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Abstract  
 

In current years, transport companies and commercial heavy-duty trailer manufacturers have 

been looking for solutions to reduce the fuel to payload ratio via weight reduction of structures. 

In addition to redesign frame or cargo structures, more attentions have been paid to applying 

new materials, e.g. high-strength steel, sandwich material and aluminium. However, some early 

cracks have been found on trailer frames of high-strength steel, which indicated that high-

strength steel is more sensitive to fatigue in comparison to traditional mild-steel material. These 

failed structures could cause increasing on-going repair cost and financial burden of relevant 

companies. Therefore, understanding the dynamic response of vehicles under various operating 

conditions is an important step to understand how a crack is initiated and subsequently grows 

in structures and how the operational environment affects the structural integrity of vehicles.  

Critical locations caused by different scenarios can be defined by inputting dynamic results 

into finite element models. Similarly, simulated load spectrums for further fatigue analysis can 

be developed by generating load-time histories under various scenarios. These outcomes from 

dynamic analysis can be applied to significantly improve the design and structural integrity of 

trailers. 

In this study, instead of field tests or simplified mathematical models, a popular multibody 

dynamic simulation software ADAMS/CAR was employed to simulate and analyse dynamic 

behaviours of trailer under various driving scenarios and road conditions. In constant speed 

scenarios, vertical loads at the fifth wheel (king pin), which is the link between a semitrailer 

and a tractor, and suspensions of the trailer were observed to be much higher than longitudinal 

and lateral loads. This finding highlighted the significance of further analyzing vertical load at 

these trailer components. In braking and accelerating scenarios, it was found that the 

magnitudes of longitudinal loads at the fifth wheel and axles had significant growth, in 

comparison to constant speed scenarios. The increase of magnitude was positively correlated 

to the varying rate of vehicle speed. In comparison to the negligible lateral load at the fifth 

wheel in straight events, significant centripetal forces were contributed by the fifth wheel in 

cornering events. Additionally, remarkable vertical load differences between left and right 

sides of axles were caused by cornering manoeuvres. After that, a total of 5 different pothole 

cases were investigated and it was found that the pothole size had a considerable impact on the 

trailer’s dynamic behaviour. In pothole events, the variation of vertical loads at suspensions 

were more significant than that at the fifth wheel. Therefore, vertical loads at suspension system 
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associated with various pothole geometries were further studied using machine learning 

approach. 

After dynamic simulations, linear regression based machine learning models with potential 

applications in replacing part of the computational simulations or simplify field test were 

developed. The multivariate polynomial regression model with 6 polynomial degree was found 

to achieve the highest accuracy of approximately 99.9%, which was treated as the finalised 

machine learning model in this study. Exceedingly accurate prediction of peak vertical load at 

the left side of the second axle could be made by inputting vehicle speed and geometrical 

parameters of pothole within the ranges studied in this research. The relationship between the 

four input variables, i.e. vehicle speed, width, depth and length of pothole, and the output, i.e. 

peak vertical load at the left side of the second axle were also well expressed by the 

multivariable linear regression model trained by normalized dataset. It was obtained that there 

was a positive correlation between the pothole’s geometrical parameters and vertical load, 

while vehicle speed contributed a less and negative influence. Among the geometrical 

parameters, the width and depth of pothole had significantly higher influence on the vertical 

axle load than length. 
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Abbreviations  

 

ATM Aggregate Trailer Mass 

CEVT China Euro Vehicle Technology 

DLC Dynamic Load Coefficient 

DOF Degree of Freedom 

FE Finite Element 

GHG Greenhouse Gas 

GVM Gross Vehicle Mass 

HVNL Heavy Vehicle National Law 

IRI International Roughness Index 

KAM Knee Adduction Moment 

LR Linear Regression 

LTL Less than Truck Load 

MBD Multibody Dynamic 

MLR Multivariable Linear Regression 

MPR Multivariate Polynomial Regression 

MSE Mean Square Error 

NHVR National Heavy Vehicle Regulator  

PSD Power Spectral Density 

RSC Roll Stability Control 

RT Rollover Threshold 

SLR Simple Linear Regression 
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Nomenclature  

 

𝑎  Length from the centre of gravity to the front end of vehicle 

𝑏  Length from the centre of gravity to the rear end of vehicle 

𝑐  Length from the centre of gravity to the right end of vehicle 

𝑐𝑠  Damping coefficient 

𝑑  Length from the centre of gravity to the left end of vehicle 

𝑘𝑠  Spring stiffness 

𝑘𝑡   Tyre stiffness 

min(𝑥) Minimum value of feature 

max(𝑥) Maximum value of feature 

𝑚  The number of training samples 

𝑚𝑠  Sprung mass 

𝑚𝑢  Unsprung mass 

n  The number of data samples 

𝑡  Track width 

𝑤  Frequency index 

𝑥  Input feature 

𝑥′  Normalized value of input feature 

𝑥𝑙  lateral shift of the centre of gravity of the trailer-cargo combination 

�̂�(𝑥)  Dependent variable 

𝑦𝑖  Actual value 

𝑦�̅�  The mean of data 

𝑦�̂�(𝑥𝑖)  Predicted value 

𝑧𝑔   Displacement of road surface  

𝑧𝑠  Displacement of sprung mass 

𝑧𝑢   Displacement of unsprung mass 

C  Total damping coefficient between road surfaces and sprung mass 

𝐷  Damping ratio 
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𝐹𝑎𝑟𝑚  Force supported by arm on the left side of the second trailer axle 

𝐹𝑑  Damped Natural Frequency of oscillation of sprung mass 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔  Force supported by spring on the left side of the second trailer axle 

𝐺𝑛  Road roughness coefficient 

𝐻𝑐𝑔  Estimated height of the centre of gravity of the trailer-cargo combination 

𝐻𝑟𝑐  Height of roll centre 

𝐼𝑝  Pitch moment of inertia 

𝐼𝑟  Roll moment of inertia 

K  Total stiffness between road surfaces and sprung mass 

𝐿  Length of measured pavement section 

𝐿1  Horizontal distance from axle to arm-frame bushing 

𝐿2  Horizontal distance from axle to spring-frame connector 

M  Sprung mass above half of the second axle 

𝑁0  Reference spatial frequency 

𝑁  Spatial frequency 

𝑋  Input feature value of each instance 

𝑌  Output value of each instance 

𝛳  Pitch angle of the sprung mass 

µ  Intercept in linear regression equation 

𝜑  Roll angle of the sprung mass 

𝜔  Regression coefficient 
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Chapter 1: Introduction  

 

1.1. Background and Motivation 

Over the past decades, transport industry has been playing a major role in economy and the 

development of modern globalization. From 2000 to 2020, freight transportation has grown by 

50% (European Commission, 2006). Meanwhile, it was reported that the growth of freight 

transportation leaded to a 35% increase of Greenhouse gas (GHG) emission from 1995 to 2006 

(TREN, 2009), which brought tax and charges relevant to sustainable solutions to the transport 

companies. Therefore, both transport companies and vehicle manufacturers are looking for 

solutions to reduce the fuel to payload ratio. To realise the objective, the weight reduction of 

trailer is one of the solutions worth considering, which has great significance in increasing 

manufacturer’s market competitiveness. With the same fuel cost, a higher payload can be 

realised by lightening the weight of trailer. Fundamentally, the weight of the trailer chassis can 

be reduced by varying the depth of the channel and introducing cut-outs in the low stress 

regions. Furthermore, the weight of commercial trailers has also been optimised by applying 

new materials such as high-strength steel, sandwich material and aluminium (Horn et al., 2012; 

Carrera et al., 2004). However, in comparison to the traditional mild-steel material with large 

safety margins, these materials are more sensitive to fatigue. Some unexpected cracks have 

been found on trailer frames at an early stage. Some examples are shown in Figure 1.1.  

 
(a) A welded and re-cracked cracking in a log trailer frame. 

 
(b) A cracking at turntable ripple plate mount. 
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(c) A cracking at fuel tanker leg support. 

Figure 1.1: Examples of cracking on trailer frames (ARTSA, 2014). 

The increasing on-going repair cost of failed structures has not only been a financial burden 

but reputation sacrifice to a company. Therefore, to understand how a crack is initiated and 

subsequently grows in structures and how the operational environment affects the structural 

integrity of vehicles, it becomes vital to understand the dynamic response of vehicles (Grubisic 

& Fischer, 1997). For example, critical locations caused by different scenarios can be defined 

by inputting dynamic results into finite element models. Similarly, simulated load spectrums 

for further fatigue analysis can be developed by generating load-time histories under various 

scenarios. These outcomes from dynamic analysis can significantly benefit initial design of 

trailer frames. Different approaches are available to analysis the dynamic responses. One 

commonly used approach with high accuracy is using strain gauges in field tests. However, it 

is a costly process and only collects limited data associated with limited road conditions and 

driving scenarios. To easily and rapidly capture the dynamic response of vehicle associated 

with a broad range of road profiles and driving scenarios, and to subsequently develop machine 

learning models using the dynamic results, a methodology using multibody dynamic (MBD) 

simulation software ADAMS/CAR is employed in this study. To further reduce the time and 

cost associated with the multibody dynamic analysis using ADAMS/CAR, machine learning 

models based on linear regression (LR) methodologies are developed and then compared. The 

finalised LR model can accurately predict the peak vertical load at the second left axle in a 

pothole event, by inputting geometrical parameters of pothole, i.e. width, depth and length, and 

vehicle speed in a typical range. 

 

1.2. Research Gaps 

According to literature, most of the previous studies focused on analysing suspension 

components or riding comfort of drivers or passengers, while not much research has been 

established for dynamic loads subjected to a complete trailer frame. Machine learning models 

have not been employed to investigate the relationship between peak suspension load and 
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relevant event factors, i.e. vehicle speed and pothole’s geometrical parameters. More details 

are presented in Chapter 2.  

 

1.3. Research Aims 

The primary objective of this research is to understand dynamic responses of a heavy-duty 

trailer under various operating conditions. To this end the research will: 

a) Create a reliable MBD model in ADAMS/CAR, which is constructed and calibrated 

according to an actual commercial heavy-duty trailer design and Australian suspension 

design principle.  

 

b) Understand Australian road profiles, which is fundamental to the dynamic analysis of 

trailer.  

 

c) Investigate different dynamic responses of trailer under various road conditions and 

driving scenarios. Load-time histories at different locations on the trailer frame are 

outputted from ADAMS/CAR. The simulated results are discussed and further used by 

machine learning models.  

 

d) Generate a machine learning model to accurately predict peak axle loads caused by 

pothole obstacles. This outcome can provide a basic understanding of the influence of 

different variables involved in pothole events. Additionally, the result can provide a 

potential methodology of replacing parts of computational simulations and processing 

field test data.  

 

1.4. Thesis Outline 

This thesis comprises five chapters.  

Chapter 1 presents the background of transportation industry and current cracking issue 

happening on commercial heavy-duty trailers. It identifies the motivation and defines 

objectives of this research.   

Chapter 2 reviews the literature associated with the research topic. After introducing 

background information relevant to trailer frame design, various dynamic analysis 
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methodologies are reviewed and discussed. Following the analysis approaches, the chapter 

proceeds to illustrating research relevant to vehicle-road coupling problems, which provides 

insights for designing road profiles in this study. The chapter then reviews the applications and 

validities of different LR methods in solving various mechanics problems.  

Chapter 3 summarises the process of developing two ADAMS/CAR semi-trailer models, 

including construction of geometrical models and calibration of suspension systems. The first 

model is used for a fundamental validation by comparing with field test data. The second model 

is further applied for dynamic simulation under various driving scenarios and road conditions. 

Force-time histories are outputted and typical results are plotted and discussed.  

Chapter 4 illustrates leading equations, fitting and evaluating approach of three machine 

learning methodologies, i.e. simple linear regression, multivariate linear regression and 

multivariate polynomial regression. Data from ADAMS/CAR is normalized and used for 

training and validating the machine learning models. A multivariate polynomial regression 

model with 6 polynomial degree is finalised as the model contributing the best prediction 

accuracy.  

Chapter 5 summarises the project and outlines the major findings in the study. Additionally, 

limitations of the current research and recommendations for future research are discussed.  
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Chapter 2: Literature Review 

 

2.1. Introduction 

This chapter is composed of five parts. The first part provides a brief review of heavy-duty 

trailer frame, which provides background information relevant to current design and fatigue 

problem. The second part presents various dynamic analysis approaches, i.e. field test, dynamic 

load coefficient, lumped parameter model, multibody dynamic and finite element approaches. 

