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Addendum

p 146 line 7: “four” is substituted by “six™.
p 168: The following paragraph is inserted at the end of Section 10.3:

“With regards to the evolutionary mechanism of application systems on the Web, how to
trace and capture the document changes on the Web is a challenge topic. Further work can
be done in this area to improve the evolutionary mechanism of these systems.”

p 117: The following section is inserted after Section 8.1.4:

8.1.5 Evolution Algorithm

This section develops an algorithm for the Life Design evolutionary process described
previously. For the purpose of this algorithm, we only model class genes and life forms as
object identities, not their structure. So let Od be a set of names (object identities) and let GId
be a set of gene names (gene identities),

The function
genome: Old — Set(GId)

associates each organism with a set of genes.

If genome(O} = {g1 g1-.... &} then we alse write O.g;, 0.g,..., 0.8, 10 indicate that O
possesses the genes g1, g2,...8n

Moreover if G= genome(Q) then we call G the main class genome of O (see Sections 6.4.1,2
and 6.4.2.2.2). '

Let
organisms: Set(GIld) — Old
such that:
organisms(G)= {0 € OId\ G = genome(0)}

The function addGene(G, g) adds gene g to G, and the function removeGene(G, g) removes g
from G, using the self-modification functions described in Section 6.4.2.4.3.
Let T, (0 < T, < 1) be an arbitrary evolutionary threshold applicable to the presence of gene

g in a set of organisms, and 7., (1 - 7, < T, < 1) be an arbitrary evolutionary threshold
applicable to its absence (see Section 6.4.2.4.4).




At each meta-level, the Evolve algorithm is defined for O € Old and g € Gid, such that:

end

Evolve (0, g)=

G = genome(0);
L = organisms{G);
L,={0elLlOg};

L8
addGene(G, g);
L\L
elseif (g€ Gand ]-——‘I>T_s) then

4

removeGene(G, g);

if (g ¢ Gand | 2T,) then

end
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Abstract

The exponential growth of the Web in a very short time has resulted in many deployment problems
that stem from inadequate system design. Some major ones are; data management and maintenance,
resource discovery, referential integrity, customisability, adaptability, and evolvability. Many
projects have attempted to correct these problems, but most are adhoc and suffer from the same
design inadequacy. Others have tried to tackle these problems directly at the design level, and have
the potential to commect some of the problems. However, even in these projects, some issues are only
partially addressed, in particular, adaptability and evolvability are still unchecked. The enormous
growth of the Web necessitates an infrastructure that can capture its dynamic characteristic and cope
with futare changes.

The principal contributions of this thesis are Life Design and LifeWeb, a design and a data model for
a manageable, maintainable, customisable, adaptable and evolvable (self-evolving) system. LifeWeb
also facilitates resource discovery and enhances referential integrity. LifeWeb is a data model for the
Web document system, implementing Life Design and represented in XML (Extensible Markup
Language). Life Design is an object-oriented system design methodology gleaned from the structure
and working of organic life forms at the molecular, genetic and biological levels. Entities in LifeWeb
possess biologically life-like functionalities, and can evolve themselves in a fashion similar to the
Darwinian evolutionary process, driven by user needs or customisation requirements. These entities
exist in a recursive architecture of multiple meta-modelling levels, Evolutionary changes are
incrementally accumulated, conditionally and gradually propagated from lower to higher Ievels,
forming groups of entities with increasingly divergent “genes”. In LifeWeb, such a group corresponds
to a document type or a “document species”. The LifeWeb evolutionary model makes it possible to
derive new document types (including supporting software and tools) from existing ones (which
increases reusability, manageability, maintainability and extensibility), and to maisntein their
interoperability. A prototype system for LifeWeb has been implemented, which allows automatic




system evolution, where entities can be dynamically added to or removed from the runtime system.
LifeWebManager, a LifeWeb application and a too! for creating and managing LifeWeb documenis, is
also implemented.

We claim that our fechnology improves on the Web manageability, maintainability and
customisability over existing Web data models, and Iays a foundation for the Web adaptability and
evolvability, Our claim is substantiated by deep comparison with existing Web data models.
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Chapter 1 Introduction

1.1 Background

The World-Wide-Web (hercafter also referred to as Web or WWW) has its data model based on
hypertext, a concept originated by Vannevar Bush [BUS45], Scientific Advisor to the U.S, President
Roosevelt, back in 1945. Motivated by the need to assist people to access the huge amount (even
then) of available data, Bush felt that it should be possible to design some mechanism that imitated
the associative memory of the human brain. This imaginary system (which he named “Memex”)
should store items of information with associative Jinks between them, and allow data to be accessed
with “exceeding speed and flexibility” [BUS45]. The system was not 12 fact realised until there were
sufficientfly powerful computers available. The first hypertext system was implemented by Doug
Engelbart [CON87] in the 1960s, as part of his AUGMENT/NLS system. In 1965, Ted Nelson
[NEL65a & b] coined the term “hypertext” and began work on his vision of the Xanadu project
[NEL87, NEL90], a universally accessible computer storage and retrieval system for documentation.
Since then hypertext has become increasingly popular, Early milestones were the commerctal support




from Apple with the release of the HyperCard system,’ and the first major global hyperext
conference Hypertext’87 [NIER8], both in 1987.

In 1989, a proposal was made by Tim Bemers-Lee addressing an intemal information management
issue at CERN, the European Particle Physics Laboratory in Geneva, Switzerland [BER89). Due to
the high personnel turnover at CERN, information of past projects and events was constantly being
lost, wasting a lot of effort in recovering the jost information or even “reinventing the wheels”
ltogether. There was a need to create “a pool of information which could grow and evolve with the
organisation and the projects it describes” [BER89]. This idea brought Berners-Lee to discover the
hypertext data model, which had been around for some time, With the need at CERN, this modei
found favour over the traditional database or hierarchical structure due to its simplicity and
flexibility. It allows the recording of “random links” between “arbitrary nodes” without any
constraint on data structure [BER89). The Web was designed as a universal space of shared
information where new relationships between objects could be added at any time without the need of
any major or central control. “The information space will simply reshape to represent the new state of
knowledge” [BER%4].

After having obtained CERN's approval, Tim Berners-Lee started working on his first hypertext
browser and editor, a program that he named “WorldWideWeb"”. In 1991 the first global hypertext
system was released. At this stage only a line-mode browser was available. The Web started to grow
exponentially [INT91, NSF95, GVU95, NGU96, ZAK96, ISC00] when Mosaic, the first GUI
(graphical user interface) Web browser, developed by the National Center for Supercomputing
Application (NCSA), became available in 1993. Very soon afterwards the Web became
commercialised when Netscape released its browser in 1995 and gained almost three billion doilars
on the first day of stock market trading.

This phenomenal success of the Web, however, has revealed many of its shortcomings that result
from early engineering decisions. Some major ones (which will be analysed in Chapter 2) involve:
data management and maintenance, resource discovery, referential integrity, customisability,
adaptability, and evolvability, If these problems are left unchecked, the Web could eventually become
unrmanageable. Although much work has been done to improve the Web (some which relates to our
work will be analysed in Chapter 3), most inherits the weaknesses of the Web infrastructure and
addresses its problems in an adhoc or patchy manner. Recently, the advent of the Extensible Markup
Language (XML) [XML98] and its associated standards has enabled the correction of some of these

! It has been argued that HyperCard is not really a full hypertext system. However it did popularise the concept
[HAGY4]}.




problems (for example, data management and maintenance, referential integrity, resource discovery,
and extensibility) at the fundamental design level (see Sections 3.2.2, 3.2.3 and 3.3). However, some
issues, especially those regarding adaptability and evolvability are still not addressed. The Web is a
highly dynamic system and needs an infrastructure that can capture this dynamic characteristic and
cope with future changes.

The principal contributions of this thesis are Life Design and LifeWeb, a design and a data model for
a manageable, maintainable, customisable, adaptable and evolvable (self-evolving) system. LifeWeb
also facilitates resource discovery and enhances referential integrity, Life Design is a concept drawing
upon natural life at the molecular, genetic and biolegical levels. It imitates the structure and working
of organic life forms at the molecular and genetic levels to construct entities with tiologically life-
like functionalities. These entities can evolve in a fashion similar to the Darwinian evolutionary
process. The evolutionary mechanism is defined specifically in Life Design with a multi-layered
meta-modelling, where changes are conditionally propagated from lower to higher levels to form
groups of individuals with increasingly divergent “genes”. This design, or which LifeWeb, a data
model for the Web document system, is built, makes it possible for LifeWeb to address a range of
issues that the Web is facing, such as those mentioned in the previous paragraph. A prototype system
for LifeWeb has been implemented, and has shown very promising results. Both Life Design and
LifeWeb use object-oriented technology. It may be possibie, however, to apply Life Design to some
other design technologies.

1.2 Research Questions

This study atterapts to solve or alleviate some major problems with the Web at the design level by
developing an object-oriented dat: model for the Web. In particular it addresses the following

research questions:

RQ1 Is it possible to develop a data model for the Web document system that has the potential to
solve or alleviate problems concerning data management and maintenance, resource discovery,
referential integrity, customisability; and especially, adaptability and evolvability, which have not
been addressed?

RQ2 More particularly, is it possible to apply object-oriented technology and biological ccacepts to
that model?

In order to address these primary research questions, the thesis describes a design and a data model
with its prototype implementation. As the design and the model must capture both the static and
dynamic characteristics of the Web, the following sub-questions arise:
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RSQ1 What are the essential static features of the Web that must be captured in the model? How can
they be represented using object-orientation?

RSQ2 What are the essential dynamic features of the Web that must be captured in the model? How
can they be represented using object-orientation and biological metaphors?

RSQ3 What are the evolutionary entities in the Web? What features are required of them, and what
evolutionary mechanism and evolutionary path can be designed for them to evolve themselves?

1.3 Thesis outline

This thesis is organised as follows.

Chapter 2 provides an analysis of current major problems of the Web. It first sununarises the main
features of the Web, its architecture and the protocols upon which it operates. Problems with these
features are jdentified and analysed at both the deployment and design levels, and the connections
between problems at the two levels are established. This problem analysis confirms the problematic
areas, pcints out where the roots of the problems are, and crystallises the solution direction: an
object-oriented data model to solve problems at the design (root) level, that can capture, among other
things, the dynamics of the Web.

Chapter 3 reviews existing trends in Web data models, pointing out what has and has not been
addressed in the literature with regard to the issues presented in Chapter 2, These unsolved or
partially solved problems are those of statelessness, customisability, and especially, adaptability and
evolvability, which may also be used to tackle other problems. By reviewing existing data models, the
chapter also makes remarks on their advantages and disadvantages, and the essential static features of
the Web that should be captured (in a data model).

The evolvability issue requires a literature review on system evolution, which is provided in Chapter
4. This chapter describes how system evolution has been dealt with in Computer Science, particularly
in the areas relating to our proposed solutions, namely data modelling, object-orientation, and
biological metaphors. It gives insights into how the same issue may be addressed in the Web, and
establishes a literature based on which we can compare our work on Web’s evolvability with others’

on system evolution.

Chapter 5, based on the remarks in Chapter 3, identifies the essential static elements of the Web, and
describes vur Multimedia Document Model (MDM), which encapsulates these elements. MDM
captures the static and document characteristics of the Web, and is built on established standards in
the publishing industry and library systems, It is the first stage of our two-stage system. Another
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model, which captures the dynamic characteristics of the Web, is constructed on top of it. The
chapter also evaluates MDM against comparable document models.

Chapter 6 identifies the essential dynamic elements of the Web and considers different approaches to
capture these elements. The chosen approach is presented in the main part of the chapter, which is
conceptualised in biological metaphors and implemented by object-oriented technology. Evolutionary
entities and their essential characteristics are jdentified. An evolutionary mechanism and path is
defined for them. This approach is formalised in Life Design, a design methodology for building a
self-evolving system.

Chapters 7 to 9 explain LifeWeb, the model of the second stage of our two-stage system. This model,
which is built upon MDM and follows the methodology set out in Life Design, is described in
Chapter 7. Chapter 8 explains how LifeWeb can evolve (itself). It aiso compares LifeWeb evolution
with evolution in other systems that were reviewed earlier (in Chapter 4). Chapter 9 describes the
system implementation, showing how XML, a recently emerging standard, has been integrated into
LifeWeb. 1t also presents the implementation details that address the probiems set out in Chapter 2,
and when applicable, evaluates LifeWeb against other comparable systems that have concerns about

the same issues.

Our conclusions are presented in Chapter 10.

1.4 Digest of results

Our problem analysis shows that most of the problems with the Web are rooted in its design, Owing
to the lack of an appropriate model for the data it represents, the Web has outgrown its initial design
and become uninanageable, We have designed a data model for the Web document system, named
LifeWeb, which has the capacity to make improvements on this problem. This abstraction uses proven
object-oriented technology to model the different components of the document and an innovative Life
Design methodology to capture the dynamic characteristics of the Web.

In the LifeWeb prototype, documents can be designed, created, managed and maintained on structural,
presentational, and coatent bases. A prototype tool has been implemented to perform these tasks
using a simple “drag-and-drop paradigm”. Users can customise online documents and LifeWeb is
stateful so that these changes can be saved across sessions. Adaptation is generally an automatic
process in which a LifeWeb document silently accumulates users’ inputs and makes changes to itself
according to users’ preferences or needs. Adaptation can occur recursively through successive levels
from instance to schema, or higher meta-modelling levels, throughout the whole population of
document objects. This enables a smooth and incremental evolution of the whole system in a bottom-




up fashion through all meta-modelling levels. This evolutionary process and the integration of
software and tools to support the evolving system can be automated. System interoperability is
maintained through levels of meta-modelling. Referential integrity is enhanced through the
encapsulation of hyperlinks into objects. It may be ensured using a combined technique of local link
management and dynamic link binding. LifeWeb documents hold information describing themselves,

which can be deployed by search engines for resource discovery.
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Chapter 2 The Web and Its Major

Issues

f future World-Wide-Web development simply consists of ill-considered “boft-on” extensions to the
existing architecture, then problems are likely to result.

L. Relihan {REL94]

2.1 The Web

The Web is a client-server system as depicted in Figure 2-1 [BER94]. In this architecture requested
data is served by the server to the client, The data received is then processed and displayed by the
client for the human user to read. The processing of data may involve interacting witk other legacy
(existing) information systems such as database, or other organisational systems (using protocols
defined for these systems). Web clients can communicate with servers of all existing functionally
compatible Internet protocols, including File Transfer Protocol (FTP) [FTP85]), Network News
Transfer Protocol (NNTP) [NNT86], Wide Area Information Servers (WAIS) [WAI94], and Gopher
[GOP93], providing access to a universal information space on the Internet via a single simple

interface,
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Figure 2-1 : The Web client-server architecture

(From {BER94]}

The WWW defines a number of standards and protocols [BER94].

¢ Uniform Resource Identifier (abbreviated URI): A scheme defined by the Internet Engineering
Task Force (IETF) Working Group on URI [URI98], which assigns to every Web resource a
world-wide unique identifier, making it possible for the resource fo be universally referenced.
URI is designed so that it is generic, appearing to refer to “the same” object although language,
data format, or actual location may vary. The selection of language and data format is carried out
by a negotiation process between the server and the client as explained below. In practice only a
derivative of URI, i.e. the Uniformm Resource Locator (abbreviated URL) [URL94] is being used.

The URL is dependent on the physicai location of the resource on the file server, and is therefore

largely responsible for the “broken-link” problem described below (see Section 2.2.1.2).
Currently the IETF Working Group on URI has concluded its work, and new Working Groups
have Been formed. Among these the most important one is the Uniform Resource Name (URN)
Working Group [URNOO]. URNs are designed to be persistent identifiers for information

resources globally, which also support other legacy (existing) systems.

¢ Hypertext Transfer Protocol (abbreviated HT7P): An Internet protocol used by Web servers for
receiving requests and transferring hypermedia and other kinds of data across the network. HTTP
is a stateless protocol, that is, the network connection on which it runs is held only for the
duration of one operation, so that the result it returns is ignorant of any previous operations
performed by the client [BER94]. Statelessness is required, according to Bemers-Lee [BER94],
fbr (i) the efficiency needed for retrieving a hyperlinked object regardless of its actual storage
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(local or remote), and (if) the fulfilment of the purpose of the URT that it should always refer to
“the same” object regardless of the client’s actions. HTTP was originally designed so that it
could handle any data format and Janguage via the respective format and language negotiation
scheme. The client could specify the preferred format(s), or language(s), and the server would
select a suitable object. In this case the URT used to identify such an object is called generic. This
feature, however, is generally not used by clients because “generic URIs have been historically
exceptional and this scheme is expensive to implement” [BER%4]. HTTP defines a number of
methods for use by the Web client. The most commonly used ones are get and post, which send
parameterised queries to the Web server. It is therefore possible to dynamically generate Web
pages based on the input provided by the client. Currently HTTP 1.1 [HTT97] is in use and
HTTP-Next Generation (abbreviated of HTTP-NG) [HNGO00] is under developinent.

» Hypertext Markup Langnage (abbreviated HTML): A language used by Web clients for the
storage, display and transmission of hypermedia data over the network, All Web clients are
required to understand HTML. HTML is a subset of the Standard Generalized Markup Language
(abbreviated SGML) [SGM86, SGMO00, HER94], a language widely used by the publishing
industry. HTML is an extremely simplified version of SGML, so that it can be easily used by the
general public as well as parsed by programs. Markup languages use tags to mark the start and
end of the various “components” in a document, which are called elements. These tags, which are
called element types, are defined in a Document Type Definition (abbreviated DTD). A DTD
contains the formal description of the schema of a particular document type. HTML. defines a
fixed tag set of a single document type, the first version of which is a collection of primitive
document element types such as paragraph break, several levels of headings, lists, menus, and
anchors to define hyperlinks [HTM92], Many more element types have been added to this first
HTML specification as the users’ and developers’ requirements have become increasingly
sophisticated, At the time of this writing, the version currently in use is HTML 4.0 {(HTM98], and
Extensible HTML (abbreviated XHTML) (XHT00], has just become a recommended standard,

2.2 Problems with the Web

Since the initial proposal of the Web only very few years ago, this system has seen a steady
exponential growth rate throughout the whole world in practically every aspect. In terms of quantity,
the statistics collected by Merit Network, Inc. [MERQQ] for the NSFNET (National Science
Foundation Network) backbone [NSF95] shows that the Web has made a giant leap from zero to the
highest volume application within only one year (1994-1995), with the traffic in bytes appearing to
increase guadratically [GVU95, NGU96]. In more recent datasets, for example, the series of Internet




Domain Surveys conducted at Internet Software Consortium {ISC00], the number of hosts is shown

to have grown from 313,000 in October 1990 to nearly 8 million in January 2000 (Figure 2-2).

Internet Domain Survey Host Count
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Figure 2-2: Internet Domain Survey Host Count

Source: Internet Software Consortium (www.isc.org)

In terms of qualily, the Web has undergone fundamental changes in its functionalities, from
(primarily) a simple static document system to one that provides highly dynamic content and support
for sophisticated enterprise and distributed computing requirements. Since the Web was not
originally designed for these complicated technologies, efforts in Web application development
increasingly run into limitations of the Web infrastructure [ING97, MAN98, MAN99]. With its
explosion and increasingly complex enterprise demands, serious problems with the system are

showing.

2.2.1 At the deployment level

WWW space

Figure 2-3 : The hypertext data model

The Web was initially designed as a simple network of documents interconnected with each other by
hyperlinks (see Figure 2-3). Typically hyperlinks are statically embedded within documents, and
activating a hyperlink essentially takes the user from one document to another, similar to the effect of
the “goto” statement in some computer languages [HYPOO]. This simplicity has gained the Web

overwhelming success over the last decade, but as the number of documents and hyperlinks grows,
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has resulted in a spaghetti-like network with many shortcomings. Some of the most well known
problems are:

2.2.1.1 Lost in hyperspace

The complex branching structure of the Web makes it conceptually unmanageable. It creates a heavy
cognitive load on users, making navigating Web sites difficult. Even in a well-organised Web site,
users are disorientated, lack a sense of size, limits, and current position in the whole. They fingd it
increasingly hard to have an overview of the site, to Jocate or relocate the desired information - all of
it and only it, to recognise new, updated or outdated information, or to discover resources [CUN93,
PER98, BOU99, HYP0O).

2.2.1.2 Violation of link integrity

The exponential growth of the Web coupled with the complexity of the hypertext network over a
distributed system makes hyperlink management impossible. As new resources are added, old ones
are required to be removed or migrated to different locations. Thus references to Web resources
become no longer valid, constituting the notorious “broken-link” or “dangling-link” problem. This
problem has been found to waste users’ time and discourage them from visiting the problematic Web
site or from using the Web altogether [REL94, ING95, ING96, DAV93a, HYP00). Another true
although less obvious problem is that of “orphan™ resources. These are resources that are not

referenced by ar-y other resources, and thus become unreachable (HYPQO).

2.2.1.3 Difficulties in data management and maintenance

The hypertext data model of the Web does not provide a way to express the structure of the
document, Current practice is to directly (hard) code the document components into the source file
and use the server file system to express the structure. For instance, one might put different chapters
of a book in corresponding directories. Changes to a structured document often need to be
synchronised among its components. For example, the removal of a chapter would require all the
following chapters to be renumbered, all references to it to be removed, and a new table of contents
to be generated. These maintenance operations are typically carried ouwt manually using commands
and tools native to the server machine, and therefore, orthogonal to the Web. If the file system has
been used to represent the document structure, manipulations to Web resources are required in both
the file system and the Web system, but these are essentially two disjoint domains. This process is
expensive and prone to mistakes and inconsistencies. Its problems are well documented [ING95,
GELS7, ING97, NGU9%8a].




2.2.1.4 Difficulties in document design and authoring

Thi lack of a way native 10 the Web to express document structure resulls in a presentation-oriented
mirgdset in Web design. This has been found to distract an author from the overview of the whole
document structure in order to worry about presentation details at the design stage [HYP0OL. It also
induces the author as well as the authoring tool manufacturer into using presentation wicks to
represent structural components. For example, it is common to use a combination of bold (<B></B>)
and font tags (<FONT></FONT>) to make a data content appear as a (styled) heading. This
inappropriate use of presentation tags will, in the long term, make the maintenance task of non-
structural elements impracticable.

2,2.1.5 Customisability, adaptability and evolvability

The Web, being stateless (see Section 2.1), cannot by itself make or record changes to Web
documents across sessions. Thus it is not possible to have documents tailored to individual needs in a
native way. Customisation is the problem of “one-size-fits-all”, and is becoming increasingly
important with the expansion of the Web, which has to serve millions of different users worldwide.
The same pressure is experienced at the organisational level, where the same set of data must be
served differently or presented in different views to different types of personnel or clients,

Adaptation is a more “advanced” form of customisation, where a Web document “learns” from
previous experience to make changes to itself accordingly. Previous experience is typically provided
from a user’s behaviour or input, so that adaptation is made towards betterment for the user, Adaptive
documents are especially useful in the Web, whici: hoids too farge a wealth of information for users
to find their way around or to filter out useful pieces. They have been used in the Web primarily to
help with the lost-in-hyperspace problem (Section 2.2.1.1). Examples are the adaptive search engine
{IKES9] and adaptive hypermedia [EKL98, PER98, BRA9%a]. Their development and design,
however, are difficult and complicated since, like customisation, are not natively supported by the
Web due to its statelessness [BRA9OD].

Evolution is a long-term result of customisation and adaptation. Automatic evolution, as with
customisation and adaptation, is not supported because of thc Web's statelessness, Besides, no
evolutionary path has been defined for changes in the Web to follow. (In this respect, evolvability is
itself a design issue.) Most of them have been happening in a non-systematic and unpredictable
manner, arbitrarily driven by users’ or organisations’ nceds, so that the current system cannot deal
with future modifications. This topic will be discussed in detail in the subsequent chapters of this
thesis.




2.2.2 At the design level

Most of the problems mentioned above can be accounted for in the design of the Web document
systenn.

2.2.2,1 Structure

As was pointed out in Section 1.1, the Web was proposed as a solution to the knowledge management
problem at CERN due to information being lost because of the high turnover of people. It was
necessary to create a shared information space where people could quickly and easily record
unrestrained relationships between arbitrary objects without any constraints on data structure
[BER89]. That is the picture of the Web today as a cyclic directed graph with documents (essentially
files) acting as nodes and embedded links as arcs. It was emphasised in the initial proposal by Tim
Bemers-Lee [BER89] that this form of “web™ organisation offered the freedom necessary to describe
a complex and evolving system, whereas others such as hierarchical or relational structures were

inflexible and many systems would simply not fit. Such structures were therefore just not considered.

This concept has been reflected in the design of the Hypertext Markup Language where there are no
tags to express the (usually hierarchical) structure of the document. The (normally called)
“structural” tags such as the heading tags (<HI></HI>), or the division tags (<DIV></DIV>), do
however carry some structural semantics for the single content delimited between the start and end
tags, but do not indicate any (structural) relationships among these components. They therefore
caunot cohesively express the structure of the document as a whole, and are usually treated in a
presentation-oriented mannex. Other HTML critiques also share the same point of view [BOS97,
MAN98, MAN99].

The fact is that, while it is true that the inter-relationships between nodes would be most useful if
unrestrained for the purpose set out in the initial proposal of the Web [BER94], the intra-
relationships between components inside a node are in most cases, structured. Traditional paper-
based documents are almost inevitably hierarchically structured. The same organisational
requirement is also found with electronic documents, even in a highly dynamic environment such as
the Web, Large amounts of unsiructured data are simply impossible for the human mingd to grasp,
manage or manipulate, especially in the increasingly growing Web. Unrestrained links can be an
extension of structural links, but cannot substitute for them. What is lacking in the Web in this
respect is a way to express the internal structnre of a node. This is feund to be directly related to the
problems: lost-in-hyperspace, dats management and maintenance, and document design, noted in
Sections 2.2.1.1,2.2.1.3 and 2.2.1.4 above.

13




2.2.2.2 inextensibility

This problem with the Web is demonstrated in the design of HTML, the langunage used to represent
the Web document system., The tag set defined in HTML is primarily presentation-oriented and fixed
to only one single document type. As technology advances, new tags have to be added to incorporate
new technologies. As the Web has spread throughout the world to different industries and
communiﬁés, there arises the need to associate semantics to the tags, and to define different tag sets
that are more specific to each application domain. HTML, however, cannot be extended to satisfy the
demand, This has two major consequences:

» With regard to the evolution of the Web, the inextensibility of HTML requires that any changes
to HTML should be centrally controlied. This generates a global chained effect on related
technologies such as browsers and authoring tools, and has invariably inhibited a smooth
evolution of the Web at the schema level.

e With regard to the lost-in-hyperspace issue (Section 2.2.1.1), the lack of semantics in HTML
makes it impossible to describe the resource captured ir a HTML document (without the use of
another mechanism), which can be exploited by search enghict or web bots to aid users in

resource discovery.

The advent of the Extensible Markup Language (XML) [XML98] is especially designed to remedy
this problem, as will be explained in Section 3.2.2,

2.2.2.3 Functional behaviour

In contrast to traditional paper-based documents, which are totally static, ‘Web-based documents are
highly dynamic and appear to have a functional behaviour. In fact some authors have considered the
Web to be a simple object-based system with its objects identified by URLs and “behaviour” defined
in the HTTP server [ING95, MAN99]. This point of view however, is not well founded. The
“behaviour” mentioned above is not defined internally within the Web document object. It is
“borrowed” either from the methods defiped in the HTTP server (see Section 2.1 and [HTT97)), or
from external technologies such as CGI-SCRIPT [MCC95, RAG97], or embedded OBJECT
[RAG96). As sach, Web documents do not support encapsulation, and remain non-functional entities
in much the same way as paper-based documents, with an added capability to “borrow”
functionalities from external entities. This lack of a functional behaviour of its own disqualifies Web
documents from being “objects™ in the object-oriented sense. This means that a Web document (as it
currently is) is not an encapsulation of a self-contained unit complete with well-defined state and
behaviour. This has two major consequences:
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o With regard to system evolvability, Web documents cannot function and evolve themselves as
independent, coroplete units.

o With regard to integration with enterprise systems and the high demand for increasingly
sophisticated Web applications, Web documents lack an Application Programming Interface
(AP]) for accessing and manipulating their document data and data structure. (The recent release
of the Document Object Model (DOM) [DOM98] is an answer to this issue as will be seen in
Section 3.2.3).

2.2.2.4 Document properties

It is well established in the publishing industry that a document normally possesses three distinet
properties, namely structure, presentation and content. This concept is reflected in the design of
major document processing applications such as LaTeX {LAMSG6] or Microsoft Word. However the
distinction between these document properties has not been designed into the Web. A Web document
as expressed by the Hypertext Markup Language (HTML) is one in which structur:, presentation and
content are intermingled with each other. In the example above, the heading (<H1></H1>) and
division (<DIV></DIV>) element types not only indicate their structural semantics but also dictate to
the browser how to display them. Contents are embedded between tags, which in turn can coptain
other tags, so that any operation on the document becomes heavy and complicated, as it has to carry
the whole bulk of its tags and contents interspersed with each other. All of this has made it very

difficult to manage, maintain, or customise the document, as any change to it will affect the whole of

itself. Since these aspects of structure, presentation and content are not distinguished from each other,
it is not possible to manipulate the document based on any single one of (hese aspects. This design
probiem contributes to the difficulties in data management and maintenance, and Web design noted
in Sections 2.2.1.3 and 2.2.1.4 above. *

2.2.2.5 Embedded hyperlinks

When using HTML, hyperlinks are encapsulated withiz the document data. As has been pointed out
by researches in Open Hypermedia Systems (OHS) [DAV98a], this approach has the advantages of
(i) being simple when editing document data, since the source anchor of a hyperlink can be freely
moved and edited at the same time to synchronise with the changes made in the document data; and
(ii) being efficient and scalable when resolving a hyperlink (for making a hyperlink jump), since the
destination anchor is immediately available from within the document data, and there is no need to
store links in a database. The cost of these advantages is that links are only uni-directional, because
only the node that has the embedded link knows about the link. This has the severely negative
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consequence of making automatic maintenance of hyperlink integrity in the Web both impractical and
impossible. Each movement of a document node requires searching and updating every link to the
moving node in all Web documenis worldwide, where we may not have write permission. The
brokeii-Jink problem (see Section 2.2.1.2) stems from this design flaw.,

2,2.2.6 Statelessness

As mentioned in Section 2.1 above, the Web is built on HTTP, a stateless protocol, as a requirement
for the design of the URI (which should always refer to “the same” object regardless of previous
client interactions), and for the efficient retrieval of hyperlinked objects. These have come at the cost
of not being able to provide objects customised to the needs of individual human Web user.
Consequently adaptation and evolution of Web documents are also not supported (see Section
2.2.1.5).

2.2,.2.7 Meta-data

Briefly, document meta-data is intormation that describes the document’s data content. It has been
used in the Web for quite some time to aid in the searching and discovering of Web resources, This
intention, however, has had two major hurdles over decades. First, there was no standard framework
established on the Web for describing document data. Second, there was no unified taxonomy or
mechanism to define terms in which documents could be described and classified. Consequently,
even though meta-data has long been used on the Web, it is mainly for iuman readers, and may be
only partially supported and understood by some user agents (browsers) and search engines. In
addition, authors usuvally “do not bother” to insert meta-data, mainly because it has not been
standardised, and they do not know what standard to follow. This lack of support for meta-data makes
it difficult for the Web to provide help with the lost-in-hyperspace problem mentioned in Section
2.2.1.1.

2.3 Conclusion

From the problem analysis above, it can be seen that the Web has outgrown its initial design.
Compelling facts about the link between the problems at the deployment and design levels, and the
problems at the design level itself, suggest that a solution should be at the design level. The
complexity of the Web, which is one of the major canses of the above-mentioned problems, strongly
proposes a solution by abstracting the complex entity into a model (or models) [SMAS6]. The nature
of the problems, which is closely related to the advantages offered by object-oriented technology
(maintainability, manageability, extensibility), makes object-orientation very attractive for a solution.
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The dynamics and liveliness of the Web have inspired us to investigate some other areas, such as
natural life, for new design ideas.




Chapter 3 Data modelling on the Web

The Web has become a very complex entity. And fo deal with complexity we need to reduce complexity by
a process known as abstraction.

P. Sma [SMAS6]

Modelling is the process of abstracting the world of our interest, or the Universe of Discourse (UoD),
into some model or specification. One particutar set of related facts from which the model is induced
forms an instance of that model. Going from models to instances is like going from factories to
products. Once constructed it can be used to produce an infinite nurmber of instances sharing common
characteristics that have been abstracted in the model, To be usable a conceptual model must be
represented by a precise and unambiguous notation. In sofiware development models are used mainly
for the reduction of complexity, understanding, communication, and testing a physical entity before
building it [RUM91, GIU96]. With the level of complexity of the Web information system, data

modelling promises a satisfactory solution.

Data modelling, especially object-based and object-oriented (which will be generally referred to as
object), is among the approaches towards a better Web. It has been recognised as a solution to
probiems of the Web, in particular those of manageability, maintainability, and extensibility, in the
first four years after the coming of the Web [KAP94, ING95, REES5). Object modelling is becoming
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a major trend in the development of the Web because of the proven advantages of abject technology,
the resemblance of the Web 10 an object system, and the need to integrate the Web with sophisticated
enterprise systems, which perhaps can be best done with the extensibility feature of object technology
{MAN98S, MAN99].

This chapter reviews the Web data models currently available, pointing out what has been achieved
and what is yet to be addressed. There are three major groups among the systems providing a data
model for the Web:

» The first group is motivated mainly by the need to incorporate complex services and existing
enterprise systems into the Web. In this group, the Web is used as a front-end to provide services
to users at the inter-net or intra-net levels. Issues such as data structure, flexibility, and
manageability are also addressed here, but are not solved for the Web document system per se.
This group includes such systems as W3Object [ING95], WebObject [WOBO00),
WebComposition [GEL97], ILU Requester [ILU91, ILU96), CorbaWeb [MER96], and
ANSAWeb [REE95]. We shall refer to this group as service-centred.

% The second group aims to model the document system intrinsic in the Web and tries to improve
its shortcomings such as those regarding data structure, extensibility, manageability, and
maintainability. Systems such as Hyper-G [AND95], Extensible Markup Language (XML)
[XMLS8]), and Document Object Model (DOM) [DOM98], belong to this category. We shall

refer to this group as document-centred.

» The third group is concerned with constructing models to describe the data content in Web
documents. This group aims at facilitating resource discovery, content rating, cataloguing, and
knowledge sharing and exchange. It includes meta-datz projects such as the Platform for Internet
Content Selections (PICS) [PIC97], the Warwick Framework [LAG96), the Dublin Core
[(DUBOQ0], the Resource Description Framework (RDF) (RDF99], and the like. We shall refer to
this group as meta-data.

3.1 Service-centred modelling

Systems in this group focus on providing Web services (W3Objects [ING95, 96, 97],
WebComposition [GEL97]), and integrating existing enterprise systems with the Web (WebObjects
[WOB00], Web* [ALM95], ANSAWeb [REE95], CorbaWeb [MER96], ILU Requester [ILU91,
ILU96)). Their common aim is t0 remedy the extensibility problem of the Web by means of object-
oriented technology. W3Objects [ING95, 96, 97} also looks particularly at the link management
issue, ANSAWeb specifically attemnpts to achieve interoperability between the Web and systems
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implementing the Common Object Request Broker Architecture (CORBA) [BEN95), a standard for
distributed object systems developed by the Object Management Group (OMG) [OMGO0]. ILU
Requester is directed towards increasing service execution performance caused by the process
forking in the Common Gateway Interface (CGI) [MCC95] technology.

Except for WebComposition, which is a non-distributed object-oriented sysiem, most of these
systems use distributed object technology. In particular Web* {ALMS5], CorbaWeb, and WebObject
are all CORBA applications. ILU Requester employs a CORBA compatible technology, the Inter-
Language Unification (JLU) [ILU91], with its own Interface Specification Language (ISL), to capture
HTTP dacmons as distributed objects. W3Objects implements distributed object-orientation using
C++ and the Remote Procedure Call (RPC) protocol [RPC95], aithough standards defined in CORBA
and ILU can also be used. Commercial applications such as WebObjects can integrate with a wide
range of industry standards such as CORBA, COM/DCOM (Component Object Model/Distributed
Component Object Model) [BEN95, BEN97, MOW97], and major Database Management Systems
(DBMS) such as Oracle, Sybase and Informix.

