
Symmetric Searchable Encryption Supporting Rich

Functionality and Enhanced Security

Shabnam Kasra Kermanshahi

A thesis

submitted for the degree of Doctor of Philosophy

at Monash University in (2019)

Information Technology (Cyber Security)

c© Shabnam Kasra Kermanshahi 2019

ii

Abstract

This thesis presents three Searchable Symmetric Encryption (SSE) schemes sup-

porting rich functionality and enhanced security. Searchable encryption (SE) is a

cryptographic primitive which allows a secure search over encrypted data while pro-

tecting the confidentiality of data and queries. SE became an interesting research

area due to its wide range of applications as well as open problems. The aim of

this research is to address three major challenges in this area which are adapting

multi-user settings into an SSE scheme, supporting ranked search without revealing

information to the server on database content, and enabling secure range query over

encrypted spatial data. Among the different settings of SE schemes, Multi-user ones

are more appealing in practice. Multi-user settings have extra functionality require-

ments as well as the security requirements which makes it challenging. The three

main functionality requirements of Multi-user settings are Data sharing, Write/Read

capability, and Revocation. Data sharing refers to the ability to share data between

several users securely. Write/Read capability is to allow the user to perform both

read and write over the encrypted database. Key revocation is required to prevent

any illegitimate access to the encrypted database by a revoked user. To satisfy the

security requirements, the risks associated with Multi-user settings must be min-

imised. That is, the privacy of database content must be preserved even if some of

the users lose their private keys. Moreover, the privacy of each users’ data against

the other users must be preserved. Last but not least, there should be a solution

for a fast update of the encryption key to protect the stored data on the server in

case of lose/leakage of the master key. Although SE schemes have been studied very

well in both Symmetric and Asymmetric structures, finding a balance between se-

curity, functionality, and performance is still a big challenge. The first contribution

of this study is an efficient Multi-user SSE protocol which satisfy these mentioned

requirements. Another challenge is the relevance of search results and the queried

keywords. Although searchable encryption schemes allow secure search over the en-

crypted data, they mostly support conventional Boolean keyword search, without

iii

capturing any relevance of the search results. This leads to a large amount of post-

processing overhead to find the most matching documents and causes unnecessary

network traffic between the servers and end-users. Such problems can be addressed

efficiently using a ranked search system that retrieves the most relevant documents.

However, most of the current solutions in the context of searchable symmetric en-

cryption suffer from either (a) security breaches due to revealing information to the

server on database content via ranking or (b) usability concerns caused by some

assumptions like using the two non-colluding servers. In this research, we present a

generic filtering solution for multi-keyword ranked search over the encrypted cloud

data. Then, an SSE scheme is designed which uses the proposed technique and filters

the results and returns the most relevant documents; it can resist all ranking related

attacks while guaranteeing the security using somewhat homomorphic encryption;

and it can use a single cloud server. Finally, in order to support geometric range

search, two dynamic SSE schemes are presented. Our constructions are the first to

provide forward/backward security in the context of SSE-based schemes supporting

geometric range search. In addition, we define a security notion called content pri-

vacy. This security notion captures the leakages that are critical in the context of

geometric range search but not considered by forward/backward security. Content

privacy eliminates the leakage on the updated points of the database during both

search and update. Due to the inherent leakages associated with range queries, none

of the existing related works can support content privacy whereas the design of our

constructions avoids such leakages. When compared to the state-of-the-art schemes

our constructions provide a higher level of security and practical efficiency supported

by our experimental results.

iv

Declaration

This thesis is an original work of my research and contains no material which

has been accepted for the award of any other degree or diploma at any university or

equivalent institution and to the best of my knowledge and belief, this thesis contains

no material previously published or written by another person, except where due

reference is made in the text of the thesis.

Signature: .

Print Name: .

Date: .

v

Publications

This thesis includes three original papers published in peer reviewed conferences and

journals and one submitted publication. The core theme of the thesis is symmetric

searchable encryption. The ideas, development and writing up of all the papers in

the thesis were the principal responsibility of myself, the student, working within

the Faculty of Information Technology under the supervision of Joseph K. Liu, Ron

Steinfeld, and Surya Nepal.

The inclusion of co-authors reflects the fact that the work came from active

collaboration between researchers and acknowledges input into team-based research.

In particular, in terms of evaluation of the proposed schemes via implementations.

List of publications included as part of the thesis The following publica-

tions arise from this thesis.

• S. Kasra Kermanshahi, J. Liu, R. Steinfeld, S. Nepal. ”Generic Multi-keyword

Ranked Search on Encrypted Cloud Data” in The European Symposium on

Research in Computer Security-2019 (Accepted-Core A).

• S. Kasra Kermanshahi, J. Liu, R. Steinfeld “Multi-user cloud-based secure

keyword search” in 22nd Australasian Conference on Information Security and

Privacy -2017 (Best paper award).

• S. Kasra Kermanshahi, S. Sun, J. Liu, R. Steinfeld, S. Nepal, F. Lau, M.

Ho.”Geometric range search on encrypted data with Forward/Backward secu-

rity”, submitted to IEEE Transactions on Dependable and Secure Computing

(Submitted-Core A).

• S. Kasra Kermanshahi, J. Liu, R. Steinfeld, S. Nepal, S. Lai, R. Loh, C.

Zhou.”Multi-client Cloud-based Symmetric Searchable Encryption”. in IEEE

Transactions on Dependable and Secure Computing (Under minor revision-

Core A).

vi

Additional publications

• B. Yu, S. Kasra Kermanshahi, A. Sakzad, S. Nepal. ”Privacy preserving pay-

ment channel network”, the 13th international conference on provable and prac-

tical security: ProvSec 2019 (Accepted-Core B)

vii

Acknowledgements

I would like to begin by thanking my advisors Joseph K. Liu, Ron Steinfeld,

and Surya Nepal for supporting me through these years with guidance and inspira-

tion. I would also like to thank my committee members Carsten Rudolph and Amin

Sakzad for all their valuable feedback that improved this work. I want to especially

thank the authority of Monash University and Data 61 for providing me with a good

environment and facilities to complete this research.

viii

Table of Contents

List of Tables xv

List of Figures xvi

1 Introduction 1

1.1 Motivation . 5

1.1.1 Research Objectives . 7

1.2 Main Contributions Summary . 8

1.2.1 Multi-client symmetric searchable encryption 8

1.2.2 Multi-keyword ranked symmetric searchable encryption 9

1.2.3 Geometric range search on encrypted data with forward/backward

privacy . 10

1.3 Thesis Structure . 10

2 Background 12

2.1 Cryptographic Background . 12

2.1.1 Threshold secret sharing . 12

2.1.2 One-more one-way function 13

ix

2.1.3 Decisional Diffie-Hellman . 14

2.1.4 Ring-LWE problem . 14

2.1.5 Homomorphic Encryption from RLWE 14

2.1.6 Homomorphic Encryption from Learning with Errors (LWE) . 15

2.1.7 Homomorphic Encryption from Ring-GSW 16

2.1.8 Pseudorandom Functions (PRFs) 17

2.1.9 Shen, Shi and Waters Encryption (SSW) 18

2.2 Alternative approaches for search on encrypted data 19

2.2.1 Public Key Encryption with keyword Search (PKES) 19

2.2.2 Order Preserving Encryption (OPE) 20

2.2.3 Oblivious RAM . 21

2.3 Searchable Encryption . 21

2.3.1 Preliminaries . 21

2.3.1.1 Notations and assumptions 21

2.3.1.2 Syntax of Symmetric Searchable Encryption 22

2.3.1.3 Syntax of Dynamic Symmetric Searchable Encryption 22

2.3.2 Oblivious Cross Tags (OXT) 23

2.3.3 RSA-SSE . 25

2.3.4 Geometric Range Searchable Encryption (GRSE) 27

2.4 Security . 29

2.4.1 SSE Leakage Profile . 29

2.4.2 DSSE Leakage Profile . 30

2.4.3 Forward Privacy . 30

x

2.4.4 Backward privacy . 31

2.5 Summary . 32

3 Multi-client symmetric searchable encryption 34

3.1 Overview . 34

3.1.1 Motivation . 34

3.1.2 Contributions . 39

3.2 Preliminaries . 41

3.2.1 Notations . 41

3.3 Background . 42

3.4 Syntax of multi-client SSE . 43

3.5 Security definitions of multi-client SSE 45

3.5.1 Privacy against server . 45

3.5.2 Query privacy against other key share holders 47

3.5.3 Database content privacy against active collusion 47

3.5.4 Database content privacy after update 48

3.5.5 Database content privacy after revocation 48

3.6 Randomizable Distributed Key Homomorphic PRFs 50

3.6.1 Definition . 50

3.6.2 PRF Evaluation protocol . 51

3.6.2.1 Correctness. 51

3.6.2.2 PRF security definition of RDPRF. 52

3.6.2.3 RDPRF Active Collusion Security Definition. 52

xi

3.6.2.4 Query privacy security of RDPRF 53

3.6.3 Concrete construction of RDPRF 53

3.7 Multi-client symmetric searchable encryption 58

3.7.1 Construction . 59

3.7.2 Update, Revocation and Enrollment 60

3.7.2.1 Update . 62

3.7.2.2 Revocation . 63

3.7.2.3 Enrolment . 65

3.8 Security analysis . 66

3.9 Security, Functionality and Performance Comparison 71

3.10 Summary . 75

4 Multi-keyword ranked symmetric searchable encryption 76

4.1 Overview . 76

4.1.1 Motivations . 78

4.1.2 Contributions and technique 79

4.2 Preliminaries . 80

4.3 Our threshold-based filtering approach 82

4.3.1 Homomorphic operations . 82

4.3.2 Homomorphic search algorithm 86

4.3.3 Homomorphic filter algorithm 87

4.4 Our multi-keyword ranked searchable symmetric encryption scheme . 89

4.4.1 Modes of operation . 92

xii

4.5 Evaluation . 92

4.5.1 Computation complexity . 92

4.5.2 Communication complexity 93

4.6 Summary . 98

5 Geometric range search on encrypted data with forward/backward

privacy 99

5.1 Introduction . 99

5.2 Preliminaries . 102

5.2.1 Additive homomorphic encryption 102

5.2.1.1 Symmetric additive homomorphic encryption. 103

5.2.2 Security definition . 104

5.3 Security notions . 105

5.3.1 Content privacy . 105

5.3.1.1 Example of content privacy against the existing dy-

namic SSE . 107

5.4 Syntax of DSSE with geometric range query 109

5.5 SSE schemes for geometric range search 111

5.5.1 Overview . 112

5.5.1.1 Setup . 112

5.5.1.2 Search . 113

5.5.1.3 Update . 115

5.5.2 The naive solution . 117

5.5.3 Construction-I . 121

xiii

5.5.3.1 Setup . 121

5.5.3.2 Search . 124

5.5.3.3 Update . 125

5.5.4 Construction-II . 126

5.6 Comparison . 128

5.7 Security analysis . 132

5.7.1 Range search leakage functions 132

5.7.2 Construction-I . 133

5.7.3 Construction-II . 136

5.8 Summary . 137

6 Conclusions and Future Work 139

6.1 Summary . 139

6.2 Future Work . 140

References 141

APPENDICES 154

A Experimental Results 155

A.1 Multi-client symmetric searchable encryption 155

A.2 Geometric range search on encrypted data with forward/backward

privacy . 160

xiv

List of Tables

3.1 Notations and terminologies . 41

3.2 Comparison of a subset of existing related works 43

3.3 Computational and communication cost between client and server . . 72

3.4 Security analysis . 74

3.5 Functionality analysis . 75

4.1 Summary of comparison . 79

4.2 Notations and terminologies . 81

4.3 Communication cost improvement . 97

4.4 Parameter settings . 97

5.1 Security comparison . 130

5.2 Performance comparison . 132

A.1 RDPRF Performance . 160

xv

List of Figures

1.1 Searchable encryption framework . 2

2.1 PEKS framework . 20

2.2 Overview of GRSE scheme . 28

3.1 Sample database . 35

3.2 Forward index . 36

3.3 Inverted index . 37

3.4 Single Keyword Search (SKS) . 38

4.1 Example of Filter algorithm . 87

4.2 Overall communication cost . 98

5.1 Security notions similarity . 106

5.2 Sample spatial dataset . 113

5.3 Converted dataset . 114

5.4 Sample indexed binary tree . 115

5.5 Sample Node-Inverted index for x-axis 116

xvi

5.6 Sample Node-Inverted index for y-axis 117

5.7 Sample Range search . 118

5.8 Binary tree for range search over x-axis and y-axis 118

5.9 Example of update over x-axis . 119

5.10 Example of update over y-axis . 120

A.1 Stag generation of the encrypted database with a fixed threshold . . . 157

A.2 xtoken generation of the encrypted database with a fixed threshold . 157

A.3 xtoken selectivity . 158

A.4 Search time vs. dimension size (20K points) 161

A.5 Search time vs. number of data points (D = 215) 162

A.6 Update time vs. dimension size (20K points, 10 points per update) . 162

A.7 Update communication vs. dimension size 163

A.8 Update time vs. number of updating points (20K points, D = 215) . . 163

A.9 Update communication vs. number of updating points 164

xvii

Chapter 1

Introduction

The last decade has seen a growing trend towards the use of off-site hosts commonly

referred to as the Cloud. This economic information technology paradigm provides

ubiquitous access to storage and computing resources. However, confidentiality of

sensitive data stored on the cloud is a major concern as the data is visible to the

cloud [1, 2]. Although, standard encryption prevents information disclosure to the

cloud server, it is impractical in many applications. That is, to search for specific

information through the encrypted database, the user has to download and decrypt

the data as the data is not readable by the cloud server. Therefore, it incurs massive

communication and computation overheads to the system. Searchable Encryption

(SE) is a cryptographic technique that can address this problem, as it allows searching

of particular data in encrypted content without decryption. There is a large volume

of published studies on SE (e.g. [3–6]). These studies can be categorised into two

major categories based on the underlying encryption technique employed: Symmetric

Searchable Encryption (SSE) (e.g. [7]) and Public key Encryption with Keyword

Search (PEKS) (e.g. [8]). PEKS is far less efficient than SSE; likewise, the standard

encryption. The focus of this research is on symmetric searchable encryption. We

consider three main roles in an SSE scheme as follows:

1

• Data owner: who provides the data and defines the access permissions to the

data.

• Client/user: who queries the data.

• Server: who stores the data and process it in order to response to the queries

(e.g. Cloud server).

The main challenge faced by many researchers in developing SSE schemes is to

construct the scheme to be comparable with unencrypted databases. More precisely,

it is challenging to provide similar functionality and performance while the security

is the main concern to be addressed. Figure 1.1 demonstrates the SE framework.

From this figure we can see different aspects of SE to be considered in designing a

new searchable encryption scheme.

Figure 1.1: Searchable encryption framework

2

• Settings: To issue search queries to the server, one or more clients should be

able to generate the search tokens. Thus, SE schemes can be differentiated

based on the utilized settings as follows [9];

– Single-Writer/Single-Reader (SW-SR): a single user acts as both

the data owner and the client. Song et al. [5] proposed the first SSE scheme

in this setting. The majority of the existing works are designed in this

setting as it is basic and less challenging; a) there is no concern about col-

lusion, malicious user, revocation, etc. b) there is no additional communi-

cation/computational overhead to the system for generation/distribution

of the search tokens or retrieving the data afterwards.

– Single-Writer/Multi-Reader (SW-MR): the data owner provides

the data and clients only allowed to read the data. To support this setting,

either the secret should be shared with the clients or the data owner must

provide the search token for them which in turn introduces new challenges

regarding the security and efficiency. For instance, in the proposed scheme

by Curtmola et al. [4] one key is shared among all users. Thus, the key

lose/exposure of a single user might lead to the leakage of the whole

encrypted database (refer to Chapter 3).

– Multi-Writer/Single-Reader (MW-SR): more than one entity (data

owner and client) have the write permission (provide the data) while only

one entity reads the data. This setting is mainly supported by PEKS

where the application scenarios are retrieving emails or documents from

a server. That is, those who know the public key generate the cipher-

texts and the owner of the private key can read the data. Most of the

existing works (e.g. [10–14]) in this setting are focused on the security of

the scheme where they rely on heavy computations (mainly using pairing

operations). Therefore, they are considered as theoretical solutions and

the feasibility of them in practice is an open question.

3

– Multi-Writer/ Multi-Reader (MW-MR): the data can be read and

write by more than one entity (data owner and client). Like SW-MR

schemes, MW-MR are challenging to be designed using the symmetric

encryption. However, MW-MR can be achieved by combining public key

encryption with key distribution.

• Query types: there exists various types of search queries and combinations

of them. The following query types are the most common ones.

– Single keyword: this query type supports only a single keyword for

searching and does not allow for Boolean combinations of keywords.

– Boolean: this query type allows a combination of ”AND”, ”OR”, and

”NOT” over the search keywords. A trivial approach to support Boolean

queries is to perform single keyword search for all of the search keywords

and then find the intersection. However, it reveals the relation between

documents and search keywords, hence the server can learn more about

the database by performing statistical analysis.

– Ranked: this query type returns the matching documents in a ranked

order according to a certain relevance criteria. This type of query reduces

the post processing of the results for finding the most relevant documents.

– Range: returns documents matching a conditional value between an up-

per and lower boundary. The range query can be one dimensional (mostly

over ordered set of elements) or multi dimensional (like geometric dataset).

• Characteristics:

– Static: documents can not be added, deleted, or modified once uploaded

to the server. Therefore, any changes on the outsourced database is not

possible or requires re-encryption and re-upload of the whole database.

– Dynamic: database can be updated at any time. This updates includes

insertion, deletion, and modification of document(s) of the database.

4

– Verifiable: the client can detect whether server returns a correct data

as the response to a query or not.

• Security:

– Forward privacy: An SSE scheme is ”forward private”, if there is no

relation between an update and previous search results.

– Backward privacy: ensures that search queries do not leak matching

documents after they have been deleted.

– Query privacy: The privacy of issued queries by the users must be

preserved against all of the involving entities including Data owner and

cloud server.

– User revocation: is required to prevent any illegitimate access to the

data by a revoked client.

– Key exposure: key exposure of a user should not lead to disclosure of

all of the users’ information.

1.1 Motivation

Among the different settings of SE schemes, Multi-client (Multi-user) ones are more

appealing in practice. Multi-client settings have extra functionality requirements

as well as the security requirements which makes it challenging. The three main

functionality requirements of Multi-client settings are Data sharing, Write/Read ca-

pability, and Revocation. Data sharing refers to the ability of sharing data between

several users securely. Write/Read capability is to allow the user to perform both

read and write over the encrypted database. Key revocation is required to prevent

any illegitimate access to encrypted database by a revoked user. To satisfy the

security requirements, the risks associated with Multi-client settings must be min-

imised. That is, the privacy of database content must be preserved even if some

5

of users lose their private keys. Moreover, privacy of each users’ data against the

other users must be preserved. Last but not least, there should be a solution for

fast update of the encryption key to protect the stored data on the server in case

of lose/leakage of the master key. There are two common approaches for support-

ing the single-writer/multi-reader setting, sharing the encryption key and providing

the search tokens. The former requires re-distribution of the key and re-encryption

of the database for each user revocation. Moreover, it poses major risks associated

with users’ key lose/exposure. In the multi-client schemes that utilized this approach

like [4,15,16] if a user being compromised or collude with an adversary or the cloud

server it would result to disclosure of all of the users’ information. The latter does

not suffer from these issues however, it does not support users’ privacy against the

data owner.

Another challenge is preserving query functionality. Although searchable en-

cryption schemes allow secure search over the encrypted data, they mostly support

conventional Boolean keyword search, without capturing any relevance of the search

results. This leads to a large amount of post-processing overhead to find the most

matching documents and causes an unnecessary network traffic between the servers

and end-users. Such problems can be addressed efficiently using rich queries such

as range, ranked, substring, wildcard, and phrase queries. This research aims to

present solutions for ranked and range queries. Most of the current solutions for

ranked search in the context of searchable symmetric encryption suffer from either

(a) security breaches due to revealing information to the server on database content

via ranking [17, 18] or (b) usability concerns caused by some assumptions like using

the two non-colluding servers [19–21].

On the other hand, there are limited number of studies on range searches, in

particular geometric range search. Range query is a primary database operation to

meet the practical data retrieval need. Range search plays a vital role in supporting

common applications using Location-Based Services (LBS) such as Uber. Neverthe-

less, the leakages from the range query enable an attacker to reconstruct the dataset.

6

Recently, a considerable amount of literature has been published on the problem of

reconstructing encrypted databases from range query leakage [22–25]. Moreover, due

to the objects’ movements in LBS applications, support of dynamic setting is essen-

tial. However, dynamic setting introduces additional leakages to the server about

the update undertaken. Supporting forward and backward privacy enables the SSE

scheme to mitigate such attacks [26,27]. However, none of the existing solutions for

geometric range search using SSE schemes considered forward and backward privacy.

1.1.1 Research Objectives

The major objectives of this study in order to present SSE schemes supporting rich

functionality as well as enhanced security are as follows:

1. To propose novel SSE scheme that support Single-writer/Multi-reader settings

with following features;

(a) minimum presence of the data owner after the setup phase

(b) support of user privacy by removing the need to take the search token

from the data owner

(c) resilience against exposure of users’ keys as well as passive and active

collusion

(d) achieve the query privacy property (against ‘helping users’) by introducing

a new security primitive.

(e) support user revocation

(f) support update of the encrypted database using new key

2. To propose SSE scheme that supports ranked search

(a) secure against all attacks related to ranking leakage while uses a single

cloud server

7

(b) support multi-keyword search over Boolean, ranked and limited range

queries

3. To propose an SSE scheme for spatial data that satisfies the following require-

ments;

(a) support of dynamic settings

(b) support of geometric range search

(c) forward/backward privacy

1.2 Main Contributions Summary

The contributions made in this thesis on Cloud storage security are as follows:

• Multi-client symmetric searchable encryption;

• Multi-keyword ranked symmetric searchable encryption

• Geometric range search on encrypted data with forward/backward privacy

In the following we summarize each main contribution.

1.2.1 Multi-client symmetric searchable encryption

This research presents a Single-writer/Multi-reader SSE scheme that minimizes the

presence of the data owner, fully supports user privacy, and preserves the privacy

of database content even if some clients lose their private keys. Our multi-client

SSE scheme offers two approaches for user revocation. The first solution enables

the data owner to revoke key shares from clients by generating new PRF key shares

and distributing them between non-revoked clients while leaving the master key and

8

EDB unchanged to save the costly re-encryption operation. The second approach

has minimal communication overhead but requires EDB re-encryption (update).

Moreover, a solution for fast and efficient re-encryption of the database using

the new key is provided. This solution enables the data owner to perform one-time

update of the encryption key as well as EDB (Encrypted Database) by sending the

corresponding key-material to the server. That is, a substantial amount of cost

in terms of computations performed locally at data owner side for encryption of the

database using the new key, and bandwidth required for uploading the updated EDB

as well as transferring information to the considered clients would be avoided.

1.2.2 Multi-keyword ranked symmetric searchable

encryption

A generic solution for multi-keyword ranked search over the encrypted cloud data is

presented. The proposed solution can be applied over different symmetric searchable

encryption schemes. To demonstrate the practicality of our technique, the Oblivious

Cross Tags (OXT) protocol of Cash et al. [3] is leveraged due to its scalability and

remarkable flexibility to support different settings. Our proposed scheme supports

the multi-keyword search on Boolean, ranked and limited range queries while keeping

all of the OXT’s properties intact. The key contribution of our solution is that it

enables our scheme to resist against all common attacks that take advantage of OPE

leakage while only a single cloud server is used. Moreover, the results indicate that

using the proposed solution the communication overhead decreases drastically when

the number of matching results is large.

9

1.2.3 Geometric range search on encrypted data with

forward/backward privacy

Two dynamic symmetric searchable encryption schemes for geometric range search

are presented. Our constructions are the first to provide forward/backward privacy

in the context of SSE-based schemes supporting geometric range search. In addition,

we define a security notion called content privacy. This security notion captures the

leakages that are critical in the context of geometric range search but not consid-

ered by forward/backward privacy. Content privacy eliminates the leakage on the

updated points of the database during both search and update. Due to the inherent

leakages associated with range queries, none of the existing related works can sup-

port content privacy whereas the design of our constructions avoids such leakages.

When compared to the state-of-the-art schemes our constructions provide a higher

level of security and practical efficiency supported by our experimental results.

1.3 Thesis Structure

The remaining of the thesis is organized as follows:

Chapter 2: provides fundamental concepts required for understanding the sub-

sequent chapters. It also presents the state-of-the-art techniques and tools to search

the encrypted data.

Chapter 3: presents the detailed explanation of the first contribution of this

research. That is, a multi-client SSE scheme which addresses several challenges in

this domain.

Chapter 4: gives the detailed explanation of the second contribution of this

research; a generic solution to support multi-keyword ranked search in SSE schemes.

Chapter 5: presents a dynamic SSE scheme for spatial databases. In addition, a

new security notion is introduced which is critical for dynamic SSE scheme supporting

10

geometric range searches.

Chapter 6: concludes this thesis and presents the open problems as well as

future works.

11

Chapter 2

Background

This chapter presents required background related to the thesis and discusses the

state-of-art on search on encrypted data. This chapter is organized as follows: Section

2.1 briefly reviews the cryptographic concepts required in the subsequent chapters.

Existing alternative approaches for searching on the encrypted data are described

in Section 2.2. Since the main focus of this research is on symmetric searchable

encryption, some of the related well-known SSE schemes are reviewed in this chapter.

2.1 Cryptographic Background

2.1.1 Threshold secret sharing

This subsection reviews the secret sharing scheme proposed by Shamir [28], briefly.

The idea is to divide the secret k ∈ Zp (for a prime p > N) into N pieces such that

the knowledge of at least θ pieces (threshold) is required to recover k. More precisely,

this scheme consists of two main algorithms Share and Recon as followed.

12

• Share: This algorithm takes a secret k ∈ Zp as an input and outputs the

corresponding key shares k1 ∈ Zp, ..., kN ∈ Zp.

• Recon: This algorithm reconstructs the secret using any subsetW = {i1, ..., iθ} ⊂
[N] of size θ by computing k =

∑θ
j=1 λij.kij (mod p), where λij ∈ Zp are re-

construction coefficients.

2.1.2 One-more one-way function

The security of utilized distributed PRFs in our construction relies on the hardness

of the one−more one−way function assumption that can be defined as Definition

1. The notion of ”one-more” problem was introduced by Bellare et al. [29] in order

to prove the security of Chaum’s blind signature scheme [30].

Definition 1 (one-more one-way function assumption). A computable function f

in polynomial time is one − more one − way if the advantage of any adversary A
(probabilistic polynomial-time algorithm) which can win the following game by having

an access to ”Inversion” and ”Challenge” oracles be negligible [29, 31]:

• A inputs the definition of f .

• In order to win the game, A must invert n points output by the challenge oracle

while strictly less than n queries issued to the inversion oracle.

Inversion Oracle. inputs y in f ’s codomain and outputs x in f ’s domain such

that f(x) = y.

Challenge Oracle. there is no input; it outputs a random challenge point from

f ’s codomain.

Note. For any integer n > 1, solving the one-more problem with access to the

inversion oracle up to n times cannot be reduced to the resolution of this problem

with access to inversion oracle limited to n+ 1 queries [31].

13

2.1.3 Decisional Diffie-Hellman

Definition 2 (DDH problem). Let G be a group of prime order q with generator

g. Decisional Diffie-Hellman (DDH) problem can be described as follows; given two

probability distributions (g, ga, gb, gab) and (g, ga, gb, gc) where, a, b, c ∈ Zq, there is

no probabilistic polynomial time algorithm to distinguish the mentioned probability

distributions (in κ, the advantage of DDH distinguisher is negligible).

2.1.4 Ring-LWE problem

Definition 3 (Ring-LWE problem.). For a security parameter λ let

• Φµ(X) be µ-th cyclotomic polynomial for an integer µ = µ(λ)

• A = Z[X]/ < Φµ(X) > and Aq := A/qA for an integer q = q(λ) ≥ 2

• χ = χ(µ) be a distribution over A

The RLWEµ,q,χ problem is to distinguish two samples from polynomially many

samples. In the first distribution, one samples (ai, bi) uniformly from (Aq)
2. In

the second distribution, one first picks s
$←− Aq and then outputs (ai, bi) ∈ (Aq)

2

by sampling ai ∈ Rq uniformly, sampling ei ∈ χ according to the distribution, and

setting bi = ai.s+ei. The RLWEµ,q,χ assumption states that the RLWEµ,q,χ problem

is unfeasible [32].

2.1.5 Homomorphic Encryption from RLWE

Ring-LWE encryption scheme is associated with a number of parameters [32]:

• λ: Security parameter

• R = Z[X]/(xd + 1): polynomial ring of degree d

14

• Rq := R/qR: ring mod q for an integer q (ciphertexts are pairs of Rq elements)

• Rτ := R/τR: message space for τ = 2, Rτ can be represented by polynomials

p(x) =
∑
i<mu

pix
i for pi ∈ Zτ .

• χ: a distribution of polynomials over Rq with ‘small’ coefficients (with standard

deviation σ).

Ring-LWE encryption can be described by the following algorithms:

KeyGen(): This algorithm samples t ← χ, e ← χ and defines the secret key

sk = ~s ← (1,−t) and computes the public key pk = (a, b). Here, a
$←− Rq and

b = at+ e.

Enc():Given the public key and a message m ∈ Rτ , the encryption algorithm

chooses a small polynomial v ← χ and two polynomials e0 and e1 and computes

the ciphertext ~c = (c0, c1) where (c0, c1) = (m.q/τ, 0) + (bv + e0, av + e1) (note that

c0 = a′t+ (e0 + ev) +m.q/τ and c1 = a′ + e1, where a′ = av).

Dec(): Given a ciphertext ~c = (c0, c1), this algorithm outputs m′ = ~c · ~s and

rounds m′ coefficient to nearest multiple of q/τ .

Eval(): Given two ciphertexts, this algorithm outputs the ciphertext obtained

through the considered operation over the given ciphertexts (for detailed operations

refer to section 4.3).

2.1.6 Homomorphic Encryption from Learning with Errors

(LWE)

In the design of our filtering approach presented in Chapter 4, we use LWE-based

Regev’s encryption scheme [33] rather than Ring-LWE, denoted by EncLWE. In

Regev’s encryption, the public key consists of a matrix A $←− Zn×mq and an LWE

sample ~a ∈ Zmq (q,m, and n are integers). Let ~a = AT~s + ~e where ~s
$←− Znq is the

15

secret and ~e ∈ Zm is the error. For the encryption, one chooses uniformly random

vectors ~y ∈ {0, 1}m and computes c = A~y mod q, c′ =< ~a, ~y > +m.bq/2c mod q.

For the decryption, c′ − ~sT c mod q must be computed to remove the common part

and recover the message by rounding the “error” to nearest multiple of bq/2c.

2.1.7 Homomorphic Encryption from Ring-GSW

Let G = [I, 2I, 4I...2l−1I]
t ∈ R2l×2

q be the gadget matrix. Homomorphic Encryption

from Ring-GSW can be described by the following algorithms [34]:

KeyGen(): This algorithm samples ~t ← Zq and defines the secret key sk = ~s ←
(1,−t) and sets ~v = G~s. To define public key pk = A, this algorithm first generates

a m × 1 matrix B
$←− Rm×i

q (where Rq = Zq(x)/(xd + 1)) and a vector ~e ← χm; it

sets ~b = B.~t+ ~e, and A to be the 2-column matrix consisting of ~b followed by the n

columns of B (A.~s = ~e).

Enc(): To encrypt the message µ ∈ {0, 1}, this algorithm computes a ciphertext

in the form of C = Flatten(C′) where C ′ = µ.Iη + BitDecomp(RA). Here, η = 2 × l
and BitDecomp(a) = (a0, ..., al−1) ∈ Rl

q for a =
∑

i ai.2
i where each ai is an element

of R that when represented as a polynomial of degree d− 1 has coefficients that are

all in {0, 1}.

Let C ′′ = BitDecomp−1(C ′), thus C = Flatten(C ′) = BitDecomp(C ′′). Flatten

ensures that the coefficients of C are small; therefore C has the proper form of a

ciphertext that permits our homomorphic operations [34].

