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where
qb � volume of public transport vehicles
qa � volume of auto traffic
N � number of traffic lanes
X � (average auto occupancy/average public transport vehicle occupancy).

A range of studies have undertaken before/after monitoring of public transport prior-
ity schemes including both road-space priority measures (mainly bus lanes) (Flachsbart 
1989; Anlezark et al. 1994; St. Jacques and Levinson 1997; Levinson et al. 2003; Ernst 
2005; Currie 2006b; Barr et al. 2010) and traffic signal priority measures (Furth and 
Muller 2000; Kittelson & Associates et al. 2003; Smith et al. 2005; Zheng et al. 2009). A 
‘meta’ study summarizing the major outcomes of these studies was undertaken as part 
of an Australian Research Council funded project to understand evidence on the impacts 
of priority systems (Goh and Currie 2012). The results are summarized in Figure 25.4.

Figure 25.4 indicates that for road-space measures; as a general rule, grade separated 
busways (ROW A) achieve higher savings in travel time as a share and in absolute terms 
per route kilometre compared with the other measures shown. Average mid-range savings 
in time as a share of total travel time were 46 percent for grade separated busways, 31 
percent for at-grade segregated busways (ROW B) and 21 percent for at-grade exclu-
sive and mixed use bus lanes (ROW C). Savings in travel time per route kilometre 
(Figure 25.4, bottom left) have a similar pattern, however, at-grade segregated busways 
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Source:  Author’s photograph.

Figure 25.2  Example bus lane
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show some higher benefits per route kilometre compared with grade separated busways. 
This is thought to be due to high savings reported on one component project in the data 
which might be seen as an unusual data point or outlier. Nevertheless the data implies 
that per route kilometre, grade separated busways/at-grade segregated busways average 
around 1.7/1.9 minutes’ savings in travel time per route kilometre and that these savings 
are typically at least three times larger than comparable at-grade exclusive and mixed use 
bus lanes.

For traffic signal priority measures (Figure 25.4, right) there is a large range in per-
formance with European examples (for example, Eindhoven) showing higher perform-
ance. Overall savings in travel time have ranged between 0 percent and 89 percent with 
a mid-range value of 16 percent. It is rare to see no benefit resulting from traffic signal 
priority measures from the published data. Savings in traffic signal delay are generally 

Example public transport gate in

Wellington, NZ

Here a contra-�ow bus lane provides a link in

the road network which general tra�c cannot

make. Also note the bus lane uses greencoloured

roads. This standard acts to make it

clear to all road users that the road is exclusive

to public transport.

Turn ban public transport exception

Here buses are permit to make turns which

other tra�c cannot.

Source:  Authors photographs.

Figure 25.3  Public transport gates and turn bans
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Table 25.2  Typology of public transport priority measures – traffic signal measures

Measure Details

Passive signal priority

Shorter cycle time ●	� On average shorter cycle times mean more opportunities for public transport 
vehicles to pass through signals on green. It also shortens red time

Priority movement  
 � phase cycle 

repetition or 
phase splitting

●	� Light phases required for movement of public transport vehicles are used more 
than once during a cycle. This can substantially reduce effective cycle times for 
public transport vehicles

Green priority  
 � weighting

●	� The proportion of green time given to a public transport phase can be weighted 
higher than total traffic flow on that phase would otherwise have

Turning phasing  
 � design

●	� Intersection turns from the kerbside lanes often cause traffic delays due to 
pedestrians delaying turning vehicles. This can delay kerbside public transport 
operations. Alternatively trams operating in median lanes are frequently delayed 
by right-turning traffic. The introduction and timing of traffic turning phases can 
act to clear the paths of public transport vehicles

Signal linking and  
 � green waves

●	� Signal timings can be offset in a progression between a series of linked signals. 
These can be timed relative to public transport operating speeds and scheduled 
times between the signals

Time of day  
 � phasing variation

●	� Can operate as a part of green waves and linking signal progressions to public 
transport vehicle speeds which vary by time of day

