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ABSTRACT 

The emergence of whole genome sequencing datasets has contributed to the 

advancement of unbiased detection of all kinds of genomic variations in human populations. 

Detecting these genetic variants aids in the understanding of human evolutionary adaptation and 

can provide insight into how our genomes have changed during interactions with pathogens, 

climate, and their diet. This research leverages on three publicly available whole genome 

sequencing projects of Chinese, Malay and Indian population groups in China and Singapore, 

which are underrepresented in positive selection studies. The aim was to use a statistical method 

called Fine-Mapping of Adaptation Variation (FineMAV) to prioritise candidate population-

specific positively selected variants for functional validation. It does this by incorporating three 

metrics: population differentiation, derived allele frequency and functional annotation. This 

generates high FineMAV scores for variants that are high in frequency, population-specific and 

predicted to be deleterious. I was able to replicate well-known selection signals that were 

previously identified in East Asians, such as the missense variant rs3827760 in ectodysplasin A 

receptor (EDAR), and found novel variants like the missense rs79597880 in pre-rRNA-processing 

protein TSR1 homolog (TSR1) in Singaporean Malays. Mutations in TSR1 have been linked with a 

rare heart condition called spontaneous coronary artery dissection. To make FineMAV more 

accessible for researchers, I developed a software program so that they can generate FineMAV 

scores for sequencing datasets of their interest and graphically visualise their genome-wide 

FineMAV scores on a human genome browser, like the web-based University of California, Santa 

Cruz (UCSC) Genome Browser or Ensembl Genome Browser. I also evaluated the performance of 

the software on a much larger whole genome sequencing dataset called the GenomeAsia 100K, 

comprising 1,428 individuals from Northeast Asian, South Asian, Southeast Asian and Oceanian 

populations, and ensured that it was built to be memory-efficient in anticipation for larger human 

genomic datasets.  
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1 INTRODUCTION 

1.1 Positive selection 

The concept of natural selection was originally conceived by Darwin and Wallace (1858). 

The essence of their publication details how there are heritable variations within a population of 

organisms and that those who are better adapted to their environment are more likely to survive 

and reproduce, thus passing their advantageous traits to future generations (Darwin and 

Wallace, 1858). The mechanisms by which natural selection occurred were an enigma at that 

time. It was only after the assimilation of Mendelian inheritance with natural selection that 

evolution could be viewed from a molecular perspective (Fisher, 1930), which laid the foundation 

for population genetics (Provine, 1971). 

Further understanding of genetics led to a more precise understanding of natural 

selection. Theories about different modes of selection were formulated in which the basis of 

these modes are allele frequency changes that occur within a population over time (Nielsen, 

2005). One type of selection acts in a directional manner (Nielsen, 2005; Vitti et al., 2013). As 

Nielsen (2005) reviews in his paper, new alleles are introduced into the population via mutations. 

These are known as derived alleles. They can be advantageous or deleterious, which in turn could 

affect the fitness of an organism or the ability of an organism to survive and reproduce. Derived 

alleles that are advantageous and confer higher fitness would increase in allele frequency. This is 

known as classical Darwinian or positive selection. On the other hand, negative selection, also 

known as purifying selection, occurs when derived alleles are deleterious and are selected 

against. However, the neutral theory of evolution states that the bulk of evolutionary changes 

occur because of random fluctuations in allele frequencies, termed as genetic drift of neutral 

alleles. These are alleles that do not affect reproductive fitness (Kimura, 1991; Nielsen, 2005). It 

should be noted that advantageous alleles can also increase in frequency due to genetic drift 

(Nielsen, 2005). 

The study of positive selection has garnered the interests of researchers worldwide 

because identifying genetic variants that are positively selected can provide insights into new 
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molecular functions that come with adaptation (Pritchard et al., 2010). During the Out of Africa 

migration, where modern humans expanded from Africa to Eurasia and then migrated to the rest 

of the globe, they were subjected to diverse environments and diets, especially after the dawn 

of agriculture (Pritchard et al., 2010; Jeong and Di Rienzo, 2014; Jobling et al., 2014). These new 

selection pressures allowed for populations to amass locally adaptive features through positive 

selection (Pritchard et al., 2010; Jeong and Di Rienzo, 2014). Detecting genetic variants that have 

undergone positive selection aids in the understanding of human evolutionary adaptation. Such 

detection has provided genetic insight into how humans interact with pathogens (Hamblin and 

Di Rienzo, 2000; Sakagami et al., 2004), the climate (Lamason et al., 2005; Soejima and Koda, 

2007; Hancock et al., 2008) and their diet (Tishkoff et al., 2007) and has also shed light on 

population disease susceptibilities (Ferrer-Admetlla et al., 2009). 

1.1.1 Signatures of positive selection 

When a positive selection pressure acts on an allele at a particular genetic locus, it leaves 

patterns within the genome, also known as “signatures”. The basis of these signatures is genetic 

hitchhiking which occurs when the selection of one allele increases the frequency of other neutral 

alleles that are in proximity to it on the same genomic segment in a population, a phenomenon 

termed as genetic linkage (Smith and Haigh, 1974). Over generations, a selective sweep can occur 

in which the frequency of the positively selected allele and the ‘hitchhiked’ alleles rises within 

the population causing variation at linked sites to be swept out (Smith and Haigh, 1974; Sabeti et 

al., 2006). Recombination, however, can eliminate these nearby alleles thus decreasing the size 

of the ‘hitchhiked’ region over time (Sabeti et al., 2006). Some positively selected alleles can 

reach fixation through hard selective sweep (Smith and Haigh, 1974; Pritchard et al., 2010). 

However, evidence has shown that this has been rare for the last ~250,000 years of human 

evolution (Hernandez et al., 2011). As described by Sabeti et al. (2006), the signatures that 

positive selection leaves behind are: 

1. Long haplotypes, or group of alleles that are inherited together from a single parent, with 

low genetic diversity. 

2. High frequency of derived alleles. 
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3. Population differentiation or differences in allele frequencies between spatially separated 

populations. 

4. High frequency of rare alleles. 

1.1.2 Statistical methods to detect positive selection 

In population genomics, polymorphisms aid in detecting evolutionary selective events 

(Nielsen, 2005). There are many types of genetic variations, including single nucleotide 

polymorphisms (SNPs), insertions and deletions (indels), microsatellites and structural variations. 