Dec(): This algorithm computes C.~v = µ.~v + BitDecomp(C ′′).~v = µ.~v + C ′′.~s =

µ.~v + e′ where e′ is a small noise of C.

The other utilised homomorphic operations are NAND and Mult as follows.

NAND(C1, C2) = Flatten(IN − C1.C2)

Mult(C1, C2) = Flatten(C1.C2)

16

2.1.8 Pseudorandom Functions (PRFs)

In this subsection, we review the Pseudorandom Functions.

Key Homomorphic Pseudorandom Functions. Let F : K ×X → Y be an

efficiently computable function where (K,⊕) and (Y ,⊗) are groups. Tuple (F ,⊕,⊗)

is a key homomorphic PRF if the following properties hold [35]:

1. F is a secure pseudorandom function.

2. For every k1, k2 ∈ K and every x ∈ X , F(k1, x)⊗F(k2, x) = F(k1 ⊕ k2, x).

Constructing key homomorphic PRFs in the random oracle model is straightforward.

Let G be a finite cyclic group of prime order q and let H1 : X → G be a hash function

modeled as a random oracle. We can define the function FDDH : Zq × X → G as

FDDH(k, x)← H1(x)k and observe that FDDH(k1+k2, x) = FDDH(k1, x).FDDH(k2, x).

Distributed PRF. A distributed PRF mainly consists of five algorithms; Setup,

Key sharing, Partial evaluation, Combine, and Evaluation with the following prop-

erties [35].

• Setup: This algorithm takes an input security parameter κ and outputs the

public parameters pp.

• Key sharing K → KN : This algorithm generates key shares (k1, ..., kN) ∈ KN

of the considered master key (k0 ∈r K) using S = (θ,N) , a threshold secret

sharing scheme proposed by Shamir [28], which is explained in subsection 2.1.1

.

• Partial evaluation: The function F : K ×X → Y takes a key share and an

input point, and outputs a partial evaluation of the Evaluation function f .

• Combine: The algorithm G : 2[N] × Yθ → Y takes inputs θ and a subset

W ⊂ [N] of size θ , partial evaluations on key shares in the set W , and

outputs a value in Y .

17

• Evaluation: The function f : K × X → Y maps a key and an input to the

space of outputs.

The distributed PRF is initialized by a trusted third party who runs Setup(1κ) to

obtain the public parameters pp, samples the master secret key mk = k0 uniformly

from K, and performs Key sharing(k0) to obtain a tuple (k1, ..., kN). The key share

ki is distributed as the secret key for each key share holder i along with public

parameters pp. A client who wants to compute the evaluation function using k0 on

input x sends x to θ − 1 key share holders (i1, ..., iθ−1). Each key share holder i

responds to the client with F(ki, x). then the client locally computes f(k0, x) by

computing G(W,F(ki1 , x), ...,F(kiθ , x)).

Correctness. By considering pp as the output of Setup(1κ), k0 sampled uni-

formly from K, and (k1, ..., kN) the key share output by Key sharing(k0); for every

subset W = i1, ..., iθ ⊂ [N] of size θ, and for every input x, a distributed PRF is

correct if f(k0, x) = G(W,F(ki1 , x), ...,F(kiθ , x)).

2.1.9 Shen, Shi and Waters Encryption (SSW)

Let Σ = ZnN to be the class of plaintexts and the class of predicates to be F =

{fv|v ∈ ZnN} with fx(v) = 1 iff 〈x,v〉 = 0 mod N . The symmetric-key predicate

encryption scheme of Shen et al. [36] consists of following algorithms:

Setup
(
1λ
)
: This algorithm inputs 1λ and generates (p, q, r, s,G,GT , e) where G =

Gp × Gq × Gr × Gs. It picks the corresponding generators gp, gq, gr, gs. It chooses

h1,i, h2,i, u1,i, u2,i ∈ Gp uniformly at random for i = 1, ..., n. The secret key is SK =(
gp, gq, gr, gs, {h1,i, h2,i, u1,i, u2,i}ni=1

)
.

Encrypt(SK,x): To encrypt x = (x1, . . . , xn) ∈ ZnN using the secret key SK,

this algorithm picks random y, z, α, β ∈ ZN , S, S0 ∈ Gs, and R1,i, R2,i ∈ Gr for

i = 1, ..., n. Then outputs the ciphertext

18

CT =

(
C = S · gyp , C0 = S0 · gzp{

C1,i = hy1,i · uz1,i · gαxiq ·R1,i C2,i = hy2,i · uz2,i · gβxiq ·R2,i}ni=1

)
GenToken(SK,v): Let v = (v1, . . . , vn) ∈ ZnN . This algorithm chooses f1, f2 ∈

ZN , r1,i, r2,i ∈ ZN , R,R0 ∈ Gr, and S1,i, S2,i ∈ Gs at random, for i = 1 to n. It

outputs the token

TKv =

(
K = R ·

∏n
i=1 h

−r1,i
1,i · h

−r2,i
2,i , K0 = R0 ·

∏n
i=1 u

−r1,i
1,i · u

−r2,i
2,i{

K1,i = g
r1,i
p · gf1vi

q · S1,i, K2,i = g
r2,i
p · gf2vi

q · S2,i

}n
i=1

)
Query(TKv, CT):

Let CT =
(
C,C0, {C1,i, C2,i}ni=1

)
and TKv = (K,K0, {K1,i, K2,i}ni=1) as above. The

query algorithm outputs 1 iff

e(C,K) · e (C0, K0) ·
∏n

i=1 e (C1,i, K1,i) · e (C2,i, K2,i)
?
= 1

2.2 Alternative approaches for search on

encrypted data

Several approaches have been proposed that offer “search on encrypted data”, how-

ever SSE has better trade off between security and efficiency among them. Thus, the

main focus of this research is on SSE and the other approaches are briefly reviewed

in this section for the sake of completeness.

2.2.1 Public Key Encryption with keyword Search (PKES)

Public Key Encryption with keyword Search is a cryptographic primitive which en-

ables searching on data that is encrypted using a public key cryptosystem. The

notion of PKES was first introduced by Boneh et al. [37] in 2004. They proposed

two constructions, one using bilinear pairing and another is based on general trap-

door permutations where the former is more efficient.

19

Figure 2.1: PEKS framework

As shown in Figure 2.1, this system consists of three major roles: data sender

(B), data receiver (A), and the server (Cloud). The data sender uses the public key

of the data receiver (Apub) to encrypt the a message M with keywords W1, . . . ,Wm

and then sends it to the server. The data receiver uses its private key to generate a

trapdoor of the search keyword (TW). Given A’s public key, a searchable encryption

S = PEKS (Apub,W
′) and a trapdoor TW = Trapdoor (Apriv,W), the server tests if

W = W ′ and then sends the matching documents to the data receiver. However,

their solution reveals partial information which leads to the access pattern leakage.

To overcome this problem Boneh et al. [38] proposed a PKES scheme using Bloom

filter which hides the access pattern. Nevertheless, this solution is much less efficient

than SSE based solutions as the search complexity is proportional to the square root

of the database size.

2.2.2 Order Preserving Encryption (OPE)

Order Preserving Encryption (OPE) is a deterministic encryption scheme where the

numerical order of the plaintexts are preserved by the encryption function. That

is, for any secret key k, Enck(m1) < Enck(m2) if m1 < m2. Boldyreva et al. [39]

presented the first formal cryptographic treatment of OPE. Although OPE allows

20

efficient range queries, it cannot achieve the conventional notions of security for

symmetric encryption, IND-CPA. Indeed, OPE reveals the relative order of elements

in the database, and therefore does not meet the data owner’s data privacy.

2.2.3 Oblivious RAM

Goldreich and Ostrovsky [40] introduced the concept of Oblivious RAM (ORAM)

which is recently being used in outsourcing data [41,42]. ORAM conceals the memory

access pattern. This is achieved by randomizing and re-encrypting data whenever it

is accessed. Although ORAM enables “search on encrypted data” with data privacy

protection via hiding the access pattern from the untrusted server, it is impractical

due to its overhead. For the ORAM with maximum capacity N , the server stores

O(N logN) items and each oblivious data access request requires O(log3N). A

considerable amount of literature has been published on ORAM [41,43–48] to address

its overwhelming overhead and make it practical. However, it is still inefficient for

use in large-scale cloud storage.

2.3 Searchable Encryption

This section reviews the SSE schemes which are used for the comparisons in the

subsequent chapters.

2.3.1 Preliminaries

2.3.1.1 Notations and assumptions

Let DB = {(indi,Wi) : 1 ≤ i ≤ D} be a database with indi ∈ {0, 1}`,Wi ⊆ {0, 1}∗.
Here, indi are document indices and Wi is a set of keywords matching document indi.

We denote the set of keywords in DB with W = ∪Di=1 where K = |W |. We define

21

N =
∑D

i=1 |Wi| as the number of document/keyword pairs. We denote DB(w) =

{indi|w ∈Wi} as the set of documents containing keyword w.

2.3.1.2 Syntax of Symmetric Searchable Encryption

In general, a searchable symmetric encryption scheme consists of an algorithm Setup

and a protocol Search as follows;

Setup(λ,DB): Given security parameter λ and a database DB, this algorithm

generates the encrypted database EDB.

Search(q,EDB): inputs the search query q and the encrypted database EDB, then

outputs the search result.

2.3.1.3 Syntax of Dynamic Symmetric Searchable Encryption

This section briefly reviews general Dynamic Symmetric Searchable Encryption (DSSE)

since it is required for understanding the security notions discussed in Section 5.3. A

DSSE scheme Π consists of a Setup algorithm and two protocols Search and Update

between a client and a server [26]:

• Setup(DB, λ)→ (EDB, K, σ): Given the security parameter λ and the database

DB, this algorithm outputs the encrypted database EDB with the master key

K, and σ as the client’s state.

• Search (q, σ,EDB) → (ER): This protocol is performed between the client

and the server. Given the search query q by the client, the server searches

the encrypted database EDB and outputs the set of the encrypted matching

results, ER.

• Update (K, σ, op, in,EDB) → (EDB′, σ′): The client inputs K, σ, and an op-

eration op with its input in = (ind, w) (an index and a set of keywords to

22

be modified). The server inputs EDB. Update outputs the new version of the

encrypted database and the updated client’s state.

2.3.2 Oblivious Cross Tags (OXT)

The proposed protocol by Cash et al. [3] called Oblivious Cross Tags (OXT) is

the first searchable symmetric encryption (SSE) scheme that goes beyond a single-

keyword search. This scalable scheme supports boolean queries over the encrypted

database in sublinear time. OXT consists of an algorithm EDBSetup and a protocol

Search as follows;

EDBSetup(λ,DB): Given a security parameter λ and a DB = (idi,Wi)
d
i=1, this

algorithm generates the encrypted database EDB which is given to the server and a

secret key for the user1. This phase is given in Algorithm 1, where the data owner

runs this algorithm and uploads the EDB to the server. Note that EDB consists of two

data structures TSet and XSet. The former allows one to associate a list of fixed-sized

data tuples with each keyword in the database, and later issues the keyword-related

tokens to retrieve these lists [3]. The latter contains elements computed from each

keyword-document pair, called Xtag.

The protocol Search running between the user and server consists of following

algorithms;

TokenGeneration((q(w̄) = (w1, . . . , wn), EDB)): If a user wants to make a query

q(w̄) over EDB, the search tokens are required. This algorithm (as shown in Algo-

rithm 1) generates the search tokens Tokq based on the given query.

Search(Tokq,EDB): The algorithm inputs the search token Tokq = (stag, xtoken[1],

xtoken[2], · · ·) and outputs the encrypted search result(s) ERes.

DecResult (ERes, K): This algorithm takes the encrypted search result ERes and

1In single-writer/single-reader setting like OXT and our scheme, data owner and the client/user
are the same entity

23

the utilized secret key as inputs and outputs the corresponding document identifier(s)

id(s).

Algorithm 1 OXT: Oblivious Cross-Tags Protocol
EDBSetup

1: Initialize T to an empty array indexed by keywords W.
2: Select key KS for PRF F . Select keys KX , KI , KZ for PRF Fp with range Z∗p and parse DB as (idi,Widi)

d
i=1.

3: XSet← {}
4: for w ∈W do
5: Initialize t← {}; and let Ke ← F (KS , w).
6: for id ∈ DB(w) do
7: Set a counter c← 1
8: Compute xid← Fp(KI , id), z ← Fp(KZ , w||c); y ← xidz−1, e← Enc(Ke, id).
9: Set xtag← gFp(KX ,w)·xid and XSet← XSet ∪ {xtag}
10: Append (y, e) to t and c← c+ 1.
11: end for
12: T[w]← t
13: end for
14: Set (TSet,KT)← TSet.Setup(T) and let EDB = (TSet,XSet).
15: return EDB,K = (KS ,KX ,KI ,KZ ,KT)

Token Generation (q(w̄),K)

1: Client’s input is K and query q(w̄ = (w1, ..., wn)).
2: Computes stag← TSet.GetTag(KT , w1).
3: Client sends stag to the server.
4: for c = 1, 2, . . . until the server stops do
5: for i = 2, . . . , n do
6: xtoken[c, i] ← gFp(KZ ,w1||c)·Fp(KX ,wi)

7: end for
8: xtoken[c]← (xtoken[c, 2], . . . , xtoken[c, n])
9: end for
10: Tokq ← (stag, xtoken)
11: return Tokq

Search (Tokq,EDB)

1: ERes ← {}
2: t← TSetRetrieve(TSet, stag)
3: for c = 1, ..., |t| do
4: Retrieve (e, y) from the c−th tuple in t
5: if xtoken[c, i]y ∈ XSet for all i = 2, ..., n then
6: ERes← ERes ∪ {e}
7: end if
8: end for
9: return ERes

Retrieve

Client sets Ke ← F (KS , w1); for each e ∈ ERes received, computes id← Dec(Ke, e) and outputs id.

T-Set Instantiation: Cash et al. in [3] instantiate a T-set as a hash table

with B buckets of size S. The TSetSetup(T) procedure sets the parameters B and S

depending on the total number N = Σw∈W |T [w]| of tuples in T in such a way so that

(1) the probability of an overflow of any bucket after storing N elements in this hash

24

table is a sufficiently small constant; and (2) the total size B.S of the hash table is

O(N). T-set instantiation Σ = (TSetSetup,TSetGetTag,TSetRetrieve) given by Cash

et al. [3] as shown in Algorithm 2.

Algorithm 2 T-Set Instantiation

TSetSetup

1- Initialize an array TSet of size B whose every ele-
ment is an array of S records of type record.
2- Initialize an array Free of size B whose elements are
integer sets, initially all set to {1, ..., S}.
3- Choose a random key KT of PRF F .
4- Let W be the set of keywords in DB . For every
w ∈W do the following:
- Set stag ← F (KT , w) and t⇐ T |w|.
- For each i = 1, ..., |t|, set si as the i-th string in t, and
perform the following steps:

• Set (b, L,K)← H(F (stag, i)).

• If Free[b] is an empty set, restart TSetSetup(T)
with fresh key KT .

• Choose j ∈r Free[b] and remove j from set
Free[b].

• Set bit β as 1 if i < |t| and 0 if i = |t|.
• Set TSet[b, j].label ← L and TSet[b, j].label ←

(β|si)⊕K.

Output (TSet,KT).

TSetRetrieve(TSet, stag)

Output stag ← F (KT , w)

TSetGetTag(KT , w)

1- Initialize t as an empty list, bit β as 1, and counter
i as 1.
2- Repeat the following loop while β = 1:

• Set (b, L,K) ← H(F (stag, i)) and retrieve an
array B ← TSet[b]

• Search for index j ∈ {1, ..., S} s.t. B[j].lable =
L.

• Let v ← B[j].value ⊕K. Let β be the first bit
of v, and s the remaining n(λ) bits of v.

• Add string s to the list t and increment i.

Output t.

2.3.3 RSA-SSE

The proposed scheme by Sun et al. [49] is an enhanced version of OXT which could

achieve multi-user setting using RSA and Attribute Base Encryption (ABE).

EDBSetup(1κ,DB,RDK,U): Similar to OXT the main goal of this algorithm is to

generate the encrypted database, EDB. Since, it involves ABE, beside of the security

parameter κ, a database DB, a retrieval decryption key array RDK and an attribute

universe U need to be considered as inputs. After performing ABE.Setup(1κ,U) and

few other computations, it generates EDB and XSet as shown in Algorithm 3 [49].

25

Algorithm 3 RSA-SSE: EDB Setup Algorithm
Require: MK, PK, DB, RDK

Ensure: EDB,XSet

1: function EDBGen(MK, PK, DB, RDK)

2: EDB← {}; XSet← ∅
3: for w ∈W do

4: c← 1; stagw ← F (KS , g
1/w
1 mod n)

5: for id ∈ DB[w] do

6: `← F (stagw, c); e← ABE.Enc(mpk, id||kid,A)

7: xind← Fp(KI , id); z ← Fp(KZ , g
1/w
2 mod n||c)

8: y ← xind · z−1; xtag← gFp(KX , g
1/w
3 mod n)·xind

9: EDB[`] = (e, y); XSet← XSet ∪ {xtag}
10: c← c+ 1

11: end for

12: end for

13: return EDB,XSet

14: end function

TokenGen(sk,Q): This algorithm inputs the private key sk generated by the data

owner and search query Q and then outputs the search token as shown in algorithm

4 [49].

Algorithm 4 RSA-SSE: Token Generation Algorithm
Input: sk,Q

Output: st

1: function TokenGen(sk, Q)

2: st, xtoken← {}; s̄← ∅
3: s̄← s̄ ∪ {w′1}
4: x← w̄ \ s̄

5: stag← F
(
KS , (sk

(1)
w)

∏
w∈w\{w′1}

w
mod n

)
= F (KS , g

1/w′1
1 mod n)

6: for c = 1, 2, . . . until the server stops do

7: for i = 2, . . . ,m do

8:
xtoken[c, i] ← gFp

(
KZ ,(sk

(2)
w)

∏
w∈w\{w′1}

w
mod n||c

)
·Fp
(
KX ,(sk

(3)
w)

∏
w∈w\{w′

i
} w

mod n
)

= gFp(KZ ,g
1/w′1
2 mod n||c)·Fp(KX ,g

1/w′i
3 mod n)

9: end for

10: end for

11: st← (stag, xtoken)

12: return st

13: end function

Search(st,EDB,XSet): This algorithm (given in algorithm 5 [49]) inputs the search

26

token st for the search over the encrypted database, and outputs the search result

R which is an encrypted form of document indexes containing the search keyword.

Although this protocol could achieve multi-user setting, the user revocation and key

update have not been addressed.

Algorithm 5 RSA-SSE: Search Algorithm
Input: st = (stag, xtoken[1], xtoken[2], · · ·),EDB,XSet

Output: R

1: function Search(st,EDB,XSet)

2: R ← {}
3: for stag ∈ do

4: c← 1; `← F (stag, c)

5: while ` ∈ EDB do

6: (e, y)← EDB[`]

7: if xtoken[c, i]y ∈ XSet for all i then

8: R← R ∪ {e}
9: end if

10: c← c+ 1; `← F (stag, c)

11: end while

12: end for

13: return R

14: end function

2.3.4 Geometric Range Searchable Encryption (GRSE)

The proposed work by Wang et al. [50] enables geometric range queries on encrypted

spatial data. This scheme uses SSW (Shen, Shi and Waters) encryption as the

building block. As shown in Figure 2.2 their probabilistic scheme first adds the

points to the Bloom filter (BF) and then encrypts all bits of the BF. To generate

the search token, user enumerates all of the possible points inside the geometric

range query and then adds the corresponding ciphertexts to a Bloom filter. To check

whether a point is inside the queried range, server checks whether an encrypted data

record is an element contained in the BF given as the search token. GRSE is linear

search regarding to the number of points in a dataset.

GRSE consists of the following algorithms:

27

Figure 2.2: Overview of GRSE scheme

GenKey(1λ): Given (1λ) as an input, the data owner runs SSW to generate the

secret key SK. This algorithm outputs {m,h1, . . . , hk} as the public parameters,

where m is the length of the BF and the rest are hash functions.

Enc(SK,D): On the input of the secret key and a dataset D = (D1, . . . , Dn)

where Di ∈ ∆w
T , for 1 ≤ i ≤ n, the data owner computes the corresponding

Bloom filter BFDi := BF. Init(m), BFDi := BF · Add (Di, BFDi). Here, BFDi =

(bDi,1, . . . , bDi,m) and bDi,j ∈ {0, 1}, for 1 ≤ j ≤ m. Then, it pads ~ui = (BFDi ,−1) ∈
{0, 1}m×{−1}, and calculates the ciphertext Ci of ~ui using SSW encryption. Finally

it outputs C = (C1, . . . , Cn).

GenToken(SK,Q): This algorithm inputs the secret key and a geometric search

query Q ⊆ ∆w
T and computes S = {S1, . . . , St} := EnumerateInsidePoints (Q),

BFQ := BF · Init(m), and BFQ := BF.Add (Si, BFQ) , for 1 ≤ i ≤ t. Here t is the

number of possible points in the query, BFQ = (bQ,1, . . . , bQ,m) and bQ,j ∈ {0, 1}, for

1 ≤ j ≤ m. It pads ~v = (BFQ, k) ∈ {0, 1}m × {k} and outputs the search token TK

which is generated by running SSW.

Search(TK,C): On the input of the search token TK and the encrypted dataset

C = (C1, . . . , Cn), server runs the SSW query algorithm Flagi ← SSW·query (TK, Ci) ,

for 1 ≤ i ≤ n, if the FIagi = 1, it returns the corresponding ciphertext.

28

2.4 Security

2.4.1 SSE Leakage Profile

In general, the leakage function of an SSE scheme, L(DB,q), for DB = (idi,Wi)
n
i=1

and q = (s[i], x[i]), can be defined as a tuple (N, s̄, SP,RP, IP) formed as follows [3]:

• N =
∑n

i=1 |Widi | is the number of keyword-document pairs, which is the size

of EDB.

• s̄ ∈ NT is the equality pattern of the sterms s, indicating which queries have

the same sterms. It is calculated as an array of integers, such that each integer

represents one sterm. For instance, if we have s = (a, b, c, a, a), then s̄ = (1,

2, 3, 1, 1).

• SP is the size pattern of the queries, which is the number of matching results

returned for each stag.

• RP[t, α] = DB[s[t]]∩DB[x[t, α]], where s[t] 6= x[t, α], reveals the intersection of

the sterm with any other xterm in the same query.

• SRP[t] = DB[s[t]] is the search result pattern corresponding to the stag of the

t-th query.

• IP[t1, t2, α, β] =



DB[s[t1]] ∩ DB[s[t2]],

if s[t1] 6= s[t2] and x[t1, α]=x[t2, β]

∅,

otherwise

is the conditional inter-

section pattern, which is a generalization of the IP structure in [3].

• XT[t] = |x[t, ·]| is the number of xterms in the t-th query.

29

2.4.2 DSSE Leakage Profile

In this section, we define the general leakage functions, L, associated with dynamic

searchable symmetric encryption schemes [26].

• sp(w) = {u : (u,w) ∈ Q} is the search pattern which shows two search queries

pertain to the same keyword, w. This leakage function records the list Q of

every search query, in the form (u,w), where u is the timestamp (increases

with every query).

• UpHist(w) is a history which outputs the list of all updates on keyword w.

Each element of this list is a tuple (u, op, ind), where u is the timestamp of the

update, op is the operation, and ind is the updated index.

• TimeDB(w) is the list of all documents matching w, excluding the deleted

ones, together with the timestamp of when they were inserted in the database.

• Updates(w) is the list of timestamps of updates on w.

• DelHist(w) is the deletion history of w which is the list of timestamps for

all deletion operations, together with the timestamp of the inserted entry it

removed.

2.4.3 Forward Privacy

Forward privacy plays a critical role in preventing leakage-abuse attacks in dynamic

SSE schemes. An SSE scheme is ”forward private”, if there is no relation between

an update and previous search results. That is, there is no leakage to the server

about the updated keywords or the updated document matching the previous search

queries. Stefanov et al. first introduced the notion of forward privacy in [51]; later

Bost in [27] presented the formal definition of that and proposed a forward private

SSE scheme. Their formal definition of the forward privacy is as follows;

30

Definition 4. A L-adaptively-secure SSE scheme Σ is forward private if the update

leakage function L Updt can be written as LUpdt(op, in) = L′ (op, {(indi, µi)}), where

{(indi, µi)} is the set of modified documents paired with the number µi of modified

keywords for the updated document indi. Here, op ∈ {Add,Del,Mod}.

2.4.4 Backward privacy

Backward privacy (Security) with three types of leakages, introduced by [26], is or-

dered from the most to least secure (Type-I to Type-III). Backward privacy limits

the information on the updates affecting a keyword that the server can learn upon a

search query on it. In the following definitions, TimeDB(w) is the list of all docu-

ments matching w, excluding the deleted ones, Updates(w) is the list of timestamps

of updates on w, and DelHist(w) is the list of timestamps for all deletion operations,

together with the timestamp of the inserted entry it removed. Type-I leakage (Back-

ward privacy with Insertion Pattern): This leakage revealed the document identifiers

matching the issued search keyword when they were inserted, and the total number

aw of updates over the search keyword.

Definition 5 (Backward privacy with Insertion Pattern). A L-adaptively-secure SSE

scheme is insertion pattern revealing backward-private iff the search and update leak-

age functions LSrch, LUpdt can be written as:

LUpdt(op, w, ind) = L′(op)

LSrch(w) = L′′(TimeDB(w), aw, sp(w)),

where L′ and L′′ are stateless.

Type-II leakage (Backward privacy with Update Pattern): This leakage reveals

all of the information contained in Type-I and also reveals when all updates over the

search keyword happened without their content.

31

Definition 6 (Backward privacy with Update Pattern). A L-adaptively-secure SSE

scheme is update pattern revealing backward-private iff the search and update leakage

functions LSrch, LUpdt can be written as:

LUpdt(op, w, ind) = L′(op, w)

LSrch(w) = L′′(TimeDB(w), Updates(w), sp(w)),

where L′ and L′′ are stateless.

Type-III leakage (Weak Backward privacy): This leakage reveals all of the infor-

mation contained in Type-II and also reveals which deletion update canceled which

previous insertion.

Definition 7 (Weak Backward privacy). A L-adaptively-secure SSE scheme is up-

date pattern revealing backward-private iff the search and update leakage functions

LSrch, LUpdt can be written as:

LUpdt(op, w, ind) = L′(op, w)

LSrch(w) = L′′(TimeDB(w), DelHist(w), sp(w)),

where L′ and L′′ are stateless.

Note. Although the definition presented by Bost et al. in [26] omitted the search

pattern sp, in all of the above mentioned three types of the backward privacy, the

search pattern sp is also leaked by LSrch.

2.5 Summary

In this chapter the required cryptographic background has been reviewed. Different

approaches can be used to address the issue of searching on encrypted data. However,

searchable symmetric encryption offers more efficient and practical solutions in com-

parison to the other cryptographic approaches. Thus, this chapter introduced the

32

alternative approaches, briefly. From the state-of-the-art SSE schemes, we reviewed

OXT [3], RSA-SSE [49], and GRSE [50] which are highly referred in the subsequent

chapters. Finally, we reviewed the essential security properties for SSE schemes.

33

Chapter 3

Multi-client symmetric searchable

encryption

In this chapter, we present our multi-client symmetric searchable encryption scheme.

The initial version of this work was published in Australasian Conference on Infor-

mation Security and Privacy (ACISP-2017). The extended version is under minor

revision in the IEEE Transactions on Dependable and Secure Computing (TDSC).

3.1 Overview

3.1.1 Motivation

Consider Figure 3.1 as a simple example of a database that we want to perform search

on it. A naive mode of indexing for search might be the use of Forward indexing as

shown in Figure 3.2. In this mode a record points to its keywords. However, this is

not an efficient mode as the search complexity is linear to the number of documents

O(d) (where d is the number of documents).

34

Figure 3.1: Sample database

Figure 3.3 shows a more efficient indexing mode called inverted index. In this

mode the search complexity relies on the number of keyword O(w), (here w indicates

the number of keywords). In this technique, a keyword points to the records that

contain the considered keyword. More precisely, the query is the output of the hash

of the keyword and there is a hash table of keywords where the search algorithm look

up to retrieve the pointer. However, this approach is insecure due to the excessive

leakage to the server.

Cash et al. in [3] proposed Single Keyword Search (SKS) protocol as the basis of

the other protocols proposed in the same paper. Figure 3.4 illustrates this protocol.

In this protocol they first built an inverted index and instead of using hash function,

they utilized PRF to encrypt the keyword using the considered selected key. This

approach provides a higher level of security while the same level of search complexity

is preserved.

The main goal of this research is to propose Multi-user SE protocols which can

overcome the security challenges introduced by Multi-user settings while an accept-

able level of efficiency and functionality is considered.

Although Multi-reader setting is more appealing in practice, adapting this setting

to SE schemes is left unconsidered due to its challenging security requirements. In

this section, we introduce two different approaches for adapting Multi-reader setting

with their security drawbacks.

35

Figure 3.2: Forward index

• Approach1: Key Sharing

This straightforward approach uses a Master-key which is distributed among all

legitimate users by the data owner to extend Single-user setting to Multi-user.

An example of utilizing this approach is the proposed scheme by Curtmola et al.

[4], which applied broadcast encryption to adapt Multi-user setting. However,

the authors could not overcome the following drawbacks introduced by this

approach;

– Key exposure/Collusion:

The use of a naive approach of sharing a single key among all of authorized

users to transform Single-user setting to multi-user ones, pose a major risk

of key exposure of one user leading to making the whole system security.

That is, whole DB key exposure risk may multiply byN , whereN indicates

the number of authorized users.

In the multi-user schemes that utilized this approach like [4, 15, 16] if a

36

Figure 3.3: Inverted index

user being compromised or collude with an adversary or the cloud server

it would result to disclosure of all of the users’ information.

– User Revocation:

Due to the use of a single key by all of the authorized users, each revocation

requires a new key to be distributed to the remaining users, which is not

practical [9].

• Approach2: Sending Search token

In this approach users/readers refer to the data owner to obtain the search

token(s). Although this approach can solve key exposure risk, it poses new

problems:

– Query Privacy:

37

Figure 3.4: Single Keyword Search (SKS)

This approach does not support query privacy against the data owner as

the search tokens are generated by data owner then delivered to the users.

Thus, the data owner learns about the queries and query privacy is not

supported.

– Functionality Problem:

Per query interaction with data owner requires online presence of the data

owner.

Our approach: θ-threshold key distribution and randomizable PRF

In our approach we applied t-threshold key distribution which facilitate Key

revocation by the data owner. That is, data owner distributes the key shares along

with the list of authorized users to the authorized users in the setup phase. Thus,

to revoke a key share data owner would update the list and the key shares.

Any θ−1 authorized users (here θ is the considered threshold) can help the reader

to generate the search token without requiring communication with the data owner.

This can solve the functionality problem of Approach2.

In order to overcome the query privacy problem, we proposed a new cryptographic

primitive called Randomizable Distributed PRF (RDPRF). More precisely, RDPRF

hides the search keyword from the helpers during the token generation process.

Finally, our approach is secure against key exposure by the size of the considered

38

threshold. That is, low key exposure risk is preserved as key exposure will happen

only if the key share of all of t readers be exposed.

3.1.2 Contributions

Our multi-client SSE achieves query privacy against all involving entities: cloud

server, data owner and the other key share holders. In addition, once the data owner

performed the Encrypted DataBase (EDB) setup phase, it is not necessary for the

data owner to be involved in the protocol unless for key update and revocation. At the

same time, our protocol is resilient against key exposure of up to θ−1 client keys. A

search is performed by a client via interaction with the server and θ−1 ‘helping’ users.

Furthermore, the proposed protocol can be applied to a wide range of applications

in modern distributed computing platforms such as cloud computing, Internet-of-

Things and social computing. This collaborative approach is particularly useful in

applications/use cases where a large number of users are always available such as

hospitals and police departments or agent-based applications where the agents could

be present all the time on-behalf of users [52]. As mentioned earlier, our generic

design is inspired by the OXT protocol of Cash et al. [3]. The contributions of our

multi-client SSE can be summarized as followed;

• Privacy and Security:

1. Query privacy: Our proposed scheme preserves query privacy against

both data owner and helping users. This goal is achieved by designing

a new primitive named RDPRF (Randomizable Distributed key- homo-

morphic PRF) which enables the data owner to distribute the PRF key

Shares with desirable clients (key share holders) without further interac-

tions. More precisely, clients would be able to carry out the search without

per-query interaction with the data owner, which in turn leads to two nice

features. First, online presence of the data owner at all the time is not

39

required since online presence of θ − 1 helping users would be sufficient

for the successful operation. Second, queries performed by clients are not

monitored by the data owner.

