
Discovering and Learning Causal Bayesian Models with

Latent Variables

by

Xuhui Zhang

Thesis

Submitted by Xuhui Zhang

for fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Supervisor: Dr. Kevin B. Korb

Associate Supervisors: Dr. Steven Mascaro

Prof. Ann E. Nicholson

Clayton School of Information Technology

Monash University

February, 2021

c© Copyright

by

Xuhui Zhang

2021

To my mother, Yuxiang Chen

iii

Contents

List of Tables . vi

List of Figures . viii

Abstract . xi

Acknowledgments . xiii

1 Introduction . 1

1.1 Motivation and Objectives . 2

1.2 Contributions and Outline . 3

1.3 Thesis Layout . 3

2 Bayesian Networks . 5

2.1 Bayesian Network Basics . 5

2.1.1 Causal Bayesian Networks . 7

2.1.2 D-separation . 9

2.1.3 Markov Equivalence . 10

2.1.4 Causal Discovery vs Regression . 11

3 Learning With Latent Variables . 13

3.1 The Necessity of Modeling with Latent Variables 13

3.2 Causal Discovery With Latent Variables . 14

3.3 Constraint-based Learners . 16

3.3.1 IC Algorithm . 18

3.3.2 PC Algorithm . 19

3.3.3 FCI Algorithm . 20

3.4 Metric-based Learners . 21

3.4.1 EM Algorithm . 22

3.4.2 SEM Algorithm . 23

3.4.3 CaMML . 24

3.5 Evaluation Metrics . 27

3.5.1 Edit Distance . 27

3.5.2 KL and CKL Divergence . 29

4 Dependency Pattern Discovery . 31

4.1 Definition of Dependency Matrix . 31

4.2 A Systematic Search for Triggers . 32

4.3 Learning Triggers With Causal Discovery Algorithms 38

4.4 Experiment . 40

4.4.1 Generating Simulated Datasets of Triggers 40

4.4.2 Experimental Results . 42

iv

4.5 Summary . 45

5 EM-CaMML for Latent Variable Models 47
5.1 EM-CaMML Algorithm Design . 47

5.1.1 A New Score Metric for Latent Nodes 49
5.1.2 EM Algorithm Integration . 51
5.1.3 EM-CaMML Workflow . 56

5.2 Experiment . 57
5.2.1 Initial Structure Selection . 57
5.2.2 Generating Complete DAGs for PC and FCI 58
5.2.3 Arc Prior Probability Optimization 60
5.2.4 Alarm . 64
5.2.5 Stud Farm . 67
5.2.6 Bookbags . 69
5.2.7 Mendel Genetics . 71

5.3 Software Design and Implementation . 74
5.4 Summary . 76

6 EM-CaMML Extensions . 79
6.1 Learning Partial Triggers . 79

6.1.1 Definition of Partial Trigger . 79
6.1.2 Experiment Results and Discussion 81

6.2 Discovering Multiple Latent Variables . 86
6.2.1 Markov Blanket Discovery . 86
6.2.2 Experiment Results and Discussion 89

6.3 Summary . 92

7 Conclusion and Future Research . 93
7.1 Main Contributions . 93
7.2 Future Work . 94

References . 97

Glossary . 103

Notation . 105

Appendix A All Single Latent Triggers for Five Observed Variables . . . 107

Appendix B FCI, PC and Trigger-PC Performance by Arc Strength . . 109

Appendix C Test Network Selection . 113
C.1 Test Network Sources . 113
C.2 All Test Networks . 114

v

List of Tables

3.1 Four different mutations used in CaMML. 26

4.1 Execution time of Trigger original and Trigger-threads. 34

4.2 Number of DAGs and triggers. 35

4.3 Triggers found (the Big-W and covered Big-W) for four observed variables
(node “H” represents the latent). 35

4.4 Edit distance for PC and FCI output. 39

4.5 Number of simulated datasets for trigger. 41

4.6 Number of simulated datasets for DAG structures (no latent variable). . . . 41

4.7 The artificial datasets used for comparing Trigger-PC with PC and FCI. . . 41

4.8 The optimized alpha of each algorithm. 42

4.9 Alpha optimization of Trigger cases (using Type 2 datasets). 42

4.10 Alpha optimization of DAG cases (using Type 3 datasets). 43

4.11 Results using optimized alpha. See Table 4.13 for more detailed results of
different arc strengths (bold and italic represent significantly the best and
worst results). 44

4.12 Results using default alpha 0.05. See Table 4.14 for more detailed results of
different arc strengths (bold and italic represent significantly the best and
worst results). 44

4.13 Results of networks with different arc strengths using optimized alpha (bold
and italic represent significantly the best and worst results). 45

4.14 Results of networks with different arc strengths using default alpha 0.05
(bold and italic represent significantly the best and worst results). 45

5.1 Experiment configurations for comparing EM-CaMML with PC, FCI and
SEM. 57

5.2 Arc orientation rules for PC and FCI output. 59

5.3 Edit distance rules used in this thesis. 60

5.4 The legend keys used in all experiment result graphs in Section 5.2.4 - 5.2.7. 64

6.1 Example MBs of the network shown in Figure 6.15. 89

6.2 MBMML+CPT result. 89

6.3 MB selection process using MB pick greedy function (the value in bracket
represents the score). 90

B.1 Results of networks with maximum arc strengths using optimized alpha
(bold and italic represent significantly the best and worst results). 109

B.2 Results of networks with medium arc strengths using optimized alpha (bold
and italic represent significantly the best and worst results). 110

B.3 Results of networks with minimum arc strengths using optimized alpha
(bold and italic represent significantly the best and worst results). 110

vi

B.4 Results of networks with maximum arc strengths using default alpha 0.05
(bold and italic represent significantly the best and worst results). 111

B.5 Results of networks with medium arc strengths using default alpha 0.05
(bold and italic represent significantly the best and worst results). 111

B.6 Results of networks with minimum arc strengths using default alpha 0.05
(bold and italic represent significantly the best and worst results). 112

C.1 All test networks. 113
C.2 Arc prior optimization test networks. 113

vii

List of Figures

1.1 Example of how a latent node can simplify a fully connected model (node
“H” represents the latent). 2

2.1 Sprinkler network. 6

2.2 An example NB. 8

2.3 Chain structure in d-separation. 9

2.4 Common cause structure in d-separation. 9

2.5 Common effect structure in d-separation. 9

2.6 Example of Markov Equivalent Models. 10

3.1 The Big-W, a causal structure with four observed variables and one latent
variable H. 14

3.2 An undirected graph, G1. 16

3.3 A directed graph, G2. 16

3.4 An example of inducing path graph G3. 17

3.5 An example of partially oriented inducing graph G4. 18

3.6 Example of how two TOMs (with different node orderings) are grouped into
a DAG. 26

3.7 Example of how two DAGs are grouped into a SEC. 26

3.8 Example of how to calculate edit distance. 28

3.9 A structure with multiple latent nodes (“H 1” and “H 2”). 28

4.1 A DAG of four nodes and its dependency matrix (0 and 1 represent con-
ditional independence and dependence respectively) conditioned on node
Y . 31

4.2 Execution time of Trigger original and Trigger-threads. 34

4.3 Some examples of triggers of five observed variables (node “H” represents
the latent). 36

4.4 An example of MAG. 37

4.5 Two MAGs that are not Markov equivalent to any DAG which correspond
to Big-W and Covered Big-W. 37

5.1 A triggering submodel with 6 observed nodes containing Big-W (node “H”
represents the latent). 48

5.2 Example of Expected Counts. 50

5.3 Test networks for EM integration experiment (node “H” represents the latent). 53

5.4 The execution time of EM inside and outside of Space Mission network (x
and y axis represent sample size and execution time respectively). 53

5.5 The execution time of EM inside and outside of Earthquake network (x and
y axis represent sample size and execution time respectively). 54

5.6 The execution time ratio of EM inside and outside by sample size (x and y
axis represent number of MCMC iterations and the ratio respectively). . . . 54

viii

5.7 The execution time ratio of EM inside and outside (x and y axis represent
number of MCMC iterations and the ratio respectively). 54

5.8 EM-CaMML workflow. 56
5.9 Initializations 1, 2 and 3 (node “H” represents the latent). 58
5.10 Example conversion of bi-directional cliques into latent nodes (H1 and H2). 58
5.11 Process of arc prior probability optimisation. 60
5.12 Original Big-W Alarm network and its variant (node “H” represents the

latent). 61
5.13 Level 1 F-score results of Big-W networks. 62
5.14 Level 2 F-score results (Criteria 1) of Big-W networks. 63
5.15 Level 2 F-score results (Criteria 2) of Big-W networks. 63
5.16 Big-W Alarm network (node “H” represents the latent). 64
5.17 Edit distance results of Big-W Alarm cases. 65
5.18 How FCI output is fixed of Big-W Alarm network (node “H” represents the

latent). 65
5.19 Typical example of SEM and EM-CaMML learned model of Big-W Alarm

using ini2 at sample size of 2000 (node “H” represents the latent). 65
5.20 KL and CKL results of Big-W Alarm cases. 66
5.21 Results of latent node connection and trigger subnet learning of Big-W

Alarm cases. 66
5.22 Covered Big-W Stud Farm network (node “H” represents the latent). 67
5.23 Edit distance results of Covered Big-W Stud farm cases. 67
5.24 Example of SEM output of Covered Big-W Stud Farm (node “H” represents

the latent). 68
5.25 KL and CKL results of covered Big-W Stud Farm cases. 68
5.26 Results of latent node connection and trigger subnet learning of covered

Big-W Stud Farm cases. 69
5.27 Latent Bookbags network (node “H” represents the latent). 69
5.28 Edit distance results of Latent Bookbags cases. 69
5.29 An EM-CaMML (ini3) output of Latent Bookbags at sample size 5000 (node

“H” represents the latent). 70
5.30 KL and CKL results of Latent Bookbags cases. 70
5.31 Probabilities of latent node connected of Latent Bookbags cases. 71
5.32 Probabilities of latent node connected of Latent Animals and Asia cases. . . 71
5.33 No Latent Mendel Genetics network. 71
5.34 Edit distance results of No Latent Mendel Genetics cases. 72
5.35 The original structures learned by PC and FCI of No Latent Mendel Ge-

netics cases. 72
5.36 The lower and upper bound fixes of PC and FCI outputs of No Latent

Mendel Genetics cases. 72
5.37 Two typical false positives of No Latent Mendel Genetics cases (node “H”

represents the latent). 73
5.38 KL and CKL results of No Latent Mendel Genetics cases. 73
5.39 Probabilities of latent node connected of No Latent Mendel Genetics cases. 74
5.40 The UI design of EM-CaMML program. 75

6.1 An example partial trigger (node “H” represents the latent). 79
6.2 Partial trigger test networks (node “H” represents the latent, and the num-

ber represents the arc strength of each arc). 80
6.3 Edit distance results of learning partial trigger. 81
6.4 EM-CaMML learned model using ini1 with sample size 5000 (node “H”

represents the latent). 81

ix

6.5 SEM learned models using ini1 with sample size 5000 (node “H” represents
the latent). 82

6.6 PC/FCI learned models with sample size 5000 (node “H” represents the
latent). 82

6.7 An example of PC/FCI output with a spurious latent at sample size 5000
(node “H” represents the latent). 82

6.8 Edit distance results of learning partial trigger (only H). 83
6.9 Edit distance results of learning partial trigger (only T). 83
6.10 KL results of learning partial trigger. 84
6.11 CKL results of learning partial trigger. 84
6.12 Probability of finding a latent node in a partial trigger. 85
6.13 Probability of finding a trigger subnet in a partial trigger. 85
6.14 An example of the MB of Target node T. 86
6.15 The true network used for testing the discovery of multiple latent variables

(nodes “V2” and “V4” are latent). 88
6.16 The resulting partitions (in dashed lines) using MB pick greedy function. . 91
6.17 The complete network learned by EM-CaMML using ini3 (nodes “V2” and

“V4” are latent, arcs in red represent all the mistaken arcs and green arcs
represents true arcs but absent in the learned network). 91

6.18 The subnet learned by EM-CaMML over MB-16 using ini2 (nodes “V2”
and “V4” are latent, arcs in red represent all the mistaken arcs). 92

C.1 Big-W test networks (node “H” represents the latent). 114
C.2 Covered Big-W test networks (node “H” represents the latent). 114
C.3 Latent test networks (node “H” represents the latent). 115
C.4 No latent test networks. 115

x

Discovering and Learning Causal Bayesian Models with

Latent Variables

Xuhui Zhang
Monash University, 2021

Supervisors: Dr. Kevin B. Korb, Dr. Steven Mascaro and Prof. Ann E. Nicholson

Abstract

The causal discovery of Bayesian networks is an active and important topic in artificial
intelligence, as sources and volumes of data continue to grow along with the popularity of
Bayesian modeling methods. Causal Bayesian networks allow people to investigate causal
relationships and modeling under uncertainty in an intuitive fashion. However, in many
real world cases, some variables cannot be directly measured or people are simply unaware
of their existence; these are called latent variables. Relatively little research has been done
into how to explicitly incorporate latent variables into causal model discovery. In many
cases, the influence of latent variables reveals itself in patterns of measured dependency
that cannot be reproduced using the observed variables alone, under the assumptions of
the causal Markov property and faithfulness. That is, latent models will do a better job
of representing observed dependencies than fully observed models, and hypothesizing the
existence of latent variables provides an advantage in the causal discovery process. In this
thesis, we develop a unique explicit process for positing latent variables and incorporat-
ing them in a metric-based causal discovery program. We develop and test an explicit
program for discovering dependency patterns (“triggers”) in sample data that suggest
the presence of latent variables. We develop a new MCMC algorithm incorporating Ex-
pectation Maximization for parameterizing latent subnets in the general causal discovery
process. We look at incorporating Markov Blanket discovery as a means of scaling up
the process to multiple latent variables in larger networks, and we conduct a variety of
experiments demonstrating the viability of these techniques in comparison with existing
latent discovery algorithms.

xi

Discovering and Learning Causal Bayesian Models with

Latent Variables

Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institute of tertiary education. Infor-
mation derived from the published and unpublished work of others has been acknowledged
in the text and a list of references is given.

This thesis includes the following publications and the co-authors listed reflect the
active collaboration between the supervisors and myself, the candidate, working within
the faculty of Information Technology:

• Zhang, X., Korb, K. B., Nicholson, A. E. and Mascaro, S. (2017). Applying depen-
dency patterns in causal discovery of latent variable models, Australasian Conference
on Artificial Life and Computational Intelligence, Springer, pp. 134-143.
Contribution: Xuhui Zhang (70%), Kevin Korb (15%), Ann Nicholson (5%),
Steven Mascaro (10%)

• Zhang, X., Korb, K. B., Nicholson, A. E. and Mascaro, S. (2016). Latent variable
discovery using dependency patterns,arXiv preprint arXiv:1607.06617.
Contribution: Xuhui Zhang (70%), Kevin Korb (15%), Ann Nicholson (5%),
Steven Mascaro (10%)

Xuhui Zhang
January 2021

xii

Acknowledgments

I would like to thank my supervisors, colleagues, family and friends for the great deal of

support that I have received from them throughout my PhD journey.

First and foremost, I would like to express my deep appreciation to my supervisor

Dr. Kevin Korb at the Faculty of Information Technology of Monash University. It is

truly an honor to be his PhD student. Without his patience and cheerfulness, this work

would not have been possible. I owe deep gratitude for all his guidance and moral support

over the years, which have been invaluable for both my research and career. His deep

understanding of a diverse range of fields has been extraordinarily helpful in completing

this thesis.

I would like to thank Dr. Steven Mascaro for his cooperation and cheerfulness in guid-

ing me through this project. Without his assistance and dedicated involvement throughout

the process, this thesis would have never been accomplished. I must also thank Prof. Ann

Nicholson, for her insightful comments and constructive recommendations on this project.

Getting through my dissertation required more than academic support, and luckily I

have many friends to thank for their great support for life. I express my gratitude and

appreciation for their friendship. Yang Li, Wilson Alberto Torres, Ye Zhu, James Collier,

Yifei Hu, Kai Siong Yow, Hãn Duy Phan, Ming Liu, Ying Yang, Yating Zhang, Yuqing

Xiong, Joon Won Kang, Cael Skene, Patrick Semple and many others who have been

unwavering in their professional and personal support during my PhD study. Without

each and every one of you, this thesis would not have been achievable.

Most importantly, none of this could have happened without my family. My sister,

Xuhong Zhang, is my mental support for my whole life. My dear parents and other family

members, thank you all for your unceasing encouragement and unconditional love.

I gratefully acknowledge Monash University for providing me with the Monash Grad-

uate Scholarship (MGS), as well as all the professional and personal development experi-

ences I received during my research.

Last but not least, I would like to thank all the helpful and enthusiastic staff, present

and past, at the Faculty of Information Technology, especially Danette Deriane, Julie

Holden and Allison Mitchell. Thank you.

Xuhui Zhang

Monash University
February 2021

xiii

xiv

Chapter 1

Introduction

Bayesian networks (BN)(Pearl, 1988), as graphical structures for machine learning, are
powerful and popular tools for reasoning about uncertainty, representing potentially com-
plex probability distributions. While sparse networks are tractable, generating them from
human expert opinion reintroduced the so-called knowledge bottleneck for constructing
expert systems, so it was natural that attention quickly turned to their automated gener-
ation from sample data (Spirtes et al., 1993). While there has been a great deal of work
on the machine learning of Bayesian networks since then, relatively little has treated the
learning of Bayesian networks with latent (or hidden) variables, despite latent variable
models being one of the most widely used modeling approaches, for example, in the social
sciences (Kao et al., 2012; Yang et al., 2019; Chen et al., 2019). In particular, what enables
latent variable discovery is the probabilistic dependencies between variables, which will
typically be representable only by a proper subset of the possible causal models over those
variables, and therefore can provide evidence in favour of those models and against the
remaining models, as will be shown by the Bayes factor.

CaMML (Causal Discovery via MML) is a well-established search-and-score causal
discovery program (Korb and Nicholson, 2010; O’Donnell, 2013), and has been successfully
applied to many different areas, but not previously to latent variable models. It applies the
Minimum Message Length (MML) metric (Wallace et al., 1996) and Markov Chain Monte
Carlo sampling (MCMC), more specifically the Metropolis-Hastings method (Hastings,
1970), to learn the best causal model given observational data. The posterior distribution
over the causal model space is sampled, using an MML score. However, the current MML
metric does not deal with latent variables, and how to integrate latent variables into the
sampling process has been an open problem.

How to formalize the process of discovering latent variables and models associated
with them using MML is the main goal of this PhD project. As learning BNs is an
NP-hard problem (Chickering et al., 1994), we decided to search for specific dependency
patterns in the sample data that indicate the likely presence of latent variables (that we
call “triggers”), which can then be applied to heuristic latent discovery learning to speed
up the process. Our goal was to enhance the existing CaMML program to take a set of
such potential triggers as an additional input into an MCMC sampling process over the
latent model space, with a new MML metric accommodating latent variables and a new
search employing the triggers (Zhang et al., 2017). The result should be, ideally, a CaMML
which performs the same, or similarly, to the prior version of CaMML when latents are
not present, and better when they are, including good performance in identifying and
connecting latent variables to the observed (non-latent) variables.

1

1.1 Motivation and Objectives

In cases where the conditional dependencies among observed variables indicate the pres-
ence of latent variables rather than just a fully observed model, introducing a latent vari-
able can help encode the true dependencies in the data (Spirtes et al., 1995). Of course,
if latent variables are already known to exist, we can directly insert latent nodes into the
structure, using algorithms such as gradient descent or EM to estimate their associated
parameters. If the structure is not known, some causal learners, such as SEM, assume
there is a latent variable, and learn the best structure around it. However, automatically
detecting the existence of a latent variable in a certain position without prior knowledge
or human intervention is a more difficult task, but it is also more useful.

For latent variable discovery, there are several things we want to achieve:

• search for specific dependency patterns that indicate the existence of a latent variable

• apply such patterns in a preprocessing step to for causal learning

A more specific objective is to enhance the metric learner CaMML to discover and
learn with latent variables. The current CaMML implementation only produces candidate
models using the variables explicitly in the input data, i.e., observed models, and has no
ability to discover and learn with latents (Korb and Nicholson, 2010). In this thesis, a new
automatic end-to-end program, “ EM-CaMML”, is proposed, which explicitly detects the
existence of latent variables without using any prior knowledge and returns a ranked list
of fully parameterized causal Bayesian networks. This thesis will develop or propose:

• an efficient preprocessing step to discover latent variables and propose causal rela-
tions between them and observed variables;

• an extension to the current MCMC sampling process that covers the latent model
space, incorporating a new EM parameter learning algorithm;

• an approach to learning multiple latent variables, i.e., scaling up EM-CaMML to
deal with higher dimensional problems, using a parallelizable heuristic algorithm.

Figure 1.1: Example of how a latent node can simplify a fully connected model (node “H”
represents the latent).

It’s worth noting that a latent variable not only can be used to explain the dependen-
cies that otherwise cannot be satisfied with faithful observed networks, but can also be
beneficial just for simplifying causal structure. For example, as shown in Figure 1.1, the
left model is clearly less useful than the right, being over-complicated (Friedman et al.,
1997). Inserting a latent node in the middle greatly simplifies the structure, reducing the
number of parameters and so needing less data to achieve robust parameter estimates. So
we need to consider this scenario explicitly in EM-CaMML’s development.

2

1.2 Contributions and Outline

In this thesis, we try to answer a number of questions about discovering latent nodes in
causal Bayesian models using sample data and about extending CaMML to learning with
latent nodes:

1. How can we systematically find triggers?

2. How can we best use triggers in latent causal discovery?

3. How can we enhance the metric learner CaMML to sample the latent model space?

4. How can we scale up latent discovery?

The corresponding contributions in this thesis are:

• We first formulated the problem of systematically finding dependency patterns which
can be faithfully represented using a latent node, but cannot be faithfully reproduced
using observed variables alone. This led to an algorithm for generating such patterns
(triggers) systematically, so that they may then be explicitly applied in latent vari-
able discovery. Then we developed a latent node detect function, trigger discovery,
that would create a latent node on an as-needed basis. We combined this constraint-
based technique with a metric-based general causal discovery algorithm to create a
hybrid latent variable learner, exploiting the advantages of both approaches.

• We present our work in developing an extension of CaMML, named “EM-CaMML”,
that is able to detect and learn with latent variables using a modified MML metric. It
is a practical tool which combines constraint-based ideas and MML metric sampling.
This chapter also involves different types of test cases, and EM-CaMML proved itself
as a well-balanced learner compared to others. EM-CaMML has been published as
open source software with a well designed user interface (UI) and it is able to visualize
and output a fully parameterized BN.

• We demonstrate the ability of CaMML to be run using variable partitions and its
ability to discover multiple latent variables from each partition. Although this func-
tion is shown just in a proof of concept study, rather than in a practical implemen-
tation, we find that EM-CaMML has a potential for dealing with larger-real world
problems by applying recent research on Markov blanket (MB) discovery.

1.3 Thesis Layout

The remainder of this thesis is organized as follows:

• In Chapter 2 and 3, we present some basic background knowledge for Bayesian
networks, including definitions of key vocabulary. Then several popular causal dis-
covery algorithms that learn with latent variables are reviewed, as well as some basic
methods employed by CaMML. We also introduce different evaluation metrics and
explain how we adapt them to score causal models with latent variables.

• In Chapter 4, we demonstrate our new systematic search algorithm for trigger
discovery. Execution time analysis shows that our parallel version of the search
algorithm can have a significant benefit in running time.

3

• In Chapter 5, details of EM-CaMML are explained and a comparison of different
EM integration methods are examined. An experimental evaluation is conducted,
comparing EM-CaMML’s latent discovery with the main alternative algorithms, us-
ing a variety of evaluation measures.

• In Chapter 6, we cover two extensions to the core EM-CaMML method. The
first is learning “partial triggers”, where the latent node in the generating model
can explain part of the observed dependencies, while an observed node explains the
remainder. The idea is to examine latent discovery algorithms in slightly more chal-
lenging environments than where the true explanatory causes are unambiguous. The
second extension looks at supporting EM-CaMML in learning higher dimensional
real-world networks with latent variables. This examines the use of MB discovery as
a preprocessing step, incorporating the results as prior information about partitions
of variables, and how CaMML can merge these results into a complete network.

• Chapter 7 provides discussion about the primary contributions of this thesis and
what future work might ensue.

Finally, the Glossary and Notation chapters are included to improve the readability of
the thesis, and we show all the supplementary information in the appendices that help to
clarify some of the experiment results.

4

Chapter 2

Bayesian Networks

In this chapter, we present some background about Bayesian networks (BN). First, we
define and illustrate Bayesian networks and also introduce parameter estimation. We
follow by explaining the difference between non-causal and causal Bayesian networks. In
Section 2.1.2 we explain the d-separation rules in detail which can graphically explain the
conditional dependencies in a given model. Such rules play an important role in discovering
and learning latent variables in this thesis. Then Markov equivalence is described in
Section 2.1.3, which explains why some causal discovery algorithms return an equivalence
class rather than a fully directed model. Finally, we discuss the difference between causal
discovery and regression in Section 2.1.4 and explain why causal discovery has been chosen
for this thesis.

2.1 Bayesian Network Basics

Bayesian networks1 are probabilistic graphical models that implement Bayesian inference
for probability updating, taking advantage of a Directed Acyclic Graph (DAG) to factor-
ize (and simplify) the computations. Bayesian networks contain nodes (either discrete or
continuous) corresponding to distinct random variables, edges representing direct depen-
dencies among the corresponding variables, and a Conditional Probability Distribution
(CPD) for each node. The CPD defines the relationship between a given variable and its
direct parents, providing the probability of each variable’s value given every possible com-
bination of parent values (Korb and Nicholson, 2010). If variables are discrete, the CPD
can be represented as a Conditional Probability Table (CPT). While conditional distri-
butions may be either discrete or continuous, in this thesis we consider discrete variables
only.

Figure 2.1 shows the Sprinkler network, a simple example BN with four discrete
nodes. We can see that there are some direct relationships based on the structure:
Sprinkler depends on Cloudy, Rain depends on Cloudy, Wet Grass depends on both
Sprinkler and Rain. Conditional probabilities can be read from the corresponding CPT,
so p(Wet Grass = T |Sprinkler = T,Rain = F) = 0.9. Another important concept
of Bayesian networks is “probabilistic reasoning”, which occurs as a flow of information
through the network. In this process, a BN can be used to find a posterior distribu-
tion over unobserved variables by conditioning upon newly observed variables (“evidence”
variables), and allowing a “flow” of information to occur through the connections in the
network. This is sometimes called “propagation”, “conditioning” or “belief updating”.2

For example, if we set Sprinkler to be true (as evidence), then the chance of Wet Grass

1Sometimes called Bayes networks, belief networks, etc.
2Note that such flow does not always follow the direction of the arcs. Indeed, it’s not always a “flow”,

since sampling techniques may be used, for example.

5

Figure 2.1: Sprinkler network.

being true will increase because of the propagation through Sprinkler →Wet Grass and
Sprinkler → Cloudy → Rain→Wet Grass. On the other hand, if we first learn the value
of Wet Grass is true, this evidence will increase the chances of Rain being true because
of Wet Grass → Rain, and also increase the chance of Sprinkler being true because of
the flow Wet Grass→ Sprinkler as well as Wet Grass→ Rain→ Cloudy → Sprinkler.

As we can see, Bayesian networks are graphical models capable of displaying relation-
ships intuitively and clearly. Where X → Y represents a directed arc, we say X is a parent
of Y and Y is a child of X. The indegree of a node X is the number of parents it has, the
outdegree is the number of its children, and the degree of a node is the number of nodes
adjacent to it, i.e., the sum of its indegree and outdegree. When these directed relation-
ships are explicitly causal, as in the Sprinkler network, we have causal Bayesian networks.
In part because causality is an intuitive concept, in many ways more intuitive than the
conditional probabilities to which they give rise, causal Bayesian networks have become a
popular modeling tool, with applications ranging from medical diagnosis (Velikova et al.,
2014; Zarikas et al., 2015) to cyber security (Mueller et al., 2019; Xie et al., 2010).

If the structure is known, an important additional task for learning a BN is to estimate
the CPT parameters for each node from empirical data. One of the simplest methods is
Maximum Likelihood Estimation (MLE), which finds model parameters which best fit
the training data. In other words, MLE maximizes the probability of the empirical data
given the model parameters and structure. For a discrete BN, let V = (X1, X2, ..., XT)
represent the set of nodes in a BN with T nodes and Θ the current parameter assignment.
Then, for a node i whose value is k, and given j is the value for its parent set (π(Xi)), the
conditional probability can be denoted as:

θi,j,k = P (Xi = k|π(Xi) = j) (2.1)

then the joint log-likelihood L(X; Θ) will be:

6

L(X; Θ) = log

(
T∏
i=1

P (Xi|π(Xi))

)

= log

(
T∏
i=1

θi,π(Xi),Xi

)

=
T∑
i=1

log θi,π(Xi),Xi

(2.2)

For a given dataset D that contains N independent samples d1, d2, ..., dN , if we assume
no missing data, then each sample dn is actually one instantiation of each node where
dn = (Xn

1 , X
n
1 , ..., X

n
T ,), indexed by 1 ≤ n ≤ N . We can then derive the log-likelihood of

D as:

L(D; Θ) =
N∑
n=1

L(Xn; Θ)

=
N∑
n=1

T∑
i=1

log θi,π(Xn
i),Xn

i

=
∑
i,j,k

log(θi,j,k)Ni,j,k

(2.3)

where Ni,j,k =
∑N

n=1 1π(Xn
i)=j,Xn

i =k that counts the number of samples in D such that the
values of node Xi are equal to k and its parents values π(Xi) equal j. Here 1 denotes an
indicator function so that 1π(Xn

i)=j,Xn
i =k equals 1 if π(Xn

i) = j,Xn
i = k and otherwise 0.

So, in order to maximize the log-likelihood L(D; Θ), the chosen value θi,j,k will be:

θ̂i,j,k =
Ni,j,k∑
kNi,j,k

(2.4)

which is calculated by using a Lagrange multiplier method (Tembo et al., 2016) with the
constraint

∑
k θi,j,k = 1. θ̂i,j,k is the empirical frequency of Xi = k when π(Xi) = j. For

example, in the Sprinkler network, if the empirical data contains 1000 rows, and there are
640 samples where Cloudy = T&Rain = T , and 160 samples where Cloudy = T&Rain =
F , then the estimated value P (Rain = T |Cloudy = F) in θ̂ will be 160/(640 + 160) = 0.2.

The above example is solvable with MLE since there are no missing data or latent
variables. In the event that there are missing data or latent variables present, we can-
not estimate the parameters directly by aggregating the occurrence of the sample data
matching the instantiation of corresponding nodes via MLE. This problem can be solved
by using either Gradient Descent (Binder et al., 1997) or the Expectation Maximization
(EM) algorithm (Dempster et al., 1977; Lauritzen, 1995).