The data models in these systems, if provided, are basically designed to encapsulate services into
objects (CorbaWeb, WebComposition, W3Objects, Web*, WebObjects), and decompose a Web
application into screen elemeints or application-specific components (WebComposition, WebObjects,
W3Objects). CorbaWeb also captures databases into objects. ILU Requester is different from the
other systems in that it models the HTTP server, not the Web documents or services provided at the
client. ANSAWeb does not have a data model, but only provides interoperability between 2 CORBA
system and the Web.,

Access from a Web client to objects defined in these systems is usually provided through CGI scripts
[MCC95], written in a scripting language defined for each system. CorbaWeb creates CorbaScript to
allow for dynamic invocation of operation on CORBA abjects. Similarly Web* has TcIDII, an
extension of Tcl [OUS94], that uses CORBA’s Dynamic Invocation Interface (DH) to provide access
to Orbix services [ORBO00]. (Orbix is a commercial CORBA application.) WebObjects designs its
own environment, which includes a CGI Script written in its own scripting language, 2 HTML
Template that may contain WEBOBJECT markup clements, and a Declaration file to specify the
binding between WEBOBJECT and HTML markup elements. There are some good design ideas in

these systems, for example WebObjects introduces a separation between business logic (CGI Script),
presentation (HTML Template), and data access (Declaration file). However the scripting languages
defined for these systems may be difficult to use. For example, TclDII requires CORBA knowledge

% Bvery invocation of a CGI script causes a new process to be created, resulting in a performance penalty.
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since the user has to precisely define the IDL (Interface Definition Language) [IDL97] type for each
parameter. More importantly, each language is specific to a proprietary system so that there is no
standard way to access objects in the underlying object system, and objects in different systems
cannot communicate with each other.

Some other approaches have been used in other systeins. W3Objects provides Web access to its
objects through a gateway implemented as a plug-in module to an extensible server such as Apache
[APCO0). URLs beginning with /w30/ are passed to the gateway module, which binds the requested
named object to a W3Object within a nameserver, and invokes the appropriate methods. In
WebComposition a Web client accesses WebComposition components only indirectly through the
normal file system. These files are generated by the WebComposition’s Resource Generator and
Component Server using “incremental publishing”, This technique incrementally maps
WebComposition components stored in the Component Server to HTML elements for the requested
file, and generates the corresponding HTML file. This is done not on the user’s request but at a time
decided by the system itseif when some change to the file is detected. These approaches also provide
valuable input, but as with the scripting approach, cannot be standardised.

Systems in this group offer advantages obtained irom object-oriented technology. In particular, they
all attempt to repair the manageability, maintainability and extensibility problems of the Web, Their
common approach is to “extend” the Web with services, either by developing new applications or by
integration with existing enterprise systems. As this is done using object-orientation, the extension
itself possesses the well-known advantages of object-orientation. Consequently the Web as a whole
appears to be manageable, maintainable and extensible. As a matter of fact, however, these systems
never really change the Web system as such, but only apply a “patch” to it. The Web infrastructure
stift suffers from problems of manageability, maintainability, and extensibility.

As pointed out in Section 2.2.2, these problems stem from a design issue of HTML, which is
fundamentally a notation derived from SGML [SGMB86), a standard from the publishing industry, to
represent a document, A solution for them, therefore, should be an improved design for the Web as a
document system. The service-centred systems, however, focus only oa providing services using the
Web as a front-end. Consequently their models do not capture the Web as a document system, and do
very little in solving the design problems mentioned in Section 2.2.2. In addition, when the Web
infrastructure is changed, they are greatly affected because there is no proper mapping between their
models and the model implied in the Web document system.

Service-centred systems are also limited in terms of extending themselves because of the
complication involved in developing Web applications. The Web gained enormous success because
of the simplicity inherited from well-understood concepts of a document. Although this simplicity
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causes us many problems (see Section 2.2), it is necessary to preserve it (as much as practically
possible). The data models of service-centred systems, on the other hand, are built on complex
software development concepts.

In brief, extending the Web in the service-centred way is both limited and fragmented because it is
complicated and cannot be standardised. Service-centred systems do filfil their objectives of
integrating complex services and enterprise computing with the Web, but to solve the design
problems of the Web, we need another approach: document-centred.

3.2 Document-centred modeliing

The systems in this group provide data models that capture the “document characteristics” of the
Web. There are three major systems in this category: HyperWave [HYPQO], the Extensible Markup
Language (XML) [XML98], and the Document Objact Model (DOM) [DOM98].

3.2.1 HyperWave

HyperG [AND95}, which was later commercialised into HyperWave [HYPQOO], was the first system
to attempt to improve the document structure inherent in the HTML design. It does this by
introducing the concept of an abstract container, which can be one of four types: Collection,
Sequence, MultiCluster, and AlternativeCluster.

Collections are overlapping sets of items, and an item can be a document (content or material) or a
Coliection itself. Thus an item can belong to one or more Coliections, and Collections can be nested.
A Sequence is a Collection whose items are sequentially ordered. Collection and Sequence together
map well into the traditional hierarchical document structure of unordered, or ordered, nested
structural components, respectively. In addition, due to the “soft” characteristics of an electronic
document, an item can also logically belong to (or strictly speaking, be associated with) many
Collections, This allows for reusability and the ability to define multiple views, where a Collection

corresponds to such a view,

MultiCluster and AlternativeCluster act like terminal Collections in the document hierarchy with all
their items unfolded at once for dispiay. (As a comparison, a Collection or Sequence is displayed as a
menu of closed folders or document items.) A set of (ordered or unordered) paragraphs and images is
an example of a MultiCluster. This allows a finer granularity of the document structure in the sense
that a document (or structural component) can be broken down into non-structural components, or the
“raw materials” that build it. In this respect, a cluster can be considered to have captured another type

of document “structure”: unstructured documents. In HyperWave clusters are useful in collaborative
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authoring, where each author can independently supply (relatively small) pieces of materials into a
cluster, and let the container assemble and display them as one document. An AlternativeCluster is
like a MultiCluster, but returns only one of its elements instead of a combination of all elements. An
AlternativeCluster is useful for selecting between available options, for example, languages.

With these abstract containers, a document can be organised into a coherent structure meaningful to
its author. Items in a container can be managed and maintained by the system. For exampie, an item
can be inserted into or removed from a Sequence, and the system automatically adjusts the relevant
attributes such 2s onmbering, structural links, and table of contents, to reflect the change. This can be
done because of the distinction between structure and content, two of ine three document properties
mentioned in Section 2.2.2.4. Both static and dynamic customisation in structure and content can also
be supported by the use of views. Such a view can be a statically designed Collection, or a Collection
of structural components selected by their access permissions (so that different users or user groups
with different access permissions will see different views), or a Collection that is dynamically

generated from a stored query (which is a search query). A stored query can be a member of a
Collection, and is itself a (dynamic) Collection, whose members are not statically linked to it, but
gencrated on the fly by evaluating the query. A view generaled from a stored query generally does not
have any structure but contains only the materials (leaves in the collection hierarchy) that satisfy the
search criteria stored in the query. An identified user can also have a personal Collection called Home
Collection, which acts like a sophisticated bookmark list, where he/she can choose which Collections
(including stored queries) to add or remove.

The use of the structural elements also allows HyperWave to control the document presentation to a
certain extent by defining different styles for structural layout and navigation, A presentation style
can be configured for a user (by the system administrator or the user him/herself), which has a global
effect in all Collections. (For example, if “Partial Tree” is selected, all collection listings will be
displayed in the browser as partial trees.) In this way, customised presentation can be catered for,
although a user or author is limited by the styles pre-defined by the system (or the HyperWave

application developer who has modified the system). Customisation can also be provided in :'
HyperWave by the use of cookies [COO00). This technology however, is criticised for privacy
invasion [LIN98]. In addition, since cookies does not define a model upon which custorisation
services are performed, the types of services provided are arbitrary and limited, and customisation
informaton ¢f niiot be Jeployed to drive a systematic evolution of the Web,

All HyperWave objects (for example, document contents, collections, queries, hyperlinks, and users)
are stored at the server in an object-oriented database maintained by the server. HyperWave can thus
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keep referential integrity among its components using this database,” and has built-in search facilities
based on meta-data. These meta-data are simply attribute names and values of HyperWave objects
stored in the database. Customisation on hyperlinks is also supported by assigning hyperlinks with
different access permissions (similar to what is done with structural elements), so that different users
or user groups will follow different navigational paths. HyperWave provides a HyperWave API for
application programimers to extend the server’s functionalities (using HyperWave’s own language).

The major advantage of HyperWave is in solving the problems of document structure and document
properties (Sections 2.2.2.1 and 2.2.2.4), and consequently other derived ones, namely document
management atid maintenance (Section 2.2.1.3), document authoring and design (Section 2.2.1.4),
and customisability (Section 2.2.1.5).* It also offers advanced features in maintaining link integrity by
the use of external links (relating to the referential integrity and embedded link problems described in
Sections 2.2.1.2 and 2.2.2.5) and facilitating search by the use of meta-data (relating to the lost-in-
hyperspace and meta-data problems described in Sections 2,2.1.1 and 2.2.2.7), albeit with the help of
a database. Recently, HyperWave provides the Document Class, an extension of the container
classes, whose instances can be made persistent and stored in the server (rather than in volatile
memory as in conventional object-oriented systems) 5 Programmers can override attributes and
methods defined in this class, as well as derive subclasses from it (in the object-oriented way). The
Document Class is designed to provide a way to develop special document types, for instance, one
with specific behaviour. HyperWave however, does not deal with problems concerning adaptability
and evolvability (Section 2.2.1.5). We also note that HyperWave is not an object-oriented system,
although it uses an object-oriented database.

3.2.2 Extensible Markup Language (XML)

Extensible Markup Language, abbreviated XML [XML98], is an effort by the World-Wide-Web
Consortiwm (W3C) [W3C] to repair the design problems of HTML. Like HTML, it is also a subset of
the Standard Generalized Markup Language (SGML) {SGM386}, allowing the use of tags (including
nested tags) to describe ¢lements in a document. Unlike HTML, however, which defines only a fixed

3 Referential integrity across HyperWave servers that belong to a particular server pool may also be maintained
[HYP00).

4 HyperWave also deals with other issues such as collaborative authoring and security. These are not included in
the scope of our project, and thus are not reviewed in this thesis.

5 ‘This simply means instances of a Document Class are stored in the server in the same way as those of other
types of abstract container such as Collection.
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tag set for a single document type, XML is really a meta-language that defines the grammar, It
permits the definition of tags and other markup syntax (including the definition of HTML in terms of
XML). An XML document for example, may look as follows:

<?xml version="1.0" encoding=*UTF-8%7:>
<!DOCTYPE book System="http://lifeweb.org/book.dtd¥>
<book>
<chapter id="chapterl” heading="CHAPTER 1">
<section id=“gectionl.l” heading="Section 1,1">
This is the text of section 1
</section>
</chapter>

</book;>

Figure 3-1: Extract of an XML document

This example shows the <chapter> and <section> tags that are not present in HTML. Such tags are
defined in a Document Type Definition (DTD).° The DTD for the above example is named book,
which is declared in the <!DOCTYPE> clause, and its name is used as the “covering tag” that
encloses all other elements in the document. XML calls <book> the document’s roof element. A DTD
is a single file, or several files, which formally defines a particular type of document. It describes the
schema of the corresponding document type, specifying factors such as what element types there are,
their attributes and attribute types, their possible nesting, angd so on. The D'TD for the XML document
in the above example defines the two elements <chapter> and <section> as follows:

<)ELEMENT chapter (section)>
<tATTLIST chapter
ia 1D #REQUIRED
heading CDATA #IMPLIED>
<tELEMENT section (section | CDATA}
<! ATTLIST section
id 1D #REQUIRED
heading CDATA #IMPLIED>

Figure 3-2: Extract of a Document Type Definition (DTD)

When a DTD is declared in an XML document (with the <!DOCTYPE> clause) as the file
“http:/fwww lifeweb.org/schema/book.dtd” in the above example (Figure 3-1), it is used to validate
the XML document when the document is parsed. Such a DTD is called an external DTD. Element
type definitions may be declared locally in the XML document that uses them, as illustrated in the
example below (Figure 3-3). In this example, the DTD *gresting” defines one single element,

6 XML also permits a document without a DTD, called a well-formed document. In this thesis we discuss only
valid XML documents, that is, those with their own DTDs.
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“greeting”, that contains character data (PCDATA). The element “greeting” is used immediately in
the same XML document to mark up the text “Hello, world!”. A DTD declared this way is called an
internal DTD.

<?xml version="1.0* encoding="UTP-8* ?>
<1 DOCTYPE greeting [
< !{ELEMENT greeting (#PCDATA)>
1>
<greeting>Hello, world!</greeting:>.

Figure 3-3: Example of an internal DTD

In addition, an XML document may use element types that are defined in several DTDs, via the
namespace mechanism [NAM99]. Namespace allows an “inline” association of an element name or
attribute name (that is being used in an XML document) with the DTD that defines it. Such a name is
called a qualified name. Thus, an XML document may use clement types or attributes that are not
defined for its own document type (that is, in the DTD declared in the <!DOCTYPE> clause). It may
also use element types or attributes defined in multiple DTDs. In this thesis, we differentiate the DTD
declared in the <!DOCTYPE> clause from other DTDs used in a document, and call it the main DTD.
Figure 3-4 shows an example of the use of XML namespace. In this example, the namespace
declaration in the first line binds the “chem” prefix to “http://chemistry.org/schema.dtd” for the “e”
element and contents. In the second line, the “molecule” element is qualified by “chem”, thus

assumes the namespace “http://chemistry.org/schema.dtd”.

<e xmlns:chem='http://chenistry.org/schema.dtd’>

<chem:molecule>C6Hé</chem:molecules>

<fe>

Figure 3-4: Example of the use of XML namespace

As can be seen from the above examples, since XML, allows nested structures, it can easily be used to
represent a document hierarchical structure. lis extensibility comes from the expressive power
derived from its meta-level. Various document types can be defined and domain-specific "jargon"
specified, meaningful to the respective communities. In addition, XML also forces the separation
between structure (that is, structural contents) and presentation, imposing the use of stylesheets to
specify bow the user-defined element types are presented on the browser. These advantages of XML
convert the Web infrastructure into one that can be managed, maintained, and extended.

XML (currently in version 1.0) is ti . base member in the XML family, and the first to reach the W3C

Recommendation stats. Some other important members include:
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XLink: XML Linking Language [XI.K0O] provides advanced hyperlinking functionality such as
links to mmitiple destinations, bi-directional links, inline and out-of-line links, associating meta-
data with links, and databases of links. XLink is represented in the XML syntax. It has been
mainly influenced by established standards in HTML, HyTime [HYT97], and Text Encoding
Initiative Guidelines [TEI94]. Many other linking systems such as Microcosm [DAV93], FRESS
[PER99], Dexter, [DEX94] have also provided input to the design of XLink.

XPointer: XML Pointer Language [XPT00] is a language used to identify a fragment for any
URI-reference that locates an XML resource. It supports addressing into the internal structure of
an XML document, This includes traversing the document tree and seiecting internal parts based
on various properties such as element types, attribute values, character content, and relative
position. XPointer and XLink were split from the former XLL project to separate the linking
functionality from the addressing of the objects being linked. XPointer is based on XML Path
Language (XPath) {XPAQ0], a language used for addressing parts of an XML document, which is
a newly released W3C Recommendation in the XML famiiy. XPointer has been influenced by
other standards including HTML., HyTime [HYT97), and Text Encoding Initiative Guidelines
[TEI94]. It also receives input from the Open Hypermedia Systems (OHS) such as Dexter
[DEX94], FRESS [DER99], Microcosm [DAV93), and Intermedia {MEEY86, YANSS].

XSL: Extensible Style Language [XSL.O0] defines a language to write stylesheets for XML
documents. X SL consists of two parts: XSL Transformations (XSLT) {XSLT00] for transforming
XML documents, and an XML vocabulary for specifying formatting semantics. XSL specifies the
styling of an XML document by using XSLT to transform the document into another document
tha; uses the formatting vocabulary. At the time of writing, XSLT has reached W3C
FP.ecommendation status, but XSL is still a working draft.

XML Schema: XML Schema [XSCO0] defines a rigorous data model (including a language) to
constraint and validate XML documents. Currently, the XML Schema project consists of two
parts. XML Schema Part 1: Structure specifies the XML Schema Definition Language, which
provides a superset of the capabilities found in XML 1.0 document type definitions (DTDs). This
specification depends on XML Schema Part 2: Datatypes, which defines the data types to be used
in XML Schemas, XML Scherma is still a progressing project.

In addition, XML also has some associated standards. Two important ones are (i) the Document
Object Model (DOM) |[DOM98] that defines an Application Programming Interface (API) for an
XML document; and (ii) the Resource Description Framework (RDF) [RDF99] that provides a
foundation for using meta-data to describe resources. These will be described in the next two

sections.
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It can be seen that, together, members of the XML family and its associated standards have addressed
or attempt to address issues concerning data management and maintenance (including document
strmcture and document properties as mentioned in Sections 2,2.1.3, 2.2,2.1 and 2.2.2.4), extensibility
(Section 2.2.2.2), referential integrity (including embedded links as mentioned in Sections 2.2.1.2 and
2.2.2.5), functional behaviour (Section 2.2.2.3), and meta-data (Section 2,2.2.7). XML has created a
lot of excitement over the Web and many people have seen it as the future of the Web. Usdin et al.
[USDS8], however, have reminded us that XML is only an “enabling technology”. “Well-designed
XML can provide a valuable tool... but XML by itself is not a solution to any problem.” Besides, the
continual growth of the XML family does make a person watching the development of the Web
wonder whether it will lose the simplicity that has won the Web such a phenomenal success. These
issues are perhaps ones to be left with others that still remain unsolved or partially solved, such as
stateleseness (Section 2.2.2.6), customisability, adaptability and evolvability (Section 2.2.1.5).

3.2.3 Document Object Model (DOM)

The Document Dbject Model, abbreviated DOM [DOM98], is another W3C project that defines an
object-oriented Application Programming Interface (API) for a Web document. DOM maps well into
the XML data model, and thereby defines a complementary behavioural model for XML, It allows a
Web application to access and manipulate an XML (or HTML) document’s elements, their structural
links, and their attributes,

DOM is a generalisation of Dynamic HTML [DHT97] defined by Microsoft and Netscape. DOM
level 1 has been stabilised and is currently a W3C Recommendation. The major classes of DOM level
1 Core Specifications are shown in Figure 3-5 in UML [UML98] notation. In this system Node is the
base type for all other types that can be fuvad in a docwment structure tree. Nodes are nested, so that
a Node can have several sequentially ordered child Nodes, and nsually a parent Node; except for the
root Node, which represents the document itself. A Docu:aent, Element, or Attribute object
represents an XML (or HTML) document, element, and attribhtc respectively (as shown in Figure
3-5). A Text object captures any non-markup values, for example the data contents between the start
and end tags of an XML element. A Comment object corresponds to an XML (or HTML) comment,
which will be ignored by a parser. PI stands for Processing Instruction, a concept derived from
SGML [SGM86]. A PI object identifies by name a helper application that can process an unparsed
entity.

As a complementary functional model to XML, DOM specifically addresses the issue of a lack of
functionat behaviour mentioned in Section 2.2.2.3. Other problems, in particular the meta-data issue,
are addressed in the next group of data models as explained below.
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Figure 3-5;: DOM level 1 Core

3.3 Meta-data modelling

Systems in this group focus on establishing some mechanism for describing Web resources. Their
objective is to help in services such as resource discovery, knowledge exchange, content rating, and
cataloguing. The most important project is the Resource Description Framework (RDF) [RDF99], a

W3C Recommendation.

RDF provides a foundation for exchanging machine-understandable metadata that describes Web
resources, and thus enables automated processing of Web resources. RDF can be used, for example
[RDF991]:

s inresource discovery to provide better search engine capabilities

& in cataloguing for describing the content and content relationships available at a particular Web

site, page, or digital library
e by intelligent software agents to facilitate knowledge sharing aad exchange
® in content rating
e in describing collections of pages that represent a single logical "document”
e in describing intellectual property rights of Web page authors,
« for expressing the privacy preferences of a user as well as the privacy policies of a Web site

o with digital signatures to build a "Web of Trust” for electronic commerce, collaboration, and

other applications.

The basis of RDF is a syntax-independent data model for representing named properties and their

values. RDF properties can represent both attributes of resources (thus correspond to traditional




- attribute-vilue pairs) and relationships between resources (thus correspond to ‘the traditional entity-
relationship diagram). The core RDF data model is defined in terms of:

1. A set of Nodes (N}
2. Asetof PropertyTypes (P), a subsetof N

3. Asetof triples called Triples, whose elements are called properties. In a Triple {p, r, v}, p is
a member of P, r is 2 member of N, and v is either a member of N or an atomic value (for
example, a Unicode string).

In this data model, both the resources being described and the values describing them are represented
as nodes in a directed iabelled graph. The arcs connecting pairs of nodes are labelled by property
types, This is represented diagrammatically as: '

Ir] —E_ 5 v

and can be read as “v is the value of property p for resource #”, or “r has property p with value v”. For
example, the statement “John Smith is the Creator of the Web page http://someweb/somedoc.html can
be represeanted as:

[http: //somewek/somedoc . html ) EEEE‘.E’E; *John Smith*

RDF statements can be represented in XML (with the use of the namespace mechanism), For
example, the above statement can be written as:

<rdf:RDF
xmlns:rédf="http://www.w3.0xrg/1989/02/22-xdf-syntax-ns#*
xmlns:de="http: //purl. org/metadata/dublin_core# ">
<rdf:Description about=*http://someweb/somedoc.html">
<dc:Creator> John Smith </dc:Creator>

</rdf:RDF>

Figure 3-6: An RDF statement

More statements can also be included for the same resource to describe the resource in more details.
For example, an XML element such as <de: Publisher>Addison-Wesley</dc:Publisher> can
be added inside the element <xrdf : Description> above to give information about the publisher
of the resource. RDF also defines other useful structures such as Bag, Sequence and Alternative to
express collections of RDF statements, and a reification model to express statements about




statements. (For instance, the sentence “Adam Smith believes that John Smith is the author of the
resource http://someweb/somedoc. btinl” is a statement about another statement).

3.4 Conclusion

The data models described here, especially HyperWave [HYP0O0] and those of the XML family, kave
solved, or provided a foundation for solving, a range of problems, primarily manageability,
maintainability, and extensibility. This demonstrates the power of the data modelling approach. There
are disadvantages to the approaches that have been taken, however, For instance, HyperWave uses a
commercial database, which is not an open system like the Web, to manage and maintain documents.
XML is only an “enabling technology” [USD98], and therefore only provides a foundation for
solving problems, rather than solutions thesmselves. More importantly, there are probleins that remain
unsolved or partially solved even with the advent of XML and its associated technologies. These are
statelessness (Section 2.2.2.6), customisability, adaptability, and evolvability, which may be summed
up in one single issue, evolvability (Section 2.2.1.5). Specifically, the existence of XML itself raises
many questions. For instance, XML provides the expressive power that allows for the creation of
various DTDs meaningful to differing communities, but how do these DTDs fit together? Can
elements of different DTDs interact with one another and to what extent? Is it necessary to develop a
separate set of tools and supporting software for cach DTD? Is it possible to make the supporting
software and tools interoperable across different DTDs, and to what level is this possible? Is it
possible to derive a DTD from an existing one, or must each DTD be a completely new entity? If this
is possible can the derivation process be automated, and to what extent can automation be supported?
These questions can also be summarised in one issue: the self-evolving capability of the Web, or the
Web evolvability. This topic will be investigated in the subsequent chapters of this thesis.




Chapter 4 System evolution

There has not been any formal study on Web evolution or Web evolvability that we are aware of 10
this date. Literature on system evolution in Computer Science, however, ¢an be found in some other
areas. Some well-established fields include Database Schema Evolution (DBSE), meta-modelling,
and evolutionary algorithms. This chapter reviews work that is relevant to our study in these fields.

4.1 Schema evolution in Object-Oriented Database
Systems (OODBS)

A database is a collection of related data, which represents some aspect of the UoD (Universe of
Discourse), and is designed for a specific purpose [ELM94). There are many types of database
systems, depending on how data are organised into logical data modeis. Some of the most well-
known data models are [ELM94, HALO5L

o The network data model, which was first defined by the Conference on Data Systerns Languages
(CODASYL) Data Base Task Group (1971), is fairly complex. Facts are stored either in records
or as record links. A record field may contain a single value, a set of values, or even a set of
value-groups. A record link connects record types in an owner-member relationship (for example,

an employee's record is “owned” by a department record). These connections may form
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networks, for example, a record type may have many owners as well as owning many record
types. A query across two record types bas to rely on a record link (which provides an access
path) being predefined between them. This makes a database application less flexible and its
management complicated. For example, access paths must be added for some new queries and, as
the application structure evolves, internal optimisation efforts can be easily undone.

o The hierarchical data model, which was developed at IBM, is simpler. It is specifically designed
for application to a hierarchical structure (for example, a computer file system). Facts are stored
in records or record links as in the network model, but record fields can only hold single values,
and record types are linked in a parent-child relationship where a chiid can have only one parent,
This model provides good performance for hierarchical applications, but is less suited to other
applications. In addition, as with the network model, it still depends on predefined access paths

for some queries.

e ‘The relational data model, defined by EF. Cood in 1970, introduced an even simpler model.
Here all the facts are stored in tables, including their constraints and relationships. This allows
tables to be treated as mathematical relations. Complex queries can be made across multiple
tables in an adhoc manner, and application management is simpler, since there is no need to

separately define access paths.

Object-oriented database systems (OODBS) arrived later, in 1986, pioneered by Stonebraker et al.
[STO86, KEMS87] with their product POSTGRESS. These systems represent a merge between object-
orientation and relational databases. They use concepts of class, class hierarchy, inheritance, instance
variable (or attribute in object-oriented terms) and method from the object-oriented paradigm to
describe data in terms of their semantics, behavicur and structure, OODBSs add behaviour to
database objecis and offer the well-known advantages of object-oriented technology such as
manageability, maintainability, reusability and extensibility [BRA93]. OODBSs (rather than other
kinds of database systems) are related to our work because we also investigate the use of object-
orientation in our solution. In this section we look particuiarly at the issue of schema evolution in
OODBSs.

Database Schema Evolution (DBSE) refers to the ability to change the description that models a
particular database system dynamically, and to the consistent management of these changes. In an
OODBS it involves such operations as addition or removal of an instance variable, a method, or a
class. Two fundamental issues have been identified with DBSE, which are (i) taxonomy and
semantics of schema evolution, and (ii) change propagation.
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4.1.1 Taxonomy and semantics of Database Schema Evolution

This issue has been approached in current object-oriented database management systems
(OODBMSSs) in an informal way by using invariants o ensure the consistency of the database schema
and rules to guide the maintenance of these invariants [PET97]). The sets of invariants and rules,
however, vary in different OODBMSs, depending on the underlying object system and the choices of
the system designer. Orion [BAN87], which was the first system to introduce this approach, defined a
widely accepted taxonomy and semantics of schema changes, invariants, and rules to be observed
when applying change operations.

4.1.1. 1 Invariants of schema evolution

Five invariants have been defined in Orion [BAN87], which are presented in Table 4-1 below:

Invariants Explanations

Class lattice The class lattice of the system is a singly rooted and connected, directad
acyclic graph (DAG), with uniquely named nodes and uniquely labelled
| edges, where every node is reachable from the root.

Distinct name | All instance variables and methods of a class, whether native (defined in
that class) or inherited, must have distinct names.

Distinct Uniqueness and traceability must be ensured for the origin of definition of
identity all instance variables and methods of a class, whether they are direclly or
(origin) indirectly inherited from a single or multiple superclasses,
Full A class must inherit all instance variables and methods defined in each of its
inheritance superclasses, except for when this causes a violation of the distinct name
and distinct identity invariants,
Domain The domain (or class) of an inherited instance variable must be gither the 1

compatibility | same as the original one in the superclass, or a subclass of the original ';

domain.

Table 4-1: Invariants for Database Schema Evolution in Orion [BAN97] s
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4.7.1.2 Rules of schema evolution

As there can be more than one way to maintain the invariants, Banerjee et al. [BAN87] established
twelve rales to guide the preservation of these invariants. These rules fall into four categories: default
conflict resolution, property propagation, DAG manipulation, and composite object.

4.1.1.2.1 Default conflict resolution rules

These rules deal with the distinct name and distinct identity invariants by specifying a selection
scheme over the conflicting elements,

Rule 1: A Jocally defined instance variable or metizua overrides an inherited one with the same name.

Rule 2: When two or more superclasses of a class C have an instarice variable or method of the same
name but distinct origin, C will inherit the variable or method of the first one (i.e. the left-most node
among the nodes representing these superclasses in the class lattice) among the conflicting
superclasses.

Rule 3: When two or more superclasses of a class C have instance variables of the same origin, C
will inherit the variable of the more specialised domain, or of the first superclass among the
conflicting ones if the first case is not applicable (i.e. the instance variables are over the same

domain, or their domains are not of superclass — subclass relationship).

4.1.1.2.2 Property propagation and change rules

These rules dictate what changes in the contents of a class should propagate to related classes and to
what extent.

Rule ¢: Changes to the properties of an instance variable or method in a superclass propagate to all
the subclasses that inherit them, unless these properties have been redefined in the subclasses.

Rule 5. The addition of, or name change to, an instance variable or method in a superclass should
propagate 10 only those subclasses that do not introduce new name conflicts. This rule aims at
resolving conflicts that may be introduced by Rule 4.

Rule 6 (domain change rule): The domain of an instance variable can only be changed to be more
generalised, and can only be as generalised as that of the original instance variable,

4.1.1.2.3 DAG manipulation rules

These rules deal with the modification of classes and their relationships in the class lattice,
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Rule 7 (edge addition rule): When a class C acquires a new superclass, that superclass will be the
last in the list of the superclasses of C.

Rule 8 (edge removal rule): If a class A is the only superclass of class B, and A is removed from the
superclass list of B, then all of A’s superclasses will become immediate supercliasses of B in the same
order as they are with A. In this recpect if the root class is the only superclass of B, it cannot be
removed from B (class lattice invariant).

Rule 9 {node addition rule): A newly added class will assume the root class as the default
superclass if no other superclass is specified.

Rule 16 (nede removal rule): The removal of class C first requires that all edges to it and from it be
semoved, Rule 8 must be applied if any edge is the only one from C to a subclass of C. In addition it
is not possible to delete a system-defined class.

4.1.1.2.4 Compeosite object rules

In Oricn a composite class is one that is connected to cne or more classes with the aggregation (or is-
part-of) relationship. Component objects participating in this relationship are dependent on the
composite (parent) object in that they rely on their parent for their existence.

Rule 11 {composition link rule): A composite instance variable may be changed to non-composite
(by dropping its composite link property), but not vice versa.

Rule 12: If a composite instance variable is changed to non-composite, the parent object A disowns
the component object B (referenced by the instance variable). A continues to reference B, but the
deletion of A does not also cause B to be deleted.

4.1.1.3 Taxonomy and semantics of schema evolution

Orion expresses the semantics of schema evolution using the invariants and rules specified above for
each supported schema evolution operation. These operations can be broadly categorised into three
groups: (i) Changes to the class definition, such as adding, removing or modifying instance variables
or methods; (if) Changes to the generalisation/specialisation relationships between classes; and (i)
Changes to the class as a whole such as adding or removing an entire class. The schema change
taxonomy is as follows [BANS7}L

1 Changes to the contents of a node (class) {or changes to the class definition)
1.1 Changes to an instance variable

1.1.1 Add anew instance variable to a class




1.1.2 Drop an existing instance variable from a class
1.1.3  Change the name of an instance variable of a class
1.1.4 Change the domain of an instance varizble of a class

1.1.5 Change the inheritance (parent) of an instance viriable (inherit another instance
variable with the same name)

1.1.6 Change the default value of an instance variable
1.1.7 Manipulate the shared value of an instance variable
1.1.7.1 Add a shared value
1.1.7.2 Change the shared value
1.1.7.3 Drop the shared value
1.1.8  Drop the composite link property of an instance variable
1.2 Changes to a method
1.2.1 Add a new method to a class
1.2.2 Drop an existing method from a class
1.2.3  Change the name of a method of a class
1.2.4 Change the code of a method in a class

1.2.5 Change the inheritance (parent) of a method (inherit another method with the same

name)
2 Changes to an edge (or changes to the generalisation/specialisation relationships between classes)
2.1 Make a class § a superclass of a class C

2.2 Remove a class § from the superclass list of a ¢lass C

2.5 . aange the order of superclasses of a class C

3 Changes to a node (or changes to the class as a whole)
3.1 Add a new class
3.2 Drop an existing class

3.3 Change the name of a class
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4.1.2 Change propagation

Change propagation considers the strategy employed to update instances affected by schema changes
to maintain data consistency throughout the database system, Three major techniques have been used
in current OODBMSs, which are screeming, conversion and filtering. All of these techniques
explicitly coerce instances to reflect changes of the schema, but coercion takes place at a different
time and in a different way in different technigues. This section presents a review of these techniques
(PET971.

In screening, each schema change generates a conversion program that can independently convert
objects to reflect the new schema definition. Actual coercion does not happen immediately but is
delayed until the object is accessed, As it is possible to apply multiple schema changes to one class,
muitiple conversion programs might be invoked at the same time when an object of that class is being
accessed. Screening suffers from performance penalties during access to object, especially if several
conversion programs need to be applied. It can also increase the system overhead due to the need to
keep track of what objects still need to be applied to a particular conversion program.

The conversion technique converts affected objects immediately on each schema change, This
approach causes processing delay during the schema modification phrase, but not during the object

access.,

The filtering approach does not propagate changes to objects, but creates a different version of a
schema for each schema change, and the old objects remain with the old version while new objects
are created for the new version. The filters maintain consistency between versions and handle
problems that arise when objects of different versions try to communicate with each other. In this
respect filters also play the role of coordinating and inter-linking between different versions of
schemata, maintaining the interoperability among their instances. This approach introduces the
overhead for maintaining muitiple versions and the filters between them,

4.1.3 Conclusion

In brief, schema evolution in QODBSs is about allowing for dvnamic changes in the class definition
and class lattice of an application while still maintaining data and schema consistency. These changes
start at the schema level and propagate down to the affected instances. As a result, an evolution
operation can create a complex chain effect to all affected classes and instances. This is complicated
and difficult to implement, hard to standardise (since the underlying object models differ across
QOODBSs) and incurs penalties in performance or overhead. Recently, Peters R. J. et al. [PET97] have
developed an Axiomatic Model of Dynamic Schema Evolution (DSE) in Object-Based Systems
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(OBS). This model provides a formal foundation to describe the semantics of changes in various
OBSs so that they can be compared. But it still does not address problems resulting from the impact
that a schematic change has on the system. The taxonomy for schema evolution described in this
section however, will serve as an additional guideline in the design of our own evolutionary model,
and in comparing our system with systems such as Orion (in terms of support for schema evolution)
(see Section 8.8).

4.2 Meta-modelling — a formal basis for information
system evolution

DBSE has been made possible because of the availability of a set of information that describes the
database schema, which is commonly referred to as meta-data’, or a data dictionary. Meta refers to
stepping back from something to survey its context and make -assertions about it and that context
[MAES88]. Simply speaking, meta-data is “data about data”, or “data that describes data”. Access to
this set of meta-data allows the QOODBMS to maintain the schema consistency and handle version
conflicts during schema changes. Automatic manipulation of schema requires meta-data to be
formally represented in models, by so-called schema repositories or meta-databases, These
repositories can differ across distributed information systems and change over time. To ensure
interoperability and adaptability of these systems, it is necessary to have models that describe these
models (repositories), or meta-models [CON93, JAR98].

Meta-models are models about models, or in data modelling terms, a model is an énstance of its meta-
model. As meta-models are models themselves, they provide the abstraction and constraints needed to
interlink the elements of different data models in a heterogencous environment and aiong their
evolution, Meta-models can be recursively nested, thus models abstract from instances, meta-models
abstract from models, meta-meta-models abstract from meta-models, and 50 on [JAR98]. It has been
shown by Kotterman {KOT84], and widely accepted {JAR98, UML9E], that four levels of
instantiation are needed for the evolution and definition of complex information system. As [JAR98]
has pointed out, the architecture defined in the ISO/IEC® Information Resources Dictionary Standard
(IRDS) Framework [IRD90] is designed based on the same principle with four levels interlocking

" To be more precise metadata should be called meta-information. The term metadata however, has been more
popular and will be used in this thesis.

# IS0 is the International Organization for Standardization. IEC is the International Engineering Consortium.,




each other in pairs {see Figure 4-1). [JAR98] has provided an excellent summary of this architecture

which is described below:

IRD Definttion

Schema Level (RD Definition

IRD Scherns. e
Level RD
RO Tavel Pair
Lavel Apnlication

IRD Application ol Pale
Lavel

Figure 4-1: The ISO/IEC IRDS architecture

4.2.1 1ISOEC Information Resources Dictionary Standard (JRDS)
Framework: a meta-model architecture

The IRDS architecture is designed to interlock distributed application usage with distributed
application development. This is achieved in a four-level meta-model architecture that we describe

from bottom to top (see Figure 4-1):

o The Application Level includes application data and program execution traces. This corresponds

to the instance level of a class-based language.

o The IRD Level includes database schemata and application programs, plus any intermediate
specifications, and also specifications of non-computerised activities (for example, workflows). It
can also coniain traces of development processes interlinking these specifications. This

corresponds to the class level of a class-based language.

o The IRD Definition Level specifies the languages in which schemata, application programs and
specifications are expressed, and possibly also include the specification of their static and
dynamic inter-relationships, for example design process models. This corresponds to the meta-

class leve).

s Finally the IRD Definition Schema Level specifies a meta-meta-level model (M2-model)
xccording to which the IRD Definiticn level objects can be described and interlinked.