Most positive selection studies in humans utilise SNPs as they are the largest source of genetic 

variation and are easily detectable (Nguyen et al., 2006; The 1000 Genomes Project Consortium, 

2010). Additionally, it is difficult to identify the ancestral state for indels and structural variations, 

which is imperative in establishing the direction of change (Donald and Matthew, 2007; Kvikstad 

and Duret, 2014).  

Table 1 is a general summary of the types of statistical methods that employ within-

species polymorphisms to detect positive selection. Akey (2009) categorizes them into three 

main groups based on the signatures they detect:  

1. Site frequency spectrum 

These tests examine the distribution of the allele frequencies in a given genomic region 

and are therefore able to detect high frequency of rare alleles. 

2. Linkage disequilibrium (LD) 

LD is defined as the non-random association of alleles between different loci. These tests 

scan for high frequencies of long haplotypes that are left behind during an ongoing or 

incomplete selective sweep. 

3. Population differentiation  

These tests leverage on the differences in allelic frequencies between populations. 

In recent years, composite methods that combine signatures from these main groups 

have also been developed (Grossman et al., 2010) (Table 1). 
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Table 1: Summary of statistical methods used to detect positive selections as categorized by (Akey, 2009). 

Classification Statistical methods  References 

Site frequency spectrum 

Composite likelihood approaches 
(Kim and Stephan, 2002; Zhu and 
Bustamante, 2005) 

FS (Fu, 1997) 

Fu and Li’s D*  (Fu and Li, 1993) 

Maximum frequency of derived mutations (MFDM) (Li, 2011) 

Tajima’s D  (Tajima, 1989) 

Linkage disequilibrium 

Cross population extended haplotype 
homozygosity (XP-EHH) 

(Sabeti et al., 2007) 

haploPS (Liu et al., 2013) 

Haplotype homozygosity (H12) and haplotype 
homozygosity statistic (H2/H1) 

(Garud et al., 2015) 

Haplotype similarity (HS) (Hanchard et al., 2006) 

Integrated extended haplotype homozygosity of a 
SNP site (iES) 

(Tang et al., 2007) 

Integrated haplotype score (iHS) (Voight et al., 2006) 

Kim and Nielsen’s method (Kim and Nielsen, 2004) 

Linkage disequilibrium decay test (LDD) (Wang et al., 2006) 

Number of segregating sites by length (nSL) (Ferrer-Admetlla et al., 2014) 

Relative extended haplotype homozygosity 
(relative EHH) 

(Sabeti et al., 2002) 

Population differentiation 

Ancestral branch statistic (ABS) (Cheng et al., 2017) 

BayEnv (Coop et al., 2010) 

Beaumont and Balding’s method (Beaumont and Balding, 2004) 

Efficient mixed-model association eXpedited 
(EMMAX) 

(Kang et al., 2010) 

FST (Weir, 1996) 

Derived allele frequency differences (ΔDAF) (Colonna et al., 2014) 

Locus-specific branch length (LSBL) (Shriver et al., 2004) 

PCAdapt (Duforet-Frebourg et al., 2014) 

pexcess (Hästbacka et al., 1994) 

Population branch statistic (PBS) (Yi et al., 2010b) 

Composite methods Composite of Multiple Signals (CMS) (Grossman et al., 2010) 
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1.1.3 Fine-Mapping of Adaptation 

The challenges that existing statistical methods face is that they are unable to distinguish 

between neutral, passenger variants and true positively selected variants that are identified by 

genome-wide scans of positive selection in humans. Only a handful of variants have been 

functionally validated and conclusively shown to be responsible for the underlying adaptation 

signal in humans, although thousands of such signals have been mapped (Szpak et al., 2019) Fine-

Mapping of Adaptive Variation (FineMAV) was developed to overcome this hurdle and provide a 

way forward to select variants that could be modelled in vitro or in vivo model systems (Szpak et 

al., 2018). As the name suggests, it is a method that pinpoints the variant, within a putative locus, 

that is driven by positive selection. It does this by incorporating methods that detect regions 

showing signatures of positive selection (population differentiation and high frequency of 

derived alleles) and merges it with functional annotation under the assumption that it is unlikely 

for a deleterious or functional variant to reach high frequency in a given randomly mating 

population unless it confers some sort of an advantage (Szpak et al., 2018). 

To measure population differentiation, FineMAV employs a derived allele purity (DAP) 

equation to describe the disparate spread of derived alleles across populations (Szpak et al., 

2018). The derived allele frequency (DAF) equation is used to determine sites with high frequency 

of derived alleles (Szpak et al., 2018). Combining the two would identify positively selected 

genomic regions (Szpak et al., 2018). The addition of functional annotation is what makes 

FineMAV different from existing statistical methods. To annotate functionality, it uses the 

Combined Annotation-Dependent Depletion (CADD) method which takes into account multiple 

variant annotations and condenses it into a single score called the C score (Kircher et al., 2014). 

According to Kircher et al. (2014), the C scores predict whether a SNP or indel in the human 

genome is functional, deleterious and pathogenic. In a PHRED-like scaled C score, the scores are 

expressed as rankings relative to all possible substitutions of the human genome and range from 

1 to 99. For example, a variant that scores more than 20 would be within the top 1% of 

deleterious substitutions. A score of 30 would indicate top 0.1% and 40 would be 0.01% and so 

on (Kircher et al., 2014). If an allele was predicted to be deleterious and its frequency was low, 

the allele would probably be harmful. If the allele was deleterious but its frequency was high, it 
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would not signify that the allele is harmful, but rather, it may be an adaptive allele (Szpak et al., 

2018). Incorporating CADD scores, therefore, enables us to differentiate between neutral alleles, 

which are predicted as non-deleterious, and true positively selected alleles, which are predicted 

as effectively functional or deleterious (Szpak et al., 2018).  

Integrating these three metrics allow FineMAV to prioritise candidate positively selected 

genetic variants for functional validation in a high-throughput fashion (Szpak et al., 2018). 

1.2 Genomic scans of positive selection 

Most genome-wide selection scans in humans have been based on populations of 

European origins, although some have used populations from mainland East Asia, Japan or Africa 

(Reviewed by Akey 2009). To address this discrepancy, recently, there have been growing efforts 

in East and Southeast Asia to develop whole genome sequencing datasets which can be used to 

capture genomic evidence for local adaptation.  

