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Abstract

Recent developments for simultaneous positron emission tomography (PET) and mag-

netic resonance imaging (MRI) systems have enabled simultaneous measurement of struc-

ture, function, and metabolic information. Such a multimodal system provides multidi-

mensional opportunities for fundamental neuroscience as well as for clinical neuroimag-

ing for early diagnosis/prognosis of diseases.

For neuroscience research as well as clinical neuroimaging, it is imperative to op-

timize three crucial inter-related factors: (i) patient safety (by reducing ionizing radia-

tions), (ii) diagnostic information (by improving image quality and data analysis), and

(iii) the cost-effectiveness of the imaging session. In certain cases, reducing acquisition

time might be necessary to reduce patient comfort in case of elderly patients or patients

with movement disorders. Improving PET and MRI image quality is critical for improved

theranostics and clinical decision making. Reducing the radiotracer dose improves patient

safety and enables longitudinal PET imaging for adults and high-risk populations such as

children and pregnant women. For PET, there is a tradeoff between improving image qual-

ity and the number of photon-counts available for image reconstruction; reducing acqui-

sition time in MRI (and thus PET), achieved by undersampling the data, affects the image

quality of MRI due to aliasing artifacts and the image quality of PET due to the reduced

number of photon-counts. Reducing the overall acquisition time in addition to improving

patient comfort, eliminates patient-motion artifacts in the reconstructed images, which is

unavoidable in patients with movement disorders or certain neurodegenerative diseases.

Learning-based methods for image quality improvement during image reconstruc-

tion or post-reconstruction have demonstrated improved accuracy for ill-posed inverse

problems in comparison to traditional methods. The learning technique may depend on an

already existent training dataset consisting of high-quality images (from several subjects

or the longitudinal scans of the subject under consideration) or the imaging data (typically

structural scans) obtained within the same imaging session. In the case of learning tech-

niques based on previously acquired data, especially on different subjects/patients, a key
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factor for their clinical utility is the robustness to unseen data as well as the quantification

of the the risk involved in the prediction.

This dissertation tries to address research problems related to improving the image

quality of PET and MRI images with the aim of reducing the amount of injected radiations

and overall acquisition times. The dissertation involves developing robust learning-based

algorithms to improve PET and MRI image quality under accelerated MRI acquisition and

static low-dose PET scenarios. For dynamic functional PET imaging, the thesis explores

improved PET image quality to achieve improved brain functions at higher temporal res-

olution functional PET imaging.
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Chapter 1

Introduction

In vivo non-invasive multimodal imaging involving molecular and structural imaging has

evolved over the past couple of decades to enable combined imaging of structure, func-

tion, and metabolism within a single scanning session. Structural/anatomical imaging

modalities like magnetic resonance imaging (MRI) and X-ray computed tomography

(CT) in combination with molecular imaging modalities like positron emission tomog-

raphy (PET), single-photon emission CT (SPECT), enable the understanding of patho-

physiology of various diseases in oncology, neurology, and cardiology. PET, with its

high sensitivity (picomolar range), provides quantitative metabolic information regarding

various pathologies at the molecular level and can be used for early diagnosis (in some

cases, presymptomatic detection) of several diseases, optimization of drug development,

therapy, and treatment monitoring (??). On the other hand, MRI, in addition to providing

superior soft-tissue contrast in comparison to CT, can provide functional information via

various imaging protocols as well as imaging sequences such as functional MRI (fMRI),

diffusion MRI (dMRI), MR spectroscopy (MRS), etc.

The inherent limitations due to the fundamental contrast-generation mechanism and

due to the limitations of the imaging hardware render it unlikely that a single imaging

modality can satisfy ideal imaging characteristics such as high sensitivity and specificity,

high spatial resolution, and achieving all the above without compromising patient safety

(e.g., using toxic substances, the involvement of ionizing radiations, etc.). Hence, there

have been sustained efforts to combine imaging modalities for improved clinical thera-

nostics as well as medical research (?) leading to the development of multimodal imag-

ing systems like PET-CT and PET-MRI. Unlike information fusion from two different

standalone imaging modalities, multimodal imaging systems enable simultaneous and/or

sequential imaging within a single imaging session, thus enabling improved image reg-

istration between the two images and consequently, enabling improved diagnosis. The

1



1.1 Simultaneous PET-MRI System 2

combination of structural and metabolic information provides complementary insights

for various biological processes associated with different pathologies or with the normal

functioning of the human body. The advent of the simultaneous PET-MRI systems has

enabled synergistic PET and MRI data acquisition and joint analysis of the spatial and

temporal data from both modalities which benefits both medical research and clinical

diagnosis (?).

1.1 Simultaneous PET-MRI System

The initial efforts of combining PET and MRI commenced around the mid-1990s, even

before the introduction of the combined PET-CT systems. Compared to the PET-CT

systems, the simultaneous PET-MRI scanner has the advantages of reduced ionizing ra-

diations (due to the non-ionizing nature of MRI), and increased flexibility through access

to a wide variety of MRI contrasts (both structural and functional). MRI provides a range

of imaging sequences to catering to specific tissue characteristics and functions such as

dMRI, MRS, quantitative susceptibility mapping (QSM), and functional MRI (fMRI).

Before the advent of the simultaneous systems, clinicians/researchers had to rely

on software-based fusion of the PET and MRI images from dedicated scanners with se-

quential imaging sessions spread over hours or even days. Such sequential scans spread

over several hours might involve a change in the functioning or physiology of the subject

being scanned in medical conditions such as stroke (?). Hence, it is useful and in some

cases, necessary to simultaneously acquire PET and MRI imaging data. The currently

available simultaneous PET-MRI scanners have come a long way since the development

of the first proof-of-concept model called BrainPET that consisted of an MRI compati-

ble PET insert into a 3 T MRI system to today’s fully integrated whole-body PET-MRI

scanner where the PET detectors are placed between the gradient coils and the radio fre-

quency (RF) coils of the MRI (?). The major challenge in combining PET and MRI was

the co-existence of PET and MRI hardware due to mutual interference. This is unlike the

PET-CT system where the two imaging subsystems remained largely unaltered due to the

sequential design (?). With the advancement in PET detector electronics, current simulta-

neous PET-MRI systems provide a unique and unparalleled opportunity in the acquisition

and correlation analysis of the spatiotemporal signals arising from both the systems (?).

Such a system is promising for the field of neuroscience research as well as clinical neu-

roimaging.
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1.2 Simultaneous PET-MRI: Brain Imaging

In the general context of brain imaging, simultaneous PET-MRI offers the opportunity

to provide insights into understanding the human brain in healthy individuals as well as

individuals with pathology (?). For example, the joint analysis of PET and MRI spa-

tiotemporal data can lead to a better understanding of the energy utilization in the brain

(?). On the other hand, for clinical neuroimaging, MRI (which is already the preferred

choice of imaging modality for brain tumor imaging) combined with PET can aid in the

identification of pathological sites at an early or presymptomatic stage (?).

PET-MRI for neuroscience. The central aim of neuroscience is to investigate and

understand the working of the human brain, neural basis of cognition and various patho-

physiologies (?). Primarily, the utility of simultaneous PET-MRI for neuroscience is seen

in using PET to understand the coupling between metabolism and blood flow. While func-

tional MRI (fMRI) provides superior spatial and temporal information about blood flow,

PET provides quantitative information about metabolism in the brain depending on the ra-

diotracer used (e.g., glucose metabolism in the case of [18F]-fluorodeoxyglucose (FDG)).

Thus, the simultaneous acquisition of PET and fMRI data can provide a deeper under-

standing of the physiology underlying the contrast generation mechanism in fMRI (??).

Recent works have focussed on improving the temporal resolution of dynamic FDG-PET

using a continuous infusion of the radiotracer (called functional PET (fPET)) (??????).

The continuous infusion technique improves temporal resolution by maintaining the

glucose concentration in the blood plasma. Current studies have demonstrated the identi-

fication of brain activations at a temporal resolution of ≤ 10 seconds achieved with a com-

bination of bolus and continuous infusion to improve the signal to noise ratio (SNR) (?).

However, even with the combination of bolus and continuous infusion protocol, there

exists a substantial gap in the temporal resolution of fPET compared to that of fMRI. It

is challenging to obtain brain mappings at a higher temporal resolution without signif-

icantly increasing the dose. The continuous infusion technique enables both functional

and metabolic connectivity for a single subject at rest as well as while performing specific

tasks (?).

In addition to the above, simultaneous PET-MRI imaging enables improved pharma-

cokinetic studies coupled with arterial spin labeling, studies involving neurotransmission

and receptor expression (?). Such a system allows for investigation into several fundamen-

tal neuronal and physiological aspects such as the effect of drugs on blood flow opening

up the possibilities for precision medicine(?).

PET-MRI for clinical neuroimaging. The combined information of PET and MRI

provides improved sensitivity and desired quantitative accuracy than either independent



1.3 Challenges in PET-MRI Neuroimaging 4

modalities crucial for understanding various pathologies and brain-related disorders de-

tailed as follows. (i) For brain tumors, the superior specificity of PET with the availability

of target-specific radiotracers, can aid in better theranostics by improved grading of tu-

mors, and improved tumor localization, which is, in turn, critical during radiotherapy;

(ii) for dementia/neurodegeneration, PET enables differential diagnosis of dementia as

well as predictions at a presymptomatic stage; (iii) in certain cases of epilepsy, the MRI

findings might be negative while certain specific PET radiotracers can identify the epilep-

tic foci. For all the cases stated above, the high specificity and sensitivity of PET needs

to be supported with the high-resolution MRI scans for the tasks of image enhancement,

motion correction, partial volume correction, especially for the localization of the site of

the pathology (???). Furthermore, PET can be combined with fMRI studies to monitor

either the progression or regression (in case of treatment) of a disease(?). Importantly, as

the above-stated disorders are more common in elderly patients or patients with difficulty

in staying still for a long time, the combined structural and functional information in a

single imaging session improves patient comfort.

1.3 Challenges in PET-MRI Neuroimaging

The simultaneous acquisition of PET-MRI data also necessitates the development of opti-

mized neuroimaging protocols. For example, in neuroscience research, although a reduc-

tion in overall acquisition time is not as critical as in the clinical setting, longer acquisition

times result in enhanced patient motion, which in turn increases motion artifacts in the im-

ages. For neuroimaging studies spanning over an hour, intermittent MRI scans such as

navigator sequences are needed for continuous patient motion estimation. Another im-

portant aspect is the tradeoff between acquisition time and image quality for both PET

and MRI.

Given the stochasticity of the photons in PET imaging, the noise in PET images

increases with a reduced number of photons (due to a reduction in dosage or acquisition

time). Reduction in dosage aligns with the principle of as low as reasonably achiev-

able (?), and improves patient safety. Reducing the involvement of ionizing radiations

in PET can potentially lay the foundation for longitudinal PET scans for subjects sus-

pected with specific pathologies even at a presymptomatic stage. Currently, PET is not

the preferred modality of choice for radiation-sensitive populations such as children and

pregnant women (?). Another essential aspect to be considered is patient comfort. As

mentioned earlier, shorter acquisitions improve the imaging experience for patients with

movement-related disorders and/or patients who cannot lay still for the entire duration
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of the scan (e.g, pediatric oncology). In such cases, reducing the scan time will reduce

the dependency on anesthesia/sedatives. Hence, the development of optimized PET-MRI

imaging protocols should enable the generation of high-quality images meeting diagnos-

tic standards, while reducing radiation-dose (patient safety) and acquisition time (patient

comfort). Additionally, the optimized protocols should also allow for cost-effectiveness

of the system via increased throughput.

For the MRI subsystem, acquisition times can be reduced by eliminating redundant

acquisition of contrasts and/or undersampling the MRI k-space. Typically, the longer

acquisition time per MRI sequence (around 3–4 minutes) combined with the typical clin-

ical routine of obtaining multiple MRI contrasts allows the accumulation of a sufficient

number of photons from the PET scan for improved PET image quality. However, the

accelerated MRI acquisition (by undersampling the k-space) will reduce the time per bed

position, degrading PET image quality, and increasing the demand for radiotracer dose.

Hence, to improve patient safety and comfort, there is a need for improving PET and

MRI signal detection (through hardware improvements) and processing (through compu-

tational solutions)(?). The hardware-related developments such as improved PET detec-

tor technology and the introduction of time-of-flight imaging technologies have indeed

improved the sensitivity of PET-MRI and reduced partial volume effects, respectively.

On the other hand, developments in the area of medical image computing techniques,

specifically, the use of machine-learning-based priors and deep neural networks (DNNs)

have demonstrated working proofs of concepts to enhance (i) PET image quality from

PET data with a dramatic dose reduction factor (DRF) and (ii) MRI image quality from

severely undersampled MRI data.

1.4 Machine Learning for PET and MRI Image Quality

Improvement

In the general context of image quality improvement techniques for medical images, in-

cluding both within-reconstruction as well as post-reconstruction methods, statistical im-

age reconstruction methods with increasingly complex models have been developed to

capture finer image details. Initial prior-based methods explored simple Markov ran-

dom field (MRF) based priors such as quadratic prior and edge-preserving Huber func-

tion within a Bayesian inference framework. Subsequently, the incorporation of patch-

based methods, given their success in natural images, for medical images, improved over

classical methods by providing robustness to noisy data and preserving higher-order im-

age features like textural patterns (?). Recently, with the increased parallel-computation
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power, medical imaging has witnessed the translation of several machine-learning-based

techniques, including deep neural networks (DNNs), to clinics and research centres. As

mentioned earlier in this section, the DNN-based techniques are now being extended to

address problems specific to medical imaging modalities like improving PET image qual-

ity under low-dose/low-photon-count conditions, and improving MRI image quality under

severely undersampled MRI k-space data.

Specifically, for PET, methods relying on dictionaries and neural networks have been

shown effective in replacing the traditional/classical methods that perform image recon-

struction/restoration without explicit prior modeling (???). Recent works for the task of

predicting standard-dose PET (SD-PET images from low-dose PET (LD-PET) images

employ a DNN learned in a supervised or unsupervised setting achieve a dose reduction

factor (DRF) in the range of 4–100 ×(???). The DNN based works were preceded by

other machine learning-based approaches such as regression forests (?), dictionary learn-

ing (?).

On the other hand, for MRI, sparse representations using wavelets or dictionar-

ies proved effective in achieving improved image quality at a higher acceleration rate

in comparison to other classical approaches that relied on image-gradient-based meth-

ods. However, compressed sensing (CS) in MRI demands acquisition sequences that are

non-Cartesian and practically difficult to implement (?). Acceleration in routine clinical

studies follows Cartesian sampling strategies with/without parallel imaging. Higher ac-

celeration under Cartesian schemes deviates from the criteria of incoherence mandated

by CS-MRI. To this end, DNN-based solutions have been proposed for de-aliasing MRI

images arising from increased acceleration in MRI acquisition using Cartesian sequences

(??).

Although the learning-based models have demonstrated improvements over tradi-

tional/classical approaches by providing improved accuracy in imaging scenarios giving

rise to images with very low SNR or high level of artifacts, one major challenge obstruct-

ing the translation of such methods is the validation of the robustness of the method.

Typically, the DNN models developed for PET or MRI image enhancement are trained

and tested on similar datasets. For instance, both training and testing are performed

on PET and MRI data collected from individuals with healthy brain anatomy and glu-

cose metabolism. Thus, for data samples that are unseen during training, called out-of-

distribution (OOD) data, relying on the outputs of the pre-trained learning-based methods

involves the risk of inaccurate predictions during inference (actual testing). Most works

focus on algorithms that improve the accuracy of the prediction and seldom address the

issue of (i) robustness of the developed algorithm to unseen data acquisitions and (ii) han-
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dling the inaccurate predictions by quantifying the uncertainty in prediction. Hence, for

reliable translation, it is imperative to evaluate the robustness of the proposed machine

learning-based methods to newer OOD data acquisitions. Furthermore, because it is dif-

ficult to account for all types of OOD data acquisitions, incorporation of mechanisms to

quantify the risks underlying the developed models/frameworks can potentially act as a

proxy for residual error maps, given the non-existence of reference images. Providing

information about uncertainty during inference can help the scientists/radiologists make

crucial decisions when high uncertainty in the output is reported, e.g., (i) whether there is

a need to repeat the scan and (ii) augmentation of the existing training set to improve the

accuracy of the model to such unseen cases.

In this way, with the combined developments in both detector hardware and learning-

based solutions for improved image quality, the idea of PET imaging involving radiation-

levels comparable to annual radiation-levels from radionuclides that are part of our daily

life could become a reality (?) with the added advantage of faster scans. This thesis

focusses on developing learning-based methods for image quality improvement in simul-

taneous PET-MRI neuroimaging under different acquisition scenarios explained in the

following chapters.

1.5 Organization of the Thesis

The work presented in this dissertation describes the novel image reconstruction and im-

age restoration methods developed in the context of simultaneous PET-MRI systems that

address some of the existing challenges mentioned in the previous sections. The thesis is

organized as follows.

Chapter 2 provides a brief background of PET-MRI followed by a short literature

review on the prior works on image quality improvement for both PET and MRI images

obtained from dedicated scanners as well as the simultaneous PET-MRI system. The

chapter explores both (i) within-reconstruction and (ii) post-reconstruction enhancement

techniques. Chapter 3 describes a novel joint PET-MRI dictionary method developed for

Bayesian reconstruction of both PET and MRI images under different image acquisition

scenarios. Chapter 4 describes a novel DNN framework developed for enabling ultra-

low-dose PET imaging that is robust to OOD PET acquisitions. Chapter 5 details an

image restoration method leveraging MRI information for improved temporal resolution

in fPET imaging, which is a novel neuroimaging application for improved mapping of

brain function. Chapter 6 summarizes the developed models and concludes the thesis

indicating directions for future work.



Chapter 2

Background and Related Work

As introduced in the previous chapter, current simultaneous PET-MRI systems enable

the synergistic acquisition of both structural and functional information and provide the

opportunity for multidimensional neuroimaging unparalleled by other combined systems

(?). The superior specificity of PET combined with the excellent soft-tissue contrast and

functional imaging capability offered by MRI provides the opportunity to understand sev-

eral biological processes in neuroscience and underlying pathophysiology of several dis-

eases in neurology, cardiology, and oncology. For example, in neuroscience, we can

gain insights into energy consumption while resting and while performing specific tasks

(??). The simultaneous acquisition of PET and MRI data allows joint modeling of spa-

tial as well as temporal data which is not possible in sequential systems. Furthermore,

the combination of PET and MRI can potentially provide improved insights in several

neuropsychological processes such as changes in hemodynamic responses and quantita-

tive changes in radiotracer uptake, etc. (?). On the other hand, for clinical neurology,

the simultaneous data from PET and MRI potentially enables improved theranostics. For

example, the combined measurements of tumor vasculature and tracer uptake can further

our knowledge of cancer biology and tumor proliferation, and more importantly, enable

monitoring of the individual’s response to therapy. The current state of simultaneous PET-

MRI systems results from continuous developments in the field of medical imaging over

the past few decades.

2.1 Historical Overview

The underlying physics of both PET and MRI finds its origins in the investigations into

nuclear spins in the late 1920s and 1930s. While the idea of nuclear spin motivated Dirac

to comment on the "discrepancies" in his equations (?), I Rabi discovered that magnetic

8
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resonance occurred when external energy is provided to a nuclear spin system near the

Larmor frequency (?). Several years later, the first human PET scan was achieved by E

Hoffman, M Ter-Pogossian, and M Phelps at Washington University who built the first

PET camera (?), followed by the introduction of the first whole-body PET scanner in

1977(?). Subsequently, several groups were motivated to study the energy consumption

in the human brain, and the first results on quantification of cerebral glucose metabolic

rate using FDG-PET were reported in ?.

For MRI, the initial years since the discovery of nuclear magnetic resonance (NMR)

was mainly employed for the analysis of chemical compounds (NMR spectroscopy).

However, the discovery that relaxation times differed across tissues by R Damadian in

the 1970s provided the necessary motivation to use MRI to study diseases (?). P Lauter-

bur later generated the first 2D and 3D MRI images using spatially encoded gradients,

subsequently leading to the first scan of the human body using MRI in 1977 (shortly

after the advent of CT in 1973 by G Hounsfield). Around the same time, P Mansfield

proposed the technique of echo-planar imaging (EPI), which was realized on scanners

almost after a decade. The EPI and other related techniques enabled several MRI modal-

ities with clinical application such as dMRI and fMRI (?). While functional brain PET

imaging was being conducted using various radiotracers such as FDG and H2O[15], it

was observed that MRI can also detect a substantial change in blood flow. This marked

the birth of fMRI. Since then, fMRI has become a cornerstone of neuroimaging due to its

non-ionizing radiations, and superior spatial and temporal resolution, compared to other

functional imaging techniques.

Over the last four decades, although the initial years saw the improvements of the

dedicated PET and MRI scanners, there was a need to combine PET (and also other

molecular imaging systems) with structural imaging modalities due to its low resolution

and poor SNR in the images (?). Although software-based image fusion/registration and

post-processing was pursued at various clinics and research labs, there were several draw-

backs to this approach due to inaccurate image registration, change in patient physiology

etc. The introduction of the combined PET-CT system changed the the landscape of

medical imaging in the late 1990s. The success of PET-CT and the known benefits of

combining MRI with PET encouraged the development of the PET-MRI scanners. The

first commercial simultaneous PET-MRI scanner became available in 2011. Since then,

PET-MRI systems have opened up new research opportunities and enhanced clinical di-

agnosis for several imaging applications. However, the full potential of PET-MRI has not

yet been achieved.
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2.1.1 PET-MRI Systems

The earliest works on combining emission tomography with structural modalities

like CT was realized with the introduction of the simultaneous SPECT and CT in the

1990s (?). The efforts to combine PET and CT were ongoing in parallel, following which,

in 2001, the first commercial PET-CT was introduced.

The combination of PET and CT into one single instrument enabled obtaining

metabolic and structural information in a single imaging session. The existence of CT

in the same imaging system solved the issue of attenuation correction for PET data to

a large extent and also eliminated the use of transmission scans within the PET subsys-

tem(?). The subsequent years witnessed large-scale adoption of the PET-CT systems to

such an extent that dedicated PET scanners were hardly produced. In addition to address-

ing the issue of attenuation correction, CT scans could also be used for their diagnostic

value. Hence, PET-CT became widely adopted across clinics for whole-body oncology

(?). The significantly shorter acquisition times in CT (compared to PET) rendered the

development of simultaneous PET-CT systems unnecessary. Hence, in the design of PET-

CT systems, the PET and CT subsystems are positioned one behind the other with a

common patient bed. Consequently, there is a possibility of substantial patient movement

between acquisitions further resulting in artifacts in the reconstructed images (?).

Given the superior soft-tissue contrast and resolution of MRI compared to CT, the

efforts to combine PET and MRI started around the mid-1990s. Unlike PET-CT, combin-

ing PET and MRI faced several challenges. In the combined PET-CT system, the PET and

CT subsystems are relatively more similar to their dedicated counterparts. However, for

combining PET and MRI into a single system, the interference of the magnetic field and

the performance of the PET electronics (involving photomultiplier tubes (PMTs)) proved

to be a major hindrance. The search for the ideal MRI compatible PET detectors gave rise

to different generations of the PET-MRI detectors: (i) avalanche photodiodes- (APDs)

based PET detectors were insensitive to large magnetic fields but demonstrated a sub-

stantial loss in signal gain compared to PMTs; (ii) silicon photomultipliers (siPMs) based

detectors operating in Geiger mode enabled time-of-flight (TOF) imaging, and finally, re-

cent developments in (iii) digital siPMs (dSiPMs) while providing the desired gain, can

adversely affect MRI images (?). In the state-of-the-art PET-MRI scanners, while the PET

system enables an isotropic spatial resolution of 3–4 mm, the 3 T MRI system can easily

achieve an isotropic resolution of around 1 mm.