As Figure 4-1 shows, these four levels are grouped into interlocking level pairs. A level pair can be
intuitively undersiood as a database where the upper level is the database schema and the Jower level
the database instance. The architecture interlocks Ievel pairs in that the schemata of level pairs at ike
lower level can be coordinated by the database state of a level pair {dictionary) at the next higher
level, thus creating a distributed database:

e Application Level Pairs correspond to traditional application databases, consisting of a schema
and a database state

e IRD Level Pairs correspond to data dictionaries, meta-databases or repositories, At runtime, they
can serve as coordinators for distributed systems. At system evolution time, they serve as design
Gatabases,

o IRD Definition Level Pairs serve the same purpose for distributed evolution environmernts,
linking muitiple heterogeneous data dictionaries or design environments.

Interlocked application level pairs and IRD level pairs form a distributed application environment,
whereas interlocked IRD level pairs and IRD definition level pairs form a distributed develcpment
environment. Thus, the architecture provides the principal concepts for integrating the usage and
evolution of distributed systems, The concepts implied in this architecture are found in the current
database context as well as in many meta-modeiling tools, although they may be only partially
supported.

4.2.2 Conciusion

While schema evolution considers adaptability, and possibly also interoperability, at the schema level
for one particular database system, information system evolution is concerned with the same issucs at
the same level for multiple database systems across a distributed information system. In both cases
some description at the meta-level is necessary to maintain system consistency, and to cooperate and
interlink elements in 2 heterogeneous environment. This concept is very useful in the design of an
evolvable system. Elements or individuals that diverge in the course of evolution may be able to
maintain their compatibility or interoperability through levels of meta-modeliing. This idea is
exploited in our design as explained in the subsequent chapters,

4.3 Evolutionary Algorithms

Evolutionary Algorithins (EAs) are “a class of direct, probabilistic search and optimisztion
algorithms gleaned from the model of organic evolution” [BAC96). Thas the problem of EAs is




optimisation, which has a different focus from the issue of evolvability of the Web, On the one hand,
the ultimate objective of an EA is to find an optimum in a particular search space by applying an
evolutionary strategy. Typically, once such an optimum (or some termination condition) has been
achieved, the algorithm will terminate. In the context of artificial life, EAs do nor answer questions
such as, “how is a new species formed?” Or, “how do members of different species interact or
communicate with each other?” On the other hand, evolvability is concemed with the evolutionary
mechanism. Its problem is to identify what features (for example, structural, functional, or genetic)
are required of an individual or a population (an “evolutionary entity”) for it to evelve itself, and how
the elements of these features work together for the evolution of the involving entities. Evolvability
necessarily involves designing an evolutionary path, and defining the behaviour and interaction of
evolutionary entities. Thus it can answer the questions above that EAs cannot. In addition, alf EAs
work on the basis of probabilistic or randomr: mufation or recombination, which may not be applicabie
on the Web, where changes should most likely be directly controlled. They both involve evolution,
however, and knowledge of EAs may be applicable or relevant to our research questions. We
therefore present in this section, a summary of a representative and probably the most widely known
EA, namely the (traditional} Genetic Algorithm (GA).

The Genetic Algorithm (GA) was invented in 1975 by Holland [HOL75], a computer scientist and
psychologist at the University of Michigan As its name suggests, the GA simulates the Darwinian
evolutionary process at the genetic level. It does this by mathematically representing natural genetic
information using bits and bitstrings. In nature, genetic information is encoded using a quadruplet
system of the four so-called genetic alphcbet A, T, G, C. In the GA, the coding system is mainly
binary with two bits O, 1. For simplicity we shall assume a binary coding system only., An
optimisation problem is represented as a set (population) of bitstrings. These strings are modelled
after chromosome strings, where each string represents an individual in the population of strings, and
has an associated fitness value. Repetitive execution of the algorithm on this population produces
strings with varied patterns to form a new population, progressively selecting the strings with the
highest fitness values in each loop (generation). This process is based on the Darwinian principle of
naturally occurTing genetic operations (sexual crossover and mutation) and survival of the fittest.

® This question is actually not yet answered in biology at the genetic level,
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4.3.1 Representation and fitness evaluation

As stated above, using the GA an optimisation problem is reptesented as a population of bitstrings of
fixed-length. For example, in the “Hamburger Restaurant” problem described in [KOZ92], 2 manager
has to find out the best business sirategy among three binary decisions for his four restaurants;

» Price: Should the price of the hamburger be 50 cents or $10?
¢ Drink: Should wine or cola be served with the hamburger?

o Speed of service: Should the restaurant provide stow, leisurely service by waiters in tuxedos or
fast, snappy service by waiters in white polyester uniform?

In this problem each decision has two possible choices, which can be represented as either 0 or 1.
There are three decisions, therefore a business strategy can be represented as a bitstring of length 3,
and the search space is 2° = 8. This constitutes the representation scheme of the problem, which is
shown in Table 4-2.

Price | Drink { Speed Binary representation
High | Wine | Leisurely 000
High | Wine | Fast 001
| High | Cola | Leisurely 010
High |Cola | Fast 011
Low Wine | Leisurely 100
Low | Wine [ Fast 101
Low Cola | Leisurely 110
Low |Cola | Fast 111

Table 4-2: Representation scheme for the Hamburger Restaurant problem

Since there are only four restavrants, four strategies from the above are randomly selected and
initially assigned to each of the restaurant as shown in Table 4-3. This is called generation 0, or the

initial random generation.




Regtaprant number Price | Drink Speed Binary representation
1 High Cola Fast 011
2 High | Wine Fast 001
3 Low Cola Leisurely 110
4 High Cola Leisurely 010

Table 4-3: Initial random generation (generation ()

The fitness function is a2 decoding scheme that maps i bitstring to a real number. For simplicity, in
this example, the fitness value for each strategy has been made equal to the decimal equivalent of the
bitstring as shown in Table 4-4.

Generation 0
Restaurant String Fitness
1 011 3
2 001 1
3 110 6
4 010 2
Total 12
Best 6
Worst 1
Average 3.00

Table 4-4: Observed values of the fitness measure in generation 0

4.3.2 Selection

In the GA an individual is selected (to form a mating pool or to participate in a sexual recombination)
with a probability p, proportionate to its fitness. For instance, in the population represented in Table
4-4 above, the selection probability of string X; (110) is:

that is, the string X; (110) has 50% chances of being selected.




Applying the GA on the population of generation 0 above, individuals are first selected to form a
mating pool. Since the maximum number of individuals that can participate in the mating pool for our
problem is 4, we expect that string X; (110) will appear 0.5x4 = 2 times in the pool. Similarly we can
calculate the selection probabilities of other individuals in the population: p, (X;) = 0.25, p, (X2} =
0.08, p, (Xy) = 0.17. We expect to see X; and X, to appear once each in the mating pool, while X,
would disappear. The overall fitness of the population has increased (from the previous average of
3.00 to 4.25, and the worst-of-generation from 1 to 2) at the cost of a reduction in genetic variety.
Table 4-5 shows the mating pool created after the fitness-proportionate selection process.

i Mating puol | fiX)

1 011 3

3 110 6

3 110 6

4 010 2
__Total _ 17
Best 6
Worst 2
Average 4.25

Table 4-5: Mating pool after selection

4.3.3 Recombination

Recombination or crossover in the GA is a sexmal operator that selects two parents from the mating
pool and recombines them to fore two new individuals. Parents are selected proportionate to fitness,
or can be based on a uniform random distribution if individuals in the mating pool has already been
fitness-proportionate selected. Crossover allows new points in the search space to be tested. It is
controlled by the crossover probability p., which specifies the percentage of individuals in the mating
pool that participate in the operation. For example, in the mating pool shown in Table 4-5 above,
suppose p. = 0.5, then 4x0.5 = 2 parents will be selected for crossover. (Other individuals are simply
reproduced into the new generation). Since the mating pool has been selected proportionate to fitness,
two individuals can be randomiy selected, for example strings X;(011) and X; (110).




A crossover point is randomly chosen™ betwzen 1 and the length of the string L ~ 1 = 2, Two
offspring are created that contain fragments of the two parents’ strings starting from the crossover
point. In our example, suppose the ciossover point is 2, each parent X; and X; will contribute
fragments 01- and 11-, and give remainders -1 and -0, respectively. An offspring is produced by
combining the fragment of one parent and the remainder of the other. Thus one offspring in our

example will be 010 and the other is 111. A summary of this result for both generations is given in
Table 4-6.

Generation 0 After selection Generation 1
i | String | Fitness Selection Mating | Fitness { Cross | X. | £(X))
1] 011 3 025 | o1 3 2 [ 111 7
2] 001 i 0.08 110 6 2 010 2
3] 110 6 _ 0.501 110 6 - 110 6
4| 010 2 017§ 010 2 - 010 2
Total 12 17 17
Best 6 6 7
Worst 1 2 2
Average 3.00 425 4.25

Table 4-6: Summary of a possible outcome for generations 0 and &

After crossover, the fitness of the new population is evaluated, and the GA is executed again to
produce new generations of individuals untit some fermination criterion (for e.g. an optimal
individual is found) is satisfied. As can be seen from Table 4-6, in our example, the overall fitness
has increased for all the best-of-generation, worst-of-generation, and average, from generation 0 to
generation 1. This example illustrates how the GA can improve the population and individual fithess

from one generation to another.

4.3.4 Mutation

The mutation operator in the GA is only a “background operator” that randomly selects a string in the
mating pool, and randomly selects one single bit in the string to invert. The rate of applying the

19 L ater development of GA introduced the crossover operator, which implemeats different strategies for picking
up the crossover point(s). We do not discuss these strategies in this thesis.

46




mutation operation is controlled by the mutation probability p, € [0,1], which is usually very small
so that mutation seldom happens in the GA. Mutation was introduced into the GA by Holland

[HOL735] to restore the “lost genes” that have become extinct due to the exploitative effect of the
fitness-proportionate selection and cannot be regained by crossover.

4.3.5 Conclusion

Operating primarily on crossover and fitness-proportionate selection, the GA can produce
populations with improved average and individual fitness. Mutation is used as a secondary operator
to restore “genes” that have been lost and cannot be regained by crossover. The GA is typically
executed repeatedly until a termination criterion is satisfied: e.g. an optimal solution is found or a
maximum number of generations is reached. The problem of GAs in particular, or EAs in general, is
optimisation, This is different from ours, which is evolvability. The underlying concepts in EAs,
however, which are based on Darwinian evolutionary theory, are closely related to what we propose.
EAs provide very good examples of how we can use biological evolution as an analogy to develop
powerful methods for solving computing probleins,




Chapter 5 The Multimedia Document
Model (MDM)

We now start describing our own work for this project. As has been pointed out in Sections 2.1, 3.1
and 3.2, the Web was initially designed as a document-centred system. Although it has developed
into a highly interactive system, this feature still holds true, as interactive components are only
embedded objects (or scripts) brought to users by means of documents. The document-centred
characteristic is preserved in our system, and developed in two stages. The first stage models the
traditional paper-based document system. The second stage develops the first-stage model into one
with Web-specific characteristics. In this chapter, the Multimedia Document Model (MDM), the first-
stage model of our system, is described.

5.1 Design criteria

The Multimedia Document Model is designed to satisfy the following criteria:

o Simplicity: simplicity has been one of the key factors of the success of the Web, and is preserved
in our model. Simplicity means that our system is easy to understand and can be used by the




general public. The system should be as intuitive as the current Web so that anyone can use it

without requiring any special knowledge.

» Compactness: compactness means that the number of classes, attributes and methods in a class is
kept to the minimum. Compactness contributes to simplicity since there is less to learn, and also

gives room for extensibility and evolvability.

¢ Completeness: completeness means that the system must cover all existing elements in the

traditional document systermn.

The system also possesses features of an object-oriented system, which are manageability,

reusability, and flexibility.

5.2 The Multimedia Document Model (MDM)

This model is designed based on the current library document system and publishing systems such as
LaTeX [LAMS6], Standard Markup Language (SGML) [SGM86], and Hypertext Markup Language
(HTM1.) [HTM98]. k follows object-oriented design techniques. Figure 5-1 shows the class diagram
of the top level of the model, using Unified Modeling Language (UML) notation [UML98].

disphys o SROSS
Presentation . -~ Docunent Dw g% Material

| 1
composes

0 . ‘tk
StructuralCornponent

Figure 5-1: MDM class diagram - top level

In this model, a document is decomposed into objects, having internal state and well-defined
behaviour. The object’s internal state is defined by a set of attributes and its behaviour by a set of
methods. A document can be viewed in three ways: Structure, Material and Presentation. In the
Structure view (represented by the StrucfuralComponent class in Figure 5-1), the document is broken
up into structural components, such as volume, part, chapter, and section. The Material view
(represented by the Material class in Figure 5-1) accounts for the raw matenals that compose a
document, such as text and graphics (other types of media can be added due to the extensibility
feature of object-orientation). The Presentation view (represented by the Presentation class in Figure
5-1) looks at the various ways (such as table, frame, list, reference entry, and article) information is

presented to human readers.




5.2.1 The MDM classes

This section explains the model according to five major classes: Document {which represents the
whole document) StructuralComponent, Presentation, Material (which represents the three views of
the document) and Publication (which represents a major subclass of document). Figure 5-2 shows

the second level class diagram of MDM.,
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Figure 5-2: MDM class diagram - sccond level

5.2.1.1 Document

A Document object represents the entirety of a publication, and is constructed from the basic building
blocks of StructuralComponent objects. Instances of the Document class correspond to the loosest
form of publication. It is designed to completely cover any type of document in the traditional
document system. These loose types can be, for example, unbounded documents, drafts, letters, or
notes. Objects of the Document branch act as the interface of the Web system for human readers.
Internally they are composed of other objects which may be only StructuralComponent objects
(structured documents), or some StructuralComponent objects and some Material objects (semi-
structured documents), or just Material objects (unstructured documents). The only two atiributes
that require non-null values are the object id, and heading, which underlines the fact that its content 15
semantically complete, that is, it must not contain just fragments of text or graphics which are not

comprehensible to human readers. The heading also serves as a mnemonic identifier to human




reader:, but does not have a significant meaning for the system, and is not required to be unique in

any domain

5.2.1.2 Structure

As the StructuralComponent class inherits the composition relationship to itself from Document, a
StructuralComponent object can contain other StructuralComponent objects recursively. This forms a
fiexibie tree structuce commonly found in paper-based document systems, such as a book containing
many chapters, or a chapter containing many sections. This structure allows for the whole document
to be modified, extended, or truncated on a component basis, without losing the coherence of its
overall structure. StructuralComponent is the generic class for all structural components of a
docurnent, such as volume, part, chapter and section. Since all these structural components share the
same properties and behaviour, it is appropriate to have one single generic class. This design makes
the model simpler and more compact, and gives authors a larger degree of freedom when defining
their own document, since the modei does not differentiate between the various types of structural
component, More importantly, the use of generic classes makes it possible for the system to evolve.
(System evolution is discussed in Chapter 8.)

StructuralComponent objects hold two special attributes: numberingScheme and view,
numberingScheme defines whether a collection of StructuralComponent objects should be regarded
as a sequence (possibly numbered), or a simple unordered ser, and also specifies the format for
numbering them. The system can thus automatically generates numbers for structural components,
reflecting their order and level within the document hierarchy, and formats them according to the
specified numberingScheme. view assigns to a StructuralComponent object some value(s) that
specifies whether that object should be (functionally) included (visible) in the parent object that it
(declaratively) belongs to in the document iree. view allows for dynamic customisation, which will be
explsined in Sections 8.2 aiid 9.4.2. 1t is possible for a StructuralComponent object to have more than
one value for view, so tha! it can be combined with other StructuralComponent objects in different
ways, and different views can be supported for the same set of materials.

5.2.1.2 Presentation

The model also makes presentation components available, by associating objects of the Presentation
branch with those of the Document branch. Presentation is an abstract class from which other
presentation formats are derived. A Document or StructuralComponent object may be associated with

zero or one Presentation objects (at a time), and a Presentation object may be associated with zero or




more objects in the Document branch.’* It is possible to have a repository of pre-defined Presentation
objects for an author (or user) to choose from when designing (or viewing) a document. A Document
or StructuralComponent object can be presented in a number of different formats such as text chunk,
table, frame, list, reference entry, and article. Text chunk is a sequence of one or more ASCII
characters. It is essentially a section of text, with one or more paragraphs. Table, frame, list, reference
entry and arficle, are all defined according to the common sense criteria used in the traditional

publishing industry. Text chunk is the default presentation for an object of the Document branch.

5.2.1.4 Material

Material objects hold the real contents that populate objects of the Document branches. They contain
the unstructured, raw materials that are used to fill in the Document objects or their structural
components. The actual data type of the content will be defined in the offspring classes of Marerial.
In this version of MDM, it can be either text or graphics. This content may be semantically

incomplete, that is, it may not be meaningful to human readers. For
Document 1

example, it can be a fragment of text from a part of a chapter of a
Text |

book. This semantic incompleteness is reflected in the object design

by the fact that no title or heading is required for an object of the

Material branch. Objects of subclasses of Material, which represent
Image | different media types, can therefore be inserted at arbitrary places in

a Document object. This concept is applicable to all media types,

Text 2

although currently, it is meaningful to Text objects only. This design

makes it possible, for example, to have a chapter in a textbook with
Figure 5-3 : Different media 5, jmape inserted in the middle. If the chapter is defined as one
types in a document StructuralComponer:t object, then it will consist of three Material

objects: two broken text pieces and one image (see Figure 5-3).
5.2.1.5 Publication
Publication is the generic ciass for all types of published materials. It generally corresponds to any

publication, normally bounded in size, that can be identified by an international identification

number, usually an ISBN (International Standard Book Number) or an ISSN (International Standard

"It is possible to allow for the association of more than one Presentation object with a Document or
StructuraiComponent object, and to define a scheme to select a suitable presentation. For simplicity, we only

allow the association of at most one Presentation object.
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Serials Number). There are other more specific classes inherited from Publication, designed to
handle specific features of different document types. All of these classes are based on the existing
paper-based document systems found in most libraries. For compactness and simplicity, several
library categories are merged into one single class in cur model:

e Book includes such publications as textbooks, storybooks, manuals (»on-reference), the Bible,
edited books, and picture books. A Book object normally has one or several authors, but all
cooperating in the one work, and typically contains items that are closely related to each other.
For example, ihere are normally references from one section to anotner in a textbook. A book is
typically a non-collective, non-recursive entity. Some exceptions are the Bible, a book of short
stories, or a condensed book, which can all contain other books.

e Serial includes magazines, newspapers, journals, conference procecdings, research reports,
bulletins, and newsletters. They are published periodically and all have some method for
sequential ordering, either by number or by date, and their contents are usually collectively
authored. They typically contain a collection of independent texts or writings, each of which is
complete and comprehensible without the need to refer to or understand other items in the
collection (although they may use other work outside or within the collection as references).
Examples of such texts are articles, technical papers, reports, lecture notes, advertisements, and
notices. A collection of serials can be bound into a volume, identified by a voiume number.

* Reference covers all reference materials, such as dictionaries, handbooks, calendars of ¢vents,
directories, and reference manuals. They normally contain many reference entries, which may be
grouped into sections. Each entry usually consists of 2 reference term and its explanation or
specification. The reference class has a special method, sortEntry().

The design of our model allows the mapping of all existing document types. The Book, Serial and
Reference classes cover most printed materials found in libraries. The Publication and Document
classes account for any other types, both published and unpublished, structured and unstructured.
Each offspring class of Publication is actually a merger of many library categories, and new classes
are created only if there are important properties or methods that need distinguishing from each other,
such as issue number for Serial objects, or sortEntry(} method for Reference objects. The model is
thus both complete and compact, since it covers all document types while the rumber of classes are
kept to a minimum, Simplicity is achieved by compactness, and also by the fact that the model is
based on familiar and well-understood concepts of the fraditional paper-based systemn. This system
has many defacto standards, for instance, those that are used to design the structural and
presentationat classes in our model. This provides a well-founded base, and makes the model robust
in terms of changes and simple to use,




5.2.2 Three views of the MDM

In our model a document is viewed in three ways: Structure, Material and Presentation.

In the Structure view, the document is broken up into building blocks, such as volume, part,
chapter, and section, which are generically represented by the class StructuralComponent in our
model (Section 5.2.1.2). By allowing such a mapping for a structured document, this view gives a
solution to the document structure and document properties (these properties are: structure,
material and presentation) problems mentioned earlier (Sections 2.2.2.1 and 2.2.2.4).
Consequently, other derived issues, namely document management and maintenance (Section
2.2.1.3) and document design and authoring (Section 2.2.1.4) are aiso addressed. MDM does this
by making the structural components of the document accessible, allowing for the document to be
designed, authored, managed, maintained and manipulated structurally on a component basis.

The Material view accounts for the various media types that compose a document, such as text
and graphics (Section 5.2.1.4). Like the structure view, this view addresses the document
properties issue (Section 2.2.2.4), and other derived problems, namely documerit inanagement
and maintenance (Section 2.2.1.3), and document design and authoring (Section 2.2,1.4), This is
done due to the encapsulation of Material objects, which allows them to be created independently
(in some editor), managed, maintained and manipulated on a component basis and according to
their specific media types. The document can also be designed and authored separately from
content (and presentation) details (see also Section 9.7).

Another significant benefit is that Material objects can be reused in more than one document.
This is very useful in a distributed environment such as the Web, where the same materials may
be used in many documents (for instance, a company 10g0), or to produce customised documents.
(Customisation in our system is discussed especially in Sections 8.2 and 9.4.2).

Most importantly, the Material view helps solve the problem of statelessness (Section 2.2.2.6). It
is noted that a document component hierarchy is very similar 10 a parse tree (or a Directed
Acyclic Graph) of the flat representation of a given document, In this analogy, the materials
associated with a document component become the terminals (leaves) of such a tree. In other
words, every object of the Document branch must be “translated”, or “resolved”, to one or more
objects of the Material branch. In this way, the Document oObject can be considered as the virtual
container of system’'s contents, holding only the references t0 Material objects, which keep the
real contents of the system. This allows for virtual contents to be distributed, and makes it
possible t0 retain states at distributed (client) sites. Statefuiness in our system is explained in
detail in Sections 7.2.3 and 7,2.5.2.
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o The Presentation view looks at the various ways information is presented to human readers.
Preseritation is only supported in a very limited way in this version of MDM. Other format and
presentation issues have been intentionally left out for the next version of MDM, or for use with
other mechanisms such as the Cascading Style Sheet (CSS) [CSS98] or Extensible Style Sheet
(XSL) [XSLOO0]. All the offspring classes of the Presentation class, namely, Table, Frame,
RefEntry, Article (Figure 5-2), represent the presentation view in our model. The presentation
view makes it possible to present structural components in different formats, which is useful for
document design, management and maintenance (see Section 9.7), and particularly, customisation
(see Sections 8.2 and 9.4.2).

5.2.3 The MDM and HyperWave

The data model for the Web closest to the MDM is that of HyperWave [(HYP0O], described in
Section 3.2.1. In the MDM, classes of the Document branch are comparable to the abstract
containers in HyperWave, which are Collection, Sequence, MultiCluster and AlternativeCluster.
Here a StructuralComponent object corresponds to a Collection or Sequence (depending on the value
of numberingScheme), and also to a MultiCluster or AlternativeCluster (depending on the value of
view) if the StructuralComponent object contains Material objects only. There are some differences
between the two data models and/or their respective implementation approaches (which will be
described in Chapter 9).

» Like HyperWave, MDM can support both static and dynamic customisation in a similar way,
based on pre~-defined grouping of structural components, or on their view attribute values, or on
some (stored) selection criteria that ar¢ (dynamically) evaluvated against other {possibly
combined) atiribute values. (These are comparsble with HyperWave’s Collection, access
permission and stored query, respectively.)’> Customisation in our system is explained in more
detail in Sections 8.2 and 84.2.

+ HyperWave keeps all objects in the server’s database, while objects in our system are stored as
flat files (or part of such a file) and Document objects can be wholly distributed at client sites.
The use of a central commercial database does offer advantages such as facilitating link integrity

12 A slight difference between the two systems is that in MDM such a customised document always retain its
structure, whereas in HyperWave a stored query returns an unsinmctured Collection, Our approach is based on
the design principle that the infernal data content of a structural component shouid be private to the component,
and user customisation should be carried out on a structural component basis only. We only remark the
difference but do not comment on the advantages or disadvantages of either approach here,
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maintenance and providing built-in search functionalities, but increases complexity and restricts
the openness (public use) of the system. Most importantly, the distribution of Document objects
allows users to keep multiple customised documents at their client sites (as opposed to only one
Home Collection for a HyperWave user). Such distribution has a significant meaning in our
design as has been mentioned in Section 5.2.2 above (and can be seen in the rest of this thesis).

¢ HyperWave does not really capture the presentational aspect of a document in its data model and
is thus limited in providing for presentational customisation (see Section 3.2.1). By contrast, in
MDM, presentation is modelled as a class that is associated with the Document class (and all its
subclasses, such as StructuralComponent). This gives MDM the potential to allow its users to
control not only the global presentation of the whole document (as HyperWave does) but also the
loca presentation of individual structural components.” More importantly, the explicit capture of
the presentational aspect has a significant meaning in the adaptability and evolvability of our
system (see Sections 7.2.5.2, 8.2 and 9.4.2).

5.2.4 Summary

In summary, the MDM inherits the features of flexibility, manageability and reusability from object-
oriented technology. It covers virtually all document types, while remaining relatively compact and
simple. 'This is due to the design principle of using generic classes and a minimal number of attributes
and methods. The three distinguished properties of a document, namely structure, presentation and
material, are identified, and the model is designed to reflect these views. The three vicws together
make the document components accessible in various ways, and allow for the document to be
assembled or disassenibled structurally, its layout suitably controlled for components of different
media types, and various formats presented,

3 When a local presentation directive and a more global one are both effective on a document crmponent, the
effect of one directive on the other may not be the desired one. However, it is not within the scope of this thesis
to deal with these issues (see Section 5.2.2).




Chapter 6 Life Design

The emergence of XML-based formats does nol merely represent a slew of new competitors, but an
ecosystem of interdependent document species.

R. Khare et al. [KHA98}

6.1 Preamble

It can be seen from the problem analysis in Section 2.2 that most problems with the Web relate to the
growth of the Web, both in size (quantity) and in the underlying technologies (quality), over time.
Quantitative growth, characterised by the exponential increase in number of Web documents and
Web sites (Section 2.2), is directly related to the issues of getting lost in hyperspace (Section 2.2.1.1),
violation of referential integrity (Section 2.2.1.2), and difficulties in data management and
maintenance (Section 2.2.1.3). Qualitative growth, as indicated by the changes in HTML and the
addition of a myriad of technologies (Section 2.2.2.2), underlines the design issues discussed in
Section 2.2.2,

It can also be seen that deployment trends in the Web have changed increasingly from static to
dynamic ones (Sections 2.2 and 3.1). The Web is no longer simply a shared information space where
new nodes and their relationships can be recorded (Section 1.1). It is now being used as an
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interconnected space where documents can interact witia each other and with servers and users, and

generate other documents dynamically.

Keys: Y% Message/Interaction

Figure 6-1: A schematic view of the Web

These factors of growth and deployment suggest a new view of the Web. It is not so much a static
network of nodes and links (Figure 2-3), but rather a highly dynamic and rapidly growing body, full
of active objects, constantly changing and interacting with one another (Figure 6-1). Here the basic
dynamic elements are Web document objects, in their interconnected network and interactive

environment with users,

As has been pointed out before in several places (Sections 2.2, 2.2.1.5, 2.3, 3.2.2, 3.4 and Chapter 4)
this characteristic of the Web suggests a solution that can capture its dynamics, or liveliness, and
growth, Taking our modelling approach into consideration {Sections 1.1, 2.3, and Chapter 3) such a
solution must be a data model that can deal with future changes, that is, it can evolve itself in a

systematic way.

Two candidate models have been considered for our problem: the socio-economic model, and nature.
Usiug the socio-economic model as a guide [SMI82, SMI99], ihe Web can perhaps be considered
analogous t0 a community, 2 Web site to a city or village, a Web document to 2 household, and a user
to a citizen. This model may give an approximation to the reality of the Web, but it naturally captures
the Web’s social and economical aspects, rather than the technological one that we are working on.
Besides, its major drawbacks are the complexity inherent in socio-economic-political issues, and the
lack of a well-defined evolutionary theory, which is precisely what is being sought. Nature, on the
other hand, has the compelling advantages of a well-understood and well-established Darwinian
theory on evolution [DARS9, DARGY], and many related scientific evidences (for example, the
discoveries of the gene by Gregor Mendel [COR93], and DNA (deoxyribonucleic acids) by Crick and
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Watson [WATS3]). These provide well-founded knowledge on the mechanisms of biological life.
Here, the Web may be considered analogous to Earth, a Web site to a geographical region, a Web
document to a living organism, a documeni type to a species, and the communities of users and
developers to the environment,

The use of biological metaphors in computer science is not new. About forty years ago, John von
Neumann [NEUSS] made one of the first computers by emulating biological systems. The
components of his computer were designed after organs, and logic gates after the sctivity of neurons.
The Genetic Algorithm (GA), invented in 1975 by Holland [HOL75), benchmarked the first
successful application of Darwinian evolutionary theory in computer science with a simple yet
powerful mathematic model (sce Section 4.3). Richard Dawkins [DAW76, DAW9S5], who is
considered an “astonishingly influential... revolutionary evolutionist” of this time, viewed life as “a
process of digital-information transfer” [SCH95]. Dawkins extends Darwinian evolutionary theory
into a unified one, which transcends the boundaries between natural and artificial evolution (by
considering nature as an information processing system), and reaches into multidisciplinary areas of
psychology, ecology, sociology, taxonomy, culture, and beyond. His ideas have particularly
stimulated researchers of artificial life (a-life) and related fields.

With regard to the use of biological metaphors on the Web, Peter Small [SMA98] presented his ideas
about A-Life Avatar, an artificial host cell on the Internet that can take various forms and behaviour,
depending on the artificial life form that resides in it at one partidular time. The behaviour of these
life forms can be driven by textual commands sent in email messages. In his analogy, Web documents
are viewed as life forms or intelligent agents. In another book, Small speculated on an analogy
between molecules and objects (in object-orientation), with similar message passing mechanisms
[SMA96]. Rohit Khare et al. [KHA98] used the term document species to denote document type in
their WWW7 conference paper, which discussed the advent of XML as an “evolution” of Web
documents. “Evolution” mentioned there, however, was only at the level of observed facts about
changes in document types (in terms of syntax, style, structure and semantics) over time.'*

Work in these areas has inspired, and given many useful insights into the search for a solution to our

problem. In particular, Peter Small’s analogies of molecule-object and life-form—document have

1 Interestingly, it was also during this conference that Berners-Lee talked for the first time about the Web’s
evolvability [BER98)], and our own first papers on this project were presented, proposing the application of
biological concepts for the design of a self-evolving Web [NGU98a & b].
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been used and developed further in our studies (see Section 6.3, in particular, 6.3.]).ls Peter Small,
however, did not consider evolution in his work; and none of the above work has dealt with the
problem of evolvability. An evolutionary mechanism and evolutionary path for artificial life forms
were not identified. The questions posed earlier (see Section 4.3) about what features are required of
an individual or a population for it to evolve itself, and #~w the elements of these features work
together in the course of evolution, have still not been answered.

In this chapter, we explore the many paraliels between the Web and the ecological system in which
life forms exist, interact and evolve. The differences between the two systems are simultaneously
investigated, which help us to learn from nature, the most complex yet perfect system known to us in
terms of evolvability. Section 6.2 summarises findings from relevant biological studies. Section 6.3
presents cur observations of the Web as a “living” entity and shows how object-oriented technology
can be applied to bring “life” to the Web. Missing factors in object-oriented design that are essential
for this task are also identified. Section 6.4 attempts to present these concepts in an accurate way in
Life Design, a software design methodology.

6.2 Biological life

Life is the term used to summarise the activities characteristic of living beings and living organisms,
as opposed to dead ones and inorganic matters. These activities fall into two major categories:
reprogduction and metabolism. Generally an organism is considered alive if it is capable of performing
both reproduction and metabolism [ALB83].

6.2.1 Reproduction

Reproduction is the process whereby a living organism produces its offspring. This is controlled by
genetic information processing through which the hereditary material contained in the
deoxyribonucleic acids (DNA) is passed from one cell or organism to another [ALB83, DENS3,
KOR80].

Gene is the name given to a unit of heredity, found thanks to the work of the Austrian monk and
scientist Gregor Mendel in 1866 (see [COR93]). The gene, which exists in the nucleus of the cell,
consists of DNA molecules {WATS83], which, in turn, contain coded information capable of directing

1 To be precise, Peter Small’s analogy between “life form™ and document is different from ours. In his concept
of A-Life Avatar, a life form is really analogous to an embedded object in a document. In our design, a document
itself is analogous to a biological life form.




the synthesis of specific proteins, and substances that make up the cell itself. A DNA molecule
consists of two strands of four types of nucleotides (subunits of the DNA molecule), linked together
like a twisted rope ladder. The order of these nucleotides determines the order in which amino acids
are synthesised and ultimately all characteristics of the living organism. Through a process known as
template replication, the DNA molecules duplicate themselves during the cell division process to
form two new cells with identical genes. Just before the cell divides, the DNA unwinds and the
nucleotides on opposite strands, which are only weakly bound, pul! themselves apart from their pairs,
exposing two separate single strands of nucleotides. Free-floating nucleotides come to combine with
the nucleotides just separated. When all nucleotides have been paired up, the cell division process
begins.

The discovery of DNA reveals its role as both a model from which specifications of proteins are
defined, and as a manufacturer producing these proteins, which subsequently construct and define the
characteristics of the living organism. The DNA is called the code of life since it defines the type
(species) of the living organism and controls its ¢reation and reproduction.

6.2.2 Metabolism

Metabolism refers to the sum of the chemical processes by which the cell transforms energy to
perform life activities such as reproduction, growth, response to stimuli, and elimination of waste
materials. There are two types of metabolic process: anabolism and catabolism.

Anabolism or constructive metabolism synthesises complex motecules from simpler ones with the
storage of energy. This process is required for the growth and reproduction of new celis and the
maintenance of tissues. Catabolism or destructive metabolism performs the reverse of anabolism, and
breaks down complex molecules into simple ones with the release of energy. This process provides
the energy needed for all external and internal physical activities (including response to stimuli), and
is also responsible for maintaining the body temperature and the degradation of complex moiecules
into waste substances ready tc be removed {ALB83].

6.2.3 Evolution

Evolution is the complex process of gradual change in the characteristics of a population of living
organisms over generations to withstand changes in the environment. The evolutionary process was
not understood uatil Charles Darwin, in his famous book, On the Origin of Species By Means of
Natural Selection (1859} [DARGS, DAR77], enlightened human understanding on the matter. Since
then, Darwinian theory has undergone many studies and there is still much debate on the evolutionary
process. It has been generally agreed, however, that evolution is a process of repetitive selection of
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the fittest (called “survival of the fittest”) among a variety of genes, through reproduction. The
genetic variety comes from the introduction of new genes into the gene pool of a population of a
species, These new genes may be the result of a random genetic combination from each parent in
sexual reproduction, or a series of small gene mutations. (Gene mutations are mistakes in the ordering
of the mucleotide strings when genes are being copied in the reproduction or cell division process.) If
these genetic changes increase the survivability of i3 species, they will be retained through the
natural selection process, and multiplied throughout the population, otherwise they will be
disadvantaged and disappear [AYA79, AYA84, SMI93].

It can be seen that evolution, which starts at individual living organisms, can happen only if the
following three conditions are satisfied: (i) a genetic change to seed the process, (i)} a factor to
provide the driving force for the selection of the fittest, and (iti) a population in which individuals can
connect, communicate and interact with each other to spread the change.

6.2.4 Species and speciation

Species is the basic category in the biological classification systemn, and is an attempt to classify
organisms into groups that reflect the evolutionary processes underlying the similarities and
differences between them. A species represents a distinct type of living organism, with characteristic
shape, size, behaviour and habitat. A species remains stable over a long period of time, Members in 2
species can mate and produce offspring with one another, but do not breed with members of other
species. Closely related species are grouped into a genus (plural genera). Genera are then grouped
into families, families into orders, orders into classes, classes into phyla, und phyla into kingdoms
[JEF78, SMI93].

Speciation is the complex process of forming a new species, and is believed to happen along the
evolutionary process. Speciation probably starts first with extrinsic isolation, where a species
becomes subdivided because of some extrinsic event such as a climatic change or a geographical
separation. Secondly, the isolated population becomes genetically differentiated, possibly because its
individuals multiply more quickly than there are chances to mate with individuals in other
populations. Genetic divergence can happen as a result of natural selection or randomly. Thirdly,
intrinsic isolation, some form of isolation within individuals among the differentiated populaiions,
develops. This could be the resuit of some preferences in courtship or some genetic incompatibilities,
making offspring of mating between individuals of differentiated populations no longer viable or
fertile. Finally, the independence of a species is confirmed when newly separated populations
continue to evolve independently, and may subsequently invade each other’s habitats without
hybridisation [DAR77, SMI93].




It can be seen that speciation is an extreme case of the evolutionary process, where extrinsic and
intrinsic isolation maximises genetic divergence, leading to the formation of new groups whose
individuals are no longer genetically compatible for mating.