1.2.1 Positive selection in East Asia 

In recent years, many positive selection scans have been performed on East Asian 

populations, mostly Chinese and Japanese, and this is, in part, due to the inclusion of East Asians 

in international genome-wide datasets (Table 2). Two of the strongest selection signals observed 

in East Asians is in the alcohol dehydrogenase (ADH) gene cluster, a ~370kb segment on 

chromosome 4 that consists of seven ADH genes, and the aldehyde dehydrogenase 2 family 

member (ALDH2) on chromosome 12. (Han et al., 2007; Teo et al., 2009; Okada et al., 2018; 

Yasumizu et al., 2020). However, the positively selected causal variant(s) from these regions have 

not been elucidated. SNPs from these regions have been associated with alcohol dependence, 

assortative mating related to alcohol consumption and risky behaviour (Frank et al., 2012; Park 

et al., 2013; Lai et al., 2019; Linnér et al., 2019). In Japanese populations, variants in alcohol 

dehydrogenase 1B (ADH1B), located in the ADH gene cluster, and ALDH2, were found to be 

associated with all-cause mortality (Sakaue et al., 2020). There are several selection signals 

identified in East Asians that are less studied and it is unsure as to why these genes have 
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undergone positive selection. This includes melanoma-associated antigen E2 (MAGEE2) and 

centromere protein W (CENPW) (Cheng et al., 2017; Szpak et al., 2018; Wu et al., 2019).  

Table 2: List of datasets that had genome-wide East and Southeast Asian positive selection scans 
performed on them. 

Name Type of data 
Include East and 
Southeast Asians? 

Reference(s) 

1000 Genomes Project 
Low-coverage whole 
genome sequencing 

East Asians 
(The 1000 Genomes Project 
Consortium, 2010, 2012, 2015) 

Asian Diversity Project (ADP) Genotype East and Southeast Asians (Liu et al., 2017) 

Genotyping of indigenous 
ethnic groups in northern 
Borneo 

Genotype Southeast Asians (Yew et al., 2018) 

HUGO Pan-Asian SNP dataset Genotype East and Southeast Asians 
(The HUGO Pan-Asian SNP 
Consortium, 2009) 

Human Genome Diversity 
Project (HGDP) 

Genotype a East Asians (Cann et al., 2002; Li et al., 2008) 

International HapMap Project Genotype East Asians 

(The International HapMap 
Consortium, 2005, 2007; The 
International HapMap 3 Consortium, 
2010) 

Perlegen dataset Genotype East Asians (Hinds et al., 2005) 

SG10K (from Singapore) 
High-coverage 
whole genome 
sequencing 

East and Southeast Asians (Wu et al., 2019) 

Singapore Genome Variation 
Project (SGVP) 

Genotype East and Southeast Asians (Teo et al., 2009) 

a The samples in the HGDP were also sequenced recently by Bergström et al. (2020), but no genome-wide 
positive selection scans have been reported, thus far, for this sequenced dataset.   

 

Perhaps the most extensively studied positively selected genes in East Asia are genes 

related to pigmentation. East Asians, like Europeans, have lighter skin and studies were 

conducted to investigate whether they share genetic variants associated with depigmentation. 

Genes like KIT ligand (KITLG) have selection signals in both Europeans and East Asians, suggesting 

that there may have been a selective event prior to these two populations splitting (Izagirre et 

al., 2006; McEvoy et al., 2006; Voight et al., 2006; Lao et al., 2007; Pickrell et al., 2009). Selection 

signals in oculocutaneous albinism II (OCA2) were also observed in both populations. However, 
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the light skin alleles that had undergone sweep in these populations are different, suggesting this 

trait evolved independently (i.e. convergent evolution) (Lao et al., 2007; Edwards et al., 2010). 

Several variants in some pigmentation genes (e.g. DCT, ADAM17, MFSD12), were positively 

selected in East Asians but not in Europeans, which is further evidence that convergent evolution 

towards lighter skin pigmentation has taken place (Izagirre et al., 2006; McEvoy et al., 2006; 

Norton et al., 2006; Voight et al., 2006; Lao et al., 2007; Myles et al., 2007; Hider et al., 2013; 

Adhikari et al., 2019). 

In terms of hair morphology, the missense mutations in ectodysplasin A receptor (EDAR; 

rs3827760) and serine protease 53 (PRSS53; rs11150606) were found to be positively selected in 

East Asians (Fujimoto et al., 2007; Sabeti et al., 2007; Fujimoto et al., 2008; Kamberov et al., 2013; 

Adhikari et al., 2016; Wu et al., 2016; Szpak et al., 2018). The EDAR variant has been consistently 

identified in genomic scans on East Asian populations and observed to have pleiotropic effects in 

which rs3827760 has also been associated with shovel-shaped incisors (Kimura et al., 2009; Park 

et al., 2012b; Tan et al., 2014), ear shape (Adhikari et al., 2015; Shaffer et al., 2017), increased 

density of sweat glands, reduced mammary fat pad and increased branching in the mammary 

ductal gland (Kamberov et al., 2013). 

Populations that live at extremely high altitudes in the Himalayas, such as those from 

Bhutan, Nepal and Tibet, were found to have positively selected genes (e.g. EPAS1, EGLN1, 

PPARA) associated with the hypoxia response (Simonson et al., 2010; Yi et al., 2010a; Hackinger 

et al., 2016; Arciero et al., 2018). In particular, intronic variants in EPAS1 stand out and have been 

shown to be a classical example of archaic introgression in humans, indicating interbreeding 

between Denisovans, an extinct human species, and modern Tibetans (Huerta-Sánchez et al., 

2014). 

1.2.2 Positive selection in Southeast Asia 

There have been many studies conducted on Southeast Asian genomic data, especially 

the Malay population, that have examined the genetic diversity, admixture and migration of 

these populations (Hatin et al., 2011; Ismail et al., 2013; Hatin et al., 2014; Wan Juhari et al., 

2014; Yahya et al., 2017; McColl et al., 2018). Most of them relied on genotype datasets such as 
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the Malaysian Node of the Human Variome Project (MyHVP) (Halim-Fikri et al., 2015). However, 

Southeast Asian populations are underrepresented in whole genome sequencing datasets. As of 

now, there are five datasets that incorporate Southeast Asian populations: the Singapore 

Sequencing Malay Project (SSMP) (Wong et al., 2013), the Singaporean SG10K (Wu et al., 2019), 

the Estonian Biocentre Human Genome Diversity Panel (Pagani et al., 2016), the GenomeAsia 

100K (GenomeAsia100K Consortium, 2019) and the Indonesian Genome Diversity Project (Jacobs 

et al., 2019). Due to the lack of representation and access to Southeast Asian genomic sequences, 

there is a poor understanding of how local adaptation occurred in this region and it is difficult to 

pinpoint causal variants. Studies that examined positive selection in Southeast Asian populations 

mainly use five datasets (Table 2), of which three are genotype datasets based on SNP chips.  

