The scaling factor £, f, (in the x and y direction
respectively) and rotation & are in relation to a template shape.

The planar affine transformation of the template (equation (7.2)) can be expressed as [24],

Q=WT+Q, (1.3)

164




which is a linear mapping between a spline control point vector and a lower dimensional vector space
T. The lower dimensional space is alsc referred to as a “shape space”. The shape matrix W for the

planar affine case is given by [24],

(1 0 X, 0 0 Yo)
= (7.4)

01 0 Y, X, 0

where the 1¥ two columns correspond to translation (where1=[L,1,...,1]7, 0=[0,0,..,0}" ), and the last

4 columns correspond to changes in scaling, rotation and shear.

In equation (7.3), the elements of T acts as weights on the columns of W, The interpretation of T in

terms of planar affine transform can be explained as follows.

T=lu,,u,,(f, cos9~1),(f, cos@~1), £, sin 9,1, sin 9] .

Conversely, given a known spline Q, the shape space vector T can be recovered by using the

following expression [25]:

T=V[Q-Q,] (7.5)

where

V= (WTJW) - W7 J, where J is the *metric matrix’ defined in [24, 60} and is given by,

J= T H (s)H(s)ds

0 v T
f: /B:I where =) GlB] |:I ssrds:lﬁn G,
0

=]

The affine transformation of a template limits the shape matrix W (and T) to only rigid body shape
changes (6 DOF). For deformable (non-rigid) object tracking, W .has to be extended to accommodate
for non-rigid shape changes. We provide a method to efficiently extend the matrix W, based on the

work reported in [51, 52, 14]. The details of which are explained in the next section.
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7.5 Deformable Contour Shape Representation for Tracking

There are several methods reported in the literature to account for the deformation of non-rigid
objects (some methods were briefly discussed in chapter 2). Blake et. al. proposed « ‘key frame;
techniques [24] where known poses of shape variation can be accommodated into the shape matrix. A
potential problem in this method is that a shape can be captured in several poses, and to accommodate
all different pose variation becomes less efficient. Another method is to capture a short sequence of
the object in motion and then learn the dynamic parameters from this test sequence and apply them to
the actual tracker. Though efficient, such a ‘learning tracker’ can be useful only to a narrow variety of
applications, It also presents the problem of capturing a short image sequence prior to tracking the
object of interest every time [25]. Other methods include articulated motion models using kinematic
motion models {151]. Such a method causes non linearity in the tracking system, thus requiring non
linear dynamic systeins modeling. Then there are the statistical models such as learning shape
variation from a prior distribution of known shapes [12, 14, 50, 51]. These techniques primarily
employ a Principal Component Analysis (PCA), which reveals the most significant variations of a
given training set (against a mean shape) in a lower dimensional subspace. We adapt this method to

account for deformable changes of objects because of its generality,

7.5.1 Shape Training Analysis

Cootes et. al. [50, 51) provided a ‘shape training’ method termed Linear Point Distribution Model
(LPDM) where a training set of varied shapes (different poses of a similar objects) are analyzed
{mentioned in chapter 2). Each training shape (in spline space) is represented as Q (as in Eq. 7.2).
Where each point is the position of the i-th ‘landmark point® (specific point) on the training shape.
The training shapes are then aligned (scaled, rotated, and translated to a mean shape or any other
standard shape size) using a Generalized Procrustes Analysis technique [10]. The process is in fact
similar to using a weighted least square method to align each shape to a mean shape. The weights are
chosen so that mere significance is given to more ‘stable’ landmark points (clearly identifiable
points). This process of marking landmark points for each shape manualty is laborious. To overcome
this difficulty Baumberg et. al. [11-14] proposed an automated method of labeling points by placing
N B-spline control points atong the contour of interest starting from a reference point and placing the
points in a clock-wise direction. The N control points are approximately equally spaced along the
contour. Fig. 7.1 shows some example shapes of walking persons (as part of a training set) captured
. in different poses and Fig. 7.2 provides a scheme to automatically generate a training set (A process
that Baumberg et al. followed [10]).
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Once the shapes are alipned and the control points assigned, then a statistical analysis can be
. perforrﬂed on the training shape set. This process results in a mean shape-vector Qand a set of
aligned training shape vectors Q, (k = /,...,M). In mathematical terms, given the training data
Q,,...,Q,,, then the mean and covariance of the training set is given by the following equations
respectively.
. 1 M 1 M . —_T
Q=—2.Q  $=-2(Q-Q)-Q) (7.6)
k=1 =

k=1

Finding the m significant eigenvectors (m << M) corresponding to 1 most significant eigenvalues
(Ag2z2Ah2.24,,2 0) of SJ will give the m most significant mode of variation of the training set
(the reason for using SJ instead of S is given in Appendix D, and also explained in [10]). Therefore,

any shape in the entire training set sequence can be approximately represented by the following

equation.

Q=0Q+Pb 7.7

where P is a 2N x m matrix whose columns are the m most significant eigenvectors of SJ and

b=[b,,...,b,.,] isa shape parameter vector with m coefficients, ¥ is the number of control points

representing the contour. By varying the shape parameters within suitable limits, different feasible
shapes can be generated [49, 11]. Explicitly, for the i-th mode shape-vectors, Q’ are calculated

using,
i

where j varies between -k and & (eg: -2, -1, 0, 1, 2) and step is a suitable step size in standard

deviations. e, is the eigenvector for the i-th mode. Fig. 7.3 shows an example of shape variation for

the first 10 eigenvetors of a training set (containing walking people). It is quite evident that only the
first few eigenvectors provide the most significant shape variation of the training set (against the

mean shape).

Conversely, given an aligned shape vector Q', the minimum least squares approximation to the shape

in the model space is given by a linear projection,

b=P"(Q-Q) (79)
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Figure 7.1: Examples of some training shape vectors of a pedestrian sequence.
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Figure 7.2: Overview of a system to obtain a ‘shape training set’ [10].
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Figure 7.3: The effect of deformable (non rigid) shape variation of a training sequence. The 1s1, 2nd, 3rd, 4th,
5th, Gth, 8th and 10th principal component variation of a traning set comprising about 600 different human
shapes captured at different poses. The diagrams are plotted according to equation (7.8), with 5 possible
variations for each principal model. The mean shape is marked with the stars (*). This illustrates that the first
few principal veciors of a traing sequnece account for most non rigid shape varaitions. Note that the figures
are not 1o scale,

7.5.2 Extensfon of Shape Matrix

If we assume that a template contour Q, (or any contour) can be expressed by equation (7.7), then it

is reasonable to use the relation,

Q,=Q+Pb (7.10)

Substituting Eq. (7.10) in equation (7.2), we get the folowing expression;

Q=D(a,,a,)[Q+Pb}+U (.11
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where Q = (Qx, Q J.) is the mean of the training set.

Equation (7.11) can now be expanded, and by using simple mathematical manipulation it can be

-

shown that it reduces to the following expression.

Q=W,T,,+Q (7.12a)
where
10Q 0 0 Q P -P,
W, = = =
¢1 0 Q Q 0 P P

Typ =1yt f, 050 -1, f, cosf-1, f, sinb,~f, sind, f, coséb, f, sinébl’

AD stands for planar Affine and Deformable shape changes.

Equation (7.12) shows that the 7 most significant eigenvectors of SJ can now be accommodated in

the shape matrix to account for m non-rigid deformations. Where P = (an P )r contains the columns

of the m most eigenvectors of SJ, and b ={[b,,....b,_,] are the deformable (non-rigid) shape

parameters. Any deformable shape can now be reasonably represented by equation (7.12a).

For most tracking applications the scale in the x and y direction are taken to be equal ( f = f, = f,)

any shear effects are disregarded as a planar affine change (absorbed by the non-rigid shape changes).
In this case, the planar affine transformation (for the rigid part of shape) reduces to Euclidean

similarity transformation. In which case Eq. (7.12a) can be expressed as:

Q=W,T,, +Q (7.12b)

where

10Q -Q P, -P
Wep = = =
01Q Q P P

Ty, =[u,,u,, f cosd -1, fsind, f coséb, f sinéb]’

ED stands for Euclidean similarity and Deformable shape changes.
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One can define a state vector of size T,, (or T,,) as repbrted in [25, 24] and track the shape space
over time using a second order dynamic system, whose deterministic and stochastic components are
learned from test image s;squences. The tracker employed for such a contour tracking is either based
on a Kalman filter [6] or Condensation {104] filter. A potential problem that appears with such a high

dimensional tracking system is that the elements of T,, cause linear dependence between the

columns of W,,, especially for larger inter-frame displacements with highly deformable shape
changes [24]. This is because the proportionality of change in translation, scaling, rotation and non-
rigid shape parameters can have widely varying magnitudes. Such a scenario presents difficulty for
the tracking algorithm to cope with varying degree of changes, and causes numerical instability in the

tracking system.

Another problem with a multi-dimensional Jearnmed dynamic system is that, the second order
unconstrained complex stochastic model generated cannot, in general, be decoupled into a set of
independeat orthogonal modes, nor can it be reduced to lower dimensional sub-spaces easily [10].
Hence the ;esulting tracking system will be computationally expensive, particularly for complex
objects that deform in high dimensional shape spaces (eg: tracking a walking person captured at low

frame rates) and be less reliable,

To avoid the problems discussed, and also in the interest of tracker speed, it is desirable to

decompose W, into suitable components (thus also decomposing T,,) which will eliminate (or
reduce) the linear dependencies on the columns of W,,. In the next secticn we introduce an

effective shape space decomposition and tracking technique to overcome the limitattons presented by

high dimensional'shape spaces.

7.6 Decomposition of Shape Matrix and Shape Space

In the interest of speed (to avoid high dimensional computation) and stability, it is best to separate
translation, scaling, rotation and non-rigid shape changes into separate components. The result of

such a decomposition (separation) procedure is discussed in this section.

Equation (7.12a) can be separated and represented as follows,
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where E, =[P,

T
ses Py 175 where Posare

components of P,and g = £, cos8, = f,sing respectively.

Assuming the contour undergoes Euclidean similarity and deformable shape changes, then Eq.

(7.13a) can be given as,

[; *:]:3:]+[g;]]/c050—1]+[Q_?}/smﬂli-[}, P ?2?52:]{%] 7.13b)
N i iR el P

If the observation (measurement) process for the tracker can be separated for translation, scaling,

Q

rotation and deformable changes (non-rigid shape changes) separately, then the corresponding state

vectors can also be separately grouped and defined as shown below.

T = [:‘} Ts=(/~1), T,=[sing], Ty =[b,mbn]

¥
Note that in the above representation, T,(scaling shape space) is defined free of rotational effects (8

=0), T, (rotation shape space) is defined disregarding scaling changes (f = 1), and T, (deformable

shape space) is defined disregarding scaling and rotational effects (f = I and & = 0). From a
theoretical point of view the separation of scaling and rotational changes are not possible (because of

the non-linearity in Eq. 7.2), but for practical purposes it is reasonable to separate them to some
extent as shown in section (7.8.1).

If T;, T, Ty, T, can be tracked separately, then at any instant in time step k, the contour Q can be

recovered using Eq. (7.13b). This procedure is expected to provide better numerical stability and
maintains linear independence between the columns of the shape matrix. One of the advantages of
~shape space separation is that, for the rigid part of shape change, only a 2 element state vector is

required, thus limiting the maximum matrix size to be 2x2 in the tracking filter update calculation
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{assuming that a constant velocity model is employed). In the case of non-rigid (deformable) shape
transformation, we assume that each shape parameter vary independently (and the noise process is
isotropic) [10]. With this assumption (supported in section 7.8.2), it can be shown that each element
of shape parameter vector b can also be separated into m independent shape parameters (see also
{117). Thus each shape parameter can now be defined as a scalar state parameter, requiring only

scalar calculations in the filter update process.

The decomposition method introduced reduces the computational burden of the tracking system
(described next) to a great extent, thus making real time tracking applications possible. Another

advantage of using separate filters is that each "eparated filter (T,, T, T,;,T;,) can employ a

different motion model(s) in the tracking process. Such a system allows more freedom for each filter

and provides better quality results, as shown in section 7.11.

7.7 Dynamic System

A dynamic system is employed which in the general case follows an M-th order AR process, where M
depends on the order of motion model used for the tracker. The dynamic model for the M-th order is

given by,

Af
T, =) A,T, , +B,w, (7.14)

jll

where A4 j,Bo are the deterministic and stochastic part of the dynamic system respectively, and T

corresponds to the separated shape space (T,, T, T,, T, )

For an M-th order motion model, equation (7.14) can be expressed more compactly by defining a

‘state vector’

X, = (T,(_M s Lypparss Npops Xy )r which can then be written as,

X, =4X,_, +Bw, (7.15)
0 I 0 0 0
: : I
where, A= 0 0 s b and B= :
AM AM—I Al Bo
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Where matrix A defines the deterministic part of the dynamics and B determines the stochactic part of
dynamics. For the proposed tracker, the sizes of identity matrix 7 and 0 are 2x2 for each of the planar
affine parameter filters (and a scalar for each of the Euclidean similarity parameter filters), and a

scalar for the deformable (non-rigid) shape parameter filter.

Different motion models can be obtained by choosing suitable values for motion parameters

Aygses 4y, By - For any practical purposes, up to a motion model order of 3 (M = 3) is sufficient for

most applications. Three motion models (a constant acceleration, a constant velocity, and a constant
position model) were considered for the proposed tracker for applications reported in this chapter

(refer to Appendix E for mode! details).

7.8 Tracking Filter

The entire tracking process is based on a multiple medel filtering scheme (similar to what was
reported in Chapter 4). The muitiple model filtering framework provides the tracker with the ability
to switch motion models according to the object’s motion. Each filter in the multiple model
framework uses a Kalman fiiter, and each filter is based on a different motion model. The final
estimate of the state parameters considered are a weighted combination of the output of each filter.
Details of the multiple model scheme employed is discussed in detail in section 7.9. The Kalman

filtering process required for each of the individual filters is discussed in section 7.8.

In the interest of speed and stability, translation, scaling, rotation and non-rigid shape effects are
filtered separately as discussed before. Because of this separation of transformation parameters (rigid
and non-rigid parameters), the observation provided for each filter also need to be separated from the
overall observation of contour (this procedure is required for the Kalman filter recursion to function
effectively). Taking these factors into consideration, the basis on which the entire tracking system

evolves is shown by the following steps at a given time step & (similar to the process in [10, 11]).

1. Assume the non-rigid shape, scaling and rotation parameters are fixed
2, Estimate the translational changes (making use of the object centroid)
. 3. Remove the effects of the translation from observation

4. Estimate the change in rotation

5. Remove the effects of rotation from observation

6. Estimate the change in scale
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7. Remove the effects of scale from observation
8. Update each non-rigid shape parameter independently
9. Once all the transformation changes (rigid and non-rigid) are complete, combine the separated

shape space to construct T to recover the new updated contour,

Note: Theoretically changes in scaling and rotational effects cannot be separated due to non-linearity
of equation 7.2, but from a practical point of view they can be separated to some degree (not with

high accuracy) for the tracking applications that we are interested in (details given later).

The measurement and prediction process required for each filter (T,,T,, T,, T, ) of the tracking

process is discussed in the following sub-sections.

7.8.1 Measurement Model

The effectiveness aid 'reliability of the tracker depends on reasonable measurements (observations)
being provided to the tracker. In the following sections we explain the procedure used to obtain

contour measurements.

For the application reported in this chapter, we obtain contour measurements by using the image
differencing technique as opposed to obtaining them by casting normals to the estimated contour, and
then selecting the high contrast points around the contour (as implemented by Bake et al. [24, 25, 60]
and Baumberg et. al. [10, 11]).

Since our image sequences are captured by using a static camera (with known background without
any moving objects), image differencing technique can be used to separate the moving objects from
the background. The differenced image is later blurred using standard Gaussian blur filter, and the
resulting blurred differenced image is thresholded to produce black and white images as shown by
Fig. 7.4.

Figure 7.4: Moving objects detected after image differencing and thresholding.
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When there is poor contrast between the moving object and the background, fragmentation can occur,
resulting in several foreground regions where there should only be one connected region (if only one
person is walking). This effect can be reduced by applying morphological filters to fill in the gaps
(see [10] for further details). To further reduce and refine the binary image, techniques such as
remaving pixel clusters of less than a specific quantity can be used. A more advanced model based
method tike specifying the height to width ratio (for a walking person) or similar shape constraint can

also be applied. However, these methods are required only for a noisy set of data.

Each moving object of a reasonable size (eliminating any noise) is now separated and labeled using a
search and separate procedure as described in section (7.10). This procedure is applicable if multiple
moving objects are detected. The top most point of each moving object’s silhouette (for pedestrian
tracking example) is assigned a reference point, Starting from the reference point, the N control
points of a B-spline are now assigned (equally spaced) along the contour of each of the objects
detected in a clock wise manner (see Fig. 7.5, similar to the shape training set process explained in
section 7.5.1). This measurement procedure is followed for every frame with the same number of
control points for each moving object. For the example of a pedestrian, the top most point in the
contour is assumed to be the top of head as shown by Fig. 7.5. This is assuming that pedestrians are
always walking in an upright position! For other type of object contours suitable reference point can

be assigned (as long as they are uniquely identifiable). -
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Figure 7.5: Assigning reference point and placing control points along the extracted silhouette.(a) original
‘confour (b) B-spline approximated contour.