6.2.5 Life at the molecular level

The above biological characteristics of life forms can be realised thanks to the support provided at the
molecular level. Our body is made up of cells, which in turn, are made up of what are called organic
compounds, All of these organic substances have one common constituent in their composition,
which is carbon (C), an element that exists in all forms that have life. Carbon possesses two special
features that cannot be found in any other elements [AND62, pp.725-749]:

¢ The first is the ability of carbon to combine with other elements to form numerous complex and
branching chain structures, which are connected together either by skeletal links or as side-
chained functional groups. The presence of a functional group alters characteristic properties of
an organic compouad. The -OH group (hydroxide radical) for example, makes the compound
exhibit characteristics of an alcohol.

+ The second is that the connections between elements may only be weakly bound, They can
unwind to allow for connections to other elements to be made under certain conditions. In a
molecule, a single bond is stronger than a double bond, which in turn, is stronger than a triple
bond.

It is the composition of these compounds and the complex arrangement of their constituent atoms that
create an almost endless variety of cells differing in hereditary components. The weak bindings in
their stracture play a crucial role in all metabolic reactions to form new substances, as well as in other
life processes such as reproduction. The separation of the two strands of the DNA molecule at the
weakly bound base as explained in Section 6.2.1 above illustrates the significance of weak bindings.

6.2.6 Summary

At the molecular level, the element that is central to life is carbon (C), due to its unique ability to
form numerous complex and branching chain structures that are more or Iess stable, but can also be
broken and changed under certain condition. It is the complex ways of combining molecules that
supplies the vast genetic variety in cells, and the flexibility of these links (weak bindings can be
broken and new ones formed) that allows for life processes such as reproduction and metabolism to
take place.
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At the genetic level, life is guaranteed by complex information processing through which
deoxyribonucleic acid (DNA), “the code of life”, controls chromosomes and their genes to be copied
exacily from cell to cell in the reproduction process.

At toe biclogical level, life manifests itself in the capacity to perform two major functional activities,
reproduction and metabolism. Reproduction is the process whereby a living organism produces its
offspring, and is controlled by genetic information processing. Metabolism refers to the chemical
processes by which a living organism transforms energy consumed from outside world to use in
activities such as reproduction, growth, and responsiveness to environment, Metabolism is made
possible through contact with the external environment and an internal network of molecules
interacting with each other via complex chemical r~actions.

Over time living organisms evafve into diversified and modified forms to withstand changes in the
living conditions. It can be said that the evolutionary process, which takes place in each individual
living organism, is enabled by internal genetic change, driven by the external forces of natural
selection, and realised by the population’s adaptation capabilities. Speciation is the extreme case in
evolution, where individuals of genetically differentiated populations are no longer (genetically)

compatible for mating,

6.3 Bringing “life” into the Web

As was pointed out in Section 2.2, Web documents are continually mounted with rich behaviour, and
static contents are increasingly being replaced by highly interactive and dynamic contents. The Web,
as it is deployed nowadays, in this way, bears many resemblances to the living world. The Web space
is populated with Web objects uniquely identified by their URLs in much the same way our planet is
popuiated with living creatures, each of which is a unique entity in the universe. Web objects are
created and destroyed, and similarly, living creatures are born and die. The interconnectivity of the
Web inherent in the Internet ailows for a network of objects communicating and interacting with each
other throngh various protocols; likewise, living creatures make connections, communicate and
interact with each other turough their own standards. And as living creatures respond to the
environment in which they live, so Web objects can also respond to user inputs,

The Web as a whole appears to be a very lively system, but it is not “alive”. In contrast to the Earth’s
inhabitants, who live and thus “breathe” life into the planet, current Web objects never “live”, They
do exhibit some “living” qualities, but being stateless (see Section 2.2.2.6) they cannot grow on their
own, nor can they reproduce themselves. Consequently, Web objects cannot evolve themselves
(withont hunian intervention) and direct the evolution of the whole Web in a systematic way, as
biological living organisms do to their biological world. The analogy between Web documents and




living organisms (introduced in Section 6.1) on the other hand, allows for the design of Web objects
capable of these “life” functionalities (grow, reproduce, and self-evolve). This highlights another
important discrepancy between the two systems. In nature, the evolutionary process happens in a
bottom-up fashion, starting in each individual living entity, whereas on the Web only quantitative
growth (change in the number of Web objects) happens at the object level. On the other hand,
qualitative (technological) changes are made to the Web as a wholg, in a top-down fashion froin the
system level. Examples of these global changes are changes to the HTML tags set, or the emerging
transition from HTML to XML, that affect the whole Web (see Section 2.2.2.2). Changes taking
place at the level of the entire Web will probably result in major alterations (not “evolution” in the
proper sense), and “quick and dirty” additions to existing features. Changes taking place at the level
of individual object will result in gradual development of the whole population, which is the same as
the evolutionary process in the biological world.

_ B_i'{'}l_u;i_ic;i_l world

Each individual is uniquely identifiable Each Web rhiect can be uniquely identified
Individuals populate the earth Web objecis porulate the Web space
Individuals are bormn and die Web objects are created and destroyed

Individuals can interact with each other and | Web objects can interact with each other and
respond to stimuli respond to user inputs

Individuals live in groups or communities | Web objects belong to sites or communities,
where they can communicate with each other | are interlinked on a communication network
through protocols and can communjcate with each other
through protocols

Table 6-1 : Similarities between the biological world and the Web

Biotogical world . . - Web

Individuals are stateful Web objects are stateless

Individuals can reproduce, grow, and evolve | Web objects cannot reproduce, grow, and

themselves _ evolve themselves

Growth, change, and evolution happen at | Growth, change and evolution happen at
individual level system level

Table 6-2: Differences between the biological world and the Web
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Table 6-1 and Table 6-2 summarise the similarities and differences between the biological world and

the Web, respectively.

1f the Web can be regarded as ar entity like Earth, then it is possible to populate it with species. The
class hierarchy in the object-oriented paradigm can be compared to the species hierarchy fn biology.
To bring “life” to Web objects, it is necessary for them to chanye, grow and reproduce themselves.
Observations of biological life provide very helpful input for projecting “life” into our model. This
:- section discusses the requirements for a “living” object. It explains how object-orientation and the
. Web can support this design and where there is still a need for further work. It also points out how

evolution and speciation of these objects are possible in the Web environment.
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Figure 6-2 : (a) Object structure; (b) Molecular structure
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6.3.1 Fiexible modular structure

A “living” object should have a flexible modular structure, This requirement is inspired by observing
the characteristics of the carbon element (see Section $.2.5), the chemical reactions among molecules
(see Section 6.2.2) and the reproduction process at the genetic level (see Section 6.2.1). It is this
structure that allows for an organic compound to change around the flexible connections on a
component basis. In the object-oriented world, things are very similar. Objects are analogous to
molecules, combined in complex arrangements through relationships such as inheritance, association,
and composition. They also possess properties like molecules, and function through a message
passing mechanism like that of molecular messages passing in chemical substances, which trigger
cascades of chemical reactions. This resemblance has also been noted by P-ter Small [SMA96]. In
this respect, modularity can be obtained directly from object-orientation (with some special
considerations, which will be presented in Section 6.4.2.1).

In nature, link flexibility, or in terms of molecular chemistry, chemical bond stability, is the basis of
all life activities. As indicated in Section 6.2.5, it is the weak bonds that allow for the unwinding and
reforming of the two strands of the DNA in the reproduction process, and the numerous metabolic
reactions that happen in an organism. It was aiso observed that there are several levels of chemical
bond stability, which are dependent on the types of the bonds, For instance, single bonds are stronger
than double bonds, which in turn, are stronger than triple bonds.

In object-oriented technology, link flexibility is a concept that has been formalised and impleriented
with such notions as fingl class in Java [DEI98], or readonly attribute in Sather [ST096, SCH91).
Link type, or relationship, however, is still a debatable issue, and does not relate to link flexibility
[HEN97]. The most commonly used relationchips are association, aggregation (or composition), and
generalisation (specialisation, or inheritance) [RUM91, UML98). Even these relationships may be
defined differenfly in differing object systems, and their semantics often does not give enough
information to assign a degree of flexibility for the links of its type. Association, for examyple, may
itself be considered a generic type of many subtypes, such as use, or define. Use, as in the case of
“Calculator uses Memory”, and define, as in the case of “Genome defines Organisin”, however,
would both be categorised as association, but cannot have the same degree of flexibility because of
their semantic differences. While it is possible to remove or replace the Memory instance from a
Calculator instance (to make a non-memory calculator or to upgrade memory), it is not possible to
remove or replace the Genome instance from an Organism instance (because the removal would make
the Organism instance undefined and the replacement wouid lose its identity).
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Formalisation of relationships is not within the scope of this thesis. For the purpose of experimenting
with the concepts proposed in this stody, some levels of link flexibility will be defined in Section
6.4.2.1.3. Figure 6-2 depicts some similarities and differences between the object’s and the
molecule’s architectures,

6.3.2 Genes

In order for an object to reproduce, it must “know” its own specifications. In order to grow and
evolve, it must be able to alter its own specifications. These processes should be carried out during
the object’s lifetime. This suggests a scheme in which the object carries its own specifications,
similar to a protein carrying its own genetic code of life (DNA). This scheme may also be relaxed so
that the object may have access to its specifications without actually carrying them. In either way,
objects can reproduce, change, grow, and evolve by themselves when certain conditions are satisfied
or some ¢vents occur, In a similar way, living organisms reproduce, grow, and evolve in response to
stimuli (Sections 6.2.1, 6.2.2 and 6.2.3). Besides, each individual living organism has its own specific
genes, but all belonging to the same species share the same genome (set of genes). This suggests the
notions of individual gene that is specific to an individual object, and group gene that describe a class
of objects.

The genetic requirement entails that a “living” object must be defined by, and has access to, its own
individual “gene” and group “gene”. Intuitively, an individual “gene” is a special element that is
embedded in, or linked to, an object. The individual “gene” contains the (compact) core information
specific to the object, which is necessary and sufficient for the creation and reproduction of that
object. It controls these (creation and reproduction) and other “life” processes (growth and evolution)
that take place in the object. A group “gene” defines the common features of similar objects,
including the essential functionalities for the objects to perform “life” activities (see Section 6.3.4),
and plays the role of a framework, model, or schema, for the objects it describes.

Under this view we can see the strong parallels between the object-oriented and the biological
worlds. An object is an instance of a class in the same way as a creature is an instance of a genome.
What needs further work in object-oriented technology is to design individual “genes”, to make the
object carry or have access to its “genes”, and to ensure that these “genes” are modifiable and
transferable across objects of the same class (during reproducticn). It is also essential to define
methods for “life” functionalities (see Section 6.3.4). For transferability, “gencs™ are desirably
represented in the most compact form possible.
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6.3.3 Meta-genes

As can be seen in Section 6.2.4, from the genetic point of view, biological speciation happens when
individuals from two populations are no longer genetically compatible, that is, the differences
between their genes have exceeded a certain limit. We do now know of any scientific study of to
what extent such differences will trigger the speciation process, or how to measure these differences.
However, it is not impossible to imagine the existence of a meia-gene that controls the process. This
assumption stands up well when applied to the meta-modelling concepts presented in Section 4.2,
Thus, in the same way that a genome defines an individual, a meta-genome defines a species, a meta-
meta-genome (M2-genome) a genus, and so on. Speciation would start when a genome has so
diverged that it no longer conforms to the specifications defined by the meta-genome. Sirnilar
processes would also happen at higher meta-levels,

The recursive abstraction to higher meta-levels of genes forms a pyramid stnicture in which the
higher the level, the more abstract it is, and the fewer distinct groups it contains, The lowest level at
the bottom of the pyramid, corresponding to the concrete level, is non-abstract (specific) and contains
not groups but (concrete) individuals. The highest level at the top of the pyramid, corresponding to
the union level, is the most abstract, and unifies all groups into one single model. This design, which
we call recursive gene, is reflected fairly well in the biological classification system, where
individuals are grouped into species, species into genera, genera into farmhes, and so on, until there
are only a few kingdoms, and finally one single large group of living organisms (se2 Section 6.2.4).

With regard to the concept of “living’ object, assurning a design for “gene” is in place, it would be
possible fo use meta-modelling technique for the construction of object meta-genes and object genes
at higher meta-levels. Recursive gene design also generally agrees with studies of meta-modelling
(Section 4.2). Rescarchers and practitioners in this field generally accept that four levels of
instantiation are needed to control the evolution of an information system {KOT84, IRD90, UMIL98].
Meta-modelling technology, however, does not have the concept of the union level, which unifies
“the whole world”. In this sense, our recursive gene design extends the architectures proposed and
used in meta-modelling. In our opinion, in practice, the number of necessary meta-levels need not be
restricted to four, but depends on the need to link, unify and cooperate elements across muitiple
heterogeneous and distributed systems.

6.3.4 Functionalities

As has been pointed out in Section 6.2.2, biological life is characterised by activities such as
reproduction, growth, metabolism, and response to stimuli. In addition, a life form must also be born
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(created), evolve, and die (be destroyed). These activities establish the functional requirements in our
design. An object gene must define functions for the “living” object to perform the aforementioned
life activities, Here, object-orientation natively provides for this requirement by wmeans of
(appropriate) methods [RUM9S1].

We have identified a set of genefic functionalities to support the biological life activities
aforementioned (Table 6-3). These form the basic functionalities that an object gene must define, and

a “living” object must perform.
,@nwetic}'fullct:'i';‘nn_:lli__i.'it_:s__ “Life a’cli\.'i-t'.ics_f_ E
N/A Metabolism
N/A Response to stimuli
Self-construction Creation
Self-duplication Reproduction
Self-evolution Evolution
Self-modification Growth
Self-destruction Destruction

Tahle 6-3: Genetic functionalities and life activities
Regarding the life activities listed, we make following notes:

s Metabolism and response 1o stimuli are not supported by life functionalities. This is because
these activities are already natural behaviour of computer software. Metabolism, in the software
engineering context, is analogous to the total of data processing processes in an object by which
inputs (from users or other objects) are transformed into outputs and for use in other software
functionalities (including “life” activities). Response fo stimuli is the production of output in
response (o a given input.

e  Reproduction and evolution are meaningful only in an interconnecting space in which “living”
objects are created, function, interact with each other, and are destroyed.

o It is also noted that growrh requires another condition, statefulness, as explained in Section 6.3.5

below.

6.3.5 Statefulness

Growth is the process of changing from one state to another that is considered an increase or
development. For an cbject to grow therefore, it is necessary that it be. stateful. Object-oriented
technology provides a native way to define object state by a set of attributes and values, and state
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information can be held inside an object [RUM91, UML98]. The cumrent Hypertext Transfer Protocol
(HTTP) on which the Web is built, however, is a stateless protocol (see Section 2.2.2.6). The
question bere is of producing persistent objects, that is, how to maintain object state across Web
sessions. This is an issue specific to the Web and will be addressed in our LifeWeb system (see
Chapter 7, in particular, Sections 7.2.3 and 7.2.5.2)

6.3.6 Evolution

The recursive gene design permits the establishment of an exact evolutionary path. Modelied after
biological evolution (Section 6.2,3), evolution in a system based on our design can be conceptually
described as the process of gradual change over time, from lower to higher meta-levels of genes, on a
population of “living” objects, to withstand changes in the environment.

As has been pointed out in Section 6.2.3, three essential elements have been identified for the
evolutionary process to happen:

e A gene pool with a variety of genes and a supply of new genes
e A driving force to select the fittest gene or set of genes for a given requirement

¢ A population of interconnected and self-reproducing individuals in which the favourable genes
can multiply and unfavourable ones become extinct.

Applying these conditions to the Web, provided that suitable designs for “living” objects, object
genes and object genes at higher meta-levels are in place (that is, they satisfy the requirements
outlined from Sections 6.3.1 to 6.3.5 inclusively), it can be seen that the Web is almost ready as an
environment for the evolutionary process to happen. Here, using the analogy between the ecological
system and the Web mentioned in Section 6.1, the driving forces would be users’ and developers’
requirements. The communication network or which the Web is built provides for an interconnected
space in which “living’” objects, that is, Web documents, interact, reproduce, grow and evolve. The
population(s) of “living” objects (Web documents), each with its own gene, changeable under the
aforementioned driving forces, constitutes the gene pool and is the supply for new genes,

6.3.7 Species and speciation

The formation of a new “species” on the Web would happen as a consequence of the evolutionary
process. Patterned after biological speciation (see Section 6.2.4), and using the same analogy between
the ecological system and the Web as in the previous section, species and speciation on the Web may
be conceptually described as follows:
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Species on the Web, or document species, is a distinct type of Web document, with characteristic
features pertaining to the community or situation from which it is formed, and which remain stable
over a long period of time. Instances of a species are interoperable and compatible at the genetic
level. In terms of our recursive gene design (see Section 6.3.3), their genes are defined by meta-genes
that conform to each other. Instances of differing species, on the contrary, are genetically non-
interoperable and incompatible, and their genes are defined by non-conforining meta-genes.

Speciation on the Web is the process of forming a new type of Web document that no longer
conforms with the type it derives from. This process would start when some extrinsic factor, such as
the formation of a new Web community with rew user requirements, causes the formation of a new
population of Web objects with slightly different genetic traits. Users’ preferences and developers’
needs then continue to diverge, leading to a genetic differentiation among the newly formed
populations. A new species would form when “living” objects (documents) belonging to
differentiated populations are no longer interoperable or compatible at the genetic level. In terms of
recursive gene design (see Section 6.3.3), this means the genome of the new species no longer meta-
genetically conforms to the original one from which it was derived. (It is noted that interoperability
and compatibility between species can still be achieved at higher meta-levels of genes.)

It can be seen that the recursive gene design makes it possible to indicate exactly the level of
compatibility and interoperability between “living" objects.

6.3.8 Summary
_l'illiolt")gical_'.iii‘e e B RS _()h_-ject.-;}-ri.en{e(i technology. )
Species hierarchy Class hierarchy
Species genes Class specifications
Meta-genes Meta-model
| Molecule Object
Molecular links Relationships
Flexible molecular structures Flexible modular structures
Weak/strong links Derivable/final  classes, or  read-
write/readonly attributes
Chemical messages Messages
Cascaded chemical reactions Cascaded reactions

Table 6-4 : Similarities between ohject-orientation and biological life
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Object-orientation is found to have large potential for designing a system with biologically life-like
characteristics. The Web network establishes an interconnected space, necessary for “living” objects
to interact, reproduce, change, grow and evolve. Some new concepts still need to be introduced, and
adjustinents made to cbject-oriented design. The many parallels between biological life, object-
orientation and the Web, however, make it possible for the design of a special object-oriented data
medel, This model, using biological metaphors, promises to capture the dynamic characteristic of the
Web, and address the issues of the Web mentioned in Section 2.2.

I_iit"al.dg'if.:.fall I:!e g . | o i n _(I)l_:j_t.‘c't.-:('ir‘_'ientéti. t._lec_l*jr_lulngl}_‘l .
Individual and species genes Only class specifications
Ap organism contains its own genes An object does not contain ifs own
specifications
Genes in organisms are functional Class specifications are non-functional

Table 6-5 : Differences between object-orientation and biological life

Table 6-4 and Table 6-5 summarise the similarities and differences between object-oriented
technology and biological life respectively.

6.4 Life Design

The observations described in previous sections are used to build a design methodology, called Life
Design. Tt is not within the scope of this thesis, however, to build a formal sofiware design
methodology. This section presents the core features of Life Design based on object-orientation. This
design will be used as the guideline to build and evaluate the LifeWeb prototype (and like systems),
an implementation constructed to experiment with the concepts proposed in this study. All the
biological terminology used in this section is within the context of Life Design, unless otherwise
stated,

Life Design is centred around the elements that constitute natural life at different levels: molecular,
genetic and biological, where each level contributes aspects of structural, genetic, and functional,
respectively, into our design. These ideas are implemented using object-oriented technology. We use
the concepts of object-orientation described in the book Object-oriented Modeling and Design by
James Rumbaugh et al. [RUM91], and later refined in the Unified Modeling Language (UML)

73




[UML981.' Onty minimal features in object-orientation are used to describe the core concepts of Life
Design. This design encompasses two key concepts, life form, or form for short, and gene, which are
explained below.

6.4.1 Object-oriented foundation

We define forms and genes (in the context of Life Design) based on the notions of objects and classes
in object-orientation. A form includes all characteristics defined for an object, and a gene a class.

6.4.1.1 Object and Class

An object represents “a concept, abstraction, or thing with crisp boundaries and meaning for the
problem at hand” [RUM91). (The} CarPGCI123, (the) EngineVIN345, John Smith, MyBook, Chapter!
(of MyBook), are all examples of objects. An object has an implicit unigque identity. It is always
possible to distinguish one object from another.

A class describes a set of objects with similar properties (attributes), common behaviour
(operations), common relationships t0 other objects, and common semantics [RUM91, UML98]. In
this respect, we say that a class defines the type or schema of an object, or conversely, an object is an
instance of its class, For example, the classes for the objects in the above example can be Car,

Engine, Person, Book, and StructuralComponent, respectively. An object “knows” its class.

The notion of class in object-orientation also includes abstract classes, parameterised classes, and
interfaces [LUM91, UML98). For simplicity, Life Design is restricted to non-parameterised, and
instantiable classes (that is, classes that can be instantiated into objects) only.

Entity is a generic term for either object or class.

6.4.1.1.1 Object lifetime

Object lifetime is a new concept that is not defined in object-orientation.

An object comes into existence when it starts occupying some physical space, such as computer
memory or disk space, and acquires its unique identity. An object ceases to exist when this physical
space is (considered) permanently released without replacement, or its identity is permanently lost.
We define object lifetime as the duration of the object’s existence.

16 UML is a cooperative effort between the three leading object-oriented methodologists: Rumbaugh [RUM91),
Booch [BO094], and Jacobson [JAC93], and has become a widely accepted industrial standard,
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In most existing object-oriented systems, an object is typically created direcily into the computer
memory, and its lifetime starts from the time it takes up some memory space and is sssigned a unique
identity, until the time it is permanentiy removed from the memory (and thus cannot be retrieved by
its identity). In a system such as the Web, an object, for example, a Web document, is realised from a
representation {currently its HTML source code) on a disk Its lifetime starts from the time this
representation is instantiated from a document type (in this case, HTML), takes up some disk space,
and is assigned a unique identity (currently a URL). Its lifetiine ends when it is permanently removed
from the Web, or can no longer be retrieved by its identity (for instance, it has migrated to another
space and does not leave any path from the old to the new URL).

64.1.1.2 Properties

The properties of an object are described by a set of attributes. The term artribute refers to a named
slot within a class that describes a range of values that an instance of that class may hold {[UML98].
For example, the attributes for Book are fitle, ISBN, publicationYear, and the valid values for them
are string for title and ISBN, and integer for publicationYear. All objects of the same class share the
same set of attributes (names), but the values for a given attribute are specific to each object, which
may be the same or different for differing chbijects. Each attribute name is unique within a class. An
attribute value should be a pure data value (such as sfring or integer as in the above example), not an
object. Unlike an object, a pure data value does not have an identity [RUM91].

6.4.1.1.3 Behaviour

An object’s behaviour is described in terms of a set of operations. An operation is a function or
transformation that may be applied to or by an object of a class. For example, print, dispiay,
generateTableOfContents, are possible operations on objects of the class Book. All objects of the
same class share the same set of operations. Each operation has a target object as an implicit
argument, and may have additional arguments. A method is the implementation of an operation for a
class. The behaviour of the operation depends on the class of its target. An object “knows™ its class,
and hence the right implementation of the operation. The same operation may apply to a different
class. Such an operation is polymorphic, that is, the same operation can take on different forms in
different classes [RUM91].

6.4.1.1.4 Relationships

Relationships among objects (or classes) are established by means of links. A link is a physical or
conceptual connection between objects (or classes). For example, “Chapterl constructs MyBook”,
“Person owns Car”, “Book is-a Document’, Mathematically, a link is a tuple, that is, an ordered list
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of objects (or classes). Most commonly, it is a pair, that is, a two-tuple. Life Design deals with binary
links (pairs) only. In the example above, the link between Chapter] and MyBook can be
mathematically represented as (Chapteri, MyBook).

A relationship describes a set of links with common structure and common semantics. It does this by
establishing a (new) link between the entities that describe those participating in the (existing} link.
The relationship of a link between two objects is a link between their cotresponding classes. For
example, the relationship of the link between Chapter! and MyBook is “StructuralComponent
constructs Book.” In this respect, we say that a relationship defines the fype or schema of a link, or

conversely, a link is an instance of a relationship.
We introduce the term relation as a generic term for either link or relationship.
Association and generalisation refationships

A relationship is itself a link. As mentioned above, the relationship of a link between objects is a link
between their corresponding classes. In this respect, a relationship may be further described by
another (more abstract) relationship.

The relationships of links between classes are association and generalisation.

] “* Association defines a semantic relationship between classes. An association link between classes,
in turn, defines an association relationship between objects. In this rwpect,- an association link
between classes can be instantiated into an association tink between objects. An association link

must be defined by an association relationship (unless it cannot be abstracted further, as

* explained in Section §.4.1.2). Association (at both class and object levels) can be either of two

categories: (i) Ordinary Association, and (ii) Aggregation (or Composition).

»  Ordinary association is primarily binary and inherently bi-directional. For example, “Car
; (is) Owned-by Person”, or “Person Owns Car” are both examples of association links
between classes. Examples of the corresponding links between objects are, “(the)
CarPGC123 (is) Owned-by John Smith”, and “John Smith Owns (the) CarPGC123.” Life
Design deals only with binary and uni-directional associations, where the single direction
usually implies a subordinate-primary relationship, or direction of navigability (having
access t0). This restriction makes association a transitive (if A is subordinate to B and B
is subordinate to C, then A also is subordinate to C), and asymmetric relationship Gf A is
subordinate: B and B is subordinate to A then A is equal B) between two classes. Between
objects, it is a transitive and antisymmetric (if A is subordinate to B then B is not
subordinate to A) relationship. Association at the object level is thus more restricted than
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the one at the class level. (It does not allow recursive links, that is, an object cannot
associate to itself).

®  Aggregation (or composition) is a tightly coupled form of association, representipg the
“part-whole”, “part-of”’, or “has-a” relationship. Aggregation is a binary, transitive (if A
is part of B and B is part of C, then A is part of C), and asymmetric (if A is part of B and
B is part of A then A is equal B) relationship between two classes. Similar to ordinary
association, aggregation between objects is also more restricted in that it requires
antisymraetry rather than asynunetry. An example of an aggregation link between classes
is, “StructuralComponent constructs Book”, where constructs implies that
StructuralComponent is a part-of Book. An example of a coiresponding link between
objects is, “Chapterl constructs MyBook” In UML [UML98]), aggregation and
composition are two different kinds of association. Composite aggregate (composition)
has stronger “ownership” than shared aggregate (aggregation). For example, an entity
that is part-of a shared aggregate may participate in another aggregate, whereas one that
is part-of a composite aggregate may not. This distinction is not significant in Life
Design, and the terins aggregation and composition may be used interchangeably in this
thesis.

Since aggregation is a special case of (binary, uni-directional) association, it is possible to consider
the part-whole relationship as a specific type of the subordinate-primary one. A mixture of both
relationships therefore, is also transitive and asymmetric (in the sense of a subcrdinate-primary
relationship). They are two disjoint sets, which either individually or together, define a Direcied
Acyclic Graph (DAG) (at the object level) or a DAG with self-loops (at the class level). “Self-loops”
here means an entity may have a link to itself.

The notion of association defined by Rumbaugh [RUM91] and UML [UML98] also includes
gualified association, derived association, association class, constraint, and multiplicity. For
simplicity Life Design does not consider qualified association, derived association, and association
class. Multiplicity and constraints specify semantic rules to be observed, and they are treated in Life
Design in the same way as presciibed by object-orientation. For simplicity, we generally do not
discuss these rules here, except in some illustrations that relate to them.

% Generalisation (or specialisation, or inheritance) defines a taxonomic relationship between
classes only (UML98]. This means, a generalisation link between classes cannot be instantiated
to links between objects, Generalisation is an evolutionary mechanism for classes (see Sections
6.4.2.1, 6.4.24 4, and Chapter 8). It is assumed to be always defined for classes, and need not be
defined further by another relationship. It is a binary, transitive and antisymmetric relationship
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between a more general class and a more specific class. The general class is called superclass,
and the specific one subclass. For example, a possible superclass of Book is Publication.
Generalisation represents the “is-a” relationship, that is, an instance of a subclass is
simultaneously an instance of its superclass. A subclass inherits all the features (attributes,
operations, and association and aggregation links) of its superclass, and may contain additional
features. In this respect a subclass is fully consistent, or conformed, with its superclass. A
subclass can inherit from more than one superclass, in which case the relationship between them
is also called multiple inheritance. The terms ancestor and descendent are used to refer to
generalisation of classes across multiple levels. The generalisation relationship defines a DAG
[RUMP1, UML98), which may also be referred to as the inheritance free.

In Life Design, we consider that the subclass-superclass (generalisation) relationship implies the
subordinate-primary (association) one, and restrict the directions of a mixture of their links so that
they conform to the transitivity and asymmetry of association (and aggregation). That is, if A is a
subclass of B, then B must not be subordinate to A. (It is acceptable if B is primary to A). Thus a
mixture of specialisation, association, and aggregation relationships among classes, can also be
considered transitive and asymmetric (in the sense of a subordinate-primary relationship). They may
overlap, and either individeally or together, define a DAG (specialisation, or association and
aggregation at the object level), or a DAG with self-loops (association and aggregation at the class

level).

Since antisymmetry is more restricted than asymmetry (the former logically impiies the latter), and
this restriction is not important in Life Design, we shall use asyminetry as the generic condition for all
the generalisation, association, and aggregation relationships at both object and class levels, and a
DAG with self-foops as the generic structurs: defined by these relationships,

The definitions of links and relationships here are different from those described by Rumbaungh
[RUM91] and UML {UML98]. In both Rumbaugh’s and UML’s methodologies, a link is defined
only between objects, not classes; and a relationship is only a (abstract) term of convenience without
any specific semantics. Consequently, association and aggregation links are defined between objects

~only (not classes). These differences arise because of a more fandamental difference between Life

Design and traditional object-oriented design: the recursive meta-model architecture (which has been
informally described in Section 6.3.3).

6.4.1.2 Recursive meta-model architecture

The recursive meta-model architecture in Life Design consists of recursive levels of entities and
relations (that is, objects — links, and classes — relationships). In this way, as a relationship can also
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be a link and described further by another relationship, a class can similarly b2 an object, and
described further by another class (in the same way as it describes its objects). In this architecture, in
any two adjacent levels, entities and relations in the higher level define classes and relationships for
entities and relations in the lower level. Equivalently, entities and relations in the lower level are
objects and links to entities and relations in the higher level. We call the higher level the schema level
(relative to the lower level), and the lower level the instance level (relative to the higher level). Figure
6-5 shows an example of such archifecture across four meta-modelling levels. In this figure, the
entities (represented as labelled boxes) and relations (represented as labelled arrows) in diagram (a)
are described by those in (b), which in turn, are described by those in (¢), which in turn again, are
described by those in (d).

There can be many distinct sets of entities and relations at 2ach level, A given set of entities and
relations at the schema level may have zero or more corresponding sets of entities and relations at the
instance level. A set of entities and relations at the instance level may have at mosi une corresponding
set at the schema level. We call the set at the schema level the system schema of the set at the
instance level; or equivalently, the set at the instance level a sysiem iristance of the set at the schema
level, The terms schema and instance may also be used for short, if there is no danger of confusion. If
an instance refers to the schema of its schema, the term mera-schema may be used. If references to
higher meta-level schemata are required, the prefix meta, or M<n>, where <n> is the number of the
occurrences of the word meta, may be added for each successive higher meta-level, For instance, the

word M2-schema is equivalent to the word mera-meta-schema.

We postulate that there is a lowest level in the architecture in which entities and relations cannot be
instantiated further, that is, they form a schema whose instance is an empty set. This level is called
the concrete levei, There is also a highest level in the architecture in which entities and relations
cannot be abstracted further, that is, they form an instance whose schema is an empty set. This level
is called the union level. Graphically, this architecture forms a pyramid structure of schemata, in
which the higher the level, the more abstract they are, and the fewer distinct instances they define,
Schemata af the concrete level are concrete instances. The single schema at the union level is the
most abstract, and unifies all instances into itself.

A system schema defines most classes and relationships for a system instance of it, but not all. Such a
system schema is called the moin system schema, or main schema for short, relative to its system
instance. A system instance may have an entity (and its respective relations) defined in another
system schema. Such an entity is called a hybrid object, its class a hybrid class, and the
corresponding schema a hybrid system scheina, or hybrid schema for short. A hybrid class must be
able to form links with classes in the main system schema. For instance, a hybrid class may be a class
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derived from an existing class in the main system schema, but is not included in the main system
schema. According to our postulation about the union level, hybrid objects are not allowegd at the

level immediately below the union level (because there is only one schema at the union level).

UML defines a similar architecture, called the Four-Layer Metamodel Architecture {UML98 pp.2-4 —
2-5], resembling the ISO/IEC IRDS architecture [IRD90] described in Section 4.2. However, there
are differences between the UML meta-model architecture and that of Life Design.

First, UML does not have the concept of hybridisation. This concept permits entities to
systematically and incrementally evolve themselves, by allowing for a new class to be introduced
into the main system schema, This is done first through one single object in one of its (the main
system schema’s) system instances. Through the Life Design evolutionary mechanisin, the new
class may multiply in other system instances, and if passing the “survival of the fittest” test, will
be propagated to a higher meta-evel (schema). System evolution is explained in Sections
6.4.2.1.3, 64244 and Chapter 8. In contrast, UML meta-incdel architecture can offer
extensibility, but not evolvability.

Secondly, Life Design's architecture is more generic, It defines two generic levels (schema and
instance) and four generic constructs, two for each level (Class and object, relationship and link).
'This makes it possible to apply Life Design concepts on any two adjacent levels recursively and
uniformly. UML, on the other hand, defines levels and constructs specific to its problem. For
instance, the four specific levels in UML are: user objects, model, metamodel, meta-metamodel,
Some of the specific constructs in its metamodel layer are: Class, Attribute, Operation; and in its
meta-metamodel layer: MetaClass, MetaAttribute, MetaOperation. As such, the generic
architecture defined in Life Design may be used as a reference model to describe specific
architectures such as the one defined in UML. This explains the differences between Life Design
and UML in the definitions of links and relationships, In Life Design, they are generic terms

across meta-levels, whereas in UML, they are specific to a particular level.!”

6.4.1.3 Notation

We use the notation defined for UML Class Diagrams and Object Diagrams [UML98] with some

modifications,

¥ Actually, relafionship in UML is only a term for convenience, and does not belong to any level.
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6¢.4.1.3.1 UML notation

Entity Name MyBook:Book
attribute title:String = LifeWeb
atiribute:data_type ISBN:String = 123-456-7890
atiribute;data_type = init_value publicationYear: Integer = 2000
operation p{‘int (filename:String)
operation (arg_list):result_type displayQ)
™ generateTableOfContents(}

(@ {b)

Figure 6-3: UML Class and Object diagrams — (a) General, (b) Object

In UML, an entity is represented as a box with three compartments. The first compartment shows the
identifier of the entity. The second compartment contains the set of attributes (optionally with data
types for aitribute values and initial values). The third compartment holds the set of operations
(optionally with argument lists and result types) defined on the entity. In the first compartment, if the
entity is a class, the class name is shown. Otherwise, if the entity is an object, its nhame can be
optionally shown in the format of <object name>:<class name>. Either or both of the second
(attribute) and third (operation) compartments may be suppressed. Figures 6-3 (a) and (b) show the
general UML notation of an entity and an object, respectively, with all three compartments.

Association Name Legend:
Class-1 Class-2

Association
Aggregation ——¢

Whote Class Name Superclass Name Generalization —>
0.1 L
Discriminator
0.* | ]
Part Class Name Subclass-1 Name {[ Subclass-2 Name| { Subclass-3 Name

Figure 6-4: UML Class diagram (with relationships)

A relation is shown as a line (association), or an arrow of a distinct shape (aggregation and
generalisation) (see Figure 6-4). Relations are optionally labelled. When shown, a 1abel corresponds
to an association name (for an association), or a discriminator (for a generalisation), which is the
name of a partition of subclasses. Aggregations are not named. (Se¢ Figure 6-4). An association may
also have a role name at each association end (not shown in Figure 6-4). Role names are treated in
Life Design as they are in chject-orientation, and are not discussed here.
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6.4.1.3.2 Life-UML noiation

Unlike UML, in Life Design both entities and relations always have labels. A label is in the format
<instance>:<type>, where <instance> is the name of the object or link, and <type> is the name of the
class or relationship, respectively. (For example, the entity labels in Figure 6-5 (a), (c), and (d), or the
relation labels in Figure 6-5 (b), (c), and (d)). If the names for both <instance> and <type> are the
same, then only one of them may be shown (for example, the relation 1abels in Figure 6-5 (a)). If all
objects have the same class, then the entity Iabels may be abbreviated to <instance>, and the common
class name is shown in a separate box in the format of :<type> (Figure 6-5 (b)). If there is no type
defined for an entity or a relation, the default type, “Any”, is used (for example, the entity and
relation 1abels in Figure 6-5 (d)). In a given class diagram (with relationships), an entity 1abel is
naturally unique, but a relation 1abel may be repeated.