2.1.1 Causal Bayesian Networks

A causal BN is a DAG where each nonroot node is the direct causal effect of its parents;
it provides a flexible tool that can be used to formalize, measure, and support causal rea-
soning to solve problems concerning an underlying dataset (Pearl and Verma, 1991). In
all BNs, an arc represents a probabilistic dependency of the child on the parent, while in
causal BNs, each arc represents a direct causal relation that also induces a probabilistic
dependency. Modeling with BNs presupposes that the absence of arcs indicates an absence

7

of direct dependencies in the system being modeled, which is called the “Markov property”
(Pearl, 1986), or for causal BNs the “causal Markov property”. This is a precondition for
the model being adequate for the domain. The converse condition is called “faithfulness”
(Meek, 1995): corresponding to each active pathway (d-connection, Section 2.1.2 below)
is a probabilistic dependence in the system being modeled. A lack of faithfulness is not a
fatal problem for a model; that is, the model can nevertheless properly represent the prob-
abilistic system in question. However, it suggests that a simpler model may be adequate
for representing the probability distribution. In causal discovery, it is generally assumed
that learned models will be faithful, but there are no guarantees. Given the Markov prop-
erty, any variables d-separated (see details in Section 2.1.2) in a BN are independent in
the system being modeled, given a set of observations. Given these independencies, the
joint distribution for a Bayesian network with variables X1, ..., Xk factorizes as:

P (x1, ..., xk) =
k∏
i=1

Pi(xi|π(xi)) (2.5)

where π(xi) denotes the joint values of the parents of variable Xi in the network.

Searching the space of causal models for those which can explain the probabilistic de-
pendencies shown in the data is what causal discovery is based upon. However, learning a
causal model is never an easy job, especially when allowing for latency. And, in principle,
it is important to allow for latency. A great many variables we now take for granted in
science were originally unknown or unmeasured – i.e., latent. Gravity was a force hy-
pothesized by Newton without his ever directly measuring it. Genes were speculative
mechanisms through which phenotypic traits might be inherited before Franklin, Crick
and Watson identified their chemical nature. While much can be accomplished without
identifying and learning the roles of latent variables, which may be codified in phenom-
enal laws of a domain, coming to a deeper, unifying account often requires discovering
underlying latent variables.

A BN can certainly be a non-causal model, which may represent the same joint distri-
bution as a corresponding causal model (Chickering, 1995), but it is generally more difficult
to understand what the non-causal model represents. For example, Naive Bayesian (NB)
networks, which are simple but non-causal BNs, have been widely applied for spam filtering
(Korb and Nicholson, 2010), but they aren’t helpful for understanding the interdependen-
cies between attributes. The major benefit of using an NB model is its simple structure,
leading to easy parameter estimation. For example, Figure 2.2 shows an NB which has a
simple parent (class) with four children (attributes).

Figure 2.2: An example NB.

In this case, the CPT of each attribute (A1, A2, A3 and A4) is as simple as possible,
containing a single parameter if the variables are binary. With fewer parameters than
more complex models, the NB model can be trained to the same precision with far less
data and/or noisier data than other models. The factorization for an NB model is:

p(A1, . . . , An|C) =
∏
i

P (Ai|C) (2.6)

8

where Ai denotes the ith attribute and C represents the class variable.

In contrast, a causal BN is significantly easier to create and reason with than an
explicitly non-causal BN, since it is more intuitive and understandable, as the arc “X →
Y ” is read as “X directly causes Y ” rather than an unexplained probabilistic dependency.
There may be a tradeoff with machine learning complexity, since causal BNs are typically
more complex than, for example, NB models.

2.1.2 D-separation

The relationship between Bayesian network structure and conditional independencies is
important for understanding how Bayesian networks work and also for how their auto-
mated learning works (Korb and Nicholson, 2010). Although we can perform conditional
independence tests to check the dependencies between sets of variables given other ob-
served variables, we can use d-separation rules (Pearl, 1988) to “read” independencies
that hold true in the domain given a BN’s DAG structure and the Markov property;
likewise, we can read dependencies, given faithfulness.3 In d-separation, “d” stands for
“direction-dependent”, which resembles graph connectivity, but with some differences. For
example, by considering the direction of traversal of a node along a path, conditioning on
that node may “block” or “unblock” the path of dependence between other two nodes at
each end. In other words, d-separation works as a graphical criterion for whether or not
two sets of variables are independent given a third set. If two sets are “d-separated”, that
implies they are conditionally independent on the third set in all probability distributions
this graph can represent (Pearl, 2000) under the Markov property. Similarly, d-connection
(activation, unblocked path) is a syntactical criterion for representing two sets of variables
that are dependent (“d-connected”) when conditioning on a third set, under faithfulness.

D-separation implies that a path p is blocked in the following two scenarios:

1. p contains a chain X → Y → Z (as Figure 2.3 shows) or a fork X ← Y → Z (as
Figure 2.4 shows), and the middle node Y is observed:

Figure 2.3: Chain structure in d-separation.

Figure 2.4: Common cause structure in d-separation.

2. P contains a collision X → Y ← Z (as Figure 2.5 shows; this structure, or its middle
term, is also called a “collider” or “v-structure”) such that the middle node Y is not
observed, nor are any descendants of Y.

Figure 2.5: Common effect structure in d-separation.

3In general, we will be assuming both the Markov property and faithfulness, rather than repeatedly
referring to these two requirements.

9

In the chain X → Y → Z and the fork (common cause) structures, X ← Y → Z,
conditioning on Y will “block” the path: learning about X tells nothing about Z by giving
Y as evidence. Contrariwise, in a collision (v-structure) X → Y ← Z, if we condition on
Y, X and Z will become dependent through this unblocked path. For example, informally
speaking, subsequently observing X will “partly explain” the value of Y leaving less ex-
planatory work for Z to do. In Figure 2.1, if we already know “Wet Grass” is true, then
finding the node Sprinkler being true will lower the probability that Rain is true, which
is an example of “explaining away” (Pearl, 2000).

A formal definition of d-separation (Pearl, 1988) is that for a graph G, with two different
nodes X and Y in G, and W is a set of nodes in G not containing either X or Y , then
X and Y are d-separated given W in G if and only if there exists no undirected path U
(Section 3.3) between X and Y , such that every collider on U has one or more descendants
contained in W (or is itself in W) and there are no other nodes on U in W . X and Y are
d-connected given W if and only if they are not d-separated given W . More informally,
to determine whether two nodes are d-separated, the method is to find all paths between
them of whatever orientation. If any are unidirectional and without observed variables,
then the two end-nodes are d-connected. If there are no such paths, then if any path has
all of its colliders activated by an observation and otherwise has no observations, then the
two end-nodes are d-connected. Otherwise, the end-nodes are d-separated.

2.1.3 Markov Equivalence

As mentioned in former sections, BN models are statistical models representing a set of
conditional dependencies among different nodes within the structure. In particular, they
can be parameterized to represent some set of probability distributions across its variables.
If two such models are Markov equivalent (or statistically equivalent) then one of them
can be parameterized to represent some probability distribution if and only if the other
can as well (although the parameterizations themselves will likely be distinct) (Verma and
Pearl, 1990). If two models are Markov equivalent, they are said to be in the same Markov
Equivalence Class (MEC).

(a) (b) (c) (d)

Figure 2.6: Example of Markov Equivalent Models.

For example, in Figure 2.6, model (a) is factorized by P(W), P(X|W), P(Y|X) and
P(Z|WY), while model (b) is factorized by P(X), P(W|X), P(Y|X) and P(Z|WY). Accord-
ing to the definition of conditional probability, P(W)P(X|W) = P(WX) = P(X)P(W|X),
thus the values obtained from the first set of parameters can determine the values of the
second, and vice versa. In such a case, the first two models are Markov equivalent to each
other. Similarly, a factorization of model (c) is P(Y), P(X|Y), P(W|X), P(Z|WY) which
values are implied by the parameters for either the first or second model. However, the
parameters P(W), P(Y), P(X|WY) and P(Z|WY) which are required for model (d) cannot

10

be determined from any of the other three models. So, model (d) is in a different MEC
from the other three.

Markov equivalence can also be determined by simply looking for colliders. In Figure
2.6, the first three models share the same skeleton and an uncovered v-structure “W →
Z ← Y” (such that W and Y are not directly connected), so they are Markov Equivalent.
However, while model (d) has the same skeleton as the first three models, it has different
uncovered v-structures (“W → X ← Y” and W → Z ← Y”), so it falls into a separate
equivalence class.

2.1.4 Causal Discovery vs Regression

Readers may be curious about the difference between regression and causal discovery, as
both generate explanatory models from observational data. Regression models aim to
reduce the unexplained variation between dependent variables, and ordinary least squares
regression parameterizes models by computing regression coefficients that specifically min-
imize unexplained variance. Statistician using regression models generally do not believe
that every independent variable which helps reduce unexplained variation in the dependent
variable is necessarily a relevant causal factor (Korb and Nicholson, 2010). We know that
for any variable, whenever there is random variation, its sample correlation with another
variable subject to random variation will not be identically zero. Thus, the first variable
can be used to reduce the unexplained variation of the second. However, regression meth-
ods have no principled way to rule out variables that may have tiny correlations between
themselves, despite being evidently unrelated events. Moreover, the probability of a Type
I error (getting a significant result when there is no true correlation) may be set, for ex-
ample, at 5%. It follows that we must expect spurious relations when examining any large
number of variables. While there are methods used for variable selection in regression,
they are generally aimed at complexity reduction rather than finding causal structure.

In contrast, the conditional independence learning applied in causal discovery aims at
finding simpler models that specifically encode the dependency patterns found in the data,
so the use of vanishing partial correlations has clear justification. We can justify eliminat-
ing (isolating) specific variables, as well as specific arcs, in causal discovery by looking at
the relation between d-separation in causal graphs and conditional independence in prob-
ability distributions. Both constraint-based and metric-based learners support principled
arc addition/deletion and variable selection respectively. Details will be explained in later
chapters of this thesis.

11

12

Chapter 3

Learning With Latent Variables

The value of Bayesian networks for modeling causal systems and decision making under
uncertainty is becoming clearer to the wider community, as evidenced by a robust growth
in their use in industry, business and government.1 This growth is limited, however, by
the classic “knowledge bottleneck” for expert systems: the time and availability of experts
whose knowledge and understanding of a domain might be required to construct Bayesian
networks. A consequence is the parallel growth in interest in automating the learning of
networks from sample data. At the same time, Big Data has become Big Business, further
fuelling interest in data mining Bayesian networks. Despite the huge volumes of data
produced by many organizations, especially those doing their business on the internet, not
every variable of interest is identified and measured; many practical application problems
have sparse or missing data. Improving causal discovery in the presence of latent variables
is an important step in bringing Bayesian network modeling to new domains.

In this chapter, we review some background for discovering and learning with latent
variables in Bayesian causal modeling. It starts by explaining the necessity and benefits
of incorporating latent variables and introducing the formal definition of triggers. Some
well-known constraint-based learners and metric-based learners that learn with latent vari-
ables are then presented. Such algorithms are not only the benchmarks in our subsequent
experiments, but also inspire the application of constraint-based methods to simplify in-
troducing latent variables into the CaMML causal discovery program. We describe this
extended CaMML in detail. Finally, we present some metrics for evaluating causal model
discovery, and show how to apply them to learning with latent variables.

3.1 The Necessity of Modeling with Latent Variables

Latency is both ubiquitous and important. For example, while Galileo developed accu-
rate mathematical laws of motion, they remained unexplained until Newton came up with
the previously unmeasured concept of gravity. Gravitational waves have recently been
successfully measured, but for several centuries the variable played a key role in physical
theory without any direct measurement. Latent variable modelling has a long history in
statistics, starting with Spearman’s (1904) work on intelligence testing. Although factor
analysis and related methods are used to posit latent variables and measure their hypo-
thetical effects, they do not provide clear means for deciding when to add latent variables
given a dependency pattern amongst observed variables.

One solution is to always use a fully connected structure, since they can be param-
eterized to represent any observed dependency pattern at all. However, updating fully
connected networks is computationally exponential, and the parameterization process for

1Google Ngram Viewer shows a greater than 800% increase in book titles with “Bayesian Network”
since 1995.

13

them is likewise exponential. Moreover, this fully connected structure abandons the at-
tempt to understand a domain causally and forces a purely phenomenal approach. As-
suming we are interested in a causal understanding of a domain, whether on simplicity
grounds or in order to predict the consequences of interventions, a willingness to find and
model with latent nodes can often simplify the model while retaining representation for the
observed probability distribution. For example, we showed in Figure 1.1 a simpler model
with a latent node H that can represent the same dependency structure as the much more
complex model on the right, as Friedman pointed out in his work (Friedman et al., 1997).

Figure 3.1: The Big-W, a causal structure with four observed variables and one latent
variable H.

Another substantial advantage of latent variable models is that they can often bet-
ter encode the conditional dependencies and independencies in the data. Regardless, in
many cases, the influence of latent variables is real and important, and optimal modeling
cannot be done without them. As shown in Figure 3.1, if we assume the data show the
independencies W |= {Y,Z} and Z |= {X,W}, it is impossible to construct a network in
the observed variables alone that reflects both of these independencies while also reflecting
the dependencies implied by the d-connections in the latent variable model (i.e., with the
model being faithful). We call dependency patterns with this property — incapable of
being encoded in the observed variables alone assuming both the causal Markov property
and faithfulness — triggers,2 since they can act as triggers to extend a search of the
causal model space to incorporate latent variables. Note that we only consider triggers
with only one latent node due to the search complexity and time constraint. More details
are shown in Chapter 4.

This kind of latent variable discovery began with the CMU causal discovery group
associated with Clark Glymour, who were looking at these issues since before Verma and
Pearl invented their constraint-based approach, as illustrated in their Discovering Causal
Structure (Glymour et al., 1987).3 Glymour et al. (1987) limited themselves to linear
networks and used partial correlation tests to judge dependence and independence; these
tests remain in their program TETRAD V, which also includes PC and other discovery
algorithms (Spirtes et al., 2016). Their work included the discovery of latent variable
models suggested by patterns of observed positive and vanishing correlations (and partial
correlations) that may be due to an unmeasured common cause (Glymour and Spirtes,
1988).

3.2 Causal Discovery With Latent Variables

Causal discovery, as implied by its name, attempts to discover and build models that accu-
rately reflect the underlying causal relationships in the sample data. However, building a
causal model has never been an easy task (Korb and Nicholson, 2010), as a huge number of

2Note that we will indifferently refer to the causal models that generate these dependency patterns
triggers as well.

3Glymour’s group and Pearl’s group discovered the existence of each other shortly thereafter. The CMU
PC algorithm was the first practical implementation of Verma and Pearl’s IC algorithm.

14

possible causal structures can be derived even given a limited number of variables (Asher
and Asher, 1976). Moreover, it is difficult to make a balance between efficient inference
and avoiding over-fitting (Korb and Nicholson, 2010). In order to solve such problems,
there are a number of algorithms that have been developed to learn Bayesian Networks
for causal models which fall into two main categories.

The first category (introduced by Verma and Pearl (1991)), named constraint-based
algorithms, which applies certain statistical tests for conditional independence along with
some rules, aims to produce structures or patterns (i.e., the IC algorithm). To be more
specific, these algorithms interrogate the sample data for sets of variables for finding
conditional independencies (e.g., via discovering uncovered v-structure), and the results
are used as a guide for the search through a model space. Famous examples are PC and
FCI algorithms, and their extensions (Pearl and Verma, 1991; Spirtes et al., 1993).

The second category, named metric-based algorithms, apply scoring metrics in the
search process over an exponential model space, attempting to find a model which either
maximises or minimises the score. The scoring metric functions could be, for example, the
Minimum Message Length (MML) score (Wallace and Boulton, 1968; Wallace et al., 1996),
which is used in the program CaMML (see details in Section 3.4.3) or the Minimum De-
scription Length (MDL) score in various encoding versions (e.g., Lam and Bacchus, 1994;
Suzuki, 1996; Friedman and Goldszmidt, 1998). Another well-known function is the K2
metric (Cooper and Herskovits, 1991), which was the first significant attempt of BNs using
a Bayesian approach in structural learning, as well as the BDe score, proposed by Hecker-
man et al. (1995) , which is based on the K2 score but considers the edit distance in the
given expert-elicited network as prior knowledge. For metric-based learners, apart from
CaMML, one of the most widely used learners is called “Structural Expectation Maxi-
mization (SEM)”, developed by Nir Friedman (Friedman et al., 1997), which optimises
BIC (Schwarz et al., 1978) or MDL scores using EM algorithm.

The general process of a metric-based learner is to search through a number of can-
didate models, and evaluate them according to a selected scoring metric. These models
will be altered iteratively and re-evaluated until the best score reaches convergence. Un-
like constraint-based algorithms, there is no testing for specific dependency structure in
metric-based algorithms explicitly, as the data will be best accommodated by models (e.g.,
as reflected in the maximum likelihood) that have the most appropriate structure. Ad-
ditionally, instead of returning a class of Markov equivalent models like constraint-based
learners do, most metric-based algorithms converge with a set of ranked explicit models,
and this will be an advantage under some circumstances.

All varieties of causal discovery algorithms assume the causal Markov property; that
is, where the data show (conditional) independencies, the models discovered will (gener-
ally) likewise show independencies, in the form of d-separation. Similarly, they assume
faithfulness, meaning the models discovered will (generally) not include arc structures
(d-connected relationships) which carry no conditional dependencies. Faithfulness implies
that a Causal BN is a proper encoding of patterns of dependencies between measured
variables. While there is some dispute in the philosophy of science about the proper
boundaries of these assumptions (Arntzenius, 1999), causal discovery algorithms operate
non-problematically under them across a wide range of problems, and we assume them
in our work here. Under these assumptions, certain dependency patterns (the triggers
described above) can reliably indicate the presence of unmeasured causes which will be
explained in detail in Chapter 3.

15

3.3 Constraint-based Learners

Before exploring some of the well-known constraint-based algorithms, the different types of
graphs used by them, and their properties, need to be explained. The difference between
them is in the kinds of arcs they contain. An undirected graph (e.g., G1 shown in
Figure 3.2) contains only undirected arcs (e.g., A—B). While a directed graph (e.g., G2
shown in Figure 3.3) contains only directed arcs (e.g., A→ B), without any bi-directional
arcs. Note that a DAG is a special case of a directed graph, containing no cycles. A
directed path is a sequence of nodes starting with A and ending with B, and for every
pair of adjacent nodes X,Y which occur in that order, there exists the arc between them
(X → Y). For example, < C,D,F > is a directed path in G2. In contrast, any direction
of arcs between adjacent nodes in an undirected path is allowed; thus directed paths
are special cases of undirected paths. For example, < C,D,E, F > is an undirected path
in G2, as there is an arc between adjacent nodes along the path (Spirtes et al., 1993).

Figure 3.2: An undirected graph, G1.

Figure 3.3: A directed graph, G2.

Given a DAG G over a set of variables V (e.g., V = {A,B,C,D,E, F} in G2, O is an
observable subset of V containing two different nodes A and B, and we use O\{A,B} to
represent a set of nodes in O that are not members of {A,B}. Verma and Pearl (1990)
introduced the definition of inducing path. That is, an undirected path U between A
and B is an inducing path relative to O if and only if every node in O on U except for
the endpoints is a collider on U , and every collider on U is a parent of either A or B.
This tells us that A and B are not d-separated by any given subset Z of O\{A,B} as
evidence if and only if there is an inducing path over the subset O between A and B. For
example, in G2, the undirected path U =< A,B,C,D,E, F > is an inducing path over
O = {A,B,D, F} as each collider on U (B and D) is an ancestor of the endpoint F , and
the nodes on U that are also in O except the endpoints A and F (which are B and D) are
colliders on U . So given the definition of inducing path, Verma and Pearl (1990) proposed
the definition of inducing path graph G′ over O for DAG G if and only if:

i O is an observable subset of nodes in G;

ii there is an arc A↔ B in G′ if and only if A and B are in O, and there is an inducing
path between A and B in G over O which is into A and into B;

iii there is an arc A→ B in G′ if and only if A and B are in O with no arc A← B in G′,
and there is an inducing path in G between A and B over O that is out of A and into
B;

iv there are no other arcs in G′.

16

Figure 3.4: An example of inducing path graph G3.

For example, the graph shown in G3 (shown as in Figure 3.4) is the inducing path graph of
the DAG shown in G2 over O = {A,B,D,E, F}. As the undirected path < B,C,D,E >
is an inducing path in G2 over O = {A,B,D,E, F}, thus there is an arc present between
B and E in G3. Similarly, as there are two inducing paths < B,D > and B,C,D over
O = {A,B,D,E, F}, there have to be a bi-directional arc between B and D in G3. In
other words, every arc in G3 represents an inducing path of G2 over O = {A,B,D,E, F}.
Based on the definition of inducing path graph, if node A and B are adjacent in an inducing
path graph, then they are d-connected given every subset of O\{A,B}. In other words,
if A and B are not adjacent in the inducing path graph, then they are d-separated given
some subset of O\{A,B}.

In an inducing path graph, there could be two different types of arcs: A→ B (directed
arc) entails that every inducing path over O between A and B is out of A and into B, while
A ↔ B (bi-directional arc) entails that every inducing path over O between A and B is
into A and into B. For the latter type of arc, Spirtes, Glymour and Scheines (1993) clearly
stated that the bi-directional arc can only occur when there is a latent common cause
between A and B, and this statement tells us how constraint-based learners discover latent
variables. However, there could be more types of arcs contained in a partially oriented
inducing path graph (POIPG), which is the output graph format of some constraint-
based learners (e.g., FCI algorithm) proposed by Spirtes, Glymour and Scheines (1993).
Apart from the directed arc and bi-directional arc, there are another two sorts of arcs:
o→ and o–o, where the circles at the ends indicate that the algorithm cannot determine
whether the ends should be arrowheads or tails. It should be pointed out that the symbol
“∗” is used as a metasymbol to represent any of the three types of ends (“>”, “o” or EM
(the empty mark)), but “∗” is only used to represent EM or “>” that can appear in an
inducing path graph and does not occur in a POIPG. The purpose of using a POIPG is
to represent the adjacencies in G′, and some of the directions of the arcs in G′ that are
common to all inducing path graphs which share the same d-connection relations as in
G′. We use Equiv(G′) to represent the set of inducing path graphs over the same nodes
who share the same d-connections as in G. In other words, every inducing path graph in
Equiv(G′) has the same adjacencies. So a graph π is a POIPG of G with inducing path
graph G′ over O if and only if:

i if there is any arc between A and B in π, it has to be one of the six types: A → B,
A← B, A o→ B, A←o B, A o–o B, or A↔ B;

ii π and G′ have the same nodes;

iii π and G′ have the same adjacencies;

iv if A o→ B occurs in π, then every inducing path graph in Equiv(G′) has to contain
either A→ B or A↔ B;

v if A → B occurs in π, then every inducing path graph in Equiv(G′) has to contain
A→ B;

vi if A∗–∗B∗–∗C is in π, then the arcs between A and B, and B and C do not collide at
B (indicated by the underline) in any inducing path graph in Equiv(G′);

17

vii if A↔ B is in π, then every inducing path graph in Equiv(G′) has to contain A↔ B;

viii if A o–o B is in π, then every inducing path graph in Equiv(G′) has to contain either
A→ B, A← B or A↔ B.

Figure 3.5: An example of partially oriented inducing graph G4.

For example, G4 (shown in Figure 3.5) is a POIPG in which not all arcs are oriented.
Again, the bi-directional arc between A and B indicates there is a latent common cause.
POIPG is normally the intermediate result in most cases of many constraint-based learners.
The first step is to determine the node adjacencies. Note that in a POIPG, A and B
are adjacent in π if and only if they are d-connected in any given subset of O\{A,B}.
Once the adjacencies in a POIPG are determined, to make it more informative, a simple
but inefficient method is to construct every possible inducing path graph with the same
adjacencies as G′, discard the ones that do not share the same d-connection relations as in
G′, and keep track of any orientation features that are shared by all graphs in Equiv(G′).
Instead of this impractical method, there are different algorithms (e.g., the FCI algorithm)
that aim to make the POIPG to be informative by orienting as many arcs as possible, which
is the major task for most constraint-based learners.

3.3.1 IC Algorithm

The IC (Inductive Causation) algorithm was introduced by Verma and Pearl (1990) and
aims to learn a Statistical Equivalence Class (SEC) satisfying a set of conditional depen-
dencies present in the given data. However, in order to determine whether two variables
are conditionally independent (e.g., A |= B|C), this algorithm relies on an “oracle” report-
ing all the conditional independencies and dependencies between variables. The details of
IC algorithm is shown as follows:

Input: P̂ a stable probability distribution on set V of variables.
Output: an SEC Ĝ that is compatible with P̂ .

The IC algorithm contains three main steps:

1. Recovers all direct dependencies as undirected arcs in Ĝ. For each two variables A
and B, search for a set of variables S that satisfies (A |= B|S), and if such S does not
exist, place an undirected arc A—B.

2. Recovers some of the arc directions induced by common effect variables. For any
pair of non-adjacent variables A and C (which A—C does not exist) which have a
common neighbour B (A—B—C), replace the chain structure by A → B ← C if
and only if for every possible S that A,C 6∈ S and B ∈ S, (A 6 |= C|S). Meanwhile,
if there is no such S containing B that d-separates A and C, then the connections
between A,B and C will be oriented as A→ B ← C.

3. When trying to orient all remaining arcs according to the first two steps, there are
two constraints that must be satisfied:

18

• The orientation should not create new V-structures.

• The orientation should not create directed cycles.

Along with the three main steps, there are some additional rules (Verma and Pearl,
1992) that could help to output a maximally oriented pattern:

• Rule 1 If there is a chain A → B—C, and B and C are not adjacent, then
direct B—C as B → C.

• Rule 2 If there is a chain A→ C → B, orient A—B as A→ B.

• Rule 3 If there are two chains A—C → B and A—D → B, then orient A—B
as A→ B.

• Rule 4 If there are two chains A—B → D and A—C—D, then orient
A—C as A→ C, and orient D—C as D → C.

However, as IC algorithm examines the conditional dependencies between every pos-
sible pair of variables, the first step is exponential in the number of variables and not
practical for real-world scale networks. Besides the practical problems, the “oracle” used
by IC algorithm is useful for proving theoretical learning properties, but does not imme-
diately suggest a practical implementation. Different researchers have developed different
algorithms which apply similar rules and attempt to make the concept more practical.

3.3.2 PC Algorithm

As an alternative to IC algorithm, Spirtes, Glymour and Scheines (1993) proposed the
PC algorithm, which aims to produce the result model in a practical way. PC algorithm
shares the same basic steps with the IC algorithm but starts with a fully connected model
and progressively removes any arcs that cannot be justified by the conditional depen-
dencies present in the given data, and stops when a particular level of detailed model is
reached. In this way, not all possible subsets of variables need to be examined which can
greatly reduce the execution time for sparse graphs, although it still remains exponential
in the worst case scenario. The “oracle” used in IC algorithm is replaced by performing
conditional significance tests (e.g., chi-square test) between variables. For example, if the
correlation between two variables fail to meet a given acceptance level, suggesting a van-
ishing partial correlation, then these two variables are considered to be independent. PC
starts with a fully connected, undirected graph and attempts to remove arcs iteratively
by conditioning on different evidence sets with different numbers (denoted by n) of nodes.
We use Adjacencies(Ĝ, A) here to represent a set of nodes adjacent to A and Sepset(A,B)
to represent a set of nodes that d-separate A and B in Ĝ.

The details of PC algorithm is shown as follows:

Input: P̂ a stable probability distribution on set V of variables.

Output: an SEC Ĝ that is compatible with P̂ .

1. Initializes Ĝ with the fully connected undirected model where every node is a neigh-
bour to all other nodes.

2. Initialize n = 0.
repeat

repeat

19

select an ordered pair of variables A and B which are adjacent in Ĝ such
that Adjacencies(Ĝ, A)\{B} has cardinality > n, and let S be a subset of
Adjacencies(Ĝ, A)\{B} of cardinality n, and if A and B are d-separated
given S, then delete A—B and record S in Sepset(A,B) and Sepset(B,A);

until all ordered pairs of adjacent nodes A and B that Adjacencies(Ĝ, A)\{B}
has cardinality > n and all subset S of Adjacencies(Ĝ, A)\{B} of cardinality n
have been tested for d-separation;

n = n+ 1;

until for each ordered pair of adjacent nodes A, B, the Adjacencies(Ĝ, A)\{B} is of
cardinality < n.

3. For each triplet of nodes A,B,C such that the pair A,B and the pair B,C are each
adjacent in Ĝ but A and C are not, then if B is not in Sepset(A,C), direct A—B—C
as A→ B ← C if and only if B is not in Sepset(A,C).

4. repeat

if A→ B, B and C are adjacent in Ĝ, A and C are not adjacent in Ĝ, and there
is no arrowhead at B, then orient B—C as B → C.

if there is a directed path from A to B, then orient A—B as A→ B.

until no more arcs can be oriented.

While the IC algorithm is not particularly useful in discovering latent variables, the bi-
directional arcs returned by PC algorithms mean that the two variables have a statistical
effect on each other and can be understood as the effect of a latent variable. In practice,
the PC algorithm performs well in dealing with small scale networks with a large number
of samples, and it is still a good algorithm for medium-scale networks. However, the
number of errors of statistical tests increases if the sample is small or the cardinality
of the conditioning set is large (Spirtes et al., 1993). Although PC was not designed
to discover latent variables explicitly, as its results nevertheless indicate latent common
causes, we will use it as an experiment benchmark in Chapter 5.

3.3.3 FCI Algorithm

Another well-known constraint-based algorithm is the Fast Causal Inference (FCI) algo-
rithm (Spirtes et al., 1993), which is able to correctly and efficiently infer causal relations
from conditional independence statements in large scale sample data, and detect the pres-
ence of some latent variables. It is extended from the CI (Causal Inference) algorithm
(Spirtes et al., 1993), as since CI returns a POIPG, but suffers from the way the adja-
cencies are constructed especially for dealing with large numbers of variables, as there
are too many subsets to be conditioned on in order to test the conditional independence
between two variables. In addition, for discrete distributions, there are no reliable tests of
independence of two variables unless the sample sizes are enormous when conditioning on
a large set of other variables.

In order to solve this issue, like the PC algorithm, FCI first removes the arc between
variables A and B if they are d-separated given any subsets of the nodes adjacent to them.
This reduces the number of conditioning subsets to test. But as the structure is continually
being updated, by finding additional arcs to delete in this manner, there will remain
some incorrect arcs, since some possible evidence sets will include non-directly adjacent
nodes that are missed. FCI, being a heuristic algorithm, pays some price in accuracy.
After performing the first three steps of PC, a relatively “thin” and informative graph
is produced, eliminating certain variables that are definitely not d-separating A and B,

20

and any nodes that are not confirmed to not be in Sepset(A,B) will be put into Possible-
Sepset(A,B) (the more tests are performed, the smaller size the Possible-Sepset(A,B)
would be), and do the same for Possible-Sepset(B,A). If A and B are d-separated given
every possible subset of O\{A,B}, then it is obvious that they are also d-separated given
some subset of Possible-Sepset(A,B), or some subset of Possible-Sepset(B,A). In order to
orient arcs, we can see there is a balance between reducing the size of Possible-Sepset(A,B)
(by performing more d-separability tests) and the extra work required to eliminate nodes
from Sepset(A,B). Spirtes, Glymour and Scheines (1993) suggested that in a sparse
network, we may not need to determine whether two variables are d-separated given a set
C for any C containing a large number of nodes. So here we present the FCI algorithm
with details as follow:

Input: P̂ a stable probability distribution on set V of variables.
Output: a POIPG F that is compatible with P̂ .