Next, research relevant to vehicle-road coupling problems is reviewed and discussed, which 

provide insights for designing road profiles in the current study. After that, the following part 

reviews the applications and validities of different linear regression methodologies in solving 

various mechanical problems, which are discussed and employed by the current study. At the 

end, a summary of this chapter is presented.  

 

2.2. Aspect of Heavy-Duty Trailer Frame 

As introduced in the Heavy Vehicle National Law (HVNL), a vehicle is classified as a heavy 

vehicle when its gross vehicle mass (GVM) or aggregate trailer mass (ATM) is over 4.5 t. 

Heavy-duty tractor-trailer vehicle is a commonly used commercial vehicle for long-distance 

transportation. This type of vehicle usually travels on high speed, sometimes even under 

overloading condition to maximise economic return. Common heavy vehicle configurations 

have been summarised by the National Heavy Vehicle Regulator (NHVR), as shown in Figure 

2.1. 
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(a): Truck and dog trailers. 

 
(b): Prime mover and semitrailers. 
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(c): B-doubles. 

 
(d): A-doubles. 

Figure 2.1: Some common classes of tractor-trailer combinations (NHVR, 2019). 

The frame is one of the most significant and biggest components of a semi-trailer, which should 

have an endurable performance to withstand shock, twist, vibration and other mechanical 

responses during operation. Figure 2.2 represents a general frame design of a semi-trailer, 

which consists of two channel shaped side components sustained by many cross beams. The 

cross beams are welded to the side components. A kingpin is located at the front of trailer frame, 

which connects the semi-trailer to a tractor and provides traction force to the trailer. Under 

normal road conditions, a frame is subjected to both bending and torsional distortions. Torsion 

loads are found to be more severe than bending loads in real case (Moaaz & Ghazaly, 2014). 

However, the channel sections only have poor resistance to twist, in comparison to their 

excellent resistance to bending (Moaaz & Ghazaly, 2014). Therefore, both side and cross 

components are added to the frame to improve its resistance to torsional distortion along their 

length. 
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(a) 

 
(b) 

Figure 2.2: A typical commercial trailer model, (a): top view, (b) side view. 

Nowadays, manufacturers are looking for solutions to reduce weight while maintaining 

structural strength in order to increase market competitiveness of their products. Due to the 

variation of loads applied along the frame and the resulted variation in bending moment along 

the channel, the weight of the frame can be reduced by varying the depth of the channel and 

introducing cut-outs in the low stress regions (Moaaz & Ghazaly, 2014), as seen in Figure 2.2. 

Lighter materials, such as high-strength steel and aluminium, have also been widely used by 

manufacturers. Some examples, which had successfully reduced trailers’ weight by applying 

aluminium, sandwich material and high-strength steel, were summarised by Horn et al. (2012) 

and Carrera et al. (2004). However, these materials are more sensitive to fatigue. Cracks might 

initiate at an early stage and then subsequently grow until structure fractures (Horn et al., 2012), 

which lead to unexpected cost to commercial heavy-duty trailer manufacturers and users. Some 

examples of the fatigue failures occurring on heavy-duty trailers are shown in Figure 2.3.  

 
(a) Cracking at a tri axle trailer chassis. 
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(b) Cracking at a welded joint in a bitumen tanker.  

 
(c) Cracking at a log trailer cross support. 

Figure 2.3: Cracks found on commercial semi-trailers (ARTSA, 2014). 

The Australian government has provided strict design standards for heavy vehicles, which 

mainly focus on road-friendly and safety design of frame geometry, suspension and braking 

systems. However, the resistance of trailer structure to fatigue failure is not required by 

standards (Department of Infrastructure and Regional Development, 2014; HVNL, 2020). As 

the fatigue phenomenon in a trailer structure is induced by variable loading on the structure 

during trailer’s operation, it becomes significant to understand and analyse the dynamic 

responses of trailers in different driving scenarios (e.g. cornering, braking, etc) on roads with 

various conditions (e.g. friction, pothole, etc). The qualitative and quantitative description of 

the dynamic responses of trailer could also be utilized to optimise the trailer structures. 

 

2.3. Vehicle Dynamic Analysis 

Vehicle dynamics could be understood as the performance of a vehicle under various road 

profiles and driving scenarios. Different methodologies of vehicle dynamical analysis have 

been developed, including traditional methods, that is, field tests, simplified calculations and 

models, and simulation approaches, namely the multibody dynamics (MBD) and finite element 

(FE) models.  
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2.3.1. Field Test Approach 

Field test is one of the most commonly used conventional technique to analyse the dynamic 

response, which can accurately measure dynamic loads within a certain period of time. With 

proper selection of sensors, field test generally can provide accurate measurements of many 

factors, e.g. acceleration, stress in a mechanical system during operation. However, it can be 

time-consuming and cost-intensive to monitor a complex structure operating in a long period 

of time. Garcia et al. (2003) investigated the effect of load distribution by testing a five-axle 

tractor-trailer running over 1110 km on highway under three different loading configurations, 

which were represented by the rollover thresholds (RT) of unloaded, loaded with less than truck 

load (LTL) and loaded with packed water, respectively. The RT can be estimated from the 

following equation 

 𝑅𝑇 =
𝑡 − 𝑥𝑙

2(𝐻𝑐𝑔 − 𝐻𝑟𝑐)
 (2.1) 

where 𝑡 is track width; 𝑥𝑙 is lateral shift of the centre of gravity of the trailer-cargo combination; 

𝐻𝑐𝑔 is estimated height of the centre of gravity of the trailer-cargo combination; 𝐻𝑟𝑐 is height 

of roll centre. 

In Garcia et al.’s (2003) work, accelerations (lateral, longitudinal and vertical), vehicle speed 

and roll angle of the trailer were recorded, from which most of the average level of lateral 

acceleration measured on both the tractor and the trailer was found to exceed expected 

calculation values on the basis of design characteristics. In order to enhance lifetime fatigue of 

a semi-trailer, representative loading conditions were generated in a three-week field test by 

Horn et al. (2012) and used in FE analysis. Various driving scenarios, i.e. braking, practical 

driving, cornering and road disturbances, were tested. Vertical accelerations at trailer axles, 

vehicle speeds, air spring pressures and spring displacements were recorded. Load data at 

specific locations, i.e. all the wheels and kingpin, was generated by incorporating the field data 

into a SimMechanics MBD model. 

However, as suggested by Olsson (2007), to provide a representative dynamic response of a 

structure, at least 0.01% of its service life should be measured in field tests, which might lead 

to a great budget of development. In addition to being time-consuming and expensive, the field 

test approach is also limited to its specificity of the tested objects. A field test needs to be 

carried out for every new trailer with different geometry or suspension design. Hence some 
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other methods have been proposed to analyse the structure, and then the results are validated 

by field test. As addressed by many scholars (Lu et al., 2010; Gagnon et al., 2015; Jo et al., 

2008; leluzzi et al., 2006; Barbosa, 2010; Valášek et al., 1998; Szurgott et al., 2010), field test 

is a vital tool to validate some numerical or computational analysis of mechanical structures, 

which will be discussed in following sections. 

2.3.2. Dynamic Load Coefficient Approach 

Another simplified approach to estimate the dynamic loads is to multiply a static load by a 

dynamic load coefficient (DLC), which reflects the effect of some typical road conditions, 

driving scenarios, etc (Brown et al., 2001). Generally, the DLC is developed empirically based 

on field test data and mathematical calculations, which requires an exceedingly complete 

understanding of vehicle parameters, external factors of operations, etc (Van Dyk et al., 2017). 

Historically, there have been a lot of efforts undertaken to determine DLC values under 

influences of different factors such as speed, wheel diameter, unsprung mass, etc (see, e.g., 

Sadeghi & Barati, 2010; Arema, 2013; McQueen & PE, 2010; Esveld, 2001; Hu et al., 2016). 

However, the DLC values obtained from most of previous researches can only be applied to 

predict the dynamic load in specific operating environments. When the operating conditions or 

theoretical models have been changed, they might not be able to make accurate predictions. 

For example, in Hu et al.’s (2016) research, the influence ratios of vehicle speed on DLC were 

found to be different under high and low roughness road classes. Therefore, DLC approach can 

be used in simple structures or well-understood operating conditions. For an accurate 

understanding of mechanical structure, a comprehensive approach is further required. 

2.3.3. Lumped Parameter Model Approach 

Lumped parameter models are another commonly used approach in vehicle dynamic analysis, 

especially when analysing suspension components and lateral performance. These models are 

commonly classified according to the degree of freedom (DOF). DOF of a vehicle model is 

defined as the number of independent motions in the vehicle system consisting of mass, spring 

and damping components. Two typical DOF vehicle models used in dynamics analysis are 

shown in Figures 2.4. (a) and (b), which are a quarter vehicle model with 2 DOFs and a vehicle 

model with 7 DOFs respectively.  
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(a) 

 
(b) 

Figure 2.4: Typical DOF models: a one-dimensional quarter vehicle model (a) (Goncalves & 

Ahmadian, 2003) and a three-dimensional 7-DOF vehicle model (b) (Zheng et al., 2015). 

The simplified one-dimensional quarter vehicle model is widely employed in the vehicle 

suspension system design and investigations of vehicle-road interactions (Verros et al., 2005; 

Parthasarathy & Srinivasa, 2006; Cao et al., 2008; Meywerk, 2015; Hu et al., 2016; Xu et al., 

2017). It can be described by the following second-order differential equations: 

 𝑚𝑠𝑧�̈� + 𝑐𝑠(𝑧�̇� − 𝑧�̇�) + 𝑘𝑠(𝑧𝑠 − 𝑧𝑢) = 0 (2.2) 

 𝑚𝑢𝑧�̈� + 𝑐𝑠(𝑧�̇� − 𝑧�̇�) + 𝑘𝑠(𝑧𝑢 − 𝑧𝑠) + 𝑘𝑡𝑧𝑢 = 𝑘𝑡𝑧𝑔  (2.3) 
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where 𝑚𝑠  and 𝑚𝑢  are sprung mass and unsprung mass; 𝑧𝑠 , 𝑧𝑢  and 𝑧𝑔  are sprung mass, 

unsprung mass and road vertical displacement, respectively; k and kt are spring stiffness and 

tyre stiffness; 𝑐𝑠 is the damping coefficient, see Figure 2.4 (b).  

The vehicle model with 7 or more DOFs are mainly used to analyse three-dimensional 

problems, i.e. pitch, yaw and roll of the vehicle (Lv & Dong, 2010; Kim & Ro, 2002). The 

pitch, yaw and roll motion are shown in Figure 2.5.  

 

Figure 2.5: A sketch of vehicle axis system (Kissai et al., 2019). 

In the 7-DOF vehicle model, the spring force 𝐹𝑠𝑖𝑗and damper force 𝐹𝐷𝑖𝑗 of suspensions can be 

representatively described as follows 

 𝐹𝑆𝑖𝑗 = 𝑘𝑠𝑖𝑗(𝑧𝑠𝑖𝑗 − 𝑧𝑢𝑖𝑗) (2.4) 

 𝐹𝐷𝑖𝑗 = 𝑐𝑠𝑖𝑗(�̇�𝑠𝑖𝑗 − �̇�𝑢𝑖𝑗) (2.5) 

where 𝑧𝑠𝑖𝑗  is the vertical displacement of sprung mass at each suspension and 𝑧𝑢𝑖𝑗  is the 

vertical displacement of unsprung mass, in which 𝑖 for front (𝑓) or rear (𝑟) and 𝑗 for left (𝐿) or 

right (𝑅 ); 𝑘𝑠𝑖𝑗  is the spring stiffness of suspension; 𝑐𝑠𝑖𝑗  is the damping coefficient of 

suspension.  

For the equations of motion, the bouncing of vehicle can be described as  

 𝑚𝑠�̈�𝑠 = −𝐹𝑆𝑓𝐿 − 𝐹𝐷𝑓𝐿 − 𝐹𝑆𝑓𝑅 − 𝐹𝐷𝑓𝑅 − 𝐹𝑆𝑟𝐿 − 𝐹𝐷𝑟𝐿 − 𝐹𝑆𝑟𝑅 − 𝐹𝐷𝑟𝑅 (2.6) 

where 𝑚𝑠 is the sprung mass (vehicle mass); 𝑧𝑠 is the displacement of sprung mass.  
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The pitch of vehicle can be described as  

 𝐼𝑝�̈� = −(𝐹𝑆𝑓𝐿 + 𝐹𝐷𝑓𝐿 + 𝐹𝑆𝑓𝑅 + 𝐹𝐷𝑓𝑅)𝑎 + (𝐹𝑆𝑟𝐿 + 𝐹𝐷𝑟𝐿 + 𝐹𝑆𝑟𝑅 + 𝐹𝐷𝑟𝑅)𝑏 (2.7) 

where 𝐼𝑝 is the pitch moment of inertia; 𝛳 is the pitch angle of the sprung mass; 𝑎 is the length 

from the centre of gravity to the front end of vehicle; 𝑏 is the length from the centre of gravity 

to the rear end of vehicle. 