A relation in Life Design is always shown as a labelled, uni-directional arrow. Since a link label
includes both the link name and relationship name, it is not necessary to use arrow shapes to
distinguish among different relationships., By convention, however, the different arrow shapes are
still used as they are defined in UML, except for association, which is represented in Life Design as a
plain arrow (instead of a line as in UML), as shown in Figure 6-5. The directions of aggregation and
specialisation links are the same as those in UML. The direction of an association link is from
subordinate (tail) to primary (head) (Figure 6-5). A link can be either flexible, which is indicated as a
dashed arrow, or inflexible, which is indicated as a solid arrow (see the Legend in Figure 6-5). The
fiexibility of a link is dependent on its semantic, and described in its relationship. A dashed line
under a relationship label (link label between classes) indicates that the corresponding link (between
corresponding objects) is flexible. Otherwise, a solid underline on a relationship label indicates an
inflexible link (Figure 6-5 (3), (b), (c), (d)).

Life Design incorporates recursive levels of meta-modelling (see Section 6.4.1.2). For this purpose, a
box with a double-lined border indicates that an entity cannot be instantiated further, and similarly, a
double line under a relation 1abel means the same for a relation (Figure 6-5 (a)). On the other hand,
the default type “Any” indicates that an entity or link cannot be abstracted further.

82




E MyBook:Book ﬂ

'- ’ “

r ChaplPres Presentauon l Chap2m-Mateﬂﬂl :
e ps———— ,_ L_,..________,._._____
() concrete level (M0) :

. 0.* I
builds:hasa ]
13 i
.:__-:: : 0"* . .
a Presentation | conyrrucischass Material

i | twpe;isg i

1.* ;.

Struct

: :Class
0.*

{b) meta-concrete level (M1) 3

asn:relation ;

— ] Entity:Any 3

* * -

_ 0"2-‘ Class:Entity l‘f__ I fli 7E 3
0.> relation:Any ~ I@:Any .
® | isa:Any hasa;relation

{d) meta-meta-meta-concrete level (M3) ]

] () meta-meta-concrete level (M2)

[ Legend: .‘ ::'_:

Flexible refation Inflexible relation

E Generalization (isa) —————— > >

i Aggreation (hasa) = e~—ee-e- ¢ —_— -__,

i Association {(asn) e —_—
Fiexible link - <link pame.relationship name>
L E Inflexible link <link name:relationship name> :
Non-instantiable relation 1
e j
.‘ Figure 6-5: Examples of Life-UML diagrams across four levels of meta-modelling :_

83 ;




S A

6.4.2 Life Design constraints

This section defines form and gene, the two key concepis in Life Design.

A form possesses all the characteristics of an object. Either an object or a class (considered as an
object relative to the next higher meta-level) can be a form if it satisfies the following four
constraints: structural, genetic, stateful and functional,

6.4.2.1 Structural constraint

The structural constraint is modelled after the molecular structure. It requires that a form should be
recursively decomposed into a flexible modular structure of forms, connecting with each other via

links, unless it is glomic.

6.4.2.1.1 Flexible modular structure and links

A form’s structure is constructed by a set of (component) forms and their links, The relationship of
the links between forms (in such a structure) is called subform. Subform is a transitive and
asymmetric binary relationship between two forms. Subform relationship defines a Directed Acyclic
Graph (DAG) with self-loops.

If a form [/ is in a subform relationship with m, we call [ a subform of m, or equivalently m a
superform of 1. For instance, in the example in Figure 6-5 (a), Chapl:Struct is a subform of
MyBook:Book, and conversely, MyBook:Book is a superform of Chapl:Struct. Mathematically, a
subform link is represented as a pair, for example, (m, [), where m is the superform and [ is the
subform. It is noted that the names of the relationship and the thing (in this case, form) participating
in that relationship are the same (subform). Usually the context clears any ambiguity. If precision is
required, the phrase subform relationship is used to explicitly indicate the relationship.

Subform is a purely structural relationship and is realised by the association, aggregation, or
specialisation relationships (described in Section 6.4.1.1.4). This realisation is possible since subform
has the same generic structure as any of those relationships, or any combination of them. If a subform
relationship is realised as an association or aggregation, it is called a first-order subform
(relationship). Otherwise, if it is realised as a generalisation, it is called a second-order subform
(relationship}. Subform (or superform) from now on will be used as a generic term to denote ¢ither a

first-order or second-order subform (or superform).
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We also call a subform that is immediately below a form a (first or second-order) direct subform (of
the given form). That is, if 4 is a first-order (or second-order) direct subform of B, then there is no
intermediate first-order (or second-order) subform between 4 and B. A form has access to its direct

subforms, for instance, by embedding or containing references to them.

Figure 6-6: First-order and second-order subform relationships (without multiplicity)

In this way, at a pa;ticular meta-modelling Ievel, the set of first-order subform links defines the
relationships for the corresponding set of first-order subform links at the lower level, if any. The set
of second-order subform links, if any, forms an inheritance tree and defines a mechanism to evolve
the entities and links at the current level (see Sections 6.4.2.1.3, 6.4.2.4.4 and Chapter 8 for
evolution). Graphically, a second-order subform may be seen as being elevated on another plane

(Figure 6-6).

Since these two sets (first 2nd second-order subform links) may overlap, we define that if a link
belongs to both of them, it is considered as belonging to the first set only. This rule is established
because in this case, a generalisation link may be simply considered as a “short-cut” way to include
the inherited association or aggregation links in the form at the subclass end. In this sense, the
taxonomic semantics of the generalisation link becomes unimportant. For instance, in Figure 6-6 the
generalisation link (type:isa) between (Document.Class, Struct: Class) may be replaced by two links
displays:asn and builds:hasa between (Presentation:Class, Struct:Class) and (Material:Class,

Struct:Class), respectively.

The set of (first, second, or all-order) subform links emanating from a form constructs the set of (first,

second, or all-order) subform links in that form. For example, in Figure 6-6, the set of first-order




subform links in Document:Class is {(Document:Class, Presentation:Class), (Document:Class,
Struct:Class), (Document:Class, Material:Class), (Struct:Class, Struct:Class), (Struct:Class,
Presentation: Class), (Struct:Class, Material:Class)}. The set of its second-order subform links is
{(Document:Class, Publication:Class), (Publication: Class, Book:Class)}.

A form is said to have the capacity to form a {first, second or all-ovrder) subform link (or the capacity
10 be a first, second, or all-order subform of some form) if there is a corresponding (first, second, or
all-order) subform relationship defined for it in the higher meta-level, and semantically this capacity
can be used. A form does not have this capacity when at least one of these conditions is false. For
example, in Figure 6-5 (a), Chapl:Struct has the capacity to form a first-order subform link since
there is a corresponding first-order subform link for its class, that is, (Book: Class, Struct: Class). (The
link between Struct; Class and itself also gualifies for this). MyBook:Book, on the other hand, does
not have this capacity, since there is no link defined for Bonk:Class in which it is a first-order
subform. Also, Book:Class does not have this capacity, although there are two first-order subform
links between Class:Entity and itself (Figure 6-5 (c¢)). This is because semantically, Book:Class
cannot be a first-order subform of any form.

6.4.2.1.2 Atomic form, root form, living organism, and free form

Given a set of forms, all connecting with each other via the subform relationship:

We postulate that there exists in the set at least one form which either does not have any subform, or
has only itself as a subform. In the first case, the form is called afomic. In the second case, it is called
recursive atomic. For example, in Figure 6-5 (a), ChapITxi:Material, ChaplPres: Presentation, and
Chap2Txt: Material are atomic. In Figure 6-5 (b), Presentation: Class, and Material; Class are atomic,

and Struct: Class is recursive atomic.

There must exist in the set at most one form which is nejther a first nor a second-order subform of
any other form (except itself), and does not have the capacity to be a first-order subform of any other
form (except itself). Such a form is called the root form. There also exists in the set at Jeast one form
which is not a first-order subform of any other form (except itself), and does not have the capacity to
be a first-order subform of any form (except itself). Such a form is called a subroot form. (This
implies that if there is only one subroot form in a given set, it is the root form). For example, in
Figure 6-5 (a), MyBook:Book is the root form (and also the only subroot form). In Figure 6-6,

Document:Class is the root form, and Publication: Class and Book: Class are both subroot forms.

The set itself is called a living organism, or organism for short. An organism contains, and therefore,
has access to all forms in its set.




A form that exists outside an organism is a free form. This implies that a free form has the capacity to
be a subform of some form, and none of that capacity is used. A free form may be a form
disconnected from its organism, or created elsewhere.

The condition that a root or subroot form does not have the capacity to be a first-order subform of any
other form ensures that an organism always represents the whole of a system described at the higher
meta-level. For instance, in the example shown in Figure 6-5, it is not possible to take any subset of

the set of forms shown in the diagram in (a) to construct an organism.

6.4.2.1.3 Link flexibility

Link flexibility is an attribute of a subform link. There can possibly be several degrees of link
flexibility. For simplicity, we specify only two of them: flexible and inflexible. A flexible link can be
removed or added during the lifetime of the participating forms (possibly under certain conditions or
constraints), and an inflexible link remains throughout their lifetime, The “emoval and adding of
flexible links are carried out via the genetic functions, which are explained in Section 6.4.2.4.3. There
must exist at least one flexible link in an organism.

The value of link flexibility is dependent on the semantics of the link, We require that a first-order
subform link may be flexible only at the concrete level. A second-order subform link is always
flexible with the constraint that the addition of a second-order subform link also adds a new form (to
a given organism), and the removal of such a link also removes an existing form (from a given
organism).’® In object-oriented terms, this means that a class cannot change its superclass(es),”” but
the class inheritance tree can be extended or shrunk. In this way, generalisation or secund-order
subform relationship defines a systemn evolutionary mechanism (see Section 6.4.2.4.4 and Chapter 8).

We call the set of all flexible subform links emanating from a form the set of flexible subform links
in that form, The set of inflexible subform links in a form is the set of its subform links subtracted by
the set of its flexible subform links,

18 This constraint implies that if the form being removex has second-order subform links with other forms (as in
the case of muitiple inheritance), these links tcio, have to be removed,

" This is because due to the semantic of the generalisation relationship, removing or adding a superclass alters
the internal definition of the subclass. The internal definition of a class hiere is understood in the enfirety of the
class, which consists of its attributes, methods, including inherited ones, and its “subordinate”™ (in the generic
sense explained in Section 6.4.1.1.4) classes.




6.4.2.2 Genetic constraint

The genetic constraint is modelled after the same constraint in biological life forms. It requires that a
form should have an individual gene and a group gene, and have access to its own genes and main
genomes (see Figure 6-7). (It is noted that if the form is not a hybrid, having access to its main
genomes also provides access to its own genes).

® e goup

-
group —" o o {class) gene
{chss) penome . e

individual
{object) zene .
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Figure 6-7: Genctic constraint (connections between forims or genes not shown)

Intuitively, an individual gene is a representation of the (specific) form it describes. For this purpose,

we introduce the notion of object representation, which is also applicable to objects, as below,

6.4.2.2.1 Object representation

Object representation is a new concept in Life Design.

An object may have one or several representations. For example, the object MyBook may be
represented as MyBook(Title: LifeWek, ISBN: 123-456-7890, PublicationYear: 2000, Contents:
Chapterl, Chapter2), or as an electronic image in the computer memory, or both. We call these
object representations, or representations for short (if there is no danger of confusion). The object is
presented to the world in one and only one of these representations. We call it the final object
representation, or final representation for short (if there is no danger of confusion). The process of

creating a specific representation, with a unique identity, for an object from its class is called

instantiation. The process of mapping from a representation to the final representation is called
realisation. (These two processes will be defined in more details in Section 6.4.2.4.1). If an object

has only one representation (thus it is final), then its representation need not be realised.




The choice of the final representation is dependent on a given problem. For example, in a system
analysis problem, the final representation for an object may be in some notation such as in the first
example above. In a system implementation (computer application), on the other hand, it may be an
electronic image in the computer memory as in the second example.

A notable object representation is the sytactic object representation or syntactic representation for
short (if there is no danger of confusion). A class describes its objects in a machine-understandable
language. We call such a description for a specific object a syntactic representation. The first
example above, in which MyBook is represented as MyBook(Zitle: LifeWeb, ISBN: 123-456-7890,
PublicationYear: 2000, Contents: Chapterl, Chapter?2), illustrates a syntactic representation for
MyBook. In this example, the class Book describes its objects as Book(Title, ISBN, PublicationYear,
Contents). A syntactic representation is static, textual, declarative, and typically more compact than
other representations.

We also call the representation of an object in the computer memory a functional object
representation, or functional representation for short (if there is no danger of confusion). In most
existing object-oriented systems, an object is instantiated from its class directly into the computer
memory. In this case, the functional representation is its only representation, and the syntactic
representation is not required. (To be more precise, the syntactic description of the object is
interspersed with that of its class and program code. For this reason, it is not a whole and is not
considered a syntactic representation). In a system such as the Web, an object, for example, a Web
document, has its (currently) HTML source code as its syntactic representation,

6.4.2.2.2 Gene

A gene describes its form(s) in terms of its (or their) features (properties, behaviour, and direct
subform relationships), including inherited ones. (Implementation-wise, second-order superforms
may, and should, be included in a gene insiead of an explicit listing of all inherited features.) A gene
must exist during the whole lifetime of the form(s) it describes. (This means, a form exists implies
that its gene exist.) A gene must satisfy all constraints applied on a form, that is, a gene itself is a
Sform, Tt is desirably and typically more compact than the form(s) it describes. There are two types of
genes:

¢ Object gene is a description of an individual form (in terms of its features). It contains the

information necessary and sufficient to realise the form it describes.

o (lass gene is a description of a set of similar forms (in terms of their common features). It
contains the information necessary to instantiate the forms it describes. This information can be
vsed to create the object gene for a particular form, with the supply of attribute values and
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subforms specific to the form being instantiated. It can also be used to validate a given form, for
example, to check the form’s type (see Section 6.4.2.2.3 for validation rules).

(Fene is a generic term for either object gene or class gene.

In this respect, an object representation of a form {see Section 6.4.2.2.1) can be the object gene of
that form, and its class its class gene, if they (i) exist during the whole lifetime of the form, and (ii)
satisfy all the constraints on form.,

The first condition implies that the choice of the gene is dependent on the (predetermined) lifetime of
the form. For example, if a form is an object in a computer application that lasts only during the
execution time of that application, then its object gene and class gene can be the functional
representations of itself and its class, respectively. If a form is a Web document that lasts from the
time its syntactic representation (HTML source code) is created and assigned a URL until the time
this representation is removed, then its object gene and class gene can be the syntactic representations
of itself and its class, respectively.

The second condition means that a gene must satisfy the following constraints:
Structural constraint

A gene has the same structure that a form has (see Section 6.4.2.1). Given a set of genes, all
connecting via the subform relationship, the equivalent of an atomic form and recursive atomic form
(in a similar set of forms) are called atomic gene and recursive atomic gene, respectively. An atomic
gene always generaies an atomic form. The equivalent of root form and subroot form are called root
gene and subroot gene, respectively. Only a subroot gene can generate a root form. The equivalent of

organism is genome. These terms are applicable to both object genes and class genes.,
Genetic constraint

In the same way as a form, a gene must have its own object gene and class gene, which are accessible
to it. An exception to this is a gene that cannot be abstracted further, for example, one at the union
Ievel, Such a gene is cailed an ultimate gene.

A class or an object representation can satisfy this genetic requirement in the recursive meta-
modelling architecture described in Section 6.4.1.2:

¢ A class is also an object (in relation to its own class at the next higher meta-lever), which can
have its own object representation that can be its object gene. Its class gene can be its own class
(meta-class). That means, a class in the Life Design recursive meta-modelling architecture ¢an
satisfy the genetic requirement to be a class gene.
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* An object representation has the same class as the object it describes. That means, its class can be
its class gene. It does not need its own representation (being a representation itself), but in order
to satisfy the genetic constraint, we can consider it the representation of itself, that is, it is the
object gene of itself. Thus, an object representation in the Life Design recursive meta-modelling
architecture can also satisfy the genetic requirement to be an object gene.

The genetic constraint constructs a recursive gene architecture like the recursive meta-modelling
architecture described in Section 6.4.1.2. In this architecture, in any two consecutive levels the
instance level consists of forms and links (represented by their object genes); and the schema level,
class genes and subform relationships (represented by their class genes). The term genetic level (and
hence, meta-genetic, M2-genetic, and so on) may also be used interchangeably with the terin schema
level. The equivalents of the terms hybrid object, hybrid class, hybrid schema, and main schema are
hybrid form, hybrid gene, hybrid genome, and main genome respectively.

6.4.2.2.3 Validation rules
The recursive meta-modelling architecture in Life Design allows the establishment of a set of rules to

conveniently validate an organism against its main genome and hybrid genomes. These ruies can
easily be checked in Life-UML diagrams.

Rule 1 (Unique gene). Given a set of organisms and a set of genomes, For each entity (form) at the
instance leve), there must exist one and only one corresponding entity (gene) at the schema level.

Rule 2 (Unique entity). Each entity, represented in a Life-UML diagram by its box label, in an

organism of a genome is unique.
Rule 3 (Relationship beiween gene and form).

Rule 3.1. Given two forms A and B of an organism O. A is a first-order direct subform of B in one of
association or aggregation if and only if the gene of A is also a first-order direct subform of the genc
of B in the respective relationship. This relationship (between the genes) may be inherited.

Rule 3.2, If a gene is atomic then its form is also atomic. (It is noted that the reverse is not true, An

atomic form may have a non-atomic gene which has an optional subform.)
Rule 3.3. A form is a root form if and only if its gene is a subroot gene.

Stateful and behavioural constraints are exactly the same for genes as they are for forms, which are
described below,
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6.4.2.3 Stateful constraint

The stateful constraint requires that a form should have a persistent state that can change.

In Life Design, the state of a form consists of its internal state and relational state. The internal state
is defined by the set of attribute names and values of the form. The relational state is defined by the
set of both first and second-order subform links of the form.

The function to change a form’s state is called self-modification, which is defined by its class gene
(see Section 6.4.2.4).

1t is noted that, since an object gene is an exact image of a form, the state of a form is equivalent to
that of its object gene. Furthermore, since an object gene must also be stateful (whereas other object
representations of a given form may not be stateful), the stateful requirement on a form is practically
applied on its object gene, the “persistent representation” of the form. That means, when considering
the statefulness of a form or an object gene, it is sufficient (and practical) to consider it on the object
gene and the object gene only.

6.4.2.4 Behavioural constraint

A form must support the following functionalities: self-Construction, self-duplication, self-
modification, self-evolution, and self-destruction (Section 6.3.4). These form the set of genetic
Sfunctionalities.

6.4.2.4.1 Self-construction

Self-construction consists of two operations for creating a form from its class and object genes.
Instantiation

Instantiation is an operation that, from a class gene, creates an object gene for a specific form, with a
unique identity, and specific features (aitribute values and direct subforms), which are given as
parameters, or generated internal'y by the operation itself, or set by default.

Instantiation implementing the first approach takes as parameters, attribute values, and references to
the direct subforms of the object gene being created, and assumes that these subforms are already
created. Instantiation implementing the second approach takes attribute values internally computed or
directly (hard} coded in itself, and recursively generates the object gene for each direct subform of
the current form. Instantiation implementing the third approach takes, from the class gene, default
attribute values and default references to the object genes of s direct subforms (which may also be
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null). A particular implementation of the instantiation operation may combine all three approaches in
different ways.

A definition for the instantiation operation that implements the first approach is:

Instantiation is an operation defined on a class gene g belonging to a class genome G,
that takes as arguments a set of attribute values and a set of object gene references. It
generates a new object gene g, (for a form I) based on g, whose properties are
assigned to the given attribute values, and direct subforms are assigned to those

referenced by the given object gene references.

In existing object-oriented applications, a constructor is an approximate implementation of the
instantiation operation. The only difference between a constructor and an instantiation method is that
the constructor does not create an object gene, but the final representation, for the object being
instantiated.
Realisation

Realisation is an operation defined on an object gene g, that maps g, to the final

representation of L.

In most existing object-oriented applications, the functional representation is the only and final
representation of an object, thus realisation is not necessary, In systems where a form has more than
one representation, it may be instantiated once but realised many times during its lifetime. For
example, the HTML (or XML) source code of a Web document (object gene) may be authored
(instantiated) only once, but the document itself (form) may be displayed (realised) many times on a
client’s machine,

6.4.2.4.2 Self-duplication

Duplication of a form / is an operation that produces a new form !’ identical to /, but different in
identity, If the form has more than one representation, this is done via the form’s object gene, A
definition of the duplication operation for a form that has an object gene is:

Duplication is an operation defined on a form [ in an organism O, that retrieves its
object gene g, and produces an object gene g, identical to g, but different in identity.
It does this by recursively duplicating g, and each of its direct subform. It then
realises a form I’ from g, (which is identical to I but different in identity). Duplication
may take, as parameters, some space references which the new form and object gene

will occupy.
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In most existing object-oriented applications, this operation is called deep clone. If the form to be
duplicated has only a functional representation, the cloning process happens entirely in the computer
memory. If the form has, or is, an object gene, the object gene is also duplicated.

6.4.2.4.3 SeXf-modification

Self-modification consists of operations for adding or removing subform links in a form (changing its
relational state), and for changing its internal state. If the form subject to modification is at a level
higher than the concrete level (that is, it is also a class gene), such addition or removal may have a
chainied impact on related forms (on the same level), or instances that it defines (on the lower level).
A class gene is said to be free of dependency if this is not the case. That is, if it can be safely added
or removed without affecting the internal structure or behaviour of related class genes and forms, We
introduce the concept of dependency clearance, applicable to classes (hence, class genes) below.

Dependency clearance

Dependency clearance ensures data and schema consistency when a system (for example, a genome
and its corresponding organism) is changed (for example, as a result of system evolution).

Schema dependency
A class is free of schema dependency if and only if:
¢ It is a leaf node in the class inheritance hierarchy, that is, no class is derived from it, and

+ [t cannot participate in an association or aggregation link with any class in which it is a
“subordinate” (in the generic sense explained in Section 6.4.1.1.4). In implementation terms, no
objects of other classes should hold a variable of its type. It is possible, however, for it to
participate in an association or aggregation link as a “primary” (in the generic sense explained in
Section 6.4.1.1.4). It is also possible for it to have a recursive link to itself,

Clearance of schema dependency is necessary to easure schema consistency while the system

evolves.
Instance dependency

A class is free of instance dependency if and only if its instances cannot be found in any instance of
any class in the entire system. Clearance of instance dependency is necessary to ensure data

consistency while the system evolves,




Dependency clearance

A class is said to be free of dependency if and only if it is free of both schema and instance
dependency.

AddLink

AddLink is an operation that establishes a link between two forms. If the form has more than one
representation and the new link is to be made permanent, a corresponding link is also estahlished
between the object genes of the two forms. A definition for AddLink is:

AddLink is an operation defined on a form ! belonging to an organism O, that takes as
argument a form m, and adds a new pair (m, I) (or (I, m), depending on whether I or
m is the subform) to the set of flexible subform links in m (or ). m can be a free form
or a form within O. If the change is permanent, the object gen= of | is also retrieved
(from [) and the same change is made on it.

The following conditions must be satisfied: -
e [ and m have the capacity to form a flexible subform link with each other

¢ Such formation of a subform link between ! and m does not violate any mles and constraints
defined in the association, aggregation or generalisation link that is used to realise the subform

link (see example below),

¢ Such formation of a subform link between [ and m does not violate any Life Design constraints.
For instance, in the example shown in Figure 6-5 (a) and (b), suppose that there is a free form
RumbaughBook:Book. 1t is not possible to create a subform link between this form and
Chap2Txt:Material, for instance, even though forms of types Book and Material have the
capacity to construct a flexible subform link, and such a construction does not violate any rules
defined at the schema level. This is because forming such a link would violate the structural
constraint in Life Design that there is only one root form in an organism (see Section 6.4.2.1.2).

RemoveLink

RemoveLink is an operation that removes an existing link between two forms. If the form has more
than one representation and the change is to be made permanent, the corresponding link is also
removed between the object genes of the two forms. A definition for RemoveLink is:

RemoveLink is an operation defined on a form [ belonging to an organism O, that
takes as an argument a form m belonging to O, and subtracts the pair (m, I) (or (I, m),

depending on whether I or m is the subform), if exists, from the set of flexible
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subform links in #2 (or I). If the change is permanent, the object gene of i is also
retrieved (from J) and the same change is made on it.

The following conditions must be satisfied:
¢ The pair (m, I) (or (I, m)) are in a flexible subform relationship

¢ Such a removal of the subform link between I and m does not violate any rules and constraints
defined in the association, aggregation or generalisation link that is used to realise the subform
Hlink, For instance, in the example in Figure 6-5 (a) and (b), it is not possible to disconnect both
Chapl:Struct and Chap2:Struct, because a form of type Book must always contain at least one
form of type Struct.

e Such a removal of a subform link between ! and m does not violate any Life Design constraints

(see example above).
¢ The form to be removed is free of all dependency.

The removal of a subform link may exclude a form (with its subforms) from its organism, if that form
does not have any other subform links. Such a form may be considered permanently destroyed (cecase
to exist), or become a free form, depending on the rules specified in its gene. For instance, in the
example shown in Figure 6-5 {a) and (b), if Chapl:Struct is disconnected from MyBook: Book, it is
destroyed, because according to the multiplicity constraint between Struct: Class and Book:Class, a
form of type Sfruct cannot exist outside an aggregate of a form of type Book or Struct. If a
disconnected form is destroyed, its direct subforms also become disconnected, and may be destroyed
or become free forms in the same way. If a disconnected form becomes a free form, it retains all its
subform structure.

A free form may be connected or reconnected with a form in the organism via a flexible subform link,

using the AddLink operation.
StateChange

StateChange is an operation that modifics the attribute value of a given attribute in a given form. A
definition for the StateChange operation is:

StateChange is an operation defined on a form ] that takes as parameters an attribute
name and an attribute value, and assign one (value) to the other (name) in the given
form. If the change is permanent, the object gene of | is also retrieved (from I) and the

same change is made on it.




It is also possible to have a set of StateChange operations defined for each attribute name of a given
form, that takes as pzrameter an attribute value and assigns it to the attribute name being operated on.

In existing object-oriented systems, methods that implement the StateChange operation are called
mutators, It is also convenient to define the comresponding accessors, which are methods that retrieve
attribute values for given attribute names.

6.4.2,.4.4 Self-evolution

Self-evolution is an operation defined on a form that belongs to an organism in a set of organisms of
the same class genome. It conditionally propagates an evolutionary change from the form to its class
gene, that is, from lower to higher meta-levels.

An evolutiona:y change is an irreversibie (that is, the change happens both at the form and its object
gene) addition or removal 4f a subform link in a form belonging to a given organism. This kind of
change may result in an irreversible addition or removal of a subform in the given form (see Section
6.4.2.4.3), which in turn, may propagate to the higher meta-level and result in an irreversible addition
or removal of the corresponding class gene in the class genome of the given organism. Thus evolution
in Life Design happens incrementally in a bottom-up fashion, starting at individual forms, and

propagating up to higher meta-levels.

Since only generalisation links are flexible at a schema level (sece Section 6.4.2.1.3), adding or
removing a subform link at this (and any schema) level can happen only in the set of second-order %

subform links. Addition of a second-order subform link is prohibited between forms in the same

organism, and removal of such a link is prohibited if the participating forms remain in the same
organism afterwards, Under these constraints, such operations (addition and removal of second-order
subform links) mean extending and truncating, respectively, the class inheritance tree (via the

generalisation relationship). In this respect, the generalisation, or second-order subform relationship,
defines a mechanism to evolve the system at the schema level. Schema evolution happens only on a
component (class gene) basis through deriving new class genes from existing ones, or truncating

existing ones.
The propagation of an evolutionary change may happen on two conditions:

e The subform added is the first one of its type in the given organism and its type does not exist in
the organism’s main class genome, that is, it is a hybrid subform (see Sections 6.4.1.2 and
6.4.2.2). Alternatively, the subform removed is the last one of its type in the given organism.

¢ The propagation is controlled by a factor named evolutionary threshold. When the evolutionary
threshold is reached, the change will be carried to the next higher meta-level, resulting in a “more
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genetic” change. The evolutionary threshoid is expressed in terms of the fitness of gene, which is
measured by the rate of occurrence (or absence) of a gene in a set of individual organisms defined

under the same class genome.
The evolution operation may be defined as follows:

Given a set L of organisms having the same class genome, the evolution operation is
defined on a form [ that belongs to an organism O of the set L. It inspects
evolutionary changes in the organisms in L, and detects whether the rate of
occurrence (or absence) of a particular class geze g has reached the evolutionary
threshold applicable for g. If this is true, gene g will be considered for irreversible
addition (or removal), via appropriate subform links, in the class genome (using the

respective AddLink or Removel.ink operations).
System evolution will be explained in detail through the example of our LifeWeb system in Chapter 8.

6.4.2.4.5 Setf-destruction

Destraction is an operation that completely removes a form and its object gene from the universe.

Destruction is an operation defined on a form [ that simultaneously releases the space

occupied by I and its object gene, and completely erases its unique identity.

For example, a Web document is destroyed when it is deleted from the file system, or when it is
migrated to a new file system and loses its identity (URL).%

% This is true only if URL is considered the unique identity of a Web decument.
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Chapter 7 The LifeWeb model

As has been stated in Chapter 5, our system is designed in two distinct stages: the Multimedia
Document Model (MDM) and the LifeWeb model. LifeWeb is the MDM augmented with features
specific to the Web environment {electronic, distributed, and hyperlinked). These features include
other media types (for example, sound and video), hyperlinks, behaviour, schema, and external
services. LifeWeb is an implementation of Life Design. This chapter describes LifeWeb and explains
its features in the light of Life Design. All the biological terminology used in the rest of this thesis is
within the context of Life Design, unless otherwise stated.

7.1 LifeWeb classes

Figure 7-1 and Figure 7-2 show the design of the core model (top level), and (part of) the second
level respectively, using Life-UML notation (Section 6.4.1.3). The second level is an extension of the
core model, for the system is expected to be extended as it evoives. LifeWeb is based on the
Multimedia Document Model (MDM) described in Chapter 5, amounted with features specific to the
Web environment, These features are captured in the classes: LifeWebObject, Behaviour, Schema,
Hyperlink, Evolutor, Service, and classes of new media types (Audio, Video, Script).
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Figure 7-1: LifeWeb object diagram - Core model

LifeWebObject

All classes, except for Service and Schema (see below), are derived from the LifeWebObject class,
either directly or indirectly. This class captures the common properties and methods of LifeWebd
objects. LifelWebObject is assumed to be derived from a class, Object, which is the common

superclass for all classes.

Behaviour

Behaviour represents the Application Programming Interface (API) implementation of a given
LifeWeb class. (It is through this API that LifeWeb objects exhibit their “behaviour”™.) A LifeWeb
object is linked to its behaviour in a 1:1 (one-to-one) inflexible association relationship
(features:asn), whi  provides the LifeWeb object with access to its class implementation. In
traditional object-oriented systems, where functional representation is the only object representation
(see Section 6.4.2.2.1), an (runtime) object “knows” its (runtime) class and does not have access to
the (static, or design time) class implementation. Having explicit access to the class implementation
is not a requirement in Life Design. However, a LifeWeb object also has a syntactic representation
(see Section 6.4.2.2.1), which may be (physically and/or syntactically) different from, or the same as,
the class implementation. If they are different, having access to the class implementation allows

dynamic linking of LifeWeb classes, thus making it possible to automate the evolutionary process (see
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Section 9.4.3). In any cases, having references to, rather than embedding, the class implementation

makes the syntactic representation of the object more compact.

Behaviour is a feature essential to satisfy the behavioural requirement in Life Design (Section
6.4.2.4), and to address the problem of lack of functional behaviour of the Web (Sections 2.2.2.3).
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Figure 7-2 : Second level - Extending some LifeWeb classes
Evolutor

Evolutor is a class that captures the evolutionary engine which LifeWVeb objects use to evolve
themselves. An Evolutor class is an implementation of the self-evolution operation (described in
Section 6.4.2.4.4). This operation could have been implemented simply as a method (like other
genetic functions), but its complexity justifies a separate encapsulation. Furthermore, such
encapsulation allows for slightly different evolutionary models to be supported. For instance,
different implementations may use different ways to calculate the fitness value of a gene (see
Sections 6.4.2.4.4, 8.1 and 8.5). An Evolutor object is associated with a LifeWeb object through an
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inflexible 1:M (one-to-many) association link (features:asn). (This means, a LifeWeb object may not
change its evolutor during its lifetime) 2’

Schema

Schema is really a meta-class that captures class genes of LifeWeb objects (see Section 6.4.2.2). A
Schema object represents a LifeWeb class gene that is linked with a LifeWeb object through an
inflexible 1:M association link (defines:asn), giving the LifeWeb object access to its own class gene.
(This means, a LifeWeb object may not change its schema during its lifetizae). Schema has a recursive
link to itself, that is, a Schema object is associated with its own (meta) schema in the same way a
LifeWeb object is associated with its Schema object. This constructs the recursive meta-modelling
architecture described in Section 6.4.1.2.

Hyperlink

A Document object and its Hyperlink qualifier together define a single reference to a Documeni
object, which is a flexible association relationship (referenced:asn). A document can be referenced
by zero, one or more documents. Hyperlink is a class encapsulating the source and an anchor (text or
image) from which the link emanates, a reference to which the link terminates, and a scope to specify
how wide and how deep the link is defined. Hyperiink is subclassed into Hypertext and Hyperimage
(see Figure 7-2). Section 9.5 explains in more details about Hyperlink and the maintenance of
referential integrity in LifeWeb.

Service

Service is an abstract class to be inherited by external services possibly provided by third-pacty
software developers. As shown in Figure 7-1, a Service object is connecied to a Document object via
a M:M (many-to-many) flexible association link (uses:asn). This provides the gateway 10 extend the
system functionalities with various services acquired from external resources. The use of Service is
explained in detail in Sections 8,24, 9.4.2 and 94.3.

Audio, Video, Script

Audio, Video, and Script are classes that capture the different media types that a Document object
may contain. They are included in the model for completenass purposes, but do not belong to the core
model of LifeWeb, and will not be designed or implemented in the LifeWeb prototype.

! This decision is subjective. Other implemeniations may allow the link to be flexible.
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Other classes in LifeWeb that are not explained here have been described in the Multimedia
Document Model (see Chapter 5).

7.2 LifeWeb and Life Design

As has been stated before in the introduction of this chapter, LifeWeb is an implementation of Life
Design. This section expliains how LifeWeb supporis each constraint in Life Design at two adjacent
levels, object and class (in object-oriented terms), or concreie and genetic (in Life Design terms). It
also gives comments on the significance of this design in the context of the Web. Figure 7-3 shows an
example of a LifeWeb Document object, using Life-UML notation (see Section 6.4.1.3).
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Figure 7-3: A LifeWeb Document object

7.2.1 Structural constraint

The structural constraint can be considered with regard to the following conditions (applicable on
both levels): (i) the ability to create subform links; (ii) the existence of at least one atomic form and at

most one root form; and (iii) the existence of at least one flexible link.
Ability to create subform finks

The ability to create subform links is inherently included in the object-oriented design of the system.
At both object and class levels, a fizst-order subform link is realised as an association or aggregation
link, At the class level, a second-order subform link is realised as a generalisation link. Figure 7-4
depicts the decomposition of a part of the LifeWeb class system in first and second-order subform
links (link labels are not shown). In this stracture, the first-order subform links are contained in one

plane, and the second-order ones connect one plane to another.
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Existence of at least 2ne atomic (or recursive atomic) form and at most one root form

3 tomic form: the existence of an atomic (or recursive atomic) form is inherently included in the
subform structure {DAG with self-loops) of the system. For example, at the object level, the
document component hierarchy (captured by the MDM as described in Chapter 5) is a DAG in
which the materials associated with document components are the terminals, as depicted in
Figure 7-3. In other words, objects of the Material branch (Text, Graphics, Audio, Video, and
Script) have no components (subforms) of themselves, and are atomic. At the class level, these
classes (Text, Graphics, Audio, Video, and Script), by virtue of their semantics, are also atomic
(Figure 7-2 (b)).

e Root form: at the object level, a Document object (or an object of any class in the Document
":ranch, except for StructuralComponent), being a subroot gene at the class level (Figure 7-1 and
Figure 7-2 (a)), is also the root form at the object level (Figure 7-3). If represents the whole of a
document, where all other document components (structure, presentation, material, hyperlink,
service, behaviour, schema and evolutor) are either contained in it (through aggregation), or
associated with it (through association). At the class level, Object, the common superclass of all

classes, 1s the root form of the system.

Figure 7-4; First and second-order subform links in LifeWeb class system
Existence of at least one flexible link

A number of flexible links have been defined in our system at the object level (see Section 7.1). For
instance, links between Service and Document objects are flexible. At the class level, all

gencralisziion links are fiexible, as has been defined in Life Design (see Section 6.4.2.1.3).
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7.2.2 Genetic constraint

The genetic constraint can be considered with regard to the following aspects: (i) the existence of an
object gene and a class gene (for a givea LifeWeb object), which are accessible to the object they
describe; (ii) the satisfaction of constraints on a life form; and (iii) the lifetime of the genes.