2. Revocation: Another desirable feature of our scheme is the key revo-

cation property which can be used to prevent any illegitimate access to

EDB by revoked client(s). In the area of SSE, key revocation problem is

usually left unaddressed. In this paper we propose two approaches for re-

vocation. First solution enables the data owner to revoke key shares from

clients by generating new PRF key shares and distributing them between

non-revoked clients while leaving the master key and EDB unchanged to

save the costly re-encryption operation. The second approach has minimal

communication overhead but requires EDB update.

Our threat model considers an honest but curious and malicious helping

users, we consider the following collusions.

3. Passive Collusion: In this condition, the server tries to compromise

a user’s key to expose the EDB content. In our scheme, the privacy of

database content is resilient against the exposure of up to θ − 1 users’

keys. More precisely, under a realistic assumption that the data owner

does not collude with the server, our multi-client SSE is secure against

a passive attack by a server colluding with any coalition of less than θ

helping users.

4. Active Collusion: Active collusion is a stronger assumption where

the server exposes at most θ − 1 key shares (for a threshold parameter

θ) and can control those θ − 1 key share holders (non-initiator) in the

token generation process. In this active server attack, the server should

not learn anything about EDB beyond the search tokens for the search

queries (which are trivially learnt by the attacker in this scenario). This

protects privacy of a database content not queried by the active attack.

40

• Efficiency: In the current related works [3, 49, 53], if the data owner decides

to update the encryption key, a substantial amount of cost would be added to

the system in terms of computations performed for encryption of the database

using the new key, and bandwidth required for uploading the updated EDB

(Encrypted Database) as well as transferring information to the considered

clients. We achieve a more efficient solution which enables the data owner to

perform one-time update of the encryption key as well as EDB by sending the

corresponding key-material to the server.

3.2 Preliminaries

In this section, the required preliminaries are provided.

3.2.1 Notations

Frequently used notations and terminologies in this paper are listed in Table 4.2.

Table 3.1: Notations and terminologies
Notation Description

idi the document identifier of the i-th document
Widi a list of keywords contained in the i-th document

DB = (idi,Widi)
d
i=1

a database consisting of a list of document identifier
and keyword-set pairs

DB[w] = {id : w ∈Wid}
the set of identifiers of documents that contain
keyword w

W =
⋃d
i=1 Widi the keyword set of the database
θ threshold

TSet
an array that presents equal sized lists for each
keyword in the database

XSet
a lookup table that contains elements computed from
each keyword-document pair

sterm the least frequent term among queried terms
xterm other queried terms (excluding sterm)

41

3.3 Background

Followed by the first Symmetric Searchable Encryption (SSE) proposed by Song et

al. [5], several SSE schemes have been proposed (e.g. [4,6,16,36,54–62]). In the early

stage, most of the works were in a single-writer / single-reader setting. However,

the single-user setting is not beneficial for cloud storage as usually enterprise cloud

servers serve multiple users. Multi-client searchable encryption was pioneered by

Curtmola et al. [4] for a symmetric setting. In their scheme, the single-user searchable

encryption is transformed to the multi-client one by sharing the key for encryption

of the database. This work supports a single keyword boolean search that is very

simple in terms of functionality [63].

In order to manage the search ability of users, the proposed scheme by Bao et

al. [15] deployed a trusted third party, called User Manager (UM). Although it seems

that their scheme could handle the key revocation issue, using such a trusted party

is not common in the cloud storage. The proposed schemes in [56,64,65] suffer from

the similar problem. The proposed work by Popa et al. [66] could overcome the need

of a trusted administration. However, it is inefficient due to the unavoidable network

bandwidth and storage overhead. Although the proposed scheme by Tang et al. [67]

could improve the Popa’s scheme from the security perspective, it did not explain how

to revoke a user. The problem is similar to multi-client searchable encryption schemes

proposed in [68, 69]. Several searchable encryption schemes have been proposed

using the public key structure in order to support a multi-client setting [10, 70–73].

However, they have limited applications in practice due to the cost of the public key

solutions. Thus, a further investigation of the cons and pros of these works is out of

the scope of this research.

Motivated by the SSE protocol of Cash et al. [3], Jarecki et al. [53] and Sun et al.

[49] proposed a SSE scheme in the multi-client setting. Although Sun’s scheme could

improve the communication overhead by avoiding per-query interaction between the

data owner and clients as in the Jarecki’s scheme, the data owner is still involved in

42

the token generation process. In addition, the search keywords are predetermined and

restricted by the data owner. More importantly, the user enrollment and revocation

remained unaddressed in these works. The notion of threshold privacy preserving

keyword search (TPPKS) was first introduced by Wang et al. [52]. This TPPKS

scheme is based on the Shamir’s secret sharing [28] and Boneh and Franklin’s ID-

based cryptosystem [74]. Although TPPKS has some attractive properties such

as share verification, there is a substantial computational overhead due to the use

of Bilinear pairings. Moreover, the query privacy against the helping users is not

considered in this scheme.

Table 3.2: Comparison of a subset of existing related works
References Multi-user Revocation Query Privacy Write capability Key exposure Key update

[4] X X X X X X

[56] X X X X X X

[16] X N/A N/A X X X

[75] X X X X X X

[15] X X X X X X

[49] X X Semi X X X

[3] X N/A N/A X X X

[53] X X X X X X

[76] X X Semi X X X

3.4 Syntax of multi-client SSE

Our multi-client SSE construction, Πmu, consists of seven phases Πmu = (EDBSetupmu,

KeySharingmu, T okenGenmu, Searchmu, Retrievemu, Updatemu, Revokemu) as defined

below. We point out the following main differences from the syntax of the single-

user SSE [3]. To achieve the resilience against the client key loss, the KeySharingmu

algorithm allows the Master key k to be split into client key shares k1, . . . , kN using

a threshold secret sharing scheme, such that any θ key shares can reconstruct k, for

a threshold parameter θ. The TokenGenmu protocol allows a client to compute a

search token for a query by interacting with other θ − 1 ‘helping’ key share holders.

43

• EDBSetupmu: A data owner runs the algorithm EDBSetupmu that takes the

security parameter λ and the database DB as inputs and outputs the encrypted

database EDB along with the master key k and the set of public parameters

pp.

• KeySharingmu: The data owner executes this algorithm which takes pp, k,

θ and the number of desired key share holders N as inputs, and outputs the

generated key shares (k1, ..., kN) ∈ KN for the given master key k (here, K is

the key space).

• TokenGenmu: The TokenGenmu protocol is run by θ key share holders (i1, ..., iθ)

∈ [N]. The key share holder i1 who aims to do the search on EDB starts the

protocol by taking the query q, public parameters pp and the key share ki1

as inputs. The θ − 1 other key share holders ij where j ∈ [2, θ] input their

key shares kij during the protocol run. By the end of the protocol, the Key

share holder i1 outputs the search token Tokq whereas the remaining key share

holders output ⊥.

• Searchmu: This is a protocol run between the key share holder i1 ∈ [N] and the

server, where i1 provides the search token Tokq along with pp and the server

provides pp and EDB. By the end of this protocol, the key share holder i1

outputs the encrypted result ERes whereas the server outputs ⊥.

• Retrievemu: This is a protocol run between the key share holder i1 and the

θ − 1 other key share holders (i2, ..., iθ) ∈ [N], where (pp, ERes, ki1) are the

inputs of i1 and the θ − 1 other key share holders ij input (pp, kij) (where

j ∈ [2, θ]). Finally, the key share holder i1 outputs Res which is the identifiers

of the documents containing the issued query whereas the remaining involved

key share holders output ⊥.

• Updatemu: This is a protocol between the data owner and the server. The data

owner initiates this protocol by choosing two new keys K ′S, K ′T for updating

44

TSet and generating a keying material ∆E for the update of XSet. Then, the

data owner updates TSet and delivers TSet′ to the server and shares of K ′S,

K ′T to the clients. Given ∆E along with the encrypted database as inputs, the

server outputs the updated EDB whereas the data owner outputs the updated

TSet which is delivered to the server and the shares of K ′S, K ′T .

• Revokemu: The data owner runs this algorithm which takes pp, k, iR (the

identity of the client to be revoked), and the number of desired key share holders

N as inputs, and outputs the generated new key shares ~Sh = (k1, ..., kN) ∈ KN

for the given master key k along with the updated list of legitimate clients which

excludes iR. This algorithm can be performed in two different ways. Approach

1 is more efficient in terms of computational cost required for the update of

the encrypted database after a certain number of user revocation. Approach

2 allows key update with minimal communication overhead via a broadcast

message without requiring peer to peer interactions between the data owner

and the non-revoked clients.

3.5 Security definitions of multi-client SSE

In this section, we give security definitions of our multi-client searchable encryption

based on different viewpoints.

3.5.1 Privacy against server

The given semantic security definitions is similar to [3]. The security definition of

our multi-user searchable encryption, here Π, is parametrized by a leakage function

L (refer to Section 2.4.1).

Indeed, security shows how the server’s view in an adaptive attack (database and

queries are selected by the server) can be simulated using only the output of L. For

45

algorithms A and S, we define a real experiment RealΠA(λ) and an ideal experiment

IdealΠA,S(λ) as follows:

RealΠA(λ) : A(1λ) chooses a database DB and a subset of corrupted clients (j1, ..., jθ−1).

However, this non-adaptive attacker is not allowed to interact with the clients.

The experiment samples a k0 uniformly fromK and runs Key sharing(k0) to ob-

tain (k1, ..., kN). Then, responds with the corresponding key shares kj1 , ..., kjθ−1

as the exposed key shares to the attacker.

Afterwards, the experiment runs (mk, pp,EDB,XSet)← EDBSetup(1λ,DB) and

returns (pp,EDB,XSet) along with C (the list of key share holders, |C| = N)

to A. Then A repeatedly chooses a query q[i]. Then, the experiment runs

the algorithm TokenGen on input ki1 , ..., kiθ , and returns Search tokens to A.

Eventually, the experiment outputs the bit that A returns.

IdealΠA,S(λ) : By setting a counter i = 0 and an empty list q the game is initialized.

A(1λ) chooses a DB , a query list q and a subset of corrupted clients (j1, ..., jθ−1).

The experiment responds with simulated key shares kj1 , ..., kjθ−1 as the exposed

key shares to the attacker. Afterwards, the experiment runs (pp,EDB,XSet)←
S(L(DB)) and gives (pp,EDB,XSet) to A. A then repeatedly chooses a search

query q. To respond, the experiment records this query as q[i], increments

i and gives the output of S(L(DB,q)) to A, where q consists of all previous

queries in addition to the latest query issued by A. Eventually, the experiment

outputs the bit that A returns.

Definition 8 (Security). The protocol Π is called L-semantically-secure against

adaptive attacks if for all adversaries A there exists an efficient algorithm S such

that |Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ)]| ≤ negl(λ).

Definition 9 (Leakage). The leakage, L, is similar to [3] as presented in Section

2.4.1.

46

3.5.2 Query privacy against other key share holders

Query privacy is a new property for hiding the search keywords of a client from the

other θ−1 ‘helper’ key share holders (in our construction, this means that the search

query input of PRF is hidden from the ‘helper’ key share holders).

Indeed, this security shows the compromised clients’ view in an adaptive attack

(key share holders and queries are selected by the compromised ‘helper’ clients). For

algorithms A and S, we define a Query Privacy Game as follows:

Query Privacy Game : A(1λ) chooses a set of i1, ..., iθ of key share holders, where

i1 is the client making a query and i2, . . . , iθ are the ‘helping’ key share holders.

Then S samples a K0 uniformly from K and runs Key sharing(K0) to obtain

(K1, ..., KN), and returns Ki2 , ..., Kiθ−1
to A. Then A chooses a pair of keyword

queries (x0, x1).

In order to respond, S chooses a random bit b ∈r {0, 1} and runs TokenGenmu

protocol with searching client’s input (q = xb, pp,Ki1) and ‘helper’ client in-

puts (Ki2 , . . . , Kiθ). S returns the protocol view of the ‘helping’ share holders

i2, . . . , iθ to A. Then, A outputs a bit b′ which is also outputs by the algorithm

S. As a result, Adv(A) = Pr(b = b′)− 1
2
.

Definition 10 (Query Privacy). The protocol Π is called Query private if for all

adversaries A in Query Privacy Game Adv(A) ≤ negl(λ).

3.5.3 Database content privacy against active collusion

This security shows the server’s view in an adaptive attack (DB and queries are

chosen by the server) where the server colludes with θ − 1 of helping users (non-

initiator). This security is the same as that of ”Privacy against server” except the

adversary controls the behaviour of these compromised clients in TokenGen and

Retrieve protocols. Note that the leakage function is the same as Definition 9.

47

Definition 11 (Active Collusion Resilience). The protocol Πmu is called Active Col-

lusion Resilient if for all adversaries A in Active Collusion game as defined above,

Adv(A) ≤ negl(λ).

Remark. There might be an active collusion where a server colludes with a client

as an initiator. Ideally, we would like this adversary unable to get any knowledge

about database beyond whatever is queried by the initiator. We leave the security

of this type of active collusion open for a future extension.

3.5.4 Database content privacy after update

This security shows the attacker’s view in an attack against the privacy of the

database content after an update. This security is similar to that of ”Privacy against

Server” except that beside a snapshot of the updated encrypted database, the value

of old master key and public parameters are known to the adversary. It is worth to

note that the attacker is not allowed to make TokenGen queries. Therefore, there is

no leakage; L = Ø.

Definition 12 (Database content privacy after update). The protocol Πmu is called

database content private after an update if for all adversaries A there exists an effi-

cient algorithm S such that |Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ)]| ≤ negl(λ).

3.5.5 Database content privacy after revocation

This security shows the attacker’s view against the privacy of database content after

user revocation. For Revocation-Approach 1, if the revoked clients from different time

periods (time between two key refreshment) form a coalition, they cannot distinguish

the search token of the non-queried keywords from a random value even when the

number of members on such coalition is larger than the considered threshold (here

θ). Note that this adversary is not allowed to communicate with the non-revoked

key share holders.

48

For algorithms A and S, we define Revocation Privacy Game as follows.

Revocation Privacy Game: A(1λ) specifies the time t for the last key refresh-

ment and the revoked clients
{
ui1, ..., u

i
θ−1

}t
i=1

for each time period before t, then a

simulator S returns with their corresponding key shares
{
ki1, ..., k

i
θ−1

}t
i=1

.

A sends TokenGen queries for some keywords w1, ..., wQ ∈ W to S, and for each

query wj, the simulator S responds with Tokj. Once A decides to challenge, in new

time period t′ (where t′ 6= t and t′ > t), it submits a pair of fresh keywords (w∗0, w
∗
1)

where w∗0, w
∗
1 6∈ W . In response, S chooses a random bit b ∈r {0, 1}. If b = 0, S

samples Tok0 at random. Otherwise, it runs the TokenGenmu protocol using the

key of the time t′ and returns the output to A. Then, A outputs a bit b′ which is

also an output by the algorithm S. As a result, Adv(A) = Pr(b = b′)− 1
2
.

Definition 13 (Security after Revocation-Approach 1). The protocol Πmu is secure

after Revocation-Approach 1 if for all adversaries A in Revocation Privacy Game ,

Adv(A) ≤ negl(λ).

Remark. As mentioned in Definition 13, the security is defined for non-queried

keywords. The search tokens of the previously queried keywords by the revoked users

(at the time that they were still legitimate) would remain available to them. Thus,

there is a chance of replay attack. In order to mitigate this attack, other security

mechanisms might be applied such as providing a list of legitimate clients to the

server or performing challenge-response authentication by the server.

For Revocation-Approach 2, revoked clients (any coalition smaller than the thresh-

old) should not be able to generate any valid search token(s). This security follows

the rules of Revocation Privacy Game except here the public information (the broad-

cast message) is given to the adversary. Moreover, an adversary can specify only θ−1

of the revoked clients.

Definition 14 (Security after Revocation-Approach 2). The protocol Πmu is secure

after Revocation-Approach 2 if for all adversaries A in Revocation Privacy Game

(with the above mentioned modifications) Adv(A) ≤ negl(λ).

49

3.6 Randomizable Distributed Key

Homomorphic PRFs

As a tool for our multi-client SSE, we define a special type of distributed PRF which

makes the input point blind from key share holders and unblind it while executing

the Evaluation algorithm. More precisely, PRF evaluation protocol plays a major

role in our scheme. It enables our scheme to support multi-client setting while it

prevents the leakage of the search keyword when the users collaborate with each

other in token generation and result retrieval.

3.6.1 Definition

Our Randomizable Distributed key-homomorphic PRF (RDPRF) mainly consists of

seven algorithms; Setup, Key sharing, Rand, Partial evaluation, Combine, UnRand,

and Evaluation with the following properties. Note that except Rand and UnRand,

the rest of the mentioned algorithms are similar to the ones proposed by Boneh et

al. [35].

• Setup: This algorithm takes a security parameter κ as an input and outputs

the master-key mk and public parameters pp.

• Key sharing (pp, (K,N))→ KN : This algorithm generates key shares (k1, ..., kN)

∈ KN of the considered master key. Here, N is the number of key share holders,

K is the key domain and KN is the domain of key shares.

• Rand: The function Rand(x, r, pp)→ z randomizes an input point x ∈ K by a

uniformly random value r ∈ Z∗p.

• Partial evaluation: The function F : K ×X → Y takes a key share and an

input point, and outputs a partial evaluation of the Evaluation function f .

50

• Combine: The algorithm G : 2[N] × Yθ → Y takes θ (threshold), a subset

W ⊂ [N] of size θ and partial evaluations on key shares in the set W as inputs,

and outputs a value in Y .

• UnRand: The function UnRand(F(k, z), r) takes the randomized distributed

PRF (RDPRF) under the key k and the utilized random value r as inputs and

outputs the unradomized DPRF using the inverse of r.

• Evaluation: The function f : K × X → Y maps a key and an input to the

space of outputs.

3.6.2 PRF Evaluation protocol

Algorithm 6 must be performed for all of the utilized PRFs. The idea is to make the

clients able to search through the database without interaction with the data owner.

More precisely, online presence of the data owner at all the time is not required. In

addition, Algorithm 6 enables the client to hide the considered keyword for search

from the other key share holders. Assume that a client wants to evaluate a PRF

such as PRF (k0, x). The client first sends a short message containing x to each key

share holder. After receiving at least θ− 1 responses from them, the client would be

able to evaluate the mentioned PRF using the PRF Evaluation Protocol.

Algorithm 6 is inspired from the proposed key homomorphic PRFs by Boneh et

al. [35] (refer to supplementary materials). Note that our algorithm does not leak

any information such as the considered keyword to other key share holders.

3.6.2.1 Correctness.

Consider pp as the output of the Setup(1λ), k0 is sampled uniformly from K, and

(k1, ..., kN) is the key share output by Key sharing(k0). For every subset W =

i1, ..., iθ ⊂ [N] of size θ, and for every input x, RDPRF is correct if f(k0, x) =

UnRand(G(W,F(ki1 , z), ...,F(kiθ , z)).

51

Algorithm 6 PRF Evaluation protocol
Input:

For client ic: key share holders list C = i1, i2, ..., iN , key share kic , RDPRF input x, and threshold θ
For Helping users ij : key share holders list C = i1, i2, ..., iN , key shares kij for j = 1, ..., θ − 1

Output: Y = PRF (k0, x)
function PRFEval(k0, x)

Y ← {}
client ic picks random r ∈ Z∗p
client ic computes z ← Rand(x, r, pp)
j ← 1
for j = 1, ..., θ − 1 do

while ij ∈ C do
client ic send z to ij
ij computes yij = F(kij , z)
ij sends yij to ic
j ← j + 1

end while
client ic performs y ← Combine(W, yi1 , ..., yiθ)

end for
client ic compute y ← Unrand(y, r)
return Y

end function

3.6.2.2 PRF security definition of RDPRF.

The Evaluation function f should remain pseudorandom even when the adversary is

given θ−1 key shares (ki1 , ..., kiθ−1
) for indices i1, ..., iθ−1 of its choice. The adversary

is also given an oracle O that performs arbitrary partial evaluations: it takes (i, x)

as input and returns F(ki, x). The adversary should be unable to distinguish the

function from random at point x.

3.6.2.3 RDPRF Active Collusion Security Definition.

We present a stronger security model for RDPRF which is an extension to ”PRF

security definition of RDPRF”. This model for active collusion provides randomisa-

tion for same inputs. More precisely, the adversary is given an oracle O′ that takes

x as input and returns (z, (yi1 , ..., yiθ−1), y) which first evaluates z = Rand(x, r) (for

uniformly random r), then partial evaluations (yij = F(kij , z))
θ−1

j=1
and finally full

evaluation y = F(k0, x).

The adversary should be unable to distinguish two games; REAL and RAND.

52

REAL is the above mentioned game with F , the real PRF, whereas RAND is the

above mentioned game with F , a truly random function.

3.6.2.4 Query privacy security of RDPRF

The query privacy security of the Randomizable Key Homomorphic Distributed PRF

shows that for each x ∈ X , the output of Rand(x, r) is uniform on the domain of

the distributed PRF, X , when r is uniform in the input space Z∗p.

3.6.3 Concrete construction of RDPRF

• Setup: This algorithm first chooses prime a p, K = Z∗p as the key domain, a

cyclic group G of prime order p, and the master key k0 ∈r K. Then, it defines

S = (θ,N), a threshold secret sharing scheme proposed by Shamir [28] (refer

to section 2.1.1). Finally, it defines an output mk = k0, pp =< G, p, S,K, H >

where H : X → G|{1} is a cryptographic hash function which maps the PRF

domain X : {0, 1}∗ to its range, G|{1}, using a randomizer r ∈r R where

R = Z∗p.

• Key sharing (pp, (mk,N)) → KN : On inputs mk = k0 and an integer N , the

threshold secret sharing scheme S outputs the key shares k1, ..., kN .

• Rand(x, r, pp): Picks up a uniformly random value r ∈r Z∗p and outputs r and

z = H(x)r.

• Partial evaluation (ki, z): Given a key share ki ∈ Z∗p and an input point z ∈ G,

this algorithm returns yi = F(ki, z) where yi = zki is an element of the group

G.

• Combine (W, {yi1 , ..., yiθ}): For any W = {i1, ..., iθ} ⊂ [N] of size θ and the cor-

responding partial evaluations {yi1 , ..., yiθ}, this algorithm outputs f(k0, z) =

zk0 = z
∑θ
j=1 λij .kij = Πθ

j=1(yij)
λij .

53

• UnRand (F(k0, z), r): this algorithm takes yr = F(k0, z) = H(x)rk0 and the

related random value r as inputs and then outputs the unrandomized value

y = y
r−1 (mod p)
r .

• Evaluation(k, x): given a secret k and an input x, this algorithm outputs

f(k, x) = H(x)k.

Theorem 1. Suppose the hash function H is a random oracle, then RDPRF is a

secure randomizable key homomorphic distributed PRF that satisfies PRF security if

the DDH assumption holds and the query privacy is satisfied unconditionally.

Proof. This proof consists of two parts; PRF Security and query privacy.

PRF Security. To prove the theorem, consider Exptb
RDPRF ′ for b ∈ {0, 1}.

Now we construct a simulator B that uses an adversary A to gain advantage against

PRF F in Exptb
DDH . The game between the challenger and B starts with generating

the public parameters pp by the challenger and transferring them to B.

Algorithm B simulates the challenger for A in the following game;

Setup: Given the public parameters pp and the DDH tuple < g, gα, gβ, C >,

the algorithm works as follows:

The simulator B gives the public parameters pp to an adversary A. The ad-

versary A specifies a set C∗ = i1, ..., iθ−1 of θ− 1 key share holders to the sim-

ulator B. The simulator B samples the corresponding key shares ki1, ..., kiθ−1

uniformly from Z∗p and returns to the adversary.

H-Query: at any time the adversary A can query the random oracle H. To

respond these queries, the simulator B maintains the H− list containing tuples

< xj, rj, zj, coin > as described below. Note that the H−list is initially empty.

1. If the query xj already appears in the H − list, then the simulator B
responds with the corresponding value of zj = H(xj)

54

2. Otherwise, the simulator B predetermines k ∈ [1,m].

3. The simulator B picks a random rj ∈ Z∗p.

If j 6= k, compute zj = grj . If j = k, compute zj = gβ.rj .

4. The simulator B adds the tuple < xj, rj, zj, coin > to the H − list and

responds to the adversary A by zj.

Query-1: Given xj ∈ X for j ∈ [1, Q1] issued by the adversary A, the simulator

B maintains rdPRF − list containing tuples < flag, zj, fα(zj) > as described

below. Note that the rdPRF − list is initially empty.

Step 1: The simulator B checks the flag; it responds to the query if flag =

0 (flag = 0 means the query is made in the query phase, otherwise in

the Challenge phase). Otherwise, the simulator B reports a failure and

aborts.

Step 2: the simulator B runs the H-queries algorithm to find the corre-

sponding tuple < xj, rj, zj, coin > in H − list. If coin = 1, then the B
reports a failure and aborts. Otherwise, the B performs the Step 3.

Step 3: The B extracts zj from the H − list and computes fα(zj) = gαi.rj

where j ∈ {1, ..., q − 1} and returns fα(zj) to the adversary A.

Step 4: The B adds tuples < flag, zj, fα(zj) > to the rdPRF − list.

Challenge: Given x∗ ∈ X {x1, ..., xQ} submitted by the adversary A, this

algorithm acts as follows.

Step 1: The adversary A submits a challenge query (x∗1, ..., x
∗
m) ∈ X \

{x1, .., xQ} to (here Q = Q1 +Q2) the challenger.

Step 2: The simulator B checks the flag, and then responds to the query if

flag = 1 (flag = 0 means the query is made in the query phase; otherwise

in the Challenge phase). Otherwise, the B reports a failure and aborts.

55

Step 3: The simulator B picks a random bit b ∈ {0, 1}. If b = 0 , the

simulator B samples {< zi, fα(zi) >}mi=1 and randomly chooses k ∈ [1,m];

it then returns to the adversary except that the value of < zk, fα(zk) > is

replaced with < gβ, C >.

If b = 1 , ∀i ∈ {1, ...,m} the simulator B responds with {< zi, fα(zi) >}mi=1.

Query-2: Given xj ∈ X for j ∈ [Q1 + 1, Q2] issued by the adversary A, the

simulator B acts similar to that of Query-1 .

Guess: The adversary A outputs a bit b′ which is also an output by the simu-

lator B.

As a result, AdvDDH [F,B] = AdvRDPRF [ΠRDPRF ,A] =
1

m
.

Query Privacy. The query privacy shows that for any x ∈ {0, 1}∗ and a uni-

formly random value r ∈r Z∗p, the distribution of the output of Rand(x, pp) = z (here

z = H(x)r) is uniform in G|{1}. That is, H(x) ∈ G|{1} has the prime order of p.

Thus, different values of r results in different group elements as the output of the

Rand function.

Theorem 2. Our randomized distributed PRF (RDPRF) is Active Collusion Re-

silient, as defined by ”RDPRF Active Collusion Security Definition”.

Proof. The proof is conducted via a sequence of games. The game G0 and G2 are

designed to have the same distribution as REAL and RAND game of ”RDPRF Active

Collusion Security Definition”, respectively. By showing that the distributions of

games (Game0 and Game1, Game1 and Game2) are indistinguishable to each other,

we can see that the simulator S meets the requirements of the security definition,

therefore completing the proof of the theorem.

Game G0. This is the real game of the definition. This game is the same as

REAL game of ”RDPRF Active Collusion Security Definition”.

56

Game G1. This game is similar to G0 except here instead of computing the value

of yi’s as before, it is selected uniformly at random.

Game G2. This game is modification of G1 where we replace yij ’s by uniformly

random value.

To show the indistinguishability between G0 and G1, a reduction to DDH as-

sumption can be conducted. Let A be an adversary which can distinguish G0 and

G1. The view of A has the form

V iew(G0)=(hi=H(xi), zi=H(xi)
ri , yi=H(xi)

k, (yi,ij =H(xi)
rikij)θ−1

j=1)Ni=1

V iew(G1) = (hi = H(xi), zi = H(xi)
ri , yi ∈r Z∗p, (yi,ij = H(xi)

rikij)θ−1
j=1)Ni=1

Because H is random oracle and the ri’s are independent uniformly random in Z∗p,
we can rewrite these views in the form of following distributions where D0 and D1

represent the view of adversary A in the games G0 and G1, respectively. To simplify

the proof, we assume xi’s are distinct.

D0 = (hi = gαi , zi = gᾱi , yi = gδi , (yi,ij = gᾱikij)θ−1
j=1)Ni=1 for αi, ᾱik, and kij uniformly

random at Z∗p and δi = αik.

D1 = (hi = gαi , zi = gᾱi , yi = gδi , (yi,ij = gᾱikij)θ−1
j=1)Ni=1 for αi, ᾱik, kij and δi

uniformly random at Z∗p.

In order to show that the mentioned distributions are indistinguishable, we present

a reduction from DDH through a hybrid argument. Using A, we build N adversaries

(Bs)N−1
s=0 against DDH assumption where Bs distinguishes hybridS from hybridS+1.

Pr[G0 = 1]− Pr[G1 = 1] ≤
N−1∑
s=0

AdvDDHBs (λ)

We define N intermediate hybrid distributions (hybrids)
N−1
s=0 between D0 and D1

57

as follows where hybrid0 = D0 and hybridN−1 = D1;

(hi = gαi , zi = gᾱi , yi =

{
∈r Z∗p i ≤ s
αik i > s

, (yi,ij = gᾱikij)θ−1
j=1)Ni=1

We need to show each of these hybrids are indistinguishable for all hybrids hybrid0

to hybridn−1. Thus, through the following reduction we show hybridS is indistin-

guishable from hybridS+1 , which can be generalised to all mentioned hybrids. Bs is

a given DDH tuple (gα, gβ, gγ), where γ is either αβ or a uniformly random value at

Z∗p.

Let gk = gβ. Bs runs A on inputs;

(
hi =


gαi i ≤ s
gα i = s+ 1

∈r Z∗p i > s+ 1

, zi = gᾱi , yi =


(gk)αi i ≤ s
gγ i = s+ 1

∈r Z∗p i > s+ 1

, (yi,ij = gᾱikij)θ−1
j=1

)N
i=1

We remark this distribution represent hybridS+1 if γ = αβ, and hybridS if γ is

uniformly random. Thus, the advantage of Bs against DDH is equal to the advantage

of A in distinguishing hybridS from hybridS + 1. As a result,

N−1∑
s=0

AdvDDHBs (λ) ≥AdvA(hybridn, hybrid0)=AdvA(G0, G1)

Similar approach can be used to show the indistinguishably between G1 and G2. We

omit the details here.

3.7 Multi-client symmetric searchable encryption

In this section, we present our multi-client symmetric searchable encryption inspired

by OXT [3]. The proposed extension supports EDB update as well as key revocation

while preserving the full functionality of OXT.

58

3.7.1 Construction

Our multi-client SSE construction consists of five main algorithms Π=(EDBSetupmu,

KeySharingmu, T okenGenmu, Searchmu, Retrievemu), and two supporting algo-

rithms Updatemu and Revokemu.

In the proposed construction, the EDBSetupmu algorithm as defined in Algo-

rithm 14 is similar to the one in OXT [3] except the utilized PRFs which are random-

izable distributed key-homomorphic PRFs (refer to Section 3.6). In order to enable

several clients to access the same database, the data owner runs the KeySharingmu

algorithm (defined in Algorithm 8) which takes the utilized PRF keys as inputs

and outputs the corresponding key shares by performing the Shamir’s scheme [28]

explained in subsection 2.1.1. The generated key shares are then distributed to the

desired clients along with the list of legitimate key share holders’ identity. Let D to

be a data owner who outsources an encrypted database EDB to a remote server S

such that S cannot learn anything more than what is predicted as the leakage profile.