●	� Another approach is to adjust phases in peak and off-peak directions

Active signal priority

Green extension ●	� Green time is extended when a public transport vehicle is detected. Extension is as 
long as required for the vehicle to clear the lights

Green early start ●	� Conversely to the above, when a public transport vehicle is detected and the lights 
are red, an early start green phase is introduced

Special public  
 � transport phase/

bus sluice

●	� This can include the use of B (bus) or T (Tram) lights to undertake a special public 
transport only turn phase

●	� The bus sluice is a special bus only traffic-light phase to enable a vehicle to pass 
in front of other traffic so it can cross traffic lanes unimpeded by traffic. This is 
usually for difficult right turns which must be made from a kerbside lane or left 
turns from a median lane

Phase suppression ●	� In more complex phase sequences a phase can be omitted from the cycle and 
reintroduced later to enhance public transport flows through the lights

Priority phase  
 � sequences

●	� Here a special phase or sequence of phases is introduced to clear turning traffic 
obstructing median trams (right-turn traffic) or kerbside public transport (left-
turn traffic)

Pedestrian crossing  
 � activation

●	� Where buses have difficult unsignalized turns into heavy traffic streams from side 
roads an innovative approach is to have vehicles activate pedestrian signals on the 
main road to create gaps in traffic

Phase  
 � compensation

●	� To balance the immediate effects of changing cycles to permit public transport 
priority, providing longer than normal cycles on those phases which were delayed 
is warranted. This can act to readjust traffic flows to create a more balanced 
system

Flexible window  
 � stretching (FWS)

●	� A more specific application of many of the above applications within the SCATS1 
traffic control system. FWS involves the use of early starts or green extensions as 
well as phase compensation. It is only used for bus.

Note:  1 SCATS = Sydney Coordinated Traffic Control System; a common area traffic signal control system 
in Australian cities.

Source:  Based on Webster and Bly (1976); Austroads (2002).
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higher than travel time savings, ranging in value between 6 percent and 80 percent with a 
typical mid-range value of 37 percent. There is some suggestion from this data that bus 
savings in intersection delay (typically around 42 percent) may be slightly higher than 
tram (typically 24 percent) but there are only a few data points to base this on, hence such 
comments are speculative.

In practice the above performance data show high dispersion which may be expected 
because the circumstances of any particular implementation are variable. In addition, 
there is much debate in the literature suggesting that simple travel time and delay metrics 
are a very limited way of viewing priority system impacts. As a result, approaches to 

Source:  Goh and Currie (2012).

Figure 25.4 � Synthesis of evidence of travel time and delay impacts of road space and 
road time (traffic signal) priority measures
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justifying priority based only on travel time impacts are now widely considered simplistic 
(Currie et al. 2007). For example the mode shift impacts of giving priority are rarely even 
considered. Decisions often reflect the professional background of the decision-makers 
(traffic engineers in road authorities) who fail to see benefits in terms of improved 
public transport reliability or fleet size impacts. Few studies even consider the costs of 
implementing priority (Currie et al. 2007). Research is now clear that there are far wider 
concerns than just travel time trade-offs between public transport and road users. Indeed, 
more recent approaches to exploring the justification of priority adopt an economic eval-
uation framework exploring costs and benefit trade-offs for all road users (Department 
of Transport Local Government and Regions 1997; Currie et al. 2007; Chisholm-Smith 
2011).