<?%ml version="1.0" encoding="UTF-877>

<!DOCTYPE LifeWeb System="http://lifeweb.org/lifeweb.dtd”>
<LifeWeb id="http://lifeweb.org/lifewebbook.xml*
behaviour="LifeWeb”>

<table id=*ChaplPres” row=*1l" col="2" behaviocur=*LWTable” />
<book id="MyBook* heading="LifeWeb and Life Design*
behaviour="LWBook”:>
<struct id=*Chapl” heading=*INTRODUCTION*
present=*ChaplPres’ behaviour="LWStruct”>
<text id="ChapterlTxt”
src =7, ,/mybock/data.htmiintro”
behaviour=*LWText” />
</structs>
<struct id="Chap2” heading="LIFE DESIGN”
behaviour="LWStruct>
<text id="Chap2Txt®
sre=". . /mybook/data.htn#lifedesign”
behaviour="LWText" />
</struct>
</book>
</LifeWeh>

Figure 7-5: The object genome of a LifeWeb document {simplified)
Existence of an object gene and a class gene

A LifeWeb object has the syntactic representation of itself as its object gene and its class its class
gene. For instance, the object gene of a LifeWeb Document object can be its XML source code, and
its class gene the LifeWeb class system (Figure 7-1). Figure 7-5 shows exemplary object genes, using
XML syntax, for the objects depicted in Figure 7-3.

In Figure 7-5, the object genes for MyBook:Book, Chapl:Struct, Chap2:Struct, ChaplTxt:Text,
ChapiPres:Table and Chap2Txt:Text are the XML elements with identifications (shown in the
aftribute id) matching the respective object names (MyBook, Chapl, Chap2, ChaplTxt, ChaplPFPres,
and Chap2Tx1). In this representation, an attribute is shown as a pair <attribute name>"="<attribute
value», for instance, heading="INTROGDUCTION”. The object behaviour, that is, its class API
implementation, is linked to the object in a read-only attribute, for instance, behaviour="LWBook”.
An aggregation link (for instance, between MyBook and Chapl) is represented by nesting the
elements in one another (Chapl! is nested in MyBook). An association link (for instance, between
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Chapl and ChaplPres) is represented by including the reference of one element (ChaplPres) in
another (Chapl).

In this example, the object genes are contained in an XML file, which is the object genome. An
object gene (and hence the object it describes) has access to its object genome via the value of the
LifeWeb document's id (http://lifeweb.org/lifewebbook.xml), and to itself via a
combination of the document’'s id and its oOwWn id (for example,
http://lifeweb.org/lifewebbook.xml#Chapl). It has access to its class genome by the value
of the <!DOCTYPE> declaration (http://lifeweb.org/lifeweb.dtd), and to its own class
gene by a combination of this value and its own element type name (for instance,
http://1ifeweb.org/lifeweb.dtd#struct).

Life form constraints
These constraints include: structural, genetic, stateful and behavioural.
Structural

As can be seen from the above example, such an object genome (as represented in XML) makes it
possible to represent and preserve the structure of the entire system it describes, in this case, a
LifeWeb document (although with limited typing information).” Thus, if the system has been
designed to satisfy the structural constraint (as is the case of a LifeWeb document, explained in
Section 7.2.1}, its object genome will also satisfy the same constraint.

The LifeWeb class genome, that is, the LifeWeb class system, also satisfies the structural constraint as
already explained in Section 7.2.1.

Genetic

The genetic constraint is applied recursively on genes, that is, a class gene should have its own object

gene and class gene.

If the object gene of a LifeWeb object is an XML element (as described above), then the object gene
of a LifeWeb class is the comresponding element type definition in the LifeWeb Document Type
Definition (DTD). Figure 7-6 shows exemplary object genes of some LifeWeb classes, using XML

%2 One exception is the Schema object, which is not represented in XML in an association relationship with any
elements {as designed in the LifeWeb data model), but as a global, independent entity in the <!DOCTYPE>
declaration. This however, is only a design choice of XML, and does not invalidate the claim that XME makes it
possible to represent and preserve the entire structure of an object-oriented system, with limited typing
information.
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syntax. (The element types in this example correspond to the elements used in the example shown in
Figure 7-5.)

<!ELEMENT LifeWeb (book|struct|text|table)*>
<IATTLIST LifeWeb
id CDATA #REQUIRED
behaviour  CDAT2 #FIXED *“LifeWebr >
<!ELEMENT book (book|struct|text})*>
<!ATTLIST book

id ID #REQUIRED
heading CDAT2 #IMPLIED
behavicur CDATA $FIXED “LWBook">

<!ELEMENT struct (struct|text)*>
<IATTLIST struct

superclass CDATA #FIXED ‘“book*
present IDREFS #IMPLIED
behaviour CDATA #PIXED “LWStruct?>

<!|ELEMENT text EMPTY>
<!ATTLIST text

id iD $REQUIRED
sro CDATA #IMPLIED
behaviour CDATA #FIXED “LWText*>

<!ELEMENT table EMPTY>
<!ATTLIST table

id Ib #REQUIRED

row CDATA #IMPLIED

col CDATA #IMPLIED

behaviocur CDATA #FIXED “*LWTable*>.

Figure 7-6: The object genome of the LifeWeb class system (simplified)

In Figure 7-6, the class genes for MyBook:Book, Chapl:Struct, Chap2:Struct, ChaplTxt:Text,
ChapITxt:Text, and ChaplPres:Table, are the clement types whose names match those of the
respective class names (Book, Struct, Text, and Table). In this representation, a class describes the
attributes of its objects in the corresponding <!ATTLIST> clause(s). Behaviour, which is “described”
(that is, coded) in the class API implementation, is made accessible to the class (hence, its objects) in
the behaviour attribute. Aggregation links between classes are captured in an explicit listing of all
element types (classes) that can be nested in a given element type. For instance, the element type
book has the list (book | struct | text) next to its <!ELEMENT> clause. An association link is
represented by an attribute whose value is of type IDREF or IDREFS (which stands for “id
reference(s)’”), for irrance, the attribute present in the ¢lement type sfruct. A generalisation link is
denoted by a special read-only attribute, superclass, whose value is the name of the element
supertype {superclass} of the current ¢lement type. (In this case, the element subtype need not
explicitly list the attributes inbesited from the element superiype, unless they are redefined).

The class gene for the LifeWeb class system can be the LifeWeb meta-class system. It should be

possible to use some meta-modelling technique to build such a system. However, it is not within the
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scope of this thesis to explain and design genes at higher meta-modelling levels. Briefly, any class at
level i1 is also an object to level n+1, which may be represented in its own object gene, and described
further by another class at the next higher level (n+17). Thic higher meta-level class may again be
designed so as to satisfy the Life Design constraints applicable to it

Stateful

The state of a gene can naturaily be kept within itself (by the defined notation), and changed (by its
genetic functions). In this respect, a gene has the capacity to be stateful. The Web, however, is a
stateless system, because it does not remember any changes made by the client (see Section 2.2.2.6).
These changes are thus lost before they can reach a gene to be recorded there. This problem is solved
in LifeWeb with the distribution of object genes, which is explained in Section 7.2.3 below.

Behavioural

The behavioural constraint can be inherenfly satisfied since a gene is itself an object with well-
defined behaviour. A set of methods for each genetic function required can be implemented for it (see
Section 6.4.2.4).

Lifetime of genes

Such genes as described above can be stored permanently on a disk, and their lifetime can be made as
long as that of the objects they describe.

7.2.3 Stateful constraint

As has been mentioned elsewhere, a LifeWeb object (or equivalently, its object gene) is capable of
being stateful (having a well-defined state representing by a set of attributes), but cannot record
changes made to itself (while being online) because of the statelessness of the Web. This problem is
solved in our system by the concept of object gene distribution.

As can be seen from Figure 7-1, on the one hand, the separation of contents (via the use of Material
objects), functional implementation (via the use of Behaviour objects), document type (via the use of
Schema objects), and external services (via the use of Service objects) from other aspects of a
document (structure and presentation), leaves the LifeWeb Document object with a bare framework of
the document. On the other hand, following Life Design, the Document object is also the root form
that captures the whole organism. This means, despite the possibly large document the Document
object represents, only a minimal amount of information is kept in it. It is simply a holder of virtual
contents and references to other objects. This design makes it practically possible for the Document
object, which is represented by its object gene, to be wholly distributed at client sites. Such a
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distributed Documen object alone is sufficient for the reconstruction of the whole document, This
concept, which is termed object gene distribution, is about distributing objects with minimal but
sufficient information to reconstruct the object fully.,

As object genes can be fully distributed and permanently kept at client sites, changes to their state (as
a result of client actions) can be retained. That is, they are stateful.

7.2.4 Behavioural constraint

The behavioural constraint can inherently be satisfied in the object-oriented design of the system,

7.2.5 Implications on the Web

Life Design in general, and LifeWeb in particular, have remarkable relevance and significance on the
Web, and specifically address the issues mentioned earlier in Section 2.2. This section comments
briefly on some major implications that Life Design and LifeWeb have in the setting of the Web,
considering them in terms of three of the four Life Design constraints: structural, stateful and genetic.
(The behavioural constraint is significant in enabling the whole system, designed after other
constraints, to function the way it is supposed to. Its meanings can be seen in those of other
constraints and need not be considered separately.)

7.2.5.1 A flexible modular structure for manageability, naintainability,
customfsabﬂity;, adaptability and evolvability

The flexible modular structure (DAG) of a LifeWeb document, inherited from object-orientation and
Life Design, permits easy management and maintenance of the document on a component (object)
basis, both during design time and runtime, Easy manipulation of document components also allows
the document to be changed for customisation, adaptation or evolution purposes. In addition, the
specific structure of LifeWeb documents makes it possible for structural links to be automatically
generated by the system during runtime. In this way structural referential integrity can be ensured and
large maintenance costs on structural links eliminated.

The flexibility of links also has a meaning. They preserve the semantics and internal structure of the
evolving entities, whilst giving these entities the necessary “freedom” (flexibility) to change, grow
and evolve. For instance, at the object level, the association link between a Document object and its
Schema object cannot be broken (because doing so will alter the schematic definition, hence
semantics, of the Document object). A link between a Document and a Service object, on the
contrary, can be freely added or removed. At the class level, both association and aggregation links
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cannot be removed if the removing class participates in the internal structure of the other one (that is,
if the removing class is “subordinate” — in the Life Design sense as defined in Section 6.4.1.1.4 — 10
the other one). Generalisation links, on the other hand, can be extended or shrunk, allowing the
system to evolve schematically (ses Section 6.4.2.1.3). In this way, schema evolution in LifeWeb
occurs only on a component basis (subclass/superclass), which is different from traditional schema _.
evolution (see Chapter 4). In traditional schema evolution, changes can happen to the internal ‘
structure of an evolving entity, which makes it difficult and expensive t0 maintain system :

consistency.

Sections 5.2.2 and 9.7 explains the manageability and maintainability aspects of LifeWeb.
Customisation, adaptation and evolution in LifeWeb are explained in detail in Chapter 8, and in
Sections 9.4.2 and 9.4.3.

7.2.5.2 A stateful Web for customisability, adaptability and evolvability

As a document’s object genes can be kept permanently at client sites, customisation information can
be maintained for each client. Furthermore, the distribution of these object genes (originating from
one server document) allows the formation of a popuiation of Web documents in which individual
members may be slightly different from one another as a result of customisation. Adaptation and
evolution can thus happen over such population (and many others, originating from other server
documents), drawing its options from the varieties presented by each individual, and driven by user
preferences (see Section 6,3.6). Customisation, adaptation and evolution in LifeWeb are explained in
detail in Chapter 8, and in Sections 9.4.2 and 9.4.3.

7.2.5.3 Gene and recursive gene architecture for evolvability

In the Web context, a LifeWeb object genome is a compact and persistent document instance that

retains its state across HTTP connections, and contributes to the “genetic variety” in a population of
similar document instances. Functionally, it controls the realisation of the final representation (see

Section 6.4.2.2.1) of the document instance. A LifeWeb class genome defines a document type, based
on which document instances of a particular type are generated. Functionally, it controls the
instantiation of document instances and allows document instances to validate themselves (thus

ensuring interoperability in the entire population of its document instances).

As can be seen in the examples above (Section 7.2.2), and eatlier in the explanation about XML b
{Section 3.2.2), the conce] . of documernt type has actually been applied on the Web with the use of
the Document Type Definition (DTD). This notion is especially meaningful in the Web environment,
which has developed into a global network, and must incorporate a wide variety of culture, standards
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and needs. Giving the Web system the ability to define various document types provides for this
requirement. We will explain in more detail in Section 9.2 how work on DTD is used in the LifeWeb
prototype to implement class genes.

Higher meta-level genes define constructs that are used in genes at lower meta-levels. In pagticular, in
LifeWeb, meta-genes define the language in which genes are expressed, and M2-genes define the
ontology for mefa-genes. This recursive geme architecture allows evolutionary changes to be
propagated from lower to higher meta-level, resuiting in a “more genetic” change in the entire
system. LifeWeb evolution is explained extensively in Chapter 8.
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Chapter 8 LifeWeb evolution

Evolution in LifeWeb occurs through successive stages, where each stage maps into one
corresponding level of meta-modelling described in Sections 6.4.1.2 and 7.2,5.3, The propagation of
changes from one stage to another is controlied by a factor named the evolutionary threshold. When
an evolutionary threshold is reached, the change will be carried to the next higher meta-level (of
genes), resulting in a more genetic change. Such change propagation may result in the formation of a
new group of the individuals in the level immediately below, where individuals in these groups are
genetically differentiated. This is similar to the speciation process in nature {DAR77]. Therefore we
have used the term document species (and similar terms for higher levels) to denote the basic class of
a document taxonomy, which is a distinct group of document types that are genetically interoperable
with each other and conform to the one from which they are derived.

The sections below give a more detailed picture of the evolutionary process in LifeWeb, The first
section explains the various stages of the process in parallel to the different meta-modelling levels.
The second section elaborates the specific types of changes that can occur and propagate to higher
meta-levels. The third section uses a scenario to describe the formation of new document types and
document species. The fourth section explains the mechanism by which a document type or species
becomes extinct or multiplied. The fifth section gives some illustrative examples, Characteristics of
LifeWeb evolution are drawn up and presented in the sixth section. Finally, the 1ast three sections
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evaluate LifeWeb evolution apainst other comparable technologies, which include the Genetic
Algorithm, meta-modelling, and Database Schema Evolution (see Chapter 4).

8.1 Levels of meta-models and stages of the

evolutionary process

LifeWeb evolves through stages that correspond to the levels of meta-modelling. A level may be
divided into two sub-levels, temporary and permanent, if the entities in that level are considered both
in their object genes (persistent object representations) and other object representations (usually non-
persistent) (see Section 6.4.2.2.1). (For instance, a document displayed in the browser is in its
functional, and final, presentation. Its source code, that is, its syntactic representation, is its object
gene. The functional representation of a class, however, is not important in our problem, and
practically we only consider its syntactic representation.) Figure 8-1 shows the (simplified) Life Web
system through three levels of meta-modelling: concrete, genetic, and meta-genetic, using a LifeWeb

document represented in XML notation (described in Section 3.2.2) as an example.
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Figure 8-1: Three levels of a LifeWeb document (simplified)

The concrete level has two sub-levels: (i) The {concrete) temporary sub-level comprises living
organisms (in Life Design terms) or Wet documents (in Web terms) as they appear in full (in their

final object representations, which are functional representations in this case) at the client site (in the
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browser); (ii) The (concrete) permanent sub-level consists of object genomes (in Life Design terms)
of Document objects (in object-oriented terms), which are the XML source code (in Web terms) of the
living organisms at the temporary sub-level. The genetic level contains class genomes (in Life Design
terms) or class systems (in object-oriented terms), which are the DTDs (in Web terms) that define the
schemata for different types of Document objects (object genomes). The meta-genetic level contains
mela-class genomes (in Life Design terms), or meta-class systems (in object-oriented terms), which
are the XML specifications (in Web terms) that define the grammar or notatiop in which the DTDs
(class genomes) are expressed. (Figure 8-1 shows only a simplified version of the XML
specifications). Further meta-levels can be specified as required (see below). These triplets of terms
may also be used interchangeably in the context of Life Design, Web and object-orientation,
respectively: life form, element, object; and class gene, element type, class. For consistency, we will
use the Web terms as the main ones in this sectior, accompanied by the Life Design and object-
oriented equivalents (in parentheses) for concept mapping.

The following sub-sections describe stages of LifeWeb evolutionary process. The role that each stage
plays in the whole process is specified, showing what kinds of changes there are, and how they are
accumulated and contrelled. These sub-sections also explain when the customisation and adaptation
processes start and how they can seed the evolutionary process. In this model the fitness of gene is
measured by the usage of the given gene, or the rate of its occurrence in individual documents,

8.1.1 The concrete level

The concrete level comprises the documants populating the whole Web. This level is divided into two
sub-levels: the temporary sub-level consisting of Web documents (living organisms or documents in
their final representation), and the permanent sub-level consisting of document’s XML source code
(cbject genomes or Document objects).

8.1.1.1 The temporary sub-level

Web documents in this level are realised from their XML source code (object genomes or Document
objects), fully filled with formatted materials, hyperlinks and other document components, accessible
to human readers through their unique URLs. Customisation and adaptation processes sStart occurring
at this Ievel as a result of users’ interaction. These processes supply the changes necessary for the
evolutionary process to happen. There can be two kinds of change at this level:

¢ Individual temporary change: changes that alter a Web document (living organism) only from the
time the request for change is made until the time the document is brought offline (that is, when

the user ends a Web session).
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e Individual permarent change: changes that are recorded at the XML source code (object genome
or Documznt cbject) of a Web document. These changes typically result from users’ requests or
system adaptive engine and are kept at the client site.

8.1.1.2 The permanent sub-level

This level consisis of the (documents’) XML source code (object genomes or Document objects),
which can permanently record changes occurring at the temporary level. It has two sub-levels of
itself, server and client. The server sub-level consists of original object: created by content providers,
possibly manually. The client sub-level contains copies of server objects generated through the
reproduction process, possibly modified for customisation or adaptation purposes as explained above.
In this respect the set of modified client objects derived from a given server object form a population
of Web documents with a variety of genes differing from that of the original server object. Similar
changes in client objects are accumulated over time and can trigger a permanent change in the
corresponding server object, so that the change will later be duplicated and distributed throughout the
next generation of the population. The threshold at which this process starts is called the object
evolutionary threshold. There can also be two kinds of change at this levei:

o Non-genetic change: changes that affect the document’s XML source code (object genome or
Document cbject) but not its DTD (class genome or class system). These are typically changes 10
the preseniation of structural components, or to the structure of the document (for instance,
sorting its structural components). They dc not modify the way elements are defined (for
example, by adding new atiribute types), nor do they add/remove element types (class genes or
classes) in the document. This kind of change will not propagate any further than this level.

¢ Genetic change; changes that affect not only the document’s XML source code (object genome or
Document object) but also its DTD {class genome or class system). The addition or removal of
¢lement types (class genes or classes) exemplifies this kind of change. These changes, if
happeniag at a large number of document instances of a given document type, can trigger the
formation of a new document type. The threshold at which this process starts is called the genetic
evolutionary threshold. If the newly created document type does not conform 1o the previous
document type it is derived from, a new document species may have been formed.

8.1.2 The genetic level

This level consists of the DTDs (class genomes or class systems) that describe the genetic
specifications or the schemata of the corresponding document types. A DTD (class genome or class
system) specifies factors such as what element types there are, their attributes and attribute types, and
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their possible arrangement and nesting. The schematic constructs defined in this level are used to
build the XML source code {object genomes or Documert objacts) at the genetic level. Document
type schemata control the diversification of these documents, represented in their XME source code
(object genomes or Document objects), ensuring interoperability and compatibility between them,
unless a new document species or non-conforinal document type is formed, Similar to the previous
level, changes at this level are also classified as genetic (as explained above) or meta-genetic.
Accumulated meta-genetic cbanges, if reaching a threshold called the meia-genetic evolutionary
threshold can lead to the formation of a new language or notation in which the DTD (class genome or
class system) is expressed. Similar to the speciation process, the new notation may start a new
document genus if it does not conform to the previous notation.

8.1.3 The meta-genetic level

This level consists of the XML specifications (meta-class genomes or meta-class systems) that define
the grammar of the language or notation in which the DTDs (class genomes or class systems) are
expressed. (Formai) XML specifications (meta~class genomes or meta-class systems) control the
speciation process (formation of new document species), ensuring the conformity of various DTDs
(class genomes or class systems) to the specified grammar, unless a non-conformal notation or
document genus is formed. As at the meta-genetic level, there are also two kinds of change at this
level, meta-genetic (as explained zhove) and M2-genetic. When a threshold called the M2-genetic
evolutionary threshold is reached, accomulated M2-genetic changes can lead to the formation of a
new ontology based on which concepts of the Web document system are formed. As in the previous
level, a new document family may be formed if the newly created ontology does not conform to the

previous ontology.

8.1.4 The M2-genetic level

This level specifies the ontology or the total sum of the concepts used to conceptualise the Web
document system, The ontological constructs defined in this level are used at the meta-genetic level
to define the grammar of the language used to describe the docurnent type schemata, and to ensure
the semantic compatibility betweeir ine various languages in which the system is represented.
Changes happening at this level are assumed to cause what is called “paradigm shift”, in which the
Universe of Discourse (UoD), or the Web in this particular case, is viewed under a different set of
concepts,
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There can possibly be more meta-modelling levels above M2-genetic, but they are deemed not
necessary to include in LifeWeb. Thus we assume the M3-genetic is the union level that unifies all

ontological systems, and there are no more changes at that level.
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Figure 8-2 : Levels of meta-modelling (evolutionary stages)

In the reality of the Web, some changes at high levels may happen without accumulated changes from
lower levels, independent from the ongoing “life” of the Web. These changes are typically made by
top-level Web developers or administrators as needs arise. This process is currently common in most
information systems (for example, in database management systems such as Orion [BANS7),
described in Section 4.1), and we call it rop-down evolution. It is opposite to the one described above,
which we call bottom-up evolution, where the system evolves as a result of local changes. In both
cases the system develops in a controlled environment under the supervision of higher meta-levels
with predictable results, giving itself features of maintainability, manageability, and evolvability. The
top-down evolutionary process, however, needs human intervention and is largely dependent on the
system designer for the integrity and consistency throughout the system. it will generally not be
discussed in subsequent sections of this thesis, unless explicitly mentioned. Most discussions will

deal with the bottom-up evclution, which can be automated.

Figure 8-2 depicts different levels of meta-modelling. Entities in each level are defined, controlled,

linked and coordinated by the entities in the level immediately above them.

117

i i

e

A i S i o

o v




8.2 Change and change propagation

Since explanations in this section are related mainly to object-oriented technology, for readers’
convenience, we will, in this section, extensively use object-oriented terminology with the implicit, or
in some places, explicit, Life Design and Web equivalents (that are defined in the previous section).

As an overview, in LifeWeb, except for state {attribute or pure data value) change, all changes (in
bottom-up evolution) happen only on a component (object or class) basis at the flexible links. The
addition, removal or modification of a feature (attribute, method or link) in an existing class requires
that a new class (with the desired feature) be developed and introduced into the system (through an
appropriate generalisation relationship) (see also Section 8.3). An old class may be removed from the
system as a result of the addition of a new class, or co-exist with the new class, depending on each
particular situation (see also Section 8.3). The following sub-sections give explanations specific to
the classes in LifeWeb about how each kind of change happens and how they are propagated.

8.2.1 Compositional change

Compositional changes are those that happen to objects that connect with each other through the
composes:hasa links in the LifeWeb class system (see Figure 8-1). Typical changes of this kind are
reordering, adding or removing StructuralComponent objects (or objects of a derived class thereof, as
explained in Section 8.2.5) in the document, Such a change is usually the result of a customisation
request direct from the user, or some system adaptaticn caused directly by the user’s interaction,
happening at the temporary sub-level of the concrete level.

This kind of change usually propagates up as high as the vermanent sub-level (client or server) and
does not resulf in a genetic (schematic) modification in the document instance. An exception to this is
when the object to be removed is the 1ast one in the document, or the first one cof a newly introduced
class, that is a hybrid class (see Sections 6.4.1.2 and 6.4.2.2.2. See also Sections 8.2.5, 8.2.6 and 8.5).
In these cases the document instance will either not exhibit properties and behaviour belonging to the
removed object, or exhibit the added ones belonging to the newly acquired object, respectively. (This
is effectively a genetic or schematic change at the concrete level through the composition link.)

The frequency of the disappearance of an existing class, or appearance of a new (hybrid) class in
client Document objects (object genome or XML source code) (of a given server Document object),
is recorded, and may trigger a similar change in the corresponding server Document object if it
reaches the object evolutionary threshold (see Section 8.1.1). If the same change is found in many

other server Document objects of a given document type (DTD, class genome or class system), a new
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document type may be formed when the frequency of this change reaches the genetic evolutionary
threshold (see Sections 8.1.2). If the change is the disappearance of an existing class, it may be
removed from the relevant document type if and only if it is free of all dependency (see Section
6.4.2.4.3), otherwise no change will be made. If the change is the appearance of a new (hybrid) class,
it will be added to the relevant document type, with appropriate relationships, forming a new
document type.

This is the way that unused classes may be removed and new classes introduced to the system
antormatically from the concrete level as a result of users’ interaction. Sections 8.3 and 8.5 give
examples of the formation of document types and species.

8.2.2 Presentational change

Presentational changes are, like compositional changes, primarily local to a Web document or
(client) Document object {object genome or XML source code), but may also propagate to higher
levels. These are changes that happen to objects participating in the displays:asn link in the LifeWeb
class system (see Figure 8-1). Typicelly a presentational change happens as a result of a
customisation request directly from the user, or of some internal system adaptation. Such a request
(or adaptation) essentially alters the presentation directives of the associating object, causing the
object to be displayed in the new format. A presentational change propagates in a manner similar to a
compositional change. This means it does not result in a genetic (schematic) change, unless the
involving Presentation object introduces a new (hybrid) class (see Sections 6.4.1.2 and 6.4.2.2.2), or
removes the final occurrence of its class in the document instance, and this change is found in a
sufficiently large number of document instances of a given document type (see also Sections §.2.5,
8.2.6, 8.3 and 8.5). In this way new presentation classes may be added b, and unused ones removed,
from the system.

8.2.3 Referential change

Referential changes happen and propagate in a manner similar to compogitional or presentational
change. Typically a referential change is a system adaptation or user customisation request, which
suppresses or shows Hyperlink objects (thus creates a different navigational path). Referential
changes are also mainly local, and are catried to the genetic (schematic) 1evel only if they introduce a
new (hybrid) Hyperlink class (see Sections 6.4.1.2 and 6.4.2.2.2) or remove the last instance of a
Hyperlink class in the involving document (see also Sections 8.2.5, 8.2.6, 8.3 and 8.5). This is how
new derivatives of the Hyperlink class may be added and unused ones removed from the system,
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8.2.4 Change of external service

The concept of external service is borrowed from a concept in biochemisiry where functional groups
are attached to molecules to modify the properties of these molecules (see Section 6.2.5).2 External
services are complete, encapsulated, functional units that can be freely mounted or unmounted onto a
document at any time to extend the document functionalities. External services play an important role
in the LifeWeb evolutionary process in that they allow for the incorporation of third-party software,
dynamic customisation and automatic adaptation and evolution (see also Sections 9.4.2 and 9.4.3).

The use of external services is also significant because it aliows the system to accommodate complex
customisation and adaptation processing. A Service object can invoke the primitive methods (for
instance, those implementing the genetic functions) defined in LifeWeb classes to perform more
sophisticated tasks. For example, based on user requests or profile, a Service object can select
structural componemts that satisfy some specified selection criteria and perform complex format
processing, or it can sort structural components according to different orders based on different
criteria.

Another useful application of exterual services is to confine customisation information. For example,
the information regarding a customisation request {for instance, formatting a structural component in
a client document as a table) can be fully encapsulated in a Service element (for instance,
TableFormatier). Thus, there is generally no change made to other elements in the document, and
customisation information is kept separate from the original document state. In this way the original
state can be easily restored when required. Besides, this separation makes it simpler to keep the client
document state up-to-date with the server document state, while customisation changes are still
maintained. The implementation and mechanism of Service are explained in Sections 9.4.2 and 9.4.3.

8.2.5 Addition of a new class

A new class can be added at either the concrete level or genetic (schematic) level. It must be derived
from an existing class in the document type being modified. The newly introduced class may have
relationships with other classes, both new and existing, provided that the integrity of the class system

# A somewhat similar idea is also found in ordinary life. For instance, auxiliary equipment (for example, a
diving suite) is used to extend functionalities of the human body (for example, diving).
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is maintained.?* (That is, the class system before or after change must form a DAG with self-loops.)
In this respect, the addition of a class C in the inheritance tree may lead to the addition of, for
instance, another class C' that is linked to it. C’ may be connected with C by generalisation,
aggregation or association, and the addition of C’ must be done together with the addition of C. (This
is effectively an addition of a class subtree or subsysten.)

At the concrete level

The presence of a new class in a document instance without that class being defined in the
corresponding class system (main class genome or main DTD) is the result of hybridisation (see
Sections 6.4.1.2 and 6.4.2.2.2). In this case, the new class must be defined in another class system
(that is, a hybrid class genome or hybrid DTD). (In XML specifications, this DTD is accessible to the
document either via the XML namespace mechanism, or as an internal DTD that is inserted into the
document, as described in Section 3.2.2.) In this way, the new class (which should be initially
supplied by a schema designer) is first introduced into the system as a hybrid class through a
document instance (possibly by the system or user selection) via the flexible links. This change,
which starts at the concrete level, can subsequently lead to a genetic (schematic) change and the
creation of a new document type, following the same change propagation process as explained in
Section 8.2.1.

It is worth noting that the introduction of a new (hybrid) class into a document instance effectively
changes the document type (class genome or class system) of that particular instance (regardless of
whether it will lead to a genetic change or not). This is the way that LifeWeb supports genetic
(schematic) change from the concrete level on a component (object and class) basis through the
flexible links.

At the genetic level

Classes added directly at the genetic (schematic) level are most likely done manually by Web
administrators or developers in the top-down evolutionary process (see Section 8.1). In this case
document types are created manually. This process is not automated and therefore not supported by
the system. However, the existence of a meta-class system (meta-class genome or XML
specifications) makes it possible to validate the new document type against the specifications defined
for it at the meta-genetic level. This allows for meta-level compatibility and interoperability across

document species of a given document genus (grammar).

* As a new class must have been designed and implemented by a human programmer, system integrity is
maintained by the development environment (for example, the compiler).
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8.2.6 Removal of an existing class

A class can be removed starting at either the concrete or genetic (schematic) level. In any case, a class
can be removed if and only if it is free of all dependency (see Section 6.4.2.4.3). Any class that
becomes disconnected from the class system, as a result of this removal, will also be removed, and
may become a “free class” (free form) or destroyed (see Sections 6.4.2.1.2 and 6.4.2.4.3).

At the concrete level

A class will be depreciated, that is, disappear in the server Document object, if it is not used in a
sufficiently large number of client Document objects. It might eventually be removed from the DTD
(class genome or class system) if its degree of depreciation has reached the genetic evolutionary
threshold and it is free of all dependency. This process is described in Sections 8.2.1 and 8.3.

At the genetic level

A class that is not used in any Document objects can be removed manually by Web administrators or
developers provided that it is free of all dependency. As this requires a thorough check at the instance
level, it might not be practical to do so unless supported by some automatic checking mechanism.

It can be seen that a class can seidom be removed permanently from the system due to the strict
constraint of dependency clearance (see Section 6.4.2.4.3). It is more often however, that a class (or a
branch of classes) may be removed from a document type or document species if it is a leaf node in
the class inheritance tree. This is actually the start of a speciation process, which will be explained in
detail in Section 8.3 below.

8.2.7 Changes at the meta-genetic and higher ievel

As classes (class genes or element types) that follow Life Design are also life forms, meta-classes
(meta-class genes) and higher meta-level classes (higher meta-level class genes) can also change and
evolve in the same fashion as life forms, or in this case, Document objects do. It is, however, not
within the scope of this thesis to design the specifications and detail the evolutionary process of meta-
classes and higher meta-level classes.
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8.3 Formation of new document types and document

species

The formation of a new document type or document species starts with the introduction of a new

class to the class system. The following scenario illustrates the speciation process in a Life Design

system, in particular, LifeWeb.

Suppose, at time Ty, the class inheritance tree of the document type D' of document species 4

consists of only the four core classes of the model, which are Cto C;', connected with each other

as shown in Figure 8-3 (a).
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Figure 8-3: Speciation and the evolutionary tree

At time T; a new class C, which is derived from one of the four initial classes, for instance C;,
and has been successfuily developed from the concrete level, is registered to Dg‘ , forming a new

document type D/ (see Figure 8-3(b)(1)). As D/ has all the classes in D(,‘ and the extra class
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C# of D} is derived from C7in D¢, it conforms to D¢, and also belongs to document species A

The evolution tree has grown from Dg‘ to D;‘ as shown in Figure 8-3 (b)(2).

Suppose C? is specialised further so that at time T,,, a new class C/, derived from C2, is registered

to D;‘ , forming a new documert type D5 (see Figure 8-3 (c)(1)). The evolution tree also grows

from D to D; as shown in Figure 8-3 (c)(2).

Suppose further that it is necessary to remove some features in class C;‘ . As this cannot be achieved

by any derivation from C;, a new class C’is derived from the core class C; . There are two

possible cases: in the instances where C; is introduced, C/% can either co-exist with C7 or substitute

ct.

1

21

2.2

C} co-exists with C¢: C,and C{ are simply complimentary to each other, and neither shall
be the cause to remove the other at any level of meta-modelling. The addition of a new media
type (as a derivative of the Material class in the LifeWeb data model, as depicted in Figure 7-1)
exemplifies this complimentary relationship (among different media types). In this case, if C]B is
found sufficiently fit at the concrete level to be propagated to the genel*c level, a new document

type D} will be formed and the evolution tree will also grow as shown in Figure 8-3 (d).

C}? substitutes C?: C’and C; compete with each other starting in the instances that contain

them. An example of this competition relationship is the addition of a modified version of an
existing class in which botih new and old classes have the same semantics but different features
and one is meant to replace the other. Figure 8-3 (e)(1) shows the class inheritance tree of one

particular instance in which C;’ is introduced for this case. (In this instance C,” is still a hybrid

class.) There are two cases in the competition relationship.

If the new class C,B does not find enough favour to survive the environment, that is, it does not
multiply enough in instances, it will never propagate to higher level and may eventvally

disappear. In this case the old class (gene) C has defeated the new class (gene) C7.

If ou the other hand, C, is found sufficiendy fit to the environment to eventually be
propagated up to the genetic level, it will be registered to D;," , forming a new document type.

As the current document type (D;‘) does not have all its elements in the new document type
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(C# and C? are missing), that is, the new document type does not conform to the current
document type, a new branch of document type is formed. This new branch starts from the last
existing document type that the new one conforms with, which is L)' in this example (see
yigure 8-3 (€)(1)). This essentially starts a new document species B with the first document
type D (see Figure 8-3 (€)(2)). The removal of class C.' at the genetic level is considered in

two cases,

2.2.1 Class G}’ completely substitutes class C2 in all instances, which means C2 is now clear of

instance dependency. There are two sub-cases for this:

22.1.1.1  Class C/ is still used in some instances — In this case C;* cannot be removec
due to the schematic dependency constraint. The two document species A and
B co-exist (realised in two document types D and D respectively), having a
common ancestor DZ . This is the case where traces of ancestor’s genes can still

be found in the genes of current instances, but not realised. The evolution tree
grows as shown in Figure 8-3 (e)(2).

22112 Class C7 is not used in any instances — In this case both C3' and C' are free of
all dependency and will be removed permanently from the system. Consequently
types [ and D will also become extinct, The evolution tree in Figure 8-3

(e)(3) depicts this process, with the blurred nodes and line indicating a branch
that has been terminated. This however can scarcely happen.

2.2.2Class C? partially substitute class C{ in some instances — In this case C? cannot be

removed due to the instance dependency constraint. The two document species A and B co-

exist, having a common ancestor D (see Figure 8-3 (€)(2)).

This example shows how the speciation process in LifeWeb forms the evolution tree, which is very
similar to the free of life in nature as generally accerted by biologists [DAVI8b] (see Figure 8-4). In
the example above, for simplicity, the speciation event happens at a fairly carly stage in the process,
so that the branching occurs immediately at the root node of the evolutionary tree. In reality this event
may be delayed much further and the evolution tree would picture the same as the tree of life in
nature.
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8.4 Muiltiplication and extinction of document types

and document species

In nature a species spreads (multiplies) or becomes extinct through the reproduction cycle of an
organism. It is a process of two opposite events through which the birth and death of an organism
allow the fitter genes to be selected, improve and multiply, and the less adaptablc genes dismissed,
depreciated and become extinct. In other words, genes become multiplied or extinct by means of their
instances through the reproduction cycle. In normal cases, the factor that controls this cycle is the life
expectancy. By inducing death, this factor allows for new organisms to be born, while still

maintaining some equilibrium state of the system.

A similar mechanism is designed in LifeWeb to control the multiplication and extinction of document
types and document species, essentially maintaining scalability in the system. The following
subsections explain this mechanism in terms of life expecrancy, reincarnation and the

mudtiplication/extinction of document types and document species.

