
Robust Multilingual OCR: from Ancient Indic
Texts to Modern Indian Street Signs

Submitted in partial fulfillment of the requirements

of the degree of

Doctor of Philosophy

of the
Indian Institute of Technology Bombay, India

and
Monash University, Australia

by

Rohit Saluja

Supervisors:

Ganesh Ramakrishnan (IIT Bombay)

Parag Chaudhuri (IIT Bombay)

Mark Carman (Monash University)

The course of study for this award was developed jointly by
Monash University, Australia and the Indian Institute of Technology Bombay, India

and was given academic recognition by each of them.
The programme was administrated by The IITB-Monash Research Academy

(Year 2020)

Declaration

I declare that this written submission represents my ideas in my own words and
where others’ ideas or words have been included, I have adequately cited and refer-
enced the original sources. I declare that I have properly and accurately acknowl-
edged all sources used in the production of this report. I also declare that I have
adhered to all principles of academic honesty and integrity and have not misrep-
resented or fabricated or falsified any idea/data/fact/source in my submission. I
understand that any violation of the above will be a cause for disciplinary action
by the Institute and can also evoke penal action from the sources which have thus
not been properly cited or from whom proper permission has not been taken when
needed.

Student Name: Rohit Saluja

iii

Abstract

It has been an integral part of the human journey to try and create machines that
mimic us to ease our jobs, such as translation, reading, typing, and proofreading.
Optical Character Recognition (OCR), the process of converting document or scene-
text images to editable electronic format, is one of the outcomes of such human en-
deavor. The basic OCR steps include the pre-processing of image, text recognition,
and post-processing. The pre-processing may include noise-removal, binarization,
and/or segmentation to improve the quality of reading by the OCR systems. The
text recognition, which is analogous to reading and typing by humans, is conven-
tionally performed using a character classifier or a word recognizer, which is prone
to errors. The post-processing of the erroneous OCR text is analogous to the proof-
reading by humans. It involves automatic corrections using an auxiliary source such
as language dictionaries or language models. The quality of correction depends upon
the type of auxiliary source, which is analogous to the expertise of a proofreader. It
is also possible to improve the quality of corrections with human-in-the-loop.

To first comprehend the problem of text recognition in ancient Indic docu-
ments, we observe that a large proportion of printed ancient documents (referred to
as monolithic document collections) exhibit nearly uniform font and language char-
acteristics. Further investigations demonstrate that texts in Indic languages contain
a large proportion of out-of-vocabulary words due to regular fusion and agglutina-
tion using conjoining rules. Moreover, using Open Source and Commercial systems,
we observe Word Error Rates (WER) of around 20 − 50% on nearly 100k OCR
words from the printed documents of different Indic languages. We further assert
that any OCR system, even with accuracies as high as 90% is not sufficiently useful,
and requires a tremendous manual effort for corrections unless complemented by a
partially automated correction mechanism. On monolithic document collections, it
is desirable that the error correction system continuously improves itself by incor-
porating user feedback. We thus present OpenOCRCorrect (Saluja et al., 2017b;
Adiga et al., 2018): an interactive framework for assisting word-level corrections in

v

vi Abstract

Indic OCR documents. The framework leverages generic word dictionaries and a
domain-specific vocabulary grown incrementally based on user corrections. It also
learns OCR-specific confusions on-the-fly. We have incorporated word conjoining
rules to parse OCR words and discover their potentially correct sub-strings. Fur-
thermore, we present a dual-engine environment to cross-verify potential errors and
corrections. We also present a plug-in classification approach to further improve
the error detection results by tuning the probability threshold for classification. We
show that such an interactive approach for word-level corrections applies to Indian
languages with varying degrees of inflections. Given the role of user interaction in
OpenOCRCorrect, we have carefully designed the UI to reduce the overall cognitive
load by use of transliteration schemes, suitable color-coding, and learning on-the-
fly from interactions. We then adopt a character level Long Short Term Memory
(LSTM) model with a fixed delay for jointly addressing the problems of error detec-
tion and correction in Indic OCR (Saluja et al., 2017a). Such a model learns the
language as well as OCR-specific confusions. We work on the task of error correction
in four different Indian languages with varying complexities. We further augment
the input to LSTM based models with different encodings to capture the sub-word
frequency values on a corpus (Saluja et al., 2019b). Such models perform well when
the correction dataset is in order of 100k words. However, better models work when
the dataset is in order of 1000k words. We present that a complex encoder and de-
coder model consisting of a separate LSTM for each, aided by attention mechanism,
is successful in learning the correction mechanism similar to the basic LSTM model.
Using such a model, our team “CLAM” (Character Level Attention Model) secures
2nd position in the ICDAR, 2019 PostOCR Competition on 10 languages. We also
achieve the highest correction score for Finnish.

Our investigations demonstrate that modern Indian street signs and license
plates can pose an even tougher machine reading challenge. They often appear in a
variety of languages, fonts, sizes, and orientations. To solve the problem of reading
street text in videos, we first leverage state-of-the-art text spotters (generally trained
on distinct text images only) to generate a large amount of noisy labelled training
data (Saluja et al., 2019a). If specific domain knowledge is available, the noisy
data is filtered using a pattern derived from such knowledge (e.g., in license plates;
the text has to follow a set pattern). We also augment the data with interpolated
boxes and annotations that make the training and testing robust for reading text in
videos. Further use of synthetic data increases the coverage of the training process.
The baselines include black-box detectors such as Convolution Neural Networks

Abstract vii

(CNN) and human annotators, followed by the Recurrent Neural Network (RNN)
based recognizer. Next, we build in the capability of training the model in an
end-to-end fashion on scenes containing multi-lingual text by incorporating i) an
inception-based CNN encoder and ii) a location-sensitive attention mechanism in
the decoder. We present the first results of using multi-headed attention models on
text recognition in videos and illustrate the advantages of using multiple heads over
a single head. To ease the correction process in Indian traffic videos via interactivity,
we present StreetOCRCorrect, which uses available detectors and trackers to break
down the multi-vehicle videos into multiple clips, each containing a single vehicle
from the video (Singh et al., 2019). We then incorporate a multi-frame consensus
(on the OCR output of each clip) for generating suggestions. The high-quality
annotations obtained from such a framework can be helpful to continuously update
an extensive database for surveillance as well as improving deep models on video
data. On the one hand, attention-based methods have shown promise for scene-text
OCR, while on the other hand, the attention masks tend to wander in the scene,
making the process less effective. Our efforts also include associating semantics with
attention masks and then thoroughly supervising those masks to improve scene OCR
in videos.

Table of Contents

Certificate iv

Abstract v

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Optical Character Recognition . 1

1.1.1 Document OCR . 2
1.1.2 Photo OCR . 2

1.2 Building blocks of the OCR process 2
1.2.1 Pre-processing . 2
1.2.2 Text recognition . 3
1.2.3 Post-processing . 3

1.3 Human-machine Interactions in Digitization 4
1.4 Interesting details about Indian languages 5
1.5 Monolithic document collections . 7
1.6 Prominent OCRs for Indian languages 8

1.6.1 OCR systems for Indic texts 8
1.6.2 OCR systems for Indian street signs 11

1.7 Motivation . 12
1.7.1 Introducing OpenOCRCorrect 12
1.7.2 Post-OCR competitions in non-Indic languages 15
1.7.3 Reading modern Indian street scenes 16

1.8 Publications and Awards . 17
1.9 Contribution . 19

ix

x Table of Contents

2 Literature Survey 21
2.1 History of document OCR . 21

2.1.1 Hardware-based techniques 21
2.1.2 Software-based techniques . 22
2.1.3 Trends in Indic OCR . 23

2.2 History of photo OCR . 25
2.2.1 Trends in Automatic License Plate Recognition 27

2.3 Summary . 28

3 Research Questions 29
3.1 Generic OCR . 29
3.2 Indic OCR texts . 30
3.3 Reading Indian street signs . 32

4 Classical ML Techniques for OCR Corrections 35
4.1 Interactive framework for OCR corrections 36
4.2 Auxiliary sources . 37

4.2.1 Static auxiliary sources . 37
4.2.2 Dynamic auxiliary sources . 38

4.3 Experiments and Results . 40
4.3.1 Error detection . 40
4.3.2 Suggestions generation . 42
4.3.3 System analysis . 43

4.4 Improving the Sanskrit Classifiers . 45
4.4.1 Language-specific Auxiliary Sources 46
4.4.2 Error Detection Methods and Results 47

4.5 Conclusion . 52

5 Deep Learning Techniques for OCR Corrections 53
5.1 Indic OCR Corrections using LSTMs 53

5.1.1 RNNs and LSTMs . 54
5.1.2 Problem scope, Data description and Analysis 56
5.1.3 LSTM with a fixed delay . 58
5.1.4 Experiments . 60
5.1.5 Results . 62

5.2 Sub-word Embeddings for OCR Corrections 66
5.2.1 Approaches . 68

Table of Contents xi

5.2.2 Model . 69
5.2.3 Datasets used for the Experiments 71
5.2.4 Experiments . 71
5.2.5 Error Detection Results . 72
5.2.6 Error Correction Results . 74

5.3 Attention-based models . 77
5.3.1 ICDAR’17 Post-OCR Competition 78
5.3.2 ICDAR’19 Post-OCR Competition 82

5.4 Conclusion . 85

6 Reading Indian Street Signs 87
6.1 Ineffective systems for Indian street signs 88
6.2 License plate recognition . 89

6.2.1 Dataset Generation . 90
6.3 Reading street signs . 90
6.4 Datasets used for our experiments . 91
6.5 Baseline model . 92
6.6 OCR-on-the-go model . 94
6.7 Experiments . 96
6.8 Evaluation . 97

6.8.1 Visualization of attention masks 97
6.8.2 License plate videos . 98
6.8.3 French and Indian street signs 99

6.9 StreetOCRCorrect . 100
6.9.1 Video Results . 103

6.10 Conclusion . 103

7 Taming the Attention Masks 105
7.1 Motivation . 106
7.2 The CATALIST model and enabling datasets 107

7.2.1 The CATALIST model . 108
7.2.2 The ALCHEMIST videos . 109
7.2.3 The CATALISTd videos . 113

7.3 Experiments . 114
7.4 Results . 115
7.5 Frame-wise accuracies for all transformations 117
7.6 Conclusion . 119

xii Table of Contents

8 Conclusion and Future Work 121
8.1 Limitations and Future Work . 123

References 129

Acknowledgements 145

List of Figures

1.1 Basic OCR steps . 3
1.2 Unique word coverage between Sanskrit, Malayalam, Kannada and

Hindi . 5
1.3 Sample words at unit distance away from each other in English & Hindi 6
1.4 An image (left) and its OCR output (right) 7
1.5 Hindi newspaper crop (left) and its OCR output (right) 7
1.6 Examples of OCR words corrected by our framework 12
1.7 A screen shot of OpenOCRCOrrect 14
1.8 On the left is a simple image1 in Bengali (and English), on the right

is E2E-MLT output . 16

4.1 OpenOCRCorrect: Learn Globally Correct Locally 36
4.2 System analysis of documents in different languages 43
4.3 Examples of partially correct suggestions 44
4.4 Examples of correct out-of-vocabulary words 44
4.5 Examples of incorrect OCR words with improved readability 45
4.6 Examples of complex OCR errors not corrected by our framework . . 45

5.1 Examples of OCR words corrected by LSTM in four Indic languages . 54
5.2 A Recurrent Neural Network unrolled for t-time units 55
5.3 LSTM gates . 56
5.4 Histogram of edit distance between OCR and ground truth in word

pairs . 57
5.5 An LSTM model with 2 units of delay (appears as character $), hav-

ing 1 hidden layer of 3 units, unfolded for 8/time units 59
5.6 Histogram of edit distance between OCR & ground truth word pairs

(in blue), LSTM output & ground truth word pairs (in red) 64
5.7 Examples of OCR words partially corrected by LSTM 65
5.8 Examples of words not corrected, corrupted (top, bottom) by LSTM 65

xiii

xiv List of Figures

5.9 Correction flow of our model for a complex word in Sanskrit 67
5.10 Flowchart for transformation of language data for training fastText . 68
5.11 LSTM model with 7 units of delay for two types of encodings 70
5.12 Sample correction examples of agglutination (blue-purple) & fusion

(dark red) with respect to (previous) basic LSTM model 76
5.13 A simple word level attention model by Klein et al., 2017 77

6.1 On the top is the complex image2 in Bengali (and English), on the
bottom is E2E-MLT output . 88

6.2 Sample chaotic scenes with predictions of our model 89
6.3 Top: FSNS sample, Bottom: Indian street sign samples 91
6.4 Sample synthetic scenes with Devanagari & Latin scripts. 91
6.5 Training models on synthetic data (top) and real noisy labelled data

(bottom) . 92
6.6 Top: Two-headed split-attention based model. Bottom: Attention

masks, note that the two masks (shown in red and blue) have unique
coverage. 94

6.7 Breakdown of a video using our framework in both the spatial and
temporal domain . 100

6.8 Components of our framework3. 101
6.9 Sample inputs, extracted from chaotic scenes, given to our framework 102

7.1 Sample video frames from CATALISTd 106
7.2 Frame wise accuracy of 3 text-spotters on a simple video exhibiting

pan . 107
7.3 Our model (and its first four attention masks) that tames attention

at multiple levels of granularity. 108
7.4 For videos with camera pan, we find Homography between the corners

of a rectangle and 4 points equidistant from them (which form one
of the blue trapeziums). 110

7.5 Generating video with camera pan (3 frames at the bottom for dark-
blue, green and light-blue perspectives respectively) from an image
(at the top) . 110

7.6 Generating video with camera tilt (frames at the bottom) 111
7.7 Generating video with camera roll (frames at the bottom) 111
7.8 Generating video with camera zoom (frames at the bottom) 112
7.9 Generating video with camera translation (frames at the bottom) . . 112

List of Figures xv

7.10 Sample frames from the synthetic videos with multi-level text-boxes . 113
7.11 A sample video frame from ICDAR’15 competition with text-boxes

sorted using our algorithm . 115
7.12 Frame-wise accuracy of 3 text-spotters on a video exhibiting roll . . . 117
7.13 Frame-wise accuracy of 3 text-spotters on a video exhibiting zoom . . 118
7.14 Frame-wise accuracy of 3 text-spotters on a video exhibiting tilt . . . 119
7.15 Frame wise accuracy of 3 text-spotters on a video exhibiting translation119

List of Tables

1.1 Different Projects where in OpenOCRCorrect is used 8
1.2 Word Error Rates (WER) on 7 Sanskrit books for 3 different OCR

systems: ind.senz, Google OCR and Tesseract 9
1.3 Word Error Rates (WER) of Google OCR for different Indian languages 9
1.4 Tesseract Word Error Rates (WER) reported by Smith, 2013 10
1.5 Complex Sanskrit OCR words corrected by our framework 13

4.1 Error detection results in Sanskrit, Marathi and Hindi 41
4.2 Percentage of erroneous words correctly suggested by OpenOCRCorrect 42
4.3 Error detection results with lookup based methods 47
4.4 Error detection results in single-engine environment 48
4.5 Error detection results in multi-engine environment 50
4.6 Error detection results for other domains 50
4.7 Caption for LOF . 51

5.1 One Hot Vector and corresponding SLP1 character for letters in Fig. 5.5 58
5.2 Error detection results in Indic OCR. *Vinitha and Jawahar, 2016 . . 62
5.3 Decrease in WER and percentage of erroneous words corrected by

LSTM . 63
5.4 Error detection for smaller datasets in Gujarati and Telugu 63
5.5 Error correction for smaller datasets in Gujarati and Telugu 64
5.6 Errors correction by LSTMs trained with different contexts in Sanskrit 66
5.7 Datasets used for our experiments . 71
5.8 Effect of pre-training fastText with different datasets and proposed

procedure in Sanskrit . 73
5.9 Error detection results in Indic OCR, *Results in Section 5.1.5 73
5.10 Error corrections by our model, *Results in Section 5.1.5 75
5.11 Top 3 confusions (Correct→OCR) in Sanskrit, Malayalam, Kannada

and Hindi . 76

xvii

xviii List of Tables

5.12 Datasets used in ICDAR (2017) post-OCR competetion 78
5.13 F-scores for error detection in ICDAR (2017) POCR competition . . 80
5.14 Auto-corrections/Suggestions by each team in ICDAR (2017) POCR

competition . 81
5.15 Datasets used in ICDAR (2019) post-OCR competetion 82
5.16 F-scores for Error Detection in ICDAR, 2019 POCR Competition . . 84
5.17 Percentage of Corrections/Suggestions by each Team in ICDAR, 2019 84

6.1 Datasets used for our experiments. Iavg stands for Average Image
Intensity. 92

6.2 Evaluation on license plate videos . 98
6.3 Evaluation on FSNS dataset and IIIT-ILST Devanagari dataset . . . 99

7.1 Distribution of videos in the CATALISTd dataset 113
7.2 Test Accuracy on different datasets. *results in Section 6.8.3 116

Chapter 1

Introduction

The digitization of images can empower machines to index historical literature that
exists only in printed form. Moreover, digitization is important in both academia as
well as industry for storage, reproducibility, and summarization. Due to the need
for digitization, Optical Character Recognition (OCR) has became an active area of
research in document understanding and computer vision. Nevertheless, even as the
quality of OCR systems has improved, OCR has remained a challenging problem in
various contexts like the digitisation of ancient texts and reading the haphazard text
present in modern street scenes. Furthermore, language specific challenges make the
overall process cumbersome. This enabled the language specific research of reading
images that contain ancient and modern texts.

In this thesis, we present our investigations in the field of automatically reading
ancient Indic texts and modern Indian street signs. We begin this chapter with a
discussion on OCR and its various forms in Section 1.1. We then describe the basic
OCR steps in Section 1.2. In Section 1.4, we present various interesting details
about Indian languages to understand the challenges involved in Indic OCR. We
then briefly discuss document collections and prominent OCR systems for Indian
Languages in Sections 1.5 and 1.6. The chapter continues with the motivation
for the necessity of interactive OCR corrections and improved scene-text models
in Section 1.7. We then conclude the chapter with publications, awards, and key
contributions in Sections 1.8 and 1.9.

1.1 Optical Character Recognition
Optical Character Recognition is the process of converting images of documents (or
outdoor/indoor scenes) to editable text format (Cheriet et al., 2007). This enables

1

2 Introduction

many applications, like the automatic processing of documents/forms/routing of
envelopes based on zip code, and the reading aloud of photographed text for the
visually impaired (Mor and Wolf, 2018). OCR can be broadly divided into two
categories: document OCR and photo OCR (or scene-text recognition), which we
discuss in Sections 1.1.1 and 1.1.2 respectively.

1.1.1 Document OCR

Document OCR is the process of text recognition in images like scanned books,
magazines and newspapers. As noted by La Manna et al. (1999), document process-
ing is a complex task, consisting of several steps and employing different techniques
according to its specific purpose. Variations such as domain specific texts, fonts (in
ancient books), languages, skew, scanner noise, layouts and tables present in such
images create challenges for any OCR system to produce reliable outputs. Document
OCR has many applications like data compression, enabling search or edit options
in the images, reading tables, form parsing (Davis et al., 2019), and can help in cre-
ating the database for resources/applications like language models, domain specific
dictionaries and machine translation.

1.1.2 Photo OCR

Photo Optical Character Recognition (photo OCR) aims to read scene-text
in natural images. It is an essential step for a wide variety of computer vision
tasks, and has enjoyed significant success in several commercial applications (Lee and
Osindero, 2016). Scene-text in the real world is generally unstructured, appearing
in a variety of languages, fonts, sizes and orientations. Additionally, movement of
the capturing camera makes photo OCR an even more challenging task. Various
applications including machine translation, autonomous driving and text to speech
rely on recognition of scene-text in images or videos.

1.2 Building blocks of the OCR process
As shown in Figure 1.1, the basic OCR steps conventionally include the pre-

processing of an image, text recognition and post-processing of the OCR text.

1.2.1 Pre-processing

The Pre-processing stage may include noise-removal, skew-correction, binariza-
tion, text-localization and/or segmentation. The OCR process typically includes

1.2 Building blocks of the OCR process 3

Skew Correction

Binarization

Text Localization

Segmentation

Pre Processing

Text Recognition

Post Processing

Text
Image

Image
Text

Figure 1.1: Basic OCR steps

segmentation of an image or document into higher levels of granularity such as
pages or columns or paragraphs to lower level of granularity such as lines or words
or even characters (Smith, 2007, 2009). For photo OCR, work specific to the lo-
calization task by Gupta et al. (2016), has also been extended to real-time text
detection (Liao et al., 2017; Minghui Liao and Bai, 2018). For multi-lingual text
images, this process may also include language identification for the selection of an
appropriate recognizer (Mathew et al., 2016).

1.2.2 Text recognition

In order to extract and read text, image classifiers (a.k.a. recognizers) are
used to read the individual characters (or sometimes entire words, lines or even
paragraphs) within an image (Smith, 2007; Smith et al., 2016; Arya et al., 2011;
Sankaran and Jawahar, 2013; Wojna et al., 2017). These classifiers can be simple
Gaussian Mixture Models (GMM) (Smith, 2007), Hidden Markov Models (HMM)
(Toselli and Vidal, 2013) or deep neural networks (Arya et al., 2011; Sankaran and
Jawahar, 2013).

1.2.3 Post-processing

The processing of images for recognition at character or word level often suffers
from segmentation errors (Kameshiro et al., 1999; Breuel et al., 2013; Smith, 2011).
Moreover, various degradations in the images (as can be seen in Figure 1.5) also

4 Introduction

lead to errors in the OCR output. Thus the post-processing of OCR text forms an
important part of the OCR process. Post-processing may be performed by following
a context free approach using a language dictionary, or a context based approach
using a language model (Smith, 2007; Saluja et al., 2017a). Smith (2011) discusses
the limitations of such approaches since they do not consider OCR specific errors or
confusion patterns, and concludes that the noisy-channel models that closely model
the underlying classifier and segmentation errors are required for the post-processing
of OCR text.

1.3 Human-machine Interactions in Digitization
Three scenarios are possible for human-machine interaction during the digitization
process:

1. Pre-processing by machine, recognition by humans.

2. Recognition by humans, post-processing by machines.

3. Recognition by OCR systems, post-processing by humans.

The first scenario wherein machines improve the image quality and human reads and
types the text in images is not much of a help since the visual system of the human is
a masterpiece and can recognize the text in document images despite various types
of noises. The pre-processing techniques are not as much of use to humans as they
are to the OCR systems themselves. Moreover, recognition by humans generally
requires additional proofreading step.

The second scenario, where human types the text in images and machine acts as
a proofreader, is analogous to spell-checkers. Here, despite using language resources,
human-in-the-loop is essential. Additionally, the first two scenarios are expensive in
terms of the typing efforts required by humans.

It can take a few years to correct just a thousand sets of books if a human
performs recognition. However, an OCR system can recognize such large volumes in
just a single day. Thus, the third scenario of text recognition by OCR systems and
proofreading by humans is exciting and can additionally benefit from the language
resources, the specific error patterns of the OCR systems as well as human-in-the-
loop. We will elaborate upon it in the subsequent sections.

1.4 Interesting details about Indian languages 5

0 2 4 6 8
No. of words (millions)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f U
ni

qu
e

T
er

m
s

Percentage of Unique Word Occurences

Sanskrit
Malayalam
Kannada
Hindi

Figure 1.2: Unique word coverage between Sanskrit, Malayalam, Kannada and Hindi

1.4 Interesting details about Indian languages
Certain vocabulary characteristics, such as dynamism and size, can be analyzed

through the graph of unique words versus corpus length. This has been studied
for Malayalam and Telugu by Sankaran and Jawahar, 2013. In Figure 1.2, we
present a similar analysis for Sanskrit, Malayalam, Kannada and Hindi. As shown,
the vocabulary is most dynamic/incomplete in Sanskrit, followed by Malayalam,
Kannada, and Hindi. This happens because Indic texts contain a large proportion
of out-of-vocabulary (OOV) words due to frequent fusion using conjoining rules
(Dīkṣita et al., 2006), of which there are around 4k in Sanskrit. For Indic Languages,
the conjoining rules are of two types, viz., agglutinative and fusional. The simple
rules involve the agglutination of valid word forms, just as the words “can” and
“not” form the word “cannot” in English. The complex rules involve the fusion of
joined words, analogous to the formation of “couldn’t” by joining the words “could”
and “not” in English. The same is illustrated with an example in English and
Sanskrit each. Valid lexicons are marked in alternate blue and green colors, and
fused n-grams in orange.

• Agglutinative Rules:

– Every + one = Everyone.

– अनतशयन + सृंकत + गथाविलः = अनतशयनसृंकतगथाविलः

• Fusional Rules:

– Would + not = Wouldn’t.

6 Introduction

– िनय + सबंधयोः + उपमानवने + उपादानात ्= िनयसबंधयोरुपमानवनेोपादानात ्

In Indic languages, often more than two words are conjoined using the same
agglutinative and fusional rules, as can be seen from the above examples. For
example, even if the word “wouldn’t” was an out-of-vocabulary (OOV) word, the
errors in the OCR output text corresponding to such a word could be corrected
based on the sub-word units derived from another vocabulary word (“couldn’t”).
This language phenomenon forms the basis of our work.

Figure 1.3: Sample words at unit distance away from each other in English & Hindi

Difficulties in developing spell-checkers for Hindi, Bengali & English involving
real-word errors (RWE) and non-word errors (NWE) are discussed by Choudhury
et al., 2007. An RWE occurs when a valid language word is misrecognized as another
valid language word, e.g. “their” misrecognized as ”there”. An NWE occurs when a
valid language word is misrecognized as an invalid word, e.g. “team” misrecognized
as “lcam”. Intuitively, Indic languages with a high degree of conjoining rules result in
a high percentage of non-word errors in the OCR texts. Now we discuss how even the
Indic languages with a low degree of conjoining rules are likely to be associated with
a higher fraction of real-word errors, as compared to English, in the OCR texts. As
reported by Choudhury et al. (2007), it is more complicated to create a spell checker
for Hindi and Bengali as compared to English due to a higher average node degree
within the spell-net graph for in the former languages with respect to the latter.
Spell-net is a weighted graph where words of the language are at the nodes and
the weight of each edge is edit distance between the word pair it connects. Sample
words at a unit distance away from each other in English and Hindi are shown in
Figure 1.3 for intuition. The higher number of word ambiguities occur in Indian
languages because they exhibit a larger number of prefixes and suffixes or root word
forms as compared to English.

1.5 Monolithic document collections 7

Figure 1.4: An image (left) and its OCR output (right)

1.5 Monolithic document collections
A document image in Sanskrit and its OCR output from ind.senz is shown in
Figure 1.4. Here one of the word text is highlighted on the right side of the image
to emphasize the presence of errors (shown in red) that occur in the OCR texts.
As discussed in the previous section, such errors are most prominent in Sanskrit as
compared to other Indic Languages.

Figure 1.5: Hindi newspaper crop (left) and its OCR output (right)

An example of a Hindi newspaper crop and its output from Tesseract (2020) is
shown in Figure 1.5. While the accuracy of OCR engines has improved for popular
languages like Hindi, nevertheless the degradation like that in newspapers is still
difficult to handle by the modern OCR systems.

As it can be observed from the above example, the errors in Indic OCR texts
appear due to language characteristics as well as degradation in the document im-
ages. Moreover, the OCR pipeline discussed in Section 1.1 has many stages that

8 Introduction

can benefit from interactive intervention, especially for large monolithic document
collections. By “monolithic” we mean documents typeset uniformly with the same
font and layout. We observe that a large proportion of printed historical documents
individually exhibit nearly uniform font and language characteristics. Thus, we refer
to them as large monolithic document collections. On such documents, an interac-
tive framework that learns from human corrections and adapts from the repetitive
patterns in the OCR texts (like OCR and document specific confusions and dynamic
language resources) is desirable.

S.No. Project/Work Total Work

1. Sandhi project at HSS Dept. - IIT Bombay (Sanskrit) 3405 pages
2. NVLI Govt. project (English + Hindi) 4500 pages
3. NVLI Govt. project (Marathi) 2500 pages
4. Jain manuscripts (Hindi) 1000 pages
5. Hindi edition of of Dharampal books1 1360 pages

Table 1.1: Different Projects where in OpenOCRCorrect is used

We work on five different digitization projects in different Indian Languages
(and English) as shown in Table 1.1. The table also includes the number of pages we
have digitized using OpenOCRCorrect discussed in Sections 1.7 and 4.1. As shown,
over 12k document images have been corrected in different languages (Sanskrit,
English, Marathi, and Hindi) using the system.

1.6 Prominent OCRs for Indian languages
In this section, we investigate three prominent OCR systems for the documents in
different Indian languages. We also discuss the existing works on reading the texts
in Indian street signs.

1.6.1 OCR systems for Indic texts

In this Section, we discuss 3 different systems for document OCR: ind.senz
(2020), Google (2020) free OCR and Tesseract (2020).

https://archive.org/details/DharampalCollectedWritingsIn5Volumes

1.6 Prominent OCRs for Indian languages 9

Book Name with Publisher Details # OCR ind.senz Google Tess.
Publication Year Pages WER WER WER

Raghuvaṃśam
Sanjīvinīsametam 1929

Nirṇaya Sāgara Press,
Mumbai

200 19 35 44

Nṛsiṃhapūrvottar-
-atāpanīyopaniṣat 1929

Ānandāśrama, Pune 160 34 41 52

Siddhānta Śekhara-1 1932 Calcutta Univ. Press 390 40 66 71
Siddhānta Śekhara-2 1947 Calcutta Univ. Press 241 61 53 81

GaṇakaTarangiṇī 1933
Jyotish Prakash Press,

Varanasi
150 34 46 65

Siddhānta Śiromaṇi 1981
Sampuranananda Univ.,

Varanasi
596 18 29 51

Āryabhaṭīyabhāṣya of
Nīlkaṇṭha III, Golapāda 1957

Anantaśayana Saṃskṛta
Granthāvaliḥ

177 26 45 77

Table 1.2: Word Error Rates (WER) on 7 Sanskrit books for 3 different OCR
systems: ind.senz, Google OCR and Tesseract

Ind.senz

Ind.senz is a commercial OCR system available for accurate and fast digitization
of Hindi, Marathi, Gujarati, Tamil, and Sanskrit (ind.senz, 2020). We obtain the
commercial version of Sasnkrit OCR and tested it for seven different books for which
the WERs are shown in Table 1.2. As shown, ind.senz performs better than Google
free OCR on 6/7 books, which in turn performs better than the Tesseract. Since we
start the research in around 2017, we work on the versions of these three systems
available during that time.

No. of µ, σ WER for
Language Word of Word Google

Images Length OCR
Sanskrit 86 k 10.22, 7.98 51.20

Malayalam 107 k 9.32, 4.93 38.32
Kannada 118 k 8.42, 3.86 47.44
Hindi1 67 k 5.29, 2.53 46.80

Table 1.3: Word Error Rates (WER) of Google OCR for different Indian languages

1We obtain Hindi dataset from Vinitha and Jawahar, 2016. Its predictions might not have
come from Google free OCR. We still present its statistics here to compare the mean and standard
deviation of word length with other languages.

10 Introduction

Google free OCR

Google free OCR-service works for over 245+ languages (Google, 2020). We test it
for images containing 86k Sanskrit, 81k Malayalam and 118k Kannada words from
different documents. The word errors are given in table 1.3. Moreover, it is essential
to note that the mean and standard deviation of word length is highest for Sanskrit
and lowest for Kannada, which is in accordance with the vocabulary characteristics
of these languages, as discussed in Section 1.4. Word Error Rates for Google free
OCR on 7 different Sanskrit books is given in Table 1.2.

Language No. of chars No. of words Char error Word error
(millions) (millions) rate (%) rate(%)

English 271 44 0.47 6.4
Italian 59 10 0.54 5.41
Russian 23 3.5 0.67 5.57

Simplified Chinese 0.25 0.17 2.52 6.29
Hebrew 0.16 0.03 3.2 10.58
Japanese 10 4.1 4.26 18.72

Vietnamese 0.41 0.09 5.06 19.39
Hindi 2.1 0.41 6.43 28.62
Thai 0.19 0.01 21.31 80.53

Table 1.4: Tesseract Word Error Rates (WER) reported by Smith, 2013

Tesseract

Tesseract (2020) is an open source OCR system that works for over 100 languages.
The first three versions of Tesseract OCR are based on classical machine learning
techniques. In these, the features based on the vectors obtained from character
boundaries are extracted. A Gausian Mixture Model (GMM) based classifier is
then used for identifying characters. The 4th version of Tesseract adds an LSTM
model, which directly works on line recognition. Word Error Rates for Tesseract on
7 different Sanskrit books are given in Table 1.2. The high word error rates occur
due to dataset scarcity and a large percentage of OOV words in Sanskrit (as depicted
by Figure 1.2). In Table 1.4, we present the accuracy of Tesseract OCR on Hindi,
and several other non-Indic languages, as reported by Smith, 2013. Here, Smith
(2013) claims that for Russian and most of the Latin-based languages, the parallel
scans of books and PDF text layers were used to create the datasets. For other
language styles, the datasets were created by typing the text from 10 consecutive
pages chosen randomly from books scanned under the Google books project.

1.6 Prominent OCRs for Indian languages 11

1.6.2 OCR systems for Indian street signs

We discussed the Word error rates for document OCR in the previous section.
In this section, we discuss the (high) error rates for different models and (scarcity
of) real world datasets available in the field of Indian scene-text recognition.

E2E-MLT

E2E-MLT is an unconstrained End-to-End method for Multi-Language scene Text
recognition (Bušta et al., 2018). The method is based on text localization, script
identification, and text recognition. The model is trained and tested on 11 languages
a.k.a Bengali, Latin, Arabic, Hangul, Chinese, Japanese, Korean, Hiragana, and
Katakana, using datasets available from the ICDAR Multi-lingual Scene Text De-
tection and Script Identification-Robust Reading Competition (Nayef et al., 2017).
Bušta et al., 2018 reports the word-error rate (WER) of 65.80% for Bengali (the only
Indian Language in the dataset). In contrast, the WERs are below 35% for Latin
(text as well as digits) and Hangul, and are above 53% for the remaining languages.
The dataset contains 18k scene images, with 2k images per language (Nayef et al.,
2017).

