
Security and Trust in Virtualized
Environments

Hagen Lauer

Supervisors: A/Prof. Dr. Carsten Rudolph,
Dr. Surya Nepal

Faculty of Information Technology
Monash University

This dissertation is submitted for the degree of
Doctor of Philosophy

January 2020

©2020 Hagen Lauer

This research was supported by the Commonwealth Scientific and Industrial Research
Organization (CSIRO) Data61 Postgraduate Research Scholarship as well as Monash
University’s Faculty of Information Technology (FIT) Tuition Fee Scholarship.

Abstract

Virtualization is a core concept in modern computing systems and clients
place a vast amount of trust in the virtualization system to provide essential
security guarantees such as data confidentiality and software integrity [47,
9, 116, 70]. A virtualization system’s unlimited access to software and data
in virtual environments presents a genuine scientific challenge. The Trusted
Computing Module (TPM) as part of a trusted platform can be used to establish
trust in a computer and this thesis discusses challenges and presents solutions
related to establishing trust in a virtual environment.

The first finding is that currently available trust establishment strategies
do not sufficiently support clients in establishing trust in their virtual environ-
ments. After reviewing relevant standards and related work, a User-Centered
Attestation approach is defined as a set of requirements. The thesis reveals that
trust establishment strategies must consider system layering and individual
virtual environments. Recording integrity information relevant to a virtual
environment in a trustworthy way is a key challenge.

The next part of this work is devoted to the design and verification of an
Enhanced Integrity Measurement Architecture suitable for popular operating
system virtualization technologies such as containers. To verify that the devel-
oped integrity measurement architecture is trustworthy and upholds necessary
security guarantees, a formal system called LS3 is presented and used in the
design and verification of trusted virtualization systems.

Lastly, the virtual TPM as part of a virtual trusted platform is analyzed. Typi-
cally, the TPM is virtualized to provide an instance for each virtual environment.
This thesis shows that any straightforward implementation of this may fall vic-
tim to a Goldeneye attack which uses a virtual TPM against a verifier. The attack
is demonstrated using a formal model which captures relevant components of
virtualization systems as well as trusted computing axioms. Potential solutions
for commodity systems are discussed with the conclusion that further support
is needed for virtual platforms that aspire to be trusted.

Declaration

This thesis is an original work of my research and contains no material which
has been accepted for the award of any other degree or diploma at any university
or equivalent institution and that, to the best of my knowledge and belief, this
thesis contains no material previously published or written by another person,
except where due reference is made in the text of the thesis.

Hagen Lauer
January 2020

Publications during enrollment

• Lauer, H., Rudolph, C., and Nepal, S. (2018). User-centered attestation for
layered and decentralized systems. In Network and Distributed Systems
Security (NDSS) Symposium 2018, Workshop on Decentralized IoT Security
and Standards (DISS), 18-21 February 2018, San Diego, CA, USA. ISOC
[Published]

• Lauer, H., Sakzad, A., Rudolph, C., and Nepal, S. (2019b). A logic for
secure stratified systems and its application to containerized systems. In
2019 18th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications, pages 1–8, Rotorua, New Zealand. IEEE
[Published]

• Lauer, H., Rudolph, C., Nepal, S., and Sakzad, A. (2019a). Bootstrapping
trust in a “trusted” virtualized platform. InWorkshop on Cyber-Security
Arms Race (CSYARM) 2019, The 26th ACM Conference on Computer and
Communications Security (CCS), 15 November 2019, London, UK. ACM
[Best Paper]

• Salehi, A., Lauer, H., Grobler, M., Rudolph, C., and Sakzad, A. (2020).
Access control, key and database management, and trust for emerging
wireless body area networks in healthcare application. IEEE Journal of
Biomedical and Health Informatics, pages 1–15 [Submitted]

• Lauer, H., Rudolph, C., and Nepal, S. (2020). Design and analysis of a
modern virtual trusted platform. TBD, pages 1–30 [Manuscript]

Impact during enrollment

At the time of the submission, this research has had considerable impact. So far
our work has led to:

• Chair position of Virtual Platform Work Group [134] in the Trusted Com-
puting Group [132] (Hagen Lauer, Monash and Rob Spiger, Microsoft).

• A new scope for a high-level Virtual Trusted Platform Architecture Spec-
ification based on our models and designs in Chapters 3 to 5.

• Several rounds of commentary to ISO 27070 [67, 66] in 2018, 2019, and
2020.

Some of the results of this thesis have also been presented and communicated
to subject matter experts on occasions such as sponsored, invited, and R&D
talks:

• “Research Proposal: Security and Trust in Virtual Environments” — SIG-
SOFT Scholarship, ACM 50 Turing Award Conference, 2017

• “Deciding Trust in Distributed Systems” — Invited Talk, Microsoft Trusted
Computing Summit, 2017

• “ISO/IEC 27070 - Security requirements for virtualized roots of trust” —
TCG commentary 2018 and 2019

• “Trustworthy Trusted Computing with 𝐿𝑆3” — Invited Talk, Trusted Com-
puting R&D Session, 2019

• Virtual Trusted Platform Architecture Specification (updating [56]), 2019

Acknowledgements

I would like to thank my supervisor, Prof. Dr. Carsten Rudolph, for his
unwavering trust in me and for his personal support throughout many years.
Carsten’s deep insights, professional fairness, and personal integrity are truly
inspiring. I would also like to thank my co-supervisor, Dr. Surya Nepal, for his
persistent optimism and enthusiasm with which he has helped me overcome
many hurdles in a short time. As a team, my supervisors were superb and
I would like to thank them for numerous discussions, careful advice, helpful
feedback, and continuos encouragement.

My co-authors during the years deserve my deepest gratitude and I have
benefited immensely from their competence and hard work. I also very much
enjoyed the discussions and good times I had with my colleagues and friends
Ahmad Salehi, Dr. Amin Sakzad, and Dr. Matthieu Herrmann as well as Prof.
Dr. André Rein and Michael Eckel. Special thanks go to several members of
the Trusted Computing Group and especially Rob Spiger, Dr. Eugene Myers,
Dean Liberty, and Lee Wilson — their insights and tremendous experience have
informed my work in many ways. I would also like to thank the reviewers of
this thesis for their very helpful comments and suggestions.

I would especially like to thank Prof. Dr. Nicolai Kuntze for his patronage
and support as an excellent past supervisor and present colleague and friend.
During my undergraduate studies, I was fortunate to have been mentored by
Prof. Dr. Michael Jäger who fostered my talents, taught me the meaning of
docendo discimus, and introduced me to the world of research.

Most of who I am and what I do today is only possible because of my friends
and family. I am incredibly lucky to have grown up around my family in a
protected and loving environment and with support for my curiosity. I would
also like to thank many close friends at home and overseas for the essential
distraction and perspective which they have gladly provided. I am forever
grateful for the environment which my family and friends have provided and I
could not have completed my studies overseas without their close support from
home.

Table of contents

List of figures xii

List of tables xiv

1 Introduction 1
1.1 Scientific Challenge . 3
1.2 A Trusted Computing Solution 4
1.3 Vision . 6
1.4 Research Overview . 7
1.5 Towards User-Centered Attestation 10
1.6 Domain Specific Integrity Measurements 12
1.7 Bootstrapping Trust in a “Trusted” Virtual Platform 14
1.8 Summary of Contributions . 16

2 Background and Related Work 18
2.1 Why Trust Matters . 18

2.1.1 Trusting Computations 19
2.1.2 Trust in Virtual Environments 21
2.1.3 Trust Model for Virtual Environments 22
2.1.4 Summary . 23

2.2 Related Approaches . 24
2.2.1 Platform Identification and Reputation 24
2.2.2 Hardware-based Secure Environments 26
2.2.3 Hardware-anchored Security and Trust 29
2.2.4 Formal Verification for Trustworthy Systems 31

TABLE OF CONTENTS ix

2.2.5 Secure Computations 35
2.2.6 Discussion . 36

2.3 Trusted Computing . 40
2.3.1 Trust in Trusted Computing 41
2.3.2 Trusted Computing Platforms 42
2.3.3 Trusted Platform Module (TPM) 43
2.3.4 Integrity Measurements 45
2.3.5 Using Trust Information 48

2.4 Virtual Trusted Platform . 52
2.4.1 Virtual TPM . 55
2.4.2 Goals and Challenges 57
2.4.3 Summary . 61

3 User-Centered Attestation 63
3.1 Introduction . 63

3.1.1 Contribution . 65
3.2 Trusted Virtualization Platform 65

3.2.1 Levels of Trust and Specification 66
3.2.2 Remote Attestation and Virtual Machines 67

3.3 Towards a User-Centered Attestation 68
3.3.1 Principles of Remote Attestation 68
3.3.2 Attestation in Virtualized Environments 70
3.3.3 Observations . 76

3.4 User-Centered Attestation . 76
3.5 Related Work . 79
3.6 Summary . 79

4 Domain Specific Measurements 80
4.1 Introduction . 81

4.1.1 Contribution . 84
4.2 A Logic for Secure Stratified Systems 84

4.2.1 A Logic of Secure Systems 84
4.2.2 Trusted Computing . 87

TABLE OF CONTENTS x

4.2.3 Platform Configuration Registers (PCR) 88
4.2.4 Root of Trust for Measurement 88
4.2.5 Measured Boot . 88
4.2.6 Integrity Measurement Architecture (IMA) 89
4.2.7 Security Properties . 90

4.3 Domain Specific Measurements 91
4.3.1 Measured Boot and IMA 94
4.3.2 Containers and Domain Specific Measurements 97
4.3.3 EIMA Achieving Security Properties (2) and (5) 100

4.4 Summary . 101

5 Bootstrapping Trust in a Virtual Platform 103
5.1 Introduction . 103

5.1.1 Contribution . 106
5.2 Background and Prior Work 106

5.2.1 Virtualization System 107
5.2.2 Trusted Platform Module 109

5.3 Goldeneye Attack . 110
5.3.1 Informal Description 112
5.3.2 Graphical Model . 114
5.3.3 Trust Model . 120

5.4 Evaluation and Discussion . 124
5.4.1 Goldeneye in Related Work 124
5.4.2 Solutions . 130

5.5 Summary . 136

6 Discussion & Future Work 137
6.1 Discussion . 138

6.1.1 Contribution to Virtual Trusted Platform 138
6.1.2 Discussion of Models and Analysis 152

6.2 Future Work . 157

7 Conclusion 162

TABLE OF CONTENTS xi

References 165

List of figures

1.1 Introduction to UCAS . 12
1.2 Introduction to LS3/EIMA . 14
1.3 Attestation using vTPM . 15

2.1 TEEs and Secure Enclaves. 27
2.2 A physical platform with TPM. 29
2.3 Security guarantees of approaches. 37
2.4 The Trusted Platform Module. 44
2.5 SRTM and Measured Boot. 46
2.6 Virtualization types overview. 53
2.7 Virtual Trusted Platform concept. 54

3.1 Proposed trusted cloud architecture. 66
3.2 Attestation approach I illustrated. 72
3.3 Hypervisor-based attestation illustrated. 75

4.1 Container OS instance on virtual infrastructure. 81
4.2 Measured Boot and IMA. 90
4.3 LS3 domains and sub-domains. 92
4.4 Enhanced Integrity Measurement Architecture. 99

5.1 Sketch of a virtualization system. 104
5.2 Goldeneye attack sketch. 111
5.3 Graphical model of a virtualization system. 115
5.4 Hypergraph example. 116
5.5 Forest over nodes / parent mapping. 117

xii

LIST OF FIGURES xiii

5.6 Architecture of the Xen-based vTPM extension. 125
5.7 Bigraphical abstraction of the Xen-based vTPM extension. . . 125
5.8 Secure vTPM-VM migration setup. 126
5.9 The proposed system architecture. 127
5.10 Assembled vTPM-VM in the system model. 127
5.11 IaaS node model of keylime. 129

List of tables

3.1 Remote attestation approach I. 71
3.2 Hypervisor-based attestation. 74
3.3 UCAS principles and requirements. 77

5.1 Trusted Computing Predicates. 121
5.2 Trusted System Axioms. 121

xiv

Chapter 1

Introduction

Cloud computing realizes the idea that programs and data can be stored and
executed on a number of remote computers which can be accessed at any time
from anywhere using internet technologies [47, 9, 116]. Driven by increas-
ing connectivity, cloud computing not only allows unprecedented access to
programs and data but also augments computing power immensely and im-
mediately on any device. Today, the integration of cloud computing is nearly
ubiquitous and successive computing paradigms target remaining applications
and architectures [47, 70, 49, 122, 123].

The key factors which drive the success of cloud computing are its flexibil-
ity, efficiency, and strategic values [62]. Clients can flexibly scale computing
resources based on their application and needs (e.g., an environment for appli-
cations, larger systems, or an entire service infrastructure). Furthermore, the
economies of scale apply and clients are able to deploy applications quickly
and pay only for what they actually use (e.g., resources such as bandwidth,
computing power, and storage). Lastly, the ability to focus on an application
with ubiquitous access to up-to date and secure systems provides significant
strategic values to clients. Undoubtedly, cloud computing has great potential
to improve the security of applications in several ways [7, 62]. However, the
same argument for possibly improved security can also be used to emphasize
newly introduced and very limiting trust issues. Achieving both security and
trust in cloud computing involves all aspects of making cloud computing ver-

1

CHAPTER 1. INTRODUCTION 2

ifiably secure. Many security and trust issues are not novel or specific to the
cloud computing field: the cloud systems of today have evolved slowly over
time and share their hardware architecture and code base with many other
systems. Similarly, trusting a computer and its output has been an active area of
research since we started to rely on outputs of stored programs. Consequently,
securing cloud computing involves all current computer security disciplines,
including secure hardware design, security oriented architectures, operating
system and hardware level isolation, software engineering and verification,
exploit detection and mitigation, access control in general as well as the design
and verification of secure protocols and cloud operations [116]. Yet, with all
security related concerns addressed it is still only one half of the solution which
we would need to also trust a cloud service. After all, if we have no way to
establish or verify that our security goals have been met, we can not integrate
cloud services further without blindly trusting a massive remote system. Even
worse, we might be convinced to trust and rely upon a service running on an
insecure system. The real challenge is in fact to build (and run) secure systems
and make others believe it.

Achieving security and trust in cloud security sounds like amonumental task
which almost certainly can not be completed adequately within any reasonable
period of time. Fortunately, many aspects of this task are shared with other well
established domains and many problems are considered scientifically solved or
reducible to engineering problems. Some aspects that seem to be characteristic
for cloud computing security are [116, 108, 144, 6]:

• Cloud systems are typically shared resources and tenants mutually dis-
trust another.

• Cloud services are accessed via public networks (i.e., the internet) and
expose powerful APIs.

• Hosted data is subject to accidental deletion or modification.

• Clients have to trust the cloud provider for important security properties
such as confidentiality in their application.

CHAPTER 1. INTRODUCTION 3

1.1 Scientific Challenge

Arguably, only the cloud providers near unlimited access to hosted services and
data poses a practical and theoretical challenge today [116, 6]. Sharing a re-
source between mutually distrustful tenants has been an active area of research
since the first time-sharing systems were created and used. Systems which pro-
vide strong isolation between different client or security domains have always
been a key technology for secure and trusted systems. For instance, a major
requirement for hypervisors or virtual machine monitors has always been the
ability to isolate virtual machines from another [107, 12]. Furthermore, truly
secure operating systems strive for the strongest possible isolation between
processes which share the same hardware [74]. The usage of public networks
and vulnerable protocols to access powerful APIs is a well known issue and so-
lutions address it by improving on authentication, authorization, cryptography
requirements, and protocol verification [116]. Recognizing and dealing with
unwanted deletion and modification of cloud services and data has enjoyed
a lot of attention in the past and the theoretical challenges are shared with
many database and distributed systems. However, experience and the continuos
discovery of new security flaws remind us that engineering, deploying, and
operating cloud solutions still presents a significant and paramount challenge.
We also observe that most of the current cloud security issues are related to
implementing theoretical results and developing practical and scalable solutions.
In contrast, reducing the amount of trust which is placed in the provider and
other parties for important security guarantees such as confidentiality is still
a complex issue in practice and theory. Achieving security and trust in this
aspect has become even harder as “the cloud” is far more than a few virtual
machines on a server. Today, infrastructure providers can be contracted by
software providers which can be contracted by other service providers and so
on. The cloud changes and seems to strive towards offering highest levels of
abstraction for almost every aspect of computing: hardware and infrastructure,
virtual servers and operating systems, application run-times and environments,
domain specific functions and tasks are abstractions and may be provided as a
service and good abstractions are convenient. Consequently, the trust problem

CHAPTER 1. INTRODUCTION 4

can not be deferred to cryptography alone as clients appreciate the cloud not
only for secure storage but also for its high availability and scalable computing
power. Clients need universal and complex computations to be performed on
the data. In such a case, the cloud service provider will have to perform compu-
tations on behalf of the client which results in a hard trust-problem. Today, a
variety of commercial services run partially or fully in the cloud and devices
offload computations to remote systems while providing only the interface or
some representation locally. A few examples are:

• Data and computation intensive tasks, common in today’s artificial intel-
ligence applications, can be performed on cloud infrastructure entirely
and often alternatives are not feasible.

• Communication and collaboration services such as email, chat, or video
conferencing solutions hosted in the cloud are commonplace today even
in relatively large organizations.

• Office suites, engineering software, and creative tools are often hosted in
the cloud with pay per usage or licensing models.

• Media and documents hosted in the cloud are often not only hosted but
also created, accessed, managed, and distributed entirely in the cloud.

The cloud must be able to perform arbitrary computations on a client’s data
to be useful and verifiably uphold security guarantees to be trustable.

1.2 A Trusted Computing Solution

The contributions (Section 1.8) of this thesis aim to support a trusted comput-
ing solution to enforce security guarantees such as confidentiality. Trusted
Computing is a security paradigm which relies heavily on the use of uncon-
ditionally trusted and hardware anchored security mechanisms with which
a secure system is constructed. For the purpose of this introduction, we will
consider confidentiality to be the major security property which we want as a
security guarantee. The sketch of a possible solution can be very simple but

CHAPTER 1. INTRODUCTION 5

as ever: the devil is in the detail. The objective is for the cloud to compute on
sensitive data but only in a secure environment which we can trust. We would
like to reduce the amount of trust we place in the cloud provider, administrators,
contractors, and other such parties and instead trust the cloud system to uphold
necessary security guarantees under which sensitive data may be processed.
A trusted computing approach allows a client to define and enforce security
guarantees for computations and data processing on a provider’s machine. A
solution can be outlined as follows [116]:

• The cloud provider must use machines equipped with trusted computing
hardwarewhich protects keys and allows binding them to a cloud system’s
state.

• The client defines a (secure) cloud environment in which programs may
run and modify data. Trusted computing techniques make it possible to
correlate a cloud system’s state s with the defined environment.

• The client generates a key k and binds it to a state s which represents
a secure and trusted environment or simply a “good” system state. The
bound key can be shared with the cloud system as it is protected by the
trusted computing hardware.

• The client can now encrypt programs and data using k and upload them.
The cloud system can access data or run programs if it is in the defined
“good” state s. However, any divergence from s, including an unknown,
unwanted, or a malicious one, revokes access to k and the ability to access
data and programs.

As a result, trust in the cloud provider and other parties is reduced and
the client relies on trusted hardware and a verifiable software system instead.
The approach can be implemented by using trusted computing hardware such
as the Trusted Platform Module (TPM) [64] which supports both system state
tracking and key management on the provider’s machine. The TPM is a widely
adopted commodity chip and specifically designed to enable the required key
management functionality. Accurately recording and reporting the state of a

CHAPTER 1. INTRODUCTION 6

complex system requires a co-design of the software system and the secure
hardware and is a major topic later on.

1.3 Vision

In this section I will outline a longer term vision for (trusted) computing which
I will gradually reduce to a near-term achievable goal: the Virtual Trusted
Platform.

I envision a future in which distributed systems and applications can be
run on a variety of computers and securely perform even sensitive tasks (e.g.,
analyzing and acting upon sensor data, controlling power networks, accessing
emergency systems, managing traffic). Such systems are able to efficiently utilize
the capabilities, flexibility, and performance afforded by future computers, a
large amount of computing devices, and increased connectivity. Agents in
such systems may be other autonomous systems, cyber-physical machines, or
humans represented by their personal devices as interfaces. Agents of any kind
should be able to access data and computing power anywhere and at any time
with confidence and without reasonable doubt that their data or computations
aren’t stolen and all tasks are performed as specified.

The question of whether there will be an independent personal computer
(i.e., a computer which provides all essential functionality for a single user
without relying on others) in this future or which role it will assume is fas-
cinating. It is likely that our personal computing devices will be designed as
interfaces to applications with great potential to increase accessibility, making
them last longer, and become more sustainable overall. The matching backend
functionality will likely see more decentralization (in the sense of location and
platform but not ownership) and can be brought closer to the relevant agents to
reduce possible lag and overhead. In such systems, security, privacy, or trust are
also significantly improved. Future computers support roots of trust which in
turn facilitate the design of complex, secure, and trustworthy software systems.
Such roots of trust will become the norm and a requirement for participating
in trusted distributed computing systems. The security and reliability of the
systems which we use will ultimately become the default and just like we are

CHAPTER 1. INTRODUCTION 7

able to prove functional properties of software, we should be able to specify,
check, and guarantee security properties associated with certain tasks across
different machines.

This is certainly a distant goal which requires many advances and perhaps
failures in computer science and engineering. In theory, we must enable human
and automatic agents to make informed and reasonable trust decisions. In
practice, we can then build systems which enforce a set of default security trust
policies unconditionally to ease adoption and integration of trusted systems.

Today, we get a glimpse of this vision in various cloud computing paradigms
but with lacking security, privacy, and trust. The orchestration of virtualization
in a cloud computing system has led to entirely new economic models and an
efficient and more sustainable computing model for the future. Although virtual
systems may benefit from managed security, better economy, and convenience,
agents are required to surrender control and place trust in virtualization systems
and their operators.

In contrast, trusted systems are systems running on trusted hardware which
are sometimes only operated by a trusted party in a trusted location. We
need to adapt and further develop trusted platforms and systems to at least
modern standards without the loss of security qualities. I see the design and
specification of a Virtual Trusted Platform as a natural next step for Trusted
Computing and its proliferation. It may also prove to be the only way to provide
trusted computing functionality to the scale of future systems. Today, a Virtual
Trusted Platform is achievable and will continue to serve us well in the future
as a flexible platform for integrating advances in systems, cryptography, and
security use-cases.

1.4 Research Overview

Instead of starting over or using an approach which disregards an existing
body of research, the thesis of this work is that we can construct trusted and
secure virtual systems from existing trusted components. This thesis presents
the design and analysis of systems which allow the establishment of trust and

CHAPTER 1. INTRODUCTION 8

enforcement of security policies in the components relevant to software and
services running in a virtual environment.

Virtualization and the incorporation of a Virtual Trusted Platform poses an
interesting issue for existing policies and compliance specifications as the trust
placed originally only in hardware components (i.e., the trusted platform) needs
to be extended to recording and reporting mechanisms and ultimately in the
virtualization system and the Virtual Trusted Platform itself. While the hardware
primitives and protocols for trust establishment are readily available, their
semantics are ambiguous and a verifier has to decide whether a virtualization
system or some of its components are trusted without much guidance, evidence,
or support in reasoning for such a decision.

This leads to our first research item which presents an analysis of research,
specifications, and recent proposals for a Virtual Trusted Platform architecture
and trust establishment for software in virtual environments. We find that
existing trust establishment approaches imply a particular topology, connec-
tivity, and capability that does not reflect or accommodate a client verifying
their software in their virtual environment. We outline requirements for a
User-centered Attestation System in Chapter 3. Among the key requirements
for a user-centered attestation system is the design of a trustworthy integrity
measurement architecture which provides a chain of trust measurements for
each virtual environment. The design has to ensure that we do not reveal infor-
mation about neighbors in a multi-tenant system and it also needs to prevent
potential attackers from hiding information from verifiers.

Our next research goal is the design and verification of an integrity mea-
surement architecture which provides a chain of trust measurements between
the (virtual) trusted platform and individual virtual environments. Proving that
a trust establishment mechanism conforms to a security specification is difficult:
commercially used virtualization systems are typically complex and not at all
amenable to formal verification. Furthermore, current implementations offer
hard- and software-based security mechanisms providing often very subtle but
important security properties. For this reason, we introduce several formal ab-
stractions summarized as a Logic for Secure Stratified Systems or LS3 for trusted

CHAPTER 1. INTRODUCTION 9

computing systems in Chapter 4. Using our formal abstractions, we were able
to design and verify the required enhanced integrity measurement architecture.

We included a virtual Trusted Platform Module (vTPM) as part of a Virtual
Trusted Platform in the design of our integrity measurement architecture in
Chapter 4. The choice to use a vTPM is uncontroversial and many cloud services
include the option to pair a virtual machine with a vTPM to support some
form of secure storage, trusted boot, disk encryption and so on for software
in virtual environments. In our final research item (Chapter 5), we reveal
that the association between Virtual Trusted Platform components (e.g., a
virtual machine and a vTPM) is a critical concern and can not be solved by
simply emulating the real machine—it is currently a matter of software and
configurations. We are able show that by default a virtual machine paired with
a vTPM may fall victim to an attack. A successful attack would trick a verifier
into establishing trust in an untrusted virtualization system. We discuss several
possible solutions for hardware and software systems as vTPMs gain traction
in the industry.

This thesis has two main focus areas: (i) we aim to give formal abstractions
for trusted systems and security properties to aid standardization, (ii) using
our abstractions and formal analysis, we aim to design and verify novel trusted
computing architectures towards a virtual trusted platform. The following
research questions1 detail our analysis further.

1. “How do we establish trust in a virtualization system and the services it
hosts?"

(a) How do we suitably abstract our target computer system and which
basic properties do we expect from a trustworthy computer?

(b) How should our virtualization system formally interact with trusted
hardware?

1I would like to thank the Association for Computing Machinery’s Special Interest Group
on Software Engineering (ACM SIGSOFT) for their stipend which allowed me to discuss and
sharpen these research questions with selected laureates. I would also like to thank to Butler
Lampson for discussing my questions on this occasion.

CHAPTER 1. INTRODUCTION 10

(c) How can we establish trust and security properties using both hard-
ware and software abstractions?

2. “What measures can we take to increase our confidence that the virtual-
ized environment is trustable and will uphold security guarantees?"

(a) How do we record relevant information of a virtualization system
and virtualized layers to establish desirable security properties?

(b) How can we virtualize trusted hardware in a trustworthy way?

(c) How do we practically report meaningful information of a virtual-
ized system?

(d) Which properties of a virtualization system can we remotely verify
using trusted computing based recording and reporting architec-
tures?

The remainder of this chapter briefly introduces our results and analyses
in Sections 1.5 to 1.7 and summarizes the contributions of this research in
Section 1.8.

1.5 Towards User-Centered Attestation

Cloud computing has become ubiquitous in a plethora of applications ranging
from education, finance, and smart homes to healthcare, government, and
military applications. Virtualization is omnipresent as the backbone of cloud
computing offerings as well as X-as-a-service infrastructure and it continues to
gain increased popularity even in end-user and embedded devices [9, 122, 16, 97].

We observe that the need for standards and specifications for secure and
trusted collaboration becomes a pressing issue. Trusted Computing might be
a practical solution which already enjoys widespread adoption and industry
support. Furthermore, Trusted Computing is considered to be one of the pillars
towards trusted and trustworthy systems both in terms of practical security
mechanisms and supporting standards.

However, virtualization poses an interesting issue as the trust placed orig-
inally only in hardware components needs to be extended to reporting and

CHAPTER 1. INTRODUCTION 11

measurement mechanisms in upper layers. The extension has to happen in a
trustworthy manner. Otherwise we would just declare arbitrary system layers
and components as trusted. As we investigate current solutions and standards,
we revisit the Trusted Computing tool-set and introduce its application to vir-
tualization systems. We discuss challenges related to translating the predicate
trusted between specifications for hardware modules such as the Trusted Plat-
form Module (TPM) and specifications for operating systems, hypervisors, and
virtual machines. We conclude that defining trust establishment strategies
becomes crucial for specifications which extend trust beyond trusted hardware
components. While approaches towards trust establishment exist, their seman-
tics are ambiguous and an appraiser has to decide whether a virtualization
platform or upper layers are trusted without much guidance or support in
reasoning for such a decision. Furthermore, existing attestation approaches
imply a particular topology, connectivity, and capability that does not reflect
decentralized systems. When we discuss a virtual machine as a client-owned
virtual environment, we need a trust establishment scheme which supports
trust establishment in relevant components. Beyond privacy issues related
to divulging information of other tenants, a client may simply not have the
necessary knowledge base to establish trust in customized software running
on a virtualization system and in virtual environments. Furthermore, a client
may not have access to the virtualization system and instead only have access
to a virtual machine or an application. A trust establishment mechanism must
allow a bottom-up propagation of relevant information and the propagated
information must be relevant to the virtual environment alone.

We conclude that we need a user-centered trust establishment method which
aims at multi-tenant use-cases where tenants occupy virtual environments on a
shared virtualization system (Figure 1.1). Such a novel recording and reporting
(or attestation) system, is outlined to encompasses concerns we raise while
evaluating current approaches. We propose a strategy for specifying and syn-
thesizing suitable trust establishment mechanisms and hopefully inspire further
research and contributions towards standards for open and collaborative trusted
systems. We define User-centered attestation as a set of principles suitable for

CHAPTER 1. INTRODUCTION 12

Physical Platform

Virtualization System

Guest OS

Service(s)

... ...

Client

Payload

Attestation

vTPM

TPM

Fig. 1.1 A User-Centered Attestation mechanism must provide trust information about
a client’s software system in a virtual environment as well as the virtualization system.

layered, decentralized systems along with a methodology for specifying and
synthesizing such a trust establishment strategy.

In Chapter 3, we introduce a set of principles for trust establishment using
remote attestation and outline requirements for a truly user-centered attestation
system. After reviewing existing approaches, we propose our own candidate
for such an attestation system. Above all, we conclude that a user-centered
attestation system must be able to provide a) user domain specific information
and b) use a trustworthy mechanism to do so.

1.6 Domain Specific Integrity Measurements

Containerization is gaining increased popularity in a variety of settings and may
be a key step towards future cloud computing models [70]. Containerization of
applications removes the need to customize and configure an entire operating
system in order to run a set of applications with their dependencies. Instead,
an operating system is modified to include a support for containers, which
supports and isolates containerized applications in their own virtual domain.

Since containerized applications share an operating system kernel, trust
in a containerized application depends as much on the integrity of the host
system as it depends on the hosted application itself. On this level of abstraction,

CHAPTER 1. INTRODUCTION 13

this relationship can be compared to current system virtualization software
and guest operating systems running on virtual machines. We can infer the
integrity of applications confined to their virtual user-spaces only by inferring
the integrity of the operating system first,

For example, a virtualization service provider may host containerized appli-
cations and has Carol and Mallory as customers (or clients). Carol and Mallory
both give a container with applications to the virtualization service provider,
which promises to run them. As clients, Carol and Mallory trust the provider’s
setup to provide important security properties such as isolation both in the
sense of performance and protection. Being able to establish trust in the operat-
ing system and provider infrastructure becomes crucial if the hosted service
needs to be trusted. The provider needs a way of monitoring the virtualization
system for compromises. Carol and Mallory want to monitor and establish
trust in the virtualization system and the integrity of their containers. The
previous Section 1.5 introduced this issue as the need for a user-centered attes-
tation. User-centered attestation needs integrity measurements specific to the
user environment. However, when reporting on the integrity of the system,
the provider has to make sure that she provides complete information that is
constrained to each container or domain. Otherwise, she might lose trust, or
worse give Mallory an opportunity to launch targeted attacks against Carols
applications. We conclude that there is a need to create a trustworthy recording
mechanism which provides the necessary security properties.

Thus, in Chapter 4we present the design and verification of a secure integrity
measurement system for containerized systems (Figure 1.2). Containerized sys-
tems are complex and generally not directly amenable to formal verification.
We provide formal abstractions for containerized systems by introducing LS3,
a formal model and logic with virtualization domain constructs to represent
stratified systems and their interactions. Using our formal model, we show
that the widely used Trusted Computing Group (TCG) based Integrity Mea-
surement Architecture (IMA) [117] securely extends trust measurements from
boot to applications. However, IMA is not designed to make domain specific
trust measurements and is consequently incapable of creating domain specific
integrity reports. In fact, the existing body of research on trust measurements

CHAPTER 1. INTRODUCTION 14

Virtual Platform

Conatiner 1

App

vTPM

Container OS

App
App

Conatiner 2

App
App

App
PCRs

...
Conatiner OS
Container 1
Container 2
Container n

Fig. 1.2 An enhanced measurement architecture developed in Chapter 4 enables record-
ing and reporting of integrity information for each virtual environment. The blue lines
indicate the shared operating / virtualization system while red and green dashed lines
indicate software in different virtual environments (or containers).

is focused on measurement comprehensiveness and performance. We propose
a measurement architecture with constrained disclosure features built-in by
making domain specific measurements to begin with. We argue that we pre-
serve comprehensiveness and other desirable properties. To this end, we use
the modular design of [36] and add to it support for virtual domains which
yields our Logic for Secure Stratified Systems (LS3). We conclude that providing
domain specific integrity reports eases system and sub-system verification and
yields desirable properties such as measurement log stability and constrained
disclosure for multi-tenant systems. We verify and prove the correctness of our
trust measurement architecture using our formal model.

1.7 Bootstrapping Trust in a “Trusted” Virtual

Platform

In our last research item, we focus on establishing trust in a virtual environment
(e.g., a virtual machine or container) using a virtual Trusted Platform Module
(vTPM). In Chapters 3 and 4, we have already included a vTPM which together
with a virtual machine serves as a virtual root of trust for various Trusted
Computing protocols. The choice to use a vTPM is uncontroversial and has

CHAPTER 1. INTRODUCTION 15

Physical Platform

Virtualization System

Service(s)
Guest OS

vTPM

TPM

Virtual
Environment

Verifier

Fig. 1.3 Attestation of software in a virtual environment (e.g., guest operating systems
or containerized applications) relies on a definitive association between the virtual
TPM and the virtual environment. The association is an issue of the virtual trusted
platform and can be exploited [82].

been proposed in [14] and adopted by cloud and virtualization system vendors
like Microsoft, Google, and VMware. In fact, the TPM can not be shared across
security domains [64] and approaches to properly virtualize the hardware
module [40, 140] have not seen adoption [56, 66].

The virtual TPM [14, 56] may be software-defined and is used in a similar
way to the physical TPM [64]: The TPM can be used to establish trust in the
software running on a computer and the vTPM can be used to establish trust in
the software running on a virtual machine. This is possible because the TPM
is secure against software attackers on the computer and the vTPM is secure
against an attacker in the virtual machine.

We were guided by the question: how can we establish trust in the virtual
TPM? The question is legitimate and fundamental as the virtual TPM is supposed
to function like a TPM but clearly does not have the same security properties.
A good example is the association between a virtual machine and the virtual
TPM. On a physical platform the association of the TPM with the rest of the
platform is part of the hardware assumptions. Consequently, there is no analog
which we can directly copy when we associate a vTPM with a virtual machine
and the association is a pure software definition.

In [82], we investigate the vTPM and its association to a virtual machine
(Figure 1.3). The specifications for “virtualized roots of trust” and “trusted

CHAPTER 1. INTRODUCTION 16

virtualized platforms” as well as the academic literature are not concerned with
the issue of bootstrapping trust in a vTPM [66, 56, 14, 34, 120] and offer no help
beyond requiring a strong association. However, the client interacting with a
virtual machine typically has no direct access to the underlying hardware or
the virtualization system—for good reasons. Realistically, a client will contact
the virtual TPM first to learn about the virtual machine and use the vTPM as a
proxy to the underlying TPM to learn about the software configuration of the
virtualization system.

Based on this idea of bootstrapping trust in a virtual environment, we
developed our Goldeneye attack and show that a virtual trusted platform may
fall victim to it. We find that the association between virtual machines and
vTPMs is not verifiable and without a way to assert that the virtual machine
is in fact associated to a particular vTPM. Consequently, any verifier can be
tricked into establishing trust in an untrusted system. In Chapter 5, we develop
a formal model of a virtualization system and encode our trust establishment
strategy. We demonstrate Goldeneye using our formal model and detail why it
succeeds. Based on this, we evaluate existing work [14, 34, 120] and suggest
improvements for virtualization systems which aspire to provide virtual trusted
platforms for their clients.

1.8 Summary of Contributions

While we investigated trust establishment techniques for virtualized environ-
ments using the Trusted Platform Module, Virtual Trusted Platform, and associ-
ated protocols, this thesis makes several contributions:

1. An introduction and analysis of current research and standardization
efforts towards trusted computing on virtual platforms and a proposal for
a new user-centered trust establishment method (UCAS) in Chapter 3.

2. The design and verification of an enhanced integrity measurement archi-
tecture (EIMA) for user-centered attestation. To facilitate the design and
verification of complex systems we introduce LS3 as a formal system in
Chapter 4.

CHAPTER 1. INTRODUCTION 17

3. A formal framework which captures functional components of a virtual-
ization system in combination with a logical framework for the analysis
of trust establishment in a virtual environments using vTPMs. We also
present and demonstrate an attack on the trust establishment process
called Goldeneye and discuss options for better trusted computing archi-
tectures in Chapter 5.

A more detailed list of contributions can be found in the introduction of
each referenced chapter (Sections 3.1.1, 4.1.1 and 5.1.1).

The research questions (Section 1.4) which guided this thesis have been
addressed in several ways: Our first contribution was to summarize, outline,
and scope out major issues for trust establishment and attestation in virtual
environments in Chapter 3. We reveal the need for user-centered and trustwor-
thy integrity recordings and satisfy it with our system LS3 in Chapter 4. As
part of our second overall contribution, we fully address research questions 1a
through 1c and research question 2a. Our third major contribution answers the
remaining research items of question 2 by specifically investigating the (virtual)
roots of trust of a virtualized system in Chapter 5 (research questions 2a to 2d).

The remainder of this thesis is structured as follows. Chapter 2 introduces
and discusses alternative approaches towards secure and trusted cloud comput-
ing in as well as a summary of trusted computing concepts including the Virtual
Trusted Platform in Section 2.3 and Section 2.4, respectively. The results and
analyses of this thesis are presented in Chapters 3 to 5 which have published in
[80, 83, 82], respectively. The thesis is discussed using the success criteria of a
modern Virtualized Trusted Platform architecture (Section 2.4.2) and compared
to related work in Chapter 6. The conclusions of this thesis are presented in
Chapter 7.

Chapter 2

Background and Related Work

This chapter informally introduces the abstract concept of trust in comput-
ing and virtual environments in Section 2.1. Related work and approaches
which have similar applications, goals, or security properties when compared
to Trusted Computing are introduced and summarized in Section 2.2. Finally,
Section 2.3 gives an introduction to relevant and auxiliary trusted computing
concepts as well as Trusted Computing Group (TCG) components and protocols.

2.1 Why Trust Matters

Trust establishment has been the subject of a large body of work. Since humans
began to involve computers in their calculations and decision processes, we
asked ourselves whether or not we trust the results produced by any computer.
Dijkstra went even further and demanded that ”even under the assumption
of a flawlessly working machine, we should ask ourselves why we trust its
results” [38]. Typically, the answer to such a questions has a number of depen-
dencies and we struggle to enumerate them. There exits no “catch-all” solution
which would allow us to answer ‘yes’ to Dijkstra’s question with great confi-
dence. The research presented in this thesis is focused practical measures which
can increase the confidence in the decision to trust a computer.

18

CHAPTER 2. BACKGROUND AND RELATED WORK 19

Increasing the confidence one can have in a result produced by a com-
puter is fundamental to the field of trusted computing. Dijkstra introduces a
mathematician and her reasonable distrust in a computer to highlight the issue:

Suppose a mathematician who is interested in number theory uses a com-
puter with a program for factorizing numbers. The result of such a program
is either the factorization of a given number or a statement that the number
is a prime. For convenience, the mathematician uses the computer as much
as possible but she also has to deal with problems which she could not solve
without its aid.

The expected result of the factorization is clear: the given number is either
a prime number or not. Assuming there are strong reasons to believe that the
number is prime, the result of the program can either confirm this or give the
factorization as proof that whatever intuition the mathematician had, has in
fact fooled her.