A useful model exploring the wider impacts of public transport priority systems on 
transport is provided by Levinson et al. (2003) and was later updated by Currie and 

Note: Bars indicate Standard Deviation Range from Mid Range Average,
Lines span low and high of values
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Figure 25.4  (continued)
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Sarvi (2013), as shown in Figure 25.5. The original model suggested priority systems 
initially generate passenger travel time savings, then fleet size and operating cost savings 
for public transport, followed by mode shift and, finally, land use development impacts. 
These impacts are suggested to occur sequentially after increasing thresholds of travel 
time savings resulting from priority. The updated model (Figure 25.5, bottom; Currie and 
Sarvi 2013) is based on empirical analysis of travel time, mode shift and fleet size impacts 
of priority schemes. This demonstrated that, rather than being sequential and exclusive, 
secondary benefits occur at increasing scale and occur together consecutively as travel 
time benefits of priority increase. Fleet size and operating costs savings were shown to 

Original model for the wider benefits of priority treatments
(Levinson et al. 2003) 

Updated model (Currie and Sarvi 2013) 
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be substantial (a 30-second saving in running time for Melbourne trams saved five peak 
trams worth over AU$30 million in addition to operating cost savings). However, fleet 
savings plateau above a threshold of travel time savings.

More recent research has also demonstrated that considerable road safety benefits 
might be associated with public transport priority projects (Goh et al. 2013). Priority 
treatments (bus lanes and signal priority) on buses in Melbourne were shown to have a 
before/after reduction in total crash history on roads of 18 percent, including an impres-
sive 31 percent reduction in the important fatal and serious crash group. Analysis of trend 
data suggests this is a 14 percent safety improvement effect; lane treatments were shown 
to have a larger net effect (–18 percent) than sign priority treatments (11 percent) (Goh 
et al. 2013). Later analysis has linked these safety effects to removing stopping buses from 
the traffic stream which eliminates many rear end and merging crashes as traffic avoid 
stopping buses. Bus lanes acting as a barrier to off-road crashes, and improved lines of 
sight of emerging side-road traffic as a result of bus lanes have also been linked to safety 
effects (Goh et al. 2014).

Lessons Learned

The following comments provide some technical guidance on issues in priority implemen-
tation based on practical experience.

Creating bus lanes by removing (reallocation) of traffic lanes versus adding new lanes 
(road expansion)
Traffic authorities do need to concern themselves with the negative impacts of removing 
road lanes to create a bus lane since it is likely to cause delay to prevailing traffic. Some 
authorities have added new lanes for the specific purpose of bus lanes, negating this 
concern. However, this is expensive.

Traffic compliance and interferences in lanes
Lanes are of no value if  traffic rules to exclude them are not complied with. Policing of 
lanes is an obvious solution but is hard to implement since the police often have other 
concerns and limited time availability. Automatic policing is possible and lane cameras 
are feasible (used in Sydney) as are cameras on buses (London). Complex lane compli-
ance rules do not lend themselves to compliance. For example, turning traffic is permitted 
access to bus and tram lanes in many cases, but the length of access to lanes and in what 
circumstances access is permitted make understanding the rules harder. A public educa-
tion campaign to better educate drivers about Melbourne tram lane rules had very little 
impact, with many drivers not really understanding the rules in any depth (Currie 2009).

Short lanes do not work
There is now evidence that shorter tram and bus lanes are ineffective, particularly in busy 
traffic contexts (Currie et al. 2007; Mulley 2010). Short lanes imply traffic queues as lane 
entrances and merging traffic conflict at lane ends. Delays to buses and traffic caused by 
these merging zones have to be minor to balance the benefits which a short lane provides. 
Traffic dislocation and delay can negatively affect buses as well as cars.
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Traffic signal priority doesn’t work in congested/saturated traffic
If  traffic is congested, buses/trams cannot access signals even if  they are green. Hence, 
a major need for effective traffic signal priority is free-flowing traffic. This is why many 
advanced signal priority systems have ‘conditional priority’; priority only provided if  
traffic flow is below saturation, for example, the London scoot traffic system (Hounsell 
et al. 2004). An alternative to this strategy is to ensure traffic volumes near traffic signal 
priority routes are below a certain threshold to ensure free flow of vehicles. This is termed 
traffic metering and is an approach adopted for the successful Zurich tram traffic signal 
priority system (Nash and Sylvia 2001). The system in Zurich is implemented through 
‘gating’ access of traffic into the central area using traffic signals. An automatic system 
holds back traffic to ensure volumes are manageable. Traffic signal priority savings to 
trams are significant, and central area traffic is never too high and quite comfortable for 
pedestrian as well as tram travel.