1. Initialize Ĝ with the fully connected undirected model where every node is a neigh-
bour to all other nodes.

2. Initialize n = 0.
repeat

repeat

select an ordered pair of variables A and B which are adjacent in Ĝ such
that Adjacencies(Ĝ, A)\{B} has cardinality > n, and let S be a subset of
Adjacencies(Ĝ, A)\{B} of cardinality n, and if A and B are d-separated
given S, then delete A—B and record S in Sepset(A,B) and Sepset(B,A);

until all ordered pairs of adjacent nodes A and B that Adjacencies(Ĝ, A)\{B}
has cardinality > n and all subset S of Adjacencies(Ĝ, A)\{B} of cardinality n
have been tested for d-separation;

n = n+ 1;

until for each ordered pair of adjacent nodes A, B, the Adjacencies(Ĝ, A)\{B} is of
cardinality < n.

3. Let F be the undirected graph resulting from step 2. Orient every arc as o–o. For
each triplet of nodes A,B,C such that the pair A,B and the pair B,C are each
adjacent in Ĝ but A and C are not, direct A∗–∗B∗–∗C as A∗→ B ←∗C if and only
if B is not in Sepset(A,C).

4. For each pair of variables A and B adjacent in F , if A and B are d-separated
given any subset S in Possible-Sepset(B,A)\{A,B}, or any subset S of Possible-
Sepset(B,A)\{A,B} in F , then remove the arc between A and B, and record S in
Sepset(A,B) and Sepset(B,A).

As FCI is far more effective than most other constraint-based algorithms (Spirtes et al.,
1993) especially in dealing with large number of variables, and it is capable of discovering
the presence of latent variables (latent common causes), we use it as one of the benchmarks
of the experiments in Chapter 5.

3.4 Metric-based Learners

As an alternative way to constraint-based learners, metric-based learners generate random
models and evaluate them using a score function (e.g., BIC (Schwarz et al., 1978), MDL

21

(Lam and Bacchus, 1994) and MML) that considers accuracy, complexity etc. All the
sampled models are scored and refined repeatedly until it has converged to a certain point
or reached the maximum number of iterations. However, given the number of nodes,
the search space could be exponential; Robinson (1977) proved that the number of both
possible labeled and unlabeled DAGs are super exponential. Instead of using DAGs, some
algorithms use patterns (e.g., SEC), but it is still not practical to search over the entire
space as Gillispie and Perlman (2013) showed that the search space of labeled Markov
equivalence class is also super exponential. Thus, many heuristic methods such as greedy
search, genetic algorithms and simulated annealing aim to find the best model without
searching over the entire space. Another solution is to use MCMC (e.g., Metropolis-
Hasting) to sample a number of models and select the one which has the optimal posterior
probability as the output. Users can control the sampling space by limiting the maximum
number of samples, the maximum number of iterations.

For latent variable discovery specifically, perhaps the best known algorithm is Structure
Expectation Maximization (SEM) algorithm, which applies a heuristic search with a score
function (Friedman et al., 1997; Friedman, 1998). It utilizes EM and performs a search
for the best latent structure inside the EM procedure (Friedman et al., 1997), producing
a single structure with latent nodes. Among sampling methods, we introduce CaMML
in this section, which applies an MCMC sampling method along with the MML score
function for causal models. The original CaMML does not discover and learn with latent
nodes, so we will discuss the potential for CaMML to be extened to learning with latent
nodes and the details will be presented in Chapter 5.

3.4.1 EM Algorithm

When we try to learn the parameters of a BN, sometimes there are missing values in the
dataset or even latent variables. In this case, if we use MLE, then it is not straightforward
to learn the parameters that maximizes the log-likelihood of the dataset (by using equation
2.4) for a given structure. One of the popular solutions is the EM algorithm, which was
originally proposed by Dempster et al., (1977) , that aims to learn the parameters with
the presence of missing values or latent nodes. It assumes missing values are independent
from the observed values and produces a point estimate of the model parameters. There
are two main steps in EM: the Expectation step (E step) which estimates the probability
distribution of missing data and computes the expected sufficient statistics (i.e., sum of the
posterior probability of all data points, known as “soft counts” that match both required
instantiations of each node as well as its parents); the Maximization step (M step) which
re-estimates the model parameters using some kind of scoring metrics (e.g., maximum
a posterior (MAP) or MLE) based on current expected sufficient statistics. For learning
parameters in a BN, it starts with an arbitrary initial parameter assignment and maximizes
the data likelihood by running the two steps in a loop until convergence:

Input: P̂ a stable probability distribution D and a DAG G on set V of variables.

Output: a parameter set Θ̂ that maximizes the likelihood of P̂ given G.

1. Initialize the parameters Θ̂ randomly, choose a threshold ε and maximum number
of iterations nmax.

2. Initialize n = 0.

repeat

E step: compute the probability distribution over missing data D∗:

22

P (D∗|D, Θ̂) = P (D|D∗,Θ̂)P (D∗|Θ̂)∑
D∗ P (D|D∗,Θ̂)P (D∗|Θ̂)

M step: Re-estimate Θ̂ by computing MLE or MAP given P (D∗|D, Θ̂):

Θ̂ = Θ̂′; n = n+ 1;

until |Θ̂′ − Θ̂| < ε or n = nmax.

As a popular algorithm, EM has been widely applied in Bayesian modeling, natural
language processing, computer vision etc. However, similar to many parameter estimation
methods, it generally converges to a local maxima rather than a global maxima. As
the original EM only produces a point estimate of model parameters, researchers have
developed different extensions that aim to learn both the model structure and parameters
(see details in Section 3.4.2 and Chapter 5).

3.4.2 SEM Algorithm

The SEM was claimed as the first method that is able to learn network structure from in-
complete data (Friedman et al., 1997; Friedman, 1998) for factored models (e.g., Bayesian
networks, multinets, decision trees, decision graphs and other probabilistic models). It is
an extension from EM algorithm and it finds the best structure inside the EM procedure.
Starting with early work on defining the MS-EM and AMS-EM algorithms (Dempster
et al., 1977), Friedman finalised the SEM algorithm in 1998 (Friedman, 1998) which at-
tempts to optimize the expected Bayesian score rather than produce an approximation, as
the exact Bayesian score can give a better assessment of each candidate model given the
data. Like the EM algorithm, SEM has been proved to converge to a local maxima and
requires a lot of computation of the expected statistics which makes the algorithm not so
capable in large scale domains.

Let O be the set of observed variables and H denotes the set of latent variables. We
use a lower-case letter o and h to denote a set of instantiations of O and H respectively
in model Mn. Then the general outline of Bayesian SEM (Friedman, 1998) is shown as
below:

Input: P̂ a stable probability distribution D and a DAG G on set V of variables.
Output: a parameterized model Mn by computing MAP given P̂ .

1. Start with a given model M0 with random parameters Θ̂.

2. Initialize n = 0.
repeat

Compute the posterior P (Θ̂Mn |Mh
n ,o)

E step: perform a search over models and evaluate each candidate model Mn

by:

Score(M : Mn) = E[logP (h,o,Mh)|o, Θ̂Mn ,M
h
n]

=
∑
h

P (h|o, Θ̂Mn ,M
h
n) logP (h,o,Mh)

where Mh denotes the hypothesis that the conditional independence
assertions implied by M hold in the true joint probability distribution
of V, and function E denotes the expected score of the current model
being examined.

23

M step: select the best model Mn+1 that maximizes Score(M : Mn) among
these encountered during the search.

Mn = Mn+1; n = n+ 1;

until Score(Mn : Mn) = Score(Mn+1 : Mn).

The above outline only gives a framework, to specify the SEM completely, the search
procedure has to be decided in the E step. For example, Friedman applied a greedy hill
climbing search in the SEM paper (Friedman, 1998) by performing possible arc additions,
removals and reversals. At each iteration, the algorithm tries to maximize the expected
Bayesian score, and Friedman claims that if a model Mn+1 that maximizes the expected
Bayesian score at each iteration, then Mn+1 will be a better choice than Mn. In practice,
we can choose a Mn+1 in M step that is better than Mn, but not necessarily the best, and
this weaker selection criteria can make the whole process more efficient as only a subset
of all possible models are evaluated.

3.4.3 CaMML

CaMML, as a well-designed metric-based learner, was originally developed by Chris Wal-
lace and Kevin Korb at Monash University (Wallace et al., 1996). There are several
implementations of CaMML, such as CaMML on linear models (Wallace and Korb, 1999)
and the CaMML Java implementation which learns causal models using the Core Data
Mining System (CDMS) (O’Donnell, 2010, 2013). In this section, we will briefly introduce
some basic components and terminologies of CaMML and show a detailed plan of what
metrics and functions need to be adapted in order to learning with latent variables.

There are three main components in O’Donnell’s CaMML implementation: a pre-
sampling, a simulated annealing search and a MCMC sampling function. In all of the
three components, TOM (Totally Ordered Model) is an important representation which
contains a total ordering of nodes and a list of arcs whose direction is consistent with
the given node ordering. The total node ordering here means the order of causal process
irrespective of whether there is a connection between these nodes (Korb and Nicholson,
2010). For example, if we already know node A comes beforeB, then the direction is settled
and the only remaining issue is to decide whether there is a direct dependency between
them. One DAG can represent multiple TOMs, but one TOM cannot represent more than
one DAG. For example, in the directed 3-variable chain structure shown in Figure 2.3,
there is only one total ordering < X,Y, Z > while the common cause structure in Figure
2.4 has two different total orderings < Y,X,Z > and < Y,Z,X >, and both structures
are Markov equivalent. The reason why TOM is used in CaMML is somewhat a necessity,
as it is a plausible view of causal structures and a correct MML coding practice (Korb
and Nicholson, 2010). If use DAG only, we are ignoring the underlying causal process by
allowing different but consistent TOMs to be entertained. As the causal process grows,
there could be new variables being added and learned, and it is possible that there will
be only one possible linear extension which is compatible with the original problem. Thus
the more TOMs a DAG can represent, the more possible for it to be recognized and the
greater prior probability for it to be true in the end.

To cost a TOM, a MML adaptive code implementation (O’Donnell, 2010) for compar-
ing different structures and encoding multinomial CPT parameter of each node is used,
and three different costs are included: structure cost, parameter cost and the data cost
(all in “nits”) given the model. The structure cost4 is given as:

4Note that the MML cost for DAGs requires adjusting with the subtrahend − lnM , where M is the
number of linear extensions of the DAG (Wallace et al., 1996). However, since we are sampling the TOM
(linear extension) space, rather than the DAG space, this count is already implicit in the sampling process.

24

StructureCost = ln(k!)−nArcs× ln(parc)−
(
k × (k − 1)

2
− nArcs

)
× ln(1−parc) (3.1)

where

• k denotes the node number.

• parc is the probability of an arc existing.

• nArcs is the arc number.

and the parameter cost and the data cost given the model is encoded together:

CPTCost =
|pa| × (|X| − 1)

2
× ln

πe

6
+

|pa|∑
pai

ln

(
(N(pai) + |X| − 1)!

(|X| − 1)!×
∏|X|
xi

(N(pai, xi)!)

)
(3.2)

where

• |pa| and |X| denotes the number of parent state combinations and current node state
number respectively.

• N(pai) is the number of samples where parent state combination = pai.

• N(pai, xi) is the number of observations where parent state combination = pai and
child = xi.

The first part reports the cost of the parameters, while the second denotes the cost of
the data given the structure and parameters. Thus, the total MML cost of a TOM is the
StructureCost plus the CPTCost of each node. These scoring functions are used in all
the three components of CaMML.

The pre-sampling starts with an empty TOM, with temperature as 1.0 and parc as
0.5 (default), performs 7 × k3 mutations (shown in Table 3.1, as each different mutation
has a different associated probability), stores the resulting best TOM with its cost, and
re-estimate parc using Equation 3.4. Then the algorithm repeats 10 times using a highly
connected structure (each node has maximum 7 parent nodes), performs 7×k3 mutations,
stores the best TOM and its cost, re-estimates parc using Equation 3.4. Finally, an empty
TOM is used as the starting point, performs 7× k3 mutations again, and stores the best
TOM found and its cost, re-estimates parc using Equation 3.4, repeat for 10 times. As
the search space could be exponentially large, thus the pre-sampling phase is helpful to
find a relatively good starting point for the following CaMML processes by considering
the execution time and the quality of the result.

After the pre-sampling process is finished, CaMML applies a simulated annealing
search starting at the best TOM found so far, for the purpose of skipping from local
minima. It starts with temperature of 2.0 (explained below) and this is reduced to 1.0
uniformly by performing 12 epochs (known as “cooling down”). Each run includes 10×k3

mutations at each temperature, and the parc will be re-estimated as per Equation 3.4 if a
new best TOM is found. In practice, a higher temperature can make CaMML visit more
TOMs, as it is more likely to accept negative mutations. By contrast, a low temperature
will make CaMML stay at a limited TOM space and will be at risk to produce a local
minimum result.

25

Mutation Probability Description

Temporal 1/3
Randomly select two nodes which are neighbours in
the total ordering. Reverse the arc between them if
exists.

Skeletal 1/3
Toggle the existence of an arc between two randomly
selected nodes.

Double
Skeletal

1/6
Select three nodes that follow X ≺ Y ≺ Z in the total
ordering, then toggle the arcs X → Z and Y → Z if
exist.

Parent
Swap

1/6
Randomly select three nodes that X ≺ Z and X → Z
but not Y → Z, then toggle X → C and Y → Z. If
no such case exists, performs a different mutation.

Table 3.1: Four different mutations used in CaMML.

Figure 3.6: Example of how two TOMs (with different node orderings) are grouped into
a DAG.

Figure 3.7: Example of how two DAGs are grouped into a SEC.

Then, in CaMML’s MCMC sampling function, starting from the best TOM found by
the simulated annealing search and temperature being reset to 1.8, a number of TOMs
will be sampled during each epoch. The maximum number of epochs is set as k3× 200, or
103 × 200 if k is less than 10. In the process, a mutation is selected from Table 3.1 based
on the current TOM being worked on. If the cost of new generated TOM is less than
the current TOM, the new generated TOM will be accepted, or if the following equation
returns true, accept:

Cost(M ′)− Cost(M)

temperature
< − ln(rand(0.0, 1.0)) (3.3)

where Cost(M ′) and Cost(M) represent the total cost of the new TOM and the current
TOM respectively, and rand(0, 1) is a random function that generates a random value
between 0.0 and 1.0. Then all accepted TOM will be grouped together to estimate the
posterior over DAGs. Figure 3.6 shows how two TOMs on the left which have different
node orderings (X ≺ Y ≺ Z and X ≺ Z ≺ Y) can be grouped into a DAG on the right.
Then such DAGs are “cleaned” by removing any spurious arcs before being further joined
into SECs, which represent a number of DAGs that are Markov equivalent given the data

26

provided. So, if we assume the two DAGs are cleaned on the left of Figure 3.7, then
they can be joined into a (SEC) on the left. As CaMML applies MML, any SECs which
are equivalent in MML score will be grouped together into an MML Equivalent Class
(MMLEC). The high level hierarchy of models joined by CaMML follows a many-to-one
relationship, and the final goal is to find a DAG that best trades off fit and complex-
ity. Additionally, as the sampling process of CaMML has a uniform prior over TOMs
(O’Donnell, 2010) (unless an explicit structure prior is applied), we could learn the best
node ordering for each candidate DAG, which could reduce the TOM space. However,
this will reduce the efficiency dramatically thus is out of our scope.

CaMML takes a record of each TOM that has been visited and uses the aggregated
counts to estimate the probability distribution of all MMLECs. Such MMLECs are
ranked based on MML cost and CaMML is able to export a parameterized DAG for
the convenience of user needs. In the actual implementation (i.e., the version described in
(O’Donnell, 2010, 2013)), before performing the sampling process, the probability of an
arc presenting parc is set to be 0.5 by default, and it is updated after each epoch by:

parc =
0.5 + nArcs

1 +m(m− 1)/2
(3.4)

where 1 + m(m − 1)/2 means the maximum number of arcs that a m nodes TOM can
hold.

As CaMML has been proved to be a solid causal BN learner (O’Donnell, 2010; Korb
and Nicholson, 2010), it also has a great potential to be extended, such as the CaMML
extension on learning dynamic Bayesian networks (Pérez-Ariza et al., 2012), learning MB
with CaMML (Li, 2020). To learn with latent nodes specifically, first we need to develop a
method that can detect the existence of latent nodes and learn how to connect the latent
nodes. We also need to compute the CPT of the latent nodes as well as the CPTs of
any observed nodes who are their direct descendent in the learned structure. Finally, how
to evaluate the model with latent variables and implement the discovering and learning
processes into CaMML will be part of this thesis as well.

3.5 Evaluation Metrics

In this section, several popular methods that evaluate causal BN are presented. However,
there is no agreed standard for evaluating causal discovery. Here we focus on two major
approaches which are: how close is the learned structure to the true structure as well as
how accurate the parameters are in the learned models. Due to the nature of the model
with latent nodes, the number of nodes in the learned model could be different from the
true model. For example, if there is a latent node in the true model, but the latent variable
discovery function failed to detect the existence of the latent node, then there will not be
any latent node appearing in the learned model (i.e., a false negative learned case). So we
need to alter the learned model to put it in a form that can be used to compare with the
true model. All details of how we evaluate causal model with latent nodes will be shown
in this section.

3.5.1 Edit Distance

Edit distance is the most commonly used evaluation measure which informs how similar
one structure is to another. To be more specific, the edit distance between two models
equals the minimum number of arc deletions, additions and reversals to turn one model into
the other (Korb and Nicholson, 2010). The distance is the same in either direction as it is
a symmetrical metric. For example, the edit distance between the two structures in Figure

27

3.8 is 3, which includes an arc reversal between X and W , an arc deletion between H and
Z, and an arc addition between H and Y (if we assume each of these operation contributes
1 to the total edit distance). Edit distance is simple and straightforward, however it is
entirely indifferent to dependency strengths between variables, let alone interaction effects
between multiple parents. It is the crudest of our measures, but nevertheless does provide
some guidance on causal structure learning performance.

Figure 3.8: Example of how to calculate edit distance.

Figure 3.9: A structure with multiple latent nodes (“H 1” and “H 2”).

The latent node itself does not contribute to the edit distance score, however it will
have implications in terms of how it is connected to other nodes in a model and we want
to measure these implications independent of more distant arcs. For example, still in
Figure 3.8, let node H be a latent node. We note the edit distance for arcs connected to
the latent node only is 2, which includes an arc deletion between H and Z, and an arc
addition between H and Y . So the edit distance for a specific node measures the difference
between the arcs in the true structure and learned structure that relate to that node only.

Another point that should be mentioned here is that there could be multiple latent
nodes discovered by PC and FCI, but the edit distance is calculated between two structures
containing the same number of nodes. To solve these discrepancies, assuming there is only
one latent node in the true structure, we select the latent node which shares the most
arcs with the latent node in the true structure,5 and any arcs that are related to other
proposed latent nodes will be treated as mistakes. For example, in the model in Figure
3.9, there are two proposed latent nodes H 1 and H 2, but we assume the left model in
Figure 3.8 is the true structure. Then H 1 will be selected as the best latent node as
it shares more arcs with H in the true structure than H 2. So the edit distance for the
latent node only will be 2, and the total edit distance between the two models is 6. In
contrast, to calculate edit distance when there is no latent node in the learned model, we
add in the same number of latent nodes but leave them disconnected in the learned model
in order to match variables with the true model. In addition, if there is no latent node in
the true model but the learned model has some latent nodes, then any arc that relates to
the latent nodes will be treated as a mistake in the learned model. As the edit distance
measures structural differences, which can give us a direct assessment of a causal model
when considering faithfulness as the assumption, it is a useful and intuitive metric that
will be used throughout the thesis.

5Using a random tiebreaker, if needed.

28

3.5.2 KL and CKL Divergence

Kullback-Leibler Divergence (KL) (Kullback and Leibler, 1951; Kullback, 1959) is a mea-
sure of how far a learned probability distribution q diverges from the true distribution
p:

KL(p, q) =
∑
i

pi log

(
pi
qi

)
(3.5)

where i ranges over all possible joint instantiations of nodes and by convention 0 log 0 = 0
and x log x

0 =∞.

KL is not actually a distance metric, since it is not symmetric and violates the triangle
property. Nevertheless, it is in some ways an ideal way to measure how far away a learned
distribution is from the truth. In information-theoretic terms, KL can be described as
the number of excess bits (using log base 2) that are expected to efficiently encode a new
sample from the true distribution using the learned distribution. That is, information
theory shows us that the optimal model for encoding samples is the true distribution itself;
KL tells us how many additional bits are needed when we fail to use the true distribution.
This means KL is an optimal way of expressing how bad our learned model is for predicting
and encoding new samples (bad, because the larger KL is, the worse our encoded model is).
What KL does not reflect, or measure, is anything specifically structural about the learned
model. That is, any Markov equivalent model will yield precisely the same KL. More than
that, any model which can represent the original probability distribution, including, for
example, a fully connected model, will yield precisely the same KL (assuming maximum
likelihood parameterization). In general, KL respects neither the simplicity of a model nor
its causal semantics, and thus is suspect as a sole arbiter of causal discovery performance.

Unlike KL Divergence, Causal Kullback-Leibler divergence (CKL) (O’Donnell et al.,
2007) takes into account causality when comparing two models, by using hypothetical
interventions (Korb and Nyberg, 2006). Where causal orientations are misattributed,
interventions reveal the differences and CKL is sensitive to them.

CKL(P1, P2) =
∑
~x′

∑
~x

P ′1(~x′, ~x)log
P ′1(~x′, ~x)

P ′2(~x′, ~x)
(3.6)

where P1 is the true distribution and P2 is the learned distribution, while ~x′ and ~x range
over instantiations of intervention and original variables, and P ′1 and P ′2 extend P1 and
P2 respectively, to the fully augmented space (that is there is an intervention node asso-
ciated with each node from the original space, and such interventions can be viewed as
observations).

There are three different variants of CKL described in (O’Donnell et al., 2007), each
applying different types of intervention. We use CKL3 here as it finds an optimal aug-
mentation for assessing causal models, where each node has an equal chance of not being
intervened upon, and, when that happens, all other nodes are intervened upon. The aim
is to perform an idealized experiment where all possible factors are controlled except for
a target variable.

As KL and CKL require the learned and true model to have the same number of nodes,
when the number of latent nodes is different in the learned and true model, we will use
the same method as above to select the best latent node in calculating edit distance (see
details in Section 3.5.1). If there are more latent nodes in the learned model than the
true model, then any latent nodes except the best matching one will be marginalized out.
So the unmatched latent node does not contribute to the KL or CKL computation in 3.5
and 3.6. Similarly, all latent nodes will be marginalized out in the learned model when
there is no latent node in the true model. When the true model contains one or more

29

latent nodes and there is no latent node in the learned model, then we will add the same
number of latent nodes (with the same number of states but uniform distribution) to the
learned model. Moreover, if the learned network already has a disconnected node (e.g.,
as the SEM model might), we again attribute a uniform distribution to it. Another issue
is that when measuring KL or CKL, the order of states matters, since target nodes are
compared with each other state-by-state. If the states are learned correctly, but the order
is not learned at all (which is the case for all latent model learners here), then misaligning
states will hugely exaggerate the differences between models. Hence, we added a step for
aligning state orders prior to computing the KL and CKL measures, which we applied to
all learned latent models. In particular, we found the best state orders for any relevant
variable (latent or child of a latent) by optimizing the KL/CKL score to be returned.

30

Chapter 4

Dependency Pattern Discovery

The same factors which enable latent variable discovery also enable causal discovery:
particular probabilistic dependencies between variables, as estimated from available data,
will typically be represented only by a proper subset of the possible causal models over
those variables. Therefore, they provide evidence in favour of those models against the
remaining models, as can be seen in the Bayes factor. As mentioned in Section 3.1, some
dependency structures between observed variables will provide evidence favoring latent
variable models over fully observed models, because they can explain the dependencies
better than any fully observed model. Thus we can describe an algorithm for systematically
searching for such dependencies. The result is a clutch of triggers. And, although they have
been previously identified in the statistical literature (Richardson et al., 1999; Richardson
and Spirtes, 2003), their use is new to the practical machine learning literature. In causal
discovery algorithms these triggers can be used, for example, in preprocessing the data to
abduce latent variable subnetworks for subsequent use by the main discovery algorithm.

So in this chapter, we first give the definition of a dependency matrix and explain how
to use it to find triggers and subsequently use triggers to discover latent variables. We are
keen to know how many triggers there are given different numbers of observed variables,
so we introduce a systematic search and report the findings in Section 4.2. In Section
4.3, we present our initial attempt to apply the triggers as a data preprocessing step
for the main causal discovery algorithms, which is named “Trigger-PC”. In Section 4.4,
we test Trigger-PC against PC and FCI for how well they learn trigger structures using
an optimized significance level. Finally, we propose an approach to applying triggers in
CaMML. This includes a trigger detect function using dependency matrices, sampling
space enhancement.

4.1 Definition of Dependency Matrix

Figure 4.1: A DAG of four nodes and its dependency matrix (0 and 1 represent conditional
independence and dependence respectively) conditioned on node Y .

31

Before we introduce our systematic search for triggers, we need to find a way to de-
scribe the conditional dependencies implied by a given structure under the faithfulness
assumption. Thus we consider the dependency matrix, which represents the conditional
dependencies between pairs of variables in a DAG, using “0” to represent that two cor-
responding variables are independent from each other given an evidence set, while “1”
asserts conditional dependence. For example, in Figure 4.1, the 3× 3 matrix on the right
gives all dependencies (W and X) and independencies (W and Z, X and Z) in the DAG
(on the left) conditioned upon Y . Clearly, dependency matrices are symmetric.

As dependency matrices are useful representations of conditional dependencies in a
DAG, we can use them to search for triggers by looking for any unique dependency matrices
(aka dependency patterns, Section 4.2). Dependency matrices also play an important role
in the latent node detect function under faithfulness. So we can apply a conditional
dependency test (i.e., a conditional χ2 test) to find the conditional dependencies in the
data and check whether they match any trigger. More details appear in Section 4.3.

4.2 A Systematic Search for Triggers

Here we describe a systematic algorithm for finding triggers given a certain number of
observed variables. Latent variables are typically considered only in scenarios where they
are common causes (Spirtes et al., 1993), i.e., having two or more children. As Friedman
(Friedman et al., 1997) points out, a latent variable as a leaf or as a root with only one
child would marginalise out without affecting the distribution over the remaining variables;
hence, they could not participate in a trigger. The same is true of a latent variable that
mediates only one parent and one child. Therefore, our trigger algorithm restricts itself
to looking for latent common causes.1 For simplicity, we also restrict trigger discovery to
look for single latent variables rather than multiple latent variables. Again, subsequent
general causal discovery can link together subnets suggested by multiple such triggers, as
we explore in Chapter 6. Also, it will be clear from the trigger algorithm that it could
readily be extended to look for two or three latent variables at a time, in case that should
improve performance.

Algorithm 1 finds all possible (single-variable) triggers for a given number of observed
variables.2 It starts by enumerating all possible fully observed DAGs in n variables (where
n is necessarily a small number, since this first step is already super exponential; see
Robinson, 1977).3 Then it generates all possible d-separating evidence sets. In a network
with n variables, there are 1 + Σn−2

i=1 C
n
i such evidence sets, including the empty set. For

example, for a network with four variables W , X, Y and Z, there are eleven evidence sets:

∅, {W}, {X}, {Y }, {Z}, {WX}, {WY }, {WZ}, {XY }, {XZ}, {Y Z}.

For each fully observed DAG, it produces the corresponding dependency matrix for each
evidence set using the d-separation rules (e.g., for the four variables W , X, Y and Z, it
produces eleven dependency matrices), and we call such a matrix set a “complete set of
dependency matrices”. Next, it generates all possible single hidden-variable models for
each DAG by replacing the arc between every pair of connected observed variables with
a hidden common cause. It then generates the complete set of dependency matrices but

1Note that these restrictions imply, for example, that we would not be finding any such latent variable
model as that in Figure 1.1. However, these restrictions apply only to our initial search for useful triggers;
subsequent search through the latent variable model space by a general causal learner can find these models,
as Friedman’s work demonstrates (Friedman et al., 1997).

2Our Java Trigger program is available at: https://github.com/zxh298/Trigger
3We could have tried heuristic search to explore larger DAG spaces instead of a full enumeration,

however, time did not permit us to explore that option.

32

between observed variables for each latent variable model, conditioned upon each evidence
set (the latent node is not included in the evidence set). The set of dependencies of a latent
variable model is a trigger if and only if these dependency sets cannot be matched by
any fully observed DAG in terms of d-separation.

Algorithm 1 Find triggers for n observed variables

1: Let T be an empty set; (T will end up being all the triggers for n observed variables);
2: Generate all possible DAGs G (ignoring labels) for n observed variables;
3: Generate all evidence sets E for n observed variables;
4: Let M be an empty set;
5: for each G ∈ G do
6: Let M be an empty set;
7: for each E ∈ E do
8: Generate the dependency matrix m by applying d-separation;
9: Add m to M;

10: end for
11: Add M to M;
12: end for
13: for each G ∈ G do
14: for each arc A in G do
15: Replace A with a latent variable as a common cause, yielding G′;
16: Let M′ be an empty set;
17: for each E ∈ E do
18: Generate the dependency matrix m′ by applying d-separation;
19: Add m′ to M′;
20: end for
21: boolean isTrigger = true;
22: for each M∈M do
23: if M′ and M contain exactly the same dependency matrices then
24: isTrigger = false;
25: break;
26: end if
27: end for
28: if isTrigger = true then
29: Add M′ to T ;
30: end if
31: end for
32: end for
33: Output T ;

To derive the time complexity of Algorithm 1, we break the whole process into several
parts with line numbers (e.g., “O2” means the time complexity of Line 2). First, given n
as the number of observed variables, generating all possible DAGs at Line 2 takes O2 =

O(2
n2−n

2) ≈ O(2n
2
) (Robinson, 1977). Then, the time complexity of generating all evidence

sets at Line 3 is roughly O3 = O(2n), as creating an evidence set requires one binary choice
per n− 2 potential evidence nodes. Generating a dependency matrix given each E at Line
8 requires O8 = O(n

2−n
2) dependency tests. So the time complexity of the for loop from

Line 5 to Line 12 is O5×O7×O8 = O2×O3×O8 = O(2n
2
)×O(2n)×O(n

2−n
2) ≈ O(2n

2
).