CNN-RNN

The conventional encoder decoder based approach where CNN encodes the features
from word images and RNN decodes them to produce text was trained on synthetic
data and tested on around 1k real images in Devanagari, Telugu and Malayalam
by Mathew et al., 2017. Here the connectionist temporal classification (CTC) layer
is used to align the RNN’s output to labels during training. The WERs of 57.1%,
42.8%, and 26.6% are reported for Devanagari, Telugu, and Malayalam, respectively.
The models were trained only on synthetic data, and for testing the text-boxes were
annotated manually. Moreover, it is important to note that for end-to-end systems,
such CNN-RNN based approaches additionally require a detector to localize word
boxes, which adds segmentation errors as discussed in Section 1.2.3. This further
increases the WER for such systems. Moreover, Mathew et al., 2017 uses around 1k
real word images in Devanagari, Telugu, and Malayalam for testing the recognition
models, which again shows that there was a scarcity of real datasets for Indian
scene-text recognition.

12 Introduction

Figure 1.6: Examples of OCR words corrected by our framework

1.7 Motivation

Now that we have discussed the datasets and error rates for reading texts in
Indian documents and scenes, we motivate the necessity of i) an interactive system
for OCR corrections in Sections 1.7.1 and 1.7.2, and ii) improving OCR for Indian
Street Signs in Section 1.7.3.

1.7.1 Introducing OpenOCRCorrect

As discussed in Section 1.1, OCR is the process of converting document images
to editable electronic format. The problem is that OCR text has errors as presented
in Section 1.6. To make the OCR output text usable we need to correct such errors.
Manual correction of OCR documents is very cumbersome as the user has to go
through the complete text, detect errors and correct them. While investigating
the process of OCR correction, we came across many examples of Indic OCR text
which were too hard for various online spell-checkers to verify and/or correct. The
suggestions generated were very far from the truth for most of the words. The major
reasons for this were:

1. The vocabulary was highly incomplete and limited, as discussed earlier in
Section 1.4.

2. Limited implementation of language-specific rules for verifying correct words.

3. The design for such spell-checkers is based on typing errors, and not on fre-
quent OCR n-gram confusions.

4. Ambiguities in suggestions from dictionary due to large number of basic word
forms as discussed in Section 1.4.

Some of the complex Sanskrit OCR words corrected by our framework are
shown in Table 1.5. In Figure 1.6, we show examples of OCR words in Sanskrit,

1.7 Motivation 13

OCR Word Correct Word

िवशीआआआआर ्िन िवशीणा र्िन
षठ◌्े।पिनषत ्ि◌९ षठोपिनषिद
भत ुर्म ुर्िनराआथ◌्ूएतिवटरः भत ुर्म ुर्िनरािथतिवटरः
मगलतिनवनाः मगलतयू र्िनवनाः
म◌ातपकं महाचकं
न◌ै९वात ्ि◌०इषयते हवैािभिषयते
तऊूउगव◌्ू◌ाय◌्ुऋउScऊ भगवायच

Table 1.5: Complex Sanskrit OCR words corrected by our framework

Marathi, Hindi and English (top to bottom), which have no suggested correction
from popular engines/spell-checkers. Errors are marked in red and corrections in
green. We are able to provide correction suggestions for such complex words through
the system that we briefly discuss here and then elaborate upon it in Chapter 4.
Correcting the errors is even more of a problem for Indian languages since the average
typing speed of professional Indian typists is much lower than the average typing
speed of a professional typist in English, which is 75 words per minute (WPM) at a
word error rate of roughly 0.5% (Vorbeck et al., 2000). The reason for the difference
in typing speeds is that the keyboard is designed for a total of 26 characters whereas
there are over 50 characters in Sanskrit. Moreover, the average length of a word in
Indian languages (as can be observed in Table 1.3 and Figure 1.7) is much longer
than English (which has the average word length of around five characters) due to
conjoining words which make typing a more difficult task for curating errors.

Thus, any OCR system with accuracy below 90% is not sufficiently useful unless
complemented by a partially automated mechanism for error detection and correc-
tion. Error detection can be considered a very important step in post-processing
OCR words. On large monolithic documents, it may be further desirable that the
error detection and correction system be able to continuously improve itself by in-
corporating user feedback.

We present an interactive framework for OCR corrections, which we call
OpenOCRCorrect, for building up more OCR specific datasets in Indian documents.
A screenshot of OpenOCRCorrect is shown in Figure 1.7. As shown, the frame-
work exploits different kinds of i) static auxiliary sources like multi-OCR texts, lan-
guage dictionary, and ii) dynamic auxiliary sources like domain dictionary and OCR
confusions which are updated on-the-fly with user corrections. The details about

14 Introduction

Figure 1.7: A screen shot of OpenOCRCOrrect

auxiliary sources, correction mechanism and the color coding used in the frame-
work are given in Chapter 4. The source code of OpenOCRCorrect is available at
http://tinyurl.com/y9lms89u.

Peformance measures for error detection and correction

The measures used for evaluating the task of error detection are defined below:

1. True Positives (TP) or Typing/Suggestion Efforts: Percentage of incorrect
OCR words that are marked as incorrect by the error correction system. Such
words would need typing corrections or suggestion selection (if suggestions are
available).

2. True Negatives (TN) or Verification Gain: Percentage of correct OCR words
that are marked as correct by the system.

3. False Positives (FP) or Verification Efforts by the error correction system.

4. False Negatives (FN) or Unavoidable Accuracy Loss: Since the user tends to
ignore such incorrect words, that are marked as correct, they lead to unavoid-
able accuracy loss.

5. Precision: TP/(TP+FP), Recall: TP/(TP+FN) and F-Score: Harmonic
mean of Precision and Recall.

http://tinyurl.com/y9lms89u.

1.7 Motivation 15

There is always a trade-off between true positives and true negatives, though its
degree might depend on the model. Use of conventional dictionary based methods
increases the TP but lowers the TN. The reason is that a system that marks most
incorrect words as incorrect also tends to mark several correct words as incorrect.
Similarly, a conjoining rule-based method for increasing TN lowers TP. This trade-off
can be captured through the F-Score. Maximizing the F-Score tends to yield models
that are balanced in both these measures. The task of error correction is evaluated
in terms of word error rates (WER) and/or Character error rates (CER). For the
datasets containing words between 10k and 50k, our framework leverages sub-word
level information and multi-OCR consensus as a baseline for error corrections. For
slightly better results, we recommend an adaptive plug-in classifier for identifying
errors in Chapter 4. For datasets containing around 100k OCR words, we use the
LSTM model with a fixed sequential delay in Chapter 5. In this section, we further
improve the correction results by augmenting the LSTM’s input with different sub-
word encodings. We then recommend LSTM based encoder-decoder models with an
attention mechanism for the datasets containing around 1000k OCR words at the
end of Chapter 5. Such large datasets are available in the post-OCR competitions
about which we discuss in the next section.

1.7.2 Post-OCR competitions in non-Indic languages

OCR accuracy affects the indexing and usability of digitized documents. In
recent times, consistent improvement of OCR systems has resulted in high accuracy
on modern document images. In contrast, many historical documents sitting on the
racks of libraries still result in poor OCR accuracy. As a matter of fact, ancient
publications with complex layouts and different types of preservation such as old
newspapers still hold out against state-of-the-art OCR technology. Thus, the process
of post OCR corrections on old digitized texts or on the latest complex documents
could greatly help the community.

The importance of post-OCR text correction has been emphasized in litera-
ture Kissos and Dershowitz, 2016; Evershed and Fitch, 2014 and is further high-
lighted by the introduction of the competitions for comparing systems for such
corrections in English, French, German, Finish, Spanish, Dutch, Czech, Bulgarian,
Slovak and Polish documents ICDAR, 2017, 2019. Such competitions invite research
scholars for the correction of over 12 million OCR characters. Two independent tasks
are proposed.

16 Introduction

• Error Detection: This includes the detection of error position and length in
the raw OCR texts.

• Error Correction: This task involves generating a suggested correction (or
ranked list of such corrections), for each incorrect word in given OCR texts.

Corrections scores for individual languages are calculated to enable language
based techniques. Our team “Character Level Attention Model” (CLAM) partici-
pated in both post-OCR competitions (ICDAR 2017 and 2019) and achieved overall
second position in both of them. This is discussed with details in Section 5.3.

Figure 1.8: On the left is a simple image2 in Bengali (and English), on the right is
E2E-MLT output

1.7.3 Reading modern Indian street scenes

We present a simple street sign image1 containing a mixture of Bengali and
English, and its OCR output using End-to-End method for Multi-Language scene-
text recognition (E2E-MLT) by Bušta et al. (2018) in Figure 1.8. The image has
uniform and large-sized (readable) characters, nearly orthogonal projection, empty
background, and readable text. We arrange the OCR text in natural reading order,
i.e., from top to bottom, followed by a left to right. We mark the errors in red.
As shown, there are many segmentation errors (in all the lines) in the OCR text
in addition to missing characters (in Bengali), which leads to extra noise characters
(in English).

Reading the text in modern street signs generally involves detecting the boxes
around each word in the street signs and then recognizing the text in each box.
Reading street signs is challenging because they often appear in a variety of scripts,
font styles, and orientations. Reading the end-to-end text in scenes has an advan-
tage of utilizing the global context in street signs or multi-line license plates, which

2Image courtesy: flickr.com/photos/rizwanoola/279104335.

flickr.com/photos/rizwanoola/279104335

1.8 Publications and Awards 17

enhances the learning of patterns. One of the important factors that separates a
character level OCR system from an end-to-end OCR system is reading order. At-
tention is thus needed to i) locate the initial characters, read them and ii) keep the
track of the correct reading order in form of change in characters, words, lines, para-
graphs or columns (in multi-column texts). This observation forms the motivation
for our work in this area.

Obtaining large scale multi-frame video annotations is a challenging problem
due to unreliable OCR systems as well as expensive human efforts. The predic-
tions obtained on videos by most OCR systems are fluctuating, as can be observed
in https://youtu.be/VcNSQGO0j7s for a text-spotter proposed by Bušta et al.,
2017. We also present fluctuating prediction accuracies for three OCR systems in
Figure 7.2). The fluctuations in the accuracy of the extracted text may also be
due to various external factors such as partial occlusions, motion blur, complex font
types, distant text in the videos. Thus, such OCR outputs are not reliable for down-
stream applications such as surveillance, traffic law enforcement and cross-border
security system. We present a framework for correcting complex license plate pat-
terns in street videos, that we call as StreetOCRCorrect. The high-quality output
obtained from such a framework can be used to prepare a large database. Such a
database can enable new applications like reliable text based search systems, ana-
lytic dashboards, traffic flow monitoring, etc. Such a database can also be used to
continuously improve the OCR models.

1.8 Publications and Awards
We have the following publications for the multi-lingual OCR work:

1. Saluja, Rohit, Ayush Maheshwari, Ganesh Ramakrishnan, Parag Chaudhuri,
and Mark Carman. “OCR On-the-Go: Robust End-to-end Systems for Read-
ing License Plates and Street Signs.”, In International Conference on Docu-
ment Analysis and Recognition (ICDAR), pp. 160-165. IEEE, 2019.

2. Saluja, Rohit, Mayur Punjabi, Mark Carman, Ganesh Ramakrishnan, and
Parag Chaudhuri. “Sub-word Embeddings for OCR Corrections in Highly
Fusional Indic Languages.” In International Conference on Document Analysis
and Recognition (ICDAR), pp. 160-165. IEEE, 2019.

3. Singh, Pankaj, Bhavya Patwa, Rohit Saluja, Ganesh Ramakrishnan, and
Parag Chaudhuri. “StreetOCRCorrect: An Interactive Framework for OCR

https://youtu.be/VcNSQGO0j7s

18 Introduction

Corrections in Chaotic Indian Street Videos.” In 2nd ICDAR Workshop on
Open Services and Tools for Document Analysis (ICDAR-OST), ICDARW,
vol. 2, pp. 36-40. IEEE, 2019.

4. Adiga, Devaraj, Rohit Saluja, Vaibhav Agrawal, Ganesh Ramakrishnan, Parag
Chaudhuri, K. Ramasubramanian, and Malhar Kulkarni. “Improving the
learnability of classifiers for Sanskrit OCR corrections.” In The 17th World
Sanskrit Conference (WSC), Vancouver, Canada. IASS. 2018.

5. Saluja, Rohit, Devaraj Adiga, Parag Chaudhuri, Ganesh Ramakrishnan, and
Mark Carman. “Error Detection and Corrections in Indic OCR using LSTMs.”
In 14th IAPR International Conference on Document Analysis and Recogni-
tion (ICDAR), vol. 1, pp. 17-22. IEEE, 2017.

6. Saluja, Rohit, Devaraj Adiga, Ganesh Ramakrishnan, Parag Chaudhuri, and
Mark Carman. “A Framework for Document Specific Error Detection and
Corrections in Indic OCR.” In 1st ICDAR Workshop on Open Services and
Tools for Document Analysis (ICDAR-OST), ICDAR, vol. 4, pp. 25-30.
IEEE, 2017.

We have also received the following awards for the work:-

1. Our team, Character Level Attention Models (CLAM) achieved the 2nd highest
percentage of corrections in the ICDAR 2019 post-OCR Competition on 10

languages as reported in Rigaud et al., 2019.

• We achieved the highest correction accuracy of 44% in Finnish (simi-
lar to Sanskrit in inflections as advocated by Sommer, 2016), which is
significantly higher than the overall winner (8% in Finnish).

• CLAM also achieved the 2nd position in ICDAR 2017 post-OCR Compe-
tition on English and French documents as per Chiron et al., 2017a.

2. Ganesh Ramakrishnan and Parag Chaudhuri. “Development of an adaptive
framework for end-to-end corrections in Indic OCR” IIT Bombay Impactful
Research Award, 2017 (received in 2018).

3. Rohit Saluja, Devaraj Adiga, Parag Chaudhuri, Ganesh Ramakrishnan and
Mark Carman. “A Framework for Error Detection and Corrections in San-
skrit”, Research and Innovation Symposium in Computing (RISC) 2017 (Most
Admired Poster Presentation Award), IIT-Bombay, India.

1.9 Contribution 19

1.9 Contribution
The key contributions of this thesis area as follows:

1. We present OpenOCRCorrect (Saluja et al., 2017b; Adiga et al., 2018), an
interactive framework for end-to-end corrections in Indic OCR. Such a frame-
work exploits multiple static and dynamic auxiliary sources to correct OCR
errors. We then present an adaptive plug-in classifier as a better error de-
tector. We show that sub-word level information, derived from background
knowledge or training data, can help to identify OCR errors in Indic languages.
Combining partial word forms, while taking care of OCR specific confusions
and conjoining rules, improves the accuracy of suggested corrections.

2. We propose a new LSTM-based error correction model that jointly learns the
language as well as the OCR patterns (Saluja et al., 2017a). This approach
tackles the problems of error detection and corrections at the same time for
Indic OCR. We demonstrate that augmenting the input of LSTM models with
the frequencies of OCR sub-words in the language data performs as well as
using fastText embeddings (trained on the same data) for correcting Indic
OCR (Saluja et al. (2019b)). Here, we propose a new procedure for training
fastText on sub-word units present in the constant length words (refer Sec-
tion 5.2.1). This involves the transformation of language data in such a way
that it not only includes all the substrings within the language but also re-
tains the character level context of substrings in the language. This method
is shown to improve the accuracy and speed (see Fig. 5.9) for error correction
in Indic OCR as compared to the state-of-the-art.

3. We present a character level attention model (CLAM), using which we achieve
the highest performance for Finnish at the ICDAR 2019 post-OCR competi-
tion by Rigaud et al., 2019.

4. For scene-text recognition, we present the first results for multi-head attention
models on the task, and demonstrate that each head has unique coverage over
the scenes (Saluja et al., 2019a). We design a new methodology for labelling a
large amount of training data, that allows us to work with over 1 million real
scene images containing license plates. We also release a new multi-lingual
scene-text data-set of 1k videos (with text in Hindi, Marathi, and English),
each covering an Indian street sign from different orientations. The multi-
lingual data-set and supplementary material for this work can be requested

20 Introduction

from https://www.cse.iitb.ac.in/~rohitsaluja/project. The source
code is available at https://github.com/rohitsaluja22/OCR-On-the-go.
We present StreetOCRCorrect (Singh et al., 2019): a novel framework for
OCR corrections in chaotic street videos. The modular framework is available
at https://github.com/rohitsaluja22/StreetOCRCorrect. In this frame-
work, we simplify the task of correcting multiple predictions of a vehicle in
videos.

5. Finally, we present a CATALIST3 model that ‘tames’ the attention (heads).
We provide supervision to the attention masks at multiple levels, i.e., line,
word and character levels while training the multi-head attention model. We
demonstrate that such supervision improves training performance and testing
accuracy. To train CATALIST and its attention masks, we also present a
synthetic data generator ALCHEMIST4 that enables the synthetic creation
of large scene-text video datasets, along with mask information at charac-
ter, word, and line levels. We release real scene-text dataset of 2k videos,
CATALISTd with videos of real scenes that contain scene-text potentially
in a combination of three different languages, namely, English, Hindi, and
Marathi. We record these videos using 5 types of camera transformations -
(i) translation, (ii) roll, (iii) tilt, (iv) pan, and (v) zoom to create transformed
videos.

In this chapter, we have explained the basic process for Optical Character
Recognition with respect to Indian texts and street signs. We have motivated the
work via a need for i) the framework to correct Indic OCR document text and ii)
improving the models for reading Indian street signs. We have further reported the
publications and awards we have received for the work. The chapter ends with our
key contributions in the field. We examine the generic as well as Indic literature
related to document and photo OCR in the next chapter.

3CATALIST stands for CAmera TrAnsformations for multi-LIngual Scene Text recognition.
4ALCHEMIST stands for synthetic video generation in order to tame Attention for Language

(line, word, character, etc.) and other camera-CHangEs and coMbinatIons for Scene Text.

https://www.cse.iitb.ac.in/~rohitsaluja/project
https://github.com/rohitsaluja22/OCR-On-the-go
https://github.com/rohitsaluja22/StreetOCRCorrect

Chapter 2

Literature Survey

We now turn attention towards the general trends in the field of the document and
photo OCR. We begin with a discussion on the history of document OCR in general
in Section 2.1. Then we elaborate upon the trends in Indic OCR and works on Indic
OCR corrections in Section 2.1.3. We finally discuss about the literature on photo
OCR and license plate recognition in Section 2.2. We then conclude the chapter
with a short summary in Section 2.3.

2.1 History of document OCR

In this section, we discuss the history of document OCR from early hardware-
based to recent software-based techniques, and then investigate the trends in Indic
OCR.

2.1.1 Hardware-based techniques

As noted by Mori et al. (1992); Sharma and Chaudhary (2013), the idea of Op-
tical Character Recognition (OCR) appeared even before electronic computers. Gus-
tav (1938) obtained a patent from Germany in 1929 and later from the US in 1935.
This work employed a photoelectric device to read digit images. Handel (1933) also
used a photoelectric device to match templates such as light through stencil digits
with digit images. Vertical projections of the ink pixels within the segmented slit
of characters were used by Glauberman (1956) for the reduction in complexity of
such initial template matching techniques. As reported by Sharma and Chaudhary
(2013), in 1949 RCA engineers operated on a computer-type OCR to assist the visu-
ally impaired for magazine subscription at the US Veterans Administration. Here,

21

22 Literature Survey

the typewritten documents were converted into punched cards for input into a com-
puter, which helped in processing around 15−20 million books a year. In 1962, RCA
(W. J. Hannan and Wemer, 1962) released its first multi-font (English and Russian
fonts) reading machine with 91 channels. Extensive research based on using auto-
correlation to recognize the image patterns was carried out by Horwitz and Shelton
(1961) from IBM in 1961. Under statistical decision methods, the number of ink
pixels that (a fixed set of) six different lines cross in a character image was used
to obtain a binary pattern for character recognition (Duda et al., 1973). Goodrich
et al. (1979) presented an efficient OCR system with an improved reading speed
from about 150 to 250 words per minute and also added a new voice system to
help visually impaired people. From 1984 and 1994, Tesseract was developed by
Smith (2007) at HP Labs, Bristol, as hardware-assisted software till 1988 and then
onwards as PC software till 1994.

2.1.2 Software-based techniques

Tesseract outperformed several commercial systems at UNLV 1995 Annual Test
of OCR Accuracy (Rice et al., 1995). Since 2005, the source code of Tesseract is
freely available1. Meanwhile, Jenkins et al. (1993) established the baselines on data
of ideal images with the three different point sizes (10, 12, and 14) and fonts (Courier,
Helvetica, and Times-Roman). This work employed eight commercial devices (with
concealed OCR algorithms) and established the best character accuracy ranging
from 99.21% to 99, 95%. Avi-Itzhak et al. (1995) used a simple neural network
with centroid dithering to recognize multi-size and multi-font character images with
extreme accuracy. Here a Support Vector Machine(SVM) is proposed for classifying
the character images. Lopresti (2009) presented an interesting analysis of different
types of OCR errors. The character level recognition methods discussed until now,
however, suffer from segmentation errors (Kameshiro et al., 1999). To avoid such
errors, some of the techniques rely on recognizing word images directly. Frinken et al.
(2010b) used Bidirectional Long Short Term Memory (BLSTM) with projection-
based features obtained from each word image to read its characters. Frinken et al.
(2010a) also used BLSTM for spotting words in handwritten documents. Several
other works related to the field of document OCR are Layout Recognition or Analysis
(Esposito et al., 1990; Watanabe et al., 1995; Shotton et al., 2009; Zhong et al., 2019),
Structure Extraction (Doucet et al., 2011, 2013, 2017), Table Structure Recognition
(Kieninger, 1998; Hu et al., 2000; Raja et al., 2020), and Text Detection (Nikitin

1now at http://code.google.com/p/tesseract-ocr

2.1 History of document OCR 23

et al., 2019; Melnikov and Zagaynov, 2020), which are not under the scope of this
thesis.

As explained in the Sections 1.2 and 1.6, OCR output text contains a variety
of errors owing to image degradation, misclassification, and segmentation at var-
ious levels. To make OCR output useful, such errors need to be either corrected
by humans or automatically. In the field of text correction in general, there have
been several attempts at using dictionaries to fix the errors (Kukich, 1992; Bassil
and Alwani, 2012; Carlson and Fette, 2007). The methods are not reliable for lan-
guages with agglutinations and fusions as their performance suffers due to the OOV
problem. Approaches that perform corrections based on context n-grams are more
effective. The work by Wilcox-O’Hearn et al. (2008) used a trigram-based noisy-
channel model. Golding and Schabes (1996) explored Bayesian methods based
on part-of-speech trigrams for corrections based on context. The work by Smith
(2011) further concluded that noisy-channel models that closely model the under-
lying classifier and segmentation errors are required by OCR systems to improve
performance.

The recent learning techniques by Afli et al. (2016); Mei et al. (2016); Kissos
and Dershowitz (2016) are proven to be effective in generating suggestions for the
OCR errors.a major online platform: The work by Chiron et al. (2017b) introduces
the OCR error model to predict the relative risk of mismatch targeted terms for
around 80M search queries, which are made every year over a National Library of
France. Nguyen et al. (2019) give various tips for practical post-OCR approaches,
by presenting some exciting insights on four English public datasets by Evershed
and Fitch (2014); Chiron et al. (2017a). Recently, a publication by Van Strien
et al. (2020) studies the impact of OCR errors on various NLP tasks like sentence
segmentation, dependency parsing, information retrieval, etc.

2.1.3 Trends in Indic OCR

In the last thirty years, there have been efforts to improve OCR systems for
printed Indic scripts as presented by Govindaraju and Setlur, 2009. Handcrafted
features were part of earlier works (Govindan and Shivaprasad, 1990; Chaudhuri and
Pal, 1997). Initial efforts by Pal and Chaudhuri (2004) relied on character level seg-
mentation and recognition. Subsequently, there were significant data accumulation
and annotation attempts (Bhaskarabhatla et al., 2004; Kumar and Jawahar, 2007;
Govindaraju and Setlur, 2009; Krishnan et al., 2014). Arya et al. (2011) improved
the quality of the OCR system for multiple Indian languages by using Support Vec-

24 Literature Survey

tor Machine (SVM) classifiers and script grammar. The research focus then moved
towards word-level approaches (Natarajan et al., 2005; Sankar K et al., 2010; Dutta
et al., 2012) in order to avoid the character level segmentation issues discussed in
Section 1.2.3. The recognition of Devanagari word images based on a neural net-
work has been explored by Jain et al. (2011) and Sankaran and Jawahar (2012).
Sankaran and Jawahar (2013) used the Devanagari specific segmentation free ap-
proach at (Unicode) text level to improve performance. Singh and Jawahar (2015)
demonstrated performance gains by training the neural networks directly on line-
level images. Recently Biswas et al. (2018); Paul and Chaudhuri (2019) also used
the line-level approach for improving the Bengali OCR systems. A recent work
by Das and Jawahar (2020) applies limited supervision for adapting OCR to reduce
the domain gap between training data and real books.

The conventional spell-checkers by Whitelaw et al. (2009); Hanov (2013);
Norvig (2011) make use of proximity-based matches, especially edit distance
(by Damerau, 1964 and Levenshtein, 1966) to words from a known vocabulary (pos-
sibly gathered from the web), followed by a language model for auto-corrections. The
various difficulties involved in developing a high-performing spellchecker for Hindi,
Bengali and English are discussed in Choudhury et al., 2007. Here, an example is
given that “fun” being misspelt as “gun” is a real-word error (RWE) and “fun” being
misspelt as “vun” is a non-word error (NWE). An observation is made by Choud-
hury et al. (2007), that “hardness of NWE correction is highest for Hindi, followed
by Bengali and English”. Intuitively, the larger the number of basic word forms
that exist in a language, the more candidates there are for replacing each erroneous
word and the harder it is to build a functioning spell-checker. Choudhury et al.
(2007) also present the complexities involved in creating effective spell-checkers for
Hindi, Bangla and English in terms of spell-nets. A spell-net is a graph with words
as nodes and edit-distance as the weights of its edges. The spell-net for Hindi and
Bengali has a higher average degree as compared to English. This leads to a higher
fraction of inter-word ambiguities in Indic languages. Moreover, in the spell-nets for
Indic languages, the correlation between degrees of neighbouring words (nodes) is
higher than English. This makes it more difficult to rank the candidate suggestions
for an incorrect word whenever the word has a high degree in the spell-net. Recent
work on neural language correction by Xie et al. (2016) has shown the benefits of
using Recurrent Neural Networks (RNN) for the purpose of correcting the text. We
use a Long Short Term Memory (LSTM) model in one of the work (Saluja et al.,
2017a) for post-OCR corrections. LSTM models can remember longer term context

2.2 History of photo OCR 25

of the input sequence and might, therefore, be quite successful in correcting OCR
induced errors. As discussed by Sankaran and Jawahar (2013), error detection for
Indic languages presents singular challenges such as large unique word lists, lack of
linguistic resources and lack of reliable language models. There are many exam-
ples of work in the literature that focus on post-OCR corrections for specific Indian
languages. The techniques used by Pal et al. (2000) include morphological parsing
for Bangla; shape-based statistics were utilized for Gurmukhi by Lehal et al. (2001),
and a multi-stage graph module with a sub-character model for Malayalam was used
by Nair and Jawahar, 2010.

By using a Support Vector Machine (SVM, proposed by Bennett and Demiriz,
1999) classifier, Sankaran and Jawahar (2013) outperform the conventional lookup
technique for detecting Indic OCR errors. Vinitha and Jawahar (2016) further im-
prove the results by using the gaussian mixture models (GMMs) and RNNs. We
set new benchmarks for the tasks of error detection and corrections in Indic OCR
using LSTMs (Saluja et al., 2017a). A recent work presents a copying mechanism for
post-OCR corrections in romanised Sanskrit (Krishna et al., 2018). Recently (Saluja
et al., 2019b), we improve the performance of previous state-of-the-art model (Saluja
et al., 2017a) by the use of sub-word embeddings (refer to Section 5.2). Further, the
post-OCR competitions by ICDAR (2017, 2019) highlight the importance of such
works. We use attention-based character level encoder-decoder models to achieve
the overall 2nd highest corrections in both these competitions. The winners of these
competitions also use similar models (with slight variations that we discuss in Sec-
tion 5.3). Collectively correcting the OCR text of a cluster of similar images is
proposed to reduce 70% of human efforts in a recent work by Das et al. (2019) on
a large number of English and Hindi documents.

2.2 History of photo OCR
Applications of Optical Character Recognition (OCR) are not limited to document
images, but include also photos of street signs. We now introduce the approaches
to tackle various issues in the field of photo OCR. Spotting text in scene images is
typically performed in two steps, viz., i) localization of the text within the image (i.e.,
detection of word-level boxes), and ii) recognition of the text (i.e., extracting the
character sequence). Works specific to text localization are proposed by Gupta et al.,
2016. Liao et al. (2017); Minghui Liao and Bai (2018) augment such work to real-time
detections in the end-to-end scenes. Better solutions in terms of accuracy and speed

26 Literature Survey

are presented (Karatzas et al., 2015; Bušta et al., 2017). The problem of scene-
text spotting, however, remains complicated owing to variations in illumination,
capturing methods and weather conditions. For instance; state-of-the-art recall,
precision, and F-measure scores on the COCO-Text dataset as reported by Veit et al.,
2016 are as low as 28.33, 68.42 and 40.07 respectively. Moreover, the movement of
the camera (or objects containing text) and motion blur in videos can make it
harder to recognize the scene-text correctly. There has been a rising interest in end-
to-end scene-text recognition in images over the last decade (Bartz et al., 2017; Shi
et al., 2017; Karatzas et al., 2013, 2015; Bušta et al., 2017). Recent text-spotters
by Bušta et al., 2017, 2018 include deep models that are trained end-to-end but with
supervision at the level of text as well as at the level of words and text-boxes. The
two recent breakthroughs in this direction, which work directly on complete scene
images without supervision at the level of text boxes, are:

1. STN-OCR: A single neural network for text detection and text recognition
by Bartz et al., 2017. The model contains a spatial transformation network
that encodes the input scene image. It then applies a recurrent model over the
encoded image features to output a sequence of grids. Combining the grids
and the input image returns the series of word images present in the scene.
Another spatial transformer network process the word images for recognition.
This work does not need supervision at the level of detection.

2. Attention-OCR by Wojna et al. (2017): This work employs an inception net-
work (proposed by Szegedy et al., 2016) as an encoder and an LSTM with
attention as a decoder. The work is interesting because it does not involve
any cropping of word images but works on the principle of soft segmentation
through attention. The attention-OCR model performs character-level recog-
nition directly on the complete scene image thus utilizing the global context
while reading the scene. This model is an open-source TensorFlow (a popular
library for deep learning by Abadi et al., 2016) implementation.

These works both experiments on a French Street Name Signs (FSNS, an example
is shown in Figure 6.3 (top)) dataset, on which Attention-OCR performs the best.
The Attention-OCR model also outperforms another line-level segmentation based
method (refer to work by Smith et al., 2016) on the FSNS dataset. In Chapter 6, we
will introduce a model that outperforms these models on the FSNS dataset using
multi-head attention mechanism (Saluja et al., 2019a). In this work, we also set new

2.2 History of photo OCR 27

benchmarks for the task of reading Indian street signs and license plates in a large
number of video frames.

2.2.1 Trends in Automatic License Plate Recognition

We aim to address a more specific scene-text recognition problem in the In-
dian context, viz., correcting the license plates text in traffic videos. Automatic
License Plate Recognition (ALPR) is an essential component of surveillance sys-
tems. The problem is especially challenging in the Indian context owing to con-
ditions such as chaotic traffic, multi-line license plates with variable-sized charac-
ters, cursive/handwritten fonts, and non-rectangular as well as old-dusty license
plates. It’s even harder to recognize plates in the videos due to motion blur, varying
scene/camera orientations and low-resolution cameras.

License plate recognition is generally performed in two steps: i) license plate
detection, and ii) license plate recognition. Du et al. (2013); Jain et al. (2016); Li
and Shen (2016) use features such as edge, texture, colour, etc. for license plate
detection. However, such approaches suffer from the problem of an excess of false
positives. Early works on character-level plate recognition utilize methods such as
connectivity, projections, template matching, etc. (Yoon et al., 2011; Nomura et al.,
2005; Zhang et al., 2013; Rasheed et al., 2012). These methods suffer from the
problem of segmentation errors due to overlapping characters and confusions owing
to visually similar n-grams. There have been efforts by Jiao et al. (2009) towards
developing robust methods based on learning to overcome such errors.

The literature has moved gradually from character-based to sliding window-
based methods and then finally to word-level recognition via neural networks. For
example, Li and Shen (2016) recently use sliding window-based CNN classifiers
and RNNs to recognize characters in the license plates. However, methods based
on sliding windows are computationally expensive since they require the rejection
of a large fraction of non-character images. Recent work on Indian license plate
recognition by Jain et al. (2016) utilizes edge-based features. A specific CNN then
discards the false positives in this work. The license plates are then cropped from the
scenes and passed to another CNN for recognition. Further, a CNN-based character
level recognizer and a spatial transformer layer to overcome variations in brightness
and tilt are also employed. A recent tool by Lenc et al. (2019) for annotating a large
amount of scene-text images addresses the rareness of such tools. We also develop
a tool for annotating a large number of video frames (refer Singh et al., 2019 and
Section 6.9).

28 Literature Survey

2.3 Summary
In this chapter, we investigated the existing literature in the field of document OCR
and as well as Indic OCR. We then discussed the various works in the field of photo
OCR. We motivated the move towards end-to-end systems for reading text in the
field of photo OCR. We further discussed trends for the specific problems of reading
license plates. In the next chapter, we will reflect upon different research questions
related to the multi-lingual OCR systems for Indic texts and Indian street signs.