Simultaneous PET-MRI offers several advantages over the PET-CT systems. First,

the non-ionizing radiations from MRI make it the modality of choice for longitudinal

scans, as well as for imaging of radiation-risky populations such as children and pregnant



2.1 Historical Overview 11

women. A typical PET-CT scan might induce a radiation dose of 14 mSv to 32 mSv with

the the contribution from CT going up to or more than≥ 50% (?). Secondly, MRI offers

a wide variety of contrasts ranging from structural images (e.g., T1w, T2w) to functional

images (e.g., diffusion MRI (dMRI), fMRI, MRS). Thirdly, the truly simultaneous acqui-

sition of PET and MRI data (as opposed to the sequential acquisition in PET-CT) provides

opportunities for improved accuracy in patient motion correction. Finally, MRS in com-

bination with PET can potentially enable spatial matching of biochemicals, which in turn

helps in inferring metabolic status for various pathologies.

2.1.2 PET-MRI for Brain Imaging

The PET-MRI imaging is well-suited for brain imaging where typically linear im-

age registration algorithms suffice for image registration between PET and MRI (??).

Scans that are conducted on separate (or dedicated) scanners involve the issue of differ-

ential positioning of the patient. Hence, active research for brain imaging focuses on

improving data processing pipelines that lead to better joint analysis of the PET and MRI

data leveraging complementary information. The joint analysis of spatiotemporal data

from PET and MRI brain imaging is aided by the fact that typically, spatial alignment of

the PET and MRI images is not a challenging task (in comparison to imaging of other

body parts) due to reduced motions in the head. However, for longer PET scans (span-

ning several minutes) it is difficult to control patient movement and hence intermittent

MRI scans involving navigator sequences aid in accurate motion correction during image

reconstruction (?). For attenuation correction, the development of ultrashort echo time

(UTE) sequence has provided a non-ionizing replacement for attenuation correction and

has been shown to perform with desired clinical accuracy for brain imaging(?).

Besides improved motion and attenuation correction, the simultaneous/non-

simultaneous acquisition of MRI from a single system can address the inherent short-

comings in the PET images such as partial volume errors and low SNR of the PET im-

ages. Prior to the arrival of simultaneous PET-MRI systems, partial volume correction

techniques relied on segmentation of the MRI image than image-registration-based tech-

niques. Given the spatial co-existence of the PET and MRI images, segmentation-free

approaches have come to the fore to address image quality improvement tasks reducing

the propagation of errors due to the MRI segmentation algorithms (???). In addition to

improvements due to spatial alignment, the joint spatiotemporal analysis of dynamic PET

and MRI data is useful in applications such as tracer kinetic studies, drug development,

and several other aspects of neuroscience research. Unlike brain imaging in PET-MRI,

whole-body PET-MRI imaging still requires hardware-related and data-processing-related
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optimization across multiple bed positions, improved information from MRI for PET at-

tenuation, motion, and scatter correction.

This dissertation focuses on methods and algorithms developed in the context of

brain imaging. Specifically, we address the issue of PET image quality improvement us-

ing MRI information under different conditions. To this end, we consider only FDG-PET

images in this thesis. As explained in the following sections, several acquisition scenarios

give rise to PET images with poor SNR in addition to the inherent limitations of resolu-

tion and partial volume effect. This thesis discusses novel learning-based models which

exploit anatomical information from MRI to improve PET image quality. Although the

developed models are generic enough to be easily extended to other anatomies, optimiza-

tion of the methods to specific anatomies is indeed necessary.

2.2 Towards Ultra-Low-Dose and Accelerated PET-MRI

Brain Imaging

As mentioned in the previous section, the simultaneous acquisition of PET and MRI data

provides opportunities for optimization of the scanning protocol and various data process-

ing techniques by leveraging the complementary information at various stages of data flow

e.g., dynamic motion correction, attenuation correction, simultaneous fMRI and func-

tional PET studies, etc. Besides hardware and imaging protocol developments for brain

imaging using PET-MRI, active research now focuses on further optimization such as

(i) further reduction in ionizing radiations from PET (low-dose imaging), (ii) faster scans

to improve patient comfort as well as scanner throughput.

2.2.1 Towards low-dose PET imaging

Typical PET acquisitions involve providing a bolus injection of the radiotracer to

the subject and allowing a certain uptake period (usually 30–60 minutes) outside of the

scanner before the PET data is acquired. Typically, PET data is acquired in the form of

list-mode data spanning the entire scan duration, say 20 minutes. The list-mode data entail

the continuous set of recorded coincidence events across the PET detectors. Subsequently,

during the PET image reconstruction, the acquired list-mode data is then grouped into

several bins of desired time interval Tbin resulting in either a dynamic sequence of PET

images or a single static PET image.

A static PET image represents a single PET image that represents an integral of ra-

diotracer activity over the entire scan duration. A static PET image can be reconstructed

by specifying a long Tbin that spans the entire duration of PET data acquisition. Typically,
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the long acquisition time for PET indeed leads to better image quality (in terms of SNR)

in comparison to multiple short fragments Tbin over the entire scan duration. However, we

lose the quantitative information related to the dynamic uptake of the tracer, and hence,

static PET provides only semi-quantitative information such as the standardized uptake

value (SUV) maps. On the other hand, dynamic PET image reconstruction can be per-

formed by dividing the overall acquisition time into desired multiple Tbin intervals. The

length of Tbin determines the temporal resolution for the dynamic PET image sequence.

Because the PET photon-counts follow a Poisson distribution, a lower Tbin corresponds to

higher temporal resolution but poorer SNR in PET data. Another factor of consideration

is that the uptake duration (from time of radiotracer injection to the beginning of the scan)

contributes to loss in information regarding the true underlying dynamics of the radio-

tracer from the time of injection. The study of the distribution of the radiotracer right

from the start of injection provides a quantitative picture of the radiotracer metabolism

while the subject is at rest or performing a certain task. To circumvent this issue, a new

imaging protocol involving continuous infusion of the radiotracer has been recently stud-

ied for functional PET imaging (Section 2.3).

2.2.2 Towards accelerated MRI

It is imperative to optimize the PET-MRI acquisition and processing for improved

throughput of the scanner. Along with certain commonly acquired structural scans, cer-

tain studies might benefit from the acquisition of other functional studies such as fMRI

and/or dMRI. While dosage optimization is crucial for reducing induced ionizing radia-

tions to the patients’ safety and can potentially enabling PET imaging for children and

pregnant women, acceleration of MRI acquisition is needed for several reasons described

as follows. First, typical acquisition protocols in simultaneous PET-MRI imaging ac-

quire multiple contrasts of MRI images, e.g., T1w, T2w, UTE, Dixon contrast (in case of

whole-body imaging) (?), etc. The multi-contrast MRI images are of use in various stages

of a typical PET image reconstruction and processing pipelines, e.g., creating attenuation

maps (?), estimating patient motion with high temporal resolution (?), PET image restora-

tion (??), etc. Second, as mentioned above, certain neuroimaging studies acquire fMRI

or dMRI images simultaneously with PET images (?), where the fMRI and dMRI scan

acquisitions can be much longer than typical MRI scans and longer than the PET ac-

quisition. Third, to better estimate patient motion (a critical issue in PET imaging (?),

anatomical MRI scans are repeated throughout the PET imaging session. However, the

temporal resolution of the motion estimates is limited by the MRI sequence acquisition

times. In general, faster scanning in MRI and PET, reduces the risk of motion artifacts in
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the reconstructed images of patients. Fourth, acquiring multiple MRI contrasts can often

exceed the time required for a PET scan, in a single bed position, risking significant idle

time for the PET imaging component (?). Typically, accelerated MRI data acquisition

is achieved by either (i) undersampling the k-space data or (ii) parallel imaging using

multiple channels, detailed in the paragraph below. However, both these strategies for

accelerated MRI data acquisition result in the degradation of image quality of the recon-

structed MRI images.

Undersampled MRI data acquisition. For MRI, the image resolution is depen-

dent on the number of points in the k-space. Hence, for high-resolution images, dense

sampling of k-space is required, consequently leading to longer acquisition times. Typi-

cal MRI acquisitions involve sampling of the k-space in the Cartesian domain. Hence, the

major determining factor of acquisition time is the number of phase-encoding lines. Faster

data acquisition is achieved by skipping certain pre-determined phase-encoding lines. In

this case, the acceleration factor is proportional to the number of skipped phase-encoding

lines. Although the implementation of the Cartesian undersampling scheme is more con-

venient in comparison to non-Cartesian trajectories (e.g., radial or spiral), the achievable

acceleration factor without significantly degrading the reconstructed image quality is lim-

ited(?). This is due to coherent artifacts resulting from Cartesian undersampling. The re-

alization of non-Cartesian trajectories such as radial or spiral trajectories provides greater

acceleration without the introduction of coherent artifacts. A comprehensive theoretical

framework about the same is presented in ??. For simplicity, this dissertation uses only

the easily-implementable Cartesian trajectory(?). Nevertheless, as explained in subse-

quent chapters, the methods developed can be extended to other non-Cartesian trajectory

acquisition strategies for MRI.

Parallel imaging with undersampled MRI data acquisition. Parallel-imaging,

i.e, simultaneous acquisition of MRI data using multiple receiver coils/channels improves

the ill-posedness of the inverse problem associated with undersampled MRI data acqui-

sition by obtaining more measurements. In the parallel imaging scenario, multiple set of

coils is used to image the same anatomical region simultaneously and each coil generates

the full FOV image based on its own sensitivity(??). The final MRI image is reconstructed

using the sensitivity encoded images obtained from each coil as well as the inherent sen-

sitivity of the coils. For example, if two channels are available for parallel imaging and if

the k-space data is undersamped by a factor of two, consequently, an acceleration factor

of 2 × is achieved. Nevertheless, to determine the value of the reconstructed image at a

particular voxel location, the measurement from the two channels can be leveraged. This

improves the ill-posedness of the inverse problem (image reconstruction) to be solved.
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However, the improvement depends on the amount of acceleration as well as the number

of coils used for imaging. Parallel imaging techniques such as sensitivity encoding for

MRI (SENSE) (?), GRAPPA (?), or a combination of both (?) aid in the reduction of

scan time without affecting image quality.

2.2.3 Raw-Data Corrections

Attenuation and Scatter Correction. The acquired PET data needs to be cor-

rected for attenuation and scatter of photons while traveling through the biological tissues

as well as the scanner hardware. Although estimation of attenuation coefficients using

MRI is a challenging problem, through the development of MRI imaging sequences such

as UTE, substantial progress has been made in the area of estimating accurate attenuation

maps for brain imaging (??). While the estimation of attenuation maps for whole-body

PET-MRI remains an active research area, for applications involving adult brain imag-

ing with an intact skull, attenuation correction can be assumed to be "finally solved to

a level of accuracy sufficient for the majority of clinical applications and/or to a level

comparable to that seen in PET/CT, i.e. overall uncertainties seen with PET/MRI are no

worse than those seen in PET/CT and were considered to be clinically acceptable."(??).

Similarly, scatter correction "has not been a major issue to be addressed for neurological

PET/MR imaging"(?). However, improved accuracy of attenuation and scatter correction

algorithms result in improved quantification in PET images.

Motion Correction. One of the major advantages of the simultaneous MRI acqui-

sition is the ability to provide information about patient motion, which in turn aids in PET

image improvement. Typical PET-MRI acquisitions last for about 20 minutes or in the

case of continuous infusion studies, up to an hour or more. Hence, it is common for the

subject/patient being scanned to move their heads over the course of the scan in addition

to other actions/activities such as coughing, talking or falling asleep (?). For neuroimag-

ing, given the enclosure of the brain within the skull, a slight movement of the head does

not affect static PET images. For dynamic PET imaging, prolonged motion could affect

image registration and cause blurring effects in the PET images (?). Nevertheless, the

effect of head motion for brain imaging is less severe than studies involving involuntary

organ motion, such as in cardiac or pulmonary imaging.

2.2.4 Image Quality Improvement

The intrinsic spatial resolution of radioactivity in PET, typically 4-6 mm ?, is far

lower than the anatomical resolution in MRI, typically 1-1.5 mm. Spatial resolution in
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PET is limited by positron range, non-collinearity of the annihilation photons, scatter in-

side the scintillation crystals, finite crystal dimension, interaction depth, etc. PET recon-

struction is challenged by the stochasticity in gamma-ray emission, and thus, it typically

relies on statistical prior models on the MRI and PET images. The low spatial resolution

results in partial volume effects. That is, activity in a particular voxel location contains

activity from neighboring tissues as well. As a result, this causes under-estimation of high

activity (due to spill-out) which is critical in clinical diagnosis. PET images also typically

have lower SNR (???) because of the high levels of stochasticity in the photon-emission

processes. The photon-counts in PET follow a Poisson distribution with additional noise

components resulting from the scanner electronics (randoms etc.).

Classical reconstruction methods like the expectation-maximization (EM) based

maximum-likelihood (ML) estimation for PET reconstruction ?, and several others use

a Poisson noise distribution. Over the years, several methods for improving PET im-

ages have been developed. These works address the problems of both partial volume

effects and noise removal using different computational modeling techniques. Primarily,

these techniques can be divided into (i) within-reconstruction techniques and (ii) post-

reconstruction techniques. While the post-reconstruction techniques model the image

enhancement task as a regularized deconvolution problem that involves the point spread

function (PSF) of the PET system, the within-reconstruction techniques model propose a

regularized reconstruction model which involves the PET forward model. In both cases,

many works have explored the use of anatomical information from MRI to achieve im-

proved results compared to non-regularized schemes as well as regularization schemes

depending on the PET image alone. Specifically, the methods developed and that are

included in this thesis focus on leveraging statistical dependencies across the FDG-PET

and structural MRI images (e.g., T1w and T2w). For the purpose of development of dif-

ferent image enhancement algorithms within the scope of this thesis, we assume that the

PET data has been corrected using the typical scanner-provided estimates for attenuation,

scatter, and motion correction. As mentioned in the previous section, several studies have

indicated that for neurological studies, the problems related to attenuation, scatter, and

motion correction are less critical for adult brain imaging (the focus of this thesis), in

comparison to whole-body PET-MRI(??).

2.3 Functional- PET (fPET) Imaging

The human brain accounts for roughly one-fifth of total-body energy consumption (?).

Deep structural and functional insights into the understanding of the human brain can
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Figure 2.1: Visualization of low-dose and standard-dose FDG-PET images along with
corresponding T1w and T2w MRI images. Top: (a1):standard-dose PET image (SD-

PET); (a2):low-dose PET image (LDPET) at DRF = 180×; (a3) and (a4): T1w and T2w

MRI images; Bottom: (b1)–(b4): corresponding zoomed region of interest. The zoomed

region of interest is highlighted using the black rectangle box in (a1)–(a4).

provide clarity in terms of neural basis of cognition and various pathophysiologies (?).

The understanding of the relationship between functional and metabolic connectivity can

reveal intricate details about neuronal responses. Consequently, the defects therein can

potentially predict brain disorders such as Alzheimer’s disease. Although FDG-PET was

being used to study cerebral glucose metabolism (which in turn relates to synaptic trans-

mission) since the late 1970s, the emergence of fMRI in the 1990s marked a paradigm

shift in studying functions of the brain. Unlike PET, fMRI does not involve ionizing radi-

ations and provides superior spatial as well as temporal resolution. The contrast in fMRI

images is blood oxygenation level-dependent (BOLD). However, BOLD-fMRI provides

only an indirect and non-quantitative measure of neuronal activity. The BOLD contrast

is dependent on several factors such as cerebral blood flow, volume, and oxygenation.

Furthermore, physiological factors such as breathing, heart rate, blood-flow volume, etc.

affect the BOLD-fMRI signal. Consequently, there is increased variability in the func-

tional analysis of individual subjects using fMRI. For example, multiple runs of the same

fMRI protocol for experiments involving short task durations have shown increased vari-
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ability in SNR (?). Hence, understanding the dependency between neuronal activity and

the measured signal is challenging ?. Furthermore, comparing fMRI data across healthy

individuals and individuals with pathology might be misleading due to the noise intro-

duced by physiological confounding factors. On the other hand, although FDG-PET can

provide a quantitative estimate of the rate of glucose metabolism, the static PET scans

provide an integral effect of glucose utilization over a long period of time.

As mentioned in Section 2.2.1, dynamic PET imaging using a bolus administra-

tion of radiotracer provides an opportunity to study dynamic uptake of the tracer in the

brain. However, conventional bolus injection FDG PET scans are not sensitive to cerebral

metabolic changes over an extended time duration due to the lack of sustained supply

of FDG to the brain (?). To circumvent this problem, ? used a continuous infusion ra-

diotracer infusion approach, together with dynamic PET scanning, to achieve enhanced

sensitivity for tracking dynamic radiotracer uptake. This constant infusion approach us-

ing FDG was labeled as ’functional’ PET, to highlight similarities to the fMRI technique.

Subsequent research using fPET methodology has shown promising results for isolating

functional brain areas during external tasks and at rest (????) Despite the improvement

in temporal resolution in comparison to the conventional bolus approach, the temporal

resolution of fPET remains substantially lower than that of fMRI, which is of the order of

seconds. Hence, even with the developments provided by the novel imaging technique,

the current temporal resolution of fPET (around 20–60 seconds) limits the opportunity

to use fPET for detailed investigations of brain metabolic responses to rapidly switching

tasks and brain stimulation paradigms.

The simultaneous PET-MRI system provides a unique opportunity to understand the

complex relationship underlying glucose metabolism and blood flow. While PET imaging

can provide information about metabolic connectivity, fMRI provides information about

functional connectivity. Thus, with the advent of the fPET imaging technique, the inter-

relationship between functional connectivity and metabolic connectivity can be studied.

To this end, while one study found stronger agreement between functional activation and

metabolic activity (?), another study reported that there are differences in functional ac-

tivations obtained via fMRI and the glucose uptake over time (?). Another study in this

direction has already established that the activation maps recovered from dynamic PET

imaging and fMRI provide partially complementary information (?).

In the following sections, we will describe specific problems related to image quality

enhancement of PET and MRI arising from different acquisition scenarios discussed in

the previous sections. We will also describe the prior works for such problems and their

limitations motivating the methods developed as part of this thesis.
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2.4 Image Reconstruction

PET and MRI images differ in structure, contrast, and resolution because of fundamen-

tal differences in the imaging mechanisms underlying these two modalities. For instance,

compared to MRI images, PET images have significantly larger voxel sizes because of the

underlying limitations of PET detectors. Figure 2.1 shows examples of a standard-dose

FDG-PET (SD-PET) 2.1(a1), low-dose FDG-PET (LD-PET) 2.1(a2) with 180× reduced

counts and the corresponding spatially co-registered T1w and T2w MRI images ( 2.1(a3)

and 2.1(a4)), respectively. Although being different modalities, statistical dependencies

are indeed present across the PET and MRI images, depending on the radiotracer em-

ployed for PET imaging. For example, FDG-PET shows greater anatomical correspon-

dence with structural MRI images in comparison to other radiotracers such as amyloid

PET.

The anatomical information can be leveraged either by segmenting the MRI image or

by relying on co-registration between the PET and MRI images. Given the simultaneous

acquisition of PET and MRI within a single system, employing segmentation-free meth-

ods are preferred to avoid error propagation from inaccurate segmentation estimates (?).

Furthermore, the anatomical MRI prior based PET reconstruction methods can address

both the issues of partial volume effects as well as the noise in PET images. However, the

PET raw data is not always readily accessible and hence, the post-reconstruction image

enhancement techniques are still of interest. Finally, although in the context of PET-MRI,

improvement of PET images is undoubtedly obtainable via MRI images, recent studies

have shown that MRI images can also benefit from joint reconstruction techniques. Over

the past few years, there has been an increased interest in simultaneously reconstructing

PET and MRI images by exploiting the dependencies across both images to enhance the

quality of both PET and MRI images. This emphasized the need for joint modeling of

priors that leverage dependencies across PET and MRI dependencies. However, while

modeling joint priors, it is important to carefully model the dependencies across the PET

and MRI images to minimize the cross-modality artifacts.

Prior-based PET image reconstruction Prior based image reconstruction in med-

ical imaging has been studied for the past few decades. Let u represent the PET activity

image, and v represent the structural MRI image. Let operators H and F represent the

forward operators corresponding to PET and MRI imaging, respectively. Let y represent

the acquired PET data and z represent the acquired MRI data. In the context of medical

image reconstruction using priors, the optimal PET image reconstruction given a high-
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quality MRI image is obtained by

uoptimal := arg min
u
DPET(Hu; y) + αR(u, v) (2.1)

where DPET(·) denotes the data-fidelity term corresponding to the PET forward problem

and R(·) denotes the regularization function that depends on u and v. Early methods

exploit such dependencies to address problems specific to PET imaging (??), e.g., to

correct for attenuation and partial-volume effects, to improve SNR, etc. Equation 2.4

can be modified to accommodate MRI reconstruction with the joint PET-MRI penalty

function R(·) in which case the reconstruction problem becomes

voptimal := arg min
v
DMRI(F v; z) + αR(u, v). (2.2)

Here, DMRI(·) represents the data-fidelity term corresponding to the MRI forward prob-

lem. The above mentioned single-modality reconstruction problem can be further ex-

tended to incorporate joint reconstruction of PET and MRI images as

(uoptimal, voptimal) := arg min
u,v
DPET(Hu; y) +DMRI(F v; z) + αR(u, v) (2.3)

We will now discuss methods proposed in the literature for individual PET and MRI

reconstruction followed by joint reconstruction priors along with their advantages and

disadvantages.

2.4.1 PET Reconstruction from Noisy Data

Clinics to-date still employ the classical MLEM ? reconstruction method or its vari-

ants, which use statistical modeling of PET measurements. The MLEM based PET re-

construction is noisy, and hence a post-reconstruction Gaussian smoothing operation is

performed for better visualization. Methods in ?, ?, ?, employ simple Markov Random

Field (MRF) priors such as quadratic or Huber prior or use structural MRI images to im-

prove PET image quality. While quadratic MRF priors might result in over-smoothed

reconstructions with loss of features, edge-preserving priors such as Huber or TV might

result in staircase-like artifacts. Another class of MRF priors involves introducing reg-

ularity on a patch rather than local image gradients. Since resolution loss is inherent in

PET images due to detector limitations, priors learned from PET images alone might be

ineffective in denoising without loss of information ?. Mutual information-based prior

was also reported in ?, which is based on the joint histogram of PET image and the corre-

sponding MRI image, but does not enforce neighborhood constraints. In ?, the penalties

for a patch of voxels in PET is learned from a fixed MRI image, and similarly, in ?, a

patch-based dictionary learned from MRI image was used to fit to PET data.
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2.4.2 MRI reconstruction from Undersampled Data

Acceleration of MRI k-space data acquisition continues to be an active area of re-

search (????). As mentioned earlier, routine clinical scans typically employ Cartesian

trajectories, with (i) dense sampling near the center of the k-space and (ii) sparser sam-

pling in the high-frequency regions (??). As described in the Introduction section, many

works exploit the sparsity of the signal representations using wavelet frames (??), dictio-

naries (???), or apply TV-based constraints (???). Recent works rely on the alignment

of image gradients across multiple MRI contrasts (??). On the other hand, patch-based

methods use sparse dictionary representations (??) to achieve higher undersampling rates

under low-SNR conditions. ? gives a detailed account of undersampled MRI reconstruc-

tion in the clinic.