Traffic signal priority for early running trams/buses does not make sense
Any public transport vehicle which is running early and is provided with signal priority 
will operate even earlier than they otherwise would have. For this reason many advanced 
traffic signal priority systems provide ‘conditional priority’, that is, conditional on the 
vehicles running late.

Approach stops make traffic signal priority ineffective
Bus or tram stops on the approach side of intersections act to make for wasteful use of 
traffic signal priority. A critical part of making traffic signal priority work is predicting 
the time when public transport vehicles will arrive at the signal. This prediction is then 
used to adjust the signals such that lights are green. If  predictions are wrong, and the 
bus/tram is delayed, green time might be wasted. One factor commonly causing incorrect 
time predictions is the presence of stops approaching intersections. Variation in their use 
mean that often public transport vehicles are delayed. The solution is to relocate these 
stops to the departure side of the intersection.

Active traffic signal priority is more precise but more expensive/complex
Being able to provide priority only when public transport vehicles are there makes more 
sense but is complex and expensive to provide.

Uncertainty about commercial traffic signal priority systems
Many traffic signal priority systems are provided by commercial companies with 
copyright-protected algorithms. This often acts as a barrier to better understanding how 
they work. Some authorities have used ‘hardware in the loop’ systems to better under-
stand how priority works; this is linking of area traffic control systems to microsimula-
tion models such that they can test changes to road design and traffic signal priority 
settings.

Road authority buy-in and reluctance
In general, road authorities have more concern and experience in managing roads than 
public transport. It is natural to be concerned about how new technologies are adopted 
that might affect core road markets. A review of Australian traffic signal priority system 
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implementation found that in practice many traffic signal priority had been withdrawn 
because road authorities failed to see net benefits and/or had concerns about how 
systems would work in practice (Currie 2006a). Authorities are also keener to publish 
success stories than to share learnings resulting from system failures.

Need for public transport regulatory adjustment
It is increasingly common for bus/tram services to be operated under performance-based 
contracts. The provision of road-based public transport priority is rarely considered 
when these contracts are designed. They raise issues of who pays and who benefits from 
priority schemes. In Europe special contracting alliances are made between road authori-
ties and commercial bus companies to achieve priority investment and to share benefits 
(for example, Quality Bus Partnerships in the UK). There is a danger that the benefits of 
priority schemes put forward by road authorities are not passed on to public transport 
users if  arrangements for adjustments in contracts are not made. The author has expe-
rienced examples where the benefits of priority were squandered for the benefit of an 
improved time performance contract outcome by operators.

Need for partnership between road authorities and public transport planners
As can be seen from the text above, there has been a historical bias towards road authori-
ties limiting the design, scale and benefits of priority schemes as a result of limited ‘road 
based’ thinking. Design of schemes from both sides are needed.

5  PUBLIC TRANSPORT FACILITATION

Public transport facilitation is the adoption of general traffic engineering design princi-
ples which make possible effective and efficient flows of buses and trams. Where buses 
and trams operate in mixed traffic (ROW C), roads need to be designed so that public 
transport vehicles can physically move on these roads at reasonable speed and level of 
safety. This is not such an easy requirement in smaller residential blocks when vehicles 
can be large and often involve a low floor design. Public transport facilitation involves 
ensuring these vehicle movements are possible. It also concerns the more strategic layout 
and design of roads. It is inefficient for a bus or tram to have to turn around and return 
down a street which it has already travelled. Hence road layouts involving cul-de-sacs are 
inefficient from a public transport viewpoint and should be avoided.

Austroads (2002) has made a differentiation between strategic and local levels of facili-
tation for buses. Table 25.3 (based on Austroads 2002) shows some of the key measures 
identified with regard to strategic facilitation. This concerns the overall layout and design 
of roads relative to public transport. In general it is prudent for traffic engineers to under-
stand the specific requirements of the public transport vehicles being used in their area 
of responsibilities. These vehicles can change over time. Recent trends towards the use of 
‘ultra-low floor’ and ‘stretch rigid’ buses are examples where existing road infrastructure 
can be found wanting when new public transport vehicles are deployed.