Chapter 3

Research Questions

Now that we have examined the process of Optical Character Recognition (OCR) in
documents as well as scenes and various trends in these fields, we investigate different
research questions associated with our work in this chapter. We begin by discussing
questions related to generic OCR in Section 3.1, followed by the questions related
to OCR on Indic texts and Indian street signs in Sections 3.2 and 3.3 respectively.

3.1 Generic OCR
In this section, we address the questions related to generic OCR systems.

Is it possible to improve the performance of generic OCR systems using sequence
modelling or deep learning techniques?

Although reading image characters appears to be a simple object classification
problem, the diversity in fonts and languages, cameras and/or scanners, adaptive
language texts, etc. make the overall process complicated. Therefore, we need to
investigate why classical machine learning techniques are not useful in developing
robust reading systems? Are the independence assumptions in sequential modelling
techniques such as Hidden Markov Models (HMM) (Rabiner and Juang, 1986), ac-
curate for real OCR systems? Are Long Short Term Memory (LSTM) models (Sun-
dermeyer et al., 2012), that avoid such assumptions, more effective in sequentially
modelling the tasks of correcting OCR texts and reading text images? We answer
some of these questions in Sections 5.1, 5.2, 6.5 and 6.6. Some state-of-the-art deep
text-spotters like the one proposed by Bušta et al. (2017, 2018) use convolution
based networks (Krizhevsky et al., 2012) for detecting and recognizing scene-texts
to reduce the inference time. However, the sequence modelling techniques based on

29

30 Research Questions

LSTM (Wojna et al., 2017) also solve the problem of photo OCR. The convolution-
based text-spotters, in addition to some early works on sequence modelling, need an
additional Connectionist Temporal Classification (CTC, refer Graves et al., 2006)
layer for aligning the text output with the sequence. The recent works by Wojna
et al. (2017); Ly et al. (2019) avoid the need for a CTC layer by using an attention
mechanism in their models. This leads to the questions: Are attention-based deep
models more effective in reading the image text? Is it possible to read the characters
in paragraph-level images directly to utilize the global context and avoid the seg-
mentation errors that we discussed in Section 1.2.3? For answer to these questions,
refer Sections 6.5, 6.6 and 7.2.

How to correct a large volume of OCR texts with minimal human efforts?

Any OCR system, even in an industrial setting is never 100% accurate on real-
life images. As proposed by Lopresti and Zhou, 1997 and Abdulkader and Casey,
2009, multi-model consensus is thus employed to achieve high accuracies. Tasks
such as reading text in medical images and re-publishing library books expect no
compromise on text correctness. Thus we need to determine the best practices to
efficiently correct the OCR text with minimal human efforts. How can we leverage
uniform font and language properties in monolithic document collections for such
OCR correction tasks? We elaborate upon this in Section 4.1.

3.2 Indic OCR texts
We now discuss the questions related to Indic OCR texts in this section.

What are the most effective OCR systems for reading Indic texts? Do we need to
improve such OCR systems for making their outputs usable?

Different OCR systems train on different kind of datasets. Open-source systems
such as Tesseract and Google free OCR generally work well for English docu-
ments. Such systems, however, might not work as effectively for various Indian
languages. Another commercial system that we investigate is ind.senz (described
in Section 1.6). Do we need to improve the quality of existing OCR systems for
reading Indic texts? Can we directly improve the quality of Indic OCR texts by ex-
ploiting the OCR-specific or language-specific patterns? We answer these questions
in Sections 4.2, 5.1, 5.1.4, 5.2, 5.2.6 and 5.3.

3.2 Indic OCR texts 31

How to handle out-of-vocabulary problems in the inflectional Indian languages?

Owing to the complex conjoining rules, any off-the-shelf vocabulary in several
Indian languages is generally incomplete as affirmed by Sankaran and Jawahar,
2013; Vinitha and Jawahar, 2016. How should one approach this problem in
the context of resolving OCR errors? Is it possible to exploit such rules for
correcting the OCR texts? For detailed answers to these questions, refer Sec-
tions 4.2.1, 4.3.2, 4.4.1.a, 4.4.1.c, 4.4.2, 5.2 and 5.2.6.

What are the various auxiliary sources that one can leverage to correct OCR texts?

As discussed in the previous section and Section 1.4, texts in Indian languages suffer
from the problem of having a significant fraction of out-of-vocabulary words. Is it
possible to tackle this problem in the context of OCR errors by exploiting as many
auxiliary sources as available? We try to solve this problem in Section 4.2.

Is it possible to exploit LSTMs for resolving the Indic OCR errors?

As discussed in Section 3.1, Long Short Term Memory (LSTM) models avoid neigh-
bourhood independence assumptions. Such models also are successful language
models (Sundermeyer et al., 2012). Therefore, is it vital to explore the feasibility of
employing LSTMs or bidirectional LSTMs (BLSTMs) for Indic OCR corrections?
We use such models in Sections 5.1 and 5.2.

Is it possible to use the sub-word embeddings for improving the OCR quality for
Indian Languages?

An intuitive approach to tackle the problems related to out-of-vocabulary words is
to use sub-word embeddings. We need to determine that which type of sub-word
embeddings is best for Indian Languages. Can we further modify such embeddings
or train them differently to better suit the task of OCR corrections? We explore the
possible approaches in Section 5.2.

What are the different kinds of deep models that are most suitable for datasets of
order i) 100k OCR words, ii) 1000k OCR words?

Is it always true that larger the depth of the deep networks, larger is the dataset
required to train them? Is it true even when the networks being compared are differ-
ent, e.g. when we compare Convolutional Neural Networks (CNNs, refer Krizhevsky
et al., 2012) with Recurrent Neural Networks (RNNs, refer Mikolov et al., 2010)?

32 Research Questions

What are the best networks available for the OCR systems? Which one out of them
is best for resource-constrained languages? Moreover, which of them is worth in-
vestigating for the languages with a large amount of training data? We investigate
such questions and explore the answers in Chapter 5.

3.3 Reading Indian street signs
This section covers the questions specific to the OCR systems for reading Indian
street signs.

Is it possible to avoid segmentation of text images at different levels of granularity
for reading modern Indian street signs?

As discussed in Section 1.1, the OCR process typically involves the segmentation
of the image into paragraphs, lines, words, and sometimes even characters. Is it
possible to avoid the segmentation of these types or perform soft segmentation as
humans do? We could thus bypass the segmentation errors if deep models with such
capabilities are enabled. We discuss this in Chapter 6.

OCR systems could recognise entire words rather than characters, so why do
existing photo OCR systems still read individual characters in the images?

Tasks like machine translation, scene captioning, etc. often use word embeddings for
predictions. Still, for the task of reading scene-text images, the final output of all the
state-of-the-art models is a sequence of characters. It is important and interesting
to have the outputs of different applications in the same form to mimic multi-
tasking humans. So, Why do we train the scene-text recognition models to predict
the sequence of characters? Is the distinction between predicting the sequence of
characters or directly predicting the series of words relevant in the context of Indian
street signs because the Indian languages suffer from the out-of-vocabulary problem?
To gain an insight into the answer to this question, refer Chapter 6.

As it will become clear from the subsequent chapters, one of the intriguing
features of our work is that the models which we develop are robust to the different
languages and in turn the wildness of the languages. Moreover, the improvement
gains with respect to the state-of-the-art works present that our work is vigorous
against different kinds of degradations discussed in each chapter. After posing var-
ious research questions related to Indic OCR texts and reading Indian street signs,

3.3 Reading Indian street signs 33

we now conclude this chapter. We will explore the answers to these questions in sub-
sequent chapters. We begin with a detail discussion on interactive OCR corrections
in the next chapter.

Chapter 4

Classical ML Techniques for OCR
Corrections

As discussed in Section 1.6, OCR systems exhibit errors in the text they output.
In this chapter, we answer some of the research questions discussed in the first two
sections of the previous chapter. Specifically, we try to respond to the issues related
to (i) minimal human efforts required to correct OCR texts, (ii) out-of-vocabulary
problems in Indic OCR, and (iii) using various auxiliary sources while correcting
Indic OCR texts.

We begin this chapter by presenting a framework for assisting word-level cor-
rections in Indic OCR documents in Section 4.1. The framework learns globally as
a user corrects errors locally. It helps to correct the OCR text by incorporating
the ability to identify, segment, and combine partially correct word forms (using
global auxiliary sources, which we describe in Section 4.2). We use such features
to train a plug-in classifier (proposed by Narasimhan et al., 2014), as explained in
Section 4.2.2, for achieving better F-scores as compared to lookup approaches when
detecting erroneous OCR words. We summarize initial error detection results in Sec-
tion 4.3.1. Furthermore, such erroneous words are corrected using suggestions with
human-in-the-loop to keep the confidence level high. We summarize initial results
for suggestions generation in Section 4.3.2. In Section 4.3.3, we provide page-wise
correction analysis for four different books. In Section 4.4, we improve the results
of the plug-in classifier for Sanskrit with language-specific auxiliary sources. Some
of these auxiliary sources exploit conjoining rules to synthesize valid word forms.
We also present improvements due to the adaptive auxiliary sources used in our
framework. We finally conclude the chapter in Section 4.5.

35

36 Classical ML Techniques for OCR Corrections

Figure 4.1: OpenOCRCorrect: Learn Globally Correct Locally

4.1 Interactive framework for OCR corrections
As discussed in Section 1.6, Word Error Rates (WER) of OCR systems on ancient
Indic documents are not reliable. We, therefore, motivated the importance of an
interactive system for OCR corrections in Section 1.7.1, which we now discuss in
detail. The following observations drive research in this section:

1. As the number of auxiliary sources and methods for predicting corrections
increase, the probability P of suggesting the correct word increase.

2. Suggestions that are not able to completely correct a word may still be helpful
for partial word correction.

3. Each conjoined word (definition in Section 1.4) is a combination of the valid
word forms from the language dictionary. The correct split of each conjoined
word comprises a lesser number of (dictionary) word forms as compared to its
incorrect splits (or splits of the corresponding wrong OCR word).

The problems of reading and typing large-length conjoined words is also a crucial
factor while correcting Indic OCR errors. To (i) overcome these challenges, and (ii)
generate more OCR-specific datasets in Indic languages, we introduce OpenOCR-
Correct, an interactive framework for end-to-end corrections in Indic OCR. The

4.2 Auxiliary sources 37

error detection and correction mechanisms in the framework use the partial word
forms obtained from different auxiliary sources. We also provide a user-friendly
color-coding scheme in the framework for the partial dictionary string matches to
improve the readability of combined words. Figure 4.1 shows the block diagram of
our framework. The framework exploits various static and dynamic auxiliary sources
for OCR correction. In the user interface, we show a document image on the right
and its OCR output on the left. The framework prints the likely correct word forms
in black. The words are marked in grey if the user has verified them as correct
(previously at a different position in the document). The purple words are ones
that have been auto-corrected by the system. The user is required to right-click to
generate suggestions. We use multiple colors to improve the readability of erroneous
words. Each multi-colored (green and blue) word is a conjoined word consisting
of substrings, which are valid words in either the word dictionary or the domain
vocabulary (which is updated on-the-fly with corrections). The colors (green and
blue) differentiate the adjacent valid sub-strings of the conjoined word.1 An error
is more likely to be present in the places where the green/blue substring is short (of
length 2/3 chars). We now discuss various auxiliary sources (see Figure 4.1) used in
the framework.

4.2 Auxiliary sources
We found various auxiliary sources to be helpful in the detection and correction of
the incorrect OCR words. We now discuss the same in this section.

4.2.1 Static auxiliary sources

The sources such as off-the-shelf dictionary and some of the OCR texts remain
static throughout the correction process. We discuss such auxiliary sources in this
sub-section.

a) Off-the-shelf dictionary

Though the vocabulary is generally incomplete in Indian languages due to the rich
inflections, still the frequent words can be corrected via a fixed word dictionary.

1In the system, we also provide the facility to type in SLP1 (an ASCII transliteration scheme)
format since typing in ASCII (or English) is much faster (as explained in Section 1.7.1) once the
user gets well conversant with typing in the SLP1. If the user presses “Ctrl+D” after typing in
SLP1 format, our framework automatically converts the word under the cursor to Devanagari.

38 Classical ML Techniques for OCR Corrections

b) Sub-strings from OCR words conforming to word conjoining rules

Another important auxiliary source which helps generate the appropriate sugges-
tions is the collection of sub-strings from the OCR words that are corrected, verified
as correct, or conform to the rules for conjoining word forms. The sub-word forms
for conjoined words are searched in the general word dictionary (defined in Sec-
tion 4.2.1.c) and the updated domain-specific vocabulary (defined in Section 4.2.2.a).

c) Texts from different OCR systems

In experiments, we observed that previous pages from the same OCR document
are one of the most powerful auxiliary sources in correcting the erroneous OCR
text since they contain the domain information. Such an auxiliary source is helpful
when the OCR document has reasonable word-level accuracy. Hence frequently
occurring words can be used to generate the suggested correction for the incorrect
OCR words in subsequent pages. Specifically, the words which are incorrect due
to location-specific imaging errors can benefit from this source. Another relevant
auxiliary source in the dual-engine environment is the text from the secondary OCR
system. Since different OCR systems use different models, they are likely to make
different kinds of errors. Hence, they are likely to be correct for the OCR words
upon which they agree. This observation is especially leveraged by Abdulkader and
Casey, 2009. The consensus from multiple OCR systems is helpful in both error
detection and correction, as we explain in Section 4.3.

4.2.2 Dynamic auxiliary sources

We now discuss the dynamic auxiliary sources that update on-the-fly with user
interactions. We update the sources both during suggestion clicks and the typing
corrections (which are updated after the user corrects the complete page).

a) Domain-specific vocabulary

One of the relevant auxiliary sources for OCR error corrections is a domain-specific
vocabulary. In this work, we aim to digitize ancient Indian books. Initially, no
domain-specific is available for such books. As the user corrects words in the docu-
ment, we update a domain-specific vocabulary to review the remaining corrections.
We subsequently use this vocabulary for the correction of other books written in the
same domain.

4.2 Auxiliary sources 39

b) Document and OCR specific n-gram confusions

We observe that the error confusions in words from the primary OCR engine are gen-
erally different from the error confusions in the corresponding OCR words from the
secondary OCR engine. It happens because two different OCR systems use different
pre-processing techniques and different classifier models, as pointed by Abdulkader
and Casey, 2009. The n-gram confusions of the primary OCR (refer Figure 4.1) can
help in the word corrections as we illustrate through examples next. For example:
if “net” and “pet” are closest dictionary words (based on edit distance) to the in-
correct word “iiet”, the tie can be broken by taking into account that there exists
a common OCR character confusion “ii→n”. Consequently, the word “net” can be
given preference over “pet”. Another interesting example would be correcting the
output word “iiitermet” to “internet” rather than “interpret”, where knowledge of
the common OCR confusion “ii→n” is again useful, as is the knowledge that “m→n”
is more likely than “m→pr”. We also take care of n-gram confusions involving more
than two characters at a time. For example, in English “iii→m” and “iii→in” are
common OCR confusions. With each correction made by the user, we update the
document-specific OCR confusions to correct the remaining words in the same doc-
ument and words in remaining documents with a similar domain. We use dynamic
programming (Bellman, 1966) for word alignment and longest-common-subsequence
algorithm (Hirschberg, 1977) for confusion extraction.

c) Plug-in classifier

We now rephrase the primary problem of error detection as that of continuously
evolving a classifier that labels each OCR output word as correct or incorrect. During
training, the classifier should optimize a performance measure, such as the standard
likelihood function or the sum of squared error. An example performance measure
that is coherent with our needs of maximizing recall (coverage) in identifying er-
roneous words while also being precise in this detection is the F−score. Such a
measure, unfortunately, does not decompose over the training examples and can,
therefore, be hard to optimize. We adopt a plug-in approach (Narasimhan et al.,
2014) to train a binary classifier over such non-decomposable objectives while also
being efficient for incremental re-training.

Consider a simple binary classification problem where the task is to assign
every data point x ∈ X, a binary label y ∈ ±1. Plug-in classifiers achieve this
by first learning to predict Class Probability Estimate (CPE) scores. A function

40 Classical ML Techniques for OCR Corrections

g : X → [0, 1] is learned such that g(x) ≈ Pr (y = 1). Various tools such as logistic
regression may be used to learn this CPE model g. The final classifier is of the
form sign(g(x)−η) where η is a threshold that is tuned to maximize the performance
measure being considered, e.g. F-measure, G-mean etc.

We use ind.senz (2020), Google (2020) free OCR and Tesseract (2020) OCR
for experiments. The confidence measures from the ind.senz and Google free OCR
are not available. We, therefore, use the features such as (i) The edit distance
between corresponding OCR words, (ii) the number of dictionary word components
(both obtained by applying agglutination rules, and by applying fusion rules) and
(iii) all possible products of these three features. Also, we divide each of the first
three features with primary OCR word length and use all of their possible products
as another set of features. We additionally use two binary features: i) word is
common to both OCRs, and ii) word is form dictionary. We use all of the document
words for training the classifier with a 48/12/40 training/validation/test split. We
train a log-linear classifier with L2-regularized logistic regression2 and the likelihood
objective for three Indian languages with varying inflections.

4.3 Experiments and Results
In this section, we report the results for the different experiments we perform to
detect OCR errors and generate correction suggestions. We experiment on three
monolithic documents in Sanskrit, Marathi, and Hindi, respectively. We refer the
reader to Section 1.7.1 for the details regarding the various performance measures
we use.

4.3.1 Error detection

We analyze various methods for detecting errors in the OCR text. In the
beginning, we observe that the commonly used dictionary lookup approach gives a
high percentage of True Positives (actual errors predicted as errors) and a low per-
centage of True Negatives (accurate words predicted as correct). We experimented
with marking all words that can be formed by applying conjoining rules to words
from the off-the-shelf dictionary as correct and observed increases in the True Neg-
atives but reductions in the True Positives. Hence, we do not use this approach.
We observe through data analysis that the task of achieving high F-Score depends

2https://github.com/cjlin1/liblinear

4.3 Experiments and Results 41

Lang. TP FP TN FN Prec. Rec. F-Score

Sanskrit
LB 87.45 39.02 60.98 12.55 30.36 87.45 45.08
UB 91.62 0 100 8.38 100 91.62 95.63
Dual eng. 82.35 17.64 82.29 17.70 48.04 82.29 60.66
Plug-in classifier 85.13 17.84 82.16 14.87 48.62 85.13 61.89
Marathi
LB 33.80 25.02 74.98 66.20 36.10 33.80 34.91
UB 15.20 0.03 99.97 84.80 99.49 15.20 26.37
Dual eng. 29.15 12.87 87.13 70.85 48.64 29.15 36.46
Plug-in classifier 76.93 3.83 96.17 23.07 78.77 76.93 77.84
Hindi
LB 53.15 19.21 80.79 46.85 49.83 53.15 51.43
UB 44.72 1.55 98.45 55.28 91.18 44.72 60.01
Dual eng. 61.76 18.74 81.26 38.23 54.19 61.76 57.73
Plug-in classifier 64.34 15.25 84.75 35.66 55.97 64.33 59.86

Table 4.1: Error detection results in Sanskrit, Marathi and Hindi

upon the complexity of the data and the dictionary used for error detection. The
difficulty can be analyzed using the two baselines as follows:-

• Lower Baseline (LB): Dictionary lookup based detection with an off-the-shelf
dictionary.

• Upper Baseline (UB): Dictionary lookup based detection with dictionary set
to contain all the words in the ground truth. The upper baseline is therefore
idealized as out-of-vocabulary ground truth words are never available before
corrections.

For the dual-engine environment in the framework, we mark words common to the
output of two OCR systems as correct since it is highly unlikely for two OCR sys-
tems to output an identical erroneous word (as advocated by Abdulkader and Casey,
2009). Words, for which the OCR systems disagree, are marked as incorrect in such
an environment. The results for different Indian languages are summarized in Ta-
ble 4.1. As shown, the F-Score for the dual OCR system is better than the the Lower
Baseline (LB) and below (or in one case even above) the idealised Upper Baseline

42 Classical ML Techniques for OCR Corrections

(UB). We observe further gains in F-scores after training the plug-in classifier with
features described in Section 4.2.2.c. As shown in Table 4.1, we achieve the F-scores
of 61.89, 77.84, and 59.86 in Sanskrit, Marathi, and Hindi using such ML-based
techniques.

Sugg. %age of “correct & uniquely correct” suggestions in
Rank Sanskrit Marathi Hindi

1 29.07, 29.07 15.73, 15.73 14.24, 14.24
2 10.76, 4.45 13.23, 5.11 13.05, 0.01
3 23.42, 4.20 14.09, 3.93 3.47, 0.36
4 15.99, 2.86 3.34, 0.60 3.83, 0.72
5 6.84, 2.06 15.20, 11.99 10.97, 8.11

Total (uniq.) suggs. 42.64 37.63 23.44

Table 4.2: Percentage of erroneous words correctly suggested by OpenOCRCorrect

4.3.2 Suggestions generation

At the start of this chapter, we have discussed various auxiliary sources which
are useful to generate suggestions in our interactive framework. We use efficient
dynamic programming (Bellman, 1966) to produce different correction suggestions.
As proposed by Smith, 2011, we avoid using frequency-based language models for
OCR corrections as they can do more harm than good in the OCR setting. Moreover,
any good OCR system uses a language model in the post-processing stage, and hence
its OCR output is likely to exhibit a lower percentage of contextual errors. We,
therefore, produce different suggestions by utilizing different auxiliary sources. We
present correction results in Table 4.2. Here, each value represents the percentage
of errors for which the framework obtains the correct ground truth word as the
suggestion. The top two suggestions are the closest suggestions to the secondary
and primary OCR documents, respectively. We produce the third suggestion by
applying the nearest sub-string search from the secondary OCR document (refer to
section 4.2.1.a). For producing the fourth suggestion, we partially correct the word
from primary OCR by comparing it with the corresponding secondary OCR word, as
explained in Section 4.2.2.b. As explained earlier, we here use the OCR confusions
of primary OCR that are updated on-the-fly to break the ties. We produce the fifth
suggestion by applying the OCR confusions on the n-grams of (primary) OCR word

4.3 Experiments and Results 43

to reach a valid word form which follows the conjoining rules. Simultaneously for this
suggestion, we use various frequent conjoining rules to split the OCR word until the
framework reaches a valid conjoined word form. We look for the word forms of such
conjoined terms in the off-the-shelf as well as domain vocabulary that updates on-
the-fly. Overall we correct 42.64%, 37.63%, and 23.44% errors in Sanskrit, Marathi,
and Hindi using human-in-the-loop, as depicted in Table 4.2.

0 50 100 150
page number

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

A
ve

ra
ge

 T
im

e
P

er
 E

rr
or

 (
m

in
s)

SANSKRIT

0 100 200
page number

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
ve

ra
ge

 T
im

e
P

er
 E

rr
or

 (
m

in
s)

MARATHI

0 20 40 60
page number

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
ve

ra
ge

 T
im

e
P

er
 E

rr
or

 (
m

in
s)

HINDI

0 50 100 150
page number

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

A
ve

ra
ge

 T
im

e
P

er
 E

rr
or

 (
m

in
s)

ENGLISH

Figure 4.2: System analysis of documents in different languages

4.3.3 System analysis

As mentioned in Section 1.5, we have corrected over 12000 document images
in Sanskrit, Marathi, Hindi, and English using OpenOCRCorrect.

In Figure 4.2, we present the real-time analysis for a book in each language.
Each book is corrected by a single user so that the efficiency of the framework can be
accurately analyzed. After the correction of each page by the user, we save the time
taken to correct the page. The number of erroneous words on each page, calculated
using dynamic programming (by comparing the original OCR page and corrected
page), is also saved and used for calculating the time spent fixing per error (referred
to as the time-per-error) on each page. As shown in Figure 4.2, for all the four books,
the average time-per-error reduces with page number throughout the significant part
of the correction process. Ideally, the time-per-error should be dropping throughout
the documents, but fatigue and other factors cause the user to slow down at times.
Thus, the system is effective in reducing human effort for corrections in Indic OCR.

Although the system is designed specifically for Indian languages, we never-
theless use it also with English documents. For the particular book in English (see

44 Classical ML Techniques for OCR Corrections

Figure 4.2, right), the average correction time-per-error drops similarly to the Indic
books.

Figure 4.3: Examples of partially correct suggestions

Some errors in OCR output for which the framework produces one of the sug-
gestions as correct can be seen in Figure 1.6 (shown in Section 1.7.1). Some examples
of erroneous OCR words, for which the framework suggests partially correct words,
are shown in Figure. 4.3.

Figure 4.4: Examples of correct out-of-vocabulary words

In Figure 4.4, we show examples of the correct out-of-vocabulary words in the
OCR output, which the framework marks as errors (colored). However, the user can
easily understand that such words are accurate because of the improved readability.
This is possible because we use adequate color-coding for the dictionary strings in
a conjoined word. Such coding is also helpful in identifying the segmentation errors
such as “Therehegoes” where the OCR system fails to recognize the whitespace
characters.

4.4 Improving the Sanskrit Classifiers 45

Figure 4.5: Examples of incorrect OCR words with improved readability

Some examples of incorrect OCR words for which error locations are easily
identifiable due to adequate color-coding are shown in Figure 4.5.

Figure 4.6: Examples of complex OCR errors not corrected by our framework

In certain complex cases, the framework is not able to suggest the correct word
to the user. Such examples are shown in Figure 4.6. We now improve the Sanskrit
plug-in classifier in the next section.

4.4 Improving the Sanskrit Classifiers
In this section, we improve the results of plug-in classifier for Sanskrit OCR texts by
introducing language-specific as well as domain-specific auxiliary sources. For some
of them, we synthesize valid word forms using the precise context-specific conjoining
rules for all possible variants of the nouns available in Sanskrit dictionaries. We also

46 Classical ML Techniques for OCR Corrections

use one of the existing sources which contain variants of some of the common verbs
in Sanskrit.

4.4.1 Language-specific Auxiliary Sources

a) Words from Subanta generator

Since any off-the-shelf dictionary is majorly incomplete for correcting Sanskrit texts
due to richness in inflections, we develop a Subanta (or noun-specific declension)
generator for synthesizing noun variants. Among the different declension generators,
an open-source generator by Patel and Katuri (2015a) works for Sanskrit. We build
a new generator for the following reasons:

• For ease of integration into the OCR correction framework;

• For overcoming the errors produced by existing generators. Examples from Pa-
tel and Katuri (2015b) include:

– Some of the variants for nouns ending with ऋ.

– Some variants for many of the pronouns.

– Declensions for words ending with वस ु affix, which are wrong in some of
the cases.

• To have the provision for future enhancements of rules.

We code the rules corresponding to declension generator (and the conjoining rules
they require) as per the rules and their explanations by Dīkṣita et al., 2006. We
resolve some of the meaningful dependencies of many rules by collecting the context
information (refer Adiga et al. (2018) for details).

We process the XML file of the Monier-Williams Sanskrit dictionary available
in the Cologne Digital Sanskrit Dictionary collections, Institute for Indology and
Tamilistics, University of Cologne3. We extract more than 1800k words with the
gender information from the XML file. We produce all possible variants for these
words using our generator, which results in a total of 3.2 million unique words.
We additionally use the verbs listed in the िकयारूपिनपािदका (verb-forms-generator) of
ILTP-DC, which are around 300k unique words. These 3.5 million words are used
as the off-the-shelf dictionary in the framework for the OCR corrections.

3 http://www.sanskrit-lexicon.uni-koeln.de/download.html

http://www.sanskrit-lexicon.uni-koeln.de/download.html

4.4 Improving the Sanskrit Classifiers 47

b) Initialized Domain-specific vocabulary

In Sanskrit, the set of commonly used words changes from one document to an-
other. So the domain-specific dictionary is one of the most substantial auxiliary
resources as it involves the words that are absent in any off-the-shelf dictionary.
For the experiments in Section 4.4.2, we initialize the domain-specific vocabulary
for each document by extracting unique strings from the various books available in
the Göttingen register of electronic texts in Indian languages (GRETIL, 2001). This
auxiliary source is also dynamically updated as discussed earlier in Section 4.2.2.a.

c) Word conjoining rules

Due to conjoining rules, words can change dynamically in Sanskrit documents. We
apply fundamental conjoining rules to identify the necessary word forms of a con-
joined word. We search for the basic word forms in the off-the-shelf dictionary. We
use a greedy approach for this splitting the cojoined word which includes a minimum
set of words (of maximum length) and smallest edit distance as the criteria. For
example, the framework splits the OCR word जागिरतावथायाभवेावथातयमंुत into जागिरत,
अवथायाभ ्, एव, अवथातयम ्and उंत. The word अवथायाभ ् in this example is closer to
a valid word अवथायाम ्. This kind of split helps in detecting the erroneous out-of-
vocabulary words and generating the correction suggestions for them. Moreover,
we use the OCR-specific n-gram confusions to break the ties. For example, while
changing the erroneous word िनवधः, if the dictionary lookup suggests िनबधः and
िनरधः as nearest possible words, having higher n-gram confusion to व>ब biases the
selection towards िनबधः.

4.4.2 Error Detection Methods and Results

Approach TP FP TN FN Prec. Rec. F-Score
1. General Dict. Lookup 89.18 40.12 59.87 10.82 29.75 89.18 44.61
2. Conjoining Rules 54.34 13.23 86.77 45.66 43.89 54.34 48.56
3. Secondary OCR Lookup 90.68 23.59 76.40 9.31 42.79 90.68 58.14

Table 4.3: Error detection results with lookup based methods

We apply various methods for detecting errors in the OCR text. To start
with, we use the book named “Āryabhaṭīyabhāṣya of Nīlakaṇṭha III Golapāda
(AnantaśayanaSaṃskṛtaGranthāvaliḥ, 1957)” for which we have the OCR texts

48 Classical ML Techniques for OCR Corrections

from ind.senz (2020), Google (2020) and the ground truth data available. We
use ind.senz as the primary OCR engine and Google free OCR as the secondary for
all the experiments (we have discussed the word error rates for these OCR systems
in Section 1.6).

Lookup approaches

A commonly used dictionary lookup based approach gives poor F-Scores, as it marks
a large number of correct words as errors. Therefore it leads to lower True Negatives
(TN) as shown in Table 4.3. Another interesting methodology is marking the words
formed by applying the conjoining rules on dictionary lexicons as correct. As shown
in Table 4.3 (row 2), implementing this approach improves the detection of accurate
words (True Negatives for error detection). However, it also lowers the detection of
errors (True Positives) in comparison to the basic dictionary lookup approach. For
this book, comparing the OCR output of another engine (Google free OCR) for the
same document images improves the F-Score (see Table 4.3, row 3).

Single-engine Environment

Approach TP FP TN FN Prec. Rec. F-Score

1.
Classifier with ngrams

frequency + word lookup in
General Dict. as features

73.38 22.86 77.13 26.61 38.88 73.38 50.83

2.

Classifier with ngrams
frequency + word lookup in
Synthesised Dict.(superset of

gen. dict.) as features

74.06 21.02 78.98 25.94 41.14 74.06 52.89

3.

Classifier with ngrams
frequency + word lookup in
Synthesised Dict. as well as
Domain Dict. as features

66.37 13.08 86.92 33.63 50.38 66.37 57.28

4.

Classifier with features in row
3 + number of conjoined

components in OCR word as
features

68.50 13.53 86.47 31.50 50.10 68.50 57.87

Table 4.4: Error detection results in single-engine environment

For single-engine environment, we learn the plug-in classifier on features ex-
plained in Section 4.2.2. We split the data with train:validation:test ratio as

4.4 Improving the Sanskrit Classifiers 49

48 : 12 : 40. We are able to improve the row 1 results in Table 4.3 by including the
frequency of OCR word’s n-grams (up to 8 characters) in a general dictionary as
features. We also include a binary feature based on lookup in the general dictionary.
The results are shown in the first row of Table 4.4.

We further include more words in the general dictionary by synthesizing nouns
and collecting the verbs as explained in Section 4.4.1.a. This approach helps us to
achieve the improved results shown in row 2 of Table 4.4.

Adding frequencies of OCR word’s n-grams in the initialized domain dictionary
(Jyotiṣa for this book from the source given in Section 4.4.1.b) to the features ob-
tained from the synthesized dictionary further improve the results as shown in row
3 of Table 4.4.

For improving the results further, we use three splitting based features: i) Split
the OCR words using commonly used conjoining rules and use the number of lexicon
components obtained from the general dictionary as features. ii) We also use number
of lexicon components obtained by splitting the OCR word as lexicons of domain
dictionary (for Jyotiṣa) as a feature. Herein, we also add the number of characters
from unknown sub-strings in the OCR word to the feature space. iii) We also use
the product of features obtained in (i) and (ii) as the features. We normalize all
these features using the mean and standard deviation of complete training data.
The results are shown in row 4 of Table 4.4. It is interesting to note that here in
the single-engine environment, we reach performance that is closer to the results of
the dual-engine based secondary OCR lookup approach given in row 3 of Table 4.3.

Multi-engine Environment

We further include the dual-engine OCR agreement as a feature in addition to the
features we use in the previous section. The results are presented in Table 4.5. We
improve the results by using the feature of dual OCR agreement between ind.senz
(2020) and Tesseract (2020) in addition to previous features to obtain the results
shown in row 4 of Table 4.5.