The situation changes, however, if intuition suggests that a given number
is not prime. The computer can still only produce two kinds of results. If
the output is a factorization, the result itself serves as the proof that in this
instance the computer’s result can be trusted. However, if the computer’s result
is that the number is a prime, contrary to intuition or strong reasons to believe
otherwise, why should the mathematician trust the result? In our modern world,
we are constantly relying on computers which help with decisions or make
them for us and we are increasingly forced to trust them or suffer consequences
beyond just inconveniences. We should be able to trust computers with high
confidence even though we have to doubt their results in lights of possible
errors and malicious programs.

2.1.1 Trusting Computations

The example involving a mathematician and her computer is deliberately over-
simplified but it introduces paradoxical aspects of outsourcing trusted compu-
tations. The kind of computations which are considered in this thesis are of
course real applications and programs which form systems and do far more than
producing relatively discrete results. Such applications and programs eventually

CHAPTER 2. BACKGROUND AND RELATED WORK 20

have to run on real computers using complex hardware machinery. Outsourced
programs may be composed into application containers or shipped bundled
with an operating system in virtual machines to provide a variety of services
on a large number of systems and machines. When we run our programs,
we expect not only functional correctness but also security properties. Such
properties are often dependent on the computing environment which ensures
that confidentiality, integrity, and availability expected by our application and
its data is guaranteed.

The dependencies of trusted computing become quickly apparent when we
change a hidden but important assumption in our example: the mathematician
does not write all or any programs herself. This situation is already the ‘status
quo’ of Thompson’s "Reflections on Trusting Trust" [128] in the 1980s. Today,
clients are busy with wrangling interfaces to common functionality and far
removed or even deliberately prevented from programming or inspecting any-
thing. Furthermore, we can not make a judgement based on a program alone
and need to consider stacks of software right down to firmware and hardware
components. The inherent complexity of computing systems today suggests
that a binary trust decision, a definitive ‘x is trusted’, is inconceivably hard to
justify. Lampson’s "Note on Confinement" [77] elaborates on the idea of trusting
a program in isolation and the practical implications and limitations. Trusted
computing has an excess of dependencies both in production and operation
of a computing system, which include hardware design and manufacturing,
firmware code, operating system design, compilers, operating systems, program
libraries and dependencies and sometimes other programs running on the same
hardware. However, there are powerful tools and established concepts which
help us to stay ahead of bugs and adversaries unconditionally [74, 143, 55]. On
an architectural level, isolation between components and the ability to reset
components into a trusted state help us to limit and reverse the impact which
failures and adversaries can have on a system. Verifying that programs and sys-
tems implement certain functional and security related properties can be done
offline with enough time and resources. In an operational scenario, computers
only need to prove to clients that they run verified software which can be done
using minuscule and verifiable roots of trust.

CHAPTER 2. BACKGROUND AND RELATED WORK 21

2.1.2 Trust in Virtual Environments

Developed in the 1960’s with the humble idea to allow for “a computer to
be used by two or more people, simultaneously”, virtualization techniques
have seen continuous development aiming to increase the efficiency of shared
computer resources. This initial use-case lead to a major breakthrough in
computing: the cost of providing computing capability dropped considerably
and it became possible for organizations, and even individuals, to use a computer
without actually owning one. Today, we enjoy much improved infrastructure
surrounding cloud services, rapid development and deployment tools, and
practical abstractions leading to a variety of new paradigms for distributed
computing [9, 70]. We also gained the conclusion that cloud computing in
particular is plagued by the fear of dishonest service providers and untrusted
computer setups. In fact, after an initial spike, one of the major inhibitors for
further adoption of cloud computing is a lack of security and trust.

This dateless conclusion coincides with the continuous incorporation of
outsourced services in increasingly sensitive processes and decision making in
security critical settings. In 2019, the United States department of defense (DoD)
is expected to award a 10-year contract, known as Joint Enterprise Defense
Infrastructure or JEDI, to an industry partner. The contract entails migrating a
large amount of aging and expensive military infrastructure to cloud hosted
services. If it was not obvious before, then at least today there is a quantifiable
incentive for adversaries to withhold or misappropriate resources, modify tasks
and data, or simply to spy on systems, programs, and data. Co-designing secure
systems and trusted platforms makes it possible to detect, prevent, reverse,
or downright preclude actions of an adversary but not unconditionally. For
instance, it is notoriously hard to trust computers under the (physical) control of
an adversary [105]. In general, adversaries in cloud systems are considered to be
powerful. Related work (Section 2.2) often generalizes the adversary as the cloud
service provider (CSP) which abstracts multiple parties and contractors [116].
This may be a good way to motivate and evaluate research and solutions which
have fewer hidden assumptions or dependencies. For a majority of applications,
regarding all parties including hardware owners as adversaries turns attempts

CHAPTER 2. BACKGROUND AND RELATED WORK 22

to secure cloud computing into an absurd exercise and forces solutions which
negate any advantage a virtual environment may have. In reality, we should
also consider that platform manufacturers and cloud providers have the greatest
potential to run and maintain security on virtualization systems which provide
secure and trustable virtual environments to a large number of clients.

2.1.3 Trust Model for Virtual Environments

The analyses and solutions in this thesis are contextualized in a semi-trusted
model. The goal of using trusted computing in a semi-trusted model is to
minimize the trust in all parties and systems involved, including the cloud
provider and virtualization systems. The necessary assumptions, e.g. trusted
parties and components, in such a model are accounted for and can be stated
explicitly.

In the semi-trusted model, the cloud provider is trustworthy with regards
to their motives and intentions such that one would want to be a customer or
client. [120] summarize this neatly as “the cloud provider as an organization”
is trusted. As outlined by [116], even if the provider’s honest intentions are
trusted, the intentions of insiders, contractors, administrators, or similarly
privileged attackers have to be considered. The semi-trusted cloud provider is
still susceptible to compromise by adversaries. Adversaries in a semi-trusted
model can control a significant amount of the provider’s infrastructure and
there is no limit to the adversary’s capability to compromise any specific part of
the provider’s infrastructure. This attacker assumption reflects an exploitable
software component installed on a variety of severs or an administrator making
changes with extensive privileges. To be precise, adversaries in this model can
compromise software systems and obtain access to software and data running
on any of the cloud provider’s machines.

However, the adversary can not physically tamper with certain hardware
components which include the CPU, bus systems, system memory, or the
platform roots of trust (e.g., Trusted Platform Modules [64]). This has both
a practical and a theoretical motivation: concerns of physical perimeter and

CHAPTER 2. BACKGROUND AND RELATED WORK 23

hardware security can be separated from the problem of designing secure
systems supported by trusted computer platforms.

Aside from this threat model, several assumptions are necessary to support
the work in this thesis. To facilitate solutions which involve recording and
reporting software configurations, it must be assumed that there is a selection
of trusted software. For instance, the security of software running in a virtual
environment might rely on the functions and properties of a virtualization
system. It is assumed that there is a selection of trusted virtualization software
(e.g. operating system software or virtual machine managers). Such software
might be trusted because of its origin or certification or because it is proven to
be secure [74]. However, it is never assumed that only trusted software can be
installed and executed even if the physical platform itself is trusted. Adversaries
can still install arbitrary software configurations. Such software can be modified
or entirely adversary supplied and range from high-level malicious applications
to corrupted machine boot code.

Finally, Trusted Platform Modules have a special role as they implement a
platform’s roots of trust. It is assumed that a Trusted Platform Module (TPM) is
genuine and comes from a trusted source. This implies that it has a trusted life
cycle which starts from manufacturing and includes deployment and operation.
Cryptographic functions and secure storage options implemented by a TPM are
considered both trusted and secure against direct attack. The keys generated
and used by the TPM exclusively cannot be extracted efficiently by the adversary
and verifiers can establish a TPM’s validity and a platform’s identity using its
unique and protected credentials [130].

2.1.4 Summary

The contributions of the remainder of this chapter are as follows: A brief
overview of relevant background knowledge and related research is given along
with the rationale behind choosing a Trusted Computing solution (Section 2.2).
Subsequently, relevant concepts and primitives of Trusted Computing Systems
are introduced and will serve as a reference throughout this thesis (Section 2.3).

CHAPTER 2. BACKGROUND AND RELATED WORK 24

2.2 Related Approaches

This section will review the related work of this thesis which is categorized
into different approaches towards secure and trusted cloud computing. The
first subsection reviews reputation-based approaches (Section 2.2.1) which is
followed by a section on Trusted Execution Environments (TEEs) and Secure
Enclaves in Section 2.2.2. Hardware anchored security and approaches using
trusted execution features are summarized in Section 2.2.3 which is followed
by formal methods based approaches to design and verify secure systems in
Section 2.2.4. Lastly, approaches involving secure computations using homomor-
phic encryption are briefly discussed in Section 2.2.5. This section is concluded
with a discussion of the individual approaches, their usefulness, applicability,
and current limitations in Section 2.2.6. The conclusion of this analysis is that a
trusted computing based solution must be combined with formal methods for
the design of secure systems (Section 2.2.6).

2.2.1 Platform Identification and Reputation

A basic form of trust establishment depends on the ability to identify a subject
and observe its behavior in certain interactions. Providing reliable temporary or
permanent identification is crucial for all trust establishment strategies. Relying
on some form of identification is the most basic way to establish trust and
usually lacks direct evidence to justify it. In a perfect system, each entity has a
cheap, anonymous, and yet unforgeable identity built in. In reality, solutions for
secure identities vary between relatively unforgeable hardware based identities
to highly privacy preserving identification mechanisms and tradeoffs have to
be made. Whether or not an approach is feasible can depend on unit cost for
hardwaremechanisms and computational or infrastructure cost formore privacy
preserving schemes [19]. Once an identity is established, services associated
with that identity can be trusted if they have built up a good reputation [72].
Aside from such reputation based systems, the trust one has in a particular
service can also be based on the service provider’s identity with some offline
information as context (i.e., contracts and agreements). Reputation can also
be assigned to entire organizations or groups and device classes instead of

CHAPTER 2. BACKGROUND AND RELATED WORK 25

just individuals. Such approaches can help scaling up trust assessment when
building up reputation between individuals is not possible. First time contact
with subjects and opportunistic adversaries in particular are typical problems
associated with purely identity and reputation based systems—especially when
secret and confidential data has to be shared.

Kamvar et al. describe an algorithm named EigenTrust in [72]. The pa-
per aims to reduce the amount of inauthentic downloads in the then popular
Gnutella file sharing system by assigning trust values to each download peer
and having each peer keep a record of its recorded trust values. The paper itself
is one of the most cited papers concerning trust in peer-to-peer (P2P) systems
as it presents an extensively evaluated algorithm for a variety of use-cases and
attack scenarios. The algorithm itself is not concerned with a digital notion of
trust and uses individual experience in a distributed system to establish peer
reputations. The evaluation strategy and the adaption of a simple calculus have
been influential in many extensions and further developments in the area. Liu
et al. [85] outline the interdisciplinary nature of trust in peer-to-peer recom-
mendation systems. One of the key contributions of this paper is a “non-binary”
notion of trust. The non-binary notion of trust can be applied to the fact that
trusting the entire computing system is often not realistic. The authors argue
that trusting or not trusting heavily depends on the scope of such a decision
and the parties as well as their competencies involved. The paper explains
its semi-formal approach using examples from e-commerce and illustrates the
application by applying it to the distribution and trustworthiness of identities in
a PGP system. Richardson et al. [112] propose a trust management system for
a semantic web based on trustworthy peers to improve the trust in content in
such a network. While emphasizing the subjective nature of trust that is paired
with a social notion of trust rather than a digital one, they propose storing local
trust values of peers and composing them to global references for entities in
their vision of the semantic web. They propose a model and calculus which
enables creating and curating individual trust references as well as a strategy
for merging trust values in case of cooperating peers. Ruan et al. [115] present
a paper called “Achieving Fine-graded Cloud TCB Attestation with Reputation
Systems” which leverages existing trusted computing strategies to establish

CHAPTER 2. BACKGROUND AND RELATED WORK 26

trust in cloud systems. The paper makes use of Trusted Computing Group
technology, a defined trusted computing base, and trust establishment proto-
cols. Their approach is based on mutual attestation using standard mechanisms
while they suggest reputation records held by neighbors to overcome technical
and theoretical limitations of their attestation model. This paper introduces
reputation systems as a solution for hidden dependencies, architectural gaps,
and lacking trusted computing support in typically complex cloud systems.

A promising approach which uses primarily identification is to create a com-
posite of device identification and its software and security state. This concept
is proposed and standardized as device identifier composition engine [131] and
aims to provide a cryptographic identity which supports device attestation and
data encryption. Such solutions are aimed at low-end devices with only a few
hardware registers which can be used to store and update a device secret which
is used to identify it. Based on this identity and cryptographic hashes created
when bootstrapping the device, a cryptographic identity can be derived which
allows tying the derived key to some software identity. However, important
secrets may still leak, i.e. the device secret, and a corrupt bootstrapping process
might also lead to incorrect key derivation. Such factors require solutions for
emergency recovery and issuing new keys if old ones are considered compro-
mised. Such functions might fall back on hardware-based secure environments
to set up the device again [131].

2.2.2 Hardware-based Secure Environments

Hardware-based secure environments have traditionally existed only as stan-
dalone systems or as secure co-processors which could be used to store and
execute a fixed set of programs which handled secrets and confidential data.
Programs running in such environments are highly trusted if the program itself
is trusted. Secure hardware execution environments are supposed to guarantee
isolation from any untrusted application system. Some implementations of
HSMs and co-processors even provide certified hardware tamper resistance.
These add-on type security modules are typically fully independent computing
systems with a high degree of isolation from the application system. Con-

CHAPTER 2. BACKGROUND AND RELATED WORK 27

sequently, all software attackers on the application system could not cross
isolation boundaries and compromise data stored and processed in secure envi-
ronments. Such solutions are typically expensive and suited only for special
interest groups and organizations, i.e. in the financial sector, where they are
used to securely generate, manage, and use cryptographic keys [14].

Another type of hardware-based secure environment uses application pro-
cessor features to establish a Trusted Execution Environment (TEE) or a secure
enclave [30] (Figure 2.1). Notable examples of TEEs and secure enclaves are

Trusted
System

Untrusted
System

App Secure
AppSecure I/OShared

Memory

Physical
Platform

Enclave
Engine

Fig. 2.1 Trusted Execution Environments and Secure Enclaves rely on a feature of the
application processor (Enclave Engine) to establish, isolate, execute, and manage secure
applications on shared hardware.

ARM TrustZone and Intel Software Guard Extensions. Compared to slower and
expensive cards and co-processors, TEEs and secure enclaves especially incur
some overhead when switching between untrusted and trusted executions but
otherwise allow running trusted execution at application processor speeds.

TEEs use a number of isolation mechanisms to achieve their security goals.
Common methods involve cheaper firmware functions for isolation, others
provide dedicated hardware features for restricting access to trusted memory
regions which may also be encrypted in main memory. Such hardware-based
secure environments still share hardware with the application operating system
as the isolation is a feature of the shared chipset. Sharing system resources
between potential adversaries and the secure environment has already led to
serious confidentiality breaches in unanticipated ways [84, 75] and the spillage
of keys to certify the trusted execution of programs. On commodity platforms,
the TEE and enclave capabilities are often very limited and allow only small

CHAPTER 2. BACKGROUND AND RELATED WORK 28

pieces of application logic and data to be fed into a trusted environment. How-
ever, some commercial solutions provide architectural support in hardware to
run virtual machines or application containers in trusted execution environ-
ments [113] on mainframe systems. The approach of enshrouding applications
and running them in (hardware) isolated environments is a promising commer-
cial approach to secure cloud computing. Running trusted programs in secure
environments on the application processor overcomes the typical high cost and
bad performance of HSMs and slow co-processors. A co-design for isolation
techniques which involves software, firmware, and hardware features provides
an excellent platform for the contributions made in this thesis. Unfortunately,
such co-designed solutions would require significant changes to commodity PC
and mobile operating systems [100]. Truly secure enclaves and trusted execu-
tion environments could become an invaluable asset in an arms race against
powerful attackers, if not all attackers, on the untrusted application system.
However, TEE and secure enclaves are in many ways merely an engineering
solution to often impractical and inefficient schemes for secure computing
with some tradeoffs in security and hardware assumptions. Trusted execution
environments and secure enclaves as a security feature do not immediately
aid in the construction of secure systems. Instead, they provide an option for
secure execution on an insecure or compromised operating system. The security
and trustworthiness of programs running in TEEs and enclaves is still under
investigation—adversaries can also run code their code in enclaves. If enclaves
eventually run entire operating systems, we will likely see the return of exploits
which hit commodity operating systems years ago.

Ironically, TEEs and secure enclaves today are already better known for their
exploits than for the security features which they provide. Attacks which ex-
ploited micro-architectural and timing side-channels (or simply leaky hardware
implementations) proved to be catastrophic and downright broke the security
model. Attacks described in [84, 75, 33, 20, 51] allowed the extraction of enclave
secrets and credentials from an untrusted part of the system. However, formal
models for secure enclaves designs exist [30, 126, 106] and active research is
underway to remedy current isolation flaws [59, 51, 17].

CHAPTER 2. BACKGROUND AND RELATED WORK 29

2.2.3 Hardware-anchored Security and Trust

Hardware-anchored security aids the construction of secure systems and sup-
ports trust establishment by using special hardware on the physical platform.
Hardware security anchors first appeared as cryptographic co-processors which
would provide support for cryptographic functions and local key management.
Today, one of the most popular, standardized and commonly available hardware
security anchors is the Trusted Platform Module (TPM) [64]. With the help
of major hardware and software vendors, the TPM is well integrated into the
majority of commodity platforms and operating systems. Similarly, there are
practical, lightweight options for embedded and low-resource devices [131] as
well as fully vendor specified systems on a chip (SoCs) such as secure enclave
processors which support a variety of security related functionality. At a glance,
the major difference in the design of hardware security anchors compared to
hardware-based secure execution environments is that aside from a shared
physical platform, e.g. a logic-board, the hardware security anchor is fully inde-
pendent and isolated from the rest of the system. This includes main memory,
caches, and CPUs. Secure and trusted execution environments aim to emulate or
provide a virtually isolated environment while sharing hardware with potential
adversaries. However, the degree of isolation depends on the implementation
of the hardware security anchor (Figure 2.2). Unlike secure enclaves which

Physical Platform

Memory

VMM

TPM

Guest OS

App App App

I/O ...

Fig. 2.2 Dedicated security chips such as the Trusted Platform Module (TPM) are
available to the application system and aid in the construction of secure systems.

CHAPTER 2. BACKGROUND AND RELATED WORK 30

provide secure and attested execution, hardware anchors like the TPM do not
offer similar features without software support. With such software support,
the TPM can be used to establish trust in a virtualization system [105, 82]. The
TPM provides a secure and trusted way of storing system states and provides
cryptographic support for reporting states to a verifier.

Secure hardware anchors also support secure systems locally (i.e., without
involving external verifiers). Today, secure boot technologies are commonplace
and allow platform owners to specify which kind and version of an operating
system should be running on a machine. If adversaries try to compromise the
operating system or boot their own version, secrets such as disk encryption
keys may not be released to them. Confidentiality provided by disk-encryption
is supposed to prevent decryption of data by an insecure platform and operating
system or an unauthorized client. Major research efforts have focused on
another feature which is referred to as late launch, trusted execution technologies
(TXT), or dynamic roots of trust for measurement (DRTM) (more in Section 2.3.4).
A CPU feature allows launching software in exclusivity while other processes
are suspended. This allows potentially insecure and untrusted software to
perform a system boot while the hardware and a small piece of trusted software
launch a secure OS kernel. Solutions use this feature to provide protected
execution of programs in an impoverished environment [89] or launch security
monitors without having to place trust in an insecure operating system or
hypervisor [88, 142]. Because of their isolation and ability to store system
information in a secure way, hardware security anchors can be used to remotely
verify a system. Using a procedure referred to as remote attestation allows
a verifier to establish trust in a remote system [95, 87, 19, 121, 105, 28, 79].
Consequently, the verifier can then decide a security policy for the attested
system, share data with it, or restrict the use of confidential data by crafting a
policy which locks data to the security state of the system (see Section 2.3.3 for
details).

CHAPTER 2. BACKGROUND AND RELATED WORK 31

2.2.4 Formal Verification for Trustworthy Systems

Trust in computing has been the subject of a large body of work. Practical
approaches for systems verification are driven by proving functional correctness
or compliance with a specification [74]. Eventually, functional correctness was
extended to include more abstract security properties [99]. In parallel to that,
formal models have been developed which formalized digital trust based on
more social notions. Other approaches aim to formally prove a certain property
(e.g., trustworthiness or cooperation) using game theory and formalizations of
common dilemmas [76].

A study of formal semantics of trust and an argument for transitivity of trust
is presented in [61]. The paper relies on a predominantly social notion of trust
targeted at arbitrary cooperating systems. The paper attempts a formalization
of trust based on business processes and builds a trust definition and simple
trust inference rules for parties and actions. The vehicle for the argumentation
is the fluent calculus, a form of a situation calculus, which models situations as
states and actions which can be performed. The publication has gained some
attention as an ontology and the formulation of theorems which can to some
degree be translated to trust in a digital computer system.

Xiu et al. [139] propose a formal definition for trust in distributed systems
and provide an extensive survey on trust in a social and computational sense.
However, the model strives to define an interpretation of trust in a distributed
system and is based on defined trust relations without regard to the actual
functionality or computation in a distributed system. Furthermore, the notion
of trust in this paper is binary, i.e. trust or no trust. A notion of this kind is
prone to being overly crude or ill-informed.

Any notion of trust beyond an intuitive one depends heavily on the par-
ticular domain. Investigation of trust in a broader and generic sense may be
of philosophical interest but it is debatable whether influential concepts in
computer security have directly benefited from such research. Furthermore,
developing generic concepts and formal models is a complex task. Without a
target domain in the design of a model or method, such developments need

CHAPTER 2. BACKGROUND AND RELATED WORK 32

further time to model the target domain instead. Thus, more tailored models
and methods are generally favored and produce useful results.

More domain specific models enable reasoning with an intuitive notion
of trust in mind but with the target domain, i.e. a computing system, at the
core of the formalism. The specific notion of what is and what isn’t trusted or
trustworthy is often encoded as a state of the model rather than being part of
the model itself. As a result, the formalism can simulate real systems and one
can formulate a number of trusted states and properties.

Orbaek et al.’s paper [104] introduces trust analysis in functional expressions
by subjecting program data paths to checks so as to remedy problems related
to trusted programs operating on untrusted input. For this purpose, the lambda
calculus is extended with explicit trust operations and a trust-type system. The
intention is that in order for results to be trustworthy not only the program
must be trustworthy but also the input it receives. A programmer in this model
will insert explicit checks whenever her program receives input so as to make
sure that all data-paths have explicit trust states. The paper demonstrates of
how a concept like trust can be explicitly incorporated at various levels in a
language and how this can be used to insert a notion of trust directly into
programs.

Rowe [114] defines a model and strategy for bundling evidence for layered
attestation while introducing a use case for VM attestations using both bottom-
up and program launch measurements [117] and dynamic attestation. The paper
investigates bundling strategies and makes the case for attesting a system from
the system root up (bottom-up). Until then, the notion that an attestation has to
evaluate a system from the bottom up has been an intuitive one without much
scientific backing. However, [114] deliberately conflates several related concepts
in the paper and the theorems provided are based on a abstract model. The high
level of abstraction and the deliberate confusion of capturing, reporting, and
appraising evidence about a layered compute system make it a highly domain
specific investigation with little possibilities to untangle conflated concepts or
sharpen the model. Finally, [114] uses abstraction and mathematical reasoning
to produce an informal argument which proved to be intuitive and not very
useful for constructing new and checking old systems.

CHAPTER 2. BACKGROUND AND RELATED WORK 33

A more useful and likely better way to reason about and constructing
systems is through the use of formal methods for designs. Formal methods for
designs are used to understand a system before (or after) it is built.

Datta et al. [36] provide a system which allows encoding system states
which are regarded as trustworthy using components which are trusted such as
the trusted platform module (TPM). The paper extends a formal model designed
for program verification with several trusted computing primitives, including
a TPM, protected attestation keys, and special purpose secure registers. The
inclusion of these elements in the formal system effectively allows the verifica-
tion of trusted computing systems. Using only a few actions with side-effects
such as read, write, jump and such, they were able to provide an abstract but
credible view of programs and computer systems as they boot and run programs.
[36] encodes a notion of trustworthiness by defining precisely in which state a
machine is and which state is expected by a verifier. If the two states (i.e., actual
and expected) match, a trust establishment strategy is considered trustworthy.
This paper has been influential in the verification community even though the
system itself is somewhat complex as it is overburdened with an obsolete formal
system for protocol verification.

The authors of [36] later defined a logic for interface confined programs
in [69]. The new logic is not concernedwith networked computers and protocols
anymore and instead focuses on reasoning about local safety properties only.
The developed formal system allows modeling and proving safety properties of
systems that execute untrusted code via interface confinement. Their system
allows safety proofs for programs which execute untrusted code while the code
itself does not have to be available for deep inspection. Our work in Chapter 4
builds upon [36] but removes the unnecessary and disputed network protocol
reasoning capabilities [35, 31]. Instead, the focus is placed on an extended system
interface which allows system layering with explicitly modeled actions. The
work presented in [69] demonstrates that reasoning using interface confinement
is a possible next step for the extension of [36] in Chapter 4.

A more focused vein of formal verification targets bug-free programming
and programs. The effort of program verification is started by assigning a
specific meaning to programs and introducing axioms and rules for reasoning

CHAPTER 2. BACKGROUND AND RELATED WORK 34

about individual program parts [60, 46]. Hoare logic, or Floyd-Hoare logic, is
a formal system which allows us to reason about the correctness of computer
programs. Hoare logic has been adopted and refined for various purposes. [60]
introduced triples which had two assertions and a command—a pre and post
condition as assertions and a command between them. If the precondition is met
then reducing the command would establish the post-condition. Combined with
logical rules for different cases allows the verification of currently dominant
imperative programming languages using formulae of predicate logic. An
alternative to writing programs and proving them correct is to write correct
programs in the first place. Using Church’s lambda calculus as the model
for computation, simple type systems for programs were developed which
proved to be equivalent to propositions of intuitionistic logic [53, 27, 137].
Today, we enjoy programming languages and type systems which take the
correspondence between language and proof theory further to an isomorphism
between programs and proofs.

A great example and respectable achievement for computer security re-
search is the verification of the seL4 microkernel [74]. The verified seL4 project
represents the successful application of program verification to an entire oper-
ating system kernel to be used as the foundation for trustworthy systems. The
operating system kernel is not only proven to be stable and functionally safe
but they are also able to prove strong isolation for the kernel itself as well as
between applications. Similar properties are currently impossible to prove for
commodity operating systems and remain an assumption which is based on
best efforts rather than rigor. Klein et al. also report their approach and efforts:
roughly 9000 lines of C code were verified to adhere to a high-level specification
of their system. The overall size of the proofs about the system were 200.000
lines of code in a theorem prover. The time commitment to develop those proofs
is estimated at twenty person years, depending on which items are factored
in [74]. The authors note that in terms of practicality their effort was one of the
more streamlined and less expensive ones. However, the details do not matter
anymore when the verified lines of code are compared to commodity operating
systems and virtualization systems which rely on millions of lines of privileged
code.

CHAPTER 2. BACKGROUND AND RELATED WORK 35

In light of hardware based attacks launched from user-space, the verification
of an operating system seems pointless when it is running on hardware which
lets attackers bypass or corrupt a secure kernel. Efforts are made to produce
verified hardware design for RISC processors which could add another piece to
the foundation of verified, trustworthy systems. Despite those efforts, there is
a strong case for formal modeling and formal methods for design: functional
correctness alone does not imply that certain security goals are also met. Finally,
a very practical question for verified systems arises from the work presented in
this thesis: how does a verifier learn that s/he is indeed working with a fully ver-
ified, trustworthy computer? Trusted Computing and secure hardware anchors
are perfectly suited as a system root of trust in this case. Secure hardware an-
chors such as the TPM have a symbiotic relationship with trustworthy operating
systems and establishing trust in them is just one application [83].

2.2.5 Secure Computations

An unconditional solution to solve the problem of secure cloud computing
would certainly involve having only encrypted data in the cloud. The data
owner (e.g., a client) can upload only encrypted data and download it selectively
for processing. Using a secure encryption scheme effectively prevents the
cloud provider from accessing a client’s data. For applications which involve
database functionality, searchable encryption is being developed to allow the
only somewhat trusted cloud service provider to perform operations on the
client’s database. The objective of searchable encryption is to prevent the
cloud provider from learning about the data in the database, inputs, outputs,
or operations [32]. Currently, the applicability of such schemes depends on a
schemes scalability and the expected search complexity.

Another branch of cryptography research focuses on a more powerful
approach: fully homomorphic encryption (FHE). Homomorphic encryption
intends to overcome the limitation of having to operate on encrypted data
locally (e.g., clients have to download and decrypt data) instead of directly in
the cloud (e.g., the cloud computes using encrypted data and operations). Using
homomorphic encryption, the cloud provider which holds only encrypted data

CHAPTER 2. BACKGROUND AND RELATED WORK 36

may perform specific operations on the encrypted data. However, homomor-
phic encryption is only possible with certain operations. In comparison, fully
homomorphic encryption supports arbitrary computations on encrypted data
[52]. In either case, it is important to note that both inputs and outputs of
such schemes are encrypted. The promise of fully homomorphic encryption is
immense and would partially solve the issue of processing encrypted data with
weak trust models and powerful attackers (Section 2.1.3).

But even FHE schemes are an unlikely path towards secure cloud computing.
The perhaps most obvious problem is that the output of a computation is
encrypted. The operational consequence is that no actions can be performed
on the result of a program in the cloud which makes such operations hard to
integrate into systems. The result of a computation needs to be given back
to the client for decryption before next steps can be executed. If the result
of the computation was deterministic in some way, i.e., no longer seemingly
randomwithout the key and therefore usable in the cloud, the encryption would
not provide the desired security property anymore and the cloud needs to be
somewhat trusted.

A second major topic for FHE research is stopping or limiting its inefficiency
in both time and space. A seizable amount of research has already produced
speed-up by several orders of magnitude andmuch smaller key sizes [116, 25, 41].
Despite such improvements, the current state of fully homomorphic encryption
ultimately limits the approach to certain key applications [116].

2.2.6 Discussion

The five approaches we have outlined differ significantly in the way they ap-
proach the problem of secure and trusted cloud computing, in the security
properties which they provide, and most importantly in their range of applica-
tions.

Reputation based systems are clearly most applicable as they adopt an almost
anthropological approach to security. It is easy to imagine that one might
simply use a reputable cloud provider and trust that combined with legislation,
preserving an excellent reputation by providing secure environments for clients

CHAPTER 2. BACKGROUND AND RELATED WORK 37

Fig. 2.3 A pictorial presentation of the security guarantees which each approach
provides on the y-axis and the range of applications in our cloud computing setting on
the x-axis.

is simply good enough. This is the status quo and demonstrably not enough
to establish trust and protect data in a cloud service. Surprisingly, despite
needing no technical adjustments, reputation systems do not scale even when
they are supplemented by legislation. Cloud services often have more than
one stakeholder, more than one administrator, and more than one software-
provider. Failure in any one can lead to compromise. Without clear capabilities,
responsibilities, and extensive logging it becomes hard to blame the responsible
party. Besides making it easy to miss the security goal, the low-tech approach
of reputation systems makes it difficult to determine who is to blame and lose
reputation.

Cryptographically secure computations using fully homomorphic schemes
are on the other end of the spectrum of approaches. Among the outlined
solutions, they arguably provide the strongest security guarantees and have
little to no dependencies on an actual cloud system (perhaps resources for
availability). These security guarantees come at a significant cost both in terms
of practicality and operation. Currently, all secure fully homomorphic schemes
incur a comparatively large overhead in terms of computing power and storage.
If such schemes were deployed widely, they would drive up cost and limit the
usefulness of cloud services severely. Today, fully homomorphic encryption
allows for confidential outsourced computing but offers no way to integrate

CHAPTER 2. BACKGROUND AND RELATED WORK 38

outsourced computations into classical and flexible service architectures. The
result of fully homomorphic schemes is necessarily encrypted and any trade-
offs one could make to allow further processing and integration in the cloud
can easily lead to compromise which removes the strong but brittle security
guarantees [116].

Hardware-based secure environment offer a practical solution for confi-
dential and secure computations for cloud computing. Today, secure environ-
ments are available on commodity hardware and can provide a way to perform
sensitive operations even when the operating system or the system owner is
considered a threat. However, commodity CPU’s do not offer enough secure en-
claves and space to accommodate multiple clients on one machine and hardware
enclaves are not yet supported in virtualized environments. Computing with
enclaves in general needs more support both in terms of security and interoper-
ability with commodity operating systems which will eventually arrive. Most
programs will need to be adapted or rewritten to run certain parts of, e.g. pro-
cessing confidential data, in isolation. The security guarantees heavily depend
on the way enclaves are programmed and utilized [136]. Micro-architectural
attacks [20, 51] demonstrate that current hardware-based secure environments
are far less independent and isolated from the host operating system than
promised. While we are yet to see public disclosure of successful exploits, the
initially clear security benefit of hardware-based secure environments is now
put in question. Without more verifiable designs secure environments can be
seen as an exploitable black box on a remote system which can be strategically
used against its clients.

Despite these current shortcomings, more secure enclave and system designs
are bound to emerge, eventually. Support for enclaves in virtual environments
would provide a way of excluding other tenants, virtual machine management
software, and operators/administrators from a threat model. TEE’s and secure
enclaves have great potential and are already aiding the construction of secure
systems by providing alternative and secure run-time environments for critical
programs. Interestingly, secure enclaves and execution environments rely on a
number of concepts adopted from hardware-anchored security. The results of

CHAPTER 2. BACKGROUND AND RELATED WORK 39

this thesis might in fact be applicable to the design of enclave features such as
remote attestation.

Formal verification is currently the best known tool to construct a trustwor-
thy system. Formal verification has evolved into a useful and in many cases
mandatory approach [101]. The usual complaints about verification tasks is that
the conclusions reached are not worth the time invested. However, computer
security and especially the impact of security on the overall system safety might
motivate extensive formal modeling and verification in some cases. Full formal
verification produces proofs for software using a specification which is very
close to the machine level but at great cost [74]. Full verification for functional
correctness using a low-level specification is simply not an option for this thesis.

Summary

Producing a specification for a secure system is a mandatory task no matter
how complex the system may appear. Without at least an informal method to
capture and discuss a system and its properties, we can not determine or improve
its security characteristics. The same rich techniques which are applied to a
low-level specification can obviously be applied to a higher-level specification
and with great success. Furthermore, the kinds of systems which we consider
are generally large and typically receive gradual improvements. Producing
formal proofs against a low-level specification might simply not yield great
insights. However, significant effort must be directed towards providing proper
abstractions. With good abstraction, even a high-level abstract state is effectively
real (i.e., abstract states correspond to real states). Modeling an existing system
and designing extensions based on a useful formal model is a proven way to
approximate complex systems, separate concerns, and allow for incremental
and compositional improvements of systems [101]. This also summarizes the
approach to formal verification of this thesis.

As hinted previously, this thesis also focuses on establishing security and
trust in virtualized environments using a Trusted Platform Module (TPM) as
a secure hardware anchor for trustworthy systems. In short, the motivation
for a trusted computing approach are: (i) native applications and infrastructure

CHAPTER 2. BACKGROUND AND RELATED WORK 40

runs without overhead on application processors, (ii) (remote) establishment
of software system properties, and (iii) all trust is rooted in and extended
from secure hardware. A trusted computing approach excels at leveraging
existing infrastructure and benefits directly from improvements to hardware
and software designs. As a system’s root of trust, hardware security anchors
are irreplaceable which can serve as an integrator component for the previously
mentioned approaches as they become more applicable.

2.3 Trusted Computing

The concept of Trusted Computing is intended to protect systems and data from
all software and some hardware attacks [95, 105, 87]. The trusted computing
approach used in this thesis is based on the work of an industry consortium,
i.e., the Trusted Computing Group (TCG), which promotes secure hardware,
systems, and protocol designs for trusted systems [132]. TCG designs and
concepts are based on a large body of research and development and their
approach is highly applicable to today’s hardware and software systems. Using
TCG hard- and software is now a feasible approach to securing commodity
systems and constructing trusted platforms for future systems. In this section, a
brief introduction to Trusted Computing as defined by the Trusted Computing
Group is given. The informal term ‘trust’ and its semantics are introduced
in Section 2.3.1 and frequently used in the introduction to Trusted Computing
Platforms in Section 2.3.2 and later sections. The most notable addition to com-
puting platforms by TCG is the Trusted Platform Module (TPM). The TPM’s
properties, capabilities, and design limits are introduced in Section 2.3.3. Large
parts of this thesis are concerned with integrity measurement and protection
techniques. The TPM supports system integrity measurement and protection ar-
chitectures by acting as a secure compartment for measurements and reference
values. How exactly the TPM supports the work in this thesis and how integrity
and other trust information can be used on a trusted platform is summarized in
Sections 2.3.4 and 2.3.5, respectively. Finally, the general challenge of applying
these concepts to virtual environments using a virtual trusted platform is dis-

CHAPTER 2. BACKGROUND AND RELATED WORK 41

cussed in Section 2.4. Virtual trusted platforms include a virtual TPM [14] to
act as a TPM in virtual environments—the concept is reviewed in Section 2.4.1.

2.3.1 Trust in Trusted Computing

When we refer to something as trusted, we strictly mean that it can or must
be trusted in order for some other, higher-level, and dependent concept to
work. A good example for this is the definition of the Trusted Computing Base
(TCB) in [135]. A common definition says that the trusted computing base
is the part of the system which we essentially rely upon for security and a
failure in the TCB may allow adversaries to attack the entire system [87, 95].
Similarly, today, trusted systems are the kind of systems which we rely upon in
different ways and if they fail then it may negatively affect concepts built on
top of that. Trust does not necessarily entail security. Instead, secure systems
may be built from or on top of trusted components. Conversely, we would not
attempt to build a secure system while relying on untrusted and untrustworthy
components. We can trust a component if (1) we can identify it, if (2) it can
operate freely, and if (3) it always operates as specified [87, 95, 48]. The first
two points are intuitively important since without identification we would
not be able to tell trusted components apart from untrusted or unknown ones.
Additionally, trusted components must be able to operate as specified such that
adversaries are not able to block important mechanisms. The last point can be
achieved by formal modeling, specification, and verification which essentially
helps to prove that the verification target (e.g., a piece of software or hardware)
implements a specification. Once components are verified to conform to their
specification, they can be referred to as trustworthy [87, 74]. For (software)
systems without precise specifications, we often have to look for more practical
methods such as fuzzing [127] or accept fewer guarantees by relying on testing
instead. Trusted Computing requires a combination of trusted and trustworthy
components to enable trustable computing, i.e. computing systems which we
can rely on.

CHAPTER 2. BACKGROUND AND RELATED WORK 42

2.3.2 Trusted Computing Platforms

The Trusted Computing Platform, or trusted platform, has been a long standing
and elusive target for several high-assurance projects [95, 48]. Approaches
aiming to construct it often differ greatly based on the particular computing
application and the available hardware. However, all trusted platforms must
be identifiable and their current configuration must be known [87]. What the
relevant configuration is varies again with the kind of system and the kind of
application. Typically, the relevant configuration encompasses all components
of a system which are not de facto “trusted” but need to be trusted. A simple
dynamic emerges which suggests that if out of a total number of components
only a few are trusted and the remaining components are part of the relevant
configuration unless they can be excluded (e.g., because they are effectively
isolated). Platform identity is commonly achieved by giving a machine its own
digital fingerprint. Protecting the unique identification or restricting use of the
identifier is a task often left to the platform manufacturer. We have to trust that
the identity is both unique and bound to the platform. Other approaches might
establish an identity for a platform during its operation based on some unique
property, behavior, or structure of the system instead. If the identity is added to
an otherwise anonymous platform, then we rely on a strong binding between
the identity and the platform.

Securely conveying the relevant configuration typically leverages the plat-
form identity for authentication and to constrain the disclosure to parties famil-
iar with the platform. This requires that any dynamic configuration (i.e., one
that can not reliably be predicted) is appropriately established and recorded
locally on the trusted platform and reported if necessary. If the configuration of
a system is static, pre-defined, or predictable it may also be implicitly established
(i.e., without any further recording or reporting). On a PC system, relevant
configurations may include hardware, firmware, and software as well as its
current configuration. Configurations can be established via measurements
of components by other trusted components. Measurements are typically pro-
duced using a cryptographic hash function with some object (e.g., a system
component) as its input. The output of that function is then referred to as a local

CHAPTER 2. BACKGROUND AND RELATED WORK 43

measurement which can be compared against some reference value (sometimes
referred to as ‘golden value‘). The system component which performs, stores,
and reports measurements needs to be trusted if we want to establish trust in a
platform.