2.4.3 Joint PET-MRI Reconstruction

Pioneering work by ? models gradient-based dependencies (fine-scale, since they

operate on immediate neighboring voxels) to perform joint reconstruction of (simulated)

PET-MRI images and improve the quality of both PET and accelerated-MRI reconstruc-

tions. The method proposed in ? was named parallel level sets (PLS), where the regu-

larization term penalizes misaligned image gradients in PET-MRI at every voxel. In the

same work, two variants of PLS, namely, linear PLS (LPLS) and quadratic PLS (QPLS)

were described. For the pair of real-valued images f (·) and g(·) on spatial domain Ω, the

general PLS regularization term involves a penalty of the form

R( f , g) :=
∫

x∈Ω
D(∇ f (x),∇g(x))dx, (2.4)

where D(·, ·) denotes the dissimilarity between the images gradients ∇ f (x) and ∇g(x). ?
report that while LPLS leads to sharper images, QPLS, which employs the squared norms,

is more stable and can reconstruct shared edges better than LPLS. For QPLS, they define

D(∇ f (x),∇g(x)) := [1 + |∇ f (x)|2|∇g(x)|2 − 〈∇ f (x),∇g(x)〉2]0.5 (2.5)

For LPLS, they define

D(∇ f (x),∇g(x)) := |∇ f (x)||∇g(x)| − 〈∇ f (x),∇g(x)〉. (2.6)

For both QPLS and LPLS, they use regularized gradient norms to compute |∇ f (x)| and

|∇g(x)|. Later methods (??) further enhanced the gradient-based prior models to improve

in vivo PET-MRI joint reconstruction. Similarly, ? proposed total generalized varia-

tion (TGV) that penalizes, at every spatial location, the sum of the singular values of the
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Jacobian of the 2-vector-valued PET-MRI image. Effectively, TGV penalizes misalign-

ment in gradients, as in PLS. Both TGV and PLS introduced regularization terms that de-

pend on the magnitude and orientations of the image gradients at corresponding locations

in the PET and MRI images. Very recently, ? proposed another TV-based prior, based

on joint sparsity regularization (JSR). Gradient-based priors are best suited for piecewise-

smooth images and can fail to model textural patterns in images (??). On the other hand,

patch-based prior models, including dictionary models, can preserve textures and edges

better than gradient-based priors, even under low SNR, as demonstrated in several de-

noising applications (??????). Although patch-based priors have improved independent

reconstructions of PET (??) and MRI (??), methods using patch-based priors for joint

reconstruction are virtually absent in the literature. Patch-based methods are able to cap-

ture higher-order features such as texture because they operate at a larger context than

fine-scale features such as image gradients. Moreover, given the distinctive appearances

of PET and MRI images, enforcing the alignment of image gradients has a higher risk

of infusing cross-modality artifacts compared to patch-level dependencies. Thus, while

patch-based methods potentially improve the robustness to noisy data, and joint model-

ing aids in image quality improvement of PET and MRI, a joint patch-based method can

potentially be robust to noise and reduce cross-modality artifacts by enforcing patch-level

dependencies across PET and MRI instead of dependencies at the voxel-level.

2.5 Image Enhancement for Static Low-dose PET

Post-reconstruction PET image quality enhancement techniques range from traditional

filtering using Gaussian smoothing to complex DNN architectures. While works using

statistical models to exploit information from the noisy PET image alone, improve over

Gaussian smoothing ??, works that jointly model dependencies across co-registered PET

and MRI images show substantial improvement in PET image quality ?. Recently, ?
proposed an unsupervised model for PET image denoising by employing a conditional

deep image prior (DIP) that uses the subject’s anatomical MRI or CT as the input to the

DNN. These methods focused on denoising the PET image and do not involve a reduction

in the dose.

Post-reconstruction image quality enhancement with learning-based models.
Initial work led by ?? showed that learning-based approaches, such as regression forests

and sparse modeling using dictionaries can synthesize SD-PET images from LD-PET

images at a DRF of around 4×.
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For the same DRF, (i) ? proposed a DNN that used an auto-context strategy to esti-

mate patches in the SD-PET image based on the patches in the input set of LD-PET and

T1w MRI images; and (ii) ? employed a generative adversarial network (GAN) based

framework. The input to the generator of the GAN was a single channel image obtained

by fusing the multimodal MRI images and the LD-PET images. ? used a standard

ResNet architecture to learn a mapping between the noisy LD-PET and SD-PET images

(DRF = 1) that included fine-tuning of the DNN using a VGG-based loss ?. For sub-

stantially higher DRF, pioneering work by ? showed that by using a 2.5D-style PET-only

input to the DNN that estimates the residual between the LD-PET image and the refer-

ence SD-PET image, it is possible to achieve a DRF of around 200×. Subsequently, the

work in ? showed that, with a similar architecture and training strategy, the inclusion of

MRI images as multi-channel input produced better image quality than using PET images

alone. The work in ? showed that learning a mapping between the LD-PET sinogram

data and the SD-PET sinogram data can lead to some improvement in the reconstructed

SD-PET images in comparison to the strategy of learning the mapping from LD-PET to

SD-PET in the spatial image domain. However, as mentioned earlier, the measured raw

sinogram data might not always be accessible. On the other hand, we can easily obtain an

estimate of the sinogram of the PET images using a simulated system matrix generated

using the knowledge of scanner geometry and simulation tools such as GATE ?. The ret-

rospectively obtained sinogram approximates the sinogram that is obtained after typical

data correction steps applied to the PET raw data.

The prior work discussed above employ loss functions either exclusively in the spa-

tial image space, or exclusively in the sinogram space, but not both. Several DNN-based

methods for undersampled MRI reconstruction have shown that including a transform

domain (k-space) loss function in addition to the image space loss function improves the

quality of reconstructed images at higher undersampling of MRI data ??. Additionally,

the proposed methods including those for PET and MRI reconstruction, do not evaluate

the models for robustness to out-of-distribution (OOD) data in new acquisitions, which

are important for clinical translation. Further typical PET reconstruction methods seldom

quantify the uncertainty in the prediction provided by the DNNs. Modeling uncertainty in

DNNs can potentially (i) inform the radiologist about the imperfections in reconstructions

that may be crucial in clinical decision making or subsequent automated post-processing

of reconstructed images; and (ii) provide improved performance when the DNN is pre-

sented with OOD data ??.
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2.6 Improved Brain Activation at High Temporal

Resolution Low-Dose fPET

Analysis of fPET data is challenging because of low SNR and partial volume errors in

the reconstructed PET images (?). Recent works have improved the SNR in fPET by

applying a combined bolus and continuous infusion of radiotracer during fPET data ac-

quisition (??). However, the statistical power of these experimental approaches is still

relatively low when compared with fMRI. To mitigate this issue, spatial denoising of the

reconstructed PET images is performed prior to the functional analysis of the brain us-

ing techniques such as independent component analysis (ICA). Gaussian smoothing is

widely used as a post-reconstruction spatial and temporal smoothing operation for func-

tional neuroimaging analyses (?????). However, the Gaussian kernel acts as a low-pass

filter. Therefore, it further worsens the partial volume errors in fPET images; this can

cause errors in the localization and quantification of brain functional activations at high-

temporal resolution fPET imaging. MRI-based PET reconstruction methods have shown

substantial improvement in PET image quality compared to conventional methods (???).

For instance, several studies have explored post-reconstruction PET image enhancement

using anatomical information from structural MRI (???) to perform partial volume cor-

rection and image deblurring (??). These methods propose a regularized deconvolution

problem formulation using MRI information to address the PET denoising and partial

volume error problems. Works involving anatomical information as regularization terms

include penalties that model the statistical dependencies across the PET and MRI images,

such as joint entropy regularization.

? proposed a variant of the well-known Bowsher prior (?), modeled as prior informa-

tion in the reconstruction process. The Bowsher prior, in principle, is a weighted Markov

random field (MRF) model that promotes delineation of PET image voxels that are dissim-

ilar according to the intensities in the spatially co-registered MRI image. The weights are

computed based on a similarity metric (e.g. absolute difference) evaluated on the struc-

tural image. Subsequently, ? proposed an asymmetrical variant of the original Bowsher

prior and demonstrated that the asymmetrical version yielded PET image reconstruction

with improved bias-variance trade-off in comparison to other image gradient-based priors

such as parallel level sets (?) and compared to the originally proposed Bowsher prior.
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2.7 Problems Addressed in this Dissertation

The research problems (RPs) covered in the scope of this thesis are listed here and the

aims associated with the particular task follow.

• RP 1 (Chapter 3). Existing MRI-informed image reconstruction methods for PET

suffer from cross-modality artifacts.

Aims. Joint modeling of the PET-MRI patch-based dictionary prior modeling to

improve PET image quality and reduce cross-modality artifacts.

• RP 2 (Chapter 3). Joint modeling of PET-MRI image-gradient-based priors suffer

from (i) loss in textural features in the images, (ii) cross-modality artifacts, and

(iii) are sensitive to perturbations in the noise level of the test data.

Aim. Joint PET-MRI patch-based dictionary prior to improve joint PET-MRI

reconstruction by restoring both edges and textural features in the images and also

reduce cross-modality artifacts. (Chapter 3)

• RP 3 (Chapter 4). For static LD-PET to SD-PET image synthesis, DNN-based

methods are not (i) robust to newer OOD PET data acquisitions and (ii) do not

quantify uncertainty in the predicted images.

Aim. (i) Modeling imaging physics-based information into the loss function of

the DNNs to improve the robustness of the DNN to newer OOD acquisitions and

(ii) modeling the per-voxel heteroscedasticity in the training data to make uncer-

tainty estimation part of the DNN framework.

• RP 4 (Chapter 5). Classical image filtering approaches fail to identify brain

metabolic activations at high temporal resolution fPET experiments

Aim. Develop an image denoising model to leverage anatomical information from

structural MRI to remove noise in the fPET frames in addition to removal of partial

volume effects. The restored spatiotemporal information from fPET images can be

used to identify improved estimates of source components via ICA.

Figure 2.2 illustrates the context of this thesis within the entire PET-MRI imaging

framework.
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Figure 2.2: The context of problems addressed in this thesis within the imaging work-
flow. The models developed in this thesis address the research problems described in

Section 2.7.



Chapter 3

Joint Dictionary based PET and MRI
Reconstruction

3.1 Introduction

To overcome the limitations of the image-gradient-based joint priors for PET and MRI

reconstruction, we propose a novel joint patch-based prior. Specifically, we propose a

novel joint PET-MRI patch-based dictionary model for the joint reconstruction of PET-

MRI images. We formulate the joint dictionary model within a Markov random field

(MRF) framework that is designed to model inter-voxel dependencies.

This chapter describes the proposed novel generative models based on a joint PET-

MRI dictionary for the (i) reconstruction of PET images with a fixed MRI image and the

joint reconstruction of PET and MRI images with (ii) undersampled MRI data acquired

from single channel, and (iii) undersampled MRI data acquired from multiple channels

(parallel MRI).

The developed joint PET-MRI patch-based prior learns inter-modality patch-level

(higher-order) dependencies, rather than voxel-wise gradient-based (fine-scale) depen-

dencies, while preserving intra-modality textural patterns in the images. In this work,

we propose an expectation maximization (EM) based optimization for the joint recon-

struction problem, within a Bayesian inference framework. The proposed framework can

accommodate a variety of sampling patterns for accelerated MRI k-space data acquisi-

tion, which can be implemented easily on commercial PET-MRI scanners. The results,

on both simulated phantom, simulated BrainWeb data, as well as in vivo human brain

data, demonstrate improved image quality and reduced reconstruction errors in both PET

and MRI images compared with existing methods, both qualitatively and quantitatively.

27
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The chapter is organized as follows. Section 3.2 describes (i) our proposed joint

PET-MRI dictionary prior model and (ii) the Bayesian reconstruction framework for re-

construction of PET data with different MRI acquisition scenarios, relying on EM op-

timization. Section 3.3 shows empirical results, including quantitative and qualitative

evaluation, on simulated and in vivo data. Section 3.4 summarizes the work and describes

possible directions for future work.

Previous works on developing priors for the joint reconstruction of PET-MRI are

based on image gradients, and thus promote piecewise-constant / smooth results. This

can lead to staircasing artifacts or cartoonish appearances. Unlike such gradient-based

models, patch-based models can capture the realistic textural patterns and contextual fea-

tures in the image.

3.2 Methods

We describe our joint PET-MRI patch-based dictionary prior, followed by the likelihood

models for PET and MRI, and finally, our Bayesian framework for joint reconstruction

using EM.

3.2.1 Joint-Dictionary PET-MRI Prior Model: Formulation

Let U and V represent, respectively, the co-registered PET activity image and the

complex-valued MRI image, each containing I voxels. We propose a MRF prior model

on the image pair (U,V). For every voxel i, the MRF neighborhood comprises all other

voxels within a radius of dU mm in the PET image and a radius of dV mm in the MRI

image. For this work, we set dU := dV := 4 mm. Let operators RPET
i and RMRI

i extract

square patches of side length L = (dU +1) mm, centered at voxel i, from the PET and MRI

respectively, and subsequently vectorize the patches. The spatial locations underlying the

square patches form a clique in the MRF. Consider overlapping patches centered at all

possible spatial locations at a distance of max(dU , dV) mm away from the boundary of the

PET image and the MRI image, to give us K such patches from each image each lying

completely inside the image. Let the k-th concatenated patch be
(
RPET

k U
RMRI

k V

)
. We propose

that every such joint patch can be represented by a sparse linear combination of J joint-

patch templates, called atoms, which form the columns of the joint dictionary A. The

joint dictionary A consists of a concatenation of the PET dictionary (AU) and the MRI

dictionary (AV) arranged as A =
(

AU

AV

)
. Atoms in the PET dictionary AU have non-negative

components, consistent with the values in the PET image U. We propose to constrain the

MRI dictionary atoms to be non-negative valued, modeling patterns in the patches of
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the MRI-magnitude image that is, typically, clinically more relevant than the MRI-phase

image. The phase image is more corrupted, has abrupt discontinuities resulting from

phase wrapping, and fails to capture anatomically relevant information. To augment the

dictionary fit, we introduce a complex-valued image Φ that models the per-voxel phase

(unit magnitude). Let Ck be the coefficients underlying the sparse linear combination.

We model the MRF prior on (U,V) using the associated Gibbs energy G(U,V; A) as the

sum of potential functions across all L × L sized cliques. Thus, we design

G(U,V; A) := α

K∑
k=1

min
Ck�0,Φ

(
β‖RPET

k U − AUCk‖
2
2+

(1 − β)‖RMRI
k V − RMRI

k Φ�AVCk‖
2
2 + λ‖Ck‖1

)
, (3.1)

where � denotes the Hadamard product and Ck � 0 enforces non-negativity on each

component of Ck. This formulation enforces a non-informative (flat) prior on the phase

image Φ. Parameter α > 0 controls the overall prior strength by acting on every term in

Equation 3.1. Parameter β > 0 balances the quality of fit with respect to the PET and MRI

images; in this way, β also effectively accounts for the differences in the intensity ranges

across the PET and MRI modalities; β is analogous to such a parameter in ?. Parameter

λ > 0 promotes the sparsity of the coefficients. We tune these parameters empirically

using a validation set.

3.2.2 Joint-Dictionary PET-MRI Prior Model: Learning Strategy

We learn the joint dictionary A from a set of T uncorrupted co-registered image pairs

of PET activity and non-negative-valued MRI-magnitude, i.e., {(Ů t, V̊ t)}Tt=1. We formulate

the dictionary learning problem as the constrained optimization problem:

Aopt. := arg min
A

min
C

T∑
t

K∑
k

β‖RPET
k Ů t − AVCt

k‖
2
2

+(1 − β)‖RMRI
k V̊ t − AVCt

k‖
2
2 + λ‖Ct

k‖1, (3.2)

such that all atoms A j satisfy the constraints: ‖AU
j ‖

2
2+‖AV

j ‖
2
2 ≤ 1, AU

j � 0, and AV
j � 0.

We want the dictionary representations ACt
k to have non-negative intensities and, hence,

we enforce non-negative constraints on elements of A and C. The unit-norm constraint

avoids trivial solutions, e.g., atom norms tending to ∞ while coefficients Ct
k tending to

zero. We use patches that have standard deviations above noise levels in both PET and

MRI images for the purpose of training the joint dictionary. The convex combination
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of the weights β and (1 − β) for the PET and MRI dictionary fit terms, respectively,

is consistent with the unit-norm constraint on the atoms. When fixing one of the two

variables A and C, our formulation leads to convex sub-problems with convex constraint

sets. Hence, we solve the objective function by alternating minimization for A and C,

using gradient-descent updates followed by projections onto the constraint space. The

updates adaptively select the step size to ensure that the objective function reduces at

each step. Specifically, we reduce the step size by 50% when the objective function value

reduces while we increase the value by 10% if the objective function value increases.

3.2.3 Likelihood Model for PET Data

Consider a circular arrangement of D detector pairs around the subject. We model

the measured coincident gamma events at a particular detector pair d, by the random

variable Yd. Our aim is to reconstruct the mean activity Ui at each location i. The PET

system matrix H can be obtained for a known configuration of the detector pairs. The

system matrix H is of dimension D × I, where every element of the matrix Hd,i models

the probability that the activity occurring at location i is detected in d-th detector pair. For

the simulation studies, we neglect the effect of the scatter, random noise, and attenuation

correction. Then, the observed data Yd at tube d is drawn from Poisson(
∑I

i UiHd,i). For

the observed PET data Y := {Yd}
D
d=1, the likelihood model P(Y |U) is

P(Y |U) =

D∏
d=1

P(Yd|

I∑
i

UiHd,i). (3.3)

3.2.4 Likelihood Model for Undersampled MRI Data

Let F represent the Fourier-encoding operator. Let S represent the k-space un-

dersampling operator that selects the phase-encoding lines in k-space, leading to the

complex-valued data matrix Z. We model measurement noise as additive independent

identically distributed (i.i.d.) complex Gaussian with zero mean and variance σ2. Thus,

the likelihood model for MRI is

P(Z|V, σ2) := ζ exp(−‖Z − SFV‖2F/σ
2), (3.4)

where ‖ · ‖F is the Frobenius norm and ζ is the normalizing factor.

3.2.5 Likelihood Model for Parallel-MRI

The MRI likelihood model in Equation 3.4 can be extended for parallel-MRI as

follows. Let L coils with coil sensitivity maps {S l}
L
l=1 acquire data Z := {Zl}

L
l=1. Similar to
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the single-coil case, we consider i.i.d. complex Gaussian noise in k-space, with mean 0

and variance σ2
p. Thus, the likelihood for parallel-MRI is

P(Z|V, σ2
p) := ζp

L∏
i=1

exp(−‖Zl − SF (S l � V)‖22/σ
2
p) (3.5)

where � denotes the Hadamard product and ζp is the normalizing constant.

3.2.6 A Novel Bayesian Joint PET-MRI Reconstruction:

Formulation

We leverage our joint-dictionary prior model and the likelihood models for PET

and MRI to formulate an EM based framework for joint reconstruction of PET and MRI

images.

Let random variable Ỹ := {Ỹd,i}
D,I
d=1,i=1 denote the (unknown) number of counts Ỹd,i

at detector pair d resulting from the activity at spatial location i. We model each Ỹd,i

as a hidden random variable. Thus, the complete data Ycomplete := Ỹ ∪ Y . We can also

interpret the complete data as the set of random variables Ỹd,i under the constraint
∑I

i Ỹd,i =

Yd, where random variables Yd model the observed data. EM considers U and V as

parameters. The complete-data likelihood is

P(Ycomplete|U) :=
D∏

d=1

I∏
i=1

P(Ỹd,i|UiHd,i) (3.6)

that is defined on the subspace where
∑I

i Ỹd,i = Yd. Given the acquired MRI data Z,

the acquired PET data Y , and the learned joint dictionary A, we reconstruct the PET and

MRI images U and V as the maximum-a-posteriori (MAP) estimates

arg max
U,V

P(U,V |Y,Z, A, σ2) (3.7)

= arg max
U,V

P(Y |U)P(Z|V, σ2)P(U,V |A). (3.8)

During EM optimization, in the (m + 1)-th iteration, with parameters values Um and

Vm, EM designs a functional

Q(U,V; Um,Vm)

:= EP(Ỹ |Um,Vm,Y,Z)

[
log(P(Ycomplete|U)P(Z|V, σ2)P(U,V |A))

]
, (3.9)

= EP(Ỹ |Um,Y)

[
log P(Ỹ |U)

]
+ log P(Z|V, σ2) + log P(U,V |A), (3.10)
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keeping the constraint
∑I

i=1 Ỹd,i = Yd.

The log-likelihood term (first term) in the functional for MRI is

LMRI(V |Z, σ2) := log(P(Z|V, σ2)) = −‖Z − SFV‖2F/σ
2 + log(ζ). (3.11)

For PET, using E
[
Ỹd,i

]
= UiHd,i and other properties of Poisson distributions under

the constraint
∑I

i=1 Ỹd,i = Yd, the expectation term (third term) in the functional simplifies

to

LPET(U |Y)

:=
D∑

d=1

I∑
i=1

−UiHd,i + log(UiHd,i)EP(Ỹ |Um,Z)

[
Ỹd,i

]
− f (Y) (3.12)

=

D∑
d=1

I∑
i=1

−UiHd,i + Yd

 Um
i Hd,i∑I

i Um
i Hd,i

 log(UiHd,i) − f (Y), (3.13)

where the term f (Y) depends only on the observed PET data Y , and is independent

of any parameter.

Thus, in a simplified form, the sum of the two fidelity-terms and the regularization-

parameter-weighted prior-term (ignoring the constant terms) is

Q(U,V; Um) = LPET(U |Y) +LMRI(V |Z, σ2) + −G(U,V; A). (3.14)

At iteration m + 1, EM updates the estimates of the reconstructed images to Um+1

and Vm+1 given by

arg max
U,V�0

max
Φ,C�0

{
− ‖Z − SFV‖2F/σ

2

+

D∑
d=1

I∑
i=1

−UiHd,i + Yd

 Um
i Hd,i∑I

i Um
i Hd,i

 log(UiHd,i)

− α

K∑
k=1

β‖RPET
k U − AUCk‖

2
2 + (1 − β)‖RMRI

k V − RMRI
k Φ�AVCk‖

2
2 + λ‖Ck‖1

}
. (3.15)

3.2.7 Joint PET-MRI Reconstruction: Optimization Strategy

We begin by initializing the PET-MRI images U and V to their maximum-likelihood

estimates. Within each iteration of EM, we optimize using alternating minimization for

parameters Φ, C, U, and V , in that sequence.
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Given current estimate V , we can estimate the phase image Φ at every voxel. The

optimization function for Φ reduces to

arg min
Φ

K∑
k=1

‖RMRI
k V − RMRI

k Φ � AVCk‖
2
2. (3.16)

Irrespective of the dictionary fits AVCk, the optimal value at i-th voxel in Φ is the

phase that rotates the real value at that component in AVCk which corresponds to the i-th

voxel to match the complex value at the i-th voxel in V . Hence, we get updates for Φ in

closed form as the phase component of the complex-valued image V . This strategy was

first proposed in ?.

Next, given U, V , and Φ, we estimate Ck as follows. Let operator M take the

complex-valued image V and output an image with values as the magniudes of the com-

plex values in V . We fit the dictionary to the magnitude images MV and U as

arg max
C�0

K∑
k=1

‖RPET
k U − AUCk‖

2
2 + ‖RMRI

k MV − AVCk‖
2
2 + ‖Ck‖1. (3.17)

For U, we use iterative gradient-ascent updates followed by projections onto the

constraint space modeling the non-negativity constraint, with adaptive step size. For V ,

we use iterative gradient ascent, where we adaptively select the step size to ensure that

the objective function reduces at each step.

3.2.8 Joint PET-MRI Reconstruction: Algorithm Summary

Our EM-based joint reconstruction algorithm is summarized below.

1. Training. Learn joint dictionary A using training set {(Ů t, V̊ t)}Tt=1, as described in

Section 3.2.2.