-+ If the same number of contro] points are used to represent object contours in each frame, then it is

reasonable to assume that for a given object coatour, control point N, of frame &k will nearly
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correspond to control point N, of frame (k+7). This is illustrated in Fig. 7.6 (not to scale). The

control points of frame (k+1) will now be used as measurements for estimating the actual contour

shape at frame (k+1).
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Figure 7.6: Control point correspondence between frames. 1

7.8.1.1 Separation of Measurements for Each Tracking Filter

Since measurements are made for the entire contour, they need to be reformulated in order to be i
applied to each of the separated filters. This process ensures that each tracking filter is fed with only I
the measurements that are relevant to them. Ideally the measurements for translation filter should be
free of scaling, rotation, and deformable (non-rigid) shape changes. Similarly the measurements for
rotation and scaling filters need to be free of translation and deformable shape changes. The

deformable shape parameter filter should be free of translation, rotation and scaling changes.

To mathematically illustrate the measurement separation principle, let the overall contour

measurements obtained at time step £ be Z, and measurements for translation, scaling, rotation, and
deformable shape parameter filters be denoted by Z,,Z; ,Z, ,Zg, respectively. Each filter

measurement procedure indicated can be obtained as described in the following sub-sections (See

Fig. 7.7 for an overall illustration).
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Apply measurements

for R oniv(Z 2, )

— Overall contour measurements

(Z,)

Apply measurements
Of cach oF

separately (Z;, )

Figure 7.7: One cycle of the measurement application process for each separate filter. The symbois T, S, R, and
SP stand for Translation, Scaling, Rotation and non-rigid Shape Parameters respectively.

7.8.1.2 Measurement for Translation

For the translation filter it is assumed that all other transformation parameters are constant while the
translation filter is updated (that is, object translation is only considered for this filter). Therefore, the
effects caused by scaling, rotation and non-rigid shape changes are excluded from the overall
measurements. In other words, the translation filter is made to ‘see’ only the mean shape being
translated across the sequence. This process can be achieved by only observing the object centroid

(Eq. 7.17). Once the object centroid measurement is known, the translation filter sees the mean shape

centered at cent(Z,) (The object centroid is measured in relation to the mean shape centroid).

Mathematically for the A-th time step and i-th control point of the contour, the translation

measurement process is given by,

Z; = cent(Z, ) - cent(Q) (7.16)
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where cent(*) is the centroid point (with x, y coordinates) of the object contour. It is obtained as

follows.

1 & 14,
Z)=|1—) 2. ,—) Z. 7.17
cen(z,)=| 1374, %32, a1

i=]

where Z| ,Z.f_* are the x and y coordinates of the measured control point i at time step k, and N is the

number of control points used to represent the object contour. Normally cent(Q) is the origin

(center of the mean shape). It should be noted that, as far as the translation filter is concerned each

control point of the contour undergoes translation by the same distance as shown by equation (7.16).

The measurement matrix for the i-th control point is given by,
Hj =[H(s), W, 0] (7.18)

where H(s), is the matrix (size 2 x 2N) contributed by the i-th control point defined as in section

1 0
7.3. W, is the translation part of the shape matrix. For the planar affine case, W,. = [0 l] , which is

of size (2N x 2). The 0 in equation (7.18) is a 2 x 2(O ~ I) matrix of zeros, where O is the order of the
motion model considered. For example, O=2 for a second order model and O=3 for a third order

model.

7.8.1.3 Measurement for Scaling

By using a similar principle as for the translation filter, the effects of translation, rotation and

deformable shape changes are excluded for the scaling filter. This is achieved by placing the mean
shape scaled to the same size as the overall measurement Z, at cent(Q) (normally aligned at the

origin), so that scaling filter measurements are taken with respect to the mean shape. The only
measurement required is the scaling factor, which is given by Eq. (7.20). In effect, the scaling filter
'sees’ only the scaling changes in relation to the mean shape size. For the i-th control point of the

contour (at time step &), the measurement is given by,
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z; =[scale(Z,)|Q' - Q'

= [scale(z, )- l{g]

where scale(*) is the scaling factor obtained as,

) [max( Z, )-min(Z, )l
scale(Z, )= ' max(Q, ) - min(Q, ) ’

Note that only the height of the object is taken as the scaling factor for both x and y direction

(7.20)

(particularly for human tracking). The same scaling factor is applied to each control point of the

contour as shown by Eq. (7.19).

The measurement matrix for the i-th control point is given by,
Hi=[H(s), W, 0] (7.21)

where H(s), is the matrix (size 2 x 2N) contributed by the i-th control point defined as in section

Q 0
7.3. Wy is the scaling part of the shape matrix. For the planar affine case, W = [%’ ) :l , which
s

is of size (2N x 2). The 0 in equation (7.21) is a 2 x 2(O — I) matrix of zeros, where O is the order of

the model considered.

7.8.1.4 Measurement for Rotation

Again by a similar method, for the rotation filter, changes due to transiation, scaling and non-rigid
shape changes are excluded, thus allowing the filter to 'see’ only the rotational effects. The
observation for the rotation filter is obtained by rotating the mean shape by the measured rotation
angle & The rotation angle is defined as the angle between the vertical line (The mean shape is
always vertical) and the line that connect the object centroid and the reference control point of the
object contour. The reference point might be the top most or the bottom most control point of the
object (the reference point should be identifiable despite rotation, which is object dependant). This
method of measuring & is only applicable (effective) for small angles. Mathematically the

“measurement process for the i-th control point of the contour is given by,
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Zy, =[rot(z,JQ' - Q'
Q (7.22)
_ =[rot(Zk)—1{_g.,:l

¥

cosf, -sing,

where rof(Z,) = [ ] and &1is the rotation angle.

sinf, cosf,

As before, only a single measurement is required (&), and is applied to each control point of the
contour as given by Eq. (7.22). For the walking pedestrian examples reported in this report the

objects are assumed to appear vertical and thus rotaticnal effects are ignored.

The measurement matrix for the /~th control point of the contour is given by,
H} =[H(s),W, 0] (7.23)

where H(s); is the B-spline matrix (size 2 x 2N) contributed by the i-th control point. W, is the

0
rotation part of the shape matrix. For the planar affine case, W, = [_ %” ] , which is of size (Z N

xX

x 2). The size of 0 is as for the scaling filter.

7.8.1.5 Measm_'ement for Deformable (Non-Rigid) Shape Parameters

Once the rigid transformation effects are removed from the overall contour measurements, then the
appropriate non rigid shape parameter changes can be measured by using equation (7.24). This

process will ensure that only the deformable shape change are considered.
Z{, =[Z; —cent(Z,)][scale(Z, )ron(Z, ! -Q (7.24)

where Zg},* is the measurement for the j-th deformable shape parameter for the i-th control point at
time step k (or frame k). Equation (7.24) is described as the overall measurement ( Z, ) of the contour

at time %, translated, scaled and rotated, so that (£ sP, } and the mean shape (6) are aligned at the

| origin. The difference of the 2 shapes will now give the measurements for the non-rigid (deformable)

shape variation only.
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The deformable shape parameter measurement matrix for the j-th non-rigid shape parameter for the i-

th control point of the contour is simply,
HY =p’ (7.25)
where p”is the element belonging to the j-th column eigenvectoi of P (matrix containing the m

principal eigenvectors, see Eq. (7.7)) corresponding to the contribution made by the i-th control point.

7.8.2 Prediction Model

Prediction is applied to each filter once at each time step. The stages involved in the prediction phase

are discussed in this section (the algorithm recursion is also displayed in Fig. 7.8).
7.8.2.1 Prediction for Translation, Scaling and Rotation Filters

The state vector for the filter based on an M-th order motion model is expressed as,

Xe =T T ) FT=T,S,R

where FT refers to Filter Type, and 7, S, and R stand for Translation, Scaling and Rotation

respectively.

For example, the state vectors at time step & for Translation, Scaling and Rotation filters are given by,

X, = (Tn..u-: sorees T, )T, Xs, =(TS*_‘U_‘I seeers L, )T, and X, =(TR*-M_] yuvens Tm)r respectively.

Similar notations apply to the state covariance matrix P, state transition matrix 4, Process noise
matrix G, Measurement noise matrix R, Kalman gain X and the measurement matrix H for each type

of filter as described in the following sections.

The prediction process for each type of filters (7, S, and R) for time step k is shown below.

A

X =4z X, FT=T,5R (1.26)

and
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P =(An)Pm,, (AFT)T +Gpp Fr=T,S5,R (7.27)

Where the process noise Grp can be apf)ropriately set (only a 2x2 matrix is required when

considering Euclidean similarity case using a constant velocity model), or leamed from a training

sequence {24, 25], see Appendix E for some details.

Following the prediction siep for a given time step, a number of measurements can be made (as

explained before). For each measurement, the curve estimate is updated as follows: .

-~

X, =Xp +Kgvg FT=T,5,R (7.28)

where UV (=2 — H F,-f{ £z, ) is the innovation obtained separately for each filter (as applicable

to each filter). The Kalman gain for the measurement is given by:

Ker = Pro (HeY H P " + (R )] FT=T.SR (129

where R is the measurement noise matrix, set suitably (only 2 2x2 matrix is required) or obtained

by using the procedure given in [10, 24, 60]. After the measurement has been applicd via the Kalman

gain to the estimated state X /1, » its covariance must be updated using:

Po =(-KgHg)Py  FT=T,SR - (730)

where H -, is the measurement matrix as applicable to each filter as given in the previous section,

and [ is the identity matrix whose size will depend on the order of the motion model employed.

The initial values for P and R can be selected manually for each filter type (for example, P, R will

only be a 2x2 matrix if a constant velocity model is used) or selected by some other method [10, 60].
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Figure 7.8: One cycle of the prediction process of the tracking system based on a single motion model.

7.8.2.2 Prediction for Non-Rigid (Deformable) Shape Parameter Filter

In this section we provide the state vector representation for the non-rigid shape parameters
(deformable parameters) and the filter update process that is required for tracking deformable

changes of objects.

7.8.2.2.1 State Vector Representation

The muitidimensional (m-th order) state vector for non-rigid shape parameters can be decomposed

into single state vectors (for each shape parameter).

The multidimensional state vector (assuming an M-th order motion model is employed) is given by,

X = (TS‘.,&_”_l yeeses TS,,‘)T where Tg, = 1"311,,1t yerees L5, ) If each of the deformable parameter is

| separated (basis for decoupling is given in the next section), then the reduced order state vector is

given by,
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This is the state representation for the j-th non-rigid shape parameter.

Experiments suggest that the non-rigid shape parameters vary randomly between frames. Therefore,
the assumption of a first order motion model was adequate for most of our tracking applications
(though this is not a requirement). In this case, the state dynamic equation for the j-th non-rigid

parameter now becomes:

Joo= aed J
xs,,* -axs,,*_] + W

where the state scalar is now represented by xg.',,* = (fZ".\:f,,‘r ), and @ ~ 1, and w is a Gaussian distributed

noise at time step £. A finite element based technique to estimate ¢ with reascnably high accuracy
was given in [10], but the method requires additional computational cost for the extra accuracy in

prediction.

7.8.2.2.2 State Covariance Update

The theoretical basis for decoupling the deformable shape parameters is briefly given below (see
Appendix D, [10] for details).

Assuming that the effects of translation, scaling and rotation are filtered out, the covariance update

equation (prior to decoupling each shape parameter) is given as [10]:

P, (+)= Poy, () +[H g, R3 Hy, 1= Py (5 + (B [rI '] (P)

7.31)
=Po (D) +r7'1 (

where P is the matrix containing the m principal eigenvectors corresponding to the m most significant

eigenvalues. J is the metric matrix as discussed in section (7.4),  is a scalar measurement variance

constant (R, =1J .

Note: The matrix of eigenvectors P was derived such that PTIP =1 (see Appendix D).

Assuming PS}: (=) is diagonal, then after applying the measurements for this filter, the updated

covariance matrix is still diagonal. Assuming F, is diagonal, the covariance matrix is always
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diagonal. Thus the system can be decoupled into » independent 1D Kalman filters. The covariance

update equation (with scalar values) for the j-th filter (1 £ j < m ) now becomes [10]:
[/ O =/ ()] + 7 (7:32)

where o/ =[P, ] ;.4 is simply the variance of the current estimate for non rigid shape parameter x.

The scalar r can be manually set. The update process for each non-rigid shape parameter (7} now

follows a normal Kalman filtering process as given by the following steps.

y R | J_ ) I B ¥ | Fyydf

where ' =olp’[plocip’)y+ ('Y 1", and o, =(1-x’p’)c]

where a is normally set to 1 (or estimated using a learning process such as in [10, 25]), the process

noise scalar g is set to an appropriate value (1-20). The state variance g; the innovation v, and the
Kalman gain x are all scalars. p’ is the element belonging to the j-th column eigenvector of P

(matrix containing the m principal eigenvectors).

7.9 Automatic Motion Model Switching

Conventionally the tracking process is generally based on a single motion model known a priori. The
disadvantage of such a tracking system is that, when the object of interest changes motion, the tracker
becomes less reliable and possibly loses track eventually. For example, when tracking a pedestrian,
the pedestrian can be walking, running or can suddenly halt. To accommodate all possible motions of
the object, the tracker should be able to adapt (switch) between different motion models. In other
words an automatic model switching capability should be included in it1: racking mechanism to cope
with variable motion of objects. Such a model switching process can L achieved by incorporating a
multiple model filtering technique (as explained in chapter 4), Amongst the many model switching
algorithms available [5], the Interacting Multiple Model (IMM) algorithm has been shown to give
good model switching results {184, 185} for visual tracking applicaiions (also demonstrated in

cﬁapter 4 for point feature tracking).

With IMM embedded in the contour tracking framework, the tracker is capable of adapting to the
closest motion model (or a combination of motion models) available from the bank of modeis that
_ best describes the object’s actual motion. The steps involved in the IMM algorithm are given in detail

in Chapter 4.
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7.9.1 The application of IMM in the Contour Tracking Framework

The application of IMM for the proposed tracking system is illustrated in Fig. (7.9). Each of the

filters follows a Kaiman filter recursion as described in previous sections. Note that the IMM is

separately applied to the translation, scaling, rotation and deformable shape parameter filters. The

advantage is that each of the IMM implemented can employ different motion models. For exampie,

the translation filter can use 3 motion models, while the scaling and rotation filters can use 2 motion

models and the deformable shape parameter filter can use only 1 model. Such a freedom provided for

the tracking filters give excellent tracking resuits while providing model switching ability for the

tracker. A variety of contour tracking examples are shown in the results section to illustrate the

principles discussed.
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Figure 7.9: One iteration of the tracking system for updating the <tate vectors and state covariance matrices
based on multiple motion models. The system shows that r motion models are utilized for each IMM algorithm.
The tracking system has awtomatic motion model switching capability. Note that the superscript of variables

_ indicate the model identity of the filter (the identity ranges from 1 - r}.
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7.10 Object Searching and Separation

Moving objects are identified by background subtraction method. The foreground objects are labeled
separately (if more than 1 object is detected). To search for an object in the subsequent frame, the
estimated object centroid is used. Once the object centroid is estimated for the following frame, then
an enlarged bounding box (say 110%-120% of the current bounding box size) is created centered at
the estimated bounding box center (see Fig. 7.10). A search for the moving object is now carried out
within this box, by looking for the foreground grouped-pixels (white in our case as opposed to black
for the background) of reasonable size (not considering noisy elements). If an object exists, then
measurements are obtained for that object contour. This process will not be applicable when there is
occlusion. To detect occlusion, one has to impose more stringent model based constraints. Some
possible examples of constraints for a walking person sequence will be to introduce a height/width
ratio or/(and) imposing a range for possible human height in the image plane (assuming the scene is
some known meters from the camera) etc. If an extracted foreground region (representing the moving
object) violates such conditions, then one can reasonably conclude that there is occlusion (eg:
foreground region is unusually large). Another method is to monitor the object centroid values. If
there is an unusual change in object centroid (the difference between the measured object centroid
and the estimated object centroid), then a possible occlusion might have occurred. During occlusion
measurements are abandoned and the last estimated contour is placed at the estimated object centroid.
Such a process identifies the number of objects involved in an occlusion, and keeps track of the
objects separately. In situations like fhis, the contour shapes might not fully refiect the objects of
interest. When occlusion disappears, the correct measurements are applied once again and the tracker

is able to recover from occlusion.

X1, y2 -2, y2

d

-
x1;, y1 22, y1

Figure 7.10: A bounding box encompassing the contour.
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7.11 _Result and Discussion

The tracking algorithm introduced in this chapter (we name it CONT-IMM) has been applied to a
variety of image sequences to test the tracker’s ability to copy with rigid and non-rigid shape changes.
The image sequences were captured at 10-15 frames/sec. mainly to make the inter-frame shape
changes of some significance. For each sequence, the number of deformable parameters for non rigid
shape changes were selected between 10-12, which account for about 90 % of shape variations of the
training sequence considered. For each of the sequence considered, we employed 3 motion models
for the rigid part of shape filter (CPM, CVM and CAM) and a single model for the non-rigid shape
filter (CPM). The initial mode probability () required by the IMM was set to 1/ (r is the number of
models in operation) for each filter, thus eliminating any bias between the filters. For a 2 and a 3
mode! IMM filter, the mode probability and mode transition probability (Eq. 7.33) were set as

follows respectively.

ST N Sl N 7 R -
“=15721  P%lo.05 0.95] p#=[1/3},  p=10.05 0 )
1/3 0 005 0.95
2 Model IMM | 3 Model IMM

As illustrated in the following sections, the tracker has been demonstrated to track well in a variety of

conditions.