2.3.3 Trusted Platform Module (TPM)

The Trusted Platform Module (TPM) is a component designed by the Trusted
Computing Group (TCG) in a set of specifications [79, 57, 64]. The specifications
can be implemented as hardware, firmware, or software devices which support
secure systems and security enforcement in several ways. A TPM can generate
strong keys using true random numbers and use them in cryptographic opera-
tions, it can certify keys and other objects using its own key infrastructure, and
it can make keys and certificates available to a system based on a set of policies.
A TPM’s root keys can never leave the TPM (or be used directly by an external
party) and some of the keys it generates can be restricted to be used by their
creator or by a set of specified TPMs only. Thus, TPM held keys are protected
from a variety of attacks and should be protected from all software attackers
([96] reveals the implication of timing attacks on vulnerable implementations).

Beyond such cryptographic primitives for generating and using keys, the
TPM also supports a variety of secure storage options by using internal keys to
protect externally stored objects or storing objects internally in non-volatile
memory regions and in Platform Configuration Registers (PCRs).

Conceptually, a trusted computer equipped with a TPM (and support) can be
referred to as a trusted platform (or just a platform in TCG-speak) for building
secure and trusted computing systems. To aid the construction of trusted
computer systems on a platform, the TPM provides several so called roots of
trust. Roots of trust are system components which need to be trusted, possibly
without a way to directly verify them, but they are also meant to be trustable
through assurances of several parties including the platform manufacturer. The
TPM is intended to provide three essential roots of trust [87, 64]:

• Root of Trust for Measurement (RTM): produces the initial integrity
measurement and continue a chain of trust measurements on the platform.

CHAPTER 2. BACKGROUND AND RELATED WORK 44

Fig. 2.4 A Trusted Platform Module (TPM) and its internals [79].

• Root of Trust for Storage (RTS): protects secrets on the platform such
as storage keys and other objects (e.g., integrity measurements).

• Root of Trust for Reporting (RTR): provides a unique identity for
the trusted platform which can be used to certify keys or report trust
information (e.g., via attestation).

The interaction and need for these roots of trust is best explained though a
challenge such as: “is the system on my platform in a good state?”. To answer
such a question, we need a TPM’s roots of trust. The RTM creates cryptographic
hashes of a loaded system object (e.g., an operating system kernel) and stores
it in a Platform Configuration Register (PCR) (2.4). The PCR acts as a secure
storage location for storing measurements. Now a trustable mechanism derived
from the RTM is needed to take measurements and record them in a PCR (i.e.,
storing them in a secure location). After the measurement has been taken
and stored in a PCR, the system state is now seen as recorded securely in the
TPM. Assuming that a platform’s identity is known in the form of a public
key [105], the RTR can now certify the recorded measurement which can then

CHAPTER 2. BACKGROUND AND RELATED WORK 45

be conveyed to a verifier. This process is also known as remote attestation and
adds a genuinely new security primitive to a trusted platform.

Another challenge would be to ask whether some secret can be kept by a
particular platform. The RTR can certify that some storage key (secured by the
RTS) is used to protect secrets on the platform. A verifier can now encrypt a
secret using a key under the protection of the RTS to store confidential data
securely on the platform. With support by system measurements (RTM) or
verifier tokens, secrets can also be restricted to trusted system states. The roots
of trust implemented by the TPM support enhanced and trusted features on
the platform. These newly added features have both local and remote use-
cases (more details in Section 2.3.5). However, the system state itself is always
recorded via measurements and continuing a trustworthy chain of so called
trust measurements is a major topic in Chapter 4 and the next section.

2.3.4 Integrity Measurements

A TPM can serve as a root of trust for measurement (RTM) and provides both a
command to record a value using a cryptographic hash function as well as the
hash function itself with its own cryptography suite. However, a TPM can not
actively measure system components as a TPM has no visibility or capabilities
outside of its boundaries. Consequently, so called measurement events have to
be triggered outside TPM by the untrusted system while the TPM can support
taking measurements. If one wants to record and report the system state, the
TPM alone is not suitable.

Although the TPM provides some RTM functions (e.g., a hash generation
and storage), in this thesis the RTM is treated as a part of the trusted platform.
The trusted platform part of the RTM is referred to as the Core Root of Trust
for Measurement (CRTM) which is intended as the zeroth component in a boot
sequence before any actual boot code is executed. Although it is intended as a
standalone, immutable, and trusted component, in practice the CRTM is often
implemented by the few first boot instructions (e.g., ROM boot code) which
perform ameasurement of the current and succeeding component. The CRTM is
a critical part of the platform’s integrity measurement capability. The purpose

CHAPTER 2. BACKGROUND AND RELATED WORK 46

of the CRTM is to initiate a chain of trust measurements which effectively
records the software system that executes on the trusted platform.

One way to record the systems is to use a static root of trust for measurement
(SRTM) approach. Under the SRTM paradigm, a chain of trust measurements
is created which starts with the CRTM and is extended all the way up to the
operating system. The process of measuring and launching the next component
in a boot sequence is depicted in Figure 2.5.

Fig. 2.5 A Static Root of Trust for Measurement (SRTM) boot sequence creates a chain
of trust measurements from BIOS/CRTM to the OS [79].

The procedure in Figure 2.5 is intended to be straightforward and requires
extra instructions in each component to create and record a hash of the successor
component before jumping to it [36, 83]. In theory, this creates a simple sequence
of measurements that is cryptographically chained and stored in the TPM for a
verifier to review. Constructing and verifying a measured boot sequence is a
major issue of [36, 83] and is discussed in greater detail in Chapter 4.

However, SRTM launch sequences are somewhat controversial and may lead
to dangerous confusions. The CRTM in the SRTM launch sequence initiates
a sequence of trust measurements. The continuation of this sequence and
whether measurements are trustworthy depend on each successor of the CRTM.
If adversarial code is loaded at any point in this sequence, the remainder of the
trust measurements is, by definition, not trustworthy anymore. The scheme
displayed in Figure 2.5 produces a chain of trust measurements in the TPM
but at no point is trust ever placed in or delegated to the next component—a

CHAPTER 2. BACKGROUND AND RELATED WORK 47

verifier has to inspect each element and establish trust. Deciding whether or not
there is a chain of trust from CRTM to the OS depends on the trustworthiness
of each measurement and the trustworthiness of the individual components.
Since the entire sequence of measurements has to be verified, ambiguity (i.e., a
component is unknown or untrusted) or code that is executed but not measured
for any element implies that successive measurements are not to be trusted.
This leads to three important conclusions:

• A sequence of trust measurements does not necessarily imply a chain of
trust between all measured components.

• Components in the sequence may not be able to statically determine
or measure all components contributing to a system boot which gives
adversaries the advantage to hide code from verifiers.

• Verification based on SRTM is vulnerable to time-of-check to time-of-use
(ToCToU) attacks without extra assumptions or system guarantees since
components need to be measured before they are executed [36, 83].

A dynamic root of trust for measurement (DRTM) presents an alternative to
SRTM and remedies some of its shortcomings [89]. DRTM is supported by a
special hardware/CPU instruction rather than “trusted” boot code. Examples
of DRTM implementations are Intel’s Trusted Execution Technologies (TXT)
and AMD’s Secure Virtual Machines (SVM). Once a DRTM system launch is
triggered, the platform is put into a special, trusted mode. In this mode the
component to be launched next (i.e., a piece of code) is loaded in a deprived but
trusted platform mode (excluding adversaries) and recorded by the platform
rather than some predecessor component. As a result, the chain of trust mea-
surements in the TPM is much simpler and a piece of code is executed securely.
DRTM was designed for securely launching a trustworthy operating system
or hypervisor which then takes control of the platform. Consequently, trust is
delegated from the platform directly to the trustworthy operating system or
virtual machine manager.

Applications and virtual machines heavily depend on the operating system,
hypervisor, and sometimes other applications or virtual machines. To continue

CHAPTER 2. BACKGROUND AND RELATED WORK 48

either measurement chains, operating systems have been extended with mea-
surement architectures such as Integrity Measurement Architecture (IMA) [117].
Using the operating system to produce measurements instead of using DRTM
for applications and virtual machines is considered more applicable during
system operation [14, 79, 83]. A major concern when using DRTM is contention
over the hardware/CPU and the overall inconvenience associated with using
DRTM frequently: putting the platform into a trusted state results in a massive
disruption of commodity systems and prevents all concurrent execution (even
on other CPUs) until the launch sequence is completed. Because of this lack in
support for DRTM-like approaches on commodity hardware and systems, this
thesis focusses on integrity measurement architectures for commodity systems.

2.3.5 Using Trust Information

Trust information (e.g. integrity measurements) supplied by a trusted platform
about the currently running system is used in a variety of applications. The two
principal options can be described as local and remote uses of trust information.
Combining them often yields considerable security benefits.

Device ID

A key usage of trusted platforms is the certification and provisioning of unique
device or platform identification (device ID). As outlined in Section 2.2, a reliable
identity is paramount in reputation-based systems and solutions which mix
device identity with software configurations [131]. A reliable way to identify
a device is the basis for trusting its configuration, actions or building up a
knowledge-base of its behavior or compliance record. The device ID functional-
ity is supported largely using the assumption that a TPM is affixed to a trusted
platform and practically inseparable within any reasonable amount of time. The
device identity can then be provisioned to and protected by the TPM. The TPM
has built-in functionality which allow a device to derive privacy preserving
identifiers for use in direct anonymous attestation [19, 24]. Devices with similar
capabilities, such as HSMs, are more expensive by several orders of magnitude,
removable, and completely unsuitable for certain device classes and sizes. The

CHAPTER 2. BACKGROUND AND RELATED WORK 49

hardware-based security, cryptography capability, and secure storage afforded
by the TPM can reduce the risk of malicious device cloning, can significantly
improve supply-chain security, and is the basis for device enrollment and failure
recovery.

Using Trust Information Locally

A way of using trust information locally is to protect confidential data on the
platform itself. Using the RTM for measured, trusted, or secure boot sequences,
cryptographic keys and other secrets can be sealed or bound [64] to a platform
security state. Sealing or binding of secrets usually results in a policy which
is enforced by the TPM and defines under which condition(s) a secret may be
released or used. A now common application for this technique which adds an
immediate value to a system’s security is implemented in storage encryption
solutions. Although single files can be encrypted and effectively tied to a
platform’s security state, a more common application is to protect boot and
operating system sectors and a user’s file directories. For example, Microsoft’s
Bitlocker [90] aims to protect data in case of lost or stolen devices and corrupted
operating systems [87]. This approach relies on a modified operating system
which ensures that relevant data is encrypted while the device is shut down
or the user is logged out. The encryption key is protected by the TPM and
released only if the security policy (enforced by the TPM) allows it. Typically,
the same can be achieved using a user token such as a password, USB-token, or a
smart-card. However, with a TPM a selection of encryption keys can be securely
generated, stored, and ultimately protected on the platform. Furthermore, TPM
policies are typically enriched by additional trust information such as integrity
measurements (e.g., of the OS, patches, or applications) which allows using
both user tokens and a platform security state to protect secrets which prevents
users from unintentionally booting an operating system that can not uphold
necessary security guarantees. With techniques similar to [117], this can be
extended to OS-extensions and applications as well.

Alternatively, entire run-times and system environments such as virtual
machines and containers can be tied to a trusted platform and its security state.

CHAPTER 2. BACKGROUND AND RELATED WORK 50

By crafting security policies, users can define conditions under which their
workload may be decrypted and run on a trusted platform [116]. This approach
essentially enables the trusted computing solution outlined in the introduction
and allows users to specify that certain operating system versions (e.g., outdated
or vulnerable ones) are unsuitable or that unknown or blacklisted applications
may not execute on the system at the same time.

Lastly, TCG also pursues approaches which protect the integrity of the
trusted platform itself. More specifically, TCG’s storage work group describes
how entire storage devices can be encrypted at the device controller [87, 132]. In
such a case, the trusted platform is treated as a composite of smaller distributed
systemswhichmust be bound together. The device runs a key exchange protocol
with the TPM and its unique identity and derives a storage encryption key. If
the device is detached from the trusted platform, an adversary can no longer
obtain data without breaking the security of the trusted platform or the TPM.
A similar approach is extended to other removable components such as chips
containing important code (e.g., trusted boot code) and even CPU’s which often
hold secrets and security functionality that must not be replaced by an attacker.

In short, trust information can be used locally to enforce security and trust
on the trusted platform.

Using Trust Information Remotely

A popular and well standardized application for trusted platforms is to con-
nect them into networks of trusted platforms using Trusted Network Connect
/ Communications (TCG TNC) [87, 133]. With increasing connectivity and
spacial distribution of computing devices, managing a device’s access to certain
networks becomes critical. This situation is compounded by the fact that ac-
cess to a certain network is often used as a scalable access control mechanism.
Good examples are computing and storage resources which are shared among a
certain group of users and their machines. For example, access to the resource
via public networks might be limited or blocked while access via a the correct
network might give the machine read or write permissions [87].

CHAPTER 2. BACKGROUND AND RELATED WORK 51

Such approaches are deeply flawed, of course, if an adversary can access
these networks by introducing a corrupted machine or by infecting one that is
already connected. For this reason, network access and privilege in a trusted
network are granted based on the security state (e.g., identifier, type, software
configuration, or owner token) of the machine. Before the connection is allowed,
the device has to provide trust information based on which its security state is
assessed. The inclusion of ’endpoint security information’ is a valuable addition
to network security policies which still use easily cloned authentication tokens
such as MAC addresses of removable network cards [87, 95, 48].

The TPM as a root of trust is perfectly suited for this task by supporting
a procedure referred to as remote attestation. Remote attestation requires the
target of the attestation to send trust information to a remote verifier. The
conveyed information must attest to the security state of the device which
the verifier may certify. Before a state is certified, a verifier may need to be
convinced that the trusted platform’s PCR values actually reflect and correspond
to the system state — this is not a trivial task and not something that the TPM
can do. The system’s measurement architecture [117, 83] primarily determines
how accurately trust measurements correspond to a system’s state. Proving
such a correspondence is a major topic of Chapter 4.

To prove the authenticity of trust information, the TPM implements a
quote command. Quotes allow the TPM to certify relevant trust information in
secure storage locations. The final building block of remote attestation assures
freshness of the conveyed trust information. To assure freshness and prevent
replay-attacks or simple re-use of quotes, a challenge and response protocol
between verifier and the platform must include a verifier supplied one-time
random nonce (or just Nonce) which a TPM includes in a quote. The key used
for quoting a value is typically derived from the RTR and protected under the
RTS. The key is assumed to be certified by a trusted party or simply known to
the verifier. By using asymmetric cryptography initially, session keys and other
short lived secrets with usage policies can then be given to the TPM for future
interactions. Key usage policies are enforced by the TPM and allow simplified
and more efficient challenge and response schemes. The use of crafted policies
with secrets that are enforced and protected by the TPM demonstrates how

CHAPTER 2. BACKGROUND AND RELATED WORK 52

the remote use of trust information can lead to more efficient local usages
of trust information. The interaction between local and remote uses of trust
information enables the efficient and scalable management of trusted platforms
and networks.

2.4 Virtual Trusted Platform

System virtualization is a popular way to manage both server and desktop
environments. A virtual machine (VM) which can be migrated and copied
enables efficient resource utilization, increased resilience, and security for soft-
ware running in virtual environments. VMs can be configured by clients and
uploaded to cloud providers which run client workloads in clusters of virtual
machines and storage locations. The first wake of cloud computing’s success
was powered by system virtualization and VMs are still the principal way for
many organizations to move expensive and locally managed data centers to
scalable and outsourced virtual infrastructure.

While system virtualization might help scaling entire systems, operating
system level virtualization technologies such as containers aim to provide vir-
tual environments for highly portable applications. Operating system level
virtualization using containers provides virtual environments, i.e. virtual user-
spaces, which can be isolated from another both in the sense of security and
performance while still sharing the same operating system kernel and interfaces.
In short, system virtualization virtualizes hardware interfaces and operating
system virtualization virtualizes operating system interfaces or in other words:
virtual machines emulate hardware and containers emulate operating systems
(Figure 2.6) [45, 44].

Fundamentally, all virtual environments aim to provide some level of ab-
straction and isolation for software but operating system level virtualization is
particularly appealing for applications. Many outsourced applications are com-
piled against portable system interfaces and can be packaged together with their
dependencies such as libraries, configuration, and file systems. Furthermore,
clients are not interested in the overhead of running, managing, and maintain-
ing a secure operating system. This means that outsourcing a service as a VM

CHAPTER 2. BACKGROUND AND RELATED WORK 53

Physical Platform

Hypervisor / VMM

VM1

OS1

Host OS (optional)
VM2

VM3 VMn

OS2 OS3 OSn

Physical Platform

Container Engine

CN1

SW1

Host OS

CN2 CN3 CNn

SW2 SW3 SWn

Hypervisor / VMM
VM1

VM2

VM3 VMn

Container Engine
CN1 CN2 CN3 CNn

SW1 SW1 SW1 SWn

a) b) c)

Fig. 2.6 Virtualization using a) virtual machines, b) containers, and c) a hybrid archi-
tecture. Relevant virtualization layer components are colored (green) with software /
application layer components above and the infrastructure (e.g. Host OS) and physical
hardware layers below. In case of a hybrid model c), VMs are used to run a guest OS
and provide virtual infrastructure for containers [44].

can easily result in more operating system code than valuable application pay-
load being shipped. Consequently, the virtual machine model for outsourcing
applications often means that virtually the same operating system instructions
are duplicated and executed across many virtual environments which produces
obvious overhead. Container technologies are a way to provide a portable and
isolated virtual environment which can share an operating system.

Irrespective of the virtualization level, isolation between virtual environ-
ments is a valuable security property. Systems which execute mixed criticality
tasks, tasks with different degrees trustworthiness, or tasks of mutually distrust-
ful tenants are often implemented around security guarantees such as strong
isolation capabilities. Based on isolation guarantees, software in a virtual envi-
ronment can enjoy increased security compared to systems and applications
running on individually managed platforms. The increase in security is possible
due to some level of homogeneity with regards to hard- and software type,
quality, management, and maintenance1. Virtualization systems which can be
monitored and managed by more capable agents such as today’s cloud providers
tend to provide a much more secure platform when compared to our personal
devices.

1Not unlike Tolstoy’s Anna Karenina principle which (roughly) states that all happy families
are alike while each unhappy family is unhappy in its own way.

CHAPTER 2. BACKGROUND AND RELATED WORK 54

On the other hand, the trust that is placed into software running in a
virtual environment is also heavily dependent on the virtualization system. A
Virtual Trusted Platform, or simply virtual platform, primarily enables the use
of TCG technologies in virtual environments (Figure 2.7). TCG-enabled virtual
environments need to have access to security features similar to those accessed
by systems running on (physical) trusted platforms. Virtual Trusted Platforms
directly support security in virtual environments by establishing trust and
enforcing trusted configurations (Section 1.2).

Virtualization

Infrastructure

Physical

Virtual Environment

vTPM
VM

vCRTM

PCRs,
certificates,
policies,
handles,
...

virtual
environment,
storage,
resources,
states,
...

agent for
external
measurements

Fig. 2.7 The Virtual Trusted Platform is a concept which currently allows many options
for implementations which might change the security and trust properties.

For example, a trusted virtualization system can be launched by using
techniques described in Sections 2.3.4 and 2.3.5. A DRTM approach also helps
to exclude a number of boot components in the measurement chain which one
has to trust. From a trusted launch onwards, a virtual machine manager (VMM)
has the capability to measure and record virtual machine or container images
which might be especially useful when specific images have to be used every
time. Recording the virtualization system and continuing measurements for
virtual environments creates a chain of measurements between the trusted
platform and the virtual environment and its software. Moving security critical
functionality and dependencies away from the virtual machine manager to the
trusted platform also limits the impact malicious administrators can have on a
system. Hardware virtualization features are available on commodity platforms

CHAPTER 2. BACKGROUND AND RELATED WORK 55

and with support across many operating and virtualization systems. In theory,
this allows the virtual machine manager or operating system to delegate trust
back to the trusted platform. Consequently, the virtualization software system
is treated like a manager under constant performance review and is trusted only
to compile lists of recourses, start, and stop virtual machines [87]. Meanwhile,
all actions are essentially supervised and executed by the trusted platform. If
virtual environments are set up and isolated in such a system, an administrator
with some control over the software system is no longer able to modify or
introspect VMs without being detected. Aside from measuring and recording
setups, clients do not have to trust the virtualization software system for correct
execution of their VM. Such setups make processing sensitive data or sharing
confidential material with software in virtual environments a viable option
as both software and data can be sealed to a trusted platform, virtualization
system, virtual machine, and other software (Section 1.2).

However, a shared hardware root of trust with software in virtual environ-
ments will in many cases lead to contention over the hardware resource [109]
and might even violate carefully established security boundaries [79].

2.4.1 Virtual TPM (vTPM)

To solve issues related to contention, scalability, and isolation, a virtual TPM
(vTPM) is presented to software in a virtual environment by some part of the
virtualization system.

A vTPM is a virtualized TPM intended for use by software in a virtual
environment such as a guest operating system or containerized applications.
The kind of software in a virtual environment must be irrelevant to the vTPM’s
security and trustworthiness as it can range from trusted operating systems to
adversary supplied code. A vTPM must be implemented in a way that confines
a potential adversary to the usual TPM interface which is not trivial as the
virtualization system may have access to a vTPM process. On the other hand,
virtualizing the TPM by using the physical TPM as much as possible may
improve security in some ways, e.g. key generation and protection capabilities,
but will not result in better (or suitable) vTPM performance.

CHAPTER 2. BACKGROUND AND RELATED WORK 56

Despite possible differences in vTPM implementations, a vTPM appears as a
standard TPM device to software in a virtual environment which fully complies
with the specification and implementations must draw cryptographic primitives
from certified sources. Trusted Computing Group documents do not limit or
instruct how vTPMs must be implemented—current efforts seem to converge
on a software / simulator based TPM instance as a vTPM [14, 34, 23, 109, 120].
However, the security features which a vTPM has to offer depend almost entirely
on its integration with the virtualization system and the trusted platform [82].

For instance, if a vTPM is implemented as a process on an operating system,
any attacker with the capability to introspect or modify running processes can
do the same to a vTPM. Unlike a physical TPM, a vTPM does not have discrete
storage locations where its state or secrets are kept and protected when the
virtual platform is shut down. Continuing the vTPM as a process example, the
vTPM state would be a file with options for protection offered by the file system.
Again, an adversary with certain access rights can potentially steal, modify, or
plant secrets. We can encrypt vTPM states and protect them from modification
but this still does not prevent adversaries such as an administrator to spy on
vTPM files and processes [13]. Several improvements which include utilizing
secure enclaves and trusted execution environments as vTPM run-times are
discussed in Chapter 5.

In summary, software in a virtual environment can use a vTPM as a root
of trust for measurement, storage, and reporting but never unconditionally. A
vTPM can currently not be treated as necessarily trusted, equally secure, or
as well protected as hardware roots of trust. Instead, the trust placed in or
delegated to intermediary, virtual roots of trust must eventually be justifiable
using an actual root of trust. A positive outcome of this conclusion is that unlike
hardware roots of trust, a vTPM is verifiable to some degree and verifiers may
decide to use a vTPM only if trust in it can be established.

From a security perspective, a simulator or process based vTPM implementa-
tion can be dramatically hardened and improved in almost every way. From an
operational perspective, a reasonably secure vTPM implementation offers many
possibilities to improve on performance, scalability, maintenance, availability,
and ubiquitous access to Trusted Computing technologies.

CHAPTER 2. BACKGROUND AND RELATED WORK 57

From a trust perspective, the trustworthiness of a vTPM largely depends
on how it is bound to a platform’s root of trust, e.g. a physical TPM, and how
strongly and under which conditions it is associated to a particular virtual
environment. In fact, the trusted computing capabilities of a vTPM may be
harmful if an adversary is able to a) run it on an untrustworthy platform, b)
access its secrets through a different virtual environment (Section 5.3).

2.4.2 Goals and Challenges for a Virtualized Platform

The adoption and support of Trusted Computing technologies in virtual envi-
ronments is a necessary step for the trusted computing community and adopters
of TCG technologies. Any successful approach has great potential to further
increase the widespread use of safe and trusted computing technologies and
will close an important gap in the federation of trust [79]. Using the physical
platform’s trusted computing capabilities to establish and enforce trust and
security properties in the virtualization system can significantly limit the impact
which adversaries can have on hosted systems and data.

Using a vTPM for virtual machines and containers does not immediately
improve security for software and data in a virtual environment. In fact, when
a virtual machine is attested using only a vTPM, there is great potential that the
vTPM can be used against a verifier [82]. The use and adoption of trusted com-
puting technologies requires a specification for virtual platform implementers
and verifiers to establish necessary security and trust guarantees. In the past,
TCG’s Virtual Trusted Platform Architecture has collected and solved several
functional and security goals and challenges for such a specification [56].

However, this document is now severely outdated and we summarize ad-
ditional goals and challenges for a modern Virtual Trusted Platform (items
1,2,3,4,5):

1. Document a high-level architecture and system model.

2. Include operating system level virtualization in the architecture.

3. Address integrity of the virtual platform and its components (VM, vTPM,
v(C)RTM).

CHAPTER 2. BACKGROUND AND RELATED WORK 58

4. Detail how a virtual platform can be rooted in a physical platform and its
roots of trust.

5. Provide interfaces for existing specifications and protection profiles.

Goal 1 is a result of lessons learned since the last publication of [56] in 2011
as well as the research conducted in Chapters 3 to 5. It became increasingly
clear that specifications driven by a software implementation become outdated
quickly and are hard to adopt across different software and hardware systems.
It also proved challenging to write “sub-references” for other specific imple-
mentations which resulted in a significant duplication of efforts to address a
limited number of virtual platform implementations and use-cases. Using mod-
els instead of implementations as references could help to write more precise
and adoptable specifications. However, there currently is a lack of such models
which can express security and trust properties in virtualization systems.

Goal 2 is a direct response to the increasing popularity of containers as
an alternative to traditional virtual machine solutions. The integration of
containers into a virtual platform architecture which includes a suitable root of
trust for measurement and chain of trust measurement design is a pressing task.
The virtualization of operating systems is not currently supported in current
trusted computing work and neither are hybrid architectures, i.e. VM’s for
infrastructure and containers for applications and services (Figure 2.6).

Goal 3 refers to the concept of a virtual platform which includes a vTPM
and an analog to a CRTM/RTM as depicted in Figure 2.7. The association
between components of the Trusted Platform, on a physical machine is typically
a manufacturing problem. On a virtual platform, depending on the virtualization
mechanism the association between the components might be entirely emulated
or software defined. This represents a significant challenge for the use of
trust information on a virtual platform as the association between components
impacts the trustworthiness of many higher level trusted computing protocols.

Rooting a virtual platform in a physical platform (goal 4) has many advan-
tages for the assurances which a virtual platform can provide. It allows verifiers
to establish external facts (i.e., facts external to the virtual environment) which
would be unknown if the physical platform type or identity was unknown.

CHAPTER 2. BACKGROUND AND RELATED WORK 59

Binding a virtual platform to a physical platform also returns control to clients
over where and under which conditions their systems are running. Finally,
virtualizing the roots of trust will give software in virtual environments access
to many desirable features such as hardware-based key generation, protection,
and policy management.

The last goal 5 for amodern Virtual Trusted Platform is a result of a number
of developments in security research and standardization. Virtual platforms
naturally encompass a large portion of today’s technology and the concepts
involved in virtual platforms are often at the cutting cutting edge of systems
and security research. This makes research and development in the area re-
warding but it also emphasizes that developments must provide interfaces to
enjoy the benefits of other ongoing and future efforts. A number of security
standardization and research groups are currently working on different aspects
of trusted computing in virtual environments and expect TCG specifications to
handle and provide interfaces to TPM-based solutions2.

The following goals and challenges are shared with existing virtual platform
specifications and still relevant:

6. Discuss responsibilities and potential issues of components of a virtual-
ization system.

7. Minimize change to systems.

8. Provide support for the migration of virtual platforms.

Goal number 6 is similar to creating a high-level architecture and model for
a Virtual Trusted Platform (item 1). Documenting individual components and
putting them into the context of a virtual platform helps identifying essential
functionality and relevant components depending on the virtualization model.
[56] concluded that isolation and the components enabling it are most critical
when trust in a virtual environment is established. Isolation can also help reduce
the number of components a verifier has to trust if they are not dependencies
and properly isolated.

2ISO, TCG, NIAP, ETSI, and GlobalPlatform as of 2020.

CHAPTER 2. BACKGROUND AND RELATED WORK 60

TCG technologies are mature and the TPM is a part of commodity platforms.
Significant effort has led to many protocols and applications which must also be
supported in virtual environments which is expressed in goal 7. The principle
of minimizing change applies to the system which accommodates the virtual
platform as well as the software system in a virtual environment. If necessary,
changes of system or protocol configurations are preferred over changes in
operations and implementations [78].

Goal 8 refers to a key feature of a virtual system, which is the ability to run
it from backups, clone it if needed, and perform emergency recovery procedures
which results in a very high availability. Virtual platforms must support at
least some kind of migration between different physical platforms. A promising
avenue towards migrating a Virtual Trusted Platform is to require homogenous
physical platforms and virtualization systems which would provide essentially
the same kind of environment and security guarantees. The issue of migra-
tion becomes significantly more complex if platforms with different security
properties and trust models are considered.

The following goals can be seen as desirable features which a virtual platform
implementation should possess:

9. Allow software in virtual environments to run unmodified.

10. Allow binding a virtual platform to a physical platform.

11. Allow verifiers to determine security guarantees, assumptions, and trust
model.

12. Provide a way for software in virtual environments to establish trust
in the virtual environment, the virtual platform, and the virtualization
system.

Goal or feature 9 targets a trend towards moving dedicated infrastructure,
service architectures, and applications to virtual systems and servers. A Virtual
Trusted Platform should not require significant changes to TCG applications
when the are copied from physical machines. Minimizing changes in this aspect

CHAPTER 2. BACKGROUND AND RELATED WORK 61

improves the portability of new developments and it opens a virtual platform
up to a large amount of commodity systems with TCG support.

Goal 10 refers to binding a virtual platform to a physical one. Such a feature
is important for a number of use-cases ranging from Network Functions Virtu-
alization (NVF) to Internet-of-Things (IoT) applications. One immediate benefit
of an explicit binding is the additional control over the execution environment,
platform type, and even physical location.

Running TCG-enabled applications in a virtual environment should improve
security and trust properties of the application. However, it is clear that some
reduction in assurance or expansion of the trust model can be the consequence
of using a vTPM implementation [56]. The protection afforded by the vTPM
implementation and the virtual platform as a whole must be clearly communi-
cated to software in the virtual environment, relying parties, and verifiers (goal
11).

Lastly, feature 12 refers to the use of trust information of the entire virtual-
ization stack locally, e.g. for data protection, or remotely during an attestation
(Section 2.3.5). The security of software in a virtual environment may depend
heavily on the underlying system and the virtual platform should support the
attestation of both application and system software.

2.4.3 Summary

The Virtual Trusted Platform is a concept with many options for virtualizing the
trusted platform. However, the security and trust properties of the virtual plat-
form heavily depend on its implementation. The definition of a modern Virtual
Trusted Platform needs to include containerization, remove implementation
specific details, and clarify essentials such as the integrity of a virtual platform
and how it relates to physical platforms. The following chapters elaborate on
attesting a virtual environment and the virtualization system, the inclusion
of containers in integrity measurement architectures, and the integrity of the
resulting virtual platform in Chapters 3 to 5. The goals and challenges presented
in the previous section are picked up again later and serve to discuss practical

CHAPTER 2. BACKGROUND AND RELATED WORK 62

aspects of this thesis in Section 6.1.1. Ultimately, the practical success of the
Virtual Trusted Platform will be determined by its adoption in future systems.

Chapter 3

User-Centered Attestation

This chapter continues Section 2.3 by briefly revisiting the Trusted Computing
tool-set and its current application in virtualized systems. Virtualization is
omnipresent as the backbone of cloud, edge, and fog computing as well as X-as-
a-service infrastructure. It continues to gain increased popularity even in edge
or end-user and embedded devices. The need for standards and specifications
for secure and trustworthy collaboration with virtualized systems becomes
a pressing issue. We discuss challenges related to translating the term trust
between specifications for hardware modules such as the Trusted Platform
Module (TPM) and applied specifications for operating systems, virtualization
systems, and virtual machines—defining trust establishment becomes crucial
for specifications which aim to extend trust beyond the TPM. We define User-
centered attestation as a set of principles suitable for layered, decentralized
systems along with a methodology for specifying and synthesizing such a
trust establishment strategy. The contributions of this chapter are listed in
Section 3.1.1. The results presented in this chapter have been published in [80].

3.1 Introduction

The cloud-centered paradigm faces a major shift: the success of the Internet-
of-Things causes the generation of the majority of data at the outer edges
of a network [122, 123, 49]. Edge computing refers to the set of technologies

63

CHAPTER 3. USER-CENTERED ATTESTATION 64

allowing computations to be performed along the edges of the network, on
downstream data on behalf of cloud services and upstream data on behalf of IoT
services [122, 123]. Fog computing is closely related to the general concept of
edge computing[16, 26, 141] with a strong focus on performing task in nearby, de-
centralized systems. For some tasks, this yields considerable feats such as lower
latency and improved user-experience as well as resilience through redundancy
for services. Virtualization, essential for concepts ranging from Infrastructure-
as-a-Service to Functions-as-a-Service implemented by vendors like Microsoft,
Google, and Amazon has fundamentally changed the way software and data is
being handled and is the backbone of modern computing infrastructure, espe-
cially with an increase in service decentralization and dedicated, collaborating
nodes[97, 122, 16].
The importance of trust and trust establishment strategies becomes apparent
in decentralized systems with no immediately recognizable authorities. The
rather ambiguous issue of trust and collaboration can be demonstrated using a
very small, discrete example:
Suppose a mathematician who is interested in number theory uses a computer
with a program for factorizing numbers. The output that will be produced by
that program is either the factorization of a given number or a statement that
the given number is a prime. Now suppose that the same mathematician wishes
to inspect a large number, too large to verify without the aid of the computer.
The mathematician can have two possible expectations at this point: the given
number is a prime number or not. Assuming there are strong reasons to believe
that the number is a prime, the result of the program can either confirm this
by telling that the number is a prime or give the factorization as evidence that
intuition has in fact fooled the mathematician. The situation changes, however,
if the mathematician has strong reasons to believe that the given number is
not prime. Again, the computer can produce two possible outputs: the number
is a prime or a factorization. If the output is a factorization, the mathemati-
cian can confirm the belief by recalculating the given number. However, if the
computer comes back with the result that the number is a prime, contrary to
strong reasons leading one to believe otherwise, why should the mathematician
trust this result? [38] This example illustrates that even in completely discrete

CHAPTER 3. USER-CENTERED ATTESTATION 65

problems, the computation may not be worthwhile if it lacks convincing power
w.r.t. the quality of the result. As possibly dated and oversimplified as it may
seem, the issue raised here, instead of being remedied, is being amplified by
modern efforts using more flexible, decentralized computing systems. As a
practical set of standards-based technologies, Trusted Computing [64] can serve
to supply evidence about a computing platform. The process of collecting,
supplying, and appraising evidence, and ultimately a result, is referred to as
Remote Attestation [28, 19, 79].

3.1.1 Contribution

This chapter introduces current technological and standardization efforts to-
wards trustworthy cloud computations. Implementing trustworthy virtualized
systems currently requires the adoption of at least two standards for hardware
and application level trust. We outline challenges and potential conflicts related
to translating trust across such standards. We then review and evaluate current
trust establishment methods and put them into perspective of decentralized
systems. Finally, we propose user-centered attestation as a candidate for layered,
decentralized systems along with a methodology and strategy for specifying
and synthesizing such an attestation system.

3.2 Trusted Virtualization Platform

The notion of a trusted virtualized platform is coined by Trusted Computing
Group’s (TCG) companion architecture specification “Virtualized Trusted Plat-
form Architecture” [56]. The TCG coined term and the architecture itself is
rather vague but decisively extends the adjective trusted, which should cause
curiosity since intuitively only the TPM [64] should be trusted but not the entire
platform. Recently, Akram et al. [1] have adopted and developed the term in a
position paper on digital trust in their vision for trusted cloud computing using
the architecture in Figure 3.1.

While the concept of processing and storage hardware and a respective
management (OS) is uncontroversial and not of general concern, the notion

CHAPTER 3. USER-CENTERED ATTESTATION 66

Fig. 3.1 Proposed architecture for Trusted Computing for Cloud Computing. [1]

of Trusted Platform Hardware and a Trusted Platform OS raises questions,
especially, in combination with Virtual Trusted Agents (represented by vTPMs).
Returning to the mathematicians’ problem, it seems acceptable, even reasonable,
that the Trusted Platform Hardware is in fact trustworthy and can be trusted.
After all, specifications like [64] describe which functions and properties are
required to synthesize a TPM and manufacturers can follow them in their im-
plementations. By inspecting a key credential, unique to each TPM, called
Endorsement Key (EK) and a manufacture certificate, one can infer the authen-
ticity and trustworthiness of a TPM—assuming the manufacturer is competent.

3.2.1 Levels of Trust and Specification

The supposedly trusted platform OS seems to be a déjà vu for our mathemati-
cian [38]: there are no indications about the trustworthiness other than that it
carries the adjective trusted from an external perspective. Described as quality
of results, the mathematician upon interacting with the OS will need supporting
evidence, or metadata other than the result itself to be convinced in every case
that the interaction is correct or at least as desired or expected. This problem,
although derived from an abstract case is quite intuitive: Unlike with the TPM,
assuming trustworthiness of the OS is hardly justifiable. The reasons as to
why that assumption is hard to substantiate are complex, especially since the
specification is concerned with security. TCG’s specification for Virtualized

CHAPTER 3. USER-CENTERED ATTESTATION 67

Trusted Platforms is considered a specification for TCG Applications. It de-
scribes general requirements such as minimum required key sizes and lengths,
it has a glossary of terms, and most importantly it describes interactions with
virtualization layers, or hypervisors, such as the self-defending Trusted Com-
puting Base along with processes for instantiating, storing, or migrating virtual
machines along with their Virtual Trust Agents. The idea is that a vendor can
implement these requirements and refer to the conceived OS or platform as
Trusted Virtualization Platform. The problem here becomes apparent however,
when the predicate trusted derived from this specification is compared with the
TPM itself: The Trusted OS along with Virtual Trusted Agents must be fully
specified and (remotely) verifiable[74] to account for issues related to trusting
software[77, 128].

3.2.2 Remote Attestation and Virtual Machines

From an external perspective it seems unreasonable for a specification to suggest
to a suspicious party that it should simply trust whoever claims to implement the
specification. While this might seem reasonable from a perspective of contracts
in business to business scenarios, the nature of distributed IoT systems and
the idea of plug-and-play configurability of systems invalidates such out-of-
band assurances. In order to be meaningful to a consumer or any interacting
party, such a specification must provide a method to collect metadata about the
potential trustee as to why it can be trusted within the scope of a specification.
Defining a remote attestation process seems like a high priority task for any
specification that builds on top of a TPM while requiring compliance of the
implementer. Especially, since this compliance is easy to break in any software
system if the potential trustee has malicious intent but also when the trustee
is unaware of the fact that part of its software configuration are not suitable
to an external party. The external party on the other hand would certainly
like to see proof that its potential trustee implements the specification and has
no additional or undesirable configuration on top of it. A focus on making a
specification which systems can be checked or attested against yields mutual
benefits both for trustor and trustee.

CHAPTER 3. USER-CENTERED ATTESTATION 68

3.3 Towards a User-Centered Attestation

Instead of defining yet another Trusted Virtualized Platform, the following
subsections will explore what sort of properties and operations can lead to the
conclusion that a particular platform can be trusted.

3.3.1 Principles of Remote Attestation

The need for remote attestation and its process have been defined by the
TCG [56, 64]. However, besides the basic interaction with the TPM, which
can be summarized as a trustworthy mechanism, an attestation should follow
general principles outlined by [28]:

Principle 1. Fresh information. Information about the target of an attestation
should reflect the running system, e.g. programs it is currently running and not
just disk images. The reasoning is that showing only disk images tells very little
about which part of this configuration is actually running. Inspired by measure-
ment tools that provide merely measured boot, i.e. a boot sequence that reports
the disk contents in the form of a hash will not supply information as to whether
or not any (protection) mechanisms available on disk are actually being executed.
Other measurement tools provide load-time information by reporting hashes of
executed binaries, while in more recent years approaches for measuring active
memory have emerged. An appraiser may, however, have its own expectations as
to how fresh the evidence is which leads to the next principle.