Most strategic public transport facilitation measures apply equally to trams and light 
rail as well as buses. In general these issues will be considered during the design and 
construction of rail public transport systems. Traffic engineers in this case are more 
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Table 25.3  Traffic planning measures in strategic public transport facilitation (bus)

Facilitation 
measure

Rationale Approach

Land use cell  
 � connectivity

Development sites can be difficult for 
buses to move between blocks. Making 
right turns into a busy traffic stream 
is difficult. Some land blocks have a 
single entry and entry point which 
result in congestion and inefficient bus 
movements

Staggered T intersections where left turns to 
access main roads are a feature. Multiple entry 
and exit points to development blocks should 
be provided to reduce cases where buses must 
retrace their steps along the route

Subdivision  
 � permeability

Buses often have to retrace their steps in 
some development areas owing to poor 
road connectivity

Roads providing relatively straight through 
pathways should be provided. Adequate road 
widths are necessary for public transport 
vehicles

Pedestrian  
 � accessibility

Frequently, access to public transport 
stops is only available form one 
direction and indirect. Hence longer 
walks are required to access stops

Public transport stops should be located close to 
road crossing points and pathways connecting 
into other streets and residential development

Turns across  
 � major roads

Bus routes are often delayed by 
right turns into long and continuous 
unsignalized traffic flows

Roads should be designed to give preference 
for left turns for buses. Wherever right turns 
are necessary, the provision of roundabouts or 
traffic signals should be provided or ‘seagull’ 
acceleration lanes within the road medians

Carriageway  
 � and lane 

widths

Large vehicles need sufficient clearance 
for safe operation

Straight road – one way traffic – Minimum 
carriageway width between 7.4 and 8.0 metres 
to permits traffic to bypass stopped buses. 
Lane width between 3.7 and 4.0 metres. Where 
kerbside with cycles a width of 4.4 metres 
enables safety cycle passing
Straight road – two way traffic – Minimum 
carriageway width of 7.0 metres. Minimum 
lane width of 3.5 metres (can be reduced to 
3.1 metres in some cases)
Lane widths curved roads – Should be increased 
beyond normal design to accommodate larger 
public transport vehicles.

Road profiles Large public transport vehicles operate 
slowly on large road inclines. They also 
require clearance from the road surface 
for safe manoeuvring

Gradients should not normally exceed 6%. Small 
connecting ramps can be up to 10% (maximum). 
Cross fall should be limited to 5% to assist 
passenger stability

Road turns and  
 � curves

Turning large vehicles in confined 
conditions can be dangerous to other 
traffic and can cause delays

Consideration of the vehicle swept path should 
be given in each case

Bus stops and  
 � bays

Road geometry should encourage safe 
bus stops including adequate rear-view 
vision.

Bus bays enable buses to be removed from traffic 
flow. However consideration for re-entry to flow 
should be made

Stopping  
 � and parking 

restrictions

This ensures that buses may access bus 
stops easily and are not delayed on bus 
lanes

Clearways at bus stops are mandatory in many 
locations. Parking and stopping restrictions are 
also used

Priority  
 � enforcement

It is not uncommon to see bus lane 
measures breached in high traffic areas

Improved enforcement procedures including on 
and off  vehicle surveillance can be used

Source:  Adapted from Austroads (2002).
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concerned with the impacts of fixed public transport infrastructure on other road traffic 
flows adjacent to light rail schemes.

Table 25.4 (also based on Austroads 2002) shows some of the features of local-level 
public transport facilitation. These measures concern issues that arise when buses operate 
in areas where local area traffic management schemes have been introduced to enhance 
road safety and to reduce through-traffic movements in residential areas.