8.4.1 Life expectancy and reincarnation
At birth all LifeWeb documents are assigned a fife expectancy, which is held in the property
expiration, to control their life span. There are two types of expiration:

o relativeExpiration specifies the amount of time that the object can live from the time it is last

used (accessed)

o absoluteExpiration specifies the maximum amount of time that the object can live
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If an object has not been acceucad (used) for a relativeExpiration period of time, or if it js still used
but has reached the absoluteExpiration time, it will be destroyed. In the first case, the object is
destroyed forever. In the second case, the object will be immediately reincarnated without changing
its identification but possibly with some updates to reflect the most recent evolutionary change in the
system. In software engineering terms, this is simply a “restart” operation with updates,

8.4.2 Muliiplication and extinction of document types and
document species

The spread of a new document type or document species (class genome) has to be done to both
newborn instances and existing ones,

With newborn instances, when a new document is created (most likely manually), it is possible to
have it fashioned after the fittest, presumably the most recent document type that exists for a chosen
document species (existing or new one).” This forms a new generation for that document species (or
the first generation of a new species).

With existing instances, the most recent document type will also be assigned to them on
reincarnation, which at the same time may release their original document type (if the original one is
different from the new one). This assignment is doable because new types always confore to old
ones of the same species, and the reincarnated instance can be validated under the new type. This
process, which is repeated many times over the entire population of the species, eventually replaces
all ocecurrences of old document types with new ones. That is, the new types are mulriplied while the
old types beconie extinct. A document species becomes extinct when the last document type defined
for it is removed. This should happen only after the last instance defined by the Jast document type of
that species is destroyed forever.

‘This mechanism (of using life expectancy to control the spread and extinction of document types and
document species) allows for asynchronous and smooth migration of existing document instances to
new types without creating a sudden heavy load on the system by the time a new type is formed. As

% Similar to the results of evolution in nature where exisiing species are proven to sustain better, new document
species or types have also undergone a selection process to prove themselves more favourable. It is therefore
possible to differentiate the fittest document type among many cthers of a given document species, based on
their time stamp.
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document instances can reproduce themselves, reincarnation can be done by themselves in a

decentralised manner,

It is noted that in botiom-up evolution (which is assumed to be the normal system operation), it is
generally not necessary to migrate individual elements (objects) in a given document instance to a
new element type (class) that substitutes an existing type. This is because in this case, the new
element type can be included in the main document type (main class genome) of the document
instance only after it, as a hybrid type, has successfully competed with an existing type (in the main
document type) from the concrete Jevel. That is, in most cases (depending on the value of the genetic
evoluticnary threshold), the element (object) must have been defined in the new (hybrid) element
type before this new type is (permanently) registered in the main document type (main class genomie)

of the given documer: instance.

It is also noted that in the literatore of evolutionary computing, evolution is usuaily considered in two
aspects: local and global IKUKO00]. We are dealing only with global evolution in the sense that the
evolutionary process drsii:evl here is considered to happen over the entire Web, rather than at a
specific Web site. Local evolmion is not within the scope of this thesis and will not be discussed

here,

8.5 Some scenarios

This section gives some concrete scenarios that illustrate the evolutionary process described in the
previous sections. In these scenarios (as well as in our LifeWeb implementation), the evolutionary
threshold consists of two factors: the minSize factor, which specifies the minimum population size
required before the other factor, minRare, takes effect. The minRate factor dictates the minimum rate
of occurrence (or absence) of a gene for it to be added to (or removed from) the next higher level. (It
is necessary to have the minSize factor 10 ensure that a reasonably large population is present before
the evolutionary process is applied, since the size of this population is not known from the
beginning). For example an object evolutionary threshold with minSize = 500 and minRate = 0.8
means that there should be at least 500 client documents for a given server document, and at least 400
of them (0.8*500) should bear (or not bear) gene g, for g to be added to (or removed from) the higher

level (the server document).
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8.5.1 Scenario 1

This scenario illustrates the competition of three object genes at the concrete level.? In this
competition, these genes exist in a population of client documents, but only one of them <an be
present at a given server document,

Suppose that a server document D has a structural component § that can be displayed in the format of
a table (7), list (L) or frame (F), subject to nser customisation. Each of these formats represents an
object gene that is being considered. Suppose further that in the object evolutionary threshold,
minSize is equal t0 5 (a small number for simplicity), and minRate ).8. Suppose also that the
structural component § in the server document D is originally displayed as a table (7)), and there is no
client document to start with. The scenario happens as follows. One day after the server document D
is published, it is visited by several users and three customised client documents are created, all using
L to display the structural component S. The situation is as follows:

Day 1
Gene Number of | Rate of occurrence (fitness)
¥ occurrences F(X)= Ny
ny znx
0 0
3 1.0|
0 o
Total 3

Table 8-1 ;: Observed fitness values after one day

As shown in Table 8-1, gene L has achieved a fitness factor of 1.0, which is above the minRate of 0.8,
but it has occurred in only 3 individuals, which is below the minSize of 5. Consequently, no change is
made to the server document at this stage. After two days, 10 client objects are created, therefore the
minSize requirement is satisfied. However, no gene has achieved the minRare value, thus the server
object is still unchanged (see Table 8-2).

% This is similar to the competition of class genes (at the genetic level) described in Section 8.3, but happens at
the concrete level and does not make any changes to the evolution tree. It is aiso noted that although there is
complementary relationship between class genes, no such relationship exists between object genes. (Becanse a
class gene may define many instances but an object gene defines only one).

129




Day 2
Gene Number of Rate of occurrence
X OETTENEES 1 (fitmess) F(X) =X
ny 2 x
T - 5 35
L 4 4
F 1 .1
Total 10

Table &-2 : Observed fitness values after two days

After a month, 100 client objects are created, and 80 of them use L to display the structural
component S (see Table 8-3), That means, gene L has achieved a fitness factor equal to the minRate
threshold. As the minSize requirement is also satisfied, gene L will be propagated up to the server
document D, changing the presentation of the structural component S in the server document D from
T (table) to L (list).

In this process, it is remarked that for a given feature (the presentation of the structural component S
in this example), the more variety of genes (formats) there is, the more difficult it is for a change to
propagate up to higher level. T.is is because the competition among the genes is higher. The minSize
factor plays an important role to ensure a sample statistically representative (large) enough for the
whole populatior, which is still growing. The greater value of minSize also delays and reduces the
possibility of change propagation. This example illustrates how the LifeWeb evolutionary model can
be deployed to achieve optimal setiing (in terms of user preferences) for a particular feature in a

server document,
Day 30
Gene Number of Rate of occurrence
X OCCHITENEES 1 (itmess) f(X) = <X
Ry an
15 15
80 80
5 05
Total 100

Table 8-3; Observed fitness values after one month
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8.5.2 Scenaric 2

This scenario illustrates the propagation of a complementary class gene from the concrete to the
genetic level.

In continuation of the scenario above, suppose that the classes Table (CT) and List (CL) are defined
in the document type DTDI, but the class Frame (CF) is defined in another document type, DTD2.
We will consider in this example, the registration of CF in DTDI, that is, its propagation from
document instances (defined in DTDI) to DTDI. Suppose that initially there are three server
documents defined in DTDI, including the server document in the previous scenario. All of these
server documents have a structural component, which may be displayed in the format of a table (7),
list (L) or frame (F), and which they all initially display in 7. We now call these server documents
DI, D2 and D3. The minSize and minRate required for CF to be added to DTDI is 5 and 0.6,
respectively. (Note that these factors comprise the genetic — not object — evolutionary threshold
applied on the population of the server documents, not the client ones). The object genetic threshold
for all three client document populations derived from D1, D2 and D3 is still 5 and 0.8 for minSize
and minRate, respectively. The scenario happens as follows.

Day 1
Gene | Number of Rate of occurrence
¥ OCCUITERNCES (fitness) F(X)= ny
ny an
Client D1] D2 D3 D1 D2 D3
0 21 0O 0 4 .0
3 1 3 1.0 2 1.0
Fl of 2] © 0 4 0
Totai| 3 5 3
Server Crl (D1,D2,D3)3 1.0
CL 0 0
CF 0 0
Total 3

Table 8-4: Observed fitness values after one day

One day after each of the server documents is published, D/ generates 3 client documents, all using
gene L, The client document population of D2 consists of 5 client documents, 2 of those using T, 1
using L and 2 using F. The D3 population is like the DI one, with 3 client documents, all using L.
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Since none of the client document populations of DI, D2 or D3 have any gene that passes the object
evolutionary threshold, DI, D2 and D3 remain unchanged. The situation after one day is shown in
Table 8-4.

After one week, object gene F in the population of client documents of D2 has passed the object
evolutionary threshold (minSize = 5 and minRate = 0.8). The class gene CT in D2 is thus changed to
CF, increasing the rate of occurrence of CF from zero to 0.35. However, CF is not yet registered in
DTD1, since both the minSize (5) and minRate (0.6) requirements for CF are still not satisfied (see
Table 8-5).

Day7
Gene Number of Rate of occumence
x | T ness) f(X) =X
ny z T
Client D1| D2} D3 D1 D2 D3
T 1 1 5 125 1 5
5 1 3 625 A | 3
Fij 2 8 2 25 3 2
Total|{ 8! 10} 10
Server CcT (DI, D3)2 .05
CL 0 0
CF (D2) 1 35
Total 3

Table 8-5: Observed fitness values after one week

After one month, two more server documents (D4 and D3), which also use only C7, are added to the
population of server documents, and the situation has been changed as shown in Table §-6.

At this stage, the two newly added server documents D4 and D5 quickly generate two populations of
client documents that highly favour the use of object gene F, Since the object evolutionary threshold
for object gene F is satisfied in both of these populations, the class gene CT in both P4 and D35 are
changed to CF. This increases the rate of occurrence of CF from 0.35 to 0.6 over the entire
population of server documents defined in DTDI. Since 0.6 is also #ie minRate required in the
genetic evolutionary threshold for CF, and the respective minSize requirement (5) is also satisfied,
CF isregistered to DTD1,
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Day 30
Gene Number of occurrences Rate of occurrence (fitness)
X ny FO =%
Ry
Client DI| D2 D3] D4| D5] D1| D2| D3| D4| D5

10 301 30 1 1] .125 1 5 .1 .1
50| 10} 30 0 1].625 1 3 0 .1
20 601 20 9 81 .25 8 2 9 8
Total | 80] 100] 100]| 10 8
Server cT 2 4
CL 0 0
CF 3 6
Total 5

Table 8-6: Qbserved fitness values after one menth

This scenario shows that besides the popularity of a gene, the addition or removal of client and server
documents to or from their respective populations can largely affect the chance of a gene being
propagated (its survival).

8.5.3 Scenaric 3

This scenario illustrates the competition of combinations of object genes (instead of oply one gene as
in Scenario 1) at the concrete level.”’ In this competition, combinations of genes exist in a population

of client documents, but only one of them can be present at a given server document.

Suppose now that the structural component S (in Scenario 1) has twyc subcomponents containing an
image and an audio file respectively, fo illustrate its contents. These subcomponents can be added or
removed in client objects, subject to user customisation. As each subcomponent ¢an be ¢ither present
or absent in the document (D), there are 2° = 4 different possibilities, and the genetic patterns are

represented in Table 8-7 below:

" This example is particularly given to compare evolution in Life Design and Genetic Algorithm (see Section
8.6).
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Possibility number Image Andio Binary representation
1 Absent Absent 0o
2 Absent Present 01
3 Present Absent 10
4 Present Present 11

Table 8-7: Possibilities of custemisation

Suppose that initially both the image and the andio files are present in the server document D (genetic
pattern “117), and the values for minSize and minRate are still the same as in Scenario 1 (5 and 0.8,

respectively). The scenario happens as follows,

After one day, 5 client documents are created from the server document D, but none of the genetic
patterns (X;) has reached the minRarte (Table 8-8). Consequently, no change is made to the server

document at this stage.
Day 1
Possibility | Genes | Number of Rate of occurrence
number OCCUrrences ny
X, (fitmess) f(X)=
. Y.y
i n X
1 00 1 0.20
2 01 1 0.20
3 10 2 0.40
4 11 1 0.20
Total 5

Table 8-8 : Observed fitness values after one day

After 30 days, there are 100 client documents created. The pattern “01” scores highest in the
population (0.72), but is still under the required minRate (0.8) (see Table 8-9). The server object
therefore. still keeps its pattern of “117, even though at this stage the rate of occurrence for that

pattern is almost zero.

This scenario illustrates how features may be combined to evolve together in LifeWeb. Usually
features are combined when they are related, (In this example, the above features are related in the
sense that they are all used to illustrate the textual contents of the structural component S). The more
features are combined together, the lower the possibility for any combination to propagate to higher
level (hence, the lower the possibility for changes at higher level). Some combination may also
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disappear at one or both levels (but this does not lessen the genetic variety as in the case of the
Genetic Algorithm, which is explained in Section 8.6). It is noted that combinatorial explosion (that
is, too many genetic patterns exist so that their fitness evalnat:on becomes computationally
impossible) is not likely a problem here. This is because what can be combined to evolve together are
only the object genes within one single (server) document (not among documents). (In the above
example, they are the object genes of the image and audio clements). Furthermore, the number of
object genes in one document that can be meaningfully combined (and propagate together to higher
meta-levels) is quite limited.

Day 30
Nuomber | Genes Number of Rate of occurrence
occurrences n
i X, (fitness) f(X)=<%
Z Ry
Ry
1 00 10 0.10
2 01 72 0.72
3 10 15 0.15
4 11 03 0.03
Total 100

Table 8-9: Observed fitness values after one month

8.5.4 Conclusion

These scenarios show how LifeWeb can be employed in a simple way to build adaptive Web
documents, System evolution to higher genetic level also happens in a similar fashion, This simplicity
is achieved due to the fact that user inputs have been used not only to drive the selection of the fittest
genes but also to generate genetic variety, including introducing new genes. This is not the case with
the Genetic Algorithm, explained previously in Section 4.3, and in Section 8.6, The evolutionary
threshold, which in LifeWeb, consists of the two factors minSize and minRate, plays a critical role in
controlling system evolution. Working out appropriate values for these factors can perhaps form an

independent area of study.
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8.6 LifeWeb evolution and the Genetic Algorithm

LifeWeb consists of populations of self-reproducing enfities with various genetic traits, which can be
aitered to improve their fitness to user and developer requirements, These have made it feasible to
apply the Genetic Algorithm (GA) (see Section 4.3) to LifeWeb.

Evolution in the GA, however, differs from that in LifeWeb in several aspecis.”® In the GA, new genes
are internally generated mainly by crossover {(with random recombination) and random mutation
(secondary). In LifeWeb, (1ey are externally produced by human users, authors or developers, and
purposefully introduced into the system through vser customisation. For instance, users may create
their own presentational objects in their client documents to suit their needs; authors may create a
pool of “ready-made™ presentational gbjects in their server documents for users to choose from; and
developers may create a pool of classes (element types) for authors to try on their (server) documents.
This is a major difference between the two systems because they evolve in manners that are opposite
with each other: one is random (thus is less efficient in terms of environmental fitness)” and the other
controlled (thus is more efficient in the same terms).

Another difference is that the GA may termiinate if a termination condition is reached or an optimum
is found.®® In LifeWeb, evolution is a process that lasts as long as the Web system does, unless the
whole process is abolished (for instance, by its creator). There are also some other minor differences,
for instance, in the GA, features (parameters) are typically combined together 10 evolve, whereas in
LifeWeb, they often evolve singly.

The application of the GA to LifeWeb requires some change to the LifeWeb evolutionary model
described in previous sections. As has been explained, in the GA, genetic strings are generated
internally by the system through crossover or mutation, not from user requests for customisaticn as in

* Note that here we are comparing only LifeWeb evolution, not evolvability, with evolution in the GA. As has
been mentioned in Section 4.3 and throughont the previous chapters and sections, evolvability has a larger

problem domain than evolution.

¥ The effect of randomness in GA evolution may be reduced, but not eliminated, by the application of some
prior knowledge [JON8E].

®Ina changing environment, the fitness function may change and a2 GA may be left continuously ranning so that
individuals can continuously adapt themselves to the new environment, Typically however, a GA is made to
terminate after a certain number of execution cycles. This is because of time and resource constraint and also, as
has been mentioned before (Section 4.3), the focus of GAs is optimisation, not evolvability.
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LifeWeb. Because these strings must be exposed to all users (the environment) to have their fitness
evaluated, they cannot be instantiated in (personal) client documents, but in a number of server
documents, accessible to all users, (For instance, in the example in Scenario 3 above we can create a
population of 2 server documents for the 4 different geanetic patterns to compete with one another.)
As such, gene fitness can no longer be measurcd by the rate of occurrence of a genetic pattern
(because there are not enough individuals carrying that pattern to make a statistically significant
figure), but by some other measurement, for instance, its utilisation, The application of the GA on
LifeWeb is probably most suitable to produce a (server) document instance with a set of optimal
genes. The fitness function for this application is yet a question to be investigated.”!

8.7 LifeWeb versus meta-modelling

As has been mentioned earlier (Section 4.2.2) and can be seen from the explanations of Life Design
(Sections 6.4.1.2 and 6.4.2.2.2) and LifeWeb (Section 7.2), meta-modelling concepts have been
applied in Life Design and LifeWeb to construct the recursive gene architecture in which individual
entities systematically evolve in a bottom-up fashion (see Section 8.1). This architecture generally
follows the same principles as standard meta-modelling frameworks such as the ISO/IEC IRDS
{IRD90] (see Section 4.2). In addition, it extends the IRDS architecture with the concepts of the
union level, and hybridisation, as explained previously in Section 6.4.1.2. Similarities and differences
are also found between the Life Design recursive gene architecture and the UML Four-Layer
Metamodel Architecture [UML98] (which can be conside:.d an itnplementation of the IRDS). These
are explained before in Section 6.4.1.2.

In brief, existing meta-modelling concepts and techniques have been largely applied in Life Design
and LifeWeb, and extended to introduce new ones useful for system evolution, These concepts and
techniques, combined with object-oriented technology, enable the design of a self-evolving system.

8.8 LifeWeb versus Database Schema Evolution

Life Design (hence LifeWeb) and Database Schema Evolution (DBSE) share the same concerns about
enabling dynamic changes to the description (system schema) that models a particular system
instance, and the consistent management of these changes (see Section 4.1). In this section, LifeWeb

3 One possible fitness function is measured by the ratio between the number of accesses (hits) to an individual
(document instance) over the number of accesses to all individuals of the population. Such a function however, is
questionable whether the number of user accesses is sufficiently representative of user preferences,
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is evaluated against DBSE in terms of its (LifeWeb's) capacity to (i) observe DBSE invariants and
rules (see Sections 4.1.1.1 and 4.1.1.2), (ii) support DBSE evolution operations (see Section 4.1.1.3),
and (i) propagate changes (see Section 4.1.2).*

8.8.1 Observation of Database Schema Evolution invariants and
rules

As explained earlier in various places (Sections 6.4.2,1.3, 6.4.2.44, 8.2, 8.2.5, 8.2.6, 8.3, 8.5),
LifeWeb does not allow any change to the internal definition of an existing class,” and a schematic
change in LifeWeb (or a Life Design system) happens only on a component (class) basis. In other
words, a schematic change is carried out only through the addition of a new class or removal of an
existing class (possibly with its “subordinate’ classes — see Section 6.4.1.1.4 about the “subordinate”
relationship), via the generalisation link. Because a new class must have been derived from an
existing class to be eligible for addition (see Sections 6.4.2.1.3, 8.2.5, 8.3 and 8.5), and an existing
class must have been free of all dependency to be eligible for removal (see Sections 6.4.2.4.3, 8.2.6,
8.3 and 8.5), both these operations do not introduce any conflicts to the evolving system. This means,
DBSE invariants and rules (as listed in Sections 4.1.1.1 and 4.1.1.2) are either not relevant or
naturally observed in LifeWeb.>*

8.8.2 Support for Database Schema Evolution evolution operations

According to Banerjee et al. [BAN87], DBSE evolution operations are categorised into three groups:
(i) Changes to the internal class definition, such as adding, removing or modifying attributes or
methods; (ii) Changes to the generalisation/specialisation relationships between classes; and (jii)
Changes to the class as a whole, such as adding or removing an entire class (see Section 4.1.1.3).

As explained earlier in several places (Sections 6.4.2.1.3, 6.4.2.4.4, 8.2, 8.2.5, 8.2.6, 8.3, and 8.5),
only changes in the third category may happen in LifeWeb. Such changes are also the means to allow
for changes in the first and second categories to happen. That is, the addition, removal or

% This evaluation is applicable also to Life Design.

% The internal definition of a class here is understood in the entirety of the class, which consists of its attributes,
methods, including inherited ones, and its “subordinate” classes (see Section 6.4.1.1.4 about the “subordinate”
relationship).

*To be more precise, DBSE invariants and rules are ensured (where relevant) by the development environment
in which LifeWeb is implemented.
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modification of a feature (attribute, method or link) in an existing class means that a new class (with
the desired featnre) must be developed and introduced into the system (through an appropriate
generalisation relationship), For instance, in the example described in Section 8.3, the new class C}
is developed in order to remove some features inCy (Figure 8-3 (d)). C; may also be an

implementation to remove the superclass C;’ from c;‘. The restriction that all schematic changes

must happen through those in the third category allows LifeWeb to ensure systematic evolution on a
component basis (see Sections 6.4.2.1.3, 6.4.2.4.4, and 8.8.1).

DBSE also defines some evolution operations that do 1ot change the definition of a class or a class
system, but only an attribute value that is common in the whole class (that is, global to all objects of
that class). For instance, operations 1.1.6 and 1.1.7 (see Section 4.1.1.3) allow for changes to a
default and shared attribute value, respectively.®® Since these are changes to pure data values only,
they are not required in LifeWeb to be implemented by a first-category operation (an introduction of a
new class in this case). However, as they are global changes (relative to the objects defined by the
given class), they must start Jocally first at individual objects at the concrete level {document
instances), and propagate up to the genetic (schematic) level, in the same way any other evolutionary
change is developed in LifeWeb (see Section 6.4.2.4.4).

8.8.3 Change propagation

LifeWeb and DBSE propagate changes in opposite directions. On the one hand, LifeWeb evolution
starts from individual instances at the concrete level, and propagates up to higher meta-level of genes
{bottom-up evolution), On the other hand, evolution in a database system starts at the schematic
{(genetic) level and propagate down to instances (lop-down evolution) (see Section 4.1.2), This
difference is instrumental in providing LifeWeb with a significant advantage over DBSE. LifeWeb
evolution is a gradual, incremental and recursive: process, where changes happen and propagate from
individuals to groups, instances to schemata, and local to global. In this way, local and incremental
changes automatically, gradually and recursively reshape the system to represent the new state,
Bottom-up evolution frees LifeWeb from the complication and overhead that incurs in DBSE due to
the need to propagate schematic and global changes down to affected instances (see Section 4.1). In
the long-terms, it allows for systematic evolution, and prevents adhoc, “quick and dirty” changes to
existing features that have caused many serious problems for the Web (see Sections 2.2,1.2, 2.2.1.3,
22.14,2.2.1.5).

35 A shared attribute is also commonly referred to as a class variable in the programming environment,
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In brief, LifeWeb can support ail DBSE evolution operations, with constraints that allow LifeWeb to
evolve systematically and strictly on a component basis. Changes are propagated in a bottom-up
fashion across levels of meta-modelling, which enables a smooth evolution of the whole system and
eliminates overhead costs for maintaining data and schema consistency that is required in DBSE top-

down evolution,

8.9 Conclusion

Life Design and the evolutionary model in LifeWeb propose an evolvable Web system in which new
document types (DTDs) are derived from existing ones in an object-oriented manner. This means
existing DTDs and their related software and tools can be reused, and the system is mainiainable and
manageable both statically and dynamically in its course of evolution. (See also Sections 9.4.2 and
9.4.3 for implementation of automatic evolution.) Evolution is enabled by changes introduced to
individual Document objects (by Web developers and authors), driven by user needs, and
incrementally accumulated and propagated through successive levels of meta-genes, resulting in
changes at the schema or higher meta-modelling levels. System interoperability is maintained through
the architecture of recursive levels of meta-genes (or meta-modeliing). System scalability is generally
maintained through the two processes addition and removal, which have cancelling effect to each
other. This evolutionary model makes LifeWeb an open system in the sense that its evolution accepts
(and calls for) collaborative work among public Web developers/authors and users worldwide (the
external environment) to introduce changes and derive new DTDs. (This is made possible by the use
of only open standards and technologies in the system implementation as will be described in Chapter
9.) As an analogy to the Darwinian evolutionary theory, where:

The evolutionary process, taking place in each individual living organism, is enabled by s internal gene
mutation and modification, driven by external forces of natural sefection, and reziised by the population’s
adaptation capabilities (Section 6.2.6),

it can be similarly said for LifeWeb that:

The evolutionary process in LifeWeb, taking place in each individual Document, is enabled by its internal
specifications modification, driven by external forces of user requirements, and realised by LifeWeb
adapfation capabilities.

140




A Lt i e P il it B a2 L 12 e s W el e o

Chapter 9 LifeWeb Implementation

This chapter describes the implementation of LifeWeb. Two major decisions have to be made: the
programming environment in which LifeWeb is implemented, and the notation in which the LifeWeb
data model is expressed. These are explained in Sections 9.1 and 9.2. Section 9.3 shows the class
mapping between the LifeWeb data model (see Section 7.1) and the LifeWeb implementation. The
system architecture is described in Section 9.4 in three Ievels: basic, customisable and evolvable.
Sections 9.5 and 9.6 explain how LifeWeb can cnhance referential integrity and help in resource
discovery. Finally, Section 9.7 describes LifeWebManager, a LifeWeb application for creating,
managing, and maintaining LifeWeb documents,

9.1 Programming environment

We have chosen to implement LifeWeb as an extension to a Web server. There are several alternative
technologies to implement such an extension, such as JavaServlet™ [HUN98}, and Common Gateway
Interface (CGI) Script [MCC95]. We have chosen JavaServiet™, as it is known to outweigh CGI
Script in terms of performance and flexibility, and is supported by the richly featured Java™
technology. The LifeWeb data model must also be expressed in a well-defined language that should
be well integrated with the Web, and the implementation must include a parser for the chosen
language. For this purpose, the Extensible Markup Language (XML) (see Section 3.2.2) has been
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chosen, and an XML parser incorporated in our implementation. The system implementation thus

makes use of the following development tools:

¢ Java Development Kit (JDK) 1.2: this JDK is distributed free of charge from Sun Pty. Ltd..

LifeWeb is implemented completely in Java™.

e HotServ: a Web server written by Scott Milton, a PhD candidate at the School of Computer
Science and Software Engineering, Monash University. HotServ is written in Java and supports
JavaServiet™. LifeWeb servlets can thus be developed and interface between the HotServ Web
server and the LifeWeb engine. HotServ is released free of charge by the courtesy of its author.

o XML4J: An XML (see Seciion 3.2.2) parser, written in Java, that implements the XML
specifications. This parser 1s developed and distributed free of charge by IBM AlphaWorks Pty.
1td. [IBM98]. XMLAJ also supports the Document Object Model (DOM) (see Section 3.2.3).
Figure 9-1 shows the class hierarchy of the relevant XML4} classes. (In this figurc, for brevity,
all the classes shown without a package name are the XML4J classes in the package
“com.ibm.xml.parser”. For example, the full name of «clasz “Child™ is

“com,ibm.xml.parser.Child”.) The LifeWeb engine is built as an extension of XMLAJ.

The system is developed and tested on a Pentium PC running Linux RedHat version 5.2.

¢+ java.lang.0bject
0 Child (implements org.wlc.Node)

»  Parent
e DTD {implements org.w3c.DocumentTyvpe)
e TXAttribute {(implements org.wic.Attr)
e TXDocument (implements org.w3c.Document)
s TAElement {implements org.w3c.Element)

= TXCharacterData

* TXText (implements org.w3c.Text)
o] Parser

Figure 9-1: Class hierarchy for XML4J (simplificd)

9.2 Notation - LifeWeb XML

LifeWeb is a data model with multiple levels of meta-modeiling, and each level has to be expressed in
a well-defined notation (see Sections 6.4.1.2 and 6.4.2.2). The first two levels, concrete and genetic,

are defined in Sections 7.1 and 7.2. In this section the notation for these first two levels is presented.

(Detailed design and notation for higher meta-levels are not within the scope of this thesis).
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<7?xml version="1.0" encoding=*UTF-8%2>

<!DOCTYPE LifeWelb System=*http://lifeweb.org/lifeweb.dtd*>
<LifeWeb *idzhttp://lifeweb.org/lifewebbook.xml”
behaviour=*LifeWeb”>

<table id="ChaplPres” row="1" col="2° behaviour="LWTable*/>
<book id="MyBoock” heading="LifeWeb and Life Design®
behaviour="LWBook">
<struct id="Chapl” heading=*INTRODUCTION*
present="ChaplPres” behavicuyr="LWStruct*>
<text id="ChapteriTxt*
src =*../mybook/data.htm#intro”
behaviocur=*LWText”/>
< fstruct>
<gtruct id="Chap2” heading="LIFE DESIGN”"
behaviour="LWStruct>
<text id="Chap2Txt"
src=*. . /mybook/data.htm#lifedesign®
behaviour=*LWStruct”/>
</styuct>
< /books>

</LifeWebh>

Figure 9-2 : A simple LifeWeb document represented in XML

At the concrete level, a LifeWeb document essentially holds information describing its own structure,
that is, ;meta-data. K can thus be expressed in a knowledge description langeage that supports meta-
data 21 nesting structure {to satisfy Life Design’s structural constraint), such as Telos [MYL90,
LOUY2] or XML (Section 3.2.2). XML is chosen because it is an emeiging Web standard that shows
large potentials and is increasingly accepted [BOS97, CON97, TRES8, USD%8].

At the genetic level, since XML has been chosen to represent document instances at the concrete
level, it must also be used to describe document schemata, according to the XML specifications.

Thus, at the concrete level, a LifeWeb object is generally represented as an XML element, and a
LifeWeb document an XML document, At the genetic level, a LifeWeb class generally corresponds to
an element type, and the LifeWeb schema (LWS) a Document Type Definition (DTD). As can be seen
in earlier examples (Section 7.2.2), LifeWeb maps fairly well into XML’s syntactic model. (For
convenience, the first example in Section 7.2.2 is reproduced in Figure 9-2). There are three
exceptions to this mapping, and a specia: support for inheritance:

The Behaviour class

A Behaviour object has no corresponding XML element and the Behaviour class no corresponding
element type. For instance, in Figure 9-2, the element <book id="MyBook™> has an association with
the Behaviour object LWBook (represented by the attribute behaviour="LWBook”), but LWBook is
not defined as an element in the given XML document. This is because LWBook really represents the
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APl implementation of the class Book (see Section 7.1), which cannot be represented in a
(declarative) document (such as an XML document in this case). It is noted that objects of other
classes, except for Schema (see below), are all represented as XML elements in the given document.
For instance, the object ChaplPres:Table (Figure 7-3) is represented as the XML element <table
id="Chap1Pres"> (Figure 9-2).

The Schema class

An individual XML element often does not contain an explicit association to its Schema object as
prescribed in the LifeWeb data model (Figure 7-1). In addition, a Schema object does not have a
corresponding XML elemert, nor does the Schema class have a corresponding element type, and a
Schema object is usually not defined within the XML document where it {the Schema object) is used.

<e xmins:chem='http://chemistry.org/schema.dtd’>
<chem:molecule>C6Hb6</chem:molecule>
</e>

Figure 9-3: XML namespace

<?xml version="1.0" encoding="uUrTr 53° 7.
<!DOCTYPE greeting [
< 1ELEMENT greeting (#PCDATA)>
1>
<greeting>Hello, world!</greeting>

Figure 9-4: Internal DTD

The first exception exists because an XML document contains the <!DOCTYPE> construct that
holds a reference to its main DTD, that is, its main system schema, or main class genome.*® This
gives every element in the document access to the document’s main DTD (system schema or class
genome), as well as its own element type definition (Schema object or class gene), without the need
to explicity associate each clement to its own eletnent type definition. For instance, in Figare 9-2, the
element <book id="MyBook™> can access the document’'s DTD via the reference
http: //1lifeweb.org/lifeweb.dtd, and its own element type definition via the reference
http: //1lifeweb.org/lifeweb.dtd#book. In the case of a hybrid XML element, however, the
element is explicitly associated with (qualified by) the DTD that defines its type via the namespace
mechanism (Section 3.2.2). For instance, the element <molecule> in Figure 9-3 is associated with the
DTD http://chemistry.org/schema.dtd via the prefix chem.

% XML also permits a document without a DTD, called a well-forme. document. In this thesis we discuss only
valid XML documents, that is, documents with their own DTDs.
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The second exception exists because in XML, a Schema object (class gene) is an element type (and
the Schema class is really a meta-Class, which cannot be represented as an element type), which is
usually declared in a DTD external to the XMi. document where it (the element type) is used {sec
Sections 7.1 and 7.2.2). Besides, even when a Schema object is declared within the given XML
document, as in the case of an internal DTD (Section 3.2.2), it must be represented as an element type
definition, not an element (Figure 9-4),

The <LifeWeb>> element

The <LifeWeb> element corresponds to the document's roof element defined in XML, which
indicates the type of the document being defined and encloses every other element in the document
(see Section 3.2.2).*" This root element does not correspond to any LifeWeb object defined in the
LifeWeb data model (Figure 7-1), but may be considered semantically equivalent to the document’s |
object genome, because it represents the set of all elements in the document.

It is noted that a LifeWeb object does not directly contain its material or presentational components;
instead it references these. This enforces the complete separation of the structural aspect from other
aspects of the document.

Superclass

It is noted that XML, does not support inheritance. We provide for this by the use of a special
attribute superclass known to the LifeWeb system. The value of this attribute is the name of the
superclass. In the current implementation, this superclass attribute is simply used as a shorthand
notation to include inherited attributes in the subclass instead of an explicit listing of them. Similar to
conventional object-orientation, an inherited attribute may be re-defined at the subclass. For instance,
in Figure 7-6, element type struct inherits al! attributes of element type doc, which are id, heading
and behaviour, The value of atiribute behaviour, however, is re-defined in struct.

9.3 Class mapping

Except for Behaviour, which represents a class APl implementation (and thus is not implemented as a
class), each class comprising the LifeWeb core model (Figure 7-1} is implemented as an equivalent
Java class in the LifeWeb prototype. Some classes in the extended model (Figure 7-2), and some extra

7 Note that the root element in an XML document is not the root form in Life Design. In Figure 9-2, the root
form is the element <book id="MyBook”>,
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classes required in our particular implementation are also implemented. There are five packages in
the system: model, service, processor, dbm (database management) and misc (miscellanecus).

9.3.1 The modef package

- Branchi - _ LifeWeb _cl_as-_s{

]l\d(ldq'-;
LifeWebObiect LWOQObiect
N/A LifeWeb
Document LWDoc
Pubilication LWPub
Document
StructuralComponent LWStuct
N/A I.WPageBreak
Material 1 WMaterial
Material Text LWText
Image LWImg
| Presentation LWPresent
Presentation Table LWTable
List LWList
Hyperlink Hyperlink LWHLink
Hypertext LWHText
Evolutios Schema LWS
Evolutor LWEvolutor
. Service LWService
Service
N/A LWParameter

Table 9-1 : Implemented LifeWeb classes

The model package contains all implemented classes in the LifeWeb core and extended models, plus
three extra classes: LifeWeb, LWPagebreak acd LWParameter. The package can be subdivided into
four branches: Document, Material, Presentation, Hyperlink, Evolution, and Service (see Table 9-1).

All classes in this package, except for ZLWS (Schema), are subclasses of the LWObject
(LifeWebObject) class, which, in turn, extends the XML4J TXElement class that implements the
Document Object Mode! (DOM) Element interface (see Figure 9-1, Figure 9-5, and also Section
3.2.3). LifeWeb Schema is a DTD (see Section 9.2), therefore it is implemented as a subclass of the
XMILAJY DTD class (which is an implementation of the DOM DocumentType interface).
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* Jjava.lang.Object
o com.ibm.xml.parser.Child
*  com.ibm.xml.parser.Parent
* com.ibm.xml.parser.DTD
o au.edu.monash.sd.lifeweb.model . LWS

¢+ com.ibm.xml.parser.TXDocument
o au,edu.monash.sd.lifeweb.model .LifeWeb
¢ com.ibm.xnl.parser.TXElenent
¢ au.edu.monash.sd.lifeweb.model .LWObject
" au,edu.monash.sd.lifewek.model .lLWDoc
* au.edu.monash.sd.lifeweb.model.LWPub
¢ au.edu.monash.sd. lifeweb.model .LWStruct
*  au.edu.monash.sd.lifeweb.model.LWMaterial
s au.edu.monash.sd.lifeweb.model .LWText
*+ au.edu.monash.sd.lifeweb.model .LWImg
s  au.edu.monash.sd.lifeweb.model.LWPresent
¢ au.edu.moenash.sd.lifeweb.model .ILWTable
» au.edu.monash.sd.lifeweb.model .LWList
s  au.edu.monash.sd.lifeweb.model .LWHLink
* au.edu.monash.sd.lifeweb.medel.LWHText
au.edu.monash.sd.lifeweb.model .LWEvolutor
au.edu.monash.sd.lifeweb.model .LWService
au.edu.monash.sd.lifeweb.model . LWPageBreak
= au.edu.monash.sd.lifeweb.model.LWParameter
o com.ibm.xml) .parser.Parser
* au.edu.monash.sd.lifeweb,.processor.LWParser
o au.com.live.httpd.HttpServiet
* au.edu.monash,.sd.lifeweb.processor.LifeWebServlet
*+  au.edu.monash.sd.lifeweb.processor.CustomServlet
c au.edu.monash.sd.lifeweb.dbm.DBLink
¢ Jjava.util.Hashtable
¢ au.edu.monash.sd.lifeweb,dbm.DBLinkTable
o au.edu.monash.sd.iifeweh.service.Service
* au.edu.monash.sd,.lifeweb,service.ComponentSelector
*»  au,edu.monash.sd,lifeweb.service.TableFormater.