2. Input. PET-MRI data (Y,Z) and learned dictionary A. Initialization of the recon-

structed PET image U0 using the MLEM algorithm. Initialization of the recon-

structed MRI images using the zero-filled inverse Fourier transform (ZF-IFT), rep-

resented by the complex-valued image V0 and phase component Φ0.

2.1. Set iteration number m← 0.

2.2. During iteration (m + 1) of the EM algorithm, at the E step: Define the Q(.)

function as in Equation 3.14.
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2.3. During iteration (m + 1) of the EM algorithm, at the M step: Perform iterative

projected gradient descent until convergence, based on the objective function

in 3.15, as follows.

2.3.1. Estimate Φm+1 by closed-form update using Vm+1, as described earlier in

this section.

2.3.2. Estimate C by iterative projected gradient descent until convergence,

keeping (U,V,Φ) fixed to their latest update.

2.3.3. Estimate Um+1 by iterative projected gradient descent until convergence,

keeping (V,Φ,C) fixed to their latest update.

2.3.4. Estimate Vm+1 by iterative projected gradient descent until convergence,

keeping (U,Φ,C) fixed to their latest update.

2.4. Set iteration number m← m + 1.

2.5. If (‖Um−Um−1‖2F+‖Vm−Vm−1‖2F )0.5

(‖Um−1‖2F+‖Vm−1‖2F )0.5 ≤ 1e−3, then terminate and go to Step 2.6. Other-

wise, increment m by 1 and repeat the EM iterations by going to Step 2.2.

2.6. Output. Jointly-reconstructed PET and MRI images Vm and Um.

3.2.9 Joint PET-MRI Reconstruction: Extension to Parallel-MRI

Given the PET-MRI measurements (Y, {Zl}
L
l=1), and the learned joint dictionary A, we

formulate the joint reconstruction as the maximum-a-posteriori (MAP) estimate

arg max
U,V

P(U,V |Y, {Zl}
L
l=1, A, σ

2
p) = arg max

U,V
P(Y |U)P({Zl}

L
l=1|V, σ

2
p)P(U,V |A). (3.18)

The log-likelihood term for parallel-MRI becomes

LpMRI(V |{Zl}
L
l=1, σ

2
p) := log(P({Zl}

L
l=1|V, σ

2
p)) = −

L∑
l=1

(
‖Zl − SF (S l � V)‖22/σ

2
p

)
+ log(ζp).

(3.19)

Hence, the functional in Equation 3.14 can be modified for parallel-MRI as

LPET(U |Y) +LpMRI(V |{Zl}
L
l=1, σ

2
p) + −G(U,V; A). (3.20)

Subsequent EM updates are modified accordingly. In this case, we initialize the MRI

image V using zero-filled inverse Fourier transform followed by SENSE (?). Similar to

joint PET-MRI reconstruction with single-coil MRI, we initialize the PET image U using

MLEM.
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3.2.10 PET-only Reconstruction: With Fixed MRI image

The reconstruction scenario discussed in the previous sections can be modified for

the reconstruction of only PET data, given a fixed MRI magnitude image Vfixed and PET

data {Yd}
D
d=1. Hence, for the PET-only reconstruction, the the MAP estimate is

arg max
U

P(U |Vfixed,Y, A) = arg max
U

P(Y |U)P(U,Vfixed|A). (3.21)

For the case of PET-only reconstruction, the well-known one-step-late (OSL) image

reconstruction strategy ? can be used with our joint dictionary prior. The OSL-based

updates for the PET image reconstruction estimate, for each voxel i, is given by

Um+1
i :=

 D∑
d=1

Um
i Hd,iYd∑I

i=1 Um
i Hd,i

 / ∂G(U,Vfixed, A)
∂Ui

∣∣∣∣∣
Ui=Um

i

+

D∑
d=1

Hi,d

 ,∀i, (3.22)

where we evaluate ∂G(U,Vfixed, A)/∂Ui at Ui = Um
i by (i) fitting the dictionary A to the

image pair (Um,Vfixed), as dictated within G(U,Vfixed, A), to produce optimal coefficients

{C∗i }
I
i=1, and then (ii) taking the partial derivative of (1 − β)‖RPET

i U − AUCi‖
2
2 with respect

to Ui. EM iterations stop when the relative change in the estimates Um and Um+1 is small.

3.3 Experiments and Results

PET-only Reconstruction. We evaluate the one-sided PET-only reconstruction problem

on simulated phantom data where the MRI image is assumed to be fixed/static. Given

the fixed MRI image, the joint dictionary trained on noiseless PET and MRI data, the

task is to reconstruct noisy PET data. We compare our PET reconstruction framework

using joint-dictionary (jd), qualitatively and quantitatively, with five different methods:

(i) MLEM-based reconstruction; (ii) Huber-loss MRF priors, similar to TV priors penal-

izing magnitudes of intensity gradients; (iii) reconstructing PET with MRI-image patch-

based dictionaries learned from MRI image alone (MRI-Dict); (iv) reconstructing PET

using LPLS (?); and (v) reconstructing PET using joint-TV (JTV) (?).

Joint PET-MRI reconstruction (single-coil MRI). We evaluate our Bayesian

joint-reconstruction framework for PET and single-channel MRI on (i) simulated PET-

MRI datasets using BrainWeb data (??), including fully-sampled and undersampled MRI

data, and (ii) an in vivo PET-MRI cohort with undersampled MRI data. We compare

our JD framework, qualitatively and quantitatively, with five different methods: (i) inde-

pendently reconstructing PET and MRI without priors, i.e., ZF-IFT for MRI, and MLEM-

based reconstruction for PET; (ii) independently reconstructing PET and MRI with Huber-
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loss MRF priors; (iii) reconstructing PET and MRI independently with patch-based dic-

tionaries (ID), one learned for modeling MRI images and another learned for modeling

PET images; (iv) jointly reconstructing PET and MRI using LPLS (?); and (v) jointly

reconstructing PET and MRI using QPLS(?).

Joint PET-MRI reconstruction (parallel-MRI). We evaluate our Bayesian joint-

reconstruction framework for PET and parallel-MRI using in vivo PET-MRI data with

2× undersampled MRI data. In this case, we compare our JD method with (1) indepen-

dent reconstructions of MRI and PET: (i) without the use of priors; (ii) using Huber-loss

MRF prior, and (2) joint reconstruction using JSR prior ? relying on joint gradient-based

sparsity, extending the TV prior.

For all the three scenarios, we evaluate the quality of the reconstructed image (x̂),

with respect to the ground truth image (x), based on the (i) relative root mean squared

error (RRMSE), defined as ‖x̂ − x‖F/‖x‖F , and (ii) structural similarity index (SSIM) (?).

We optimize the hyperparameters underlying all methods to minimize the RRMSE on a

validation set, as detailed later.

3.3.1 PET-only Reconstruction: Results With Simulated Phantom.

For the simulated phantom (Figure 3.1(a1)-(a2)), we sufficiently blur the PET image

to reproduce the lower resolution in PET ?, relative to MRI. The MLEM reconstruction

(Figure 3.1(a3)) retains a lot of the noise compared to prior-based methods. EM with the

HuberMRF prior (Figure 3.1(a4)) gets rid of most of the random noise. JTV and PLS

(Figure 3.1(b3),(b4)) leverage the anatomical structure in the MRI, encouraging edges in

the PET reconstruction to occur at the same spatial locations as the edges in the MRI

image. They improve over Huber MRF prior, but the gradient-based penalty limits the

quality of reconstruction of the (i) blue circular blobs, (ii) red circular outside rim, and

(iii) red parallel bars in the center. Using a MRI-patch statistical model to reconstruct

PET images (PET patch intensities being significantly smoother than MRI patch intensi-

ties) results in overfitting of the dictionary to the noise (Figure 3.1(b2)). Our reconstruc-

tion (Figure 3.1(b1)) using a joint patch-based dictionary model maintains both fine-scale

regularity, in the form of smoothness, and larger-scale regularity by preservation of struc-

tures like the straightness and separability of the red bars, circularity of the blue blobs,

and the continuity in the red outer ring. Our reconstruction has much smaller residual

magnitudes (Figure 3.1(c1)) compared to all other methods, and is closest to the ground

truth qualitatively and quantitatively (Figure 3.1).
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3.3.2 Joint PET-MRI Reconstruction: Results on Two Simulated

BrainWeb (BW) Datasets

For BrainWeb-based simulations, we consider two sets of data: (i) a single subject’s

brain volume from the original BrainWeb dataset (?), which we call as the BW1 dataset,

and (ii) a set of 20 subjects’ brain volumes with anatomical models (?), which we call

as the BW20 dataset. We evaluate all methods under two different scenarios: (i) using

PET-MRI data simulated using a single corruption-free MRI image provided in BW1,

where we additionally simulate lesions in PET and MRI, and (ii) using multiple noisy

MRI images in BW20, where we learn dictionaries from a small subset of subjects and

subsequently use it to reconstruct undersampled and lower-quality data in the rest of the

subjects.

Figure 3.1: PET-only Reconstruction: Results on Simulated Phantom. (a1)-(a2) PET-

MRI ground truth. (a3),(a4),(b1)–(b4) PET reconstructions using various methods. (c1)–
(c4) Residual (reconstructed - truth) images for the results in (b1)–(b4). RRMSE: Ours
0.06, MRI-Dict 0.10, PLS 0.09, JTV 0.08, HuberMRF 0.09, MLEM 0.18. SSIM: Ours
0.92, MRI-Dict 0.81, PLS 0.86, JTV 0.90, HuberMRF 0.84, MLEM 0.61.
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Figure 3.2: PET-MRI Data and Joint PET-MRI Dictionary. Simulated PET-MRI Im-

ages from BW1. (a1)-(a2) PET and MRI images, with simulated lesions. (a3) MRI k-space

undersampling mask(2×), (a4)-(a5) Joint dictionary A, comprising concatenated AU and

AV , learned from BW1 PET-MRI images (without simulated lesions): (a4) 64 atoms in AU

representing PET image patches, in a one-to-one correspondence to the 64 MRI atoms in

(a5), (a5) 64 atoms in AV representing MRI image patches; for better visualization, we use

a colormap different from grayscale . In vivo PET-MRI Images. (b1)-(b2) PET and MRI

images. (b3) MRI k-space undersampling mask(2×), (b4)-(b5) Joint dictionary learned

from in vivo PET-MRI images, analogous to (a4)-(a5).

3.3.3 Simulating PET-MRI Images with Lesions

Simulating MRI Images and Data. For the BW1 dataset, we use T2-weighted

MRI images (Figure 3.2 (a2)) having an isotropic voxel size of 1 mm3. For the BW20

dataset, we use T1-weighted MRI images (Figure 3.5 (b1)) having an isotropic voxel

size of 1 mm3, with the MRI simulator parameters as SFLASH (spoiled FLASH) se-

quence with TR 22 milliseconds, TE 9.2 milliseconds, and flip angle 30 degrees. For the

BW1 dataset, we simulate fully-sampled and undersampled k-space data. For the BW20

dataset, we simulate undersampled k-space data. We undersample MRI k-space (under-

sampling factor 2×) using a standard Cartesian undersampling scheme in Figure 3.2 (a3)

that is easily implementable on the scanner; the sampling is dense around the center of

the k-space, compared to the high-frequency regions. For MRI data acquisition, we added
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i.i.d. zero-mean complex Gaussian noise to the k-space data. We use the same noise level

(i.e., standard deviation) for both the cases of fully-sampled k-space and undersampled

k-space, such that the RRMSE for the fully-sampled IFT reconstructed image is around

0.14.

Simulating PET Images and Data. For BW1 and BW20 datasets, we use (i) the

anatomical models of the normal brains provided in the datasets and (ii) the radiotracer

uptake ratios described in ?? to simulate the corresponding PET activity images (Fig-

ures 3.2 (a1) and 3.5(a1)). We model the PET system matrix using strip integrals pro-

vided in github.com/JeffFessler/mirt. We simulate around 106 counts for the PET

data using a 2D scanner with 180 degree coverage and 215 radial lines. In addition, we

smooth the resulting PET activity image by a Gaussian filter of standard deviation 2 mm

to model the point spread function of a typical PET scanner. For all the simulations,

we ignore scatter, attenuation, and scanner random effects (a more accurate model that

includes all these effects would benefit all the methods). This approach is similar to sim-

ulation studies in ??. We control the Poisson noise level such that the standard MLEM

reconstruction gives a RRMSE of 0.25, to mimic practical SNR values. For the BW20

dataset, we simulate two different noise levels for the PET data such that the standard

MLEM reconstruction gives a RRMSE of 0.25 and 0.16. This mimics practical scenarios

where radiotracer dosage might vary across subjects. The different noise levels also cater

to applications with low-dose PET imaging that produce low SNR images.

Simulating Lesions in PET-MRI. For BW1, we simulate modality-specific appear-

ances of lesions in both PET and MRI images (Figure 3.2 (a1)–(a2)), indicated by the

arrows in the MRI image (near the ventricles), and the PET image (near the cortex).

3.3.4 Dictionary Learning

For the BW1 dataset, we train the dictionaries in ID and JD by (i) taking fully-

sampled noisy k-space data, (ii) using that to reconstruct PET-MRI using the Huber prior,

(iii) and then taking a few slices for training; we ensure that the slices we use to eval-

uate all reconstruction methods are at least 10 mm away from the training slices. Fig-

ures 3.2(a4)-(a5) show the joint dictionary A learned from training slices in the simulated

PET-MRI data. In comparison with the MRI dictionary atoms, the PET dictionary atoms

depict patterns with more gradual spatial variation. Unlike the BW1 dataset, the BW20

dataset provides data from multiple subjects and, thus, we learn the joint dictionary A

using mid-brain slices of one of the subjects as the training set.

github.com/JeffFessler/mirt
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Figure 3.3: Results on Simulated PET-MRI using BW1: With Fully-Sampled MRI.
Ground truth images: (a1) PET, and (b1) MRI. Joint PET-MRI reconstructions: using

our JD prior for (a2) PET [RRMSE: 0.08] and (b2) MRI [0.06]; using LPLS prior
for (a4) PET [0.10] and (b4) MRI [0.07]; using QPLS prior for (a5) PET [0.09]

and (b5) MRI [0.07]. Independent PET and MRI reconstructions: using ID prior for

(a3) PET [0.09] and (b3) MRI [0.07]; using Huber prior for (a6) PET [0.15] and

(b6) MRI [0.11]; without using any prior for (a7) PET [0.25] and (b7) MRI [0.14].

3.3.5 Hyperparameter Tuning

For the BW1 dataset, we tune all hyperparameters for all methods to minimize

RRMSE on the evaluation set. For the BW20 dataset, we tune all hyperparameters for

all methods to minimize RRMSE on one other subject (validation set), different from the

training set. Subsequently, we use these parameter values on the evaluation set.

3.3.6 Joint PET-MRI Reconstruction: Results With Fully-Sampled

MRI (BW1)

Figure 3.3 shows PET-MRI reconstructions, from fully-sampled MRI. The prior-less

reconstructions (Figure 3.3(a7)–(d7)), i.e., using ZF-IFT for MRI and MLEM for PET,

are unable to eliminate the noise. Independent reconstructions of PET and MRI using the

Huber-loss based prior (Figure 3.3(a6)–(d6)) remove a significant amount of noise, while
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Figure 3.4: Joint PET-MRI Reconstruction: Results on Simulated PET-MRI using
BW1: With 2× Undersampled MRI. Ground truth images: (a1) PET, and (b1) MRI.

Joint PET-MRI reconstructions: using our JD prior for (a2) PET [RRMSE: 0.08] and

(b2) MRI [0.08]; using LPLS prior for (a4) PET [0.10] and (b4) MRI [0.09]; using

QPLS prior for (a5) PET [0.09] and (b5) MRI [0.08]. Independent PET and MRI re-

constructions: using ID prior for (a3) MRI [0.10] and (b3) MRI [0.09]; using Huber
prior for (a6) PET [0.10] and (b6) MRI [0.12]; without using any prior for (a7) PET
[0.25] and (b7) MRI [0.14].

preserving edges (in both PET and MRI). Joint PET-MRI reconstruction using LPLS and

QPLS priors (Figure 3.3(a4)–(d4),(a5)–(d5)) further improve the MRI reconstruction,

with reduced noise and better edge recovery. The reconstructions with the LPLS, and

QPLS priors show staircasing effects, which are typical for methods penalizing gradient

magnitudes. The LPLS and QPLS priors also show cross-modality artifacts in the re-

gion around the lesion, in the PET reconstructions (Figure 3.3(a4)-(a5),(c4)-(c5)), which
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Figure 3.5: Joint PET-MRI Reconstruction: Results on Simulated PET-MRI using
BW20: With 2× Undersampled MRI. Two different SNR levels in PET data: (a1)–

(a7) and (b1)–(b7) PET SNR low; (c1)–(c7) and (d1)–(d7) PET SNR high. Ground

truth images: (a1),(c1) PET, and (b1),(d1) MRI. Joint PET-MRI reconstructions: (a2)–

(d2) using our JD prior; (a4)–(d4) using LPLS prior; (a5)–(d5) using QPLS prior.

Independent PET and MRI reconstructions: (a3)–(d3) using ID prior; (a6)–(d6) using

Huber prior; (a7)–(d7) without using any prior. RRMSE values are provided at the

bottom-right in each image.

is more pronounced for LPLS; this observation is consistent with that in ? where QPLS

performed better at reconstructing shared edges. On the other hand, the patch-based ID

prior (Figure 3.3(a3)–(d3)) is able to remove noise further without introducing staircasing

effects. In comparison, our patch-based JD prior produces results (Figure 3.3(a2)–(d2))

that (i) are closer to the ground truth in terms of spatial regularity and, more importantly,

(ii) preserve modality-specific textural features. The RRMSE values (Figure 3.3) indicate

that, compared to other methods, our JD shows an improvement in the reconstructed PET

images, without loss of reconstruction quality in the MRI images.
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3.3.7 Joint PET-MRI Reconstruction: Results with UnderSampled

MRI (BW1 and BW20)

Figure 3.4 shows PET-MRI reconstructions with undersampled MRI data, using the

undersampling scheme in Figure 3.2(a3). The independent reconstructions for PET-MRI

without priors (Figure 3.4(a7)–(f7)) and with the Huber prior (Figure 3.4(a6)–(f6)) are

unable to get rid of the aliasing artifacts in MRI. The Huber prior performs better at noise

reduction in both PET and MRI, similar to what we observed earlier in the fully-sampled

case. The patch-based ID prior (Figure 3.4(a3)–(f3)) does reduce noise further in PET and

MRI, but is unable to get rid of undersampling artifacts in MRI. Clearly, joint reconstruc-

tions, using QPLS, LPLS, and JD, are better in terms of (i) reducing aliasing artifacts in

MRI reconstructions (Figure 3.4(b2),(b4)-(b5)), (ii) reducing noise in both PET and MRI

reconstructions (Figure 3.4(a2),(a4)-(a5),(b2),(b4)-(b5)), and (iii) weaker spatial correla-

tions in the residual images (Figure 3.4(c2),(c4)-(c5),(d2),(d4)-(d5)). LPLS and QPLS

tend to introduce jagged edges, similar to the fully-sampled case. The zoomed insets for

LPLS (Figure 3.4(e4)-(f4)) and QPLS (Figure 3.4(e5)-(f5)) clearly show cross-modality

artifacts between PET and MRI. The ID based reconstruction for PET (Figure 3.4(a3))

shows smoother variations than LPLS and QPLS. However, for MRI, ID still retains most

of the aliasing artifacts compared to the joint priors. On the other hand, our JD improves

over ID by modeling the inter-modality and intra-modality patch regularity to reconstruct

textural patterns in both modalities.

Figure 3.5 shows PET-MRI reconstructions, for the BW20 dataset, at two different

noise levels for PET; here, while the MRI noise level remains the same across these exper-

iments, we do employ different instance of the noise in the MRI data. In this dataset (Fig-

ure 3.5), the aliasing artifacts in MRI are less severe compared to the BW1 dataset (Fig-

ure 3.4). Hence, the patch-based ID for MRI reconstruction(Figure 3.5 (b3)), performs

better, in terms of removing aliasing artifacts, over Huber-based MRI reconstructions,

and is comparable in image quality to LPLS and QPLS MRI reconstructions(Figure 3.5

(b4)-(b5)). Both patch based ID and JD yield smoother MRI reconstructions compared

to LPLS and QPLS methods, while our JD prior resulted in the the lowest RRMSE for

the MRI image. On the other hand, with regards to PET image reconstruction, our JD

seems to retrieve most of the contrast and performs better denoising. In comparison,

other methods find it difficult to reconstruct the original contrast and textural patterns as

well, especially in the gray matter around the ventricles (indicated by arrow in Figure 3.4

(a2)).
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Figure 3.6: Results on Simulated PET-MRI using BW20: With 2× Undersampled
MRI; RRMSE and SSIM values for PET and MRI images, on 10 mid-brain slices across

8 subjects in the evaluation set of BW20. Two Different Noise Levels in PET. (a1)–

(d1) PET SNR low; (a2)–(d2) PET SNR high. RRMSE values for all the methods for:

(a1) PET with low SNR PET data, (a2) PET with high SNR PET data; (b1) MRI with

low SNR PET data, (b2) MRI with high SNR PET data. SSIM values for all the methods

for: (c1) PET with low SNR PET data, (c2) PET with high SNR PET data; (d1) MRI
with low SNR PET data, (d2) MRI with high SNR PET data.
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From the experiments described above, for both BW1 and BW20, we see that the

joint reconstruction methods of LPLS, QPLS, and JD help reduce aliasing artifacts in the

MRI reconstructions better than other methods. This may stem from the ability of PET re-

constructions, which are free of aliasing artifacts, to be able to guide MRI reconstructions

towards reducing aliasing artifacts. In this way, joint reconstruction methods leverage the

complementary information and the characteristics of PET and MRI images to improve

the reconstruction of both modalities. Although ID yields smoother reconstructions for

both PET and MRI without the staircasing effects or jagged edges, it is unable to (i) signif-

icantly reduce aliasing artifacts in MRI images, and (ii) retrieve original contrast in PET

images. The results show that JD can overcome these problems by modeling a joint patch-

based prior. In this way, JD shows significant improvement in the PET image quality as

well as better textural recovery in both PET and MRI.

Quantitative Results (BW20). We perform quantitative evaluation of different re-

construction methods across multiple slices of different subjects for the BW20 dataset,

for the two different noise levels. As mentioned before, for both ID and JD, we learn the

dictionaries from a single subject and use it for reconstructing images from unseen data.

This demonstrates the generalizability of the dictionary for practical scenarios. The box

plots (Figure 3.6) for undersampled BrainWeb-based simulations indicate that the joint re-

constructions outperform individual reconstructions in both PET and MRI. Our methods

leads to a significant improvement in the quality of the PET reconstructions quantitated

by RRMSE and SSIM both. Although the RRMSE values of ID based MRI reconstruc-

tions is comparable to that of QPLS MRI reconstructions, in terms of SSIM, QPLS is

significantly better than ID.

3.3.8 Joint PET-MRI Reconstruction: Results on in vivo Datasets

With MRI

We now describe the details of the in vivo dataset followed by qualitative and quan-

titative results.