Principle 2. Comprehensive information. An attestation mechanism should be
capable of delivering comprehensive information. This implies that such an at-
testation mechanism must have access to all internal states and must be able to
report these using local measurement tools. While this inevitably leads to con-
cerns about dangerous disclosure, i.e. reporting vulnerable states, and ultimately
raises privacy questions, it also should consider a problem related to the amount
of reference measurements in an appraisers’ database — especially if there aren’t
any specialized appraisers.

Principle 3. Constrained disclosure. An attestation target should be able to de-
cide which information is sent to a particular appraiser. The appraiser should be

CHAPTER 3. USER-CENTERED ATTESTATION 69

identifiable and the target platform must be able to enforce policies defining what
evidence it supplies to an appraiser. Rather than suggesting the appraiser to be
identifiable, it should be suggested that the appraiser reveals the type or amount
of evidence it requires in order to be convinced. This implies that there is a se-
mantic for attestations which leads to a conclusion as to whether or not a target
can be trusted.

Principle 4. Semantic explicitness. The semantics of an appraisers’ trust deci-
sion should be explicitly defined in logic. As an example on a local scale, it should
define that a trust decision is made about a particular service, or the entire target
platform and how trust in a particular service is established by supplying evi-
dence of supporting or coexisting services on the target. Furthermore, it must be
defined how subsequent attestations affect the initial decision and how they can
be correlated for logical inferences.

Principle 5. Trustworthy mechanism. Appraisers need to infer the trustworthi-
ness of the mechanism that is used to deliver evidence to them. This principle,
although introduced last, is intuitively critical as not fulfilling it invalidates all
principles so far since the evidence might simply not be convincing as it can not
be trusted.

These principles were defined as general requirements for attestation ar-
chitectures utilizing a trustworthy mechanism to supply convincing evidence
about a particular platform. However, w.r.t. virtualization and in an Network
Functions Virtualization (NFV) scenario Lauer et al. [79] have extended these
principles to address issues related to the multi-user andmulti-layer architecture
of virtualized environments:

Principle 6. Layer linking. When a virtual environment is attested, its underly-
ing components or layers must also be attested. Attesting a virtual platform with-
out inspecting its underlying layers and ultimately the physical platform supplies
only very limited evidence to an appraiser making a trust decision. A quote gen-
erated by a virtual trust agent such as the vTPM must be substantiated by a TPM
quote so as to indicate the trustworthiness of the virtual trust agent’s quote.

CHAPTER 3. USER-CENTERED ATTESTATION 70

Principle 7. Scalability. Since attestation, i.e. (v)TPM quotes, can occur for any
virtual machine triggered by any user or appraiser, substantiating each vTPM
quote with a TPM quote will inevitably lead to the TPM becoming a bottleneck
in a virtualization scenario. An attestation mechanism must treat the TPM as a
limited and shared resource and offer a scalable protocol between vTPM and TPM
quotes.

Principles 6, 7 can be seen as a virtualization specific addition to principle
5. Following these principles also reveals and important proposition: Using a
trustworthymechanism implies that all other principles apply to the trustworthy
mechanism itself.

3.3.2 Attestation in Virtualized Environments

Following these principles, two distinct approaches (or variants) have emerged
in research and current standardization work. The first approach being a direct
translation of remote attestation protocols using the vTPM associated with a
VM as the key component of the trustworthy mechanism in combination with
an attestation of lower layers using the same protocol but this time with the
TPM. The later approach [79] was introduced subsequently as a solution for
NFV and X-as-a-Service infrastructure. It assumes multiple VMs and few or
no VM users and a single hypervisor operator. The trustworthy mechanism
relies solely on the TPM while vTPMs are utilized as potentially untrusted sinks
for upper layer measurements. The following paragraphs will detail these two
approaches based on the principles 1-7.

Attestation Approach I

Attestation approach I attests virtual and physical environments using the same
attestation mechanism (Fig. 3.2). An approach treating VM and lower layers
equally has intuitive benefits: it is easy to integrate in an existing protocol
landscape [19, 64], architectures implement vTPMs as virtual devices[14, 79],
appraisers can reach a trust decision using a standard evaluation of the evidence
or include the properties of layered systems dynamically.

CHAPTER 3. USER-CENTERED ATTESTATION 71

Table 3.1 Fulfillment of attestation principles in a system using separate VM - hypervi-
sor attestations.

Principle Fulfillment
1 Requires measured or trusted boot, can accommodate

Integrity Measurement Architecture (IMA) [117] for
load time measurements of binaries.

2 During boot each component measures its successor
into a PCR. As soon as the kernel is measured and
loaded, the kernel load mechanism is responsible for
measuring newly loaded binaries.

3 Appraisers do not have to be known to the target,
mutual attestation is not part of any proposal.

4 The trust decision is based onwhether or not supplied
evidence as hash values of binaries can be found in a
reference database. The appraiser then correlates at-
testations of any layer 𝑛with layer 𝑛−1. An appraisal
of a VM depends on the appraisal of its hypervisor.

5 The trustworthy mechanism includes a TPM quote
over a PCR (along with IMA log for hash verification)
for the hypervisor. The attestation process is com-
pleted through a vTPM quote over vTPM PCRs and
respective logs explaining the platform configuration
hash. Credentials in a vTPMmust be trustworthy and
protected from leakage.

6 The appraiser must have a priori information about
the locality of a VM or a list of VMs hosted by an
hypervisor, a VM - hypervisor mapping. Assuming
integrity and availability for such a mapping, the
appraiser can correlate TPM and vTPM quotes when
evaluating evidence in a decision process.

7 1:1 relation between TPM and vTPM quotes assuming
each vTPM quote must be preceded or succeeded by
a TPM quote (depending on principle 4,5).

CHAPTER 3. USER-CENTERED ATTESTATION 72

Fig. 3.2 Attestation Approach I illustrated. The appraiser, holding suitable reference
values, requests evidence from different layers sequentially. Boxes denote hardware
modules, rounded containers denote attestable software components. Dashed lines
indicate requests for meta data and bold lines indicate evidence responses.

Discussion. Separate attestation approaches are favorable for an implementer
as they require little modification to existing trust establishment processes.
However, this also implies specific assumptions towards the entire attestation
system. Principles 1, 2 are fulfilled using what is the de-facto standard in
Trusted Computing approaches for accessing and measuring components for
later evaluation by an appraiser. In a virtualized scenario, it should be noted that
it is the hypervisors responsibility to maintain necessary components such as
the vTPM as a root of trust for storage while the VM configuration must supply
boot code that acts as the root of trust for measurement. Principle 4 and 5 are
closely related and demand a rigorous definition of trust, especially, concerning
the correlation of the two kinds of measurements. Explicit semantics of a trust
decision are critical for a protocol design and evaluation and the traditional
approach of matching well-known hashed to measured hashes is not suitable for

CHAPTER 3. USER-CENTERED ATTESTATION 73

comprehensive decisions. As far as the trustworthymechanism is concerned, the
presented approach relies on a critical assumption: VMs and associated vTPMs
are not only strongly coupled but also isolated. Since the vTPM is required to
perform quotes over its Platform Configuration Registers (PCRs), credentials
must only be accessible to authorized parties such as the VM itself. However,
even under the assumption of strong isolation, the underlying hypervisor still
has responsibilities which, in an effort to provide comprehensive information,
must also be reviewed. Consequently, a VM attestation must be followed by an
attestation of the hypervisor — or vice versa? Intuitively, causality dictates that
the hypervisor provides the run-time for a VM and therefore any property of the
hypervisor affects the trustworthiness of the VM: attesting the hypervisor and
subsequently attesting the VM seems effective. However, another interpretation
would be that the appraisal of a VM becomes effective only after the hypervisor
has been attested. Both interpretations seem to fulfill the attestation requirement
in prose which again emphasizes the need for clear semantics.

Attestation Approach II

The second approach towards attestation of virtual machines is distinctly dif-
ferent from separate, legacy attestations insofar as it is intended for virtualized
infrastructure such as X-as-a-service and NFV. Entitled “Hypervisor-based At-
testation”, the approach relies solely on the TPM and mechanisms recorded into
PCRs to collect and supply evidence to an appraiser — this implies that even
the trustworthy mechanism can be verified. The vTPM itself does not need to
perform a quote over internal data structures and therefore, with attestation in
mind, does not need to be raised to a somewhat trusted level. The attestation
flow is outlined in Fig. 3.3.

Discussion. Hypervisor-based attestation approaches (Fig. 3.3) have three
common benefits: Bottom-up attestation, coupled hypervisor-VM attestations,
and inherently en bloc evaluation. Regarding the trustworthy mechanism (Prin-
ciple 5), a hypervisor-based, bottom-up attestation is, at a glance, uncontro-
versial and in-line with conventional attestation strategies. However, common
approaches use IMA [117], a kernel-based loader extension, exclusively once

CHAPTER 3. USER-CENTERED ATTESTATION 74

Table 3.2 Fulfillment of attestation principles in a system using hypervisor-based
attestations.

Principle Fulfillment
1 Same as Table 3.1.
2 Same as Table 3.1.
3 Same as Table 3.1.
4 Supplied hash-logs are compared against golden val-

ues, unknown values indicate untrustworthy states.
5 The trustworthy mechanism is comprised of a two

stage measurement process. The first stage measures
hypervisor components, including the attestation
manager and vTPMs. The second stage measures
VM components into vTPMs. For reporting, only the
TPM is consulted and vTPM PCRs are collected and
attached to a hypervisor attestation.

6 Once the appraiser has verified the attestation man-
ager and vTPMs, the inspection of VMmeasurements
reveals the hypervisor - VM mapping. Prior knowl-
edge of VMs and hypervisor mappings is not re-
quired.

7 1:n relation between TPM and VM attestations.

CHAPTER 3. USER-CENTERED ATTESTATION 75

Fig. 3.3 Hypervisor-based Attestation. The Appraiser attests the Target including
n-VMs. Attestation Manager, a process in the Host OS or hypervisor, collects individual
evidence produced by VMs from a vTPM interface. Subsequently, the attestation target
sends a response containing its own and each VM’s evidence.

the module is loaded to measure and propagate loaded components to the TPM.
An attestation manager or vTPM will, instead of reporting to the TPM, keep
own records - the integrity of this functionality is then appraised using the load
time hash of these components. As a result, the trust that can be placed in the
completeness and correctness of such records is transitive and relies on trusting
supporting mechanisms such as the attestation manager and vTPM instance. In
fulfillment of Principle 4, such considerations should be addressed by a defined
trust decision process that includes and respects the concept of transitive trust
relationships. Furthermore, [79] does not specify how individual VM appraisals
affect trust decisions for other VMs running on the same platform — a lack
carried over from utilized measurement architectures.

CHAPTER 3. USER-CENTERED ATTESTATION 76

3.3.3 Observations

Having revisited both attestation approaches, the following observations can be
made: (i) Attestation of a layer inadvertently requires attestation of the layers
below. (ii) Even if the Virtual Trusted Agent, or vTPM, is used for a signature,
the trustworthiness of that signature relies on the appraisal of the hosting layer.
(iii) Neither approach is semantically explicit with respect to their treatment
of evidence in layered systems beyond suggesting exhaustive platform hash
comparisons. (iv) Designated appraisers are present and capable of correlat-
ing and evaluating supplied evidence. (v) Most importantly, knowledge and
connectivity of lower layers is assumed.

3.4 User-Centered Attestation

The observations of Section 3.3.3 will serve as defining considerations of the
attestation strategy entitled User-Centered Attestation (UCAS) (Tab. 3.3).

Discussion. Unlike separate and hypervisor-based attestation, UCAS as-
sumes connectivity only to a VM. Appraisers, which could be any agent or
device, must therefore receive evidence of the VM running a service in ques-
tion along with information of its lower layers such that their appraisal is
based on comprehensive information. Such evidence must be gathered bottom-
up [114, 79] so as to reflect causalities like boot order and relations between
components loading, instantiating, and guarding other components.

Additionally, changes to localities of VMs or changes in a lower layer must
be measured, recorded, and reported accordingly. In order to enable attestations
initiated by VMs and with VMs as the only point of contact for appraisers, lower
layer information must be propagated such that the evidence a VM supplies
automatically reflects a current state.

As far as the semantics are concerned, trusting a VM must be treated as
a decision an appraiser has to make. Components involved in measurement
and reporting processes in layers above trusted hardware may not carry the
predicate trusted by default. Based on this notion, it becomes clear that recording
trust information needs special attention. While the appraiser can rely on the

CHAPTER 3. USER-CENTERED ATTESTATION 77

Table 3.3 User-centered attestation approach in fulfillment with attestation principles.

Principle Requirements
1 Measured or Trusted Boot, IMA [117] providing at

least load time integrity which can be extended to
run-time integrity [111].

2 Causally ordered, bottom-up event log.
3 Peer-to-peer trust propagation, only information rel-

evant to the virtual environment is revealed.
4 Quotes must convey security guarantees, transitive

relations, support for partial attestations, and appro-
priate use of safe-guards.

5 VMs should be capable of gathering and sharing rele-
vant information of lower layers and with appraisers
using RTR, RTM, and a trustworthy measurement
architecture.

6 VM evidence must contain proof that the included
lower layer evidence is relevant, i.e. the lower layer
has created or is currently hosting the VM.

7 1:n relation between TPM quotes and upper layer
attestations, TPM quotes can be used implicitly with
safe-guards such that vTPM quotes of upper layers
can be related to them according to the semantics in
principle 4.

TPM or vTPM to act as a root of trust for reporting (RTR), the root of trust
for measurement (RTM) design is critical (Section 2.3.3). Using a nuanced
and layer specific notion of trust enables reasoning about the trustworthiness
of supplied evidence. With proper isolation guarantees in the virtualization
system, we should be able to exclude unrelated virtual environments from an
attestation. This idea can be continued to exclude other unprivileged or isolated
software and improves the explicitness of the supplied evidence significantly.
However, balancing explicitness with completeness (i.e., no relevant information

CHAPTER 3. USER-CENTERED ATTESTATION 78

is omitted) is a key quality of a trusted measurement recording and reporting
mechanism. This concern is discussed further in Chapter 4.

The supplied evidence must also carry information as to why and to which
degree the evidence itself can be trusted. A big step towards this goal is to
use a trustworthy integrity measurement architecture as a root of trust for
measurement (RTM) in combinationwith the TPM as a root of trust for recording
(RTR). The chain of integrity measurements can then be evaluated from system
boot (i.e., bottom-up) to its current state. Appraisers must be able to check each
record and its impact on the trustworthiness of the remaining measurements.

As a first step towards semantic explicitness, vTPM quotes will need to
convey trust information based on the dependencies of the vTPM component
itself and the associated virtual environment (e.g., a VM). Appraisers can then
decide whether the attestation is sufficient under a certain trust model or if
further evidence is required to resolve issues. Common issues are ambiguity in
the virtualization system state (e.g., unknown software or configurations) or
lacking security enforcement on the system in which case more components of
the system need to be attested.

Achieving explicitness can aid scalability issues for the recording, reporting,
and evaluation of evidence. For instance, recording stable parts of a system
separately (e.g., boot and hypervisor components) from dynamic layers (e.g.,
software in virtual environments) results in more stable PCR values in the TPM
an vTPM. Consequently, remote attestation can be done by using certificates
or secrets bound to specific PCR values. This reduces the amount of TPM and
vTPM quotes which are needed but it also allows verifiers to predefine and
reuse appraisals.

Lastly, explicit semantics (i.e., what information is needed in an attestation)
in combination with trustworthy mechanisms will serve to derive suitable trust
propagation mechanisms. Using certificates as a replacement for slow TPM
quotes together with safe-guards to ensure that certificates are kept current
can provide a simple and scalable way to propagate trust information securely
into upper layers and to other parties. Trust propagation itself is essential to
decentralized and distributed systems. Individual nodes and parts of the system
might not be directly accessible to a curious party. Being able to trust appraisals

CHAPTER 3. USER-CENTERED ATTESTATION 79

and reusing them significantly reduces the amount of individual attestation
requests to nodes and remedies scalability issues related to TPM and vTPM
quotes.

3.5 Related Work

Further concerns related to managing trust in Trusted Computing specifica-
tions are discussed in [129]. The semantics of trust, trustworthiness, and trust
establishment in peer-to-peer systems are discussed further in [15, 112, 114].
Alternative approaches towards trust and trust management based on social
notions and reputation systems are presented in [72, 86, 115]. The related work
of this chapter is discussed in greater detail in Chapter 6.

3.6 Summary

Virtualization poses an interesting issue for specifications towards trustworthy
systems as the trust placed originally only in hardware components needs to
be extended to reporting and measurement mechanisms in upper layers. While
approaches towards trust establishment exist, their semantics are ambiguous
and an appraiser has to decide whether a virtualization platform or upper layers
are trusted without much guidance or support in reasoning for such a deci-
sion. Furthermore, existing attestation approaches imply a particular topology,
connectivity, and capability that does not reflect decentralized systems. A User-
Centered Attestation, as a novel attestation system, encompasses these concerns
and proposes a strategy for specifying and synthesizing suitable trust establish-
ment mechanisms and hopefully inspires further research and contributions
towards standards for open and collaborative trustworthy systems.

Chapter 4

Domain Specific Measurements

This chapter presents the design and verification of a secure integrity measure-
ment system for containerized systems. Containerization of applications allows
fine-graded deployment and management of services and dependencies but also
needs fine-graded security mechanisms.

We provide formal abstractions for containerized systems by introducing
LS3, a formal model and logic with sub-domain constructs to represent strat-
ified systems and their interactions. Using our formal model, we prove that
the widely used Trusted Computing Group (TCG) based Integrity Measure-
ment Architecture (IMA) securely extends trust measurements from boot to
applications.

However, IMA is not designed to make domain specific trust measurements
and is consequently incapable of creating domain specific integrity reports.
Current research aims to improve either trust measurement performance or
comprehensiveness but does not improve the measurement function and its
semantics to allow remote verification of measurements per domain. We present
an enhanced trust measurement architecture design, which produces domain
specific integrity measurements suitable for fine-graded remote attestation.

Providing domain specific integrity reports eases system and sub-system
verification and yields desirable properties such as measurement log stability
and constrained disclosure for multi-domain systems. We verify and prove the
correctness of our trust measurement architecture using our formal model. The

80

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 81

Fig. 4.1 A container system running on top of virtualized infrastructure. The dashed
line indicates the system components we are interested in: the operating system domain
and contained applications in sub-domains. The operating system can run either bare-
metal on the physical platform and Trusted Platform Module (TPM) or as a guest on a
virtual machine monitor using a virtual TPM.

contributions of this chapter are listed in Section 4.1.1. The results which we
present are published in [83].

4.1 Introduction

Containerization is gaining increased popularity in a variety of settings and may
be a key step towards future cloud computing models [70]. Containerization of
applications removes the need to customize and configure an entire operating
system in order to run a set of applications with their dependencies. Instead,
an operating system is modified to include a container-engine, which runs and
isolates containerized applications in their virtual user-space or virtual domain
(Fig. 4.1). This concept is also referred to as light-weight operating system level
virtualization because containers still share an operating system. Removing
the overhead of running an entire operating system lets a customer handle her
applications while a provider can handle everything else: instance selection,
scaling, deployment, fault tolerance, monitoring, logging, security patches, and
so on [70].

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 82

Since containerized applications share an operating system kernel, trust in
a containerized application depends as much on the integrity of the host system
as it depends on the hosted application itself. Only by inferring the integrity of
the operating system first, we can infer the integrity of applications confined to
their virtual user-spaces. For example, Alice may offer to host containerized
applications and has set up infrastructure similar to Figure 4.1. Carol andMallory
both give a container with applications to Alice, which promises to run. As
customers, Carol and Mallory trust Alice’s setup to provide security properties:
most importantly, isolation both in the sense of performance and protection.
Being able to establish trust in the operating system and infrastructure becomes
crucial if the provided service itself needs to be trusted. Alice needs a way of
monitoring her host system for compromises. In addition, Carol and Mallory
want to monitor and establish trust in the host system and the integrity of their
container environments themselves. However, when reporting on the integrity
of the system, Alice has to make sure that she provides complete information
that is constrained to each container or otherwise she might lose trust or worse,
give Mallory an incentive to launch targeted attacks against Carols applications.

Container systems are specifically designed to not only give the illusion of
a isolated user-space per container but to enforce it. Establishing its integrity is
an important step towards establishing trust in applications running in their
virtual environments. One way to establish trust in an operating system is to
use the Trusted Platform Module (TPM) to record its software state. Using a
process called remote attestation this information can be securely conveyed to
a remote party. Given the software state, an agent may then infer the operating
systems integrity and further properties to decide whether it can be trusted
or not. While the TPM is capable of securely storing and reporting software
recordings, a measurement function within the target system is required to take
and extend measurements to the TPM in a trustworthy manner. Trusted and
secure boot [50] create a chain of trust measurements from system boot all the
way to when control is transferred to an operating system kernel. The Integrity
Measurement Architecture (IMA) [117] is a kernel function that immediately
continues chain of trust measurements by recording code and data before it is
mapped to the system memory.

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 83

The existing body of research on trust measurements is focused on compre-
hensiveness and performance. Examples include moving from measuring code
at load-time to measuring memory segments during run-time [111] on one
side and policy reduced measurement targets [125, 119], e.g. kernel modules
only, or batch-extend techniques on the other side so as to increase the overall
performance of the measurement function. None of these target measurement
semantics, remote verifiability, and constraining disclosure. Formal investiga-
tions targeting secure execution environments [126] are complementary and
can be combined with our work.

We propose a measurement architecture with constrained disclosure fea-
tures built in by making domain specific measurements to begin with. We argue
that we preserve comprehensiveness and other desirable properties. To this
end, we use the modular design of LS2[36] and add to it domains. Domains are
logical strata, i.e. VMM, OS, container, with a logical relation defining control
and interface confinement. In short, the operating system and its threads are
the primary domain. We then create lightweight domains under the control
of but with interfaces to a primary domain. This corresponds to an operating
system controlling and managing all memory while providing each container
with a partition of virtual addresses. Using the idea that resources are allocated
to domains, we simplify a proof made with LS2 in our extension titled LS3. We
extend prior work to prove the trustworthiness of measurements taken by IMA.
We show that through our domain-subdomain construct measurements can
be recorded into dedicated TPM locations and we link them with a technique
called forward linking. Consequently, when we wish to report on the software
state of a container and its host operating system, we can report on a domain
and a particular sub-domain in a fine-graded manner instead of divulging all
measurements. We prove the properties with the same rigor as LS2 has proven
a sequential boot sequence and show that while we still measure everything,
through sorting and linking we achieve a much more verifiable and constrained
system state per container.

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 84

4.1.1 Contribution

In this chapter, we make the following contributions:

• LS3 extensions for containerized systems in Section 4.2,

• the design and verification of our Enhanced Integrity Measurement Ar-
chitecture (EIMA) in Sections 4.3 and 4.3.3,

• an analysis of the trustworthiness of integrity measurements for IMA in
addition to constrained disclosure in EIMA (Section 4.3.3).

4.2 A Logic for Secure Stratified Systems

Our work is based on the prior work in [36] which itself represents an improved
version of several logic systems [35]. The work we present can be seen as
a major update and represents a new strand of the logic: we externalize the
creation and confinement of new executions in a virtual system which adds
consequential modeling abilities.

4.2.1 A Logic of Secure Systems

Our work draws from the successful analysis performed in [36] which presented
a logic for secure systems or LS2. We build upon LS2 and use what [36] refers to
as constrained by system interface (CSI) adversaries, which are simply modeled
as extra threads existing on the target system. Our extension exploits LS2’s
modularity and allows us to explicitly create new threads executing untrusted
code. We found that since LS2 was intended for analyzing only a small part of
trusted computing based systems relying on loading and jumping to new code,
reasoning about launching a complex system at kernel and user level threads
are impossible. We extend the capabilities of LS2 well into application space
and potentially virtual machines to fulfill some of the promises made in [36].

LS2 is a metalanguage which has two main design goals: (i) allow for the
abstraction of thread based sequential execution of programs, and (ii) provide a
proof system and logic for defining and verifying desirable safety and security

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 85

properties. We revisit LS2 [36] as a three part formal system consisting of an im-
pure functional programming language, reduction-based operational semantics,
and a first-order logic system with hybrid extensions over security properties.
The programming environment has a syntax close to that of functional pro-
gramming languages like ML [94]. Most notably, programs are a sequence of
actions, represented as a stack in [69] and need only the sequential composition
operator “;” to indicate that one action is to be executed after the other. The
set of actions conveniently abstract manipulation of memory locations, net-
work communication, anonymous function definition and evaluation, as well
as simple program flow controls based on comparing values instead of if-else
constructs. Most notably, LS2 has explicit actions for obtaining and releasing
write locks on (memory) locations. Such programs end with ⋅ or “no-op” or
with a jump to another program:

Location 𝑙

Expression 𝑒 ::= 𝑛 | 𝑥 | (𝑒, 𝑒
′
) | …

Actions 𝑎 ::= read 𝑙 | write 𝑙, 𝑒 | hash 𝑒 |

lock 𝑙 | eval 𝑓 , 𝑒 | match 𝑒, 𝑒
′
|

…

Program 𝑃 ::= ⋅ | jump 𝑃 | 𝑥 ∶= 𝑎; 𝑃

The accompanying parallel composition operator “|” is used to execute
entire programs in parallel using threads which supports concurrent execution
by interleaving. The companion machine model of LS2 can be summarized as
follows:

Thread ID 𝐼

Thread 𝑇 ::= [𝑃]𝐼

Store 𝜎 : 𝑙 ↦ 𝑒

Lock Map 𝚤 : 𝑙 ↦ 𝐼 ∪ {_}
Configuration 𝐶 ::= 𝜄, 𝜎 , 𝑇1|… |𝑇𝑛

Threads are identified using 𝐼 , which may be a triple identifying owner,
machine, and a name that we have not included above. All executing threads 𝐼
sequentially reduce actions of a program [𝑃]𝐼 . The systems memory is modeled

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 86

using 𝜎 which maps locations 𝑙 of machines to expressions 𝑒, read as “𝑙 holds
𝑒". Most notably, LS2 uses a global lock map which allows to specify whether a
particular memory location is unlocked or locked by a thread 𝐼 , i.e. modifiable
only through a program or action [𝑃] reduced by 𝐼 . Finally, configurations 𝐶
include mappings of locations, locks, as well as running threads.

LS2 uses explicit operational semantics to explain how one configuration
transitions to another. Each transition has a rule in the operational semantics
detailing its effect as the following example shows:

[jump 𝑃]𝐼 → [𝑃]𝐼

[𝑥 ∶= hash 𝑒; 𝑃]𝐼 → [𝑃 (𝐻𝑎𝑠ℎ(𝑒)/𝑥)]𝐼

𝜄[𝑙 ↦ _], [𝑥 ∶= lock 𝑙; 𝑃]𝐼 → 𝜄[𝑙 ↦ 𝐼], [𝑃 (0/𝑥)][𝐼]

𝜄, 𝜎[𝑙 ↦ 𝑒
′
], [𝑥 ∶= write 𝑙, 𝑒; 𝑃]𝐼 → 𝜄, 𝜎[𝑙 ↦ 𝑒], [𝑃 (𝑙/𝑥)]𝐼

Transitions from 𝐶 → 𝐶
′ are written with the redex, i.e. the state to be changed,

on the left hand side of the arrow pointing to the reactum, i.e. the changed
state, on the right hand side. For example, when jump 𝑃 , 𝑥 ∶= hash 𝑒; 𝑃 ,
𝑥 ∶= lock 𝑙; 𝑃 , and x ∶= write 𝑙, 𝑒; 𝑃 are reduced by thread 𝐼 . As expected, a
jump 𝑃 has the effect that 𝐼 executes actions of [𝑃] next. Reducing 𝑥 ∶= hash 𝑒; 𝑃

has the effect that 𝐼 continues with [𝑃] while 𝑥 is now bound to 𝐻𝑎𝑠ℎ(𝑒).
Similarly, lock 𝑙; 𝑃 returns 0 and requires that 𝑙 is not locked when it is reduced.
The effect states consequence that 𝑙 then maps to 𝐼 and 𝐼 continues with [𝑃].
Each transition is then labeled with a covariant index 𝑡 such that transitions can
be labeled 𝐶 𝑡0

←←←←←←←←→ 𝐶
′

𝑡1

←←←←←←←←→ 𝐶
′′

…

←←←←←←←←→ 𝐶 … . The labeled transitions in combination with
the new state are referred to as the trace of the system and 𝑡 may be interpreted
as time. We can then reason about configurations which must have happened
before another. Lastly, Datta et al. construct a predicate logic with temporal
extensions. Formulas of the logic support the usual connectives and between
general and action predicates.

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 87

Action 𝑅 ::= Read(I, l, e) | Write(I, l, exp) |

Hash(I, exp) | …

General 𝑀 ::= Jump(I, P) | Mem(l, e) | Locked(l, I) |

𝑒 = 𝑒
′
| 𝑡 ≥ 𝑡

′
| …

Formulas 𝐴, 𝐵 ::= 𝑡 | 𝚤 | ⊤ | ⊥ | 𝑅 | 𝑀 | 𝐴 ∧ 𝐵 |

𝐴 ∨ 𝐵 | 𝐴 ⊃ 𝐵 | ¬𝐴 |

∀𝑥.𝐴 | ∃𝑥.𝐴 | 𝐴 @ 𝑡

Modal Formulas 𝐽 ::= [𝑃]
𝑡𝑏 ,𝑡𝑒

𝐼
𝐴 | [𝑎]

𝑡𝑏 ,𝑡𝑒

𝐼 ,𝑥
𝐴

Actions reduced by threads 𝐼 are presented as action predicates and are
kept separate from general facts and machine specific predicates, i.e. such as
equality of expressions, memory states or locks of a location. The formula
𝐴 @ 𝑡 is used to capture “𝐴 is true at 𝑡” [18], e.g. Jump(I, P) @ 𝑡 is true if 𝐼
reduces [jump 𝑃] at 𝑡 . LS2 often uses intervals over traces in the usual form
using (𝑡1, 𝑡2),[𝑡1, 𝑡2],(𝑡1, 𝑡2], and [𝑡1, 𝑡2). For intervals 𝑖, 𝐴 on 𝑖 is defined as A holds
on all points 𝑡 in 𝑖. Security and safety properties are expressed as one of two
modal formulas. Formula [𝑃]

𝑡𝑏 ,𝑡𝑒

𝐼
𝐴 means that formula 𝐴 is holds or is true

whenever thread 𝐼 executes 𝑃 in the right-open interval (𝑡𝑏, 𝑡𝑎]. 𝐴 can be used
to express security properties of 𝑃 and may contain variables unbound in 𝑃 .

4.2.2 Trusted Computing

The Trusted Platform Module (TPM) is a component of the physical machine in
Figure 4.1 and implements the specification defined by the Trusted Computing
Group [65]. From an abstract perspective, a TPM can be described as an extra
hardware chip equipped with a public and private key pair {𝐾𝑇𝑃𝑀 , 𝐾

−1

𝑇𝑃𝑀
} and

a set of secure memory regions known as Platform Configuration Registers
(PCRs) (details in subsection 4.2.3). The TPM specification requires that the
private key 𝐾

−1

𝑇𝑃𝑀
to be kept secret and the PCRs be resistant at least against

software attacks. The private key may be used to sign contents of PCRs, and if
an external verifier knows 𝐾𝑇𝑃𝑀 she can verify that the signed value is indeed a
PCR value. The process of signing PCRs on a target platform and evaluation of
PCRs is part of the process called remote attestation. In fact, a verifier assuming
malicious software on the machine can only trust the signed PCR values, i.e.

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 88

𝐾
−1

𝑇𝑃𝑀
(𝑃𝐶𝑅𝑠). Hence, we need to convey facts about the target system using

PCRs only and use them to record configurations of a platform in a trustworthy
manner.

4.2.3 Platform Configuration Registers (PCR)

PCRs are treated as a special form of memory with only one dedicated com-
mand to modify them: extend 𝑙, 𝑒. Our extend corresponds to the command
TPM_extend of [65] and requires that 𝑙 be a PCR index or handle, and 𝑒 be a
hash of 𝑒. Each PCR represents a sequence ⟨𝑠𝑖𝑛𝑖𝑡, 𝑣1,… , 𝑣𝜈⟩ with 𝑠𝑖𝑛𝑖𝑡 being its
initial value to which values 𝑣1,… , 𝑣𝜈 must have been added sequentially using
extend for each value 𝑣. The only way to reset a PCR is to reboot the physical
machine for which LS2 has a dedicated rule and general predicate. A TPM singed
sequence ⟨𝑠𝑖𝑛𝑖𝑡, 𝑣1,… , 𝑣𝜈⟩ lets a verifier gather that (a) the machine hasn’t been
restarted and (b) that extend 𝑙, 𝑣1 must have happened before extend 𝑙, 𝑣2 and
so forth. PCRs and the key pair {𝐾𝑇𝑃𝑀 , 𝐾

−1

𝑇𝑃𝑀
} form the root of trust for storage

(RTS) and reporting (RTR) of a physical machine [65].

4.2.4 Root of Trust for Measurement

The RTS and RTR are completed by a root of trust for measurement (RTM) [65].
Informally, the RTM is a thread 𝐼 on the physical machine which reduces or
executes extend / TPM_extend. The root of trust for measurement is responsible
for initiating a chain of trust measurements. When a machine is powered on,
the first program executed is the core root of trust for measurement (CRTM).
The CRTM is responsible for measuring, i.e. hash and extend, the first piece
of code in a boot sequence, e.g. the BIOS. The CRTM program itself can not
be measured and a verifier has to trust that a machine executes exactly the
sequence CRTM whenever the physical machine is booted.

4.2.5 Measured Boot

The process of creating a chain of measurements from CRTM to the operating
system is referred to as Measured Boot (Fig. 4.2). The chain of trust measure-

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 89

ments initiated by the CRTM is the continued using the following program
pattern:

[𝑝 ∶= read 𝑃 ; ℎ ∶= hash 𝑝; extend ℎ; jump 𝑝] (4.1)

We have omitted known locations 𝑙. This sequence is started by the CRTM
using the BIOS code as 𝑃 , and continued by the BIOS. The BIOS code reads boot
loader (BL(m)) code and jumps to it, and finally, the BL(𝑚) code reads operating
system (OS(m)) code and jumps to it. In the PCR used by CRTM(𝑚), BIOS(𝑚),
and BL(𝑚), this produces the following sequence:

⟨𝑠𝑖𝑛𝑖𝑡,BIOS(𝑚),BL(𝑚),OS(𝑚)⟩ (4.2)

This patten in Equation 4.1 can have an arbitrary number of programs in
between as long as the pattern of reading some 𝑃 , extending the hash of 𝑃 , and
jumping only to 𝑃 is maintained.

4.2.6 Integrity Measurement Architecture (IMA)

The TCG-based Integrity Measurement Architecture (IMA) was originally pro-
posed in 2004 [117] and has since been adopted in the security sub-system of
the Linux kernel (version ≥ 2.6). Today, IMA forms the basis of many integrity
verification frameworks which aim for run-time integrity verification [111],
policy-based attestation [119], and is actively being used, studied, and adapted
to increase overall measurement performance [79, 80, 125]. The sole purpose of
IMA is to extend the chain of trust measurements from the OS well into user-
space by measuring potentially everything that is mapped to system memory
beyond the OS, including loadable kernel modules, applications, and config-
uration files. For practical reasons, we will focus on OS components such as
kernel modules and user-space applications. IMA is part of the operating system
and once the OS is running, the sequence in equation 4.2 in the PCR used to
boot the OS is hashed and extended into a fresh PCR for IMA. This creates
the sequence ⟨𝑠𝑖𝑛𝑖𝑡, ⟨𝑠𝑖𝑛𝑖𝑡,BIOS(𝑚),BL(𝑚),OS(𝑚)⟩⟩ in the PCR used by IMA.
By hooking onto loader functionality, i.e. the part of the OS responsible for
memory mapping, IMA is able to continue the pattern of reading, hashing, and

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 90

extending values into a PCR. For example, launching an application creates the
sequence ⟨𝑠𝑖𝑛𝑖𝑡, ⟨𝑠𝑖𝑛𝑖𝑡,BIOS(𝑚),BL(𝑚),OS(𝑚)⟩,App(𝑚)⟩ in the PCR used by
IMA. Effectively, IMA continues a Measured Boot by performing a measured
launch of user applications.

Fig. 4.2 The read, hash, extend, then jump sequence of Measured Boot ends at but
includes the operating system. Instead of switching the program of [OS(𝑚)]𝐼 , 𝐼 spawns
new threads running loadable kernel modules [LKM(𝑚)] and user-space applications
[App(𝑚)].

4.2.7 Security Properties

The following security properties have guided our formal analysis:

1. The Integrity of a System (such as the operating system running on a ma-
chine) is not compromised if no unauthorized modification to the system
configuration can be made without the modification being recorded. We
limit the scope of modifications to loading kernel modules and launch
applications, i.e. events we can measure and record.

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 91

2. Trustworthiness of Measurement is maintained if the measurements taken
reflect the system configuration with regards to its integrity. A version
of this property forms the basis of the formal analysis in [36] but is not
extended beyond loading operating system code.

3. Forward Integrity of the measurement log is achieved if during a run, i.e.
between reboots, recorded events can not be deleted, removed, hidden,
or overwritten. Forward Integrity is the main property of IMA and the
reason why PCRs are used to record events.

4. Adversary Confinement is achieved when code supplied by an adversary
is recorded before its actions can take effect. Although not explicitly
mentioned, both IMA andMeasured Boot inherently provide this property
by recording read code into a PCR before further actions can be reduced.

5. Lastly, Constrained Disclosure is a desirable property of any recoding and
reporting procedure. While recording any modifications of a system,
we report only the modifications which can affect a systems integrity.
For instance, when reporting on the operating systems integrity, we
don’t need to include reports of user-space applications. Similarly, when
reporting the integrity of a sub-domain, we need a report of the host
domain but not of other sub-domains of the system.

In this work, we focus on security property (2) and (5). Security properties (1),
(3), and (4) can be achieved using properties of the TPM and a measured boot
sequence [124].

4.3 Domain Specific Measurements

Separation between components and the Principle of Least Authority (POLA) are
key ingredients of secure systems [37] and compartmentalization is generally
regarded as a good engineering practice [71]. Typically, modern computer
systems have different abstraction and security layers with different privileges
such that components in the same layer may not interfere with each other
without the supervision of a lower layer and higher privileged component.

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 92

Fig. 4.3 LS3 domains and sub-domains in relation to the machine which may be physical
or virtual. Dashed lines indicate stratification using different layers and solid lines
between sub-domains indicate compartmentalization using containers.

We refer to this more generally as system-stratification and component-
compartmentalization (Fig. 4.3). Containers as a summarizing concept for oper-
ating system level virtualization techniques allow us to create virtual user-spaces
to run applications directly on the host operating system. As it is with contain-
ers, our virtual user-spaces are endowed with restricted and possibly minimal
access to shared resources. Containers are treated as virtual environments in
user-space. Consequently, the host operating system controlling all system
resources will be represented as a domain. Containers, dependent on a host
operating system, are referred to as a sub-domain.

In our review of LS2, we have described its system model using Machines,
Threads, Storage, and Locks. Threads in LS2 are associated to machines using
an identifier structure 𝐼 which contains a reference to a machine identifier 𝑚.
In order to reason over which thread must have caused an effect on a storage
location such as PCRs, LS2 uses locks as a reasoning tool. Locks are necessary
in LS2 as there is no stratification and no privilege separation, i.e. all threads,
including those executing adversarial code can access any data structure unless
it is explicitly locked.