In Southeast Asia, there seems to be more interest in indigenous ethic groups compared 

to urban populations because they have lived longer in the region and have been exposed to 

more diverse and harsher environments and, therefore, would give better genetic insight into 

the local adaptation that has occurred there. For example, Southeast Asia has a long history of 

endemic malaria (Copeland, 1935; William et al., 2013). Genome-wide genotyping of native 

individuals from Peninsular and East Malaysia and Taiwan have identified several genes (e.g. HBB, 

TSBP1) that may have conferred malaria resistance and increased their survival (Deng et al., 2014; 

Liu et al., 2014; Liu et al., 2015; Hoh et al., 2020). Another example is the Bajau people, also 

known as the Sea Nomads. They have resided in the coastal areas of Southeast Asia for over 1,000 

years and free dive to gather their food (Sather, 1997). Their lifestyle led to genetic adaptations 

(e.g. PDE10A, BDKRB2) which may have enhanced their abilities to hold their breath under water 

(Ilardo et al., 2018).  Philippine Negritos may have undergone convergent evolution towards 

short stature as a result of adaptations to life in hot and dense tropical forests (Migliano et al., 

2013). A hypothesis proposed by Migliano et al. (2007) suggests that perhaps having short stature 

is an evolutionary trade-off between growth and reproduction (i.e. attaining sexual maturation 

early, and therefore, early growth secession, would ensure reproduction in environments of high 

mortality). Other strong selection signals, like forkhead box Q1 (FOXQ1) and phosphoinositide-3-

kinase regulatory subunit 3 (PIK3R3), were seen in Philippine Negritos (Qian et al., 2013). FOXQ1 

is associated with metastasis in humans and PIK3R3 is known to regulate the activity of protein-
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tyrosine kinase and is responsible for cell signalling (Mothe et al., 1997; Qiao et al., 2011). It is 

unknown as to what selection pressures were responsible for this. 

1.2.3 Research gaps 

There are two research gaps that this project aims to address. The first research gap is 

that most prior positive selection studies in East and Southeast Asia used SNP arrays to collect 

their data (Table 2), instead of sequencing, as the technology has been around longer. SNP arrays 

have a well-known ascertainment bias, being discovered mainly in European populations 

(Lachance and Tishkoff, 2013) and these do not capture the entire genome and therefore, there 

may be many genetic variants that have been unaccounted for in these positive selection studies. 

Secondly, as seen in Table 2, positive selection in Southeast Asians are less understood because 

they are heavily underrepresented in these datasets compared to East Asian populations. At the 

time of analysis, no positive selection scans were done on whole genome sequences of Southeast 

Asians and this was due to the late arrival of whole genome sequencing in the region. Since then, 

only one positive selection scan was done, and it was performed on a recently published dataset 

consisting of three ethnic groups in Singapore using a population differentiation-based statistical 

test called population branch statistics (PBS) (Wu et al., 2019). They found a total of 20 candidate 

loci for positive selection in the Chinese, Indian and Malay population groups. They identified 

several loci that have been known to be selected in Asians (e.g. EDAR, PRSS53, OCA2) as well as 

lesser-known ones (e.g. CENPW, MAGEE2) (Wu et al., 2019). Only one out of the 20 loci 

(FAM178B) were specific to Malays. Compared to my findings, where I investigated positive 

selection using FineMAV on Chinese, Malay and Indian population groups, only four of the 20 loci 

were identified. 
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1.3 Objectives of this study 

To fill in the research gaps, this project leverages on publicly available, high-coverage whole 

genome sequencing datasets that have East and Southeast Asian populations from China and 

Singapore, and include populations that are genetically close to populations from Malaysia, to 

highlight highly differentiated candidate variants in these populations that are most likely to 

underlie positive selection signals, using an algorithm called FineMAV. 

There were three objectives of this project:  

1. Use FineMAV to identify the population-specific variants in whole genome sequences 

obtained from the Chinese, Malay and Indian population groups in Southeast Asia.  

2. Display the genome-wide FineMAV statistics in a human genome browser, like the 

University of California Santa Cruz (UCSC) Genome Browser (Kent et al., 2002; 

Navarro Gonzalez et al., 2020), to enable visualisation of the associated genetic variant 

that appears to be under selection in these populations in their genomic context. This will 

facilitate our understanding and modelling of adaptations that were associated with 

human settlement in this part of Asia.  

3. To make FineMAV more accessible for researchers by developing a command-line and 

graphical user interface software for researchers to calculate the FineMAV statistic from 

population datasets of their interest. This allows researchers to generate FineMAV scores 

for their sequencing data and display the output as a customized track in the human 

genome browser.  
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2 RESEARCH METHODOLOGY 

2.1 Whole genome sequencing datasets 

Five publicly available, whole genome sequencing datasets were used and were filtered 

differently depending on the nature of the datasets and how it was used (Table 3). No ethical 

approval was required to obtain the datasets as the researchers who developed them have 

already received the relevant institutional ethical approval to conduct their study and the 

participants are aware that their genomic data is made public and used worldwide by the 

research community.  

China officially recognizes 56 ethnic groups which exclude unknown ethnic groups and 

foreigners carrying the Chinese citizenship (Guo, 2017). Most of China is predominately Han 

Chinese as they account for more than 90% of the population (Guo, 2017). They have migrated 

to a plethora of countries and large Han communities can be found in every continent (excluding 

Antarctica) (Minahan, 2014). The 90 Han Chinese genomes dataset (90HC) was used to represent 

these populations in this study (Lan et al., 2017).  