3.3.9 Dataset

We acquire simultaneous brain PET-MRI data for 25 subjects using a Siemens mMR

3-Tesla scanner. The average FDG dose across subjects was around 220 MBq. T2-

weighted MRI images were acquired with 2× Cartesian undersampling scheme using

the inbuilt protocol with the following acquisition parameters: TR 5000 milliseconds, TE

395 milliseconds, TI 1800 milliseconds, and acquisition time 352 seconds. The corre-
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sponding PET acquisition time was 30 minutes. We reconstruct images using the pro-

prietary software tools on the scanner and other third-party software tools (?). The na-

tive PET resolution was 2.086 × 2.086 × 2.032 mm3 and the native MRI resolution was

1 mm3 isotropic. The reconstruction pipeline includes standard pre-processing steps for

MRI data and PET data, e.g., attenuation and scatter correction, registration, etc. The

MRI UTE sequence images were used for attenuation correction (?). We use these re-

constructed PET and MRI images as ground truth. We generate PET sinogram data from

the scanner provided images using strip integrals mentioned before. We retrospectively

undersample MRI k-space, like the strategy in other recent methods (?). We use a Carte-

sian undersampling scheme (Figure 3.2(b3)), where the sampling strategy is similar to

that used for simulating PET-MRI in Section 3.3.2, resulting in 2× undersampling. For

the in vivo PET-MRI data, we evaluate all the methods on three different noise levels. We

use noise levels such that the standard MLEM based reconstruction results in RRMSEs of

0.42, 0.25, and 0.16. As mentioned before, this pertains to scenarios where the radiotracer

dosage (and hence the PET image SNR) might vary across subjects, which depends on

several factors such as acquisition protocols and body weight etc. Similar to BW20 data

simulation, we use different noise instances for MRI acquisition across PET SNR levels.

For parallel-MRI, we use gradient-echo T2w MRI and FDG-PET from 5 subjects

with 12 head coils. We use reconstructions produced by the on-scanner software as ground

truth (Figure 3(a1)-(b1)), and then retrospectively obtain MRI-PET measurements with

parallel MRI with 2× k-space undersampling.

3.3.10 Dictionary Learning

The joint dictionary A learned from in vivo PET-MRI slices appears in Fig-

ure 3.2(b4)-(b5). For the in vivo data, we learn the joint dictionary on five mid-brain

slices of a single subject (training set). Subsequently, we tune the hyperparameters (for

all the methods) by reconstructing PET-MRI images for another subject (validation set;

different from the training set) to minimize the RRMSE. Finally, we use the learned dic-

tionary and the tuned hyperparameters to reconstruct the PET-MRI images from 25 other

subjects (evaluation set).

3.3.11 Joint PET-MRI Reconstruction: Results with Undersampled

MRI (In Vivo)

Figure 3.7 shows the reconstructions of in vivo images for PET and undersampled

k-space MRI in vivo data. The undersampling sheme is shown in Figure 3.2(b1). The
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Figure 3.7: Joint PET-MRI Reconstruction: Results on in vivo PET-MRI: (2× Un-
dersampled MRI). Ground truth images: (a1) PET, and (b1) MRI. Joint PET-MRI re-

constructions: using our JD prior for (a2) PET [RRMSE: 0.08] and (b2) MRI [0.07];

using LPLS prior for (a4) PET [0.10] and (b4) MRI [0.08]; using QPLS prior for

(a5) PET [0.09] and (b5) MRI [0.08]. Independent PET and MRI reconstructions: using

ID prior for (a3) MRI [0.11] and (b3) PET [0.09]; using Huber prior for (a6) MRI
[0.11] and (b6) PET [0.09]; without using any prior for (a7) MRI [0.14] and (b7) PET
[0.14].

in vivo PET and MRI ground-truth images (Figure 3.7(a1)-(b1)) have larger voxel sizes

and richer texture compared to the BrainWeb images in Figures 3.3, 3.4 and Figure 3.5.

The Huber prior (Figure 3.7(a6)) removes noise over the MLEM reconstruction (Fig-

ure 3.7(a7)). The LPLS and QPLS priors for PET reconstruction (Figure 3.7(a4)-(a5))

are unable to recover the original regularity (smoothness) and tend to produce cartoon-
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Figure 3.8: Joint PET-MRI Reconstruction: Results on In vivo PET-MRI: Three
different SNR levels in PET. Zoomed regions from ground truth: (a1),(c1),(e1) PET, and

(b1),(d1),(f1) MRI. PET SNR levels: (a1)–(a7) and (b1)–(b7) low (c1)–(c7) and (d1)–

(d7) medium (e1)–(e7) and (f1)–(f7) high (a2)–(f2) using our JD prior; (a4)–(f4) using

LPLS prior; (a5)–(f5) using QPLS prior. Independent PET and MRI reconstructions:

(a3)–(f3) using ID prior; (a6)–(f6) using Huber prior; (a7)–(f7) without using any prior.

ish reconstructions. The ID based reconstruction for PET(Figure 3.7(a3)) does recover

smoothly varying structures, but overall, there seems to be a loss in terms of contrast

compared to the corresponding PET reconstruction using JD prior (Figure 3.7(a2)). Our

method performs much better at reducing noise and preserving textural regularity. We do

observe the spatial correlations in the residual image (Figure 3.7(c2)), which is typical

for regularized estimates. Nevertheless, compared to the LPLS and the QPLS residual

images (Figure 3.7(c4)-(c5)), our method has reduced magnitudes and also lesser spatial

correlations (Figure 3.7(c2) and (d2)). For MRI, the independently reconstructed images,

without any prior and with the Huber prior (Figure 3.7(b6),(b7)), retain aliasing artifacts
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(indicated by arrow in Figure 3.7(b6)); nevertheless, the Huber prior performs better at re-

ducing noise. The LPLS and QPLS reconstructions perform significantly better for MRI

images compared to Huber and prior-less reconstructions; in this case, the ID based MRI

reconstruction produces images comparable in visual quality to the joint priors.

Figure 3.8 shows zoomed regions of interest (same as in Figure 3.7), for both PET

and MRI images across three different SNR levels of PET data (increasing top to bottom).

The zoomed inset images corresponding to the the low-SNR case (Figure 3.8(a1)–(a7)

and (b1)–(b7)) are the same as the zoomed insets from Figure 3.7. Joint prior methods

as well as ID based MRI reconstructions, across different noise realizations, are of com-

parable image quality. However, significant difference in PET image reconstructions is

seen among all methods, especially for the low-SNR case(Figure 3.8(a1)–(a7)). LPLS

and QPLS fail to recover the smooth edges for the PET image reconstructions at low-

SNR(Figure 3.8(a4)-(a5)). The ID-based reconstruction for PET shows loss of contrast

at low-SNR PET data, whereas the image quality is comparable to JD at high-SNR. We

observe that all the methods work reasonably well in the high-SNR case (Figures 3.8

(e1)–e(7)). At low SNR, Huber still retains noise, whereas ID and the joint priors: LPLS,

QPLS, and JD, remove significant amount of noise.

Quantitative Results. Figure 3.9 shows the RRMSE and SSIM plots for PET-MRI

reconstructions for mid-brain slices of 25 subjects from the evaluation set. We present

quantitative analysis across three varying SNR levels of PET data (same as described

before), and with 2× k-space undersampling. As mentioned before, we use the hyperpa-

rameters tuned on a validation set for our evaluation set. For all the methods, as SNR

increases, for PET reconstructions, we see a reduction in RRMSE values and increase

in SSIM values. As expected, there is little difference between PLS based methods and

the patch-based ID and JD reconstructions for MRI. Clearly, our JD prior based recon-

structions for both PET and MRI provide (i) lower RRMSE values and (ii) higher SSIM

values, in comparison to all other methods across all noise levels.

3.3.12 Effect of Increasing the Prior / Regularization-Term Weight

Figure 3.10 shows the effect of modifying the prior-weight, α, for the joint recon-

struction priors considered in this work, i.e., LPLS, QPLS and JD. Although all methods

provide smooth reconstructions for higher value of α (Figure 3.10 (a3)–(f3)), the recon-

structions with minimum RRMSE are shown in Figure 3.10 (a2)–(f2). As expected, for

lower values of α (Figure 3.10 (a1)–(f1)), there is considerable noise in the reconstructed

images. The LPLS prior based reconstructions (Figure 3.10 (e1)–(e3) and (f1)–(f3))

provide sharper images with increasing α, but also tend to show increased staircasing ef-
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Figure 3.9: Results on In vivo PET-MRI: With 2× Undersampled MRI; Three Dif-
ferent Noise Levels in PET. RRMSE and SSIM values for PET and MRI images, on 10

mid-brain slices across 25 subjects in the evaluation set. (a1)–(d1) PET SNR low; (a2)–

(d2) PET SNR medium; (a3)–(d3) PET SNR high. RRMSE values for all the methods

for: (a1) PET with low SNR PET data, (a2) PET with medium SNR PET data, (a3) PET
with high SNR PET data (b1) MRI with low SNR PET data, (b2) MRI with medium

SNR PET data, (b3) MRI with high SNR PET data SSIM values for all the methods for:

(c1) PET with low SNR PET data, (c2) PET with medium SNR PET data, (c3) PET with

high SNR PET data (d1) MRI with low SNR PET data, (d2) MRI with medium SNR

PET data, (d3) MRI with high SNR PET data

fect. Moreover, the strength of the cross-modality artifact in the PET images (from the

MRI-specific lesion), increases as α increases. Compared to LPLS, the QPLS based re-

constructions (Figure 3.10 (c1)–(c3) and (d1)–(d3)) are less prone to these artifacts. On
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Figure 3.10: Effect of Increasing the Prior / Regularization Term Weight (α). Com-
parison among joint reconstruction priors. Joint PET-MRI reconstructions: using our
JD prior for PET: (a1)–(a3) and MRI: (b1)–(b3); using QPLS prior for PET: (c1)–(c3)

and MRI: (d1)–(d3); using LPLS prior for PET: (e1)–(e3) and MRI: (f1)–(f3);

the other hand, our JD based reconstructions (Figure 3.10 (a1)–(a3) and (b1)–(b3)) show
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increased smoothing as α increases. For higher values of α, over-regularization is seen

across all methods; for JD this leads to increasing blur in the images; for both LPLS and

QPLS, this leads to increasing staircasing effects.

3.3.13 Joint PET and Parallel-MRI Reconstruction: Results on

Undersampled Parallel-MRI (In Vivo)

We use gradient-echo T2w MRI and FDG-PET for 5 subjects in a Siemens mMR

Biograph scanner, with 12 head coils. We use reconstructions produced by the on-scanner

software as ground truth (Figure 3.11(a1)-(b1)), and then retrospectively obtain MRI-PET

measurements with parallel MRI with 2× k-space undersampling. The in vivo images

are far from being piecewise constant, and exhibit weaker inter-modality dependencies

between image gradients. TV based priors are prone to cartoonish reconstructions (Fig-

ure 3.11(b3)), especially in PET, compared to our reconstructions (Figure 3.11(a2)-(b2))

that are more regular and natural, and better at preserving edges, higher-order features

such as texture, and modality specific features. The inter-pixel correlations, at a larger

scale, are more prominent in the joint regularization techniques (Figure 3.11(d2)-(d3))

compared to the Huber-prior residual image (Figure 3.11(d3)), resulting in structural bias

in the reconstructed images. Nevertheless, the joint priors yield better SNR-bias trade-

off compared to the Huber prior based reconstructions (Figure 3.11(b2)-(b4)) and (Fig-

ure 3.11(f2)-(f4)).

Quantitative Results. For in vivo data, we reconstruct 20 slices over 4 subjects dif-

ferent from the one used to learn the dictionary. Our joint-dictionary model typically gives

improved RRMSE (lower) and SSIM (higher) compared to other methods (Figure 3.12),

for both the simulated BrainWeb images and in vivo images. While JD and JSR perform

similarly on BrainWeb MRI, our JD prior performs much better on BrainWeb simulated

PET images. Huber and JSR priors perform better for BrainWeb simulations (where the

true images are closer to being piecewise constant), compared to in vivo images.

3.4 Discussion

In this work, we present a novel framework for the reconstruction of PET and accelerated-

MRI data, for simultaneous PET-MRI scanners, using a joint patch-based dictionary. Our

joint reconstruction formulation models the PET-MRI joint dictionary as a MRF, leading

to a Bayesian inference framework. PET reconstruction combined with three different

MRI data acquisition scenarios were handled: (i) scanner-reconstructed fixed MRI im-

age; (ii) undersampled k-space data from single channel; and (iii) undersampled k-space
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Figure 3.11: Joint PET-MRI Reconstruction (parallel-MRI): Results on in vivo PET-
MRI: (2× Undersampled MRI). Ground truth for (a1) MRI, (b1) PET. Joint recon-

structions with our JD prior for (a2) MRI [RRMSE: 0.07], (b2) PET [0.04]; and with

JSR prior for (a3) MRI [0.10], (b3) PET [0.09]. Independent reconstructions with Huber

prior for (a4) MRI [0.15], (b4) PET [0.07]; and without prior (a5) MRI [0.27], (b5) PET

[0.13]. (c1)–(c5) and (d1)–(d5) Residuals. (e1)–(e5) and (f1)–(f5) Zoomed insets.

data from multiple channels. Furthermore, the proposed framework is capable of han-

dling various Cartesian undersampling schemes for k-space data acquisition. We provide
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Figure 3.12: Joint PET-MRI Reconstruction (parallel-MRI): Results on in vivo PET-
MRI: (2× Undersampled MRI). In vivo: 20 slices in 4 subjects.

the detailed theoretical framework using EM to solve the PET-MRI joint-reconstruction

optimization problem. To the best of our knowledge, this work is the first to propose a

patch-based dictionary prior for the joint reconstruction problem.

Our patch-based joint dictionary models intra-modality and inter-modality textural

patterns and produces improved reconstructions over state of the art, especially under in-

creased noise levels. It is well known that gradient-norm-based penalties can be prone to

staircasing artifacts and cartoonish reconstructions. The qualitative and quantitative re-

sults in the simulated datasets (BW1 and BW20) demonstrate the superior performance of

our framework compared to existing methods. In the simulated datasets, the dependencies

across the PET and MRI images, at fine and coarse scales both, are stronger compared

to the in vivo PET-MRI images. Hence, LPLS and QPLS perform better in the simu-

lated BrainWeb cases compared to the in vivo cases. Unlike the simulated datasets, the

in vivo images depict richer textural features where patch-based dictionary models offer

better regularity in the reconstructed images, especially at higher noise levels. The texture

modeling and larger contextual information (through patch-based modeling) tends to help

dictionary methods alleviate cross-modality artifacts, compared to existing methods that

model fine-scale gradient-based dependencies. We find that joint modeling and recon-

struction of PET and MRI has the ability to improve the reconstruction quality of both

PET and MRI images. For example, while the ID prior finds it difficult to remove aliasing

artifacts in MRI images (especially in the BW1 dataset experiment, Figure 3.4), the joint

priors (LPLS, QPLS, and JD), do much better by using the aliasing-free information in the

PET modality. On the other hand, the joint modeling helps improve PET reconstructions

by leveraging anatomical information in the MRI images.

Our experiments on the simulated BW20 dataset, on which we evaluate all methods

across varying PET SNR levels, demonstrate the generalizability of dictionaries (for both

ID and JD) learned from a small training to a different larger evaluation set. As part of

future work, further experiments are indeed needed for evaluating generalizability across
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dosage levels, patient anomalies, etc. Compared to the hand-crafted prior models, e.g.,

LPLS and QPLS, learning-based methods, like ID and JD, require some training data

for learning the prior model. For instance, neural network based models have proven

to be very powerful at learning complex regression models for some medical image re-

construction tasks, but require very large amounts of training data for model learning.

Nevertheless, all models, whether hand-crafted or learning-based, to require a validation

set for tuning hyperparameters. Our method has a few more hyperparameters in compar-

ison to the LPLS and QPLS priors, i.e., the number of atoms in the dictionary, the patch

size, and the sparsity parameter λ. Tuning a larger number of hyperparameters requires a

larger validation set, in general. Nevertheless, we find that our reconstruction results are

fairly robust to small perturbations in all these hyperparameters.

In the case of joint reconstruction of PET and parallel-MRI, for the same acceler-

ation factor as the single-coil case, the SENSE reconstructed images do not suffer from

aliasing artifacts. Hence, for the same acceleration factor, in parallel-MRI, the problem is

to perform reconstruction with enhanced noise removal in both PET and MRI. Our joint

dictionary shows superior image quality to the joint TV method by restoring smoother

PET images and MRI images with improved textural information.

Computational Cost. We implement our joint-dictionary-based joint PET-MRI

reconstruction framework in MATLAB R2018a. We run our experiments on a Intel Xeon

E5-2680 2.5 GHz workstation. The average time to reconstruct an in vivo dataset (whole

brain) is around 5 hours. We observe that the algorithm typically requires around 5 EM

iterations and within each EM iteration, the algorithm typically requires less than 30 it-

erations of projected gradient descent for updating each of the variables (U,V,C) within

each M-step. As is typical of patch-based techniques, our method is more computa-

tionally intensive compared to the image gradient-based techniques. Nevertheless, there

is scope for substantial acceleration by parallelization. Similar to several patch-based

methods, our JD-based formulation faces increased computational cost compared to the

gradient-based methods. However, the dictionary model can be parallelizable to reduce

computation time. The current evaluation is on a cohort of 25 patients. In the future, we

plan to evaluate on larger datasets.

Dictionary-based methods have been successful in (i) accurate reconstructions of

MRI images with highly accelerated data acquisition, e.g., ?, and (ii) restoring images

under low SNR, e.g., ??. These characteristics of dictionary-based models indicate a

strong potential of our joint-dictionary framework towards PET-MRI imaging with lower-

dose PET scanning combined with faster MRI scanning. Future directions can focus on
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joint reconstruction with lower doses in PET and highly accelerated multi-contrast parallel

MRI.



Chapter 4

Deep Learning based Robust to OOD
Ultra-Low-Dose PET

4.1 Introduction

Chapter 2 described how lowering the PET radiotracer dose degrades image quality and

affecting diagnostic requirements. Hence, synthesizing PET images that match the image

quality of standard-dose PET (SD-PET) is of importance. As in the previous chapter, we

restrict our discussion to FDG-PET. Chapter 2 also briefly discussed several approaches

proposed in the literature to enable low-dose imaging. These techniques were either

(i) within reconstruction, or (ii) post-reconstruction PET image enhancement techniques.

This chapter proposes a novel framework for the synthesis of SD-PET images from

multimodal data that exploits the underlying physics of the imaging system and also mod-

els the per-voxel heteroscedasticity in the training data to predict SD-PET images from

LD-PET images (DRF ≈ 180×) and robustness to OOD acquisitions of PET data. To the

best of our knowledge, this work is the first work to model both imaging physics as well

as uncertainty for the task of medical image synthesis using DNNs. Thus, we propose a

sinogram- and uncertainty- based DNN (suDNN) framework. Our results on a cohort of

28 subjects with in vivo PET acquisitions demonstrate improved (i) quality of the recon-

structed images and (ii) robustness of the learned model in reconstructing OOD PET data

in comparison to state-of-the-art methods.

57
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Figure 4.1: Illustration of the proposed suDNN framework. The input images are

multimodal PET and MRI for the 2.5D-style training scheme. The outputs of the network

are (i) the mean predicted image ŷ, and (ii) the image ĉ modeling the per-voxel variances

in the residuals between the predicted image and the reference SD-PET image.

4.2 Methods

We elucidate the underlying mathematical model along with the network architecture and

the training strategy used for the proposed suDNN framework that estimates SD-PET

images using the multimodal input data.

4.2.1 Model

Let the set of acquired LD-PET images for N subjects be {uLD
n }

N
n=1. Similarly, the

set of T1w MRI, T2w MRI images, and the SD-PET images are denoted by {vT1
n }

N
n=1,

{vT2
n }

N
n=1, and {uSD

n }
N
n=1, respectively. For the n−th subject, the images uLD

n , vT1
n , v

T2
n , and uSD

n ,

each containing I voxels, are spatially co-registered. Our task is to predict an estimate

of the SD-PET image, given the triplet of images xn := {uLD
n , vT1

n , v
T2
n } via a regression

function Ψ(·; Θ), parameterized by Θ. To solve the above mentioned regression problem,

we use the training set consisting of T subjects given by T := {xn ∪ uSD
n }

T
n=1 where T <

N. We realize the multidimensional regression function Ψ(·; Θ) as a DNN that takes

the triplet xn as input and produces as output (i) an estimate of the SD-PET image ŷn

and (ii) the associated per-voxel uncertainty maps ĉn, as formulated in the subsequent

subsections. Figure 4.1 shows the proposed uncertainty-aware deep learning framework

suDNN detailed below.
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4.2.2 Uncertainty-aware Physics-based Loss Function

To solve the multidimensional regression problem stated above, oftentimes, while

modeling the loss function for the DNN, the residual between the output of the network ŷ

and the reference image uSD is assumed to be an isotropic standard Gaussian distribution

with zero mean and a single fixed standard deviation across all voxels. This assumption

does not account for heteroscedasticity of the per-voxel residuals between the predicted

PET image and the reference SD-PET image. We show that modeling the per-voxel het-

eroscedasticity in the residual images can potentially lead to the robustness of the learned

model to newly acquired OOD PET test data. Thus, for the n-th subject, we model the

output of suDNN as a pair consisting of (i) the predicted PET image ŷn and (ii) the image

ĉn modeling the per-voxel variances in the residuals between the predicted image and the

reference SD-PET image. We propose a DNN that is based on a U-Net architecture(?)

with a dropout model (?) in its bottleneck layer, to solve the regression problem. The

proposed suDNN differs from the standard U-Net by employing: (i) a 2.5D-style (similar

to the strategy in (?)) input with multimodal images as multi-channel input and (ii) dual-

channel output, where one channel estimates the mean image ŷn and the other channel

estimates the variance image ĉn, inspired by (?). That is, we predict both ŷn and ĉn using

a DNN with split-head producing two images as output (one image per head) as shown in

Figure 4.1. Let the proposed DNN be represented by

Ψ(·; Θ) := (ψy(·; Θ), ψc(·; Θ)). (4.1)

Therefore, for a given multimodal input xn, the outputs of the DNN are given by ŷn :=

ψy(xn; Θ) and ĉn := ψc(xn; Θ).

For improved robustness to OOD acquisition, within the loss function of the DNN,

we propose to enforce similarity in the (i) spatial image domain and (ii) sinogram domain

modeling the PET detector geometry. Further, we model the per-voxel variances in the

image space that consequently models the associated uncertainty in the sinogram space

as well. Let the uncertainty-aware loss in the image space be LU and the uncertainty-

aware PET-physics-based loss in the sinogram space be LP. The overall loss function

of the DNN LPU is a weighted combination of the two losses LU and LP, described

subsequently.

Uncertainty-aware Image Space Loss LU. Let [̂yn]i represent the i-th voxel in the

image ŷn, and let [̂cn]i represent the i-th voxel in the image ĉn. We model a Gaussian

likelihood in the image space with a per-voxel mean ŷn and per-voxel variance ĉn. Thus,

after taking the negative log-likelihood of the Gaussian probability distribution function
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and ignoring the constant terms the image space loss is

LU(Θ) :=
N∑

n=1

I∑
i=1

([̂yn]i − [uSD
n ]i)2

[̂cn]i + ε
+ log([̂cn]i + ε), (4.2)

where ε is a small positive real-valued constant for numerical stability. Equation 4.2

consists of two components: (i) the residual mean-squared error term ([̂yn]i − [uSD
n ]i)2

scaled by the variance [̂cn]i, and (ii) the penalty term log([̂cn]i + ε) corresponding to the

per-voxel variance [̂cn]i which penalizes large values of [̂cn]i. We enforce positivity on the

elements of ŷn using ReLU activation function in the final layer of the head modeling ψy.

Unlike ψy, the output values from the head ψc are unconstrained . Thus, positivity of ĉn

is implicitly enforced by employing an exponentiation layer as the final layer of ψc. The

two terms in Equation 4.2 prevent the predicted per-voxel variance [̂cn]i from tending to

zero or infinity. As in ?, we do not require explicit supervision for learning ĉn. Rather, it

is learned implicitly using the loss in Equation 4.2.

Uncertainty-aware Sinogram Space Loss LP. To model the loss in the sinogram

space, let operator H model the PET forward transformation (linear operator to produce

sinogram) associated with the PET image acquisition for each transaxial slice. Operator

H takes a 2D image with I voxels and produces a sinogram with L discrete elements.