LS3 adds domains and sub-domains. First, we associate threadswith a domain
and for now, there is only 𝑑𝑜𝑚0 and 𝑑𝑜𝑚𝑛 (𝑛 > 0). 𝐷𝑜𝑚0 is a domain model
borrowed from Xen [12] which includes the operating system kernel, kernel
level threads, and possibly privileged user-space with management interfaces
for a service provider. Containers, or virtual user-spaces, are sub-domains
𝑑𝑜𝑚_𝑛 with 𝑛 > 0. To reflect a threads association with a particular domain
we extend the thread identifier 𝐼 to include a domain identifier 𝑑 . With 𝑛 as its

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 93

given name,𝑚 to indicate the machine, and 𝑑 its domain or privilege level on𝑚.
Threads 𝐼 in LS3 run programs LS2 programs 𝑃 including all actions described
in [36]. However, LS2 only has locks, and locking a location 𝑙 for each thread
𝐼 is not practical. Instead, we represent container semantics by partitioning
our machine’s storage according to the domains. We say that a machine 𝑚 has
storage of type 𝑑𝑖𝑠𝑘, 𝑟𝑎𝑚, or 𝑝𝑐𝑟 . Each type of storage can be partitioned by
adding a domain name or storage ID after it.

Thread ID 𝐼 ::= (𝑛,𝑚, 𝑑)

Thread 𝑇 ::= [𝑃]𝐼

Machine 𝑚

Storage Type 𝑠𝑡𝑦 ::= disk | ram | pcr
Location 𝑙 ::= 𝑚 . 𝑠𝑡𝑦 . 𝑟𝑒𝑓

Store 𝜎 : 𝑙 ↦ 𝑒

Allocation 𝛼 : 𝑙 ↦ 𝑑

Configuration 𝐶 ::= 𝛼, 𝜎 , 𝑇1|… |𝑇𝑛

For example, a container-image which holds a programs 𝑃 to be executed in the
corresponding container domain 𝑑𝑛 (𝑛 > 0) is stored at location 𝑙.𝑑𝑖𝑠𝑘.𝑑𝑜𝑚_𝑛.𝑃 .
In this case 𝑟𝑒𝑓 would be 𝑑𝑜𝑚_𝑛.𝑃 where 𝑑𝑜𝑚_𝑛 is the partition in which we
would look for 𝑃 . Similarly, storage types 𝑟𝑎𝑚 and 𝑝𝑐𝑟 can be partitioned. The
partitioning is enforced in the operational semantics for read and write:

𝛼[𝑙 ↦ 𝐼𝑑], 𝜎[𝑙 ↦ 𝑒
′
], [write 𝑙, 𝑒; 𝑃]𝐼 → 𝛼, 𝜎[𝑙 ↦ 𝑒], …

𝛼[𝑙 ↦ 𝐼𝑑], 𝜎[𝑙 ↦ 𝑒], [𝑥 ∶= read 𝑙; 𝑃]𝐼 → 𝛼, 𝜎[𝑙 ↦ 𝑒], …

The system property which states that domain 𝑑𝑜𝑚0 controls all resources
can be expressed by adding the default mapping to our allocator:

𝛼 ∶∗↦ 𝑑𝑜𝑚0

Allowing multiple entries in 𝛼 for a location 𝑙 allow us to model logical sub-
partitions for 𝑑𝑜𝑚𝑛 under the control of 𝑑𝑜𝑚0. This also gives us the basis for
reasoning about effects in the system. For example, an expression written in a
location allocated to some domain 𝑑𝑜𝑚𝑛 could only have been written by some

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 94

thread in 𝑑𝑜𝑚0, i.e. the host system, or by a thread of 𝑑𝑜𝑚𝑛 but not by a thread
of another untrusted domain 𝑑𝑜𝑚𝑚, 𝑚 ≠ 0, 𝑛.

4.3.1 Measured Boot and IMA

The first application of LS3 is the chain of trust measurements from system boot
to application launchwhichwe do in two steps: in step one, we discuss measured
boot using our machine model and in step two, we extend the measurements
by explicitly adding threads to our system.

To express measured boot, we need a predicate for a machine start, reboot, or
reset. Following LS2 we introduce the general predicate Reset(𝑚, 𝐼) which states
that machine 𝑚 is restarted producing the initial thread 𝐼 . The corresponding
rule in the operational semantics states that all volatile memory, i.e. RAM and
PCRs, is reset and allocations on 𝑚 are removed:

 ⟶ 𝛼 ⧵ (𝑚.𝑙. ∗), 𝜎[𝑚.𝑝𝑐𝑟. ∗↦ 𝑠𝑖𝑛𝑖𝑡] ⧵ (𝑚.𝑙.𝑟𝑎𝑚. ∗),

(𝑇1|...|𝑇𝑛) − 𝑇𝑚 | [CRTM(𝑚)]𝐼)

Upon a reset, all threads on 𝑚 are removed and replaced by just one thread
𝐼(𝑛,𝑚,𝑑𝑜𝑚0)

executing exactly the program CRTM(𝑚). The program CRTM(𝑚)

corresponds to the only piece of trusted code that is executed right at the
beginning. When a machine in LS2 is reset, the same thread 𝐼 is created but it is
assumed that there may be more than this thread after Reset(𝑚, 𝐼)@𝑡 . Hence, in
order to reason over which thread extended the first piece of code into a PCR,
LS2 resorts to global locks. Threads in LS3 are created explicitly which brings
us the following lemma:

Lemma 1 (Replacing locks by launching only 𝐼). When a machine is reset in
LS3 at time 𝑡𝑅 , only a thread 𝐼 is created in the default domain 𝑑𝑜𝑚0. For any
location 𝑙 allocated to 𝑑𝑜𝑚0 in 𝛼 at time 𝑡𝑅 , we have

∀𝑡
′
, 𝑡

′′
.(𝑡𝑅 < 𝑡

′
≤ 𝑡

′′
), ∄𝑒,Mem(l, e)@𝑡

′
,¬Write(I, e)@𝑡

′′
.

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 95

The following program sequence (first shown in Equation 4.1) is used to
bootstrap the operating system in Figure 4.2:

[𝑝 ∶= read 𝑃 ; ℎ ∶= hash 𝑝; extend ℎ; jump 𝑝] (4.3)

By replacing the generic sequence above with 𝑃 as BIOS(𝑚), BL(𝑚), and
OS(𝑚) we can construct a chain of measurements from CRTM(𝑚) to OS(𝑚).
That is, if all programs in the sequence are exactly those programs and if they
are executed fully. Programs are typically loaded from the 𝑑𝑖𝑠𝑘 of 𝑚 which is
generally regarded as untrusted, meaning that anything we read from the disk is
potentially adversarial code. In order to establish that the sequence in the PCR
used by 𝑃 , i.e. 𝑃𝐶𝑅𝑏𝑜𝑜𝑡 in Figure 4.2, implies that the correct boot sequence has
been executed, we need to reason step by step starting at CRTM(𝑚). We get
proof of the execution of CRTM(𝑚) by finding the BIOS(𝑚) logged in the PCR.

However, by finding BIOS(𝑚) in the PCR a verifier can only infer that action
extend has been reduced of CRTM(𝑚). In oder to establish that CRTM(𝑚) has
been fully and exclusively executed, i.e. no further code, we need to use the
predicate Jump(I, P). Using Jump(I, P) as a tool for reasoning [36] lets us connect
proof of the execution of BIOS(𝑚) with a property we wish to prove about 𝐼
executing CRTM(𝑚). By finding BL(𝑚) we get prove that CRTM(𝑚) has not
only measured and recorded BIOS(𝑚) but must have also jumped to it. This lets
us prove an important security property: Trustworthiness of Measurement.
This style of reasoning using the predicate Jump(I, P) can be continued infinitely
but will always exclude the last element because we are not able to prove
full or exclusive execution [36]. Hence, the sequence in Equation 4.1, without
assumptions about the execution environment, lets us prove to a verifier that at
least some portion of the OS(𝑚) actions has been reduced.

[OS(𝑚)]𝐼 represents known minimal operating system kernel running in
𝑑𝑜𝑚0 on 𝑚 in control of all resources of that machine. It becomes critically im-
portant that any runtime additions to this kernel are recorded in order to provide
or verify the systems integrity [117] (Section 4.2.7). IMA is designed to fill this
gap and extend the chain of trust measurements further into a running system.
As mentioned earlier, to model this properly LS3 lets us add threads explicitly

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 96

using the action spawn 𝑃 along with the according operational semantics rule
and general predicate Spawn(I, P)

𝐶, [spawn 𝑃 ; 𝑄]𝐼 → {𝑇} ∪ 𝑇𝐽 , [𝑄(…)]𝐼 , [𝑃]𝐽 ,

(𝑑𝑜𝑚(𝐽) = 𝑑𝑜𝑚(𝐼))

Where we specify that the expression of action spawn is a program (e:P), the
newly created thread 𝐽 executes 𝑃 , and that the caller 𝐼 continues with the
remainder of her program 𝑄. As such, spawn corresponds to allocating exe-
cutable memory for a thread in 𝑑𝑜𝑚0 containing 𝑃 , mapping 𝑃 to some𝑚.𝑟𝑎𝑚.𝐽 ,
assigning 𝐽 to the domain of the caller, and scheduling 𝐽 for execution.
This construct allows us to continue reasoning over the actions of program
OS(m) and how IMA continues the chain of trust measurements in a trustwor-
thy manner. For convenience, we make the IMA kernel code itself measurable
by defining the following programs for OS(𝑚) and LM(𝑚), i.e. the OS and the
loader module (LM):

[𝑝𝑐𝑟 ∶= read 𝑃𝐶𝑅_𝑏𝑜𝑜𝑡 ; ℎ ∶= hash 𝑝𝑐𝑟 ;

extend ℎ, 𝑃𝐶𝑅_𝐼𝑀𝐴; spawn 𝑙.𝑟𝑎𝑚.𝑂𝑆.𝐿𝑀]OS(𝑚)

and finally LM(𝑚):

[𝑝 ∶= read 𝑃 ; ℎ ∶= hash 𝑝;

extend ℎ, 𝑃𝐶𝑅_𝐼𝑀𝐴; spawn 𝑃]LM(𝑚);...

The OS(m) is responsible for linking the PCR values used to boot the machine
to the PCR which will be used to record loadable kernel modules (LKMs) and
applications by the program LM(𝑚). For simplicity, we say that LM(𝑚) is a sub-
program of OS(𝑚) and that by measuring and recording the operating system,
we also get a hash of LM(𝑚). The PCR configuration of 𝑚 before the LM(𝑚)

visible to a verifier is then:

⟨𝑠𝑖𝑛𝑖𝑡,BIOS(m),BL(m),OS(m)⟩𝑃𝐶𝑅𝑏𝑜𝑜𝑡

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 97

⟨𝑠𝑖𝑛𝑖𝑡, ⟨𝑠𝑖𝑛𝑖𝑡,BIOS(m),BL(m),OS(m)⟩⟩𝑃𝐶𝑅𝑖𝑚𝑎

Based on this the verifier can only infer that OS(𝑚) must have reduced the
actions before [spawn], but not that the loader module is in fact running now.
Once the first LKM or application has been loaded, the PCR used by IMA will
change to:

⟨𝑠𝑖𝑛𝑖𝑡, ⟨𝑠𝑖𝑛𝑖𝑡,BIOS(𝑚),BL(𝑚),OS(𝑚)⟩, P(m)⟩𝑃𝐶𝑅𝑖𝑚𝑎

As before, P(𝑚) could be any untrusted program on the disk, and may or may
not allow us to reason about whether or not it is being executed. However, using
the predicate and the rule Spawn(I, P) similar to a jump to link knowledge of the
OS(𝑚) and the fact that only some thread running LM(𝑚) could have extended
𝑃𝐶𝑅𝑖𝑚𝑎 allows us to prove to a verifier that IMA is running and performing
measurements.

4.3.2 Containers and Domain Specific Measurements

Physical co-residency is the center of hardware-level side-channel attacks in
the cloud [73, 70]. As a first step in these types of attacks, the adversarial tenant
needs to confirm the cohabitation with the victim on the same physical host,
instead of randomly attacking strangers [70]. For this reason, we argue that it is
not acceptable to use the IMA code in the operating system loader component
shared among domains.

In LS3, containers are represented by container-images on a machines disk,
and by a container-engine sub-system part of the operating system. The con-
tainer engine is trusted to maintain isolation in the sense of performance and
protection. In short, we assume that a container-engine component of the oper-
ating system securely manages containers. Before a container is run, we assume
that the store 𝜎 and allocation 𝛼 have been prepared: both 𝑚.𝑑𝑖𝑠𝑘 and 𝑚.𝑟𝑎𝑚

receive a partition 𝑑𝑜𝑚𝑛, (𝑛 > 0). The disk region 𝑚.𝑑𝑖𝑠𝑘.𝑑𝑜𝑚𝑛 corresponds to
the container image and the memory is used to execute programs shipped with
the container. The allocator is prepared to enforce this accordingly by adding
𝑚.𝑟𝑎𝑚.𝑑𝑜𝑚𝑛 → 𝑑𝑜𝑚𝑛 and 𝑚.𝑑𝑖𝑠𝑘.𝑑𝑜𝑚𝑛 → 𝑑𝑜𝑚𝑛.

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 98

To allow for spawning threads running programs of the container we add
an overloaded command spawn 𝑃, 𝑑 to our system which adds a parameter for
the target domain of the newly scheduled thread.

𝐶, [spawn 𝑃, 𝑑 ; 𝑄]𝐼𝑑𝑜𝑚
0

⟶ {𝑇} ∪ 𝑇𝐽 , […]𝐼 , [𝑃]𝐽𝑑

Most importantly, the command for spawning new processes in domains can
only be reduced by a thread of 𝑑𝑜𝑚0, i.e. the host operating system. Modifying
the loader code to use spawn 𝑃, 𝑑 is intuitive but violates the constrained dis-
closure property: Instantiating LM(𝑚) with spawn 𝑃, 𝑑 would necessarily result
in 𝑃𝐶𝑅𝑖𝑚𝑎 holding hash values of all programs ever spawned or loaded on 𝑚

between a reboot. A remote verifier wishing to attest the system would learn
not only about programs of her container but also about other programs which
may currently be running on the system. Measuring everything into one record
invalidates any efforts to randomize the distribution of services and acts like a
system layout reverser for an attacker.

We propose an Enhanced IntegrityMeasurement Architecture (EIMA) which
extends IMA measuring newly launched programs in a way which respects
system isolation and partitioning. We claim that EIMA produces domain specific
measurements. When a new container is set up on our system we also partition
PCRs. Before adding the allocation entry we link the PCR for a new domain
(𝑑𝑜𝑚𝑛) with the PCR of the host system (𝑑𝑜𝑚0):

⟨𝑠𝑖𝑛𝑖𝑡, ⟨...⟩𝑃𝐶𝑅𝑑𝑜𝑚
0

⟩𝑃𝐶𝑅𝑑𝑜𝑚𝑛

(4.4)

After that, we add the entry 𝑚.𝑝𝑐𝑟.𝑑𝑜𝑚𝑛 → 𝑑𝑜𝑚𝑛 to our allocator 𝛼 . Boot-
strapping the container environment after that can be done by spawning an
init-like process from the container image.

[𝑝 ∶= read 𝑚.𝑑𝑖𝑠𝑘.𝑑𝑜𝑚𝑛.𝐼 𝑛𝑖𝑡 ; ℎ ∶= hash 𝑝;

extend ℎ, 𝑝𝑐𝑟𝑑𝑜𝑚𝑛
; spawn 𝑃, 𝑑𝑜𝑚𝑛]ELM(𝑚);...

The modifications to the enhanced loader module (ELM(𝑚)) are minimal: we
read a program Init(. . .) from the container image located at 𝑚.𝑑𝑖𝑠𝑘.𝑑𝑜𝑚𝑛, hash

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 99

Fig. 4.4 LS3 Domain Specific Measurements using our Enhanced Integrity Measurement
Architecture (EIMA) loadermodule (ELM) (ELM(𝑚)). The shared system loader program
ELM(𝑚) is responsible for spawning new threads. ELM(𝑚) is extended to record
programs according to the domain that will be assigned to the thread executing them.

it and extend it to 𝑝𝑐𝑟𝑑𝑜𝑚𝑛
before spawning a new process running the program

in 𝑑𝑜𝑚𝑛.
Figure 4.4 shows three domains: 𝑑𝑜𝑚0 as the domain created after a machine

reset and 𝑑𝑜𝑚1, 𝑑𝑜𝑚2 as sub-domains or isolated user-spaces hosting different
applications as per our introduction. Having a fully booted host system running
containers as in Figure 4.4 produces the following PCR configurations:

⟨𝑠𝑖𝑛𝑖𝑡,BIOS(𝑚),BL(𝑚),OS(𝑚)⟩𝑃𝐶𝑅𝑏𝑜𝑜𝑡
(4.5)

⟨𝑠𝑖𝑛𝑖𝑡, ⟨...⟩𝑃𝐶𝑅𝑏𝑜𝑜𝑡
, LKM(𝑚), ...⟩𝑃𝐶𝑅𝑑𝑜𝑚

0

(4.6)

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 100

⟨𝑠𝑖𝑛𝑖𝑡, ⟨...⟩𝑃𝐶𝑅𝑑𝑜𝑚
0

, App1(𝑚), App2(𝑚), ...⟩𝑃𝐶𝑅𝑑𝑜𝑚
1

(4.7)

⟨𝑠𝑖𝑛𝑖𝑡, ⟨...⟩𝑃𝐶𝑅𝑑𝑜𝑚
0

, App3(𝑚), App4(𝑚), ...⟩𝑃𝐶𝑅𝑑𝑜𝑚
2

(4.8)

Hence, each container can be remotely verified using only relevant informa-
tion, i.e. system boot, host operating system, and sub-domain measurements.
Consequently, a service provider hosting containers can offer trustworthy mea-
surements for containerized environments without having to reveal information
about other, isolated work-loads running in other containers using different
partitions.

4.3.3 EIMA Achieving Security Properties (2) and (5)

In this subsection, we first prove the trustworthiness of the measured boot
sequence. We then show how EIMA achieves constrained disclosure which also
implies that IMA’s integrity measurements are trustworthy.

Definition 1 (Measured Boot Sequence).

SRTM(m, t) = ∃𝑡𝑆 , 𝑡𝐵, 𝑡𝐵𝐿, 𝑡𝑂 , 𝐼 . (𝑡𝑆 < 𝑡𝐵 < 𝑡𝐵𝐿 < 𝑡𝑂 < 𝑡)

∧ Restart(m, I)@𝑡𝑆 ∧ Jump(I,BIOS(m))@𝑡𝐵

∧ Jump(I,BL(m))@𝑡𝐵𝐿 ∧ Jump(I,OS(m))@𝑡𝑂

∧ ¬(Restart(m)) on (𝑡𝑆 , 𝑡] ∧ ¬(Spawn(I)) on (𝑡𝑆 , 𝑡]

∧ ¬(Jump(I)) on (𝑡𝑆 , 𝑡𝐵) ∧ ¬(Jump(I) on (𝑡𝐵, 𝑡𝑂))

Theorem 1 (Trustworthiness of SRTM Integrity Measurement). Let 𝑠𝑒𝑞 =

⟨𝑠𝑖𝑛𝑖𝑡, BIOS(𝑚),BL(𝑚),OS(𝑚),APP(𝑚)⟩, ∀𝑡. 𝑅𝑒𝑠𝑡𝑎𝑟𝑡(𝑚, 𝐼)@𝑡, 𝛼 ∶ 𝑚.𝑝𝑐𝑟𝑏𝑜𝑜𝑡 →

𝑑𝑜𝑚0, and Mem(m.pcr.boot, seq)@𝑡 then SRTM(m, t)@𝑡 .

Proof. The proofs and programs in for CRTM(𝑚),BIOS(𝑚),BL(𝑚), and OS(𝑚)

in LS3 follow Datta et al., except that we use Lemma 1 instead of protected PCRs
(see discussion before Lemma 1).

■

So far we have shown that based on the sequence in 𝑃𝐶𝑅𝑏𝑜𝑜𝑡 the system
must have performed a measured boot sequence to bring up the OS. We now
show the trustworthiness of (E)IMA integrity measurements.

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 101

Definition 2 (Domain Launch using ELM(m,t)).

DomainLaunch(m, t) = ∃𝑡𝐸 , 𝑡𝐿𝐾𝑀1
, 𝑡𝐿𝐾𝑀2

, 𝑡𝐴𝑝𝑝1, 𝑡𝐴𝑝𝑝2, 𝐼 , 𝐽 .

(𝑡𝐸 < ((𝑡𝐿𝐾𝑀1
< 𝑡𝐿𝐾𝑀2

)||(𝑡𝐴𝑝𝑝1 < 𝑡𝐴𝑝𝑝2)) < 𝑡)

SRTM(m, t)@𝑡 ∧ Spawn(I, J, ELM(m))@𝑡𝐸

∧ Spawn(J, LKM1, dom0)@𝑡𝐿𝐾𝑀1

∧ Spawn(J,M2, dom0)@𝑡𝐿𝐾𝑀2

∧ Spawn(J,App1, dom1)@𝑡𝐴𝑝𝑝1

∧ Spawn(J,App2, dom1)@𝑡𝐴𝑝𝑝2

∧ ¬Spawn(dom0) on (𝑡𝐸 , 𝑡𝐿𝐾𝑀1
)

∧ ¬Spawn(dom0) on (𝑡𝐿𝐾𝑀1
, 𝑡𝐿𝐾𝑀2

)

∧ ¬Spawn(dom0) on (𝑡𝐿𝐾𝑀2
, 𝑡] ∧ ¬Spawn(dom1) on (𝑡𝐸 , 𝑡𝐴𝑝𝑝1)

...

Theorem 2 (Trustworthiness of EIMA Integrity Measurement). Let 𝑠𝑟𝑡𝑚 =

⟨𝑠𝑖𝑛𝑖𝑡, BL(𝑚),OS/ELM(𝑚)⟩, 𝑑𝑜𝑚0 = ⟨𝑠𝑖𝑛𝑖𝑡, 𝑠𝑟𝑡𝑚, LKM1(𝑚), LKM2(𝑚), ...⟩, 𝑑𝑜𝑚1 =

⟨𝑠𝑖𝑛𝑖𝑡, 𝑑𝑜𝑚0,App1(𝑚),App2(𝑚), ...⟩, 𝛼 ∶ 𝑚.𝑝𝑐𝑟𝑑𝑜𝑚0
→ 𝑑𝑜𝑚0, 𝑚.𝑝𝑐𝑟𝑑𝑜𝑚1

→

𝑑𝑜𝑚1, and at time 𝑡 we have Mem(m.pcr.srtm, srtm), Mem(m.pcr.dom0, dom0),
and Mem(m.pcr.dom1, dom1), then DomainLaunch(m, t).

Proof. The proof follows the basic proof of Measured Boot with the same as-
sumptions. Using the sequence in 𝑚.𝑝𝑐𝑟.𝑠𝑟𝑡𝑚 combined with the fact that only
the initial thread 𝐼 executing CRTM(𝑚),BIOS(𝑚),BL(𝑚), 𝑄 ∈ OS(𝑚) recorded
and then spawned ELM(𝑚) at some time 𝑡 . The extend operation in OS/ELM(𝑚)

gives us the necessary proof that OS(𝑚) has in fact reduced spawn ELM(𝑚) at
𝑡𝐸 . ELM(𝑚) continues the measured launch sequence. ■

4.4 Summary

In this chapter, the design and verification of an enhanced integrity measure-
ment architecture (EIMA) was presented. EIMA addresses the trustworthiness
and constrained disclosure of integrity measurements for containerized systems.
Our development and design was guided by a precise formal model of strati-

CHAPTER 4. DOMAIN SPECIFIC MEASUREMENTS 102

fied systems. The formal model was conceived by adding required constructs
for domains and domain specific measurements to an existing and established
formal model. The additions allowed a proof of a trustworthy measurement
architecture from system boot all the way up to containerized applications.
The proof of EIMA has also shown the security properties of the commonly
used IMA. However, EIMA does not reveal information about a target container
to other untrusted tenants on the same system. Our future work will have to
address more detailed interactions between otherwise isolated domains and
sub-domains via system calls and privileged administrator commands. The
verification of properties which were deferred to the TPM is a pressing task and
a suitable remote attestation protocol as outlined in Chapter 3 is still needed.

Chapter 5

Bootstrapping Trust in a Virtual
Platform

The Trusted Platform Module (TPM) can be used to establish trust in the soft-
ware configuration of a computer. Virtualizing the TPM is a logical next step
towards building trusted cloud environments and providing a virtual TPM to a
virtual machine promises a continuation of trusted computing concepts. The
association between a virtual TPM and a virtual machine is a critical concern.
In this chapter, we show that a “trusted” virtualized platform may fall victim to
a Goldeneye attack. We put forward a formal model for virtualization systems
and virtual trusted platforms in Section 5.3.2. We pair this with a model for es-
tablishing trust in a virtualized platform following conventional reasoning over
trusted computing systems in Section 5.3.3. We show that if a Goldeneye attack
is successful, it would allow a verifier to establish trust in an untrustworthy
platform. We discuss attack vectors in related work Section 5.4.1 and possible
solutions which would mitigate Goldeneye in Section 5.4.2. The contributions
of this chapter are detailed in Section 5.1.1 and the results are published in [82].

5.1 Introduction

Before entrusting a computer with a secret, a client needs some assurance
that the computer can be trusted [105]. Without such trust, performing tasks

103

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 104

Physical	Platform TPM

Virtual	Machine	Monitor vTPM

Guest	OSGuest	OSGuest	OS

App
App

App

App
App

App

App
App

App

Fig. 5.1A sketch of a virtualization system equippedwith a TPMwhich hosts virtualized
systems with virtual TPMs. A guest OS running in a virtual machine and composed
with a virtual TPM is referred to as a trusted virtualized platform.

involving secrets or sensitive data securely is currently not possible. Practical
trust establishment technologies are crucial for the secure operation, prolif-
eration and adoption of current and future services [70]. In fact, the need
to bootstrap trust is most evident when using hosted and remote computing
systems [48, 95, 87, 116].

For example, a cloud provider 𝑃 offers to host an instance of a customer’s OS
of choice in a virtual machine which the customer may freely use. This allows
customer 𝐶 to run certain applications forming a service. Conveniently, 𝐶 does
not have to maintain any hardware. Customers need to trust 𝑃 ’s virtualization
system (Fig. 5.1) to provide important properties: isolation between their system
and other customers as well as access to interfaces, keys, storage objects, and
resources. If a customer wants to establish trust in her services, i.e. the guest OS
and applications in Fig. 5.1, then an associated vTPM should contain information
about the software state of that part of the system. Unless 𝐶 trusts 𝑃 implicitly,
𝐶 will also have to establish trust in the virtualization system which hosts her
workload, i.e. the machine and virtual machine monitor in Fig. 5.1. Lastly,
cloud customers 𝐶 hosting their service on 𝑃 ’s virtualization system may need
to prove compliance to other parties as well. Being able to establish trust in
hosted services and the underlying virtualization system becomes crucial if the
hosted service needs to be trusted. A provider should be able to demonstrate

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 105

continuous security compliance and prove the integrity of her provided service
to customers. Alternatively, customers may want an option to monitor the
system hosting their services.

One way to establish trust in a computer is to use the secure hardware such
as the Trusted Platform Module (TPM) (Section 2.3.3) to record and report its
software state. Using a process called remote attestation (Section 2.3.5) this
information can be securely conveyed to a remote party. Given the software
state, the client (or any other agent) can decide whether the platform should be
trusted—assuming that a trustworthy software state and configuration is known
to the client. Similar forms of this approach are the basis of many practical
security features of modern operating systems. Microsoft operating systems
use the TPM for BitLocker and protecting and limiting the use of cryptographic
keys [90]. Similarly, Linux systems offer secure boot features and integrity
subsystems which also use the TPM as hardware anchor.

In short, with appropriate software support, the TPM can be used to mea-
sure and record each piece of software loaded [117] and securely convey this
information to a remote party [87, 19]. Consequently, the TPM can be used to
effectively establish trust in the software configuration of a machine. This can
in principle be applied to a virtual machine monitor using a physical TPM. It
can also be applied to its guests with the support of a virtual TPM [34, 120]
as shown in Fig. 4.1. The virtual machine associated with a virtual TPM form
what is called the virtualized trusted platform [56].

The question remains: How do we bootstrap trust in the association between
a virtualmachine and a vTPM?Currently, the specifications for “virtualized roots
of trust” and “trusted virtualized platforms” as well as the academic literature
offer no answer [66, 56, 14, 34, 120]. Instead, it is assumed that a client has prior
knowledge of the relevant virtualization system and its TPM. Supposedly, a
client can then “verify” her way up and determine, through a few recursive
schemes that a particular vTPM is associated to her VM. While this assumption
conveniently suspends the issue and allows higher level discussions, it never
actually solves it. Practically a client knows nothing about the (1) virtualization
system, (2) the physical TPM, or (3) the vTPM associated to her virtual machine.
Unfortunately, without a way to assert that the VM is in fact associated to a

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 106

particular vTPM and vice versa, any verifier can be tricked into establishing
trust in an untrusted system.

We exploit the lack of a verifiable association in our Goldeneye attack. The
attack leads a verifier to establish trust in an untrustworthy VM and establish
trust in untrustworthy virtualization system. We use our Goldeneye attack as a
vehicle to emphasize the need to bootstrap trust in a trusted virtualized platform
by asserting and allowing the remote verification of the association between
VMs and their vTPMs.

5.1.1 Contribution

In this chapter, we make the following contributions:

• We highlight the importance of the VM-vTPM association by introducing
and demonstrating Goldeneye which uses vTPMs against verifiers.

• We formally define a virtualization system with vTPMs (using bigraphs)
and provide a trust model which captures our attack on the VM-vTPM
association (using predicate logic).

• We show how related work [14, 34, 120] falls victim to Goldeneye and we
discuss solutions to address the issue of associating VMs and vTPMs.

No straightforward solution appears to preclude Goldeneye entirely and
we suggest improvements for virtualization systems which aspire to provide
virtualized trusted platforms for their clients.

5.2 Background and Prior Work

This section will briefly summarize relevant background terminology including
virtualization systems and the Trusted Platform Module (TPM), both physical
and virtual.

We make our definitions clear and easy to translate to systems by adopting
relevant terminology and descriptions from protection profiles [102] and Trusted
Computing Group (TCG) specifications [132]. Our contribution is not the

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 107

description itself (similarity to other definitions is intentional and desirable)
which is repeated for the reader’s convenience. We annotate definitions to lay
out how elements are composed to form systems as a primer for our formal
concept notation later on.

5.2.1 Virtualization System

The virtualization system is a software system which enables multiple indepen-
dent computing systems to execute on the same physical machine [102, 107].
The virtualization system in Fig. 5.1 consists of the physical platform (hard-
ware), the virtual machine monitor / hypervisor, a management system and
other helper components. The definition of a virtualization system is relative to
the virtualization target or virtual environment. In this chapter, the virtualiza-
tion system is the software system which supports virtual machines running
guest operating systems. However, if we would like to describe OS-level vir-
tualization, the virtualization system would include all components required
to reach the desired level of virtualization. The virtualization system is treated
as the all encompassing abstraction enabling the execution of multiple inde-
pendent computing systems on the same physical machine. A virtualization
system also supports the virtual platform. The virtual platform, in case of
Fig. 5.1 is the abstraction around the guest OS. Similar to a trusted platform,
i.e. hardware + TPM, we define the virtual trusted platform as virtual machine
+ virtual TPM [56]. We give an inductive definition of a virtualization system
and highlight the composition of the elements in the process.

Process (App)

In our model, processes and apps are instances of programs. Each process is
said to have a set of instructions (code), a finite address space (memory), a state
structure, and resource descriptors. We assume that process are isolated from
other process in the sense that one process can not directly modify resources
owned by another. The process structure in general is defined by an operating
system. In our model, there is a one-to-one correspondence between processes
and apps and we use them interchangeably. Running apps as processes are

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 108

supervised by an operating system. The security properties of processes and
apps are relative to and best explained through an operating system.

Operating System

An operating system provides the process abstraction and runs programs. An
operating system itself is a program with the sole purpose to control, abstract,
and multiplex hardware for the purpose of running multiple programs as pro-
cesses on the same machine. The minimal operating system is referred to as the
kernel which provides the process abstraction, virtual memory, scheduling, and
inter-process communication. The operating system may also provide a number
of other services which are not necessarily part of the kernel. We make no
assumptions about the kind of operating system. Instead, we allow modelling
an operating system by either defining additional functionality as part of the
kernel or we model it using additional processes which implement functionality
on top of a kernel. As an element of our model, the OS abstracts a hardware
interface and provides a process abstraction.

Virtual Machine

A virtual machine is an environment with hardware interfaces in which a
program such as an operating system may execute [102]. Similar to a process,
each virtual machine is said to own some memory partition, structures for the
VM state as well as other resources. Operating systems running on a virtual
machine are referred to as guest operating systems (Fig. 5.2.1). The concept of a
virtual machine is relative to and best explained through the idea of a virtual
machine manager.

Virtual Machine Manager (VMM)

The virtual machine manager provides a virtual machine for other programs,
e.g. guest operating systems, which is essentially identical to a physical ma-
chine [107]. Despite allowing for a guest OS to run on the same machine, the
virtual machine manager is in complete control of the machine and its resources.
The minimal set of VMM functionality facilitating virtual machines is referred

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 109

to as the hypervisor. The hypervisor provides the virtual machine abstraction
and acts as a dispatcher, resource manager, and if necessary interpreter for
certain instructions. VMMs may also provide additional components such as
drivers, emulators, virtual devices and management systems. Further func-
tionality can be modelled by including it as part of the hypervisor or using
virtual machines or processes—depending on the type of hypervisor we wish to
model. We consider two types of hypervisors in our model. Type-I or bare-metal
hypervisors expect a hardware interface and provide virtual machines. Type-II
or hosted hypervisors are part of an operating system which abstracts the hard-
ware while hypervisors provide the virtual machine abstraction. However, both
types provide a (virtual) machine (i.e., hardware) interface in our model.

5.2.2 Trusted Platform Module

A Trusted Platform Module (TPM) [64] (Section 2.3.3) is a hardware, firmware,
or virtual device which acts as a secure co-processor and supports securing
machines in a number of ways: it can securely generate, store, and apply
symmetric and asymmetric keys internally. A TPM can certify internal keys
based on its root Endorsement Key (EK) [130] which is typically signed by the
device or platform manufacturer. For simplicity, we say that TPMs are uniquely
identified by a key pair {𝐾𝑇𝑃𝑀 , 𝐾

−1

𝑇𝑃𝑀
} [105]. Such root keys never leave the

TPM and are therefore considered secure against all software attackers including
compromised operating systems and highly privileged admins.

A particularly useful TPM feature is a special type of register called Platform
Configuration Register (PCR). TPMs have a number of them and they essentially
provide an append-only update operation which allows us to record transitions
in the systems state in a concise way. The process of recording, or appending,
system states, if continued properly, creates a “chain of trust measurements”
which allows PCRs to reflect the boot process, launched applications [117], and
internal states of a system [83]. Signing the recorded system state using an
internal key produces a quote. The PCR values along with the quote can be
securely conveyed to a (remote) verifier. Based on the PCR values, a verifier
may check the system state and make judgments (e.g., are whether a machine is

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 110

trusted or not). This process is referred to as remote attestation [64, 57, 19, 87].
Overall, we say that if we trust the TPM, we are able to establish trust in the
state of a (software) system.

virtual TPM

In our model, all machines have TPM devices as separate chip or part of their
firmware. TPMs, unfortunately, have no support for virtualization and are
generally not shared among operating systems (hosts and guests). Instead,
virtual TPMs are employed to serve as roots of trust for virtual machine. All
virtual TPMs are essentially programs which need some execution environment.
Their security directly depends on the environment and must be architecturally
isolated from a guest operating system so as to support guest facing TPM
use-cases (e.g., key storage outside guest OS and append only PCR updates).

Beyond architectural soundness1, the vTPM must be implemented in a way
that associates it to a VM the same way a real TPM is associated to a machine.
On a real machine, this association can be safely assumed as the TPM is typically
part of the chip-set. However, a vTPM is an element of the system and not
implicitly associated to a VM. This weakness is exploited in our Goldeneye
attack.

5.3 Goldeneye Attack

The goal of a verifier is to establish trust in a VM and whatever runs in it using
trusted computing technology. To this end, we need some fundamental trust
assumptions outside of the typical trusted computing framework. The first
assumption is that the verifier, or agent acting as a verifier, has a trusted device
with which she can connect to a VM. Examples for this would be a local, trusted
device which is used to connect to a service interface or create and manage VMs.
An alternative to a trusted verifier setup would be using a trusted third party
which can help a curious client with a trust decision. Further, we need agents

1We have an example of an unsound construction later on but we omit the formal definition
here.

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 111

Verifier

VM

VMME

vTPME

Physical PlatformE TPME

Adversary

Physical PlatformO TPMO

VMMO

vTPMO

Verifier Adversary

vTPME

TPME

vTPMO

TPMO

b) Logical equivalent of a weak vTPM - VM association.

a) Example attack using a weak vTPM - VM association.

Fig. 5.2 Sketch of our Goldeneye attack variant 2. The adversary has control over the
vTPM-VM association. An adversary uses the vTPM (vTPM𝑂) to trick a verifier into
establishing trust in another virtualization system (VMM𝑂).

to be able to trust someone (at least themselves) to vouch for the integrity of
some system element. Without such assumptions, we can show that it may be
hard to satisfy a general, secure cloud computing use-case. In summary, we
assume that

1. verifiers and their setups are trusted and

2. trusted agents can vouch for other agents and system elements.

Practically, these two assumptions allow us to describe the cloud provider
𝑃 as semi-trusted, i.e. its machines are trusted but the software may get com-
promised or misconfigured. Using (1) and then (2) we can state that verifiers
trust cloud providers and that cloud providers vouch for the security of their
machines, respectively. Consequently, we may at any point trust a physical
platform and it’s TPM. This and the overall complexity of our system and the
fidelity of our model is what distinguishes Goldeneye from similar attacks like
cuckoo [105]. Our attack succeeds on a physically secure machine.

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 112

5.3.1 Informal Description

In a Goldeneye 2 attack, an adversary effectively controls the vTPM associated
with a virtual machine. In this attack, an adversary with some control over the
virtualization infrastructure may swap out the vTPMs used to establish trust in
a VM.

Setup

Figure 5.2 shows this attack in frame a) with a 𝑉𝑀𝑀𝐸 which is the VMM
expected by the client, the red coloring indicates that this VMM may not be
acceptable because it does not provide necessary security properties or may be
used to violate them. The vTPM is the VM’s interface to the underlying trusted
computing infrastructure. A verifier with access only to the VM relies on a
vTPM to indicate the virtualization system correctly. To the right of VMM𝐸 is
another virtualization system which is part of the cloud infrastructure. The
system to the right is virtually identical except that it runs a secure virtualization
system. We simply name it VMM𝑂 to which the vTPM𝑂 points (𝑂 for other).
An adversary can now, through a variety of channels (Section 5.4), funnel VM-
vTPM communication to vTPM𝑂 . The possibility of a Goldeneye attack has an
effect on a number of security mechanisms. We focus on establishing trust in
the software state of the virtualization system and the VM in this work. We
identify two main variants of Goldeneye and discuss them below.

Variant 1 - changing virtual Root of Trust

Exploiting the VM-vTPM association on the same virtualization system enables
the first variant of Goldeneye. The goal of the adversary in this variant is to
allow trust establishment in a potentially untrustworthy VM. The variant is
executed by changing the (virtual) root of trust associated with a virtual machine.
An adversary with the ability to clone or fabricate vTPMs, can freely drop or
inject certain TPM commands such as PCR updates. Furthermore, it would
allow adversaries to install malware on in the VM and hide it by allowing only

2Common goldeneyes are known to lay her eggs in the nest of other goldeneyes. By doing
so they escape their parental investment which allows them to do other things.

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 113

known-good PCR values in the vTPM. Secrets bound to a known-good state of
the vTPM become accessible and remote attestation would allow a verifier to
establish trust and release secrets to a VM which is not trustworthy.

Variant 2 - changing physical Root of Trust

The variant shown in Fig. 5.2 likens Goldeneye to a cuckoo attack [105]. The
verifier in our setup has no prior knowledge about a vTPM, a virtualization sys-
tem, and a TPM but trusts the physical components. An adversary with access
to the association between VMs and vTPMs can exploit the fact that commonly
the virtual TPM is used as a pointer to the physical TPM. By associating a VM
on some virtualization system with a vTPM on another virtualization system,
an adversary can convince the verifier to establish that her VM is running on
another virtualization system which may be trustworthy. This would allow an
adversary to run virtual machines on bad virtualization systems while using
the virtual TPM to hide the fact.

Executing the Attack

The attack exploits an architectural gap in the design of a virtual trusted platform.
A TPM is used to establish the software state of a virtualization system which
itself hosts VMs and vTPMs. The vTPM presents TPM PCRs or a reference to
a TPM encoded in a vTPM Endorsement Key Certificate [14]. From a verifiers
perspective, the vTPM tells the software state of the VM aswell as the underlying
virtualization system.