7.11.1 Sean Sequence

This is an indoof sequence to demonstrate the tracker's ability to track significant scaling changes. As
the person approaches the camera, large scaling changes are observed, and as Figs. (7.11) & (7.12)
shows the tracker is able to cope with the scaling changes well. Referring to Figs. (7.13 ¢,d), we see
that a CVM is adequate for the first third of the sequence to capture the slowly increasing scale
changes, then around half way through the sequence an automatic model switching occurs selecting a
CAM to cope with larger scale changes. Such changes cannot be effectively tracked using a single
mode] based tracker [187].

189




The translation filter tracks the position of the person very well (Fig. 7.13a,b). It shou!d be noted that
the translation values plotted in Fig. (7.13a) are the positions of the object centroid. Non-rigid shape
changes are also tracked well apart for the last few frames where the legs of the person are not fully
recovered (Fig. 7.11). This is partly because of inadequate number of control points selected to
represent the object. 32 points were selected for this sequence, but a larger number would have given
better shape tracking results at the expense of computational cost, Fig. (7.13¢e) shows the first 10
tracked non-rigid (deformable) shape parameters, while Fig. (7.13f) shows the absolute error between

the actual and tracked (estimated) non-rigid shape parameters.

7.11.2 Outdoor pedestrian sequence

This is a sequence captured by a static camera (15 frames/sec.) at the entrance to a building. We
represented the objects using 32 control points (seemed adequate for this application). As can be seen
from Figs. (7.14 & 7.15), the tracker tracks both pedestrians with good tracking results (see Figs.
7.16a,b). In some frames the head of the pedestrian is missing, this is because the threshold (fixed for
these experiments) at the image differencing and thresholding stage was set too high, hence part of
the head disappeared. Fig. (7.16¢) shows that the pedestrian on the left is moving fast, thus a CAM is
chosen as the most appropriate motion model for the translation filter. Since there is not much scaling
of the object (very little change) a CVM is chosen as the best model for the scaling filter (Fig. 7.16d).
Rotational effects were not taken into account for the human tracking experiments. Any rotational
changes were included in the deformable shape tracking filter. For the human tracking experiments
the best 10 principal components (PC) were selected to represent the variation in non-rigid shapes
(the best 10 PCs accounted for about 93% of shape variations of the training sequence). As can be
seen from Fig. (7.14), most deformable shape variations have been tracked well. Figure (7.16¢) shows
the non-rigid shape parameters (b;) varying with time. The first few (particularly the first) parameter
variations are more significant than the less significant ones. Fig. (7.16d) shows the absolute error
between the actual and the tracked non-rigid shape parameters. The error observed is less than 5% of
the actual magnitude of the non-rigid (deformable) shape parameters, which indicates good tracking

performance,

7.11.3 Outdoor pedestrians with ecclusion

| This pedestrian sequence is considered to illustrate tracking under occlusion (see Fig. 7.17). The 2

pedestrians occlude each other towards the end of the sequence. The occlusion is modeled as
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explained in section (7.10 ). During the occlusion period the last object shape tracked (when there's
no occlusion) is placed at the estimated centroid in the following frame. Doing so is computationally
attractive but does not recover the actual shapes well. However, the tracker identifies both objects
separately and recovers well from occlusion. To recover the shapes better during occlusion, a method
can be followed as explained in [118], [161]. It is also reasonable to consider the fact that the object
that appears at the bottom of the frame occludes the ones above them, this was assumed reasonable in

the research work reporied in [118]. We have adapted this principle in our tracking algorithm,

7.11.4 Waving hand sequence

This is a sequence taken at 10 frames/sec. to account for Jarger shape variations between frames. The
shape of the hand was represented using SO control points. The hand was moving with variable
motion, pausing for a few seconds at the change of direction (at each end). The waving hand was
specifically maneuvered in order to test the tracker’s ability to cope with large transformational
changes, and to test the tracker’s automatic model switching capability. Translation, scaling, rotation

and non-rigid shape changes were all taken into account for this experiment.

A three-mode! IMM filter was employed to account for constant acceleration, constant velocity, and
constant position changes. All three motion-models were in operation at some part of the duration of
the sequence (especially for the translation filter). Figures (7.18-7.19) shows the qualitative tracking
results for the hand sequence. As Fig. (7.21a) shows, the translation filter correctly model switches as

expected, switching to the most appropriate motion model (confirmed by manual inspection). Fig,
| (7.20a,b) shows the accuracy of the translation filter. The tracker accuracy in scaling and rotation are
displayed in Figs. (7.20¢,d). As can be seen from Figs. 7.21(b, ¢} a combination of motion models are
in operation for the scaling filter while 2 CAM is mostly in operation for the rotation fiiter (to cope

with erratic rotational changes).

The best 12 principal components were selected to account for the non-rigid shape variations. This
seemed adequate to capture most of the deformable shape variations. Fig. (7.20e) shows the first 12
tracked non-rigid shape parameters, while Fig. (7.20f) shows the absolute ervor between the actual
and tracked (estimated) non-rigid shape parameters. The accuracy observed was as good as the
pedestrian sequence results (~ 1% error). It is also worth comparing the waving hand contour tracking

result with that obtained in Chapter 4 for point feature tracking (see Section 4.9.2).
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7.11.5 Discussion

The results (quantitative and qualitative) show that the performance of the tracking system is affected
by the system parameters and more importantly by the suitaoility of the linear shape mode} used. The
errors observed (the differences between the true and the tracked contour) could have come from

several possible sources.

o Smoothing error — due to the smoothing of the spline representation,

¢ Truncation eiror — cased by ignoring the less significant deformable shape modes.

¢ Modeling error — due to an inaccurate a priori probability distribution (due to segmentation errors
and spline approximation errors in the training shapes considered). Also due to inaccurate a priori
assumptions in the stochastic model (eg: unexpected large shape changes).

o Filtering error — due to ignoring the off diagonal elements of the deformable shape parameter
covariance matrix. Also prior assumptions in fixing the initial state covariance and measurement
noise matrices for the rigid transformation filters.

» Poor correspondence — even in the absence of image noise the measurement process is prone to
errors as the contour can lock onto the wrong part of the image feature (due to image plane noise
or occlusion). This can also be due to the pre-selected value of threshold used at the image
differencing and thresholding stage. A too high or a too low threshold value can result in poor
quality image measurements, which can in tumn lead to poor fracking results. This is a limitation
of the tracker presented.

» Numerical error — numerical approximations and compromises made in tracker implementation
procedure.

+ Contour quality - limitation of the number of control points used in representing the object
contour. The same number of control points are used to represent all the moving objects, which

limits the quality of track result (particularly when the number of control points are inadequate).
Despite all the reasons mentioned above the tracker proposed gave good contour tracking results.

Further performance analysis of the tracker (such as tracking under noise etc.) is discussed in the next

chapter.
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Figure 7.11: Some frames of the indoor walking man sequence (Sean sequence captured at 10frames/sec.) with
the tracked contour (white) superimposed on top of the walking person. The tracker has successfully tracked the
scaling changes of the person,
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Figure 7.13: Sean sequence tracking results (captured at 10 frames/sec.). (a) Estimated and true position
plotted against frame number. The position value is the position of the object censroid. (b) Corresponding
estimated and true velocities plotted against frame numbers. (c) Estimated and true scaling changes of the
object (in relation 10 the mean shape). (d} Motion model selection for the scaling filter, the scaling changes in
the first shird of the sequence are small, therefore a CVM is adequate for correct tracking, The scale changes
are significant towards the latter part of the sequence and rightly a model switching takes place (around the
25th frame) to select a CAM for the rest of the sequence. (e) Non-rigid (deformable) shape parameters tracked
Jor Sean sequence: the first 10 tracked non-rigid (deformable) shape parameters corresponding to the largest
10 eigenvalues,( see text for details) plotted against frame number. The parameter with the highest deviation
Jrom 0 relates to the first shape parameter (corresponding to the largest eigenvalue), the lowest deviation shape
parameter corresponds to the 10th largest eigenvalue. (f) Absolute error between the tracked and the true non-
rigid shape parameter values. The larger error values correspond to the first few deformable shape parameters.
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Figure 7. .: Some frames of the outdoor pedestrian sequence (captured at 13 frames/sec): Multiple objects
tracked with partial occlusion. The partial occlusion is modelled by introducing a height to width ratio
constraint. If this value is violated the tracker gives up on the object. Note that the tracker has abandoned
tracking the pedesirian on the right while the person on the lefi is tracked, despite part of his legs disappearing.
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Figure 7.15: Motion of ontdoor pedestrians. The tracked sithouettes (white outline) are superimposed on the
initial frame.
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Figure 7.16: Pedestrian sequence 1 tracking resuits (for pedestrian on the left) captured at 15 frames/sec. (a)
Estimated and true position plotted against frame number. The position value is the position of the object
centroid. (b) Corresponding estimated and true velocities plonted against frame numbers. (c) Motion model
selection for the translation filter: a Constant Acceleration Model (CAM) is selected as the most appropriate
motion model, to cope with larger displacements. (d) For the scaling filter, a velocity motion model seems to be
adequate to capture small scaling changes. (e) The best 10 trazied non-rigid shape parameters plotted against
Jrame number. (f) Absolute error between the tracked and the true deformable (non-rigid) shape parameter
values.
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Figure 7.17: Modelling occlusion (captured at 13 frames/sec). When occlusion is detected (either by a sudden
change in the object centroid or by verifying the height to width ratio of the object), the measurements are
ignored and the current object shape is retained and placed on the estimated object centroid in the following
Jrame. By doing so, the total shape of abject cannot be fully recovered (image 7), but the 2 pedestrians are
identified separately. As can be observed from the last frame, the tracker recovers from the occlusion well.
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Figure 7.18: Some frames of the waving hand sequence (captured at 10 frames/sec.) showing the tracked
sithouette (white outline) superimposed on the hand The tracker automatically model switches to the most
appropriate motion model (chosen from a bank of models) that best describe the waving hand's motion,




Figure 7.19: The waving hand in motion: The tracked silhouettes are superimposed on the initial frame. The

hand initially moves towards the right then to the left and so forth.
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Figure 7.20: Waving hand sequence tracking results (captured at 10 frames/sec.), (a) Estimated and true
position plotted against frame number. The position values shown are the position of the object centroid. (b)
Corresponding estimated and true velocities plotted against frame numbers. (c¢) Estimated and true scaling
(measured in relation to the mean shape size) changes over time. (d} Estimated and true rotational {measured in
relation to the mean shape orientation) changes over time. (e} The best 12 non-rigid shape parameters tracked.
() Absolute error between the tracked and the true non-rigid shape parameter values.
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Figure 7.21: Motion model swilching probabilities for waving hand sequence. (a} Model switching for
translation filter: The translation filter automatically switches motion model according to the hand's motion.
The hand starts from a nearly stationary position, then moves with a constant velocity (towards the right) then
slightly accelerates and comes to a stationary position. The process is repeated towards the left side, and finally
comes to a stationary position shortly after moving towards the right. As expected the translation filter model
switches antomatically at appropriate times. (b) Model switching for scaling filter: According to the changes in
scaling, a combination of CAM and CVM are in operation for most of the duration, except when the hand
reaches a stationary position. (c) Model switching for rotational filter: CAM is preferred over other models to
cope with small but erratic rotational changes.
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7.12 Conclusion

We have provided a contour tracking method (named CONT-IMM) for applications where the inter-
frame displacements can no longer be considered very small, and for objects that move with variable
motion. Tracking of a walking person is a classic example of such a case, and we have demonstrated
the ability of the tracker to cope with rigid and non-rigid shape changes using a variety of
applications. The tracking algorithm in general can be applied to any deformable object in motion,

providing attractive computational advantages.

In the next chapter we give extended performance analysis of the CONT-IMM tracker comparing its
performance (particularly in terms of quality) with the well-known CONDESATION algorithm of
Isard and Blake [104], and the pedestrian tracker of Baumberg and Hogg [11].
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Chapter 8

Performance Measures for Assessing Contour
Trackers

Abstract

In this chapter we present techniques to compare the quality of tracking performances of contour trackers,
Three trackers reported to give good tracking performance have been considered for our empirical evaluation.
They are the CONT-IMM tracker (chapter 7, [184]), the CONDESATION tracker [24, 104] and the Baumberg
tracker {11, 10]. Four different test conditions were set and for each test, the tracking performance of each
tracker was measured against four performance measures. The results presented have revealed some interesting
findings about the performance of the trackers.

8.1 Introduction

This chapter primarily focuses in comparing the performance of the CONT-IMM tracker (reported in
chapter 7) with Baumberg and Hogg’s Leeds tracking algorithm [11] and Isard and Blake’s
Condensation algorithm [104]. The empirical performance measures provided in this chapter is used

to assess the quality of the contours tracked by the 3 tracking algorithms.

The literature survey carried out in the area of performance of contour tracking (some aspects were
discussed in chapter 2) reveals that very little work has been published to compare the quality of
tracker output. Most performance comparison methods presented are specific for the tracker
considered, thus cannot be easily employed to compare the performances of other trackers. Examples
of such methods can be found in [3, 63, 77, 108, 117]. Formulating closed form performance
measures for tracking is very difficuit given the complexity involved, and can give inaccurate results
under varied tracking environments. Therefore, in this chapter, empirical evalvation methods have
been described. The methods cater for a variety of applications and conditions under which the tracker

performance can be analyzed. The results presented reveal some interesting facts about the trackers.

We use a test image sequence of a walking person to carry out various tracking performance tests. The
test image sequence considered was relatively free of clutter and occlusion, so that the focus of the
experiments designed was to purely assess the quality of the contour tracked. For the experiments
reported in this chapter, the internal parameters of each tracker was tuned to give the best possible

result, so that the observations obtained are a fair representation of the performance of the trackers.
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The tests that we employ include tracking objects under varied noise conditions (using SNR test
measure), tracking objects captured at varied frame rates, tracing using varied number of non-rigid
shape parameters to account for contour deformation, and using varied number of control points to
represent object shape. The result of each of the trackers was measured against 4 performance
measures. Namely: the contour distance error, the contour origin error, the deformable shape
parameter error, and the SNR. The description of test methods and performance measures employed

are given in sections 8.4 and 8.5.

This chapter is organized as follows: Section 8.2 describes the CONDESATION algorithm in brief.
Section 8.3 describes the Baumberg’s tracker in brief. Section 8.4 describes the performance
comparison methods used to compare the tracker performance. Section 8.5 gives the results obtained,
and Section 8.6 gives a discussion and interpretation on the results presented. Finally section 8.7

provides the conclusion.

8.2 The Condensation Algorithm

The Condensation algorithm [104] is based on the factored sampling method [102], but extended to
apply iteratively to successive images in a sequence. The following diagram (Fig. 8.1) displays the
principle of the algorithm recursion, and Fig. 8.2 shows one iteration of the Condensation tracker.

Details of the algorithm are given in Appendix F.1 (see aiso [102, 104] for complete details).

(n)

(n)
& Se13Tko)

&=

Observation
density

{n) (n)
Sp My

Figure 8.1: One time step in the CONDENSATION algorithm.
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Iterate

From the ‘old’ sample-set {(sff,’, . c"Mn=1..,N}tat time step (t-1),

construct a ‘new’ sample set {(s, 7", c™)n=1..,N} for time t.

Construct the n th of N new samples as fcllows:

t{n}

1. Select a sample set §,' as follows:

{a) generate a random number I'E[O,l],uniformly distributed.
(b} Find by binary subdivision, the smallest j for which C,U,) =r

(c) set s =5

2. Predict by sampling from
)
p(x; |xr-l - s'r )

to choose each Sf"). For instance, in the case that the dynamics are
governed by a linear stochastic differential egquation, the new sample
value may be generated as: S =As""+BwW" uhere W!” is a vector of

. T, .
standard normal random variates, and BB is the process noise
covariance,

3. Measure and weight the new position in terms of the measured features

Z,:

7" = plz, |x, =5{")

then normalize so that Z:’r(’”-l and store together with cumulative

n
probability as (s("),”(ﬂ) )

where
0
¢ =0,

="M 4 2 (n=1,..,N)

Once the N samples have been constructed: estimate, if desired, moments of
the tracked position at time step t as

e/ (x,)]= D 2 (™)

n=1

obtaining, for instance, a mean position using f(X)=X.

- Figure 8.2: One lteration of the CONDENSATION tracker [104].
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8.3 Baumberg’s Tracker

Baumberg and Hogg’s tracker {11, 10) was primarily devised for tracking pedestrians, but the
principle of the base method can be applied to track any object contour. An overview of tracking

mechanism is shown in Fig. 8.3 (The tracker details are given in Appendix F.2),

Expected positions
P., Uncertainties,

S Observations g,
normal directions

Covariance R;

Select subset of ny,,
regularly spaced
feature points

------------------------------------------------------------

........

i d Py

-----------------------------------------------------------

New observations q7;

Figure 8.3: Diagram illustrating the tracking mechanism of Baumberg's tracking filter {10].
8.4 Performance Measures

8.4.1 Contour Distance Test

A simple distance metric 10 measure the distance between two sets of landmarks X ={(x,, y,) and
X'={x",,y', ) can be given by,

fxx)=|x~x]
= [Nii(x; X Y+ -y, )2) &b

=)

- Unfortunately for contours represented by B-splines, this measure does not take inio account the B-
spline metric parameters [60]. For 2 contours represented by B-splines, a better distance metric can be

formulated by including the B-spline metric matrix as given in [10, 60).




Given two cubic B-splines P(s) and P’(s) defined by their ¥ control points (x,,y,)and (x',,)",),a

more atcurate error metric d, measures the difference between corresponding points on each spline,

sampled densely and uniformly over the parametric curves. The distance metric is given by,

[N , 142
d(x,x') = “P(s)—i'-‘-"(s)| dsJ
\ 0

. — 12 (8.2)
= | 2 =% )8 ds+ [ 2 (v - v)BAs)) ds}
\ 0 i=0 o im0

where B, (s) is the cubic B-spline basis matrix.