Given that the per-voxel residual (̂yn − uSD
n ) in the image space is modeled using a Gaus-

sian distribution, the per-element residual in the sinogram space also follows a Gaussian

distribution. Similarly, given that ĉn models the heteroscedasticity of the residuals across

the voxels in the image space, we model the per-element variances in the sinogram-space

residual (H ŷn − HuSD
n ) by the image Hcn. For simplicity, we exclude modeling the co-

variances between the elements in the sinogram space resulting from the dependencies

introduced by the sinogram operatorH . Thus, we propose a physics-based loss term

LP(Θ) :=
N∑

n=1

L∑
l=1

([H ŷn]l − [HuSD
n ]l)2

[H ĉn]l + τ
+ log([H ĉn]l + τ), (4.3)

where τ is a small positive real-valued constant for numerical stability.

Overall loss function LPU. We propose to optimize the set of parameters Θ of

our DNN by minimizing the overall loss function consisting of uncertainty-aware loss

functions in both the image-space and the sinogram-space given by

LPU := LU + λLP, (4.4)

where λ is a positive real-valued free parameter that controls the weight of the phyics-

based loss LP. In this work, we tune the value of λ using a validation set.
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4.2.3 DNN Architecture and Learning Strategy

We employ a U-net architecture comprising an encoder and a decoder that share a

symmetric structure (with skip connections across encoder and decoder) each consisting

of 3 convolutional blocks that downsample/upsample the feature-maps by a factor of 2

using max-pooling. The initial layer at the beginning of the encoder uses a 1× 1 convolu-

tional layer to fuse the multimodal LD-PET and MRI images to produce a single-channel

image. We use standard batch-normalization (?) and ReLU activation function after every

convolutional layer. The bottleneck layer is followed by a dropout layer for regulariza-

tion (?). The output of the penultimate convolutional block in the decoder is fed into two

identical convolutional blocks, one for predicting the mean (̂yn) and one for predicting

the variance (̂cn). The proposed network was trained using Adam (?) optimizer with `2

regularization on the weights, for 500 epochs, with an initial learning rate γ = 3e−5. We

employ a cosine annealing strategy for scheduling γ. We employ a dropout-probability

value of 1e−3 during training as well as inference.

4.3 Experiments and Results

This section describes the in vivo data acquired for this work, followed by the description

of the baseline methods used for comparison. Subsequently, we describe the experiments

used to evaluate the robustness of all the methods to OOD degradations in the input data.

Finally, we perform an ablation study to analyze the contribution of each component

(multimodal input, individual loss terms) in the proposed suDNN framework.

4.3.1 In Vivo Data

We collected PET and MRI data from a cohort of 28 healthy individuals on a 3T

Siemens Biograph mMR system. The average dose administered for each subject was

≈230 MBq. The MRI contrast images, i.e., ultra-short echo time (UTE), T1 MPRAGE,

and T2-SPC, were acquired during the PET scan. The SD-PET image was reconstructed

using counts obtained over a duration of 30 minutes, starting 55 minutes after the ad-

ministration of the tracer. The total number of useful counts over the 30-minute duration

used for reconstruction of the SD-PET image was around 600 × 106. To simulate the

LD-PET data, we randomly selected around 3.4 × 106 counts, spread uniformly over the

scan duration, resulting in a DRF of around 180×. For attenuation correction, pseudo-

CT maps generated using the UTE images (?) were employed. Both the SD-PET and

LD-PET images were reconstructed using proprietary software using ordinary-Poisson

ordered-subset expectation-maximization (OP-OSEM) algorithm with 3 iterations and 21
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subsets, along with point spread function (PSF) modeling and a post-reconstruction Gaus-

sian smoothing. The software produced reconstructed PET images of voxel sizes 2.09 ×

2.09 × 2.03 mm3. The voxel size for the reconstructed MRI images was 1 mm3 isotropic.

For each subject, the LD-PET, SD-PET and the T2w MRI images were registered (using

rigid spatial deformation) and resampled to the T1w MRI image space using ANTS (?).

For the task of predicting SD-PET images from the input set of LD-PET, T1w MRI, and

T2w MRI images, we randomly selected 20 subjects for training, 2 subjects for validation,

and the remaining for testing. For each subject, we obtained 100 transaxial slices (around

70 slices within the cerebrum and around 30 slices in the cerebellum).

4.3.2 Baseline-methods for Comparison

We evaluate the performance of the proposed suDNN in comparison to recently

proposed five other DNN-based methods for SD-PET prediction. For a fair comparison,

we incorporate a 2.5D-style training scheme for all other methods (similar to ours). The

baseline methods, say M1 to M5, are as follows.

• M1: Conditional DIP. M1 corresponds to an unsupervised method based on condi-

tional DIP as in (?). As the method is unsupervised, it does not rely on any training

data. As mentioned earlier, the input to the DNN is the structural MRI image. For

this method, we use the validation set to tune the optimal number of epochs, to

maximize the SSIM between the predicted PET image and the reference SD-PET

image.

• M2: Unimodal ResNet with perceptual loss. M2 is similar to the framework

proposed in (?). This method uses the PET image (unimodal) as input, with a stan-

dard ResNet architecture, and employs a perceptual loss that is based on features

obtained from a VGG network trained on natural images.

• M3 and M4: 2.5D unimodal and multimodal U-net, respectively. Both the meth-

ods M3 and M4 use the architecture described in (?). While M4 uses PET and

multi-contrast MRI images as multi-channel input (?), M3 takes only the PET im-

ages as input (unimodal) (?). Both M3 and M4 estimate the residuals between the

input LD-PET and the reference SD-PET image.

• M5: Multi-channel GAN with fused input. M5 is similar to the GAN-based net-

work described in (?). The multi-channel input consists of PET and multi-contrast

MRI images. Due to the non-availability of diffusion-weighted MRI images for our

dataset, we use only the T1w and T2w MRI images for training. This framework
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initially models a learnable 1×1 convolution layer to produce a fused image that

becomes the input to the generator of the GAN.

While methods M3–M5 were proposed to achieve DRFs in the range 4–200, M1 and

M2 do not focus on dose reduction, but on denoising instead. For quantitative evaluation

of predicted SD-PET images across all methods, we use (i) peak signal to noise ratio

(PSNR) and (ii) structural similarity index (SSIM) (?) with respect to the reference SD-

PET images.

4.3.3 Simulation of OOD PET data

For training all the DNNs discussed in this work, we use the LD-PET images. How-

ever for evaluation of the robustness of all the DNNs in dealing with OOD PET acquisi-

tion, we generate two additional sets of test data at increasing degradation levels in the

input LD-PET data, namely very low-dose (vLD-PET) and ultra-low-dose (uLD-PET).

We generate the OOD test set consisting of vLD-PET and uLD-PET as follows. We ret-

rospectively (i) forward-projected the LD-PET images using the PET forward operator

(to produce)H , (ii) generated two differently-scaled instances of the Poisson distribution

using the generated sinogram from (i) as the mean, and (iii) performed OSEM reconstruc-

tion to get the input vLD-PET and uLD-PET images. The scaling factors for the generated

OOD input LD-PET images are 0.1 and 0.01 corresponding to vLD-PET and uLD-PET,

respectively. After OSEM reconstruction, the PSNR values, averaged across the test set,

between the reference SD-PET image and the set of input images LD-PET, vLD-PET, and

uLD-PET were 21, 17, and 13, respectively.

4.3.4 Results: Qualitative and Quantitative

Figure 4.2 shows the predicted images from different methods across three different

variations of the LD-PET data, for a representative subject. The input PET images LD-

PET, vLD-PET, and uLD-PET are shown in Figures 4.2 (a2), (b2), and (d2), respectively,

with Figures 4.2 (a1), (b1), and (d1) showing the corresponding sinograms. The DIP-

based M1 (Figure 4.2 (a3), (b3), (d3)) denoises the input LD-PET image. However, as

expected, it performs poorly in predicting the FDG uptake in the reference SD-PET im-

age. Unlike M1, the ResNet-based M2 (Figure 4.2 (a4), (b4), (d4)) is designed to predict

the activity in the reference SD-PET image. However, even with the LD-PET input, it is

unable to produce images with accurate textural features. M2 relies on a standard ResNet

architecture that employs short-range skip connections compared to longer-range, hier-

archically designed skip connections in the U-net architecture. Methods M3 (Figure 4.2
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Figure 4.2: Results for input PET images and sinograms for low-dose (LD) PET (row
a), very LD-PET (rows b and c), and ultra LD-PET (rows d and e) respectively. Pan-

els (a1-a2) show the input LD-PET, (b1-b2) vLD-PET, and (d1-d2) uLD-PET sinograms

and images; panels (a3-a8) the predicted images for all methods for LD-PET; panels (b3-

b8) and (c1-c6) the predicted images and corresponding residual images (with respect to

SD-PET) for vLD-PET; panels (d3-d8) and (e1-e6) the predicted images and correspond-

ing residual images for uLD-PET as input; panels (a9-b9) and (d9) the sinograms of the

predicted images (panels (a8, b8, and d8)); and panels (c7) and (e7) show the residuals of

the predicted sinograms in comparison to the reference SD-PET sinogram.
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Figure 4.3: Quantitative evaluation of the methods for three different levels of degra-
dation of the input PET data: LD-PET, vLD-PET, and uLD-PET. (a) PSNR and (b)

SSIM values for the predicted PET images on 100 brain slices for each test set.

(a5), (b5) (d5)) and M4 (Figure 4.2 (a6), (b6), (d6)), which rely on predicting the residual

images as output, produce realistic SD-PET images when using LD-PET as the input.

However, when using vLD-PET and uLD-PET as inputs, both M3 and M4 show some

residual noise in the images despite reasonably recovering the contrast and texture similar

to the SD-PET image. M4 improves over the loss in contrast shown by M3, emphasizing

the contribution of the multimodal MRI input. M5, which is GAN-based, shows supe-

rior performance with LD-PET (Figure 4.2 (a7)), showing little degradation (in terms of

contrast and certain structures like the sulci and gyri) with vLD-PET (Figure 4.2 (b7)),
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and does not predict the desired texture and contrast when using uLD-PET as input (Fig-

ure 4.2 (d7)). On the other hand, our suDNN method shows superior prediction across

varying levels of input (Figure 4.2 (a8),(b8), and (d8)). Our method shows more realistic

texture and contrast, and reduced magnitude in residual images (Figure 4.2 (c6) and (e6)),

in comparison to other baselines. For our suDNN, the sinograms of the predicted images

(Figures 4.2 (a9), (b9), and (d9)) demonstrate little difference in appearance in compar-

Figure 4.4: Visual inspection of the zoomed ROIs of the input, reference, and pre-
dicted images for the case of uLD-PET. (a1)–(a3): input T1w MRI, T2w MRI, and

uLD-PET image images. (a4): reference SD-PET image. (c1)–(c4): predicted images

from the methods M3–M5 and the proposed suDNN method. (d1)–(d4) corresponding

zoomed regions.
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ison to each other which is in agreement with the image quality of the predicted images

obtained with different low-dose inputs. The residual images between the sinograms of

the predicted images and that of the reference image SD-PET corresponding to the inputs

vLD-PET and uLD-PET are shown in Figure 4.2 (c7) and (d7).

Figures 4.3 (a) and (b) show quantitative plots with PSNR and SSIM values ob-

tained for 100 slices of every subject from the test set for different PET inputs: LD-PET,

vLD-PET, and uLD-PET. As the input quality degrades, all methods show a drop in per-

formance. Nevertheless, our method shows the most graceful degradation (≈ 3.5 dB with

uLD-PET). On the other hand, the other methods show a severe loss in their performance

with uLD-PET (e.g., ≈ 10 dB (M5), 7 dB (M4), and 11 (M3)). A similar trend can

be observed in the SSIM plot (Figures 4.3 (b)). While our method shows degradation

of ≈ 0.02 with uLD-PET as input with respect to LD-PET as the input, other methods

show a severe decrease in SSIM values with uLD-PET (≈ 0.13 (M5), 0.04 (M4), and 0.1

(M3)). Thus, with LD-PET as input, the performance of suDNN is comparable to M3–

M5; nevertheless, as the input degrades, our method significantly outperforms all other

methods demonstrating substantially higher robustness/insensitivity to OOD data. We

conducted paired t-test for SSIM and PSNR values for all methods for the three low-dose

inputs. The improvement using our suDNN method was found to be statistically signif-

icant (p � 0.001) in comparison to all other methods (M1–M5) at all inputs LD-PET,

vLD-PET, and uLD-PET.

For the results corresponding to uLD-PET input in Figure 4.2, we carefully analyze

the predicted images along with the input and the reference images. The zoomed region of

interest (ROI) includes the caudate, putamen, and thalamus. The caudate nucleus shows

hyperintensity in the SD-PET image (highlighted using the white arrow in Figure 4.4

(a4)) which is not the case in the uLD-PET image (Figure 4.4 (a3), (b3)). The unimodal

DNN M3 (Figure 4.4 (c1), (d1)) severely underestimates the uptake in the caudate and

the thalamus regions. Although our suDNN (Figure 4.4 (c4), (d4)) provides the best

estimate of the predicted images, other multimodal DNN methods M4, M5 (Figure 4.4

(c2), (d2) and (c3), (d3)) do show some recovery of the hyperintensity in the caudate

and thalamus regions compared to M3. This demonstrates the importance of including

the MRI structural images (Figure 4.4 (a1), (b1) and (a2), (b2)) that distinctly show the

subcortical nuclei in the cerebrum.

4.3.5 Ablation Study

We perform an ablation study to analyze the contribution from different components

in the proposed DNN. To this end, consistent with the prior works in this domain, we
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found that using (i) 2.5D input-based training scheme, and (ii) multimodal information as

multi-channel input to the DNN, provided substantially improved results in comparison to

using 2D-only training and using unimodal input (without MRI information). Moreover,

as evident from the results in Figures 4.2–4.4, methods that rely on predicting the residual

between the LD-PET and the SD-PET images, are not robust to OOD acquisitions.

Hence, to evaluate the importance of multiple components in the proposed suDNN

framework, we evaluate four DNNs Ablation-DNN1–Ablation-DNN4, as part of the ab-

lation study, described here.

• Ablation-DNN1: 2.5D Unimodal U-net. We define a basic DNN which includes

a U-net architecture similar to (?) with a unimodal input but with a modified out-

put such that it predicts the PET image instead of the residual between the input

LD-PET and the reference SD-PET image (as in M3). Ablation-DNN1 is trained

using the 2.5D scheme, penalizing the mean-squared error in the image space, say

LI(̂y, uSD), between the predicted and the reference images.

• Ablation-DNN2: 2.5D Multimodal U-net. We modify the DNN Ablation-DNN1

by replacing the unimodal input with a multimodal input including multi-contrast

MRI images, retaining the same loss function as Ablation-DNN1.

• Ablation-DNN3: 2.5D Multimodal U-net with manifold loss. In addition to

the loss LI (as in Ablation-DNN2), this DNN includes a learned manifold-based

loss LE(̂y, uSD) (similar to the perceptual loss in (?) or the manifold-based loss

in (?)); thus, the total loss is LI + λELE, where λE ∈ R
+ controls the weight

of the loss term LE. The learned-manifold based loss relies on learning an au-

toencoder trained using the set of SD-PET images. The loss function LE penal-

izes the differences between the encodings obtained by applying the encoder (from

learned autoencoder) to the predicted PET and reference SD-PET images. That is,

LE(̂y, uSD; ΦE) := ‖ΦE(̂y) − ΦE(uSD)‖2F , where ‖ · ‖F represents the Frobenius tensor

norm.

• Ablation-DNN4: 2.5D Multimodal U-net with physics-based loss. Instead of the

the learned-manifold loss in Ablation-DNN3 , Ablation-DNN4 uses a sinogram-

space loss LS given as LS := ‖H ŷ − H ûSD‖2F . Thus, the total loss for Ablation-

DNN4 is LI + λSLS, where λS ∈ R
+ controls the strength of LS.

The free parameters (λE, λS) were automatically tuned to (2e−3, 3e−3) using the val-

idation set.
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Figure 4.5: Ablation Study: Quantitative evaluation for the ablation study at 3 differ-
ent levels of degradation of the input PET data: LD-PET, vLD-PET, and uLD-PET.
(a) PSNR and (b) SSIM values for predicted SD-PET images, on 100 brain slices in every

test set.
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Figure 4.5 shows quantitative evaluation of the DNNs in the ablation study:

Ablation-DNN1–Ablation-DNN4 and suDNN, for the input PET images LD-PET, vLD-

PET, and uLD-PET. Similar to the results in Figure 4.3, DNNs with a multimodal input

improve substantially over DNNs with unimodal input (suDNN and Ablation-DNN2–

Ablation-DNN4 better than Ablation-DNN1). Inclusion of the learned manifold-based

loss LE(·), in addition to the image-space loss LI(·), for Ablation-DNN3 provides im-

proved robustness over Ablation-DNN2 and Ablation-DNN1. Further, Ablation-DNN4,

that includes a physics-based loss instead of the learned manifold-based loss in Ablation-

DNN3, shows significant improvement over Ablation-DNN3 with vLD-PET and uLD-

PET. Finally, the proposed suDNN that models uncertainty estimation in both image and

Figure 4.6: Results of DNNs in the ablation study with input PET images: LD-PET,
vLD-PET, uLD-PET. Variations in input PET (a1)–(a3): LD-PET, vLD-PET, and uLD-

PET respectively. Predicted images using varying levels of PET input from: (b1)–(b3):
suDNN; (c1)–(c3): Ablation-DNN4; (d1)–(d3): Ablation-DNN3.
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sinogram space, provides comparable performance to Ablation-DNN4 with the added ad-

vantage of providing the uncertainty maps detailed in Section 4.3.6.

Figure 4.6 shows the predicted PET images from three best-performing (based on

Figure 4.5) DNNs in the ablation study: Ablation-DNN3, Ablation-DNN4, and suDNN,

for the input PET images LD-PET, vLD-PET, uLD-PET. For the LD-PET input, although

the predicted SD-PET image from Ablation-DNN3 (Figure 4.6 (d1)) is closer to that of

suDNN and Ablation-DNN4 (Figure 4.6 (b1) and (c1)), Ablation-DNN3 shows substan-

tial degradation with uLD-PET as input (Figure 4.6 (d3)). Clearly, with vLD-PET and

uLD-PET as input, the predicted PET images from Ablation-DNN4 (Figure 4.6 (c2) and

(c3)) show improved recovery of contrast and texture compared to the corresponding im-

ages from Ablation-DNN3(Figure 4.6 (d3) and (d4)). This emphasizes the contribution of

the sinogram-based loss function in comparison to the encoder-based loss LE(̂y, uSD; ΦE)

for Ablation-DNN3. As the input LD-image degrades (to vLDPET and uLD-PET), we

see a degradation of the predicted images from all the DNNs. However, all the three

DNNs (Ablation-DNN3, Ablation-DNN4, and suDNN) are able to recover the overall

structural regularity even with uLD-PET as input. The predicted images for suDNN and

Ablation-DNN4 for the uLD-PET input are comparable (Figure 4.6 (b3) and (c3)). This

reinstates that modeling the uncertainty does not affect the predicted PET image quality.

Figure 4.7: Utility of Uncertainty Maps. Columns 1–3: uLD-PET as input and
columns 4–6: LD-PET as input. (a1) and (a4): Input images uLD-PET and LD-PET.

(a2) and (a5): Predicted PET images ŷ. (a3) and (a6): Predicted per-voxel standard de-

viation image
√

ĉ. (b1) and (b4): Absolute residual images r = |uSD − ŷ|. Quantification

maps (b2), (b5): Q1(σ̂; r, δR) and (b3), (b6): Q2(σ̂; δU).
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The proposed suDNN provides additional information in the form of uncertainty maps as

detailed in the following section.

4.3.6 Utility of Uncertainty Maps

We now analyze the uncertainty maps produced by the proposed suDNN with the

inputs uLD-PET and LD-PET, and how to extract useful information from the same. For

the input PET images uLD-PET and LD-PET (Figures 4.7 (a1) and (a4)), the network

produces the predicted images (Figures 4.7 (a2) and (a5) respectively), along with the per-

voxel variances ĉ. For improved visualization, we show the standard deviation σ̂ =
√

ĉ

(per-voxel square-root) maps (Figures 4.7 (a3) and (a6)). We define two global thresholds,

one for the predicted uncertainty image δU and another for the computed residual image

δR, to identify pixels with high residuals and high uncertainty, respectively. That is, while

pixel locations with absolute residual values r ≥ δR indicate sub-optimal reconstruction,

pixel locations with σ̂ ≥ δU indicate predictions with high uncertainty. Subsequently,

we obtain two binary masks BM1 and BM2 by applying the threshold values δR and δU

on r and σ̂, respectively. Through empirical analysis, we fix the values for the global

thresholds (δR, δU) to be (0.25, 0.03), respectively. Finally, to improve the utility of the

uncertainty maps, we generate two quantification maps: (i) Q1(σ̂; r, δR) (Figures 4.7 (b2)

and (b5)), obtained by applying the binary mask, BM1, on σ̂, and (ii) Q2(σ̂; δU) (Fig-

ures 4.7 (b2) and (b5)), obtained by applying the binary mask, BM2, on σ̂. As expected,

the map Q1 with the LD-PET input has substantially fewer non-zero values, compared to

the map Q1 obtained with uLD-PET as input. A similar trend is observed for the map Q2.

That is, as expected, prediction by the DNN with uLD-PET as input shows higher uncer-

tainty compared to the prediction with LD-PET as input. Importantly, the high-intensity

values in the map Q1 agree with the high-intensity values in the map Q2; this implies

that regions with high residual values correspond to regions with high uncertainty in the

predicted images. In this way, the map Q2 (available at inference), might act as a proxy

for the prediction error while inferring a PET reconstruction from test data.

4.4 Discussion

This work presents a novel sinogram- and uncertainty- aware DNN framework for the

prediction of SD-PET images from ultra LD-PET images in simultaneous PET-MRI sys-

tems. Our imaging-physics-based modeling allows for accurate prediction of SD-PET

images from LD-PET images with 180× dose reduction. Further, the proposed DNN
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demonstrated improved robustness to newer OOD PET acquisitions (vLD-PET and uLD-

PET images). The modeling of per-voxel heteroscedasticity within the loss-function of

the DNN enabled uncertainty quantification in the predicted images.

By comparing the performance of our proposed DNN across state-of-the-art meth-

ods (Figures 4.2 and 4.3) we demonstrated the robustness to practical (OOD) degrada-

tions in the data. The DNN models relying on multimodal information (M4, M5, and

suDNN) synthesize SD-PET images of comparable image quality with LD-PET as input.

However, methods that rely on predicting the residual between the input LD-PET and the

reference SD-PET images are not robust to OOD data (vLD-PET and uLD-PET as in-

put). Although the multimodal GAN-based method (M5) shows substantial improvement

over the unimodal (M3) and the multimodal (M4) residual-predicting U-net DNNs with

vLD-PET as input, it underestimates the SD-PET contrast with uLD-PET.

The proposed suDNN framework is the first work, to the best of our knowledge, to

include a PET physics-based loss function for the enhancement of uLD-PET images. This

is analogous to the works in undersampled MRI reconstruction where the utility of includ-

ing penalties in the k- space is known to improve the performance of the DNN(?). The

ablation study (Figures 4.5 and 4.6) showed that modeling a transform-domain loss func-

tion like the encoder loss (Ablation-DNN3) or the physics-based loss function (Ablation-

DNN4 and suDNN) provides robustness to OOD data. However, the sinogram-space

loss (Ablation-DNN4 and suDNN) provided predicted images with improved accuracy in

comparison to the manifold loss in Ablation-DNN3.