The roll of vehicle can be described as  

 𝐼𝑟�̈� = −(𝐹𝑆𝑓𝐿 + 𝐹𝐷𝑓𝐿 + 𝐹𝑆𝑟𝐿 + 𝐹𝐷𝑟𝐿)𝑐 + (𝐹𝑆𝑓𝑅 + 𝐹𝐷𝑓𝑅 + 𝐹𝑆𝑟𝑅 + 𝐹𝐷𝑟𝑅)𝑑 (2.8) 

where 𝐼𝑟 is the roll moment of inertia; 𝜑 is the roll angle of the sprung mass; 𝑐 is the length 

from the centre of gravity to the right end of vehicle; 𝑑 is the length from the centre of gravity 

to the left end of vehicle. 

These lumped parameter models can be treated as simplifications of the actual vehicle 

structures with the vibration characteristics. The simplicity of these models gives researchers 

the convenience when designing and obtaining analytic descriptions of their models. However, 

the accuracy of these simplified models highly relies on the selection of the equivalent 

parameter values, i.e. 𝑚𝑠, 𝑘𝑠𝑖𝑗, 𝑐𝑠𝑖𝑗, 𝐼𝑝, 𝐼𝑟, etc. Additionally, the lumped parameter models only 

represent the suspension system, and the effects of vehicle geometry, e.g. shape of frames, are 

not considered in the lumped parameter models. Whereas, in real case, these different 

geometries might lead to different dynamic responses. Therefore, the theoretical lumped 

models cannot be treated as a sophisticated model in vehicle dynamic analysis. They are more 

commonly used together with experimental studies or complex computational models. For 

example, a quarter model was used by Barbosa (2010) to identify the vehicle dynamical 

behaviour on road profiles with various roughness, which was then validated via field tests. 

Similarly, Kim and Ro (2002) proposed a 7-DOF car model with parameters that are equivalent 

to a MBD computational model.  

2.3.4. Multibody Dynamic Approach 

In comparison to the simplified models, multibody models are usually employed to solve the 

analysis of coupling systems, for example, the tractor-trailer systems. Some scholars have used 

mathematic MBD models to describe vehicle’s dynamic performance (Aoki et al., 2013; 
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Volkov et al., 2018; Watanabe et al., 2007; Huang & Yedavalli, 2010; Abdelkareem et al., 

2018; Paraskeva et al., 2017; Kim, 2011; Soliman et al., 2014). The mathematic models were 

proposed to solve specific problems. Some assumptions are usually made in the analysis. These 

assumptions ease the problem, meanwhile introducing limitations of the applicability of their 

models. For example, in order to investigate the lateral dynamic of vehicles under straight 

running scenarios, roll dynamics were ignored in Aoki et al.’s (2013) study. They also assumed 

equal vertical loads and cornering coefficients on all wheels and axles. Similarly, the linear 

mathematical model developed by Volkov et al. (2018) could only describe small lateral 

displacements and rotations of a road-train’s elements under high speeds. Moreover, due to the 

complexity of vehicle-pavement interactions, these individually designed MBD models only 

considered two-dimensional flat road surfaces or obstacles with limited parameters. Therefore, 

although the mathematical models have been proved by literature to have sufficient 

applications on their relevant fields, the specificity of the models limits their universal 

application on solving general problems, for example, dynamic responses of different 

components under various driving scenarios and road conditions studied in this thesis. On the 

other hand, commercial MBD simulation software packages such as ADAMS, SIMPACK, 

MBDyn, CarSim and TruckSim, with the ability to simulate coupled models with complete 

DOFs, are preferred by researchers (Yang et al., 2013). For example, a model with a total 

amount of 331 DOFs was analysed using MBDyn in Gagnon’s (2015) study. The MBD 

software allow users to analyse complex vehicle models to investigate their dynamic responses, 

such as acceleration, displacement, force, and velocity, at component levels (Hasagasioglu et 

al., 2012).  

MBD models have been widely employed to investigate the transverse vehicle dynamics 

problems, which mainly refers to sideslip and handling performances leaded by yawing and 

roll motions.  

Valášek et al. (1998) developed a prototype model of a heavy vehicle with three axles in 

SIMPACK for suspension control design. The simulation results were then compared to 

experimental results and it showed a good agreement between them. Hou et al. (2004) and 

Ieluzzi et al. (2006) employed ADAMS/CAR to establish vehicle models and developed semi-

active suspension controller to improve vehicle vibration performance. In Ieluzzi et al.’s (2006) 

study, an ADAMS/CAR truck model was developed and validated according to experimental 

data derived from field test, then the model was treated as a virtual prototype. The prototype 

was then used to develop a Simulink vehicle model in order to optimizing damper 
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characteristics for optimal working conditions. Similarly, a computational model was also 

treated as a valid prototype in Islam et al.’s (2015) study. Linear 4-DOF and 7-DOF models of 

a B-train (combination of one tractor and two semitrailers) were developed and then compared 

to a non-linear TruckSim model. Yaw-plane and yaw-roll coupling of these models were 

investigated for the development of lateral motion control algorithms. This comparative study 

found that linear models were not able to accurately estimate dynamic performances under 

scenarios with high lateral acceleration. In Chandrasekharan et al.’s (2010) study, complete 

vehicle models constituted of a roll stability control (RSC) model designed in Simulink and 

three TruckSim truck models, representing three loading conditions involved in a field test. 

The models were simulated in parallel with each other and the simulated results were compared 

with field data, to determine the ability of the roll stability control system in preventing rollover 

behaviours under various loading conditions. Overall, the computational approach exhibited 

valid performance, except that slight underestimation of both longitudinal and lateral 

accelerations was observed in simulations when brake was applied. The rollover stability 

control algorithm was further researched by Zheng and Chen (2013) who employed TruckSim 

to test a sophisticated vehicle model in open loop situation. Similarly, in order to enhancing 

steerability, i.e. lateral stability and roll stability, Jo et al. (2008) designed a stability estimation 

algorithm which were validated against CarSim simulations and actual experiment tests.  

In addition to the transverse dynamic models, MBD software has also been extensively used to 

investigate vehicles’ ride comfort and interactions between vehicles and road surfaces.  

Hegazy and Sandu (2010) modelled a 6-DOF heavy-duty vehicle with different shock absorber 

characteristics in ADAMS to evaluate its stability when it drove over either flat smooth or 

rough road profiles with 100 mm deep bumps. The ride performance on both smooth and rough 

road profiles was found to be significantly enhanced by softening the single tube shock 

absorber. Vertical responses of a MBDyn vehicle model was analysed by Múčka and Gagnon 

(2015) to explore the vehicle’s vibration performance on contacts between different tyres and 

rough road surface. Metz and Sneddon (2015) simulated three classes of vehicles, i.e. a sedan, 

a sports car and a SUV, driving over different deteriorated road surfaces in the HVE simulation 

software. Wheel loads and unsprung mass displacement were outputted in order to investigate 

the influence of vehicle speed, vehicle type and obstacle configuration on the vehicle trajectory. 

Hasagasioglu et al. (2012) designed and modelled front and rear suspensions in SuspensionSim 

and then imported the solutions into TruckSim to perform the full-vehicle dynamic behaviours. 

Gagnon et al. (2015) developed a MBD model in MBDyn, which was constructed according 
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to an actual truck and trailer combination. The MBD model was then optimised by 

experimental tests, using estimated normal forces under each wheel of the truck. The 

application of the model was to obtain the relationships between a longitudinal road profile and 

passenger health, which was presented by vertical acceleration experienced by passengers. Lu 

et al. (2010) validated their ADAMS heavy vehicle by field tests, and investigated the influence 

of vehicle speed, vehicle mass and road surface roughness on the vehicle’s road-friendliness 

by simulating tyre dynamic loads. It was found that higher tyre dynamic loads were obtained 

with higher speed, heavier vehicle and rougher road. Uys et al. (2007) investigated the 

influence of spring and damper settings on off-road vehicle’s ride comfort by employing MBD 

software ADAMS. A 4WD vehicle model was created in ADAMS according to an actual 

vehicle prototype and simulated to run over road profiles with different roughness at different 

speeds. Vertical accelerations of virtual driver were analysed with varying spring and damper 

parameters. It was concluded that ride comfort was most sensitive to the stiffness of rear spring.  

Within a MBD vehicle model, suspension systems play a significant role in deciding its 

dynamic behaviour. Researchers have used either air spring with nonlinear properties or 

passive spring with linear properties in MBD simulation software. Nowadays, air springs have 

been widely used on heavy-duty trailers. However, to accurately simulate nonlinear behaviour 

of air spring, the associated properties which can be obtained from either field tests or 

manufacturer’s instructions are necessary (Valášek et al., 1998; Hasagasioglu et al., 2012; 

Gagnon et al., 2015; Lu et al., 2010; Uys et al., 2007). In the cases of insufficient data to model 

the airbag, passive separate springs have been comprehensively used in simulation models by 

many researchers (Hegazy & Sandu, 2010; Ieluzzi et al., 2006; Múčka & Gagnon, 2015; Metz 

& Sneddon, 2015) as well. Moreover, a study by Abid et al. (2015) showed that the air spring 

suspension was able to be represented by an equivalent passive suspension system in MBD 

models. 

From the literature, the validity of the commercial MBD software packages has been agreed 

by many researchers. The most commonly used validation approach is via comparing vertical 

accelerations at different locations from field tests and simulations, based on their research 

purposes. For example, Valášek et al. (1998) and Lu et al. (2010) used the vertical accelerations 

at the rear driving axle from field tests to validate their MBD models, whereas Ieluzzi et al. 

(2006) used vertical acceleration of driver seat to validate their model by. It should also be 

noted that the choices of validation data are limited to the available field test data. In this thesis, 

vertical acceleration above the left side of the second axle of the trailer was measured. The 
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mass over rear suspension was also estimated. Therefore, vertical load at the left side of the 

second axle can be obtained and used for a brief validation. The air suspension system used in 

trailers were also simplified as an equivalent passive suspension systems in this thesis. 

2.3.5. Finite Element Approach 

In addition to the MBD approach, the finite element (FE) methodology also has prevalent 

application on vehicle dynamic analysis. Different from MBD models, FE models are mainly 

employed for analysing complex systems such as vehicle frame and suspension components 

(Kim et al., 2003; Szurgott et al., 2009). For example, a finite element heavy vehicle model 

was developed by Szurgott et al. (2010). In their research, the mass properties and suspension 

parameters of the model were validated by experimental tests, then the FE model was used to 

investigate the dynamic response of a heavy vehicle when it ran over a bump. Vehicle-bridge 

FE models were developed by Kwasniewski et al. (2006) and Wekezer et al. (2012) for the 

purpose of investigating the dynamic interactions between heavy vehicles and bridges. A few 

researchers also tried to employ FE method to optimise the design of vehicles and improve its 

stability. For example, Sanyal and Karmakar (1995) analysed the state equation of motion of a 

truck-dolly-trailer system by an FE software COSMO-CAD. It was found that in comparison 

with shifting the trailer’s centre of mass, forwarding the centre of mass of dolly and reducing 

the length of trailer can largely increase the stability of the system. 

In comparison to MBD method, the FE method enables the evaluation of the structural stresses 

and deformations. However, when considering complex models consisting of various 

components and inputs, MBD software leads to lower computational costs (Trigell et al., 2017). 

Most of commercial MBD software packages can also provide extensive libraries containing 

complete suspension systems, tyre models and drive units. This further highlights the important 

roles of MBD in the study of vehicle dynamic analysis. The literature has shown the robustness 

and reliability of using MBD software to simulate vehicle’s dynamic behaviours. ADAMS, 

one of the commonly used MBD software, is therefore used in this research.  

 

2.4. Road Profiles 

Due to the large weight, high location of mass centre, heavy vehicles behave more sensitive to 

road profiles, in comparison to normal passenger cars (Zheng & Chen, 2013). The heavy 

vehicle’s dynamic behaviour is also dependent on vehicle parameters, i.e. sprung mass, 



19 
 

suspension properties (stiffness and damping coefficient) and tyre properties (stiffness and size) 

[Cole & Cebon, 1996; Gillespie, 1997], and also its operating environment, i.e. road profiles. 