Although a “strong” VM-vTPM association is a topic and requirement in
prior work [56, 14, 34, 120], the software defined association is not verifiable
(nor enforceable by trusted elements) — a concerned client can not establish
trust in it. This in turn allows an adversary to carry out a Goldeneye attack
without detection or spoiling the known-good state of any virtualization system.
We found that Goldeneye can be executed by using standard tools to manage
VMs and vTPMs. For example, Xen allows attaching and detaching vTPMs to
VMs (Xen-domains) as part of the vTPM management interface [138]. Usage
of such commands does not spoil the known-good state of the virtualization

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 114

system in the TPM. Given the complexity of a virtualization system and its
interfaces, we expect more opportunities for an adversary.

Without improvements to the VM-vTPM association, the possibility of a
Goldeneye attack contradicts the declared objective of [34, 120] to reduce the
amount of trust needed in a semi-trusted3 provider.

5.3.2 Graphical Model

A key feature of the model visualized in our introductory figure (Fig. 5.1) is
its inherent layering. The entire system is visually and functionally separated
into different layers such as hardware, VMM, virtual machines / guest OSes and
applications. The form of its structure and transactions can be captured quite
naturally using layered graphs. A bigraph [93] is a form of layered graph that
superimposes a spatial place graph of physical or virtual locations and a link
graph which denotes interaction on a single set of nodes.

The system in our introductory example (Fig. 5.1) can be translated using
virtualization system terms to form the graph of Fig. 5.3. We formalize it in a
bigraphical fashion by defining linking and placing independently. Thereupon,
we describe interfaces for composition (i.e., how to create larger systems out of
elements) which we constrain with controls for different kinds of nodes. Finally,
we offer a natural translation of our graphical structure and compositions to
formulae of first-order logic with which we further formalize Goldeneye.

Interaction

To express interactions between nodes (elements) in our model we introduce
a link graph. In a graph with nodes 𝑉 and edges 𝐸, edges join pairs of nodes.
A hypergraph is a generalization which allows edges to join any number of
nodes. Hyperedges can be seen in a straightforward manner using only edges
(𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝑉 with node 𝑢 being part of the original graph and placing 𝑣 as
a inserted “hyperedge node” for each hyperedge 𝑒 ∈ 𝐸 to join any number of
nodes at 𝑣.

3Semi-trusted agents and elements are trusted but they may become compromised in an
attack.

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 115

Physical Platform

(Memory)

... HV

(VM)

OS

(Proc)

Mgmt

(VM)

OS

(Proc)

vTPM

...

(VM)

OS

(Proc)

App

...

...

TPM

Fig. 5.3 Graphical model of a virtualization system showing the placing of its elements.
VMs and Processes are included as abstractions for guest OS and apps, respectively.

Definition 3 (Hyperedge). A Hyperedge is an edge 𝑒 ∈ 𝐸 between any number
of nodes 𝑉 . 𝐸 is a non-empty set of non-empty subsets of 𝑉 (𝐸 ⊂ (𝑉) ⧵ {∅}).

Each node 𝑣 ∈ 𝑉 has an arity and has ports. The arity, e.g. a natural
number, both names and limits the number of ports for each node available
in the hypergraph (𝑃𝑣 ∶= {(𝑣, 𝑖) ∣ 𝑖 ∈ 𝑎𝑟(𝑣)}). Thus the ports available in
the hypergraph is the union of disjoint sets 𝑃𝑣 , 𝑣 ∈ 𝑉 (𝑃𝑉 ∶= ⊎𝑣∈𝑉𝑃𝑣). The
hypergraph is then defined by the quadruple

(𝑉 , 𝐸, 𝑎𝑟 , 𝑙𝑖𝑛𝑘)

in which the 𝑎𝑟 is a mapping of nodes to ordinal numbers (𝑎𝑟 ∶ 𝑉 → 𝑜𝑟𝑑𝑖𝑛𝑎𝑙),
and 𝑙𝑖𝑛𝑘 assigns each port to an edge in 𝐸 (𝑙𝑖𝑛𝑘 ∶ 𝑃𝑉 → 𝐸) (Fig. 5.4) .

We describe VM-vTPM association using a link graph later on. Another
typical interaction in a virtualization system is controlling or configuring in
the sense that one element configures another one, e.g. launching or deleting
virtual machines.

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 116

v2v3
e1

e3
v1e2

v4 v5

v6

Fig. 5.4 A hypergraph with nodes {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} and edges 𝐸 = {𝑒1, 𝑒2, 𝑒3}.
Nodes are circles, ports are blobs, and an edge links ports.

Placing

We use a place graph to express Fig. 5.3 more formally and using the same nodes
as before. This gives us a bigraph with nodes 𝑉 and edges 𝐸 has a hypergraph
(𝑉 , 𝐸) and a superimposed forest with nodes 𝑉 [93]. Our representation of a
virtualized system naturally resembles a parent-child relationship where some
elements supervise others. Including a mapping over nodes 𝑣 ∈ 𝑉 in our
hypergraph which allow us to express parent-child relationships.

Definition 4 (Place Graph). The graph of Fig. 5.3 is a hierarchical tree of vertices
and a parent mapping. 𝑉 is the set of nodes and 𝑝𝑟𝑛𝑡 ∶ 𝑉 → 𝑉 is the parent
map and defines the nested place structure. The parent map is acyclic (i.e., ∀𝑘 >

0, 𝑣 ∈ 𝑉 , 𝑝𝑟𝑛𝑡
𝑘
(𝑣) ≠ 𝑣).

With the superimposed forest and parent mapping from 𝑝𝑟𝑛𝑡 ∶ 𝑉 → 𝑉 we
make our hypergraph into a bigraph. Consequently, the 5-tuple

(𝑉 , 𝐸, 𝑎𝑟 , 𝑙𝑖𝑛𝑘, 𝑝𝑟𝑛𝑡)

describes our bigraphs alone and without interfaces.
Continuing the example in Fig. 5.4, we superimpose a place graph in Fig 5.5.

The resulting bigraph allows nodes to be placed and linked independently and
freely. However, we need a way to make more precise definitions for the kinds
of system we wish to model. Indeed, components of a virtualization system
can not be nested arbitrarily and not all nodes may be linked or be part of
interactions.

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 117

v2 v3

v1

v4

v5

v6

Fig. 5.5 A forest over nodes {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} defined using a parent mapping
𝑝𝑟𝑛𝑡𝑉 (𝑣 ∈ 𝑉).

Controls

The nodes of a bigraph are of different kinds and they contribute differently to its
dynamics. To each node in a bigraph is assigned a control to express properties
of its kind. Each model may define different controls, specified—together with
arities—in a signature such as

 = {X ∶ 𝑛}

which states that nodes of a kind X have 𝑛 links and so on. Controls serve a
purpose similar to a type system by defining the arity for kinds of nodes. The set
of controls is referred to as a bigraphs signature. Consequently, in any bigraph
with a control , the arity of a node is the arity of its control. Bigraphs with
controls are written as

(𝑉 , 𝐸, 𝑐𝑡𝑟𝑙, 𝑙𝑖𝑛𝑘, 𝑝𝑟𝑛𝑡)

where 𝑎𝑟 has been replaced by the now appropriate 𝑐𝑡𝑟𝑙 for each node. To
model our virtualization system, we might simply say that nodes of the vTPM
kind have exactly one link (to a VM). We might say the same about a VM
which also has only one link (to a vTPM). Stating only those controls (VS =

{vTPM ∶ 1,VM ∶ 1}) lets us constrain our model to only consider interactions
like VM-vTPM association.

Interfaces

A bigraph has interfaces which define its use as a building block to make larger
bigraphs from smaller ones. Interfaces are defined independently for the link-
and place graph. Interfaces are separated into inner and outer faces allowing

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 118

composition of bigraphs in an intuitive way: if the outer faces of a bigraphmatch
the inner names of another, the graphs may be connected at these vertices.
All interfaces take the form 𝐼 = ⟨𝑛, 𝑋⟩. If 𝑋 = ∅ we say 𝐼 = 𝑛, if 𝑛 = 0 we say
𝐼 = 𝑋 , or 𝐼 = 𝑥 if 𝑋 = {𝑥}. If 𝑛 = 1 the interface is said to be prime. The empty
interface 𝜖 = ⟨0,∅⟩ is called the origin of a bigraph [93].
Bigraphs can be joined either by nesting or by linking. Linking simply means
to connect the inner names of some host or contextual bigraph with the outer
names of the bigraph which we would like to compose. E.g., if a host graph 𝐻

has inner names {𝑥, 𝑦} and graph 𝐹 has {𝑥, 𝑦} as its inner names, then we may
join the link graphs of 𝐻 and 𝐹 at {𝑥, 𝑦}.

The interfaces of a place graph are referred to as sites (or holes) and regions
(or roots) for it’s inner and outer face, respectively. Sites and roots are devices to
define composition by nesting in a place graph. The abstraction is quite intuitive
in that sites act as holes for nodes. Given that each node without another node
as parent must be a root, we still need a way to express where this root node
can be placed. To do so, we explicitly give each such node a virtual root node
𝑚, (𝑚, 𝑣). The set of roots and the set of nodes are disjoint. The counterpart
to the virtual root is the site. Nodes may or may not have a site, i.e. a point
at which we can add another graph. Simply put, graphs may be joined at the
roots and sites by plugging the roots of one graph into the sites of another. The
sites are the inner face of a place graph. As an example, we could describe the
forest in Fig. 5.5 as a place graph which has exactly two roots, the root of 𝑣1
and the root of 𝑣2, and offers no sites at which we could add more nodes (or a
graph). Furthermore, the links according to Fig. 5.4 are all closed, so there are
no inner names at which we could join other nodes (or a graph). We write this
as 𝜖 → ⟨2,∅⟩.

Composition

When treated categorically, bigraphs are simply arrows and interfaces are corre-
sponding objects in a symmetric (partial) monoidal category (spm-category) [93].
As a result, the composition of bigraphs is definable in terms of the composition

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 119

of arrows in the category. Elements of the virtualization system are the arrows
and their interfaces are objects.

We distinguish between composition by nesting and composition by juxta-
position. If we want to express nesting, we use a . (dot). E.g. to express Fig 5.5
we can write 𝑣5.𝑣6 to express that 𝑣6 is nested in 𝑣5.

If we want to express that two nodes are juxtaposed we write | between
them. We express the first tree in the same figure as 𝑣1.(𝑣2 | 𝑣3.𝑣4). By using ||

to indicate different roots, we can express the entire forest as 𝑣1.(...) || 𝑣5.𝑣6.
In short, the composition of two bigraphs is defined by matching the inner

interface of the first graph with the outer interface of the second. For nesting,
this means (a) filling the sites of the first graph (holes) with regions of the
second graph and (b) merging the inner names of the first graph with the outer
names of the second graph.

The virtualization system can be described in terms of elements. We can
describe their interfaces independently for each element and then composing
them as individual bigraphs with one node each. We will simply treat the virtu-
alization system as a contextual graph since we are not concerned with different
kinds of virtualization systems. For simplicity, we say that each virtualization
system has exactly one root and offers 𝑠𝑖𝑡𝑒𝑠 for a number of vTPMs and VMs.
Virtualization systems can be juxtaposed. VMs and vTPMs have exactly one
link 𝑥 which allows them to be joined. VMs offer sites for an OS whereas vTPMs
offer no sites for nesting.

Semantics

Since we aim to develop a model with which we can reason about simple
properties of a system, we need to attach some meaning to the graphical model
we have introduced. Most importantly, we will be likening the place graph and
nesting with an implicit dependence, i.e. a child node depends on parent, and
the link graph with an optional dependence, e.g. one element might control
another. The integration of bigraphs with logical frameworks is studied in depth
and in relation to spatial and separation logic in [29]. Our reasoning follows the
naive notion that a child depends on a parent—any assumptions we make about

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 120

a node directly depend on the assumptions we make about the parent of that
node. This dynamic can be given as a set of inference rules for introduction

𝑃 (𝑦) 𝑃 (𝑥) (𝑥.𝑦)

-Dot − I

𝑃 (𝑥.𝑦)

and elimination, respectively:

𝑃 (𝑥.𝑦)
-Dot − E1

𝑃 (𝑥)

𝑃 (𝑥.𝑦)
-Dot − E2

𝑃 (𝑦)

𝑃 (𝑥.𝑦)
-Dot − E3

𝑥.𝑦

The transitivity of (.) dot composition is studied and detailed in [93]. Our
reasoning over properties follows this exactly and we can intuitively explain
the transitivity of our Dot rules above.

In addition to nesting (Dot-Rule), we have a controls/configures relation be-
tween two nodes which is derived from the link graph and therefore orthogonal
to nesting. In short, the controls/configures relationship extends the nodes which
we have to consider in our reasoning. Whenever we naturally have to consider
parent nodes of a node of interest, we can expand this set of nodes by declaring
nodes which controls the node of interest. The reasoning is no different in the
sense that any property we want to show about a node, we also have to show
in the node that configures it. The configures relationship is an edge in the
hypergraph and requires that if 𝑥 configures 𝑦 (𝑥, 𝑦 ∈ 𝑉) then, in order to prove
a property of 𝑦, we need to also prove the property in 𝑥 . In other words, if 𝑥
configures 𝑦, we can conclude 𝑃 (𝑦) only if we can prove 𝑃 for 𝑥 and 𝑦. The
rules for this kind of composition allow similar inferences to the Dot − E/I rules
above. However, 𝑥 and 𝑦 are not necessarily in a parent-child relationship. In
short, if we wish to prove a property about 𝑃 (𝑦) with the knowledge that 𝑦 is
configured by 𝑥 , 𝑃 (𝑥) and 𝑃 (𝑦) need to agree as the proof of 𝑃 (𝑦) depends on
the result on a proof of 𝑃 (𝑥).

5.3.3 Trust Model

In this section, we construct a trust model which will bring our formal discussion
as close as possible to actual reasoning about trusted systems. To analyze
Goldeneye, wemodel different situations using predicate logic with our graphical
model as context. The graphical model describes the system of interest and

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 121

Table 5.1 Trusted Computing Predicates.

Predicate Meaning
TrustedA(a) Agent 𝑎 is trusted
SaysSecure(𝑎, 𝑒) 𝑎 says element 𝑒 is secure
TrustedVS(𝑣𝑠) 𝑣𝑠 is trusted
On(𝑡𝑝𝑚,𝑚) TPM 𝑡𝑝𝑚 is on 𝑚

TrustedTPM(𝑡) TPM 𝑡 is trusted
TrustedVTPM(vtpm) vTPM 𝑣𝑇𝑃𝑀 is trusted
Bound(𝑣𝑡𝑝𝑚, 𝑣𝑚) 𝑣𝑇𝑃𝑀 is bound to 𝑣𝑚

SaysBound(𝑣𝑚, 𝑣𝑡𝑝𝑚) 𝑣𝑚 says 𝑣𝑡𝑝𝑚 is bound
TrustedVM(vm) 𝑣𝑚 is trusted

Table 5.2 Trusted System Axioms.

∀𝑎, 𝑒 TrustedA(𝑎) ∧ SaysSecure(𝑎, 𝑒) ⊃ Secure(𝑒)

∀𝑡, 𝑚 On(𝑡, 𝑚) ∧ Secure(𝑚) ⊃ TrustedTPM(𝑚.𝑡)

∀𝑣𝑚, 𝑣𝑡𝑝𝑚 Secure(𝑣𝑚) ∧ SaysBound(𝑣𝑚, 𝑣𝑡𝑝𝑚) ⊃ Bound(𝑣𝑚, 𝑣𝑡𝑝𝑚)

∀𝑣𝑡𝑝𝑚, 𝑣𝑚 Bound(𝑣𝑡𝑝𝑚, 𝑣𝑚) ∧ TrustedVTPM(𝑚.𝑣𝑠.𝑣𝑡𝑝𝑚)

⊃ TrustedVM(𝑚.𝑣𝑠.𝑣𝑚)

∀𝑡, 𝑣𝑠 TrustedTPM(𝑚.𝑡) ⊃ TrustedVS(𝑚.𝑣𝑠)

∀𝑡, 𝑣𝑠, 𝑣𝑡𝑝𝑚 TrustedTPM(𝑚.𝑡) ∧ (𝑚.𝑣𝑠.𝑣𝑡𝑝𝑚) ⊃ 𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝑉 𝑇𝑃𝑀 (𝑚.𝑣𝑠.𝑣𝑡𝑝𝑚)

predicates and axioms describe conventional reasoning strategies for trusted
computing systems. Table 5.1 details the trust model with predicates and general
deductions are given in this Table. Table 5.2 shows axioms of our system.
The axioms allow inferences which follow a natural and mostly conventional
reasoning over trusted computing systems.

We begin our formal modelling process by defining a vulnerable system as
a bigraph. Then we state our assumptions and exercise a reasoning process
about the system by applying accepted axioms to assumptions. This allows us
to conclude that a VM is trusted when the VM should not be trusted—we use
the contradiction to demonstrate the possibility of a Goldeneye attack.

Variant 1: changeing virtual Root of Trust

In the first variant of Goldeneye the adversary changes the virtual root of trust
of a VM by switching between multiple instances of a vTPM. The following

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 122

bigraph describes the system setup:

/𝑥 (𝑣𝑚 ∶ 𝑉𝑀)𝑥 ‖(𝑣𝑡𝑝𝑚1 ∶ 𝑉 𝑇𝑃𝑀)𝑥 ‖(𝑣𝑡𝑝𝑚2 ∶ 𝑉 𝑇𝑃𝑀)𝑥

We have a closed link 𝑥 denoted by /𝑥 among VM and vTPMs after composing
them. We can then compose this graph with a virtualization system as context:

𝑚.𝑡𝑝𝑚|𝑣𝑚𝑚.(□ ∶ 𝑉𝑀 |□ ∶ 𝑉 𝑇𝑃𝑀)

The squares indicate sites and ∶ 𝑉𝑀 to indicate which kind of element it is
for. This effectively encodes the setup of the first variant of a Goldeneye attack.
Next, we encode assumptions about our semi-trusted provider 𝑃 :

1. TrustedA(𝑃)—P is a trusted agent,

2. ∀𝑚, SaysSecure(𝑃,𝑚)—P asserts that machines are secure,

3. (1), (2) ⊃ ∀𝑚.Secure(𝑚),

4. ∀𝑚, 𝑡.On(𝑚, 𝑡) ⊃ TrustedTPM(𝑚.𝑡)

The semi-trusted provider allows us to regard all TPMs involved as trusted.
Then we encode the assumptions about our client as follows:

1. TrustedA(𝐶)—C is a trusted agent,

2. SaysSecure(𝐶, 𝑣𝑚)—C assumes that 𝑣𝑚 is secure,

3. SaysBound(𝑣𝑚, 𝑣𝑡𝑝𝑚1)—Client’s VM says that 𝑣𝑡𝑝𝑚1 is bound

4. (𝑚.𝑣𝑚𝑚.𝑣𝑡𝑝𝑚1𝑥)—vTPM 1 is on 𝑚.𝑣𝑚𝑚

5. (𝑚.𝑣𝑚𝑚.𝑣𝑡𝑝𝑚2𝑥)—vTPM 2 is on 𝑚.𝑣𝑚𝑚

6. (𝑣𝑡𝑝𝑚1𝑥), (𝑣𝑡𝑝𝑚2𝑥) ⊃ ¬Bound(𝑣𝑚, 𝑣𝑡𝑝𝑚1) — VM could be associated to
either 𝑣𝑇𝑃𝑀1 or 𝑣𝑇𝑃𝑀2.

In summary, we assume that the client trusts herself. The client provided
what she believes to be a secure VM. The VM says its bound to a vTPM

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 123

𝑚.𝑣𝑚𝑚.𝑣𝑡𝑝𝑚1. By applying our axioms, we can establish trust in the vir-
tualization system (𝑚.𝑣𝑚𝑚) and 𝑚.𝑣𝑚𝑚.𝑣𝑡𝑝𝑚1. From our trusted vTPM, we
now conclude that our bound virtual machine is trusted as well. The conclusion
is TrustedVM(𝑚.𝑣𝑚𝑚.𝑣𝑚). At the same time, we also know that 𝑣𝑇𝑃𝑀2 exists
with association 𝑥 . This implies that neither 𝑣𝑡𝑝𝑚1 nor 𝑣𝑡𝑝𝑚2 are bound to
𝑣𝑚. Consequently, 𝑚.𝑣𝑚𝑚.𝑣𝑚 is not trusted.

Effectively, we would have to prevent the existence or prove the absence of
more than one vTPM with port x, where x is the VM’s port to which vTPMs
can be attached. We will discuss possible mitigation below.

Scenario 2: changeing physical Root of Trust

In the second variant, the adversary does not use the possibility of more than
one vTPM per VM. Instead, she exploits that we assume the root of trust of the
vTPM to be the root of trust of the VM (Fig. 5.2). We conclude that a particular
VM is trusted based on a chain of trust measurements of a bound virtual TPM on
a different machine. The following bigraph represents the target of the attack:

/𝑥 𝑣𝑚𝑥 ||𝑣𝑇𝑃𝑀𝑥

With two different virtualization systems as a context graph:

𝑚1.𝑣𝑚𝑚1.(□ ∶ 𝑉𝑀 |□ ∶ 𝑉 𝑇𝑃𝑀)||𝑚2.𝑣𝑚𝑚2.(□ ∶ 𝑉𝑀 |□ ∶ 𝑉 𝑇𝑃𝑀)

We adopt the assumptions of our semi-trusted provider 𝑃 and our client 𝐶 as the
verifier but explicitly state that the machines of 𝑣𝑚𝑥 and 𝑣𝑡𝑝𝑚𝑥 are different.
When we apply axioms, again, we conclude that the vTPM 𝑚2.𝑣𝑚𝑚2.𝑣𝑡𝑝𝑚𝑥

is bound to the 𝑣𝑚. TPM 𝑚2.𝑡𝑝𝑚 lets us establish trust in the virtualization
system and consequently, we trust the vTPM. A trusted and bound vTPM lets
us establish trust in the VM.
However, 𝑣𝑚 is not on 𝑚2 and consequently, we can not say anything about it.
In fact, we have to assume that 𝑚1.𝑣𝑚𝑚1 is not trusted and that consequently
the VM is not trusted.

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 124

5.4 Evaluation and Discussion

In this section we will review existing work, show how and why a Goldeneye
attack could succeed, and discuss possible improvements towards the end. To
our knowledge, Berger et al. presented and evaluated the first vTPM imple-
mentation [14]. A secure vTPM migration process and security improvements
are introduced in [34]. Finally, Schear et al. introduce keylime as a cloud key-
management system which involves integrity reporting using virtual TPMs and
so called deep quotes of the infrastructure. We demonstrate our attack for each
proposal by giving with an informal overview and an abstract architecture and
applying our reasoning process.

5.4.1 Goldeneye in Related Work

Virtualizing the TPM [14]

The implementation of the TPM in software presented by Berger et al. presented
in 2006 has evolved and is now used across architectures and platforms. The
vTPM implementation is composed of a vTPM manager and a number of vTPM
instances. Intuitively, each VM is assigned a virtual TPM instance. The vTPM
manager performs functions such as creating vTPM instances and “multiplexing”
requests from VMs to their associated vTPM instances. The architecture of the
solution follows the Xen model by running vTPM extensions in a VM (Fig. 5.6).

Association between vTPM instances and VMs is one of the concerns raised
in their paper. To address this concern, instantiating, migrating, destroying
etc. have all been implemented to require some form of authorization. In short,
unless a command to create or migrate a new vTPM instance is authorized,
it would be blocked. Whoever administrates the system is also allowed to
handle vTPM management. We model the system using three bigraphs: the
virtualization system as the contextual graph for the vTPMs and VMs (Fig. 5.7).

The intention of [14] is that once a VM with vTPM support is launched, a
vTPM instance is created. The VM has 𝑥 as its inner-face and can host arbitrary
apps / processes. The vTPM on the other hand requires a vTPM manager in
its root (we do not explicitly encode this) and has 𝑥 as its outer face. After

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 125

Hypervisor

VM

vTPM Manager

vTPMvTPM

TPM driver

VM

App
App

TPM driver

VM

TPM driver

App
App

TPM device

Fig. 5.6 Architecture of the Xen-based vTPM extension.

machine

tpm hyp

vm1

vmgr

vm­site

root

vtpm­site

vtpm
x

root

vm
x

root

app­site

Fig. 5.7 Bigraphical abstraction of the Xen-based vTPM extension. We model three
separate graphs: the virtualization system and the vTPM extension (left), virtual TPM
instances (top right), and VMs with vTPM support (bottom right).

composing the graphs and joining 𝑉𝑀 and 𝑣𝑇𝑃𝑀 at 𝑥 the link is closed and
a vTPM associated. This process is the same for every other vTPM and VM.
Without further assumptions, we can reduce this scenario to the attack scenario
one. Following the same reasoning, we arrive at the conclusion that we can
establish trust in our VM. However we can not exclude that there can be no
other vTPM instance associated to our VM (𝑥 = {𝑣𝑚𝑥 , 𝑣𝑡𝑝𝑚1𝑥 , 𝑣𝑡𝑝𝑚2𝑥}).

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 126

Hypervisor

VM

vTPM instance

App
App

TPM device

...

m1

Hypervisor

vm­site

vtpm­instance

TPM device

...

m2

Fig. 5.8 Secure vTPM-VM migration setup. The vTPM instance, according to [34] is
running in a VM itself. When migrated, the VM is shutdown and transferred under
encryption from 𝑚1 to 𝑚2, deleted on 𝑚1 and resumed on 𝑚2. We denote this without
discussing the protocol by placing a bigraphical 𝑣𝑚 − 𝑠𝑖𝑡𝑒 on 𝑚2 which may become
inhabited by the target VM.

Secure vTPM-VM Migration [34]

Migrating VMs and the ability to do so relatively freely and at any time is one
of the most distinguishing features of virtual machines compared to operating
systems running on hardware. Performing migration securely is a challenge
and performing migration of the vTPM in a secure and trustworthy manner a
priority. Typically, the cloud provider can be modelled as an agent having more
than two machines at its disposal [34], all equipped with physical TPMs and
virtual TPMs for VMs. Each virtual machine interfaces with the physical TPM
through a software vTPM. [34] assumes that vTPMs do not contain hardware and
hypervisor configuration information—unlike [14]. Instead, this information is
held by the physical TPM and obtained by querying it directly. Vice versa, the
hardware TPM does not include any VM specific information. A perfect setup
for Goldeneye. The setup evaluated by Danev et al. is shown in Fig. 5.8.

The migration protocol dictates that only upon successful attestation, im-
plying that both machines are honest [34], the VM and vTPM are migrated—the
memory image of the selected VM which includes the vTPM is migrated. Ig-
noring the dynamics of this scenario, we express the system proposed as the
following bigraph (Fig. 5.9):

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 127

machine

tpm hyp

dom0 vm­site

root

vtpm
x

root

vm

root

vtpm­site app­site

c

x

Fig. 5.9 The proposed system model of Danev et al. which uses Xen with virtual
machines hosting their own vTPMs. The solution makes no claims about the Xen
specific privileged domain 𝑑𝑜𝑚0 managing the virtualization system (left). We denote
the privilege using the edge 𝑐 = {𝑑𝑜𝑚0, ℎ𝑦𝑝} to state that 𝑑𝑜𝑚0 configures ℎ𝑦𝑝. To
make the vTPM definition compatible with the [34], we denote 𝑥 as being an inner face
of 𝑣𝑇𝑃𝑀 and an outer face of a VM. The composition 𝑣𝑚.𝑣𝑡𝑝𝑚 with the association
{𝑣𝑚, 𝑣𝑡𝑝𝑚} is discussed later on.

The construction in 5.8 and 5.9 allows a straightforward migration pro-
cess [34].

Intuitively, running the vTPM 𝑣𝑡𝑝𝑚 in the VM 𝑣𝑚 while serving as the root
of trust for said VM does not fit into the way we naturally reason about trusted
computing systems. Figure 5.10 allows us to conclude that 𝑣𝑡𝑝𝑚 can only be
isolated from applications but not the VM.

x
vm

root

app­sitevtpm

Fig. 5.10 Assembled vTPM-VM in the system model of [34]. The composition of
𝑣𝑚.𝑣𝑡𝑝𝑚 with the association 𝑥 = {𝑣𝑚, 𝑣𝑡𝑝𝑚} produces a circular argument when
establishing trust.

Using our axioms, we would like to establish trust in a VM, in this case 𝑣𝑚.
As per usual, we trust it when the VM tells us that it is bound to some vTPM.

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 128

We also need to find and establish trust 𝑣𝑡𝑝𝑚 which takes us back to proving
Trusted(𝑚.ℎ𝑦𝑝.𝑣𝑚). Danev et al. explicitly do not include VM information
in a TPM and this prevents us from moving beyond our initial assumption
Secure(𝑉𝑀).

We wanted to show the vulnerability to Goldeneye by proving the usual
contradiction Trusted(𝑣𝑚) ∧ ¬Trusted(𝑣𝑚) but we simply failed to establish
trust in the vTPM. In our model, the presented construction is simply not sound.

Bootstrapping and Maintaining Trust in the Cloud [120]

Schear et al. describe a system which aims to provide a hardware rooted root
of trust for virtualized environments in an infrastructure as a service (IaaS)
environment. In the IaaS environment, a cloud provider offers to run a client’s
workloads, as virtual machines for example, on a provided system. Since the
TPM is proven to be useful in physical infrastructure, the authors aim to port
the functionality to virtualized systems using vTPMs. To this end, keylime is
introduced as an end-to-end solution for both bootstrapping hardware rooted
cryptographic identities for IaaS nodes and for system integrity monitoring of
those nodes via remote attestation. This is supported both on bare metal and
in virtualized environments using virtual TPMs. Such an architecture can in
theory simply provide vTPMs in support of higher level security mechanisms
such as disk encryption and integrity monitoring.

Like previous papers, keylime also assumes a semi-trusted cloud provider
and considers rogue administrators as part of their threat model. Furthermore,
it is assumed that no tampering may occur on physical components, including
the TPM, and that the hypervisor is not compromised. The goal is to detect or
defend against an attacker trying to gain persistent access to a resource. It is
assumed that in order to do so, the attacker would have to perform the kind of
modification which is detected by integrity measurements.

A node in keylime is implemented based on Xen and with extensions of [14].
Consequently, vTPMs are isolated from other guest VMs. The vTPM interface is
TPM compatible, meaning that no modifications in trusted computing enabled
guest operating systems is required. A special command called DeepQuote is

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 129

machine

tpm hyp

dom0

vtpm­
mgr

root

vm

x

app­site

vtpmvtpm­site

Fig. 5.11 IaaS node model of keylime using vTPMs associated to VMs. All vTPMs are
isolated from guest VMs 𝑣𝑚 and hosted on a privileged domain with access to the real
TPM. The hyper-edge 𝑥 denotes the vTPM-VM association and that the vTPM-manager
is responsible for the association {𝑣𝑡𝑝𝑚, 𝑣𝑚}.

added in keylime which will get a quote form the TPM device. A quote of the
TPM which can be linked to the vTPM quote is considered to be a deep quote.
The process of deep quoting in [120] is defined as performing a vTPM quote
first (shallow quote). The hash of a nonce with the output of a shallow quote
is then provided as the nonce for the TPM quote. Discussing the soundness
of this approach for certain use-cases is a different concern which will have
to be addressed separately. However, we use this deliberate two step protocol
with which the vTPM quote seems to be authenticated in our trust model. We
express the node model of keylime as the following bigraph (Fig. 5.11):

One of keylime’s contributions is to form a pool of trusted IaaS nodes via
TPM endorsement key enrollment and continuous attestation. The VM can
be attested using the vTPM and if necessary, the infrastructure below the VM
and vTPM can be attested using a deep-quote. Following our process we would
conclude that a vTPM is bound to the VM. The vTPM is also bound to the other
hypervisor—in fact, the binding of the vTPM to a machine and its TPM is not
useful in this case. By way of a deep quote—as defined in [120]—we learn

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 130

from (𝑚.𝑡𝑝𝑚), the trusted TPM device of a platform 𝑚 that the VS and vTPM
(𝑚.ℎ𝑦𝑝.𝑑𝑜𝑚0.𝑣𝑡𝑝𝑚 −𝑚𝑔𝑟.𝑣𝑡𝑝𝑚) can be trusted. Subsequently, we are able to
conclude that then also (𝑚.ℎ𝑦𝑝.𝑣𝑚) is trusted which was what we set out to
prove. However, there is no guarantee that 𝑚.ℎ𝑦𝑝 is the same for the VM and
the associated vTPM. Without extra assumptions, keylime is vulnerable to a
Goldeneye attack.

5.4.2 Solutions

The Goldeneye attack is possible whenever an attacker can control the asso-
ciation between VM and a virtual TPM. Indeed, our review shows that this
association is at least mentioned and sometimes addressed in solutions in-
volving a vTPM. However, we only see assertions about a strong association.
No mechanism is proposed which would with a degree of certainty assure a
strong association (i) or, perhaps more importantly, enable a verifier to detect
potentially weak or broken associations (ii).

A similar problem partially exists in a bare-metal scenario. It is elaborated
in [105] that without knowing the TPM on a particular machine, an adversary
on that machine can convince a verifier to establish trust in another machine
equipped with another TPM. The association between a TPM and an execution
environment is generally not a problem on a real machine and needs special
consideration on a virtual platform. Consequently, there is no analog concept
which we can simply adopt.

We discuss state-of-the-art trusted computing techniques and how they can
be applied to remedy the problem of a remotely verifiable association.

Trust by default

The most obvious solution to the association problem is to make more assump-
tions or trust the provider’s assertion that VMs and vTPMs are bound. The
problem and possibility of an exploit is known. A standard way to address it
on the provider’s behalf is to acknowledge the problem and make assertions
through some level of validation: it is impossible to change initial associations
and a vTPM would never indicate a root of trust other than the one underlying

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 131

the VM as well.
Pros: Requires no changes to the sate of the art and requires only awareness
of the problem on client and providers’ side. Clients can simply trust that
Goldeneye configurations are not present.
Cons: Virtualization systems in their entirety quickly grow complex and expose
attack surfaces and enable bad configurations. Xen-based solutions today offer
specific tools for listing, attaching, and detaching vTPM instances from Xen
domains. For a verifier, this means that large parts of the infrastructure simply
have to be trusted from the start in order to establish trust in a virtual machine
and virtualization system.

Removing malware

An alternative approach to thwart Goldeneye’s attacks is to remove malware
on a cloud system. With a sure way to run only malware-free cloud nodes,
it wouldn’t matter which virtualization system in particular a VM is running
on—from a narrow security perspective. In our formal model, this would result
in adding the assumption that all components of the virtualization system,
including the vTPM, are already trusted.
Pros: All issues related to security and trust are now deferred to a client’s
VM. As long as this VM is trusted, naturally, the composition of the VM with a
virtualization system is also trusted.
Cons: This approach tends to be circular—the whole point of getting quotes of a
VM or deep quotes of the virtualization system is to check its make, compliance,
and ultimately absence of any malware and to make a trust decision of the
running system.

Removing interfaces

We showed that Goldeneye attacks are thought to be possible since there is
no way for a verifier to check the setup of her virtual platform as soon as the
provider runs it. The easiest way to produce a Goldeneye attack is to change
vTPM instances locally. As outlined earlier, those actions are considered to be
malicious configurations and do not require malware or any other detectable

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 132

software additions.
Pros: Prevents the reconfiguration of VM-vTPM associations while the VM or
the vTPM is running by malicious admins.
Cons: Actions such as attaching and detaching vTPM instances are still needed.
If implemented elsewhere—potentially as part of the hypervisor—will increase
the trusted computing base and negate disaggregation efforts.

Integrity measurements

Various integrity measurement architectures have been proposed to extend a
chain of trust (measurements) from the TPM and a trusted BIOS and boot loader
all the way into operating systems and application space [117, 111, 125, 83].
Similar concepts have been proposed for hypervisors and VMMs [10, 79]. Using
suchmeasurement architectures, we could record running VMs and their images
as well as vTPM software in the physical TPM.
Pros: Integrity measurements of vTPM and VMs in the TPM could help linking
a VM to a hypervisor or VMM. Combined with integrity measurements of the
vTPM software, this would allow us to conclude that an instance of a VM is
executed on a virtualization system running trusted vTPMs.
Cons: Asserting (using measurements) that a virtualization system runs a
certain kind of vTPM, shown via hash of its binary, is helpful but provides little
information as to whether a particular instance is associated to a VM on the
platform. Furthermore, measuring vTPM instances as well as VMs will cause
frequent updates to the TPM’s PCRs. Aside from performance issues, frequent
changes to PCRs make it hard to support TPM-based encryption and binding of
secrets to a platform state.

Recording vTPM-VM Association

A promising solution which would confine adversaries, is to record interactions
with vTPM and vTPM management interfaces outside of the normal operation.
An example would be to allow changes to the vTPM association but to record
them before applying those changes. This would prevent an adversary from
switching between local instances, or routing vTPM commands to another vTPM

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 133

instance on another machine using known channels. Interface access and issued
commands can be extended into TPM and vTPM PCRs to record and signal
the interference. Pros: Implementing this can be straightforward by extending
the vTPM implementation and manager at the interfaces. Supporting protocols
and TPM policies could react to such changes by making keys for storage
and attestation keys unavailable. Cons: This approach needs assumptions
about the vTPM implementation on a virtualization system. Asserting that
an implementation will record adversary interference and concluding that—
unless reported—there can be no interference requires that we fully trust the
implementation in the first place (comparable to “trust by default” in 5.4.2).

So far, we have viewed vTPMs as processes running alongside other vTPMs
in an environment controlled by the vTPM manager (Fig. 5.7). We will now
discuss architectural solutions which change how vTPMs are implemented on
a virtualization system.

Unikernel vTPMs

Disaggregation is a core concept in the development of Xen[12] and comparable
in philosophy to microkernelification of systems [74]. The same principles can
be applied to implementing vTPMs. Currently, vTPMs are implemented as
applications / processes which run on top of an OS. Unikernels [110] provide
the necessary interfaces between applications and real hardware without the
need of a complete OS. Instead, unikernels allow us to run applications with
minimal overhead directly on a physical or virtual machine. Each vTPM in Xen
is running on a small guest operating system as a virtual machine or domain. All
vTPM domains are controlled by a vTPMmanager in a privileged domain which
supervises VM-vTPM communication. By excluding the vTPM management, its
code base, and interfaces, we could achieve a design which practically involves
only vTPMs and associated VMs.
Pros: Using unikernels would allow the implementation of vTPMs as stan-
dalone components. With the association deferred to the hypervisor, this would
significantly reduce the interfaces and amount of code that is part of the trusted
computing base in our vTPM design.

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 134

Cons: We would have to implement the association as part of the hypervisor or
involve a privileged domain to handle association for us. Further, migration in
such a design is not as straightforward as in [34] and would require migrating
vTPM and VM separately.

vTPM as part of VM abstraction

When we discussed possible vTPM architectures, we have so far only considered
having vTPMs as hosted processes. Alternatively, we could also include vTPM
functionality in a hypervisor or at least provide a way to save and restore vTPM
states per VM as part of the virtual machine control structure.
Pros: We effectively reduce the trusted computing base of the vTPM and place
the responsibility of associating and maintaining the association between VM’s
and vTPMs in the hypervisor. This limits the interfaces to the vTPM and the
possibilities for attackers to make changes.
Cons: Putting vTPM code and functionality in the hypervisor would obviously
contradict the design philosophy of disaggregation. Furthermore, vTPMs are
essentially VM controlled, we would provide clients with a window to the
hypervisor through vTPM commands. Tools limiting resources of VMs would
not be able to also protect hypervisors if they executed vTPM commands on a
client’s behalf.

Secure execution environment for vTPMs

The default solution today is to run vTPMs as processes. For KVM/Qemu based
solutions, those would be processes implementing the back-end of a Linux
vTPM device and on Xen it would be vTPM processes as in [14, 120]. Running a
vTPM in a secure execution environment is the next step to reducing the vTPM’s
trusted computing base (TCB). Separating the vTPM’s TCB from the untrusted
virtualization system would allow clients to use vTPMs even if the virtualization
system is not trusted. Examples of secure execution environments, i.e., isolated
from the VS, include Intel’s Software Guard Extensions and MIT’s Sanctum [30]
as well as trusted execution environments (TEEs). Environments which are
isolated from the VS also include code which runs in system management mode

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 135

(SMM), or generally, closer to what would be considered firmware of a machine.
Pros: The trusted computing base of the vTPM would be independent from the
VS and comparatively minimal. Furthermore, the attestation and root of trust
of such a solution could be independent from a TPM and would therefore scale
better than deep quotes involving TPMs.
Cons: While vTPMs are architecturally isolated from the virtualization system,
we still rely on the VS to make the connections between VMs and the vTPMs.
Furthermore, since vTPMs and VMs no longer have a shared trusted computing
base, vTPMs would have to explicitly include the VMs TCB as well. Generally,
we found that changing the trusted computing base of vTPM and VM alone
does not sufficiently address VM-vTPM association as well.