Then at Line 15, replacing an arc with a latent variable takes a constant time complexity
(O15 = O(1)), while the for loop from Line 17 to Line 20 has the same complexity as Line

7 to Line 10, O17 = O(2n)× O(n
2−n
2). Next, at Line 22, the size of M equals to the size

of G, and to make sure the trigger cannot be matched by any observed DAGs, we need
to consider all possible label assignments, which takes an extra time complexity of O(n!).
At Line 23, the size of M equals to the size of E , and checking whether two dependency
matrices are the same takes O(n

2−n
2). So the time complexity from Line 22 to Line 27 is

again O22 = O(2n
2
)×O(n!)×O(2n)×O(n

2−n
2). Together with the two for loops at Line

13 (O13 = O(2n
2
)) and Line 14 (O14 = O(n

2−n
2)), the total time complexity from Line

33

13 to Line 31 is O13 × O14 × (O15 + O17 + O22) = O(2n
2
) × O(n

2−n
2) × (O(1) + O(2n) ×

O(n
2−n
2) +O(2n

2
)×O(n!)×O(2n)×O(n

2−n
2)) ≈ O(2n

2
). Overall, the time complexity of

the algorithm will be:

O(Algorithm1) = O2 +O3 +O5 ×O7 ×O8 +O13 ×O14 × (O15 +O17 +O22)

= O(2n) +O(2n
2
) +O(2n

2
) +O(2n

2
)

≈ O(2n
2
)

So we can see that the time complexity is dominated by the exponential factor 2n
2
. In

order to search for triggers more efficiently, we also developed a multi-threaded version
of the trigger program4 named “Trigger-threads”, which runs Algorithm 1 by applying
multiple threads to three aspects of the original Trigger algorithm:

• Generate G for n observed variables.

• Generate M for G.

• Trigger searching process (from Line 13 to Line 32).

Figure 4.2: Execution time of Trigger original and Trigger-threads.

3 nodes 4 nodes 5 nodes

Trigger original
0.004 0.301 275.661

(0.002, 0.007) (0.272, 0.330) (220.528, 330.793)

Trigger-threads (2 threads)
0.155 0.368 173.690

(0.150, 0.159) (0.335, 0.400) (167.082, 180.298)

Trigger-threads (3 threads)
0.155 0.336 141.942

(0.151, 0.159) (0.302, 0.369) (139.334, 144.551)

Trigger-threads (4 threads)
0.155 0.307 115.420

(0.150, 0.159) (0.270, 0.344) (113.747, 117.092)

Trigger-threads (5 threads)
0.105 0.262 101.770

(0.100, 0.109) (0.225, 0.299) (100.580, 102.959)

Table 4.1: Execution time of Trigger original and Trigger-threads.

Although this multi-threaded implementation won’t help with very large problems, it
finishes much faster in practice with a small subnetworks. We tried running the original

4Available at: https://github.com/zxh298/Trigger threads

34

Trigger and the Trigger-threads program with 2, 3, 4, and 5 threads 20 times each. Figure
4.2 and Table 4.1 show the average actual execution times (with 95% confidence intervals
using the t-distribution).5 Searching for triggers with 3 observed nodes, the original pro-
gram was a bit faster than the multi-threaded version because the actual trigger search
process took less time than the data wrangling process (e.g., creating threads, combining
results). However, when the number of observed nodes grows, the Trigger-threads program
significantly outperforms the original. We did not try running the original program for 6
observed nodes as it became impractical with the super exponential step of generating all
possible DAGs. Even for Trigger-threads, it took 1069559.1 seconds (around 12 days) for
a run to finish searching triggers for 6 observed nodes (not shown).

Number of variables Number of DAGs Number of connected DAGs Number of triggers

3 6 4 0
4 31 24 2
5 302 268 57
6 5984 5667 2525

Table 4.2: Number of DAGs and triggers.

DAG (with one latent node H) Trigger (Conditional dependencies)

Given ∅: W |= X, X |= Y, Y |= Z
Given W: X |= Y, Y |= Z
Given X: W |= Y, Y |= Z
Given Y: W |= X, X |= Z
Given Z: W |= X, X |= Y
Given W and X: Y |= Z
Given W and Y: X |= Z
Given W and Z: X |= Y
Given X and Y: W |= Z
Given X and Z: W |= Y
Given Y and Z: W |= X

Given ∅: W |= X, W |= Y, W |= Z
X |= Y, X |= Z, Y |= Z

Given W: X |= Y, Y |= Z
Given X: W |= Z, W |= Y, Y |= Z
Given Y: W |= X, W |= Z, X |= Z
Given Z: W |= X, X |= Y
Given W and X: Y |= Z
Given W and Y: X |= Z
Given W and Z: X |= Y
Given X and Y: W |= Z
Given X and Z: W |= Y
Given Y and Z: W |= X

Table 4.3: Triggers found (the Big-W and covered Big-W) for four observed variables
(node “H” represents the latent).

5This experiment was done using a single Intel I9-9900KS CPU (with 16 cores) and 32GB 3600 MHz
RAM.

35

Figure 4.3: Some examples of triggers of five observed variables (node “H” represents the
latent).

Finally, the number of distinct triggers, given the number of observed variables and
ignoring labels and isolated nodes, is shown in Table 4.2. We use “Number of DAGs” to
represent all possible DAGs for a certain number of (observed) variables, while “Number
of connected DAGs” means all possible DAGs with no disconnected node. There are
two triggers with four observed variables (where “H” represents the hidden variable), as
shown in Table 4.3, which we named “Big-W” and “Covered Big-W” respectively. Figure
4.3 shows some example structures of the 57 possible triggers given five observed variables
(see Appendix A for all 57 triggers).

Due to the complexity of learning DAGs with latent variables in statistical modeling,
Richardson and Spirtes (2003) claimed that ancestral (mixed) graphs are more feasible
representations to model conditional independence structures. Ancestral graphs represent
latency without necessarily explicitly representing each individual latent variable, and if
we assume there is only one latent node per one bi-directional arc, then we can turn the
bi-directional arc into a latent node. A mixed graph (which allows both directed arcs and
bi-directional arcs) is an ancestral graph if the following conditions are met (Richardson
et al., 1999):

1. There is no directed cycle.

2. There is no almost-directed cycle; that is, if there is a bi-directional arc between two
variables X and Y, X ↔ Y , then there is neither a directed path from X to Y , nor
one from Y to X.

3. For any two variables X and Y which are connected by an undirected arc (X—Y)
and any third variable Z, there is no arc Z → X or Z ↔ X.

A PAG (partial ancestral graph) then can be used as a representation of a class of Markov
equivalent ancestral graphs. An ancestral graph is called a maximal ancestral graph
(MAG) if there is no inducing path (see the definition in Chapter 3) between any two
non-adjacent variables (no arc between them) in the graph (Zhang, 2008), and is maxi-
mal in the sense that no additional arc may be added to the graph without changing the
independencies. PAG and MAG hold a one to many relationship, as PAG represents an
equivalence class of MAG, by displaying all common edge marks shared by all members

36

and using circles for any marks that are not common. The latent variables in a MAG are
not explicitly included, but are indicated by the presence of bi-directional arcs.

(a) An ancestral graph that is not a MAG. (b) A MAG.

Figure 4.4: An example of MAG.

For example, in Figure 4.4a, the graph is ancestral but not maximal, as there is an
inducing path between Y and Z because W is a collider that is a parent of Z, but Y
and Z are not adjacent. However, a unique MAG corresponds to any non-MAG obtained
by adding bi-directional arcs (Richardson and Spirtes, 2003). We can see that the MAG
shown in Figure 4.4b has an additional bi-directional arc between Y and Z and is a unique
MAG supergraph for the graph shown in Figure 4.4a.

The different types of graphs below follow a sequence of one-to-many relationships
from left to right:

vertex-edge graph → mixed graph → PAG → ancestral graph → MAG → DAG

Hence, DAGs are special cases of MAGs, lacking bi-directional arcs.

Figure 4.5: Two MAGs that are not Markov equivalent to any DAG which correspond to
Big-W and Covered Big-W.

Spirtes et al. (1993) show that it is possible to characterize Markov equivalence classes
of latent variable models in graphical terms. However, due to the complexity of learning
DAGs with latent variables, searching for MAGs is a more tractable approach. Richard-
son et al. (1999) focus on how to parameterize, estimate and score MAGs containing no
undirected arcs, allowing more than one latent node. Similar to our findings, this research
shows that every MAG of three variables is Markov equivalent to some DAG, and there
are six MAGs containing four variables that are not Markov equivalent to any DAG.6 For
learning the best MAG given sample data, a heuristic greedy search for linear models was
developed by Spirtes et al. (1997), which learns equivalence classes of MAGs (which will
be grouped into a PAG as the output) with latent variables. This greedy search starts
from a given MAG (e.g., an MAG with no arcs) and applies arc addition, removal or re-
versal to the current best MAG, if it improves the BIC score, and this process is repeated
until convergence. A simulation study shows that it performs well when the sample size
is large, the number of latent variables small, graphs sparse, and the data has no noise.7

6We were unaware of this work when the trigger program was developed.
7They do not offer evidence of a robust, practical learning method that works for large networks and

smaller sample sizes, however.

37

As our Algorithm 1 only considers one latent variable, the problem becomes much simpler
and it is the first practical attempt to search for triggers within DAGs to the best of our
knowledge.

We can see the two triggers in Table 4.3 correspond to the two MAGs (shown in Figure
4.5) which are not Markov equivalent to any DAG when considering only one bi-directional
arc (Richardson et al., 1999). As DAGs are special cases of MAGs, our search program
is a reasonable alternative to the MAG search algorithms. Our suggestion for overcoming
the fiercely exponential size of the latent DAG search space is to search in an initial phase
only for latent-indicating dependency structures of small size (five observed variables and
one latent), relying upon subsequent general causal discovery for learning more complex
latent subnetworks with multiple latent variables. In other words, our aim is to embed
trigger discovery in a practical general latent discovery pipeline.

So to conclude, all the dependency structures in the observed variables revealed as
triggers by this algorithm, or a generalization incorporating multiple latent variables, will
be better explained with latent variables than without. While it is not necessary to
take triggers into account explicitly in latent variable discovery, since random structural
mutations combined with standard metrics may well find them, they can be used to
advantage in the discovery process, by focusing it, making it more efficient and more likely
to find the right structure. In addition, as we noted above, a fully connected model can
always be parameterized to fit those dependency patterns, but the price in complexity may
well be too high. Smaller fully observed models will not fit the data exactly, and, whereas
that may not matter if the sample size is small, given a larger number of observations, the
more exactly fitting latent model must eventually become the better explanatory model.
Ideally, we should like to modify causal discovery algorithms to be able to identify such
cases and return the best explanatory models, rather than only the best observational
model. Another important finding is that all the triggers of five and six observed variables
have a subnet, which is the same as one of the two triggers with four observed variables
(shown in Table 4.3). This finding will greatly simplify the search process and make the
whole process more efficient, as we only need to save two triggers in advance and do
further discovery using them. Since CaMML is already able to take prior knowledge of
what experts believe the learned network should be, we can use such priors to bias CaMML
to favor a trigger in its search process, and let CaMML decide how to connect it to the
remaining network (see details in Chapter 5).

4.3 Learning Triggers With Causal Discovery Algorithms

Having developed our trigger-finder and applied it to small graphs, we were interested in
putting it into practice and comparing it with existing programs. The existing programs
which have systematically incorporated latent variable discovery from the beginning, and
which are, in fact, the most popular programs for causal discovery in general, come from
the Carnegie Mellon Philosophy group and are incorporated into TETRAD, namely PC
and FCI (see details in Section 3.3). PC in particular has been re-implemented in numerous
Bayesian network platforms. Hence, they are the natural foil against which to compare
anything we might produce. Our ultimate goal, mentioned above, is to incorporate latent
variable discovery into a metric-based program (see Chapter 5).

However, The PC and FCI algorithms do not generally return a single DAG, but a
hybrid graph (see details in Section 3.3). An arc between two nodes in such a hybrid
graph may be either undirected ’—’ or bi-directional ’↔’, which indicates the presence
of a latent common cause. Additionally, the graph produced by FCI may contain ’o–o’
or ’o→’. The circle represents an unknown relationship, which means it is not known
whether an arrowhead occurs at that end of the arc (Spirtes et al., 1993). So, in order to

38

True arc Learned arc Edit Distance

X → Y

X—Y 2
X → Y 0
X ← Y 4
X o→ Y 1
X ←o Y 3
X ↔ Y 2
X o–o Y 2

null 6

X ↔ Y

X—Y 4
X → Y 2
X ← Y 2
X o→ Y 1
X ←o Y 1
X ↔ Y 0
X o–o Y 2

null 6

null

X—Y 6
X → Y 6
X ← Y 6
X o→ Y 6
X ←o Y 6
X ↔ Y 6
X o–o Y 6

null 0

Table 4.4: Edit distance for PC and FCI output.

measure how close the models learned by PC and FCI are to the true model, we developed
a special version of the edit distance between graphs (shown in Table 4.4), which contains
the edit distances for how “close” each type of learned arc is to the true arc. The first two
columns show the true arc (e.g., X → Y) and learned arc (e.g., X ← Y) respectively and
the third column shows the edit distance (i.e., 4) between them.

Our trigger discovery algorithm is intended to be used as a pre-processing phase in
latent variable learning, however no existing latent variable discovery algorithm has at-
tempted to use triggers in the discovery process. So, for a proper comparator, we decided
to see how well a trigger filter as a front-end to PC would work, yielding Trigger-PC
(shown as Algorithm 2). If Trigger-PC finds a trigger pattern in the data, then it returns
that trigger structure, otherwise it returns whatever structure the PC algorithm returns,
while replacing any incorrect bi-directional arcs with undirected arcs. As Trigger-PC is an
extension of original PC, it also needs this special version of edit distance (see Table 4.4).
It returns a more specific structure than PC or FCI and reduces the chance of returning
a false positive latent node. To prove this, we have done some experiments to assess the
performance of the Trigger-PC algorithm in comparison with PC and FCI, and report
detailed results for all three algorithms below.

39

Algorithm 2 Trigger-PC Algorithm

1: Let D be the test dataset;
2: Let D labels be the node labels in D;
3: |D| be the number of variables in D;
4: Add one extra node label “H” (denotes a latent node) to D labels;
5: Let Triggers be the unlabeled triggers given |D|;
6: Use conditional χ2 tests to get the complete set of dependency matrices MD in D;
7: Let matchTrigger = false;
8: Let G be an empty DAG;
9: for each trigger t in Triggers do

10: Let L be all possible label assignments for t using D labels;
11: for each l in L do
12: Assign l to t, yield t labeled;
13: Generate the complete set of dependency matrices of t labeled using d-separation, yield Mt;
14: if Mt matches MD then
15: matchTrigger = true;
16: G = t labeled;
17: break;
18: end if
19: end for
20: if matchTrigger = true then
21: break;
22: end if
23: end for
24: if matchTrigger = true then
25: Output G;
26: end if
27: if matchTrigger = false then
28: Run PC Algorithm with input dataset D;
29: Let Gpc be the result structure produced by PC Algorithm;
30: if there exist any bi-directed arcs in Gpc then
31: Replace all bi-directed arcs by undirected arcs, yield Gpc∗;
32: Output Gpc∗;
33: end if
34: end if

4.4 Experiment

This section reports our experimental design and results comparing Trigger-PC with PC
and FCI. First, we describe how the test datasets were generated, being simulated from
different artificial BNs with a variety of overall arc strengths. Then we present the ex-
perimental results assessing these algorithms on latent variable discovery. Our procedure,
briefly, was:

1. Generate random networks of a given number of variables (both with and without
latents), with three categories of dependency: weak, medium and strong.

2. Generate artificial data sets using these networks.

3. Optimize the significance level (alpha) of the PC and FCI programs using the above.

4. Experimentally test and compare Trigger-PC, PC and FCI, report results, and per-
form a comprehensive analysis.

4.4.1 Generating Simulated Datasets of Triggers

The datasets we used were generated from all fully observed as well as all (single) latent
variable models with four or five observed variables, with both the observed and latent

40

variables having either two or three states.8 We wanted to test learning performance given
a range of dependency strengths, from weak to medium to strong, so we used a genetic
algorithm to find parameters reflecting these ranges, as determined by mutual information
(I) which can be used to measure dependency between two nodes (Nicholson and Jitnah,
1998). As a non-negative and symmetric measure, I(X,Y) reports the reduction in un-
certainty of node X from learning node Y and is zero if and only if X and Y are mutually
independent (Shannon, 1948; Pearl, 1988):

I(X,Y) =
∑
x,y

p(X,Y) log
p(X,Y)

p(X)p(Y)
(4.1)

Since p(X,Y) = p(X)p(Y |X), the equation can be rewritten as:

I(X,Y) =
∑
x

∑
y

p(X)p(Y |X) log
p(Y |X)

p(Y)
(4.2)

The purpose was to find good representative, but random, graphs with the three levels of
desired dependency strengths between variables, in order to test the learning algorithms
across different degrees of difficulty in recovering arcs.

To make the learning process more efficient, we set the arities for all nodes in a network
to be the same, either two or three. We randomly initialized all variables’ CPT parameters
for each individual graph and used a population of 100 individuals and ran the GA for
100 generations. We used each configuration (number of nodes and arities) three times,
the first two to obtain networks with the strongest and weakest (overall) dependencies
between parents and their children and the third time to obtain networks closest to the
average of those two degrees of strengths.

Number of observed variables Number of trigger structures Total number of simulated datasets

4 2 36

5 57 1026

Table 4.5: Number of simulated datasets for trigger.

Number of observed variables Number of DAG structures Total number of simulated datasets

4 24 432

5 268 4824

Table 4.6: Number of simulated datasets for DAG structures (no latent variable).

Number of observed nodes Contains a latent node Number of datasets Type

4 True 2× 2× 3× 3 = 36 Type 1

5 True 57× 2× 3× 3 = 1026 Type 2

4 False 24× 2× 3× 3 = 432 Type 3

5 False 268× 2× 3× 3 = 4824 Type 4

Table 4.7: The artificial datasets used for comparing Trigger-PC with PC and FCI.

For each of the three varieties of network, we generated artificial datasets of three
different sample sizes using Netica (Netica API, 2012): 100, 1000 and 10000. Per Table
4.5, we produced datasets (Type 1 and 2) for every trigger structure of four and five
observed variables. We did the same for all possible DAG structures (Type 3 and 4)
without latent variables (ignoring isolated nodes; see Table 4.6), in order to check for
false positives. The result was a set of about 6000 datasets for comparing our algorithms.

8The datasets are available at: https://sourceforge.net/projects/triggers-of-bn-latent-variable/

41

This large number of datasets resulted from: the differing number of states (either 2 or
3),9 arc strengths (low, medium and high) and sample sizes (100, 1000 and 10000). For
example, there are 57 trigger structures, 2 arities (two or three states), 3 arc strengths
(high, medium and low), 3 sample sizes (100, 1000, 10000) which give 57×2×3×3 = 1026
simulated datasets (details are shown in Table 4.7).

4.4.2 Experimental Results

As mentioned in the experimental procedure, we optimized the significance level alpha for
PC, FCI and Trigger-PC for the datasets we simulated.10 They have a default alpha level
(0.05), but the authors have in the past recommended optimizing the alpha level for the
task at hand, so here we did that. Our idea was to give the performance of the three
algorithms the benefit of any possible doubt. Given our artificial datasets, we optimized
the performance of each algorithm in terms of our version of edit distance between the
learned and generating models (see Table 4.4). The datasets were divided into a 50-50
split, that is half for finding the best alpha and the other half for testing.

Data type FCI PC Trigger-PC
Type 1 0.413 0.402 0.443
Type 2 0.16 0.131 0.138
Type 3 0.129 0.114 0.154
Type 4 0.129 0.126 0.141

Table 4.8: The optimized alpha of each algorithm.

Edit distance Result details

Algorithm: FCI
Best alpha: 0.16
Minimum edit distance: 21.282
Maximum edit distance: 23.638

Algorithm: PC
Best alpha: 0.131
Minimum edit distance: 21.011
Maximum edit distance: 22.996

Algorithm: Trigger-PC
Best alpha: 0.138
Minimum edit distance: 22.344
Maximum edit distance: 24.517

Table 4.9: Alpha optimization of Trigger cases (using Type 2 datasets).

9The arity of every node is the same, either 2 or 3, in each test network.
10The implementations of PC and FCI used in this experiment are from Tetrad (version 5.3.0) (Spirtes

et al., 2016).

42

Edit distance Result details

Algorithm: FCI
Best alpha: 0.114
Minimum edit distance: 13.365
Maximum edit distance: 14.481

Algorithm: PC
Best alpha: 0.129
Minimum edit distance: 13.861
Maximum edit distance: 14.986

Algorithm: Trigger-PC
Best alpha: 0.154
Minimum edit distance: 13.426
Maximum edit distance: 15.185

Table 4.10: Alpha optimization of DAG cases (using Type 3 datasets).

We generated 100 random samples from a uniform distribution ranging from 0.0 to
0.5 to find the best alpha values, which were evaluated against each type of dataset in
Table 4.7. We can see that the results (see Table 4.8) for the three algorithms are broadly
similar, with most optimal values are in the range of (0.10, 0.16), except the values for
Type 1. It may be due to the lack of test datasets compared to other types (there were
only 36/2 = 18 test datasets).

As an example, the edit distance results for each tested alpha of Type 2 datasets are
shown as in Table 4.9, where the x axis and y axis of the graphs shown in the table
represent values of tested alpha and values of average edit distance respectively, and the
green points represent all sampled values. We can see the ED lines of the three algorithms
are similar, and the lines are also similar in the results using Type 3 datasets shown
in Table 4.10. It is obvious that the default value 0.05 was not the best value, so this
optimization step was useful.

Finally, we were ready to test the three algorithms on another half of the datasets.
Datasets Type 1 and 2 were used to determine True Positive (TP) and False Negative
(FN) results (i.e., finding the real latent and missing the real latent, respectively), while
the Type 3 and 4 were used for False Positive (FP) and True Negative (TN) results.
Assume the latent variable in every trigger structure is the parent of node X and Y , we
used the following definitions:

• TP: The learned model has a bi-directional arc between X and Y .

• FN: The learned model lacks a bi-directional arc between X and Y .

• TN: The learned model has no bi-directional arcs.

• FP: The learned model has one or more bi-directional arcs.

43

We tested the three algorithms on different datasets against different metrics11 with
their corresponding optimized alphas and the default alpha 0.05. For the average ED
results, the mean values along with 95% confidence intervals (in brackets) using the t-
distribution are shown in the following tables, and we display the results with 95% binomial
proportion confidence intervals (in brackets) for other metrics. In order to make the results
more readable, bold text is used to indicate significantly different best result while italic
text denotes significantly different worst result of each row.12

FCI PC Trigger-PC

Average ED
20.708 20.005 20.121

(20.299, 21.118) (19.566, 20.444) (19.691, 20.551)

Accuracy
0.731 0.754 0.838

(0.716, 0.746) (0.739, 0.769) (0.825, 0.851)

FPR
0.166 0.137 0.008

(0.153, 0.179) (0.125, 0.149) (0.005, 0.011)

FNR
0.791 0.797 0.935

(0.777, 0.805) (0.783, 0.811) (0.926, 0.944)

Recall
0.209 0.203 0.065

(0.195, 0.223) (0.189, 0.217) (0.056, 0.074)

Precision
0.200 0.227 0.618

(0.186, 0.214) (0.212, 0.242) (0.601, 0.635)

Specificity
0.834 0.863 0.992

(0.821, 0.847) (0.851, 0.875) (0.989, 0.995)

F-score
0.204 0.214 0.118

(0.190, 0.218) (0.200, 0.228) (0.107, 0.129)

Table 4.11: Results using optimized alpha. See Table 4.13 for more detailed results of
different arc strengths (bold and italic represent significantly the best and worst results).

FCI PC Trigger-PC

Average ED
21.106 20.523 20.592

(20.687, 21.525) (20.076, 20.971) (20.152, 21.032)

Accuracy
0.752 0.772 0.841

(0.737, 0.767) (0.757, 0.787) (0.828, 0.854)

FPR
0.137 0.113 0.006

(0.125, 0.149) (0.102, 0.124) (0.003, 0.009)

FNR
0.808 0.808 0.927

(0.794, 0.822) (0.794, 0.822) (0.918, 0.936)

Recall
0.192 0.192 0.073

(0.178, 0.206) (0.178, 0.206) (0.064, 0.082)

Precision
0.217 0.252 0.691

(0.203, 0.231) (0.237, 0.267) (0.675, 0.707)

Specificity
0.863 0.887 0.994

(0.851, 0.875) (0.876, 0.898) (0.991, 0.997)

F-score
0.204 0.218 0.132

(0.190, 0.218) (0.204, 0.232) (0.120, 0.144)

Table 4.12: Results using default alpha 0.05. See Table 4.14 for more detailed results of
different arc strengths (bold and italic represent significantly the best and worst results).

With the optimized alpha, the overall performance (shown in Table 4.11) of PC and
FCI are quite similar. Neither are finding the majority of latent variables actually there,
but both are at least showing moderate FPR. Arguably, false positives are a worse offence
than false negatives, since false negatives leave the causal discovery process no worse off
than an algorithm that ignores latents, whereas a false positive will positively mislead
the causal discovery process. Some indication of this can be seen in Section 5.2 where
SEM’s false positive rate leads to an overall worse performance in most cases. To be sure,
the relative disvalue of false negatives and false positives is domain dependent, but this

11FPR and FNR represent False Positive Rate and False Negative Rate respectively, and we set β to 1.0
for all the F-score results in this chapter.

12We used an approximate (overly conservative) method for determining significant differences between
two groups by checking whether their confidence intervals overlap.

44

difference at least suggests that latent discovery trading off fewer false positives for more
false negatives will not be a bad thing in general. A more detailed investigation of this, in
either specific contexts or across contexts is beyond the scope of this dissertation, however.

As we expected, Trigger-PC has a much better performance with respect to the FPR
because of its pre-processing phase, but also produced more FN results. Compared to
PC and FCI, the overall performance of Trigger-PC looks more conservative in terms of
returning a positive result. Table 4.12 shows similar results with the default alpha 0.05;
the differences across tables are not significant.

Maximum arc strength Medium arc strength Minimum arc strength
FCI PC Trigger-PC FCI PC Trigger-PC FCI PC Trigger-PC

Average ED 15.490 14.400 14.400 15.854 14.878 15.366 30.781 30.737 30.596
Accuracy 0.768 0.791 0.843 0.703 0.738 0.839 0.722 0.731 0.833

FPR 0.139 0.110 0.006 0.215 0.171 0.017 0.143 0.130 0.001
FNR 0.701 0.707 0.920 0.713 0.718 0.885 0.960 0.966 1.000
Recall 0.299 0.293 0.080 0.287 0.282 0.115 0.040 0.034 0.000

Precision 0.299 0.347 0.737 0.210 0.246 0.571 0.053 0.050 0.000
Specificity 0.861 0.890 0.994 0.785 0.829 0.983 0.857 0.870 0.999

F-score 0.299 0.318 0.144 0.243 0.263 0.191 0.046 0.040 -

Table 4.13: Results of networks with different arc strengths using optimized alpha (bold
and italic represent significantly the best and worst results).

Maximum arc strength Medium arc strength Minimum arc strength
FCI PC Trigger-PC FCI PC Trigger-PC FCI PC Trigger-PC

Average ED 15.643 14.775 14.844 16.044 15.194 15.362 31.632 31.600 31.570
Accuracy 0.765 0.794 0.848 0.739 0.766 0.842 0.751 0.755 0.833

FPR 0.135 0.099 0.002 0.176 0.144 0.016 0.100 0.096 0.001
FNR 0.741 0.741 0.908 0.690 0.690 0.874 0.994 0.994 1.000
Recall 0.259 0.259 0.092 0.310 0.310 0.126 0.006 0.006 0.000

Precision 0.276 0.341 0.889 0.260 0.300 0.611 0.011 0.012 0.000
Specificity 0.865 0.901 0.998 0.824 0.856 0.984 0.900 0.904 0.999

F-score 0.267 0.294 0.167 0.283 0.305 0.209 0.008 0.008 -

Table 4.14: Results of networks with different arc strengths using default alpha 0.05 (bold
and italic represent significantly the best and worst results).

In order to better understand how the arc strength impacts these numbers, we show the
metrics for all arc strengths in Table 4.13 and 4.14) using the optimized alpha and default
alpha respectively (see Appendix B for the confidence intervals). As is to be expected, the
performance of all the algorithms degrades in general as the arc strength decreases. We
can see that Trigger-PC is finding far fewer latents than either PC or FCI for different
arc strengths, but when it asserts their existence, we can have much greater confidence
in the claim. Again, the results using the default alpha are only very slightly different.
As we indicated above, avoiding false positives, while having at least some true positives,
appears to be the more important goal in latent variable discovery. This suggests that
a subsequent general causal discovery program using Trigger as a preprocessing step can
apply the triggers with enhanced confidence as priors.

4.5 Summary

We have presented the first algorithm to search for and report latent variable triggers from
sample data: conditional probability structures that are better explained by latent variable
models than by any DAG constructed from the observed variables alone. For simplicity
and efficiency, we have limited this to looking for single latent variables at a time, although
that restriction can be removed with the consequence that the time complexity will grow
even higher. In our trigger discovery experiment, FCI and PC perform quite similarly.

45

They can both find latent variables when they are there, but with a weak recall rate of
around 20%. They also mostly avoid misidentifying ordinary models as latent variable
models, but still have FPR of around 11% to 16%. We have also applied the trigger
discovery algorithm directly in PC, yielding Trigger-PC, and compared the results to PC
and FCI. While on edit distance and F-score, overall accuracy measures, Trigger-PC does
a little worse than PC and FCI, one attribute is notable for applying the Trigger algorithm
to general causal discovery: it has a significantly lower FPR. This augurs well for the use
of triggers in a more robust causal discovery program, since the next stage will not be
mislead by false positives and can treat any positive latents found as more likely to be
actually there than anything nominated by PC or FCI.

The ideal evaluation of the performance across the confusion matrix would be to use
a cost/reward matrix to measure the expected value of each different kind of correct and
incorrect identification. However, since we are not dealing with a specific application, but
a general method, there is no such cost matrix. Still, the considerations above show it
is plausible that the worst outcome is a false positive. If latent discovery is meant to
somehow supplement or extend existing causal discovery methods (as we intend), then the
worst outcome is to positively mislead causal discovery to search in areas of a model space
that introduce non-existent structure. By contrast, failing to prompt such a search when
it is warranted (false negatives) will not degrade existing discovery methods. In any case,
we consider these preliminary results for trigger discovery to be quite promising.

Our next step will be to implement the trigger discovery as a pre-processing phase to
CaMML. That is when a trigger is found, a latent variable will be created and added to
CaMML’s sampling process, whilst making the current MML score compatible with latent
variables due to the lack of data. Of course, reparameterization will be needed during the
MCMC sampling whenever the current working structure changes, and this is what we
will look at next chapter.