Singapore is a city-state situated at the tip of Peninsular Malaysia in Southeast Asia and 

has a history of migration which has led to it being the melting pot of various ethnicities it is 

today. Three major groups present in Singapore include the Chinese, Malay and Indian 

ethnicities, that are also found in Malaysia (Saw, 2012). Besides Singapore and Malaysia, the 

Malay ethnic group can also be found in neighbouring regions like Brunei, Southern Thailand 

(Pattani), Indonesia, Southern Philippines and Sri Lanka (West, 2009; Hatin et al., 2014; Deng et 

al., 2015). During the initial stages of migration, there were intermarriages between the migrant 

Chinese and Indian men and the local Malay women (Mathews, 2018). However, these interracial 

unions declined after the large migration of women from China and India, as they preferred 

spouses with similar ethnic origin as themselves (Mathews, 2018). Individuals with a multi-ethnic 

background from these three groups were traditionally assigned the ethnicity of their father 

(Rocha, 2011). However, within the last decade, to acknowledge hybrid identities, children of 

mixed parentage can be registered as having a “double-barrelled race” (Rocha, 2011). 



 

21 
 

Table 3: List of whole genome sequencing datasets used for FineMAV analysis. 

Genome project URL 
Number of 
individuals a 

Population groups Reference 

Sequencing of 90 Han 
Chinese genomes (90HC) 

https://www.ebi.ac.uk/ena/data/
view/PRJEB20820 

90 
Han Chinese from 
China 

(Lan et al., 2017) 

Singapore Sequencing 
Indian Project (SSIP)  

https://blog.nus.edu.sg/ 
sshsphphg/singapore-
sequencing-indian/ 

35 Singaporean Indian  (Wong et al., 2014) 

Singapore Sequencing 
Malay Project (SSMP)  

https://blog.nus.edu.sg/ 
sshsphphg/singapore-
sequencing-malay/ 

96 Singaporean Malay (Wong et al., 2013) 

1000 Genomes Project 
(Phase 3) 

ftp://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/release/20130502/ 

1668 b See Appendix C 
(The 1000 Genomes 
Project Consortium, 
2015) 

GenomeAsia 100K 
https://browser.genomeasia100k
.org/#tid=download 

1428 See Appendix D 
(GenomeAsia100K 
Consortium, 2019) 

a Refers to number of individuals that were included in the FineMAV analysis and not the total number of 
individuals in the dataset. 
b Performance evaluation of the FineMAV software was performed only on African, European and East 
Asian populations and not the American and South Asian populations. 

 

The majority of Singaporean residents are of Chinese ethnicity and as of 2017, they consist 

of 74.3% of the population (Singapore Department of Statistics, 2017). The term “Chinese” refers 

to those of broad Chinese origin and they are subcategorised into groups based on their dialect 

such as Hokkien, Teochew or Cantonese (Saw, 2012). They are mainly of Han Chinese ancestry 

(Minahan, 2014). The Malay make up 13.4% of the population (Singapore Department of 

Statistics, 2017) and refers to those of Malay or Indonesian origin. Due to their racial, cultural 

and religious similarities, the Indonesian immigrants assimilated with the Malays (Saw, 2012). 

Lastly, the Indian ethnic group sits at 9.0% (Singapore Department of Statistics, 2017)  and refers 

to individuals whose origins lie in the Indian sub-continent such as India, Pakistan, Bangladesh 

and Sri Lanka (Saw, 2012) 

For the first objective, the genome-wide analysis was performed on three high-coverage, 

whole genome sequencing datasets from China and Singapore: the sequencing of 90 Han Chinese 

https://www.ebi.ac.uk/ena/data/view/PRJEB20820
https://www.ebi.ac.uk/ena/data/view/PRJEB20820
https://blog.nus.edu.sg/sshsphphg/singapore-sequencing-indian/
https://blog.nus.edu.sg/sshsphphg/singapore-sequencing-indian/
https://blog.nus.edu.sg/sshsphphg/singapore-sequencing-indian/
https://blog.nus.edu.sg/sshsphphg/singapore-sequencing-malay/
https://blog.nus.edu.sg/sshsphphg/singapore-sequencing-malay/
https://blog.nus.edu.sg/sshsphphg/singapore-sequencing-malay/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://browser.genomeasia100k.org/#tid=download
https://browser.genomeasia100k.org/#tid=download
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genomes dataset (90HC), 35 Singaporean Indians from the Singapore Sequencing Indian Project 

(SSIP) and 96 Singaporean Malays from the Singapore Sequencing Malay Project (SSMP) (Table 

3). The Variant Call Format (VCF) files for each dataset, which stores genotype information of the 

individuals for each SNP (Danecek et al., 2011), were downloaded from the URLs listed in Table 

3. Only the autosomal and the X chromosome VCF files were used in this project. At the time of 

analysis, no whole genome sequences for the Singaporean Chinese group were made publicly 

available, and, therefore, the publicly available Han Chinese dataset (90HC) was used as a proxy 

for the Singaporean Chinese population.  

I also tested the software on the 1000 Genomes Project (Phase 3) (The 1000 Genomes 

Project Consortium, 2015) in order to replicate previous analysis performed by Szpak et al. 

(2018). Subsequently, I also used the recently published GenomeAsia 100K datasets 

(GenomeAsia100K Consortium, 2019). The GenomeAsia 100K includes 1,428 individuals from 

four continental regions: Northeast Asia, South Asia, Southeast Asia, and Oceania (Appendix D). 

2.2 Filtering the whole genome sequencing datasets 

Data filtering was performed to select high-quality biallelic SNPs (Figure 1). Filtering was 

done using a combination of software programmes: BCFtools v1.9 (Li et al., 2009b), PLINK v1.9 

(Chang et al., 2015) and SnpSift v4.3.1 (Cingolani et al., 2012). To filter out highly related 

individuals, I opted for a PI_HAT threshold of 0.35. This was based on observing the pairwise 

PI_HAT values of the individuals from the datasets (Appendix E). 95 individuals were removed 

from the 1000 Genomes Project dataset, therefore leaving the total number of individuals in the 

dataset to be 2,409. One individual from the Singaporean Sequencing Indian Project (SSIP) was 

also removed, which resulted in 35 individuals used for downstream analysis. 

As seen in Figure 1, the datasets underwent different filtering procedures depending on 

whether the data will be used for population structure analysis (Chapter 2.3) or for generating 

the genome-wide FineMAV scores. For population structure analysis, the Singaporean and 

Chinese datasets were compared to 26 worldwide populations from the 1000 Genomes Project 
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(Phase 3) (The 1000 Genomes Project Consortium, 2015) (Table 3). The populations originate 

from five continental regions: Africa, the Americas, Europe, East Asia and South Asia (Appendix 

 

 

 

Figure 1: Dataset filtering workflow for population structure (principal component and ADMIXTURE 
analyses) and generation of FineMAV scores from whole genome sequences. 
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C). The 1000 Genomes Project required its own set of filtering procedures as illustrated in Figure 

1.  