Hardware assisted vTPMs

A native solution would to integrate vTPM functionality as part of the machine
architecture and machine virtualization support. Such support would effectively
extend a physical TPM, often implemented as part of firmware, to have native
support for virtual machines. Such a solution would effectively provide a TPM
with a shared context for the entire machine and an individual context for each
VM to capture state information. In such a case, the virtualization system would
only be entrusted with the setup of virtual machines and would delegate vTPM
allocation and association to the hardware.
Pros: This would allow us to set up VMs in the hypervisor and with added
hardware support we could use a vTPM with a trust model similar to the real
TPM. The physical platform alone would be responsible for pointing vTPMs to
the relevant TPM PCRs when establishing trust in a virtualization system.
Cons: Requires by far the most significant changes in hardware and implemen-
tation. The TPM itself is not designed to context switch. With TPM 2.0 some
of this could be emulated but the context switching alone would cause severe
performance issues with currently available TPM devices.

CHAPTER 5. BOOTSTRAPPING TRUST IN A VIRTUAL PLATFORM 136

5.5 Summary

Creating a “trusted” virtualized platform is necessary for a variety of secure
cloud computing scenarios. Ideally, we should be able to use secure hardware
such as the TPM to bootstrap trust in a virtualization system and utilize a
virtual TPM as a root of trust for a virtual machine. Our formal model reveals
that the process of extending trust from the TPM all the way up into a VM is
vulnerable to a Goldeneye attack. The Goldeneye attack emphasizes the impor-
tance of a trusted association between VM and vTPM. The association between
a system and its root of trust is typically not considered on a real machine
but we emphasize that it needs special considerations in case of a VM and a
vTPM. We demonstrated attack vectors in recent papers and proposed solutions
which could be implemented today. Currently, we rely on assuming an invari-
ant about the association between VMs and vTPMs. We suggest and discuss
several solutions including constraining interfaces, changes to measurement
architectures, and vTPM architectures. A clean solution might be to provide
architectural support for roots of trust for virtual machines. In future work,
we will discuss cryptographic approaches and explore some these options in
depth. The combination of bigraphs with a trust model was useful in modelling
trusted virtual platforms structurally. We expect interesting results when we
add dynamics and transitions to our trust model in the future.

Chapter 6

Discussion & Future Work

The challenge of secure cloud computing has helped motivate this thesis and
many other works. What sets this thesis clearly apart from other efforts is
its focus on TCG-based trusted computing technologies which include effec-
tive tools for trust establishment, software integrity, and data confidentiality.
The close relation with practical trusted computing technologies is in fact a
key feature of this thesis. Many of its contributions align well with Trusted
Computing Group (TCG) efforts and have already informed them in various
ways. The synergy between model-driven, theoretical contributions and TCG
specifications promises widespread adoption and ultimately improvements to
real-world systems.

The following sections present a discussion of contributions towards a Vir-
tual Trusted Platform in Section 6.1 based on the goals outlined in Section 2.4.2.
This chapter concludes with directions for further research and development in
Section 6.2.

The discussion in Section 6.1.1 as well as directions for future work related
to the virtual platform in particular are part of a prepared article on A Modern
Virtual Trusted Platform [81].

137

CHAPTER 6. DISCUSSION & FUTURE WORK 138

6.1 Discussion

A number of the designs, solutions, and proposals of this work are based on
domain specific analysis, abstraction, and models which ensured a degree of
generality and allowed for big leaps towards a modern virtual platform. The
relation between this thesis and real-world TCG-technologies also comes with
responsibilities.

On one hand, practical aspects of proposed solutions and the progress made
in this work must be put into perspective. The question “Can we specify and
build a virtual trusted platform based on the results of this thesis?” guides
the discussion on achieved goals and features of a potential implementation in
Section 6.1.1.

On the other hand, the models and abstractions in this thesis are up for
debate and such theoretical aspects are compared to other work with a similar
focus in Section 6.1.2.

The following section presents a detailed discussion of expectations, contri-
bution, and a judgement for each of the virtual platform goals in Section 2.4.2.

6.1.1 Contribution to Virtual Trusted Platform

In this section, the thesis will be discussed based on the goals and challenges
introduced in Section 2.4.2. The discussion is started with the challenges for an
urgently needed modern virtual platform specification. The remainder of this
section discusses legacy goals [56] which are still relevant today.

The goals below concern a modern Virtual Trusted Platform specification
and are discussed in the following section:

1. Document a high-level architecture and system model.

2. Include operating system level virtualization in the architecture.

3. Address integrity of the virtual platform and its components.

4. Detail how a virtual platform can be rooted in a physical platform and its
roots of trust.

CHAPTER 6. DISCUSSION & FUTURE WORK 139

5. Provide interfaces for existing specifications and protection profiles.

The fulfillment of these goals is systematically evaluated below, where for
each goal the expectations, contributions, and judgments are presented.

In summary, this thesis has contributed significantly to four out of five
major goals towards defining and specifying a modern Virtual Trusted Plat-
form. A key contribution is the inclusion of containers in both standard- and
hybrid-modes without nesting virtual platforms or vTPMs. Furthermore, the
model driven approach of this thesis has led to a functional high-level architec-
ture definition which provides interfaces to other standards, specification, and
research. A key goal which has not sufficiently been addressed are a virtual
platform’s roots of trust and how virtual platforms can be rooted in or bound
to physical ones.

1. High-level Architectural Model

The first goal is to produce virtualization system model which can be used to
express different Virtual Trusted Platform architectures. Sufficiently high-level
models should include both virtual machines and containers and should avoid
vendor and implementation specific details.

Chapter 3 makes only minor contributions towards this goal and presents
only a very informal model. Historically, these models have not led to much
success in [56] and often relied on hidden details and assumptions which made
specifications hard to comprehend and adopt. The first contribution towards
comprehensively modeling a Virtual Trusted Platform is presented in chapter 4.
The chapter focus on a formalization of certain system components as well as
virtual environments. A byproduct of this is a model which assumed that the
components had an associated virtual TPM available, i.e. a virtual platform, and
that during the operation, software in the virtual environment could only access
it using its special interface. This approach is a likely candidate for describing a
root of trust for measurements (RTM) for containerized systems. Documenting
and modeling a high-level architectural view is also a major topic in Chapter 5.
The model aims to explain the overall architecture in terms of its components
and their interfaces. This allows users of the model to compose arbitrarily

CHAPTER 6. DISCUSSION & FUTURE WORK 140

complex virtual systems which is a unique feature. The modeling is based on
Milner’s idea of Bigraphs [93] and the components are drawn from standards
and protection profiles for virtualization systems [56, 102]. This leads to an
expandable and functional model with concrete foundations. This approach is
also a likely candidate for an update to the virtual platform specification.

The goal is achieved. The thesis has provided an informal overview of
the Virtual Trusted Platform as defined in [56, 79]. A formal model is given
which supports integrity measurement architecture and RTM design. Lastly, the
bigraphical model is the first attempt at formalizing a functional model which
can be used to abstract usually complex virtualization systems.

2. Including OS-level Virtualization

Modern virtualization architectures include OS-level virtualization. The integra-
tion of containers into a virtual platform architecture including a root of trust for
measurement and chain of trust measurement design which supports containers
is a pressing task. Containers often run on virtual infrastructure and hybrid
architectures, e.g. containers on top of virtual machines, have several benefits
which include better isolation capabilities in the sense of security, performance,
and fault tolerance. Not considering hybrid virtualization constructions would
severely limit the usefulness of any work in the future.

This thesis makes a major contribution which directly aim at supporting
hybrid architectures. The first and perhaps most significant contribution is
the design of an integrity measurement architecture which naturally supports
containers. The work presented in Chapter 4 suggests using a single vTPM in
the virtual platform on which the container OS and containers are running. This
effectively turns the design of EIMA into the root of trust for measurements
(RTM) for containers. Using a single virtual platform for multiple containers is a
deliberate design choice which improves a vTPM’s isolation from containerized
apps and avoids nesting virtual platforms entirely. By using one vTPM per
container OS, supporting containers is a matter of suitable integrity measure-
ment architectures while the general virtual trusted platform model for virtual
machines remains unaffected. Thus, the design of EIMA as a RTM for containers

CHAPTER 6. DISCUSSION & FUTURE WORK 141

represents a solution which inherently supports hybrid virtualization and avoids
complex matters of nested virtual platforms. The goal is achieved. Standard
and hybrid virtualization architectures are addressed with a major contribution.
However, vendors are also proposing an implementation which assigns a virtual
platform to each container. Such solutions reduce the isolation between vTPMs
and virtual environments and introduce the issue of nesting virtual platforms
which this thesis does not address.

3. Integrity of a Virtual Platform

The binding between components of the trusted platform on a physical machine
is typically a manufacturing problem. Not all platforms are manufactured to the
same standard. A number of attacks target the integrity of the physical platform
in order to break security tools like Microsoft’s BitLocker which relies on the
assumption that the TPM is fixed to a platform. Furthermore, if an attacker
is able to replace or interdict the CRTM, which links the bootstrapped system
with the platform, arbitrary faux system measurements can be given to the
TPM. On a hardware level, solutions range from physical solutions (e.g., glue
on the low end) to cryptographic solutions which authenticate or encrypt TPM
commands on a platform level. However, today it is unclear how to solve such
a problem with generality and in a way that allows integrity enforcement and
verification for a Virtual Trusted Platform.

The thesis makes major contributions towards this goal. In fact, the problem
is first discovered and formalized within this thesis. The problem is brought to
attention with theGoldeneye attack which highlights the importance of integrity
between virtual platform components. Following the precise problem definition,
potential solutions for a better virtual platform are presented in Section 5.4.2.
The solutions include a wide variety of options which should address the attack
on various platforms and virtualization systems.

The goal is achieved. Without the contributions of this thesis, this problem
would have likely been sidelined as previously in [56, 120]. The attack is
demonstrated and solutions are proposed. The solutions are not yet formalized

CHAPTER 6. DISCUSSION & FUTURE WORK 142

and the model needs to be extended to include some of the solutions in order to
be standardized further.

4. Virtual Platform Roots of Trust

Requirements for binding a Virtual Trusted Platform to physical roots of trust
is a crucial step when a trusted platform is to be virtualized. A virtual platform
can be constructed on any platform and without directly virtualizing trusted
hardware. Such constructions are common in cloud use-cases where virtualizing
secure hardware is not the goal but providing a virtual alternative is. TCG
applications however, are centered around the notion of a physical platform
and in those cases a Virtual Trusted Platform which is detached from a physical
one is not acceptable.

Achieving this goal not been an issue of this thesis. The ability to bind a
virtual platform to a physical can offer security benefits and would prevent
attackers in Chapter 5 from running virtual machines or containers on cor-
rupted hardware. Vendors and virtual platform operators also have interest
as they would be able to sell virtual instances to clients and at the same time
prevent cloning and running instances on excluded hardware. The model in
Chapter 5 allows expressing this problem with some some refinement. The
refinement would have to address how virtual platform credentials can be bound
or restricted to a physical platform in particular.

Not achieved: Achieving this goal is deeply related to research into vir-
tualizing the TPM [14] (e.g., as a means for device/platform identification, as
a root of trust for reporting (RTR), and as a root of trust for storage (RTS)).
Solving this goal is important and may lead to improved solutions which allows
the protection of virtual platform credentials by using the trusted platform.
Directions towards achieving this goal are given in Section 6.2 as future work.

5. Interface With Related Specifications

As mentioned in the introduction, constructing a virtual trusted platform is
unlikely going to be completed in a single work. Instead, utilizing a variety
of existing and ongoing research as well as commodity systems seem to be

CHAPTER 6. DISCUSSION & FUTURE WORK 143

preferable for both industry and academia. For this reason, contributions with a
virtual trusted platform as their goal must provide interfaces to existing systems,
standards, and research. This is an important requirement for this thesis which
aims to abstract commodity systems in order to analyze and design solutions
towards a virtual platform.

The work presented in this thesis is largely based on standardization efforts
and commodity systems supported by both industry and academia. Specifically,
Chapter 3 analyzes a high level architecture for trusted cloud computing [1]
which uses TCG primitives. The discussed remote attestation protocols which
are meant to provide trust information about a virtualization system and vir-
tual environments are taken from earlier standardization proposals and prior
work [79]. The primitives (i.e., TPM and vTPM) are based on relevant TCG
specifications [64, 57]. Furthermore, the principles for remote attestation in
virtual environments are refinements of [28] and [79] which also resulted from
discussions with standardization bodies and industry partners. The enhanced
integrity measurement architecture (EIMA) provides both formal and practical
interfaces. From a practical perspective, the model clearly represents a variety
of popular container technologies and the TPM model is essentially a simplified
TPM with only platform configuration registers [64, 57]. The system provides
insights for OS-level isolation techniques in general and relies only on a sub-
set of TPM functionality. Consequently, the contributions can be applied to a
variety of systems and extended in many ways. The formal aspects allow the
adoption of a large body of existing and ongoing research by such as [36, 69]. Fi-
nally, the model used in Section 5.2 is derived directly from prior work [56] and
current standards and protection profiles [102]. Chapter 5 provides interfaces
between components and allows users of the model to attach further security
requirements for trusted systems to each component.

The goal is achieved. The models of Chapters 4 and 5 include standardized
components which are compatible with definitions and security requirements of
protection profiles such as those of the National Information Assurance Partner-
ship (NIAP) Common Criteria Evaluation and Validation Scheme (CCEVS) [102].
Despite sharing some of the same functional components, mapping the contri-
butions of this thesis to systems defined by other standards is still not straight-

CHAPTER 6. DISCUSSION & FUTURE WORK 144

forward. Related documents which are either published or under review often
define artificial system boundaries, parties, and use-cases which may add signif-
icant complexity. Addressing certain domain specific models is a task for future
research.

The following goals and challenges are shared with existing specifications
and still very relevant:

6 Discuss responsibilities and potential issues of components of a virtual-
ization system.

7 Minimize change to systems.

8 Provide support for the migration of virtual platforms.

In summary, the two remaining goals for a virtual platform specification
are achieved but migration is still an open issue. Goal 6 is achieved in part
by our inclusion of containers with EIMA (Section 4.3) and the system model
in Section 5.2. Changes to systems are also minimal as EIMA and UCAS (Sec-
tion 3.4) are software solutions designed to work with commodity hardware.
The integrity of a virtual platform can be improved and enforced in various
ways (Section 5.4). Migration is still an open issue and the process very nuanced
and not standardized itself. Addressing migration of a virtual platform is part
of the future work.

6. Discuss Issues and Responsibilities of Virtualization System Compo-
nents

The components of the virtualization system are the essential functional com-
ponents which provide virtual environments as either virtual machines or
containers. The fulfillment of this goal is related to documenting a high-level
architecture in goal 1. One of the key features which the virtualization sys-
tem must provide is isolation. Traditionally, isolation or managing access to
resources is the responsibility of hypervisors and virtual machine management.
However, in recent years hypervisors have benefited from added hardware
support which shifted functionality and responsibilities related to isolation to

CHAPTER 6. DISCUSSION & FUTURE WORK 145

the hardware. A clear description of each component and its support can be
helpful to indicate where implementations need to pay attention with regards
to security. Clearly, moving functionality away from a mutable software com-
ponent to firmware or even hardware can have an effect on the trust model and
the amount of trust which must be placed into certain components.

Chapter 5 makes the biggest contributions towards the goal in this thesis.
The model of a virtualization system presented is meant to provide an interface
to the contributions of other works. The interfaces can help to integrate the
focus on trust and trust establishment with efforts of systems and security
communities. Implementing a general purpose, secure, and trusted system
will require the adoption of many approaches and associated standards. The
research presented in this thesis is meant to be translatable and applicable to a
variety of systems by being largely driven by standard models.

This goal is seen as achieved. The virtualization system components are
at some point discussed in nearly every part of this thesis. With its strong focus
on trust and trusted computing, the thesis lacks some of the details of works
on systems engineering. However, the contributions remain highly compatible.
The role of virtualization system components in this thesis is often purposefully
reduced to providers of isolation as a security primitive. A more complete
model and formalization, i.e. a formalization of both functional and security
properties in one model, might be an interesting academic exercise but is at risk
of offering only limited practical insights beyond confirming common isolation
assumptions [100].

7. Minimize Changes to Components

Trusted Computing systems as of today are largely built around standardized
protocols and interfaces. The implementation of protocols and interfaces cannot
be changed if any proposed solution intends to remain compatible with a large
amount of commodity systems. In recent years, TCG has focused on publishing
core specifications while extensions are published separately. Compatibility
with core specifications is essential but extensions are so well established that
they are closer to mandatory than optional additions. In this thesis only two

CHAPTER 6. DISCUSSION & FUTURE WORK 146

things are essential: core TPM specifications and extensions aimed at both PC
client hosts and guest systems.

The work presented in this thesis requires several changes to Trusted Com-
puting technologies. However, none of these changes affect established inter-
faces or protocols. For example, the vTPM proposed in Chapter 4 might need
some additional registers which can be added on a physical TPM 2.0 device by
using parts of the available storage [57]. The remote attestation protocol sup-
ported by the enhanced integrity measurement architecture remains unaffected
and compatible with current standardization efforts. The changes suggested in
Chapter 5 are related to system or integrity measurement architectures which
are not standardized and new security features added regularly. The standard-
ized components are modeled as primitives or fixed components. Consequently,
the trusted platform, the TPM specification, and currently used attestation
protocols remain unaffected.

This goal is seen as achieved. The thesis certainly requires change and
sometimes even mandates changes for the benefit of increased security and
trust. A good example for this is the inclusion of EIMA in container operating
systems (Section 4.3) or additional measures to improve on a virtual platform’s
integrity (Section 5.4.2). Otherwise, only changes to configurations (e.g., adding
registers and including them in an attestation protocol) are required while
operation remains unaffected [78].

8. Migrating a Trusted Virtual Platform

Migration is a key feature of virtualized systems. The ability to run them from
backups, clone them if needed, and perform emergency recovery procedures
which results in high portability, resilience, and availability. Virtual platforms
must support at least some kind of migration between different physical plat-
forms. Unfortunately, migration will have to be solved at a very high-level as
implementations of the procedure vary between virtualization systems, plat-
forms, and operators. A simple way to address migration is to create solutions
which require homogenous platforms and virtualization systems.

CHAPTER 6. DISCUSSION & FUTURE WORK 147

Not achieved: Migration is not a feature of the virtual platform in this
thesis. In fact, this thesis does not make contributions towards migrating virtual
platforms. Related work which is discussed in Section 5.4 targets migration
specifically but also fails to take concerns such as hot-standbys, virtual platform
sleep states, or live migration into account. Migration remains a complex issue
and will have to be addressed in future work.

Lastly, the practical aspects of this thesis are discussed from a functional
perspective. The remaining goals 9-12 (Section 2.4.2) guide the following dis-
cussion and are treated as a set of desirable features which a virtual platform
should possess in order to be useful.

9 Allow software in virtual environments to run unmodified.

10 Allow binding a virtual platform to a physical platform.

11 Allow verifiers to determine security guarantees, assumptions, and trust
model.

12 Provide a way for software in virtual environments to establish trust
in the virtual environment, the virtual platform, and the virtualization
system.

In summary, the goals or desirable features are partially achieved and this
thesis ensures that applications are unaffected and it supports establishing trust
in relevant parts of the virtualization system as well as virtual environments.
Goal 9 is easily achieved as generally no assumptions about applications in a
virtual environment are made. Goal 10 is related to virtualizing the TPM in a
way which would allow restricting virtual platform secrets to certain physical
platforms which this thesis hasn’t addressed. Determining security guarantees
and trust models is complex since inferring or communicating them itself is not
well defined. While this thesis makes contributions, such a feature wouldn’t be
completed based on the work in this thesis alone. However, goal 12 is easily
achieved as trust establishment is a major topic in this thesis.

CHAPTER 6. DISCUSSION & FUTURE WORK 148

9. Allow software to run unmodified in a virtual Environment

The expectation for this feature is that software written to interact with other
trusted systems or trusted computing hardware can also run in a virtual envi-
ronment using a Virtual Trusted Platform. Examples for such software include
system boot code for guest operating systems, integrity measurement architec-
tures, and traditional TPM applications which perform some form of remote
attestation. Trusted computing extensions of commodity software needs to run
unmodified in a virtual environment under an adjusted trust model [56].

The goal is achieved. Software systems running on a virtual platform do
not require any modification in terms of their operation. In fact, the software
systems running on a virtual platform is seen as untrusted and no expectations
are made with regards to the software. However, should the software system
be part of the virtualization system, then the changes might be significant. This
thesis makes no remarks about recurring or nested virtualization where the
virtual environment presented to a client or verifier might be established using
a second virtualization solution. Such nested systems have not been considered,
since in this case a virtual environment would be part of the virtualization
system and the requirements for remote attestation, enhanced modified mea-
surement architecture, and virtual platform association in Chapters 3 to 5 would
apply.

10. Allow Binding Between Virtual Platform and Physical Platform

A number of use-cases for a virtual trusted platform demand that the virtual
platform can be bound to a particular physical one. The binding in this case
is likely targeting a vTPM and a physical TPM which may contain secrets
and credentials associated with their virtual or physical platform. Arguably,
allowing a virtual platform to be instantiated on any physical platform might
also leave the vTPM and its secrets vulnerable [82].

Unfortunately, the meaning of a binding in this context is not well estab-
lished. In a weak sense, binding a vTPM to a physical platform can simply mean
that the vTPM becomes usable on that physical platform. In a much stronger
interpretation, binding a vTPM to a physical platform can mean that the vTPM

CHAPTER 6. DISCUSSION & FUTURE WORK 149

is accessible if and only if it is running on the physical platform it is bound
to. Binding may be taken literally and a vTPM may simply be a frontend for a
physical TPM: The physical TPM holds and protects all secrets and credentials
including those of virtual platforms. The vTPM functionality is then augmented
by the TPM. Credentials and key hierarchies of virtual platforms may be based
on the physical. In such a case, a vTPM’s key hierarchy can be implemented
using a TPM’s key management capabilities [57]. Solutions based on such
virtualized TPM features align with a strong binding interpretation.

A weaker binding interpretation can implemented by encrypting a virtual
platform using a key held by the target particular physical platform. An ef-
ficient solution would involve encrypting root keys of a virtual TPM for a
trusted platform such that secrets can not be decrypted and become available
on unauthorized platforms. Consequently, an unspecified or untrusted physical
platform may be able to run a VM image but it may not be able to decrypt
and use the vTPM as well. This would prevent a number of simple attacks
where corrupt platforms are used to spy on client’s confidential data. However,
once decrypted and in operation, the secrets and security of a virtual platform
depend entirely on the runtime which may be a commodity OS running on a
virtualization system [14].

Either of these approaches would provide some form of binding between
a virtual and a physical platform but with different levels of assurance and
dependencies. The former solution would ensure that virtual platform keys can
never leave the TPM. However, restricting access to virtual platforms based on
the physical platform alone is likely insufficient for weak or strong solutions.
Clearly, secrets and credentials of a virtual platform must also be protected
from untrustworthy run-times (i.e., virtualization and operating systems). Such
a concern makes the contributions of this thesis towards trust establishment
and enforcement very relevant.

The goal is not achieved: Explicitly providing a binding between a virtual
platform and a physical one is not a concern of this thesis. To enable such a
feature, a clearer definition of binding is needed. However, it is apparent that
binding a virtual platform to a physical one will be useful only if the layers in be-
tween, i.e. the virtualization and operating system, are involved. Consequently,

CHAPTER 6. DISCUSSION & FUTURE WORK 150

the contributions of this thesis will play a role for some implementations of this
feature.

11. Verifiers Assess Assumptions, Trust Model, and Security Guaran-
tees

Running applications in virtual environment should among many things also
improve their security. However, it is clear that such benefits may need an ad-
justed trust model and additional assumptions. Allowing verifiers to determine
and assess security guarantees, assumptions, and the trust model of the virtual
trusted platform is important, especially in a distributed setting and during
trust establishment.

This feature can be implemented in two extreme ways. On one hand, static
certificates can be used to establish a chain of trust for each aspect which can
be traced back to hard- and software manufacturers and operators. Such certifi-
cates are used to assert certain facts and properties. On the other hand, trust
establishment strategies such as integrity reporting in combination with com-
prehensive inspection of reported aspect can be used to infer relevant properties.
The use of certificates is of course inherently more scalable in many ways but
also increases the impact which corrupted links in a chain of trust can have. In-
ferring all properties is at least equally problematic as inferring all assumptions,
the trust model, and provided security guarantees from the ground up is not
feasible. A potential solution will likely involve both approaches and find a good
middle ground between certificates for static and trust establishment strate-
gies for dynamic aspects. This thesis contributes to the latter approach with
user-centered attestation and the enhanced integrity measurement architecture
which allow verifiers to establish properties of the software system. However,
the thesis relies on an existing certificate infrastructure which is necessary to
identify legitimate, trusted platforms [105].

Consequently, the goal is only partially achieved. Recording and report-
ing system integrity measurements is certainly a part this feature. But beyond
the software system, defining a suitable certificate infrastructure which extends
existing protocols is an easily overlooked priority.

CHAPTER 6. DISCUSSION & FUTURE WORK 151

12. Establishing Trust in Virtual Environment, Virtual Platform, and
Virtualization System

Providing a way for software in a virtual environment to collect, report, and
make use of relevant trust information of the virtual environment, virtual
platform, and the virtualization system is perhaps the key feature of a virtual
platform. A trusted computing solution to data confidentiality in the cloud
will involve decrypting and working with sensitive data only if the computing
environment is trusted. Sealing data to a trusted software system operating
in a virtual environment adds a clear advantage over potential adversaries in
the same virtual environment. The further application of trusted computing
concepts, e.g., sealing data to a trusted guest OS, still leaves the virtualization
system and its interfaces practically unwitnessed and dangerous. Being able to
record the virtual platform as part of the virtualization system is a natural next
step when further assurances are needed. This feature is extremely relevant
if a solution aims to reduce an adversaries attack surface and limit the impact
which infected systems and malicious administrators can have.

The contributions of Chapter 4 are most significant here. Practically, the
virtual environment (i.e., the container) is linked with the virtualization system
and clients can assess container trust information together with the operating
system and the container engine. Beyond this immediate and practical contri-
bution, the work presented in Chapter 4 also outlines a number of important
security requirements. Once the goal of linking trust measurement chains was
achieved, an important step was to make sure that trust information is also
constrained and revealed only carefully. A real challenge is to provide a way to
record complete but constrained trust information which is relevant to a partic-
ular virtual environment. It was revealed that finding such an approach reduces
the typical brittleness of PCRs and improves on privacy which often isn’t a
primary concern in traditional trusted computing applications. The mentioned
contributions have already improved ongoing standardization work towards a
Virtual Trusted Platform.

This goal is achieved with UCAS and EIMA and both virtual machines
and containers are addressed. The work presented in this thesis even extends

CHAPTER 6. DISCUSSION & FUTURE WORK 152

the feature in order to include cloud setups with multiple mutually distrust-
ing tenants on a system. Previous works are concerned with (functionally)
emulating a trusted platform instead of providing such important security
properties [14, 56, 120] on a virtual platform.

6.1.2 Discussion of Models and Analysis

This thesis develops several models for the design, analysis, and verification of
certain aspects of virtual trusted platforms. In this section, the proposed models
and conducted analyses will be discussed from a theoretical perspective and
compared to related work.

Model for User-Centered Attestation

The analysis which led to the definition of User-Centered Attestation in Chap-
ter 3 is based on our prior work [79] as well as the write-up of Coker et al. [28].
The analysis followed a set of principles of remote attestation which were ex-
tended to include scalability and layer linking. The model which was used in
[79] and Chapter 3 is informal and relies on a conceptual understanding of virtu-
alization systems and accepted trusted computing mechanisms. The presented
analysis is also informal and discusses abstracted properties of implementations
which use common trusted computing and virtualization technologies. When
compared to later work in Chapters 4 and 5, the contributions of Chapter 3
are supported by intuitive reasoning which internalizes a lot of complications.
In fact, the analysis does not allow a deeper reflection on trusted computing
principles which must simply be accepted. Despite this, the informal analysis
has significantly impacted further research undertaken in this thesis. Chapter 3
gives directions on the security properties and design aspects which seem most
important for effective trust establishment on a virtual platform.

LS3: Logic for Secure Stratified Systems

The work presented in Chapter 4 is directly informed and impacted by the con-
clusions in the previous section and the definition of a user-centered attestation
for layered systems. One of the important conclusions of Chapter 3 is that the

CHAPTER 6. DISCUSSION & FUTURE WORK 153

integrity recording mechanism (RTM) itself must be trustworthy in order to
support the attestation of virtual environments and underlying virtualization
layers.

The work in Chapter 4 draws from the successful analysis performed in
[36] which presented a logic for secure systems and its application to trusted
computing. Programs in our system LS3 externalize a lot of important features
such as explicitly creating new threads to execute potentially untrusted code.
This is supported with appropriate operational semantics which express system
internals. The added functionality proved to be useful for modeling existing
container systems and designing new integrity measurement architectures. A
more general formalization of containers and container operating systems was
not available when our work was first published [83] in 2019. Today, efforts
are being made to formalize such containers further on a higher level [68] and
without focus on security and trust.

The work presented in Chapter 4 is best discussed in contrast to the prior
work of Datta et al. in [36] and applications such as [11]. Prior work is based on
a language to model networked code and included only constructs for jumps,
i.e. for threads to execute new bits of code. Jumps are useful and sufficient for
some analyses but they do not allow existing threads to explicitly create new
ones. This is clearly limiting when complex systems are investigated. Threads
can be added but only implicitly, e.g. by external manipulation of the current
configuration. Consequently, adding threads is not the result of an action which
can be discussed later or used to model systems. [36] concludes that a further
analysis of systems using jumps only leads to no new insights which this thesis
can confirm. Furthermore, LS3 makes a radical cut by deliberately removing
primitives for networking and agents. Such primitives have played only a minor
role in prior work and hurt the integrity of the formal system [36, 31]. As a
result, the domain specific language and model in Section 4.2 is more focused on
the actual trusted computing system rather than adapting a logic for protocols
to reason over mostly local system properties.

An important side-effect of externalizing and adding functionality carefully
is that proofs in LS3 can be embedded in existing proofs [36]. Performing the
proofs is nevertheless tedious and a result of LS3 sharing its logic with temporal

CHAPTER 6. DISCUSSION & FUTURE WORK 154

logics [2, 3, 5, 4] and protocol composition logics [35]. A much better alternative
is needed to design and verify complex systems at scale. More practical alterna-
tives to temporal logics could be linear logic or session type approaches [54, 21].
Exchanging the logic behind LS3 with one which is supported by automated
theorem provers has many advantages in terms of rigor and practicality. The
thesis makes no contributions in this aspect. The focus on new actions in the
language and support for system isolation in the operational semantics allowed
this thesis to rapidly design new systems with LS3 while ensuring that designs
can also be verified. A fair judgement would be that this thesis improves on
abstraction and modeling capabilities while it relies on a large background and
formal foundations.

Another concern is LS3’s input language (i.e., the programming interface)
draws from simple constructs of [94]. Similarly, LS3’s operational semantics
are based on process-calculi developed in [94, 91, 92, 42, 43] which represent a
commonway to model transitions in a system for certain actions. In comparison,
LS3’s language definitions are much simpler and only hint at certain types while
a type system is missing entirely. Generally, a sophisticated type system could
be used to further constrain certain actions in LS3, which is expected to simplify
verification efforts in the future.

Despite its focus on expressiveness, LS3 lacks an important aspect: secure
enclaves and trusted execution environments. Trusted execution using “attested
execution secure co-processors” has been investigated and formally abstracted
in [106] using the UC-Framework [22]. The treatment of computations using
secure co-processors is exemplary but the requirements for the trusted environ-
ment in [126, 106, 30, 63] are vastly different from the work in this thesis. In LS3

all software environments are initially treated as untrusted. Lastly, [106] does
not offer a programming interface and does not consider potentially untrusted
or adversary supplied code. In comparison, the work in Chapter 4 aims to prove
a weaker integrity property but does so without relying on the heavy hardware
assumptions of trusted execution environments.

The work by Rowe et al. in [114] presents another line of research which
aims to establish certain trusted computing principles in very general setting.
The formal model which is used to support the arguments helps to formally

CHAPTER 6. DISCUSSION & FUTURE WORK 155

express and prove some intuitive arguments. However, there is no way to
model and evaluate existing systems in any detail. The models proposed in
this thesis are considered superior for this reason. Nevertheless, the general
principles which [114] aims to formally prove are intuitively sound. Prior to this,
[58] have analyzed TPM based protocols using a formal automata model based
on asynchronous product automata to emulate a TPM within an executable
model and have suggested improvements. The result of this was a much more
comprehensive TPM abstraction than the one offered in this thesis. In fact,
this thesis makes little efforts to model the TPM (or a vTPM) closer and uses it
as a primitive for secure systems instead. Another thorough modeling effort
of the TPM is presented in [98] which aims to provide a verifiable reference
implementation of the TPM. In summary, a consequence of treating the TPM as
a primitive is that the TPM design itself remains unaffected in this thesis.

Finally, the verified security kernel seL4 [74] demonstrates the first success-
ful formal verification of a trustworthy micro-kernel operating system. The
rigor with which seL4’s design and verification are treated is unparalleled at
this scale. In fact, the proofs which support seL4’s functional properties out-
weigh the its actual lines of code by several orders of magnitude. Verification
at such a scale has lead to several innovations towards automated verification.
In comparison, the work presented in this thesis follows the idea of formally
verifying designs first and allows dealing with much more abstract states. Con-
sequently, many of the functional properties (e.g., process isolation) of seL4
are taken for granted in the model of LS3. Interestingly, [99] was able to prove
abstract security properties on top of functional correctness proofs which is an
interesting avenue for further research [51, 59]. A similar exploration is missing
in this thesis but is still possible in future work.

Bigraphical Trust Model

The work in Chapter 5 is best compared to prior work by Parno [105]. Parno
makes the simple point that it may be impossible to establish trust in an un-
known and therefore untrusted platform. During the investigation, the paper
concludes that without prior knowledge or additional arrangements anyone

CHAPTER 6. DISCUSSION & FUTURE WORK 156

can be fooled into establishing trust in an untrusted computer. The TPM at that
time did not offer an explicit way to prevent this. The model which is needed to
convey this point is simple and involves only machines (i.e., physical platforms),
TPMs, and agents which may be malicious. The work presented in Section 5.3,
i.e., the formalization of the Goldeneye attack, is only possible if a more complex
virtualization system and the virtual platform are considered. For this reason,
the system model in Section 5.2 adopts several software system components as
building blocks which are drawn from specifications such as [102]. In this model,
abstract components needed enrichment such as recovering their ability to be
composed. This turned a static component definition [102] into a functional
model which can express arbitrarily complex systems (Section 5.3.2). Further-
more, the definition of trusted computing axioms (Table 5.2) and predicates
(Table 5.1) is also more complex when compared to prior work [105]. Combining
bigraphical structures with the predicate calculus in Section 5.3.2 is another
contribution which for the first time allowed reasoning over security properties
in bigraphs. In summary, the model and the analysis of Chapter 5 is much more
sophisticated compared to other works because the targeted systems and the
argument itself is more complex.

However, the solutions proposed in Section 5.4.2 will benefit from proving
them effective using the formal model. Currently, the formal model can only
be used for the analysis of commodity systems and does not have primitive
for some of the proposed techniques (e.g., trusted execution environments).
Lastly, bigraphs are currently studied in the context of category theory. This
thesis had to use the expressiveness of Milner’s bigraphs [93] conservatively
in order to make them immediately useful as a modeling tool. Bigraphs as a
formalism for modeling are applied elsewhere but today the work in Chapter 5
is the first to apply bigraphs in a computer security context. A consequence
of the theoretical work in Section 5.3.2 is that relevant standardization groups
are also considering exploiting the inherent correspondence between graphical
representations (i.e., pictures) and concrete foundations. The refinement of
current layer and block diagrams but also bridging gaps between informative
descriptions and normative statements in [56] is a next step.

CHAPTER 6. DISCUSSION & FUTURE WORK 157

6.2 Future Work

The work presented in this thesis may be continued in several ways which
include improvements to certain theoretical and practical contributions but also
related research areas which were not in the scope of this thesis.

This thesis has not investigated system management, management con-
trollers, orchestration and the so called cloud layers of systems. The introduc-
tion in Chapter 3 gives a brief overview of a cloud system and shows that cloud
systems include several components which are not part of the virtualization
system but provide important functionality and fidelity. Our formal system
in Chapter 4 has constructs to run containers but is not at all concerned with
their origin or how they are managed, shutdown, and migrated. In short, this
thesis does not present insights into orchestration despite its focus on trusted
virtualization systems. Orchestration of physical and virtual nodes is not only
essential for operations but contributes significantly towards a cloud systems
security, availability, and reliability. The work presented in [120] treats cloud
systems as a form of distributed systems and is actively considering orches-
tration at the expense of the precision with which virtualization systems are
treated in Chapters 3 to 5. Providing the same kind of precision and modeling
is certainly an area of active and future research.

Another clear direction for future work is the application of the concepts
developed in this thesis to specific hardware and software components. The the-
sis generally abstracts commodity hardware and systems and claims that it can
be applied to a variety of them. Implementing the measurement architecture of
Chapter 4 using Linux as the container OS with the popular Docker [39] engine
for containers. This can be pairedwith the vTPM andVirtual Platform constructs
proposed in Chapter 5 using the open-source trusted computing software stack
and virtual TPM implementation [13]. The goal of such implementation would
be to demonstrate the feasibility of the concepts, document the engineering
effort, and evaluate time and space complexities of the implementations.

The inclusion of roots of trust other than the TPM for storage, reporting, or
secure code execution such as secure enclaves and trusted execution environ-
ments in secure systems is already popular and may be a viable choice for future

CHAPTER 6. DISCUSSION & FUTURE WORK 158

virtual trusted platforms. Major virtualization providers and hardware vendors
are already beginning to provide their own roots of trust implementation as
a secure system on a chip (SoC) (e.g. Apple’s Secure Enclave and T2 [8] or
Google’s Titan chip [103]. Furthermore, extended processor and SoC capabili-
ties for trusted computing can help provide solutions which avoid extending the
trusted computing base or software dependencies. Such solutions also support
the basic trusted computing mechanisms discussed in this thesis. This allows de-
velopment of portable architectures [56] which rely on vendor specific roots of
trust and thus allow the construction of virtual trusted platforms using an even
wider variety of physical platforms. Lastly, this thesis provides concepts for
establishing secure and trusted software environments with hardware support.
Silicon based alternatives intend to provide environments with very similar
properties but with better hardware features and less software dependencies.
There is an inherent similarity between the concepts for software systems, e.g.,
remote attestation and trusted boot, and the ones which which get embedded
in hardware such that we expect useful synergy effects from a better hardware
and software co-design.

In Chapter 3 we propose User-Centered Attestation by reviewing prior work
and proposals [79] as a set of principles with an outlook on how to design and
implement it. User-Centered Attestation is a novel attestation system which
aims at establishing trust in individual virtualization systems. While we solve
the issue of trustworthy measurement architectures and constructing virtual
trusted platforms in Chapters 4 and 5, details of the remote attestation procedure
are still open issues.

The work presented in Chapter 4 introduces both LS3 as a formal system
and an Enhanced Integrity Measurement Architecture (EIMA). While the overall
design goal of including containers as virtual environments and recording them
separately was achieved, several alternatives and improvements are possible.
One prominent investigation would consider a vTPM assigned to each container
and hosting a vTPM on the container OS. As mentioned earlier, in a hybrid
setting this would imply nesting virtual TPMs and virtual platforms which is
not well researched.

CHAPTER 6. DISCUSSION & FUTURE WORK 159

When EIMA is deployed, the PCRs used to record the container OS are
regular static PCRs. Dynamic PCRs are used to record containerized applications.
Consequently, containers can be spun up, migrated, and destructed rapidly
without making static PCR values brittle. The two PCR kinds are currently
linked and investigating a new TPM command for this purpose is an interesting
proposal, especially when a vTPM is used.