6  CONCLUSIONS: UNDERSTANDING ‘STATE OF THE ART’

Defining the ‘state of the art’ in managing public transport on roads requires a basic 
understanding of the aims of transport policy in a city, including a knowledge of its 
road infrastructure, traffic levels and the operational performance of its public transport 
system. Figure 25.6 presents a theoretical model which acts to define state-of-the-art 
public transport priority, given the context of city public transport policy with a view to 
guiding policy responses in this domain. Previous research has demonstrated much vari-
ation in the aims of transport policy concerning public transport between cities (Nielsen 
et al. 2005). For cities seeking to provide public transport as a complete alternative to the 
car for all travel, redesign of on-road public transport to provide ‘total priority’ through 
provision of ROW A/B streets is preferable. However, even with ROW C contexts ‘high 
priority’ can be provided, for example, the Red Route program in central London. Here 
complete redesign of all aspects of roads to give priority to buses has been implemented. 
Traffic signal priority for buses is also important but, at the ‘high priority’ level, greater 
preference for public transport over car is required. Signal priority may be at the stand-
ard of ‘at-grade railway level crossings’, that is, what is often termed ‘signal pre-emption’ 
(public transport always gets through first time; traffic must always wait for trains).

Many cities see public transport as mainly a solution for peak levels of traffic con-
gestion. In this case ‘peak-only priority’ represents the state of the art in design. This 
involves peak-only bus lanes and signal priority. Active priority makes better sense here 
because the aim is to reduce traffic queues. Traffic metering may also be preferred.

Other cities are dominated by car traffic, and public transport has a mainly social role; 
filling in gaps in travel for those without a car. In these cases ‘state of the art’ for priority 
involves ‘subservient priority’; giving lane space and traffic signal time to buses, but also 
being sympathetic to the dominant transport provider – car traffic. Priority can still be 
provided but only at low cost and at high benefits to public transport. High-occupancy 
vehicle lanes are a good option in these contexts, that is, giving priority to cars with many 
passengers as well as buses.

In practice all cities probably exhibit aspects of policy of each of the types shown in 
Figure 25.6 in separate parts of the city; hence the state-of-the-art priority implementa-
tion should vary and take account of localized issues and conditions.

Regardless of these localized variations, the following list might be regarded as the 
major elements of a high-quality state-of-the-art approach to managing public transport 
on roads:

●	 Provide lane priority and enforce compliance as much as is feasible.
●	 Provide active traffic signal priority and make it conditional on traffic saturation, 
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Table 25.4  Traffic planning measures in local level public transport facilitation (bus)

Facilitation 
measure

Rationale Approach

Bus boarders  
 � (sometimes 

called bus 
bulbs)

Parked traffic often encroach 
on bus stop zones making it 
difficult for large vehicles to 
access stops effectively

Pedestrian pavement is extended into the road 
and the bus permitted to load/unload in the 
kerb extension (or reverse embayment)

Bus stop run  
 � ins and 

outs

In heavy traffic buses need a 
large traffic gap to exit and run 
up to speed

Provide bus acceleration and deceleration 
lanes out of traffic streams for buses to access 
stops

Bus stop  
 � location

It is wasteful for buses to be 
delayed at intersections and also 
at stops

Co-locating bus stops at intersections can 
save travel time. Location near traffic calming 
devices can be safer for pedestrians accessing 
stops

Roundabouts Roundabouts slow buses down. 
In addition it can be necessary 
for the front and rear overhang 
of the vehicle to pass over the 
footpath to make difficult turns. 
This can be dangerous and 
needs management

The swept path needs of large vehicles should 
be considered when designing roundabouts. 
In general rigid buses require a central island 
radium of 6 metres at 5 kph and 8 metres 
up to 15 kph. Articulated buses need larger 
central island widths (up to 12 metres).