The rough road is a critical continuous road profile in suspension design. Therefore, vehicle 

dynamic behaviours under different rough road profiles have been comprehensively 

investigated by many scholars (Lin & Kanellakopoulos, 1997; Sun & Deng, 1998; Tong et al., 

1999; Sammier et al., 2003; Verros et al., 2005; Du & Zhang, 2007; Uys et al., 2007; Soliman, 

2008; Yang et al., 2009; Barbosa, 2010; Lu et al., 2010; Pawlus et al., 2011; Bilodeau et al., 

2017; Gagnon et al., 2015;). In their researches, road roughness was either obtained by 

experimental measurement or estimated in simulation software according to the international 

roughness index (IRI) or power spectral density (PSD) of road surface, respectively. The IRI 

is the most widely used indicator of pavement smoothness measurement (Bilodeau et al., 2017). 

The IRI is calculated by the following equation 

 
𝐼𝑅𝐼 =

1

𝐿
∑|𝑍𝑠 − 𝑍𝑢|

𝑛

𝑖=1

 (2.9) 

where 𝐿 is the length of measured pavement section (km); 𝑍𝑠 and 𝑍𝑢 are the displacement of 

the sprung mass and unsprung mass of measured suspension, respectively. Figure 2.6 provides 

IRI for some typical road conditions. 

  
Figure 2.6: IRI roughness scale (Sayers et al., 1986). 
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In computational simulations, road roughness is often described with the PSD which describes 

a road profile in terms of elevation versus distance (Lu et al., 2010; Zhang & Zhang, 2004; 

yang 2009; Demić et al., 2002), which can be expressed by the following equation 

 𝐺𝑛(𝑁) = 𝐺𝑛(𝑁0)(
𝑁

𝑁0
)−𝑤 (2.10) 

where 𝑁 is spatial frequency; 𝑁0 is reference spatial frequency; 𝑤 is frequency index, which is 

decided by the frequency structure of road spectrum; 𝐺𝑛(𝑁0) is road roughness coefficient (the 

value of PSD at reference spatial frequency 𝑁0). 

In addition to continuous obstacles, discrete obstacle models, i.e. pothole, bump and gap, were 

also important in investigating vehicle-road coupling dynamics. Ardeh et al. (2008) studied 

vehicles running over a speed bump with different mass. They found that increasing the mass 

would slightly decrease the peak value of vertical acceleration. Billal et al. (2015) simulated a 

sedan running over a wide rut on its left side with different speeds, from which extremely high 

peak ball joint and tyre contact force were found under the vehicle speed around 40 km/h. Metz 

and Sneddon (2015) presented different dynamic behaviours of three classes of vehicle, i.e. a 

passenger car, a sports car and a SUV, passing over potholes with two wheels on one side and 

four wheels on both sides. The potholes were classified based on their sizes and geometries, as 

shown in Figure 2.7. According to the simulated peak tyre loads, vehicle speed, vehicle mass 

and suspension properties were found to have nonlinear effect on vehicles’ dynamic response. 

Among the four types of potholes, Type 3 and Type 4 were found to contribute higher peak 

tyre load in comparison to the other types.  
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Figure 2.7: Different types of potholes used in Metz and Sneddon’s (2015) study. 

It should be noted that in Metz and Sneddon’s (2015) study, the potholes were designed with 

longitudinal top width (w2) over 60 cm in their study, which is much wider than most of the 

tyre-road contact width or theoretical contact models (Múčka & Gagnon, 2015). Moreover, 

according to the Vicroads Road Management Plan (Vicroads, 2014), potholes with width over 

30 cm should be patched within a short period. Therefore, in this thesis, geometrical parameters 

of potholes were designed within a reasonable range according to the Vicroads Road 

Management Plan (Vicroads, 2014). The geometry was designed with trapezoid cross section, 

which combined the geometries of Type 3 and 4 potholes. The inerratic geometry was treated 

as an idealised pothole on Australia’s road profiles and leaded to the convenience of further 

regression study, which is presented in Chapter 4. Additionally, most of the previous studies 

focused on analysis of suspension components or riding comfort, while not many researches 

have investigated the dynamic loads subjected to a complete trailer frame, which is caused by 

various obstacles. Moreover, when considering influence of pothole’s lateral width, two cases 

are considered: the first case assumes both sides of trailer’s wheels passing over potholes 

simultaneously (this is defined as ‘double-side passing’ in this thesis; the second case considers 

only one side of the wheels passing over potholes (this is defined as ‘single-side passing’ in 

this thesis). However, potholes with varying lateral width on one side, over which wheels do 

not pass with full wheel width, have not been studied yet. Therefore, different classes of 

potholes with varying lateral width were also studied in this thesis.  

 

2.5. Linear Regression Analysis in Machine Learning 

In recent years, data-driven approaches are of significant interest to researchers in science and 

engineering fields. Different data science techniques, e.g. linear regression, decision table, 

support vector machines, artificial neural networks, etc, have been employed to these efforts. 
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Regression analysis could be defined as a statistical technique, which is used to estimate the 

relationship among variables (Uyanık & Güler, 2013). Among the existing predictive models, 

linear regression (LR) has the longest history and is probably the most widely used one 

(Agrawal et al., 2014), which supposes a linear relationship between unknown parameters. 

According to the number of variables and polynomial degrees, LR models can be classified as 

simple linear regression (SLR), multivariable linear regression (MLR) and multivariate 

polynomial regression (MPR).  

Regression analysis have been widely investigated as an alternative methodology to solve 

biomechanics problems and material problems. For example, Agrawal et al. (2014) developed 

several analytical models, including SLR and MLR models, to describe the relationship the 

fatigue strength of steel and some composition and processing factors. The MLR model was 

found to have the highest predictive accuracy with the coefficient of determination (R2) around 

0.98 and error rate less than 4%. Hunt and Bennell (2011) performed a MLR model to replace 

part of sophisticated and expensive laboratory measurement of the knee adduction moment 

(KAM), from which the peak KAM could be obtained from four clinical measures, i.e. a 

patient’s weight, tibial angle, walking speed and trunk lean to the influenced limb. Similarly, a 

MLR model was designed by Hurwitz et al. (2002) in order to evaluating contribution of 

specific variables to the peak value of KAM. LR analysis was then employed by Kutzner et al. 

(2013) to analyse the correction between KAM and medial tibiofemoral contact force. In a 

study of normal-arched foot, Caravaggi et al. (2016) performed a MLR analysis, which 

determined relationship between joint range of motion, pressure-based parameters and 

normalised walking speed. Similarly, two regression models predicting lumbosacral joint loads 

based on the lift duration and static joint moment during a lifting motion were obtained by Xu 

et al. (2012).  

MLR is also widely used by automotive researchers to model the relationship between various 

parameters. Base on the preliminary studies, Kong et al. (2019) developed a multivariate linear 

regression (MLR) model to predict the fatigue life of motor coil springs by inputting the vertical 

vibrations of the vehicle and natural frequencies of the vehicle suspension system. Then the 

MLR models were assessed and the best result of the R2 and mean square error (MSE) were 

respectively finalised as 0.98, which indicated that an extremely good agreement between the 

predicted and experimental values. Bashah et al. (2013) developed several statistical MLR 

models with different numbers of variables in the Minitab 15 Statistical Analysis Software, in 

order to predict springback of an automotive stamped part based on die parameters, i.e. die 
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radius, die width, etc. The best result of R2 was found from the model with the highest number 

of variables, which was calculated as 0.82. Du et al. (2014) employed MLR and R2 method to 

model the international roughness index, in which vertical wheel accelerations were used as 

input features. A good agreement was indicated with R2 value of 0.9991. A MLR model with 

R2 value of 0.98 was designed by Mayén et al. (2017) to describe the correlation between stress 

amplitude, the number of cycles and crack length of an alloy material. A stochastic model was 

presented by Taheri and Ahmadian (2016), which was trained to estimate the relationship 

between model inputs (relative displacement and velocity of suspension) and the output (total 

suspension forces). For improving the stability performance of vehicle, Alexandru et al. (2016) 

built a suspension model in a MBD software, then three MLR models were separately 

developed to investigate the relationship between three objectives (yaw angle, roll angle and 

pitch angle) and independent design variables (wheelbase, wheel track, deflection and castor 

angle). R2 of these models were valued as 1 in their study.  

From the reviewed literature, LR approaches were usually employed as the prior approaches 

to understand the relationship between various parameters. When LR models are not able to 

give accurate predictions due to the complexity of problems, some other methods will be 

applied. Nevertheless, the accuracy of LR models are not limited by their simplicity. Many 

studies have proved that the predictive ability of LR models via evaluating R2 of the models. 

Therefore, these findings give great confidence that linear regression methods can be applied 

to this project as the first machine learning approach. 

In the linear regression field, the most conventionally used fitting method is the least squares 

method (Weher, 1977). Additionally, from the review of literature, normalization of raw data 

is generally not necessary for LR models, unless for specific purpose. For example, in Bashah 

et al.’s (2013) study, raw data was normalized in order to compare influence of different 

variables. The Min-Max method is one of the most commonly used normalization approaches, 

which normalizes data within a 0 to 1 range. Leading equations of these methodologies will be 

presented in Chapter 4. 

 

2.6. Summary 

The early cracking on heavy-duty semitrailers highlights the significance of understanding and 

analysing trailer’s dynamic behaviours under various operating conditions. Four 
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methodologies of dynamic analysis, i.e. field test, DLC, lumped parameter model, MBD and 

FE approaches, were reviewed and discussed.  

The field test approach is limited to its specificity of tested objects, although the accuracy of 

results can be guaranteed. Meanwhile, developing a long-term field test to generate 

representative loading histories can be extremely costly. The DLC approach can only be 

applied when analysing simple structures or well-understood operating conditions. Lumped 

parameter models can be treated as simplified vehicle models. However, the accuracy of these 

models highly relies on equivalent parameter values, and the influences of different geometries 

cannot be represented. The MBD approach has advantages in designing and analysing complex 

computational models consisting of various components. The validity of commercial MBD 

software packages have been approved by many researchers in the automotive field, from 

which various simulated results can be obtained. FE approach has the advantage in evaluating 

structural stresses and deformations. However, in comparison to MBD approach, more 

computational costs might be required when solving complex models. Therefore, ADAMS, 

one of the commonly used MBD software, is used in this study, and data from a field test is 

used to develop a brief validation of the ADAMS model in this study. 

Following the review of methodologies, literature of two main considerable obstacles, i.e. 

roughness and pothole, were reviewed. Road profiles were found to play a significant role in 

designing simulations of dynamic analysis. However, most of the previous studies focused on 

analysing suspension components or riding comfort, while not many researches have been 

developed for dynamic loads subjected to a complete trailer frame. Therefore, this study 

analysed dynamic loads from different components to the trailer frame under various driving 

scenarios and road conditions, using a computational semitrailer model. Due to the uncertainty 

and lack of relevant information of road roughness, unevenness of road is not considered in 

this study. Idealised flat road surface is used to simulate various driving scenarios, i.e. constant 

speed, braking, accelerating and cornering. Different classes of potholes, i.e. ‘double-side 

passing’ and ‘single-side passing’, with different geometrical parameters are designed and 

analysed in this study, which fills the gap of investigating the influence of pothole’s lateral 

width.  

Regarding to the second part of the study, applications of linear regression methodology in 

mechanics field were reviewed. Machine learning models that can make accurate predictions 

and help scholars to understand relationship between different variables were summarised, in 
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which the validity and accuracy of the LR models has been approved. Additionally, machine 

learning models have not been employed to investigate the relationship between peak load and 

relevant event factors, i.e. vehicle speed and pothole’s geometrical parameters. Therefore, 

different LR models are developed and analysed in this study.  
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Chapter 3: Dynamic Analysis of Heavy-duty Trailers  

 

3.1. Introduction  

This chapter summarizes the process of developing two analytical semi-trailer models P40 and 

SN89689 in multibody dynamic simulation software ADAMS/CAR, including construction of 

the three-dimensional multibody dynamics models and calibration of their suspension systems. 

The P40 model was used to make comparison with field test data as a fundamental validation, 

and the SN89689 model was further applied for simulating the trailer’s dynamic behavior under 

various driving scenarios. Force-time histories at specific trailer components were outputted 

from ADAMS/CAR. Some typical results were plotted and discussed in the result section. At 

the end of this chapter, a summary was given. 

 

3.2. Development of ADAMS/CAR Models 

This section presents the description of dynamic modelling of heavy-duty trailers, the 

development of the structure and suspension system used on the ADAMS/CAR models and a 

comparison of ADAMS/CAR simulated results with industrial field test data that was used to 

calibrate the suspension system.  