We present the results of the plug-in classifier trained and tested on the dataset
of books with different domains in Table 4.6. These results confirm the generality
of our approach for different domains of Sanskrit literature. Row 1 in this table
shows the baseline for the book ‘Nṛsiṃhapūrvottaratāpanīyopaniṣat’ (Ānandāśra-
maSaṃskṛtaGranthāvaliḥ, 1929) and row 2 shows the results achieved using all the
features (obtained using triple-engine environment, off-the-shelf dictionary, domain
vocabulary and n-gram frequency from general, synthesized and domain vocabular-

50 Classical ML Techniques for OCR Corrections

Approach TP FP TN FN Prec. Rec. F-Score

1.
Classifier with features in table
4 row 2 along with dual-engine
agreement (Table 4.1 results)

85.13 17.84 82.16 14.87 48.62 85.13 61.89

2.
Classifier with features in table
4 row 3 along with dual-engine

agreement
78.04 13.67 86.33 21.96 53.11 78.04 63.20

3.
Classifier with features in table
4 row 4 along with dual-engine

agreement
83.49 15.26 84.74 16.51 52.25 83.49 64.28

4.
Classifier with features in table

4 row 4 along with
triple-engine agreements

83.43 14.95 85.04 16.56 52.74 83.43 64.63

Table 4.5: Error detection results in multi-engine environment

Approach TP FP TN FN Prec. Rec. F-Score

1.
Vedānta gen. dict. lookup

baseline
85.52 34.35 65.65 14.48 49.71 85.52 62.87

2. Vedānta plug-in classifier 79.95 9.80 90.20 20.05 77.95 79.95 78.94

3.
Sāhitya gen. dict. lookup

baseline
64.24 35.36 64.64 35.76 32.86 64.24 43.49

4. Sāhitya plug-in classifier 87.88 13.37 86.62 12.12 66.52 87.88 75.72

Table 4.6: Error detection results for other domains

ies). It is important to note that the TP (actual errors detected as errors) percentage
is high for the baseline in this case as compared to the TP baselines in other do-
mains. However, TN (correct words detected as correct) for the dictionary lookup
baselines are close to each other for all domains as shown in row 1 of Table 4.3 and
row 1 and row 3 of Table 4.6. The reason for high TN could be less ambiguity (as
compared to other domains) in incorrect words since TP (unlike TN) does not de-
pend on the presence of correct OCR words in the dictionary. Hence we are getting
F-scores as high as 62.87 for the baseline in this case. We also evaluate the system
for Sāhitya domain. For this we use the book ‘Raghuvaṃśam Sanjīvinīsametam’
(Nirṇaya Sāgara Press, 1929, 1-9 Sarga) and row 3 in table 4.6 shows the baseline,
whereas row 4 shows the results obtained using the framework.

4.4 Improving the Sanskrit Classifiers 51

Sources Percentage of errors for which
included the obtained suggestion is correct

Domain words with dual OCR agreement
+ Synthesized Confusions 36.26
Prev. + adapting Domain Words/Page 36.38
Prev. + adapting Confusions/Page 37.14
Prev. - Synthesized + Real Confusions 39.40

Table 4.7: Suggestions improvements for a Sanskrit book4 due to adaptation

Suggestions Generation

The results for various methods of exploiting auxiliary sources, to generate appropri-
ate suggestions, were given in Section 4.3.2) for “Āryabhaṭīyabhāṣya of Nīlakaṇṭha
III Golapāda (AnantaśayanaSaṃskṛtaGranthāvaliḥ, 1957)”.

Here, in Table 4.7, we show the improvements due to regular adaptation of
domain dictionary and OCR Confusions in the framework for “Āryabhaṭīyabhāṣya of
Nīlakaṇṭha III Kālakriyāpāda, 1931”. For this experiment, we synthetically generate
word images for the words in Sanskrit dictionaries. We then OCR the obtained
images using ind.senz (2020) and extract around 0.5 million erroneous-correct word
pairs. We use the longest-common-subsequence algorithm proposed by Hirschberg
(1977) to produce about 0.78 million OCR character confusions. The row 1 of
Table 4.7 shows the total percentage of incorrect OCR words for which we get the
correct ground truth word as the suggestion obtained using various auxiliary sources.
Such sources use i) words common to dual OCR systems as domain vocabulary
throughout the document and ii) obtained synthesized confusions. As shown in row
2, we further improve the quality of suggestions by uploading the corrected domain
words on-the-fly after the user corrects each page. As shown in row3, adapting
the confusions on-the-fly page by page further improves the results. Using real
confusions obtained from the primary OCR text and ground truth, of other books,
helps in improving the results further as presented in row 4 of Table 4.7. In total,
we achieve 3% of gains in suggestions for the document due to adaptive auxiliary
sources we use in the framework.

4“Āryabhaṭīyabhāṣya of Nīlakaṇṭha III Kālakriyāpāda, AnantaśayanaSaṃskṛtaGranthāvaliḥ,
1931”

52 Classical ML Techniques for OCR Corrections

4.5 Conclusion
In this chapter, we have presented OpenOCRCorrect, an interactive system for
word-level corrections in Indic OCR. The system works for multiple Indian lan-
guages with varying degrees of inflections. It is easy to adapt the system to any
other language just by changing the ASCII transliteration scheme, which it uses to
store and process the data. The framework leverages generic word dictionaries and
a domain-specific vocabulary grown incrementally based on user corrections from
the current on the OCR document. It also learns OCR-specific confusions on-the-
fly. We have incorporated word conjoining rules to parse OCR words and discover
their potentially correct sub-strings. Furthermore, we have presented a dual-engine
environment to cross-verify potential errors and corrections. We empirically verify
that the dual-engine environment, in conjunction with the previously mentioned
resources, yields error detection performance close to the idealized baseline. The
dual-engine environment is additionally helpful in providing accurate suggestions.
We also presented a plug-in classification approach to further improve error detection
by tuning the probability threshold for classification. Given the role of user inter-
action in the framework, we have carefully designed the UI to reduce the overall
cognitive load by use of transliteration schemes, suitable color-coding, and learn-
ing on-the-fly from interactions. We also demonstrate different ML approaches for
Sanskrit OCR corrections. We have presented a multi-engine environment which
is useful in detecting potential errors. We have also shown the effectiveness of our
framework. The average error correction time reduces as the user progresses through
the pages of a book. We also demonstrated various examples with a user-friendly
color-coding to reduce the cognitive load of the user. Using the features from ad-
ditional Sanskrit-specific auxiliary sources, for the plug-in classifier, we succeed in
improving overall F-Scores. The work presented in this section was published at
ICDAR’17 and WSC’18 in our papers (Saluja et al., 2017b; Adiga et al., 2018).

Chapter 5

Deep Learning Techniques for
OCR Corrections

In the previous chapter, we have understood how classical machine learning tech-
niques can assist with detecting errors in Indic OCR texts and how limited these
techniques are when it comes to fully-automated correction. We turn attention
towards deep learning techniques in this chapter. In this chapter, we answer the
research questions related to i) sequential modeling techniques, and ii) Indic OCR
texts, which we raised in Chapter 3. In Section 5.1, we briefly introduce the Recur-
rent Neural Network (RNN) and one of its variants called Long-short Term Memory
(LSTM) model. We then customize the LSTM for Indic OCR corrections. We fur-
ther discuss the advantage of using sub-word embeddings to improve such models in
Section 5.2. We conclude each of these sections with various experiments and results
on the datasets that we have explained in Section 1.4. In Section 5.3, we introduce
the attention-based encoder-decoder model using which we achieved the 2nd place
in two ICDAR post-OCR competitions (Chiron et al., 2017a; Rigaud et al., 2019).
We finally conclude the chapter in Section 5.4.

5.1 Indic OCR Corrections using LSTMs
As was noted in the previous chapter, learning n-gram confusions (or error patterns)
of the OCR system, as well as the partial word forms present in the language, can
help correct the out-of-vocabulary words in OCR documents. In this section, we
adopt an LSTM based character-level language model for jointly addressing the
problems of error detection and corrections in Indic OCR. For words that need no
correction in the OCR output, the model abstains from suggesting any change.

53

54 Deep Learning Techniques for OCR Corrections

Figure 5.1: Examples of OCR words corrected by LSTM in four Indic languages

In Figure 5.1, we present the examples of errors detected and corrected by
our model. Here, the correct words are all out-of-vocabulary words and mistakes
are marked in red. In the process of manually correcting OCR documents, we
frequently observe that the knowledge of error patterns is helpful in error detection
and correction. The OCR system tends to get confused between letters with similar
images. To correct such errors, we don’t however, need to refer back to the original
word image, since the error patterns and the context in the OCR output itself can
help infer the confusion information. Our results support this observation.

We begin with a brief understanding of RNNs and LSTMs in Section 5.1.1.
We then present the problem scope and error analysis in Section 5.1.2, wherein we
also describe our datasets. Subsequently, in Section 5.1.3, we present the method
of using an LSTM with a fixed delay for OCR correction in Indian languages. In
Section 5.1.4, we outline the experiments, including various methods by which we
exploit the LSTM with a fixed delay in different contexts. In Section 5.1.5, we present
extensive results to validate our model’s performance on four Indian languages with
varying inflectional complexities. We achieve F-Scores above 92.4% and reductions
in Word Error Rates (WER) of at least 26.7% across four Indian languages.

5.1.1 RNNs and LSTMs

In work by Sutskever et al. (2011), Recurrent Neural Networks (RNNs) are
shown to be useful in learning character-level language models. Such models make
no local independence assumptions on the language text, unlike Hidden Markov
Models (HMM, proposed by Rabiner and Juang, 1986). RNN-based models are also
used effectively in Machine Translation (Sutskever et al., 2014). Character-based
attention RNNs have also shown improvements in Neural Language Correction (Xie
et al., 2016). In particular, a specific type of RNNs called Long Short Term Memory
Networks (LSTMs), learn the more extended contexts and are therefore best suited
for languages with a high fraction of out-of-vocabulary words. We delay the output

5.1 Indic OCR Corrections using LSTMs 55

Figure 5.2: A Recurrent Neural Network unrolled for t-time units

in the LSTM model to take care of n-gram character confusions and succeeding
contexts.

A basic RNN (Recurrent Neural Network) can be represented by Equations 5.1
and 5.2.

ht = g(Whhht−1 +Whxxt + bh) (5.1)

yt = Wyhht (5.2)

Where g is an activation function, such as sigmoid (σ(xi) = exp(xi)∑
j[exp(x j)]

), tanh
(tanh(x) = 2σ(2x) − 1) or Rectified Linear Unit (ReLU) (f (x) = max(0, x)) (Ta-
lathi and Vartak, 2015). The matrices Whx and Wyh connect the input xt to the
hidden layer ht and the hidden layer ht to the output yt respectively. These matrices
contain the parameters, which are shared across each instance in the input sequence
x1:T . The matrix Whh is the feedback from preceding hidden layers (or inputs) and
is responsible for remembering and forgetting the sequence history based on the
context.

Equation 5.2 at each time t can be unfolded back in time, to time t = 1 for
the 1st character of the word sequence, using Equation 5.1 and the network can be
trained using Back Propagation Through Time (BPTT) Schuster and Paliwal, 1997.

We ensure equal byte length per letter by using the ASCII transliteration
scheme that we explain in Section 5.1.2. For the loss, we use negative log-likelihood
of Log SoftMax (multi-class) function. The Log SoftMax function is shown below,
where yti is the value at ith index of output vector yt.

f (yti) = log(
exp(yti)∑
j[exp(yt j)]

) (5.3)

56 Deep Learning Techniques for OCR Corrections

Figure 5.3: LSTM gates

The equations for the LSTM are similar to that of the RNN. Except that
instead of a neuron, each unit of the LSTM is a memory unit. Such a memory unit
remembers, forgets, and transfers cell state to the output (or next state) based on
input history. The cell state at time t is given by Equation 5.4 where forget gate ft

and the input gate it fire according to Equations 5.5 and 5.6 respectively.

ct = ft ⊗ ct−1 + it ⊗ g1(Whcht−1 +Wxcxt + bc) (5.4)

ft = g2(Wx f xt +Wh f ht−1 + b f) (5.5)

it = g2(Wxixt +Whiht−1 + bi) (5.6)

Here ⊗ and + operations are elementwise product and sum, respectively. The
data is selectively transferred from the cell to the hidden state ht according to Equa-
tion 5.7.

ht = ot ⊗ g1(ct) (5.7)

Here, the selection is performed by the firing of output gate ot as per Equation 5.8
forms the basis of selection.

ot = g2(Wxoxt +Whoht−1 + bo) (5.8)

Here g1 is usually implemented using a tanh function and g2 is generally sigmoid.

5.1.2 Problem scope, Data description and Analysis

As discussed in Section 1.4, the vocabulary is the most dynamic/incomplete in
Sanskrit, followed by Malayalam, Kannada, and Hindi. A glimpse of OCR errors can

5.1 Indic OCR Corrections using LSTMs 57

0 2 4 6 8 10
Edit Distance(OCR Word, Ground TRuth)

0

10000

20000

30000

40000

50000

60000

F
re

qu
en

cy
Sanskrit

0 2 4 6 8 10
Edit Distance(OCR Word, Ground TRuth)

0

10000

20000

30000

40000

50000

60000

F
re

qu
en

cy

Malayalam

0 2 4 6 8 10
Edit Distance(OCR Word, Ground TRuth)

0

10000

20000

30000

40000

50000

60000

70000

F
re

qu
en

cy

Kannada

0 2 4 6 8 10
Edit Distance(OCR Word, Ground TRuth)

0

10000

20000

30000

40000

50000

60000

70000

F
re

qu
en

cy

Hindi

Figure 5.4: Histogram of edit distance between OCR and ground truth in word pairs

be obtained from the histogram of Levenshtein-Damerau edit distance (by Damerau,
1964 and Levenshtein, 1966) between pairs of OCR words and corresponding ground
truth words. We prefer to work using edit distance instead of hamming distance
since a significant fraction of OCR errors consists of confusions between letters that
look similar.

We use the Google (2020) free OCR to scan 86k Sanskrit, 81k Malayalam and
118k Kannada words from different documents. We carefully corrected the OCR
words to form the ground truth. For Hindi, we obtain 67k word pairs from Vinitha
and Jawahar, 2016. Since more than 96% of the words were incorrect in the original
dataset for Hindi, we balanced the dataset by also including (Ground Truth word,
Ground Truth word) pairs in addition to the (OCR word, Ground Truth word) pairs.
This balancing increased the number of word pairs in Hindi to 134k. The dataset
is summarized in Table 5.7. We aligned the word pairs using the recursive Text
Alignment Tool (RETA) by Yalniz and Manmatha, 2011. To tackle the problem of
variable byte length per character in Indic scripts, we used ASCII transliteration
schemes such as SLP1 (Sanskrit Library Phonetic Basic encoding scheme) for all
the experiments.

In Figure 5.4, we present the histograms for Sanskrit, Malayalam, Kannada,
and Hindi word pairs. The frequency at 0 edit distance represents the number of
words correctly detected by the OCR system. It is important to note that the
number of erroneous OCR words, I .e., words with edit distance ≥ 1, is maximum
for the words that are a unit distance away from the ground truth. This number
decreases exponentially with distance irrespective of the language and the OCR
system. A good OCR model would tend to make fewer mistakes at higher edit
distances, and thus such a histogram would decay faster as compared to a poor
quality OCR model. Interestingly, such a histogram provides intuition regarding the

58 Deep Learning Techniques for OCR Corrections

Devanagari Letter Corresponding SLP1 char. One Hot Vector

ऽ $ 10000000
◌ा A 01000000
ि◌ i 00100000
त ् t 00001000
प ् p 00000010
ष ् z 00000001

Table 5.1: One Hot Vector and corresponding SLP1 character for letters in Fig. 5.5

appropriate amount of delay in the LSTM model (7 for Sanskrit & Kannada and
5 for Malayalam & Hindi). Words corrected by the OCR correction system should
have fewer errors than the original OCR words, and hence mass in the histogram
should shift left, toward lower edit distances. This is indeed the case for our model,
as can be seen in Figure 5.6 for the test data.

5.1.3 LSTM with a fixed delay

An LSTM can be used to predict characters that appear in a word based
on a preceding sequence of characters. Character-based approaches have not (yet)
attained state-of-the-art performance on language modelling tasks (Xie et al., 2016).
Such an approach, however, can be useful for correcting OCR errors, since the
OCR output is partially correct and most erroneous n-grams follow some known
confusion patterns based on images of characters (or sequence of characters) that
look similar. An erroneous n-gram in a word can be more robustly detected and
corrected if we look at the sequence of characters that appear before and after the
n-gram. This is modeled by an LSTM with a fixed delay. In this model, the delay
allows the succeeding sequence of characters to also be used for learning (unlike a
simple LSTM where only the preceding sequence is considered). The length of the
succeeding sequence used is equal to the delay. Another reason for including the
delay is to allow for character contractions, whereby multiple characters replace a
single character.

We use one-hot-encoded characters (see the input layer of Figure 5.5) from a
word in the OCR document as input. One-hot-encoded characters from the cor-
responding aligned information in the ground truth documents form the model’s
output for training and testing. Results show that an LSTM model, with a fixed de-

5.1 Indic OCR Corrections using LSTMs 59

Figure 5.5: An LSTM model with 2 units of delay (appears as character $), having
1 hidden layer of 3 units, unfolded for 8/time units

lay at the output, trained in this manner is capable of word-level error detection and
correction. Our results show that an LSTM model with a fixed delay at the output
trained in this manner is capable of word-level error detection and correction.

In Figure 5.5, we illustrate an LSTM with 2 units of delay, with one hidden
layer of 3 units, unfolded for 8 units of time. We represent the delay by making use
of null-character ($) symbols. We also pre-condition the OCR word at the input
with a buffer of 1 unit and the corresponding ground truth word at the output by 3

units of time to account for 2 units of net delay. We illustrate an example encoding
for the Devanagari letters of Figure 5.5 in Table 5.1. We assume that the character
vocabulary size and the maximum word length are both 8. Training the model
should produce output vectors close to the one-hot vector for each letter. In the
illustration, the element of the output vector that we show in green should maximize
during training.

In practice, we pre-condition the input with a buffer of 15 null-characters. This
is necessary to allow the recurrent network to learn a valid starting state. We delay
the output with a buffer of 15 + d null-character symbols. Here d represents the
sequence delay which we tuned empirically, guided by the insight in Section 5.1.2
based on Figure 5.4. We also right pad each word with a sequence of null characters
to form the fixed-length (= maximum word length in the language + preceding
delays) inputs and labels.

60 Deep Learning Techniques for OCR Corrections

5.1.4 Experiments

Our model contains 2 hidden layers of 512 units each. We train the model for
150 epochs. The percentage of erroneous words in the validation set corrected by the
model increases and then hits a maximum at a particular training epoch and starts to
decrease. We use the model which corrects the maximum number of erroneous words
and employ the same model on test data. Interestingly, the model corresponding
to this epoch also gives the maximum F-Score over the validation dataset across all
epochs. For training, we use the gradient descent algorithm with the learning rate of
0.002 and the decay of 0.97 per epoch after 10 epochs of training. We train models
for 100 epochs (since we achieve maximum accuracy for all our models before 100th

epoch).
For LSTM models, while increasing the delay between the input and output

sequence results in enhanced context, we found that increasing the delay beyond
a certain point also increases the error in the output of the network. Intuitively,
this could be because a larger delay makes it difficult for the model to predict the
corrections and/or the model overfits on higher level n-grams. As stated earlier, we
found the sequence delay of 5 to 7 (character) units between the input word and
output word to work reliably in practice for the Indian Languages we work with.

We used the dataset introduced in Section 5.1.2. As noted earlier, we balanced
the dataset for Hindi word pairs. This also ensures that we make a fair comparison
with a previous error detection results by Vinitha and Jawahar, 2016. We use a
train-val-test split ratio of 64-16-20 in experiments.

Error detection experiment

For an input OCR word, if the trained LSTM model outputs a word different from
it, we mark it as incorrect else correct. This is how we detect errors using our model
trained for error correction. The error detection results for the LSTM model are
better than the results of the previous state-of-the-art system (see Section 5.1.5).
Various performance measures for error detection are discussed in Section 1.7.1.

Error corrections experiment

We evaluate the performance of our model for error correction against two baselines
that we create by combining the ideas of standard dictionary-based error correction
with the tie-breaking through the n-gram character confusions of the OCR system.
For each OCR word o, we find the set of nearest words W from the dictionary V

5.1 Indic OCR Corrections using LSTMs 61

(I .e., the vocabulary of familiar words). We compute the posterior distribution
(described by Equation 5.9) on w to rank the replacement words in W to determine
the desired word w∗.

w∗ = arg max
w∈W

P(w|o) = arg max
w∈W

P(o|w)P(w) (5.9)

For P(w) we use word frequencies from training and validation datasets, while P(o|w)

is estimated based on character confusion probabilities as ∏(co,cw)∈Cow
P(co|cw) . Here

Cow is the set of n-gram character confusions1, (co, cw), required to convert o into
w. For P(co|cw) we consider the frequency of confusions in the union of training and
validation datasets. We use Laplace smoothening for the unseen confusions.

In the first baseline, we consider V to be the set of ground truth words from
training and validation datasets. The test dataset is different from V (exactly as
in the LSTM model). We call this the lower baseline. In the second baseline, we
assume that all the ground truth words for the test dataset are also available in
V. Hence, we call it the upper baseline: an idealized, best possible baseline for
word-level corrections (based on dictionary lookup).

Suggestions Generation Experiment

We observe that four different contexts help correct the characters of an OCR word;

1. PC: Preceding characters from the OCR word itself,

2. SC: Succeeding characters from the OCR word2,

3. PCPW: Preceding characters from the OCR word and its preceding word
neighbors, and

4. PCSW: Preceding characters from the OCR word and its succeeding word
neighbors.

For Sanskrit, which exhibits the highest proportion of out-of-vocabulary words (see
Section 5.1.2), we train the LSTM network with these 4 contexts and obtain a model
from each. For PC, we train the forward character model explained in Section 5.1.3.
In contrast to this, for SC, we train another word-level model with the order of char-
acters reversed in both the input and the output words (to consider more succeeding

1Computed using dynamic programming (Bellman, 1966) and longest-common-subsequence al-
gorithm (Hirschberg, 1977).

2Certain mistakes in Indian language scripts are more sensitive to succeeding characters than
preceding ones.

62 Deep Learning Techniques for OCR Corrections

contexts because LSTM considers preceding contexts by default). For PCPW, we
train an LSTM model that takes characters from 5 preceding OCR words as well
as 1 present OCR word in the input. In all, we consider 6 corresponding correct
words in the output. On test data, 6 OCR words are provided as input, while we
are concerned only with the corrections of the last. Similarly, for PCSW, we train
a model that considers the characters from 6 words in the input, 5 of which succeed
the present word. To achieve this, we reverse the order of words used to train the
LSTM. For the last 2 models, we used the delay of 20 characters.

5.1.5 Results

Here, we present results for the settings described in Section 5.1.4.

Language TP TN FP FN Prec. Recall F-Score

Sanskrit 92.63 94.54 5.45 7.36 94.84 92.64 93.72
Malayalam* 87.56 94.23 5.77 12.44 93.82 87.56 90.58
Malayalam 92.62 96.02 3.98 7.38 93.26 92.63 92.94
Kannada 98.51 97.28 2.71 1.48 96.92 98.41 97.66
Hindi* 72.30 90.90 9.10 27.70 89.30 77.22 82.82
Hindi 91.96 93.86 6.14 8.04 92.94 91.95 92.44

Table 5.2: Error detection results in Indic OCR. *Vinitha and Jawahar, 2016

Error Detection Results

We present the basic error detection results in Table 5.2. Here, we note that the
word-level error detection on OCR output obtained using the basic forward character
level LSTM model outperforms the state-of-the-art results by Vinitha and Jawahar,
2016 (shown as Lang.*) in Malayalam and Hindi. Further, it is important to note
that the results for Sanskrit and Kannada are better than the results for Malayalam
and Hindi respectively, although the former languages have the higher percentage
of out-of-vocabulary words (see Figure 1.2).

Error Correction Results

In Table 5.3 we compare our method against the two baseline models described in
Section 5.1.4. As shown, we achieve a reduction in overall WER by at least 26.7%,
and our model corrects at least 63.3% of word errors for all the languages. The

5.1 Indic OCR Corrections using LSTMs 63

Language Word Error Rate (WER) %age words corrected by
OCR Baseline LSTM Baseline LSTM

Lower Upper Lower Upper

Sanskrit 51.20 58.60 20.01 21.41 9.62 66.12 63.34
Malayalam 37.28 48.43 10.83 10.59 9.09 58.20 78.30
Kannada 47.44 48.13 27.77 15.73 18.31 54.57 69.66
Hindi 46.80 45.43 34.17 16.71 20.94 27.46 72.47

Table 5.3: Decrease in WER and percentage of erroneous words corrected by LSTM

Language TP TN FP FN Prec. Recall F-Score

Gujarati 95.55 85.94 14.06 4.45 87.17 95.54 91.16
Telugu 96.60 85.64 14.36 3.40 87.05 96.59 91.57

Table 5.4: Error detection for smaller datasets in Gujarati and Telugu

LSTM-based model outperforms both the baseline models. Even though the upper
baseline model contains the ground truth word for the test data in its dictionary,
it is unable to correct all errors. This happens because a word search in the Indic
vocabulary invariably results in a large set of neighbours. From such a large set, it
is ambiguous to pick the correct word even using the knowledge of OCR-specific n-
gram confusions. Only in the case of Sanskrit, the upper baseline model is marginally
better because the language has many long words. Therefore, usually, a word search
in the idealized Sanskrit dictionary results in only one of the words as the neighbour.
It is important to note that the LSTM has no access to the ground truth of the test
data, as is the case for the upper-bound baseline model. The poor performance of
the lower baseline attributes to the fact that the vocabulary of ground truth words
in the test data is significantly different from the training and validation sets.

Our LSTM-based model with a fixed delay also works reliably on smaller
datasets of 20k and 28k word pairs in Gujarati and Telugu respectively, which we
obtained from Vinitha and Jawahar, 2016. We were able to correct 75.67% words
in Gujarati and 73.36% words in Telugu (as shown in Table 5.4), with F-Scores of
91.16 & 91.57 respectively. In both these languages, our models perform better,
than the upper baselines which correct 58.65% & 49.22% words in Gujarati and
Telugu respectively.

64 Deep Learning Techniques for OCR Corrections

Language Word Error Rate (WER) %age words corrected by
OCR Baseline LSTM Baseline LSTM

Lower Upper Lower Upper

Gujarati 50.07 42.96 20.64 18.25 53.53 58.65 75.67
Telugu 50.00 44.59 25.38 20.49 46.15 49.22 73.36

Table 5.5: Error correction for smaller datasets in Gujarati and Telugu

We test for statistical significance of the performance of our model over the
upper baseline using a Wilcoxon Signed-Rank test. The null hypothesis is that the
performance of our model is not better than the upper baseline. On the percentage
of word errors corrected by both the methods, we obtain a significance of 3.8% for
the 6 Indian languages mentioned above. This clearly rejects the null hypothesis
and supports the claim.

0 5 10
Edit Distance to Ground Truth

0

2000

4000

6000

8000

10000

12000

14000

16000

Fr
eq

ue
nc

y

Sanskrit: OCR vs LSTM

OCR LSTM

0 5 10
Edit Distance to Ground Truth

0

2000

4000

6000

8000

10000

12000

14000

16000

Fr
eq

ue
nc

y

Malayalam: OCR vs LSTM

OCR LSTM

0 5 10
Edit Distance to Ground Truth

0

5000

10000

15000

20000

Fr
eq

ue
nc

y

Kannada: OCR vs LSTM

OCR LSTM

0 5 10
Edit Distance to Ground Truth

0

5000

10000

15000

20000
Fr

eq
ue

nc
y

Hindi: OCR vs LSTM

OCR LSTM

Figure 5.6: Histogram of edit distance between OCR & ground truth word pairs (in
blue), LSTM output & ground truth word pairs (in red)

To analyze the partial corrections in words or character level improvements,
in Figure 5.6, we show the histograms of edit distance of OCR words from ground
truth words and the LSTM output from the ground truth. Note that we present
these histograms only on the test data. Our model reduces character-level errors for
most words. This is apparent from the shift in the histogram for OCR words with
higher edit distances from the ground truth to lower values of edit distances.

Examples of words completely corrected by the system can be seen in Fig-
ure 5.1. In Figure 5.7, we show examples of words that are partially corrected by
our model.

If the OCR system incorrectly map words from the document image to other
correct words in the language, our model is unable to detect such Real Word Errors

5.1 Indic OCR Corrections using LSTMs 65

Figure 5.7: Examples of OCR words partially corrected by LSTM

(RWE) and does not correct these words. Examples are shown in Figure 5.8 (top).
In a few rare cases, the LSTM does introduce new errors in words that are correct in

Figure 5.8: Examples of words not corrected, corrupted (top, bottom) by LSTM

the OCR output. This seems to happen in the words where the model replaces less
frequent n-grams by more frequent n-grams. More training data containing the less
frequent n-grams should be able to correct these errors. We present some examples
of these in Figure 5.8 (bottom).

Suggestion Results

As explained in Section 5.1.4, we train 4 additional models in Sanskrit to generate
different suggestions for the incorrect OCR words. In Table 5.6, we summarize the
results, comparing the quality of the suggestion generated by each of these models.
The last column in each row is for the percentage of OCR words for which we get the

66 Deep Learning Techniques for OCR Corrections

Suggestion Context for %age of correct %age of unique
Index training model suggestions suggestions

1. PCPW 63.98 63.98
2. PC 63.34 8.45
3. SC 55.02 4.48
4. PCSW 57.34 0.57

Table 5.6: Errors correction by LSTMs trained with different contexts in Sanskrit

correct ground truth word as the suggestion obtained by the corresponding model,
that could not be corrected by the models in the rows above them. We achieve
overall corrections for around 77 percent of erroneous words using the strategy of
obtaining different suggestions for the same OCR word based on different contexts.
Using this user-in-the-loop system, we outperform the upper baseline model for
Sanskrit as well.

In this section, we discussed the applicability of using LSTM with a fixed delay
for Indic OCR corrections. The models, however, correct the errors locally. In the
next section, we improve these models by providing global language information
with each training example with the help of sub-word embeddings.

5.2 Sub-word Embeddings for OCR Corrections
As discussed in Section 4.1, partial word forms (or sub-words) from different global
auxiliary sources can help in local OCR corrections. With every character in the
OCR text, it is natural to use the information of its context obtained from global
language sources to correct it. In this section, we highlight the importance of using
sub-word embeddings in the context of each OCR character to augment the input
of the basic LSTM model discussed in Section 5.1.3.

An example of a complex conjoined word corrected by the sub-word embeddings
based model we propose in this section is illustrated in Figure 5.9. Word embeddings
are the vectors which store the information of words along with their context in the
language. Some word embeddings also include sub-word units, such as in fastText
by Bojanowski et al., 2017, ELMO by Peters et al., 2018, and BERT by Devlin et al.,
2018. Of these, we find fastText to be most naturally suited for the purpose of pre-
training based on reconstruction of each sub-word using its context in fixed-length
sub-strings (refer Figures 5.10, 5.5). Such an embedding helps in representing the

5.2 Sub-word Embeddings for OCR Corrections 67

Figure 5.9: Correction flow of our model for a complex word in Sanskrit

information related to the frequency and context of sub-words in the language and
especially benefits out-of-vocabulary words at test time. This makes fastText a good
fit for the segmentation of the complex conjoined words into generally used words
for Sanskrit (Reddy et al., 2018). Sub-word embeddings have also been used in
Neural Machine Translation (NMT) and sentence pair modelling by Sennrich et al.,
2016; Lan and Xu, 2018, and have proven helpful for producing the vectors for out-
of-vocabulary words in that context. The importance of sub-word embeddings has
also been highlighted recently by some of the latest works in reading comprehension
(Zhang et al., 2018).

Sub-word units, such as n-grams and their (possibly noisy) contexts, can be
extracted from the OCR output text, and compared with their frequency statistics
over a general text corpus. Text embeddings such as fastText can help compute
different statistical functions for the sub-word units. FastText embeddings typically
learn such combined function of n-grams and text dependency from the language
data. For the OCR correction task, we will consider the frequencies of sub-words in
the ground truth of training data as an initial approach (referred to as frequency-
based approach) and compare it with modified fastText embeddings as an alternative
approach (referred to as fastText approach).

OCR output text is mostly correct (i.e., many more characters are right than
incorrect), and the large fraction of errors in the OCR text follow the confusion
patterns which arise due to similarly shaped glyphs in the language font. Therefore,
for OCR corrections, character-based approaches are generally used (ICDAR, 2017,

68 Deep Learning Techniques for OCR Corrections

2019). We also follow the character-based approaches in our experiments, which we
explain in the next section.

5.2.1 Approaches

We now discuss the two approaches we use to augment the input of the LSTM
with sub-word level information.

a) Frequency-based approach: Sub-word unit based learning

For each input character xt in the training sample {x1:Tx , y1:Ty}, we extract the bag
of sub-words with lengths varying from 2 to l + 1 from a context window of length
2l + 1 around xt. We only consider the sub-word units that contain the character
xt. Thus the sub-word units that we consider for the tth character in the OCR word
x1:Tx are: 2-grams ({xt−1:t}, {xt:t+1}), 3-grams ({xt−2:t}, {xt−1:t+1}, {xt:t+2}), etc., up to
(l+1)-grams ({xt−l:t}, {xt−l+1:t+1}, ... , {xt:t+l}).

We find the normalized frequency of each sub-word unit in the ground truth
of the training data Y, and augment them to the LSTM model, as we discuss in
Section 5.2.2.

Language Text

Replace spaces (& newlines)
with special character

Data for Training fastText

End of
iterations

Yes

Join the Text, &
Pad (for right shift)

No

End

Load Language Text

Start

acintyAvyaktarU pAya^nirguRAya^
guRAtmane^sam...
$$$$$$$$$$$$$$a cintyAvyaktarUp
Aya^nirguRAya^g uRAtmane^sam...
.
.
.
$acintyAvyaktar UpAya^nirguRAya
^guRAtmane^sam...

Fill Training Data

acintyAvyaktarUpAya nir-
-guRAya guRAtmane sam
…

Split the Text after
every 15th character

Figure 5.10: Flowchart for transformation of language data for training fastText

5.2 Sub-word Embeddings for OCR Corrections 69

b) FastText approach: A new method for training fastText on sub-word units

As a meaningful contribution to the task of Indic OCR corrections, we provide a
new procedure for training embeddings such as fastText by Bojanowski et al., 2017
for the work. The training procedure is driven by and based on the observations
described in the previous sub-section. While training the fastText embeddings, we
consider the substrings of length 2l + 1 in the language. We split the language text
at every 2l + 1th character (including space characters) to form substrings of length
2l+1, before learning the desired embedding over the entire string. It is important to
emphasize that the fastText implementation involves the bag of smaller sub-words
(of length 2 to l + 1 for our case) within the substring (of length 2l + 1) that we
obtain. Therefore, this is similar to the learning described in the previous sub-
section. In Figure 5.10 we illustrate the flowchart for this process along with an
example of language data in the SLP1 (Sanskrit Library Phonetic Basic encoding
scheme) format (blue, top left) and corresponding training data obtained using fixed-
length substrings of size 2l+ 1 = 15 (blue, bottom right). As shown, we first replace
each space (and newline) character in the language text by a special character. We
then split the data every 15 characters to form substrings of length 15 (adequately
padding the end of language text). We then iteratively i) pad the language text in
such a way that it considers the substrings starting from the subsequent characters,
and ii) repeat the above splitting, 14 more times to include every possible sub-word
of length 15 in the language. This transformation also retains adequate context for
each substring in the original language text.