Equation (8.2) simplifies to the following form [10]:

12

d(x,x') = [(x-—x')TJ(x—x')]

where J is the 2Nx2N symmetric metric matrix (as described in chapter 7, section 7.4).

There is a unique inner product associated with this metric given by,

{(x,x")=x"Ix’
such that

d(x,x") = {x~x',x —:t')”2 = [(x -X')TJ(K-K')]”2

We define the distance error as the average of d across the image sequence (F frames), which is given

by,

1 F
Distance _error = ——-ZI d(x,x')|, (8.3)
km)

8.4.2 Object Origin Test
The object origin is simply the center of gravity of a closed contour, which is calculated for the object

of interest (actual and tracked) at each frame (k) of a sequence, then the difference of the origin error

(at each frame) is averaged over the number of frames (F). The origin error is defines as,
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I 2
O}-fgin _error = _}!-‘?__ Z [(O;Ir.‘mal - O;rackcd )k: + (O;rluai _ O;Tarked )k2 ]”.. 8.4)

k=1

with

. 1 & 1 &
Actual object origin O™ = (0" 0™y =] =y x ol Yy el
ject origin O =( yo)3 NZ}; i N; j

N N
Tracked object origin O,'("'"""d = (0;""‘*“" , o_ifafkf-'d )= [__]i}_ Z X :raclrcd ) _It? z thmcked]
i=l i=1

where X1 X ® are the B-spline vectors (with N control points) for the tracked contour and the

actual contour respectively. A low value of origin error will reveal the tracked contour-centroid is
close to the original contour-centroid in terms of position. The origin error can be used as a secondary

measure to the distance error measure.

8.4.3 Shape Deformation Test

The shape deformation test is a test measure to assess the deviation of non-rigid shape variation from
a mean shape. The quantity reveals how much the object shape at 4-th frame has deformed from the
mean shape. In our analysis we have devised an error measure for the difference in non-rigid shape
changes between the tracked shape and the actual shape in terms of the Mahalanobis Distance (MD)
measure {All affine changes of shape are disregarded for this test). The non-rigid (deformable) shape
parameter error is calculated for the object at every frame (k), then the error between the actual and

tracked MD is averaged over the number of frames (F). This is given by,
1 £
NRSPE =}-Z[MDW, =MD, 04, (8.5)
k=1 _

Where NRSPE stands for: Non Rigid Shape Parameter Error. The Mahalanobis distance measure for

actual and tracked contours are given by [52, 87],

m bz 12
MD octual = ( _i—} s MD trocked = (
i=l Y

1

NN
n b2
Z-—i——) respectively.

i=] 7
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Where A,,bi,ﬁ, , arc the eigenvalue, deformable (non-rigid) shape parameter for the actual contour,

and the deformable shape parameter for the estimated (tracked) contour, corresponding to the i-th
principal vector respectively. m is the number of principal components considered for non-rigid object
tracking. It should be noted that to evaluate MD, the object in 4-th frame has to be translated, scaled
and rotated (if required) to align with the mean shape. This process ensures that only the deformable

shape changes of the object are measured (disregarding changes in translation, scaling and rotation).

8.4.4 Signal to Noise Ratio (SNR) Test

The SNR performance evaluation is a B-spline independent image based method that uses the ‘SNR
out’ measure for tracking performance (similar to that reported in [10]). To evaluate the performance
of the trackers under varied noise, a ‘SNR in’ measure can also be formulated. Both these measures

can be determined as explained in the following sections.

8.4.4.1 Measuring the Accuracy of Tracking

An additional performance measure employed to assess the accuracy of the tracking process (ie. The
accuracy of shape, position and orientation of the tracked contour) is an image processing based
measure, Thus the error measure is independent of the parameterization of the contour representation

[10]. The contour resulting from the tracking process is rendered flat filled in the ‘foreground’ color

(moving object colored with white) into the image 7, .

The tracking process is ‘local’ so that the signal far from the object is never sampled. Hence, in this
case, it is more appropriate to measure the signal in terms of the area of ‘foreground’ pixels in the

ground truth image. The signal and noise are calculated using the following guantities [10).

signal =2 [, (6,

images x.¥

noise = Z Z[Imf(xay)#ltmck(xﬁy)]z

images x,y

(8.6)

where I .(x,y} is the pixel value at (x, y) for the ground truth image. The pixel value for a

‘background’ pixel is 0. The scale factor of 2 in the signal value was chosen so that a SNR of 0 (ie.
signal = noise) would occur if the tracker silhouette consisted of a shape of the same area as the

ground truth shape but inaccurately placed so that there is no overlap between the two [10]. This is the
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‘worst case’ scenario where the tracker has completely failed to track the object. The output SNR (in

dB) denoted as SNR,,, is calculated by using the following equation.

SNR,, (dB) =10 log{ signal ] @.7)

noise

An example for finding ‘SNR out’ is illustrated in Fig. 8.4 for the 3 trackers considered.

8.44.2 Adding Noise to Input Test Sequence

Noisy images were generated by adding Gaussian noise to the test image sequence. This type of noise
was chosen to test the robustness of the system, for several reasons. Firstly, the noise added
(particularly at high levels) can’t be thresholded out easily. Secondly, the noise process will result in
significant errors in contour measurements over whole sections of the curve. Hence these noisy
images are suitable for a rigorous test of the tracking system. Some corrupted images are shown in
Fig. (8.5). It can be seen that the silhouette shape can be disrupted by the noise, and a conventional
non-model based approach such as the ‘snake’ of Kass et at [113] would be unable to recover the

object shape comrectly.

The signal to noise ratio (SNR;,) of the noisy images is calculated over the test image sequence using

SNR, (dB) = 1010g[s gn al] (8.9)

noise

with

signal = 3. S [, (6 ) I,]

images x,y

noise= 3 Y11, (x,y)=I'(x, )

images X,y

(8.9)

where [, .(x,y) is the pixel value at (x, y) for the ground truth image and I'(x,y)is the

corresponding pixel in the corrupted image (the noisy image is binarised for ‘SNR in’ caiculation).

The constant I, is set to halfway between the ‘background’ and ‘foreground’ pixel values, so that a

patch of foreground and a patch of background both have the same signal strength, thus ensuring the

_ SNR is independent of the relative image and object size.




Using CONT-IMM Tracker

(c) (d)
Using CONDENSATION Tracker

(e

Using Baumberg Tracker

Figure 8.4: An example of SNR output results. (@) Contonr tracked by CONT-IMM flat filled (b) The true object
contour flat filled with tracked contour superimposed. (¢} Contour itracked by CONDENSATION flat fiiled (d)
The true object contour flat filled with tracked contowr superimposed (e) Contour tracked by Baumberg tracked
Aat filled (f) The true object contour flat filled with 1racked contour superimposed.
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Figure 8.5: Effects of adding artificial noise (binarised for SNR input calculation). With Gaussian noise
variance (a) ar 50 (b) at 73 (c) at 100, and (d) ai 130.
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8.5 Results

8.5.1 Tracker Implementation Method

The CONT-IMM tracker was implemented as described in chapter 7. The CONDENSATION
algorithm was implemented (as described in Appendix F.1) using 1000 samples per iteration. A
second order dynamic motion model was applied to the CONDENSATION transfation parameters.
The deformable changes were assumed to follow a first order Markov process (for full details of
CONDESATION implementation refer to {102]). The Baumberg’s tracker was implemented as
outlined in Appendix F.2 (for full details refer to {10]).

8.5.2 Frame Rate Test

The frame rate test method was devised to analyze the performance of trackers at varied frame rates,
In order to carry out the experiment, test image sequences of a walking man was captured at four
different frames rates: 5, 10, 20 and 30 frames/second. Each tracker was allowed to track the man
independently at each frame rate. For each test, the B-spline tased error measures and the ‘SNR out’

performance measures were calculated. The results obtained are tabulated in Table (8.1) and
illustrated in Fig. (8.6).

8.5.3 Noise Test

This is a test to evaluate the trackers’ capability to track objects under noisy condition. The test
sequence captured at 10 frames/sec was corrupted with Gaussian noise at various levels. At each noise
level, the trackers were applied to track the walking man. For each test the B-spline based error
measures and the ‘SNR out’ valves were calculated. Results obtained are tabulated in Tables (8.2)-

(8.6), quantitatively illustrated in Fig. (8.7), and qualitatively displayed in Figs. (8.8)-(8.9).

8.54 Control Point Test

The object of interest is represented by varying number of control points. We tested and compared the
performance of each tracker by employing control points ranging from 12 — 64. Since B-spline error
measures are unreliable for comparing performance for this test (see details in section 8.6) only the

‘SNR out’ test was carried out, which is shown in Fig. (8.10). The results are tabulated in Table (8.7)

. and the qualitative results displayed in Fig. (8.11).
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8.5.5 Shape Deformation Test

The non-rigid (deformable) shape parameter test is to assess the error in deformable shape changes of
objects {between the actual and the tracked shape). The number of shape parameters (in other words
the number of prin.cipa! components used) employed has a direct impact on the quality of tracked
shapes. We carried out experiments by using 1, 2, 3, 4, 5, 10, 15, 20, and 25 non-rigid shape
parameters to account for deformable shape variations of the object contour. The results obtained are
tabulated in Table 8.8 and illustrated quantitatively by Fig. 8.12 and gualitatively by Figs. (8.13). It
should be noted that for this experiment the deformable shape parameter error quantity (equation
(8.5)) was assessed by averaging the Mahalanobis distance by the number of shape parameters used

(for other tests discussed in this chapter, this process is not required).

8.6 Discussion

In this section we discuss the results obtained in section 8.5. We interpret the resuits under the four

different performance test carried out.

8.6.1 Tracker Performance Under Varying Frame Rates

All 3 trackers were employed to track an indoor walking person, where the moving person was
captured at different frame rates. The purpose of the test was to analyze the robustness of the trackers

when the inter- frame shape differences are varied.

The distance, the origin, and the shape parameter error measures clearly show that the CONT-IMM
and the BAUMBERG trackers are less sensitive to frame rate changes (though the CONT-IMM gives
much smaller crfors, Fig. (8.6)). The CONDENSATION tracker is observed to be sensitive to
changing frame rates. Particularly at lower frame rates, the CONDENSATION gives poor quality
results, but at higher rates (at video rates) the performance is remarkable, and does approach the
performance of CONT-IMM tracker. The reason for poor quality results for CONDENSATION is
that, one of the assumptions for this algorithm is to have small inter-frame shape changes (particularly
for the measurement process to be effective [24]), which is a reasonable assumption at high frame

rates (eg: 30 frames/sec.).

Focussing on the SNR test results, the CONT-IMM provides an average ‘SNR out’ of around 9.5 —
9.75 (db) for the range of frame rates considered ( 5 — 30 frames/sec), where as the ‘SNR out’ for the

" BAUMBERG tracker varied between 7.75 — 8.00 (db). The CONDENSATION SNR output varied
~ from about 4.5 (db) at 5§ frames/sec to around 9.5 (db) at rates of 30 frames/sec. The empirical

observations suggest that the CONT-IMM method give the best frame rate results followed by
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CONSENSATION (at high frame rates) and BAUMBERG trackers. It should be noted that the

observations obtained from B-spline based error measures are consistent with the SNR output results.

8.6.2 Tracker Performance Under Varying Noise Condition

This test ts a method to evaiuate the performance of the trackers under noisy environment.
Uncorrelated noise is added (Gaussian distributed) to each frame of a sequence prior to tracking. The
performances of the trackers are assessed at varied noise levels using the performance measures
described. The results again show that the CONT-IMM tracker gives the best result under noise
followed by CONDENSATION and the BAUMBERG trackers. Remarkably all 3 trackers perform
well up to a noise variance level of around 50. At very high noise levels, the performance of all 3
trackers starts to deteriorate. This is because each tracker has its own mechanism to eliminate spuricus
measurernents by employing some noise thresholding (filtering) techniques, but such techniques break
down at high noise levels as evident from the results. The poor performances at high noise levels are

directly attributed to obtaining erronious measurements (for all 3 trackers), which in tumn leads to poor

quality track results.

An important tracking performance test not covered in this chapter is the ability of the trackers to
track objects in cluttered environments. Unfortunately clutter level cannot be measured witl
reasonable precision, and therefore was not considered in the series of experiments that we carried
out. However, as Blake et. al. [24] demonstrated, the CONDENSATION has been shown to track well
in cluttered background. This is because CONDENSATION supports multiple hypothesis of pdfs for
its observation process {as discussed in Appendix F.1)}, and as a result is able to disregard false
measurements efficiently. Baumberg tracker was also shown to be agile enough to track under short
periods of clutter [10], but was prone to heavy background clutter because of high false contour
measurements. CONT-IMM tracker is prone to heavy clutter due to its contour measurement process.
Since CONT-IMM uses background subtraction for contour measurements, heavy clutter results in
poor quality measurements being obtained, despite having mechanism to reduce noise. Incorrect

measurement in turn leads to poor tracking results.

8.6.3 Tracker Performance by Varying the Number of Object Control Points

For this particular test, the spline based performance measures are not useful, because the tracked
contour can only be compared with the actual contour, provided both object contours have the same
number of control points. Varying the number of control points on the actual and the tracked contours
gives rise to an approximation error (particularly at lower number of control points). Therefore, spline

based perfortnance measures do not reveal the true quality of the trackers’ output.
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In this case, only the SNR output performance was measured, which is an ideal test for this
experiment. The number of control points to represent the object is varied from 16 —~ 64 to test the
tracker robustness to control point variation. The tracked ‘SNR out’ is compared with the theoretical
maximum ‘SNR out’ possible. This value {Max SNR out) is calculated by taking the actval object and
approximating the contour by the number of control points considered, and then flat filling the
contour with white, while the background remains black. This foreground flat filled area is then used

to calculate the maximum SNR output (using Eq. (8.7)).

As can be seen from Fig. (8.10) the trackers achieve their best performance level when the number of
control points are around 30 (for this particular object). By extending the controi points beyond 30
brings little improvement. Therefore, striking a balance between speed of the tracker and the accuracy

of the tracker, it is best to maintain the number of control points to around 30.

Observation of the result shows that the Baumberg tracker is very sensitive to the number of control
points used, particularly at lower values. The CONDENATION tracker is the icast sensitive among
the trackers, which maintains an ‘SNR out’ value of around 8 db for the range of control points
considered. The CONT-IMM gives the best result reaching an output SNR of around 10.5 db between
28-40 control points and 11db with 64 control points, but at lower number of control points (< 16) the

performance is observed to be rather poor.

The theoretical maximum possible SNR output is a guide to show how well the trackers perform in
relation to optimum expectation for the range of control points considered {Fig. 8.10). It is almost
impossible for a tracker to get an SNR output anywhere near the theoretical mark. This is because, a 1
pixel displacement between the tracked object and the actual object can cause about 3-4 % of the flat
filled area (object area) to be mis-aligned. This mismatch alone accounts for about 3.5 - 4 db of ‘SNR
out’ (for the object size we considered). It is also worth noting that the SNR output is dependent on
the object size, therefore only the relative SNR output values ought to be taken into account when

comparing the results.

8.6.4 Tracker Performance by Varying the Number of Deformable Shape Parameters

This test is used purely for measuring the deformable shape changes, and therefore, does not take into

account any affine contour shape changes (disregarding changes in translation, scaling and rotation).

- Varying the number of shape parameters directly corresponds to the number of principal components

(PCs) employed in tracking deformable shape changes. The training sequence that we used comprised
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about 750 different object shapes of moving pedestrians. Our off line analysis showed that about 90%

of the shape changes can be accounted for, by using the 10 most significant principal components.

For the experiments reported here, we tested by using 1, 2, 3, 4, 5, 10, 15, 20 and 25 PCs. As can be
seen from the results (Fig. 8.12), increasing the number of shape parameters beyond 10 results in very
litle improvement. Considering the tracker speed into account, using beyond 10 deformable shape
parameters can also be computationally expensive. In terms of quality of results, the CONT-IMM
provides better quality results at all levels compared with the other 2 trackers. It should be noted that
the shape deformation test is model dependent, and therefore, the number of deformable parameters

used for tracking can vary from objeci to object depending on the object shape size and complexity.