Lastly, EIMA needs support in a remote attestation protocol. EIMA is an
integrity measurement architecture and acts as a root of trust for measurements
(RTM) and with the (v)TPM as the tool for reporting, suitable protocols which
use integrity information locally or remotely need to be developed. While
only minimal changes to the configuration of existing protocols are expected, a
deeper investigation is still needed.

LS3 includes several new commands and system model properties to support
reasoning over stratified and isolated system compartments. Prior work has
a much stronger focus more on the formal system. Thus, combining existing
work in theorem proving and formal foundations for secure systems with
model and semantics of LS3 may yield several benefits in terms of applicability,
expressiveness, and overall rigor.

The work in Chapter 5 is heavily influenced by Parno’s prior work [105].
This thesis manages to surpass a large body of prior work in several ways:
Most notably, the sophisticated model which allows reasoning over complex
trusted computing systems and architectures. However, the work presented in
Chapter 5 lacks an application of the graphical and formal model to the proposed
solutions in Section 5.4.2. Certain solutions can be modeled and represented
graphically which in turn allows us to use trusted computing axioms directly.
Other solutions will require modeling further secure hardware capabilities
which is a definitive item for future work.

From a theoretical standpoint, the formal model in Section 5.3.2 utilizes only
a small subset of the expressiveness of bigraphs [93]. All systems which are
investigated are abstracted as snapshots or static images of otherwise dynamic
systems. However, bigraphs are intended to model both static and dynamic
properties and further analysis which treats software components more like
mobile agents is needed. A promising avenue for such an investigation is

CHAPTER 6. DISCUSSION & FUTURE WORK 160

the combination of LS3’s actions with the bigraphical model and reasoning
capabilities in Section 5.3.2. LS3 supports constructs to create new nodes (e.g.,
containers and apps) and our bigraphical system in Chapter 5 supports reasoning
over the resulting graph. To our knowledge, such a system would be uniquely
practical and would come furnished with concrete foundations. Vice versa, the
inclusion of containers in the bigraphical model Chapter 5 is a necessary next
step. Containers are currently omitted from our analysis as related work does
not concern containers — yet. However, containers are already a part of an
update to the system model and fit well into the system and formal model.

So far the association between vTPM an VM’s or virtual trusted platform
integrity has been discussed as a unique problem of the virtual platform. In
hindsight, platform integrity is not a problem unique to the virtual platform:
manufacturers and OS vendors are increasingly concerned about adversaries
tampering with CPU, TPM, and storage combinations to circumvent soft- and
hardware data protection tools. One way to address this concern is to establish
session secrets between components based on their unique identities. This
concept is named link encryption and can provide confidentiality on BUS com-
munications and a form of authentication between components. Future work
will have to discuss cryptographic approaches to platform integrity and explore
some of these options in depth for virtual platforms.

As discussed in Section 6.1.1, this work has made notable contributions
towards a modern virtual trusted platform by (1) placing it into a distributed
systems context, (2) including containerization in a canonical and trustworthy
way, and (3) discussing trust establishment and virtual platform integrity in
great depth. Future work on a virtual trusted platform must be concerned with
rooting virtual platforms in physical ones which may be related to virtualizing
the TPM [14]. The theoretical and practical aspects for a solution are unclear
but there is a clear security benefit and commercial interest. Virtual platforms
which are bound to physical ones benefit from (i) additional security guarantees
and assumption about the physical platform, (ii) cannot be cloned uncontrolled
or run on downgraded physical platforms, and (iii) certain secrets can enjoy
the protection of the hardware roots of trust. From a commercial perspective,
binding virtual platforms to physical ones enables a plethora of deployment

CHAPTER 6. DISCUSSION & FUTURE WORK 161

models where vendors can issue a virtual platform tailored for a customer’s
physical platforms, improve software licensing options, and protect virtual
solutions from being reproduced illegally.

Chapter 7

Conclusion

Virtualization poses an interesting issue for specifications towards trustwor-
thy systems as the trust placed originally only in hardware components needs
to be extended to reporting and measurement mechanisms in upper layers
and virtual environments. While approaches towards trust establishment ex-
ist, their semantics are ambiguous and an appraiser has to decide whether a
virtualization system or upper layers are trusted without much guidance or
support in reasoning for such a decision. Furthermore, existing attestation
approaches imply a particular topology, connectivity, and capability that does
not reflect decentralized systems and prevents clients from establishing trust
in their software systems. A User-Centered Attestation, as a novel attestation
system, encompasses these concerns and proposes a strategy for specifying
and synthesizing suitable trust establishment mechanisms and inspired further
research and contributions towards open and collaborative trusted computing
systems.

We present the design and verification of an enhanced integrity measure-
ment architecture (EIMA). EIMA addresses the trustworthiness and constrained
disclosure of integrity measurements for containerized systems which allows
recording and reporting domain specific measurements to clients. Our devel-
opment and design was aided by a precise formal model of stratified systems.
The formal model was conceived by adding required constructs for domains
and domain specific measurements to an existing and established formal model.

162

CHAPTER 7. CONCLUSION 163

The additions allowed a proof of a trustworthy measurement architecture from
system boot all the way up to containerized applications. The proof of EIMA
has also shown the security properties of the commonly used Integrity Measure-
ment Architecture (IMA) [117]. However, EIMA does not reveal information
about a target container to other untrusted tenants on the same system. Fu-
ture work will have to address more detailed interactions between otherwise
isolated domains and sub-domains via system call interfaces and privileged
administrator commands. The verification of properties which were deferred to
the TPM is an important task and a suitable remote attestation protocol is still
needed.

Our work in LS3 relies on either a TPM or a vTPM to record and report
integrity measurements of software running in a container or other virtual
environment. We found that creating a “trusted” virtual platform is necessary
for a variety of secure cloud computing scenarios. Ideally, we should be able
to use secure hardware such as the TPM to bootstrap trust in a virtualization
system and utilize a virtual TPM as a (virtual) root of trust for a virtual machine.
However, our model and analyses reveal that the process of extending trust
from the TPM all the way up into a VM is vulnerable to a Goldeneye attack. The
Goldeneye attack emphasizes the importance of a trusted association between
VM and vTPM. The association between a system and its root of trust is typi-
cally not considered on a real machine but we emphasize that it needs special
considerations in case of a VM and a vTPM. We demonstrated attack vectors
present in recent papers and proposed solutions which could be implemented
today. Current systems rely on assuming an invariant about the association
between VMs and vTPMs. We suggest and discuss several solutions including
constraining interfaces, changes to measurement architectures, and vTPM ar-
chitectures. A clean solution in the future might be to provide architectural
support for roots of trust for software in virtual environments.

The discussion of the thesis reveals that our work achieves major goals and
makes significant contributions towards a modern virtual trusted platform. Vir-
tual environments are placed in the perspective of a distributed system which is
necessary as large amounts of services and infrastructure are migrated to virtual
platforms. To support the attestation of software in virtual environments as

CHAPTER 7. CONCLUSION 164

well as the virtualization system, we design EIMA and verify it against specified
security properties. Lastly, our systematic analysis reveals that the integrity of
a virtual platform is an important security property and that solutions need to
be implemented in order to detect or prevent tampering with virtual trusted
platforms.

References

[1] Akram, R. N. and Ko, R. K. L. (2014). Digital trust - trusted computing and
beyond: A position paper. In 2014 IEEE 13th International Conference on Trust,
Security and Privacy in Computing and Communications, pages 884–892.

[2] Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Com-
mun. ACM, 26(11):832–843.

[3] Allen, J. F. (1984). Towards a general theory of action and time. Artificial
Intelligence, 23(2):123 – 154.

[4] Allen, J. F. and Ferguson, G. (1994). Actions and events in interval temporal
logic. Journal of Logic and Computation, 4:531–579.

[5] Allen, J. F. and Hayes, P. J. (1989). Moments and points in an interval-based
temporal logic. In Contexts in context. In Contexts in Knowledge Representa-
tion and Natural Language, Proceedings of the 1997 AAAI Spring Symposium,
Menlo Park, Calif, pages 225–238. AAAI Press.

[6] Almorsy, M., Grundy, J. C., and Mueller, I. (2016). An analysis of the cloud
computing security problem. CoRR, abs/1609.01107.

[7] Amazon (2020). Improving Security with Cloud Computing: Six Ad-
vantages of Cloud Security. https://aws.amazon.com/blogs/publicsector/
improving-security-with-cloud-computing-six-advantages-of-cloud-security/.
Accessed: 2020-01-28.

[8] Apple Inc. (2020). About the Apple T2 Security Chip. https://support.apple.
com/en-us/HT208862. Accessed: 2020-01-7.

[9] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A.,
Lee, G., Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M. (2010). A view
of cloud computing. Commun. ACM, 53(4):50–58.

[10] Azab, A. M., Ning, P., Sezer, E. C., and Zhang, X. (2009). Hima: A
hypervisor-based integrity measurement agent. In 2009 Annual Computer
Security Applications Conference, pages 461–470, San Juan, USA. ACSA.

165

https://aws.amazon.com/blogs/publicsector/improving-security-with-cloud-computing-six-advantages-of-cloud-security/
https://aws.amazon.com/blogs/publicsector/improving-security-with-cloud-computing-six-advantages-of-cloud-security/
https://support.apple.com/en-us/HT208862
https://support.apple.com/en-us/HT208862

REFERENCES 166

[11] Bai, G., Hao, J., Wu, J., Liu, Y., Liang, Z., and Martin, A. (2014). Trustfound:
Towards a formal foundation for model checking trusted computing plat-
forms. In Jones, C., Pihlajasaari, P., and Sun, J., editors, FM 2014: Formal
Methods, pages 110–126, Cham. Springer International Publishing.

[12] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., and Warfield, A. (2003). Xen and the art of virtualization. In Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems Principles,
SOSP ’03, pages 164–177, New York, NY, USA. ACM.

[13] Berger, S. (2020). Software TPM. https://github.com/stefanberger/swtpm.
Accessed: 2020-01-6.

[14] Berger, S. et al. (2006). vtpm: Virtualizing the trusted platform module. In
Proceedings of the 15th Conference on USENIX Security Symposium - Volume
15, USENIX-SS’06, Berkeley, CA, USA. USENIX Association.

[15] Beth, T., Borcherding, M., and Klein, B. (1994). Valuation of trust in open
networks. In Proceedings of the Third European Symposium on Research in
Computer Security, ESORICS ’94, pages 3–18, London, UK, UK. Springer-
Verlag.

[16] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing
and its role in the internet of things. In Proceedings of the First Edition of
the MCC Workshop on Mobile Cloud Computing, MCC ’12, pages 13–16, New
York, NY, USA. ACM.

[17] Bourgeat, T., Lebedev, I., Wright, A., Zhang, S., Arvind, and Devadas, S.
(2018). Mi6: Secure enclaves in a speculative out-of-order processor.

[18] Bräuner, T. (2011). Hybrid Logic and its Proof-Theory. Springer-Verlag,
Dordecht, Germany.

[19] Brickell, E., Camenisch, J., and Chen, L. (2004). Direct anonymous attesta-
tion. In Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security, CCS ’04, pages 132–145, New York, NY, USA. ACM.

[20] Bulck, J. V., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F.,
Silberstein, M., Wenisch, T. F., Yarom, Y., and Strackx, R. (2018). Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution. In 27th USENIX Security Symposium (USENIX Security 18), page
991–1008, Baltimore, MD. USENIX Association.

[21] Caires, L. and Pfenning, F. (2010). Session types as intuitionistic linear
propositions. In International Conference on Concurrency Theory, pages 222–
236. Springer.

https://github.com/stefanberger/swtpm

REFERENCES 167

[22] Canetti, R. (2001). Universally composable security: a new paradigm for
cryptographic protocols. In Proceedings 2001 IEEE International Conference
on Cluster Computing, pages 136–145.

[23] Chen, C., Raj, H., Saroiu, S., and Wolman, A. (2014). ctpm: A cloud TPM
for cross-device trusted applications. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14), Seattle, WA. USENIX
Association.

[24] Chen, L., El Kassem, N., Lehmann, A., and Lyubashevsky, V. (2019). A
framework for efficient lattice-based daa. In Proceedings of the 1st ACM
Workshop on Workshop on Cyber-Security Arms Race, CYSARM’19, pages
23–34, New York, NY, USA. ACM.

[25] Cheon, J. H., Kim, A., Kim, M., and Song, Y. (2017). Homomorphic encryp-
tion for arithmetic of approximate numbers. In Takagi, T. and Peyrin, T.,
editors, Advances in Cryptology – ASIACRYPT 2017, pages 409–437, Cham.
Springer International Publishing.

[26] Chiang, M. and Zhang, T. (2016). Fog and iot: An overview of research
opportunities. IEEE Internet of Things Journal, 3(6):854–864.

[27] Church, A. (1940). A formulation of the simple theory of types. The Journal
of Symbolic Logic, 5(2):56–68.

[28] Coker, G., Guttman, J., Loscocco, P., Herzog, A., Millen, J., Hanlon, B.,
Ramsdell, J., Segall, A., Sheehy, J., and Sniffen, B. (2011). Principles of remote
attestation. Int. J. Inf. Secur., 10(2):63–81.

[29] Conforti, G. et al. (2005). Spatial logics for bigraphs. In Automata, Lan-
guages and Programming, pages 766–778, Berlin, Heidelberg. Springer Berlin
Heidelberg.

[30] Costan, V., Lebedev, I., and Devadas, S. (2016). Sanctum: Minimal hardware
extensions for strong software isolation. In 25th USENIX Security Symposium
(USENIX Security 16), pages 857–874, Austin, TX. USENIX Association.

[31] Cremers, C. (2008). On the protocol composition logic pcl. In Proceedings
of the 2008 ACM symposium on Information, computer and communications
security, pages 66–76.

[32] Curtmola, R., Garay, J., Kamara, S., and Ostrovsky, R. (2006). Searchable
symmetric encryption: Improved definitions and efficient constructions. In
Proceedings of the 13th ACM Conference on Computer and Communications
Security, CCS ’06, pages 79–88, New York, NY, USA. ACM.

REFERENCES 168

[33] Dall, F., De Micheli, G., Eisenbarth, T., Genkin, D., Heninger, N., Moghimi,
A., and Yarom, Y. (2018). Cachequote: Efficiently recovering long-term secrets
of sgx epid via cache attacks. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2018(2):171–191.

[34] Danev, B., Masti, R. J., Karame, G. O., and Capkun, S. (2011). Enabling
secure vm-vtpm migration in private clouds. In Proceedings of the 27th
Annual Computer Security Applications Conference, ACSAC ’11, pages 187–
196, New York, NY, USA. ACM.

[35] Datta, A., Derek, A., Mitchell, J. C., and Roy, A. (2007). Protocol composition
logic (pcl). Electronic Notes in Theoretical Computer Science, 172:311–358.

[36] Datta, A., Franklin, J., Garg, D., and Kaynar, D. (2009). A logic of secure sys-
tems and its application to trusted computing. In 2009 30th IEEE Symposium
on Security and Privacy, pages 221–236.

[37] Devriese, D., Birkedal, L., and Piessens, F. (2016). Reasoning about object
capabilities with logical relations and effect parametricity. In 2016 IEEE
European Symposium on Security and Privacy (EuroS P), pages 147–162.

[38] Dijkstra, E. W. (1979). Programming considered as a human activity. In
Yourdon, E. N., editor, Classics in Software Engineering, pages 1–9. Yourdon
Press, Upper Saddle River, NJ, USA.

[39] Docker Inc. (2020). Docker homepage. https://www.docker.com. Accessed:
2020-01-15.

[40] England, P. and Loeser, J. (2008). Para-virtualized tpm sharing. In Proceed-
ings of the 1st International Conference on Trusted Computing and Trust in
Information Technologies: Trusted Computing - Challenges and Applications,
Trust ’08, pages 119–132, Berlin, Heidelberg. Springer-Verlag.

[41] Fan, J. and Vercauteren, F. (2012). Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144. https://eprint.iacr.
org/2012/144.

[42] Felleisen, M., Friedman, D. P., Kohlbecker, E. E., and Duba, B. F. (1986).
Reasoning with continuations. In Proc. First Symposium on Logic in Computer
Science, pages 131–141.

[43] Felleisen, M. and Hieb, R. (1992). The revised report on the syntactic
theories of sequential control and state. Theor. Comput. Sci., 103(2):235–271.

[44] Firesmith, D. (2020a). Virtualization via Containers. https://insights.
sei.cmu.edu/sei_blog/2017/09/virtualization-via-containers.html. Accessed:
2020-01-20.

https://www.docker.com
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://insights.sei.cmu.edu/sei_blog/2017/09/virtualization-via-containers.html
https://insights.sei.cmu.edu/sei_blog/2017/09/virtualization-via-containers.html

REFERENCES 169

[45] Firesmith, D. (2020b). Virtualization via Virtual Machines. https://insights.
sei.cmu.edu/sei_blog/2017/09/virtualization-via-virtual-machines.html. Ac-
cessed: 2020-01-20.

[46] Floyd, R.W. (1993). AssigningMeanings to Programs, pages 65–81. Springer
Netherlands, Dordrecht.

[47] Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., et al. (2009). Above the clouds: A berkeley view
of cloud computing. Dept. Electrical Eng. and Comput. Sciences, University of
California, Berkeley, Rep. UCB/EECS, 28(13):2009.

[48] Gallery, E. and Mitchell, C. J. (2009). Trusted computing: Security and
applications. Cryptologia, 33(3):217–245.

[49] Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T.,
Iamnitchi, A., Barcellos, M., Felber, P., and Riviere, E. (2015). Edge-centric
computing: Vision and challenges. SIGCOMM Comput. Commun. Rev.,
45(5):37–42.

[50] Gasser, M., Goldstein, A., Kaufman, C., and Lampson, B. (1989). The digi-
tal distributed system security architecture. In National Computer Security
Conf., NIST/NCSC, Baltimore, volume 12, pages 305–319. National Institute
of Standards and Technology.

[51] Ge, Q., Yarom, Y., Cock, D., and Heiser, G. (2018). A survey of microar-
chitectural timing attacks and countermeasures on contemporary hardware.
Journal of Cryptographic Engineering, 8(1):1–27.

[52] Gentry, C. (2009). Fully homomorphic encryption using ideal lattices. In
Proceedings of the Forty-first Annual ACM Symposium on Theory of Comput-
ing, STOC ’09, pages 169–178, New York, NY, USA. ACM.

[53] Gentzen, G. (1935). Untersuchungen über das logische schliessen i+ii.
Mathematische Zeitschrift, 39:176–210.

[54] Girard, J.-Y. (1987). Linear logic. Theoretical computer science, 50(1):1–101.

[55] Gligor, V. (2014). Dancing with the adversary: a tale of wimps and giants.
In Cambridge International Workshop on Security Protocols, pages 100–115.
Springer.

[56] Group, T. C. (2011). Virtualized Trusted Platform Architecture Specification.
Trusted Computing Group. Rev. 1.26.

[57] Group, T. C. (2018). Trusted platformmodule 2.0 library specification. https:
//trustedcomputinggroup.org/resource/tpm-library-specification/. Accessed:
2018-10-31.

https://insights.sei.cmu.edu/sei_blog/2017/09/virtualization-via-virtual-machines.html
https://insights.sei.cmu.edu/sei_blog/2017/09/virtualization-via-virtual-machines.html
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/

REFERENCES 170

[58] Gürgens, S., Rudolph, C., Scheuermann, D., Atts, M., and Plaga, R. (2007).
Security evaluation of scenarios based on the tcg’s tpm specification. In Pro-
ceedings of the 12th European Conference on Research in Computer Security,
ESORICS’07, pages 438–453, Berlin, Heidelberg. Springer-Verlag.

[59] Heiser, G., Klein, G., and Murray, T. (2019). Can we prove time protection?
In Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS
’19, pages 23–29, New York, NY, USA. ACM.

[60] Hoare, C. A. R. (1969). An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580.

[61] Huang, J. and Fox, M. S. (2006). An ontology of trust: formal semantics
and transitivity. In ICEC.

[62] IBM (2020). Benefits of Cloud Computing. https://www.ibm.com/cloud/
learn/benefits-of-cloud-computing. Accessed: 2020-01-28.

[63] Intel (2016). Intel software guard extensions (sgx). https://software.intel.
com/en-us/sgx. Accessed: 2018-10-31.

[64] ISO (2015a). Trusted platform module library. ISO ISO/IEC 11889-1:2015,
International Organization for Standardization, Geneva, Switzerland.

[65] ISO (2015b). Trusted platform module library. ISO ISO/IEC 11889-1:2015,
International Organization for Standardization, Geneva, Switzerland.

[66] ISO (2018). ISO/IEC np 27070 information technology – security techniques
– security requirements for establishing virtualized roots of trust. https:
//www.iso.org/standard/56571.html. Accessed: 2018-10-31.

[67] ISO (2020). ISO/IEC 27070 — information technology — security techniques
— security requirements for virtualized roots of trust [draft]. https://www.
iso27001security.com/html/27070.html. Accessed: 2020-01-20.

[68] Jangda, A., Pinckney, D., Baxter, S., Devore-McDonald, B., Spitzer, J., Brun,
Y., and Guha, A. (2019). Formal foundations of serverless computing. arXiv
preprint arXiv:1902.05870.

[69] Jia, L., Sen, S., Garg, D., and Datta, A. (2015). A logic of programs with
interface-confined code. In 2015 IEEE 28th Computer Security Foundations
Symposium, pages 512–525.

[70] Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.-C., Khandelwal, A.,
Pu, Q., Shankar, V., Carreira, J., Krauth, K., Yadwadkar, N., Gonzalez, J. E.,
Popa, R. A., Stoica, I., and Patterson, D. A. (2019). Cloud Programming
Simplified: A Berkeley View on Serverless Computing. arXiv e-prints, page
arXiv:1902.03383.

https://www.ibm.com/cloud/learn/benefits-of-cloud-computing
https://www.ibm.com/cloud/learn/benefits-of-cloud-computing
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://www.iso.org/standard/56571.html
https://www.iso.org/standard/56571.html
https://www.iso27001security.com/html/27070.html
https://www.iso27001security.com/html/27070.html

REFERENCES 171

[71] Juglaret, Y., Hritcu, C., Amorim, A. A. D., Eng, B., and Pierce, B. C. (2016).
Beyond good and evil: Formalizing the security guarantees of compart-
mentalizing compilation. In 2016 IEEE 29th Computer Security Foundations
Symposium (CSF), pages 45–60.

[72] Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H. (2003). The eigentrust
algorithm for reputation management in p2p networks. In Proceedings of the
12th International Conference onWorld WideWeb, WWW ’03, pages 640–651,
New York, NY, USA. ACM.

[73] Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J. H., Lee, D., Wilkerson, C., Lai,
K., and Mutlu, O. (2014). Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA), pages 361–372.

[74] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
and Winwood, S. (2009). sel4: Formal verification of an os kernel. In Proceed-
ings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
SOSP ’09, pages 207–220, New York, NY, USA. ACM.

[75] Kocher, P., Horn, J., Fogh, A., , Genkin, D., Gruss, D., Haas, W., Hamburg,
M., Lipp, M., Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y. (2019).
Spectre attacks: Exploiting speculative execution. In 40th IEEE Symposium
on Security and Privacy (S&P’19).

[76] Kreps, D. M., Milgrom, P., Roberts, J., and Wilson, R. (1982). Rational
cooperation in the finitely repeated prisoners’ dilemma. Journal of Economic
theory, 27(2):245–252.

[77] Lampson, B. W. (1973). A note on the confinement problem. Commun.
ACM, 16(10):613–615.

[78] Lampson, B. W. (1984). Hints for computer system design. IEEE Software,
1(1):11.

[79] Lauer, H. and Kuntze, N. (2016). Hypervisor-based attestation of virtual
environments. In Advanced and Trusted Computing (ATC), 2016 Intl IEEE
Conferences, pages 333–340, Toulouse. IEEE, IEEE.

[80] Lauer, H., Rudolph, C., and Nepal, S. (2018). User-centered attestation
for layered and decentralized systems. In Network and Distributed Systems
Security (NDSS) Symposium 2018, Workshop on Decentralized IoT Security and
Standards (DISS), 18-21 February 2018, San Diego, CA, USA. ISOC.

[81] Lauer, H., Rudolph, C., and Nepal, S. (2020). Design and analysis of a
modern virtual trusted platform. TBD, pages 1–30.

REFERENCES 172

[82] Lauer, H., Rudolph, C., Nepal, S., and Sakzad, A. (2019a). Bootstrapping
trust in a “trusted” virtualized platform. InWorkshop on Cyber-Security Arms
Race (CSYARM) 2019, The 26th ACM Conference on Computer and Communi-
cations Security (CCS), 15 November 2019, London, UK. ACM.

[83] Lauer, H., Sakzad, A., Rudolph, C., and Nepal, S. (2019b). A logic for secure
stratified systems and its application to containerized systems. In 2019 18th
IEEE International Conference On Trust, Security And Privacy In Computing
And Communications, pages 1–8, Rotorua, New Zealand. IEEE.

[84] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn,
J., Mangard, S., Kocher, P., Genkin, D., Yarom, Y., and Hamburg, M. (2018).
Meltdown: Reading kernel memory from user space. In 27th USENIX Security
Symposium (USENIX Security 18).

[85] Liu, L. and Shi, W. (2010). Trust and reputation management. IEEE Internet
Computing, 14(5):10–13.

[86] Marti, S. and Garcia-Molina, H. (2006). Taxonomy of trust: Categorizing
p2p reputation systems. Comput. Netw., 50(4):472–484.

[87] Martin, A. (2008). The ten-page introduction to trusted computing.

[88] McCune, J. M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., and Perrig,
A. (2010). Trustvisor: Efficient tcb reduction and attestation. In Proceedings
of the 2010 IEEE Symposium on Security and Privacy, SP ’10, pages 143–158,
Washington, DC, USA. IEEE Computer Society.

[89] McCune, J. M., Parno, B. J., Perrig, A., Reiter, M. K., and Isozaki, H. (2008).
Flicker: An execution infrastructure for tcb minimization. SIGOPS Oper. Syst.
Rev., 42(4):315–328.

[90] Microsoft Corporation (2020). Trusted Platform Module Tech-
nology Overview. https://docs.microsoft.com/en-us/windows/security/
information-protection/tpm/trusted-platform-module-overview. Accessed:
2020-01-14.

[91] Milner, R. (1980). A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer.

[92] Milner, R. (1999). Communicating and mobile systems - the Pi-calculus.
Cambridge University Press.

[93] Milner, R. (2009). The Space and Motion of Communicating Agents. Cam-
bridge University Press, New York, NY, USA, 1st edition.

[94] Milner, R., Tofte, M., and Macqueen, D. (1997). The Definition of Standard
ML. MIT Press, Cambridge, MA, USA.

https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/trusted-platform-module-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/trusted-platform-module-overview

REFERENCES 173

[95] Mitchell, C. (2005). Trusted Computing, volume 6. Iet.

[96] Moghimi, D., Sunar, B., Eisenbarth, T., and Heninger, N. (2020). Tpm-fail:
TPM meets timing and lattice attacks. In 29th USENIX Security Symposium
(USENIX Security 20), Boston, MA. USENIX Association.

[97] Morabito, R. (2017). Virtualization on internet of things edge devices with
container technologies: A performance evaluation. IEEE Access, 5:8835–8850.

[98] Mukhamedov, A., Gordon, A. D., and Ryan, M. (2009). Towards a verified
reference implementation of a trusted platform module. In International
Workshop on Security Protocols, pages 69–81. Springer.

[99] Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S.,
Lewis, C., Gao, X., and Klein, G. (2013). sel4: From general purpose to a proof
of information flow enforcement. In 2013 IEEE Symposium on Security and
Privacy, pages 415–429.

[100] Nelson, L., Sigurbjarnarson, H., Zhang, K., Johnson, D., Bornholt, J.,
Torlak, E., and Wang, X. (2017). Hyperkernel: Push-button verification of
an os kernel. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 252–269, New York, NY, USA. ACM.

[101] Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., and
Deardeuff, M. (2015). How amazon web services uses formal methods. Com-
mun. ACM, 58(4):66–73.

[102] NIAP (2016). Protection profile for virtualization. Protection Profile 1,
National Information Assurance Partnership, Maryland, USA.

[103] OpenTitan (2020). OpenTitan github hompage. https://github.com/
lowRISC/opentitan. Accessed: 2020-01-7.

[104] Orbaek, P. and Palsberg, J. (1997). Trust in the lambda-calculus. J. Funct.
Program., 7(6):557–591.

[105] Parno, B. (2008). Bootstrapping trust in a "trusted" platform. In Pro-
ceedings of the 3rd Conference on Hot Topics in Security, HOTSEC’08, pages
9:1–9:6, Berkeley, CA, USA. USENIX Association.

[106] Pass, R., Shi, E., and Tramer, F. (2017). Formal abstractions for attested
execution secure processors. In EUROCRYPT (1), pages 260–289. Springer.

[107] Popek, G. J. and Goldberg, R. P. (1974). Formal requirements for virtualiz-
able third generation architectures. Commun. ACM, 17(7):412–421.

[108] Popovic, K. and Hocenski, Z. (2010). Cloud computing security issues
and challenges. In The 33rd International Convention MIPRO, pages 344–349.

https://github.com/lowRISC/opentitan
https://github.com/lowRISC/opentitan

REFERENCES 174

[109] Raj, H., Saroiu, S., Wolman, A., Aigner, R., Cox, J., England, P., Fenner, C.,
Kinshumann, K., Loeser, J., Mattoon, D., Nystrom, M., Robinson, D., Spiger,
R., Thom, S., and Wooten, D. (2016). ftpm: A software-only implementation
of a TPM chip. In 25th USENIX Security Symposium (USENIX Security 16),
pages 841–856, Austin, TX. USENIX Association.

[110] Raza, A. et al. (2019). Unikernels: The next stage of linux’s dominance. In
Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS ’19,
pages 7–13, New York, NY, USA. ACM.

[111] Rein, A. (2017). Drive: Dynamic runtime integrity verification and evalu-
ation. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, ASIA CCS ’17, pages 728–742, New York, NY, USA.
ACM.

[112] Richardson, M., Agrawal, R., and Domingos, P. (2003). Trust management
for the semantic web. In Proceedings of the Second International Conference on
Semantic Web Conference, LNCS-ISWC’03, pages 351–368, Berlin, Heidelberg.
Springer-Verlag.

[113] Roscher, S., Boenisch, V., Lee, J., Zeisberg, D., and Schweflinghaus, J.
(2018). Integrating solutions on ibm z with secure service container. IBM J.
Res. Dev., 62(2-3):3:1–3:6.

[114] Rowe, P. D. (2016). Bundling Evidence for Layered Attestation, pages 119–
139. Springer International Publishing, Cham.

[115] Ruan, A. and Martin, A. (2011). Repcloud: Achieving fine-grained cloud
tcb attestation with reputation systems. In Proceedings of the Sixth ACM
Workshop on Scalable Trusted Computing, STC ’11, pages 3–14, New York,
NY, USA. ACM.

[116] Ryan, M. D. (2013). Cloud computing security: The scientific challenge,
and a survey of solutions. Journal of Systems and Software, 86(9):2263 – 2268.

[117] Sailer, R., Zhang, X., Jaeger, T., and Van Doorn, L. (2004). Design and im-
plementation of a tcg-based integrity measurement architecture. In USENIX
Security Symposium, volume 13, pages 223–238.

[118] Salehi, A., Lauer, H., Grobler, M., Rudolph, C., and Sakzad, A. (2020). Ac-
cess control, key and database management, and trust for emerging wireless
body area networks in healthcare application. IEEE Journal of Biomedical
and Health Informatics, pages 1–15.

[119] Santos, N., Rodrigues, R., Gummadi, K. P., and Saroiu, S. (2012). Policy-
sealed data: A new abstraction for building trusted cloud services. In Pre-
sented as part of the 21st USENIX Security Symposium (USENIX Security 12),
pages 175–188, Bellevue, WA. USENIX.

REFERENCES 175

[120] Schear, N., Cable, II, P. T., Moyer, T. M., Richard, B., and Rudd, R. (2016).
Bootstrapping and maintaining trust in the cloud. In Proceedings of the 32Nd
Annual Conference on Computer Security Applications, ACSAC ’16, pages 65–
77, New York, NY, USA. ACM.

[121] Shi, E., Perrig, A., and Doorn, L. V. (2005). Bind: A fine-grained attesta-
tion service for secure distributed systems. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy, SP ’05, pages 154–168, Washington, DC,
USA. IEEE Computer Society.

[122] Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge computing:
Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646.

[123] Shi, W. and Dustdar, S. (2016). The promise of edge computing. Computer,
49(5):78–81.

[124] Sinha, A., Jia, L., England, P., and Lorch, J. R. (2014). Continuous tamper-
proof logging using tpm 2.0. In Proceedings of the 7th International Conference
on Trust and Trustworthy Computing - Volume 8564, pages 19–36, New York,
NY, USA. Springer-Verlag New York, Inc.

[125] Son, J., Koo, S., Choi, J., Choi, S.-j., Baek, S., Jeon, G., Park, J.-H., and
Kim, H. (2017). Quantitative analysis of measurement overhead for integrity
verification. In Proceedings of the Symposium on Applied Computing, SAC
’17, pages 1528–1533, New York, NY, USA. ACM.

[126] Subramanyan, P., Sinha, R., Lebedev, I., Devadas, S., and Seshia, S. A.
(2017). A formal foundation for secure remote execution of enclaves. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’17, pages 2435–2450, New York, NY, USA. ACM.

[127] Sutton, M., Greene, A., and Amini, P. (2007). Fuzzing: brute force vulner-
ability discovery. Pearson Education.

[128] Thompson, K. (1984). Reflections on trusting trust. Commun. ACM,
27(8):761–763.

[129] Trusted Computing Group (2013). Trusted Multi-Tenant Infrastructure
Reference Framework. Trusted Computing Group. Rev. 1.

[130] Trusted Computing Group (2014). TCG EK Credential Profile. Accessed:
2019-05-01.

[131] Trusted Computing Group (2018). Implicit Idendity Based Device Attes-
tation. Trusted Computing Group. Rev. .93.

[132] Trusted Computing Group (2020a). Trusted Computing Group (home-
page). https://trustedcomputinggroup.org. Accessed: 2020-01-30.

https://trustedcomputinggroup.org

REFERENCES 176

[133] Trusted Computing Group (2020b). Trusted Network Con-
nect Resources. https://trustedcomputinggroup.org/work-groups/
trusted-network-communications/tnc-resources/. Accessed: 2020-01-22.

[134] Trusted Computing Group (2020c). Virtualized Platform Work-
ing Group (VP WG). https://trustedcomputinggroup.org/work-groups/
virtualized-platform/. Accessed: 2020-01-30.

[135] U.S.A. National Computer Security Center (1985). Computer Security Re-
quirements: Guidance for Applying the Department of Defense Trusted Com-
puter System Evaluation Criteria in Specific Environments (The Orange Book).
DoD Computer Security Center.

[136] Van Bulck, J., Oswald, D., Marin, E., Aldoseri, A., Garcia, F. D., and
Piessens, F. (2019). A tale of two worlds: Assessing the vulnerability of en-
clave shielding runtimes. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’19, pages 1741–1758, New
York, NY, USA. ACM.

[137] Wadler, P. (2015). Propositions as types. Commun. ACM, 58(12):75–84.

[138] Xen Project (2015). Xen vTPM Wiki. https://wiki.xenproject.org/wiki/
Virtual_Trusted_Platform_Module_(vTPM). Accessed: 2020-01-14.

[139] Xiu, D. and Liu, Z. (2005). A Formal Definition for Trust in Distributed
Systems, pages 482–489. Springer Berlin Heidelberg, Berlin, Heidelberg.

[140] Yap, J. Y. and Tomlinson, A. (2013). Para-virtualizing the trusted platform
module: An enterprise framework based on version 2.0 specification. In
Proceedings of the 5th International Conference on Trusted Systems - Volume
8292, INTRUST 2013, pages 1–16, Berlin, Heidelberg. Springer-Verlag.

[141] Yi, S., Li, C., and Li, Q. (2015). A survey of fog computing: Concepts,
applications and issues. In Proceedings of the 2015 Workshop on Mobile Big
Data, Mobidata ’15, pages 37–42, New York, NY, USA. ACM.

[142] Zhang, F., Chen, J., Chen, H., and Zang, B. (2011). Cloudvisor: Retrofitting
protection of virtual machines in multi-tenant cloud with nested virtual-
ization. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, pages 203–216, New York, NY, USA. ACM.

[143] Zhou, Z., Yu, M., and Gligor, V. D. (2014). Dancing with giants: Wimpy
kernels for on-demand isolated i/o. In 2014 IEEE Symposium on Security and
Privacy, pages 308–323. IEEE.

[144] Zissis, D. and Lekkas, D. (2012). Addressing cloud computing security
issues. Future Generation Computer Systems, 28(3):583 – 592.

https://trustedcomputinggroup.org/work-groups/trusted-network-communications/tnc-resources/
https://trustedcomputinggroup.org/work-groups/trusted-network-communications/tnc-resources/
https://trustedcomputinggroup.org/work-groups/virtualized-platform/
https://trustedcomputinggroup.org/work-groups/virtualized-platform/
https://wiki.xenproject.org/wiki/Virtual_Trusted_Platform_Module_(vTPM)
https://wiki.xenproject.org/wiki/Virtual_Trusted_Platform_Module_(vTPM)

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Scientific Challenge
	1.2 A Trusted Computing Solution
	1.3 Vision
	1.4 Research Overview
	1.5 Towards User-Centered Attestation
	1.6 Domain Specific Integrity Measurements
	1.7 Bootstrapping Trust in a ``Trusted'' Virtual Platform
	1.8 Summary of Contributions

	2 Background and Related Work
	2.1 Why Trust Matters
	2.1.1 Trusting Computations
	2.1.2 Trust in Virtual Environments
	2.1.3 Trust Model for Virtual Environments
	2.1.4 Summary

	2.2 Related Approaches
	2.2.1 Platform Identification and Reputation
	2.2.2 Hardware-based Secure Environments
	2.2.3 Hardware-anchored Security and Trust
	2.2.4 Formal Verification for Trustworthy Systems
	2.2.5 Secure Computations
	2.2.6 Discussion

	2.3 Trusted Computing
	2.3.1 Trust in Trusted Computing
	2.3.2 Trusted Computing Platforms
	2.3.3 Trusted Platform Module (TPM)
	2.3.4 Integrity Measurements
	2.3.5 Using Trust Information

	2.4 Virtual Trusted Platform
	2.4.1 Virtual TPM
	2.4.2 Goals and Challenges
	2.4.3 Summary

	3 User-Centered Attestation
	3.1 Introduction
	3.1.1 Contribution

	3.2 Trusted Virtualization Platform
	3.2.1 Levels of Trust and Specification
	3.2.2 Remote Attestation and Virtual Machines

	3.3 Towards a User-Centered Attestation
	3.3.1 Principles of Remote Attestation
	3.3.2 Attestation in Virtualized Environments
	3.3.3 Observations

	3.4 User-Centered Attestation
	3.5 Related Work
	3.6 Summary

	4 Domain Specific Measurements
	4.1 Introduction
	4.1.1 Contribution

	4.2 A Logic for Secure Stratified Systems
	4.2.1 A Logic of Secure Systems
	4.2.2 Trusted Computing
	4.2.3 Platform Configuration Registers (PCR)
	4.2.4 Root of Trust for Measurement
	4.2.5 Measured Boot
	4.2.6 Integrity Measurement Architecture (IMA)
	4.2.7 Security Properties

	4.3 Domain Specific Measurements
	4.3.1 Measured Boot and IMA
	4.3.2 Containers and Domain Specific Measurements
	4.3.3 EIMA Achieving Security Properties (2) and (5)

	4.4 Summary

	5 Bootstrapping Trust in a Virtual Platform
	5.1 Introduction
	5.1.1 Contribution

	5.2 Background and Prior Work
	5.2.1 Virtualization System
	5.2.2 Trusted Platform Module

	5.3 Goldeneye Attack
	5.3.1 Informal Description
	5.3.2 Graphical Model
	5.3.3 Trust Model

	5.4 Evaluation and Discussion
	5.4.1 Goldeneye in Related Work
	5.4.2 Solutions

	5.5 Summary

	6 Discussion & Future Work
	6.1 Discussion
	6.1.1 Contribution to Virtual Trusted Platform
	6.1.2 Discussion of Models and Analysis

	6.2 Future Work

	7 Conclusion
	References