We focus on the task of correcting the (possibly incorrect) character xt in the
OCR word x1:Tx to the correct character yt. Owing to confusions involving multiple
characters in the source and/or target, some of the xt and yt could be blanks. The
sub-word context xt−l:t+l, (with l determining the window size) can be further utilized
to predict the correct character yt. The input space of the LSTM model can explode
if we provide the sub-word units directly in the form of one-hot-encodings (OHE). We
therefore instead provide the information about the context sub-words in the form
of normalized frequencies for the frequency-based model and fastText embedding
vectors trained with a new procedure that we describe in the next section.

5.2.2 Model

We train the OCR correction models using the global information from the

70 Deep Learning Techniques for OCR Corrections

.90

.01

.02

.07
Wyh

0.0
0.1
-0.5
.07

0
0
1
0

Whx

Whh

$$$$$$$$मासैɮवा[दशͧभव[षɍ

मासैġǑदशͧभåव[षɍ

मासैġǑदशͧभåव[षɍ
Ǒदåयं
तदह
उÍयते
सुरासुराणामÛयोÛयमहोराğं
ͪवपय[यात ्
तत_्षिçटः
षɬगुणा
Ǒदåयं
वष[मासुरमेव
च
सूया[Þदसɨयया
ǑɮवǒğसागरेŶयुताहतैः
सÛÚयासÛÚयांशसǑहतं
ͪव£ेयं
...

मासैɮवा[दशͧभव[षɍ
Ǒदåयं
तदाह
उÍयते
सुरासुराणामÛयोÛयमहोराğं
ͪवपय[यात ्
त×षिçटः
षɬगुणा
Ǒदåयं
वष[मासुरमेव
च
सूया[ÞदसंÉयया
Ǒɮवǒğसागरैरयुताहतैः
सÛÚयासÛÚयांशसǑहतं
ͪव£ेयं
...

 Xtrain Ytrain

◌ि श
शभ

xt-1:t

◌ि शभ

.04

.07
.2
...

Sub-word frequencies
Or

Fasttext embedding
vector

Frequencies of all possible
sub-word units in Ytrain

f1Y f2Y f3Y .…

सैġǑदशͧभåव[र ् fwxt-ℓ:t+ℓ

xt:t+1

xt-1:t+1

FastText embeddings
learned from Ytrain

fw

f1Y f2Y f3Y .…

Figure 5.11: LSTM model with 7 units of delay for two types of encodings

training data, in the form of sub-word frequency values as well as fastText embedding
vectors derived from the ground truth of training data as shown in Figure 5.11.

To predict the tth character yt of the correct sequence y1:Ty of length Ty, based
on the OCR character sequence x1:t+d, an LSTM with fixed sequential delay is used
in Section 5.1.3. Here d is the context ahead of the location t in the input sequence
x1:Tx that is required to resolve an error at that location. For the frequency-based
model, a database D is filled with the mapping of all possible sub-words with their
frequency in ground truth (i.e. corrected output) from the of training data as shown
in Figure 5.11 (orange in the bottom right). Then, we append the one-hot encoding
(OHE) of each character xt at the input with the frequencies (which are derived from
the mappings in the database D) of sub-words xt−a:t+b s.t. 0 ≤ a, b ≤ l within a context
xt−l:t+l around it (orange in the bottom left). For illustration, only three sub-word
units within the context xt−l:t+l with l = 5 is shown in Figure 5.11. In comparison,
for using fastText sub-word embeddings in our model, we first train fastText on
(the sub-words present in) the constant length (2l + 1) substrings as explained in
Section 5.2.1 (shown in the dark red in Figure 5.11). We then concatenate the one-

5.2 Sub-word Embeddings for OCR Corrections 71

hot encoding of each input character with the embedding vector of the substring (of
length 2l + 1) present in the context window t − l : t + l.

Word µ, σ OOV Word Error
Language Correction of Word percentage Rate for

Pairs Length in test set OCR (OOVs)
Sanskrit 86 k 10.22, 7.98 44.77 51.20 (72.16)

Malayalam 107 k 9.32, 4.93 49.32 38.32 (45.86)
Kannada 118 k 8.42, 3.86 26.59 47.44 (60.14)
Hindi 134 k 5.29, 2.53 23.70 46.80 (48.47)

Table 5.7: Datasets used for our experiments

5.2.3 Datasets used for the Experiments

We work on four Indian languages with varying complexities for the task
of document OCR corrections. Table 5.7 summarizes the details of the dataset
that we explained in Section 5.1.2. For Malayalam, we obtain 81k pairs of OCRed
words and their corresponding corrected versions (hereafter referred to as correction
pairs). We also include the 26k correction pairs obtained from a work by Vinitha
and Jawahar, 2016. Putting these together, we get a total of 107k correction pairs
for Malayalam. As shown in Table 5.7, the dataset consists of the order of 100k

pairs of “OCR word, Ground Truth word” in each of the four languages. The mean
and standard deviations of word lengths in Table 5.7 for the different languages are
consistent with the fact that Sanskrit has the highest number of word conjoining
rules, followed by Malayalam, Kannada and Hindi. We further note that although
the out-of-vocabulary words in the Malayalam test set (with respect to training and
validation set) are higher in percentage as compared to Sanskrit, still the Word
Error Rates (WER) for general OCR words as well as out-of-vocabulary words in
Sanskrit are higher than that of Malayalam.

5.2.4 Experiments

The datasets explained in the previous section were split as per the ratio
64:16:20 for training, validation and testing respectively. Following the method-
ology in Section 5.1.4, we evaluate our models on two tasks, viz., error detection
and error correction. We again use the sequence delay of 7 for Sanskrit and Kan-
nada, and 5 for Malayalam and Hindi. We use the context of l = 7 characters on each

72 Deep Learning Techniques for OCR Corrections

side of the OCR character xt to derive the sub-word units, based on the n-gram level
features used for training log-linear classifiers in Sections 4.4.2 and 4.3.1. Thus, we
effectively use the sub-words of length 2 to 8 for the frequency-based model. For the
fastText based models, we use the embedding size of 100 while training the fastText
with (sub-word units present in) constant length substrings xt−l:t+l (as described in
Section 5.2.1.b). We train the fastText models for 100 epochs on the ground truth of
each language dataset. As discussed earlier, we switched off the word level n-grams
and use all the sub-words of length 2 to 8 within context xt−l:t+l. We use 2 × 512

sized hidden layer LSTM for all experiments. For training, we use the gradient
descent algorithm with the learning rate of 0.002 and the decay of 0.97 per epoch
after 10 epochs of training to learn the model parameters. We train models with
cross-entropy loss for 200 epochs.

We use the disagreements between the input and output of the model for the
error detection task. It is important to note, that this error-detection methodology
also allows us to color code the errors at the granularity of characters as shown in
Figure 5.11. We use F-Scores as the evaluation measure for error detection. Our
models naturally learn to correct errors as we train them on the pairs of OCR word
and its ground truth. For error correction, we use measures such as i) Word Error
Rates (WER) of the model’s output and ii) the percentage of word errors corrected
by model.

5.2.5 Error Detection Results

Here, we first discuss the effect of training our model with different fastText
embeddings. We then discuss the results on two different encodings described in
Section 5.2.1 across various languages.

Effect of training LSTM with different fastText embeddings

It is important to note that the average word length and standard deviation in word
length are highest for the Sanskrit dataset, as shown in Table 5.8. Thus, for Sanskrit,
we perform experiments with fastText embeddings trained on i) a large generalized
corpus, ii) our data, and iii) our data with the new training procedure explained in
Section 5.2.1. The results are shown in Table 5.8. As shown in rows 1 and 2, the F-
Score of the model with fastText embeddings pre-trained on the ground truth of data
is better than the model with fastText embeddings pre-trained on a large amount
of general data. This happens probably because there is sharing of sub-words (or
domain) or OCR confusions among the training and the test datasets. However,

5.2 Sub-word Embeddings for OCR Corrections 73

Method TP TN FP FN Precision Recall F-Score

Normal training
(Wikipedia & web) 93.74 94.19 5.80 6.25 94.57 93.74 94.16
Normal training
(our data) 94.90 94.61 5.39 5.10 95.01 94.90 94.95
New training procedure
(our data) 95.11 95.39 4.61 4.89 95.71 95.11 95.41

Table 5.8: Effect of pre-training fastText with different datasets and proposed pro-
cedure in Sanskrit

when we pre-train the fastText embeddings on the ground truth of training data
with the new training procedure (described in Section 5.2.1) and use them with
our model, the results outperform the other methods. This is shown in the 3rd

row of Table 5.8. This supports the claim of contributing a novel, useful training
methodology using sub-word embeddings.

Language TP TN FP FN Precision Recall F-Score

Sanskrit
Basic LSTM model* 92.63 94.54 5.45 7.36 94.84 92.64 93.72
Frequency-based model 94.49 95.20 4.79 5.51 95.52 94.49 95.02
FastText model 95.11 95.39 4.61 4.89 95.71 95.11 95.41
Malayalam
Basic LSTM model 91.40 96.39 3.61 8.60 94.02 91.40 92.69
Frequency-based model 91.62 96.42 3.58 8.37 94.08 91.62 92.84
FastText model 94.70 95.77 4.23 5.30 93.29 94.70 93.99
Kannada
Basic LSTM model* 98.40 97.18 2.82 1.60 96.92 98.41 97.66
Frequency-based model 98.64 96.66 3.34 1.36 96.38 98.64 97.50
FastText model 98.36 97.53 2.47 1.64 97.29 98.36 97.82
Hindi
Basic LSTM model* 91.96 93.86 6.14 8.04 92.94 91.95 92.44
Frequency-based model 93.68 94.36 5.64 6.32 93.60 93.68 93.64
FastText model 96.92 95.68 4.32 3.07 95.18 96.92 96.04

Table 5.9: Error detection results in Indic OCR, *Results in Section 5.1.5

2We refer to this model as fastText model for the remaining sections in this chapter.

74 Deep Learning Techniques for OCR Corrections

Results on different languages

In this section, we present results for different Indian languages. We perform exper-
iments for the four languages with the frequency-based model, and the model with
fastText embeddings, both trained on the ground truth from the training data. It is
important to note that the F-Scores in Table 5.2 were already above 92%. As shown
in Table 5.9 the frequency-based model, as well as the fastText model, outperform
the Table 5.2 results (referred to as basic LSTM model) for all the experiments
(except for Kannada where the results of the frequency-based model are slightly
lower than the basic LSTM model). The improvements result from the fact that we
provide the context information with each OCR character in the form of sub-word
frequencies, or sub-word embeddings, as explained in Section 5.2.1. As shown in
the 2rd row of Table 5.9, frequency-based model, that works on the principle of fre-
quencies derived from sub-words in the ground truth of training data, performs as
well as the fastText embeddings trained on the same data (as depicted in row 2 of
Table 5.8) for Sanskrit. The experiments show that there are gains of 1.38% and
1.80% in F-Score using the frequency-based model and the fastText model, respec-
tively, over the results in Section 5.1.5 for Sanskrit. Furthermore, the percentage
increase in F-Scores for Malayalam, Kannada, and Hindi are 0.43%, −0.16%, and
1.30% respectively when we use the frequency-based model, and 1.62%, 0.16%, and
3.69% when using fastText embeddings pre-trained with the proposed procedure.
We further note that all our models converge on an F-Score of more than 90%

(on the validation set) within the first 20 epochs of training. Thus we gain both
higher performance and faster convergence with the pre-trained (or pre-calculated)
encodings.

5.2.6 Error Correction Results

In Table 5.10 we show that for Sanskrit, the frequency-based model reduces
the word level errors to 17.85%3, which is 3.56% better as compared to the results
of the basic LSTM model (refer Section 5.1.5). The increase in the percentage of
word errors corrected by the frequency-based model is 6.71% as compared to the
basic LSTM model. The gains increase further with the model based on pre-trained
fastText embedding (with procedure proposed in Section 5.2.1). The corresponding

3The word error rates are still very high because the original word error rates for the OCR system
(shown in the 2nd column of the Table) are very high (51.20 for Sanskrit). The improvements of
text-based correction systems rely on the quality of original OCR texts. The similar observations
can be made in the ICDAR (2017, 2019) post-OCR competitions.

5.2 Sub-word Embeddings for OCR Corrections 75

Language Word Error Rate (WER) %age words
OCR (OOVs) LSTM (OOVs) corrected by LSTM

Sanskrit
Basic LSTM model* 21.41 (32.67) 63.34
Frequency-based model 51.20 (72.16) 17.85 (28.03) 70.05
FastText model 17.72 (28.71) 70.13
Malayalam
Basic LSTM model 11.83 (16.07) 75.22
Frequency-based model 38.32 (45.86) 11.55 (16.30) 75.60
FastText model 10.95 (17.28) 78.24
Kannada
Basic LSTM model* 15.73 (25.71) 69.66
Frequency-based model 47.44 (60.14) 15.53 (27.08) 70.30
FastText model 15.38 (25.32) 70.90
Hindi
Basic LSTM model* 16.71 (29.23) 72.47
Frequency-based model 46.80 (48.47) 14.42 (26.29) 75.59
FastText model 9.58 (20.26) 84.42

Table 5.10: Error corrections by our model, *Results in Section 5.1.5

improvements with the frequency-based models in Malayalam, Kannada, and Hindi
are 0.28%, 0.30%, and 2.29% in terms of reduction in WER. The percentage of
erroneous words corrected by the models increase by 0.28%, 0.64%, and 2.82%.
For the fastText model (trained with the proposed procedure), the corresponding
reductions in WER are 0.88%, 0.35%, and 7.13% respectively, and the gains in word
correction are 3.02%, 1.24%, and 11.95%, respectively. Moreover, it is essential to
note that all the models consistently reduce the errors in out-of-vocabulary words.
As shown in Table 5.7, for Sanskrit, Hindi, and Kannada, the higher context in the
form of sub-word information helps in reducing word error rates in out-of-vocabulary
words as compared to basic LSTM model. Interestingly, for Malayalam, we observe
somewhat higher word error rates for the out-of-vocabulary words as compared to
the basic LSTM model. We conjecture that this is due to differences in the statistics
for out-of-vocabulary words between the training and test set, due to the addition
of data from a different source, i.e., from Vinitha and Jawahar, 2016 (explained in
Section 5.2.1) to the test set. We also note that the correction pairs from this dataset
form the 35% of test set, which leads to a high percentage of out-of-vocabulary words
in Malayalam with respect to Sanskrit, as shown in Table 5.7.

76 Deep Learning Techniques for OCR Corrections

OCR WORD PREVIOUS WORK OUR MODEL
(CORRECT WORD)

ब्रह्मगुर्मी�प्ता	र्मीजा�व	 ब्रह्मगुप्त_क्त्मा	र्मीज्ज	व	 ब्रह्मगुप्तोक्तम्जीव	
_അരികിലേ�ക്കാളരികി�ാണത്ഭുതം അഈഅരികിലേ�ക്കാളരികി�ാണത്ഭുതം നീഅരികിലേ�ക്കാളരികി�ാണത്ഭുതം

ಪದಿವೂಹವನ್ನು�� ಪದ್ಮ
 ವೂ�$ಅವನ್ನು�� ಪದ್ಮ
 ವೂ�ಹವನ್ನು��

सहनशाक्ति� सहनभक्ति� सहनशक्ति�

Figure 5.12: Sample correction examples of agglutination (blue-purple) & fusion
(dark red) with respect to (previous) basic LSTM model

Figure 5.12 depicts sample errors corrected by our model in different languages.
The first column shows incorrect OCR words. The corrections performed by the
previous basic LSTM model and the fastText embeddings based model are present
in the second and the third column respectively. Here, we show the correct word
forms in the language in blue and purple colors, where there is a change of color
from blue to purple (or vice-versa) when two words are agglutinated. The fusions
are shown in dark red color. As shown, our model corrects the highly complex words
that involve agglutinations and/or fusions in different Indian languages.

OCR Frequency Frequency Frequency
Confusions OCR output Basic LSTM FastText Model
◌ो → ◌ी 756 24 9
क्ष → च 382 14 9
व → ख 319 5 4
ല് → ൽ 1087 52 28
ര് → ർ 966 57 22
ന് → ൻ 714 36 19
ತ್ → ರ್ 184 12 5
ಐ → ಎ 155 10 5
ಯ → ಇ 126 4 1
◌े → ◌ं 707 1 0
थ → य 600 19 17
◌ै → ◌ं 373 3 3

Table 5.11: Top 3 confusions (Correct→OCR) in Sanskrit, Malayalam, Kannada
and Hindi

Analysis

We now substantiate how our model improves the detection/correction for top char-
acter confusions, and also improves over basic LSTM model (discussed in Sec-
tion 5.1.3), in the OCR output as motivated earlier in Section 5.2. As shown in

5.3 Attention-based models 77

Table 5.11, the basic LSTM model is able to reduce the confusions to a large extent
in test data, and our model reduces them further. It is important to note that these
confusions are corrected by the models based on their context in different OCR
sequences.

We discussed the improvements over the basic LSTM model by augmenting
its input with two different types of sub-word embeddings in this section. We
worked with the datasets containing around 100k OCR words in four different In-
dian languages. In the next section, we discuss the applicability of character level
attention-based models for the task of OCR corrections. We show that such models
are highly beneficial for the more extensive datasets in the two ICDAR, 2017, 2019
post-OCR competitions.

Figure 5.13: A simple word level attention model by Klein et al., 2017

5.3 Attention-based models
The LSTM model that we described in previous sections can be considered simple
encoder-decoder model, which encode the characters from the input OCR sequence
and decode (or predict) the correct character sequence in output. In such a simple
encoder-decoder model, there is no ability to emphasize or focus on the essential
characters from the input sequence while decoding the correct character sequence.
It is, however, possible to add such a mechanism, by making use of the attention-
based models.

Figure 5.13 depicts a simple word-level attention model by Klein et al., 2017.
The example we present here is for the supervised machine translation task. The

78 Deep Learning Techniques for OCR Corrections

Language Source Type Dates E.R. Char.

English
BL Euro NP serials 1744 - 1894 4% 1.8 M
BL Monog monog. 1858 - 1891 1% 1.2 M

GT BnF Eng monog. 1802 - 1911 2% 3.0 M

French

Europeana NP serials 1814 - 1944 4% 1.0 M
IMPACT monog. 1821 - 1864 1% 0.4 M

GT BnF Fr mixed 1686 - 1943 1% 2.0 M
Digit. BnF mixed 1654 - 2000 3% 0.2 M
News other serials 1897 - 1934 4% 0.6 M
Monog other monog. 1689 - 1883 3% 1.8 M

Table 5.12: Datasets used in ICDAR (2017) post-OCR competetion

word sequence from the source language serves as input into a 2 layered RNN encoder
(shown in red). The decoder RNN (shown in blue) starts decoding (or translating)
the input sequence when it comes across the < eos > symbol in the source language.
At each decoding step, the mechanism applies attention over all the outputs of the
encoder to weight the important input words. The result combines with the current
hidden state of the decoder to predict the next word in the target sequence. Thus
the attention layers, which are applied to the encoder’s output help it to learn to
give attention to different context information around the input word being decoded.
The predicted output word is then used as input to the next step of to the decoder.
The symbol “+” in the circle of Figure 5.13 represents the weighted average of all
the vectors. The attention mechanism is said to choose the important words because
the weights are generally sparse and are estimated based on the inputs to attention
mechanism. Naturally, only the important words are given higher weights by such a
mechanism. In the next two sections, we discuss how we use such attention models
for character level OCR corrections in two post-OCR competetions ICDAR (2017,
2019).

5.3.1 ICDAR’17 Post-OCR Competition

For the last 30 years, OCR has been an extensive research study. The perfor-
mance, however, is still not up to scratch specifically for ancient texts and newspaper
images. Therefore a research competition was proposed for the error detection and
corrections in the English and French OCR texts.

5.3 Attention-based models 79

As shown in Table 5.12, a total of 12M OCR characters were obtained primarily
from newspapers and monographs at the National Library of France (BnF) and the
British Library (BL), was used in the competition. The participants used 80% of the
data, which consisted of OCR text aligned with Ground Truth text for training and
validation. The remaining 20% of data of the data, which contained only OCR text
granted at the end of the competition, was used for testing. Eleven teams submitted
results, and around six (as shown in Table 5.14) were able to denoise the OCR text.

Our Method for ICDAR’17 post-OCR competition

The method we proposed relies on the Character Level Attention Model (CLAM),
which is an attention-based LSTM encoder-decoder model, with beam search used
at the decoder’s output. We used the open-source implementation by Klein et al.
(2017) for the model proposed by Luong et al. (2015). Here we used one-hot encoded
vectors for characters rather than words. The attention model makes use of a 2-layer
BLSTM of size 1000 as encoder and a 2-layer LSTM of size 1000 as the decoder.

Training: To deal with both real-word errors as well as non-word errors, we
used the characters from input OCR word ot with space as the character delimiter
at the network’s input. We also used the space-separated characters from l OCR
words on the left of ot (i.e. ot−l:t−1) and r OCR words on its right (i.e. ot+1:t+r). We
used $ as the word delimiter. As the target labels for the network, we used the
characters from the ground truth word corresponding to the input OCR word with
space as the delimiter. The best results were given by l = 4, r = 1 for the first 3

datasets, and l = 6,r = 1 for the last.
Testing: We expect the model to jointly learn the language as well as error

patterns in the OCR output. Since our model avoids suggesting changes to the
correct words, we considered the words that the model modify as incorrect and
remaining correct. We experiment with different contexts that may help identify
and correct the erroneous OCR output words and thereby identify the context which
gives the best F-score and corrections.

Results

The results for ICDAR’17 post-OCR competition are summarised in Tables 5.13
and 5.10. As can be observed from Table 5.13, the team “WFST-PostOCR” obtained
the best results in detecting errors. They proposed Weighted Finite-State (Edit)
Transducers (WFSTs, refer Roche and Schabes, 1997), which they composed by
estimating the stochastic error models from the aligned training corpus. To address

80 Deep Learning Techniques for OCR Corrections

Task 1 (F-mesure)
Corpus part ENG-mono. ENG-period. FR-mono. FR-period.

NbTokens (E.R.) 63371 (10%) 33176 (15%) 32274 (5%) 48356 (7%)
5gram-KN-LV 0.05 0.51 0.25 0.35

LSTM Monochar - - 0.17 -
Seq2Seq 0.45 0.39 - -
BiLSTM 0.09 0.06 0.05 0.05

2-pass-RNN 0.66 0.66 0.43 0.60
Anavec - - 0.24 0.42

WFST-PostOCR 0.73 0.68 0.55 0.69
CLAM 0.67 - 0.36 0.54

Char-SMT/NMT 0.67 0.64 0.31 0.50
EFP 0.69 0.54 0.40 0.54

MMDT 0.66 0.44 0.36 0.41

Table 5.13: F-scores for error detection in ICDAR (2017) POCR competition

the segmentation errors, the team applied the error model (with at most one edition)
to the words, word splits, and concatenated words. Moreover, they used Google
Books n-gram corpus to generate the dictionary and 2-gram language models, which
they composed with the error (or substitution) models in the WFSTs. The best path,
when applied over the composed model, determined the output sequence. The team
preserved the case of the output text as per the source OCR words. The symbol
“-” in all the tables, in the present and the next sections, represents that results
were not exploitable, i.e., they were not submitted in the proper format or were
incomplete.

Our team “CLAM” achieved the third or fourth highest F-scores for the error
detection task on three datasets as shown in Table 5.13.

The correction results are summarized in Table 5.14. Here, the values on the
left side of symbol “/” represent the percentage of words auto-corrected by the team
mentioned in the first column. The value on the right of “/” represents the semi-
automatic corrections based on the ranked suggestion list, along with weights for
each suggestion, submitted by the team. The symbol “=”, in all the tables from the
present and the next section, represents no global gains (= / =) or same results (for
both automatic and semi-automatic approaches) respectively. The winning team
“Char-SMT/NMT” used multiple character-based statistical and neural machine
translation models similar to ours for each language and type (with 10% validation
set), the details of which are as follows:-

5.3 Attention-based models 81

Task 2 (%Improvement)
Auto (top1) / Semi (weighted mean on top5)

Corpus part > ENG-mono. ENG-period. FR-mono. FR-period.
NbTokens (E.R.) > 63371 (10%) 33176 (15%) 32274 (5%) 48356 (7%)

5gram-KN-LV - - - -
LSTM Monochar- =/= - =/= -

Seq2Seq =/= =/= - -
BiLSTM =/= - - -

2-pass-RNN - =/= - -
Anavec 5%/- =/= =/= =/=

WFST-PostOCR 28%/= =/= =/= =/=
CLAM 29%/= 22%/= 1%/= 5%/=

Char-SMT/NMT 43%/= 37%/= 44%/= 29%/=
EFP 13%/11% =/= 23%/= 5%/4%

MMDT 20%/= =/= 3%/= 2%/=

Table 5.14: Auto-corrections/Suggestions by each team in ICDAR (2017) POCR
competition

1. The basic models corrected each word separately.

2. The models corrected the words based on a context window of 2 previous
words and 1 subsequent word (similar to our models where we take up to 6

previous and 1 subsequent word in the context).

3. To embed time4, with groups of 50 years, factored-neural models (Alexan-
drescu and Kirchhoff, 2006) were also used.

An OCR word is marked as an error if:-

1. There is a change in word based on lowest edit distance in the validation set,
or

2. There is a dissimilarity in the predictions from the five best systems, or

3. Lookup in the correct training set fails, or
4Some of the word forms are prominent for a specific period, and the usage changes over time.

E.g., as per the statistics of Google’s “English (2012)” corpus given in https://tinyurl.com/
yan5zo58, the word “Henceforth” was used more often than the term “Subsequently” from the
year 1800 to 1824, and then onwards the usage of the word ”Subsequently” is more frequent. So
embedding the time information to the input can be useful for the model to modify or correct such
words.

https://tinyurl.com/yan5zo58
https://tinyurl.com/yan5zo58

82 Deep Learning Techniques for OCR Corrections

Lang. Source #file #character µ CER σ CER
BG 1 IMPACT 200 399 636 14.96 12.49
CZ 1 IMPACT 200 274 130 5.79 12.07
DE 1 IMPRESSO 102 575 416 13.54 14.45
DE 2 IMPACT 200 494 328 39.67 16.09
DE 3 Dta19 7 623 10 018 258 24.22 3.26
DE 4 EML 321 509 757 23.95 3.94
DE 5 KA 654 818 711 24.19 3.64
DE 6 ENHG 773 935 014 30.47 3.00
DE 7 RIDGES 415 527 845 24.20 3.63
EN 1 IMPACT 200 243 107 21.28 20.25
ES 1 IMPACT 200 517 723 27.51 17.96
FI 1 NFL open 393 1 960 345 5.67 3.94
FR 1 HIMANIS 1 1722 792 067 7.14 10.09
FR 2 IMPACT 200 227 039 15.48 13.94
FR 3 RECEIPT 1 968 742 574 9.27 10.91
NL 1 IMPACT 200 764 648 26.84 23.42
PL 1 IMPACT 200 307 144 38.16 18.09
SL 1 IMPACT 200 261 060 10.16 15.83
10 18 15 221 22 368 802 20.14 11.50

Table 5.15: Datasets used in ICDAR (2019) post-OCR competetion

4. The word and its any neighbour (corrected/OCR word itself) do not occur in
the training set, but their concatenation does.

Suggestions from the best model formed the entry for the auto-correction task. The
correction mechanism also leveraged the predictions (from different models) with the
lowest edit-distance on the validation set. The suggestion list for semi-automatic
corrections was generated based on prediction frequency.

Our team “CLAM” achieved the second-highest results for the OCR corrections
for three datasets as shown in Table 5.14. In the next section, we discuss the
approach we used in the ICDAR (2019) post-OCR competition.

5.3.2 ICDAR’19 Post-OCR Competition

The ICDAR (2019) post-OCR competition also proposed the tasks of error
detection and corrections similar to the ICDAR (2017) competition, but over a
larger dataset of 22M OCR-ed symbols (754025 words) from 10 European languages.
The original dataset consisted of around 22M OCR-ed symbols. The participants
used 80% of the dataset for training and remaining 20% (without ground truth) for
testing. Thirty four teams registered for the competition, out of which only 5 teams
submitted their results.

5.3 Attention-based models 83

Newspapers, ancient documents, ancient manuscripts, and purchasing receipts
covering Bulgarian, Czech, Dutch, English, Finish, French, German, Polish, Span-
ish and Slovak were used as shown in Table 5.15. As per ICDAR (2019), the digi-
tized documents were from different collections in national libraries and universities.
The corresponding ground truth texts were obtained from the initiatives such as
HIMANIS5, IMPACT6, IMPRESSO7, Open data of National Library of Finland8,
GT4HistOCR by Springmann et al., 2018 and RECEIPT by Artaud et al., 2018.

Our Method for ICDAR’19 post-OCR competition

We again use the open-source system by Klein et al., 2017, and the model used in
Section 5.3.1. Some training and testing details differ from the previous approach,
which we describe below.

Training: To take care of real-word errors as well as non-word errors, at the
network’s input we used the characters (with space as character delimiter) from
input OCR word ot. We also use the characters from l and r OCR words (with $
as the word delimiter) on its left: ot−l:t−1 and right: ot+1:t+r. We also appended each
input with a language flag and trained a single model jointly on all languages. At the
network’s output, we used the characters (with space as the character delimiter) from
the ground truth word gt corresponding to the input OCR word ot. We analyzed the
complete dataset and observed that there is a maximum of 10 space related errors
where OCR systems introduced non-existent spaces. To successfully remove such
errors, we choose l = 10 and r = 10 i.e. 10 words on the left as well as the right of
OCR word ot as context.

Testing: We trained our model to jointly learn the languages as well as the er-
ror patterns in the OCR output. We used the methodology followed in Section 5.3.1
for error detection, i.e., we considered the word modified by the model to be incorrect
and correct otherwise. We applied the edit-distance algorithm between the input
and output of the model to find the length of the erroneous tokens. We considered
the model’s outputs as the suggestions for the error correction task.

84 Deep Learning Techniques for OCR Corrections

Language BG CZ DE EN ES FI FR NL PL SL
CCC 0.77 0.70 0.95 0.67 0.69 0.84 0.67 0.71 0.82 0.69
CLAM 0.68 0.41 0.93 0.45 0.56 0.51 0.45 0.61 0.72 0.54
CSIITJ - - - 0.45 - - 0.42 - - -
RAE1 - - 0.90 0.53 0.62 0.44 0.42 - - -
RAE2 - - 0.89 0.57 0.60 0.46 0.45 - - -
UVA - - - 0.47 - - - - - -

Table 5.16: F-scores for Error Detection in ICDAR, 2019 POCR Competition
Language BG CZ DE EN ES FI FR NL PL SL

CCC 9/8 6/= 24/= 11/= 11/6 8/= 5/= 12/10 17/16 14/12
CLAM -2/-3 -1/= -7/= 0.4/= -1/-5 44/= 4/= -3/= -2/= 0/-1
CSIITJ - - - 2/1 - - - - - -
RAE1 - - 15/= 9/= 7/= 7/= 26/= - - -
RAE2 - - 14/= 6/= 7/= 6/= 20/= - - -
UVA - - - 0/= - - - - - -

Table 5.17: Percentage of Corrections/Suggestions by each Team in ICDAR, 2019

Results

As can be concluded from Tables 5.16 and 5.17, our team “CLAM” (Character
Level Attention Model) secured the second position in the competition. The overall
winner (referred to as team “CCC (Context-based Character Correction)”) used
the character level sequence to sequence model with attention mechanism similar
to ours. Their detection method, however, exploited the pre-trained multi-lingual
Bidirectional Encoder Representations from Transformers (BERT) by Devlin et al.,
2018. The BERT output of all the sub-words from the OCR word served as an input
for a sub-word level neural network classifier with convolution and fully-connected
layers. If the model assigned two or more subwords as erroneous, they marked the
complete word as incorrect. For error correction; the characters from the OCR word,
along with context from the BERT (fine-tuned at the detection task stage), served as
an input to an attention model. The encoder for correction model used by “CCC”,
was a BLSTM (similar to our model) and additionally, both encoder and decoder
shared the same character embedding. Finally, they also used the beam search for
auto-corrections and suggestions.

5 www.himanis.org
6 www.digitisation.eu
7 https://impresso-project.ch
8 https://digi.kansalliskirjasto.fi/opendata

www.himanis.org
www.digitisation.eu
https://impresso-project.ch
https://digi.kansalliskirjasto.fi/opendata

5.4 Conclusion 85

As shown in Table 5.17, “CLAM” secured the highest corrections of 44% in
Finnish, which is significantly higher than the overall winner (who achieved 8%

corrections in Finnish). This happened because our approach is motivated by the
works on languages rich in inflections, especially Sanskrit and because Finnish is
similar to Sanskrit in inflections (as proposed by Sommer, 2016). Moreover, we
were the one out of the two participants who proposed an efficient model on all 10

languages for both the tasks.

5.4 Conclusion
In this chapter, we have demonstrated the use of an LSTM with fixed sequential

delay, for jointly learning error patterns and language models. We have shown that
these models are robust at fixing errors in OCR output, where the dataset has
around 100k word pairs, and perform reliably in correcting them. We have also
demonstrated the usefulness of our model by performing several experiments on the
OCR texts of multiple Indian languages with varying scripts and complexities. The
model sets new benchmarks for error detection and correction (both automatic and
semi-automatic) tasks in Indic OCR. We further show that augmenting the input
of the LSTM model with sub-word embeddings further improve the performance
measures. We have presented the works on LSTM and sub-word embeddings in
the two ICDAR publications; Saluja et al. (2017a, 2019b). For the more extensive
datasets with around 1000k word pairs, we show the effectiveness of attention-based
LSTM models we have used in the ICDAR, 2017 and ICDAR, 2019 post-OCR
competitions. In the next chapter, we will use similar attention-based models for
reading modern Indian (as well as French) street signs and license plates.