Road humps,  
 � speed 

cushions 
and table

Road humps not only delay 
buses and make an unpleasant 
journey for drivers, they can 
also be unhealthy for drivers 
and are banned in some places

Limited road humps on bus routes are better 
than larger sized humps. An alternative is 
speed cushions with widths designed to enable 
buses to straddle the cushion. Speed tables are 
not welcomed on bus routes since they slow 
down buses. Consideration needs to be given 
to vertical clearance on tables

Slow pinch  
 � points

This can slow buses as they have 
to ensure accurate manoeuvring

If these are necessary they are better near bus 
stops where buses are moving more slowly

Mid-block  
 � islands

Less problematic for buses Minimum lane widths should be 3.1 metres 
but 3.5 metres is more desirable

T intersection  
 � deviation

Buses can find it difficult to 
turn at T intersections

Swept path analysis is again desirable. 
Minimum lane widths are 5metres (continuing 
road) and 6 metres (entry lane) 3.3–3.5 metres 
(terminating road)

Intersection  
 � splitter 

island

Local traffic measures can 
include splitter islands at cross 
roads. These cause difficulties 
for bus turning movements

Reference to bus swept path analysis is 
needed. In general carriageway width should 
be 7.4 metres and lane width 3.1 metres. The 
height of splitter islands should have reference 
to bus clearances

Chicanes These can slow down buses In general these are not preferred on bus 
routes. However some design can enable large 
buses to run over the chicane

Source:  Adapted from Austroads (2002).
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late running and public transport loading. Provide phase compensation to reduce 
traffic queues where feasible. Ideally, traffic metering should be provided to keep 
traffic running smoothly. Relocate approach stops to departure sides.

●	 Facilitate public transport operations by ensuring the road design and the network 
of roads fits well with bus or tram operations, including route design and bus/tram 
vehicle flow and access.

●	 Ensure safe, secure and ease of access and egress of public transport vehicles to 
stops, terminals and depots

Future developments in the management of  public transport on roads concern 
mainly new technology possibilities of  better managing bus and traffic interaction. 
Intermittent bus lanes are a concept technology for a ‘managed road’ where buses 
are provided with priority only when they are there. Two trials have been undertaken, 
neither were entirely successfully, however, in both cases elements of  promising results 
were identified (Viegas et al. 2007; Currie and Lai 2008). Research has noted the lack 
of  a network focus on the provision of  priority design and has demonstrated theoretical 
advantages from a network-based approach (Mesbah et al. 2008). Automated vehicle 
control systems are another technology development which might see the potential for 

Car dominates
transit for social

needs

Typical
city

policy
model

• Active signal priority
 at high preference
 to transit e.g. pre-
 emption

Total priority

 High priority
• Full time bus
 lanes/signal priority
• Negaive traffic impact
 justified always at all
 transit volume

 Peak-Only priority
• Peak only bus lanes/signal
 priority
• Negative traffic impact
 justified in peak where transit
 more effective at volume
• Active TSP preferred

 Subservient priority
• Bus lanes/signal priority only
 when no traffic effects
• Only justified at low cost and
 at higher transit volume
• Passive TSP more likely

Transit for peak
traffic congestion

relief only

Transit mode share and use

‘State of
the art’
transit
priority
policy

Right of way C

Right of way B

Transit replaces
car for all

medium/long
distance travel

Right of
way A

Source:  Authors concept

Figure 25.6 � Conceptual model for ‘state of the art’ in on-road public transport priority 
design
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provision of  priority through automated priority design. In this context priority would 
be built into the rules of  vehicle control systems even without the direct knowledge or 
concern of  drivers. As lessons learned from existing priority system have shown, auto-
mated technologies will need to incorporate elements such as conditional priority to 
keep traffic flow efficient.

In the interim, most cities will need to manage the technologies they currently have 
to best manage public transport on roads. For most this implies a measured balance 
between the use of road space and intersection time to ensure a maximum throughput of 
passengers/riders though our busy city streets.

NOTE

1.	 This chapter an updated and much expanded version of the following source: Currie, G. (2004), ‘Planning 
and design for on road public transport’, Traffic Engineering and Management, Institute of Transport 
Studies, Monash University, Melbourne.
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