Moreover, authorized clients (key Share holders) such as i1, i2, ..., iN are allowed to

carry out the search through EDB.

Algorithm 7 EDB Setup
Input: Security parameter λ, Database DB
Output: Encrypted database EDB, Master key K and public parameters pp
1: function EDBSetup(λ,DB)
2: Initialize T← ∅ indexed by keywords W.
3: Runs RDPRFSetup for RDPRF F which outputs key KS and pp.
4: Runs RDPRFSetup for RDPRF Fp with range Z∗p for each of
5: KX , KI , KZ keys separately.
6: EDB← {}
7: for w ∈W do
8: Initialize t← {}; and let Ke ← F (KS , w).
9: for id ∈ DB(w) do
10: Set a counter c← 1
11: Compute xid← Fp(KI , id), z ← Fp(KZ , w||c); y ← xidz−1, e← Enc(Ke, id).
12: Set xtag← gFp(KX ,w)·xid and XSet← XSet ∪ {xtag}
13: Append (y, e) to t and c← c+ 1.
14: end for
15: T[w]← t
16: end for
17: Set (TSet,KT)← TSet.Setup(T) and let EDB(1) = (TSet,XSet).
18: return EDB = (EDB(1),XSet),K = (KS ,KX ,KI ,KZ ,KT), pp
19: end function

59

Algorithm 8 Key Sharing
Input: Public parameter pp, Master key K = (KS ,KX ,KI ,KZ ,KT), Number of users N , Threshold θ

Output: List of all key shares ~Sh.
function KeySharing((pp, (K,N)))

~Sh← {}
for i = 1, 2, ..., N Data owner do

Run KSi ← Share(KS)
Run KXi ← Share(KX)
Run KIi ← Share(KI)
Run KZi ← Share(KZ)
Run KTi ← Share(KT)
Set Ki ← (KSi ,KXi ,KIi ,KZi ,KTi)
~Sh← Ki ∪ ~Sh

end for
return ~Sh = (KSi ,KXi ,KIi ,KZi ,KTi)

N
i=1

end function

To perform a search over EDB, a client needs to run the TokenGenmu proto-

col as defined in Algorithm 9. Given the query q, this algorithm first performs

PRF Evaluation Protocol and then generates the search tokens, Tokq . One of the

main contributions of this scheme is hiding the searched keywords from other key

share holders when the search token is generated collaboratively. This is achieved by

defining another primitive called randomizable distributed key-homomorphic PRFs

(refer to section 3.6).

The Searchmu protocol is similar to the SearchOXT as defined in [3]. Once the

client sent the search token Tokq to the server, the server performs the search over

EDB and outputs the encrypted result ERes. Finally, the Retrievemu protocol as

described in Algorithm 10 should be performed in order to extract the identifiers of

the documents containing the searched keyword.

3.7.2 Update, Revocation and Enrollment

In this subsection, we are going to discuss about the extensions of our work as

described below.

60

Algorithm 9 TokenGen Protocol
Input:

For client i1: Search query q = (w1 ∧ · · · ∧ wn) and key share Ki1
For Helping users ij : key shares Kij for j = 2, ..., θ
For Server: Encrypted database EDB.

Output: Search token Tokq.
function TokenGen((w̄ = (w1, . . . , wn), EDB))

Client’s input is (KS ,KX ,KI ,KZ ,KT) and w̄.
performs PRF Evaluation Protocol to computes
stag← TSet.GetTag(KT , w1).
Client sends stag to the server.
for c = 1, 2, . . . until the server stops client do

for i = 2, . . . ,m do
performs PRF Evaluation Protocol on inputs (i1, ..., iθ) and
(Ki1 , ...,Kiθ)
to compute X = Fp(KZ , w1||c) and Yi = Fp(KX , wi)
xtoken[c, i] ← gX·Yi

end for
xtoken[c]← (xtoken[c, 2], . . . , xtoken[c,m])

end for
Tokq ← (stag, xtoken)
return Tokq

end function

Algorithm 10 Client Search Result Retrieval Protocol
Input:

For client i1: Encrypted result ERes as the output of Search algorithm and sterm w1 and key share Ki1
For Helping users ij : key shares Kij for j = 2, ..., θ
For Server: Encrypted database EDB.

Output: Result id.
function Retrieval((e, id))

id← {}
Client performs PRF Evaluation Protocol for
ke ← PRF (ks, w1)
for i = 1, 2, . . . until the server stops do

if ei ∈ R then
compute idi ← Dec(ke, ei)
id← id ∪ idi

end if
end for
return idi

end function

61

3.7.2.1 Update

Lets consider the condition that the master key is leaked, the data owner should

update the encrypted database using a new key to prevent any extraction of the

information by an unauthorized entity. In our approach, the data owner sends a

keying material to the server for updating the encrypted database. It is assumed

that the server does the update honestly and removes the keying material after

finishing the update. The data owner runs Update algorithm as described below.

Update(EDB,∆E) : The data owner initiates this protocol by choosing two new

keys K ′S, K ′T for updating TSet and generating a keying material ∆E for the update

of XSet. Then, the data owner updates TSet and delivers TSet′ to the server and

shares of K ′S, K ′T to the clients.

The server takes the encrypted database, EDB, and the keying material ∆E as

inputs for the update of XSet. To update XSet for each xtagi ∈ XSet (for i ∈
[1, |XSet|]), this algorithm computes xtag′i = G((gFp(KX ,w)·xid)∆E) where G is a new

hash function. It is worth to note that, using this approach the data owner is able

to update the encrypted database one time only. We leave the multiple updates as

an open problem for future research.

Although it is possible that the server updates the TSet, it causes more leakage

to the server. Since the size of TSet is much smaller than XSet, the better solution

might be to perform the update of the TSet by the data owner and delivers it to the

server. This solution might add a little overhead but it has less leakage to the server.

It is worth to note that, the EDB update happens rarely and this amount of overhead

is therefore reasonable. Moreover, in comparison with traditional techniques such as

re-encryption by the data owner and re-uploading it to the server, our solution is

much more efficient.

62

Algorithm 11 Update Algorithm
Input:

Data owner: TSet and new keys K′S , K′T
Server: Encrypted database EDB and Keying material ∆E

Output: Updated encrypted database EDB’
function Update(EDB,∆E)

TSet’ ← {}
XSet’ ← {}
for w ∈W do

Initialize t′ ← {}; and let K′e ← F (K′S , w).
for id ∈ DB(w) do

Data owner computes y′ ← y∆E , e′ ← Enc(K′e, id).
Append (y′, e′) to t′

end for
T′[w]← t′

end for
Set (TSet′,K′T)← TSet.Setup(T′)
Data owner delivers TSet′ to the server and shares of K′S , K′T to the clients
for i = 1, ..., |XSet| do

if xtagi ∈ XSet for all i then
xtag′i ← G((gFp(KX ,w)·xid)∆E)
XSet′ ← XSet′ ∪ xtag′i

end if
end for
Set EDB′ = (TSet′,XSet′).
return EDB’

end function

3.7.2.2 Revocation

Some key share holders might have to be deleted from the system due to being

corrupted or other reasons. In this subsection, we introduce two approaches for user

revocation.

Approach 1. In our scheme, it is possible to revoke up to θ − 1 key share

holders (in each time period between two key share refreshing) simply using the

revocation algorithm as shown in Algorithm 12. Therefore, the new key shares of

the same master key must be generated by the data owner and become known to all

other non-revoked key share holders. Note that, a coalition of all the θ − 1 revoked

users does not have any information about the master key. This property follows

immediately from the security of Shamir’s secret sharing scheme. Moreover, if the

revoked clients from different time intervals form a coalition to rebuild the master key,

even if the coalition has more than θ members, they will not succeed (refer to security

63

definitions). Its communication overhead is O(N − (number of revoked users)) and

might be very large in some scenarios. It is possible to minimise this overhead by

just broadcasting the updated list of legitimate clients without delivering the new

key shares to them. However, giving new key shares to the non-revoked users can

minimise the risks associated with key loss and collusion of revoked clients. Moreover,

it can guarantee the freshness of the key shares. We may also use Approach 2 which

is more efficient in terms of communication overhead during the revocation process.

Algorithm 12 Revocation Algorithm
Input: key share holders list C = i1, i2, ..., iN , Public parameters pp, Master key K, and Identifier of the client to

be revoked iR
Output: C′ and ~Sh′

function REVOKE(kR, iR)
~Sh′ ← {}

C’ ← {}
Data owner runs key sharing (pp, (K,N))
~Sh′ ← (k′1, ..., k

′
N)

Data owner updates key share holders list
C′ ← C \ iR
j ← 1
for j = 1, ..., N do

while ij ∈ C′ do
Data owner sends k′j and C’ to ij
j ← j + 1

end while
end for
return C’, ~Sh′

end function

Approach 2. This approach adapts the revocation scheme proposed by Naor

et al. [77] to our multi-client SSE scheme which applies the idea of doing Shamir’s

secret sharing in the exponents. In order to support the assumptions considered in

Naors’ scheme [77], we need to slightly modify our scheme as follows. Lets consider

that the Decisional Diffie-Hellman assumption holds for a group Zq of prime order

q and generator g. Here, Zq is a subgroup of Z∗p where p is prime and q|p − 1. Let

Ci ∈ F be an arbitrary identifier of the client i where F is a field. In this approach,

the data owner has to define the master key k0, to be used after the revocation, in

EDBSetup phase. Here, k0 = P (0) where P is a random polynomial of the degree

θ − 1 generated by the data owner. Each user would receive a pair < Ci, kCi >

(here kCi = P (Ci)) by the end of KeySharingmu algorithm. Note that, the users’

64

identifiers, p, and q are publicly known.

In order to revoke at most θ − 1 clients, the data owner picks a random r ∈r Zq
and distributes gr along with the updated list of legitimate clients. Then, each

non-revoked key share holder such as Ci, updates its share to grkCi . The equation,

grk0 = grΣ
θ
i=0ΛikCi , shows how the key can be reconstructed using θ shares. Here, the

Λi’s are Lagrange coefficients that depend only on Ci’s. However, in our protocol the

clients do not need to reconstruct the key. Thus, the data owner does not require

to reveal the shares of the revoked clients. Note that, in our scheme the clients just

need to perform PRF evaluation collaboratively.

Remark. When the number of clients is huge and the size of the database is

relatively small, Approach 1 is not suitable as it requires peer to peer interaction

between the data owner and the non-revoked clients. Thus, the communication

overhead might be very large. In this scenario, Approach 2 can be used. It does

not require any interactions between the data owner and the clients, as it uses a

broadcast message. In addition, Approach 2 is fast and efficient to perform batch

revocation. Approach 1 is more applicable if a single user revocation or revocation

of a few clients is required in a scenario where the database is very large and the

number of clients is small. In this scenario, using Approach 2 can cause additional

computational overhead as it requires EDB update for each revocation.

3.7.2.3 Enrolment

The data owner can add new clients even if they join the group after the key shar-

ing phase. User enrolment can be done just by providing the pair < identity,

key share > to the corresponding key share holders and updating the clients’ list.

Note that the number of clients is limited to the considered N at the beginning of

the protocol.

65

3.8 Security analysis

In this section, we state the security of our multi-client SSE protocol against a

dishonest server and the dishonest/compromised key share holders, respectively.

Theorem 3. Let L be the leakage function (as defined in Section 3.5.1). Then, our

multi-client SSE protocol is L-semantically-secure against adaptive server (Definition

8), if the OXT [3] is secure and the DDH assumption holds.

Proof. Let A be a dishonest server who performs an adaptive attack against our

multi-client SSE protocol. Then we can construct an algorithm B that breaks the

server privacy of OXT protocol [3] by running A as a subroutine with non-negligible

probability.

• Algorithm B passes the selected DB by A to the OXT challenger.

• The OXT challenger runs (K,EDB)← EDBSetup(DB) and returns EDB to the

algorithm B. Then, the algorithm B sets EDBmu = EDB.

• The algorithm B sends EDBmu along with the public parameters pp to an

adversary A.

• The adversary A specifies a set of key share holders C∗ = i1, ..., iθ−1.

• The algorithm B responds with the corresponding key shares ki1 , ..., kiθ−1 at

random.

• For each q[i] query issued by the adversary A, the algorithm B defines

TokenGenmu(K, q[i]) which outputs the output of the TokenGen oracle of

OXT.

• Finally, the adversary A outputs a bit that the algorithm B returns.

66

Since in our multi-client SSE protocol, the Setup is the same as the Real world

of OXT protocol [3], it simulates the Real world application of our protocol. Thus,

the only thing that we need to show is the condition where a set of key shares of size

θ − 1 (θ indicates the threshold) are corrupted. Therefore, we refer to the property

of the utilized secret sharing scheme in [28]; that is, any number of key shares less

than the considered threshold is uniform and independent of the secret.

Simulator. By considering A as a dishonest server against our multi-client SSE

protocol, Πmu, we construct an algorithm B that breaks the server privacy of ΠOXT

protocol [3] by running A. Let SOXT be the simulator for OXT; then we construct

a simulator Smu for our multi-client SSE. The algorithm B uses SOXT to construct

the simulator Smu in order to answer the queries issued by A. Since the Real of our

multi-client SSE is the same as Real of OXT for the Ideal case, we just need to use

the simulator of OXT for AOXT , to construct the simulator of our multi-client SSE

for Amu. By running SOXT for EDBSetup and TokenGen queries, we can construct

a simulator Smu for EDBSetup and TokenGen queries of our multi-client SSE.

Pr(RealΠmu
A = 1)−Pr(IdealΠmu

A,Smu = 1) ≤ neg Pr(RealΠOXT
B = 1)−Pr(IdealΠOXT

B,SOXT =

1) ≤ neg

As a result, A’s view is the same for both simulators; SOXT and Smu.

Theorem 4. Our multi-client SSE protocol Πmu is query-private, as defined in Def-

inition 10.

Proof. Let A be a collusion of θ − 1 key share holders who perform a query

privacy attack against our multi-client SSE protocol. In our query privacy attack

game, the view of the adversary A is the same as view of key share holders i1, ..., iθ−1

in TokenGen protocol. The only value which is potentially related to the keyword xb

is z which is Rand(xb, r, pp) using a randomizer r. By ”Query privacy of RDPRF”,

z is uniform in X with respect to the choice of r ∈r R, independent of xb. Thus, the

view of the adversary A is independent of b. As a result, Adv(A) = 0.

67

Theorem 5. Our multi-client SSE protocol Πmu is active collusion resilient, as de-

fined in Definition 11.

Proof. The proof is conducted via a sequence of Games. In all games, the

adversary supplies a database DB and the keyword queries wi at the beginning of

the game. The first game Game 0 is designed to have the same distribution as

the real game of our multi-client SSE protocol, RealΠmu
A . Two other games Game

1 and Game 2 are designed to be easily simulated by an efficient simulator S. By

showing that the distributions of games (Game 0 and Game 1, Game 1 and Game

2) are indistinguishable to each other, we can see that the simulator S meets the

requirements of the security definition, therefore completing the proof of the theorem.

Game 0. This game is the same as the real game of our multi-client SSE protocol,

RealΠmu
A .

Game 1. This game is the same as Game 0, except that here we replace zi =

Rand(wi, r) with a uniformly random value drawn from Z∗p.

Game 2. This game is almost identical to Game 1, except here we change yic

from F(kic , zi) to a uniformly random value on the range of F . Similarly, we change

F(k, zi) to a uniformly random value over the range of F .

Game 0 and Game 1 are indistinguishable under partial evaluation queries due

to the randomness property of RDPRF. Whereas, Game 1 and Game 2 are indis-

tinguishable for either partial evaluation queries or full queries under the RDPRF

security definition.

Note that here for the sake of simplicity we consider only a single keyword query;

it can be easily extended to multi keywords queries.

Given this information and controlling the behaviour of helping users, an ad-

versary A at most would learn the partial evaluation of the chosen keyword with

respect to the initiator key share, kic . However, based on the ”Security definition of

RDPRF”, A is unable to extract kic .

68

Theorem 6. Suppose the hash function G is a random oracle, then our multi-client

SSE protocol Πmu is secure after Update as defined in Definition 12.

Proof. The proof is similar to the proof of Theorem2 with the following dif-

ferences: 1) the adversary is an outsider not a dishonest server and it is assumed

that the server performs the update honestly; 2) the old master key is given to the

adversary instead of a set of key shares of the corrupted clients; 3) an snapshot of the

updated encrypted database (EDB′) is given to the adversary instead of the encrypted

database; 4) the adversary is not allowed to communicate with the clients; and 5)

the simulator simulates the Search and Retrieve algorithms instead of TokenGen.

Let Amu be an adversary against Πmu and Aup be an adversary against Πmu after

update. Let Smu be the simulator for Πmu and Sup be the simulator for Πmu with

update. We can transform Aup to Amu. Moreover, Sup can act the same as Smu for

simulation of TSet′ by simulating y′ at random. Thus, Aup would not be able to

distinguish them from a random value.

For XSet′, Sup simulates XSet′ by the random elements. For queries to the random

oracle G, as long as the queries are not made at the BP = (gFp(KX ,w)·xid) points, it

returns random elements. In fact, once the adversary query the random oracle at one

of those points, then Aup can compute ∆E uniquely given w, xid, and KX . Thus,

the chance of this bad event happening is going to be at most;

Pr[Aup queries at BP] ≤ |XSet
′| ×No. of queries on G

q

Here, q is the size of the considered group.

In fact, the simulator Sup is unable to answer correctly if Aup makes a query at

those points. Aup has no information about ∆E (∆E is simulated uniformly and

independently and it is hidden from the adversary). As long as the bad event does

not happen, the simulation of XSet′ with random elements will be indistinguishable

to Aup from the real one. Although the value of ∆E is used in generation y′ of TSet′,

it is encrypted under a new key. Thus, for TSet′ the simulator works in the same

69

way.

Theorem 7. Our multi-client SSE protocol Πmu is secure after Revocation-Approach

1 as defined in Definition 13.

Proof. The proof is the same as proof of Theorem1, except that here instead

of simulated θ − 1 key shares at random in Theorem1, for each time period θ − 1

key shares must be simulated. More precisely, in each time period independent

randomness is used for the coefficients of the polynomial which in turn results in

θ − 1 uniformly random and independent key shares from key shares generated in

previous time periods.

Theorem 8. Our multi-client SSE protocol Πmu is secure after Revocation-Approach

2 as defined in Definition 14.

Proof. For Approach 2, a coalition of revoked clients (maximum of θ−1) cannot

distinguish the new key from a random value. By considering A as a coalition of

revoked clients, i1, ..., iθ−1, against our multi-client SSE protocol, Πmu, we construct

an algorithm B that breaks the DDH assumption by running A.

Setup: Given the public parameters pp and the DDH tuple < g, ga, gb, C >, the

algorithm works as follows:

The simulator B gives the public parameters pp to an adversary A. The adversary

A specifies a set C∗ = i1, ..., iθ−1 of θ − 1 key share holders to the simulator B. The

simulator B samples the corresponding key shares ki1, ..., kiθ−1 uniformly from Fq and

returns to the adversary.

Revocation Query: at any time the adversary is allowed to issue a revocation

query Rj. That is, for the revocation query of a user ij for j ∈ [1, θ − 1] is issued

by the adversary. The simulator B picks a random value rj ∈r Zq and maintains a

Revoke − list containing tuples < Rj, ij, rj, g
rja, grjb >. It then returns grja as the

broadcast message for the user revocation. Note that the Revoke − list is initially

empty.

70

TokenGen Query: A sends TokenGen queries for some keywords w1, ..., wQ ∈
W to B, and for each query (Rj, wj), the simulator B refers to Revoke − list and

responds with Tokj = f(grjb, wj).

Challenge: A submits a pair of fresh keywords (w∗0, w
∗
1) where w∗0, w

∗
1 6∈ W . In

order to respond, B chooses a random bit b ∈r {0, 1} If b = 0, B samples Tok0 at

random. Otherwise, B returns C to A.

Guess: The adversary A outputs a bit which is also an output by the simulator

B.

As a result, B’s success probability in breaking DDH assumption is the same as

A ’s probability of breaking our scheme after revocation using the Approach 2.

3.9 Security, Functionality and Performance

Comparison

Since our multi-client protocol, MC-OXT [53] and the proposed protocol by Sun et al.

[49] are under the framework of OXT [3], in this section we compare our protocol with

theirs in terms of communication and computation overhead. The communication

overhead between the data owner and the server during EDBSetup phase is the

same in all of them as well as the communication between the client and the server.

However, in our multi-client SSE client who wants to search over EDB requires to

communicate with at least θ − 1 (θ is the threshold) key share holders in order to

generate the search token. Due to the use of ABE, the Sun’s protocol has storage

overhead and some computational costs to the data owner. Moreover, the data owner

should compute an extra exponentiation for the PRF calculation during the setup

phase, totally introducing (2
∑

w∈W |DB[w]|+ |W|) exponentiation operations for the

whole database. For a conjunctive query, e.g., Q = (w1 ∧ w2 ∧ · · · ∧ wm) performed

by a client, we assume that the associated keywords belong to the client’s authorized

keyword set w, i.e., wi ∈ w for i ∈ [m]. Table 3.3 summarizes the computation and

71

Table 3.3: Computational and communication cost between client and server
Conjunctive query Q = (w1 ∧ w2 ∧ · · · ∧ wm), where wi ∈ w

Reference Data owner’s computation
cost

Clients’ computation cost Communication cost between
client and server

OXT [3] |DB[w1]|(m− 1) · exp N/A l(1 + (m− 1).|DB(w1)|)
RSA-OXT [49] 3 · exp (|DB[w1]|(m− 1) + (m+ 1)) · exp l(1 + (m− 1).|DB(w1)|) + 3 lRSA
TPPKS [52] N/A (m+ 1)2p (m+ 1)|G0|
MC-OXT [53] (m− 1) · exp (|DB[w1]|(m− 1)) · exp l(1 + (m − 1).|DB(w1)|) + 2T +

n|Z∗p|
Our multi-client
SSE

N/A |DB[w1]|m · exp +m · inv l(m.(1 + |DB(w1)|))

exp: the exponentiation operation on the group; | · |: the size of a finite set or group, e.g., |G|; w: the authorized
keyword set for a client; l: the length of Xtoken; p: the pairing operation; inv: the inversion operation; n: number
of blinding factors; T :size of the output of the PRF FT .

communication of our multi-client SSE protocol in comparison with some relevant

related works.

To perform the search as described above, the client in our multi-client SSE

does not require to refer to the data owner. However, it has to interact with

key share holders to generate the search token where the user needs to compute

((m− 1) + |DB(w1)|)(2exp+ 1inv). Note that two exponentiations and an inversion

here are required for Rand and UnRand functions in the PRF Evaluation protocol.

In contrast, the user in OXT [3] requires per-query interaction with the data owner

to get the search token. Thus, the data owner needs to compute ((m− 1).|DB(w1)|)
exponentiations. In Sun’s protocol, the client needs to get the secret information

from the data owner at the beginning, where the data owner needs to compute 3

exponentiations and generates an attribute-related secret key for each client. Then

the client is able to perform the searches at the cost of (m + 1) additional expo-

nentiations to the generation of xtoken. In order to generate a search token in the

proposed protocol by Wang et al. [52], each user must compute a share of the search

token using its key share and communicates with at least θ − 1 other collaborating

users. By comparing the outputs of two pairings, these users can verify each others’

token shares. Afterwards, they combine the token shares to create the search token.

Since our multi-client SSE is an enhanced version of OXT [3], we can estimate the

extra cost of computation and communication over OXT in the mentioned scenario

72

(by assuming 1inv ≤ 1exp) as followed;

Overhead ratio for computation

= 1 +
(2exp+ 1inv)((m− 1) + |DB(w1)|)

(1exp)((m− 1).|DB(w1)|)

≤ 1 + 3(
((m− 1) + |DB(w1)|)
((m− 1).|DB(w1)|)

)

≤ 1 + 3(
1

(m− 1)
+

1

|DB(w1)|
)

And the communication overhead for the client is;

Overhead ratio for communication

= 1 +
l((m− 1)|DB(w1)|)

l(1 + (m− 1).|DB(w1)|)

= 1 + (
1

(m− 1)
+

1

|DB(w1)|
)

Here, l indicates the length of Xtoken.

There is no computational overhead for revocation using Approach 1. How-

ever, its communication overhead is linear to the number of non-revoked clients. As

mentioned earlier, it is possible to minimise this overhead by just broadcasting the

updated list of legitimate clients without delivering the new key shares to them. The

communication overhead associated to the user revocation using Approach 2 is rel-

atively small as the revocation message just contains one group element, gr. Since

the clients do not require to reconstruct the new key in our scheme, each user just

performs one exponentiation to switch to the share of the new key. That is, in our

scheme, the users just need to compute the output of PRF evaluation of the search

keyword collaboratively.

The EDB is critical and the trivial approach of re-uploading the re-encrypted

database has high communication overhead. In our proposed scheme, to update the

encrypted database, EDB, two sets must be updated, XSet and TSet. The update

algorithm raises each element of these sets to the key material. Thus, we require |t|

73

Table 3.4: Security analysis
Reference Query Privacy Key exposure/

Collusion
Revocation Security

Server Data owner Helping users Definition Assumption

OXT [3] X × N/A N/A × IND-CKA2 DDH
RSA-OXT [49] X Semi N/A × × IND-CKA2 DDH and RSA
TPPKS [52] X X × X X IND1-CKA DL, DDH and CDH
MC-OXT [53] X × N/A X × IND-CKA2 OM-GDH

our multi-client
SSE

X X X X X IND-CKA2 OM-OWF and DDH

IND1-CKA:indistinguishability against chosen keyword attacks (nonadaptive); IND-CKA2:indistinguishability
against chosen keyword attacks (adaptive)

exponentiations for the update of TSet and |XSet| exponentiations for the update of

XSet. Table 3.4 gives a brief security analysis of our multi-client SSE protocol and

a comparison with the other closely related works. In order to prove the security

of OXT, Cash et al. [3] generalized IND-CKA2 for conjunctive queries, which is

parameterized by the leakage functions. RSA-OXT, MC-OXT and our proposed

protocol all follow the utilized security definition by cash et al. [3] (generalized IND-

CKA).

To prove the security of TPPKS [52], the authors used ICLR (indistinguishability

of ciphertext from limited random string) game introduced by Golle et al. [57]. This

game is the extended version of IND1-CKA [16] and guarantees that an adversary

cannot recover the contents of a document from its secure index and the indices of

other documents.

As shown in Table 3.5, all of the considered schemes support boolean queries.

Our protocol, RSA-OXT and MC-OXT, are designed based on the OXT protocol

proposed by cash et al. [3] in order to support a multi client setting. MC-OXT

requires online presence of the data owner to generate the search tokens for the clients

whenever it is needed. Although Sun et al. [49] could avoid per-query interaction

with the data owner, it requires the engagement of the data owner in token generation

process. Similar to our protocol, TPPKS does not require an online presence of the

data owner as it is not involved in the Token generation, search and even in the

decryption phase.

74

Table 3.5: Functionality analysis
Reference Query Type Setting Online presence of Data owner Notes
OXT [3] Boolean S/S X Highly scalable

implementation
RSA-OXT [49] Boolean S/M Initialization phase Attribute-based

encryption
TPPKS [52] Boolean S/M Not required Shares verifica-

tion
MC-OXT [53] Boolean S/M X homomorphic

signature by data
owner on search
tokens

our multi-client SSE Boolean S/M Not required Hides search key-
words

S/S: Single writer / Single Reader; S/M: Single writer / Multi Reader

3.10 Summary

A multi-client symmetric searchable encryption scheme is proposed. The proposed

construction is query private against all entities involved including the data owner,

server, and key share holders. In order to make the search keyword hidden from

the other share holders during the token generation process, we defined a new dis-

tributed key homomorphic PRF. In addition, we gave a concrete construction of our

randomizable key homomorphic distributed PRF. We designed an update algorithm

which enables the data owner to update the encrypted database efficiently. We pre-

sented two approaches for user revocation considering different scenarios. Finally,

the security, functionality and efficiency of our multi-client SSE have been analysed

from different aspects.

75

Chapter 4

Multi-keyword ranked symmetric

searchable encryption

This section presents the details of the second contribution of this research, multi-

keyword ranked symmetric searchable encryption, which is published in the European

Symposium on Research in Computer Security (ESORICS 2019).

4.1 Overview

In contrast to Boolean queries, which rely on appearance of the queried keywords

in the database and return the matching documents, the ranked search captures the

most relevant documents for a query. In the potentially huge result space, ranked

search systems minimize the post processing of data for end-users. Moreover, it

has a great impact on the system usability and performance when dealing with

the massive amounts of data stored in the cloud. Ranked search has been widely

studied by Information Retrieval (IR) and database communities. Top-K query

processing techniques such as TA [78] and FA [79] are well-known examples of such

76

systems. However, such techniques do not preserve the privacy of the data stored

on the database. That is, they require direct access to the relevance scores as well

as various modes of access to data which makes them inapplicable in the context of

encrypted data search.

The first multi-keyword ranked search scheme was proposed by Cao et al. [80],

where both documents and queries are represented as vectors of dictionary size.

This scheme sorts documents using the score based on Inner Product Similarity

(IPS), where a document score is simply the number of matches of queried keywords

in each document, which is not accurate [20]. In general, for ranked search the

following techniques are proposed in the literature.

• Fully Homomorphic Encryption (FHE): Although FHE [81] supports ar-

bitrary computations over the encrypted data, due to the high performance

overheads its not suitable for practical database queries [21].

• ORAM: Similar to FHE, ORAM (Oblivious Random-Access Machine) [40] is

computationally expensive to be used in practice [21]. Although some works

tried to improve ORAM efficiency [41, 82–84], its application in symmetric

encryption for execution of top-K queries is limited [85].

• OPE: Order Preserving Encryption (OPE) [86] allows efficient range queries

over the encrypted data. However, OPE reveals the relative order of elements

in the database, and therefore does not meet the data owner’s data privacy.

• Using two (or more) non-colluding servers: The authors of [20] justified

the assumption of non-colluding servers; these parties are usually supplied by

different companies hence have also commercial interests not to collude. This

model would be a solution to avoid multiple rounds of user-to-server interac-

tions. However, it requires the server-to-server interactions instead. Moreover,

this assumption is less appealing in practice compared to the traditional single-

server model [50].

77

4.1.1 Motivations

Among different methods to support ranked query for searchable encryption, OPE

is the most popular one due to its efficiency. However, the leakage associated with

OPE makes it vulnerable to several attacks. Naveed et al. [87] presented two attacks

against OPE as follows:

Sorting attack: This attack decrypts the OPE-encrypted columns. That is, ad-

versary sorts the ciphertext and the message space, and outputs a function that maps

each ciphertext to the element of message space with the same rank.

Cumulative attack: OPE reveals the frequency of the data and its relative order

at the same time which helps an adversary to find out what fraction of encrypted

data is smaller than each ciphertext. This is known as cumulative attack. This attack

recovers plaintext from OPE with high probability using auxiliary information1.

Durak et al. [88] showed that the above attacks did not take advantage of the

additional leakage that is present in OPE constructions. They discussed additional

two types of attacks Inter-column correlation-based attacks and Inter+Intra-column

correlation-based attack. The former takes the advantage of correlation between OPE

columns where the adversary knows a bounding box for the plaintext. That is, the

columns of data in a table are usually correlated because a row of a table usually

corresponds to an individual record. The latter attack uses both inter and intra

column correlations.

Table 4.1 provides a summary of some related works that support ranked search

over an encrypted database. They either used OPE or cryptographic primitives over

two servers. The former suffers from serious leakages and the latter from usabil-

ity (i.e., issues to use in practice). Shen et al. [17] built an OPE on the top of

Oblivious Cross Tags (OXT) protocol of [3]. Although their scheme is efficient, it is

vulnerable against aforementioned attacks due to the OPE leakage. To avoid reveal-

1Auxiliary information are publicly-available information such as application details, public statistics, and prior
versions of the database (possibly achieved by a prior data breach)

78

Table 4.1: Summary of comparison
Protocol Encryption method Single/twin server No OPE leakage

Meng et al. [21] Encrypted hash list using Paillier Twin server ?
Shen et al. [17] OPE Single server ×

Baldimtsi and Ohrimenko [20] Paillier Twin server ?
Jiang et al. [19] Paillier Twin server ?
Wang et al. [18] One-to-many OPE Single server ×

Our MRSSE SWHE Single server X

ing the distribution of scores in OPE, Wang et al. [18] proposed one-to-many OPE.