For all the DNNs considered in this work, the use of multi-contrast MRI images as

multi-channel input provides a substantial improvement over unimodal PET-only inputs

(Figure 4.4) and agrees with other works for this task (??). The qualitative comparison

of predicted SD-PET images in Figure 4.6 suggests that DNNs with multimodal input

leverages the anatomical information from the input MRI images. To understand the

contribution of the multimodal inputs in comparison to the unimodal (PET-only) inputs,

we analyze the feature maps obtained from initial layers (second) of the DNN, trained

with unimodal and multimodal inputs, while maintaining the same network architecture.

Figure 4.8 shows four feature maps (out of 64) from both the networks. The feature

maps obtained using the multimodal inputs show anatomical features, either missing or

distorted in the unimodal case. Additionally, we observed that networks that rely on

predicting the residual can suffer from sub-optimal performance when the input image is

degraded and not very similar to the images in the training set.

The proposed framework predicts SD-PET images with better accuracy and quanti-

fies the uncertainty in the predictions that can aid clinical decision making. We demon-
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strated the potential utility of the generated uncertainty maps (Figure 4.7) by defining

global thresholds in terms of high residual and uncertainty values obtained in the ex-

periments. Subsequent works should involve defining these threshold values in terms of

clinically interpretable values, e.g., standardized uptake values (SUV).

The limitations of this study are as follows. First, the network uses a 2.5D-style

input instead of training on actual 3D images. In the future, we plan to accommodate

training using 3D images, which requires handling of a 3D system matrix, demanding

high computational power. Secondly, although the quantitative improvements are shown

using standard metrics such as PSNR and SSIM, for clinical validation, we plan to in-

corporate perceptual scores provided by radiologists as in (??). Thirdly, in the current

form, the estimated SD-PET images are not representative of quantitative values such as

SUV. The predicted images from our suDNN framework for the three inputs LD-PET,

vLD-PET, and uLD-PET are not entirely different from each other in terms of structure,

contrast and other features in the images. The estimated structure and regularity in the

predicted SD-PET images even with uLD-PET as input can be attributed to the fact that

the learned model relies heavily on the input MRI images for structural regularity than

the input PET images (evident in Figure 4.8). Future work calls for the incorporation of

improved handling of the LD-PET and SD-PET images to produce images that reflect the

deviation in the number of counts in the input. For example, reporting relative SUV maps

such as the change in SUV with respect to the SUV in a reference anatomical region.

Figure 4.8: Feature maps obtained from initial layers of the proposed network with
unimodal (PET) and multimodal inputs (PET and multi-contrast MRI). Six feature

maps are shown out of 64 feature maps obtained at the output of the second layer of the

DNN.
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Finally, while the size of the dataset used in this work is larger than that of other works

considered here, we plan to evaluate the proposed method on multiple cohorts, including

data from individuals with healthy and pathological conditions.

In summary, using a DNN framework that is informed by the underlying imaging

physics and that models uncertainty, a robust mapping from ultra-low-dose PET images

to standard-dose PET images was achieved. The proposed DNN demonstrated robustness

to unseen out-of-distribution PET acquisitions and provided an estimate of the underlying

uncertainty of the prediction which facilitates a new paradigm of risk assessment in the

application of DNNs to low dose PET image reconstruction. The method has the potential

to dramatically improve the utility of ultra-low-dose PET imaging in diagnostic imaging,

therapeutic monitoring, and in drug development research in oncology, neurology, and

cardiology. Physics-inspired DNN-based reconstruction of ultra-low-dose PET scans has

the potential to substantially expand the use of PET in longitudinal studies and imaging

of radiation-sensitive populations including children and pregnant women.



Chapter 5

Incorporation of anatomical MRI
knowledge for enhanced mapping of
brain metabolism using functional PET

5.1 Introduction

The previous two chapters (Chapters 3 and 4) described novel image quality improve-

ment methods developed in the context of static PET imaging. We now shift our focus

to dynamic PET imaging for brain functional analysis. Chapter 2 briefly indicated the

continuous-infusion-based fPET technique for dynamic brain mapping and the associ-

ated problem therein. Typically, functional analysis for PET and MRI involves standard

filtering using Gaussian filtering followed by the application of ICA to identify brain ac-

tivations related to resting-state or task-based activations. However, under extremely low

SNR, Gaussian filtering or other edge-preserving denoising techniques can produce sub-

optimal denoised images consequently affecting the estimates provided by ICA. Hence,

methods leveraging anatomical information from MRI are of interest.

This chapter describes an application of improved image quality of dynamic PET

images in the context of fPET imaging. For this study, we hypothesized that accurate

identification of brain metabolic activations could be obtained by filtering the fPET im-

ages using knowledge from the anatomical MRI image. We propose a modified version

of the asymmetrical Bowsher prior that was proposed in ? within a Bayesian image de-

noising context. The modified Bowsher prior is a weighted quadratic MRF prior with the

PET image modeled as an MRF and the weights of the quadratic penalty obtained from

the MRI image. The proposed modification corresponds to selecting the weights from

the static MRI image in a model that uses patch-based similarity in the MRI image rather

76
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than a similarity based on voxel-intensity alone. The proposed anatomical prior improves

the identification of independent signal components from the fPET data by improving the

PET SNR and reducing partial volume errors, as demonstrated in prior works (???). As

a consequence of improved SNR in the fPET images, this work demonstrates improved

identification of brain activation in response to external stimulation for both two-fold and

three-fold reductions in the duration of the experiment duration to acquire the fPET data.

The formulation of the prior model in this work differs from the one proposed in ?? in that

the current model uses a smoothly-decaying function that in turn depends on the neigh-

borhood voxel-locations in the static MRI image. Additionally, we incorporate patch-

level differences (as opposed to voxel-level differences) to estimate the weights within the

neighborhood of a voxel. The method is henceforth referred to as MRI-MRF prior and

was validated using both simulated and in vivo visual task fPET datasets. The accuracy

of the method was compared with conventional smoothing methods at both the subject

and group level ICA, and the in vivo fPET dynamic data were downsampled to verify the

robustness of the proposed method in response to reduced task stimulation durations.

5.2 Method

Let {ut
o}

T
t=1 represent the uncorrupted (unobserved) dynamic sequence comprising T fPET

images, each containing N voxels. Let {ut}Tt=1 represent the corresponding observed low-

quality dynamic sequence comprising T fPET images. In this work, we consider the

sequence {ut}Tt=1 as that output by the PET-MRI scanner using conventional model-based

iterative methods such as maximum likelihood expectation-maximization (MLEM) (?).

Typically, the PET detector PSF models cross-crystal effects during the gamma-ray co-

incidence event, which is leveraged by the scanner during PET image reconstruction re-

sulting in reduced partial volume errors. However, in comparison to MRI, the PET res-

olution is still much lower due to the fundamental limitation in the current PET detector

technology. Therefore, in this work, we propose to denoise and improve the anatomical

accuracy of the reconstructed PET images by relying on the MRI anatomical information

modeled as a weighted MRF prior detailed below. The proposed method serves as a post-

reconstruction image enhancement procedure that removes noise and reduces the partial

volume errors by removing edge-artifacts.

Let v represent the fixed MRI image co-registered with the PET image sequence, i.e.,

each individual PET image ut is spatially aligned to the fixed MRI image v. We model the

PET images ut as an MRF consisting of a neighborhood system N := {Ni}
I
i=1 where Ni

denotes the neighbors of voxel i. In the MRF model, we consider square-shaped neigh-
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borhoods with the square width corresponding/equivalent to L mm. We model the prior

distribution on ut
o given the fixed MRI image v, as an MRF P(ut

o|v). Because our goal is to

perform image enhancement of the PET image, we consider a Gaussian likelihood model

that penalizes the squared difference of the intensities in the uncorrupted (unobserved)

image ut
o and the corrupted observed image ut. Thus, given the sequence of acquired and

reconstructed fPET images, {ut}Tt=1, and the fixed MRI image v of the same subject, we

formulate the restoration of the fPET image sequence {ut
o}

T
t=1 as maximum-a-posteriori

(MAP) estimation:

arg max
ut

o≥0
P(ut

o|u
t, v) = arg max

ut
o≥0

P(ut|ut
o)P(ut

o|v) (5.1)

Thus, the negative-log posterior with the mean-squared error data fidelity term and

the MRF prior becomes

ût
0 = arg min

ut
o≥0
‖ut − ut

0‖
2
2 + αR(ut

0|v) (5.2)

Here R(·) acts the MRI-guided MRF (MRI-MRF) regularization term, which incor-

porates the anatomical information from MRI image, v. R(·) is the negative logarithm of

the probability distribution which is the Gibbs energy associated with the MRF in terms

of the weighted squared difference between the voxel intensities within the neighborhood,

where the weights are obtained from the static MRI image v.The parameter α determines

the strength of the regularization R(·). The formulation in Equation 5.2 is generic and

allows the incorporation of arbitrary prior models that enforce a certain type of regularity,

e.g., piecewise smoothness, on the fPET images. In this work, we model R(·) as a modified

version of the asymmetrical Bowsher prior presented by ?. Specifically, R(·) is modelled

as a weighted quadratic MRF function defined as, R(u|v) =
∑

i∈I sum j∈Iwi j(ui − u j)2 . Here

the weights wi j are computed based on the intensity values from the co-registered MRI

image, v, as

wi j =
exp (−(‖Ni(v) − N j(v)‖1)/(2σ2

w))
(
∑

j exp (−(‖Ni(v) − N j(v)‖1)/(2σ2
w)))

(5.3)

where the operator Ni(·) extracts a vectorized isotropic 3D patch of volume L3 mm3 cen-

tered around voxel i, and the parameterσw determines the spatial pattern of weights within

the patch in the neighborhood of voxel i. The parameter σw is indirectly dependent on the

location as the neighborhood varies across different voxel locations i in the MRI image.

The strategy of determining the weights wi j in the MRF-based regularization term by

relying on patch-difference norms have been used within the literature on patch-based

denoising methods, first proposed on natural images in the works of ?? and on MRI

images in the works of ???. While a high value of σw leads to weights that are similar
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for all the neighboring voxels, a low value of σw assigns higher weights to a few selected

voxels in the neighborhood. The latter scenario leads to an extension of the strategy in

the asymmetric Bowsher prior (?) that (i) enforces neighborhood weights to be binary (1

or 0) and (ii) designs weights only based on voxel-intensity differences (instead of patch

differences). Our proposed strategy of using patch-based differences can provide addi-

tional robustness to noise, artifacts, and minor misalignments between the MRI and PET

images while leading to better structure preservation, in ways that are similar to those

studied in general image denoising (?). While iterative denoising algorithms, as in ??,

offer algorithms for data-driven tuning of the parameter σw to improve performance, in

the application in this manuscript, where the weights only need to be precomputed once

(for a particular subject, due to the MRI image v being static), we tune the parameter σw

based on validation on simulated data (Section 5.3.1). The Bayesian optimization prob-

lem with the MRI-MRF prior in Equation 5.2 was solved using the limited memory BFGS

method (L-BFGS) (?), with positivity constraints.

To perform spatial ICA, we construct a spatiotemporal data matrix, Y , using {ut}Tt=1,

such that the dimension of Y is T ×N. ICA models Y as a linear combination of the under-

lying independent components: Y = AS , where S contains the independent components,

and A is the mixing matrix. In the context of PET imaging, the measured PET data is

affected by the blurring matrix, H (??), and the ICA model becomes

Y0H = AS 0H (5.4)

where Y0 represents the spatiotemporal matrix constructed from the true PET signals, and

S 0 models the true underlying independent components of Y0. The matrix, H, acting on

the spatial dimension, models the partial volume errors in PET measurements, and hence,

the resultant independent components though the mixing operation, A.

The goal of fPET data analysis is to identify S 0 from Equation 5.4. Image denoising

in the spatial domain is an important pre-processing step prior to application of the ICA

algorithm. The characteristics of an ideal filter for estimation of the source components,

S 0, would be to recover the signal without compromising the independence of the true

underlying components. Typically, a Gaussian smoothing filter with a suitable width,

specified by its full width at half maximum (FWHM) is used to reduce spatial noise, for

example, during fMRI data analysis. However, performing a Gaussian smoothing can

introduce additional bias in fPET images and the corresponding independent components

due to worsening of the partial volume errors (??). Hence, this work proposes an MRI

guided filtering scheme that can (i) perform denoising, as well as (ii) reduce partial volume

errors, to provide an improved estimation of the underlying source components, S 0.
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5.3 Data and Experiments

Both simulated and in vivo fPET and MRI data were used to validate the performance

of the MRI-MRF prior. For comparison, the MRI-MRF prior processed fPET images

were compared with those obtained using Gaussian smoothing with varying kernel sizes

(specified by FWHM).

5.3.1 Simulated Data and Experiments

Continuous infusion of FDG PET activity was simulated for 60 minutes using a two-

tissue compartment model involving the three kinetic parameters K1, K2 and K3 and a

fitted arterial input function from intravenous blood samples collected from our previous

in vivo experimental data (?) to yield a total of 60 frames. PET image was simulated

based on the T1w MNI template MRI image with an isotropic voxel resolution of 8 mm3.

The simulated FDG activity was corrected by the blood partition fraction and haematocrit

using the same procedure as in our previous work (?). Brain regions were segmented

into grey matter, white matter and the occipital cortices using the MNI structural atlas

(?) using FSL (?). The MRI and PET images were simulated with an isotropic spatial

resolution of 2 mm in the MNI space. The regional specific metabolic kinetic parameters

used for the simulated dataset were K1 = 0.101, K2 = 0.071, K3 = 0.042 for grey matter

and K1 = 0.047, K2 = 0.070, K3 = 0.035 for white matter, respectively (?). A visual task

stimulus was simulated between 20 to 30 minutes in the visual cortex region similar to the

in vivo experimental paradigm. During the visual stimulation period, the parameter K3 in

the occipital cortex was simulated to have a 20% increment.

The tomographic iterative GPU-based reconstruction toolbox (TIGRE) was used for

PET image reconstruction (?). The PET images were forward projected, and Poisson

noise was applied in the measurement space, to generate a high-dose dataset. Subse-

quently, we simulated dynamic low-dose PET data using the Poisson thinning approach

(?) such that the low-dose data had a dose reduction factor (DRF) of 100 compared to that

of the high-dose data. The generated PET images were smoothed using a 3D Gaussian

filter with FWHM 2.35 mm to simulate the partial volume effect produced by the system.

Finally, MLEM algorithm was used to reconstruct the PET images to yield 60 frames for

both low and high dose datasets.

The ICA-specific pre-processing steps including spatial normalization and dimen-

sionality reduction were performed as described in detail by ? on the post-reconstruction

smoothed images. In this work, we performed both subject-level and group-level ICA on

fPET data. For group analysis, the spatiotemporal matrix from each subject was concate-
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nated along the temporal dimension before the application of ICA (?). The pre-processed

data, which was an estimate of Y0, was then decomposed using an ICA unmixing algo-

rithm in the FastICA toolbox (??).

5.3.2 In Vivo Data and Experiments

A cohort of five healthy volunteers were scanned for a visual task stimulus exper-

iment using a 3T Siemens Biograph mMR (Siemens Healthineers, Erlangen, Germany)

PET-MRI scanner, approved by the institute human ethics committee. The overall stim-

ulation protocol consisted of three visual stimulation periods consisting of alternating

periods of rest and task blocks. A detailed description of the experiment is provided in

our earlier work in (?). The subjects rested for a period of 20 minutes to allow sufficient

FDG accumulation in the brain, during which structural T1 MPRAGE MRI scans were ac-

quired. Following this, the subjects viewed a circular flickering checkerboard stimulus for

10 minutes. The checkerboard was retained for a period of 120 seconds and subsequently,

an intermittent 32 seconds on and 16 seconds off design was employed. Following the first

task stimulation, which involved 3 blocks: rest, task, and rest, two other stimulation ex-

periments, using the full checkerboard visual, were carried out. We used the PET data

acquired during the first full checkerboard. Hence, the PET data for each subject was of

30-minute duration, including 10 minutes resting before the stimulation, 10 minutes of a

full checkboard stimulation followed by another 10 minutes of rest (Figure 5.4(a)). The

average dose of FDG given to each subject was 95.9 ± 5.9 MBq which was infused at a

constant rate of 36 mL/hr over the 90-minute duration.

We reconstructed PET images from the list-mode data using two different values

for the temporal bin-width (Tbin) of (i) 30 seconds for the low-dose PET images, and

(ii) 3 minutes for high-dose PET images. The average dose for the corresponding low

dose fPET images across the group of subjects was calculated to be 7.5 kBq/kg/frame.

The PET data was corrected for attenuation using a pseudo-computed tomography (pCT)

map (??). The corrected PET data sinograms were reconstructed using ordered subsets

expectation maximization (OSEM) algorithm with 3 iterations and 21 subsets along with

PSF modelling. The PET 3D volumes were reconstructed with voxel sizes of 3× 3× 2.03

mm3. For standard analysis, all the images were registered to the MNI-152 template. The

high-dose PET images from the 3-minute binned data were used to register and resample

the low-dose PET images with the T1w MRI (acquired at 1 mm3 isotropic resolution) for

each subject using ANTS (?).

We also undertook a comparison of the performance of the MRI-MRF and Gaussian

filtering schemes when the duration of the task and resting blocks was reduced. This
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analysis was carried out by downsampling the total number of low-dose fPET images

reconstructed from the list mode data. Functional PET analyses were computed at both

the subject-level and group-level for downsampling factors (DF) of 2 and 3 to simulate

fPET images of duration 30 seconds but acquired at 1 minute and 1 minute 30 seconds (90

seconds) intervals, respectively. The downsampled PET images correspond to reduced

task duration with a lower number of temporal frames.

5.3.3 Optimal Patch-Width Selection

The optimal kernel sizes for the Gaussian low pass filter and the optimal patch-width

for the MRI-MRF prior, for processing the in vivo data were selected and validated using

simulated data. We optimized the parameters to achieve high sensitivity without substan-

tial loss of specificity using ICA computed activation maps. For computing the sensitivity

and specificity values, the region of interest (ROI), occipital cortex, was obtained using

the segmentation procedure as described in Section 5.3.1. The sensitivity and specificity

performance metrics are defined as follows

Sensitivity[%] =
number of activated voxels inside the ROI

total number of voxels inside the ROI
× 100 (5.5)

Specificity[%] =
number of nonactivated voxels outside the ROI

total number of voxels outside the ROI
× 100. (5.6)

Both sensitivity and specificity metrics provide a quantitative assessment of the activation

maps (z-score map) obtained from the different filtering operations. The metrics were

computed by considering a voxel as activated if |z| ≥ 1.6 and |z| ≥ 2.1 , for subject-

level and group-level analysis respectively ?. The parameter search-space for the MRI-

MRF prior, includes varying values of the regularization parameter, patch length (α, L

respectively). On the other hand, for the Gaussian kernel, we varied the FWHM parameter

which in turn determines the kernel size. The parameter σw was determined empirically

in this work. We found via simulation studies (Section 5.4.1) that the sensitivity and

specificity values do not change dramatically for minor perturbations in the parameter

σw. The effect of varying the σw around the empirically tuned value is demonstrated in

the following section.
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Table 5.1: Comparison of sensitivity and specificity of MRI-MRF and Gaussian
smoothing filters. The sensitivity and specificity values at two different z-score threshold

values are provided.

Table 5.2: Effect of varying the prior-weight parameter α for MRI-MRF prior. Effect

of varying α for a fixed patch-width L on sensitivity and specificity values for the visual-

task related component obtained from the ICA (z-score threshold = 1.6)

5.4 Experiments and Results

5.4.1 Results for Simulated Data

Table 5.1 compares the sensitivity and specificity for both denoising schemes at

different parameter configurations. For the MRI-MRF prior, the patch-length was varied

from 10 mm to 18 mm which represented a varying patch size of 5 to 9 voxels in each

direction, respectively. In the case of Gaussian filtering, the kernel size was determined

by the full width at half maximum of the Gaussian function. The FWHM for Gaussian

varied from 11 mm to 15 mm. It is to be noted that while parameter L (for the MRI-MRF

prior) represents the width of the entire patch, FWHM (for the Gaussian filter) represents

approximately half of the kernel-width. The parameter range chosen for the Gaussian

smoothing is consistent with the Gaussian kernel widths used in the prior work (?). The

sensitivity values for the MRI-MRF processed image are dramatically higher than that of

the Gaussian smoothed images, whereas the specificity values are comparable between

the two methods. For the fPET data analysis, a patch-length of 14 mm was chosen for

the MRI-MRF prior. However, both the Gaussian kernels with FWHM 11 mm and 13

mm show similar sensitivity and specificity values. Therefore, the analysis using the

Gaussian-filtered in vivo fPET data was undertaken using both the 11 mm and 13 mm

FWHM filters.
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Table 5.2 shows the effect of varying the free parameter α for a given patch-width L

on the sensitivity and specificity values for the visual-task component obtained from the

ICA. The sensitivity and specificity values for varying prior-weight α is shown for two

different patch-widths L = 10 mm and 14 mm. The sensitivity and specificity values in

Table 5.1 correspond to a z-score threshold value of 1.6 (i.e., |z| ≥ 1.6).

Figure 5.1 shows the visual task specific activation for the reference noiseless fPET

images, and for the three denoising schemes using the optimal parameters chosen from

Table 5.1. The ICA activation map obtained using the noiseless images serves as the

reference map (Figure 5.1 (a)). The activation map obtained from post-reconstruction fil-

tered fPET images using the MRI-MRF prior (Figure 5.1 (b)) was closest to the reference

activation map in the visual cortex. On the other hand, the activation maps obtained using

Figure 5.1: Comparison of brain activation maps for simulated data. Visualization of

activation in the visual cortex using ICA on noiseless fPET images (a), MRI-MRF prior

(b), Gaussian smoothing with FWHM 11 mm (c), and FWHM 13 mm (d).
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Figure 5.2: Effect of varying the weights-parameter σw for MRI-MRF prior. Analysis

of the effect of varying σw around the empirically chosen value σempirical
w on the activation

maps for the MRI-MRF method. The values in the parenthesis represent the sensitivity

and specificity values obtained for the component corresponding to the visual task from

the ICA respectively.

Gaussian smoothing with both FWHMs yield suboptimal activation maps in the visual

cortex with asymmetrical patterns.

Figure 5.2 shows the effect of varying the parameter σw in the MRI-MRF formula-

tion. As mentioned earlier, the parameter σw aids in distribution of the weights for the

MRF prior. Hence, a low value of σw corresponds to assigning higher weightage to only

a selected few neighbour of the central voxel under consideration. On the other hand, a

large value ofσw corresponds to uniform distribution of the weights in the neighbourhood.

In Figure 5.2, sensitivity values corresponding to the σw value used are mentioned. We

see that at low σw, several false positive activations are seen with low sensitivity and for a

high value of σw sensitivity is slightly reduced than the optimal value. Let the empirically

determined value of σw to yield maximum sensitivity, be σempirical
w . From Figure 5.2, we

see that for immediate values around the empirically determined σw, we observe only a

slight variation in the sensitivity and specificity values. That is, the performance of the

ICA algorithm is more sensitive to the value of α compared to σw.

5.4.2 Results for In Vivo Data

The results reported in this section are for the fPET images reconstructed using the

list-mode data binned at Tbin = 30 s, and for DF = 1, 2 and 3.

Figure 5.3 shows the post-reconstruction filtered fPET images along with the sub-

ject’s MRI image (Figure 5.3, left column) and the corresponding vendor provided low

dose fPET image (Figure 5.3, second column). The denoised image using the MRI-MRF

prior (Figure 5.3, third column) shows superior recovery of PET signals in different re-

gions of the brain while removing substantial amount of noise. Specifically, the white

and grey matter boundaries are well delineated, the shape of the ventricles has been re-
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Figure 5.3: Comparison of denoised in vivo images using different methods. Assess-

ment of the post-reconstruction smoothed fPET images with binning time of Tbin = 30 s.