Chapter 6

Reading Indian Street Signs

Scene-text spotting or photo OCR has many applications such as helping the visu-
ally impaired, allowing travellers to translate texts on signboards, and also robotics
to to read scene-texts for autonomous cars and in indoor/ outdoor environments.
As discussed in Section 1.6.2, photo OCR systems for Indian scenes suffer from high
word error rates due to the scarcity of language-specific datasets. We discuss the
problem of low accuracy of existing systems for Indian street signs with some exam-
ples in Section 6.1. In order to tackle the problem of data scarcity, it is important to
understand that obtaining a large amount of labelled training data is an expensive
and human-intensive process. Many state-of-the-art systems collect large-scale noisy
labels by combining a large amount of unlabelled data, with a modest amount of
labelled data (for example in an image search for landmarks by Kennedy and Naa-
man, 2008). Another way to deal with the problem of data scarcity is training with
noisy labels, which was extensively studied by Hedderich and Klakow, 2018. In the
present work, we use a state-of-the-art text-spotter to obtain noisy labels for a large
number of video frames with Indian traffic and then clean the data using a pattern
grammar wherever the domain knowledge is available (refer Section 6.2). We aug-
ment the training data with synthetic images (and corresponding labels) obtained
using SynthText (Gupta et al., 2016), thus increasing the coverage of training. We
describe this process in Section 6.2.1. We then train a CNN-RNN model (described
in Section 6.5) for recognition at the word-level. The end-to-end model that we
describe in Section 6.6 utilizes an inception-based CNN followed by an attention-
based RNN. We present the details of the architecture in Section 6.7. To further
improve the locating and recognizing power of the model, we further incorporate
location-aware multi-headed attention. We present the results in Section 6.8. The
work (Saluja et al., 2019a) sets new benchmarks for three different datasets with

87

88 Reading Indian Street Signs

varying complexities. We also present StreetOCRCorrect, in Section 6.9, an interac-
tive framework to correct errors in street text videos. We then conclude the chapter
in Section 6.10.

6.1 Ineffective systems for Indian street signs
In Section 1.6.2, we summarized the state-of-the-art systems for photo OCR in
Indian languages. We observed that such systems have high word error rates (65.80%
on Bengali scene images for End-to-End method for Multi-Language scene Text
recognition (E2E-MLT) by Bušta et al., 2018 and 57.1% on Devanagari word images
by Mathew et al., 2017). It happens due to scarcity of real-world datasets (2k Bengali
scene images by Nayef et al., 2017 and 1k Devanagari, Telugu and Malayalam word
images by Mathew et al., 2017) in Indian languages. We have also presented a
simple street sign image containing a mixture of Bengali and English, and its OCR
output using E2E-MLT in Section 1.7.3. As discussed, extra noise characters owing
to segmentation errors, as well as missing characters, appear in the photo OCR text.

Figure 6.1: On the top is the complex image1 in Bengali (and English), on the
bottom is E2E-MLT output

Running the E2E-MLT system on a complicated image containing a mixture
of Bengali and English with a different zoom level and varying sized characters is
shown to have more complicated OCR errors (see Figure 6.1) as compared to the

1Image courtesy: https://upload.wikimedia.org/wikipedia/commons/6/6a/Government_
Place_North_Signage_-_Kolkata_2011-12-18_0108.JPG.

https://upload.wikimedia.org/wikipedia/commons/6/6a/Government_Place_North_Signage_-_Kolkata_2011-12-18_0108.JPG
https://upload.wikimedia.org/wikipedia/commons/6/6a/Government_Place_North_Signage_-_Kolkata_2011-12-18_0108.JPG

6.2 License plate recognition 89

(a) Fast moving vehicles (b) Multi-line plates

(c) Red Light (distant camera) (d) Basement parking (dark scene)

Figure 6.2: Sample chaotic scenes with predictions of our model

previous example. Moreover, unusual words with redundant OCR characters arise in
E2E-MLT. All this makes the OCR correction process in Indian scene-text images
cumbersome. We thus collect more datasets for photo OCR in Indian languages
and develop the OCR systems for reading Indian street signs. This approach differs
from the efforts on document OCR for which we developed an interactive system
for reliable OCR corrections in Section 4.1. We now investigate the methods to
generate large scene-text datasets for training deep models in the next two sections.
Determining the correct reading order over multiple text segments occurring in the
same scene is another crucial problem that has received relatively little attention
in the scene-text literature. With the success of end-to-end models (Wojna et al.,
2017; Bartz et al., 2017) that can train without any supervision at the level of
individual text-boxes, a natural next step is to investigate if this success can extend
to determining the correct reading order. Thus we analyze results for determining
the natural reading order over scenes with varying complexities.

6.2 License plate recognition
The particular problem of spotting license plates in scenes is useful in surveil-
lance, toll collection, parking systems, developing smart cities, etc. The problem
involves several challenges, such as the ability to handle a diversity of fonts and
patterns, robustness to geometrical transformations, composite backgrounds, and

90 Reading Indian Street Signs

camera positions, as shown in Figure 6.2. The end-to-end model that we describe
in Section 6.6, can successfully jump from one part of multi-line license plates (as
shown in Figure 6.6 bottom) to another in the correct reading order.

6.2.1 Dataset Generation

To generate labels for the dataset, we first obtain noisy predictions on every
frame of each video (for different conditions given in Table 6.1) using the state-of-
the-art text-spotter, viz., DeepTextSpotter by Bušta et al., 2017. We then filter
out instances in the dataset that do not follow the license plate grammar. For
analysis, we calculate the accuracy (at the word-level) of the noisy predictions on
an annotated set of 1k samples. We observe that 73% of predictions that follow
the license plate grammar are indeed entirely correct. For data augmentation, we
further apply the filtered predictions across the video to correct other frames in the
video as follows:

• If two successive (but not consecutive) filtered frames, fi and fk (where i <

k − 1), have identical predictions: pi = pk;

• and there exist intermediate frames { f j} (i < j < k) in the original video,
for which no prediction fits the grammar (or the DeepTextSpotter makes no
prediction)

• then we assign the prediction p j = pi(= pk) to all the intermediate frames { f j}.

• To obtain text-boxes for the intermediate frames { f j}, we apply linear inter-
polation on text-boxes from the previous frame fi and from the subsequent
frame fk.

6.3 Reading street signs
Apart from the challenges discussed in Section 6.2 for reading license plates, the
problem of reading street signs also involves variations such as varying backgrounds,
multiple languages, and texts in paragraphs. We perform experiments with a multi-
headed attention mechanism on the French Street Name Signs (FSNS) dataset and
a new Indian street signs dataset. We release a new multi-lingual dataset of 1k

videos (with text in Hindi, Marathi, and English, as shown in the sample images
in Figure 6.3, bottom). The videos in this dataset have a frame-rate of 25 fps and
an average duration of 3 seconds. Inspired by the noisy annotation process in the

6.4 Datasets used for our experiments 91

Figure 6.3: Top: FSNS sample, Bottom: Indian street sign samples

Figure 6.4: Sample synthetic scenes with Devanagari & Latin scripts.

previous section, we record each video in such a way that it covers an Indian street
sign from different orientations2. We also augment the training dataset with 700k

synthetic scenes obtained from SynthText (Gupta et al., 2016) modified to include
large multi-script sequences, some of the samples for which are shown in Figure 6.43.
We summarize our datasets in the next section.

6.4 Datasets used for our experiments
We employ datasets of varying complexities, as shown in Table 6.1, working with
various illumination and weather conditions for the problem of license plate recog-
nition in chaotic street scenes. The conditions and duration of the videos, which we
use to create the datasets, are described in Table 6.1 (top). Our work can be useful
for any scene-text recognition problem with labels that generally follow a particular

2The dataset can be requested from https://www.cse.iitb.ac.in/~rohitsaluja/project
3The source code for generating synthetic data is available at https://github.com/

rohitsaluja22/OCR-On-the-go

https://www.cse.iitb.ac.in/~rohitsaluja/project
https://github.com/rohitsaluja22/OCR-On-the-go
https://github.com/rohitsaluja22/OCR-On-the-go

92 Reading Indian Street Signs

Type of Dataset Duration/Quantity Variations Max seq. len. µ, σ (Iavg)

Day time traffic video 36 hr 30 mins motion blur,
Night time traffic video 15 hr 56 mins chaotic, illumination, 10 86.45, 12.94

Night time with rain 2 hr 28 mins single/dual line (per plate)

FSNS Dataset
966k train, motion blur,

37 95.71, 26.0139k validation, & multi-line,&
43k test data-points multiple views (per signboard)

Indian Street Signs
1000 videos each motion blur, varying

180 111.64, 32.55covering a sign from backgrounds, multiple
multiple orientations languages & multi-line (per signboard)

Table 6.1: Datasets used for our experiments. Iavg stands for Average Image Intensity.

pattern or grammar. For the FSNS dataset, each data-point consists of four images
of a street sign (shown in Figure 6.3, top) and a corresponding label. In Table 6.1,
we provide the quantitative description of the FSNS dataset and a new Indian street
signs dataset that we have released. For Indian street signs, each of the videos cov-
ers a single street sign from different orientations. Samples from these datasets are
shown in Figure 6.3, bottom. We find that in addition to higher sequence length,
the street-sign images also have a higher mean and standard deviation of average
image intensity Iimg, as compared to the license plate images. We now describe our
models in the next two sections.

Figure 6.5: Training models on synthetic data (top) and real noisy labelled data
(bottom)

6.5 Baseline model
As a baseline, we use the seven-layered convolutional neural network (CNN) to
extract the features from license plate images, followed by a two-layer bi-directional
long short-term memory (BLSTM) for decoding the features, and a connectionist

6.5 Baseline model 93

temporal classification (CTC) layer for aligning the decoded predictions. We use
the TensorFlow implementation described in Shi et al., 2017. However, as we will
discuss further in Section 6.6, the problem of multi-scale variation can be handled by
using the inception-based CNN as the encoder. Moreover, we handle the challenge
of reading the characters at different locations in a scene by using an attention-based
RNN decoder, thus enabling end-to-end recognition in the scene-text images. As
shown in Figure 6.5 (follow dotted blue arrows), the baseline model is trained on:

1. Synthetic clean data: {Xs,Ys}, with Xs being the synthetic license plate image
(or sub-plate image in the case of a multi-line license plate), and Ys being the
corresponding clean labels.

2. Real noisy data :{Xr,Yr}, with Xr being the real license plate image (or sub-
plate image) and Yr being the corresponding noisy labels produced using the
state-of-the-art DeepTextSpotter.

Inspired by the literature (Hedderich and Klakow, 2018) on training neural
networks with noisy data, our model shares parameters between the networks that
are trained on the clean and noisy datasets, respectively. We argue, however, that
our case is different from previous work, owing to three distinctive properties:

1. Firstly, the set of synthetic input images {Xs} are visually distinct from the
set of real input images {Xr} and are not as useful as the real images for the
test data. We observed in experiments that our models, when consecutively
trained on the two datasets, tend to overfit to the dataset that we initially
use. We therefore randomly shuffle the order in which the two datasets get
used in each epoch.

2. Secondly, a dropout (“keep probability” = 0.5) is applied to the last stage
of the decoder, which acts to prevent overfitting even in the case of noisy
labels. We argue that the additional noise correction layer (as advocated
by Hedderich and Klakow, 2018) is irrelevant in this case as overfitting to
noisy characters can be avoided by applying sufficient regularization through
dropout (Srivastava et al., 2014).

3. Moreover, we observe in the literature by Hedderich and Klakow, 2018 that
the noise layer significantly helps in the case of less clean training data, and
the results do not improve significantly from the addition of large amounts of
clean data. Since we train our model with a large amount of clean as well as
noisy labelled real data, we avoid using the noise correction layer.

94 Reading Indian Street Signs

We also train an end-to-end model, which we describe in the next section, on
synthetic as well as real datasets as shown in Figure 6.5. In the figure, the license
plate image flows in multiple splits through the baseline model, shown by dotted
blue arrows. Note that for the end-to-end model, the entire image flows through the
model together, indicated by green arrows. The end-to-end model avoids splitting
of multi-line license plates and makes it easier for the model to learn patterns.

Figure 6.6: Top: Two-headed split-attention based model. Bottom: Attention
masks, note that the two masks (shown in red and blue) have unique coverage.

6.6 OCR-on-the-go model
We develop an end-to-end model by extending the Tensorflow implementation of
attention_ocr by Wojna et al., 2017. It is important to note that the vehicles
appear at different scales in the scene, as shown in Figure 6.2 (a,b,d). Thus, a
powerful encoder is needed to capture the multi-scale variation across the license
plates. Furthermore, as shown in Figure 6.2 (c), similarly scaled license plates
are present at varying locations in the scene. Moreover, license plates exist at
varying orientations in the scenes (Figure 6.2 (b,d)). Thus attention-based models
are important to locate the character images in the scene.

6.6 OCR-on-the-go model 95

Our model depicted by Figure 6.6 has the following components:

1. As a powerful encoder, the inception-based CNN by Szegedy et al., 2016 learns
to extract the features f from the input image. One of the important parts of
the inception-based network is that it has varying sized convolution layers in
parallel, which helps in learning the text images at different resolutions.

2. With attention-based LSTM as the powerful decoder, we learn the atten-
tion over (i) the features from one of the middle layer of the inception-based
network, (ii) one-hot-encoded (OHE) vectors ex and ey for both x and y co-
ordinates of the features, and (iii) hidden state of the LSTM at the previous
time step of decoding. The OHE vectors for the coordinates provide location
awareness to the network as advocated by Wojna et al., 2017, thus making it
possible to jump from the upper right character of the multi-line plate to the
lower-left character, as shown in Figures 6.2 (d) and 6.6.

3. An LSTM layer takes the context vector from the attention layer as well as
the previous OHE output of the decoded sequence, thus learning the language
model (or license plate grammar in our case) via auto-regression.

We also experiment with a multi-head attention mechanism, which consists of
several attention layers running in parallel as described by Vaswani et al., 2017.
We split the encoded features f into two or more parts and learn separate atten-
tion masks over each. Moreover, we keep each attention mask location-aware by
appending to their feature set one-hot encoded vectors of the x and y coordinates
within the image. The splitting of features reduces the computational overhead of
the multi-head attention approach, and also allows the different “attention heads”
to learn different information from the respective features. It also leads to an en-
semble effect. Finally, context vectors obtained by applying the attention masks to
corresponding splits (concatenated with OHE position vectors), are concatenated
together to form the input to the LSTM. Figure 6.6 illustrates such a model for a
two-headed attention. As shown, the features f are split into two parts f1 and f2

(shown in green and blue colors). The context vectors ct1 and ct2 are finally concate-
nated to form the input of the LSTM layer. For reasons explained in Section 6.5, we
train by randomly switching between the models for clean synthetic data and noisy
labelled data, and incorporate the dropout (with keep probability = 0.5) in the last
layer of the LSTM to avoid overfitting to noisy characters. The complete pipeline
is given in Figure 6.5. We refer to our end-to-end model as OCR-on-the-go since we
train on continuous real video frames. We discuss this in the next section.

96 Reading Indian Street Signs

6.7 Experiments
We experiment on three different datasets with varying complexities (as described
in Section 6.4). Firstly, we work on license plate recognition in chaotic Indic scenes
with noisy labelled real data as well as clean synthetic data. To obtain real data
with noisy labels, we use DeepTextSpotter proposed by Bušta et al., 2017. The
DeepTextSpotter model is trained on the SynthText dataset, as well as the ICDAR
datasets (Gupta et al., 2016; Karatzas et al., 2013, 2015). Since these datasets do
not cover license plate images, the overall performance is not satisfactory, whereas
we obtain 73% word-level accuracy on the data that follows the license plate gram-
mar. We work on 480 × 260 images for end-to-end experiments, and all the license
plate/sub-plate images are resized, with bilinear interpolation, to 32 × 100 images
for input to the baseline model. To obtain clean data, we synthesize a large number
of scene images with text from Indian license plates using SynthText (Gupta et al.,
2016). For each license plate, we select a random 280× 460 crop around it (covering
the other license plate images with black pixels if they exist in the crop). For the
baseline, we obtain the license plate images similar to the one shown in Figure 6.5
(top-left). To obtain all the synthetic images for experiments, we use 18 freely avail-
able license plate fonts4. Using the method described in Section 6.2.1, we obtain
1063k frames with license plates and corresponding predictions for training using 55

hours of video data. We train models on 1063k frames with a 64:16:20 train:val:test
split. Additionally, to improve generalization across various Indian states, we use
187k synthetic scenes (only while training). Figure 6.5 (top-left) depicts an example
of a synthetic image. Such a dataset improves the generalization because it covers
i) license plate images from multiple perspectives, ii) several possible license plate
patterns across all Indian states, and iii) clean labels, which are not present in the
real data.
For the French Street sign data (FSNS), we avoid the use of synthetic dataset and
dropout layer since it is significant in quantity and contains clean annotated labels
(as compared to the noisy-labelled license plate dataset) as well as multiple views
for each data point (as illustrated in Figure 6.3 (top)). Therefore, each training
and testing sample from the FSNS dataset utilizes the encoder four times, once
for each view. We further perform experiments with a mixed-6a layer from the
inception-resnet-v2 as an encoder for all our datasets. Using this encoder, we obtain
the features of size 14 × 28 × 1088 for license plate images and Indian street sign

4Available at https://fontspace.com/category/license%20plate

https://fontspace.com/category/license%20plate

6.8 Evaluation 97

images, and 7 × 7 × 1088 for each view in FSNS images. For Indian street signs,
we obtain around 79k frames, each of size 280 × 460, from the videos described in
Table 6.1. We use initial 50k frames for training, the next 12k for validation, and the
remaining 17k for testing. We also augment the training dataset with 700k synthetic
scenes obtained from SynthText (modified to include large multi-script sequences,
as shown in Figure 6.4) with around 50 Unicode fonts5.

6.8 Evaluation
We now evaluate our models on the three different datasets, with varying complex-
ities, as discussed in Sections 6.4 and 6.7.

6.8.1 Visualization of attention masks

In Figure 6.2., we show the predictions of the OCR-on-the-go model for some
of the complex test cases. We present results visualizing the multi-head attention
masks (re-sized to image size with nearest neighbour interpolation) for text recogni-
tion in Figure 6.6 (bottom). It is important to note that, specifically for license plate
scenes, one of the attention masks moves over each character due to the randomness
of the chosen character at each position on the plate. In contrast, we observe that
for other datasets that the attention mask often remains idle (on the edges of the
image) after reading the first few characters of highly frequent words in the language
(refer attention masks in the literature by Wojna et al., 2017, which tend to wander
over the edges after the model reads few characters from a common word). This is
probably due to i) the implicit language model, ii) the large receptive fields around
each feature location, or iii) the mask not finding the character due to occlusion in
the image and therefore failing to work properly. We observed that 47% of attention
weights are focused on the edge of 100 sample images of the FSNS dataset, whereas
the fraction goes down to 20% (mainly due to borders in some of the videos) for
the same number of license plate scenes. As shown in Figure 6.6 (bottom), both
the masks (shown in red and blue) have unique coverage. Moreover, it is crucial to
observe in Figure 6.6 (bottom) that the first attention mask (in red) moves from
the first character to the last character in the correct reading order (top-to-bottom
followed by left-to-right) for the multi-line license plates. The second mask (in
blue) possibly explores the new lines, non-pattern text, and the background regions.
Moreover, the blue mask is highly scattering at locations where it could not find the

5http://indiatyping.com/index.php/download/top-50-hindi-unicode-fonts-free

http://indiatyping.com/index.php/download/top-50-hindi-unicode-fonts-free

98 Reading Indian Street Signs

license plate patterns. We observe that the third and fourth attention masks for 4

(and more) headed attention models are more scattered as compared to 2 headed
attention models. Though scattered, coverage of each mask is unique irrespective
of the number of heads used in the models.

6.8.2 License plate videos

We now present the results of experiments on traffic scenes in Indian streets.
The license plate dataset, we use to train and test the models, is complicated because
i) we perform recognition on continuous video frames, ii) the presence of motion blur
in the frames where we interpolate the annotations from neighboring frames.

Training Method/ Char. Acc. with Seq. Acc. with Char. Acc. with Seq. Acc. with
Model inception-v3 inception-v3 inc.-resnet-v2 inc.-resnet-v2

Baseline CNN-RNN 96.74% 86.12% 96.74% 86.12%
1 head attention 97.48 % 89.87% 97.94 % 91.28%
2 head attention 97.62% 91.06% 98.06 % 91.56%
4 head attention 88.40 % 69.43% 98.12% 92.05%
8 head attention - - 98.43% 93.30%

Table 6.2: Evaluation on license plate videos

Effect on increasing number of heads

Table 6.2 depicts the results of the experiments on license plate scenes. As shown,
the baseline model achieves a character level accuracy of 96.74% and sequence ac-
curacy of 86.12%. With the inception-v3 encoder, the OCR-on-the-go model with
single-head attention achieves a gain in sequence level accuracy of 3.75%. The
accuracy gains further to 4.94% with the two-headed attention model. Splitting
the features further for four-headed attention decreases the performance with the
inception-v3 encoder. This probably happens because it becomes difficult to learn
the proper attention masks with a smaller number of features (288/4 = 72). It also
indicates that improvement gains for the two-headed attention model are not due
to an increase in the number of parameters of the model. The residual networks
have successfully improved the performance in image classification tasks in litera-
ture (He et al., 2016). We resolve the problem of a decrease in accuracy with an
increase in heads by using a better encoder with a denser layer to derive features i.e.,
the mixed-6a layer (with feature depth = 1088) of the inception-resnet-v2 network.
With this encoder, we observe a gain of 5.16% using single-headed attention with

6.8 Evaluation 99

respect to the baseline, and the gain further increases to 7.18% using eight-headed
attention (such that the number of features assigned to each attention head is 136).

Effect of increasing the size of the inception encoder

As shown in Table 6.2, both character-level accuracy, as well as sequence accu-
racy, increase with the inception-resnet-v2 encoder as compared to the inception-v3
encoder for the same number of heads.

Training Method Sequence Accuracy on FSNS dataset Sequence Accuracy on IIIT-ILST

Baseline Model Smith et al., 2016 CNN-RNN
Baseline Results 72.46% 42.90% (Mathew et al., 2017)
E2E model w/t 1 head attention 84.20% (Wojna et al., 2017) 46.27%
E2E model w/t 2 head attention 84.59% 47.63%
E2E model w/t 4 head attention 84.86% 50.36%
E2E model w/t 8 head attention 85.30% 51.09%

Table 6.3: Evaluation on FSNS dataset and IIIT-ILST Devanagari dataset

6.8.3 French and Indian street signs

We further experiment with multi-headed attention models on the French
Street Name Signs (FSNS) dataset. We use the mixed-6a layer of the inception-
resnet-v2 network as an encoder for the reasons mentioned in the previous subsec-
tion.

The performance on the FSNS dataset is shown in the second column of Ta-
ble 6.3. The models with multi-headed attention masks perform better than the
model with single-headed attention. Moreover, the performance improves with an
increase in the number of heads from two to eight. Finally, we note that our models
outperform state-of-the-art results by Wojna et al., 2017.

We also trained the OCR-on-the-go model on 750k Indian street sign im-
ages/frames described in Section 6.7. On the standard IIIT-ILST Devanagari
dataset of 1.1k images, each containing a single word, we obtain the results shown in
the last column of Table 6.3. As shown, our models outperform the state-of-the-art
results for the dataset by Mathew et al., 2017. Moreover, the models with multiple
masks perform better than the models with a comparatively fewer number of masks.

Our initial experiments on the end-to-end test set of 17k frames from the multi-
lingual dataset resulted in a system with 35% accuracy on the character-level and
1.3% accuracy on the sequence-level. This happens because the task of end-to-end
recognition in Indian street sign scenes is extremely challenging due to the i) presence

100 Reading Indian Street Signs

of hand-written characters, ii) multiple scripts (Devanagari and Latin), iii) multiple
languages (Hindi, Marathi, and English), and iv) long sequence lengths with a max
of 180 as compared to that of 35 in the FSNS dataset. We further improve these
results in Chapter 7 by training attention-based models on more extensive sequential
multi-lingual data. Since the Indian languages contain a significant fraction of out-
of-vocabulary words, we prefer to work on character-level predictions. In the future,
we would like to use word embeddings for frequent words in the languages. It is
not possible to predict the out-of-vocabulary words even by making use of fastText
embeddings, which we employed in the previous chapter since such embeddings allow
for the mappings from words to vectors. In contrast, the mappings from vectors to
words is not feasible for out-of-vocabulary terms. As discussed in Section 6.1 and
Section 6.7, the accuracies of existing photo OCR systems for Indian contexts were
not sufficient for designing an interactive system for OCR corrections in the field.
We improve such models in this chapter. Specifically, after achieving the results
presented in Table 6.2 for the street videos, we now introduce an interactive tool for
text correction in the next section.

Figure 6.7: Breakdown of a video using our framework in both the spatial and
temporal domain

6.9 StreetOCRCorrect
In this section, we introduce StreetOCRCorrect: a framework for interactively
correcting OCR output in license plates with a human-in-the-loop. Such a framework
can help collect a large amount of data for further improving the accuracy of deep
learning models.

6.9 StreetOCRCorrect 101

Robust OCR systems often fail in chaotic Indian scenes due to the presence of
extreme variations in spatial and temporal domains like high vehicle density, multiple
frames, unpredictable traffic conditions, and occlusions. We present a modular
framework to handle such variations. The first module of the framework breaks down
the video in a Spatio-temporal domain. We achieve the spatial breakdown by using
the You Only Look Once (YOLO) object detector proposed by Redmon et al., 2016.
The framework further breaks down the video in the temporal domain using the
MedianFlow video tracker (Varfolomieiev and Lysenko, 2016) and creates multiple
clips. Each clip contains a single vehicle within a fixed window6, as illustrated
in Figure 6.7. Partial-occlusions (and inclusion of other vehicles in the clip) are
handled by blurring the surrounding of the box that contains the vehicle under
consideration, as shown in Figures 6.8and 6.9. The first module removes unnecessary
complexities related to handling multiple vehicles and hence enables the user to focus
on correcting the license plate text for a single-vehicle, as shown Figure 6.8.

Figure 6.8: Components of our framework7.

6We consider a fixed window to introduce stability in the video.
7Source code: https://github.com/rohitsaluja22/StreetOCRCorrect.

https://github.com/rohitsaluja22/StreetOCRCorrect

102 Reading Indian Street Signs

The second module of the framework enables the user to verify/correct the
predictions of the extracted clips with minimal effort via interactive suggestions.
We obtain these suggestions by using a multi-frame consensus on the output from
an OCR model on the clips generated by the first module. We can further reduce the
required human intervention by selectively presenting only clips with low confidence
i.e. where we observe low consensus scores across the frames from the OCR system.
As shown in Figure 6.8, the framework contains a speed control panel, a playback
control panel, and a human interaction panel for improving the user experience.
Here are the key features of our implementation:

1. When the user opens the application and loads the folder of clipped videos
obtained from the first module, the video of an individual vehicle becomes
visible to the user along with the suggestions from the OCR model in the
“Human Interaction” area.

2. If the license plate is visible and readable throughout the video, the user can
directly verify or correct one of the suggestions and submit the result.

3. If the license plate is not visible or readable at the start or the end of the
video, the user selects the good frames by using entry and exit buttons, and
then verifies or corrects one of the suggestions and submits the result.

4. The user then clicks on the “next video” button to upload the video of the
next vehicle and repeat the above steps until completing the annotation for
all the vehicles.

As a part of the framework, the third module stores the verified/corrected text with
other metadata, such as timestamp and GPS location (if available). We also share
the links of 22 youtube videos with chaotic Indian traffic scenes, along with the
code.

GT: KA01MJ3793
KA01MJ3793 - 47
KA01AJ3793 - 6
KA01NJ3793 - 1

GT: MH03CW4026
MH03CW4026 - 16
MH03CV4026 - 4

MH03GVW4028 - 2

GT: MP04GA8692
MP04GA8692 - 6
MP04GH692 - 3
MP04GA6527 - 2

GT: MH47A4487
MH47A4487 - 66
MH47A4481 - 5
MH47A4482 - 4

Figure 6.9: Sample inputs, extracted from chaotic scenes, given to our framework

6.10 Conclusion 103

6.9.1 Video Results

The demo video on the GitHub link8 shows the performance of our backend
model on various challenging scenarios. The model performs end-to-end license
plate recognition on a vehicle image. Therefore, before presenting the vehicle image
to the model, we extend the vehicle box obtained from YOLO on its left and the
right and blur the extended regions to avoid the recognition of other license plates.
We include the additional area to maintain the fixed size as well as aspect ratio in
frames of the clipped videos. We detect vehicles on each frame of the videos, as
explained in Section 6.9. We show this in Figure 6.9. In the figure, we also present
the top three predictions, along with their count, for some of the continuous sample
frames for different vehicles. As shown, the predictions of our model are correct for
the majority of frames on these samples. We use this system to generate a (clean)
license plate dataset, which we further use to improve the recognition accuracy of
the license plate recognition model. Since the deep learning techniques require a
large amount of data, we collected 100 hours of single lane traffic video data from
15 different sources. With 5 annotators working for a total of 15 hours each and
3 reviewers working for 8 hours each, we generate around 2.67 million high-quality
frame-level labelled dataset. Thus we obtain a high-quality dataset for 100 hours of
video in a total of less than 100 working hours. This dataset helps us in improving
the sequence accuracy of the model from 41% to 81% in the complicated settings
mentioned above (with 15 different sources). We also observe that it takes 4 hrs to
manually annotate a sample 1 hour video, whereas it takes 55 minutes to annotate
the same 1 hour video using the StreetOCRCorrect. We thus demonstrate the
effectiveness of the multi-frame consensus used in the framework.

6.10 Conclusion
In this chapter, we have investigated methods for generating datasets for scene-text
recognition. We also presented an end-to-end trainable framework for reading text
from scenes. We illustrated its application in two scenarios: (i) recognizing license
plates automatically in chaotic traffic conditions, a task for which we curated our
dataset, and (ii) on existing publicly available FSNS and IIIT-ILST Devanagari
datasets. We perform experiments for license plate recognition on a large number
of video frames. A salient point of our framework is that our models, when trained
only on a combination of noisy labelled data and clean synthetic data, set new

8https://github.com/rohitsaluja22/StreetOCRCorrect

104 Reading Indian Street Signs

benchmarks for the task. We also demonstrate the importance of using multi-head
attention in deep models. We are the first to observe that multi-headed attention
is more effective in reading scene-text than single-headed attention. We show that
such a multi-head attention mechanism helps in improving the accuracy of OCR
systems due to the unique coverage learned by each attention mask. We further de-
signed StreetOCRCorrect, an interactive framework for large scale OCR corrections
in Indian street videos. The framework leverages upon state-of-the-art detectors and
trackers to ease the correction process. We further use a multi-frame consensus to
detect errors and reduce the cognitive load significantly via suggestions. The frame-
work further maintains a large scale database of high-quality text, which can be used
to improve the OCR models further and in other downstream applications. Work
presented here was published at ICDAR’19 in our papers (Saluja et al., 2019a; Singh
et al., 2019). For the Indian street-sign videos with considerable sequence length,
initial results in Section 6.8.3 need to be improved. We improve models for the task
in the next chapter by using the additional controlled video datasets and taming
the attention masks of the end-to-end models.

Chapter 7

Taming the Attention Masks

In this chapter, we demonstrate that the accuracy of scene-text recognition can be
improved by guiding the attention masks based on the orientations and positions of
the camera. We improve ther end-to-end model described in Section 6.6 on contin-
uous video frames by taming the attention masks in synthetic videos and on novel
controlled datasets that we record for capturing possible camera movements. We
begin by motivating our work in Section 7.1. We base a video scene-text recognition
model (referred to as CATALIST1) on partly supervised attention. Like a teacher
holding a lens through which a student can learn to read on a board, CATALIST ex-
ploits supervision for attention masks at multiple levels (as shown in Figure 7.3).
Some of the attention masks might be interpreted as covering different orientations
that occur in frames during individual camera movements (through separate masks)
while others might focus on the line, word or character level reading order. We train
CATALIST using synthetic data generated using a non-trivial extension of Synth-
Text Gupta et al. (2016). The extension allows for the generation of text videos using
different camera movements while also preserving character-level information. We
describe the CATALIST model which ‘tames’ the attention (heads) in Section 7.2.1.
We demonstrate that providing direct supervision to attention masks at multiple
levels, (i.e., line, word, and character levels) yields improvement in the recognition
accuracy. To train CATALIST and its attention masks, we also present a synthetic
data generator ALCHEMIST2 that enables the synthetic creation of large scene-
text video datasets, along with mask information at character, word and line levels.
We describe the procedure to generate synthetic videos in Section 7.2.2. We also
present a new video-based real scene-text dataset, CATALISTd in Section 7.2.3. We

1CATALIST stands for CAmera TrAnsformations for multi-LIngual Scene Text recognition
2ALCHEMIST stands for synthetic video generation in order to tame Attention for Language

(line, word, character, etc.) and other camera-CHangEs and coMbinatIons for Scene Text.

105

106 Taming the Attention Masks

Figure 7.1: Sample video frames from CATALISTd

present the sample video frames of the dataset in Figure 7.1. We create these videos
using 5 types of camera transformations - (i) translation, (ii) roll, (iii) tilt, (iv) pan,
and (v) zoom. We provide the dataset and experimental details in Section 7.3. We
summarize the results in Section 7.4 and conclude the work in Section 7.6.