Their construction conceals the distribution of scores using a probabilistic encryp-

tion. However, Li et al. [89] presented a differential attack over one-to-many OPE

which reveals the leakage of distribution by exploiting the difference between cipher-

texts. It is assumed that the attacker has some background information which helps

him to infer the encrypted keywords using differential attacks. On the other hand, if

two servers are located in the same place, this contradicts with the assumption that

they do not collude. There would be server-to-server communication overhead if they

are located in different places. This cancels out the major advantage of ranked query,

minimizing the unnecessary network traffics. Therefore, an effective solution to sup-

port ranked query over symmetric searchable encryption schemes is still a challenge.

Our proposed approach in this research aims to address this challenge.

4.1.2 Contributions and technique

The key contribution of this work is a generic solution for supporting effective multi-

keyword ranked search over an encrypted database. We demonstrate the application

of this solution through the proposed Multi-keyword Ranked Searchable Symmetric

Encryption scheme (MRSSE). MRSSE is secure against all of the attacks related to

OPE without relying on a two server assumption, and hence overcomes the limita-

tions of existing approaches. More precisely, MRSSE uses somewhat homomorphic

encryption within our proposed filtering techniques instead of OPE to provide a

ranked search. In terms of functionality, MRSSE supports the multi-keyword search

over Boolean, ranked and limited range queries without adding any extra leakage. It

79

reduces the communication overhead when the number of search results is large (we

give examples in Section 4.5.2) while the security is guaranteed. The effectiveness

of MRSEE is proven via security and efficiency analyses. It is important to note

that though our approach is generic, in this scheme we leverage OXT protocol2 as

an example to demonstrate the applicability of the proposed approach.

It is worth to note that when performing rank search, the server learns a set of

ciphertexts which are satisfying the ranking condition, this is an inherent leakage

in ranked search. Moreover, in the most of the current solutions for ranked-search

the relative order of the importance of the document (ranking) is also leaked to the

server. However, the proposed solution in this chapter avoids this leakage as the

server returns always a fixed size of unsorted results (the actual results are padded

with the encryption of 0s) and the client performs sorting locally.

Our technique We used various homomorphic encryption tools and techniques

to efficiently filter the search results. We considered using BGV-type homomorphic

encryption but it resulted in high depth for equality check on integers (j and P)3.

Hence, we reduced this depth by using unary encoding (we also have document scores

encoded in unary which are small). However, the conditional increment of the pointer

“P” involves a multiplication. Therefore, we switched to Ring-GSW homomorphic

encryption which allows us to do the repeated multiplications with low noise growth

(refer to Section 4.3.1 for details).

4.2 Preliminaries

In this section, we present notations and definitions needed in our construction.

Cryptographic primitives. The utilized cryptographic primitives in this chap-

ter are presented in details in Section 2.1.

2For detailed explanations of OXT refer to section 2.3.2
3(fj(.)) in line 18 and line 19 of Algorithm 13 where j is the counter for candidate list and P is

the pointer of the output buffer

80

Table 4.2: Notations and terminologies
Notation Description

idi the document identifier of the i-th document
Widi a list of keywords contained in the i-th document

DB = (idi,Widi)
D
i=1 a database consisting of a list of document identifier and keyword-set pairs

DB[w] = {id : w ∈Wid} the set of identifiers of documents that contain keyword w

W =
⋃D
i=1 Widi the keyword set of the database

EDB the encrypted database
SEDB the scored encrypted database

sterm the least frequent term among queried terms (or keywords) in a search query

xterm other queried terms in a search query (i.e., the queried terms excluding sterm)
TSet an array that presents equal sized lists for each keyword in the database
XSet a lookup table that contains elements computed from each keyword-document pair
P pointer to the output buffer
j counter for the candidate list
t threshold

t̂ encrypted threshold
N size of the output buffer
L number of search keyword
l bit length of the score
n number of search results
z a bit showing whether the threshold condition holds
s score
ŝ encrypted score
λ security parameter
nb breaking point

Notations. Notations frequently used in this chapter are listed in Table 4.2.

Scoring approach. We use a common method of evaluating a relevance score,

called TF × IDF (term frequency times inverse document frequency) [90]. However,

it should not be regarded as the name suggest. It is defined as Score(wj , idi) =
1

|idi|
.(ln(1 +

N

fwj
)).(1 + ln(fidi,wj)). This score consists of two main components; term

weight tw = (ln(1 +
N

fwj
)) and relative term frequency rd,t = (ln(1 +

N

fwj
)). Here, fwj

is the number of documents that contain the keyword/term wj, N is total number of

documents in the collection, fidi,wj is the frequency of wj in the document idi and, |idi|
is a normalization factor to discount the contribution of long documents and obtained

by counting the number of indexed terms in a document. Note that Score(wj, idi) is

set to zero if the keyword wj does not appear in document with identifier idi. Finally,

the similarity measure is the sum of the products of the weights of query terms (Q)

and the corresponding document terms [90]: Score(Q, idi) =
∑
wj∈Q

Score(wj , idi).

81

4.3 Our threshold-based filtering approach

We solve the problem of multi-keyword ranked search by introducing threshold-based

filtering on the ciphertexts. This generic approach can be applied on symmetric

searchable encryption schemes. Assume that the database DB is going to be out-

sourced to a honest-but-curious cloud server. The first step for the data owner is to

generate the scored encrypted database. In this phase the data owner can apply any

desired scoring technique (such as TF × IDF). Whenever, the data owner wants to

search through the scored encrypted database, he needs to generate a search token

and choose a threshold value. Thus, the server would be able to find the matching

results, then using homomorphic operations aggregate the scores and filter them ac-

cording to the threshold and return the most relevant results (with the scores higher

or equivalent to the threshold). Since the size of output buffer, N , is independent of

total number of search results, n, we can achieve a homomorphic computation and

communication independent of n.

4.3.1 Homomorphic operations

We define the following homomorphic operations which are used in the homomor-

phic search and homomorphic filter presented in Section 4.3.2 and Section 4.3.3,

respectively.

• Component-wise homomorphic Operations: We represent the encryption

of a `-bit integer such as s = s`−1s`−2...s0 using Ring-GSW (see appendix) as

ŝ = Enc(s`−1) Enc(s`−2)...Enc(s0), where the plaintext space of encryption is

(Z2, (+, .)). We denote addition and multiplication over ciphertext with � and

�, respectively. It extends to vectors of encrypted bits by just doing � and �

operations component-wise. Thus, the multiplication of an encryption of a bit

z with a vector of the encryption of bits like ŝ = Enc(s`−1)Enc(s`−2)...Enc(s0),

is defined to be (Enc(z)� Enc(s`−1))(Enc(z)� Enc(s`−2))...(Enc(z)� Enc(s0)).

82

Remark. All of the following algorithms are applying the same operation

component-wise to each bit ciphertext of the score except ConvertGSW,RLWE(.).

• Greater-Than Comparison (≥): For two encrypted unsigned `-bit integers

ŝi and t̂, the operation (ŝi ≥ t̂) outputs 1 if si ≥ t and 0 otherwise. We adapt

the greater-than comparison circuit of Cheon et al. [32] by defining a NOT

operation. That is, NOT (b) outputs 1 if b = 1 and 0 otherwise.This operation

can be defined as NOT (b) = 1− b. Thus, ≥ operation can be defined as ẑi =

ŝi ≥ t̂ for ẑi = 1� (1� ŝi,`−1)� t̂`−1 �
`−2∑
j=0

(1� ŝi,j)� t̂j � dj+1, ..., d`−1.

Here, dj = (1� ŝi,j� t̂j). The depth of this circuit is log(`+1) and, to evaluate

this circuit, 2`− 2 homomorphic multiplication is required.

• Integer Addition (u): We useu to denote the homomorphic integer addition

operation. For addition of two ν-bit integer, x and y, first we make them `-bit

by padding with zeros on the left (here, ` > ν). Then, the sum ŝi = x̂ u ŷ

can be computed efficiently using SIMD operations as introduce in [32]. For

i ∈ [1, `− 1] with initial values ŝ0 = x̂0 � ŷ0 and ˆCarry0 = x̂0 � ŷ0, where the

ŝis are written as ŝi = x̂ � ŷ �
i−1∑
j=0

tij where, tij = (x̂i � ŷi)Πj+16k6i−1(x̂k � ŷk)

for j < i− 1 and ti,i−1 = x̂i−1 � ŷi−1. The circuit has log(`− 2) + 1 depth and

using SIMD and parallelism, it can be evaluated just by 3` − 5 homomorphic

multiplications.

• Unary encoding We represent the unary encoding of a number such as p ∈
[0, N) (we assume N < d− 1, where d is the ring dimension) as p(x) = 0x0 +
0x1 + ... + 1xp + ... + 0xN−1. The RLWE encryption of p̂(x) is in the form of
(c = ψ0u + ~tg + p(x), c′ = ψ1u + ~tf) where (ψ0, ψ1) is the public key, u, f, g
are small random noises and ~t is the plaintext space (here {0, 1}). Note that,
ψ0 = (ψ1.~s+~t~e) where ~s is the secret. We may represent n-dimension encryption
of ~p using matrices as follows:



c0

.

.

.

cn−1


=



ψ0,0 −ψ0,n−1 . . . −ψ0,1

ψ0,1 ψ0,0 . . .

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

ψ0,n−1 ψ0,n−2 . . . ψ0,0





u0

.

.

.

un−1


+t



g0

.

.

.

gn−1


+



ψ0

.

.

.

ψn−1



83



c′0

.

.

.

c′n−1


=



ψ0,0 −ψ0,n−1 . . . −ψ0,1

ψ0,1 ψ0,0 . . .

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

ψ0,n−1 ψ0,n−2 . . . ψ0,0





u0

.

.

.

un−1


+t



f0

.

.

.

fn−1



• Increment by 1: The operation Inc(p̂) increases the value of p ∈ [0, N) by

1, unconditionally: Inc(p̂) = x.p̂(x) Here, p̂(x) is the unary encryption of p.

• Conditional Increment by 1: The operation Inc(p̂, ẑi) increases the value of

p̂(x) (which is the unary encoding of p ∈ [0, N)) by 1 if ẑi = 1. This function can

be defined as Inc(p̂, ẑi) = ẑi(x).(x.p̂(x)) + (1 − ẑi(x)).p̂(x). Here, ẑi =

0

1
is

a constant polynomial. This point to the line 10 of Filter in Algorithm 13. To

efficiently compute the iterated homomorphic multiplications of the increment

function in the loop (line 10 of algorithm 13), we applied GSW encryption

based on ring-LWE. More precisely, for i = 0, ..., n − 1, we can rewrite the

increment as P̂i+1 = ẑi.xP̂i+ (1− ẑi).P̂i = (x−1)ẑiP̂i+ P̂i which can be simplified

to P̂i+1 = [(x− 1)ẑi + 1]P̂i. Then, if we expand this down to i = 0:

P̂i+1 =
i∏

j=1

ẑ′jP̂0

where ẑ′j = (x − 1)ẑi + 1. Note that there is no multiplicative depth in these

computations due to the use of GSW encryption. One of the advantages of

using GSW is the additive noise growth for iterative homomorphic multiplica-

tions [34]. Thus, the noise growth for ẑi and ẑ′j is equivalent to i additions.

• Equality (fj(.)): To evaluate the equality of j and p in Filter(S, t) (line

18/19 of Algorithm 13), we define a function fj(p) = EncLWE(〈 ~p,~j 〉). Here,

fj(p) is equal to “1̂” if j = p, and “0̂” otherwise. Note that both p and j

are unary encoded. Therefore, fj(p) = ~jT~p. Given the RLWE ciphertext p̂ =

(c, c′) for unary encoded ~p and the plaintext ~j, we implement fj(p) operation

homomorphically as follows, which outputs LWE ciphertext of fj(p):

84

cLWE = ~jT~c = ~jT rot(ψ0)~u+ ~t.~jT~g +~jT ~p

c′LWE = ĉ′
T

= ~jT rot(c′) = ~jT rot(ψ0)rot(u) + ~t~jT rot(f)

By substituting the rot(ψ0) for rot(ψ1)rot(~s) + ~trot(~e), we can rewrite this

operation in terms of the secret as follows:

cLWE = (~jT rot(ψ1)rot(u))~s+ ~t.(~jT (rot(~e)~u+ ~g)) +~jT ~p

c′LWE = ~jT (rot(ψ1)rot(u))~s+ ~t.(~jT (rot(~e)rot(u) + rot(f)))

To do the decryption using the secret s, we proceed as follows:

ĉ′
T
~s = (~jT rot(ψ1)rot(u))~s+~jT rot(f)~s

~jT~c− ĉ′T~s = ~t~jT (rot(~e)~u+ ~g − rot(f)~s) +~jT ~p

By reducing this result modulo t, the message which is ~jT~p can be obtained.

• Convert GSW to RLWE We define ConvertGSW,RLWE(.) function to convert

a GSW ciphertext of kth bit si,k of score into RLWE ciphertext of si,k with

message multiplied by q
2k+1 for k = 0, ..., 6. We define the convert function

as ConvertGSW,RLWE(CGSW , i) which picks the row ` − (r − i) of CGSW and

outputs the RLWE ciphertext of form c0 = a.~t + ~e + q
2r
.2i.si , c1 = a which

is an encryption of the plaintext 2i.si with plaintext space modulo 2r. For

the bits s0, ..., sr−1 that at the end we want to pack into one ciphertext of the

integer s =
∑

2i.si, we use ConvertGSW,RLWE(CGSW , i) for the bit si to encode

si as 2i.si and at the end we add the ciphertext i to get the ciphertext for∑
2i.si = s.

• Convert RLWE to LWE: We define ConvertRLWE,LWE(.) function to con-

vert a RLWE ciphertext of a bit to the LWE ciphertext. More precisely, in

Algorithm 13 line 11, the generated value yi is a GSW ciphertext, however,

85

the homomorphic operation in the line 18 is done using LWE (similarly for y′i).

Therefore, we define the convert function as follows over the plaintext:

ConvertRLWE,LWE(yi) = <
[
1, 0, . . . , 0

]
,


yi

0
...

0

 >= yi

Here, yi(x) = yix
0+0x1+...+0xn−1. Similarly, for the ciphertext for ŷi = (c, c′),

the conversion function ConvertRLWE,LWE(ŷi) operates as follows:

cLWE =<
[
1, 0, . . . , 0

]
, rot(c′) >

c′LWE =<
[
1, 0, . . . , 0

]
,~c >

4.3.2 Homomorphic search algorithm

The search algorithm only requires one homomorphic operation, an integer addition

when the overall score using the aggregation function is computed. For instance,

homomorphic aggregation of the scores in Server Search(Tokq,) of Algorithm14

can be written as follows:
function Score− Cipher((XSet))

for i = 1, ..., L do

Ŝ(GSW) ← Ŝ(GSW) u ˆcscorexi and Ŝ(GSW) ← Ŝ(GSW) u ˆcscores

end for

Here, ˆcscores and ˆcscorexi are the ciphertexts of the scores of sterm and xterms,

respectively. Ŝ(GSW) denotes the GSW ciphertext of the aggregated score. The

details of this homomorphic integer addition operation is given in Section 4.3.1.

86

Figure 4.1: Example of Filter algorithm

4.3.3 Homomorphic filter algorithm

Algorithm 13 shows how the filtrating is performed on the ciphertexts. This algo-

rithm reflects Filter(S, t) while the homomorphic computations are used. Figure 4.1

demonstrates the functionality of the Algorithm 13 (which is also used in the plain-

text form in Filter of Algorithm 14). First, it compares the overall scores (output

of the monotone aggregation function in the search algorithm) with the considered

threshold value received from the user to set zis. Whenever, si ≥ t it sets zi = 1;

otherwise it is set to zero. Whenever zi = 1, it copies the corresponding score to the

buffer. Finally, it returns the scores stored in the buffer which are in fact equal or

greater than the threshold value.

87

Algorithm 13 Filter-ciphertext

Input: Score set Ŝ = {(ŝ(GSW)
1 , e1), ..., (ŝ

(GSW)
n , en)}, Threshold t̂(2)

Output: two lists of score-ciphertext where the scores are higher than the threshold; Ĉf and Ĉ′f
1: function Filter(Ŝ, t̂)

2: i← 1

3: j ← 1

4: Initialize pointer P̂ = 0 (beginning of output)

5: Ĉf ← Enc(LWE)(0)

6: Ĉ′f ← Enc(LWE)(0)

7: for i = 1, ..., n do

8: êi
(GSW) = Enc(GSW)(ei)

9: ẑi
(GSW) = ŝi

(GSW) ≥ t̂(GSW)

10: P̂ (GSW) = Inc(P̂ (GSW), ẑi
(GSW))

11: ŷi
(GSW) = ẑi

(GSW) � ŝi(GSW)

12: ŷ′i
(GSW)

= ẑi
(GSW) � êi(GSW)

13: ŷi
(RLWE) = ConvertGSW,RLWE(ŷ

(GSW)
i)

14: ŷ′i
(RLWE)

= ConvertGSW,RLWE(ŷ′
(GSW)
i)

15: ŷi
(LWE) = ConvertRLWE,LWE(ŷ

(RLWE)
i)

16: ŷ′i
(LWE)

= ConvertRLWE,LWE(ŷ′
(RLWE)
i)

17: for j = 1, ..., N do

18: ĉj
(LWE) = ĉj

(LWE) � (fj(P̂)) � ŷi(LWE)

19: ĉ′j
(LWE)

= ĉ′j
(LWE)

� (fj(P̂)) � ŷ′i
(LWE)

20: end for

21: end for

22: Ĉf = ĉ
(LWE)
1 , ..., ĉ

(LWE)
N

23: Ĉ′f = ĉ′
(LWE)
1 , ..., ĉ′

(LWE)
N

24: return Ĉf and Ĉ′f
25: end function=0

In Algorithm 13, we start homomorphic computations with GSW with the mod-

ulus q, where we have ~s as the secret key (line 9 to 11). Then we do the conversion

to LWE with the modulus q using the secret key ~s. The last multiplication (in line

18/19) involves three steps as defined in [91]; Mult, Scale, and SwitchKey. After the

first step, in the LWE with modulus q, the secret key becomes ~s′′. Then, we do the

modulus switching in the second step. We do the conversion to LWE with modulus

q′ using the secret key ~s′′. In the last step, we switch the key back to s while the

modulus is still q′. Note that to support the above mentioned chain, we need to

publish the public key of GSW as well as the key switching public key of LWE which

88

is τ~s′′→~s.

4.4 Our multi-keyword ranked searchable

symmetric encryption scheme

In this section, we present our multi-keyword ranked searchable symmetric encryp-

tion scheme (MRSSE). By leveraging OXT [3] in a novel way, MRSSE can support

multi-keyword ranked search as well as conjunctive and limited range queries. Let

us consider the database DB consists of D documents where each keyword-document

pair has a score which shows their relevance. MRSSE first encrypts the scored

database using Setup algorithm. In order to perform a ranked search over the

encrypted database, the Search protocol must be run between the client and the

server. Then, the server performs Filter algorithm to narrow down the results by

comparing them with the given threshold in order to return the most relevant doc-

uments to the client. Afterwards, the client can sort the received results using Sort

algorithm. Finally, the client retrieves the top-K most relevant documents using

Retrieve algorithm.

Our construction given in Algorithm 14 consists of the following algorithms.

• Setup(λ,DB): This algorithm is similar to the one in OXT [3] except that here

the scores of keywords are also encrypted and inserted to XSet (the differences

are highlighted in red). The score of each keyword-document pairs is computed

using the scoring approach introduced in Section 4.2.

• Search: This protocol consists of two algorithms:

– Client Search(K , q(w̄ = (w1, ..., wL))): This algorithm inputs the PRF’s

keys K and the search keywords (w1, ..., wL) then generates the search

token and outputs it alongside of the chosen threshold.

89

Algorithm 14 Our MRSSE

Setup(λ,DB)
Input Security parameter λ, Database DB,
Data owner′s public key
output Encrypted scored database

1: Initialize T ← ∅ indexed by keywords W.
2: Select key KS for PRF F . Select keys KX , KI , KZ

for PRF Fp with range Z∗p. XSet← ∅
3: ← {}
4: for w ∈W do
5: Initialize ϑ← {}

Ke ← F (KS , w)
6: for id ∈ DB(w) do
7: Set a counter C ← 1
8: Compute xid← Fp(KI , id),
9: z ← Fp(KZ , w||C); y ← xidz−1,
10: e← Enc(Ke, id)
11: Compute sw = Score(w, id)
12: Set xtag← gFp(KX ,w)·xid

13: Compute cscore = Enc(, sw)
14: Set XSet← XSet ∪ (xtag, cscore)
15: Append (y, e, cscore) to ϑ
16: C ← C + 1
17: end for
18: T [w]← ϑ
19: end for
20: Set (TSet,KT) ← TSet.Setup(T) and let =

(TSet,XSet).
21: return ,K = (KS ,KX ,KI ,KZ)

Search

Client Search(K , q(w̄ = (w1, ..., wL))):
Input K , q(w̄ = (w1, ..., wL))
Output Tokq, t

1: Client’s input is K and query q.
2: Computes stag← TSet.GetTag(KT , w1).
3: Client sends stag to the server.
4: for C = 1, 2, . . . until the server stops do
5: for i = 2, . . . , L do
6: xtoken[C , i] ← gFp(KZ ,w1||C)·Fp(KX ,wi)

7: end for
8: xtoken[C]← (xtoken[C , 2], . . . , xtoken[C , L])
9: end for
10: Tokq ← (stag, xtoken[C])
11: Client chooses a threshold t
12: return Tokq, t

Server Search(Tokq,):
Input Tokq,
Output S

1: S ← {}
2: ϑ← TSetRetrieve(TSet, stag)
3: for C = 1 : |ϑ| do
4: Retrieve (eC , yC , cscores,C) from the C -th tuple

in ϑ
5: if XSet contains (xtoken[C , i]yC , cscorexi) for

some cscorexi for all i = 1, ..., L then

6: sC ← Score− Cipher(XSet)

// that is sC =
L∑
i=1

cscorexi + cscores,C in the plain-

text form
7: S ← S ∪ {(sC , eC)}
8: end if
9: end for
10: return S

Filter(Ŝ, t̂)
Input Score set S, Threshold t
Output two lists of score-ciphertext where the scores are
higher than the threshold; Ĉf and Ĉ′f

1: (Ĉf , Ĉ′f)← Filter(Ŝ, t̂)
// the following demonstrate the filter in plain-
text form

2: i← 1
3: j ← 1
4: for i = 1, ..., n do
5: if si ≥ t then
6: Set zi = 1
7: else
8: Set zi = 0
9: end if
10: Initialize pointer P = 0 to the output buffer
11: P = P + zi
12: for j = 1, ..., N do

13: cj = cj + (j
?
= P).zi.si

14: c′j = c′j + (j
?
= P).zi.ei

15: end for
16: end for
17: Cf = (c1, ..., cN)
18: C′f = (c′1, ..., c

′
N)

19: return Cf , C
′
f

Sort(Ĉf , Ĉ′f)

Input Ĉf , Ĉ′f
Output Cs

1: for j = 1, 2, . . . N do
2: s← Dec(sk, cj)
3: e← Dec(sk, c′j)

4: C ← C ∪ {(s, e)}
5: Cs ← Sort(C) // sort the set using any well-known

sorting algorithm
6: end for
7: return Cs

Retrieve(Cs,K)
Input
Sorted encrypted results Cs and the number K of top
documents to be retrieved
Output Result id

1: Client computes ke ← PRF (ks, w1)
2: for P = 1, ...,K do
3: compute id← Dec(ke, eP)
4: return id
5: end for

90

– Server Search(Tokq,): This algorithm inputs the search token Tokq and

the scored database . Next, finds the match for the least frequent keyword

in TSet and then tests the membership of corresponding document Ids in

XSet for the other searched keywords. Moreover, in parallel this algorithm

computes the aggregation function over the collected scores homomorphi-

cally. It is worth to note that when we perform ranking, we might not

want to ignore the documents that do not contain sterm with the inter-

section of all of xterms. That is, there might be some documents which

contains a few of xterms with high scores. Thus, if we want to return only

documents matching all queried keyword, we keep the XSet as it is in the

Server Search(Tokq,) algorithm; otherwise we can simply remove it.

• Filter(S, t): Given the score set S and the threshold t, this algorithm compares

the overall scores (output of the monotone aggregation function in Server

Search(Tokq,)) with the threshold value. It returns the scores which are equal

or greater than the considered threshold and the corresponding ciphertext4.

• Sort(Cf , C
′
f): This algorithm inputs two list with corresponding elements

(score/ciphertext). First, decrypts the score list and then uses any well-known

sorting algorithm to sort the received list of candidates. Finally, it outputs the

ordered set of the score-ciphertext pairs.

• Retrieve(Cs,K): To retrieve the top-K documents, this algorithm first com-

putes the decryption key and then decrypts the first K documents from the

ordered set of the score-ciphertext pairs Cs.

For the sake of readability, in this section, the homomorphic computations are

not considered in Search protocol and Filter(S, t) algorithm. That is, we show only

operations performed on plaintext values. Section 4.3 presented the actual algorithms

with the required homomorphic computations on ciphertexts.

4We are assuming the size of output buffer (here, N) is big enough to contain all of the results which has
equal/higher score than the considered threshold. If not, our protocol returns last N results higher than the threshold
since the pointer P is incremented modulo N .

91

4.4.1 Modes of operation

To minimize the communication overhead, we define two modes for our scheme:

trivial and filtered. The former refers to the condition where the number of results

in Search is smaller than the breaking point5. In this mode, both Filter(S, t)

and Sort(Cf , C
′
f) algorithms are not required. Otherwise, the server performs in

the filtered mode by running the Filter(S, t) algorithm to narrow down the results

to the most relevant ones. This leads to the lower communication overhead and

network traffic. These two modes are illustrated in Figure 4.2 where we discus the

communication overhead of our scheme. That is, the communication overhead in

trivial mode (black line) is linear to the number of matching result whereas it is

constant in the filtered mode (red line). Note that the communication cost in the

filtered mode is independent of number of matching results.

4.5 Evaluation

In this section we discuss the cost evaluation of MRSSE from computation and com-

munication complexity viewpoints (refer to the full version for the security analysis).

4.5.1 Computation complexity

The costs that our design added on the top of OXT to support ranked queries are re-

lated to the homomorphic computations in Server Search(Tokq,) and Filter(S, t)

algorithm. In Server Search(Tokq,), we need to compute the score aggregation

function using the integer addition operation (u) in a loop that costs L×u. The eval-

uation of this circuit in the loop has multiplicative depth of logL(log(`−2)+1). Fil-

5breaking point is the point that the number of filtered results is the same as unfiltered results- refer to section

4.5.2.

92

ter(S, t) algorithm requires more homomorphic computations which are performed

over (ZN , (+, .)) as follows:

• n× ≥ for the loop in line 9 of Algorithm 13,

• 2× n×� for the loop in line 11 of Algorithm 13,

• 2× n×N × (`�+fj(P̂) + (`+ 1)�) for line 18 and line 19 of Algorithm 13,

where the computation cost of fj(P̂) is negligible. Finally, the overall multiplicative

depth of Filter(S, t) would be Depth(Filter) = 2+(log`+1). Therefore, the overall

multiplicative depth would be:

Depth(Search) +Depth(Filter) = logL(log(`− 2) + 1) + (2 + (log`+ 1))

4.5.2 Communication complexity

In order to determine the communication complexity, we should set the parameters

in such way that the following conditions hold. We denote as ‖.‖∞ standard norm

for scalars and vectors.

• Aggregation noise growth. Let DAgg be the depth of the aggregation function

in Searchmr algorithm. The noise growth of this function is at most (ηd +

1)
1
2
DAgg .σ(CScore) where σ(CScore) =

√
m.dσ(~e) is the noise for the fresh

ciphertext from GSW encryption. By assuming σ(~e) = 2, the noise growth of

aggregation function is at most (ηd+ 1)
1
2
DAgg .2

√
m.d.

• NAND gate homomorphic noise growth. We use NAND operation to restrict

the message space to {0, 1} in order to avoid blowup of error. The noise of

NAND of ciphertexts C1, C2 for the message µ ∈ {0, 1} is:

|noise(NAND(C1, C2))| = µ.noise(C1) + ‖C1.noise(C2)‖∞

93

|noise(NAND(C1, C2))| ≤ ‖noise(C1)‖∞ + ‖C1.noise(C2)‖∞

|noise(NAND(C1, C2))| ≤ (η.d+ 1)×max(‖noise(C1)‖∞, ‖noise(C2)‖∞)

We analyze the standard deviation growth using independence heuristic as-

sumption (that indicates the coordinates of noise vector are independent of

Gaussian samples), for each coordinates of noise (similar to the assumption

in [92]):

Var(noise(NAND(C1, C2)) ≤ (η.d+ 1)×max(Var(noise(C1))Var(noise(C2))

σ = sd(noise(NAND(C1, C2)) ≤
√

(η.d+ 1)×max(sd(noise(C1)), sd(noise(C2))

σNAND(out) ≤
√

(η.d+ 1)σNAND(in) .Therefore, for the depth D−D′, the noise

growth is σNAND(out) ≤ (η.d+ 1)
D−D′

2 σNAND(in).

• Homomorphic noise growth for conditional increment. The conditional incre-

ment of the encrypted pointer P̂ can be implemented using Mult operation:

P̂i+1 = P̂iẑ
′
i = Mult(P̂i, ẑ

′
i) = Flatten(P̂iẑ

′
i). Here, ẑ′i = Flatten((x−1).I.ẑi+I),which

has the noise ‖noise(ẑ′i)‖ = noise(ẑi).‖(x− 1)‖

sd(ẑ′i) = ‖(x− 1)‖.sd(ẑi)

Therefore, the conditional increment has the noise growth as follows:

noise(P̂i+1) = ẑ′i.noise(P̂i) + P̂i.noise(ẑ
′
i)

Var(P̂i+1) ≤ ‖ẑ′i‖2.Var(P̂i) + ηdVar(ẑ′i)

Here, ‖ẑ′i‖ = 1because ẑ′i ∈ {x0, x′}, and Var(ẑ′i) ≤ 2×Var(ẑi). Therefore,

Var(P̂i+1) ≤ Var(P̂i) + 2ηdVar(ẑi)

∀i = 0, ..., n− 1

Var(P̂i) ≤ Var(P̂n) ≤ Var(P̂0) + (n− 1)× 2Nd(maxVar(ẑi))

∀i sd(P̂i) ≤
√

2nηd×max sd(ẑi)

• Overall noise growth condition. We denote the depth of ≥ homomorphic op-

eration by D ≥ . The overall noise noise growth condition for Ring-GSW is

94

σout ≤ σin × (ηd+ 1)
1
2
D ≥ .

√
2nηd.

√
ηd+ 1where σin indicates the input noise to

the Filter(S, t) algorithm. This noise is generated by the aggregation function

in Server Search(Tokq,). Note that here, (ηd+ 1)
1
2
D ≥ ,

√
2nηd, and

√
ηd+ 1

correspond to lines 9, 10, and 11 of Algorithm 13, respectively. More accurately,

the noise for P̂i is at most σP̂i = 2
√
md(ηd+ 1)

1
2

(D ≥ +Dagg)
.
√

2nηd whereas, the

noise for ŷi is at most σŷi = 2
√
md(ηd+ 1)

1
2

(D ≥ +Dagg)
.
√
ηd+ 1.

When we perform fj(P̂), P̂ will be converted to LWE. Hence, we switch from

modulus q to q′. Therefore, for the last multiplication in Filter(S, t) algorithm

σ
(LWE),q′

fj(P̂)�ŷi
is at most σ

(LWE),q

fj(P̂)
if the condition: 2× (σ

(LWE),q

P̂
)γZ ≤ ∆ is satisfied.

Here, ∆ = q
q′

is the ratio between q and q′. The noise in each ĉj (with modulus

q′) would be at most
√
n × σ(LWE),q′

fj(P̂)
. That is, each ĉj is computed as a sum

of n intermediate ciphertexts thus, the standard deviation gets multiplied by
√
n.