 

3.2.1. Dynamic Model Description 

ADAMS/CAR software is a popular multi body dynamics (MBD) software generally 

employed as an industry standard modelling tool, which accommodates a wide range of 

detailed components such as powertrain, structural and mechanical subsystems and enables 

users to create or further modify the specific parameters of these components. The heavy-duty 

vehicle model consists of two major parts, i.e. the tractor and the semi-trailer. This project 

mainly focuses on investigating the dynamic responses of the trailer. Therefore, a default 

tractor model was employed from the ADAMS/CAR shared database. Regarding to the trailer 

model, the model is divided into subsystems, including trailer body, cargo, independent axles 

and suspensions, and wheel-tyre subsystems. During modelling, all these bodies were 

considered as rigid bodies.  
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Components are connected with each other via either joints or bushings in ADAMS/CAR. The 

attachments define the properties of interaction between different components. Joints define a 

rigid connection between two parts and help define the motion of the parts, while bushings 

provide a six-DOF force relationship for the two connected components, with specific stiffness 

and damping. In this study, bushings with linear characteristics were used as attachments 

between specific suspension components, i.e. arms and shock absorbers, and rigid trailer 

components, i.e. trailer axles and frame. The connection between the fifth wheel and the trailer 

frame was also defined as a bushing. Other attachments in addition to these kinetic components 

were defined as joints. In this study, the total number of DOFs of each tractor-trailer model 

was 661, which included 6 DOFs for the rigid trailer body and 36 DOFs for each axle-

suspension subsystem, which consisted of suspension arms, springs, dampers and an axle. 

Additionally, wheel-road interaction is an important part of dynamic modelling. ADAMS/CAR 

defines the connection between wheel system and mount parts as rigid, while treats the tire 

models as a parallel linear spring and damper with one contact point with the road surface in 

radial direction. The contact point is determined by the line of the intersection of the wheel 

centre plane with the ground plane and the line of intersection of the wheel centre plane with 

the plane through the wheel spin axis. For calculating the kinematics of the tire relative to the 

road, the road is approximated by its tangent plane at the road point below the wheel centre 

and the tire contact patch forces are transformed in forces and torques applied to the wheel hub.  

 

Figure 3.1: A sketch of wheel-road interaction. 
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3.2.2. Construction of P40 ADAMS/CAR Model 

ADAMS/CAR was utilized throughout the project. Therefore, it was significant to validate the 

ADAMS/CAR model by comparing the computational results with field test data in P40 (Lewis, 

2017), which was provided by MaxiTRANS. The original purpose of the field test was to 

determine typical in-service vertical loads of a 3-axle mild steel MaxiTRANS trailer during a 

442 km trip. Five sensors were attached to the trailer to monitor its services. As shown in Figure 

3.2, an accelerometer (③) was attached to the inboard leg of bottom flange of the curb side 

main rail, in line with the centre trailer axle, in order to measure the vertical acceleration of the 

axle. A GPS antenna (⑤) was mounted on top of the curb side rear post to record the GPS 

position of the tested trailer and plot Google Earth graphs. Additionally, a pressure transducer 

(④) was inserted into the pressure line of curb side centre axle airbag for the purpose of 

measuring the specific airbag pressure.  

 

Figure 3.2: Sensor locations in the P40 test (Lewis, 2017). 

The data collected by the sensors were used to reconstruct the driving scenarios and calibrate 

the ADAMS/CAR model. CAD model of the trailer tested in P40 is presented in Figure 3.3 

and the geometric dimension of the model is listed in Table 3.1. The output dynamic responses 

were compared to the field data, which was measured using an accelerometer as described in 

P40 report. 



29 
 

 

Figure 3.3: CAD model of the mild steel trailer tested in P40 report (Lewis, 2017). 

Table 3.1: Key parameters used in ADAMS/CAR model building. 

Length of the trailer 13110 mm 
Distance between the front end of the 

trailer and kingpin 
1445 mm 

Width of the trailer 2488 mm 
Distance between the rear end of the 

trailer and the third axle 
2105 mm 

Height of the trailer 2977.5 mm Distance between adjacent axles 1350 mm 

Distance between 

arms on both sides 
950 mm Distance between airbags on both sides 785 mm 

 

Additionally, mass properties were set up according to the P40 report. As shown in Table 3.2, 

the mass over turntable and rear suspensions were estimated to be 16221 kg and 19662 kg, 

from which the total mass was determined to be 35883 kg. A rigid trailer and test mass were 

defined as an ADAMS/CAR trailer subsystem to simulate the trailer cabin and extra load 

applied on the frame. According to MaxiTRANS, the trailer cabin weighed approximately 7000 

kg, and the payload was then calculated to be 28883 kg accordingly. Both trailer cabin’s and 
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load’s centres of mass were assumed to be located at their geometrical centres. A 3D view of 

the three-axle semitrailer and tractor model is shown in Figure 3.4. The x axis, y axis and z axis 

denote longitudinal, lateral and vertical directions respectively by default. Each of the three 

trailer axles were connected to the trailer frame through suspension system, which composed 

of spring, shock absorber and trailer arm. After constructing the geometrical model, the 

dynamic parameters of suspension systems were required to be calibrated, which will be 

presented in detail in the next section.  

Table 3.2: Specifications from P40 report. 

Item  Value  

Date acquisition sample rate  1000 Hz 

Estimated mass over turntable 16221 kg 

Estimated mass over rear suspension 19662 kg 

 

 

 
Figure 3.4: The 3D model of a semi-trailer and tractor in ADAMS/CAR (Top: Side view; Bottom: 

Top view). 
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3.2.3. Calibration of Suspension Components 

As a critical part of a suspension system, the behaviour of air bag can directly affect the 

oscillation response of the system when a trailer is subjected to dynamic loading. In the 

MaxiTRANS trailers, air bags on trailer axles are connected to each other through an air tank 

which controls their height and stiffness, as shown in Figure 3.5. However, there was a lack of 

information of the air bags used on the P40 mild steel trailer. Therefore, the air bag system was 

simplified as three independent suspension systems, and each system composed of spring, 

damper and arm. The damping coefficient and spring stiffness were determined according to 

Australia national design principle and industry standards (Department of Infrastructure, 2004).  

   
Figure 3.5: Photo (left) & a simple sketch (right) (Hendrickson, 2019) of a four-airbag suspension 

system. 

The Certification of Road-Friendly Suspension Systems (Department of Infrastructure, 2004) 

requires that the frequency of the sprung mass above the axle or axle group in a free transient 

vertical oscillation must not be higher than 2.0 Hz. According to the P40 report, the 

fundamental frequency of the rear suspension was tested to be approximately 1.7 Hz, which 

conformed the design requirement. Additionally, MaxiTRANS company requires their trailers 

designed with a damping ratio of 0.2 for economical purpose. Therefore, the damped natural 

frequency and damping ratio were assumed to be 1.7 Hz and 0.2, respectively. 

According to these requirements, the damped natural frequency of oscillation of the sprung 

mass  𝐹𝑑 rad/s was calculated as:   

                                    𝐹𝑑 =
1

2𝜋
√
𝐾

𝑀
−

𝐶2

4𝑀2 = 1.7𝐻𝑧                                                      (3.1) 

The damping ratio was defined as: 

                                             𝐷 =
𝐶

2√𝐾𝑀
= 0.2                                                                 (3.2) 
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where, M is the sprung mass above half of the second axle; K and C are the total stiffness and 

damping coefficient between road surfaces and sprung mass. 

The sprung mass M was determined by the estimated mass over rear suspension. According to 

the simulations, forces carried by the arms and springs to trailer frame were nearly a hundred 

times larger than the damper forces. Therefore, the load over the suspension system was 

assumed to be carried by the arm and spring only. In Figure 3.6, horizontal distance from the 

axle to the arm-frame bushing, denoted as L1 and to the spring-frame connector, denoted as L2 

were measured to be respectively 476.97 mm and 335.58 mm in the CAD model. 

 
Figure 3.6: Horizontal distance from axle to arm-frame bushing L1 (left) 

& Horizontal distance from axle to spring-frame connector L2 (right). 

 

Based on the moment balance equation:  

                                         𝐹𝑎𝑟𝑚𝐿1 ≈ 𝐹𝑠𝑝𝑟𝑖𝑛𝑔𝐿2                                                   (3.3) 

where Fspring and Farm are the force supported by spring and arm on the left side of the second 

trailer axle. 

Therefore, 58.7% of the total mass above one-half side of the second axle M is determined to 

be the sprung mass, equal to 1924 kg. 

This gives the spring stiffness K of 228.7 N/mm and damping coefficient C of 8.4 N/mm 

according to Eqs. (3.1) and (3.2). 

In our current model, the tire stiffness is defined as Ktyre=400 N/mm, then the spring stiffness 

is finalized as Kspring=320 N/mm, according to the Quarter Vehicle Model theory, which are 
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reasonable for heavy duty trailers compared to the report by Prem et al. (2000). The suspension 

system with these parameters was used in both P40 model and SN89689 model.  

 

3.2.4. Comparison between ADAMS/CAR Outputs and Field Test Data 

In this section, the ADAMS/CAR semitrailer model was verified by comparing MBD analysis 

results with P40 field test results. More specifically, the total vertical loads on the left half of 

the second trailer axle of P40 semitrailer model constructed with the assumptions and 

parameters presented in the previous sections output from MBD analysis were compared to the 

vertical loads derived from the field data presented in P40 report.   

Based on the information provided in P40 report, three driving scenarios have been 

reconstructed based on the field test data and the Google Earth images. These driving scenarios 

were then analysed in ADAMS/CAR together with the trailer model constructed in previous 

sections.  

The first case shows the trailer running on a smooth and straight highway surface at constant 

speed of 83 km/h (Figure 3.7). The simulated result and field test data are plotted in Figure 3.8. 

It can be seen that the simulated result is smooth and constant. It is because the road surface 

was assumed to be identically flat and straight. Compared to the field test data, e.g. blue curve 

in Figure 3.8, the MBD output is in close proximity without considering road roughness and 

obstacles.  

 
Figure 3.7: Google Earth graph of straight driving case. 
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Figure 3.8: Zoomed graph of Field test data (Field Test) vs MBD result (Simulation) for the 

constant speed case. 

The second scenario simulated a braking event of the trailer. The P40 report presented a braking 

case when the speed was reduced from 45 km/h to 10 km/h in 9 seconds in a straight lane, see 

Figure 3.9. This was then simulated in ADAMS/CAR and a comparison between the simulated 

force and field test force is shown in Figure 3.10. As the driver progressively and gradually hit 

the brake, the trend of the responding force in the braking event behaves similarly to the 

maintaining event. Though the tested result exhibits small variations during measurement, 

there is a good agreement between the simulated result and tested result. 

 
Figure 3.9: Google Earth graph of the braking case. 
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Figure 3.10: Zoomed graph of field test data (Field Test) vs MBD result (Simulation) for the braking 

case. 

Lastly, cornering scenario was simulated. The trailer was assumed to drive at a constant speed 

of 15 km/h with constant cornering radius of 25 m, see Figure 3.11. From Figure 3.12, the 

simulation result is slightly lower than the field test result. This may be explained by the uneven 

road with changing roughness, see Figure 3.11 which is Google Map image of this driving 

scenario). The uneven road with changing roughness seems to be a possible explanation for the 

slightly higher left vertical force in real case. According to the photo, the corner road surface 

is also found to be slant outward, which leads to the left spring compressed. Therefore, it is 

reasonable to see a slightly lower simulation result in this scenario, compared with the field 

test data.  

27.00

29.00

31.00

33.00

35.00

37.00

1 1.5 2 2.5 3

Fo
rc

e 
(k

N
)

Time (s)

Field Test

Simulation



36 
 

 
Figure 3.11: Google Earth graph of cornering case (left) 

 & Street-view of the corner on Google map (right). 

 
Figure 3.12: Zoomed graph of field test data (Field Test) vs MBD result (Simulation) for cornering 

case. 

 

3.2.5. Construction of SN89689 ADAMS/CAR Model. 

After ADAMS/CAR software was verified to be reliable for a trailer MBD analysis, a high 

strength steel trailer, see Figure 3.13, was analysed, which was constructed based on a 

MaxiTRANS SN89689 model. Table 3.3 presents the significant geometry parameters of the 

high strength steel trailer. It was assumed that an identical cargo body and suspension 
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components used in the mild strength steel trailer were used in the high strength steel trailer as 

well. 

 
Figure 3.13: CAD model of the high strength steel trailer SN89689. 