46

Chapter 5

EM-CaMML for Latent Variable
Models

Causal Bayesian networks allow people to model systems under uncertainty in a humanly
intuitive fashion. Causal discovery supports the automated development of such models
from sample data, bypassing expert elicitation and its “knowledge bottleneck”. While
sample data is available for many problems, often some variables cannot be directly mea-
sured, or perhaps people are unaware of some relevant variables. Somewhat surprisingly,
there is not a great deal of research specifically on discovering latent variable causal mod-
els, even though latent variables can often significantly reduce overall model complexity.
For some specific causal structures with latents, the conditional dependencies they rep-
resent can only be satisfied by finding the latent node, or by introducing spurious causal
arcs between observed variables. Here we introduce a new end-to-end procedure, called
EM-CaMML, which explicitly detects the existence of latent variables without requiring
any prior knowledge and which returns a fully parameterized causal Bayesian net. To the
best of our knowledge, this is the first practical program that performs metric-based la-
tent causal model discovery explicitly, by directly assessing the value of latent submodels.
Finally, we demonstrate experimentally the performance and effectiveness of our method.

The beginning of this chapter shows an overview of how EM-CaMML is designed by
explaining the high level workflow, followed by a new extension of the MML metric for
scoring causal models with latent variables, presented in Section 5.1.1. Then we demon-
strate how the EM algorithm is integrated into EM-CaMML, with a comparison between
two approaches, EM inside and outside, in Section 5.1.2. Then a complete EM-CaMML
workflow is shown in Section 5.1.3. In Section 5.2, we include the experiments which com-
pare EM-CaMML with several well-known latent variable learners on four types of test
networks. Finally, the software development work of EM-CaMML is presented in Section
5.3.

5.1 EM-CaMML Algorithm Design

There has been great interest in learning causal BNs from data, as BNs are uniquely well
suited to representing causal structures, given causal relations can be directly captured
by the structure of the network (Korb and Nicholson, 2010). Causal discovery aims to
construct a BN which has the most probable causal relationships given the joint probability
distribution represented by the data. Since this is a difficult task, most methods allow the
use of at least some prior knowledge from a domain expert in the form of either hard or
soft (i.e., probabilistic) constraints.

The constraint learners PC and FCI are both capable of discovering latent, as well as
fully observed, causal structures (see details in Section 3.3). FCI was designed explicitly

47

for discovering latents; PC was not, however it returns undirected arcs which are naturally
interpreted as agnosticism between the two possible directions, along with the possibility
of a hidden common cause (Spirtes et al., 1993). Most metric-based learners, on the
other hand, simply do not accommodate latent variable discovery. However, when they
do, they require the user to specify where possible latent variables might show up. For
example, the best known such algorithm, SEM, requires an initial structure be specified
(see details in Section 3.4.2), linking in any latents as common causes to a subset of
observed variables (Friedman et al., 1997). Then SEM will learn the parameters of the
model, using expectation maximization, while finding the structure (adding or dropping
arcs) which best suits the data, by minimizing an MDL score (Friedman et al., 1997;
Friedman and Goldszmidt, 1998). We can then say SEM has detected a latent node, if the
latent volunteered by the user is connected in SEM’s final model. Causal discovery with
humans positing in advance what the model space might look like, whether it has latent
variables and if so, how many, is not nearly as useful as a fully automated process, which
is what we are aiming at.

Figure 5.1: A triggering submodel with 6 observed nodes containing Big-W (node “H”
represents the latent).

As reported above, we have a trigger program and report all trigger models with ≤ k
observed variables, finding that all triggers with 5 and 6 observed nodes have either Big-W
or Covered Big-W as a subnet (see Section 4.2).1 For example, we found the 6-node graph
of Figure 5.1 which incorporates Big-W. We used this to significantly speed up the search
for triggers, considering that there are already 2525 different triggers for 6-node structures,
and the number of triggers grows exponentially from there. Another practical decision we
made early was to look only for single latent-variable triggers, as multiple hidden-node
triggers would be much harder to search for. Since we approach latent detection as a
preprocessing step to general causal discovery, there remains the opportunity to stitch
multiple latents together in a more complex causal structures later on, as described in
Chapter 6.

For the preprocessing step (discovering triggers), we search through partitions of the
dataset representing sets of four observed variables, performing χ2 tests to determine
whether the conditional dependencies estimated from the data match the dependencies
expected for a trigger, either Big-W or Covered Big-W.2 When they are found, latent
variables are added to the search space for subsequent causal discovery. The arcs indicated
by a latent trigger structure are, in particular, added as soft (probabilistic) constraints,
allowing the EM-CaMML to add or remove them, given a strong enough signal from the
data.

As mentioned in Section 3.4.3, CaMML is metric-based algorithm which uses MCMC
search (Korb and Nicholson, 2010; O’Donnell, 2010) for finding the best causal model given
an observational dataset, as measured by MML. It samples from a posterior distribution

1Due to time restrictions, we have not produced triggers with 7 nodes, but have only found 7-observed
node triggers having either Big-W or Covered Big-W as subnets.

2The significance level (alpha) we used for trigger detection is 0.05, which is also the value we used for
PC and FCI in our experiments.

48

over the causal model space, represented by totally ordered models (or TOMs, which are
linear extensions of DAGs). EM-CaMML extends CaMML by conducting its sampling
over a model space extended by one or more latent variables, assuming the Trigger pre-
processing step has added them. EM-CaMML gives a CPT to the latent node, using
random parameters that represent a strength of dependency between it and its children,
as measured by mutual information. Such strength was optimized for recovering latent
structures in terms of F-score, prior to the main experiments reported here (See Section
5.2.3 for details of that optimization study). EM is used to re-estimate parameters for
any latent node and its children as an internal loop during the larger MCMC sampling
process. The MCMC sampling then uses the MML scores of the current model and its
neighbors to find the next sampled model from the neighboring candidates, in the same
manner as the original CaMML (Korb and Nicholson, 2010), except that the MML score is
adjusted to reflect the presence of the latent variables, as described in Section 5.1.1. The
next model found will be used to update the structure for rerunning EM to re-estimate
parameters associated with latent variables. These cycles continue until a specified num-
ber of iterations have taken place, when the user can see the best MML model or a set of
the top MML models, together with their equivalence classes.

There were several difficulties we overcame in terms of EM-CaMML implementation
and experiment work. First, how to make a practical latent discovery and learning pro-
gram which can automatically finish the end to end process without human intervention is
a challenging job. This required significant time learning CaMML and its CDMS platform
(Comley et al., 2003; Allison, 2005), and adapting the latent node detection and learn-
ing modules into the sizeable CaMML project in a development and testing loop. Also,
different learners have their own theoretical basis and there is no common definition of a
“positive result”, so how to process the results from each benchmark learner to make a
fair comparison was certainly another challenge.

5.1.1 A New Score Metric for Latent Nodes

Inspired by how the EM algorithm (Dempster et al., 1977) is used in Friedman’s SEM
algorithm (Friedman, 1998; Friedman et al., 1997), we applied EM for computing param-
eters associated with latent nodes. The EM algorithm starts with a given model structure
and initial random model parameters, then runs the Expectation step (E step) and the
Maximization step (M step) in a loop until convergence. The E step determines the prob-
ability (expected count) of each possible value of the latent variable; the M step then uses
such expected counts to re-estimate the model parameters (see details in Section 3.4.1).
However, such expected counts have no place in the existing MML metric. Instead, we use
an extension of the current MML approximation (adaptive code) (O’Donnell, 2010; Wal-
lace, 2005) implemented in CaMML. The MML adaptive code is the sum of the structure
cost (see Equation 3.1) and the message length of each node’s encoded CPT (see Equation
3.2). For latent nodes, the structure cost equation needs no changes, other than increas-
ing the “k” by the number of such nodes. In dealing with latent nodes we have no data,
and so the counts referred to in Equation 3.2 do not exist. However, we can use the soft
counts generated by EM for (N(pai) + |X|− 1) and N(pai, xi) as real-valued estimates for
latent nodes. To be specific, we take each N(pai) that refers to a latent parent and split it
into j versions of N(pai, latentj) (for every jth state of the latent), and multiply each by
EM’s expected proportions for pai + latentj (and do similarly for N(pai, xi)). Since EM
produces soft counts that can contain fractional numbers rather than discrete counts, so
we use the Gamma function to replace the factorial. This yields a “latent adaptive code”:3

3Note that this metric works for any fully observed submodel.

49

CPTCost∗ =
|pa| × (|X| − 1)

2
× ln

πe

6
+

|pa|∑
pai

ln

(
Γ(N(pai) + |X|))

(|X| − 1)!×
∏|X|

xi
Γ(N(pai, xi) + 1)

)
(5.1)

Figure 5.2: Example of Expected Counts.

We take as an example the Big-W structure shown in Figure 3.1 which contains four
observed nodes W,X, Y, Z and a latent node H, and assume each node (including the
latent node) is binary with states T and F , and has sample data the same as the discrete
data shown in Figure 5.2. There are seven rows of observed data over nodes W,X, Y, Z and
the weights (expectations or soft counts) over missing values (per each H instantiation)
are shown as in the first column. So in this case, the CPT probabilities (based on the
current weights) of node X will be:

P (X = T |H = T,W = T) = E(X = T,H = T,W = T)/E(H = T,W = T)

= (0.9 + 0.9)/(0.2 + 0.9 + 0.5 + 0.9 + 0.2) ≈ 0.667

P (X = F |H = T,W = T) = E(X = F,H = T,W = T)/E(H = T,W = T)

= (0.2 + 0.5 + 0.2)/(0.2 + 0.9 + 0.5 + 0.9 + 0.2) ≈ 0.333

Where function “E” represents the expected counts of corresponding node instantiations.
Similarly, the other six probability values in the CPT of node X are:

P (X = T |H = T,W = F) = 0.7/(0.7 + 0.6) ≈ 0.538

P (X = F |H = T,W = F) = 0.6/(0.7 + 0.6) ≈ 0.462

P (X = T |H = F,W = T) = (0.1 + 0.1)/(0.8 + 0.1 + 0.5 + 0.1 + 0.8) ≈ 0.087

P (X = F |H = F,W = T) = (0.8 + 0.5 + 0.8)/(0.8 + 0.1 + 0.5 + 0.1 + 0.8) ≈ 0.913

P (X = T |H = F,W = F) = 0.3/(0.3 + 0.4) ≈ 0.429

P (X = F |H = F,W = F) = 0.4/(0.3 + 0.4) ≈ 0.571

50

For node H and W , given they have no parents, then their CPT probabilities will be:

P (H = T) = E(H = T)/(E(H = T) + E(H = F))

= (0.2 + 0.7 + 0.9 + 0.5 + 0.6 + 0.9 + 0.2)/(0.2 + 0.8 + 0.7 + 0.3 + 0.9 + 0.1

+ 0.5 + 0.5 + 0.6 + 0.4 + 0.9 + 0.1 + 0.2 + 0.8) ≈ 0.571

P (H = F) = 1.0− P (H = T) ≈ 0.429

P (W = T) = E(W = T)/(E(W = T) + E(W = F))

= (0.2 + 0.8 + 0.9 + 0.1 + 0.5 + 0.5 + 0.9 + 0.1 + 0.2 + 0.8)/(0.2 + 0.8 + 0.7

+ 0.3 + 0.9 + 0.1 + 0.5 + 0.5 + 0.6 + 0.4 + 0.9 + 0.1 + 0.2 + 0.8) ≈ 0.714

P (W = F) = 1.0− P (W = T) ≈ 0.286

Thus for node X, as it has four parent state combinations: {H = T,W = T}, {H = F,W =

T}, {H = T,W = F}, {H = F,W = F}, we can calculate its CPT cost as:

CPT cost X =
4× (2− 1)

2
× ln(

3.142× 2.718

6
)

+ ln(
Γ(N(H = T,W = T) + 2)

(2− 1)!× Γ(N((H = T,W = T,X = T)) + 1)× Γ(N((H = T,W = T,X = F)) + 1)
)

+ ln(
Γ(N(H = T,W = F) + 2)

(2− 1)!× Γ(N((H = T,W = F,X = T)) + 1)× Γ(N((H = T,W = F,X = F)) + 1)
)

+ ln(
Γ(N(H = F,W = T) + 2)

(2− 1)!× Γ(N((H = F,W = T,X = T)) + 1)× Γ(N((H = F,W = T,X = F)) + 1)
)

+ ln(
Γ(N(H = F,W = F) + 2)

(2− 1)!× Γ(N((H = F,W = F,X = T)) + 1)× Γ(N((H = F,W = F,X = F)) + 1)
)

≈ 0.706 + ln(
Γ((0.2 + 0.9 + 0.5 + 0.9 + 0.2) + 2)

Γ((0.9 + 0.9) + 1)× Γ((0.2 + 0.5 + 0.2) + 1)
) + ln(

Γ((0.7 + 0.6) + 2)

Γ(0.7 + 1)× Γ(0.6 + 1)
)

+ ln(
Γ((0.8 + 0.1 + 0.5 + 0.1 + 0.8) + 2)

Γ((0.1 + 0.1) + 1)× Γ((0.8 + 0.5 + 0.8) + 1)
) + ln(

Γ((0.3 + 0.4) + 2)

Γ(0.3 + 1)× Γ(0.4 + 1)
)

≈ 6.302

This new version of MML is applied in our EM-CaMML, as the metric to apply to all
sampled TOMs. In the actual implementation, the MML cost of one node in the same
local subnet will not be calculated twice. In other words, if the dataset does not change
then the MML score of a node X will always be the same unless the parents of X have
changed. So the MML score of each distinct subnet structure per node will be cached, and
when evaluating a new TOM, the MML score of each node will not be calculated again
unless the cache does not contain the corresponding information. Note that the cache is
maintained within each EM iteration, and whilst we could extend it across EM iterations,
the current performance is already acceptable.

5.1.2 EM Algorithm Integration

The Metropolis-Hasting sampling used by EM-CaMML (as in CaMML), produces an es-
timated posterior distribution of the model space, which can be used to find the highest
posterior probability equivalence class, model or region in the model space. The origi-
nal version of CaMML assumes complete data, hence parameterization is straightforward.
After each candidate TOM is generated, maximum likelihood estimation is used to pa-
rameterize the network. While EM-CaMML also assumes complete data for observed
variables, latent variables of course have no direct data associated with them. To deal
with this, we use EM to perform the parameterization instead. We first approached the
integration of EM parameterization by embedding it within the MCMC process (“EM in-
side” below). Thus, where CaMML would generate a candidate structure in each MCMC
step and then parameterize via maximizing likelihood, EM-CaMML did the same but

51

performed an EM parameterization instead. This proved very slow and inefficient, as EM
convergence (which can often take many iterations) was required in every MCMC step.4

Following Friedman (1998), we re-arranged the algorithm so that the structure search
occurs inside the EM process (“EM outside”). In order to compare the time complexity of
each, let D be the number of rows in the data, K be the number of nodes including a latent
node, Lem be the approximate number of iterations for EM to converge, Lmcmc be the
approximate number of iterations for MCMC to finish, and O(I) be the time complexity
of performing inferences in EM,5 then a rough estimate of time complexity by breaking
the process into “Sampling” and “Scoring” of MCMC is:

O(MCMC) = Lmcmc × (O(Sampling) +O(Scoring)) = Lmcmc × (K ×D + 1)

= Lmcmc ×K ×D

as the complexity of sampling dominates the whole process of MCMC. Then for EM
outside, let “Filling” represent the operation of assigning expected counts to data in the
E step, then the time complexity of EM outside will be:

O(EMoutside) = Lem ×O(E step) + Lem ×O(M step) + Lem ×O(MCMC)

= Lem ×D × (O(I) +O(Filling)) + Lem ×D + Lem × Lmcmc ×K ×D
= Lem ×D ×O(I) + Lem ×D + Lem × Lmcmc ×K ×D
= Lem ×D ×O(I)

if we assume O(I)� Lmcmc ×K. Then for the EM inside, the time complexity will be:

O(EMinside) = Lmcmc × (O(E step) +O(M step)) +O(MCMC)

= Lmcmc × (Lem × (D ×O(I)) + Lem ×D) + Lmcmc ×K ×D
= Lmcmc × Lem ×D ×O(I) + Lmcmc × Lem ×D + Lmcmc ×K ×D
= Lmcmc × Lem ×D ×O(I)

if we assume Lem ×O(I)� K. Finally we can get the ratio:

O(EMinside)/O(EMoutside) = Lmcmc × Lem ×D ×O(I)/Lem ×D ×O(I) = Lmcmc

This result tells us the ratio is a constant Lmcmc, which means the ratio is roughly the
number of MCMC iterations. The only assumption here is that that time complexity of
inferences in EM’s E step is much greater than the MCMC sampling process. This is fair
as the inferences requiring a significant number of conditional probability calculations are
obviously more complex than performing a number of MCMC sampling iterations (which
consist of TOM mutations and hashing with constant time complexity).

To validate our theoretical result, we performed experiments to show the difference of
execution time between EM inside and EM outside. By default, there are 33 Simulated
Annealing epochs and 200000 MCMC epochs by default, so EM inside will not finish in
a practical time. Thus we did the test using 100, 500, 1000, 2000 MCMC epochs (this will
decide how many TOMs are sampled). The test networks we used are Space Mission
(Matheson, 1990) and Earthquake (Korb and Nicholson, 2010), shown as in Figure 5.3a
and 5.3b respectively. We selected these two networks as the Space Mission network
has the same structure as the Big-W trigger and the Earthquake network is the same as

4This was true even though our EM takes the convergence point from the EM used in previous MCMC
step instead of being reinitialized by random parameters every time, speeding up the process somewhat.

5This is an NP-hard problem (Cooper, 1990), and the approximate inference of some special cases can
be performed with time polynomial complexity, but the general problem of approximating conditional
probabilities with BNs is still NP-hard (Dagum and Luby, 1993).

52

(a) The Space Mission net. (b) The earthquake net.

Figure 5.3: Test networks for EM integration experiment (node “H” represents the latent).

Friedman’s example of a model that can be simplified with a latent node (see Figure 1.1).
The test data6 has five different sample sizes (100, 500, 1000, 2000, 5000), and we simulated
30 datasets per each sample size using forward sampling in Netica (Netica API, 2012).

Figure 5.4: The execution time of EM inside and outside of Space Mission network (x and
y axis represent sample size and execution time respectively).

The two versions of EM-CaMML were run under the same conditions for this study
(i.e., maximum iterations of 30 and a threshold of 0.001). EM outside started by using a
random initial structure while EM inside starts by an empty structure (which is the default
in the CaMML’s Simulated Annealing). We ran each of the two implementations once per
dataset, and all average execution time results (shown in 95% confidence intervals) are
shown in Figure 5.4 and 5.5 of the two networks respectively. We use the x axis to represent
the sample size and y axis to represent the execution time (seconds).

From the graphs we can see that the general execution time of EM inside is far greater
than EM outside and also grows dramatically. In order to verify the theoretical ratio

6The test data here is also part of the datasets used in Section 5.2.

53

Figure 5.5: The execution time of EM inside and outside of Earthquake network (x and y
axis represent sample size and execution time respectively).

Figure 5.6: The execution time ratio of EM inside and outside by sample size (x and y
axis represent number of MCMC iterations and the ratio respectively).

Figure 5.7: The execution time ratio of EM inside and outside (x and y axis represent
number of MCMC iterations and the ratio respectively).

54

Lmcmc, we also derived the ratio (in 95% confidence intervals) in practice against the
number of iterations. Figure 5.6 and Figure 5.7 show the ratios in terms of different
sample sizes and the overall ratio for the two test networks respectively. We use the
x axis to represent the number of MCMC iterations and y axis to represent the ratio in
practice. These curves demonstrate the ratio is either linear or greater than linear for both
graphs, as the results may be affected by data cleaning and correctness, especially when
the sample size is small. So in general, all the results convinced us to adopt EM outside
for the remainder of our study. Finally, we implemented the EM-CaMML algorithm as
follows:

1. Start with a candidate latent structure.

2. Start with randomised parameters for the latent node.

3. LOOP: Use the candidate parameterized model to complete the data for the latent
variable.

4. Use the completed data to search over the model space as per normal. Identify the
best candidate structure, and parameterize using the completed data.

5. IF latent variable parameter changes below threshold, STOP.

6. ELSE CONTINUE.

After we decided how to integrate EM, then the next question is whether EM-CaMML
converges. As the EM used in EM-CaMML is maximising the likelihood, if we assume the
model learned is M given dataset D, then the posterior probability of M given D will be:

P (M |D) = P (D|M)× P (M)/P (D) (5.2)

Based on Bayes’ rule, as the evidence P (D) is a constant, maximizing the posterior
probability P (M |D) equivalents to maximizing the likelihood P (D|M). If there is no latent
node, there is no need to run EM, as the EM-CaMML will converge due to the properties
of the original CaMML. When there is a latent node, EM-CaMML is trying to find the best
model at M step, in regards to the expected counts learned in the E step. Then E step
of the next iteration re-estimates the expected counts given the model learned from the
previous iteration. So in EM-CaMML, M step tells us what the best model should be from
the given the expected counts and E step tells what the expected counts should be given
the current best model. If the estimation of the expected counts is a local maximum, then
the model learned in M step will be the best model in terms of the local maximum and
the E step in the next iteration will not improve the expected counts estimation much,
thus EM-CaMML converging to a local maximum. Thus the MML will be improved as
well, as we assume the best model has the minimum encoding length. In practice, the
result structure will not change much after a few iterations.

However, maximising the posterior in each EM iteration does not necessarily maximize
the likelihood. The M step updates the structure and the E step updates the expected
counts based on the structure by maximising the likelihood in our implementation. This
means the structure learned in every iteration will impact both the likelihood maximization
in the current iteration and the expected counts used in the next iteration. In other words,
EM-CaMML is trying to maximize the posterior and likelihood at the same time, as if the
EM converges, then the EM-CaMML will converge.

55

5.1.3 EM-CaMML Workflow

We now present the complete high level workflow (shown as in Figure 5.8) for EM-CaMML
in this section. It starts with a data pre-processing module to validate the input data
and compute required statistics (e.g., conditional dependencies between every two nodes).
Then the latent node detection module looks for triggers. If found, the trigger structure
is passed to EM-CaMML, using soft arc constraints (O’Donnell, 2010) with the optimized
prior probability. Such optimized values can be given manually or we can apply some
methods to get the best priors (e.g., see Section 5.2.3). Then EM-CaMML will perform
the EM-MCMC paired iteration described above to estimate a posterior distribution over
the latent model space.

Figure 5.8: EM-CaMML workflow.

If no trigger is matched, CaMML can be run without EM, or, alternatively, latent
nodes can nevertheless be posited and passed to EM-CaMML under a variety of scenarios.
The latter would be justified if we have any reason to suspect the presence of latents other
than trigger patterns in the data. Since EM-CaMML is fully capable of disconnecting
the latent variables if the data do not support them, there is in principle nothing lost by
doing so other than time. For our studies, we chose the latter path, using a few different
initializations for connecting the posited latent node (initialization details are in Section
5.2.1). These different runs of EM-CaMML were compared with the best fully observed
models (by running the original CaMML), and the best models and model equivalence
classes, as judged by MML. In order for the MML comparison to be fair, the MML cost
of the latent model ignored the “data cost” associated with the latent nodes themselves
(these are hypothetical observations of latent nodes based upon EM estimated parameters
and used in the MCMC search). The MML cost associated with latent nodes included the
structure cost and parameters, of course.

Since we choose random parameters for the generating networks, these created weak
dependencies between latent nodes and observed nodes, as in Friedman’s study (Friedman
et al., 1997). So, again following Friedman, we fixed the structure and ran standard EM
for a number of iterations (we used 10 iterations) to obtain stronger dependencies before
running the main experiment (Friedman et al., 1997), otherwise the latent nodes were
always disconnected.

Another thing we should mention is the EM-CaMML’s sampling space. As in the
original CaMML, EM-CaMML performs a simulated annealing search to find a good model
as a starting point and then Metropolis-Hastings sampling over the TOM space to estimate
a posterior distribution over DAGs, SECs and MMLECs (the latter two are statistical
equivalence classes of models). For N nodes, EM-CaMML performs MCMC with, by
default, 200 × N3 samples of TOMs during each run. During sampling, EM-CaMML
generates a new candidate TOM by performing a mutation on the current TOM, by
adding, deleting or reversing arcs; it then accepts or rejects the candidate for the next
sample per the Metropolis-Hastings algorithm; finally, it updates its DAG and equivalence
class counts. In these steps, described at this level, there is no difference between EM-
CaMML and the original CaMML (as we described in Section 3.4.3), although, to be sure,

56

the set of mutations have effectively been “extended” to include connections to latent
nodes.

5.2 Experiment

We evaluated EM-CaMML in comparison with the PC, FCI and SEM algorithms, which
are the only other widely available causal discovery algorithms incorporating latent vari-
ables. Because we are only learning small latent structures (for the purpose of testing
how the trigger detect function might contribute to general causal discovery), some of our
test networks were proper subnets of original networks. In addition, Covered Big-W cases
were difficult to find in the real-life networks we examined, so we reused Big-W networks
by simply adding an additional covering arc.7 Of course, we are interested in testing the
EM-CaMML process with both positive (latent) and negative (non-latent) cases, hence,
we used an equal number of models with latent nodes and with no latents.

Parameter Value
Network Type Big-W, Cov Big-W, Latent, No Latent

Number of Obs Nodes 4, 5, 6, 7
Sample Size 100, 500, 1000, 2000, 5000

Number of Runs 30 per sample size

Table 5.1: Experiment configurations for comparing EM-CaMML with PC, FCI and SEM.

We used four generic types of real world networks for testing: those containing a Big-
W, Covered Big-W, other latent structures and nets without latents (i.e., fully observed
nets). These ranged from four to seven observed variables, plus a possible latent node.
Because most of the original networks have more than 7 nodes, which is more than the
size of the discovered triggers, we select a proper subnet from each network whose size is
less than or equal to 7 (see Appendix C for the subnet structures). Then, each subnet
was used to generate thirty samples in sizes 100, 500, 1000, 2000 and 5000 using forward
sampling in Netica (Netica API, 2012). In total, for each network, there were 5×30 = 150
datasets generated,8 shown in Table 5.1.

5.2.1 Initial Structure Selection

The constraint-based algorithms PC and FCI require no initial structure to find latent
models, as their discovery uses only local conditional dependency tests. Both EM-CaMML
and SEM start with an initial structure indicating how any latent variables might be
related to observed variables. The EM process is very sensitive to this initial structure, so
we tested with three distinct ways of initializing structures for EM-CaMML and SEM.

The first initialization (ini1) we used was to set a latent node as the parent of every
observed node, which mimics Friedman’s approach with SEM and is like factor analysis.
The second initialization (ini2) used conditional dependency tests to allocate observed
variables into two groups: parents of the latent variable, which were marginally indepen-
dent of each other and children of the latent, which were marginally interdependent. These
initializations play a role similar to the Big-W triggers, but are given much weaker priors
— so such initialization methods can be called “soft trigger” methods. Big-W requires
explicit conditional dependency tests; if the data complies with such dependencies, then a
hard trigger is learned, in addition to the connections to and between observed nodes. In

7We randomly generated parameters for each affected node, while maintaining the original marginal
distributions.

8The test datasets are available at: https://sourceforge.net/projects/em-camml-test-data/

57

contrast, a soft trigger is used just for getting a relatively good starting point for a latent
discovery algorithm, and the arcs (having a weak prior) can be altered easily during the
learning process of the algorithm. The last method (ini3) used random structures as a
starting point, but with some constraints: the latent should not be a leaf (no children);
it should not be connected as an intermediate node in a chain (with no other connec-
tions); and it should not be disconnected. The reason for these constraints is that the
latent node should play a significant role in the causal structure, and in these three cases
its contribution can be marginalized out. So we used these three quite different initial
structures in the experiment to get a good view of how much the starting point can affect
the results. Of course for EM-CaMML, if a trigger was detected in preprocessing, then
none of these initializations were used, but instead the trigger itself was used as a starting
point. For SEM, while ini1 corresponds to Friedman’s initialization, we applied all three
initializations to give a proper range of comparisons with EM-CaMML. The latent node
was given the same arity (number of states) as in the true network (i.e., favoring SEM
with the truth about arity).

Figure 5.9: Initializations 1, 2 and 3 (node “H” represents the latent).

For example, in Figure 5.9 there are four observed variables and a latent node H. So
ini1 makes them all children of the common cause latent node H (as the first structure in
Figure 5.9). Based on ini1, if any nodes are marginally independent, then they become
parents of H in ini2. The rightmost ini3 provides EM-CaMML with a random initial
structure.

5.2.2 Generating Complete DAGs for PC and FCI

As constraint-based algorithms, PC and FCI learn causal models by using local conditional
dependency tests. The resultant structure can contain double headed arrows, e.g., X ↔ Y ,
which indicate the detection of unmeasured common causes. Apart from these, PC could
return some undirected arcs, e.g., X—Y . FCI may report open arrows, e.g., X o→ Y ,
X o–o Y , which mean the algorithm could not determine the arc direction (Spirtes et al.,
1993). Such incompleteness prevents us from learning the model’s parameters, so we need
to complete them in order to compare learned models across algorithms.

Figure 5.10: Example conversion of bi-directional cliques into latent nodes (H1 and H2).

58

PC and FCI may also return more than one double-headed arc, indicating multiple la-
tent nodes. Since any clique connected by double-headed arcs can have their dependencies
accounted for by a single latent node just as well, but more simply, than the suggested
number of hidden common causes. For experimental comparison that is what we decided
to do, i.e., introduce one latent node as the hidden common cause for each such clique (in-
cluding two-node cliques, of course). For example, in Figure 5.10, the left graph contains
two bi-directional cliques: {X1, X2, X5, X6} and {X2, X3, X5}, and the right graph is the
result of replacing the two bi-directional cliques by two latent nodes H1 and H2 along with
new arcs in red.

Of course, a structure could contain only one bi-directional arc, which is obviously a
bi-directional clique that can be turned into a latent node. We can easily demonstrate
that this is a genuine simplification for any case where multiple latent nodes are an issue.
So all the bi-directional cliques of PC and FCI outputs will be transformed into latent
nodes before evaluation.

Lemma 5.2.1. Given a bi-directional clique Q over n > 1 observed nodes {X1, X2, ...Xn}
(which contains n(n − 1)/2 arcs), a DAG Q′ with a latent node H as the root parent of
all observed variables in {X1, X2, ...Xn} is the simplest DAG in {X1, X2, ...Xn, H} having
the same observable conditional dependencies among {X1, X2, ...Xn} as Q, where simpler
means here having fewer arcs.