The BGV-type LWE multiplication consists of three steps; Mult, Scale, and

SwitchKey [91]. After the first step, the noise has length at most γZB
2 (here B

is a bound on the noise length). Then, we apply the Scale function (as defined

in Lemma 4 in [91]), after which the noise length is at most (q′/q)γZB
2 + ηScale

where ηScale ≤ (τ/2)
√
dγZh. After the last step (the SwitchKey is defined in

Lemma 9 in [91]), the noise become at most (q′/q)γZB
2 + ηScale + ηSwitchKey

where ηSwitchKey ≤ 2γZ
(
d+1

2

)
(logq′)2. At the end, we want the noise to be

smaller than 1
2
(q′/τ) to decrypt correctly. Note that, in BGV-type LWE, the

actual bound on the noise length is used, whereas, in our case, we use the stan-

dard deviation but the relation is similar. In fact, the last multiplication has the

standard deviation of the noise of input σP̂i and σŷi . We are assuming these are

heuristically independent of Gaussian noises. Therefore, if the ratio between

the threshold q′/τ and the standard deviation is more than
√

2ln(2/ε) ≤ q′

2τ
,

then the probability, that the noise crosses this threshold, is less than ε.

• Decryption correctness condition. For the correctness of decryption, at the end

95

the condition:
σP̂i

.σŷi
∆ +ηScale+ηSwitchKey ≤ q′

τ
√

2ln(2/ε)
must hold. Here, ε = 2−20.

For the security, the hardness of RLWE 2λ security for GSW keys must be

hold. Thus, we need to show that the RLWE with noise σ(~e) = 2, dimension

d and modulus q is hard. The condition α = 2/q ensures this assumption.

Parameter setting: We can determine the parameters based on the above

mentioned conditions and the security of RLWE. To determine d, we need to choose it

based on the complexity of best lattice attack against underlying Ring-LWE problem

in dimension d with modulus q and noise σ. Once we determined α, q and d, we can

find the security against lattice attack, Tattack. That is, we set the security parameter

λ so that Tattack ≥ 2λ. Table 4.4 provides a few examples of parameter setting on

the security parameter λ = 80. We used an attack estimator for the Learning with

Errors Problem [93, 94]. The output of Filter(S, t) algorithm are LWE ciphertexts

encrypted with the modulus, q′. For kth bit of each score si, its LWE ciphertext is in

the form of (ai,k, bi,k = ai,k.~s+~e+ q′

2i
.si,k). Each ciphertext is (d+1)× logq′ bits, for 7

bits score and 64 bits document identifier, we would have 71×N×(d+1)× logq′ bits

of N filtered results to be delivered to the client. This can be reduced by packing each

log τ bits ciphertext into one ciphertext by homomorphic addition of the ciphertexts.

This results the following overall communication cost:

Communication cost = 71N
log τ × (d+ 1)× (logq′)

Although the length of ciphertext in symmetric cipher of OXT is relatively small,

the overall communication overhead is directly related to the number of matching

results. This is evident in the case of cloud storage where the result space is po-

tentially huge. The following example clarifies the significance of this issue. Let us

assume that the scores are 7 bits and document Ids are 64 bits, which results in

about 200 bits of ciphertext in OXT assuming AES CBC mode is used. Thus, the

communication cost would be CCOXT = 200n (where n is the number of matching

results for all queried keywords). Let us assume the total number of matching results

n = 106, then the communication cost of OXT would be 25MB. However, this can be

96

reduced to just about 6.5MB by performing our scheme in the filtered mode. More

precisely, the server can compute the breaking point nb =
71N
log τ
×(d+1)×(logq′)

200
which

in this case is about 263055 matching results (for N = 26, d = 4750, log τ = 32),

and then compares it with the total results n = 106. Since the breaking point is

smaller than n, the server runs filtered mode which has the communication cost of

CCour = 71N
log τ
× (d+ 1)× (logq′) = 6.55MB. Table 4.3 shows the communication cost

improvement when the filtration approach is used versus the trivial mode that re-

turns all of the matching documents. It is apparent from this table that the proposed

approach has a significant impact on the communication cost.

Table 4.3: Communication cost improvement
Number of matching results 400000 600000 800000 1000000

Communication cost of
Trivial mode

8× 107 Bits 12× 107 Bits 16× 107 Bits 2× 108 Bits

Communication cost of
Filter mode

52611× 103 Bits 52611× 103 Bits 52611× 103 Bits 52611× 103 Bits

Communication cost improvement 34.23% 56.15% 67.11% 73.69%

Figure 4.2 illustrates the overall communication cost of our scheme. Note that the

trivial mode introduced in section 4.4.1 acts the same way as OXT. It is apparent

from this figure that our scheme (the green line) reduces the communication cost

significantly by filtering the results to the most relevant ones.

Table 4.4: Parameter settings

Parameters Tattack
Breaking point

(nb)

L ` N d D α q q′ log τ usvp dec dual

4 7 26 4750 8 2(−216) 2217 278 32 280.8 281.4 282.2 263055

L:number of queried keyword; l: bit length of scores; N : output buffer size; d: ring dimension
D: multiplicative depth of MRSSE; usvp: unique shortest vector problem; dual:dual-lattice attack

97

Figure 4.2: Overall communication cost

4.6 Summary

We have presented a generic solution for efficient multi-keyword ranked searchable

symmetric encryption. The proposed threshold-based filtering solution enables the

honest-but-curious server to refine the encrypted search results and returns only

the most relevant ones to the user. The proposed scheme supports multi-keyword

ranked search as well as Boolean and limited range queries. Our scheme resists all

attacks associated with OPE leakage. In comparison with the conventional searchable

symmetric encryption schemes, our solution decreases the communication overhead

between the client and server significantly without adding any additional leakage to

the server.

98

Chapter 5

Geometric range search on

encrypted data with

forward/backward privacy

This section presents the details of the third contribution of this research, geometric

range search on encrypted data with forward/backward privacy, which is submitted

to IEEE Transactions on Dependable and Secure Computing.

5.1 Introduction

Location-Based Services (LBS) have a wide range of applications from transporta-

tion (e.g., Uber) to social media (such as ”Nearby friends” on Facebook or ”People

Nearby” on WeChat). The LBS providers mostly deal with a large scale datasets

and outsource such datasets to a third party server (e.g., Cloud server), and provides

great benefits to database owners such as on-demand access to the data. However,

the confidentiality of the outsourced sensitive data and users’ privacy are the major

99

concerns.

Searchable Symmetric Encryption (SSE) is an efficient cryptographic technique,

which enables secure storage an untrusted/semi-trusted server while the searchability

is preserved. There is a growing body of literature on SSE with varying trade-offs

between security, efficiency, and practicality [3, 95, 96]. Range query is a primary

database operation to meet the practical data retrieval need. Range search plays a

vital role in supporting LBS.

Nevertheless, the following leakages from the range query enable an attacker to

reconstruct the dataset.

• Access pattern: the encrypted records matching the query are leaked to the

server.

• Communication volume: the number of ciphertexts returned as a matching

response to a query.

Recently, a considerable amount of literature has been published on the problem

of reconstructing encrypted databases from range query leakage [22–25]. So far,

two types of attacks have been discovered based on the leakage from range queries:

Full Database Reconstruction (FDR) and Approximate Database Reconstruction

(ADR). FDR recovers the exact value for every record of the database, whereas

ADR aims to reconstruct the plaintext database with a bounded approximation

error. Kellaris et al. in [24] showed that a passive adversary (does not choose

the queries) could perform FDR without requiring auxiliary information. Moreover,

several works (e.g., [23, 25]) performed ADR using access pattern leakage.

On the other hand, dynamic setting (in which the data is updatable) is a necessity

in LBS applications due to users’ movements. Dynamic setting introduces additional

leakages to the server about the update undertaken. These leakages are subject to

devastating adaptive attacks. Supporting forward and backward privacy enables the

SSE scheme to mitigate such attacks [26, 27]. Forward privacy ensures that new

100

updates cannot be related to the previous search results [27]. Moreover, forward

private searchable encryption schemes are not vulnerable to file injection attacks.

Backward privacy is another important security notion for searchable encryption

schemes. Backward privacy ensures the privacy of the database and its updates

during search queries. Roughly speaking, search queries should not leak matching

documents after they have been deleted. However, backward privacy does not hide

the document identifiers matching a search query (access pattern) although it hides

them in updates. In the existing definitions of forward/backward privacy as given

above, some leakages have not been captured. Such leakages might be critical for

SSE-based geometric range search schemes but may not be a serious issue in the other

contexts. For example, in the case of LBS application, the privacy of the dataset

content (locations/ points of interest) is critical. As mentioned earlier, one of the

popular applications of LBS is finding nearby people on social media. For instance,

a user wants to learn the location of his friends which are at a particular distance

from him. In this scenario, access pattern leakage reveals the identities of the users

in a region (database content) to the server.

As the main focus of this is on geometric search, we introduce a new security

notion, called content privacy. Content privacy hides the access pattern both in

search and update. That is, a content private SSE-based scheme supporting geomet-

ric range search would not reveal to the server the identities of points in the query

range as well as update queries but it allows leakage on the query. Therefore, in the

given scenario, if the utilized SSE-based scheme support content privacy, then in the

worst case, the server learns that some of the friends are in a particular location but

will not learn their identities.

It is worth to note that in addition to SSE, there exists some other approaches

for range search over encrypted data. They might be applicable for supporting

geometric range search such as OPE1 [97], and ORAM2 [98]. SSE appears to be

1Order-Preserving Encryption
2Oblivious RAM

101

the most suitable solution as it achieves a stronger notion of security than OPE

and better efficiency than ORAM. Therefore, the rest of this paper focuses only on

SSE-based schemes for geometric range search.

Our Contributions. There are several important areas where this study makes

an original contribution, namely:

• We first formulate the new definition of content privacy and show its impor-

tance in the context of spatial search over encrypted datasets.

• We propose two new constructions that support range searches over the dy-

namic encrypted spatial dataset. Our first construction supports backward

privacy while the second one is forward secure. Both of the proposed construc-

tions are content private.

• In comparing with the existing SSE-based scheme which support geometric

range search, our constructions are the first of this type that could avoid access

pattern leakage; hence they are secured against FDR and ADR attacks.

• Our design offers a higher level of security and practical efficiency. Our exper-

imental results show that for the worst case of 20K data points the maximum

time required for search by our constructions is about 1.3 seconds.

5.2 Preliminaries

In this section, we present the definitions needed in our construction and security

analysis.

5.2.1 Additive homomorphic encryption

An additive homomorphic encryption scheme works as follows: Key generation:

Given the security parameter λ, this algorithm generates the key k. Encryption:

102

This algorithm takes the message m and the key k as inputs, and outputs the cor-

responding ciphertext C where C = Enck(m). Decryption: On the inputs C and k,

this algorithm outputs the plaintext message m = Deck(C). Homomorphic addition:

The homomorphic addition of two ciphertexts will decrypt to the sum of their corre-

sponding plaintexts; Deck(C1 +C2) = Deck(Enck(m1) +Enck(m2)) = m1 +m2 The

scheme mentioned above is symmetric; for the asymmetric setting, the private-public

key pair should be used. In the following subsection, we introduce a variation of the

additively symmetric homomorphic encryption (ASHE) scheme of [99]. To be much

more efficient, we replaced the addition modulo n with the exclusive-or operation

which can satisfy the requirements in our proposed scheme.

5.2.1.1 Symmetric additive homomorphic encryption.

Let K = {K1, ..., KN} be the set of the secret keys; for the plaintext space {0, 1}λ,
we define a pseudo-random function (PRF) FK : I → {0, 1}λ. Here, i ∈ I is an

identifier (which is used as the counter in our constructions). We define two additive

homomorphic encryption E : (Enc,Dec) and EUpdt : (EncUpdt, DecUpdt) as follows;

(C, i) = EncK(m, i) :=

((
m⊕

N∑
j=1

FKj(i)

)
, i

)
(5.1)

m = DecK(C, i) := C ⊕
N∑
j=1

FKj(i) (5.2)

(C, i) = EncUpdtK (m, i) := ((m⊕ FK(i− 1)⊕ FK(i)) , i) (5.3)

m = DecUpdtK (C, i) := C ⊕ FK(i− 1)⊕ FK(i) (5.4)

Let (C1, i) = EncK(m1, i) and (C2, i) = EncK′(m2, i), we define the additive homo-

morphic operation for E as shown in Equation 5.5;

(C1, i)⊕ (C2, i) = (C1 ⊕ C2, i) := EncK′′ ((m1 ⊕m2), i) (5.5)

103

Here, K ′′ = (K ∪ K ′). Similarly, for (C3, i − 1) = EncK(m3, i − 1) and (C4, i) =

EncUpdtK (m4, i), the additive homomorphic operation works as shown in Equation 5.6;

(C3, i− 1)⊕ (C4, i) = (C3 ⊕ C4, i) := EncK ((m3 ⊕m4), i) (5.6)

Remark. Note that we use this additive operation in two different ways in our

construction. That is, in Algorithm 23, to perform the update, the client sends a bit

string encrypted using EUpdt which enables the server to update the leaf nodes using

the homomorphic addition given in Equation 5.6. Then, to update the intermediate

nodes to the root, the server uses Equation 5.5. More precisely, for the update of the

leaf nodes, the key would be the same as the old key for each node while the counter

is different whereas for the intermediate nodes is the opposite.

5.2.2 Security definition

The security definition of the proposed constructions is formulated using two games;

REALΣ
A(λ) and IDEALΣ

A,S(λ). The former is executed using our scheme, whereas the

latter is simulated using the leakage of our scheme as defined in Section 5.7.1. If an

adversary such as A cannot distinguish these two games, then we can say that there

is no leakage beyond what is defined in the leakage function. These games can be

formally defined as followed;

• REALΣ
A(λ): On input a dataset chosen by the adversary A, it outputs EDB

by using Setup(DB, λ) to A. The adversary can repeatedly perform a search

and update query. The game outputs the results generated by running Search

(q, σ, EDB) and Update (K, σ, op, in, EDB) to A. Eventually, A outputs a bit.

• IDEALΣ
A,S(λ): On input a database chosen by A, it outputs EDB to the ad-

versary A by using a simulator S(LStp). Then, it simulates the results for the

search query using the leakage function S(LSrch) and uses S(LUpdt) to simulate

the results for update query. Eventually, A outputs a bit.

104

Definition 15. The scheme Σ is L-adaptively-secure if for every PPT adversary A,

there exists an efficient simulator S such that |Pr[REALΣ
A(λ) = 1]−Pr[IDEALΣ

A,S(λ) =

1]| ≤ negl(λ).

5.3 Security notions

Several studies showed that the leakage of SSE schemes could lead to revealing the

search queries and/or reconstructing of the plaintext of the encrypted database [100–

103]. In this section, we review the original definitions of forward and backward

privacy. We then extend them to cover the SSE schemes with spatial datasets.

Afterward, we introduce the notion of ”Content privacy”, which is useful for SSE

schemes where the access pattern should not be leaked.

In this research, we are discussing the forward privacy for the encrypted spatial

dataset. Thus, we define a variation of the Definition 4 for the searchable encryption

with the spatial dataset as introduced in Definition 16.

Definition 16. A L-adaptively-secure spatial-SSE scheme Σ is forward secure if the

update leakage function L Updt can be written as LUpdt(op, in) = L′ (op,Pi), where

the input ”in” consists of an updated point label and its updated location and the

operation op can be insertion, deletion, or modification.

5.3.1 Content privacy

By content privacy, we model the leakage which is not considered in the previous

definitions. This model is not a stronger/weaker security definition than the back-

ward privacy, but a different notion to capture the other aspects of the leakage.

Content privacy limits the information on the updates affecting document id that

the server can learn upon a search query on w. That is, update queries do not leak

any information about the updated document.

105

Figure 5.1: Security notions similarity

As shown in Figure 5.1, the content privacy has some similarity with Type-II

backward privacy as both protect the content and do not leak about the documents’

identifiers in the update queries. However, in Type-II backward privacy, it is still

assumed that the access pattern is revealed and this, in turn, reveals the content

information on the documents’ identifiers. More precisely, Backward privacy leaks

about the content in the search queries via access pattern (TimeDB(w) in Definition

6 and Definition 7), whereas our proposed content privacy definition (Definition 17)

does not leak about the content during the search. On the other hand, it allows

more leakage on the keyword from the backward privacy. In particular, the previous

models for SSE schemes were designed for document retrieval. Thus, the access

pattern leakage was inherent. Our model does not leak access pattern as the data

retrieval is not required and only checking the presence of the points of interest is

desired.

Definition 17 (Content Privacy). A L-adaptively-secure SSE scheme is content-

private iff the search and update leakage functions LSrch, LUpdt can be written as:

LUpdt(op, w, ind) = L′(op, w) LSrch(w) = L′′(w) where L′ and L′′ are stateless.

To apply this notion to spatial datasets, we define a variant of the Definition 17

as presented in Definition 18. In general, update queries do not leak which point

labels are involved in the coordinates that are being updated.

Definition 18 (Content privacy for spatial dataset). A L-adaptively-secure SSE

scheme is content-private iff the search and update leakage functions LSrch, LUpdt

106

can be written as: LUpdt(op, r, P) = L′(op, r) LSrch(r) = L′′(r) where L′ and L′′ are

stateless. Here, r represents a range of coordinate and a point identifier is denoted

by P .

5.3.1.1 Example of content privacy against the existing dynamic SSE

In this section, we show how a lack of content privacy makes dynamic SSE schemes

prone to a leakage abuse attack and a file injection attack. In the dynamic setting,

the data owner can update the files (it also includes the addition of the new files) after

the initial setup. We investigate the vulnerabilities in the dynamic SSE proposed by

Cash et al. in [104]. To support the dynamic setting, they maintain a revocation

list for deletions and an extra dictionary ”D+” for the addition of new documents.

This strategy does not support forward privacy and content privacy. More precisely,

the server can reuse the previously issued search tokens and learn about the updated

document and the new search queries. For the sake of simplicity, we demonstrate

the issue for the add updates. For the static database D and the extra dictionary

”D+”, let us consider the following example;

• The state σ = 1: the database is not updated. The client issues the search

token STi for the keyword wi; the server returns the set of the matching results

ID from the static database D.

• The state σ = 2: the client sends the update token UTγ1 to add the docu-

ment idγ1 which contains wi to the server. The server adds idγ1 to the extra

dictionary ”D+”.

• The state σ = 3: to search for the keyword wi, the client generates two search

token STi and ST+
i for searching D and ”D+”, respectively. The server returns

the matching results ID and ID+ from D and ”D+”, respectively.

• The state σ = 4: the client sends the update token UTγ2 to add the docu-

ment idγ2 which contains wi to the server. The server adds idγ2 to the extra

107

dictionary ”D+”.

• The state σ ≥ 4: the client generates two search token STi and ST+
i to search

for the keyword wi. The server returns the matching results ID and ID+,

where ID+ contains idγ1 and idγ2.

In the above scenario, at the state σ = 4, the server can reuse the ST+
i to detect

the presence of wi in idγ2. The search pattern and the access pattern enables the

server to reveal the search queries as well as the updated documents and when they

are updated.

The dynamic SSE of [104] assumes Q as a list of the all of the issued queries,

and ID the set of all identifiers to which wi was ever added, L the leakage for add

updates over the database DB = (idi,Wi)
d
i=1. The add pattern can be defined as

follows:

AP(wi, Q, ID) = {(id, ap(id, wi, Q)) : id ∈ ID, ap(id, wi, Q) 6= ∅}

Then, the leakage L produces outputs as follows:

• saves the state; for each search query over wi, appends (σ, srch, wi) to Q and

increments σ; then outputs the corresponding search pattern and add pattern.

• for add query, appends (σ, add, id,Wid) to Q, adds id to ID, and increments σ;

then, outputs |Wid| and the set of the search patterns, {sp(wi, Q) : wi ∈ W id };
for non-empty search patterns, it outputs id.

For the previously searched keywords server such as wi learns that a keyword

with search pattern sp(wi, Q) was added via the set of search patterns in the update-

leakage. Moreover, the server can find the id being updated because it can search

for any of its keywords.

108

5.4 Syntax of DSSE with geometric range query

A dataset is composed of a collection of N points; each consists of two dimensional

coordinate value (xi, yi) for xi, yi ∈ [0, D− 1] where D is the size of each dimension.

A dataset ∆ = (Pi, (xi, yi))
N
i=1 is a set of points’ label/coordinates pairs, where Pi is

the label of the point (xi, yi). For the sake of simplicity, our description considers

integer ranges. Both of the proposed constructions consist of a pre-processing phase

Setup run by the data owner and two protocols between the data owner and server:

Search, and Update. Setup phase consists of following algorithms:

• Build Binary Tree(t)→ (BT): The data owner inputs the tree parameter t

where the dimension size D = 2t and t+1 is the hight of the binary tree. Then,

he runs this algorithm two times to generate the binary trees, BT , for each

dimension (BTx and BTy for x-axis and y-axis, respectively).

• Build Inverted Index(t, N,∆)→ (ST): Given the tree parameter t, the num-

ber of the data points N , and the dataset ∆, the data owner builds the inverted

index of the database and then converts each entry of it to bit strings. The

data owner runs this algorithm two times to generate the set of the inverted

index bit strings, ST , for each dimension (STx and STy for x-axis and y-axis,

respectively).

• Build Node Inverted Index(ST,BT)→ (S): This algorithm assigns each

of the inverted index bit strings ST to the corresponding leaf nodes in the tree

BT . Then, it generates the bit stings for the parent nodes by adding (modulo

2) the bit string of its child nodes. The data owner runs this algorithm two

times to generate the node inverted index Sx and Sy for the dimensions x and

y, respectively.

• EDS Setup(λ, t, Sx, Sy, BT)→ (EDS,Ks, Kx, Ky): This algorithm is run by

the data owner who inputs the security parameter λ, the tree parameter t, and

109

the node inverted indexes Sx and Sy. Then, It outputs the encrypted dataset

EDS and the utilized keys (Ks, Kx, Ky).

Search is a protocol between a data owner and the server which consists of the

following algorithms:

• Client Search (q, t, C, C ′)→ (R) : This algorithm is run by the data owner

who inputs the desirable range query (such as q = [a, b]x, [a
′, b′]y), the tree

parameter t, and the counters3 C and C ′ (for the dimensions x and y, re-

spectively). To generates the search token Tok (which consists of the tags4

for each dimension), the data owner runs Build Binary Tree(t) for each di-

mension and finds the minimum set of suitable nodes that cover the search

query. Then, he sends the search token Tok to the server. Once, he received

the corresponding results ER, he decrypts them. To find the points located

in the range search, the data owner first computes the addition modulo 2 of

the nodes over each dimension. Then, gets the intersection between the two

dimensions by computing ”AND” of the bit string of x-axis and y-axis. Finally,

this algorithm outputs the search results R.

• Server Search(EDS, Tok)→ (ER): Given the encrypted dataset EDS and

the search token Tok, it outputs ER which contains the ciphertext of the bit

strings corresponding to the issued search token.

Update : The data owner and the server perform Update protocol jointly which

consists of the following algorithms:

For Construction-I:

• Client Update(Ks, Kx, Ky, t, Pi, P
′
i , C, C

′)→ (LUx, LUy): To change a point

P ′i = (xj, yj) to Pi = (x′i, y
′
i), the data owner inputs the point to be updated

3These counters indicate the number of updates undertaken
4This tags enable the server to retrieve the ciphertext without decryption

110

and its new coordinates values, the tree parameter t, and the counters C and

C ′. Then, generates the new ciphertexts for the corresponding leaf nodes in

the binary tree as well as the nodes on the path from those leaf nodes to the

root. Finally, this algorithm outputs two update lists LUx and LUy, for the

x-dimension and y-dimension, respectively.

• Server Update((EDS,LUx, LUy)→ (Updated EDS)): Given the current dataset

EDS and the update lists LUx and LUy, server replaces the old ciphertext in

EDS with the updated ones from LUx and LUy.

For Construction-II:

• Client Update(Ks, Kx, Ky, t, Pi, P
′
i , C, C

′)→ (LUx, LUy): To change a point

Pi = (xi, yi) to P ′i = (xj, yj), the data owner inputs the point to be updated

and its new coordinates values, the tree parameter t, and the counters C and

C ′. Then, he generates the update bit string Sux where the position i is set

to ”1” and the rest are ”0”s. Then, encrypts update bit string to eu for the

update of the corresponding leaf nodes on the binary tree of each dimension

and send it along with the encryption of ”0”s for the other leaf nodes to the

server using the update lists LUx and LUy.

• Server Update((EDS,LUx, LUy)→ (Updated EDS)): Given the current dataset

EDS and the update lists LUx and LUy, server adds the given bit strings us-

ing additive homomorphic encryption to the bit string of the leaf nodes. Then,

updates the parent nodes by homomorphic addition of the bit strings of their

child nodes.

5.5 SSE schemes for geometric range search

This section, first gives an overview of our scheme using a simple example. Then, two

constructions for dynamic symmetric searchable encryption are presented in details.

111

5.5.1 Overview

We introduce our constructions via a sample dataset as shown in Figure 5.2. It can

be seen from this figure that there is a two dimensional environment which contains

eight points. The first step is to build the encrypted dataset, ”EDS”. Once the EDS

is outsourced to the server (honest-but-curious) the client would be able to perform

range search over it with the assistance of binary trees. These binary trees also

facilitate the update of EDS.

5.5.1.1 Setup

The data owner performs the following steps to build EDS.

1. Data owner builds two binary trees where in each of them the leaf nodes are

indexed by the x-axis and y-axis values, respectively. For the considered sample

dataset these trees are in the form of Figure 5.4. To avoid redundancy we

considered the same size for x-axis and y-axis (D = 8, 0 to 7). In this figure,

the red numbers represent the values on a dimension.

2. The data owner parse the points’ labels for each dimension in the inverted

index. Then, converts these inverted indexes to the bit strings as shown in

Figure 5.3. That is, the data owner sets a fixed size bit string (mostly bigger

than the number of existing nodes to enable further addition) for each value on

each dimension. If the x-coordinate of a point such as Pi is equal to the value

over the x-axis then the ith bit of the bit string is set to 1, and 0 otherwise.

Figure 5.3 illustrates this procedure over the sample dataset. For instance, in

this figure there are only two points which have x = 1 (points 1 and 2). Thus,

the data owner sets the bits to ”1” in the position 1 and 2 and the rest to ”0”

(highlighted).

3. The next step is to assign these bit strings to the nodes in the binary trees.

Thus, the bit strings generated in the previous step will be assigned to the leaf

112

Figure 5.2: Sample spatial dataset

nodes according to the indexes in the first step. As shown in Figure 5.3, for

x = 0 the binary string is ”00000000” and from the Figure 5.4 we can see that

x = 0 is associated with node n7. Thus, we assign the bit string ”00000000” to

the node n7 as highlighted in Figure 5.5 and we use the same technique for the

rest of leaf nodes in the tree. For a parent node the assigned bit string is the

addition of the bit strings of its child nodes. For example, in Figure 5.6, which

represents the bit strings assigned to the nodes for y-axis, the bit string for a

parent node such as n1 is ”11100000” which is the addition of its child nodes’

bit strings; ”10000000” and ”01100000” for n3 and n4, respectively 5.

4. Finally, the data owner encrypts the inverted index generated in the third step,

using an additive homomorphic encryption and outsource it a server.

5.5.1.2 Search

Assume that the client wants to find the points within the dashed rectangle shown

in Figure 5.7. He needs to perform range query of 2 to 6 over x-dimension and 3 to 6

5An alternative way is to let the server to generate the bit strings of the parent nodes in the
encrypted format using additive homomorphic encryption.

113

Figure 5.3: Converted dataset

over y-dimension. First, he needs to reconstruct the two binary trees (similar to the

first step of setup phase) to find the minimum nodes which cover the range query.

As shown in Figure 5.8, these nodes are n4, n5, and n13 for x-axis and n10, n5, and

n13 for y-axis. Then, the data owner generates the search tokens for those nodes and

sends them to the server. Upon receiving the results, the client first decrypts them

and then computes the intersection of the x-axis and y-axis 6. In the given example,

the client first adds the bit strings of the highlighted nodes in the Figure 5.8, which

results bit string (00110111) for x-axis and (01011100) y-axis, respectively. Then,

to find the intersection, the client computes (00110111) ∧ (01011100) = (00010100).

That is, the points with the labels 4 and 6 are located within the issued range.

6An alternative solution is to allow the server to perform homomorphic operations and return
the ciphertext of the result bit string to the user, however this solution will introduce additional
leakage to the server. As these operations are lightweight we let the client to perform them locally.

114

Figure 5.4: Sample indexed binary tree

5.5.1.3 Update

We proposed two constructions where the major difference comes from the update

procedure. In the Construction-I, the update is mostly done on the client side and

then transferred to the server for the replacement of the ciphertexts. More precisely,

the client updates the path from leaf node to the root for the coordinates to be

updated.

To update the encrypted dataset using the Construction-II, the following steps

must be taken;

• Data owner finds the leaf nodes to be updated.

• Data owner generates the update bit string where the position of the point to

be changed is equal to ”1” and the rest are ”0”s.

• Data owner encrypts the bit string and sends it to the server.

• Server uses homomorphic addition to update the ciphertext of the bit strings

of the nodes to be updated.

115

Figure 5.5: Sample Node-Inverted index for x-axis

Let assume that the data owner wants to change the coordinate of the point with

label “2” (P2), from (1,3) to (2,6). Thus, the data owner first finds the leaf nodes to

be updated which are n8 and n9 on x-dimension and n10 and n13 on the y-dimension,

respectively as highlighted in Figure 5.9 and Figure 5.10. Then, he generates the

update bit string where the second bit (according to the point label) is set to ”1”

and the rest are ”0”s that is (01000000). As shown in Figure 5.9, homomorphic

addition modulo 2 of the update bit string (blue) and the bit string of n8 results in

the red colour bit string that shows P2 is deleted from n8. To insert P2 to n9, the

same update bit string (01000000) is added to the bit string of n9 (00000010) using

homomorphic addition modulo 2 that results in (01000010). The similar technique

is used over the nodes n10 and n13 on y-axis as illustrated in Figure 5.10. To update

the parent nodes the server uses homomorphic addition to add the encrypted bit

116

Figure 5.6: Sample Node-Inverted index for y-axis

strings of the nodes given by the data owner. This update leaks which points are

updated, this leakage can be easily reduced by updating some random coordinates

with the encryption of zeros.

5.5.2 The naive solution

A straightforward solution to support range search is to send all of the points to the

client and let the client to find the matches. However, the communication overhead

is much higher than the proposed solutions. More precisely, (2× t×N) bits whereas

in our case it is (2 × N) bits where t indicates number of bits per coordinate and

N is the number of dataset points. Thus, our scheme saves a factor of t in terms of

bandwidth consumption. That is, for 32 bits t our scheme is 32 times more efficient

than the trivial solution. Moreover, the Naive solution requires high post processing

117

Figure 5.7: Sample Range search

Figure 5.8: Binary tree for range search over x-axis and y-axis

118

Figure 5.9: Example of update over x-axis

119

Figure 5.10: Example of update over y-axis

120

of the data by the client. In fact, the client has to decrypt the whole dataset and

search for the points of interest for each geometric range queries.

5.5.3 Construction-I

In this section, we present the first construction for dynamic symmetric searchable

encryption scheme which supports two dimensional geometric range queries. Two

binary trees are required to achieve this goal; one for x-axis search and the other one

for y-axis search. As mentioned in Section 5.4, our scheme consists of three main

phases: Setup, Search, and Update which are explained in the following sections in

details.

5.5.3.1 Setup

The first step is to generate two complete binary trees where the number of leaf

nodes represents the size of the x-axis and y-axis of the environment. Then, the

points which are going to be encrypted and outsourced are determined and assigned

to the binary tree nodes. Finally, the encrypted node-point inverted index of the

dataset would be stored on the server.

Build Binary Tree(t)

The data owner runs Algorithm 15, two times to generate two complete binary trees

for x-axis and y-axis, BTx and BTy, respectively. In this algorithm the value t is used

to determine the height of the tree and it is equal to tree level−1. In this algorithm,

after defining the leaf nodes, the data owner assigns an index (j) to each of them

which represents the values on the x/y-axis (similar to the red numbers in the given

example in Section 5.5.1). Then, builds the parent nodes to the root, starting from

the right most leaf node.