2.3 Population structure analysis 

To ensure that the datasets recapitulate well-established population genetic structure, I 

conducted principal component (PCA) and ADMIXTURE analyses of the filtered datasets, and 

compared them with the 26 worldwide populations from the 1000 Genomes Project Phase 3 

dataset (The 1000 Genomes Project Consortium, 2015). The analyses were conducted on merged 

and pruned data (Figure 1) comprising 239,996 autosomal SNPs from 2,630 individuals. It should 

be noted that there are 83 Han Chinese individuals in the 90HC dataset that have also been 

sequenced by the 1000 Genomes Project. These were used for checking the quality of the high-

coverage sequenced dataset. There was a 99.80% genotype concordance between the low-

coverage 1000 Genomes Project samples and the 83 90HC samples. Subsequently, the 

corresponding low-coverage samples from the 1000 Genomes Project were removed from 

further downstream analysis. 

The PCA and unsupervised ADMIXTURE analysis was carried out using PLINK v1.9 (Chang 

et al., 2015) and ADMIXTURE v1.3 (Alexander et al., 2009) respectively. For ADMIXTURE analyses, 

each ancestral component K, from 2 to 14, were repeated 10 times with different random seeds 

and the outcome with the highest likelihood was chosen. Five-fold cross-validation was used to 

determine the most optimum K value. After preliminary filtering and quality checks of the 

datasets, the population sub-structure was investigated to see whether the data agrees with the 

expected published population relationships. Since the population genetic relationships were as 

expected, the FineMAV scores for the datasets were subsequently generated. 

2.4 FineMAV algorithm and analysis 

For the third objective, which is to develop a software program for researchers to 

calculate FineMAV scores for datasets of their interest, I tested the software on the 1000 

Genomes Project (Phase 3) (The 1000 Genomes Project Consortium, 2015) and the recently 

published GenomeAsia 100K dataset (GenomeAsia100K Consortium, 2019) (Table 3). The authors 
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who developed FineMAV applied the statistic on the African, European, and East Asian 

populations of the 1000 Genomes Project to assess whether it was able to pinpoint 

experimentally validated, positively selected variants and identify other novel variants for 

functional follow-up. To ensure that the software could correctly calculate the FineMAV scores, 

I compared the scores I generated to the ones the authors published. For this, the 1000 Genomes 

Project was filtered only to include biallelic SNPs from the autosomal and sex chromosomes.  

The software was also tested using the GenomeAsia 100K to evaluate its performance on 

larger datasets The GenomeAsia 100K includes populations from four continental regions: 

Northeast Asia, South Asia, Southeast Asia, and Oceania (Appendix D). However, the complete 

VCF files containing the individual genotype information required approval from their data access 

committee. I opted to use composite VCF files which they made publicly available. These files 

contain the allele frequencies of each continental region from the autosomal chromosomes. 

Because the dataset had already merged the populations together and filtered them, no 

additional filtering from my side was performed. I tested the software only on biallelic SNPs. 

The FineMAV score of the derived allele for each SNP was calculated by multiplying three 

metrics: derived allele purity (DAP), derived allele frequency (DAF) and the PHRED-like scaled 

CADD score (CADD_PHRED) (Equation 1) (Szpak et al., 2018).  

Equation 1B was used to calculate DAP, a metric used to describe the disparate spread of 

the derived alleles across populations. DAP = 1, which is the maximum possible value, would 

signify that all the derived alleles are found in a single population. If the derived allele is shared 

between populations, this value is penalised. It relies on the penalty parameter (𝑥) to maximise 

the magnitude between differentiated positively selected variants and less differentiated nearby 

neutral variants. It was determined empirically for different values of 𝑛 populations (Table 4) 

(Szpak et al., 2018). For my analysis, I opted for the value of 𝑥 that was recommended by Szpak 

et al. (2018) when evaluating between three populations, which is 𝑥 = 3.50. The value of DAP, as 

per Equation 1B, is based on derived allele counts if the population sizes are equal. If the 

population sizes are different, which is true for my analysis, the derived allele frequency is used 

in lieu of the derived allele counts. 
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Equation 1: Equations involved in calculating FineMAV.(A) FineMAV scores were calculated for 𝑛 
populations. The derived allele purity (DAP), derived allele frequency for each population (DAF) and the 
PHRED-like scaled CADD scores (Kircher et al., 2014) are multiplied together. In this equation, 𝑖 ∈
{1, 2, … , 𝑛}. (B) DAP is computed per site across 𝑛 populations. 𝑑𝑖  represents the derived allele count 
in one population where 𝑖 ∈ {1, 2, … , 𝑛}. 

(A) 

𝐹𝑖𝑛𝑒𝑀𝐴𝑉𝑖 = 𝐷𝐴𝑃 × 𝐷𝐴𝐹𝑖  × 𝐶𝐴𝐷𝐷 

(B) 

𝑑𝑁 =  ∑ 𝑑𝑖

𝑛

𝑖=1

 

 

𝑓𝑖 =  
𝑑𝑖

𝑑𝑁
 

 

𝐷𝐴𝑃 =  ∑ 𝑓𝑖
𝑥

𝑛

𝑖=1

 

 

 

Table 4: Recommended minimal value of the penalty parameter (𝑥)rounded off to two decimal places, for 
a given 𝑛 as determined by Szpak et al. (2018). 

 

Number of populations (𝒏) Penalty parameter (𝒙) 

2 4.96 

3 3.50 

4 2.98 

5 2.71 

6 2.53 

7 2.41 
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2.5 Pipeline for calculating the FineMAV scores 

Following the filtering described in Figure 1, the FineMAV scores were calculated for the 

final, merged VCF dataset consisting of SNPs that were polymorphic in all three populations. This 

amounted to 5,774,118 SNPs from 90 Han Chinese, 35 Singaporean Indian and 96 Singaporean 

Malay individuals.  

All three objectives were achieved using the bioinformatics pipeline illustrated in Figure 2. 