Proof. The observable conditional dependencies in Q′ are the same as in Q, since con-
ditioning on any subset of observed variables {X1, X2, ...Xn}. The remaining nodes are
dependent in both Q′ and Q, and there are no independencies (assuming faithfulness).
The only fully observed network having this property is the clique Q itself, which has
n(n − 1)/2 ≥ n arcs (for n = 2 the inequality doesn’t hold, however in that case there
is no issue of introducing more than one latent node). Any alternative latent variable
model with exactly n(n − 1)/2 arcs is not simpler than Q′ in the relevant sense. As Q′

has n arcs, any structure simpler than Q′ will have something missing (i.e., arcs, depen-
dencies). If Xk is disconnected, then it is independent of other observed nodes and the
set of conditional dependencies has not been preserved. If Xk is not disconnected, then
it must be connected to some other observed node. Since we’re talking about a latent
model (the fully observed case was handled above), and the number of arcs is fewer than
n(n−1)/2, this implies that some other observed variable is disconnected, when again the
set of conditional dependencies is not preserved.

True Arc Learned Arc Lower Bound Upper bound

Null — → or ← → or ←
Null o→ → →
Null o−o → or ← → or ←
→ — → ←
→ o→ → →
→ o−o → ←

Table 5.2: Arc orientation rules for PC and FCI output.

After replacing bi-directional arc cliques by latent nodes we need to resolve any remain-
ing incompleteness in the returned graphs. Since those graphs are ambiguous regarding
the generated DAG, we produced lower and upper bound solutions, that is, permissible
graph completions which were the closest or furthest from the true graph in terms of edit
distance. This bounds the measurement of performance of the algorithms from best to
worst respectively in edit distance (see Section 3.5.1). If the two nodes were not connected

59

True arc Learned arc Distance

X → Y
X → Y 0
X ← Y 1

null 1

null
X → Y 1
X ← Y 1

null 0

Table 5.3: Edit distance rules used in this thesis.

in the true structure, then we uniformly randomly oriented the partial arcs “—” and “o–
o”. Of course, all the above rules were subject to the constraint of avoiding introducing
any cycle or creating or destroying an uncovered v-structure. In particular, our orientation
rules are shown in Table 5.2. Finally, after we fixed the PC and FCI output structures,
we defined the rules of edit distance (shown as Table 5.3) we use for all experiments that
can be directly applied to each algorithm.

5.2.3 Arc Prior Probability Optimization

Figure 5.11: Process of arc prior probability optimisation.

To optimise the threshold choice for the trigger detection program as well as the arc
prior between the nodes that match a trigger, we did a simple test by trying different
thresholds and arc priors. Note that we are only optimising the arc prior if and only if a
trigger is detected. If no trigger is detected (shown as “Stop” in Figure 5.11), then in the
actual implementation, EM-CaMML will continue with the remaining processes (shown as
the path after no trigger matched in Figure 5.8) which needs no arc priors. To be specific,
there are two different tests that occur at two different stages (or levels) of the process:

1. Find the best threshold for the trigger detect function (Level 1).

2. If a trigger is detected, find the best arc prior (probability) for the subnet that
matches the trigger (Level 2).

60

So the Level 1 result decides the number of cases that will go to Level 2 for testing,
and in Level 2, if the arc prior is small, then it will be more likely that EM-CaMML
will change the matched trigger subnet. Otherwise the larger the arc prior, the harder
it is for EM-CaMML to change the structure. However, there are very few Level 1 false
positive results in our initial experiment, so in order to get enough false positive results,
we manually add an extra arc to each of the Big-W test nets (which we refer to as Net1)
but keep the marginal distribution of each node in the original network the same, yielding
Net2. For example, in Figure 5.12, an extra arc is added between node “ERRCAUTER”
and “HRBP”, but the marginal distribution of “ERRCAUTER” and “HRBP” remains
the same. We expect these variant networks are able to make EM-CaMML produce a
significant number of false positive results at Level 1. Then for each test network, we
sample 30 test datasets with five different sample sizes of 100, 500, 1000, 2000 and 5000.
So there are 5× 30 = 150 datasets in total.

Figure 5.12: Original Big-W Alarm network and its variant (node “H” represents the
latent).

For the trigger detection threshold, we first calculate how many cells of the dependency
matrix (see Section 4.1) will be changed by adding an extra arc in terms of d-separation
rules. For our test networks, the number of cells changed by adding an extra arc depends
on the number of nodes in the structure as well as the location of the extra arc. For
example, for the Big-W Alarm net, the percentage of cells changed is 0.026 (2.6%), which
means if the threshold is equal or greater than 0.026, any test on the sample data using
Net2 will be detected as a trigger if the size of the data is big enough and assuming there
is no mistake in the χ2 tests. This value is the upper bound of the test threshold, and we
also select two numbers in between the default threshold (0.005) and the upper bound. For
example, if the upper and lower bound are 0.026 and 0.005 respectively, then the testing
threshold values will contain four values: 0.005, 0.01, 0.02 and 0.026. Table C.2 shows the
details of each test network (the structures are shown as in Figure C.1), how we add the
extra arc and all the tested thresholds.

There are still some details which need to be clarified in Level 2. Given one Level 2 test
prior, any arc present in the matched subnet will be assigned the test prior. In contrast,
if there is no arc present, then the arc prior between the two corresponding nodes will be
1 - test prior. In other words, this is used to directly inform the prior probability of an
arc being present in the final output models. For example, if the test prior is 0.9, and
the node set H,W,X, Y, Z matches a trigger, any arc between them that is also present
in the trigger will be assigned with arc prior of 0.9, and any arc not in the trigger will be
assigned 1 - 0.9 = 0.1. The tested arc prior range in this study is from 0.6 to 1.0, because
0.5 means an uninformative prior in practice (i.e., tossing an unbiased coin) and we are
also interested in some values that are close to 1.0, thus we include 0.999999, 0.9999999
and 0.99999999.

61

The definitions of TP and FP at Level 1 are straight forward, meaning just whether
a trigger subnet is matched.9 However, there could be various definitions of TP, FN, TN
and FP for Level 2 results. Here we tried two different criteria for how to define them. In
the first criteria (Criteria 1), TP means the learned network is exactly the same as Net1
in Figure 5.11, and FP means the latent node in the learned model is important (i.e., not
appearing as a leaf node with no child, a parent node with only one child or the middle
node in a chain). While in the second criteria (Criteria 2), TP means the latent is merely
important, while the FP is same as the first level (Level 1).

Figure 5.13: Level 1 F-score results of Big-W networks.

The Figure 5.13 shows the Level 1 F-score results (with β = 1.0) of the test networks,
where the x axis represents different thresholds and the y axis represents the F-score. We
can see that the F-score increases as the threshold increases in general. There is a trade-off
between the threshold and accuracy, as the TN decreases when the threshold increases.
For example, for the Space Mission net, the number of TN decreases from 80 to 0 while
the number of FP increases from 47 to 150 as the threshold increases from 0.005 to 0.036
(not shown). The best threshold actually depends on how users evaluate the results. In
this thesis, we generally stay in a conservative position, attempting to avoid FP results
and permitting more TN results. Interestingly, the result line of Stud Farm is consistently
flat (0.1), this is because different thresholds made no change in terms of TP and the extra
arc helps to produce more FP. We expect the number of positive cases will increase when
the sample size is big enough because some of the dependencies of the trigger subnet in
Stud Farm are very weak. For example, the marginal dependency (measured by mutual
information) between node Fred and Brian is approximately 0.0 bits.

The F-score results of Level 2 are shown as in Figure 5.14 and 5.15 of Criteria 1 and 2
respectively, where the x axis represents the different arc priors and the y axis represents
corresponding F-score. In general as Criteria 2 is less strict than Criteria 1 in terms of
identifying TP results, we can see that the F-score of Level 2 grow more significantly
than Level 1 since more TP are identified especially for Native Fish and Stud Farm. In
summary, the Level 1 threshold of 0.005 with Level 2 arc prior of 1.0 (hard constraint) is
the best combination in general for both criterion, and we decided to use this combination

9Note that for the Native Fish network, there are two triggers that share the same latent node in the
model. So we treat it as a TP result if either of them is matched.

62

Figure 5.14: Level 2 F-score results (Criteria 1) of Big-W networks.

Figure 5.15: Level 2 F-score results (Criteria 2) of Big-W networks.

for EM-CaMML in the following sections of this chapter and the experiments in Chapter
6. This trigger detection threshold and arc prior optimisation study shows a general guide
of how to how to do the parameter optimisation of using EM-CaMML. Of course, users
can choose their own parameter combination which best suits their specific requirements.
One thing that should be mentioned here is that SEM does not have similar parameters

63

available, so we will use SEM with its default values for any parameters shared with
EM-CaMML.

Our goal is to compare the different algorithms experimentally to gauge their success in
detecting latent nodes when present and avoiding false positives when they are not. In the
following sections, we will show the actual performance of each algorithm in dealing with
different types of networks. The PC and FCI implementations used here are the same as in
Section 4.4, and the SEM script (applying the BIC score) is from the Structure Learning
Package v1.5 (Leray and Francois, 2004; François and Leray, 2008) in Bayes Net Toolbox
v5 (Murphy, 2004). Our EM-CaMML implementation shares the same initial parameters
with SEM in each type of test case (i.e., a maximum iteration of 30 with EM threshold
of 0.001), and we use the optimized parameters in this section to run EM-CaMML in all
the following experiments. For PC and FCI, we report lower and upper bounds for any
evaluation measures, bracketing their performance (see Section 5.2.2). All the results using
different metrics are shown as 95% confidence intervals. We now review the experimental
results in the remainder of this chapter, first separately for each generating network and
then collectively.

Algorithm Key Algorithm Key Algorithm Key Algorithm Key

EM-CaMML (ini1) SEM (ini1) FCI (lower) PC (lower)

EM-CaMML (ini2) SEM (ini2) FCI (upper) PC (upper)

EM-CaMML (ini3) SEM (ini3)

Table 5.4: The legend keys used in all experiment result graphs in Section 5.2.4 - 5.2.7.

Due to the limited space, we show the legend keys of each algorithm in Table 5.4, which
will be used in all result graphs. Different algorithms are shown in different colors, and
the specific initializations used by SEM and EM-CaMML are shown in brackets following
the algorithm name (e.g., EM-CaMML (ini1) denotes EM-CaMML result using ini1).
Similarly, we use the text in the brackets to show whether a PC or FCI result is fixed as
lower or upper bound (e.g., PC (lower) means the lower bound of a PC result). For the
four test network types (Big-W, Covered Big-W, Latent and No Latent), we will show the
results for each in the following sections.

5.2.4 Alarm

As a well-known BN, the aim of the Alarm network is to advise users of potential problems
by providing specific messages in a real world domain. It implements an alarm system
for patient monitoring by calculating probabilities of different diagnoses given available
evidence (Beinlich et al., 1989). Here we selected a subnet which contains six nodes of
Alarm as one of our Big-W test cases (shown in Figure 5.16), and the node “HR” is
converted to a latent node for our testing purpose.

Figure 5.16: Big-W Alarm network (node “H” represents the latent).

64

(a) Edit distance results. (b) Edit distance results of latent node only.

Figure 5.17: Edit distance results of Big-W Alarm cases.

In Figure 5.17 we can see PC and FCI outperforming other methods in general, at
least until the largest sample size, when EM-CaMML catches up. We can also see that the
lower and upper bounds for PC and FCI are the same, or nearly the same, throughout.
As the upper bound and lower bound fixes for PC and FCI outputs are almost the same
because of the orientation rules and constraints (mentioned in Section 5.2.2). For example,
in Figure 5.18, with the left model being the original output by FCI of the Big-W Alarm
network, we can see there are several circles and a bi-directional arc, and the lower and
upper bound fixes will be the same as the structure on the right after replacing the bi-
directional arc by a latent node H. EM-CaMML steadily improves with sample size, while
SEM seems to diverge from the truth, except when provided ini1 (its native initialization).

Figure 5.18: How FCI output is fixed of Big-W Alarm network (node “H” represents the
latent).

(a) SEM output. (b) EM-CaMML output
(trigger detected).

(c) EM-CaMML output
(no trigger detected).

Figure 5.19: Typical example of SEM and EM-CaMML learned model of Big-W Alarm
using ini2 at sample size of 2000 (node “H” represents the latent).

In the actual SEM learned structures, the latent node becomes more connected as sam-
ple size increases, but SEM fails to find the right connections, a typical learned structure is
shown as Figure 5.19a. We can see SEM (ini2) is not diverging from the truth, but it also
doesn’t appear to be converging on it with larger samples, whereas EM-CaMML does, re-
gardless of initialization. The Figure 5.19b shows an example output of EM-CaMML (ini2)

65

when a trigger is detected between nodes ERRLOWOUTPUT, ERRCAUTER, HRBP and
HRST. The trigger detect function helps EM-CaMML get a good structure except for the
connections with node CATECHOL. However, for EM-CaMML, around 50% of its out-
puts (see Figure 5.21a) have a disconnected latent node (e.g., shown as Figure 5.19c). The
model fails to detect the latent node H but the number of incorrect arcs are still less than
for SEM and it at least captures some dependencies.

(a) KL results. (b) KL results of observed variables.

(c) CKL results. (d) CKL results of observed variables.

Figure 5.20: KL and CKL results of Big-W Alarm cases.

(a) Probability of Latent Node Connected. (b) Probability of trigger Learned.

Figure 5.21: Results of latent node connection and trigger subnet learning of Big-W Alarm
cases.

In general, the KL and CKL results in Figure 5.20 are quite consistent with the edit
distance measures. On KL, EM-CaMML, SEM (ini1), PC and FCI are consistently good.
On CKL, PC and FCI are consistently good, EM-CaMML converges to similar perfor-
mance as samples increase, while SEM shows little or no improvement. We also computed
the chance of each algorithm correctly learning that a latent node exists (Figure 5.21a),
as well as learning an existing trigger structure (Figure 5.21b). We can see that ini1
produces better true positive rates for connected latent nodes for both EM-CaMML and
SEM. Presumably, having the latent as the root of observed nodes better allows it to
explain interdependencies. Overall, the latent node is getting more connected as sample

66

size increases, as expected. For trigger subnet learning,10 PC and FCI consistently per-
form the best, however EM-CaMML converges on that optimal performance as sample
size increases, regardless of initialization. SEM, on the other hand, is never able to find
the triggers with any initialization.

5.2.5 Stud Farm

The Stud Farm network (Nielsen and Jensen, 2007) was built to model the genealogy of a
number of horses. A life-threatening genetic disease is carried via a recessive gene, and a
horse is classified as either pure, carrier or sick. The probability of being a carrier horse
increases if it is a descendent of one who has been diagnosed with the disease. As there is
a size limit of EM-CaMML, we select eight nodes from the original network choosing node
Ann as the latent. In order to form a Covered Big-W case, we manually add an extra arc
connecting node L (an unknown father) and Brian (but maintaining the original marginal
distributions, as mentioned at the beginning of Section 5.2), shown in Figure 5.22.

Figure 5.22: Covered Big-W Stud Farm network (node “H” represents the latent).

(a) Edit distance results. (b) Edit distance results of latent node only.

Figure 5.23: Edit distance results of Covered Big-W Stud farm cases.

From Figure 5.23 we can see that EM-CaMML has a similar performance as PC/FCI
in terms of edit distance results in general, and their results are getting significantly better
as the sample size increases. However, the results for SEM do not improve, and this is
because the latent node is getting more connected which causes more incorrect arcs that
connect to the latent. As we can see from Figure 5.23b, the edit distance of the latent
node only shows SEM bringing in more incorrect arcs that connect to the latent node.
EM-CaMML (ini1) does the same only at the sample size of 5000, but its results are still
much better than the SEM results. Because the arc strengths of the true structure are not
strong (as every node has a very biased CPT value around 1.0-99.0 and only low mutual
information11 between every two nodes of around 0.03), the latent node and some observed

10The “trigger subnet” is just the arcs present in the trigger structure. For example, in the Big-W Alarm
network, nodes H, ERRLOWOUTPUT, ERRCAUTER, HRBP and HRST form a Big-W trigger.

11Details of mutual information are shown in Section 6.1.

67

nodes are disconnected in many SEM outputs of sample size 500 (an example is shown as
Figure 5.24a). Such disconnected structure is produced by other algorithms as well, but
the edit distance results improve as sample size increases except for SEM. This is because
the latent node is more connected at sample sizes of 5000 (see the example output shown
as Figure 5.24b) but also more incorrect arcs are produced as well.

(a) A SEM output of sample size 500. (b) A SEM output of sample size 5000.

Figure 5.24: Example of SEM output of Covered Big-W Stud Farm (node “H” represents
the latent).

(a) KL results. (b) KL results of observed variables.

(c) CKL results. (d) CKL results of observed variables.

Figure 5.25: KL and CKL results of covered Big-W Stud Farm cases.

The KL and CKL results of Covered Big-W Stud farm (shown as in Figure 5.25) are not
so consistent with the edit distance results. SEM performs even better in general. This
is because the latent node is disconnected in most EM-CaMML, PC and FCI outputs,
and this is indicated by Figure 5.23b as the edit distance of latent node only is around 2
across different sizes. As the latent node is connected more in SEM results, its CPT and
children’s CPTs have more opportunities to be learned correctly, thus helping improve the
KL/CKL results of the whole structure.

The connection status of the latent node are confirmed in Figure 5.26a too as we can
see the probability of a connected latent node is much higher in SEM outputs than other
algorithms except at the largest sample size where others catches up. However, in terms of
the trigger subnet (shown as in Figure 5.26b), PC and FCI have a better performance in

68

(a) Probability of Latent Node Connected. (b) Probability of trigger Learned.

Figure 5.26: Results of latent node connection and trigger subnet learning of covered
Big-W Stud Farm cases.

learning it correctly. Both EM-CaMML and SEM failed to learn the trigger subnet with
any initialization.

5.2.6 Bookbags

The Bookbags network (Phillips and Edwards, 1966) has the Naive Bayes structure of
Figure 5.27, which simulates two book bags (represented by two states in the hidden
node, called Book Bag in the original network) each with a different mixture of 10 red
and blue poker chips. The posterior on the root node represents the probability of which
bag is the most likely source after each of 5 draws. In terms of this structure, we expected
Initializations 1 and 2 to produce the best results, since they correspond to the true
structure.

Figure 5.27: Latent Bookbags network (node “H” represents the latent).

(a) Edit distance results. (b) Edit distance results of latent node only.

Figure 5.28: Edit distance results of Latent Bookbags cases.

As expected, Initializations 1 and 2 gave both EM-CaMML and SEM a good starting
point, while ini3 didn’t even allow these algorithms to converge with larger sample sizes
(shown as in Figure 5.28). We also found ini3 led EM-CaMML to produce heavily con-
nected structures when sample size is 5000, and a typical example is shown in Figure 5.29,
where all the observed nodes are heavily connected. The latent node H is only connected

69

Figure 5.29: An EM-CaMML (ini3) output of Latent Bookbags at sample size 5000 (node
“H” represents the latent).

as a child to an observed node, rendering it useless in accounting for interdependencies.
That burden has to be carried by a large number of spurious arcs between observed nodes
instead, leading to a very poor ED measure. SEM performed similarly using ini3, but with
lower densities therefore produced slightly better edit distance results. It appears that the
initialization has a greater effect on SEM than EM-CaMML. PC and FCI, in contrast to
EM-CaMML and SEM, failed to find any latent node in most cases, resulting in very poor
edit distances.

(a) KL results. (b) KL results of observed nodes.

(c) CKL results. (d) CKL results of observed nodes.

Figure 5.30: KL and CKL results of Latent Bookbags cases.

KL and CKL results (shown in Figure 5.30) are again consistent with ED results, with
Initializations 1 and 2 allowing EM-CaMML and SEM to slowly converge on the truth,
and ini3 leading to noticeably poorer results. The ini3 results, however, do not simply
diverge as the ED results do, suggesting that the large number of spurious arcs are at
least being parameterized to fit the real distribution with some effect. PC and FCI results
are even worse than EM-CaMML results using ini3. The KL and CKL results for the
observed subnetwork show convergence with every method, implying that the KL/CKL
difficulties for PC, FCI and the metric learners using ini3 simply have to do with including
their measure over the latent node.

The probability of finding a connected latent node (shown in Figure 5.31) with Book-
bags (i.e., sensitivity) again illustrates the very poor performance of PC and FCI. SEM

70

Figure 5.31: Probabilities of latent node connected of Latent Bookbags cases.

tends to slightly outperform EM-CaMML, with the difference diminishing with sample
size.

(a) Results of Latent Animals cases. (b) Results of Latent Asia cases.

Figure 5.32: Probabilities of latent node connected of Latent Animals and Asia cases.

Overall, for a non-trigger case like Bookbags, we can see that different initializations are
important for both EM-CaMML and SEM. PC and FCI appear to have special difficulties
with latents as the roots of Naive Bayes structures. For other non-trigger cases, the
probability of a connected latent node appear in PC or FCI output is also low (except for
the Latent Asia network, but still lower than EM-CaMML and SEM using ini1, see Figure
5.32a and 5.32b in Appendix).

5.2.7 Mendel Genetics

The Mendel Genetics network is used for the experiments done by Mendel who developed
the foundations of hereditary genetics, which involved breeding white and red flowered pea
plants (Boerlage, 1988). We use this network to assess the tendency of latent discovery
algorithms to return false positives; it has no latent node (see Figure 5.33). This test
network has five connected nodes and one uncovered v-structure.

Figure 5.33: No Latent Mendel Genetics network.

71

(a) Edit distance results. (b) Edit distance results of latent node only.

Figure 5.34: Edit distance results of No Latent Mendel Genetics cases.

For the Mendel Genetics net, any latent nodes “discovered” are false positives, which
can lead to very poor edit distance scores, since any arc connections to it will add to ED.
The edit distance results in Figure 5.34a show that SEM consistently performs poorly,
which is explained by its propensity to report false positives, shown in Figure 5.39. This
is such a strong tendency, we should probably conclude that SEM is in fact usable only
when it is already known that there is an active latent variable behind the data! (To be
sure, Friedman said as much, when discussing initialization (Friedman et al., 1997), but
this requirement significantly diminishes the value of SEM for latent model discovery.)

(a) PC output. (b) FCI output.

Figure 5.35: The original structures learned by PC and FCI of No Latent Mendel Genetics
cases.

(a) Lower bound fix. (b) Upper bound fix.

Figure 5.36: The lower and upper bound fixes of PC and FCI outputs of No Latent Mendel
Genetics cases.

PC and FCI, on the other hand, do a consistently good job in ED terms. It is interesting
that in this case the upper vs lower bound computations are significantly different; the
explanation lies in the uncovered v-structure, since occasionally unoriented arcs interact
with it, producing distinct ED counts. In Figure 5.35, the left is the original output by PC
and the right one is original output by FCI, and the only difference is that the FCI output

72

has some circles. In this case, based on the rules and constraints mentioned in Section
5.2.2 and given the true structure as in Figure 5.33, the lower and upper bound fixes
are same as shown in Figure 5.36. We can see that the difference between the two fixes
are the direction of the arcs between P1 and Color P1 and between P2 and Color P2.
New uncovered v-structures at P1 and P2 are avoided during creation. EM-CaMML
performance lies between that of SEM and PC/FCI. Looking at Figure 5.34b suggests
that when EM-CaMML finds a false positive it gives it low connectivity.

(a) EM-CaMML example output. (b) SEM example output.

Figure 5.37: Two typical false positives of No Latent Mendel Genetics cases (node “H”
represents the latent).

For example, a typical false positive model learned by EM-CaMML using ini1 at sample
size of 1000 is Figure 5.37a, where the connected latent node is connected in a chain. Such
a chain structure can be marginalized out, meaning the latent has no significant impact,
including doing little harm, other than to edit distance. This suggests we should have
automatically marginalised out non-functional hidden nodes. By contrast, a typical false
positive from SEM with ini1, sample size 1000, is more heavily connected (see Figure
5.37b). In this structure, the latent node has to carry many of the interdependencies
between observed variables.

(a) KL results. (b) CKL results.

Figure 5.38: KL and CKL results of No Latent Mendel Genetics cases.

The KL and CKL results (shown in Figure 5.38) also show a clear gap between SEM re-
sults and others, except for ini1, where the (spurious) latent variable occurs as a common
cause to all observed variables, allowing interdependencies, as measured by KL/CKL,
to be well represented. Of course, the penalty to SEM ini1 is seen in the ED results.
EM-CaMML has a performance similar to PC/FCI in KL. For CKL, EM-CaMML’s per-
formance is about the same as the best-case PC/FCI and clearly better than their worst
case.

As we can see from Figure 5.39, the FPR for SEM is very high; it simply assumes the
presence of a latent, rather than testing for one. PC/FCI and EM-CaMML (with ini3)

73

Figure 5.39: Probabilities of latent node connected of No Latent Mendel Genetics cases.

have very few false positives. ini3 allows EM-CaMML to often start its search with a latent
of low, or even no, connectivity; in any case, EM-CaMML can also “unlearn” a connection
when the evidence doesn’t support it, although the other initializations show that that
ability doesn’t necessarily prevail. EM-CaMML seems to be having real difficulties when
given the Factor Analysis type initial structure.

In summary, for fully observed (non-latent) network Mendel Genetics, EM-CaMML
has a performance close to best-case PC/FCI and better than PC/FCI’s worst case. SEM
proves itself incapable of avoiding false positives.

5.3 Software Design and Implementation

EM-CaMML, which is an extension of original CaMML, has been examined and discussed
throughout this thesis. It is not only an extension, but also a new way of enabling CaMML
to deal with unobserved causal dependencies which includes a new TOM coster, an en-
hanced TOM sampling space, a new EM framework and a new version of its UI. In this
section, we focus on explaining CaMML and EM-CaMML from a software development
perspective (for theoretical details, see Section 3.4.3).

The initial development work on CaMML started with Wallace et al. in 1996. This
version was able to learn causal models with continuous data by applying a greedy search.
Later, Neil and Korb developed a new version that applied a genetic search for the purpose
of learning larger networks. The first version of CaMML to use MCMC sampling dealt
with continuous variables and was developed by Wallace and Korb in 1999. It showed
similar performance to the genetic version in terms of KL divergence and edit distance
performance. After that, a new version of CaMML was developed by Rodney O’Donnell
in 2010 during his PhD study which applies MCMC sampling to deal with large scale
networks using discrete variables. The earliest versions of CaMML were implemented in
C, but switched to Java with O’Donnell’s version. This was built on top of the CDMS
platform (Comley et al., 2003; Allison, 2005), which has many benefits such as versa-
tile representation of local structure and prior information, features that were absent in
previous versions.

However, no version until now had considered latent factors and were unable to perform
MCMC with latent variables. So we developed EM-CaMML, as a milestone update to
O’Donnell’s version. All major extensions and enhancements introduced to CaMML are
summarised as follows:

• An implementation of EM algorithm in the camml.core, which learns with discrete
variables. It includes a framework that allows running MCMC sampling between the
E step and M step. Instead of using the Value.Vector as the default data container,
the WeightedVector (a function of cdms.core.VectorFN) is used as it is able to contain

74

Figure 5.40: The UI design of EM-CaMML program.

the soft counts. The EM implementation allows for a different initial structure, either
a DAG or TOM, and updates the structure using MCMC.

• A new package “camml.core.latentDetect” which contains most of our work on find-
ing triggers, a latent node detect function called by EM-CaMML, and also some
useful functions used in searching triggers (e.g., enumerating all possible DAGs,
generating dependency matrices for a given DAG). It is a relatively independent
package and provides a wrapper function called “LatentDetect” which is a wrapper
of the EM-CaMML’s preprocessing step.

• An implementation of a new adaptive coder learner “LatentAdaptiveCPTLearner”
(located in function “AdaptiveCodeLearner”) which contains our new MML metric
for calculating the data and parameter cost of a TOM with latent nodes (see Section
5.1.1).

• A new wrapper function “runSearchLatent” which includes all the main modules of
EM-CaMML. It is the implementation of the process shown as in Figure 5.8. It calls
the trigger detection function and runs the MCMC with EM integration.

• A new version of the UI (shown as in Figure 5.40) that gives users more options for
running the program compared to the original version. When the checkbox “Learn
Bayesian Network with latent variable” is ticked, the “MML:CPT Latent” (which
calls the “LatentAdaptiveCPTLearner” function) will be automatically selected and
users are allowed to specify the parameters of running EM-CaMML (e.g., Latent
arity, EM-CaMML threshold).

Of course, due to time constraints, there are still things that are in need of improve-
ment. For example, for simplicity reasons we reset the cache of sufficient count records and
MML costs of local structures after MCMC finishes in each EM iteration, which could be
reused in the next iteration. In terms of the EM-CaMML workflow, it can be made more

75

flexible by providing the option to turn off the latent detect function and directly add in
a latent node in a given initial structure (i.e., go to Path 2 without checking whether a
trigger is matched as shown in Figure 5.8). This is because people may be interested in
learning a latent node model with different techniques. Moreover, it would be better if
users could specify the trigger detect threshold and arc prior from the UI. Currently such
values are hard coded using the results of Section 5.2.3; users have to make the change
in code. Nevertheless, we are still making occasional improvements, and the EM-CaMML
program is publicly available on GitHub.12 We hope EM-CaMML could be beneficial to
the public and any contributions are welcome.

5.4 Summary

EM-CaMML is a metric based algorithm which incorporates a trigger detection function
and produces fully parameterized models. There has not been much attention paid to de-
tecting latent nodes in causal discovery; EM-CaMML fills this gap by explicitly discovering
latent variables and learning their direct connections to the rest of the network, utilizing
dependency patterns. In terms of how best to integrate EM with MCMC sampling (EM
inside and outside), we hope to use more complex test networks in the future to compare
them. However, EM outside will significantly increase execution time, so some additional
enhancements (e.g., caching the EM statistics for unique TOM structures) will be needed
to make the comparison practical. Of course in the future, we can also try other learning
metrics (e.g., MDL (Lam and Bacchus, 1994), Bayesian learning score (Cooper and Her-
skovits, 1992; Heckerman, 2008)) as alternative metric functions in EM-CaMML. Based
on our chosen parameter settings, EM-CaMML is able to produce promising results in
terms of the different metrics used in the experiments. In order to provide comprehensive
testing, different initial structures have been examined and we have done some work on
fixing and interpreting results produced by PC and FCI algorithms when rendered in the
language of DAGs.

There are many experimental results which have not been shown in this thesis due
to the limited available space, but we have made as much as possible available online for
readers’ interests.13 In general, if no trigger is detected, then the choice of initialization
structure has a significant impact on the resulting structure, and this is also true for SEM.
Especially in the Latent Bookbags cases, the ini1 and ini2 have significant advantages in
learning the true structure. Additionally, the results of Big-W cases and Covered Big-
W cases are very similar, thus we could potentially just search for Big-W and let the
algorithms learn the additional arc for Covered Big-W. PC and FCI perform very well
when the latent node is shown as a common cause and has no parent. However, due to
the nature of the PC and FCI, they are not so useful in revealing how to connect the
latent node when in non-trigger-like cases. This happened across all four Latent (non-
trigger) network test cases. Moreover, PC and FCI produce partially oriented graphs,
occurring frequently in our experiments, so those using these methods have to deal with
this issue using prior knowledge and following our methods for mending the structure.
Of course, users still need to apply parameter learning algorithms to parameterize the
models generated by PC and FCI. While SEM suffers from different problems, it generally
produces more connected structures compared to others, especially for the latent node
which will cause more false positive results. We could use optimized parameters for each
test network for SEM to get better results, but this is a non-trivial optimisation problem.
These disadvantages are either absent or much less severe in the case EM-CaMML, making
it a notable and well-rounded solution for latent node discovery and modeling.