121

Algorithm 15 Build Binary Tree(t)
Input: t
Output: BT
1: BT ← {}
2: j = 0
3: for i = 2t − 1, ..., 2t+1 − 2 do
4: Build (ni) // Generating a leaf node with label ni
5: Assign label (ni)← i // Giving label to the leaf node
6: Assign index (ni)← j // Assigning the coordinate to the node
7: Insert (ni) to BT
8: j ← j + 1
9: end for
10: for i = 2t − 2, ..., 0 do
11: Build (ni) // Generating the intermediate nodes
12: Assign label (ni)← i
13: Assign Left-Child (ni)← n2i+1

14: Assign Right-Child (ni)← n2i+2

15: Insert (ni) to BT
16: end for
17: return BT

Build Inverted Index(t, N,∆)

Given the dataset ∆ the data owner runs Algorithm 16 two times in order to generate

binary inverted index STx and STy for x and y dimensions, respectively. In this

algorithm it is assumed that there exists N points in the dataset7. For each value on

the x-axis we define a N -bit string where bit i is set to ”1” if the x-coordinate of the

point i is equivalent to the considered value on the x-axis and ”0” otherwise. Note

that Algorithm 16 shows the procedure of generating the binary inverted index for

the x-dimension. For the y-dimension in the line 5, ∆x[j] should be change to ∆y[j].

Build Node Inverted Index(ST,BT)

To build this inverted index, the data owner assigns the bit strings generated in the

Algorithm 16 to the nodes in the binary tree. Algorithm 17 shows how these bit

strings are first assigned to the leaf nodes and then the corresponding bit strings

are generated for the parent nodes to the root. The data owner runs this algorithm

7To avoid ambiguity and redundancy in the algorithms we transformed the dataset ∆ =
(Pi, (xi, yi))

N
i=1 to the three arrays ∆P [i] = Pi, ∆x[i] = xi, ∆y[i] = yi

122

Algorithm 16 Build Inverted Index(t, N,∆)
Input: t,N,∆
Output: ST // If we run this algorithm for x-axis it outputs STx and for y-axis it outputs STy
1: ST ← {}
2: for i = 0, ..., 2t − 1 do // Indexes of a dimension
3: σ(i)←⊥ // Inverted index bit string for i value on a dimension
4: for j=1,...,N do // Points
5: if ∆x[j] = i then // For y-dimension it uses ∆y [j]
6: Assign string[i,j]← 1
7: else
8: Assign string[i,j]← 0
9: end if
10: σ(i)← σ(i) ‖ string[i,j]
11: end for
12: ST ← σ(i)
13: end for
14: return ST

twice in order to generate the inverted index Sx and Sy for the x-axis and y-axis,

respectively.

Algorithm 17 Build Node Inverted Index(ST,BT)
Input: ST,BT
Output: S
1: S ← {} // If we run this algorithm for x-axis it outputs Sx and for y-axis it outputs Sy
2: j = 0 // Indexes of a dimension
3: for i = 2t − 1, ..., 2t+1 − 2 do // Leaf nodes
4: retrieve ni from BT
5: Initialize S(ni)← ∅ // Initialize an empty bit string to associate it with the node ni
6: retrieve σ(j) from ST
7: Assign S(ni)← σ(j)
8: Insert S(ni) to S
9: j ← j + 1
10: end for
11: for i = 2t − 2, ..., 0 do // Internal nodes
12: Assign S(ni)← S(n2i+1) ∨ S(n2i+2)
13: Insert S(ni) to S
14: end for
15: return S

EDS Setup(λ, t, Sx, Sy, BT)

The final stage of the system setup is to generate the encrypted dataset and out-

source it to the server. To reach this, the data owner performs Algorithm 18. In

this algorithm the data owner generates to lists Ux and Uy for x-dimension and y-

dimension, respectively. These lists are indexed by the nodes tags (which help the

123

server in the search/update to retrieve the ciphertexts associated with a node) and

beside each other form the encrypted dataset EDS. Note that for this construc-

tion the encryption (EncK which is introduced in Section 5.2.1.1) can be replaced

by non-homomorphic scheme as the homomorphic properties are not used by this

construction and only used in Construction-II.

Algorithm 18 Construction-I: EDS Setup(λ, t, Sx, Sy, BT)
Input: λ, Sx, Sy , t, BT
Output: EDS,Ks,Kx,Ky
1: Initialize Ux ← ∅ and Uy ← ∅ indexed by nodes’ Tag

2: Kx,Ky ,Ks
$←− {0, 1}λ

3: EDS ← {}
4: for i = 0, ..., 2t+1 − 2 do
5: retrieve ni from BT
6: C ← 1
7: C′ ← 1
8: Ki ← F (Ks, ni) // F is a pseudo-random function (PRF)
9: TAGXi ← F (Kx, ni)
10: TAGYi ← F (Ky , ni)
11: for Sx(ni) ∈ Sx do
12: ei ← EncKi (Sx(ni), C)
13: Ux(TAGXi)← ei
14: end for
15: for Sy(ni) ∈ Sy do
16: e′i ← EncKi (Sy(ni), C

′)
17: Uy(TAGYi)← e′i
18: end for
19: end for
20: Set EDS = (Ux, Uy)
21: return EDS,Ks,Kx,Ky

5.5.3.2 Search

Algorithm 19 shows how the client generates the search token Tok for a range search

which enables the server to search the encrypted dataset and return the matching

results. This algorithm enables two-dimensional geometric search effectively. That

is, given a range on each dimension, this algorithm first builds the binary tree of

each dimension and finds the minimum nodes covering the issued ranges. Then, it

generates the search token Tok which contains the sets TAGX = {TAGXi} and

TAGY = {TAGYi} for the x-dimension and y-dimension, respectively. These tags

enable the server to retrieve the encrypted bit strings assigned to the issued nodes

124

without getting any knowledge about the points that satisfy the range query. To

recover the plaintext associated with each the node ni covering the range, the client

must perform the Buildkey(ni) function which outputs K as a set of keys {Kj =

F (Ks, nj)} of the nodes njs in the subtree rooted by ni.

Algorithm 19 Construction-I: Search

Client Search (q, t, C, C′)

Input: q = ([a, b]x, [a′, b′]y), t, C, C′

output: R

1: BTx ← Build Binary Tree(t)
2: XR← find minimum nodes covering [a, b]x in BTx
3: TAGX ← {}
4: for ni ∈ XR do
5: TAGXi ← F (Kx, ni)
6: TAGX ← {TAGXi} ∪ TAGX
7: end for
8: BTy ← Build Binary Tree(t)
9: Y R← find minimum nodes covering [a′, b′]y in BTy
10: TAGY ← {}
11: for ni ∈ Y R do
12: TAGYi ← F (Ky , ni)
13: TAGY ← {TAGYi} ∪ TAGY
14: end for
15: Sends Tok = (TAGX, TAGY) to the server
16: ER← Server Search (EDS, Tok)
17: for ei ∈ ER do
18: K ← BuildKey(ni)
19: (Sx(ni))← DecK(ei, C)
20: Sx ← Sx ∨ Sx(ni)

21: end for
22: for e′i ∈ ER do
23: K ← BuildKey(ni)
24: (Sy(ni))← DecK(e′i, C

′)
25: Sy ← Sy ∨ Sy(ni)
26: end for
27: R← (Sx ∧ Sy)
28: return R

Server Search (EDS, Tok)
Input: EDS, Tok
output: ER

1: ER← {}
2: for TAGXi ∈ TAGX do
3: ei ← Ux(TAGXi)
4: ER← {ei} ∪ ER
5: end for
6: for TAGYi ∈ TAGY do
7: e′i ← Uy(TAGYi)
8: ER← {e′i} ∪ ER
9: end for
10: return ER

5.5.3.3 Update

Algorithm 20 shows the update procedure. That is, the client updates the leaf nodes

and the corresponding intermediate nodes on the path to the root.

Note that, the Update-y(Ks, Ky, t, Pi, P
′
i , C

′) function is similar to Update-

x(Ks, Kx, t, Pi, P
′
i , C) function, thus to avoid redundancy we did not present it in

Algorithm 20. Given the outputs of Client Update(Ks, Kx, Ky, t, Pi, P
′
i , C, C

′), the

server performs Server Update(EDS = (Ux, Uy), LUx, LUy) in order to update the

corresponding entries of the encrypted dataset.

125

Algorithm 20 Construction-I: Update

Client Update(Ks,Kx,Ky , t, Pi, P
′
i , C, C

′)

Input: t, Pi = (xi, yi), P
′
i = (xj , yj), C, C

′

output: LUx, LUy

1: LUx ← {}
2: LUy ← {}
3: if xi 6= xj then
4: C ← C + 1
5: LUx ← Update-x(Ks,Kx, t, Pi, P

′
i , C)

6: return LUx
7: end if
8: if yi 6= yj then
9: C′ ← C′ + 1
10: LUy ← Update-y(Ks,Ky , t, Pi, P

′
i , C
′)

11: return LUy
12: end if

Update-x(Ks,Kx, t, Pi, P
′
i , C)

Input: Ks,Kx, t, Pi = (xi, yi), P
′
i = (xj , yj), C, C

′

Output: LUx

1: BTx ← Build Tree(t)
2: LNx ← Find leaf nodes to be updated in BTx
3: Sux ← Update bit string
4: for nα ∈ LNx do
5: Sx(nα) ← Sux ∨ Sx(nα) // Update the bit string

associated with the leaf node nα
6: TAGXα ← F (Kx, nα)
7: Kα ← F (Ks, nα)
8: eu ← EncKα (Sx(nα), C) // Computing the ci-

phertext for the updated bit string
9: LUx ← LUx ∪ {(TAGXα, eu)}
10: if α mod 2 = 0 then // Checking the leaf node

nα is the right child or left child
11: β ← (α

2
− 1)

12: Sx(nβ)← Sx(nα)∨Sx(nα−1) // updating the
parent node

13: else
14: β ← (α−1

2
)

15: Sx(nβ)← Sx(nα)∨Sx(nα+1) // updating the
parent node

16: end if
17: TAGXβ ← F (Kx, nβ)
18: Kβ ← F (Ks, nβ)
19: eu ← EncKβ (Sx(nβ), C) // Computing the ci-

phertext for the updated bit string
20: LUx ← LUx ∪ {(TAGXβ , eu)}
21: while β 6= 0 do // updating the nodes on the

path to the root
22: if β mod 2 = 0 then
23: Sx(n β

2
−1

)← Sx(nβ) ∨ Sx(nβ−1)

24: β ← β
2
− 1

25: else
26: Sx(n β−1

2
)← Sx(nβ) ∨ Sx(nβ+1)

27: β ← (β−1
2

)

28: end if
29: TAGXβ ← F (Kx, nβ)
30: Kβ ← F (Ks, nβ)
31: eu ← EncKβ (Sx(nβ), C)

32: LUx ← LUx ∪ {(TAGXβ , eu)}
33: end while
34: end for
35: return LUx

Server Update(EDS = (Ux, Uy), LUx, LUy)

Input: EDS = (Ux, Uy), LUx, LUy
Output: Updated EDS

1: for (TAGXi, eu) ∈ LUx do
2: ei ← Ux(TAGXi)
3: replace ei with eu in the corresponding Ux entry
4: end for
5: for (TAGYi, e

′
u) ∈ LUy do

6: e′i ← Uy(TAGYi)
7: replace e′i with e′u in the corresponding Ux entry
8: end for

5.5.4 Construction-II

This section presents the second DSSE construction for geometric range search.

The Setup phase of this construction is similar to Setup of Construction-I. That

is, Build Binary Tree(t), Build Inverted Index(t, N,∆), and Build Node

Inverted Index(ST,BT) are exactly the same as Construction-I whereas EDS

126

Setup(λ, t, Sx, Sy, BT) is different as it does not require TAG generation. EDS

Setup(λ, t, Sx, Sy, BT) is presented in Algorithm 21.

Algorithm 21 Construction-II: EDS Setup(λ, t, Sx, Sy, BT)
Input: λ, Sx, Sy , t, BT
Output: EDS,Ks,Kx,Ky
1: Initialize Ux ← {} and Uy ← {} indexed by nodes

2: Kx,Ky ,Ks
$←− {0, 1}λ

3: EDS ← {}
4: for i = 0, ..., 2t+1 − 2 do
5: retrieve ni from BT
6: C ← 1
7: C′ ← 1
8: Ki ← F (Ks, ni)
9: for Sx(ni) ∈ Sx do
10: ei ← EncKi (Sx(ni), C)
11: Ux ← {(ni, ei)}
12: end for
13: for Sy(ni) ∈ Sy do
14: e′ ← EncKi (Sy(ni), C

′)
15: Uy ← {(ni, e′i)}
16: end for
17: end for
18: Set EDS = (Ux, Uy)
19: return EDS,Ks,Kx,Ky

Search. Algorithm 22 shows how the client generates the search token Tok for

a range search which enables the server to search the encrypted dataset and return

the matching results.

Update. To update the encrypted dataset we apply the homomorphic addition

introduced in Section 5.2 (Equation 5.3). More precisely, if we want to update a

point from Pi = (xi, yi) to P ′i = (xj, yj). First, we need to check which dimension(s)

is changed and then generate an update bit sting where the position i is set to ”1”

and the rest to ”0”. By building the binary tree, the nodes to be updated will be

determined. Then, using the homomorphic addition the server updates the bit string

of the nodes according to Algorithm 23.

127

Algorithm 22 Construction-II: Search

Client Search (q, t, C, C′)

Input: q = ([a, b]x, [a′, b′]y), t, C, C′

output: R

1: XR← {}
2: Y R← {}
3: BTx ← Build Binary Tree(t)
4: XR← find minimum nodes covering [a, b]x in BTx
5: BTy ← Build Binary Tree(t)
6: Y R← find minimum nodes covering [a′, b′]y in BTy
7: Sends Tok = (XR,Y R) to the server
8: ER← Server Search (EDS, Tok)
9: for ei ∈ ER do
10: K ← BuildKey(ni)
11: (Sx(ni))← DecK(ei, C)
12: Sx ← Sx ∨ Sx(ni)
13: end for
14: for e′i ∈ ER do
15: K ← BuildKey(ni)
16: (Sy(ni))← DecK(e′i, C

′)

17: Sy ← Sy ∨ Sy(ni)
18: end for
19: R← (Sx ∧ Sy)
20: return R

Server Search (EDS, Tok)
Input: EDS, Tok
output: ER

1: ER← {}
2: for ni ∈ XR do
3: ei ← Ux(ni)
4: ER← {ei} ∪ ER
5: end for
6: for ni ∈ Y R do
7: e′i ← Uy(ni)
8: ER← {e′i} ∪ ER
9: end for
10: return ER

5.6 Comparison

Table 5.1 illustrates the summary of the security comparisons between our proposed

constructions and the current related works. None of the current SSE scheme sup-

porting geometric range search can avoid access pattern leakage. Hence, they can not

meet the content privacy security requirement. Furthermore, only FastGeo [105] and

EGRQ [106] support the dynamic setting but none of them considered forward and

backward privacy. Moreover, EGRQ [106] also has OPE leakage which our construc-

tions do not have. The Naive solution can support dynamic setting and achieve all of

the security requirements if for each update it download, re-encrypt, and upload the

whole dataset. However, this results in high communication overhead to the system

and the computational overhead to the client.

Table 5.2 presents a summary of performance comparisons in terms of search

overhead, update overhead, and storage size among the related works and the pro-

posed constructions. To have a fair comparison, we compare the related works for

128

Algorithm 23 Construction-II: Update

Client Update(Ks,Kx,Ky , t, Pi, P
′
i , C, C

′)

Input: t, Pi = (xi, yi), P
′
i = (xj , yj), C, C

′

Output: LUx, LUy

1: LUx ← {}
2: LUy ← {}
3: if xi 6= xj then // Checking the changes on x-

dimension
4: C ← C + 1
5: LUx ← Update-x(Pi)
6: return LUx
7: end if
8: if yi 6= yj then // Checking the changes on y-

dimension
9: C′ ← C′ + 1
10: LUy ← Update-y(Pi)
11: return LUy
12: end if

Update-x:(Ks,Kx, t, Pi, P
′
i , C)

Input: Ks,Kx, t, Pi = (xi, yi), P
′
i = (xj , yj), C

Output: LUx

1: BTx ← Build Tree(t)
2: LNx ← Find leaf nodes to be updated in BTx
3: Sux ← Update bit string
4: for nα ∈ LNx do // Update of the modified leaf nodes
5: Kα ← F (Ks, nα)
6: eu ← EncKα (Sux, C)
7: LUx ← LUx ∪ {(nα, eu)}
8: end for
9: for nα /∈ LNx do // Update of the other leaf nodes
10: Kα ← F (Ks, nα)
11: eu ← EncKα (0′s, C)
12: LUx ← LUx ∪ {(nα, eu)}
13: end for
14: return LUx

Update-y:(Ks,Ky , t, Pi, P
′
i , C
′)

Input: Ks,Ky , t, Pi = (xi, yi), P
′
i = (xj , yj), C

′

Output: LUy

1: BTy ← Build Tree(t)
2: LNy ← Find leaf nodes to be updated in BTy
3: Suy ← Update bit string
4: for nβ ∈ LNy do // Update of the modified leaf nodes
5: Kβ ← F (Ks, nβ)
6: e′u ← EncKβ (Suy , C′)

7: LUy ← LUy ∪ {(nβ , e′u)}
8: end for
9: for nβ ∈ LNy do // Update of the other leaf nodes
10: K ← F (Ks, nβ)
11: e′u ← EncK(0′s, C′)
12: LUy ← LUy ∪ {(nβ , e′u)}
13: end for
14: return LUy

Server Update:(EDS = (Ux, Uy), LUx, LUy)

Input: EDS = (Ux, Uy), LUx, LUy
Output: Updated EDS

1: BTx ← Build Tree(t)
2: BTy ← Build Tree(t)
3: for (nα, eu) ∈ LUx do
4: Retrieve eα
5: eα ← eu ⊕ eα
6: replace eα in the corresponding Ux entry
7: end for
8: for α = 2t − 1, ..., 0 do
9: eα ← e2α+1 ⊕ e2α+2

10: replace eα in the corresponding Ux entry
11: end for
12: for (nβ , e

′
u) ∈ LUy do

13: Retrieve e′β
14: e′β ← eu ⊕ e′β
15: replace e′β in the corresponding Uy entry

16: end for
17: for β = 2t − 1, ..., 0 do
18: e′β ← e′2β+1 ⊕ e

′
2β+2

19: replace e′β in the corresponding Uy entry

20: end for

the same shape of the range search, circle with radius R. In both of our proposed

constructions, if we want to perform the circle range search, we can find the square

that contains the circle where the side length of the square is 2R.

The search time of GRSE [50] is linear to the size of Bloom filter as well as the

129

Table 5.1: Security comparison

Security requirement
Scheme

Construction-I Construction-II Naive [50] [107] [105] [106]

Forward privacy 7 3 3 NA NA ? 7

Backward privacy Type-II 7 Type-I NA NA ? 7

Content privacy 3 3 3 7 7 7 7

Dynamic 3 3 3 7 7 3 3

Cryptographic primitive SE/ASHE ASHE SE PBPKE PBPKE PBPKE OPE

SE: Symmetric Encryption; ASHE: Additive Symmetric Homomorphic Encryption; PBPKE: Pairing-based Public Key
Encryption; OPE: Order Preserving Encryption ?: Unknown

number of data points. GRSE returns only the identifier of the matching results as

the output of the search function. The authors suggested to use R-tree to enhance the

search time, however as they noted this modification leads to higher false positives

results. Similarly, R-tree is used in EGRQ [106] to achieve high performance. Both

FastGeo and GRSE generate a significantly large vector for enumerating all possible

search points which in turn results to larger computational overhead compared with

EGRQ. The search complexity of EGRQ is directly related to Ndeg which is the

highest degree of a term in the utilized fitted polynomial (the increase in Ndeg results

to more accuracy in the results). However, it is not clear how Ndeg should scale

with R and t. Although our constructions and GRSE have linear search complexity

regarding the number of data points, our constructions are much faster. That is, our

constructions do not require any additional computations and only read bits whereas

GRSE must perform a pairing operation for each database point due to the use of

SSW8. The server search complexity of FastGeo [105] is linear to the resolution of

the grid of coordinates (2t) but sublinear to the number of data points (N). The

server search complexity of our constructions is proportional to at most (log 2R)

which is equal to t, hence overall of O(tN). Therefore, our constructions are suitable

for smaller N but larger t.

Wang et al. [107] proposed two constructions for circular range search called

CRSE-I and CRSE-II. The search complexity of CRSE-I is O (αc) per data record

where α represents the length of data (for two dimensional search α = 4) and c

is a finite number of concentric circles is sufficient to cover all the possible points.

In CRSE-I the size of the ciphertext drastically increases with radius R whereas in

8SSW: Shen-Shi-Waters Encryption

130

CRSE-II it is independent of R. As mentioned by the authors this construction is

impractical for circular range queries with large radiuse as c increases with O (R2).

For CRSE-II, the search complexity is O(αc) per ciphertext. Therefor, CRSE-II

has the overall search complexity of O (R2N) for a dataset with N data points. In

contrast, the search complexity of our constructions are scale only logarithmic in R.

In both FastGeo and our scheme the search token size is different for variant

queries and it changes according to queried range. In FastGeo [105], client has

to enumerate all of the possible points in the range and then the server checks

whether a point is inside the considered range or not. Thus, the length of the

utilized Bloom filter should be long enough to contain all of the possible grid points

which is 22t. Moreover, for each of the possible grid points client must compute some

exponentiations (Texp) due to use of SSW (this computation is also required in [107]

and [50]).

In comparison with Naive solution the client search complexity our construction

is lighter at the ratio of logR
t

. That is, in Naive solution the client has to decrypt the

whole dataset in order to find the matching data points whereas in our constructions

the user only retrieves the nodes covering the range search (O(logR) covering nodes

and each of them are N bits). In the worst case they would have equal client search

complexity if the range search is as large as the size of the dimensions, however this

is mostly not the case in the real range searches. For instance, a client usually looks

for the points of interest which are close to him or have a specific distance from him

and not all of the points in an environment (hence, logR� t). On the other hand,

our constructions require a bigger storage, however it is not an issue when using the

cloud storage.

Although the update complexity of our Construction-II and FastGeo on the server

side is higher than Naive solution, there is no overhead for the client and the com-

munication overhead per update is lower. That is, for each update in Naive solution

the whole dataset should be downloaded, re-encrypted, and uploaded to the server to

achieve the security requirements given in Table 5.1. Whereas in our Construction-I

131

Table 5.2: Performance comparison

Performance
Scheme

Construction-I Construction-II Naive [50] [107] [105] [106]

Search Comp. (Server) O(log(2R)N) O(log(2R)N) O(1) O(mN) O(R2N) O(2t) O(Nt2N3
deg)

Search Comp. (Client) O((logR)N) O((logR)N) O(tN)O(22tTexp)O(RTexp)O(R22tTexp) O(N4
degt

2)

Length (Search result) O(log(2R)N) O(log(2R)N) O(tN) O(n) O(R2N) O(2t) O(n)

Update Comp. (Server) O(1) O(2tN) O(1) NA NA O(2tN) O(1)
Update Comp. (Client) O(ktN) O(1) O(tN) NA NA O(1) O(kt)

Storage size (EDB) O(2tN) O(2tN) O(tN) O(mN) O(N) O(2tN) O(N)

R: Radius of the circle query; t: Bit length of coordinates (x and y); N : Number of the data points in the dataset; Ndeg : highest
degree of a term in the used fitted polynomial

m: size of Bloom filter; n: number of the matching result; k: number of update point; Texp exponentiation time in token
generation of SSW

only the new ciphertext of the affected nodes should be uploaded (hence no com-

plexity for the server) and for our Construction-II there is no need to download any

information and only the update bit strings are delivered to the server. EGRQ is

very similar to the Naive solution, the as the updates are done on the client side.

For both of our proposed constructions the EDS storage size is proportional to the

dimension size. Thus, for the N data points, the EDB storage size is 2×N×(2t+1−1)

bits where (2t+1−1) indicates the number of the nodes in the binary tree for dimension

of size 2t. The storage size in all of the related works is linear to the number of data

points.

5.7 Security analysis

5.7.1 Range search leakage functions

This section presents the leakage function of our work, denoted by LΣ. That is, the

information which the server is allowed to learn about the dataset and the queries.

This leakage function corresponds to the Setup, Search and Update of the dataset;

LΣ = (LStp,LSrch,LUpdt). Our constructions have different leakage functions that

use various combination of the following leakages (the theorem statement in Section

5.7 indicates the leakages for each of the proposed constructions).

• Range Search pattern (sp(r)): Similar to most of the existing searchable en-

132

cryption schemes, our scheme leaks the search pattern. In general, the informa-

tion about whether any two queries are generated from the same range search

or not. Each range query r is decomposed into a union of n(r) covering ranges,

Decomp(r) =
n(r)⋃
i=1

Ii. The range search pattern sp(r) reveals the intervals Ij’s

in Decomp(r) which match Ij’s in Decomp(r′) for the previous search queries

on r′.

• Update path (Path(ci)): Is the path in the binary tree from the root to the

modified leaf node.

• Dimension size (ds): the upper bound of each dimension is known by the server

as the server knows the size of the complete binary tree.

• Dataset size (∆s): due to the use of the fixed length bit string for representing

the dataset, the server learns the maximum possible number of points in the

considered environment.

• Number of updates (Nu): The server learns how many updates are performed

on the dataset but he can not recognize the type of the update (insertion,

deletion, modification) and also on what point is updated. Therefore, the

update does not leak any information about the dataset and the search queries.

It is worth to note that unlike other DSSE schemes supporting the geometric

range search, the design and also the application of our constructions do not require

the retrieval of the matching documents at the end of the search protocol. Therefore,

our scheme does not leak two common leakages from range queries: Access pattern

and communication volume.

5.7.2 Construction-I

In this construction, each ciphertext includes all of the points labels as they were

presented in the form of a bit string. For each update (all update operation are acting

133

the same), the old ciphertext is getting replaced by a new one. Therefore, a) it is

not possible to distinguish which bit of the plaintext is updated, b) search queries

do not leak matching entries after they have been deleted. Thus, this construction

satisfies the content privacy and backward security as discussed below.

Theorem 9. Let F be a pseudo random function and Enc be a secure additive

homomorphic symmetric encryption (ASHE), then Construction-I is L-adaptively-

secure with the following leakage functions:

LStp(∆) = ∆s

LSrch(r) = sp(r)

LUpdt(op, (ci, Pi)) = Path(ci).

Proof. The proof proceeds using a hybrid argument, by game hopping, starting from

the real-world game REALA(λ).

Game G0: This game is exactly the same as the real world security game REAL.

In this game, for the range query ”q” (for the sake of simplicity we consider one

dimension here as the procedure is the same) client first finds the intervals (I1, ..., Ic)

covering the ”q”. Then, he maps each Ii to a node ”ni” on the binary tree and

computes the corresponding search token TAGi = F (K,ni). Finally, the token that

is sent to the server is Tok = (TAG1, ..., TAGc) that cover the range.

P [REALA(λ) = 1] = P [G0 = 1]

Game G1: In this game, we pick random values instead of the output of the

pseudo random function F for a given node in generating a search token and store it

in a table ”T” so it can be reused whenever the node is queried. The advantage of the

adversary in distinguishing between G0 and G1 is exactly the same as advantage for

the PRF F . Thus, we can build a reduction B1 which is able to distinguish between

134

F and a truly random function.

P [G0 = 1]− P [G1 = 1] ≤ Advprf
F,B1

(λ)

Game G2: To delete(/insert) a point from the bit string associated to the cor-

responding leaf nodes on the binary tree, this game replaces all the ciphertexts on

the path from the leaf node to the root with encrypting all 0’s strings. For update

token, it uses the leakage to learn the number of nodes to be updated. The adversary

A can not distinguish the real ciphertext from the ciphertext of 0’s. That is, the

advantage of the adversary in distinguishing between G1 and G2 is exactly the same

as the advantage for ASHE. We can build a reduction B2 such that

P [G2 = 1]− P [G1 = 1] ≤ AdvASHEΣ,B2
(λ)

Simulator. We can simulate the IDEAL the same as Game G2. The LStp(∆) =

∆s is required to determine the size of the ciphertext. sp(r) is the only leakage that

we need to simulate the search in G2. For the update simulator S works the same

as G2 without knowing the content (point identifiers). The simulator only uses the

Path(ci) in the update query and not the point identifier. Therefore, it can simulate

the attacker’s view using only LUpdt = Path(ci).

P [REALA(λ) = 1]− P [SA(λ) = 1] ≤ P [G0 = 1]− P [G2 = 1]

≤ Advprf
F,B1

(λ) + AdvASHEΣ,B2
(λ)

Construction-I is backward secure.

Construction-I is content private.

It is worth to note that both corollaries follows directly from Theorem 9 because

the search leakage does not include TimeDB(w) or Updates(w).

135

5.7.3 Construction-II

The security of this construction relies on the security of the utilized additive homo-

morphic symmetric encryption (ASHE) scheme.

Theorem 10. (forward privacy). Let F be a pseudo random function and ASHE be

a secure additive homomorphic encryption, we define LFS = (LStpFS ,LSrchFS ,LUpdtFS) as

follows.

LStpFS (∆) = (∆s, ds)

LSrchFS ((q1, ..., qi),∆) = qi

LUpdtFS = ⊥

Construction-II is LFS-adaptively-forward-secure.

Proof. The proof is conducted via a sequence of Games. The first game G0 has the

same distribution as the real game of Construction-II, REALFSA (λ). The last game

G3 is designed to be simulated by an efficient simulator S. By showing that the

distributions of these games (G0 and G1, G1 ,G2, and G3) are indistinguishable to

each other, we can see that the simulator S meets the requirements of the security

definition, therefore completing the proof of the theorem.

Game G0: This game is exactly the same as the real world security game

REALFSA (λ).

P
[
REALFSA (λ) = 1

]
= P [G0 = 1]

Game G1: In this game, we replace the dataset entries with the encryption of

”0”s. The adversarial distinguishing advantage between Game G0 and Game G1

is the same as the adversarial advantage in breaking the ASHE . That is, if an

adversary A can distinguish G0 from G1, we can build an adversary B1 which can

break ASHE.

P [G0 = 1]− P [G1 = 1] ≤ AdvASHE
Σ,B1

(λ)

136

Game G2: In this game, we pick random values instead of the output of the

pseudo random function F in generating the encryption key used in encryption of

the update bit string.

The advantage of the adversary in distinguishing between G1 and G2 is exactly

the same as advantage for the PRF F . Thus, we can build a reduction B2 which is

able to distinguish between F and a truly random function.

P [G1 = 1]− P [G2 = 1] ≤ Advprf
F,B2

(λ)

Game G3: This game replaces the eu part of the update token with ASHE of

”0”s. That is, the advantage of the adversary in distinguishing between G2 and G3

is exactly the same as the advantage for ASHE. We can build a reduction B3 such

that

P [G3 = 1]− P [G2 = 1] ≤ AdvASHEΣ,B3
(λ)

Simulator. We just require the size of the dataset ∆s to learn the size of the

ciphertext in order to replace it with the encryption of ”0”s. Moreover, the search

query ”q” can be simulated directly from LSrchFS .

P [REALA(λ) = 1]− P [SA(λ) = 1] ≤ AdvASHE
Σ,B1

(λ) + Advprf
F,B2

(λ) + AdvASHEΣ,B3
(λ)

Construction-II is content private.

5.8 Summary

This chapter presented two dynamic symmetric searchable encryption schemes for

geometric range search. Our constructions are the first to provide forward/backward

137

privacy in the context of SSE-based schemes supporting geometric range search. In

addition, we defined a security notion called content privacy. This security notion

captures the leakages that are critical in the context of geometric range search but

not considered by forward/backward privacy. Content privacy eliminates the leakage

on the updated points of the database during both search and update. Due to the

inherent leakages associated with range queries, none of the existing related works can

support content privacy whereas the design of our constructions avoids such leakages.

When compared to the state-of-the-art schemes our constructions provide a higher

level of security and practical efficiency supported by our experimental results.

138

Chapter 6

Conclusions and Future Work

This chapter summarizes the outcomes of this dissertation and presents recommen-

dations for future work.