When I initially formulated the pipeline, it started off as deconstructed, where each step was 

done one by one, and it constituted multiple Python-based scripts and intermediate files. It was 

then optimised and automated to take the least amount of time and files. This section will 

elaborate on how the pipeline works. Chapter 3.2 of the Results and Discussion will describe the 

software from a user’s perspective. 

The FineMAV software requires the user to provide the following information from the 

VCF file in a tab-delimited file format, which is a simple text format in which the columns of the 

table are separated by a tab character (Table 5). In a VCF file, variations (whether it be SNPs or 

indels) are recorded based on their position on a standardised reference genome. This study used 

GRCh37 (hg19) as the human reference genome. The REF column (Table 5) refers to the reference 

allele that is found in the reference genome. The ALT column (Table 5) refers to the non-reference 

alleles.  

If a VCF file contains all the necessary information listed in Table 5, then it can easily be 

extracted using software programmes that can manipulate VCF files, such as BCFtools (Li et al., 

2009b). However, in most instances, the VCF file would not contain the required fields. In 

instances where the allele frequency (AF) for each population is not annotated in the VCF file, 

the AF can be calculated using a plugin on BCFtools called “fill-tags” when it is supplemented with 

a list of individuals from each population. Once calculated, it can be extracted to create the input 

file for the FineMAV software. If the ancestral allele and/or the CADD_PHRED is not available in 

the VCF file, the software allows the user to supplement this information using the Ensembl 

Variant Effect Predictor (VEP) (McLaren et al., 2016), a well-known software that can import 

various annotations from different sources. 
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Figure 2: Pipeline for calculating the genome-wide FineMAV scores. The grey boxed region highlights the 
parts of the workflow that are automated by the software I developed. The intermediate output files are 
deleted when the pipeline is complete. 
VCF: Variant Call Format, VEP: Variant Effect Predictor. The abbreviations for the column names can be 
found in Table 5. 
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For my analysis, the datasets did not have the updated ancestral allele nor the 

CADD_PHRED annotated scores. Therefore, the annotations had to be supplied using Ensembl 

VEP (McLaren et al., 2016). Ensembl VEP relies on its plugins to retrieve the CADD_PHRED score 

and ancestral allele data for each SNP when supplied with the appropriate files. The data file for 

the latest CADD_PHRED version (v1.4) for reference genome GRCh37/hg19 can be found here: 

https://krishna.gs.washington.edu/download/CADD/v1.4/ GRCh37/whole_genome_SNVs.tsv.gz 

(Kircher et al., 2014). The AncestralAllele plugin fetches ancestral allele information from FASTA 

files containing the ancestral sequences that were inferred from the multiple species alignment 

of six primates (Paten et al., 2008a; Paten et al., 2008b). The FASTA files were downloaded here: 

ftp://ftp.ensembl.org/pub/release75/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh37

_e71.tar.bz2. This was a lengthy process as it took almost 12 hours to complete. After the two 

input files were generated by using BCFtools v1.9 and Ensembl VEP v98, they were fed into the 

software for the genome-wide FineMAV scores to be calculated. 

 
Table 5: Information that can be extracted from the VCF file and provided in a tab-delimited format for the 
software to calculate the FineMAV scores. 

Information needed 
from the VCF file 

Description 
Mandatory 
VCF column 

CHROM:POS Chromosome number and position Yes 

ID Identifier(s), if available. It is usually the dbSNP ID number.  Yes 

REF Reference base Yes 

ALT Alternative base(s) Yes 

AA Ancestral allele  No 

CADD_PHRED PHRED-scaled Combined Annotation Dependent Depletion (CADD) score No 

AF 
Allele frequency for each ALT allele. The AF should be reported for each 
population.  

No 

  

https://krishna.gs.washington.edu/download/CADD/v1.4/%20GRCh37/whole_genome_SNVs.tsv.gz
ftp://ftp.ensembl.org/pub/release75/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh37_e71.tar.bz2
ftp://ftp.ensembl.org/pub/release75/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh37_e71.tar.bz2
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The FineMAV software generates three different types of output files (Figure 2). The first 

is a basic log file which records metadata such as the number of SNPs that were analysed and 

how many of them do not have ancestral allele information. The second file is a table containing 

the FineMAV scores for each population along with the intermediate calculations. This would 

include the derived allele frequency (DAF) for each population and the derived allele purity (DAP) 

for each derived allele. The third type of output file is a bigWig (Kent et al., 2010) which is a 

format that is commonly used for graphical visualisation on human genome browsers, such as 

that hosted online by the UCSC (Kent et al., 2002; Navarro Gonzalez et al., 2020) and the 

downloadable Integrative Genome Viewer (IGV) (Robinson et al., 2011). For this thesis, the 

bigWig graphical visualisation is showcased on IGV as it does not require the bigWig files to be 

made publicly available. The bigWig format is compressed, converted to binary and indexed. This 

makes it appropriate for viewing larger datasets because it allows the genome browser to access 

and load data that only pertains to the genomic region that is currently in view. The wigToBigWig 

utility mentioned in Figure 2 is used to convert the pre-bigWig output files produced by the 

FineMAV software into bigWig files. For the wigToBigWig to work, it requires a text file listing the 

name of the chromosomes and their corresponding size. This file was downloaded here: 

ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.chrom.sizes.  

2.6 Analysing the top FineMAV variants 

In population genomics, it is assumed that only a number of SNPs would experience some 

form of selection and the majority would undergo genome-wide forces such as genetic drift 

(Black IV et al., 2001; Akey, 2009). It is common practice to set a threshold, often arbitrary, to 

decide which SNPs can be considered positively selected (Akey, 2009). In my case, I set it to the 

99.99th percentile of the FineMAV score distribution. 

For the 90HC, SSIP and SSMP, only SNPs that were polymorphic in the three datasets were 

included in the analysis. This would mean that known positively selected SNPs that are not 

polymorphic or missing in this dataset would be missing from my analysis (Table 6). This could 

result in highlighting adjoining population-specific loci that, if functionally relevant, could also 

result in high FineMAV scores because of the effect of genetic hitchhiking. To evaluate this, I 

ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.chrom.sizes
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performed pairwise comparisons of linkage disequilibrium (LD) using Haploview (v 4.2) (Barrett 

et al., 2005) between the known SNPs and the SNPs of the same chromosome that are listed in 

the top 50 genome-wide FineMAV outliers across continental or regional populations. Pairwise 

LD was also performed between the top 50 FineMAV variants obtained from my analysis (90HC, 

SSIP, SSMP and the GenomeAsia 100K) with each other, and to the published FineMAV scores 

that were generated from the 1000 Genomes East and South Asian populations to determine if 

the high-scoring variants were close together in the same population. LD was measured using r2 

values. 