12The source code is available at: https://github.com/zxh298/EM-CaMML
13All figures are available at: https://sourceforge.net/projects/trigger-test-full-results/files/

76

We have made EM-CaMML a open source software that is explicitly designed to dis-
cover and learn with latent variables. It calls each learning module automatically and
smoothly without requiring any prior knowledge about the latent node. In terms of the
actual execution time for the above test cases, our Java program EM-CaMML runs much
faster than the SEM implementation we used in this chapter. Of course, PC and FCI
produce results faster still due to their approach, however, they do not learn fully param-
eterized models and struggle with latent variables that are poorly matched by the typical
dependency patterns that they seek.

Another point is that most of the test networks used in this chapter are only the subnets
of larger networks. This is due to the size limitations of our trigger program as well as
the high complexity in learning latent variables in larger networks. One possible (albeit
exponentially complex) solution is to loop through possible node subsets and check if any
of them match a trigger, and use CaMML to learn the structure of the rest. Of course,
we can learn a fully observed model and compare it with the model learned with latent
nodes in terms of the predictive accuracy or posterior given observations. Alternatively,
we can use a heuristic function to split nodes into different subsets (e.g., the MBs) with
minimal overlap, and then use EM-CaMML to learn first the regional structures centered
on each subset (using triggers) and then their interrelations. A preliminary study of this
method is shown in next chapter.

77

78

Chapter 6

EM-CaMML Extensions

In this chapter, we discuss two extensions to EM-CaMML in detail. It begins with the
introduction of the definition of a partial trigger and examines how different algorithms
discover the latent node in partial triggers. Section 6.1 includes details of the experimental
work regarding the partial trigger structures. Networks with different arc strengths are
used as the test networks, and we expect this will tell us how the latent node is being
discovered based on how much contribution it makes to explaining the conditional depen-
dencies in data. Next, a preliminary study on discovering multiple latent variables within
different partitions of a large network is presented in Section 6.2. We use a recent Markov
Blanket (MB) discovery algorithm to generate partitions and apply EM-CaMML on each
of them. The purpose of this study is to show the feasibility of this approach to scaling
up EM-CaMML and to indicate how different MB local structures can be merged into a
complete network by CaMML.

6.1 Learning Partial Triggers

The following sections will begin with the definition of a partial trigger, followed by the
methodology behind the simulation of test datasets and details of the experiments. Then
we will show some analysis on the experiment results. Finally, a brief summary of the
findings will be shown at the end of this section.

6.1.1 Definition of Partial Trigger

Figure 6.1: An example partial trigger (node “H” represents the latent).

One interesting question is how well causal learners may perform when confronted with
partial triggers, where the trigger dependencies may be explained by either a latent node
or an observed node. For simplicity, here we only consider the partial trigger in Big-W
structure with 5 observed nodes. In Figure 6.1 the network contains one latent node H
and five observed nodes W,X, Y, Z and T , and the dependencies between the observed
nodes may be fully explained using H without T , T without H, or using both. Using

79

Figure 6.1 as the true structure, if the arcs T → X and T → Y are weak, then there needs
to be another node playing a role that supports the dependencies between W , X, Y and
Z. This is what we call a “partial trigger”. In order to understand how well such partial
triggers are discovered by different algorithms, we constructed four artificial test networks
with varying arc strengths using mutual information function (I) between variables (see
details in Section 4.4.1).

(a) H s T s (b) H s T w

(c) H w T s (d) H w T w

Figure 6.2: Partial trigger test networks (node “H” represents the latent, and the number
represents the arc strength of each arc).

Since we want to analyse how T affects trigger discovery, we want to have test cases
where T and H have different connection strengths to X and Y in Figure 6.1. We use an I
of 0.18 (measured in bits) to represent a strong connection and 0.06 for a weak connection
(We also explored 0.12 as medium, but no interesting results were found, and anything
smaller than 0.06 was too low), designating these “s” (strong) and “w” (weak) respectively.
To simplify the experiment, we used the four different test networks of Figure 6.2, making
all variables binary. For example, “H s T w” means H is strongly connected and T weakly
connected.

Here we follow the same experimental process presented in Chapter 5 using the same
optimized parameters for EM-CaMML from Section 5.2.3. We compare EM-CaMML with
other benchmark algorithms using 30 synthetic datasets which are sampled from a set of
sample sizes {100, 500, 1000, 2000, 5000} using forward sampling in Netica, whilst deleting
the data for H as it was the target latent node.1 Thus we have 5× 30 = 150 datasets in
total for each network. In order to demonstrate each graph more clearly, we removed the
legends from the result graphs, but we refer the reader to the keys in Table 5.4 to identify
each learner.

1The test data is available at: https://sourceforge.net/projects/partial-trigger-data

80

6.1.2 Experiment Results and Discussion

Figure 6.3: Edit distance results of learning partial trigger.

Figure 6.3 shows the edit distance results for each test network respectively. Similar to the
Alarm network, PC/FCI perform the best in edit distance terms, followed by EM-CaMML
and SEM showing the worst performance. Unfortunately, EM-CaMML also shows little
ability to improve with sample size here. Also, ini1 does not appear to help SEM. Similarly
to the Trigger test cases, SEM produced many heavily connected networks that didn’t
deal with the latent node properly. We can see for PC and FCI, when node H is strongly
connected (i.e., H s T s and H s T w), the edit distance results are generally better than
when node H is weakly connected. This is understandable as the latent node appears as
a common cause and a strong connection will make PC and FCI more likely to produce a
bi-directional arc at the right place.

(a) H s T s (b) H s T w (c) H w T s (d) H w T w

Figure 6.4: EM-CaMML learned model using ini1 with sample size 5000 (node “H” rep-
resents the latent).

81

(a) H s T s (b) H s T w (c) H w T s (d) H w T w

Figure 6.5: SEM learned models using ini1 with sample size 5000 (node “H” represents
the latent).

Figure 6.4 shows a typical set of learned models from EM-CaMML using ini1 and
sample size 5000. We can see that the node X and Y are correctly identified as the children
of latent node H. However, the dependencies between node T and others are not well
captured, with T being directly connected to all other nodes. The typical examples seen
in Figure 6.5 shows that SEM produces worse mistakes. Thus, W and X are marginally
independent, however SEM insists on keeping them as children of H regardless. We also
see similar results in Section 5.2 that the latent node in SEM is always highly connected.

(a) H s T s (b) H s T w (c) H w T s (d) H w T w

Figure 6.6: PC/FCI learned models with sample size 5000 (node “H” represents the latent).

(a) A result for H w T s (b) A result for H w T w

Figure 6.7: An example of PC/FCI output with a spurious latent at sample size 5000
(node “H” represents the latent).

PC/FCI produced very good results with sample size of 5000, with the modal result
simply being the correct generating model (Figure 6.6). As there was not much variance
among PC and FCI original output structures, the lower and upper bound fix are generally
overlapping for most cases. There were only a few cases where PC/FCI made mistakes.
For example, for test networks H w T s and H w T w there were a few learned models
having more than one discovered latent node (shown as “H” and “H 1” in Figure 6.7).
The redundant node H 1 is shown as a common cause of two observed nodes and could

82

in both cases be replaced by a single directed arc between them. Such structure indicates
the contribution of node T is not correctly recognized as node H 1 explains part of the
dependencies which should be satisfied by node T .

Figure 6.8: Edit distance results of learning partial trigger (only H).

Figure 6.9: Edit distance results of learning partial trigger (only T).

In the edit distance results restricted to nodes H and T in Figures 6.8 and 6.9, we see
the same general pattern as with the network as a whole, with PC/FCI clearly outperform-
ing the other two algorithms. EM-CaMML often joins SEM in connecting T incorrectly

83

to the rest of the network, but clearly does better with H. EM-CaMML cannot match
PC/FCI with H, however, since there is a connection between node H and T in most
learned models.

Figure 6.10: KL results of learning partial trigger.

Figure 6.11: CKL results of learning partial trigger.

With KL/CKL measurements (Figures 6.10 and 6.11), there is not much to choose
between EM-CaMML and PC/FCI, except perhaps with H s T w, when larger samples
put EM-CaMML statistically significantly ahead in KL terms. SEM performs uniformly

84

poorly, with the exception of H w T w, when the third Initialization allows it to perform
better than otherwise.

Figure 6.12: Probability of finding a latent node in a partial trigger.

Figure 6.13: Probability of finding a trigger subnet in a partial trigger.

The TPR (true positive rate) for discovering latent nodes (Figure 6.12) shows perfor-
mance converging on 1 for all methods. Looking at the probability of learning the trigger
subnet (which omits T) in Figure 6.13, SEM does uniformly very poorly, while PC/FCI
performs the best followed closely by EM-CaMML.

85

In summary, PC and FCI produce the best structures in edit distance results, and
EM-CaMML has a similar performance to PC and FCI for KL/CKL results. For learning
the node H, the effect of different arc strengths is not obvious. We can see from Figure 6.8
that if both node H and T are strongly connected, the edit distance for node H is lowest
but this is only true using the smallest sample size. When the sample increases, this effect
vanishes completely. The main problem for EM-CaMML here is the poor performance in
connecting node T , as the edit distance for only T is not getting better even as the sample
size increases. Similar to the findings of the Big-W test in Section 5.2.4, when the latent
node appears as a common cause, SEM failed to detect the triggers and the latent node
was heavily connected compared to other algorithms. In the future, we can investigate
different arc density priors for EM-CaMML, particularly to see if less dense networks could
help to reduce some wrong arcs, which could produce better results especially in the case
shown in Figure 6.4. Of course, such less dense networks could also drop some correct arcs
as well. Additionally, we hope to assess each learner using real world datasets with more
variable arc strengths, and learn more about how to discover and utilize latent nodes to
complement observed nodes in explaining the dependencies.

6.2 Discovering Multiple Latent Variables

In this section, we consider extending our initial study to discovering multiple latent
variables in a network with 20 nodes. Our aim is to scale up EM-CaMML with Markov
Blanket (MB) partitions and demonstrate how the resulting structure for the partitions
can be merged using EM-CaMML. Note that this is a very preliminary study. Some
steps are not fully implemented and had to be carried out manually in this research.
However, we show EM-CaMML has good potential for discovering multiple latent nodes
in large scale networks, and we have developed some ideas on how to properly implement a
multi-latent extension of EM-CaMML. We start with some background knowledge about
MBs and explain the problem of scaling up to larger networks. Then an experiment is
presented showing our preliminary work in extending EM-CaMML to discover multiple
latent variables. Finally, we present the results and give a brief summary of findings.

6.2.1 Markov Blanket Discovery

Figure 6.14: An example of the MB of Target node T.

The MB (Pearl, 1988) of a target variable is the minimal set of variables conditioned
on, for which all remaining variables are independent of the target node. This property
implies that knowledge of variables in the MB is sufficient to determine the probability
distribution of the target, with all other information for any variables beyond the MB being
superfluous. Under the faithfulness assumption for a BN, the MB of a target variable T
is identical to its direct causes and effects, together with the direct causes of direct effects

86

(i.e., parents of children) of T . Thus MBs can be used to reduce the number of variables
required to discover the true direct causes of T (Tsamardinos et al., 2003). To put it
simply, an MB of target node T contains parents and children of T and the children’s
other parents. For example, in Figure 6.14, the grey shaded nodes form an MB for the
target node T .

However, knowing the MB of a target node does not tell us how the variables are
connected in the MB, and the definition of MB just tells us the optimal subset of nodes
for predictions regarding the target. It is natural to think about using causal learners (e.g.,
EM-CaMML) to learn a causal model of each MB and even discovering latent variables
within each MB. As we have seen, EM-CaMML can only discover latent variables in small
networks due to the super exponential time complexity required for searching triggers
beyond 6 observable variables (see details in Section 4.2).

There are many studies on modeling with MB. For using MB for feature selection, no-
table work includes (Koller and Sahami, 1996; Cooper et al., 1997; Strobl and Visweswaran,
2015). Examples of research into structure learning for each MB are (Nägele et al., 2007;
Niinimäki and Parviainen, 2012; Ramsey et al., 2017; Gao and Wei, 2018). For this EM-
CaMML extension, we use the MBMML algorithm (Li, 2020) proposed by Yang Li in
his PhD thesis which applies MML to discovering MB. This algorithm uses MML, which
makes it very compatible with EM-CaMML, and it displays competitive performance in
many scenarios. This makes it a promising candidate for scaling up EM-CaMML in our
future work.

Algorithm 3 MB discovery using MBMML+CPT

1: Let D be a data set of a set of variable V;
2: Let Z be an empty set;
3: Let Z be an empty set;
4: for each v in V do
5: Let v be the target node T ;
6: V ′ = V\T ;
7: φT (S) be the CPT model of T with a parent set S;
8: Let L = I(φT (∅), DT) be the message length of φT (∅) and DT , where DT is the data over T ;
9: while V ′ 6= ∅ do

10: Xk = arg minXi
I(φT (Z ∪Xi), DT),∀Xi ∈ V ′;

11: L′ = I(φT (Z ∪Xi), DT)
12: if L′ < L then
13: Z = Z ∪Xk;
14: V ′ = V ′\Xk;
15: L = L′

16: end if
17: end while
18: Add Z to Z
19: end for
20: Output Z;

The current MBMML algorithm has three different implementations: MBMML for
CPT (MBMML+CPT), MBMML for Naive Bayes Models (MBMML+NB), and MB-
MML for Markov Blanket Polytree Models (MBMML+MBP). The first implementation
assumes all variables in the MB are parents of the target, which has maximal representa-
tional power but requires the most data to parameterize accurately. The MBMML+NB
assumes all MB variables are independent given the target which minimizes the number
of required parameters but loses any dependencies between them. MBMML+MBP pro-
vides a compromise between these two extremes by applying an ensembling method that
samples as many local polytrees as possible. It encodes the MB variables by learning a
variety of structures and outputs a weighted average MML cost across all samples (Li,
2020). For simplicity and to save time, MBMML+CPT is the only MB partition method

87

for EM-CaMML that we tried. This method (shown as Algorithm 3) applies a greedy
search that starts with an empty MB and iteratively adds the best candidate node for
improving the total message length of the model, and the result is a set of variable sets
that represent the best MB for every node as the target. After getting the result, we need
to select the best MBs that cover all the nodes with minimum overlap. To achieve this, we
apply a heuristic function (we name it “MB pick greedy”) which picks the MB that has
the largest number of non-overlapping nodes with the least number of overlapping nodes
(including the target), against the MBs that have been picked. To be more specific, this
function is represented as:

MB pick greedy = noverlap − nnon overlap (6.1)

where noverlap and nnon overlap represent the number of overlapping and non-overlapping
nodes respectively, and the order (from the maximum to minimum) of each MB being
selected is based on its score for this function. If there are multiple available choices which
are equal in terms of this heuristic function, we will pick one of them randomly. So the
complete multiple latent variables learning method proceeds as follows:

1. Apply MBMML+CPT to a given dataset and save the resulting MBs.

2. Apply MB pick greedy function to select the best MBs that covers all nodes.

3. Run EM-CaMML on each MB and save the resulting models and necessary sufficient
statistics (i.e., soft counts for each discovered latent node).

4. Create structural priors (using hard constraints, see details in Section 5.2.3) for each
model from Step 3 and combine all such priors into a complete prior.

5. Run EM-CaMML with the sufficient statistics from Step 3 and the complete prior
from Step 4 and save the output model.

Figure 6.15: The true network used for testing the discovery of multiple latent variables
(nodes “V2” and “V4” are latent).

For example, Figure 6.15 shows a model of twenty discrete nodes V 1, V 2, ..., V 20. This
network was generated by hand and serves as our true network for testing the method. In
this network, all nodes are binary and the CPT parameters for each node are randomly
sampled from a symmetric Dirichlet distribution (Gelman et al., 1995) with concentration

88

parameter α equal to 0.5, which gives relatively more biased CPT values than sampling
from a uniform distribution (i.e., where α = 1.0). Such CPT values will increase the
strength of the network’s arcs and help to reduce the chance of mistakes. Again, this
setting is only for testing purposes. From the network, we can see there are four obvious
partitions (shown as in Table 6.1) and there are four arcs that link these four partitions:
V 6 → V 11, V 3 → V 13, V 18 → V 16 and V 8 → V 19. Each partition corresponds to an
MB with a target node as follows:

MB MB variables Target variable

MB1-true V2, V6, V8, V9, V10 V1

MB12-true V3, V11 V12

MB4-true V13, V14, V15, V16, V17 V4

MB5-true V7, V18, V19, V20 V5

Table 6.1: Example MBs of the network shown in Figure 6.15.

For our test, we converted node V 2 and V 4 into latent nodes (by deleting the cor-
responding data). As a consequence, the MB variables for target V 1 will reduce to
{V 6, V 8, V 9, V 10}, and we expect the nodes in MB4-true will remain the same, with
either V 15 or V 17 as the target (this is not true if V 4 is known). The purpose of includ-
ing MB4-true in the true network is to see if learning the latent node can help simplify
the local structure — otherwise, V 13, V 14, V 15 and V 17 will be connected in a network
with high arc density without V 4. So here we expect the MBMML+CPT algorithm will
still put V 13, V 14, V 15, V 17 into a partition using either V 15 or V 17 as the target, while
providing EM-CaMML with the opportunity of discovering a simpler representation.

6.2.2 Experiment Results and Discussion

MB MB variables Target variable

MB-1 V6, V8, V9, V10 V1

MB-3 V11, V12, V13 V3

MB-5 V7, V18, V19, V20 V5

MB-6 V1, V8, V9, V10, V11 V6

MB-7 V5, V20 V7

MB-8 V1, V6, V9, V10, V19 V8

MB-9 V1, V6, V8, V10 V9

MB-10 V1, V6, V8, V9 V10

MB-11 V3, V6, V12 V11

MB-12 V3, V11 V12

MB-13 V3, V15 V13

MB-14 V15 V14

MB-15 V13, V14 V15

MB-16 V13, V14, V15, V17, V18 V16

MB-17 V13, V14, V15, V16 V17

MB-18 V5, V16, V19 V18

MB-19 V5, V8, V18 V19

MB-20 V5, V7 V20

Table 6.2: MBMML+CPT result.

89

Here we simulated a dataset of 5000 rows using the test network mentioned in the
previous section and deleted the data of V 2 and V 4, so as to make them latent. Given
this dataset, MBMML+CPT produced one MB per node, shown as in Table 6.2.

Iteration Nodes remained Nodes covered Selected MBs Candidate MBs

0
V1, V3, V5, V6, V7, V8, V9,

V10, V11, V12, V13, V14,
V15, V16, V17, V18, V19, V20

MB-6 (5), MB-8 (5), MB-16 (5), MB-1 (4),
MB-5 (4), MB-9 (4), MB-10 (4), MB-17 (4),
MB-3 (3), MB-11 (3), MB-18 (3), MB-19 (3),
MB-7 (2), MB-12 (2), MB-13 (2), MB-15 (2),
MB-20 (2), MB-14 (1)

1
V3, V5, V7, V8, V11, V12,
V13, V14, V15, V16, V17,

V18, V20

V1, V6, V8, V9,
V10, V19

MB-8

MB-16 (5), MB-17 (4), MB-3 (3), MB-5 (2),
MB-7 (2), MB-12 (2), MB-13 (2), MB-15 (2),
MB-20 (2), MB-11 (1), MB-14 (1), MB-18
(1), MB-19 (1), MB-6 (-3), MB-1 (-4), MB-9
(-4), MB-10 (-4)

2 V3, V5, V7, V11, V12, V20

V1, V6, V8, V9,
V10, V13, V14,
V15, V16, V17,

V18, V19

MB-8, MB-16

MB-7 (2), MB-12 (2), MB-20 (2), MB-3 (1),
MB-11 (1), MB-5 (0), MB-13 (0), MB-14 (-
1), MB-18 (-1), MB-19 (-1), MB-15 (-2), MB-
6 (-3), MB-1 (-4), MB-9 (-4), MB-10 (-4),
MB-17 (-4)

3 V3, V11, V12

V1, V5, V6, V7, V8,
V9, V10, V13, V14,

V15, V16, V17,
V18, V19, V20

MB-7, MB-8,
MB-16

MB-12 (2), MB-3 (1), MB-11 (1), MB-13 (0),
MB-14 (-1), MB-15 (-2), MB-20 (-2), MB-6 (-
3), MB-18 (-3), MB-19 (-3), MB-1 (-4), MB-5
(-4), MB-9 (-4), MB-10 (-4), MB-17 (-4)

4

V1, V3, V5, V6, V7,
V8, V9, V10, V11,

V12, V13, V14,
V15, V16, V17,
V18, V19, V20

MB-7, MB-8,
MB-12, MB-16

MB-14 (-1), MB-13 (-2), MB-15 (-2), MB-
20 (-2), MB-3 (-3), MB-11 (-3), MB-18 (-3),
MB-19 (-3), MB-1 (-4), MB-5 (-4), MB-9 (-
4), MB-10 (-4), MB-17 (-4), MB-6 (-5)

Table 6.3: MB selection process using MB pick greedy function (the value in bracket
represents the score).

Then we apply the MB pick greedy function. As shown in Table 6.3, in iteration 0
(the initialization), there are three candidate MBs which have the same score of 5, so we
randomly pick MB-8 (with score of 5− 0 = 5) at iteration 1. Since the nodes from MB-8
including the target have been covered, we first need to update the scores of the remaining
MBs. For example, the score of MB-5 will be 3− 1 = 2 as there are three nodes (V 7, V 18
and V 20) that are not overlapped and one overlapping node V 19. Next, in iteration 2,
we have MB-16 emerging as the best candidate (with a score of 5 − 0 = 5) to pick. We
repeat this process for 4 iterations until all the nodes are covered. The output partitions
are shown in Figure 6.16, and we run EM-CaMML on each of them and save the output
models and sufficient statistics. Here we use ini3 (i.e., a random structure, as it is the
most general initialisation. See Section 5.2.1 for details) when no trigger is detected and
all the other parameter settings are the same as in Section 5.2.

Next, we run EM-CaMML on each of the partitions shown in Figure 6.16. As the size
of MB-7 and MB-12 are less than 4 (not enough to run the trigger detect function, see
Details in Chapter 4), we run the original CaMML with no prior on them. For MB-8
and MB-16, we run EM-CaMML by first checking whether a trigger is detected, otherwise
insert a latent node with a random initialization structure as prior (see the detailed process
in Section 5.1.3). After getting the resulting subnet of each MB partition, we then re-run
EM-CaMML on all the nodes in the data using all the subnets as prior (hard constraints)
as well as the corresponding sufficient statistics.

Finally, Figure 6.17 shows a final EM-CaMML output example by taking the result
from the previous step. Arcs in red represent mistakes produced by EM-CaMML, either
false positive arcs or arcs facing the wrong direction. Arcs in green are the false negative
arcs which are present in the true network but are missing from the learned network. Arcs
in black denote all other arcs learned by EM-CaMML which match the true structure.
In terms of latent variable detection, the latent node V 2 has been correctly discovered

90

Figure 6.16: The resulting partitions (in dashed lines) using MB pick greedy function.

Figure 6.17: The complete network learned by EM-CaMML using ini3 (nodes “V2” and
“V4” are latent, arcs in red represent all the mistaken arcs and green arcs represents true
arcs but absent in the learned network).

as a Big-W, while latent node V 4 correctly identified the marginal independence between
V 13 and V 14, but V 15 and V 17 are not children of V 4 in the learned network. All the
connections between different partitions (shown as V 3→ V 13, V 8→ V 19 and V 18→ V 5)
are correctly identified by EM-CaMML with only one mistake V 11→ V 6, which is in the
wrong direction. In general, this learned network appears to be an acceptable structure,
and the edit distance between this structure and the true structure is 9, based on the rules
shown in Table 5.3. We also repeated this process multiple times, and the final output
results are quite similar to Figure 6.17, only with some minor differences in the subnets
learned on MB-8 and MB-16. We also tried running EM-CaMML with ini2 (see Section
5.2.1), the result is quite similar and the major difference is a better subnet learned
over MB-16. This subnet does not include the red arcs V 13 → V 17, V 14 → V 17 and
V 15 → V 17, and more arcs V 4 → V 17, V 15 → V 4 and V 16 → V 4 are introduced (see
Figure 6.18). This is expected given the fact that ini2 is more similar to the true structure.

91

Figure 6.18: The subnet learned by EM-CaMML over MB-16 using ini2 (nodes “V2” and
“V4” are latent, arcs in red represent all the mistaken arcs).

To conclude, this proof of concept study shows EM-CaMML has great potential to
be extended to discovering multiple latent variables in large networks. However, EM-
CaMML can still be improved in different aspects. This includes making the latent node
more useful in the case of learning a subnet over MB-16 and experimenting with the
other two MBMML implementations (i.e., MBMML+NB and MBMML+MBP), as well
as making the whole process more automatic.

6.3 Summary

By studying the two cases presented in this chapter, we examined how EM-CaMML can
be used in different scenarios, including when the latent node only partly explains the
dependencies, and the case in which multiple latent nodes may exist in a large network.
For the first case, as expected, PC and FCI are the best structure learners for dealing
with partial Big-W cases, but EM-CaMML nonetheless has similar performance in terms
of KL and CKL. For the second case, we have proposed a learning process that extends
EM-CaMML to multiple latent nodes in large networks. The MBMML algorithm produces
highly accurate partitions and makes for an excellent fit with EM-CaMML as they both
apply MML as the learning metric. However, there are still things that need to be resolved
in the future, for example, the MB pick greedy function can choose an MB that is larger
than what EM-CaMML can handle. Given the promising results, delivering an enhanced
EM-CaMML which efficiently discovers multiple latent nodes will be in scope for our future
plans.

92

Chapter 7

Conclusion and Future Research

Discovering latent variables is a task with great challenges in causal discovery. This is due
to the great uncertainty and complexity in searching the space with latent variables and
the difficulties in connecting them with observed nodes. To the best of our knowledge,
EM-CaMML is the first machine learner that can discover explicit latent variables auto-
matically and without expert input. It produces a fully parameterized model using a new
version of MML, which is explicitly adapted for scoring models with latent variables. It
should not be categorized simply as a metric learner, since it has some properties of con-
straint based learners such as the conditional dependency test used in the latent variable
detection function. The experimental results show us the performance of EM-CaMML is
consistent and it is competitive in every case when large samples are available. For smaller
samples, the performance of EM-CaMML is heavily dependent upon having a useful ini-
tial structure. To be sure, as the “no free lunch” theorem shows, there is no universal
learner that can perfectly deal with every case. Another message we learned from the
experiments we have conducted is that each evaluation measure — Edit Distance, KL and
CKL — has something to tell us that is interesting and useful about causal discovery, and
the combination of them can give us a better understanding of learning performance than
any single measure.

7.1 Main Contributions

Regarding the research questions proposed at the beginning of this thesis (how to system-
atically find triggers, how to use triggers in causal discovery, how to extend CaMML to
learn in latent model space as well as how to scale up the latent discovery), contributions
have been made throughout. In Chapter 4, we proposed a systematic search for finding
all triggers. Such triggers are properly defined and explained by emphasizing their impor-
tance in causal modeling. Due to the super exponential time complexity, we implemented
a multi-threaded version of the search program, which runs significantly faster than the
original version. We also demonstrated how to use triggers in an integrated latent vari-
able causal discovery system, with a trigger detection function as a pre-processing step
for EM-CaMML. This function has a certain level of flexibility that allows users to choose
the sensitivity (as a threshold) for matching triggers. The experimental work in Chapter
4 shows the value of integrating the trigger detection function, successfully reducing the
false positive rate for latents in comparison with alternative methods. While we think
there is more work to do in taking full advantage of trigger discovery, we believe the first
two questions have been answered here.

In terms of the research question of enhancing CaMML, the practical program named
EM-CaMML was proposed and delivered (see details in Section 5). It implements a
comprehensive algorithm that considers three different initial structures and applies a new

93

MML metric which is able to score a model with latent variables explicitly. The initial
structures provide support not only for triggers but also for EM-CaMML in simplifying
overly dense subnetworks. For the purpose of validating any learned latent model, EM-
CaMML also compares it to the best fully observed model at the very end of the process.
If the former model is no better than the latter in terms of MML cost, EM-CaMML will
return the fully observed model instead. In addition to this work, we demonstrated how to
turn a PC/FCI partial output structure into a fully directed DAG, as well as dealing with
minor issues during the evaluation process (e.g., models with different numbers of nodes).
The experimental work of Chapter 5 which compares EM-CaMML with the alternative
latent discovery algorithms using different real-world test cases also gave us promising
results. We can see that EM-CaMML did not always produce the best results, but it
does have good overall performance. For the benefit of the research community, EM-
CaMML is published online as open source software; this version runs the latent detection
and learning process automatically with a well designed user interface and returns a fully
parameterized output model.

Finally, two different EM-CaMML extensions are presented in Chapter 6, in a prelimi-
nary way. The first one learns partial triggers and is presented together with an experiment
comparing EM-CaMML with alternative learners applied to partial triggers. The exper-
imental results there showed PC/FCI produced the best results in most cases, but the
performance of PC/FCI and EM-CaMML are close, especially as sample size increases.
The KL results are almost entirely indistinguishable and the CKL results are a bit less so.
The aim of the second extension, (in principle) parallel learning from Markov Blankets,
was to answer the last research question by showing our preliminary work on discovering
multiple latent variables. An MML MB discovery algorithm was used and applied to give
accurate partitions of the network, allowing EM-CaMML to efficiently deal with latent
variables in large networks. EM-CaMML successfully merged each local structure into a
completed model with most links between each sub-network being learned correctly in the
test case. A detailed process was proposed in the chapter for how to scale up EM-CaMML
by encoding the learned MB sub-results. After this proof of concept study, we now aim
to fully implement the process into EM-CaMML and do more experiments to justify the
results.

7.2 Future Work

The following list describes potential future work that falls outside the scope of this thesis:

1. For the algorithm that searches for triggers (see Algorithm 1), a smarter method
is desirable to generate the dependency matrix more efficiently (e.g., by looking for
v-structures), as many DAGs share the same conditional dependencies in terms of
d-separation.

2. Learning the dimensionality of latent variables could be incorporated, as well as
discovering multiple latent nodes. One possibility would be to try different latent
node dimensionalities within a range and select the best in an extended sample
space. For example, one potential solution proposed by Elidan and Friedman in 2001
starts with exploring all possible states of the latent variables and then iteratively
merging selected states help to improve the score, trading off accuracy for simplicity.
Although this will obviously increase the complexity and execution time, it is still
worth trying in the future.