Table 3.3: Key geometry parameters of SN89689 trailer model. 

Trailer length 10600 mm 

Trailer width 2488 mm 

Trailer height 2977.5 mm 

Distance between arm on both sides 950 mm 

Distance between airbags on both sides 785 mm 

Distance between the front end of trailer and kingpin 400 mm 

Distance between the rear end of trailer and the third axle 800 mm 

Distance between adjacent axles 1200 mm 

 

The weight of the trailer frame was 2643 kg.  The MBD model of the high strength steel trailer 

built in ADAMS/CAR is shown in Figure 3.14.  
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Figure 3.14: ADAMS/CAR model of the high strength steel trailer SN89689. 

 

3.3. Results 

The simulated SN89689 model was then tested under some common driving scenarios. These 

events are divided into categories of ‘Flat Road’ driving events (constant speed, braking and 

accelerating along flat road profiles, and cornering events) and ‘Pothole Road’ events. Flat road, 

as suggested by its name, is a straight or circle flat path, which leads to the simplest 

computational complexity. Hence, this type of road profiles is usually employed as initial 

testing and fundamental scenario for investigating models’ dynamic responses. ‘Pothole Road’ 

is designed as a flat road with a pothole at a specific location. For the geometry of potholes, 

referred to Vicroads Road Management Plan (Vicroads, 2014), a diameter of 300 mm and depth 

of 100 mm are defined, which is considered as the most commonly critical size of a pothole on 

Australian roads. 

In addition to the road profiles, the frequency of recording output is also of vital importance. 

In general, MBD system of equations are solved by numerical integrations. ADAMS/CAR 

utilises the GSTIFF integrator as default, thus selecting a suitable step size is very significant. 

Some data, which might be significantly required, might be missed if a large step size is chosen, 

while an excessively small step size will lead to extremely lengthy simulation time. Referring 

to the simulations carried out by engineers at China Euro Vehicle Technology (CEVT) (Liu & 

Ramnath, 2016) and field tests developed by MaxiTRANS company, an integration step size 

of 0.001 (1000 steps per second for both inputs and outputs) has been tested to be adequate and 

used throughout the simulations.  
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This work mainly aims to output force-time histories at different components of the semitrailer. 

All the main output locations are marked in Figure 3.15. On the rear half of the trailer, six 

identical suspension systems (with components of arm, spring and damper) are sitting at both 

ends of the three axles. Both the force of each component and the total force of each suspension 

system can be outputted against time. Some significant comparisons have been determined 

during simulations and will be discussed in the following contents. Peak loads are usually 

contributed by unpredictable potholes on roads. In the following sections, some typical results 

of these simulations will be discussed in detail.  

 

 
Figure 3.15: Suspension and trailer model in ADAMS/CAR. 

    

3.3.1. Constant Speed Events 

In the constant speed events, the SN89689 model was simulated to run on a flat straight path 

with different speed (40 km/h, 60 km/h, 80 km/h and 100 km/h) to cover most of the speed 

limits on Australian roads.  

Firstly, to investigate the force responses at each suspension system and the fifth wheel, a trailer 

running at the constant speed of 100 km/h was analysed. The total longitudinal (X), lateral (Y) 

and vertical loads (Z) at the left side of the second trailer axle and fifth wheel are outputted and 

plotted in Figures 3.16 (a) and (b). In the maintaining events, MBD results are observed to be 

nearly straight lines due to the identically flat road surface, and obviously, in comparison to 

the vertical loads, longitudinal and lateral loads can be negligible, which means that axles and 

fifth wheel mainly support vertical loads during steady state driving scenarios. Moreover, the 
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fifth wheel is noticed to carry no load on lateral direction in straight lane events with 

maintaining speed. Meanwhile, according to the extremely significant difference between 

vertical loads and loads in other directions, the ability to sustain vertical load should be a 

prioritized parameter during structure design and fatigue analysis.  

After that, vertical loads at the three axles and the fifth wheel are plotted in Figure 3.17. 

Evidently, the fifth wheel carries more vertical load than each single axle. Additionally, the 

contribution of each axle for the vertical load decreases from the first axle to the third axle, as 

shown in Figure 3.17. It is also noted that there is an approximately linear relationship of the 

three vertical forces, which may be explained by the arithmetic progression of distances from 

each axle to the centre of cargo mass. 

Secondly, an identical trailer running at 4 different speeds was analysed to investigate the 

influence of speed on the force responses of suspension systems and the fifth wheel. The 

vertical loads at the left side of the second axle under different speeds are plotted in Figure 

3.18. The force differences at different speeds are negligibly small. However, the difference is 

predicted to be higher under complex driving scenarios such as the pothole event, which will 

be discussed in section 1.3.4. 
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(b)  

Figure 3.16: Total forces in X, Y, and Z direction at the left side of the second axle (a) and the fifth 

wheel (b). 

 

 
Figure 3.17: Vertical loads on axle 1, 2 and 3 and the fifth wheel. 
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Figure 3.18: Vertical loads at the left side of the second axle under different speeds. 

 

3.3.2. Accelerating and braking Events 

In addition to the ‘Flat Road’ maintaining scenarios with constant speed, the vehicle is further 

simulated to accelerate or brake in a straight lane. In reality, the speed changing rate highly 

depends on drivers’ behaviour. Additionally, the performance is also determined by the quality 

of related parts such as the power train and the braking system. Therefore, it is difficult to 

determine an exact value of the accelerating or braking rate. In our simulations, as required by 

ADAMS/CAR event settings, the vehicle is assumed to accelerate or brake with specific 

constant rates which are defined according to the researches developed by State of Utah (2019) 

and Yang et al. (2016), as summarised in in Table 3.4. In these varying speed simulations, the 

vehicle model initially maintained a constant speed until 0.5 second and then started to 

accelerate or brake for 3.5 second.  

Table 3.4: Accelerations/decelerations used in the simulations. 

Initial Speed 

(km/h) 

Acceleration/Deceleration   

(m/s2) 

20 + 0.67 

30  + 0.61 

40  + 0.49 

50  + 0.46 

65  + 0.31 

80  + 0.18 

100  - 3.00 

65  - 4.20 

 

Firstly, the trailer model was simulated to accelerate or decelerate at the highest magnitude, i.e. 

+0.67 m/s2 and -4.2m/s2 respectively, according to Table 3.4. The axle loads in different 
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directions, i.e. longitudinal, lateral, and vertical, output from the MBD analysis are plotted in 

Figures 3.19 (a), (b) and (c), respectively. Compared to the dynamic behavior in maintaining 

events, longitudinal and lateral loads are higher than steady state and the amplitude can become 

significantly higher due to a large value of deceleration rate in braking events. However, the 

vertical loads on axles tend to decrease after the initial vibration, which is caused by sudden 

acceleration or braking commands.  

Similarly, the loads at the fifth wheel are presented in Figures 3.20 (a), (b) and (c). During 

accelerating and braking, longitudinal loads at the fifth wheel are similar to the response of 

axles. There are some lateral vibrations at the fifth wheel and it is significantly obvious in the 

braking events with a high deceleration. In these varying speed cases, the vertical dynamic 

response of the fifth wheel is opposite to the axles. During accelerating, vertical loads are 

transferred from the fifth wheel to the rear of trailer, while the fifth wheel carries much more 

force in Z direction than in the steady state.  

At last, the influence of acceleration on longitudinal loads at the fifth wheel is presented in 

Figure 3.21, from which the peak load increases with a higher accelerating rate. Additionally, 

in a scenario with higher acceleration, it will take more time to reach the peak value. 
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(b) 

 
(c) 

Figure 3.19: Total forces at the left side of the second axle in X (a), Y (b), and Z direction (c). 
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(b) 

 

(c) 

Figure 3.20: Total forces at the fifth wheel in X (a), Y (b), and Z direction (c). 

 

Figure 3.21: Longitudinal loads at the fifth wheel under different accelerations. 
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3.3.3. Cornering Events  

In cornering events, the model was simulated to do left cornering with a steady speed of 20 

km/h and the cornering radius was initially set as 35 m. In Figures 3.22 (a) and (b), the 

cornering event with radius of 35 m is firstly plotted to present the different directional loads 

of the second axle and the fifth wheel in a cornering event. The longitudinal and vertical loads 

at the fifth wheel remain similar behavior as maintaining events, while the lateral load of 

approximately 17.1 kN tends to contribute centripetal forces. As a result of the tilt of the trailer 

during cornering, the dynamic responses of two sides of an axle also behave differently to each 

other. When the vehicle is cornering anti-clockwise, right side of axles will carry more 

longitudinal and vertical loads than the left side, and both sides will support higher lateral loads 

compared to that in a trailer that is driving straightly and steadily.  

Cornering radius was then modified to 30 m, 40 m and 45 m in order to investigate the influence 

of the radius factor. The vertical loads at the right side of the second axle under these scenarios 

are presented in Figure 3.23, from which the vertical load at the right side of an axle is found 

to decrease with an increasing cornering radius in left cornering events.    
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(b) 

Figure 3.22: Total forces in X, Y, and Z direction at two sides of the second axle (a)  

and the fifth wheel (b). 

 
Figure 3.23: vertical loads at the right side of the second axle under different cornering radius. 

3.3.4. Pothole Events 

Potholes may occur anywhere of roads and lead to significantly different dynamic response of 

trailers. Therefore, it is important to understand trailer’s dynamic behaviours over different 

types of potholes. Table 3.5 lists types of potholes studied in this work. The double-side 

potholes usually are seen at road-bridge junctions and the single-side potholes are usually seen 

on roads, as shown in Figure 3.24. When vehicles run on some country roads, they may run off 

road slightly, in which only parts of the wheels will remain on the road surface. This obstacle 

can be considered as a special pothole model when part of tyres runs over it. The width of road 

edges is defined based on three specific locations (outer, mid and inner wheel centre), see 
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Figure 3.25. For the geometry of potholes, referred to Vicroads Road Management Plan 2014 

(Vicroads, 2014), a width of 300 mm and depth of 100 mm are considered.  

Table 3.5: Classification of potholes in the simulations.  

Double-side Passing Normal 

Single-side Passing 

Normal 

Road Edge 

Outer Wheel Centre  

Mid of Wheels 

Inner Wheel Centre  

 
Figure 3.24: Normal classes of potholes for single- (left) and double-side (right) passing. 

 

 
Figure 3.25: Road edge at inner (left), mid(middle) and outer (right) wheel centre. 

 

Firstly, the case of wheels over double-side potholes was investigated. The semi-trailer model 

was firstly running over a wide pothole at a speed of 100 km/h. At the time of 5 seconds, i.e. 

when the trailer ran over a pothole, a larger peak vertical force in the second axle was recorded 

compared to that in other axles, as shown in Figure 3.26.  

After that, in order to investigate the influence of speed on vertical loads of axles in pothole 

events, the model was simulated to run over an identical pothole at various speeds, varying 

from 20 km/h to 100 km/h. It is interesting to observe that the peak vertical loads on axles have 
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inverse relationship with vehicle speed. Figure 3.27 demonstrates that the load will increase 

with decreasing speed. This inverse relationship may be resulted from the loss of contact 

between the types and the potholes at high speeds.  

In addition to the double-side passing classification, different classifications of potholes are 

also investigated, and the results are presented in Figure 3.28 and Figure 3.29. In Figure 3.28, 

the vertical axle loads when an identical trailer drove over double-side potholes and single-side 

potholes are compared. Before vehicle ran over the pothole, the vertical forces on both-side 

wheels are close to each other because of the symmetric geometry and this is also tenable when 

both sides of wheels drove over identical potholes. However, in the case of the pothole on one 

side, a significant force bump happens when the trailer goes over the pothole and the trends of 

two plot behave oppositely, as shown in Figure 3.28. Additionally, contrary to a trailer that 

only has left wheels driving over potholes, i.e. single-side passing event, a trailer whose both 

left and right wheels drove over identical potholes, i.e. double-side event, has same vertical 

axle loads on both left and right axles. The force is lower than the axle load of left wheel of the 

trailer in the single-side event, i.e. the wheel experienced pothole, but higher than the right 

wheel.  

Moreover, in the comparison of overall classifications of potholes, see Figure 3.29, vertical 

loads of trailer axle are highest in the case of road edge located at inner wheel centre, and the 

suspension vertical loads in the outer wheel centre pothole events present a similar behaviour 

as the loading seen in flat road driving scenarios. 

 

 
Figure 3.26: Total vertical loads on one side of the first, second and third axle. 
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Figure 3.27: Vertical axle loads under different speeds. 

 

 
Figure 3.28: Comparison between double and single side of trailer passing pothole.  