7.1 Motivation
We motivate our work of training the scene-text spotting models on the real (as
well as synthetic) videos captured via continuous camera movements. Various end-
to-end scene-text spotters, such as the ones proposed by Bušta et al. (2018, 2017),
train on synthetic as well as augmented real data to cover different capturing per-
spectives/orientations. The problem, however, is that during the training phase,
such models do not exploit all the continuous perspectives/orientations captured by
the camera movement (or scene movement). Thus the OCR output fluctuates when
tested on all/random video frames. Also, to deploy such models on real-time videos,
two scenarios may occur. Firstly, the multi-frame consensus is desirable to improve
OCR accuracy or interactive systems. Secondly, since it is computationally expen-
sive to process each frame for readability, it is not possible to verify the quality of
the frame to be OCR-ed. In any of these scenarios, the recognition system needs to
work reasonably well on continuous video frames.

We present the frame level accuracy of E2E-MLT proposed by Bušta et al.
(2018) on an 8 second video clip with a frame size of 480 × 260 in the first plot of
Figure 7.2 (with sample frames shown at the bottom). Since the model does not
work for Hindi, we recognize the Hindi text using OCR-on-the-go model described
in Section 6.6. As shown, the E2E-MLT model produces the most unstable text on
a simple video (from the test dataset) with the average character accuracy of 83.1%

and the standard deviation of 9.20. The reason for this is that E2E-MLT, which

7.2 The CATALIST model and enabling datasets 107

Figure 7.2: Frame wise accuracy of 3 text-spotters on a simple video exhibiting pan

does not train on continuous video frames, produces extra text-boxes on many of
them during the detection phase. Thus extra noise characters or strings are observed
during recognition. For instance, the correct text “Jalvihar Guest House” appears
in 18 frames, the text “Jalvihar arG Guest House” appears in 10 frames, and the
text “Jalvihar G Guest House” appears in 9 frames. The text “Jalvihar G arGu
Guesth R H House” appears in one of the frame.

The instability in the video text, however, reduces when we use the OCR-on-
the-go model (described in Section 6.6) to read these video frames. As shown in
the second plot of Figure 7.2, we achieve the (higher) average character accuracy
of 94.54% and (lower) standard deviation of 4.15. This model works on the prin-
ciple of end-to-end recognition and soft detection via unsupervised attention. The
instability further reduces, as shown in the third plot of Figure 7.2, when we train
our CATALIST model on the continuous video datasets proposed in this chapter.

7.2 The CATALIST model and enabling datasets
We use end-to-end attention-based encoder-decoder model proposed by Wojna et al.
(2017). For better inference of attention masks, and improved recognition, we use the

108 Taming the Attention Masks

fL

Line Mask

Hidden state ht-1

ctl

ctw

OHEL

f LSTM with
auto-regressive

layers
Hidden state ht-1

OHEW

Inception-
resnet-v2

Σi,j

Σi,j

Word Mask

10
00

10
00

10
00

10
00

10
00

10
00

10
00

10
00

fW

10
00

10
00

10
00

10
00

10
00

10
00

10
00

10
00

10
00

10
00

10
00

10
00

10
00

10
00

10
00

10
00

Char Mask
ctc

ctf

10
00

10
00

10
00

10
00

10
00

10
00

10
00

10
00

Σi,j

Free Mask

Σi,j

OHEC

fc

ff
OHEF

Hidden state ht-1

Hidden state ht-1

पयार्यावरण भू प्रौद्योगकी प्रयोगशाला
ENVIRONMENTAL

GEOTECHNOLOGY LAB

Figure 7.3: Our model (and its first four attention masks) that tames attention at
multiple levels of granularity.

multi-head version of this model (discussed in Section 6.6). In Figure 7.3, we present
the CATALIST model, that uses multi-task learning to update attention masks.
Each mask is updated based on two loss functions. For end-to-end supervision,
we use cross-entropy loss, and to guide the masks, we use dice loss3 between the
predicted masks and the segmented masks obtained using text-boxes from SynthText
proposed by Gupta et al., 2016. We also transform the synthetic images, along with
text-boxes, to form the videos which we describe in the next section.

7.2.1 The CATALIST model

As shown in Figure 7.3, the powerful inception-based encoder proposed
by Szegedy et al. (2016), which performs multiple convolutions in parallel, enhances
the ability to read the text at multiple resolutions. We extract the features f from
the input image using the inception-based encoder. Moreover, the multi-head atten-
tion mechanism in our model exploits: i) the splits of feature f into fL, fw, fc, f f

4,
etc. (refer Figure 7.3), ii) one-hot-encoded (OHE) vectors (OHEL, OHEw, OHEc,
OHE f , etc.5) for both x and y coordinates of each feature split, iii) hidden layer
at the previous decoding step (ht−1) of an LSTM (decoder). To learn the attention
at multiple levels of granularity, we provide supervision to the first three masks
in the form of the line, word, and character level segmented binary images. The

3dice_coe@tensorlayer.readthedocs.io/en/latest/_modules/tensorlayer/cost.html
4 fL represents the features used for producing line masks, fw represents features used for word

masks, fc represents features used for character masks, and f f represents features used for free
attention masks

5for the corresponding features fL, fw, fc, f f , etc.

tensorlayer.readthedocs.io/en/latest/_modules/tensorlayer/cost.html

7.2 The CATALIST model and enabling datasets 109

remaining masks are set free to assist/exploit end-to-end recognition/supervision.
Thus we refer to the first three of them as line mask, word mask, and char mask
in Figure 7.3, and the fourth mask (and the remaining masks) as free. We also
hard-code the word mask to remain inside the line mask, and the character mask
to remain inside the word mask. The context vectors (cL, cw, cc, c f , etc.), which are
obtained after applying the attention mechanism, are fed into the LSTM to decode
the characters in the input image. It is important to note that for each input frame,
the features f and splits remain fixed, whereas the attention masks move in line
with the decoded characters. Thus, we avoid using simultaneous supervision for all
the character masks (or word masks or line masks) in a frame. Instead, we use a
sequence of masks (in the form of segmented binary images) at each level for all the
video frames. We accomplish this by keeping the word-level as well as the line-level
segmented images constant and moving the character level segmented images while
decoding the characters in each word. Once the decoding of all the characters in a
word is complete, the word level segmented image moves to the next word in the
line, and the character level image keeps moving as usual. Once the model has de-
coded all the characters in a line of text, the line (and word) level segmented image
moves to the next line, and the character level segmented image continues to move
within the word image.

7.2.2 The ALCHEMIST videos

We generate synthetic data for training the attention masks (as well as the
complete model) using our data generator, which we refer to as ALCHEMIST.
ALCHEMIST enables the synthetic creation of large scene-text video datasets.
ALCHEMIST overlays synthetic text on videos under 12 different transformations
described in the next section. By design, we preserve the information of the transfor-
mation performed, along with information of the character, word, and line positions
(as shown in Figure 7.10). This information in the synthetic data provides for
fairly detailed supervision on the attention masks in the CATALIST model. We
build ALCHEMIST as an extension of an existing fast and scalable engine called
SynthText proposed by Gupta et al., 2016.

Methodology: According to pinhole camera model, a (2-d) point x (in homo-
geneous coordinate system) of image captured by a camera is given by equation 7.1.

x = K[R|t]X (7.1)

110 Taming the Attention Masks

Here K is the intrinsic camera matrix, R and t are rotation and translation matrices
respectively, and X is a (3-d) point in real world coordinates in an homogeneous
coordinate system.

Figure 7.4: For videos with camera pan, we find Homography between the corners
of a rectangle and 4 points equidistant from them (which form one of the blue
trapeziums).

Original Image
and Rectangle

Transformed Images
and Trapeziums

Cropped
Frames

Figure 7.5: Generating video with camera pan (3 frames at the bottom for dark-blue,
green and light-blue perspectives respectively) from an image (at the top)

For generating synthetic videos, we first select a fixed crop within the synthetic
image (as denoted by the green rectangle in Figure 7.5). We then warp the corners of
the crop by finding a planar homography matrix H (using algorithm given by Hartley
and Zisserman, 2003) between the corner coordinates and four points equidistant
from corners (direction depends on the kind of transformation as explained later).
For Figure 7.4 (and Figure 7.5), we find the planar homography matrix H between
corners of one of the blue trapezium and the green rectangle. Thus instead of (2-
d) point x in the homogeneous coordinate system as explained earlier, we get a
translated point xnew defined in equation 7.2:

xnew = HK[R|t]X (7.2)

7.2 The CATALIST model and enabling datasets 111

Here, H is the known homography. The above equation is simplified from the equa-
tion below:

xnew = KT [R|t]X = KT K−1K[R|t]X (7.3)

Here T is the unknown transformation matrix. We then warp the complete image
using H and crop the rectangular region (refer green rectangle in Figure 7.5), to
obtain the video frames. To find all the homography matrices for a video with
camera pan, we consider the corners of the trapezium moving towards the rectangle
corners. Once the homography matrix becomes the identity matrix, we move the
corners of the trapezium away from the rectangle in the opposite direction to the
initial flow (to form the mirrors of the initial trapeziums, e.g. light-blue trapezium
in Figure 7.5).

Original Image
and Rectangle

Transformed Images
and Trapeziums

Cropped
Frames

Figure 7.6: Generating video with camera tilt (frames at the bottom)

Original Image
and Rectangle

Transformed Images
and Rectangles

Cropped
Frames

Figure 7.7: Generating video with camera roll (frames at the bottom)

112 Taming the Attention Masks

The process for generating videos with camera tilt is similar to that of pan. The
only difference is that the trapeziums in videos with camera tilt have vertical sides
as parallel (as shown in Figure 7.6) whereas the trapeziums in videos with camera
pan have horizontal sides as parallel. For the videos with camera roll, we utilize the
homography matrices between the corners of the rectangles rotating around the text
center and the base (horizontal) box, as shown in Figure 7.7.

Original Image
and Rectangle

Transformed Images
and Rectangles

Cropped
Frames

Figure 7.8: Generating video with camera zoom (frames at the bottom)
As shown in Figure 7.8, the corners of varying sized rectangles are the basis for

synthesizing video with camera zoom.

Original Image
and Rectangle

Image and Transformed
Rectangles

Cropped
Frames

Figure 7.9: Generating video with camera translation (frames at the bottom)
For videos with camera translation, we use the regions a moving rectangle

beginning from one text boundary to the other and generate the frames, as shown
in Figure 7.9. We make sure that the complete text, with rare partial occlusion of
boundary characters, lies within each frame of the videos.

7.2 The CATALIST model and enabling datasets 113

Figure 7.10: Sample frames from the synthetic videos with multi-level text-boxes

We also use the homography H to transform the multi-level text-boxes in the
cropped image. Figure 7.10 depicts sample video frames with text-boxes at the line,
word, and character6 levels – shown in blue, green, and red, respectively.

7.2.3 The CATALISTd videos

We now present a new video-based scene-text dataset, which we refer to as
CATALISTd. Every video in CATALISTd contains scene-text, potentially in a com-
bination of three different languages, namely, English, Hindi, and Marathi. For
each such scene-text, we create 12 videos using 12 different types of camera trans-
formations, broadly categorized into 5 groups:- (i) four types of translation, that
could be left, right, up and down, (ii) two types of roll, including clockwise and
anti-clockwise, (iii) two types of tilt which could be up-down or down-up motion,
(iv) two types of pan, that is left-right and right-left , and (v) two types of zoom
which could be in or out. We use a camera with a tripod stand to record all these
videos to have a uniform control.

S.No. Transformation Type Number of Videos
1. Translation 678
2. Roll 320
3. Tilt 360
4. Pan 393
5. Zoom 362

Table 7.1: Distribution of videos in the CATALISTd dataset

6For Devanagari (the script used for Hindi and Marathi), we carefully consider the boxes at the
level of joint-glyphs instead of characters since rendering characters individually (to obtain char-
acter level text-boxes) hamper glyph substitution rules that form the joint glyphs in Devanagari.

114 Taming the Attention Masks

We summarize the distribution of different types of videos in Table 7.1. It is
important to note that there are four types of translations, whereas there are only
two types for all other transformations. We capture all these videos at 25 fps with
a resolution of 1920 × 1080.

7.3 Experiments
We synthesize around 12000 videos using ALCHEMIST data generator, which we
use only for training the models. We use 50 Unicode fonts7 and 18 license plate fonts8

to render text in these videos. Here the duration and frame-rate for each video are 5

seconds and 25 fps, respectively. Moreover, we record a total of around 2k real videos
(uniformly divided across 12 camera transformations) using a camera mounted over
tripod stand for CATALISTd dataset. The setup allows smooth camera movements
for roll, tilt, pan and zoom. We record the horizontal translation videos with the
camera and tripod moving on a skateboard. Other translation videos, which exhibit
top to bottom and reverse movements, have jitter because our tripod does not allow
for smooth translation while recording such videos. We use a train:test split of
75:25, and carefully avoid letting any testing labels (as well as redundancy of the
scenes) be present in the training data. We additionally record around 1k videos
using handheld mobile phones and use them for training the models. Finally, we
also make use of the 640 videos from Section 6.7 (that were used to train the OCR-
on-the-go model). We refer to the complete training dataset described above as
CATALISTALL in the next sections.

We further add the ICDAR’15 English video dataset of 25 training videos
(13,450 frames) and 24 testing videos (14, 374 frames) by Karatzas et al. (2015)
to the datasets. For each frame in the ICDAR’15 dataset, we first cluster the
text-boxes into paragraphs and then sort the paragraph text-boxes from top-left to
bottom-right. A sample video frame with the reading order mentioned above and
the text-boxes sorted using our algorithm are shown in Figure 7.11. We visually
verify that the reading order remains consistent throughout their appearance and
disappearance in the videos. The reading order, changes when a new piece of text
appears in the video or an old piece of text disappears from the video.

Although we record the controlled videos with a high resolution of 1920×1080,
we work with the frame size of 480×260 for all videos owing to the more limited size

7http://indiatyping.com/index.php/download/top-50-hindi-unicode-fonts-free
8https://fontspace.com/category/license%20plate

http://indiatyping.com/index.php/download/top-50-hindi-unicode-fonts-free
https://fontspace.com/category/license%20plate

7.4 Results 115

Figure 7.11: A sample video frame from ICDAR’15 competition with text-boxes
sorted using our algorithm

of the videos captured on mobile devices, as well as for to reduce training time on
a large number of video frames. To take care of resolution as well as to remove the
frames without text, we extract the 480 × 260 sized clips containing the mutually
exclusive text regions in the videos from the ICDAR’15 dataset. Features of size
14×28×1088 are extracted from the mixed-6a layer of inception-resnet-v2 (Szegedy
et al., 2016). The maximum sequence length of the labels is 180, so we unroll the
LSTM decoder for 180 steps. We train all the models for 15 epochs.

7.4 Results
We now present the results of the CATALIST model on the different datasets
described in the previous section. It is important to note that we use a sin-
gle CATALIST model to jointly train on all the datasets (CATALISTALL) at once.

9640 real videos + 700k synthetic images
103.7k real videos + 12k synthetic videos

116 Taming the Attention Masks

S. Training Training Test Char. Seq.
No. Model Data Data Acc. Acc.

1. OCR-on-the-go OCR-on-the-go9 35.00* 1.30*
(8 free masks)

2. CATALIST model CATALISTALL
10 OCR-on-the-go 65.50 7.76

(8 free masks) 200 test videos
3. CATALIST model CATALISTALL 68.67 7.91

(3 superv., 5 free masks)
4. CATALIST model 73.97 6.50

(8 free masks) CATALISTALL 491 CATALISTd

5. CATALIST model videos 73.60 7.96
(3 superv., 5 free masks)

6. CATALIST model 34.37 1.70
(8 free masks) CATALISTALL 24 ICDAR’15

7. CATALIST model Competition videos by 35.48 0.72
(3 superv., 5 free masks) Karatzas et al. (2015)

Table 7.2: Test Accuracy on different datasets. *results in Section 6.8.3

Results on the OCR-on-the-go dataset

In the first three rows of Table 7.2, we show the results on the test data used in
Section 6.7 for the OCR-on-the-go model. The first row shows the results of this
work. As shown in row 2, there is a dramatic improvement in character accuracy
by 30.50% (from 35.0% to 65.5%) as well as sequence accuracy by 6.46% (1.30%

to 7.76%), due to proposed CATALIST model as well as the ALCHEMIST and
CATALISTd datasets we have have created. Adding the multi-level mask supervision
to the CATALIST model further improves the accuracies by 3.17% (from 65.50% to
68.67%) and 0.15% (from 7.76% to 7.91%).

Results on the CATALISTd dataset

As shown in the fourth and fifth row of Table 7.2, the gain of 1.46% (6.50 to 7.96) is
observed in the sequence accuracy of the CATALIST model, when we use the mask
supervision. We, however, observe a slight gain of 0.37% in character level accuracy
when all the masks are set free (i.e., trained without any direct supervision).

Results on the ICDAR’15 competition dataset

We observe a gain of 1.11% (from 34.37% to 35.48%) in character-level accuracy
on the ICDAR’15 competition dataset due to mask supervision. The end-to-end

7.5 Frame-wise accuracies for all transformations 117

sequence accuracy for this dataset is, however, as low as 1.70% for the model with
all free masks, and further lower (by 0.98%) for the model with the first 3 masks
trained using direct semantic supervision. We observe that the reason for the lower
sequence accuracy for this dataset is the complex reading order in the frames.

Figure 7.12: Frame-wise accuracy of 3 text-spotters on a video exhibiting roll

7.5 Frame-wise accuracies for all transformations
In Figure 7.2, we presented the frame-level accuracy of E2E-MLT (with the Hindi
text recognized using OCR-on-the-go model) by Bušta et al. (2018), OCR-on-the-go
model, and the present work on an 8 second video exhibiting pan. In this section,
we present the frame-level accuracy of the above mentioned text-spotters for the
other transformations: roll, zoom, tilt, and translation. The accuracy plots for a
video with 88 frames (at 25 fps) exhibiting roll (clockwise) is shown in Figure 7.12.
We use the formulae in Equation 7.4 for calculating the character accuracy taking
noise characters into consideration.

Accuracy = 100 ∗ length(GT) − edit_distance(P,GT)
length(GT)

(7.4)

Here, GT denotes the ground truth sequence and P is the predicted sequence. For
some of the frames (with large amounts of transformations), predicted sequence
contains a lot of noise characters. As a result, the edit_distance between predicted
sequence and ground truth sequence may go higher than the length of ground truth
sequence. Thus we get negative accuracy for some of the frames in Figure 7.12.
As shown, our model has the highest mean and lowest standard deviation for this

118 Taming the Attention Masks

video as well. It demonstrates the importance of the CATALIST model trained with
mask supervision on continuous video frames. Furthermore, it is essential to note
that all the models perform poorly at the start of this video due to larger amounts
of rotation as compared to the later parts of the video.

Figure 7.13: Frame-wise accuracy of 3 text-spotters on a video exhibiting zoom

In Figure 7.13, we present similar plots for a video with 58 frames exhibiting
zoom (out). The signboard in the video only contains Hindi text. The E2E-MLT
model, however, outputs some English characters due to script misidentification.
Owing to this, the overall accuracy of the topmost plot (E2E-MLT + OCR-on-the-
go) in Figure 7.13 is most unstable. Our model again achieves the highest mean and
lowest standard deviation across all the video frames.

The plots for a video with 75 frames exhibiting tilt (up-down) is shown in
Figure 7.14. As shown, contrary to other figures, the OCR-on-the-go model performs
poorly on this video. The reason for this is that the model perhaps overfits to its
license plates dataset. E2E-MLT generalizes well with respect to OCR-on-the-go
model, however, our model has the highest average accuracy. In Figure 7.15, we
present similar plots for a video with 121 frames exhibiting translation (upward).
As discussed earlier in Section 7.3, the video clips recorded with the vertical camera
movements in the setup possess jitter because the tripod does not allow for smooth
translation while recording such videos. Our model, however, outputs the text with
the highest accuracy and lowest standard deviation for the video we present in
Figure 7.15.

7.6 Conclusion 119

Figure 7.14: Frame-wise accuracy of 3 text-spotters on a video exhibiting tilt

Figure 7.15: Frame wise accuracy of 3 text-spotters on a video exhibiting translation

7.6 Conclusion
In this chapter we presented CATALIST, a multi-task model for reading scene-text
in videos and ALCHEMIST, a data generator that produces the videos from text
images. Such videos mimic the behavior of videos captured via five different camera
movements. We also presented the CATALISTd dataset of around two thousand
real videos recorded with the camera movements mentioned above. By training the
CATALIST model on the real and synthetic videos, we set new benchmarks for the
task of reading multi-lingual scene-text in Hindi, Marathi, and English. The multi-

120 Taming the Attention Masks

level mask supervision resulted in the improvement of either character or sequence
(or both) accuracy on three different datasets with varying complexities.

Chapter 8

Conclusion and Future Work

Various Artificial Intelligence (AI) applications, including machine translation, au-
tonomous driving, and text to speech, rely on Optical Character Recognition (OCR)
in images or videos. Our investigations demonstrate that texts in Indic languages
contain a large proportion of out-of-vocabulary words due to frequent fusion and
agglutination. Using open-source and commercial OCR systems, we observe very
high word error rates (WER) of approximately 20 − 50% on four languages with
varying complexities viz. Sanskrit, Malayalam, Kannada, and Hindi. We assert
that any OCR system with an accuracy below 90% is not useful since it requires
tremendous manual effort to correct its output. Therefore, an interactive system for
spell checking OCR text is needed to automatically correct errors in low-accuracy
OCR output. Conventional approaches to spell checking suggest corrections using
proximity-based matches to a known vocabulary. For highly inflectional Indian lan-
guages, any off-the-shelf vocabulary is significantly incomplete. Moreover, in a spell
checking system, the ranking of the suggested corrections is improved using language
models. Owing to corpus resource scarcity, however, Indian languages lack reliable
language models. Thus, learning the character confusions and error patterns of the
OCR system can help correct the out-of-vocabulary words in OCR documents. We
present OpenOCRCorrect: an interactive framework for assisting word-level correc-
tions in Indic OCR documents, with the ability to identify, segment, and combine
partially correct word forms. The model learns from corrections of the document
and also auxiliary sources such as dictionaries and common OCR character confu-
sions. The framework can also leverage multiple OCR systems on the same text for
dynamic dictionary building. Over 12k document images in four different languages
have been corrected using OpenOCRCorrect. We further present that a log-linear
classifier, which exploits signals such as frequency values of the partial word forms

121

122 Conclusion and Future Work

on various auxiliary sources and performs better than multiple-OCR consensus. We
then adopt a Long Short-Term Memory (LSTM) based character level model with
a fixed delay for jointly addressing the problems of error detection and correction
in Indic OCR. Such a model jointly learns the language as well as OCR-specific
confusions. For words that need not be corrected in the OCR output, the model
simply abstains from suggesting any changes. Using this mechanism, we achieve er-
ror detection F-Scores above 92.4% and reduction in WER of at least 26.7% across
the four Indian languages. We further improve the results by augmenting the input
of LSTM model with two different encodings to capture the sub-word frequency
values on a corpus. The first type of encoding makes direct use of sub-word unit
frequency values derived from the training data. The formulation results in faster
convergence and better accuracy values of the error correction models. The second
type of encoding makes use of trainable sub-word embeddings. We also introduce
a new procedure for training fastText on the sub-word units and further observe a
large gain in F-Scores, as well as word-level accuracy values. The LSTM models per-
form well when the data is in order of 100k words. However, the performance drops
when data is in order of 1000k words. In such situations, we show that a complex
encoder and attention-based decoder model consisting of a separate LSTM for each
is successful in learning the error correction mechanism similar to the basic LSTM
model. Using such model our team “CLAM” (Character Level Attention Model)
secured 2nd position in the ICDAR, 2019 PostOCR Competition on 10 languages.
Our model achieves the highest corrections of 44% in Finnish, which is significantly
higher than the overall winner (8% in Finnish).

Further investigations into modern Indian street signs demonstrate that street
signs are harder to read as compared to ancient texts. Scene-text in the real world
is generally unstructured, appearing in a variety of languages, fonts, sizes, and ori-
entations. Moreover, we use videos for training the deep models to i) collect and
annotate a large number of video frames and ii) obtain robust training data. The
movement of the capturing camera makes OCR an even more challenging task. We
also observe that the existing scene OCR models are not reliable to develop the
OCR correction systems and have WER of around 60% in Devanagari street sign
images. We first leverage available text-spotters that are trained only on different
text images, to generate a large amount of noisy dataset. We augment the data
with interpolated boxes and annotations that make the training and testing robust
for reading text in videos. Further use of synthetic data increases the coverage of
the training process. We train two different models for reading street signs. The

8.1 Limitations and Future Work 123

baselines include black box detectors such as Convolution Neural Network (CNN)
and humans, followed by the Recurrent Neural Network (RNN) based recognizer.
Next, we build in the capability of training the model end-to-end on scenes contain-
ing license plates. We achieve this by incorporating inception-based CNN encoder,
and location-sensitive attention mechanism in the LSTM decoder of a deep model.
We also present the first scene-text recognition results using multi-headed attention
models and demonstrate that each head has unique coverage over the scenes. We
then present StreetOCRCorrect: a modular framework for OCR corrections in the
chaotic Indian traffic videos. To ease the correction process, StreetOCRCorrect uses
available detectors and trackers to break down the multi-vehicle videos into mul-
tiple clips, each containing a single vehicle from the video. We then incorporate
multi-frame consensus (on the OCR output of each clip) for generating suggestions
in the framework. The framework then selectively presents these extracted clips to
the user to verify/correct the predictions with minimal human efforts via interactive
suggestions. The high quality output obtained from such a framework can be used
to continuously update a large database for surveillance as well as improving deep
models on video data. We finally demonstrate that associating semantics with atten-
tion masks and then completely supervising those masks, leads to significant gains
in scene OCR. The semantics include (i) camera transformations such as translation,
pan, tilt, roll and zoom, and (ii) granularity of text in the scene such as character,
word, and sentence. We extend an existing fast and scalable engine that overlays
synthetic text on existing background images, to perform the text overlaying on
videos under different transformations, naturally. The data synthesizer provides for
fairly detailed supervision on the attention masks, including 5 camera transforma-
tions as well as 3 levels of granularity of the text in the scene. Subsequently, we
present the architecture that uses such training data to tame the various attention
masks to individually and collectively adhere to the semantics mentioned above.

8.1 Limitations and Future Work
Limitations to work on ancient Indic texts in the thesis include the use of

• Word-level embeddings: we use word-level embeddings, which include sub-
word information, in Section 5.2 to improve the OCR correction models. The
context learned by such embeddings is limited to a fixed number of words.
The performance of OCR correction models can be enhanced if the context

124 Conclusion and Future Work

boundaries can extend to lines or even paragraphs while preserving the sub-
word information.

• A large number of auxiliary sources: We use six different sources in
Section 4.2 for interactive OCR corrections. The reason for using such a
large number of sources is the limited dataset in each auxiliary source and
ambiguities that arise while using some of them for corrections. The number
can reduce if we can make some of the non-ambiguous sources more powerful.

• Constrained OCR systems to assist the interactive OCR corrections:
As shown in Table 1.2, the error rates for the OCR systems are different for
different books. It happens because the type of variations (such as fonts,
printing process, scanning process, etc.) in the datasets used to train the
OCR systems are different from such variations used in many of the ancient
documents.

Some of the interesting future directions for our document OCR work are as follows:

• Analyzing the performances in dimensions like inflexions and OOVs:
Although we motivate in Figure 1.2 and Table 5.7 that the problem of Indic
post-OCR involves a large fraction of out-of-vocabulary (OOV) terms, and
present some of the results w.r.t. OOV terms in Tables 6.2 and 5.10. Nev-
ertheless, it is important to mention that the OOV problem will eventually
reduce as the OCR models as well as datasets in Indian languages improve.
Therefore, it will become important to systematically analyze the performance
in the dimensions like inflections and OOVs. Since the ground truth is available
for the post-OCR datasets, it is possible to analyze the performances based
on the degree of conjoining rules used in the ground truth words. For Sanskrit
(or similar languages), sandhi splitters can be used to split each ground truth
word and the performance can be analyzed by clustering the words based on
the number of splits. Alternatively, in terms of OOV, unique OOV n-grams
in an OCR and/or the corresponding ground truth word that are not present
in the general language dictionary (or ground truth of training data) can be
used to give the OOV score to each example.

• Relevance of Post-OCR as the underlying models improve: Since the
printed document OCR is a simpler task than machine translation and scene
captioning, many papers present over 98% accuracy on standard datasets. It
shows that algorithms and losses are perfect for the OCR tasks now, given

8.1 Limitations and Future Work 125

the adequate amount of supervised dataset. So the question might be raised
that will the post-OCR techniques remain relevant once the OCR systems
are trained well on the large amount of supervised dataset obtained from
ancient document images in multiple languages? Would the architectures or
loss functions need revision in such scenarios?

It is important to note, that there are a few challenges when it comes to
multi-lingual OCR in real ancient document images:

1. The variety of fonts and printing processes used in typewriters that
printed such ancient documents are not available. Hence, we are not
able to train the models on such fonts and diverse collections. The only
solution is to collect a large amount of realistic data.

2. Even if we collect a large amount of data, the annotations’ errors are
another bottleneck in training such models. We observe that the human
annotators tend to make character-level errors in long words, which is the
unavoidable feature in languages rich in inflections. A proposed solution
to this would be to have an unsupervised model that finds the character
level errors in the labels given the image-label pairs.

3. To handling the degraded document images, the works on neural mor-
phological processing (Mondal et al., 2019) can be adopted.

4. Class balanced cross entropy loss, as advocated by Cui et al., 2019 re-
cently, can be used for loss functions to balance the scarcity of datasets
in some of the languages.

• Automatic learning with no additional data: Techniques such as self-training,
as recently used by Das and Jawahar, 2020, can be applied to automatically
update the trained models to learn from pseudo labels. Additionally, using
AI to compare the OCR text (or rendered image of the OCR text) with the
original image, by adapting visual question answering models or siamese net-
works to the problem, and identifying OCR errors can help with proper subset
selection of pseudo labels.

The winner of ICDAR (2019) post-OCR competition uses the sentence embeddings
to assist error corrections in non-Indic OCR texts. Such embeddings might also help
improve the Indic OCR correction systems. Moreover, with the scaling for error
correction datasets, the interactive tasks may require a fewer number of auxiliary
sources. The existing accuracies of document OCR systems depend on the type

126 Conclusion and Future Work

of font used to train the models. The fonts are generally not available for ancient
documents. As the extensive datasets are collected using our framework, we would
like to use them to improve the Indic OCR systems as future work. The OCR
correction process itself can also incrementally update the OCR systems on-the-fly
with the images and corrected labels to reduce the correction load dynamically. We
would like to involve the sentence level embeddings as well as image-based updates
rather than just relying on text-based auxiliary sources for Indic OCR corrections
as future work.

The work on reading street signs has following limitations:

• Low sequence accuracy on datasets with lengthy sentences: As shown in Sec-
tion 6.7, the sequence accuracy of the OCR-on-the-go model on the FSNS
dataset is above 85%. However, the sequence accuracy of the CATALIST is
below 10% (as shown in Section 7.4) on CATALISTd dataset with more ex-
tended labels, although the character accuracy is above 70%. All this indicates
that the overall settings are prone to errors for the lengthy sequences of text.

• The inability of models to process multiple-frames: The 2-d CNNs used in
the OCR-on-the-go model and the CATALIST model limit them to train on
individual video frames. Such a training process makes the model robust to
different perspectives during test time, and subsequently, the model works
equally well for any of the video frames. However, it does not allow for se-
lectively reading high-quality regions from multiple frames. Using 3-d CNNs
instead of 2-d CNNs can help overcome this limitation.

The sequence accuracy can benefit by i) training on more extensive datasets, and/ or
ii) directly predicting the word-embeddings of frequent words instead of characters
at the target side of end-to-end models. On the one hand, processing the multiple-
frames using 3-d CNNs as the encoder might help resolve the issue of processing
individual video frames. On the other hand, it would not work for the videos
where the text frequently changes (like on the display board screens at the airports).
Modifying the decoder to predict multiple sequential outputs (one for each frame)
might help tackle the issue.

An interesting future direction for the photo-OCR work are as follows:

• Exploiting multilingual alignment for post correction: Translations
and transliteration schemes can be utilized to post-correct the OCR output
because the multilingual street signs are aligned multilingual corpora. Fig-
ure 7.15 illustrates that a balanced mix of translation and transliteration for

8.1 Limitations and Future Work 127

each word may help improve the system. However, we also observe two issues
with this approach; i) in some of the samples, the translations and translitera-
tions are wrong. It happens because certain examples include advertisements,
which purposefully make mistakes to attract attention, and ii) some words
are highly technical and are not available in popular bilingual dictionaries.
Moreover, there is always a trade-off between word-level accuracy and char-
acter level accuracy while using dictionary-based approaches in a way that
(incorrect) translations and transliterations may reduce character level accu-
racy while trying to improve word-level accuracy. So we avoided using such
methods for post-processing in the thesis. However this space can be further
explored in the future work.

As future work, we would also like to work on improving the photo OCR sys-
tems by i) prediction at multiple levels (word-level embeddings for frequent words,
character-level for out-of-vocabulary words), and ii) additionally predicting the es-
sential text features such as text-location, text-font, font-weight or text-attention,
and style.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al., 2016, “Tensorflow: A System for Large-
Scale Machine Learning,” in 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pp. 265–283.

Abdulkader, A., and Casey, M. R., 2009, “Low Cost Correction of OCR Errors Using
Learning in a Multi-Engine Environment,” in 10th International Conference on
Document Analysis and Recognition (IEEE). pp. 576–580.

Adiga, D., Saluja, R., Agrawal, V., Ramakrishnan, G., Chaudhuri, P., Ramasubra-
manian, K., and Kulkarni, M., 2018, “Improving the learnability of classifiers for
Sanskrit OCR corrections,” in The 17th World Sanskrit Conference, Vancouver,
Canada. IASS, pp. 143–161.

Afli, H., Barrault, L., and Schwenk, H., 2016, “OCR Error Correction Using Statis-
tical Machine Translation..” Int. J. Comput. Linguistics Appl. 7, 175–191.