CONT-IMM (Error measures)
Frame rate 5 frames/sec 10 frames/sec 20 frames/sec 30 frames/sec
Dist, Error - p 2.73 2.63 2.61 2.51
Dist. Error - ¢ 0.62 0.27 0.32 0.25
Qrigin Error - 1 0.93 0.95 1.07 1.11
Qrigin Error- o 0.29 0.74 0.57 0.38
NRSPE - u 6.61 5.96 5.89 5.26
NRSPE - ¢ 4.17 3.39 2.92 2.87
SNR. out (db) 9.46 9.40 9.43 9.64
CONDENSATION (Error measures)
Frame rate 5 frames/sec 10 frames/sec 20 frames/sec 30 frames/sec
Dist. Error - u 11.25 4.54 3.20 2.92
Dist, Error - o 23.80 6.02 5.21 3.50
QOrigin Error - p 10.15 3.66 2.35 1.90
Origin Error - 26.06 7.61 6.71 4.93
NRSPE - u 11.84 7.77 6.93 6.47
NRSPE - o 8.10 6.17 428 345
SNR out (db) 4.51 7.76 9.11 9.42
BAUMBERG (Error measures)
Frame rate 3 frames/sec 10 frames/sec 20 frames/sec 30 frames/sec
Dist. Error - p 11.18 9.25 8.41 827
Dist. Emor- o 11.82 6.78 5.27 4,71
Origin Error - p 6.42 5.60 4.80 5.04
Origin Error - & 5.44 8.93 7.84 6.20
NRSPE - 1 18.96 18.02 17.49 16.65
NRSPE - ¢ 4.75 4.33 7.08 3.81
SNR out (db) 7.71 7.95 $.20 8.10

Table 8.1: Performance of the 3 trackers at varied frame rates. The symbols y and o indicates the mean error
and variance over the frame length respectively (in pixels). NRSPE refers to Non-Rigid Shape Parameter Error,
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Figure 8.6: Frame rate test for the 3 trackers. The error quantities are measured in pixels. (a) Perormance using the distance error measure. (b) Performnace using the
origin error test. (c) Performance using the non-rigid shape parameter error test. (d) Performance using the tracked output SNR (db). All 4 tests suggest that the CONT-IMM
tracker outperforms the other two trackers.
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Noise Distance | Distance Origin Origin NRSPE NRSPE
Variance | error mean | error var. error mean | error var. mean Var.
0 2.9% 0.26 0.88 0.35 5.70 4.50
5 3.21 0.4] 1.25 1.06 7.98 3.06
1¢ 3.37 0.36 1.22 0.60 9.15 4.30
15 3.10 0.34 0.98 0.52 8.08 5.43
20 3.45 1.12 1.12 0.69 8.92 6.43
25 3.08 0.26 0.98 0.40 7.96 4.69
30 3.31 0.42 1.19 0.79 8.84 3.05
35 342 0.39 1.04 046 9.98 5.04
40 3.41 0.50 1.04 0.64 10.28 8.20
45 3.58 0.94 0.99 0.53 10.47 5.98
50 4.20 2.07 1.06 £).58 12.70 11.60
55 3.93 1.97 0.97 0.36 11.62 10.21 -
60 4.22 2.2% 1.08 0.63 11.76 9.46
65 4.96 2.56 0.88 0.30 14.73 22.13
70 4.88 2.56 1.15 0.57 15.08 11.92
75 5.85 4.44 1.17 0.67 15.79 15.91
80 5.88 213 0.87 0.62 16.00 . 10.90
85 6.07 4.90 0.58 0.34 16.0] -16.70
90 841 13.41 1.24 0.53 19.50 - 60.84
95 9.77 20.49 1.02 0.72 23.80 41.80
100 12.68 16.70 0.99 0.48 28.60 70.44
Table 8.2: CONT-IMM Tracker performance under varying noise. NRSPE refers to Non-Rigid Shape Parameter
Error.
Noise Distance Distance | Origin Origin NRSPE NRSPE
Variance | error mean | error var. | error mean | error var. mean var,
0 5.26 6.12 3.71 7.75 9.86 8.31
5 6.48 7.28 3.68 648 11.07 8.97
10 6.53 7.42 3.68 6.53 11.75 10.98
15 6.53 7.37 3.76 6.53 11.33 10.06
20 6.65 3.63 3.70 6.92 11.63 15.24
25 6.46 7.66 3.67 6.81 11.10 11.18
30 6.65 7.57 3.76 6.84 11.70 11.21
35 6.75 7.00 3.67 7.00 12.40 10.21
40 6.72 8.12 3.80 7.72 12.43 13.12
45 6.83 7.56 3.67 7.17 13.39 12.48
50 7.56 9.28 3.95 7.40 14.20 18.39
55 7.36 §.74 3.90 6.76 14.41 19.47
60 7.21 7.21 3.80 5.80 14.25 14.75
65 3.09 6.52 3.94 5.06 16.60 24.75
70 8.01 8.54 4.10 6.50 16.82 17.28
75 8.68 6.91 3.92 541 17.75 16.82
80 8.72 6.78 4.42 7.45 18.30 13.30
85 9.39 8.92 4.33 6.47 18.87 22.85
90 11.69 37.27 4.67 6.73 22.50 60.37
95 12.98 24.73 4.83 8.84 22.57 44.53
100 16.84 19.95 6.93 10.17 30.66 75.95

Table 8.3: CONDENSATION Tracker performance
Parameter Error.
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Noise Distance Distance Origin Origin NRSPE NRSPE
Variance | error mean | error var. | error mean | error var. mean var.
0 9.04 7.96 5.54 8.93 18.02 4.33
5. 8.92 7.25 5.2} 6.01 18.42 4.18
10 8.58 6.50 4.96 7.40 17.60 4.46
15 8.78 7.61 5.33 6.70 17.70 3.96
20 8.92 7.79 5.51 7.28 17.86 3.54
25 8.77 7.76 5.46 8.60 17.45 4.20
30 8.84 9.12 540 6.98 17.80 4.82
35 8.91 9.12 5.36 7.90 17.50 4.93
40 8.61 6.60 5.50 8.28 17.56 3.68
45 8.80 8.80 5.34 6.88 17.24 6.13
50 8.92 7.63 5.44 7.98 17.54 3.06
35 8.72 5.72 5.70 11.12 17.44 5.73
60 8.96 7.51 6.03 9.07 17.71 3.26
65 9.25 9.95 5.88 8.18 17.73 5.10
70 9.61 6.05 6.67 17.41 18.36 3717
75 9.50 6.12 6.46 9.52 19.00 6.00
80 10.17 8.27 6.48 12.86 19.86 5.17
85 10.48 11.62 6.78 9.52 19.78 3.67
90 12,51 23.97 6.71 9.51 22.31 8.47
95 12.31 13.86 7.11 10.25 21.16 5.78
100 13.27 6.34 7.30 22.84 2600 7.00
Table 8.4: BAUMBERG Tracker performance under varying noise. NRSPE refers to Non-Rigid Shape
Parameter Error,
Noise CONT-IMM CONDENSATION | BAUMBERG
variance SNR out (db) SNR out (db) SNR out (db)

0 10.17 7.90 7.98

10 10.20 8.08 8.01

20 10.55 7.97 8.05

30 10.65 8.15 7.95

40 10.27 7.82 7.88

50 9.70 7.15 7.89

60 9.74 7.70 7.52

70 9.24 7.45 7.19

80 8.60 6.97 6.80

90 7.38 6.52 5.79

100 5.90 3.40 2.87

Table 8.5: SNR output achieved by the 3 trackers with varying noise,

Noise SNR in (db)
variance
10 22.47
20 16.29
30 12,71
40 10.18
50 8.23
60 6.64
70 5.29
80 4.13
90 3.14
100 2.26

Table 8.6: Noise variance correspondence to SNR input.
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Figure 87: Noise performance test conducted by adding anificial noise (uncorrelated) to the test image
sequence. (a) Distance error test result. (b) Origin error test result. (c} Non-rigid shape parameter error test
result, (d) SNR output result. (e} SNR input versus SNR out results (see texi for details). The results reveal that
upto a noise variance level of 30 (~5db SNR in), the trackers produce tracking results as good as in a noise free
environment, Ar variance levels greater than 50 (~10db SNR in), the performance of trackers deteriorates
rapidly. The CONT-iMM tracker in general gives better quality results at all the noise levels considered than
the other 2 trackers.
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CONT-IMM CONDENSATION Baumberg tracker
(a) (b) (c)

Figure 8.8: Tracking performance of the 3 trackers (with no added noise). 4 frames of a test sequence are
shown with the tracked contour superimposed on top of the object (walking person). Figures are read column
wise. (a) Using CONT-IMM tracker (b) Using CONDENSATION tracker (c) Using BAUMBERG'S tracker.
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Figure 8.9: Tracking performance under noise (at variance = 80). Figures are read column wise. (a) Using
CONT-IMM tracker (b) Using CONDENSATION (racker (¢} Using BAUMBERG s tracker.




S— - |
Control CONT-IMM | CONDENSATION | BAUMBERG OPTIMUM
Points SNR out {(db) SNR out (db) SNR out (db) SNR out (db)
8 7.4 713 3.00 .70
12 9.21 7.64 4.64 10.41
16 9.75 7.70 532 11.77 :
20 9.86 797 6.96 12.70
24 10.13 7.85 7.10 13.98 A
28 10.47 7.80 7.50 14.51 :
32 10.72 7.97 7.75 15.43
30 10.50 7.88 717 16.90 1
48 11.00 7.86 7.79 17.85 ;
56 10.54 7.86 7.80 18.60
64 11,10 7.88 7.80 19.40

Table 8.7: Performance of the 3 trackers with varying number of control point representation of the object. The
optimum SNR is the maximum possible that can be achieved by any one of the trackers (see text for details).
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Figure 8.10: SNR output achieved by the trackers when using varied number of control points to represent the
object. The theoretical maximum is the best possible tracking performance achievable (See tex:t for detail). It is
shown to indicate how well the trackers perform with varied number of control points. It is clear from the plot,
that all 3 trackers achieve their best possible result when the number of contorl points are around 30. Little gain
is achieved by using more than 30 control points to represens the object considered. In comparison, the CONT-
IMM tracker outperforms the CONDENSATION and BAUMBERG trackers by about 2db margin.
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Figure 8.11: Tracking performance when varying the number of control points (Frame 10 displayed). Figures
are read column wise. (al) with 16 control points using CONT-iMM, (b1} with 16 control points using
CONDENSATION, (cl) with 16 control points using BAUMBERG, (a2) with 32 control points using CONT-
MM, (b2) with 32 control points using CONDENSATION, (c2} with 32 control points using BAUMBERG.

PCs | 0 [ 2] 3 7 4 [ 5 [ 101 15T 20 25
CONT-IMM

Dist. Error -y | 8.38 | 778 | 438 | 407 | 367 | 281 | 214 | 188 | 1.6i
Dist. Error-o | 1.06 | 105 | 043 | 049 | 028 | 037 | 037 | 035 | 0.65
Orie. Error-p | 087 | 094 | 085 | 100 [ 124 [ 1.1 1.03 101 | 091
Orig. Error-o | 044 | 055 | 044 | 060 | 053 [ 060 | 056 | 071 | 052
NRSPE - u 125 | 070 | 1.17 | 090 | 077 | 059 | 046 | 047 | 047
NRSPE - 6 080 | 020 | 021 | 014 | 008 | 002 | 001 | 002 | 0.01
SNRout(db) | 6.79 | 693 | 7.10 | 7.60 | 822 [ 10.10 | 998 | 10.76 | 10.80
CONDEN.
Dist. Error- 1t | 5.75 | 548 | 533 | 523 | 511 | 4.60 | 450 | 4.17 | 4.06
Dist. Error - | 5.64 | 461 | 478 | 501 | 525 | 574 | 628 | 654 | 7.10
Orig. Error-4 | 3.71 | 368 | 373 | 3.80 | 376 | 372 | 376 | 3.6 | 3.71
Orig.Error-c | 722 | 738 | 691 | 742 | 764 | 7.4 | 736 | 722 | 175
NRSPE - p 157 | 087 | 134 | 112 | 090 | 081 | 080 | 081 | 0.8
NRSPE - ¢ 104 | 028 | 035 | 021 | 014 | 005 | 005 | 006 | 007
SNRout(db) | 694 | 699 | 725 | 734 | 730 | 782 [ 7.86 | 805 [ 8.05
BAUMBERG
Dist. Error-p | 9.54 | 905 [ 913 [ 910 [ 902 | 902 [ 902 | 502 | 9.02
Dist. Error-o | 1130 | 984 | 9.12 | 7.50 | 854 | 854 | 854 | 854 | 854
Orig. Error-1 | 562 | 563 | 555 | 592 | 599 [ 599 | 599 | 599 | 599
| Orig Error-o | 683 | 641 | 1058 | 856 | 765 | 765 | 765 | 7.65 | 1.65
NRSPE - 523 | 335 | 322 | 267 | 241 166 | 1.51 147 | 147
NRSPE - & 545 | 148 | 026 | 022 | 005 | 004 | 002 | 003 | 0.03
SNRout(db) | 7.33 | 744 | 760 | 755 | 7.96 | 7.96 | 7.96 | 796 | 7.96

Table 8.8: Performance of the 3 wackers with varying number of non-rigid shape parameters (Principal
Components - PCs). The symbols y and o indicates the mean error and variance over the frame length
respectively (in pixels). NRSPE refers to Non-Rigid Shape Parameter Error.
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Figure 8.12: Number of non-rigid shape parameters used (number of principal components) versus error measures. (a) Performance using the distance error measure. (b}
Performnace using the origin error test. (c) Performnace using the non rigid shape parameter error test. (d) Performance using the tracked output SNR (db). The results
show (particularly the shape parameter error test) that by increasing the number of shape parameters, the tracking results improves (for all 3 trackers), but the relative
benefit achieved by increasing the number of PCs beyond 10 is less significant.
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Figure 8.13: Tracking performance when varying the number of deformable shape parameters (frame 10 is
displayed). Figures are read column wise (al) with 3 parameters using CONT-IMM, (bl) with 3 parameters
using CONDENSATION, (cl) with 3 parameters using BAUMBERG, (a2) with 23 parameters using CONT-
IMM, (b2) with 25 parameters using CONDENSATION, (c2) with 25 parameters using BAUMBERG.

8.7 Conclusion

In this chapter we have presented empirical techniques for assessing the quality of contour tracker
performance. In almost all the tests carried out, the B-spline based error measures were consistent
with the SNR output results, which suggests that the performance measures are a credible
representation to assess the quality of contours tracked by the three trackers concerned. The
experimental methods provided can be utilized for any type of B-spline represented shape comparison
test, assuming no re-parameterization of the contour control points are required. The SNR test method
is a totally spline independent method, which uses only image processing techniques to evaluate
performance, and therefore, can be used to analyze the output of any contour tracking algorithm with

reasonable accuracy.
Though the experimental methods are restricted to the tests described in this chapter, the evaluation

has revealed that the CONT-IMM method outperforms the other 2 trackers (in terms of the quality of

output) in almost all the performance tests carried out.
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Chapter 9
Conclusion

9.1 Summary

This thesis has examined the merits of providing a model switching ability within a visual-tracking
framework. It has successfully demonstrated a model switching capability for a point feature tracker
and a contour tracker, deployed on a variety of image sequences. The primary advantage of having
multiple motion models is that the tracker can cope with several types of motion captured in the same
image sequence, giving better quality trajector results. The performances of the tracking algorithms
(point feature tracking and contour tracking) in terms of quality and quantity have also been
considered in this thesis. We have presented theoretical performance prediction methods for a point
feature tracker (based on different motion models) and have provided empirical performance

prediction methods for 2 contour tracker.

Though the performances of the tracking algorithms developed in our work have yielded promising
results, there are still improvements and advancements that can be incorporated into the algorithms to
enhance the tracker. In the following section we provide possible improvements that can be

considered. Finally we also include possible directions for future research work.

9.2 Areas of Improvement

Although the original aim of this research was fulfilled to a great extent, there are methods presented
which lack an in-depth analysis. Mainly due to the time limitation of the project, some areas have not
been sufficiently addressed. In the following section we show some of the weaknesses of the methods

provided, and where possible, show directions for improvement.

Chapter 3 — A fundamental issue that needs addressing when comparing the performance of corner
detectors is establishing a sound ground truth. For simple objects such a task is reasonably trivial
[134), but for complex scenes, as studied in this chapter, establishing ground truth is extremely
difficuit. Even for a human brain, to determine the best *N° corners from a complex scene is non-

trivial. Nevertheless, a bottom line has to be drawn to decide whether a corner is ‘true’ or ‘false’ for a
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definite analysis. Once such a decision has been made, formulating a comparison technique becomes
relatively simple. Another area that needs to be considered is the development of proper theoretical
performance measures (as opposed to empirical techniques) for more stringent performance analysis.
Another interesting line of work worth pursuing is to assess the performance of corner detectors under
different views of the same scene. Such a process requires some form of motion mode) included in the
analysis, which makes the comparison task much harder. For the applications we considered, a solid
comparison technique was not absolutely essential, mainly because the purpose of this work was to
select a good comer detector for temporal feature tracking in the subsequent phase of the project

(reported in chapter 4), therefore further analysis was not considered.

Chapter 4 — The tracker (MHT-IMM) presented in this chapter was demonstrated to have the
capability of automatically changing motion models. Though the results were impressive, a drawback
of the tracker is the independence of corner detection and tracking processes. A coupled tracking
scheme along the lines of [207, 169, 112] will enhance the quality and efficiency of the tracking
algorithm. Using MHT technique for tracking has its advantages (as described in the introduction of
chapter 4), but the downside is the computational cost involved. Despite Murty’s algorithm [137]
incorporated into the MHT framework [54, 58], the pruning of unnecessary branches in the track tree
is still required. Anocther problem with the tracker is the use of a separate tracker for every single point
feature considered. If several features (> 250} are to be tracked, then the algorithm performs poorly

due to the complex management of a large number of hypothesis trees.

Chapter 5 — In this chapter we provided closed form solutions for predicting the performance of a
point feature tracker under clutter using different motion models. We showed that the theoretical and
empirical results presented closely matched the Mote-Carlo simulations, provided the assumptions
listed were maintained. Due to the complexity of the problem, a number of assumptions were made in
order to formulate the closed form representations. The assumptions taken do compromise the final
results obtained to some extent as observed from the results. To minimize the number of assumptions,
a deeper, rigorous theoretical study along the lines of [125, 126) would be required. An area that was
not fully covered by theoretical formulations is the analysis for a tracker (that employs a constant
velocity or a constant acceleration madef) when recovering from a false match (we have provided a
technique which is a combination of theoretical and empirical methods, but a complete theoretical
formulation will be very useful). In this chapter we have considered only 3 simple linear mation
models for performance prediction. It would be interesting to formulate solutions for other type of

motion models (eg: a constant turn model, non-linear motion models, oscillatory motion models etc.).