Figure 9-5: Class hierarchy of LifeWeb (simplified)

The LifeWeb class is derived from the XMILAI TXDocument class (Figore 9-5), which is an
implementation of the DOM Document interface (see Section 3.2.3). As explained earlier (Section
9.2), this class is required to represent the whole of a LifeWeb document.

LWPageBreak is needed to provide control over the sequential (page continuation) links. Because an
object gene (Document object) is expected to be compact, it is possible for it to capture a large

structure, potentially the whole Web site. The page break element <pb> gives the author the means to
define physical partitions over the entire Document object, so that data can be rendered in a
reasonable amount at a time.

LWParameter is needed to handle the <parameter> elemenis, which may be required by external

services (<service> elements) (see Section 9.4.2).
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9.3.2 The service package

The service package- contains an abstract class, Service, from which external services must be
derived. For testing purposes, two such external services are implemented and included in this
package. They are: ComponentSelector, t0 select or deselect a structural component; and

TableFormatter, to put a structural component into a table format,

9.3.3 The processor package

The processor package contains three classes: LWParser, LifeWebServiet and CustomServier.
LWParser is derived from XMLAJ Parser (Figure 9-5), and is needed to parse an XML document
into a LifeWeb document of LifeWeb elements (see Section 9.4.1 below). LifeWebServiet and
CustomServiet are derived from HitpServiet (defined by the JavaServlet™ technology), and are

needed to communicate between the Web server and the LifeWeb engine (see Section 9.4.1 below).

9.3.4 The dbm package

The dbm package, which contains a class DBLinkTable and an interface DBLink, provides database

support to implement a /inkbase for maintaining referential integrity (see also Section 9.5.2).

9.3.5 The misc package

The misc package contains other classes that provide some utilities or implement some design

patterns. These classes are considered implementation details and not listed in this thesis.

Figure 9-5 shows the class hierarchy of the relevant classes in the LifeWeb implementation.

9.4 System architecture

This section describes the architecture of the system in three levels: basic, customisable, and

evolvable.

9.4.1 Basic level

The LifeWeb system is implemented as a set of Java classes and servlets. The LifeWebServiet
connects between the Web server and the LifeWeb engine. A request from the client for a LifeWeb
document received by the Web server is sent to the LifeWebServiet, which loads the appropriate

document, and passes it on to the LWParser for necessary processing,
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Conceptually the processing of LifeWeb elements is done in a manner similar to the well-established
theory of translation scheme known from compiler construction [AHOS88]). As has been explained
before (Section 5.2.2), the document component hierarchy is very similar to a parse tree where the
materials associated to a document component are the terminals (leaves) of such a tree, A document
node itself manifests a production rule expressing the sequential composition of the document from
its next lower-level components. As the parser visits a node while traversing the document tree, it
fires off the functions that process that node. In this sense, these functions implement the “semantic
rules” associated with the production being used at that node. In the context of document processing,
these “semantic rules” are the “processing rules” for that document level.

In the current prototype these functions are implemented as a set of methods with the same name,
handleElemeni(), defined in XMLAJ ElementHandler interface, for each LWObject class in the
LifeWeb engine. All LifeWeb elements are processed by ElementHandlers. Additional
ElementHandlers can also be registered to the LWParser before the document is read. Our system has
three groups of ElementHandlers. The ContentHandlers are responsible for loading the contents and
inserting hyperlinks into the document, the StructureHandlers for layout and ordering structural
components; and the Presentationflandlers, which are registered to the StructureHandlers, for
formatting structural components before they are returned to the LifeWebServiet. LifeWeb also
automatically generates structural and navigational links (such as table of contents or index, forward
and backward) based on the structural and page break elemeits in the document. The fully filled-in
and formatted document is finally returned back to the servlet to be written back to the client. Figure
9-6 depicts the basic system architecture.

It is noted that as elements are processed in a certain order while the document is being parsed, it is
necessary that associated elements be defined before they are being referenced. For example,
Presentation elements must be defined before the associating StructuralComponent elements. For
instance, in Figare 9-2, the <table id="ChaplPres”> element is declared before the associating
<struct id=""Chap1”> ¢lement.
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Figure 9-6 : LifeWeb system architecture (basic level)

9.4.2 Customisable level

Customisation has two flavours in LifeWeb, stateful and stateless.*® Stateful customisations are saved
in a client Document object {(object gene) and will remain in successive invocations of the same
document by the same client. Stateless customisations are not saved and will be destroyed when the
HTTP connection to that client is closed. As write access is generally not allowed to client machines,
in the current implementation, a directory in the file system of the server machine is reserved for

storing client sites, subdivided into subdirectories, one for each client.

Customisation is handled on the basis of structural units (Document or StructuralComponent objects)
in LifeWeb. According to Figure 7-1, such a unit can be associated with zero, one or several Service
objects. These Service objects can be deployed to provide customisation. Customisation is handled in
a way similar to the processing of a LifeWeb document at the basic level, where Service objects
perform the role of ElemeniHandlers. Different from an ElementHandler, however, which defines a
static method internal to a LifeWeb class {(handleElement()), a Service object is an external and
complete functional unit, dynamically created and bound to a LifeWeb object. This dynamic creation
and binding is done via an inlermediate <service> element internal to the LifeWeb engine (shown as
the box with the label “LWService” in Figure 9-8). A <service> element is the XML representation
of the (executable) corresponding Service object (shown as the box with the label “Service” in Figure
9-8). Such a <service> element and can be directly (hard) coded into the Lifeleb Document object or
dynamically created by the CustomServiet. In the latter case, the document can be dynamically

customised. The explanations below concern dynamic customisation, which also cover the static one.
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CustomServlet

CustomServlet is a class derived from LifeWebServiet (Figure 9-6). It has extra features of being able
to receive specific customisation requests from the user, create and save the corresponding <service>
and other elements as appropriate (see below). These changes can be saved either to a specific client
Document object (stateful customisation) or a temporary Document object (stateless customisation),
as requested by the user. When a request for the document is received, the CustomServiet will pass
the modified Document object (with the added <service> and other required elements) to the
LWParser to be processed in the same fashion as described at the basic level (see Section 9.4.1). This
time, however, all LifeWeb clements (LWObject objects), except for the <service> clements
themselves, will be “served” by the <service> elements (representations of Service objects) first
before they are handled by the ElementHandlers.

Service

<service id="TableFormatter93856721023~
serviceClassName="TableFormatter” appliedClassName="struct”>
<parameter name="idrefs” value="table283509823412"/>
<parameter name="view” value="user”"/>

</service>.

Figure 9-7 : A <service> element

Figure 9-7 shows the example of a <service> element. It encapsulates a reference to the
implementation of the (external) service, that is, the full class name of the external service
(serviceClassName attribuie), the name of the element type onto which the service is applied
(appliedClassName attribute), and a list of parameters required by each particular service
(<parameter> elements). A <service> element is usually generated by the CustomServiet (in dynamic
customisation), or may be manually created (in static customisation). In this particular example, this
service will put in a table format all structural components {appliedClassName="struct”) whose
attribute view is equal to user. The specifications for such a format is defined in the <table
id="table28909823412”> eclement. This <table> element (not shown in Figure 9-7) is also
dynamically generated by the CustomServiet (in dynamic customisation), or supplied (hard-coded) by
the author {in static customisation).

38 Also commonly referred to as persistent and non-persistent,
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Figure 9-8: LifeWeb system architecture (customisable level)

During parsing, the ElementHandler for <service> elements dynamically instantiates Service objects
(with the specified serviceClassName), creates the corresponding parameter lists for them, and
registers them to the LifeWeb Document object. The Service object will then be invoked to serve the
elements whose type matches the one captured in the appliedClassName attribute, when these
elements are encountered while the document is being parsed. As Service objects must be created
before they are used to serve other objects, their corresponding <service> elements must also be
declared upfront in the LifeWeb document. Figure 9-8 depicts the architecture for the customisable
system. In this figure all the ElementHandlers and LifeWeb elements, except for the one concerning
the LWService element, have been simplified (shrunk down to two blocks), and the LifeWebServiet is

not shown.

9.4.3 Evolvable level

Implementation of evolvability requires that the system has the capacity (i} to modify an evolving
entity, that is, in the case of LifeWeb, a document instance (at the concrete level) or a LWS (at the
genetic level); and (ii) to propagate changes from lower (concrete) to higher (genetic) meta-levels.
This section explains the system’s capacity in these aspects, and also how the evolutionary process

can be automated.

9.4.3.1 Modifications to an evolving entity

To a document instance (concrete level)

Changes to a document, both client and server, is only required to be done declaratively to the

document’s object genome, that is, its XML source code. Such changes can be performed by the self-
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modification genetic functions (see Section 6.4.2.4.3), and written directly onto the XML code, These
are simple changes, either to atiribute values or links between objects.

To a LWS (genetic level)

A change t0 a LWS must be done to both the declarative object (that is, the LWS’s object genome or
DTD source code) and the LifeWeb runtime system. This means that (i) such a change must be
appropriately declared in the LWS’s source code; and (ii) the relevant class(es) must be integrated
into the runtime system, preferably dynamically (without bringing the system down).

In our prototype system, the first requirement is carried out by the self-modification genetic functions
(applicable to the LWS object) in the same way as it is done at the concrete level (see above). The
second requiremeni is supported by the Java dynamic class instantiation [DEISS, JDKOO] and
LifeWeb dynamic class registration features. Using these features, information about LWObject
classes is retrieved from the LWS object, which includes the full class names (captured in the
behaviour attribute), and the corresponding element type names. This information is then used to
dynamically instantiate the respective classes and register them to the LWParser. Objects of
registered classes can then be processed by the LWParser, ElementHandler, and Service objects as
appropriate. Thus, if the LWS has been declaratively changed (for instance, a new element type has
been added), the change will be automatically accommodated into the runtime system (the
corresponding class is instantiated and registered). Both of these changes can be done dynamically in
our prototype systeim.

9.4.3.2 Change propagation

In a LifeWeb document, each element is a life form (Section 7.2), which can be made evolvable by
associating it with an <evolutor> clement. Charges are propagated across meta-levels by these
<evolutor> elements, instances of the LWEvolutor class that implements an evolutionary engine (see
Sections 6.4.2.4.4 and 7.1). Figure 9-9 shows the XML declaration of a LifeWeb element (<table
id="table2342198745">) and its associated evolutor. In this example, the evolutor has two parts: the
outer one (id="objectEvolutor”) carries the minSize and minRate factors of the object evolutionary
threshold (concrete level), and the inner one (id="geneticEvolutor™) carries the factors of the genetic
evolutionary threshold (Sections 8.1 and 8.5.1). In each of the thresholds, the positive: values denote
the thresholds for adding a link to, and the negative ones for removing a link from, another element
(subform), respectively. This means, in Figure 9-9, if the element <table id="table2342198745"> is
found cusiom associated with, for instance, a given structural component § in a server document D in
90 percent or more of the total client documents of D, and the total number of client documents of D
is greater than or equal 200, then S will be permanently associated with the element <table
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id="table2342198745"> in the server document D. Conversely, if <table id="table2342198745""> is
found custom de-associated with § in 80 percent or more of the total client documents of D, and the
total number of client documents of D is greater than or egual to 200, then § will be permanently de-
associated with element <table id="table2342198745"> in the server document D.

<evolutor id=*objectEvoiutor”
nminSize=200 -200" minRate=70.9 -0.8">
<evolutor id=“*geneticEvolutor”
ninSize=*500 -500" minRate="1.0 -1.0"
</evolutor>
</evolutor>

<table id=*tablel2342198745" heading="Table 1°
row=%2* colurnn="27 delimitor="struct”
evolutor="chjectEvolutor”

/>

Figure 9-9 ;: Evolutor element (represented in XML)

Since evolution in LifeWeb happens as a result of accumulated customisation changes, it always
occurs in conjunction with customisation, that is, when a customisation operation is encountered, or a
Service object is invoked. In the current prototype, therefore, a Service object (after making changes
to the relevant components) directly invokes the LWEvolutor object (if present) of the added or
removed component. The LWEvolutor object then inspects and detects if the same change has
happened at other client Document objects for the same server Document object (or other server
Document objects for the same LWS”) over the entire Web site. If an evolutionary threshold has been
reached, the LWEvoiutor object will register the change at the appropriate level {using the self-
modification genetic functions described in Section 9.4.3.1). The architecture for the evolvable
system is shown in Figure 9-10.

* The propagation of changes from the concrete to the genetic levels is not yet implemented in the current
prototype.
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Figure 9-10 : LifeWeb system architecture (evolvable level)

9.5 Referential integrity

Referential integrity in the Web is a large issue and an independent field for study, and it is not
within the scope of this thesis to carry out a comprehensive research in this area. LifeWeb thus does
not aim to provide a complete solution to this problem, but seeks to alleviate the problem by its
specific data model design. In particular, we are primarily concerned with referential integrity over a
local system® only, that is, referential integrity in a system over which a LifeWeb server has control
(at least read and write permissions). Referential integrity across LifeWeb servers is only dealt with in
as far as data modelling is concerned. This section describes the design and implementation of the

LifeWeb Hyperlink class, and explains how referential integrity can be improved in the system.

9.5.1 LifeWeb Hyperlink class

According to the LifeWeb data model (Figure 7-1) and its XML representation (Section 9.2), LifeWeb
hyperlinks are stored within a document as separate XML elements, identified locally by a document-
wide unique id, and globally by this id prefixed by the document’s id (currently URL). Hyperlink is a
LifeWeb class encapsulating the source from which the link eminates, a destination {0 which the link

terminates, and a scope to specify how wide and/or how deep the link is defined.*’ Figure 9-11 shows

% The notion of Jocal system here may not necessarily be restricted to one file system, but such a system must be

fully under control of a given LifeWeb server.

1 For simplicity, we include only attributes directly relevant to referential integrity.

155




an example of a Hypertext element <htext id="00">, which is a child node of the
StructuralComponent element <struct id="chapter1”-.

The source attribute

The source atiribute specifies the “hotspot” within the document upen which a user can “click and

jump”, for example a text span or an image (buiton). In the terms used by Hugh Davis [DAV98a], the

source specifies the content reference part of the link. The source, together with the scope attribute,
_ pernits the use of generic hyperlink, which is explained below.

<struct id="chapterl”® heading="CHAPTER 1*>

<htext id=*s0"
scurce="object-oriented”
destination="http://www.oo.org”
scope=“"global”

/>
<struct id="sectionl.l”
:/struct>
< /structs>.
Figure 9-11: A Hypertext <htext> element
The destination attribute

The desiination attribute speciSes the URL of the node to which the source is linked, In the terms
used by Hugh Davis [DAV98a), the destination specifies the node part of the link.

The scope attribute

Scope allows hypetlinks to be generic, where one declaration of a Hyperlink element can be applied
at one or more places, or recursively in the document tree. It specifies the exact place or places where
the hotspots are in the document contents. In the current impiementation the set of valid values for

scope are.

o “global”: starting from the parent node of the (current) Hyperiink element and recursively down
to all child nodes of that node, all occurrences cf the content reference specified in the source
will appear as hyperlinks, In the example shown in Figure 9-11, all occurrences of the text
“object-oriented” in “chapterl”, including all its subsections, shall be linked to the node specified
in the destination attribute,

% It may be noted that theoretically the source can also be specified in termy of a region of an image (the
equivalence of IMAGEMAP in HTML), possibly using some offsetting technique. For simplicity, this is
currently not implemented in our prototype.




* “local”: similar to global, but without the recursion. A local hyperlink has effect only if the
parent node of the link has its own contents, that is, it has at least one material node as its
immediate child.

¢ “self”: the hyperlink is self-contained. The system will create a new hyperlink with the content
reference specified in the source and link it to the node specified in the destination. By defaunlt
the hyperlink will appear at the botiom of the contents of link’s the parent node, although this
may be customised by a presentation element. A self hyperlink is similar to a HTML hyperlink in
that both the content reference and the node are tied together in one place (i.e. in the Hyperiink
element), so that all the information needed to render the link is “right there” and there is no need
to resolve the conteni reference. The difference, however, is that a self hyperlink is a globally
identifiable object, and can be stored in a link dartabese to support the maintenance of referential
integrity {see Section 9.5.2 below).

* A specific number or a range of numbers: these numbers represeni some offsetting method to
specify the position(s) of the hotspot(s) withir: the whole (recursive) contents of the parent node
of the link. In Figure 9-11 for example, if the scope is equal to “5”, a hyperlink will be inserted at
the fifth occurrence of the text “object-oriented” in “chapter1”. If instead it is equal to “3-57,
three hyperlinks will be inserted nt the third, fourth and fifth occurrences of the text “object-

oriented” in “chapter1”.

In summary, the object-oriented design of LifeWeb allows hyperlinks to be encapsulated as separate
objects, external to content data, and to make them bi-directional and generic. This approach
improves upon the link integrity and embedded link problems in HTML (see Sections 2.2.1.2 and
2.2.2.5), although at the vost of added complexity due to the need to maintain content references (see
Section 9.5.2.1.2), and to resolve and generate Hyperlink elements (see aluo Section 9.5.2.1.1).
Another advantage of this approach is that authoring and maintenance costs can also be considerably
reduced with the use of generic links.

9.5.2 Enhancing referential integrity

Referential integrity within a LifeWeb server can be ensured using the technique of local link

management, Referential integrity across LifeWeb servers may be enhanced by the dynamic link
binding technique. Both of these techniques are explained below. a
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9.5.2.1 Local link management

This technigque operates only within a given LifeWeb server (local system). As pointed out by
[DAV98a], there are two potential problems with hyperlinks:

s Dangling link problem: when the system fails to resolve the destination w0 a valid node. This
problem occurs when the destination node can no longer be accessed (for example, because it has
been moved)

» Content reference problem: when the system fails to resolve the source to the correct hotspot(s).
This problem can happen only when the position of the hotspot is specified external to the data
content (which is the case of LifeWeb and the systems mentioned above). When the data content
is edited the reference may no longer be comrect, In LifeWeb, this may happen if the scope
attribute holds an offset value (see Section 9.5.1).

9.5.2,1.1 "Che dangling link problem

~ Because hyperlinks are encapsulated objects, separated from content data, it is possible to maintain
them in a central link database (called linkbase). In the LifeWeb prototype, a link table is
implemented to hold the identifiers (currently URLS) of the source and destination objects. This is
supported by a built-in lightweight database. All insertions, deletions and movements of LifeWeb
objects done under the control of the system (for instance, via a tool such as the LifeWebManager
described in Section 9.7%) can be checked and synchronised to maintain link integrity.

By taking such an approach (external link), LifeWed offers similar link service to some Open
Hypermedia Systems (OHSs) such as HyperWave {HYPOO], HyperDisco [WII96], Microcosm
[DAVI3], or by Ashman and Verbyla [ASH93]. It is perhaps potentially more efficient than these
systems in this regard. This is because it stores hyperlink elements within the document, and the
resolution and generation of these elements are done generally only once® when the document (or a
page) is loaded, by methods internal to the LifeWeb document system itself (see Section 9.4.1). On
the contrary, the other systems store hyperlinks in external linkbases only, and each link traversal

“* This feature is not yet implemented in the current version of LifeWebManager, but already supported by the
LifeWeb engine.

“ This excepts when some change breaks a link (already resolved and generated) while the document is being
viewed at the client site, If such a broken link is invoked, it will be necessary to regenerate the link from the
original LifeWeb XML document. (It is noted that link integrity in the original document can be always
maintained like records in a database).
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incurs database tramsaction overheads [DAV98a]l. In addition, the LifeWeb linkbase can be
implemented as a simple lookup table (the actual objects are stored in the document itself), and there
is no need for a commercial database support as in the other systems.

9.5.2.1.2 The content reference problem

Since hyperlink resolution is natively provided by LifeWeb, it is comprehersibly relatively simple to
design a “link-aware tool” that is discussed by Hugh David [DAV98a] or implemented in HyperG
[AND95]. Generally, this is an editing tool (such as the material processing application or text editor
mentioned at the end of Section 9.7), which understands the LifeWeb syntax, Hyperlink elements can
therefore be resclved, displayed and freely edited with the data contents while content references are
maintained. For instance, if the data confents are changed in such a way that the change affects an
offset value used in the scope attribute (see Section 9.5.1), the value can be updated antomatically, or
at least the author informed of the possible impacl:.“5 It is not within the scope of this thesis to design
or implement this tool.

9.5.2.2 Dynamic link binding

"The dangling link problem is most difficult to resolve across systems or servers, This is because
updating all linked resources when a document is moved is notoriously expensive. As has been
mentioned before (Section 9.5), it is not within the scope of this project to find a comprehensive
solution to this problem. We do, however, provide dynamic link binding in our implementation as an
optional way to alleviate it. Using this technique, hyperlinks can be optionally checked for validity
before being inserted into the document contents and rendered at the client agent. This technique is
possible and simple to implement in LifeWeb due to its specific object-oriented design, where
hyperlinks are encapsulated cbjects (elements), which “know” how to resolve (and validate)

themselves.

Dynamic link validation is a trade-off between link integrity and performance. In the current LifeWeb
implementation, while a valid link generally does not take a noticeable amount of time to validate, an
invalid one can cause considerable delay. The likelihood of invalid links during runtime, however,
can be reduced by using a tool, such as the LifeWebManager described in Section 9.7, to check link
integrity during design time. Another limitation is that if a Web resource is moved between two

% If a document is being edited by muitiple authors, such a tool should also implement necessary features such
as concurrency control. It is not within the scope of this thesis however, to discuss these features.
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dynamic link validation operations, there will be a time interval in which the link is not valid. The
likelihood of this happening however is comprehensibly very small.

9.6 Resource discovery

A LifeWeb document, or the document’s object genome (see Sections 7.2 and 9.2), essentially
contains only information describing itself, or “meta-data”, It can thus be deployed by a user agent to
facilitate resource discovery, similar to other meta-data schemes, such as Dublin Core (DC) or
Resource Description Framework (RDYF) (see Section 3.3). For instance, a StructuralComponent
object has the attribute heading, which can be used in a search by keyword, or a Publication object
has the attribute author, which can be used in a search by author. If necessary, a searchable entity, for
instance, author, can be described in more details as shown in Figure 9-12 below:

<pub ID="coBook” title="Chject-Oriented Software Design®
author="Rumbaugh, Blaha*>

</pub>

<author ID="Rumbaugh” email=*rumbaughGomg.com”/>

<author ID=“Blaha” email="blahaBomg.com*/>.

Figure 9-12: Using attributes of LifeWeb elements as meta-data

The design of the LifeWeb DTD (data modet) however, does not have a primary focus on facilitating
resource discovery. For instance, the element type <author> in the above example can be defined
another DTD, possibly one specialised in facilitating resource discovery, and imported into a LifeWeb
document via the XMI. namespace mechanism (see Section 3,2.2). In addition, extensive work in this
area (resource discovery) has been done (see Section 3.3), and most of it can be integrated into
LifeWeb (for instance, RDF and DC),

9.7 LifeWebManager: A LifeWeb application

The design of LifeWeb allows for LifeWeb objects to be created and managed in a simple "drag-and-
drop” paradigm. Based on this idea, we have designed a LifeWeb application called LifeWebManager,
and with permission of the school, a prototype for it was developed at Monash University by a group
of third-year computing students, as an Industrial Experience project. LifeWebManager allows the
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management and maintenance of a Lifei¥eb document on (only) three aspects: structure, content
(material), and presentation.’® Figure 9-13 shows a user interface of the application, which is built on
top of the LifeWed engine. It is designed to be similar to the Windows File Manager. The
LifeWebManager has two views, Material and Presentation. In each view, the window always has
two parts, one containing objects of the Document branch, and the other objects of the Material

branch or Presentation branch (see Figure 5-1).
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Figure 9-13: LifeWebManager - Muaterial View

In the Material View (Figure 9-13) for instance, the Document part shows the structure of {part of) a
Document object, which is very similar to that of a DOS or UNIX file system. The Material part
shows the “raw materials” (actual files) as they are physically located in the authoring file system. In
the Presentation View (not shown), the Presentation part show the available Presentation objects,
which can be associated with objects in the Document part. Generally, an object may be dragged and
dropped onto another one to create an aggregation or association link (including hyperlink) between
them. For instance, dragging and dropping a Material object onto a Document object creates an
aggregation link; and dragging and dropping a Document object onto another one creates a hyperlink
between the two. Object properties can be displayed and edited in a popup window, and hyperlinks
can be validated by the LifeWeb engine. LifeWebManager generates an XML file based on the

information visually presented.

* For simplicity, the management and maintenance of objects of other types such as Service and Evolutor are not

covered in LifeWebMuanager.
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We note that LifeWebManager supports the management and maintenance of LifeWeb documents on
a component (object) basis only. In particular, the Iowest level of gramiarity consists of objects
whose classes are 2tomic life forms (sce Sections 6.4.2.1.2 and 7.2) such as Material or Presentation
(see Section 5.2.2).% It is unaware of, for instance, the “raw materials” contained inside a Material
object, and editing to these “raw materials” must be passed to an appropriate processing application,
such as a text editor. The design and development of such processing application and the processing
of such “raw materials™ are outside the scope of this thesis.

7 By sofiware engineering principles, modularisation and/or component-based processing are actually
advantages of LifeWeb. That is, the “limitation” mentioned here is not considered a disadvantage of the system.
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Chapter 10 Conclusion

The phenomenal growth of the Web in a very short time has resulted in many deployment problems
that stem from inadequate system design (see Section 2.2). Such growth requires that there should be
a data model for the Wed that can capture its dynamic characteristics and cope with future changes.
In Chapter 3, our review shows that the existing Web data models do not satisfy this requirement; in
particular, the problems of adaptability and evolvability of the Web are not yet addressed. For this
reason, we have constructed and implemented LifeWeb, a data model for the Web document system,
which addresses a range of deployment issues of the Web, including adaptability and evolvability.
LifeWeb does this by tackling these issues directly at the Web’s fundamental design level. The
deployment problems that LifeWek has addressed are: data management and mainteniance, document
design and authoring, customisability, adaptability and evolvability, referential integrity and resource
discovery. The associated design problems that have been undertaken are: data structure, documnent
properties, lack of functional behaviour, statelessness, extensibility, evolvability, meta-data, and
embedded hyperlinks.

Our approach to deal with the adaptability and evolvability issues is based on our review of system
evolution (see Chapter 4), and our observations about biologicai life and its use in computer science
as an analogy (see Chapter 6). We have chosen to use biological metaphors to establish Life Design,
an object-oriented design methodology for constructing evolvable systems. LifeWeb obtains its
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capacity to solve the adaptability and evolvability problems by implementing this Life Design. The
wide range and the nature of the issues addressed by LifeWeb show the strength of the approach it has
taken, which includes data modelling, object-orientation, and biological metaphors. These three
technologies form the undeslying philosophy for solving the research questions proposed in this
thesis, and are what make LifeWeb achieve what it has.

10.1 Achievements of thesis

The achievements of this thesis are included in the successful application of data modelling, object-
orientation and biological metaphbors to establish Life Desig:: and construct LifeWeb, a system that
has the potential t0 solve or alleviate the Web’s problems mentioned in the previous section,
especially adaptability and evolvability, which have not been addressed.

In terms of data management and maintenance, and document design and authoring, a LifeWeb
document can be designed, managed and maimained on the basis of any class that is associated with,
or a part of, the Document class. In the current LifeWeb data model, these classes are:
StructuralComponent, Material, Presentation, Hyperlink, Schema, Behaviour, Service, and Evolutor
(including their subclasses).® In addition, the system can automatically generate navigational and
structural links during runtime, effectively eliminating large maintenance costs (see Sections 7.1,
7.2.5.1, 9.4.1 and 9.7). The particular design features that have brought LifeWeb these advantages are
data structure and document properties. Such features allow LifeWeb to capture the document
structure and separate the different document properties found in traditional document systems (see
Sections 5.2.1,5.2.2and 7.1).

In terms of customisability, a LifeWeb document can be customised (statically or dynamicallyy on the
basis of any class that is associated with, or a part of, the Document class, where such a relationship
(associaticn and composition) defines a flexible link at the lower (concrete) Ievel. In the current
LifeWeb data model, these classes are: StructuralComponent, Material, Presentation, Hyperlink, and
Service (including their subclasses) (see Sections 7.1, 7.2.5.1, 7.2.5.2, 8.2 and 94.2). A document
¢lement whose type is one of these classes can be added to or removed from its respective document.
Such a change essentially alters the document’s structure, content, presentation, navigational path, or
the way it is customised. Because the separation of document properties makes a LifeWeb document

8 The first four classes (structure, content, presentation and hyperlinks) represent the most common aspects
(from an author’s perspective) for dosament design, maintenance and management, Only these are implemented
in our LifeWeb application, LifeWebManager (see Section 9.7).
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compact, customised documents, which are client documents, can be wholly distributed at client sites.
This allows for customisation information to be maintained (persistent) across Web sessions for
individual users, and statelessness, one of the design issues of the ¥eb, overcome (see Sections 5.2.2
and 7.2.3).

In terms of adaptabitity and evolvability, LifeWeb is the only Web data model we know that can adapt
and evolve (inciuding extend) itself systematically. LifeWeb evolution, designed after Darwinian
evolution, occurs over populations of (customised) client documents mentioned above. Such
evolution makes it possible for LifeWeb to adapt itself to user needs in a systematic, gradual and
incremental manner through successive (low to high) meta-modelling levels. By applying object-
orientation, such evolution means that in LifeWeb, new document types (DTDs} as well as their
related tools and software can be derived from existing ones, which increases reusability,
manageability, maintainability and extensibility. The Java implementation of LifeWeb permits
automatic evolution of the system, where classes and DTDs can be dynamically added to or removed
from the runtime system (see Section 9.4.3). The LifeWeb evolutionary model gives rise to a system
which is scalable, interoperabie and open (to accept public contributions for its development) (see
Section 8.9).

In terms of referential integrity, our project only attempts to alleviate this problem and does not aim
1o offer a comprehensive solution. _Within this scope, by elimizating embedded links {a directly
related design problem) and encapsulating them in objects, separate from the document contents, a
LifeWeb server can maintain link integrity within itself. Links across servers can be opticnally

validated and broken ones eliminated before document rendering (see Section 9.5).

In terms of resource discovery, a LifeWeb document contains information describing itself, which is
essentially meta-data that can be deployed by other systems such as search engines or robots to help
users locate the desired resources (see Section 9.6).

The system closest to LifeWeb that we are aware of is HyperWave, described in Section 3.2.1. The
most important difference between the two systems is that HyperWave does not deal with
adaptability and evolvability. Some characteristics of the Document Class introduced in the latest
release of HyperWave™ are similar to those of a class gene in Life Design (see Section 6.4.2.2). Here,
the Document Class and a class gene both generate persistent instances, and can both serve as bases
upon which new classes or class genes can be derived. The notion of class gene however, is fully

developed into a system design methodology in our research, whilst the HyperWave's Document

“ ‘This release was in November 1999, which post-dated our publication about LifeWeb (1998) [NGU98b].
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Class is simply a way to accommodate some special document types. LifeWeb manageability,
maintainability and customisability, inberent from evolvability, are also carried out in the context of a
richer and meaningfully evolving model. (For example, presentational management or customisation
in HyperWave is fairly limited and cannot automatically evolve with changes in the data model.)
Customisation in LifeWeb is fully supported in the sense that all server documents can be customised
for each user by the distribution of object genes. (In contrast, HyperWave permits only one Home
Collection per user.) (See Sections 3.2.1 and 7.2.3.)

In comparison to other Web data models such as the service-centred ones reviewed in Section 3.1,
LifeWeb also has extra advantages. The most important one is inherent in its document-centred
approach, in which LifeWeb can map its data model to that implied in the Web document system.
Thus it is less affected when the Web infrastructure is changed, and can even direcly address the
design issues of the Web.

We claim that our technology improves on the Web manageability, maintainability and
customisability over existing Web data models, and lays a foundation for Web adaptability and
evolvability.

10.2 Limitations of thesis

A LifeWeb document can be manipulated (designed, managed, maintained and changed) on a
component basis only. For example, the system is not aware of (and cannot manipulate) the character-
level formatting of the “raw material” of a document, such as the font setting of one or a set of
characters or words that does not by itself form a LifeWeb element. Although this places a restriction
on the level of granularity that the system can handle, in terms of software engineering principles,
component-based processing (or modularisation) is both an advantage and a required feature of
quality software.

There are some implementation limitations. An important one is that in LifeWeb evolution, the
propagation of change from the instance to the schema levels requires that an instance (for example, a
document) be able to trigger a write operation to its schema (for example, the document’s DTD). In
addition, a schema must “know” about the population of its instances in order to assess whether an
evolutionary threshold has been reached (for a particular evolving feature), With regard to the first
issue, for simplicity, our current system can support change propagation from an instance to its
schema if they both reside on the same machine, but not otherwise. One possible way to overcome
this limitation is to use distributed object technology such as CORBA [BEN95, MOW97] or DCOM
[RED97] to provide support for cotnmunication between objects in a distributed network. The second
issue may be resolved by having all documents register themselves to their main DTDs, or by having
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a DTD Jlog all documents that use it. This may involve drafting a2 policy effective in the whole Web
and thus requires a global effort and a separate project.

Other implementation limitations include the direct (hard) coding of some features such as the
numbering schemes or layout of structural components. These limitations however, are for simplicity,
and can be easily overcome if required. For example, it is possible to develop a set of classes to
handle difiereni numbering schemes or layout. (These new classes can then also be added
dynamically as part of the system evolutionary process.)

10.3 Future work

There is an abundant amount of work yet tc be done for the future of our project. The most immediate
need is perhaps to carry out an empirical study for LifeWeb, especially to test its evolvability in the
real environment. Such a study requires first of all that the implementation limitations above be
overcome, Some industrial and practical requirements, such as security and performance, may need to
be considered and supported in the system prototype. Secondly, a LifeWeb core data model must be
accepted by the Web community, or a group of pioneer Web developers, who will also contribute
new element types, document types, or service types to its evolution. Experiments can then be carried
out at a number of sample Web sites. This is a large project which requires not only technical
soundness but also skills in organising, administrating, co-ordinating, and fiand-raising.

Local evolution (that is, evolution in the domain of a specific Web site), which has not been
considered in our thesis, is a meaningful topic for further investigation in LifeWeb (see Section 8.4.2).
Because Web sites may serve different communities with differing nceds, their evolutions may
diverge towards different directions, and the interactions between them can be quite complicated
‘When local evolution is considered, a document type or species may even reverse back {0 its original
form. For example, a locally favoured element type that leads to the formation of a new document
type in one coinmunity may be disgraced in another, so that the new document type, when imported
to be used in the other community, will eventually regress. Local and global evolution has been an
active research topic, especially in the field of artificial intelligence. Interested readers are directed to
this literature, in particular, evolutionary computing and neural network [KUKO00].

Another area that may eventually nieed to be considered is evolution at higher meta-modelling levels.
If automatic evolution is required at these levels, we will need formal design and notations fzr the
evolutionary entities (life forms, genes and genomnes) there. Researchers in this area will find much
input from, and possibly also interaction to, work done in the meta-modelling and meta-architecture
literature {GIU96, JAR98, MAES88], especialiy UML [UML98] and XML-Schema [XSC00], the
emerging standards in the object-orientation and Web fields.




e

The evolutionary threshold, which plays a critical role in the LifeWeb evclutionary process (see
Section 8.5), is yet another interesting and necessary topic to be studied in the LifeWeb evolutionary
model. Empirical researches may be done to work out appropriate threshold values for different
evolving features, or categories of evolving features, and/or environments, Such values may even be

adaptively computed during the evolutionary process, which perhaps necessitates an in-depth study in
artificial intelligence, adaptive and evolutionary computing.

it is also highly desirable that work to be done in LifeWeb is targeted at satisfying the more
sophisticated industrial requirements from the Web community, such as enriching the linking model,
maintaining referential integrity across server boundaries, and improving the presentational model
(which has been intentionally simplified in our project). Much work has been done in these areas in
the Web and Open Hypermedia System (OHS) communities, especially in the XMIL. suite. Interested
readers are referred to the OHS literature [DAV93, DAV94, DAV98a, DEX94, ASH93, ASH%4,
VER94, NUN99] or the Web and XML literature [CS898, XLK00, XPTC0, XSL0O0]. Because XML
is in the current development trend of the Web, and LifeWeb has used XML to represent its data
model, integrating LifeWeb with the XML technology is both strongly desirable and highly feasible,
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