Alexandrescu, A., and Kirchhoff, K., 2006, “Factored neural language models,” in
Proceedings of the Human Language Technology Conference of the NAACL, Com-
panion Volume: Short Papers, pp. 1–4.

Artaud, C., Sidère, N., Doucet, A., Ogier, J.-M., and Yooz, V. P. D., 2018, “Find it!
fraud detection contest report,” in 2018 24th International Conference on Pattern
Recognition (ICPR) (IEEE). pp. 13–18.

Arya, D., Jawahar, C., Bhagvati, C., Patnaik, T., Chaudhuri, B., Lehal, G., Chaud-
hury, S., and Ramakrishna, A., 2011, “Experiences of integration and performance
testing of multilingual ocr for printed indian scripts,” in Proceedings of the 2011
joint workshop on multilingual OCR and analytics for noisy unstructured text data
(ACM). p. 9.

129

130 References

Avi-Itzhak, H. I., Diep, T. A., and Garland, H., 1995, “High accuracy optical charac-
ter recognition using neural networks with centroid dithering,” IEEE Transactions
on pattern analysis and machine intelligence 17, 218–224.

Bartz, C., Yang, H., and Meinel, C., 2017, “Stn-ocr: A single neural network for
text detection and text recognition,” arXiv preprint arXiv:1707.08831

Bassil, Y., and Alwani, M., 2012, “OCR Context-sensitive Error Correction Based
on Google Web 1T 5-gram Data Set,” arXiv preprint arXiv:1204.0188

Bellman, R., 1966, “Dynamic Programming,” Science 153, 34–37.

Bennett, K. P., and Demiriz, A., 1999, “Semi-supervised support vector machines,”
in Advances in Neural Information processing systems, pp. 368–374.

Bhaskarabhatla, A. S., Madhvanath, S., Kumar, M., Balasubramanian, A., and
Jawahar, C., 2004, “Representation and Annotation of Online Handwritten Data,”
in Ninth International Workshop on Frontiers in Handwriting Recognition (IEEE).
pp. 136–141.

Biswas, C., Mukherjee, P. S., Ghosh, K., Bhattacharya, U., and Parui, S. K., 2018,
“A Hybrid Deep Architecture for Robust Recognition of Text Lines of Degraded
Printed Documents,” in 2018 24th International Conference on Pattern Recogni-
tion (ICPR) (IEEE). pp. 3174–3179.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T., 2017, “Enriching word
vectors with subword information,” Transactions of the Association for Compu-
tational Linguistics 5, 135–146.

Breuel, T. M., Ul-Hasan, A., Al-Azawi, M. A., and Shafait, F., 2013, “High-
performance ocr for printed english and fraktur using lstm networks,” in 2013
12th International Conference on Document Analysis and Recognition (IEEE).
pp. 683–687.

Bušta, M., Neumann, L., and Matas, J., 2017, “Deep textspotter: An end-to-end
trainable scene text localization and recognition framework,” International Con-
ference on Computer Vision

Bušta, M., Patel, Y., and Matas, J., 2018, “E2E-MLT-an Unconstrained End-to-
End Method for Multi-Language Scene Text,” in Asian Conference on Computer
Vision (Springer). pp. 127–143.

References 131

Carlson, A., and Fette, I., 2007, “Memory-based Context-sensitive Spelling Correc-
tion at Web Scale,” in International Conference on Machine learning and appli-
cations (ICMLA), pp. 166–171.

Chaudhuri, B., and Pal, U., 1997, “An OCR system to read two Indian language
scripts: Bangla and devnagari (hindi),” in Proceedings of the fourth international
conference on document analysis and recognition, Vol. 2 (IEEE). pp. 1011–1015.

Cheriet, M., Kharma, N., Liu, C.-L., and Suen, C., 2007, Character recognition
systems: a guide for students and practitioners (John Wiley & Sons).

Chiron, G., Doucet, A., Coustaty, M., and Moreux, J.-P., 2017a, “ICDAR2017
Competition on Post-OCR Text Correction,” in 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), Vol. 1 (IEEE). pp.
1423–1428.

Chiron, G., Doucet, A., Coustaty, M., Visani, M., and Moreux, J.-P., 2017b, “Im-
pact of OCR Errors on the Use of Digital Libraries: Towards a Better Access to
Information,” in 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL)
(IEEE). pp. 1–4.

Choudhury, M., Thomas, M., Mukherjee, A., Basu, A., and Ganguly, N., 2007,
“How Difficult is it to Develop a Perfect Spell-checker? A Cross-linguistic Analysis
through Complex Network Approach,” arXiv preprint physics/0703198

Cui, Y., Jia, M., Lin, T.-Y., Song, Y., and Belongie, S., 2019, “Class-Balanced Loss
Based on Effective Number of Samples,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 9268–9277.

Damerau, F. J., 1964, “A technique for computer detection and correction of spelling
errors,” Communications of the ACM 7, 171–176.

Das, D., and Jawahar, C., 2020, “Adapting OCR with Limited Supervision,” in
International Workshop on Document Analysis Systems (Springer). pp. 30–44.

Das, D., Philip, J., Mathew, M., and Jawahar, C., 2019, “A Cost Efficient Approach
to Correct OCR Errors in Large Document Collections,” in 2019 International
Conference on Document Analysis and Recognition (ICDAR) (IEEE). pp. 655–
662.

Davis, B., Morse, B., Cohen, S., Price, B., and Tensmeyer, C., 2019, “Deep visual
template-free form parsing,” arXiv preprint arXiv:1909.02576

132 References

Devlin, J., Chang, M., Lee, K., and Toutanova, K., 2018, “BERT: pre-training of
deep bidirectional transformers for language understanding,” CoRR

Doucet, A., Coustaty, M., et al., 2017, “Enhancing Table of Contents Extraction by
System Aggregation,” in 2017 14th IAPR international conference on document
analysis and recognition (ICDAR), Vol. 1 (IEEE). pp. 242–247.

Doucet, A., Kazai, G., Colutto, S., and Mühlberger, G., 2013, “Icdar 2013 Compe-
tition on Book Structure Extraction,” in 2013 12th International Conference on
Document Analysis and Recognition (IEEE). pp. 1438–1443.

Doucet, A., Kazai, G., and Meunier, J.-L., 2011, “Icdar 2011 Book Structure Ex-
traction Competition,” in 2011 International Conference on Document Analysis
and Recognition (IEEE). pp. 1501–1505.

Du, S., Ibrahim, M., Shehata, M., and Badawy, W., 2013, “Automatic license plate
recognition (alpr): A state-of-the-art review,” IEEE Transactions on circuits and
systems for video technology 23

Duda, R. O., Hart, P. E., et al., 1973, Pattern classification and scene analysis,
Vol. 3 (Wiley New York).

Dutta, S., Sankaran, N., Sankar, K. P., and Jawahar, C., 2012, “Robust recognition
of degraded documents using character n-grams,” in 2012 10th IAPR International
Workshop on Document Analysis Systems (IEEE). pp. 130–134.

Dīkṣita, B., Dīkṣita, V., and Sarasvatī, J., 2006, Vaiyākaraṇasiddhāntakaumudī with
the commentary Bālamanoramā and Tattvabodhinī (Motilal Banarasidas).

Esposito, F., Malerba, D., Semeraro, G., Annese, E., and Scafuro, G., 1990, “An
experimental page layout recognition system for office document automatic clas-
sification: An integrated approach for inductive generalization,” in [1990] Pro-
ceedings. 10th International Conference on Pattern Recognition, Vol. 1 (IEEE).
pp. 557–562.

Evershed, J., and Fitch, K., 2014, “Correcting Noisy OCR: Context Beats Confu-
sion,” in Proceedings of the First International Conference on Digital Access to
Textual Cultural Heritage, pp. 45–51.

Frinken, V., Fischer, A., and Bunke, H., 2010a, “A novel word spotting algorithm
using bidirectional long short-term memory neural networks,” in IAPR Workshop
on Artificial Neural Networks in Pattern Recognition (Springer). pp. 185–196.

References 133

Frinken, V., Fischer, A., Bunke, H., and Manmatha, R., 2010b, “Adapting blstm
neural network based keyword spotting trained on modern data to historical docu-
ments,” in 2010 12th International Conference on Frontiers in Handwriting Recog-
nition (IEEE). pp. 352–357.

Glauberman, M., 1956, “Character recognition for business machines,” Electronics
29, 132–136.

Golding, A. R., and Schabes, Y., 1996, “Combining Trigram-based and Feature-
based Methods for Context-sensitive Spelling Correction,” in Proceedings of the
34th annual meeting on Association for Computational Linguistics, pp. 71–78.

Goodrich, G. L., Bennett, R., De l’Aune, W. R., Lauer, H., and Mowinski, L.,
1979, “Kurzweil reading machine: A partial evaluation of its optical character
recognition error rate,” J. Visual Impairment & Blindness 73, 389.

Google, 2020, “Convert pdf and photo files to text,”
https://support.google.com/drive/answer/176692?hl=en

Google, 2020, “Google’s Optical Character Recognition (ocr) Software
Works for 248+ Languages,” https://opensource.com/life/15/9/
open-source-extract-text-images. Last accessed on 21 January’20.

Govindan, V., and Shivaprasad, A., 1990, “Character recognition—A review,” Pat-
tern recognition 23, 671–683.

Govindaraju, V., and Setlur, S., 2009, Guide to OCR for Indic Scripts (Springer).

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J., 2006, “Connectionist
temporal classification: labelling unsegmented sequence data with recurrent neu-
ral networks,” in Proceedings of the 23rd international conference on Machine
learning, pp. 369–376.

GRETIL, 2001, “Göttingen Register of Electronic Texts in Indian Languages,”
http://gretil.sub.uni-goettingen.de/

Gupta, A., Vedaldi, A., and Zisserman, A., 2016, “Synthetic Data for Text Local-
isation in Natural Images,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2315–2324.

Gustav, T., 1938 Apr. 26, “Reading machine,” uS Patent 2,115,563.

https://opensource.com/life/15/9/open-source-extract-text-images
https://opensource.com/life/15/9/open-source-extract-text-images
http://gretil.sub.uni-goettingen.de/

134 References

Handel, P. W., 1933 Jun. 27, “Statistical machine,” uS Patent 1,915,993.

Hanov, S., 2013, “Fast and easy Levenshtein distance using a Trie,” http://
stevehanov.ca/blog/index.php?id=114

Hartley, R., and Zisserman, A., 2003, Multiple view geometry in computer vision
(Cambridge university press).

He, K., Zhang, X., Ren, S., and Sun, J., 2016, “Deep Residual Learning for Im-
age Recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778.

Hedderich, M. A., and Klakow, D., 2018, “Training a neural network in a low-
resource setting on automatically annotated noisy data,” ACL 2018

Hirschberg, D. S., 1977, “Algorithms for the longest common subsequence problem,”
Journal of the ACM (JACM) 24, 664–675.

Horwitz, L., and Shelton, G., 1961, “Pattern recognition using autocorrelation,”
Proceedings of the IRE 49, 175–185.

Hu, J., Kashi, R. S., Lopresti, D. P., and Wilfong, G., 2000, “Table structure recog-
nition and its evaluation,” in Document Recognition and Retrieval VIII, Vol. 4307
(International Society for Optics and Photonics). pp. 44–55.

ICDAR, 2017, “Competition on Post-OCR Text Correction,” https://sites.
google.com/view/icdar2017-postcorrectionocr/. Last accessed on 6 Febru-
ary’20,

ICDAR, 2019, “Competition on Post-OCR Text Correction,” https://sites.
google.com/view/icdar2019-postcorrectionocr. Last accessed on March 7

ind.senz, 2020, “IndicOCR,” http://www.indsenz.com/

Jain, R., Frinken, V., Jawahar, C., and Manmatha, R., 2011, “Blstm Neural Network
based Word Retrieval for Hindi Documents,” in 2011 International Conference on
Document Analysis and Recognition (IEEE). pp. 83–87.

Jain, V., Sasindran, Z., Rajagopal, A., Biswas, S., Bharadwaj, H. S., and Ramakrish-
nan, K., 2016, “Deep automatic license plate recognition system,” in Proceedings
of the Tenth Indian Conference on Computer Vision, Graphics and Image Pro-
cessing, pp. 1–8.

http://stevehanov.ca/blog/index.php?id=114
http://stevehanov.ca/blog/index.php?id=114
https://sites.google.com/view/icdar2017-postcorrectionocr/
https://sites.google.com/view/icdar2017-postcorrectionocr/
https://sites.google.com/view/icdar2019-postcorrectionocr
https://sites.google.com/view/icdar2019-postcorrectionocr

References 135

Jenkins, F., Kanai, J., and Nartker, T., 1993, “Using ideal images to establish
a baseline of ocr performance,” Information Science Research Institute Annual
Research Report, 47–54.

Jiao, J., Ye, Q., and Huang, Q., 2009, “A configurable method for multi-style license
plate recognition,” Pattern Recognition 42

Kameshiro, T., Hirano, T., Okada, Y., and Yoda, F., 1999, “A document image re-
trieval method tolerating recognition and segmentation errors of ocr using shape-
feature and multiple candidates,” in Proceedings of the Fifth International Con-
ference on Document Analysis and Recognition. ICDAR’99 (Cat. No. PR00318)
(IEEE). pp. 681–684.

Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bagdanov, A., Iwamura,
M., Matas, J., Neumann, L., Chandrasekhar, V. R., Lu, S., et al., 2015, “Icdar
2015 competition on Robust Reading,” in 2015 13th International Conference on
Document Analysis and Recognition (ICDAR) (IEEE). pp. 1156–1160.

Karatzas, D., Shafait, F., Uchida, S., Iwamura, M., i Bigorda, L. G., Mestre, S. R.,
Mas, J., Mota, D. F., Almazan, J. A., and De Las Heras, L. P., 2013, “ICDAR
2013 Robust Reading Competition,” in 2013 12th International Conference on
Document Analysis and Recognition (IEEE). pp. 1484–1493.

Kennedy, L. S., and Naaman, M., 2008, “Generating diverse and representative
image search results for landmarks,” in Proceedings of the 17th international con-
ference on World Wide Web, pp. 297–306.

Kieninger, T. G., 1998, “Table structure recognition based on robust block segmen-
tation,” in Document Recognition V, Vol. 3305 (International Society for Optics
and Photonics). pp. 22–32.

Kissos, I., and Dershowitz, N., 2016, “OCR Error Correction Using Character Cor-
rection and Feature-based Word Classification,” in 12th IAPR Workshop on Doc-
ument Analysis Systems (DAS), pp. 198–203.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A., 2017, “OpenNMT: Open-
Source Toolkit for Neural Machine Translation,” in Proceedings of ACL 2017,
System Demonstrations (Association for Computational Linguistics, Vancouver,
Canada). pp. 67–72.

136 References

Krishna, A., Majumder, B. P., Bhat, R. S., and Goyal, P., 2018, “Upcycle your ocr:
Reusing ocrs for post-ocr text correction in romanised sanskrit,” arXiv preprint
arXiv:1809.02147

Krishnan, P., Sankaran, N., Singh, A. K., and Jawahar, C., 2014, “Towards a Robust
OCR System for Indic Scripts,” in 2014 11th IAPR International Workshop on
Document Analysis Systems (IEEE). pp. 141–145.

Krizhevsky, A., Sutskever, I., and Hinton, G. E., 2012, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information processing
systems, pp. 1097–1105.

Kukich, K., 1992, “Techniques for Automatically Correcting Words in Text,” ACM
Computing Surveys (CSUR) 24, 377–439.

Kumar, A., and Jawahar, C., 2007, “Content-level Annotation of Large Collection
of Printed Document Images,” in Ninth International Conference on Document
Analysis and Recognition (ICDAR 2007), Vol. 2 (IEEE). pp. 799–803.

La Manna, S., Colia, A., and Sperduti, A., 1999, “Optical font recognition for multi-
font ocr and document processing,” in Proceedings. Tenth International Workshop
on Database and Expert Systems Applications. DEXA 99 (IEEE). pp. 549–553.

Lan, W., and Xu, W., 2018, “The Importance of Subword Embeddings in Sentence
Pair Modeling,” in NAACL 2018, pp. 1636–1646.

Lee, C.-Y., and Osindero, S., 2016, “Recursive recurrent nets with attention mod-
eling for ocr in the wild,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2231–2239.

Lehal, G., Singh, C., and Lehal, R., 2001, “A Shape Based Post Processor for Gur-
mukhi OCR,” in International Conference on Document Analysis and Recognition
(ICDAR), pp. 1105–1109.

Lenc, L., Martínek, J., and Král, P., 2019, “Tools for semi-automatic preparation of
training data for ocr,” in IFIP International Conference on Artificial Intelligence
Applications and Innovations (Springer). pp. 351–361.

Levenshtein, V. I., 1966, “Binary codes capable of correcting deletions, insertions,
and reversals,” in Soviet physics doklady, Vol. 10, pp. 707–710.

References 137

Li, H., and Shen, C., 2016, “Reading car license plates using deep convolutional
neural networks and lstms,” arXiv preprint arXiv:1601.05610

Liao, M., Shi, B., Bai, X., Wang, X., and Liu, W., 2017, “Textboxes: A fast text
detector with a single deep neural network..” in AAAI, pp. 4161–4167.

Lopresti, D., 2009, “Optical character recognition errors and their effects on natural
language processing,” International Journal on Document Analysis and Recogni-
tion (IJDAR) 12, 141–151.

Lopresti, D., and Zhou, J., 1997, “Using consensus sequence voting to correct ocr
errors,” Computer Vision and Image Understanding 67, 39–47.

Luong, M.-T., Pham, H., and Manning, C. D., 2015, “Effective approaches to
attention-based neural machine translation,” arXiv preprint arXiv:1508.04025

Ly, N. T., Nguyen, C. T., and Nakagawa, M., 2019, “An attention-based end-to-
end model for multiple text lines recognition in Japanese Historical Documents,”
in 15th IAPR International Conference on Document Analysis and Recognition
(ICDAR) (IEEE). pp. 629–634.

Mathew, M., Jain, M., and Jawahar, C., 2017, “Benchmarking Scene Text Recog-
nition in Devanagari, Telugu and Malayalam,” in 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), Vol. 7 (IEEE). pp.
42–46.

Mathew, M., Singh, A. K., and Jawahar, C., 2016, “Multilingual ocr for indic
scripts,” in Document Analysis Systems (DAS), 2016 12th IAPR Workshop on
(IEEE). pp. 186–191.

Mei, J., Islam, A., Wu, Y., Moh’d, A., and Milios, E. E., 2016, “Statistical Learning
for OCR Text Correction,” arXiv preprint arXiv:1611.06950

Melnikov, A., and Zagaynov, I., 2020, “Fast and Lightweight Text Line Detection on
Historical Documents,” in International Workshop on Document Analysis Systems
(Springer). pp. 441–450.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and Khudanpur, S., 2010,
“Recurrent neural network based language model,” in Eleventh annual conference
of the International Speech Communication Association (INTERSPEECH), pp.
1045–1048.

138 References

Minghui Liao, B. S., and Bai, X., 2018, “TextBoxes++: A single-shot oriented scene
text detector,” CoRR abs/1801.02765

Mondal, R., Chakraborty, D., and Chanda, B., 2019, “Learning 2D Morphological
Network for Old Document Image Binarization,” in 2019 International Conference
on Document Analysis and Recognition (ICDAR) (IEEE). pp. 65–70.

Mor, N., and Wolf, L., 2018, “Confidence prediction for lexicon-free ocr,” in 2018
IEEE Winter Conference on Applications of Computer Vision (WACV) (IEEE).
pp. 218–225.

Mori, S., Suen, C. Y., and Yamamoto, K., 1992, “Historical review of ocr research
and development,” Proceedings of the IEEE 80, 1029–1058.

Nair, K., and Jawahar, C., 2010, “A Post-Processing Scheme for Malayalam Using
Statistical Subcharacter Language Models,” Proceeding of the IAPR Workshop on
Document Analysis Systems (DAS)

Narasimhan, H., Vaish, R., and Agarwal, S., 2014, “On the statistical consistency
of plug-in classifiers for non-decomposable performance measures,” in Advances
in Neural Information Processing Systems, pp. 1493–1501.

Natarajan, P. S., MacRostie, E., and Decerbo, M., 2005, “The bbn byblos hindi
ocr system,” in Document Recognition and Retrieval XII, Vol. 5676 (International
Society for Optics and Photonics). pp. 10–16.

Nayef, N., Yin, F., Bizid, I., Choi, H., Feng, Y., Karatzas, D., Luo, Z., Pal, U.,
Rigaud, C., Chazalon, J., et al., 2017, “Icdar2017 robust reading challenge on
multi-lingual scene text detection and script identification-rrc-mlt,” in 2017 14th
IAPR International Conference on Document Analysis and Recognition (ICDAR),
Vol. 1 (IEEE). pp. 1454–1459.

Nguyen, T., Jatowt, A., Coustaty, M., Nguyen, N., and Doucet, A., 2019, “Deep
Statistical Analysis of OCR Errors for Effective Post-OCR Processing,” in 2019
ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp. 29–38.

Nikitin, F., Dokholyan, V., Zharikov, I., and Strijov, V., 2019, “U-net based architec-
tures for document text detection and binarization,” in International Symposium
on Visual Computing (Springer). pp. 79–88.

References 139

Nomura, S., Yamanaka, K., Katai, O., Kawakami, H., and Shiose, T., 2005, “A novel
adaptive morphological approach for degraded character image segmentation,”
Pattern Recognition 38

Norvig, P., 2011, “How to write a spelling corrector?.” http://norvig.com/spell-
correct.html

Pal, U., and Chaudhuri, B., 2004, “Indian script character recognition: a survey,”
pattern Recognition 37, 1887–1899.

Pal, U., Kundu, P. K., and Chaudhuri, B. B., 2000, “OCR Error Correction of an In-
flectional Indian Language Using Morphological Parsing,” Journal of Information
Science and Engg. 16, 903–922.

Patel, D., and Katuri, S., 2015a, “Prakriyāpradarśinī - an open source subanta
generator,” in 16th World Sanskrit Conference, pp. 195–221.

Patel, D., and Katuri, S., 2015b, “Subanta generator,” http://www.
sanskritworld.in/sanskrittool/SanskritVerb/subanta.html

Paul, D., and Chaudhuri, B. B., 2019, “A BLSTM Network for Printed Bengali
OCR System with High Accuracy,” arXiv preprint arXiv:1908.08674

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and
Zettlemoyer, L., 2018, “Deep contextualized word representations,” arXiv preprint
arXiv:1802.05365

Rabiner, L., and Juang, B., 1986, “An introduction to hidden markov models,” ieee
assp magazine 3, 4–16.

Raja, S., Mondal, A., and Jawahar, C., 2020, “Table structure recognition using
top-down and bottom-up cues,” arXiv preprint arXiv:2010.04565

Rasheed, S., Naeem, A., and Ishaq, O., 2012, “Automated number plate recognition
using hough lines and template matching,” in Proceedings of the World Congress
on Engineering and Computer Science, Vol. 1, pp. 24–26.

Reddy, V., Krishna, A., Sharma, V. D., Gupta, P., Goyal, P., et al., 2018, “Building
a word segmenter for sanskrit overnight,” arXiv preprint arXiv:1802.06185

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., 2016, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 779–788.

http://www.sanskritworld.in/sanskrittool/SanskritVerb/subanta.html
http://www.sanskritworld.in/sanskrittool/SanskritVerb/subanta.html

140 References

Rice, S. V., Jenkins, F. R., and Nartker, T. A., 1995, The fourth annual test of OCR
accuracy, Tech. Rep. (Technical Report 95).

Rigaud, C., Doucet, A., Coustaty, M., and Moreux, J.-P., 2019, “Icdar 2019 compe-
tition on post-ocr text correction,” in 2019 International Conference on Document
Analysis and Recognition (ICDAR), pp. 1588–1593.

Roche, E., and Schabes, Y., 1997, Finite-state language processing (MIT press).

Saluja, R., Adiga, D., Chaudhuri, P., Ramakrishnan, G., and Carman, M., 2017a,
“Error Detection and Corrections in Indic OCR using LSTMs,” in 2017 14th IAPR
International Conference on Document Analysis and Recognition (ICDAR), Vol. 1
(IEEE). pp. 17–22.

Saluja, R., Adiga, D., Ramakrishnan, G., Chaudhuri, P., and Carman, M., 2017b, “A
framework for document specific error detection and corrections in indic ocr,” in
2017 14th IAPR International Conference on Document Analysis and Recognition
(ICDAR), Vol. 4 (IEEE). pp. 25–30.

Saluja, R., Maheshwari, A., Ramakrishnan, G., Chaudhuri, P., and Carman, M.,
2019a, “Robust End-to-end Systems for Reading License Plates and Street Signs,”
in 2019 15th IAPR International Conference on Document Analysis and Recog-
nition (ICDAR) (IEEE). pp. 154–159.

Saluja, R., Punjabi, M., Carman, M., Ramakrishnan, G., and Chaudhuri, P., 2019b,
“Sub-word embeddings for ocr corrections in highly fusional indic languages,” in
2019 International Conference on Document Analysis and Recognition (ICDAR)
(IEEE). pp. 160–165.

Sankar K, P., Jawahar, C., and Manmatha, R., 2010, “Nearest neighbor based col-
lection ocr,” in Proceedings of the 9th IAPR International Workshop on Document
Analysis Systems, pp. 207–214.

Sankaran, N., and Jawahar, C., 2012, “Recognition of Printed Devanagari Text Us-
ing BLSTM Neural Network,” in Proceedings of the 21st International Conference
on Pattern Recognition (ICPR2012) (IEEE). pp. 322–325.

Sankaran, N., and Jawahar, C., 2013, “Error Detection in Highly Inflectional Lan-
guages,” in 12th IAPR International Conference on Document Analysis and Recog-
nition (ICDAR), pp. 1135–1139.

References 141

Schuster, M., and Paliwal, K. K., 1997, “Bidirectional Recurrent Neural Networks,”
IEEE Transactions on Signal Processing 45

Sennrich, R., Haddow, B., and Birch, A., 2016, “Neural machine translation of rare
words with subword units,” in Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers) (Association
for Computational Linguistics). pp. 1715–1725.

Sharma, A., and Chaudhary, D. R., 2013, “Character recognition using neural net-
work,” International journal of engineering Trends and Technology (IJETT) 4,
662–667.

Shi, B., Bai, X., and Yao, C., 2017, “An end-to-end trainable neural network for
image-based sequence recognition and its application to scene text recognition,”
IEEE transactions on pattern analysis and machine intelligence 39

Shotton, J., Winn, J., Rother, C., and Criminisi, A., 2009, “Textonboost for Im-
age Understanding: Multi-Class Object Recognition and Segmentation by Jointly
Modeling Texture, Layout, and Context,” International journal of computer vi-
sion 81, 2–23.

Singh, A. K., and Jawahar, C., 2015, “Can RNNs reliably separate script and lan-
guage at word and line level?.” in 2015 13th International Conference on Document
Analysis and Recognition (ICDAR) (IEEE). pp. 976–980.

Singh, P., Patwa, B., Saluja, R., Ramakrishnan, G., and Chaudhuri, P., 2019,
“Streetocrcorrect: An Interactive Framework for OCR Corrections in Chaotic In-
dian Street Videos,” in 2019 International Conference on Document Analysis and
Recognition Workshops (ICDARW), Vol. 2 (IEEE). pp. 36–40.

Smith, R., 2007, “An overview of the tesseract ocr engine,” in Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007), Vol. 2 (IEEE).
pp. 629–633.

Smith, R., 2011, “Limits on the Application of Frequency-based Language Models
to OCR,” in 11th IAPR International Conference on Document Analysis and
Recognition (ICDAR), pp. 538–542.

Smith, R. W., 2013, “History of the tesseract ocr engine: what worked and what
didn’t,” in Document Recognition and Retrieval XX, Vol. 8658 (International So-
ciety for Optics and Photonics). p. 865802.

http://dx.doi.org/10.18653/v1/P16-1162
http://dx.doi.org/10.18653/v1/P16-1162

142 References

Smith, R., Gu, C., Lee, D.-S., Hu, H., Unnikrishnan, R., Ibarz, J., Arnoud, S., and
Lin, S., 2016, “End-to-end interpretation of the french street name signs dataset,”
in European Conference on Computer Vision (Springer). pp. 411–426.

Smith, R. W., 2009, “Hybrid page layout analysis via tab-stop detection,” in 2009
10th International Conference on Document Analysis and Recognition (IEEE).
pp. 241–245.

Sommer, L., 2016, ““sanskrit has guided me to the finnish language”: Herman
kellgren’s writings on finnish or the dilemmas of a fennoman,” Historiographia
Linguistica 43, 145–173.

Springmann, U., Reul, C., Dipper, S., and Baiter, J., 2018, “Gt4histocr: Ground
truth for training ocr engines on historical documents in german fraktur and early
modern latin,”

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.,
2014, “Dropout: a simple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research 15

Sundermeyer, M., Schlüter, R., and Ney, H., 2012, “Lstm Neural Networks for Lan-
guage Modeling,” in Thirteenth annual conference of the International Speech
Communication Association (INTERSPEECH), pp. 194–197.

Sutskever, I., Martens, J., and Hinton, G. E., 2011, “Generating Text with Recurrent
Neural Networks,” in Proceedings of the 28th International Conference on Machine
Learning (ICML), pp. 1017–1024.

Sutskever, I., Vinyals, O., and Le, Q. V., 2014, “Sequence to Sequence Learning
with Neural Networks,” in Advances in neural information processing systems,
pp. 3104–3112.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z., 2016, “Rethink-
ing the inception architecture for computer vision,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2818–2826.

Talathi, S. S., and Vartak, A., 2015, “Improving Performance of Recurrent Neural
Network with Relu Nonlinearity,” arXiv preprint arXiv:1511.03771

Tesseract, 2020, “Tesseract Open Source OCR,” https://github.com/tesseract-ocr/

References 143

Toselli, A. H., and Vidal, E., 2013, “Fast hmm-filler approach for key word spotting
in handwritten documents,” in 2013 12th International Conference on Document
Analysis and Recognition (IEEE). pp. 501–505.

Van Strien, D., Beelen, K., Ardanuy, M. C., Hosseini, K., McGillivray, B., and
Colavizza, G., 2020, “Assessing the Impact of OCR Quality on Downstream NLP
Tasks..” in ICAART (1), pp. 484–496.

Varfolomieiev, A., and Lysenko, O., 2016, “An improved algorithm of median flow
for visual object tracking and its implementation on ARM platform,” Journal of
Real-Time Image Processing 11, 527–534.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., and Polosukhin, I., 2017, “Attention is all you need,” in Advances in neural
information processing systems, pp. 5998–6008.

Veit, A., Matera, T., Neumann, L., Matas, J., and Belongie, S., 2016, “Coco-text:
Dataset and benchmark for text detection and recognition in natural images,”
arXiv preprint arXiv:1601.07140

Vinitha, V., and Jawahar, C., 2016, “Error Detection in Indic OCRs,” in 2016 12th
IAPR Workshop on Document Analysis Systems (DAS) (IEEE). pp. 180–185.

Vorbeck, F., Ba-Ssalamah, A., Kettenbach, J., and Huebsch, P., 2000, “Report
generation using digital speech recognition in radiology,” European Radiology 10,
1976–1982.

W. J. Hannan, E. M., G. L. Ficher et al., and Wemer, 1962, “R.C.A. multifont
reading machine,” Optical Character Recognition, 3–14.

Watanabe, T., Luo, Q., and Sugie, N., 1995, “Layout Recognition of Multi-Kinds of
Table-Form Documents,” IEEE Transactions on Pattern Analysis and Machine
Intelligence 17, 432–445.

Whitelaw, C., Hutchinson, B., Chung, G. Y., and Ellis, G., 2009, “Using the web
for language independent spellchecking and autocorrection,” in Proceedings of the
Conference on Empirical Methods in Natural Language Processing: Volume 2
(Association for Computational Linguistics). pp. 890–899.

Wilcox-O’Hearn, A., Hirst, G., and Budanitsky, A., 2008, “Real-Word Spelling
Correction with Trigrams: A Reconsideration of the Mays, Damerau, and Mercer

144 References

Model,” in International Conference on Intelligent Text Processing and Compu-
tational Linguistics, pp. 605–616.

Wojna, Z., Gorban, A. N., Lee, D.-S., Murphy, K., Yu, Q., Li, Y., and Ibarz, J.,
2017, “Attention-Based Extraction of Structured Information from Street View
Imagery,” in 2017 14th IAPR International Conference on Document Analysis
and Recognition (ICDAR), Vol. 1 (IEEE). pp. 844–850.

Xie, Z., Avati, A., Arivazhagan, N., Jurafsky, D., and Ng, A. Y., 2016,
“Neural Language Correction with Character-based Attention,” arXiv preprint
arXiv:1603.09727

Yalniz, I. Z., and Manmatha, R., 2011, “A Fast Alignment Scheme for Automatic
OCR Evaluation of Books,” in 2011 International Conference on Document Anal-
ysis and Recognition (IEEE). pp. 754–758.

Yoon, Y., Ban, K.-D., Yoon, H., and Kim, J., 2011, “Blob extraction based character
segmentation method for automatic license plate recognition system,” in 2011
IEEE International Conference on Systems, Man, and Cybernetics (IEEE). pp.
2192–2196.

Zhang, Y., Zha, Z. Q., and Bai, L. F., 2013, “A license plate character segmentation
method based on character contour and template matching,” in Applied Mechanics
and Materials, Vol. 333 (Trans Tech Publ). pp. 974–979.

Zhang, Z., Huang, Y., and Zhao, H., 2018, “Subword-augmented embedding for
cloze reading comprehension,” CoRR abs/1806.09103

Zhong, X., Tang, J., and Yepes, A. J., 2019, “Publaynet: Largest Dataset Ever
for Document Layout Analysis,” in 2019 International Conference on Document
Analysis and Recognition (ICDAR) (IEEE). pp. 1015–1022.

Acknowledgements

We thank Nvidia for the GPU support. I would also like to thank Devaraj Adiga,
Ayush Maheshwari, Mayur Punjabi, Pankaj Singh and Bhavya Patwa for their con-
tributions.

Rohit Saluja
IIT Bombay

22 January 2021

145