3. We are considering adding a post processing phase to EM-CaMML because the latent
variable could potentially be useless in some way. For example, in the EM-CaMML

94

results shown in Figure 5.37a the latent node H appears as the middle node in a
chain structure P2→ H → C. In this case, the results will improve if there is a post
processing phase that marginalizes out the latent node.

4. The current EM-CaMML can only run with a relatively small number of nodes.
One of the potential solutions is to run the algorithm on different subsets of the
data in parallel and merge different sub-results together. We are encouraged by the
promising results of EM-CaMML shown in the proof of concept study (see Section
6.2) that applies an MB discovery technique to this problem, and particularly its
success in merging different subnets into a complete model. Meanwhile, different
heuristic functions can be tested in Step 2 of the learning method resulting in some
non-disjoint partitions. Such partitions could be beneficial as some of the connections
between different MBs can be learned by CaMML before the final merge. However,
this operation could also introduce more conflicts. In the future, We will therefore
implement the process fully and produce an enhanced version of EM-CaMML.

5. In terms of the EM-CaMML workflow (shown in Figure 5.8), improvements can be
made by running all methods in parallel and using the resulting best latent model
to compare with the best observed model. To be more specific, no matter whether a
trigger is detected, we still run EM-CaMML with the three different initializations
(see Section 5.2.1), enabling us to be more confident about the EM-CaMML output.

95

96

References

Allison, L. (2005). Models for machine learning and data mining in functional program-
ming, Journal of Functional Programming 15(1): 15.

Arntzenius, F. (1999). Reichenbach’s common cause principle, Entry in Stanford encyclo-
pedia of philosophy, http://plato.stanford.edu/entries/physics-Rpcc/.

Asher, H. B. and Asher, H. R. (1976). Causal modeling, Sage.

Beinlich, I. A., Suermondt, H. J., Chavez, R. M. and Cooper, G. F. (1989). The alarm
monitoring system: A case study with two probabilistic inference techniques for belief
networks, AIME 89, Springer, pp. 247–256.

Binder, J., Koller, D., Russell, S. and Kanazawa, K. (1997). Adaptive probabilistic net-
works with hidden variables, Machine Learning 29(2-3): 213–244.

Boerlage, B. (1988). Mendel genetics, https://www.norsys.com/netlibrary/index.

htm. [Online; accessed 20-Oct-2019].

Chen, X., Yuan, Y. and Orgun, M. A. (2019). Using Bayesian networks with hidden
variables for identifying trustworthy users in social networks, Journal of Information
Science p. 0165551519857590.

Chickering, D. M. (1995). A transformational characterization of equivalent Bayesian
network structures, Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, Morgan Kaufmann, pp. 87–98.

Chickering, D. M., Geiger, D., Heckerman, D. et al. (1994). Learning Bayesian networks
is NP-hard, Technical Report MSR-TR-94-17, Microsoft Research.

Comley, J. W., Allison, L. and Fitzgibbon, L. J. (2003). Flexible decision trees in a general
data-mining environment, International Conference on Intelligent Data Engineering and
Automated Learning, Springer, pp. 761–767.

Cooper, G. F. (1990). The computational complexity of probabilistic inference using
Bayesian belief networks, Artificial Intelligence 42(2-3): 393–405.

Cooper, G. F., Aliferis, C. F., Ambrosino, R., Aronis, J., Buchanan, B. G., Caruana, R.,
Fine, M. J., Glymour, C., Gordon, G., Hanusa, B. H. et al. (1997). An evaluation of
machine-learning methods for predicting pneumonia mortality, Artificial intelligence in
medicine 9(2): 107–138.

Cooper, G. F. and Herskovits, E. (1991). A Bayesian method for constructing Bayesian
belief networks from databases, Proceedings of the Seventh Conference on Uncertainty
in Artificial Intelligence, Morgan Kaufmann, pp. 86–94.

Cooper, G. F. and Herskovits, E. (1992). A Bayesian method for the induction of proba-
bilistic networks from data, Machine learning 9(4): 309–347.

97

http://plato.stanford.edu/entries/physics-Rpcc/
https://www.norsys.com/netlibrary/index.htm
https://www.norsys.com/netlibrary/index.htm

Corp, N. S. (1998). Animals characteristics, https://www.norsys.com/netlibrary/

index.htm. [Online; accessed 20-Oct-2019].

Dagum, P. and Luby, M. (1993). Approximating probabilistic inference in Bayesian belief
networks is np-hard, Artificial intelligence 60(1): 141–153.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the em algorithm, Journal of the Royal Statistical Society. Series B
(methodological) pp. 1–38.

Elidan, G. and Friedman, N. (2001). Learning the dimensionality of hidden variables, Pro-
ceedings of the Seventeenth conference on Uncertainty in Artificial Intelligence, pp. 144–
151.

Farrokh Alemi, J. V. (2004). Wrong side surgery, http://openonlinecourses.com/

decisionanalysis/RootCauseAnalysis.asp. [Online; accessed 20-Oct-2019].

François, O. and Leray, P. (2008). Bnt structure learning package: installing the package,
http://ofrancois.tuxfamily.org/carb/node5_mn.html. [Online; accessed 31-Oct-
2019].

Friedman, N. (1998). The Bayesian structural em algorithm, Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, pp. 129–138.

Friedman, N. and Goldszmidt, M. (1998). Learning Bayesian networks with local structure,
Learning in graphical models, Springer, pp. 421–459.

Friedman, N. et al. (1997). Learning belief networks in the presence of missing values and
hidden variables, Proceedings of the Fourteenth International Conference on Machine
Learning, Vol. 97, Morgan Kaufmann, pp. 125–133.

Gao, T. and Wei, D. (2018). Parallel Bayesian network structure learning, International
Conference on Machine Learning, pp. 1685–1694.

Gelman, A., Carlin, J., Stern, H., and Rubin, D. (1995). Bayesian Data Analysis, Chapman
& Hall, London .

Gillispie, S. B. and Perlman, M. D. (2001). Enumerating Markov equivalence classes of
acyclic digraph models, Proceedings of the Seventeenth Conference on Uncertainty in
Artificial Intelligence, pp. 171–177.

Glymour, C., Scheines, R., Spirtes, P. and Kelly, K. (1987). Discovering causal structure:
Artificial intelligence, philosophy of science, and statistical modeling.

Glymour, C. and Spirtes, P. (1988). Latent variables, causal models and overidentifying
constraints, Journal of Econometrics 39(1): 175–198.

Hastings, W. K. (1970). Monte carlo sampling methods using Markov chains and their
applications.

Heckerman, D. (2008). A tutorial on learning with Bayesian networks, Innovations in
Bayesian networks, Springer, pp. 33–82.

Heckerman, D., Geiger, D. and Chickering, D. M. (1995). Learning Bayesian networks:
The combination of knowledge and statistical data, Machine learning 20(3): 197–243.

98

https://www.norsys.com/netlibrary/index.htm
https://www.norsys.com/netlibrary/index.htm
http://openonlinecourses.com/decisionanalysis/RootCauseAnalysis.asp
http://openonlinecourses.com/decisionanalysis/RootCauseAnalysis.asp
http://ofrancois.tuxfamily.org/carb/node5_mn.html

Kao, L.-J., Chiu, C.-C. and Chiu, F.-Y. (2012). A Bayesian latent variable model with
classification and regression tree approach for behavior and credit scoring, Knowledge-
Based Systems 36: 245–252.

Koller, D. and Sahami, M. (1996). Toward optimal feature selection, Proceedings of the
Thirteenth International Conference on Machine Learning, pp. 284–292.

Korb, K. B. and Nicholson, A. E. (2010). Bayesian artificial intelligence, CRC Press.

Korb, K. B. and Nyberg, E. (2006). The power of intervention, Minds and Machines
16(3): 289–302.

Kullback, S. (1959). Information theory and statistics, John Wiley.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency, The Annals of
Mathematical Statistics 22(1): 79–86.

Lam, W. and Bacchus, F. (1994). Learning Bayesian belief networks: An approach based
on the mdl principle, Computational Intelligence 10(3): 269–293.

Lauritzen, S. L. (1995). The em algorithm for graphical association models with missing
data, Computational Statistics & Data Analysis 19(2): 191–201.

Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with probabilities
on graphical structures and their application to expert systems, Journal of the Royal
Statistical Society: Series B (Methodological) 50(2): 157–194.

Leray, P. and Francois, O. (2004). Bnt structure learning package: Documentation and
experiments, Technical report, FRE CNR 2645, Laboratoire PSI, Université et INSA de
Rouen.

Li, Y. (2020). Moral Markov Blankets: An Investigation of Some Properties and Value for
Machine Learning, PhD thesis, Faculty of Information Technology, Monash University.

Matheson, J. E. (1990). Using influence diagrams to value information and control, Influ-
ence Diagrams, Belief Nets, and Decision Analysis pp. 25–48.

Meek, C. (1995). Strong completeness and faithfulness in Bayesian networks, Proceedings
of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 411–418.

Mueller, W. G., Memory, A. and Bartrem, K. (2019). Causal discovery of cyber attack
phases, 2019 18th IEEE International Conference On Machine Learning And Applica-
tions (ICMLA), IEEE, pp. 1348–1352.

Murphy, K. (2004). Bayes net toolbox v5 for matlab.

Nägele, A., Dejori, M. and Stetter, M. (2007). Bayesian substructure learning-approximate
learning of very large network structures, European Conference on Machine Learning,
Springer, pp. 238–249.

Neapolitan, R. E. (1990). Probabilistic reasoning in expert systems: theory and algorithms,
John Wiley & Sons.

Neil, J. R. and Korb, K. B. (1998). The MML evolution of causal models, Technical Report
98/17, Department of Computer Science, Monash University, Clayton, Victoria 3168,
Australia.

99

Netica API (2012). https://www.norsys.com/netica_api.html. [Online; accessed 14-
July-2020].

Nicholson, A. E. and Jitnah, N. (1998). Using mutual information to determine relevance
in Bayesian networks, Pacific Rim International Conference on Artificial Intelligence,
Springer, pp. 399–410.

Nicholson, A. E., Woodberry, O. and Twardy, C. (2010). The “Native Fish” Bayesian
networks, Technical report, Bayesian Intelligence Technical Report 2010/3.

Nielsen, T. D. and Jensen, F. V. (2007). Bayesian Networks and Decision Graphs, Springer.

Niinimäki, T. and Parviainen, P. (2012). Local structure discovery in Bayesian networks,
Conference on Uncertainty in Artificial Intelligence, Workshop on Causal Structure
Learning, pp. 634–643.

O’Donnell, R. (2010). Flexible Causal Discovery with MML, PhD thesis, Clayton School
of Information Technology, Monash University.

O’Donnell, R. (2013). Camml, https://github.com/rodneyodonnell/CaMML. [Online;
accessed 29-Mar-2020].

O’Donnell, R., Korb, K. and Allison, L. (2007). Causal KL: Evaluating causal discovery,
Technical report, Clayton School of IT, Monash University.

Pearl, J. (1986). A constraint propagation approach to probabilistic reasoning, Machine
Intelligence and Pattern Recognition, Vol. 4, Elsevier, pp. 357–369.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible in-
ference, Morgan Kaufmann.

Pearl, J. (2000). Causality: models, reasoning and inference, Cambridge University Press.

Pearl, J. and Verma, T. (1991). A theory of inferred causation, Proceedings of the Second
International Conference on Principles of Knowledge Representation and Reasoning,
pp. 441–452.

Pérez-Ariza, C. B., Nicholson, A. E., Korb, K. B., Mascaro, S. and Hu, C. H. (2012).
Causal discovery of dynamic Bayesian networks, Australasian Joint Conference on Ar-
tificial Intelligence, Springer, pp. 902–913.

Phillips, L. D. and Edwards, W. (1966). Conservatism in a simple probability inference
task, Journal of Experimental Psychology 72(3): 346.

Ramsey, J., Glymour, M., Sanchez-Romero, R. and Glymour, C. (2017). A million
variables and more: the fast greedy equivalence search algorithm for learning high-
dimensional graphical causal models, with an application to functional magnetic reso-
nance images, International Journal of Data Science and Analytics 3(2): 121–129.

Richardson, T., Bailer, H. and Banerjee, M. (1999). Tractable structure search in the
presence of latent variables, Preliminary papers of the Seventh International Workshop
on AI and Statistics, Morgan Kaufmann, pp. 142–151.

Richardson, T. S. and Spirtes, P. (2003). Causal inference via ancestral graph models,
Oxford Statistical Science Series 1(27): 83–105.

Robinson, R. W. (1977). Counting unlabeled acyclic digraphs, Combinatorial mathematics
V, Springer, pp. 28–43.

100

https://www.norsys.com/netica_api.html
https://github.com/rodneyodonnell/CaMML

Schwarz, G. et al. (1978). Estimating the dimension of a model, The Annals of Statistics
6(2): 461–464.

Shannon, C. E. (1948). A mathematical theory of communication, Bell System Technical
Journal 27(3): 379–423.

Spearman, C. (1904). “General intelligence” objectively determined and measured, The
American Journal of Psychology 15(2): 201–292.

Spirtes, P., Glymour, C. and Scheines, R. (1993). Causation, prediction, and search.

Spirtes, P., Meek, C. and Richardson, T. (1995). Causal inference in the presence of latent
variables and selection bias, Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, Morgan Kaufmann, pp. 499–506.

Spirtes, P., Richardson, T. and Meek, C. (1997). Heuristic greedy search algorithms for
latent variable models, Proceedings of AI & STAT’97, pp. 481–488.

Spirtes, P., Scheines, R. and Glymour, C. (2016). Tetrad v, http://www.phil.cmu.edu/

~tetrad/tetad_old2/current.html. [Online; accessed 14-Jul-2020].

Strobl, E. V. and Visweswaran, S. (2015). Markov boundary discovery with ridge regular-
ized linear models, Journal of Causal Inference 4(1): 31–48.

Tembo, S. R., Vaton, S., Courant, J.-L. and Gosselin, S. (2016). A tutorial on the em algo-
rithm for Bayesian networks: application to self-diagnosis of gpon-ftth networks, Inter-
national Wireless Communications and Mobile Computing Conference, IEEE, pp. 369–
376.

Thiruvady, D. (2015). Revolver, https://www.abnms.org/bn/125. [Online; accessed 20-
Oct-2019].

Tsamardinos, I., Aliferis, C. F., Statnikov, A. R. and Statnikov, E. (2003). Algorithms for
large scale Markov blanket discovery, FLAIRS Conference, Vol. 2, pp. 376–380.

Velikova, M., van Scheltinga, J. T., Lucas, P. J. and Spaanderman, M. (2014). Exploiting
causal functional relationships in Bayesian network modelling for personalised health-
care, International Journal of Approximate Reasoning 55(1): 59–73.

Verma, T. and Pearl, J. (1990). Equivalence and synthesis of causal models, Proceedings of
the Sixth Annual Conference on Uncertainty in Artificial Intelligence, Elsevier, pp. 255–
270.

Verma, T. and Pearl, J. (1992). An algorithm for deciding if a set of observed inde-
pendencies has a causal explanation, Proceedings of the Eighth Annual Conference on
Uncertainty in Artificial Intelligence, Elsevier, pp. 323–330.

Wallace, C. S. (2005). Statistical and inductive inference by minimum message length,
Springer.

Wallace, C. S. and Boulton, D. M. (1968). An information measure for classification, The
Computer Journal 11(2): 185–194.

Wallace, C. S. and Korb, K. B. (1999). Learning linear causal models by MML sampling,
Causal models and intelligent data management, Springer, pp. 89–111.

101

http://www.phil.cmu.edu/~tetrad/tetad_old2/current.html
http://www.phil.cmu.edu/~tetrad/tetad_old2/current.html
https://www.abnms.org/bn/125

Wallace, C. S., Korb, K. B. and Dai, H. (1996). Causal discovery via MML, Proceed-
ings of the Thirteenth International Conference on Machine Learning, Vol. 96, Morgan
Kaufmann, pp. 516–524.

Xie, P., Li, J. H., Ou, X., Liu, P. and Levy, R. (2010). Using Bayesian networks for cyber
security analysis, 2010 IEEE/IFIP International Conference on Dependable Systems &
Networks (DSN), IEEE, pp. 211–220.

Yang, S., Shu, K., Wang, S., Gu, R., Wu, F. and Liu, H. (2019). Unsupervised fake news
detection on social media: A generative approach, Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33, pp. 5644–5651.

Zarikas, V., Papageorgiou, E. and Regner, P. (2015). Bayesian network construction using
a fuzzy rule based approach for medical decision support, Expert Systems 32(3): 344–
369.

Zhang, J. (2008). Causal reasoning with ancestral graphs, Journal of Machine Learning
Research 9(Jul): 1437–1474.

Zhang, X., Korb, K. B., Nicholson, A. E. and Mascaro, S. (2017). Applying dependency
patterns in causal discovery of latent variable models, Australasian Conference on Ar-
tificial Life and Computational Intelligence, Springer, pp. 134–143.

102

Glossary

BN Bayesian Network. 1, 5–10, 15, 22, 27, 40, 47, 52, 64, 86

CaMML Causal Discovery via MML. 1, 13, 15, 24, 27, 46, 74, 77, 93, 95

CDMS Core Data Mining System. 24, 49, 74

CPD Conditional Probability Distribution. 5

CPT Conditional Probability Table. 5, 27, 41, 50, 51, 68, 89

DAG Directed Acyclic Graph. vi, viii, 5, 7, 16, 22, 24, 26, 27, 32, 33, 35–38, 43, 49, 56,
59, 75, 76, 94

ED Edit Distance. 44, 45, 70, 72, 73, 109–112

EM Expectation Maximisation. 7, 15, 22, 49, 51, 52, 55

FN False Negative. 43, 62

FNR False Negative Rate. 44

FP False Positive. 43, 62

FPR False Positive Rate. 44–46, 73

MAG Maximal Ancestral Graph. viii, 36–38

MAP Maximum A Posteriori. 22, 23

MB Markov Blanket. vi, 3, 4, 27, 77, 79, 86–90, 92, 94, 95

MCMC Markov Chain Monte Carlo. 1, 22, 49, 52, 55, 74, 75

MDL Minimum Description Length. 15, 21

MEC Markov Equivalence Class. 10

MLE Maximum Likelihood Estimation. 6, 7, 22, 23

MML Minimum Message Length. 1, 22, 46, 48, 49, 51, 87, 94

MMLEC MML Equivalent Class. 27

NB Naive Bayesian. 8

PAG Partial Ancestral Graph. 36, 37

103

POIPG Partially Oriented Inducing Path Graph. 17, 21

SEC Statistical Equivalence Class. 18, 22, 27

SEM Structure Expectation Maximization. 22, 44, 63, 64

TN True Negative. 43, 62

TOM Totally Ordered Model. 24, 25, 27, 49, 51, 52, 76

TP True Positive. 43, 62

TPR True Positive Rate. 85

UI User Interface. 3, 74

104

Notation

Symbol Definition

∅ An empty variable set

χ2 Chi-square test

X,Y, Z, ... Different variable in a model

x, y, z, ... Instantiations of variable X,Y, Z, ...

M1, ...,Mn Model structures

π(Xi) Parents of variable Xi

Θ Complete parameter assignment of a parameterized model

G Directed acyclic graph (DAG)

V Set of variables {X1, ..., Xn} in the domain

U An undirected path between two variables

D Input dataset

|D| Number of variables in D

DX Data for variable X

D∗ Missing data in D

D labels Variable labels in D

L all possible label assignments of D labels

Ni,j,k Number of instances in D that Xi = k and π(Xi) = j

O Set of observable variables

A An Oriented arc between two variables

~x Instantiation of V

E Set of evidence for applying d-separation

M Set of dependency matrices

P (Xi = x) Probability of Xi = x in a parameterized model

E(Xi = x) Expected counts of Xi = x in data with missing values

X\Y Set X with all elements of Y removed

X |= Y X is independent of Y

X |= Y |Z X is independent of Y given Z

X 6 |= Y X is dependent of Y

X 6 |= Y |Z X is dependent of Y given Z

X ≺ Y Variable X precedes Y in a total ordering.

X � Y Variable X succeeds Y in a total ordering.

I(M,D) Message length for model M and data D

φT (S) a CPT model contains parents set S of target variable T

105

106

Appendix A

All Single Latent Triggers for Five
Observed Variables

107

108

Appendix B

FCI, PC and Trigger-PC
Performance by Arc Strength

FCI PC Trigger-PC

Average ED
15.490 14.400 14.400

(15.011, 15.968) (13.864, 14.936) (13.879, 14.921)

Accuracy
0.768 0.791 0.843

(0.742, 0.794) (0.766, 0.816) (0.821, 0.865)

FPR
0.139 0.110 0.006

(0.118, 0.160) (0.091, 0.129) (0.001, 0.011)

FNR
0.701 0.707 0.920

(0.673, 0.729) (0.679, 0.735) (0.904, 0.936)

Recall
0.299 0.293 0.080

(0.271, 0.327) (0.265, 0.321) (0.064, 0.096)

Precision
0.299 0.347 0.737

(0.271, 0.327) (0.318, 0.376) (0.710, 0.764)

Specificity
0.861 0.890 0.994

(0.840, 0.882) (0.871, 0.909) (0.989, 0.999)

F-score
0.299 0.318 0.144

(0.271, 0.327) (0.290, 0.346) (0.123, 0.165)

Table B.1: Results of networks with maximum arc strengths using optimized alpha (bold
and italic represent significantly the best and worst results).

109

FCI PC Trigger-PC

Average ED
15.854 14.878 15.366

(15.353, 16.355) (14.310, 15.446) (14.818, 15.914)

Accuracy
0.703 0.738 0.839

(0.675, 0.731) (0.711, 0.765) (0.817, 0.861)

FPR
0.215 0.171 0.017

(0.190, 0.240) (0.148, 0.194) (0.009, 0.025)

FNR
0.713 0.718 0.885

(0.686, 0.740) (0.691, 0.745) (0.866, 0.904)

Recall
0.287 0.282 0.115

(0.260, 0.314) (0.255, 0.309) (0.096, 0.134)

Precision
0.210 0.246 0.571

(0.185, 0.235) (0.220, 0.272) (0.541, 0.601)

Specificity
0.785 0.829 0.983

(0.760, 0.810) (0.806, 0.852) (0.975, 0.991)

F-score
0.243 0.263 0.191

(0.217, 0.269) (0.236, 0.290) (0.167, 0.215)

Table B.2: Results of networks with medium arc strengths using optimized alpha (bold
and italic represent significantly the best and worst results).

FCI PC Trigger-PC

Average ED
30.781 30.737 30.596

(30.092, 31.470) (30.032, 31.442) (29.896, 31.296)

Accuracy
0.722 0.731 0.833

(0.695, 0.749) (0.704, 0.758) (0.810, 0.856)

FPR
0.143 0.130 0.001

(0.122, 0.164) (0.110, 0.150) (-0.001, 0.003)

FNR
0.960 0.966 1.000

(0.948, 0.972) (0.955, 0.977) (1.000, 1.000)

Recall
0.040 0.034 0.000

(0.028, 0.052) (0.023, 0.045) (0.000, 0.000)

Precision
0.053 0.050 0.000

(0.039, 0.067) (0.037, 0.063) (0.000, 0.000)

Specificity
0.857 0.870 0.999

(0.836, 0.878) (0.850, 0.890) (0.997, 1.001)

F-score
0.046 0.040 -

(0.033, 0.059) (0.028, 0.052) -

Table B.3: Results of networks with minimum arc strengths using optimized alpha (bold
and italic represent significantly the best and worst results).

110

FCI PC Trigger-PC

Average ED
15.643 14.775 14.844

(15.146, 16.139) (14.214, 15.337) (14.303, 15.385)

Accuracy
0.765 0.794 0.848

(0.739, 0.791) (0.770, 0.818) (0.826, 0.870)

FPR
0.135 0.099 0.002

(0.114, 0.156) (0.081, 0.117) (-0.001, 0.005)

FNR
0.741 0.741 0.908

(0.715, 0.767) (0.715, 0.767) (0.891, 0.925)

Recall
0.259 0.259 0.092

(0.233, 0.285) (0.233, 0.285) (0.075, 0.109)

Precision
0.276 0.341 0.889

(0.249, 0.303) (0.312, 0.370) (0.870, 0.908)

Specificity
0.865 0.901 0.998

(0.844, 0.886) (0.883, 0.919) (0.995, 1.001)

F-score
0.267 0.294 0.167

(0.240, 0.294) (0.266, 0.322) (0.144, 0.190)

Table B.4: Results of networks with maximum arc strengths using default alpha 0.05 (bold
and italic represent significantly the best and worst results).

FCI PC Trigger-PC

Average ED
16.044 15.194 15.362

(15.513, 16.574) (14.599, 15.790) (14.794, 15.929)

Accuracy
0.739 0.766 0.842

(0.712, 0.766) (0.740, 0.792) (0.820, 0.864)

FPR
0.176 0.144 0.016

(0.153, 0.199) (0.123, 0.165) (0.008, 0.024)

FNR
0.690 0.690 0.874

(0.662, 0.718) (0.662, 0.718) (0.854, 0.894)

Recall
0.310 0.310 0.126

(0.282, 0.338) (0.282, 0.338) (0.106, 0.146)

Precision
0.260 0.300 0.611

(0.233, 0.287) (0.272, 0.328) (0.582, 0.640)

Specificity
0.824 0.856 0.984

(0.801, 0.847) (0.835, 0.877) (0.976, 0.992)

F-score
0.283 0.305 0.209

(0.256, 0.310) (0.277, 0.333) (0.184, 0.234)

Table B.5: Results of networks with medium arc strengths using default alpha 0.05 (bold
and italic represent significantly the best and worst results).

111

FCI PC Trigger-PC

Average ED
31.632 31.600 31.570

(30.964, 32.300) (30.922, 32.278) (30.886, 32.253)

Accuracy
0.751 0.755 0.833

(0.725, 0.777) (0.729, 0.781) (0.810, 0.856)

FPR
0.100 0.096 0.001

(0.082, 0.118) (0.078, 0.114) (-0.001, 0.003)

FNR
0.994 0.994 1.000

(0.989, 0.999) (0.989, 0.999) (1.000, 1.000)

Recall
0.006 0.006 0.000

(0.001, 0.011) (0.001, 0.011) (0.000, 0.000)

Precision
0.011 0.012 0.000

(0.005, 0.017) (0.005, 0.019) (0.000, 0.000)

Specificity
0.900 0.904 0.999

(0.882, 0.918) (0.886, 0.922) (0.997, 1.001)

F-score
0.008 0.008 -

(0.003, 0.013) (0.003, 0.013) -

Table B.6: Results of networks with minimum arc strengths using default alpha 0.05 (bold
and italic represent significantly the best and worst results).

112

Appendix C

Test Network Selection

C.1 Test Network Sources

Type Network Name Latent Node Additional Arc

Big-W Space Mission(Matheson, 1990) Launch

Big-W Alarm(Beinlich et al., 1989) HR

Big-W Naive Fish V1(Nicholson et al., 2010) Annual Rainfall

Big-W Stud farm(Nielsen and Jensen, 2007) Ann

covered Big-W Space Mission(Matheson, 1990) Launch Descender → Venus Descender

covered Big-W Alarm(Beinlich et al., 1989) HR ERRLOWOUTPUT → ERRCAUTER

covered Big-W Naive Fish V1(Nicholson et al., 2010) Annual Rainfall Drought Conditions → Pesticide Use

covered Big-W Stud farm(Nielsen and Jensen, 2007) Ann L → Brain

Latent Earthquake(Korb and Nicholson, 2010) Alarm

Latent Bookbag(Phillips and Edwards, 1966) Book Bag

Latent Animal(Corp, 1998) Class

Latent Asia(Lauritzen and Spiegelhalter, 1988) either

No Latent Revolver(Thiruvady, 2015)

No Latent Cancer Neapolitan(Neapolitan, 1990)

No Latent Mendel Genetics(Boerlage, 1988)

No Latent Wrong Side Surgery(Farrokh Alemi, 2004)

Table C.1: All test networks.

Network Name Extra Arc Tested Threshold

Space Mission(Matheson, 1990) Venus Descender → Result Mars 0.005, 0.01, 0.02, 0.036

Alarm(Beinlich et al., 1989) ERRCAUTER → HRBP 0.005, 0.01, 0.02, 0.026

Naive Fish V1(Nicholson et al., 2010) Pesticide Use → River Flow 0.005, 0.006, 0.007, 0.0086

Stud farm(Nielsen and Jensen, 2007) L → Dorothy 0.005, 0.0053, 0.0056, 0.056

Table C.2: Arc prior optimization test networks.

113

C.2 All Test Networks

(a) Space Mission. (b) Alarm.

(c) Native Fish. (d) Stud Farm.

Figure C.1: Big-W test networks (node “H” represents the latent).

(a) Space Mission (covered). (b) Alarm (covered).

(c) Native Fish (covered). (d) Stud Farm (covered).

Figure C.2: Covered Big-W test networks (node “H” represents the latent).

114

(a) Earthquake. (b) Bookbags.

(c) Animal. (d) Asia.

Figure C.3: Latent test networks (node “H” represents the latent).

(a) Revolver. (b) Cancer Neapolitan.

(c) Mendel Genetics. (d) Wrong Side Surgery.

Figure C.4: No latent test networks.

115

	List of Tables
	List of Figures
	Abstract
	Acknowledgments
	Introduction
	Motivation and Objectives
	Contributions and Outline
	Thesis Layout

	Bayesian Networks
	Bayesian Network Basics
	Causal Bayesian Networks
	D-separation
	Markov Equivalence
	Causal Discovery vs Regression

	Learning With Latent Variables
	The Necessity of Modeling with Latent Variables
	Causal Discovery With Latent Variables
	Constraint-based Learners
	IC Algorithm
	PC Algorithm
	FCI Algorithm

	Metric-based Learners
	EM Algorithm
	SEM Algorithm
	CaMML

	Evaluation Metrics
	Edit Distance
	KL and CKL Divergence

	Dependency Pattern Discovery
	Definition of Dependency Matrix
	A Systematic Search for Triggers
	Learning Triggers With Causal Discovery Algorithms
	Experiment
	Generating Simulated Datasets of Triggers
	Experimental Results

	Summary

	EM-CaMML for Latent Variable Models
	EM-CaMML Algorithm Design
	A New Score Metric for Latent Nodes
	EM Algorithm Integration
	EM-CaMML Workflow

	Experiment
	Initial Structure Selection
	Generating Complete DAGs for PC and FCI
	Arc Prior Probability Optimization
	Alarm
	Stud Farm
	Bookbags
	Mendel Genetics

	Software Design and Implementation
	Summary

	EM-CaMML Extensions
	Learning Partial Triggers
	Definition of Partial Trigger
	Experiment Results and Discussion

	Discovering Multiple Latent Variables
	Markov Blanket Discovery
	Experiment Results and Discussion

	Summary

	Conclusion and Future Research
	Main Contributions
	Future Work

	References
	Glossary
	Notation
	Appendix A All Single Latent Triggers for Five Observed Variables
	Appendix B FCI, PC and Trigger-PC Performance by Arc Strength
	Appendix C Test Network Selection
	Test Network Sources
	All Test Networks