Chapter 6 - The object tracking method described in this chapter is adequate only for simple objects

that are not occluaed. Despite the attractiveness of the algorithm, it suffers from lack of efficiency for
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real time purposes. The main reason for inefficiency is the application of MHT in two stages: the first
for contour segmentation, and the second for temporal point tracking. A better method for object
tracking would be to formulate the tracking problem along the lines of Torr et al. [192, 193] (use of
geometric information criteria for motion segmentation), Reid et al. [153] (uses optic flow methods to
group points belong to the same object), or Smith et. al. [172] (use of motion estimates to group point
features that are of the same object). It is also useful to track objects that are far more complex than
the ones that were considered in this chapter. In complex objects one would have to take into account
the corner points that might appear within the object of interest, in which case the algorithm presented

in this chapter might fail, because it considers only the contour (the boundary) of an object.

Chapter 7 - The CONT-IMM tracker presented in this chapter was demonstrated to track well with
automatic motion model switching when applied on a variety of sequences. One area where the
tracker is vulnerable is when tracking under heavy clutter. Since the ftracking technique uses
background subtraction to obtain contour measurements, heavy clutter can cause spurious contour
measurements, thus resulting in poor quality contour tracking. A way around this problem is to use an

efficient feature search method such as the methods reported in [163, 24], where suitable statistical

background and foreground models are developed to reduce the effect of clutter.

For the experiments reported in this chapter we considered only 3 motion models to test the model
switching ability of the tracker. For a more rigorous evaluation of the tracker, it is worth testing the
CONT-IMM algorithm with other types of motion models (eg: non-linear motion models, oscillatory
motion models, learned motion models that pertain to a type of object etq.). It is also worth frying the

algorithm to track other objects such as animals, vehicles etc.

Chapter 8 - An important part missing in chapter 8 is a sound theoretica! basis for comparing the
performance of contour trackers. The methods that we have employed are simple empirical techniques
to assess the output of the contour trackers. The methods provided do not give any prediction
measures (as in chapter 5). Due to time constraints further theoretical performance analysis work
could not be carried out. An important area of research worth considering to improve the work
reported in this chapter is to provide closed form expressions for theoretically assessing the
performance of contour trackers (to the author’s knowledge there are no comprehensive techniques
reported in the literature for comparing the performance of different types of contour trackers). One
possible thought is to enhance the work presented in chapter 5 (performance prediction techniques for
~ point feature trackers) for contour tracking algorithms. Another area that needs addressing is a sound
comparison technique without using B-spline related measures. For contour trackers that do not

employ splines, the B-spline performance measures presented cannot be employed. The SNR method




used is also inadequate, since it depends on the foreground area of the moving object. Therefore an

imace processing technique that is independent of moving object size will be of valuable use.
gep g q p £ 00J

9.3 Future Research Directions

As noted before a problem with MHT based tracking techniques is the high computational cost. One
method to avoid costly computational time is to reduce the complexity of the tracking algorithm. A
possible future direction of work is to consider extending the KLT tracker. As discussed in chapter 3,
the KLT tracker does not employ a motion model within its tracking framework [190], but uses the
corner detection process to complement the tracking task. A possible extension for this tracker is to
consider embedding a motion model/s into the KLT tracker (similar to [164]). Such a tracker would
be expected to perform better than the MHT-IMM algorithm in terms of efficiency.

An efficient method of point feature tracking can also be developed using similar techniques to the
Condensation algorithm (with an appropriate feature detection process embedded within the tracking
system). Such a tracker would be expected to run faster than a MHT based algorithm. Possible model

switching can also be achieved by following similar techniques to Blake et al. [106, 156).

An extension of contour tracking method is to track not only the contour of the object but also the
grey-levels contained within the object of interest. If achievable, such a technique will provide
valuable information from the image sequence. Cootes et al {53, 71] have used Active Appearance
Models for recovering faces ustng such methods, but to the author’s knowledge very little work has
been done in recovering the full deformable object using temporal tracking. Some success has been

reported in [165],'where small blobs are tracked, but further work has to be undertaken to track a

complex deformable object such as a walking pedestrian,

Other possible areas of research include the following: Track 3D objects as opposed to 2D contours
with motion model switching (using ideas from [91, 177, 178]). Use tracking techniques to
reconstruct a scene from sequence of images (panoramic scene understanding), interpretation of
scenes using tracking methods (similar to [100]), and the possibility of employing tracking concepts

for the restoration of damaged sequences that contain moving objects.
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Appendix A

Corner Detector Performance with Small Motion

This section gives extra information to that which was reported in chapter 3 (page 47).

A.1 Image Sequences with Very Small Motion

Two sequences were considered with very small motion component in them. First, a 30 frame Coke sequence
was used, where there is a small camera motion towards the scene. Secondly, a 20 frame Rubic sequence is
considered with a small rotational motion of the Rubic. In both sequences the maximum inter-frame

displacement due to motion was around | pixel (see Appendix G).

A.1.1 Test Results for the Coke Sequence

The best lOOI corners extracted by each of the comer detectors are qualitatively displayed in Fig. (A.1). The
quantitative results show that the KLLT and Harris provide equally good number of stable corners (55% each),
while SUSAN resulted with around 35% and Kitchen-Rosenfeld gave only 20% stable corners using the GVM
matcher (0.004 threshold). For the same experiment using PMCM matcher (0.8 threshold), Harris (30%) gave a
better result than KLT (20%), while SUSAN and Kitchen-Rosenfeld provided only around 10% stable corners.
The number of first frame comer maiches also suggests that Harris and KLT provide more matches than
SUSAN and Kitchen-Rosenfeld detectors for both matchers (Fig. (A.2)). The mean corner displacement result
shows that the corners extracted by the Harris and the KLT (with around 1 pixel displacement) detectors are
more localized than the comers detected by the SUSAN (1.7 pixels) and the Kitchen-Rosenfeld (2 pixels)
detectors using the GVM matcher. With the PMCM matcher, Harris gives around 0.7 pixel displacement, KLT
provides 1.25 pixels, while SUSAN and Kitchen-Rosenfeld provides more than 2 pixels displacement (Fig.
A2).

A.1.2 Test Results for the Rubic Sequence

The best 100 corners extracted by each of the comer detectors are qualitatively displayed in Fig. (A.3). The
result reported in Fig. (A.4) shows that KLT, Harris and SUSAN give approximately 50% stable corners using
GVM (0.004 threshold), and around 10%-15% using PMCM (0.8 threshold). The Kitchen-Rosenfeld gives the
Jeast stable comers using both matchers, about 25% and 8% respectively. The number of first frame comer
matches is between 60-75 for all four detectors using GVM matcher, and around 40-50 matches using PMCM
matcher. The comer displacement result clearly shows that KLT with around 1.5 pixel displacement is better
localized than Harris (2 pixel), SUSAN (2.5 pixel} and Kitchen-Rosenfeld (2.6 pixels) detectors using the GVM
matcher. Similar observations can also be noted using the PMCM matcher (Fig. (A4 b,d,f)).
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Figure A.I: First and last frame (row wise) of the Coke sequence showing the best 100 corners as seen by each
of the 4 corner detectors.
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Figure A.2: Performance of the 4 corner detectors when applied to the Coke sequence, (a} The percenrtage
stable corners using GVM matcher. (b) The percenrtage stable corners using PMCM matcher. (c} The number
of first frame corner maiches using GVM macther. (d) The number of first frame corner matches using PMCM
macther, (e} The corner displacment (in pixels) using GVM matcher. (f} The corner displacment (in pixels)
using PMCM matcher.
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Figure A.3: First and last frame (row wise) of the Rubic sequence showing the best 100 corners as seen by each
of the 4 corner detectors.
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Figure A.4: Performance of the 4 corner detectors when applied to the Rubic sequence. (a) The percenrtage
stable corners using GVM matcher. (b) The percenrtage stable corners using PMCM matcher, (c} The number
of first frame corner matches using GVM macther. {(d) The number of first frame corner matches using PMCM
macther. (¢) The corner displacment (in pixels) using GVM matcher. (f) The corner displacment (in pixels)
using PMCM matcher.
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Appendix B

Multiple Hypothesis Algorithm
B.1 MHT Overview

This section briefly describes the MHT Algorithm (the details of which are given in [152], [54], [58]). In
section B.2 we look at the hypothesis generation. In section B.3 the mathematical framework for this
algorithm is presented and finally in section B.4 the method of generation of the K-best hypothesis is given.
The concepts presented in the whole of this section are used to predict and match features for our feature

tracking analysis presented in Chapter 4.

The Multiple Hypothesis Tracking (MHT) algorithm was originally developed by Reid [152] in the context
of multi-target tracking. Fig. 4.1 in chapter 4 outlined the basic operation of the MHT algorithm. An
iteration begins with the set of current hypotheses from iteration (k-1). Each hypothesis represents a
different set of assignments of measurements to features, i.e., it is a collection of disjoint tracks. A track is
defined to be a sequence of measurements that are assumed to originate from the same geometric feature. A

dummy track in each global hypothesis denotes spurious measurements.

Different sets of assignments expect to see different sets of measurements. Thus, each hypothesis predicts
the location (in the image plane) of a set of expected geometric features (specifically corners) and these are
compared with acfual measurements detected in the next camera frame on the basis of their Mahalanobis
distance [58, 6]. These comparisons are represented in the form of an ambiguity matrix (was defined in

Chapter 4.2), which concisely models the ambiguities present in assigning measurements to features.

Each measurement may either 1) belong to a previously known geometric feature, 2) be the start of a new
geometric feature, e.g., a previously unseen comer that has entered the field of view of the camera, 3) be a
spurious measurement (also called a false alarm). In addition, for geometric features that are not assigned
measurements, there is the possibility of 4) deletion of the geometric feature. This situation may arise when
say a comner feature leaves the field of view of the camera. Alternatively, 5) there is the possibility of
continuation of a geometric feature, the missed measurement perhaps being due to either noise or a

temporary occlusion caused by the motions of the camera and objects in the scene.
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After matching, each global hypothesis {from iteration (4-1)), has an associated ambiguity matrix from
which it is necessary to generate a set of legal assignments (see Chapter 4.2). Each subsequent child
hypothesis represents one possible interpretation of the new set of measurements and, together with its

parent hypothesis, represents one possible interpretation of all past measurements,

Finally in order to contain the growth of the tree, it is necessary to prune unlikely branches (see [58] for
further details on pruning mechanism). In order to do this intelligently, one needs to evaluate the likelihgod
of each hypothesis. Section B.2 and B.3 provides the mathematical framework for estimating the

probability of each leaf in the tree.

B.2 Hypothesis Generation

The /-th practical global hypothesis at time & is denoted by @f , and Z(k) the set of measurements at time .

Let ©,}, denote the parent hypothesis from which @ is derived, and @,,(k) denote the specific set of

assumed assignments (events) that map {@fn'(}), Z(k)} to ©F Thatis, @, (k) is a set of assignments of

the origins of all measurements received at time & with all the geometric features postulated by the parent

hypothesis, @;}}) at time k. The event &,(k) based on the current measurements is defined to consist of 7

measurements from known geomeitric features, v measurements from new geometric features, @ spurious

measurements {false alarms), and y deleted {or obsolete) geometric features from the parent hypothesis.

A set of current assignments or events &,(k) can be generated by first creating an ambiguity matrix in

which known geometric features are represented by the columns of the matrix and the current
measurements by the rows. A non zero element at matrix position ¢;; denotes that measurement z{k) is
contained in the validation region of geometric feature 4. In addition to the total number, T, of known
geometric features postulated by a hypothesis, the hypothesis matrix has appended to it a column 0 (Tg)
denoting false alarms and a column T+1 (Ty) denoting new geometric features. The situation depicted in

Fig. 4.2 (a) in chapter 4 is represented by the hypothesis matrix shown in Fig 4.2 (b).

It is desired to constrain the legal set of assignments to be disjoint so that 1) 2 measurement originates from
only one source feature and that 2) a geometric feature has at most one associated measurement per
iteration. This is equivalent to restricting an ambiguity matrix to have only a single non-zero value in any
row or column, except for the first and last columns since any nrmber of measurements might be false
alarms or new geometric features. If the first and last columns of the ambiguity matrix are replicated m;
times for each of the m; measurements, then there is only a single nonzero in any row or column and the

ambiguity matrix can be thought of as a cost matrix in a linear assigninent problem (or weighted bipartite
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graph matching [137]). Enumeration of all legal sets of assignments, 8,(k), is straight forward [58], but

impractical for anything other than a trivial example. Section B.4 describes briefly how the ambiguity
matrix can be modified to represent a classical assignment matrix from which the &-best assignments

{hypotheses) can be generated using an algorithm due to Murty [137).

B.3 Probability Calculations

The new hypothesis at time £, @f is made up of the current set of assignments (also called an ev. 1),

8,(k) , and a previous hypothesis, @f,,'(f.) based on measurements up to and including time k- 1, i.e.,

of = 0k, 6,(1)} (B.1)

The probability of an hypothesis, P{@f IZ *} can be calculated using Bayes’ rule, so that

Pb Izk} P?(k):em(!) Z(k)’zk ]}

(B.2)
= —p[zac)le ).04, 2 Pl Rl 24 Ptz }

where ¢ is a normalisation constant. The last term of this equation, P{Gm(r)'Z" 1}’ represents the

probability of the parent global hypothesis and is therefore available from the previous iteration. The

remaining two terms may be evaluated as follows.

The second factor of (B.2) is obtained by combining results from [6] and [152] to yield [S8],

P{o,(kfokd), "“’} o ‘\(v)H(P') (1-B) " (R)" (1~ B) 7 (B.3)

where t1.(¢) and u N(v) are the prior probability mass function (PMFs) of the number of spurious
measurements and new geometric features (v is the number of measurements from new geometric features,

¢ is number of spurious measurements (false alarms) and m, is the total number of measurements at time %),
P and P;, are the probabilities of detection and termination (deletion) of wack 7 and &, and Y, are

indicator variables defined by

1 if geometric feature t (in Gmu)) is detected at time k

0 otherwise
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2 == 1 if geometric feature t (in @) is deleted at time k
==

0 otherwise

To determine the first term on the right hand side of (B.2) it is assumed that a measurement z(k) has a
Gaussian probability density function (pdf)

N, = N[z,())] = N[z,(k); 2,(kk - 1),8" (k)]

- P 25 k)l-% e-%[(zmicm—i»"’(S*f“")"tzm—iwk-n)} (B4)

if it is associated with geometric feature £, where Z,(k|k —1) denotes the predicted measurement for

geometric feature f,and S" (k) is the associated innovation covariance. If the measurement is spurious (a

false alarm), then it’s pdf is assumed uniform in the observation volume, V. The probability of a new

geometric feature is also taken to be uniform with pdf of value V. Under these assumptions, one has,

AZ016,00,0%5,, 7] = L[, Lz o] v
" (B.5)

= V"‘"”ﬁ[Nﬂ_ [z, (0]

i=]

where T, is an indicator variable defined as

1 z,(k) came from a known geometric feature
0 otherwise

and v and ¢ are the total number of new geometric features and false alarms, respectively.

Substituting (B.5) and (B.3) into (B.2) yields the final expression for the conditional probabilit:y of an
association hypothesis [58)

My

22 e @) ing 6+ T, Lz, )]

1
¢ mk i=1

(B.6)
{H(PA)"' (1= Py (P)* (1= P)T* }P{@f(;:,lz*-l}

If the number of false alarms and new features are assumed to be Poisson distributed with densities Ag and

Anrespectively, then (B.6) reduces to
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The probability of each hypothesis can be used to guide a pruning strategy [58].

B.4 Generating the k-Best Hypothesis (Murty’s Algorithm)

Because of the exponential complexity of che multiple hypothesis approach only an approximation to the
MHT algorithm can be implemented. In particular, it is simply not feasible to search the entire space of
hypotheses in order to determine the most likely set of assignments, Several implementation strategies were

employed in order to contain the growth of the hypothesis tree and reduce the number of hypotheses that
must be considered.

In order to generate the K-best hypotheses (from a problem size > K}, Cox et. al. [54] used an algorithm due
to Murty [137] to optimaily determine the K-best assignments in polynomial time. The number of linear
assignment problems that must then be solved is lirear in & In fact, “the computations required at each
stage are the solving of at most {»-1) assiznment problems, each of sizes 2,3,...,.n" [137]. The algorithm
avoids solving duplicate assignment problems [54] (see later for definition}, thereby eliminating the need to
compare and delete duplicate hypotheses. Finally, in the average case, the dimension of the assignment

problems that must be examined decreases with increasing £.

Consider first the problem of finding the single most probable hypothesis. This can be cast as a weighted
bipartite fnatchin g problem by constructing a bipartite graph in which each node on one side represents one
of the measurements, each node on the other represents one of the targets, and each arc, <z, ¢, { >, gives
the log likelihood , /, that measurement z; should be assigned to target #,. The log of the likelihood of a given
assignment can be found by summing the Jog likelthoods of all the arcs that it specifies. These log

liketihoods can be calculated from equation B.7.

Finding the best hypothesis, then, is a matter of finding the assignment that maximizes this sum. This is an
instance of the classical assignment problem from combinatorial optimization, and can be approximately
solved very efficiently in polynomial time |34, 58]. Murty’s algorithm is also guaranteed to find the K-best

assignments in polynomial time. A brief description of Murty’s algorithm follows:

1) The set of valid solutions for any one of the problems in the list doesn’t intersect with the set of solutions

for any other problem in the list. That is, there are no duplicate problems.
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2} The union of the sets of valid solutions for all the problems in the list is exactly the set of solutions for

problem P, minus solution S {137].