6.1 Summary

In this dissertation we addressed three problems of SSE. First, we gave an SSE

scheme which supports multi-reader setting. Our scheme preserves the privacy of

database content as well as user privacy (in terms of the search query). Moreover,

two approaches for user revocation and a solution for fast and efficient re-encryption

(update) of the database using the new key are provided. Second, we proposed

a generic solution for multi-keyword ranked search over the encrypted cloud data.

The most significant attribute of this solution is that it is not vulnerable against

the common attacks that take advantage of OPE leakage while only a single cloud

server is used. Lastly, we proposed two forward/backward secure dynamic SSE

which support geometric range search. Moreover, we introduced a security notion

called content privacy which captures the leakages that are critical in the context of

geometric range search but not considered by forward/backward security.

139

6.2 Future Work

A further study could provide a multi-user SSE scheme which supports the dynamic

setting. That is, despite of all of the nice features that the first scheme presented in

this dissertation provides, it is designed in the static mode. Support of the dynamic

setting can further improve the functionality and flexibility of the scheme.

For the second proposed scheme in this dissertation, further experimental in-

vestigations are needed to estimate the computation and communication costs in

practice. Further study should be carried out on the possible improvement in terms

of reducing the computational complexity.

Finally, further research could also be conducted to design a dynamic SSE scheme

for spatial datasets that supports both forward and backward privacy at the same

time.

140

References

[1] Tao Jiang, Xiaofeng Chen, Jin Li, Duncan S. Wong, Jianfeng Ma, and

Joseph K. Liu. Towards secure and reliable cloud storage against data re-

outsourcing. Future Generation Comp. Syst., 52:86–94, 2015.

[2] Kaitai Liang, Willy Susilo, and Joseph K. Liu. Privacy-preserving ciphertext

multi-sharing control for big data storage. IEEE Trans. Information Forensics

and Security, 10(8):1578–1589, 2015.

[3] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-

Catalin Rosu, and Michael Steiner. Highly-scalable searchable symmetric en-

cryption with support for boolean queries. In CRYPTO ’13, pages 353–373,

2013.

[4] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Search-

able symmetric encryption: improved definitions and efficient constructions.

In ACM CCS ’06, pages 79–88, 2006.

[5] Dawn Xiaoding Song, D. Wagner, and A. Perrig. Practical techniques for

searches on encrypted data. In Security and Privacy, 2000. S P 2000. Proceed-

ings. 2000 IEEE Symposium on, pages 44–55, 2000.

[6] Melissa Chase and Seny Kamara. Structured Encryption and Controlled Dis-

closure, pages 577–594. Springer, 2010.

141

[7] Xu Yang, Ting-Ting Lee, Joseph K. Liu, and Xinyi Huang. Trust enhancement

over range search for encrypted data. In IEEE Trustcom, pages 66–73, 2016.

[8] Kaitai Liang, Xinyi Huang, Fuchun Guo, and Joseph K. Liu. Privacy-

preserving and regular language search over encrypted cloud data. IEEE Trans.

Information Forensics and Security, 11(10):2365–2376, 2016.

[9] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas Peter. A survey of

provably secure searchable encryption. ACM Comput. Surv., 47(2):18:1–18:51,

August 2014.

[10] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.

Public Key Encryption with Keyword Search, pages 506–522. Springer, 2004.

[11] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. On the integration

of public key data encryption and public key encryption with keyword search.

In International Conference on Information Security, pages 217–232. Springer,

2006.

[12] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Public key encryption

with keyword search revisited. In International conference on Computational

Science and Its Applications, pages 1249–1259. Springer, 2008.

[13] Dalia Khader. Public key encryption with keyword search based on k-resilient

ibe. In International Conference on Computational Science and Its Applica-

tions, pages 1086–1095. Springer, 2007.

[14] Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee. Improved

searchable public key encryption with designated tester. In AsiaCCS, pages

376–379, 2009.

[15] Feng Bao, Robert H. Deng, Xuhua Ding, and Yanjiang Yang. Private query

on encrypted data in multi-user settings. In ISPEC 2008, pages 71–85, 2008.

142

[16] Eu-Jin Goh. Secure indexes. IACR Cryptology ePrint Archive, 2003:216, 2003.

[17] Yanjun Shen and Peng Zhang. Ranked searchable symmetric encryption sup-

porting conjunctive queries. In International Conference on Information Se-

curity Practice and Experience, pages 350–360. Springer, 2017.

[18] Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. Enabling secure and

efficient ranked keyword search over outsourced cloud data. IEEE Transactions

on parallel and distributed systems, 23(8):1467–1479, 2012.

[19] Xiuxiu Jiang, Jia Yu, Jingbo Yan, and Rong Hao. Enabling efficient and

verifiable multi-keyword ranked search over encrypted cloud data. Information

Sciences, 403:22–41, 2017.

[20] Foteini Baldimtsi and Olga Ohrimenko. Sorting and searching behind the

curtain. In International Conference on Financial Cryptography and Data Se-

curity, pages 127–146. Springer, 2015.

[21] Xianrui Meng, Haohan Zhu, and George Kollios. Top-k query process-

ing on encrypted databases with strong security guarantees. arXiv preprint

arXiv:1510.05175, 2015.

[22] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson.

Learning to reconstruct: Statistical learning theory and encrypted database

attacks. In IEEE Symposium on Security and Privacy (S&P) 2019, 2019.

[23] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Improved

reconstruction attacks on encrypted data using range query leakage. In 2018

IEEE Symposium on Security and Privacy (SP), pages 297–314. IEEE, 2018.

[24] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill. Generic

attacks on secure outsourced databases. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, pages 1329–

1340. ACM, 2016.

143

[25] Evgenios M Kornaropoulos, Charalampos Papamanthou, and Roberto Tamas-

sia. Data recovery on encrypted databases with k-nearest neighbor query leak-

age. In Proceedings of IEEE Symposium on Security and Privacy, 2018.

[26] Raphael Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward

private searchable encryption from constrained cryptographic primitives. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-

nications Security, pages 1465–1482. ACM, 2017.

[27] Raphael Bost. σoϕoς: Forward secure searchable encryption. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Se-

curity, pages 1143–1154. ACM, 2016.

[28] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November

1979.

[29] Bellare, Namprempre, Pointcheval, and Semanko. The one-more-rsa-inversion

problems and the security of chaum’s blind signature scheme. Journal of Cryp-

tology, 16(3):185–215, 2003.

[30] David Chaum. Blind Signature System, pages 153–153. Springer US, 1984.

[31] Emmanuel Bresson, Jean Monnerat, and Damien Vergnaud. Separation Results

on the “One-More” Computational Problems, pages 71–87. Springer, 2008.

[32] Jung Hee Cheon, Miran Kim, and Myungsun Kim. Optimized search-and-

compute circuits and their application to query evaluation on encrypted data.

IEEE Transactions on Information Forensics and Security, 11(1):188–199,

2016.

[33] Oded Regev. On lattices, learning with errors, random linear codes, and cryp-

tography. Journal of the ACM (JACM), 56(6):34, 2009.

144

[34] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from

learning with errors: Conceptually-simpler, asymptotically-faster, attribute-

based. In Advances in Cryptology–CRYPTO 2013, pages 75–92. Springer, 2013.

[35] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Key

Homomorphic PRFs and Their Applications, pages 410–428. Springer, 2013.

[36] Emily Shen, Elaine Shi, and Brent Waters. Predicate Privacy in Encryption

Systems, pages 457–473. Springer, 2009.

[37] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.

Public key encryption with keyword search. In International conference on the

theory and applications of cryptographic techniques, pages 506–522. Springer,

2004.

[38] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E Skeith. Public

key encryption that allows pir queries. In Annual International Cryptology

Conference, pages 50–67. Springer, 2007.

[39] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill.

Order-Preserving Symmetric Encryption, pages 224–241. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2009.

[40] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on

oblivious rams. Journal of the ACM (JACM), 43(3):431–473, 1996.

[41] Michael T Goodrich and Michael Mitzenmacher. Privacy-preserving access of

outsourced data via oblivious ram simulation. In International Colloquium on

Automata, Languages, and Programming, pages 576–587. Springer, 2011.

[42] Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of

mud: practical access pattern privacy and correctness on untrusted storage.

In Proceedings of the 15th ACM conference on Computer and communications

security, pages 139–148. ACM, 2008.

145

[43] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious dis-

tributed cloud data store. In NDSS, 2013.

[44] Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure oram with

Õ(log2 n) overhead. In International Conference on the Theory and Application

of Cryptology and Information Security, pages 62–81. Springer, 2014.

[45] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel ram and

applications. In Theory of Cryptography Conference, pages 175–204. Springer,

2016.

[46] Michael T Goodrich. Isogrammic-fusion oram: Improved statistically secure

privacy-preserving cloud data access for thin clients. In Proceedings of the

2018 on Asia Conference on Computer and Communications Security, pages

699–706. ACM, 2018.

[47] Michael T Goodrich. Bios oram: improved privacy-preserving data access for

parameterized outsourced storage. In Proceedings of the 2017 on Workshop on

Privacy in the Electronic Society, pages 41–50. ACM, 2017.

[48] Benny Pinkas and Tzachy Reinman. Oblivious ram revisited. In Annual Cryp-

tology Conference, pages 502–519. Springer, 2010.

[49] Shifeng Sun, Joseph K. Liu, Amin Sakzad, Ron Steinfeld, and Tsz Hon Yuen.

An efficient non-interactive multi-client searchable encryption with support for

boolean queries. In ESORICS 2016, Part I, pages 154–172, 2016.

[50] Boyang Wang, Ming Li, and Haitao Wang. Geometric range search on en-

crypted spatial data. IEEE Transactions on Information Forensics and Secu-

rity, 11(4):704–719, 2016.

[51] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic

searchable encryption with small leakage. In NDSS, volume 71, pages 72–75,

2014.

146

[52] Peishun Wang, Huaxiong Wang, and Josef Pieprzyk. Threshold privacy pre-

serving keyword searches. Lecture Notes in Computer Science, 4910:646–658,

2008.

[53] Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu,

and Michael Steiner. Outsourced symmetric private information retrieval. In

ACM CCS’13, pages 875–888. ACM, 2013.

[54] Christoph ”Bösch, Qiang Tang, Pieter Hartel, and Willem” Jonker. Selective

Document Retrieval from Encrypted Database, pages 224–241. Springer, 2012.

[55] Yan-Cheng Chang and Michael Mitzenmacher. Privacy Preserving Keyword

Searches on Remote Encrypted Data, pages 442–455. Springer, 2005.

[56] Changyu Dong, Giovanni Russello, and Naranker Dulay. Shared and searchable

encrypted data for untrusted servers. In IFIP DBSEC, pages 127–143, 2008.

[57] Philippe Golle, Jessica Staddon, and Brent Waters. Secure Conjunctive Key-

word Search over Encrypted Data, pages 31–45. Springer, 2004.

[58] Bijit Hore, Sharad Mehrotra, Mustafa Canim, and Murat Kantarcioglu. Secure

multidimensional range queries over outsourced data. The VLDB Journal,

21(3):333–358, June 2012.

[59] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pat-

tern disclosure on searchable encryption: Ramification, attack and mitigation.

In NDSS, 2012.

[60] Florian Kerschbaum and Alessandro Sorniotti. Searchable Encryption for Out-

sourced Data Analytics, pages 61–76. Springer, 2011.

[61] M. Kuzu, M. S. Islam, and M. Kantarcioglu. Efficient similarity search over

encrypted data. In 2012 IEEE Int. Conf. Data Engineering, pages 1156–1167,

2012.

147

[62] M. Raykova, A. Cui, B. Vo, B. Liu, T. Malkin, S. M. Bellovin, and S. J. Stolfo.

Usable, secure, private search. IEEE Security Privacy, 10(5):53–60, Sept 2012.

[63] Zhihua Xia, Xinhui Wang, Xingming Sun, and Qian Wang. A secure and

dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE

Transactions on Parallel and Distributed Systems, 27(2):340–352, 2016.

[64] Fangming Zhao, Takashi Nishide, and Kouichi Sakurai. Multi-User Keyword

Search Scheme for Secure Data Sharing with Fine-Grained Access Control,

pages 406–418. Springer, 2012.

[65] Yanjiang Yang, Haibing Lu, and Jian Weng. Multi-user private keyword search

for cloud computing. In CloudCom ’11, pages 264–271, 2011.

[66] Raluca A. Popa and Nickolai Zeldovich. Multi-key searchable encryption. IACR

Cryptology ePrint Archive, 2013:508, 2013.

[67] Q. Tang. Nothing is for free: Security in searching shared and encrypted data.

IEEE Trans. on Information Forensics and Security, 9(11):1943–1952, Nov

2014.

[68] Xiaoxin Wu, Lei Xu, and Xinwen Zhang. Poster: A certificateless proxy re-

encryption scheme for cloud-based data sharing. In ACMCCS, pages 869–872.

ACM, 2011.

[69] Yong Ho Hwang and Pil Joong Lee. Public Key Encryption with Conjunc-

tive Keyword Search and Its Extension to a Multi-user System, pages 2–22.

Springer, 2007.

[70] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno,

Tanja Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi.

Searchable Encryption Revisited: Consistency Properties, Relation to Anony-

mous IBE, and Extensions, pages 205–222. Springer, 2005.

148

[71] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and

Efficiently Searchable Encryption, pages 535–552. Springer, 2007.

[72] Dan Boneh and Brent Waters. Conjunctive, Subset, and Range Queries on

Encrypted Data, pages 535–554. Springer, 2007.

[73] Brent R. Waters, Dirk Balfanz, Glenn Durfee, and Diana K. Smetters. Building

an encrypted and searchable audit log. In NDSS 2004, 2004.

[74] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing.

In Advances in Cryptology—CRYPTO 2001, pages 213–229. Springer, 2001.

[75] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo

Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable

encryption in very-large databases: Data structures and implementation. In

NDSS, 2014.

[76] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi, W. George,

A. Keromytis, and S. Bellovin. Blind seer: A scalable private dbms. In 2014

IEEE Symposium on Security and Privacy, pages 359–374, 2014.

[77] Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In Interna-

tional Conference on Financial Cryptography, pages 1–20. Springer, 2000.

[78] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms

for middleware. Journal of computer and system sciences, 66(4):614–656, 2003.

[79] Ronald Fagin. Combining fuzzy information from multiple systems. Journal

of Computer and System Sciences, 58(1):83–99, 1999.

[80] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-preserving

multi-keyword ranked search over encrypted cloud data. In INFOCOM, 2011

Proceedings IEEE, pages 829–837. IEEE, 2011.

149

[81] Craig Gentry. A fully homomorphic encryption scheme. Stanford University,

2009.

[82] Dan Boneh, David Mazieres, and Raluca Ada Popa. Remote oblivious storage:

Making oblivious ram practical. 2011.

[83] Ivan Damg̊ard, Sigurd Meldgaard, and Jesper Nielsen. Perfectly secure obliv-

ious ram without random oracles. Theory of Cryptography, pages 144–163,

2011.

[84] Peter Williams and Radu Sion. Single round access privacy on outsourced

storage. In Proceedings of the 2012 ACM conference on Computer and com-

munications security, pages 293–304. ACM, 2012.

[85] Jaideep Vaidya and Chris Clifton. Privacy-preserving top-k queries. In Data

Engineering, 2005. ICDE 2005. Proceedings. 21st International Conference on,

pages 545–546. IEEE, 2005.

[86] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Or-

der preserving encryption for numeric data. In Proceedings of the 2004 ACM

SIGMOD, pages 563–574. ACM, 2004.

[87] Muhammad Naveed, Seny Kamara, and Charles V Wright. Inference attacks

on property-preserving encrypted databases. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, pages 644–

655. ACM, 2015.

[88] F Betül Durak, Thomas M DuBuisson, and David Cash. What else is revealed

by order-revealing encryption? In Proceedings of the 2016 ACM SIGSAC Con-

ference on Computer and Communications Security, pages 1155–1166. ACM,

2016.

150

[89] Ke Li, Weiming Zhang, Ce Yang, and Nenghai Yu. Security analysis on one-to-

many order preserving encryption-based cloud data search. IEEE Transactions

on Information Forensics and Security, 10(9):1918–1926, 2015.

[90] Ian H Witten, Alistair Moffat, and Timothy C Bell. Managing gigabytes: com-

pressing and indexing documents and images. Morgan Kaufmann, 1999.

[91] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully

homomorphic encryption without bootstrapping. ACM Transactions on Com-

putation Theory (TOCT), 6(3):13, 2014.

[92] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Tfhe:

Fast fully homomorphic encryption over the torus.

[93] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of

learning with errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

[94] Security estimates for the learning with errors problem,

”https://bitbucket.org/malb/lwe-estimator”.

[95] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic search-

able symmetric encryption. In Proceedings of the 2012 ACM conference on

Computer and communications security, pages 965–976. ACM, 2012.

[96] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Search-

able symmetric encryption: improved definitions and efficient constructions.

Journal of Computer Security, 19(5):895–934, 2011.

[97] Florian Kerschbaum and Axel Schroepfer. Optimal average-complexity ideal-

security order-preserving encryption. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security, pages 275–286. ACM,

2014.

151

[98] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. Path oram: an extremely simple obliv-

ious ram protocol. In Proceedings of the 2013 ACM SIGSAC conference on

Computer & communications security, pages 299–310. ACM, 2013.

[99] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachan-

dran Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikr-

ishna Badrinarayanan. Big data analytics over encrypted datasets with seabed.

In 12th {USENIX} Symposium on Operating Systems Design and Implemen-

tation ({OSDI} 16), pages 587–602, 2016.

[100] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and

Thomas Ristenpart. Leakage-abuse attacks against order-revealing encryption.

In 2017 IEEE Symposium on Security and Privacy (SP), pages 655–672. IEEE,

2017.

[101] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your

queries are belong to us: The power of file-injection attacks on searchable

encryption. In 25th {USENIX} Security Symposium ({USENIX} Security 16),

pages 707–720, 2016.

[102] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pat-

tern disclosure on searchable encryption: Ramification, attack and mitigation.

In NDSS, volume 20.

[103] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-

abuse attacks against searchable encryption. In Proceedings of the 22nd ACM

SIGSAC conference on computer and communications security, pages 668–679.

ACM, 2015.

[104] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo

Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable

152

encryption in very-large databases: data structures and implementation. In

NDSS, volume 14, pages 23–26. Citeseer, 2014.

[105] Boyang Wang, Ming Li, and Li Xiong. Fastgeo: Efficient geometric range

queries on encrypted spatial data. IEEE transactions on dependable and secure

computing, 2017.

[106] Guowen Xu, Hongwei Li, Yuanshun Dai, Kan Yang, and Xiaodong Lin. En-

abling efficient and geometric range query with access control over encrypted

spatial data. IEEE Transactions on Information Forensics and Security,

14(4):870–885, 2019.

[107] Boyang Wang, Ming Li, Haitao Wang, and Hui Li. Circular range search on

encrypted spatial data. In 2015 IEEE Conference on Communications and

Network Security (CNS), pages 182–190. IEEE, 2015.

153

APPENDICES

154

Appendix A

Experimental Results

A.1 Multi-client symmetric searchable

encryption

This section presents the implementation of our scheme and some results from using

different number of keywords as well as different thresholds.

We implemented our scheme and OXT (there is no open source implementation

of OXT) with multi-client to show the differences in token generation process. In

multi-client OXT, a data owner provides search tokens to clients based on their

queries whereas in our scheme a client (initiator) generates the search token with the

assistance of a subset of clients (helping users). Therefore, we investigate the time

consumed for computation and communication in the token generation process in

both schemes.

The token generation process in our scheme consists of three main steps; keyword

randomization, partial evaluation, and combine.

• keyword randomization: the initiator ic starts the process by randomizing the

155

search keyword z = H(w)r and then sends it to other users ij.

• partial evaluation: Each user performs partial evaluation over the received

value using its share of the key yij = zkij and then returns the result to the

initiator.

• combine: Upon receiving of θ − 1 number of responses from the helping users,

the initiator would be able to reach the full evaluation by combining them

(the initiator also computes a partial evaluation of the search keyword) yr =

(F(kij , z))
θ−1

j=1
= F(k0, z) and unrandomize it to gain the search token yr = yr

−1
.

The first two steps are independent of the considered threshold θ, thus consume a

fix amount of time.

Setup Environment. The system is deployed in Microsoft Azure. We use an

E32s V3 instance (32 vCores, 256GB RAM) as the SSE index server, another D8s

v3 instance (8 vCores, 32GB RAM) as the main client. We use 25 D2s v3 instances

(2 vCores, 8GB RAM) to simulate the multi-client scenario. All servers are located

in the same LAN, and equipped with 40 Gbps (5GB/s equivalent) NIC.

To imporve the runtime performance of our implementation (both for OXT and

our protocol), we leverage an in-memory key-value storage Redis [?] to keep the gen-

erated TSet for querying purpose later. In addition, we deploy the Bloom filter from

Alexandr Nikitin [?] as it is the fastest Bloom filter implementation for JVM. The

false positive rate of the bloom filter is set to 10−6, which enables our implementation

to keep the XSet in a small fraction of RAM on the server.

We test our implementation on a dataset from Wikimedia Downloads [?] and the

size of our dataset is 2.93GB1 with 6.2 ∗ 107 (keyword, id) pairs.

We used the Java Pairing-Based Cryptography Library (JPBC) [?].

EDB Setup. We have tested 2.93GB dataset for Setup in OXT and our scheme.

The time consumption for the generation of the encrypted database for our scheme

1enwiki-20161220-pages-articles22.xml

156

Figure A.1: Stag generation of the encrypted database with a fixed threshold

10
0

10
1

10
2

10
3

10
4

Selectivity of S-Term

0.01

0.1

1

10

100

T
im

e
 (

s
e

c
)

N=5

N=10

N=15

N=20

N=25

((a)) θ = 3

10
0

10
1

10
2

10
3

10
4

Selectivity of S-Term

0.01

0.1

1

10

100

T
im

e
 (

s
e

c
)

N=15

N=20

N=25

((b)) θ = 15

Figure A.2: xtoken generation of the encrypted database with a fixed threshold

is 27.5 hours and for OXT is 5 hours. Note that in both schemes this phase is need

to be performed once only.

Token Generation. Since the search token has the same components (Stag and

Xtoken) in both MCSSE and OXT, the only difference is the way MCSSE generate

these components. Therefore, we compare the generation time for Stag and Xtoken.

Fig. A.1 illustrates the stag generation time where the threshold is fixed (θ = 5)

and the number of client is increasing from 5 to 25. It is apparent from this figure that

OXT is faster for the small number of clients. However, we observe that, with the

increase of the number of clients, MCSSE maintains a constant time for generating

the Stags where as the time consumption of OXT is linear to the number of users.

In the given instantiation when the number of clients reaches 15 then both schemes

behave almost the same. If there are more than 15 clients, MCSSE outperforms

157

Figure A.3: xtoken selectivity

OXT in terms of stag generation. The reason for that is the client in MC-OXT can

only rely on θ other clients to generate the stag, while the client of OXT should

request stag from the data owner. As a result, if the data owner is busy, i.e., there

are multiple stag requests, the client needs to wait longer for the response.

Later, we choose keyword with 3 to 742 matching documents (we call it the selec-

tivity of the keyword) to evaluate the performance of xtoken generation. Fig. A.2(a)

and Fig. A.2(b) demonstrate the xtoken generation time for two different thresh-

olds θ = 3 and θ = 15. We can see that the xtoken generation time is a constant

for a fixed threshold and selectivity. Therefore, MCSSE is highly scalable while its

performance is not affected by the number of clients.

We also compare the xtoken generation time of MCSSE and OXT with a fixed

threshold and selectivity. As shown in Figure A.3 for the fixed threshold 5 and

selectivity 50, when the number of the client increases, the time for distribution of

the xtoken in OXT increases whereas MC-OXT consumes a constant time. That is,

to generate the xtoken in OXT, the client have to refer to the data owner and there

might be a large amount of requests, which leads to a noticeable delay for xtoken

generation.

EDB Update. We examine the runtime performance of proposed update strat-

egy in our test dataset. In OXT, if we want to re-encrypt the EDB, we need to

download the whole database and re-run the EDB setup phase, which is a time-

158

consuming procedure (5 hours). In MCSSE, this overhead is reduced to the half,

that is, MCSSE only download TSet for updating, which takes only 3s. In addition,

it requires 1.3 hour to update in a single-core machine on the data owner side. At

the same time, XSet can be updated by within 40 minutes on the server side. In

conclusion, compared to the traditional update strategy, MCSSE is able to update

the EDB 3.8x faster.

Token Revocation. We evaluate the performance of the two revocation ap-

proaches of MCSSE with different number of users and different thresholds. For all

the chosen thresholds (3 to 25) and numbers of clients (5 to 25 clients), the average

time for user revocation in Approach 1 is 37.83 ms as the data owner requires to

generate the new shares of the key and send it to the all of the valid clients. The

Approach 2 offers a more efficient solution which only requires 200 µs for generation

of the key material for the key update and publishes it in to the public repository,

which avoids the network communication overhead.

RDPRF Performance Discussion. We give a brief discussion about the per-

formance of RDPRF, as we use this new primitive to replace the PRF in OXT to

achieve multi-client property. Table A.1 summarizes the performance of this cryp-

tographic primitive for different number of clients and thresholds. To have realistic

evaluation of the practicality of the proposed scheme, We considered two conditions

for the location of the users; Intranet and Internet [?]. For the internet case, we

considered that the main client is placed in US East but not hosted by Azure, and

all assist clients are hosted by Azure US East. In both cases, we observe that the

proposed RDPRF scheme has the property that if the threshold is fixed, it always

runs with a constant delay. This is the key for MCSSE to support multi-client setting

efficiently. While in supporting multi-client in the traditional way using OXT the

network overhead becomes the bottleneck of the system.

159

Table A.1: RDPRF Performance

Number of clients Threshold
Time (ms)

Intranet Internet

5
3 41.2 118.2
5 44.1 121.0

10
5 46.3 123.7
10 60.2 137.1

15
10 60.5 136.5
15 78.3 154.2

20
15 80.4 155.3
20 94.5 171.5

25
20 97.0 173.9
25 107.5 184.4

A.2 Geometric range search on encrypted data

with forward/backward privacy

This section presents the experimental evaluation on the performance of the proposed

constructions. Our scheme is implemented in Java (Nodejs v10.10.0, Typescript

v3.4.3) on a 64-bit machine with 3.1GHz Intel R©Core(i5) processor and 16 GB RAM

inside. We implemented PRF evaluations with SHA-256.

Setup Cost. For a dataset with 20K data points where the dimension size of

each coordinate is D = 215, the setup of both of our constructions takes about 23

seconds to be performed. For the mentioned dataset the setup phase generates 938.9

MB encrypted dataset.

Search Complexity. We examined the search running time in two different

scenarios; when the dimension size grows from D = 27 to D = 215, and when the

number of data points increases from 400 points to 20K points. From the graphs

presented in Figure A.4 we can see that the server search is quite efficient for both

Construction-I and Construction-II, at maximum of 0.91 ms and 0.45 ms, respec-

tively. More precisely, the dimension size does not have a significant effect on the

160

server search time and the range size of a query results in variant search time.

Figure A.4: Search time vs. dimension size (20K points)

From Figure A.5, it can be seen that although the search time is linear to the

number of the data points in both of the proposed constructions for both server

and client (as the number of the data points indicates the size of each ciphertext),

both constructions are practical and quite fast at only about one second in the worst

case. More precisely, for Construction-I in the worst case of 20K data points the

server requires only 0.68 ms to find the matches and then client requires 0.1 ms

to decrypt them and find the final results. Construction-II is slightly faster in the

server side and a bit slower in the client side. That is, due to the use of homomorphic

property of ASHE, client requires multiple keys for decryption of intermediate nodes

in Construction-II. In the worst case of 20K data points, Construction-II requires

0.43 ms and 1.3 sec search time for the server and the client, respectively.

Update Complexity. We first evaluated the update complexity when the size

of the environment expands while the number of data points and number of update

points are fixed at 20K and 10, respectively. As shown in Figure A.6, the update

complexity in Construction-I for the server is constant at less than 0.01 sec and for

the client it grows slightly from 0.1 sec to 0.5 sec. However, in Construction-II the

increase in the dimension size affects the update complexity in both client and server.

161

Figure A.5: Search time vs. number of data points (D = 215)

The main reason is that by expansion in the dimension size, the size of the binary

tree also expands. Thus, the client has to generate the update tokens for all the leaf

nodes which in turn results in higher communication overhead (as shown in Figure

A.7). Moreover, the server also must update the whole binary tree, hence expansion

in the dimension size will result more complexity for the server.

Figure A.6: Update time vs. dimension size (20K points, 10 points per update)

We extended our experiments to demonstrate the effect of the number of the

update points on the update complexity. We chose the largest dimension size (D =

2t = 215) from the previous experiment and a fixed number of data points at 20K. It

162

Figure A.7: Update communication vs. dimension size

is apparent from Figure A.8 that only the client update complexity in Construction-I

grows linearly with the number of update points. However, as shown in Figure A.9 in

terms of communication overhead, Construction-I is more efficient when the number

of the update points are smaller.

Figure A.8: Update time vs. number of updating points (20K points, D = 215)

163

Figure A.9: Update communication vs. number of updating points

164

	List of Tables
	List of Figures
	Introduction
	Motivation
	Research Objectives

	Main Contributions Summary
	Multi-client symmetric searchable encryption
	Multi-keyword ranked symmetric searchable encryption
	Geometric range search on encrypted data with forward/backward privacy

	Thesis Structure

	Background
	Cryptographic Background
	Threshold secret sharing
	One-more one-way function
	Decisional Diffie-Hellman
	Ring-LWE problem
	Homomorphic Encryption from RLWE
	Homomorphic Encryption from Learning with Errors (LWE)
	Homomorphic Encryption from Ring-GSW
	Pseudorandom Functions (PRFs)
	Shen, Shi and Waters Encryption (SSW)

	Alternative approaches for search on encrypted data
	Public Key Encryption with keyword Search (PKES)
	Order Preserving Encryption (OPE)
	Oblivious RAM

	Searchable Encryption
	Preliminaries
	Notations and assumptions
	Syntax of Symmetric Searchable Encryption
	Syntax of Dynamic Symmetric Searchable Encryption

	Oblivious Cross Tags (OXT)
	RSA-SSE
	Geometric Range Searchable Encryption (GRSE)

	Security
	SSE Leakage Profile
	DSSE Leakage Profile
	Forward Privacy
	Backward privacy

	Summary

	Multi-client symmetric searchable encryption
	Overview
	Motivation
	Contributions

	Preliminaries
	Notations

	Background
	Syntax of multi-client SSE
	Security definitions of multi-client SSE
	Privacy against server
	Query privacy against other key share holders
	Database content privacy against active collusion
	Database content privacy after update
	Database content privacy after revocation

	Randomizable Distributed Key Homomorphic PRFs
	Definition
	PRF Evaluation protocol
	Correctness.
	PRF security definition of RDPRF.
	RDPRF Active Collusion Security Definition.
	Query privacy security of RDPRF

	Concrete construction of RDPRF

	Multi-client symmetric searchable encryption
	Construction
	Update, Revocation and Enrollment
	Update
	Revocation
	Enrolment

	Security analysis
	Security, Functionality and Performance Comparison
	Summary

	Multi-keyword ranked symmetric searchable encryption
	Overview
	Motivations
	Contributions and technique

	Preliminaries
	Our threshold-based filtering approach
	Homomorphic operations
	Homomorphic search algorithm
	Homomorphic filter algorithm

	Our multi-keyword ranked searchable symmetric encryption scheme
	Modes of operation

	Evaluation
	Computation complexity
	Communication complexity

	Summary

	Geometric range search on encrypted data with forward/backward privacy
	Introduction
	Preliminaries
	Additive homomorphic encryption
	Symmetric additive homomorphic encryption.

	Security definition

	Security notions
	Content privacy
	Example of content privacy against the existing dynamic SSE

	Syntax of DSSE with geometric range query
	SSE schemes for geometric range search
	Overview
	 Setup
	 Search
	 Update

	The naive solution
	Construction-I
	Setup
	Search
	Update

	Construction-II

	Comparison
	Security analysis
	Range search leakage functions
	Construction-I
	Construction-II

	Summary

	Conclusions and Future Work
	Summary
	Future Work

	References
	APPENDICES
	Experimental Results
	Multi-client symmetric searchable encryption
	Geometric range search on encrypted data with forward/backward privacy