 

 
Figure 3.29: Influence of classification on vertical loads of the first axle. 
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3.4. Summary 

In this study, the dynamic responses of a heavy-duty trailer model (SN89689) under 5 driving 

scenarios were simulated and analyzed in ADAMS/CAR, viz. constant speed, accelerating, 

braking, cornering, and pothole event. The main findings for the scenarios are summarized 

below: 

• In constant speed scenarios, the fifth wheel and axles of the trailer mainly contribute to 

vertical loads other than longitudinal and lateral loads during running in a steady state. 

 

• In braking and accelerating scenarios, the magnitudes of longitudinal loads at loads at 

the fifth wheel and axles have significant growth according to the accelerating or 

decelerating rate. 

 

• In cornering events, the lateral load of approximate 17.1 kN tends to contribute 

centripetal forces at the fifth wheel, while the fifth wheel contributes negligible lateral 

load in straight events.  

 

• In pothole events, the variation of vertical loads at suspensions are more significant 

than that at the fifth wheel, which means that suspensions play more important role 

when a trailer drives over a pothole. Additionally, a total of 5 different pothole cases 

were investigated and it was found that the pothole size has a considerable impact on 

the trailer’s dynamic behaviour.  

The impact of pothole size is further discussed in Chapter 4. 
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Chapter 4: Machine Learning Analysis of Trailer’s Dynamic 

Performance 

 

4.1. Introduction 

Machine learning methods have been widely used in material science and automation 

manufacturing fields. Reasonable predictions can be made through machine learning 

algorithms after studying a number of actual data sets. In our research, although the simulation 

software is a valid and efficient way to output dynamic results, in order to further reduce the 

computational cost, a machine learning model, which was trained by the outputs from 

ADAMS/CAR, was developed. Due to some industrial companies’ interest of typical in-service 

loads, i.e. MaxiTRANS company, the machine learning model in this study was trained to 

estimate the maximum vertical load (as output) from a force-time history when a trailer passes 

over a pothole, when various geometrical parameters (width, length and height) of a pothole 

and vehicle speed were regarded as inputs. The study was proposed to replace parts of 

computational simulations with a well-trained machine learning model. After that, this may 

also provide a methodology of processing field test data. Additionally, a well-trained machine 

learning model can provide reliable weight factors for each input. The input contributing the 

most to the peak vertical load can be determined from the algorithm. 

At the beginning, a wide range of pothole events with specific values of the input features were 

designed and run in ADAMS/CAR. Data was outputted via ADAMS/CAR and organised for 

training and validating. Two machine learning models were selected in this study. A simple 

linear regression model was firstly tried in order to investigate a fundamental relationship 

between the inputs and output. After confirming the high possibility of a linear relationship 

between the inputs and output, the data was proceeded to be trained and validated by 

multivariable polynomial regressions with higher complexities and polynomial degrees. At the 

end of this chapter, a summary is given.  
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4.2. Methodology  

4.2.1. Linear Regression with Multiple Variables 

In this study, linear regression models were decided to analyse the relationship between the 

four parameters, viz width, length, height of pothole and vehicle speed, and the peak vertical 

load.  

Basically, simple linear regression (SLR) is a model to estimate a linear relationship between 

one single variable and an output, expressed as  

 �̂�(𝑥) = 𝜔𝑥 + µ (4.1) 

where �̂�(𝑥) is the dependent variable (peak vertical load in this study), 𝑥 is the input feature, 

𝜔 is the regression coefficient and µ is the intercept which is a constant. 

In this study, four input features were investigated, which cannot be investigated by a SLR 

model. Therefore, in order to understand the influence coefficient of each feature, multivariable 

linear regression (MLR) was employed, which follows the same procedure of SLR. An 

important assumption of MLR methodology is that there is the linearity between the 

independent and dependent variables. The basic MLR model used in this study is defined as 

follows. 

 �̂�(𝑥) = 𝜔1𝑥1 +𝜔2𝑥2 +𝜔3𝑥3 +𝜔4𝑥4 + µ (4.2) 

where 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are the input features, which are the width, length and depth of the 

pothole and vehicle speed accordingly, then 𝜔1 , 𝜔2 , 𝜔3  and 𝜔4  denote their corresponding 

coefficients (weights). µ is a constant. 

4.2.2. Min-Max Normalization 

It should be noted that the values of input features are not in the same range, which means that 

the coefficient computed by the MLR model cannot indicate the real influence coefficients of 

these features. Therefore, Min-Max normalization was employed as the pre-processing data 

method, as shown in equation below.  

 
𝑥′ =

𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 (4.3) 

where 𝑥′ is the normalized value of input feature. max(𝑥) and min(𝑥) are the maximum and 

minimum values of the same feature.   
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After a general MLR equation was developed, a new MLR model was trained by the data, 

which had been normalized to 0 to 1 range by Min-Max method. The coefficients generated by 

this new MLR model were applied to understand the influence of features in this study.  

4.2.3. Multivariate Polynomial Regression 

Based on the study of MLR models, multivariable polynomial regression (MPR) models with 

higher complexities were investigated in order to improve the accuracy of prediction. For 

example, the MPR model with a polynomial degree of 2 is presented as follows. 

 �̂�(𝑥) = 𝜔1𝑥1 + 𝜔2𝑥2 + 𝜔3𝑥3 +𝜔4𝑥4 +𝜔5𝑥1
2 + 𝜔6𝑥2

2 +𝜔7𝑥3
2

+ 𝜔8𝑥4
2 + 𝜔9𝑥1𝑥2 +𝜔10𝑥1𝑥3 +𝜔11𝑥1𝑥4

+ 𝜔12𝑥2𝑥3 +𝜔13𝑥2𝑥4 +𝜔14𝑥3𝑥4 + µ 

 

 

(4.4) 

In comparison with MLR, MPR can prove results with better prediction behaviour. However, 

MLR can explicitly explain the significance of input features by outputting their weight 

coefficients. Therefore, in this study, two MLR models were firstly introduced in order to 

present a basic expression of the relationship and understand the significance of the factors 

(width, length, depth of pothole and vehicle speed). Then, MPR models were developed for the 

improvement of prediction accuracy. The polynomial degree was increased until the accuracy 

would not be improved significantly, see the results section.  

4.2.4. Least Squares Method 

For linear regression models, the least squares method is generally employed as the cost 

function to determine the best fit of coefficients to a set of data. As defined in Eqn. (4.5), the 

least squares method minimises the sum of squared residuals between the actual data and 

predicted values (regression line).  

 

𝐽(𝛳) = 𝑚𝑖𝑛∑(𝑦�̂�(𝑥𝑖) − 𝑦𝑖)
2

𝑚

𝑖=1

 (4.5) 

where 𝑚 is the number of training samples and (𝑦�̂�(𝑥𝑖) − 𝑦𝑖) denotes the difference between 

predicted value 𝑦�̂�(𝑥𝑖) and actual value 𝑦𝑖. 

After that, the normal function approach was used to solve the cost function.  

 𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (4.6) 

where 𝑋 and 𝑌 are the input feature value and output value of each instance. 

4.2.5. Mean Absolute Error and Coefficient of Determination 

After the machine learning models were trained and finalised by the training group of data, 

quantitative assessments of the degree that predicted values fit actual output values were 
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developed with the validating dataset. In this chapter, mean absolute error (MAE) and 

Coefficient of determination (R2) are employed as the criteria that evaluates the predictive 

performance of the determined machine learning models, leaded by the following equations.  

 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑦�̂� − 𝑦𝑖|

𝑛

𝑖=1

 (4.7) 

 
𝑅2 = 1 −

∑ (𝑦�̂� − 𝑦𝑖)
2𝑛

𝑖=1

∑ (𝑦�̅� − 𝑦𝑖)2
𝑛
𝑖=1

 (4.8) 

where n is the number of data samples and 𝑦�̅� is the mean of data. 

Generally, the mean absolute error, MAE, represents the variance between predicted and target 

values, which means that the lower the better. Similarly, a high value (close to 1) of R2 assesses 

that a great range of the variability of the dataset can be presented by the MLR or MPR model. 

 

4.3. Simulation Design and Data Collection  

Due to the significant contribution of the single-pothole scenarios to vertical axle loads, the 

machine learning model was proposed to investigate single-pothole events. The data of this 

project was collected from ADAMS/CAR. The SN89689 model was chosen as the studied 

semi-trailer model which is 35883 kg (with loads) weight and has three trailer axles, which is 

a common deign of heavy-duty trailers. The vehicle was simulated to drive over potholes with 

different geometrical parameters on its left side under different speeds. The peak load 

contributed by the second axle, which had been determined as the axle contributing the highest 

vertical load in pothole scenarios, to the trailer frame was selected as the proposed output.  

In real life, most of the in-service environments are considered as high-speed scenarios and 

drivers often try to avoid potholes at low-speed conditions. Therefore, the speed settings of the 

investigated simulations were proposed within a high-speed range. The speed feature was 

designed as 90, 95, 100, 105, 110, 115 and 120 km/h, meanwhile, in order to including a wide 

range of real cases, the geometrical parameters (see Figure 4.1) were modified based on the 

fundamental pothole model which was constructed and simulated in the previous chapter. The 

input values are summarised in Table 4.1. Data was recorded under a frequency of 5000 Hz 

which guaranteed the collection of the peak value.  
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Figure 4.1: A sample of pothole event and geometrical parameters of pothole. 

Table 4.1: Values of input features. 

Input Feature 

Width of Pothole 

(cm) 

Length of Pothole 

(cm) 

Depth of Pothole 

(cm) 

Vehicle Speed 

(km/h) 

0 25 0 90 

27 27 2.5 95 

54 28 4.0 100 

81 29 5.0 105 

108 30 6.0 110 

135 31 7.5 115 

162 33 10 120 

 

With random combinations of each possible input feature value, 2401 groups of data were 

initially outputted. However, the dynamic behaviours of scenarios with pothole widths of 0 and 

27 cm were observed to be same. As shown in Figure 4.2, in comparison to the wheel width of 

SN89689 model (160 cm), the pothole width of 27 cm was extremely narrow and only had 
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negligible influence on the vertical dynamic loads. Therefore, the groups with a pothole width 

of 0 cm were ignored, and a total of 2058 groups of data was finally applied to the machine 

learning models. Then the dataset was randomly divided into training group and validating 

group with a ratio of 7:3. 

 
Figure 4.2: A rear view of left wheels and a 27 cm wide pothole. 

 

4.4. Results 

Firstly, following the development of training and validating data, MLR models were initially 

developed to investigate the linear relationship between input features and output and 

understand basic influence of each input feature. After determining the general MLR model, 

the R2 of training and validating group was outputted as 0.724 and 0.705, while MAE of them 

were determined to be 853.8 and 863.1, which led to a significantly potential linear relationship 

between the input features and output results. It should also be noted that overfitting and 

underfitting issues could be negligible due to the exceedingly small difference between the 

error of training and validating dataset. The coefficients of the input features in two MLR 

models are listed in Table 4.2, from which the width and depth of pothole were observed to 

have close and significant influence on the vertical suspension load in pothole events, while 

the length feature had the least impact. Additionally, same to the finding in previous chapter, 

an inverse influence of vehicle speed on vertical suspension peak loads were proved by the 

evaluated MLR equation. 
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Table 4.2: Coefficients of variables in two MLR models. 

Coefficient of Variable General MLR Model 
MLR Model Trained by 

Normalized data 

µ (constant) 34393.97 36019.42 

𝜔1 (width of pothole) 28.58 3858.59 

𝜔2 (length of pothole) 95.61 764.89 

𝜔3 (depth of pothole) 354.54 3545.36 

𝜔4 (vehicle speed) -17.07 -512.18 

 

Subsequently, MPR models with higher polynomial degree were developed to improve the 

behaviour of the prediction. Then R2 and MAE were then employed to evaluate the goodness 

of the MPR models, which are summarised in Table 4.3. When R2 is higher than 0.90, the 

regression model can be classified as a ‘very good’ model, while a regression model with R2 

valuing over 0.80 can be classified as ‘good’ (Sivák & Ostertagová, 2012). Accordingly, MPR 

models can be treated as an appropriate method for processing the data of this study. In order 

to decide a MPR model with higher accuracy and lower complexity, the training and validating 

results are plotted in Figure 4.3 (a) and (b), from which the accuracy was observed to be 

improved by increasing the model’s polynomial degree. When the polynomial degree reached 

6, MAE and R2 values would no longer increase significantly with higher degrees. It should 

also be noted that, although the higher the polynomial degree is, the better prediction accuracy 

of MPR models will be, the complexity of equation of MPR would grow exceedingly as well. 