Murty gives a method for computing this partitioning in O(N°) time, where N is the dimension of the
problem. For the 4-best algorithm, a list of problem/solution pairs is kept. Each pair consists of an
assignment problem and its best solution, The list is initialised with the initial problem to be solved. In each
 iteration, the best solution is found, then removed from the list, and replaced with its partitioning. So, in the
first iteration, the single best solution, Sy is found to the problem, and the list is altered so the set of
possible solutions no-longer contains S, The next iteration gives the next best solution, S, and changes the
list so that possible subsequent solutions no-longer include S; or So, and so on. The following steps outline

the algorithm. The partitioning is performed by the loop in step 4.4. See [137], [58] for more details.

1) Find the best solution, S,, to Po(this can be done using a standard algorithm like the Hungarian method
2) Initialize the list of problem / solution pairs with < Sg Pp>
3) Clear the list of solutions to be retuimed '
4) For i =1 to k, or until the list of problem / solution pairs is empty
4.1 Search through the list of problems / solution pairs, and find the pair, <P, $> that has the
best solution value
4.2 Remove < P, S> from the list of problem / solution pairs
4.3 Add S to the list of solutions to be returned
4.4 For each triple, <4, z, I>, found in S
4.4.1 LetP =P
4.4.2 Remove the triple <4, =, / > from P’
4.4.3 Look for the best solution, $ ,to P’
4.441fS exists
4.4.4.1 Add <P, S > tothe set of problem / solution pairs
4.4.5 From P, remove all triples that inciude 1, and all triples that include z, except

<1, z, I > itself. (This reduces the dimension of the problem by one)

Figure B.1: Murty’s algorithm for finding the k-best solutions to an assignment problem, Pg.
NOTE: 1t is also worth noting that, to supplement the Mahalanobis distance in the MHT technique, Cox et

al. [58] also introduced a cross correlation test [168]. This was used in order to reduce the total number of

possible initiol matches (and also increase the number of disjoint clusters).
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B.5 The Kalman Filter Recursion 1
i .
State at £, State estimate at #; State covariance at #; g
*(k) *(klh) P
1
:
r L 4 L 4 i
Transition to #4-, State prediction State prediction covariance t
[
x(h+i) = Fx(k) + v(k) x(k+1lk} = Fl)x(dk) P+ 1K) = F)PRIOFT(R) + Q(k) 8
- £
h
Measurement prediction Innovation covariance
v(k) 2+ 1|k) = i+ De(k+ 110) S(k+1) = H(k+ 1P+ 1K) H (k+ 1)
*+ Rk+])
Measurement at - ; Measurement residual Filter gain
2(k+1) = Hk+Dx(k+ 1) vk+1) = 2+ 1)-z (k- 1\K) | —{W+1) = PG+ T H (k+1) S (k+1)
+ wk+1) ]
Y
Updated state estimate Updated state covariance
wik+1) x(kIlk+]) = x(k+1ik) +Hy P+ 1ik+1) = P+ 11k) -
W(k+1v(k+1) Wik+ 1S+ W (k+1)

Figure B.2: One Cycle of the Kalman Filter [3]
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Appendix C

Proof for the Probability of Correct Association

This section contains proofs for the materiat reported in Chapter 5.

C.1 Proof for the Probability of Correct Association (PCA) for Constant
Velocity Tracker (CVT)

Starting from equation (5.9) in chapter 5

PCIT {k +1 ’ 7?;‘ ,a} = }";)“l""hli

2
= p e
=P,

Using the total probability theorem [5, 6], for the constant velocity model {CVT) we get,

Pep ik +13 = [ plk+11m,,a}.P(n,)d7,

Therefore the expression we require can be given by the following equation:

Porfk+1}= [R PG, )dn, €

1 (7)Y
where P(1,) = Ny exp S\
X k

Expanding equation C.1 using the total probability thecrem gives

+0 4 N 1 1 2
Poy th+1} = [RT e exp{—:(f’%] }f’m
—® & “ Nk

2
| S 1
- <= [excbnnaly, +a||2}exp{--2-[gt] }dm €
k-»

k

+x

= J%a I exp{-an; + B, +y 4,
k -o
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where the following definitions are used for a, 3 .

a= -[ln}:;,:z'—zl—z}ﬂ=2aln}’0;r,y =a’mBPx
c

k

77, »a (That is noise and acceleration as given before) are 2 dimensional vectors (They have a x and y

component). Therefore equation C.2 can be expressed in terms of the x and y components,

Po ik +1} =—2;al—-; [ Jexpt-a? + B, +7. Jexploa,nt + B,m, +7, Jin,dn,

IV ¥ =0

where 77, , n, are the x and y elements of the random variable n, and O'f R 0'}2. are the x and y variances of the

Gaussian distribution.

Lets evaluate the integrand associated with x component of the above expression (say J,),

L= "Jie—;;-+fexp{—a,ni }.exp{B,n.}dn,

For smali values &, (x component of the error acceleration) the second exp{.} in the above equation can be

approximated up to 2™ order terms. Therefore the above equation becomes,

Barts

-ey, 4o ) -
I = E}jicxp{-a,qx}.[l + 8.7 + Y + higher order 1‘erm.:;':lr:17)Jr

With suitable substitution and ignoring higher order terms for small @, , the above integral reduces to,

-2 |TO5)  ATD) | ATAS)

< oo, | 2a | 2, ¢ e |

where the I function is define as follows;
T(a)= [t (a>0) €3)
1]

we also make use of the following gamma function relations.
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r(0.5) =7, I(1.0)=1,T(a+1) = ()

With these relations substituted in equation C.3, the final expression for [ , becomes:

e’ '
I, =g |4 N7 s 4+ ]
N B+
A similar expression can be obtained for /. From these expressions we can evaluate P, {k +1} by:

P+l =11,

C.2 Proof for the Probab_ility of Correct ASsociaﬁon (PCA) for Constant
Acceleration Tracker (CAT)

The Alternate Method is given:

Starting from equation (5.13) in chapter 5
Poyr {k+1| 7} = BV (C4)

Note that this probability is conditioned on the random compoenent 7j, which can be integrated out by applying

the roral probability theorem.
p{7, ) is the two-dimensional probability density function (pdf) of the random variabie 77, .

2 2
1 1 TIr 77}‘ I
P(n,) = SXP)~ 5 (-;—] +[—;—] (C.5)

LI 4 x ¥

where 77, , 77, are the x and y elements of the random variable 77, , and 0‘3 ,O‘f. are the x and y variances of the

Gaussian distribution.

With the above given equations C.4 and C.5, the total probability theorem expands to the following form.
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L
-exp{ﬂ'(r;x +7, )lnP } - ex —%(Z_‘J 7. J'e -—[—ZL] n, (C.6)
IV - x ) ¥

The separated integrals with respect to 77,,7], are density functions which can be evaluated to closed form

solutions using the fact that the area under a density function is unity. The integral with respect to x reduces to

the following equation.

7 - { 7 _\/ 27102
E 2 Y B
\‘2;2"”1“‘% 1-2702In P,

x

which when substituted into equation C.6, along with its J y counierpart gives,

II
PCAT{]C-I-I}:_.__'L_J:.—.: 1

2700, 1-270; In P \1-270> In R,

C.3 Proof for the Probability of Correct Association for Recovering from
a False Match (PCA-FM) for Zero Velocity Tracker (ZVT)

Starting from equation 5.17 in chapter 5:

P'ZIT {k +l l v‘.“_] ,gk} = Po"rl;;kal.l

3 (C.7)
= }){)f‘*‘l"m"&‘ti'

The probability P’ {k-+1| Vv, }can be formed from equation C.7 by integrating out the random term &

using the total probability theorem. The probability density function of &, is a uniform distribution inside the

disk of association 4, and zero outside,
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if € Is inside 4
p(s‘ Jdlv&ll *

(C.8)

otherwise

when substituting equation C.8 into the total probability theorem, the integral requiring evaluation is constructed
as follows.

Plk+1lv,,} = I Pl +11v,,,,6) p(8,)de,

[ Pl v,
A

A

However, a closed form solution for this integral is difficult to determine because, although

Par{k+1|v,,,&, }and the region of integration A are both circularly symmetric, both have different

centers. If the integrand is simplified, the expression for the domain is made more complicated, and vice versa.
To evaluaie this integral, the circular domain of integration is approximated by a square region S (Fig. 5.4 in

chapter 5) which is centered at p,_, and has sides of length 2v, . where v, is defined as follows:

Ve = m2x(JV, 1V,

The pdf for &, over the square region S is:

1
p(gk) = (zvmax )2
0 otherwise

if €, is inside §

The total probability integral is therefore transformed to,

Parfk+Lv, )= A -al de,
a7 { et = 2(v max) _[

(A9)

This integral is still not in a form that can be evaluated because the variable £, has its origin at P, while the
region of integration is defined with respect to an origin at p,,,. However, if V, =V, , = V_ is assumed,

that is a constant velocity of V_between frames, a change of variable from & 0T is possible and doing so

yields a tractable integral. From Fig. 3.3 it can be seen that & ] and 7, are related by &5, = 7,

dr, =dg,.

= V.and also
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Changing the variable of integration of equation C.9 from & o % results in an integral that can be evaluated

10 a closed form solution.

' 1 save-n
Py {k+1v,,,} =m£)—°ol i dr,

= -(Evl_)z M‘j"u\:sxp{zr In P, (4v? - dv 7 + Tf )}dfx .

whax

+V

max

Iexp{;z InPy(4v; —dv,7 +7; )}d‘fy

- _(_2;___)_2_ R;.—Izwp +T;xp{7fln P(—4v, 1, +71} )}drx.

max,

*Veay

Iexp{zrln P(-4v,7, +17; )}dry

-‘.l'lllﬁ

The integral with respect to x can be evaluates to the following form.

1= 2\/‘/_;_0 exp{-ab }[erf (Voa Wy, +8)) + erf (V=0 (v, - 5))]

where @ =In Fyzr and b=-2v,_.

A similar expression can be found for /.
Therefore the final expression for the total probability is given as follows:

Py 411V} =——— P [

(W)

Note that this expression is only valid for a small constant velocity v.




C.4 Proof for the Probability of Correct Association for Recovering from
_a False Match (PCA-FM) for Constant Acceleration and Constant
Velocity Trackers (CAT and CVT)

Using Fig. 3.4 in chapter 5:
=€, =Pr ~ Pip-
~ €40 =Pra ~ Pra = Prny — By + V4 +2, +77,) (C.10)

From vector graph in Fig. 5.5 (chapter 5), it can be shown that,

Vin = —& + Ve, (C.i1)

-Substituting equation C.11 in C.10 gives,

=€y ==&V e —2V V7,

2e, =&+, “[ak+1 - 3k]
e = (& +1,)/2
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Appendix D

A modified Principal Component Model

This section contains extra information for the material presented in Chapter 7 and 8.

D.1 Principal Component Analysis

PCA aims to transform a correlated set of observed shape-vectors to a basis of linearly uncorrelated parameters.
This is equivalent to diagonalizing the shape vector covariance mairix using a similarity transform. The vector

dx = (x — X) is transformed to a new basis using {10}

N1

dx = Zb,.e,.

i=0

=Pb
where b = (b,...,b,,,_, ) and P, =[e],.
Assuming P is invertible, the covariance matrix for b is simply
E(bb’) = P E(dxdx)P~7

In order to enforce linear independence, the above covariance matrix for b is diagonalized by appropriate choice

of P~ . This does not uniquely define P. A further orthogonality condition is required, namely [10]

e.e. =90, (D.1)

which is equivalentto P! = P7 .

D.2 Distance Metric for Splines

" Equation (D.1) represents only one possible orthogonality condition. The scalar product corresponds to a choice

of a standard Euclidean distance metric f{...,...) to measure the error between two sets of landmarks

(x,, ¥, )and (x';,¥'; ) where,

e e

PO S e e




_ fx,x')=|x—x]
‘o . ¥ 12
= [Z(xi —-x; )2 +(y =Y, )2)

i=0

Given two cubic B-splines P(s) and P*(5) defined by their ¥ contro! points (x,, y;)and (x';,3';), a more

accurate error metric ¢, measures the difference between corresponding points on each spline, sampled densely

and uniformly over the parametric curves, The distance metric is given by (also given in chapter 8, [10]),

rN 112
d(x,x) =| [|P(s) - P (s)f ds]
\ 0
(N N=1 ) N -t 12 ©2)
= [ 2 -2 )B ) ds+ [ (v, - ¥ )B.(9)) ng

\ ¢ i=D p i=0 .

where the B, (5) is the B-spline basis matrix elements. Eq. {D.2) simplifies to the following form:
d(x,x") =[x -x')" 3(x - x)}? (D.3)

where the 2Nx2N symmetric metric matrix J is defined by (see chapter 7 for details)

Jag g _ H, 0
J):’-c-!.)j ‘j2f+!.2j+l 0 H [N
and the NxNV symmetric matrix H is given by,
AP
H,; = [B,(5)B,(s)ds
0
There is a unique inner product associated with this metric given by,
(x,x) =x"JIx'

such that
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d(x,x)={x-x,x~ x')“z

= - xy 3 x - x0]"”

The inner product is used in place of the scalar product in equation (D.1) to give a more suitable orthogonality

condition.

D.3 Eigenshape Analysis

The desired transformation to a set of linearly independent J-orthogonal eigenvectors is found by solving the

eigenproblem (see [10] for details)

SJe, =Ae, (D.4)
where § is the training set covariance matrix E(dxdx”).
Using the notgtion of Eq. (D.4) the following results can be easily verified,

"

» The vectors €, are orthogonal with respect to the inner product <...,...>.
» Hence by suitable normalisation
[ <e,e;>=4;

or equivalently P*JP =/

»  Each shape coefficient b, is given by projecting the shape-vector dx onto the line spanned by the i-th

eigenvector (minimizing the square distance @~ to the ine). i.e
3 b, =< dx,e, >

g e The shape coefficients are linearly uncorrelated over the training set.

g T

E(bb;)=¢[ISYe, =<e, e, >
=40,

* Assuming an unbiased, homogeneous, isotropic Gaussian measurement noise model (with dense

measurements uniformly spaced over the contour) as described by Blake et. al [24, 60}, measurements for

the shape parameters are uncorrelated.
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Appendix E

Learning Motion Model Parameters

This section contains extra information for the material presented in Chapter 7.

E.1 Third Order AR Process

A third order system depends on 3 previous time steps. The dynamic motion equation is given by the following

; equation for a sysicm where the mean shape space of the training set also has to be learnt,
T(t,)—T = 4,(T(t,_,) - T) + A, (T(t,,) - T) + 4,(T(t,,) - T) + B,w, (E.1)

where T is the shape space state vector and T is the mean shape space; A3 s Az » A, , Byare all matrices of size

(6 + m). That is, 6 degrees of freedom for the affine transformation and m number of principal components for

the non-rigid shape variation. Eq. (E.1) can be represented compactly as follows [24, 25].

X(t,) - X = A(X(t,.,) ~ X) + Bw,

where

T(,.;) T [o 1 0 .
X(fk)= T(tk_]) 3 X=T X A=|0 0 1 B:{b ]
T(tk) T a, az a, 0

The coefficients of 4 are chosen to correspond to the damped exponential (in terms of frequency fand damping

coefficient £) for a time step «.

For a one dimensional problem, a,,a, ,a; can be given by the following expressions.

1 a, = exp(-257) + exp(—f7 + 27f1) + exp(—Br - 27f7)
a,=—exp(-2f47) - exp(—fr + 27f1) — exp(—Pr — 22fT)
a, = exp(~237)

by can be .elected suitably according to a method described in [24]. For a higher dimensional shape space

As, 4y, 4,,8, becomes
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A, =a,1,4,=a,],4, =al,B,=abH""

A sub case of harmonic motion, useful particularly for translational motion, as reported in this thesis, is the

constant acceleration model in which /=8 = 0, which gives the following motion model parameter values.

d;=1, A, =—31, 4,=3I.

E.1.} Learning Model Parameters from a Sequence cf Images

The model parameters can be learnt from a known image sequence as described by Blake et, al. [24, 25] for a

second order model. This method can be easily extended to a third order model as summarised below.

Given a training set {T,,...,T,,}of shapes spaces from an image sequence, leam the parameters

Ay, A, , Ay, By for athird order AR process that describes the dynamics of the moving shape.

The log-likelihood function for the multi-variate normal distribution of the 3™ order dynamic system is given by

(assuming the mean T is unknown),

= 1¥ : : Co)
L(Tl 3""TMIAI 2 Az ’Ass C,T)= _"ZlBo l (Tk - AsTk—3 - Asz-z - AlTk—l )l
243 | (E.2}

— (M —3)log(det B,)

C=B,B,

The form of equation (E.2) is non-linear since the mean also has to be estimated. The non-linearity can be

removed by the following substitution,
D=(I-A4—4,-A)T

Now the motion parameters can be estimated by minimizing the following expression,

1 & _ . 2
L(T,,...,T |4, 4;, 4;,C,D) = —EZI}.?(._.‘(TJk - AT, ~ AT, , - AT, , -D) E3)

knd

- (M - 3)log(det B,)




Minimising the log-likelihood L leads to the estimation of the dynamical parameters A,,4,,4,,5,.
Maximising first with respect to A4,, A,, 4,, it will be shown that separability holds. Maxima with respect to
Ay, Ay, A; tum out to be independent of the values of C. Equivalently to maximising L, t{(Z) can be

minimised with respect to 4, 4,, 4,.