The subject’s MRI image (a); the vendor reconstructed PET image (b); the filtered image

using the MRI-MRF prior (L = 14 mm) (c); and using Gaussian kernels with FWHM (d)

11 mm, (e) 13 mm.

covered (which is not evident in the low dose PET image), and anatomical features in the

gyri, sulci and details of the cortical folding (refer Figure 5.3m) have been restored. On

the other hand, the denoised images using both Gaussian kernels (FWHM 11 mm and 13

mm) are heavily blurred and show substantial loss of anatomical details due to the partial

volume errors (Figure 5.3, fourth and fifth columns).

Figure 5.4 shows the results of an individual subject-level fPET analysis obtained

using different filtering techniques for a downsampling factor of one (i.e. DF=1, includes

all list-mode data). The ICA activation maps corresponding to the visual task component

along with the timecourses are calculated for each method. The timecourses are derived

from the normalized (z-scored) spatial components following the methods in (?). The

ICA timecourse for both Gaussian kernels (Figures 5.4d and 5.4f) are noisy and do not

closely follow the experimental task paradigm. Moreover, the shape of the region of

brain activation does not follow the known anatomical structure of the primary visual

cortex but extends into adjacent neuroanatomical structures including the white matter,

likely due to large partial volume errors. Conversely, the activation map obtained using

the MRI-MRF prior (Figure 5.4c) shows localized activity near the visual cortex with a
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Figure 5.4: Comparison of brain activation maps and timecourses for subject-level
analysis with all the fPET frames: Tbin = 30 s and DF = 1 at MNI coordinate (14, -94,

-8). The independent components estimated from the filtered fPET images using different

schemes are provided. The task paradigm is shown in (a). ICA maps and timecourses:

top to bottom: MRI-MRF prior with L = 14 mm (b) and (c), Gaussian smoothing with

FWHM = 11 mm (d) and (e), Gaussian smoothing with FWHM 13 mm (f) and (g).

significantly higher z-score within the visual cortex compared to both Gaussian kernels.

The ICA timecourse for the MRI-MRF prior (Figure 5.4b) accords more closely with the

experimental design with increased uptake during the visual task block. The comparison

of the visual task components for the three methods for all brain sections is consistent

with these observations.

Figure 5.5 compares the visual task components for MRI-MRF prior and the Gaus-

sian smoothing with FWHM 13 mm across multiple axial slices showing brain activation.

At DF = 1 (all frames included), for most of the axial slices, the MRI-MRF prior shows

activation which is aligned with the visual cortex anatomy. In slices where there is in-

creased activation shown by the MRI-MRF prior, results from Gaussian smoothing shows

a large blob of activation around the visual cortex but extends to other anatomical regions.

The results for the group-level fPET analyses for the three filtering techniques using

the complete list-mode dataset (DF = 1) are shown in Figure 5.6. A higher z-score range

was observed for the group-level analyses compared to the single subject-level analy-

sis. However, in contrast to the subject-level analysis, the timecourses estimated from all
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Figure 5.5: Comparison of brain activation maps across all slices for subject-level
analysis with all the fPET frames: Tbin = 30 s and DF = 1 for multiple slices. Visual

task component across slices for MRI-MRF (left) and Gaussian filter (right) with FWHM

13 mm.

methods (Figures 5.6b, 5.6d and 5.6f) at the group level recapitulated the experimental

design paradigm. The activation map corresponding to the MRI-MRF prior followed the

known neuroanatomical representation of the primary visual cortex and was consistent

with the subject-level result. On the other hand, the activation maps using the two Gaus-

sian kernels did not represent activation in the primary visual cortex and demonstrated

diffuse cerebral metabolic activity into large adjacent anatomical regions including the

white matter.

Figure 5.7 shows the subject-level fPET analyses for downsampling factors of two

and three (DF = 2 and 3). Timepoints T1 and T2 represent the onset of the task and second

resting block in the downsampled task paradigm. Plausible ICA activation maps were not

generated using an 11mm FWHM Gaussian kernel for both DFs and therefore no results

are included. The ICA timecourses during the task-block for the MRI-MRF filter demon-

strated a steadier gradual increase, in agreement with the task paradigm, in comparison

to the 13mm FWHM Gaussian kernel for DFs of 2 and 3 respectively (Figures 5.7a and

5.7e compared to Figures 5.7c and 5.7g respectively). The activation map axial view

for DF = 3 did not reveal activation in the left hemisphere as was expected for the visual

task (Figure 5.7h). However, for DF = 2 there was some activation in the left hemisphere

visual cortex (Figure 5.7d) although it was not as widespread as for the fully sampled
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Figure 5.6: Group-level estimation of brain activations using ICA: Tbin = 30 s and DF

= 1 at MNI coordinate (14, -94, -8). The independent components estimated from the

filtered fPET images using different schemes are provided. The task paradigm followed

for the group study is shown in (a). ICA maps and timecourses: top to bottom: MRI-MRF

prior with L = 14 mm (b) and (c), Gaussian smoothing with FWHM = 11 mm (d) and (e),

Gaussian smoothing with FWHM 13 mm (f and (g)).

dataset. On the other hand, the activation maps for the MRI-MRF prior (Figures 5.7b and

5.7f) showed spatial congruency across the three DFs, whilst the discrepancy between the

z-scores for the MRI-MRF prior and the 13 mm FWHM Gaussian filter was largest for

DF =3 compared to DF = 2 and 1.

Figure 5.8 shows the group-level fPET analyses at DF = 2 and DF = 3. In contrast

to the group-level analysis for the fully sampled dataset where there was little difference

between the activation maps estimated by the MRI-MRF method and the Gaussian kernel

with FWHM 13 mm (Figure 5.6), the activation maps estimated for the group-level anal-

yses for DF= 2 and DF = 3 showed marked differences. For both DF = 2 and 3, the ICA

timecourses for the MRI-MRF prior (Figures 5.8a and 5.8e) showed agreement with the

task experimental design with higher z-scores than for the 13mm FWHM Gaussian filter

timecourses (Figures 5.8c and 5.8g). The activation maps show that while the MRI-MRF

prior was able to resolve brain activation that was consistent with activation of the visual

cortex (Figures 5.8b and 5.8f), at both DF = 2 and 3 the 13mm FWHM Gaussian filter was

unable to resolve extended activation throughout the primary visual cortex (Figures 5.8d
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Figure 5.7: Subject-level (representative) estimation of brain activations using the
reduced task and resting blocks with DF = 2 and 3: MNI coordinates (14, -94, -8).

The independent components estimated from the filtered fPET images using different

schemes are provided. DF = 2: MRI-MRF prior (b) and Gaussian kernel with FWHM 13

mm (d). DF = 3: MRI-MRF prior (f), and Gaussian smoothing with FWHM = 13 mm

(h). The T1 and T2 represent the onsets of the task and second resting block, respectively.
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Figure 5.8: Group-level estimation of brain activations using the reduced task and
resting blocks with DF = 2 and 3: MNI coordinates (14, -94, -8). The ICA components

estimated from the filtered fPET images using different schemes are provided. DF = 2:

MRI-MRF prior (b) and Gaussian kernel with FWHM 13 mm (d). DF = 3: MRI-MRF

prior (f), and Gaussian smoothing with FWHM = 13 mm (h).
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and 5.8h) with no activation in the left hemisphere for DF = 3 (Figure 5.8h). Conversely,

the activation maps for the MRI-MRF prior were congruent across the subject-level and

group-level analyses although greater consistency in the right hemisphere.

5.5 Discussion

We have proposed an MRI-assisted fPET processing framework for the analysis of task-

related metabolic changes in the brain using high temporal resolution fPET data and

for low-dose fPET brain mapping applications. We investigated the effect of using the

anatomical information from a subject’s MRI to denoise the fPET dataset to reduce the

partial volume error in the PET images to increase the sensitivity of the ICA analysis.

The PET image restoration problem was posed as a solution to a Bayesian optimization

problem that was solved using L-BFGS due to its greater computational efficiency than

gradient-descent-based optimization techniques.

This study compared the post-reconstruction filtered images from the MRI-MRF

method and Gaussian smoothing with varying kernel sizes as well as the ICA activation

maps from the fPET dataset using a visual stimulation task. Visual assessment of the

post-reconstruction smoothed images showed that the MRI-MRF processed PET images

recovered many features which were not readily observed in the conventional low dose

PET images. The MRI-MRF filtered PET images revealed localized tracer uptake in the

sub-cortical nuclei adjacent to the lateral ventricles (e.g., Figure 5.3c), whereas little or

no uptake was apparent in the comparable low-dose and Gaussian denoised PET images.

Furthermore, the level of Gaussian smoothing required to obtain plausible activations

in the visual cortex rendered the fPET image hard to interpret visually as there was a

substantial loss of features. The MRI-MRF method provides a balance between the visual

interpretability of the fPET images together with improved resolution and sensitivity for

functional analysis using ICA.

The task-based experimental design paradigm enabled meaningful comparison of

the ICA timecourses obtained using the two filtering techniques, by inspection of the FDG

uptake in the visual cortex during the visual stimulation task. The proposed methodology

was able to achieve consistent activation maps at both the subject-level and group-level

for DF = 1, 2, and 3. However, this was not true for the Gaussian smoothing kernels.

Moreover, since the fPET data was acquired for an exogenous task-based stimulus, a

good correlation between the subject-level and group-level activation maps was expected.

In particular, the improved results for the individual subject-level analysis demonstrates
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the benefit of the MRI-MRF method to enhance single subject-level analysis using low

dose high temporal resolution fPET data with reduced task durations.

The study involving downsampling factors that demonstrated that the proposed pro-

cessing pipeline could detect dynamic brain metabolic activity for visual task stimulation

for approximately three minutes. However, this interpretation does assume that the FDG

dosage per frame in the fPET images is consistent for the different downsampling factors.

In practice, this would be achievable experimentally by altering the infusion protocol or

slightly increasing the dosage of the radiotracer (?). The Gaussian smoothing technique

failed to identify task-related ICA components for the shorter task durations (i.e., at higher

DFs) due to reduced sensitivity.

Unlike fMRI, fPET images suffer from very low SNR, and hence the spatial denois-

ing scheme must be carefully chosen to provide an optimal bias-variance trade-off. MRI-

guided PET image denoising and deblurring have been extensively reported in the litera-

ture (??) with many solutions for post-reconstruction PET image enhancement. However,

this work is the first to demonstrate the effectiveness of the MRI-based spatial denois-

ing technique for dynamic fPET imaging, such that fPET images are both visually inter-

pretable and produce accurate functional maps with improved temporal resolution. The

high specificity and sensitivity of the algorithm also enabled single subject-level analyses

along with reasonable visualization of the fPET images without loss of anatomical details.

Traditional methods such as Gaussian smoothing perform averaging without considera-

tion of the anatomical boundaries and hence the quantitative accuracy of FDG signals is

degraded by partial volume errors. This was reflected in the diffuse visual activation maps

obtained with the Gaussian filtering. Using edge-preserving denoising techniques such as

anisotropic filtering would also yield suboptimal performance because of the poor SNR of

the fPET images and the difficulty of distinguishing between tissue boundaries and noise.

The formulation of the MRI-MRF prior in this work is generic and allows for mod-

eling of higher-level image features such as dictionary atoms. Nevertheless, the proposed

filtering framework is efficient and computationally less expensive in comparison to other

patch-based techniques, and hence, the framework is easier to adapt to other research and

clinical applications.

Although the MRI-MRF prior in this work was applied in the image domain on post-

reconstructed fPET images, the same could be applied within the image reconstruction

process provided the PET list-mode data was accessible. Research using image restora-

tion techniques in a reconstruction framework generally employ a Poisson noise model

for the sinogram data and a system matrix composed of several matrix operations repre-

senting the point spread function, forward projection, attenuation correction, scatter cor-
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rection, and back projection. Our work solved the image restoration problem in the image

domain and employed a least-squares-type data term rather than a fixed noise-model in

the image space. This was because the noise characteristics of the reconstructed PET

images inherently depend on the reconstruction algorithm. For example, noise charac-

teristics during filtered back-projection reconstruction depend upon the filter employed,

whilst in maximum likelihood expectation maximization reconstruction and its variants,

the noise characteristics depend on the number of iterations as well as the strength of the

prior function.

In this work, we have applied an MRI assisted PET data processing method to iden-

tify brain metabolic activations using FDG-PET. This concept can further be applied to

other types of PET experiments such as neuroreceptor and neuroinflammation tracer stud-

ies, where counts are statistically limited during dynamic imaging for kinetic modeling

analyses. However, these tracers will have different binding targets and biodistribution in

brain tissues compared with FDG-PET. Therefore, it is essential to consider appropriate

MRI contrasts when designing the MRI-MRF prior model. For example, ? investi-

gated the correspondence of quantitative susceptibility mapping (QSM) MRI and [11C]-

PK11195 PET for the localization of tracer associated with neuroinflammation.

The current work has several limitations. One of the limitations is the small sample

size. In this work, we show proof of the principle for utilizing anatomical information

for fPET data processing. Advanced statistical image restoration models such as joint

patch-based techniques and neural networks may further improve the image quality for

shorter image acquisition durations and potentially in future approach the temporal res-

olution offered by fMRI. However, the proposed framework is readily adaptable to use

these techniques in the research context, although modeling higher statistical dependen-

cies would increase the number of hyperparameters that were required to be tuned. A

further limitation is that the MRI-MRF modeled as a Bowsher-like prior may be per-

ceived as a technique that relies excessively on the anatomical modality. Although this

may be relatively unimportant or in fact, beneficial in the case of tracers like FDG that

are widely distributed throughout the brain, this may not be the case for other heteroge-

neously distributed tracers such as for amyloid PET imaging. More sophisticated image

restoration models that maintain a balance between the PET and MRI features for each

tracer may need to be incorporated at the cost of more computational time. The use of

spatial regularization could be carefully extended to include a temporal smoothing con-

straint governed by studies in tracer kinetics. A comprehensive study of several MRI-PET

joint priors in the context of dynamic functional PET denoising and analytical techniques

is an important direction for future studies.



Chapter 6

Conclusions and Future Work

6.1 Summary

Brain imaging using simultaneous PET-MRI system has shown promise for advancing

neuroscience and clinical neuroimaging. The combined information of structure, func-

tion, and metabolism is unparalleled among other multimodal imaging systems. Further-

more, compared to PET-CT, PET-MRI reduces radiation exposure due to the non-ionizing

nature of MRI. However, there is scope for further reduction in the radiation. Firstly,

given its high specificity, enabling ultra-low-dose PET scans will greatly benefit pedi-

atric oncology and oncology for pregnant women and adults in their reproductive age.

This is because of the risk of accumulation of dangerously high levels of ionizing radia-

tions owing to longitudinal imaging (required in tumor progression or regression studies).

Secondly, PET enables presymptomatic diagnosis of neurodegenerative diseases such as

Alzheimer’s disease (?). Finally, the reduced radiations will enable increased research

studies for neuroscience and understanding several other biological processes. In Chap-

ter 2, we described the utility of low-dose imaging in the context of functional imaging

using PET. On the other hand, faster scans are required for cost-effectiveness, optimized

imaging protocols, and more importantly, to reduce the effect of patient motion on the re-

constructed images. Accelerated imaging, in addition to reducing patient motion artifacts,

also benefits populations who find it difficult to lay still in the scanner for a long time (e.g.,

neuroscience studies) such as children, elderly subjects, and patients with movement dis-

orders or epileptic seizures. For the reasons stated above, it is beneficial and in some

cases, necessary to enable ultra-low-dose PET and faster PET-MRI imaging.

Through Chapters 3– 5, we described the novel models developed to some of the

prevalent problems related to PET-MRI brain imaging indicated in Chapter 1 and 2. The

main aim of these research problems was to achieve improved PET (and MRI) image

95



6.2 Joint Patch-based Dictionary for PET and MRI Reconstruction 96

quality arising from various applications that demand low-dose as well as faster acquisi-

tions. Both low-dose PET acquisitions and accelerated data acquisition by undersampling

of the k-space generate images with low SNR and aliasing artifacts, respectively. The

thesis covered both the paradigms of within-reconstruction as well as post-reconstruction

image enhancement techniques summarized in the following sections. We now summa-

rize the developed models along with their implications and indicate possible directions

for future work.

6.2 Joint Patch-based Dictionary for PET and MRI

Reconstruction

We developed a novel Bayesian image reconstruction framework for the three inverse

problems: reconstruction of (i) PET data with a fixed MRI image, (ii) PET and undersam-

pled MRI data from single-coil, and (iii) PET and undersampled MRI data from multiple

coils. For all the three cases, our reconstruction framework models the PET-MRI joint

dictionary as a MRF, leading to Bayesian inference. This work was the first to propose

a jointly modeled patch-based dictionary for PET-MRI reconstruction. The results on

simulated and in vivo data demonstrated that our model restores both edges and textural

features in the images with reduced cross-modality artifacts in comparison to state-of-

the-art image-gradient-based priors. We evaluated the robustness of our joint dictionary

to varying noise-levels in the test data without having to retrain the joint dictionary. The

degradation in the performance of our model at high noise-levels was the least compared

to other priors. The last couple of years has seen the evolution of DNN-based priors for

PET and MRI image improvement within the reconstruction routine (??). Future work

calls for adapting DNN-based priors for joint PET-MRI reconstruction. The proposed

framework is generic and can be easily adapted to different datasets: e.g., different un-

dersampling schemes for k-space data acquisition, or different tracers for PET images.

However, the dictionary atoms need to be adapted in the case of the involvement of new

tracer. While we observe a substantial improvement in PET image quality at different

noise-levels by employing the joint dictionary, the contribution of the joint dictionary in

improving the de-aliasing of the MRI images is not very clear. Indeed all the joint priors

discussed in this work (LPLS, QPLS, and the joint dictionary) show improvement over

independent priors (depending on one modality only). The reduction of aliasing artifacts

due to the joint prior modeling were comparable across all methods. Nevertheless, our

joint dictionary prior shows slightly better textural features in the MRI images and reduces

the piecewise-smooth results, which are typical of image-gradient-based priors.
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6.3 Sinogram- and Uncertainty- aware DNN (suDNN)

for Predicting SD-PET from uLDPET

In Chapter 4, we proposed a novel DNN framework which modeled (i) the PET imaging

physics as well as (ii) the per-voxel heteroscedasticity in the training data, leading to the

robustness of the DNN to OOD data and quantification of uncertainties in the predicted

SD-PET images in the absence of ground-truth /reference images, respectively. Analo-

gous works in MRI image enhancement (de-aliasing) have shown that modeling imaging

specific information into the DNN loss function yielded improved accuracy. In a first

proof-of-concept study, our suDNN demonstrated robustness to physiological perturba-

tions in the incoming test data (OOD data). Furthermore, we observed that although

modeling the per-voxel heteroscedasticity as part of the DNN loss function slightly de-

graded the performance of the DNN in comparison to using the losses in the image space

and sinogram space alone, the per-voxel heteroscedasticity images and the derived quan-

tification maps provide a rich source of information for improved interpretation of the pre-

dicted images, adding to the reliability of the predicted images using the DNN. However,

in the current form, the predicted images from our suDNN framework is not quantitative,

i.e., not representative of quantities such as SUV. For subsequent clinical validation, it is

imperative to modify the network to produce outputs that reflect the reduced number of

photon-counts in the input LD-PET image. Additionally, efforts to produce quantitative

uncertainty maps needs to be pursued.

6.4 MRI-Assisted High Temporal Resolution fPET for

Improved Brain Mapping

Both Chapters 3 and 4 covered the aspects of robustness to incoming data that is unseen

during training. On the other hand, Chapter 5 presented a novel MRI-assisted fPET pro-

cessing framework for functional analysis of fPET data at high temporal resolution and

for low doses of radiotracer. Compared to traditional Gaussian smoothing, our approach

yields visually interpretable PET images while increasing the sensitivity and anatomical

accuracy of activation maps estimated using ICA. Through validation using simulated

data, we have demonstrated that the MRI-MRF method is able to accurately estimate vi-

sual task-related brain activation maps even under poor SNR conditions. The application

to in vivo fPET data demonstrated that the MRI-MRF prior achieves the detection of re-

duced task durations of approximately three minutes and provides an avenue for further

increases in the temporal resolution and sensitivity of both single subject and group-level
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brain metabolic mapping studies. Advanced image quality improvement techniques using

DNNs can aid in identifying accurate brain mappings at a temporal resolution approach-

ing that of fMRI.

6.5 Towards Low-Dose and Faster Whole-Body

PET-MRI

Through several examples in this thesis, we have seen that neuroimaging using PET-MRI

has seen several fast-paced developments. On the other hand, there are several challenges

inherent to whole-body imaging using PET-MRI. To name a few, implementing UTE MRI

sequences for attenuation correction is challenging due to magnetic field inhomogeneities

(?), limitations of MRI sequences for lung imaging, and truncation artifacts for large fields

of view (?).

In addition to the challenges mentioned here, longer acquisition time and cost of

operation also contribute to the limited acceptance of PET-MRI for whole-body stud-

ies. Several improvements such as continuous moving table MRI and specialized MRI

sequences for whole-body imaging have reduced overall scan-time. The acceleration of

MRI acquisition makes PET the time-limiting factor and reduced acquisition time for PET

imaging degrades image quality. Hence, the extension of learning-based methods for low-

dose whole-body PET imaging as well as accelerated MRI acquisition is an active area of

research. The optimization of imaging protocols and the development of image quality

improvement techniques for simultaneous PET-MRI in whole-body oncology and cardi-

ology could unleash the full potential of the imaging system.

For cardiology, PET-MRI scanners provide unique opportunities in theranostics of

myocarditis and myocardial infarction using perfusion studies. In this context, learning-

based image quality improvement in cardiac PET-MRI can aid in detecting and localizing

subtle changes in morphology and tissue characterization. For clinical whole-body oncol-

ogy involving longitudinal examination, the reduction in the amount of ionizing radiations

from PET in addition to the superior localization of the pathology from MRI can improve

theranostics in several malignancies such as liver metastases, breast cancer and prostate

cancer.

Complementary to the developments in imaging protocol and hardware technology

(e.g., total-body PET scanners), machine-learning-based solutions can help the faster ac-

ceptance of PET-MRI for whole-body imaging. Compared to neuroimaging, the vari-

ability of learning-based methods for whole-body applications is higher due to the com-

bination of several factors such as larger variations in patient physiology and internal
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movement of organs. To this end, research and development of learning-based methods

for whole-body imaging should focus on improving the reliability of the proposed solu-

tion across patients and scanners. As shown as part of this thesis, modeling uncertainties

within the learning-based frameworks improve risk-assessment during inference. Further-

more, given the absence of reference images, quantification of the underlying uncertainty

might prove to be the metric defining the success/failure of the specific learning-based

model.

Finally, the developed learning-based methods as part of this thesis are working

proof-of-concept for neurological imaging applications under low-dose and/or shorter

data acquisition time. The translation of these methods can help improve the effectiveness

of PET-MRI in understanding the physiology and function of the human brain in healthy

and pathological conditions, making it the modality of choice for scientific and diagnostic

investigations of the brain. Further optimization in terms of simultaneous data acquisi-

tion and joint analysis for low-dose and accelerated PET and MRI will rely on active

research in image quality enhancement techniques using learning-based techniques. Al-

though there exist several proof-of-concept solutions with the aim of further reducing the

dose and accelerated image acquisition with the aim of improving the accuracy of the es-

timated images, future works in this direction should focus on improving the reliability of

the method when deployed across different sets of patient cohorts, different scanners, use

of different PET tracers, etc. This is crucial for the clinical translation of learning-based

methods. Furthermore, in the context of learning-based methods for medical imaging, the

developed models in this thesis can be extended to imaging other anatomies leading to

improved whole-body PET-MRI.
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