Therefore, the MPR model with a polynomial of 6 was determined as the final model for data 

analysis in this study. Additionally, similar to the situation of the MLR model there is still no 

overfitting or underfitting issue occurring in this case study due to the extremely close R2 and 

MAE values between training and validating results. The finalised feature terms and coefficient 

of the MPR model with the polynomial degree of 6 were summarised in Appendices A and B, 

respectively. The intercept, µ, of the 6-degree MPR model was finalised as 714273.35. 
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Table 4.3: Training and validating results of MPR models. 

Polynomial 

Degree 

MAE 

(Training) 

MAE 

(Validating) 

R2 

(Training) 

R2 

(Validating) 

1 853.833 863.124 0.724 0.705 

2 586.536 602.973 0.877 0.868 

3 490.052 521.931 0.911 0.899 

4 244.828 255.899 0.976 0.974 

5 105.781 114.839 0.995 0.994 

6 40.587 49.218 0.999 0.998 

7 25.112 33.595 0.999 0.999 

8 23.342 32.532 0.999 0.999 

9 17.561 28.311 0.999 0.999 

 

 
(a) 

 
(b) 

Figure 4.3: MAE (a) and R2 (b) results of MPR models with different polynomial degrees.  
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4.5. Summary 

In this chapter, the relationship between the peak vertical load from the second axle (the side 

which drove over a pothole) and some specific parameters in pothole events (width, length, 

depth of pothole and vehicle speed) was investigated. Among the geometrical parameters, 

depth and width were found to have the most significant influence on the vertical load while 

length had a less impact. In comparison to geometry of pothole, vehicle speed was obtained to 

have less and inverse influence on axle’s vertical load. Linear regression based models were 

developed to predict the vertical load under various input feature values. A MPR model with 6 

polynomial degree was finally evaluated to contribute the best result with considerable 

complexity. 
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Chapter 5: Conclusions and Recommendations  

5.1. Conclusions 

In this project, dynamic analysis of vehicles was investigated with an ultimate goal of 

generating load spectrums for fatigue analysis by using damage tolerance approach. This thesis 

mainly focused on the dynamic analysis of heavy-duty trailers, while considering the effects of 

driving scenarios and road conditions. Dynamic simulation of heavy-duty trailers is presented 

in Chapter 3. Firstly, to establish a valid simplified suspension system that could be used in 

multi-body dynamics simulation, a mild strength steel trailer model was constructed in a 

multibody dynamics simulation software ADAMS/CAR. It was then calibrated based on 

Australian design principle and validated against some field test data. After that, a new 

ADAMS/CAR model, representing an available commercial high strength steel trailer design, 

named SN89689, was constructed. It was simulated to run under different scenarios, i.e. 

constant speed driving, braking, accelerating, cornering, and road conditions.  It was found that 

various road conditions had significant effect on the vehicle’s dynamic performance, 

particularly on the vertical load on each axle.  

In order to further investigate the dynamic performance of a trailer associated with different 

road conditions, vehicles driving over potholes with various geometrical parameters, i.e. width, 

length and depth, at different speeds were studied and further combined with linear regression 

based machine learning analysis in Chapter 4. A MLR model was generated to investigate the 

relationship between the four input variables, i.e. vehicle speed, width, depth and length of 

pothole, and the output, i.e. peak vertical load at the left side of the second axle. After that, 

MPR models with different polynomial degrees were developed to enhance the predicting 

performance. This machine learning analysis approach has the potential to replace part of the 

computational simulations or simplify field test.   

In the analysis of dynamic behaviours of vehicles associated with different driving scenarios 

and road conditions, it was found that: 

• In constant speed scenarios, vertical loads at the fifth wheel and suspensions of the 

trailer were observed to be much higher than longitudinal and lateral loads. This finding 

highlighted the significance of further analyzing vertical load at these trailer 

components. 
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• In braking and accelerating scenarios, it was found that the magnitudes of longitudinal 

loads at the fifth wheel and axles had significant growth, in comparison to constant 

speed scenarios. The increase of magnitude was positively correlated to the varying rate 

of vehicle speed. 

 

• In comparison to the negligible lateral load at the fifth wheel in straight events, 

significant centripetal forces were contributed by the fifth wheel in cornering events. 

Additionally, remarkable vertical load differences between left and right sides of axles 

were caused by cornering manoeuvres.  

 

• A total of 5 different pothole cases were investigated and it was found that the pothole 

size had a considerable impact on the trailer’s dynamic behaviour. In pothole events, 

the variation of vertical loads at suspensions were more significant than that at the fifth 

wheel. Therefore, vertical loads at suspension system associated with various pothole 

geometries were further studied using machine learning approach. 

 

In the machine learning analysis, it was found that: 

 

• By comparing coefficient of each variable, the normalized MLR model identified that 

there was a positive correlation between the pothole’s geometrical parameters and 

vertical load, while vehicle speed contributed a less and negative influence. Among the 

geometrical parameters, the width and depth of pothole had significantly higher 

influence on the vertical axle load than length. 

 

• All the MLR and MPR models have been validated against the validating data group 

during the study. The results well exhibited the validity of LR approach in investigating 

relationship between variables involved in pothole scenarios. The LR models could 

contribute a minimum accuracy of approximately 70%.  

 

• The MPR model with 6 polynomial degree achieved accuracy of approximately 99.9%, 

which was treated as the finalised machine learning model in this study. Exceedingly 

accurate prediction of peak vertical load at the left side of the second axle could be 



63 
 

made by inputting vehicle speed and geometrical parameters of pothole within the 

ranges studied in this research.  

 

5.2. Limitations and Recommendations  

During the research, some potential topics also interest the author. However, due to the limited 

time and the scope of the project, they have not been approached. These could be applied to 

the future research: 

• The current field test used for the validation of a mild strength steel trailer recorded 

trailer’s in-service load over a 442 km route. However, driving manoeuvres and road 

profiles were not recorded. Specific road tests could be developed for typical driving 

scenarios or road conditions. This enhanced field test data is deemed to be more 

appropriate for the validation of computational model.   

 

• Separate passive suspension systems were used on trailer models in this study. However, 

on real trailers, active suspension systems are attached and connected with each other 

via a centralised control system. It is believed that dynamic analysis of a MBD 

computational model associated with a control algorithm would be beneficial for further 

investigation.  

 

• The influence of cargo on trailer has not been investigated in this study. It would be 

interesting to investigate the effects of location of mass centre, state (liquid or solid) 

and weight of cargo. 

 

• More variables, e.g. cargo parameters, suspension parameters, etc, could be used for 

further machine learning study. This could enhance the scope of application of the 

machine learning model. Meanwhile, the accuracy of linear regression approach might 

be influenced by changing input variables or outputs. Therefore, more methodologies 

of machine learning analysis could be proposed. 
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Appendix A: Features of the 6-Degree MPR Model 
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 'x1 x2 x3^4', 

 'x1 x3^5', 

 'x2^6', 

 'x2^5 x3', 

 'x2^4 x3^2', 

 'x2^3 x3^3', 

 'x2^2 x3^4', 

 'x2 x3^5', 

 'x3^6' 
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Appendix B: Coefficients of the 6-Degree MPR Model 
 

     1.90593391e-03,  5.69567181e+00,  1.04827972e-01,  1.27922477e+01, 

    -2.00999192e+01,  1.70101633e+02,  4.00384947e+01,  2.94861386e+02, 

    -2.81680249e+02, -1.71343472e-01,  7.33115961e+01, -1.13194044e+02, 

     3.10332356e+01,  2.46426954e+02, -8.37360571e+02, -2.29883017e+00, 

    -6.06720874e-01,  2.92183094e-01, -1.05602518e+00,  3.47045866e+01, 

     5.65178408e+01, -2.08884807e+01, -2.18424246e+01, -2.55284288e+01, 

     9.73160898e+00, -3.44036580e+01, -1.11564340e+01, -4.91272645e+01, 

     1.09342294e+02, -8.51587313e+01,  4.20762774e+01, -2.94466559e+02, 

     1.10442367e+01,  1.23127882e+01,  1.49629332e+01,  2.04090377e-02, 

    -8.82305561e-03, -1.22629432e-02,  1.29115819e-03,  2.26810104e-02, 

    -2.08400369e-01,  2.80164261e-02,  2.36583822e-01,  2.88752596e-02, 

     9.59934677e-03, -1.65752089e+00, -2.17203891e+00,  4.00446862e-01, 

     1.23888200e+00, -9.90914329e-02,  1.66623059e-01, -2.27687481e-01, 

     1.82724867e-04,  3.68630872e-01, -1.19174292e-01,  1.98417198e+01, 

    -4.95069208e+00, -1.70321174e+01, -1.57970395e+01,  8.84675913e+00, 

     7.08533169e+00,  4.36352677e+01,  2.21584736e-01, -1.14836583e+00, 

    -1.82420592e+00,  1.62960216e+01, -5.64719544e+00,  1.23266748e-01, 

    -7.34876548e-02, -2.99451772e-02, -9.14973704e-05,  5.00693709e-05, 

     1.42975412e-04, -5.69324879e-06,  5.16644343e-05,  7.92283491e-04, 

    -2.81524500e-05, -2.00245468e-03, -1.07407965e-04, -5.48036497e-07, 

     1.02893971e-04,  1.71504701e-03, -6.75542950e-04,  2.15465824e-03, 

     7.95274182e-04, -5.93949938e-05,  2.49330646e-03, -3.11842846e-04, 

    -2.28465230e-04, -5.11746118e-05,  3.06808203e-02,  4.32879476e-02, 

    -3.77989753e-03, -3.64896258e-02,  3.53252740e-03, -1.72095322e-03, 

    -2.13347075e-02, -5.25966673e-03, -6.08715912e-04, -6.99338948e-04, 

    -7.96175705e-02,  1.40919334e-02,  1.39587781e-04, -2.24211409e-03, 

     6.61021078e-04, -6.51168438e-01,  1.18923750e-01,  4.40827614e-01, 

     4.41034397e-01, -1.32951512e-01, -6.98235368e-02, -7.28784537e-01, 

     3.55598790e-02, -3.33318790e-02, -2.46885747e-02, -1.66940783e+00, 

    -1.43247642e-01, -2.37020058e-03,  1.36576008e-02,  1.24840528e-02, 

    -1.09219086e+00,  3.64759327e-01,  4.07930027e-02, -2.25439398e-03, 

    -2.91543039e-04, -4.14194494e-04,  1.63961090e-07, -1.17713341e-07, 

    -4.73000753e-07,  8.00316791e-09, -6.52605010e-08, -1.49592299e-06, 

     7.04949059e-08,  5.27025328e-06,  3.33794162e-07,  2.14822649e-09, 

    -4.31470148e-07, -2.37911800e-06,  2.09269185e-07, -1.43787380e-06, 

    -5.67339779e-07, -4.21593569e-08, -4.74069007e-06,  5.28448099e-07, 

    -6.12550934e-08,  5.01425390e-09, -5.35315235e-06, -4.76489863e-06, 

     5.79638453e-06, -2.67230370e-05, -3.62950455e-06,  5.94133340e-07, 

    -1.60642778e-07, -1.59315639e-06, -1.96796715e-06,  1.38336944e-07, 

    -7.44772096e-05,  4.57932161e-06,  5.70835416e-07,  9.24913678e-07, 

     9.64831770e-08, -2.51930188e-04, -2.72329957e-04,  7.54481119e-05, 

     5.61788540e-04, -1.26201692e-04, -2.70140033e-05,  8.20968498e-05, 

    -7.45616065e-05,  4.19022319e-05,  1.21078756e-05,  8.69912539e-04, 

    -3.19183445e-05,  4.87756242e-05, -5.59313236e-06, -1.91447498e-08, 

     4.71108551e-03, -2.47085699e-04, -4.16639801e-05, -3.39409749e-06, 

     5.57073653e-06, -1.33084143e-06,  7.07616493e-03, -1.88721130e-03, 

    -4.88379108e-03, -3.19947754e-03,  2.15248876e-03,  1.16425838e-03, 

     7.38557905e-03, -1.83429054e-03, -4.32508141e-04, -2.00082834e-04, 

     8.62016422e-03, -8.88814160e-04,  6.87162977e-04,  1.98139829e-04, 

     9.60585208e-05,  5.24131186e-02, -1.40073681e-03,  1.08856619e-03, 

    -1.73210586e-04, -5.56649469e-05, -3.45601983e-05,  2.33183970e-02, 

    -1.00386386e-02, -3.29203775e-04, -2.07552622e-04,  2.42517285e-05, 

     2.74671004e-06,  2.00234308e-06 

 