M 2
If f{4,4,,4,D)= |8 (T, - 4,7, ~ 4,T,, ~AT,,)|

k=4

this can be expressed as

S (4, 4,,4;,D) = r(ZC™)

where
M

L= ;(Tk - ABTk—3 - Asz-z - AITk—I —D)(Tk - AsT&-a - Asz—z = AlTk-l - D)T
=4

For the purpose of finding A4y, 4,, 4,, B, can be effectively set to the identity matrix ( B,=/) for minimizing

r{Z); where
2

M
tr{Z) = Zl(Tk - AT, - AT, -AT,, "D)]
. k=4

Setting to 0 the derivatives of #{(Z) with respect to A, , 4, , 4, respectively shows that the minimum must satisfy

the following simultaneous equations.

Ry — ARy — A, Ry; — AR, DR, =0
Ry, — ARy — A Ry, — AR, ~DR, =0
Ry — ARy — A,Ry — 4R, -DR, =0
Ry~ AR, ~ AR, — AR —(M-3)D=0

where

e e e e T L T D N N S H :

M M
. 1
R; = ZTk-i , Ry = ZTI:—!T{—,‘ , Ry =Ry~ _____R:'R; i=0,123
= por (M-3)

eliminating D gives the following 3 equations
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Ros' - A3R33. — 4, Rza' - AIRIB. =0
Roz. - A3R32' - Aszz' - AlRlzl =0
Rm' - A3R31‘ - A2R21. - AlRll' =0

Solving the above equations gives the following estimates,

/‘i = {[Rm _ RO_Z (R;z )-l -R;s][Rz':s - R;l (‘R;l )—l R;sl - [R;B - R:n (R;| )-I R;a][R;.s - R.I?: (R;z )-I R;s]}
l [R;s - Rl: (-R.;z )-l Ras][st - R.:El (R;l )_l R33] - [R;.: - R;: (R."il )-l R;J][R;J - R.;.z (R;z )-l Rn]
2 = {[Ros — % (R;z )-l R;;][Rlla - ‘R;I (R;I )_] R;s] - [R:;_;_" -R|;| (R;I )-' R;s][R;a - R;z (R;z )“1 R:;: ]}
? [st - R.:az (R.;,z )‘l R;s][R;a - R;l (R;I )-] R;sl - [Rés - ‘R::I (R;I )-l Rs.s][Rlla - R;z (R;z )-] R;sl
A = {Ry(R)™ = LRL(R,) - AR, (R,

1

E(Ro - ‘aaRa - gzkz = ‘aiRl)

D

If required for the standard form of the AR process, the mean T is estimated from

i

T=(U-4,-4,-4)"D

It remains to estimate B, which is obtained as the square root of C = B, B . Rewriting (E.3) as
I gy 1 -
L= -—Etr(ZC ) +E-(M —-3)log(detC™'),

and fixing 4, = 22,14, =A4,4;,=4,,D= D, and extremising with respect to C~' (using the identity
»

Adet MY/ M = (det MYM™ ) gives

- ] " ~ -
C= M3 (Roo ~ ARy — 4Ry, - AIRIO)

E.2 Second Order System AR Process

Similar to the third order process, a second order AR process is given by the following equation,
T(t) =T =4,(T0)-T)+ 4(T(¢,.,)-T) + Byw,

Where the current state estimate depends only on the past 2 time steps.
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By a similar procedure given above, the state transition matrix A4 is given by,

_[Te]  _[T o 1 Jo
X(tk)_{T(’k)]’ x—[:f} A_Lz a|:|’ B-[bo]

where for a one dimensional state, the motion parameters are given by,

a, = 2exp(~fr)cos(2a7),
a, = exp(~2r)

For a higher dimensional shape space the parameters are simply,

4, =a,l, 4 =al,B,=cbH"?
A constant velocity model is obtained by setting / = £ = 0, which gives,
A, =-1,4, =21

where the size of the identity matrix (/) depends on the size of the state {example: & for an affine shape space).

E.2.1 Learning Motion Parameters for a Second Order Model

Using similar procedure as for the third order model, the second order model motion parameters can be shown to
be as follows [24],

Ay = (R = Ry (B,)) " R, (R = Ry (R Ry,
‘al = (‘Rt;l - fazR:;I )(R;I )ﬁl

- I N a

D= _JW_—E(RO - AR, - A,R,)

The mean of the training set and C = BB T are estimated as follows,

-~

=(I-4,-4)'D

-3b

~ 1 ”~ o~ L)
C= -A_{[_-—Z-(RUO - A, Ry — AI‘R.ID '“DRJ)

260




E.3 First Order AR Process
First order AR process is given by the following equation,

T(t,) - T = A(T(t,_)) - T) + B,w,
Where the current state estimate depends only on the past one time step.

By a similar proceduye given above, the state transition matrix 4 is given by,

X@)=[Te)} X= [Tl A=[a,}] B=[n]

where for a one dimensional state, the motion parameters are given by,

a, = exp(~7)

For a higher dimensional shape space the parameters are simply (same process as for the other models),
A =al
A constant position model is obtained by setting f = 0, which gives,
A =1
E.3.1 Learning Motion Parameters for a First Order Model

Using similar procedure as before, it can be shown that,

4= (RIO = RlRO)(RH —RR, )-]
D =(R, - 4R,)

The mean of the training set and C = BB are estimated as follows,
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Appendix F

Two Contour Trackers

We give details of the Condensation and the Baumberg’s tracker in this section. A brief introduction was only

given in Chapter 8 due to space constraints.

F.1 Condensation Algorithm

Given that the tracking process at each time step is a self contained iteration of fctored sampling [24, 102, 104],
the output of an iteration will be a weighted, time stamped sample set, denoted {sf"}, n=1,..,N} with weights
7:,(") , Tepresenting approximately the conditional state density p(x, | Z,) at time 7, where X,,Z, represent the

curve state at time step ¢, and measurement history up to time step ¢ respectively.

The sample set is obtained by using a prior density, and the effective prior for time step 7is p(x, | Z,,). It is
derived from the sample set representation {(s\"},z\")),n=1,...N} of p(x,,|Z,_,), the output from the

previous time step, to which prediction must then be applied (see Figs. 8.1 & 8.2 in chapter 8, and [104] for
details),

The iterative process begins from the output from time-step -/, which is the weighted sample set
{(sff,’ ,frff,)),n =1,...,N'} . Appropriate initial values for sample set and weights are chosen before the iteration

commences. The aim is to maintain, at successive time-steps, sample sets of fixed size N, so that the algorithm

can be guaranteed to run within a given computational resource. The first operation therefore is to sample (with
replacement) N times from the set {Sff)} , choosing a given element with probability JZ‘,(:? . Some elements,

especially those with high weights, may be chosen several times, leading to identical copies of elements in the

new set. Others with relatively low weights may not be chosen at all.

Each element chosen from the new set is now subject to the predictive steps. First, an ei=ment undergoes drift
and, since this is deterministic, identical elements in the new set undergo the same drift, The second predictive

step, diffusion, is random and identical elements now split because each undergoes its own independent
Brownian motion step. At this stage, the sample set {S\"} for the new time step has been generated but, as yet,
without its weights; it is approximately a fair random sample from the effective prior density p(x,|Z,_,) for

time step £. Finally, the observation step from factored sampling is applied, generating weights from the
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observation density p(x, | Z,) to obtain the sample set representation {(si”’ ,Jr,("))} of state density for time .

See [24] for more details.

Figure (8.1) in chapter 8 gives a synopsis of the algorithm. Note the use of the cumulative weights {c,‘fl) }

(constructed in step 3) to achieve efficient sampling in step 1. After any time step, it is possible to report on the

current state, for example by evaluating some moment of the state density as shown.

One u{ ibe striking properties of the Condensation algorithm is its simplicity, compared with the Kalman filter,
despite its generality. Largely this is due to the absence of the Riccati equation, which appears in the Kalman
filter for the propagation of covariance [5, 6]. The Riccati equation is relatively complex computationally but is

not required in the Condensation algorithm, which instead deals with variability by sampling, involving the

repeated computation of a relatively simple propagation formula.
F.1.1 Curve Motion

Contours are represented by using second order B-splines. A typical curve r(s,f) is given by

r(s,t) = (B(5).Q, (1), B(s).Q, () for 0<s<L (F.1)

where the vector B(s) is the vector containing the quadratic B-spline basis functions, Q s Q 5 are vectors of B-

spline control point coordinates, and L is the number of spans.

The spline space is transformed into shape space using the following expression,

a)le)

where W is the shape matrix and T is the shape space. See {24, 25, 102] for details. —Q-x,ay are the x and y

control points of a template shape. In this chapter we refer T as the ‘shape space’ including rigid and non rigid
components, The space which includes only non-rigid (deformable) components is referred to as ‘non-rigid
shape space’ or non-rigid (deformable) shape parameters. The space which includes only the rigid components

is referred to as ‘rigid shape space” or rigid shape parameters.
F.1.2 Dynamic Model

The dynamic mode! employed is a second order process, represented as




X, =X = A(x,_, —X)+ Bw, (F.3)

where W, are independent vectors of independent standard normal variables, the state-vector is given by,
_ {T

X, = X=|_

T

and X is the mean value of the state, and 4, B are matrices representing the deterministic and stochastic

components of the dynamic model respectively, and ideally they are learned from test sequences [25]. See

Appendix E for learning process.

F.1.3 Observation model

In one dimension, observations reduce to a set of scalar positions {Z =(z,,2,,...,Z,,)} and the observation

density has the form p(Z]x) where x is one-dimensional position. This can be given by,

exp— —2_ (F.4)

plzlx)ecl+ —-—1-———-
J2roa 5 207

where @ =gAand v,, =z, — X. Peaks in the density function corresponds to measured features and the state

density will tend to be reinforced in the Condensation algorithm at such points.

In a two dimensional image (as in contour tracking), the set of observations z is, in principle, the entire set of
features visible in the irnage. However, an important aspect of earlier systems in achieving real time
performance ([127], [84], [11], [23]) has been the restriction of measurement to a sparse set of lines normal to

the tracked curve. The two apparently conflicting ideas can be resolved as follows.

The observation density p(Z | X) in two dimensions describes the distribution of a (linearly) parameterized

image curve z(s), given a hypothetical shape in the form of a curve r(s) 0 <s < 1, (with L spans) represented by
a shape parameter x. The two dimensional density be derived as an extension of the one dimensional case. It is
assumed that a mapping g(s) is known that associates each point z(s) on the image curve with a point r(g(s)) on
the shape. In practice this mapping is set up by tracing normals from the curve r. Next, the one-dimensional
density (F.4) is approximated in a more amenable form that neglects the possibility of more than one feature

lying inside the search interval:

1 . .
plal)wexp-—Ls () where [ (v =minG, 42, F5)
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H= J20 log(1/+/27ac) is a spatial scale constant, and v, is the v, (for each measurement on the curve)

with smallest magnitude, representing the feature lying closest to the hypothesized position x. A natural

extension to two dimension is then,

1 %

p(z1X) = Zexp——= f(z,(s) - ris); u)ds
0

in which r is a variance constant and z,{s) is the closest associated feature to r(s):

Z,(s)=2(s") where s'= arg{ min )[r(s) —-2(s")| } ()]

g™ (s

The assumption is made that the variation of Z with x is slow compared with the other term in (F.6) so that Z can
be treated as constant [102].

The observation density {F.6) can be computed via a discrete approximation, the simplest being:

p(z|x) = eXP{— > 2rlM S(z2,(s,)~x(s,); ﬂ)}, (F.8)
m=|

where 5, =m/M . This is simply the product of one-dimensional densities (F.4) with & = +/rM , evaluated

independently along M curve normals.

Despite the attractiveness of the Condensation algorithm, there are factors that limit the performance of this
algorithm. The reader is referred to {115, 148] for details.

F.2 Baumberg’s aiid Hogg’s Tracker

F.2.1 Spline Representation

The tracking framework for Baumberg’s tracker was given in Fig. 8.3 in chapter 8. The contour is represented

by a cubic B-spline with N control points {(equally spaced around the contour) as follows:

Q=Pb+Q (F.9)

where P is an 2N x m matrix of eigenvectors (see chapter 7 for details) and Q is the mean contour shape of a

training sequence. The non-rigid shape parameters are given by b = (b, ,...,b,,)" .

A contour in the model frame is projected into the image frame by rotation, scaling and translation using the

expression



where the 2 x 2 alignmemt matrix (D is given by,

®= a, -—a, _ fcoosfd - fsind
a, a, fsin8@ fcos@
where f, 8 are the scaling and rotation factor in relation to the mean shape respectively.

The contour is given by (in spline space, represented by control points)

Q= (Xo’yo:-":XN-nYN_l)T (F.12)

which represents the 2D control points of the B spline contour in the image frame. Hence the state space

consists of m non-rigid shape parameters b,, the origin of the object {0,,0, ) and the alignment parameters

a,,da, incorporating rotation and scaling. The state parameters are related to the spline vector Q by
Q=D(a,,a,)Pb+Q)+0

o

T _
0=(0,,0,,.,0,,0,) and D=

—_——
Nimes

D is a 2N x 2N rotation and scaling matrix.

F.2.2 Stochastic Model

F.2.2.1 Non-Rigid Shape Parameters

The shape part of the state vector is modeled as a simple discrete stochastic process as follows:

b = b 4wV (F.14)

where Wf ~N(0, 1£,)and b models the i'th deformable (non-rigid) parameter value at frame k and the noise

term wf is a zero mean, normally distributed random variable with variance &, .
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F.2.2.2 Origin (Object Centroid) Model

The origin of the object is assumed to follow the dynamic equation (a simple constant velocity model)

do‘—6‘+v‘ F.15
dels, ) Lo Lw, F13)

where v, ~N{0,q,)and w, ~N(0,q,.). A corresponding model is used for 0,.

F.2.2.3 Alignment Parameters

The alignment parameters (scaling and rotation) follow the following motion model.
(k+1) (k))
a a w
[af"“’) = [ P (W‘“] (F.16)
¥ ay ) ay
where w,,,w,_. ~N(0,q,).

F.2.3 Filter Update Process

F.2.3.1 Non-Rigid (Deformable) Shape Filter Covariance Update

The following recursive equation is used to update the covariance matrix for the non-rigid shape filier, See [10]

for details.

P.'(+)=P ' (-)+[DPPY W] [DP] (F.17)

where J is the metric matrix (discussed in chapter 7). Using appropriate assumptions (refer [10]), the above

equation reduces to,
P ®)=F'C)+ (F.18)
where fis the scaling factor and r is the measurement variance constant.

© Assuming P,'(<), F, are diagonal, the system can be decoupled into m independent 1D Kalman filters. The

covariance update equation for the /"th filter now becomes
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[o,()) =[c (] +7 (F.19)

-1 2 -1 - . .
where ;7 = f“r™, and o, =[F,];; is simply the variance of the current estimate for b;.

The corresponding shape parameter update equation is given by,

b(+)=b(-)+ [—f-’-(;)—)db,- (F.20)

ht+o; (—)
where db, =[P"D7Q}, - b,(~) is the observed change in the /'th non-rigid shape parameter.

F.2.3.2 Updating the Origin

The x and y componcnt of the origin are filtered independently. The measurement model for the x component of

the origin, assuming all other parameters are fixed at their current estimates, is given by
L
Pi=0.+(v)y (F.21)

where the noise term v, ~ N(O,R, ), and R, is the contour measurement noise matrix.

Similarly for the y component, ﬂ
7' =0, + (Vg (F.22) ;

The measurements P’ are calculated from the observed contour points P (these are obtained by casting normals
to the estimated contour and then selecting the best point available, or alternatively obtained by some other

suitable process) using
p'=p-D(,,d,)G(Pb+ Q) (F23)

where G is a 2n x 2N sparse matrix mapping the control points to regularly spaced points (n) on the curve [11].

The update equations for the origin follow a standard Kalman Filter. ;
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F.2.3.3 Updating the Alignment

If the origin and the shape parameters are fixed at their current estimates, the measurement model for the

alignment parameters is given by,
- a.\'
p-Go=H +v, (F.24)
ay

where / is the 211 x 2 measurement matrix defined by

H.. H.. 8y oy NreY
[ 2i0 24} ).—.[ ¥ S""'), where s = G(Pb+ Q)

H 2i41,0 Hy, Sy Sy

The estimates & x,& 5 and the 2 x 2 covariance matrix are updated with the corresponding Kalman filter

equations. The alignment parameters are not assumed to be independent although for simplicity the system noise

is assumed isotropic.
F.2.34 Updating Non-Rigid Shape Parameters
Each shape parameter is filtered independently for computational convenience {11].

Writing Ap = p — P, the measurement model for the i"th non-rigid shape filter is given by

Ap=h®(b ~b)+v, (F25)

where the vector h(_j) is an 2n x 1 measurement matrix given by
[h{’) ]_; = [D(&x ? &y )GP]_;J ji

The covariance update equation for each filter is given by equation (F.19), where the measurement variance for

the i-th shape parameter, #;, ic now defined by,

1= (h") R;'hY (F.26) ]
The state update equation for each filter is given by
b(+) = b, (=) + o, (+ )Y B; (Ap)) (F27)

where R . 1s the contour measurement noise matrix [60]. Further details of the tracker can be found in [10].
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Continned on the next page.
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Figure G.1: Some frames of image sequences considered for the project: (a} 'adoor cone (8 frames), (b} UMASS
Lab (11 frames), {c) Coke (20 frames). (d) Outdoor cone (20 framesj, and (¢) PUMA (30 frames), () Road (50
frames), (g) Rubic (20 frames), (h) Toy car (9 frames), (i) Hand (75 fromes), and () Walking man (30 frames)
sequences.
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