Table 6: List of notable positively selected variants that have been identified in East and South Asia using 
FineMAVand whether these variants are polymorphic in all three datasets: the Han Chinese (90HC), the 
Singaporean Indian (SSIP) and the Singaporean Malay (SSMP). The most severe variant consequence 
according to Ensembl is included. 

Gene SNP ID Consequence Population Polymorphic 

EDAR rs3827760:A>G Missense (p.Val370Ala) East Asian Yes 

ZAN rs2293766:G>A Stop gained (p.Trp1883Ter) East Asian Yes 

MAGEE2 rs1343879:C>A Stop gained (p.Glu120Ter) East Asian No 

PRSS53 rs11150606:T>C Missense (p.Gln30Arg) East Asian No 

PRSS53 rs201075024:C>T Missense (p.Gly34Ser) South Asian No 
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3 RESULTS AND DISCUSSION 

3.1 Population structure analysis 

The 90HC, SSIP and SSMP datasets were analysed together with the 1000 Genomes 

Project Phase 3 dataset, which contains 26 worldwide populations (Appendix C), to ensure that 

the dataset was representative of the region and genetic relationships among these populations 

were as expected. 

In the PCA plot, based on 2,630 individuals, samples that cluster closer together are 

genetically similar. As expected, the Han Chinese (90HC) and the Singaporean Indian (SSIP) 

populations overlap with the East Asian and the South Asian populations from the 1000 Genomes 

dataset, respectively (Figure 3). The Singaporean Malay (SSMP) individuals are close to the Han 

Chinese and East Asians in the 1000 Genomes Project populations and cluster near Vietnamese 

individuals (KHV) in that dataset. 

To further investigate and consolidate the PCA results, ADMIXTURE analysis was 

performed. Based on the cross-validation error graph in Figure 4A, the ADMIXTURE plot with 

K=10 is deemed to be the model that best represents the ancestry of the individuals in all four 

datasets. In an ADMIXTURE plot, each vertical bar represents an individual. The proportion of the 

different colours in each bar corresponds to the proportion of the estimated ancestry from the 

inferred ancestral populations. Therefore, individuals with similar coloured segments are 

genetically similar. As seen in Figure 4B where K=10, the major ancestral component in SSMP 

individuals (denoted in dark grey) can be found in moderate proportions in the Vietnamese 

individuals (KHV) and Chinese Dai in Xishuangbanna (CDX), a region in China that shares a border 

with Laos and Myanmar. The ancestral proportions for the 90HC, Han Chinese in Beijing, China 

(CHB) and Southern Han Chinese (CHS) populations are alike, with varying magnitudes of the 

grey-coloured component, which are considerably correlated with latitude. The SSIP individuals 

are genetically similar to other South Asian populations and, especially, to the Indian Telugu (ITU) 

and Sri Lankan Tamil (STU) populations in the 1000 Genomes Project dataset. 
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Figure 3: Principal component analysis (PCA) of the populations in the 1000 Genomes Project Phase 3 
dataset with the Han Chinese (90HC), Singaporean Indian (SSIP) and Singaporean Malay (SSMP) 
populations. The percentage in the axis label indicates the proportion of the genotypic variance 
explained by each principal component. The population codes for the 1000 Genomes Project dataset 
can be found in Appendix C. This plot is based on 239,996 autosomal SNPs. 
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 (A) 

 

(B) 

 

Figure 4: ADMIXTURE analysis of 2,409 individuals from the 1000 Genomes Project Phase 3 dataset, 90 
Han Chinese individuals (90HC), 35 Singaporean Indian individuals (SSIP) and 96 Singaporean Malay 
individuals. (A) Five-fold cross-validation error for every K from 6 to 14. The point highlighted in red 
indicates the K with the lowest cross-validation error. (B) Ancestry proportions for K from 7 to 12. The 
asterisk at K=10 indicates with K with the lowest cross-validation error. The population codes for the 
1000 Genomes Project dataset can be found in Appendix C. This plot is based on 239,996 autosomal 
SNPs. 
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The PCA and ADMIXTURE analysis are in agreement with one another and as genetic 

relationships are in line with the expectations for non-African populations. These plots (Figure 3 

and Figure 4B) show that the Han Chinese are closely related with other East Asian populations 

and that Singaporean Indians share similar ancestry to other South Asian populations. 

Singaporean Malays, form a genetically distinct cluster, which is expected, as there are no 

Southeast Asian populations in the 1000 Genomes Project. It should be pointed out that they do 

share some ancestral component with individuals from Vietnam and Xishuangbanna, China, the 

two regions from mainland East Asia that are closest to Singapore. 

3.2 Software usage and application 

The Python-based FineMAV software works with sequencing data and relies on the 

information that can be extracted from VCF files (version 4.2 and above) (Table 5). To achieve a 

more complete scan, users are recommended to use jointly-called, multi-sample Genomic VCF 

(gVCF) files. Jointly-called variants would mean that the variants from all individuals were 

analysed and identified simultaneously as opposed to alone or separately in batches. To save 

time and computational storage, a typical VCF file would only record sites (SNPs and indels) that 

are different from the reference genome (i.e. record sites with variation). gVCF, on the other 

hand, is a type of VCF file that consists of every site in the genome regardless of whether they 

carry variation or not. Jointly-called gVCF files are preferable for FineMAV analysis because they 

make a clearer distinction between variants that are homozygous for the reference allele and 

have been sequenced, from those that have not been sequenced, or have missing data. 

The software is available as a command-line interface (Figure 5A) and as a graphical user 

interface (GUI) (Figure 5B). To reduce the computational burden and optimise the random access 

memory (RAM) usage, the software performs these calculations by splitting the file(s) into 

smaller chunks and processing them chunk by chunk, as illustrated in Figure 6A and Figure 7A. 

The default size of a chunk is 200,000 lines. However, the user can specify the chunk size if they 

require (Figure 5). I also tested the performance of the chunk size option using the GenomeAsia 

100K, a large dataset consisting of 66,236,516 biallelic SNPs across four population groups: 
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(A)  

 

 (B) 

 

Figure 5: Screenshots of the FineMAV software as a (A) command line interface and a (B) graphical user 
interface. 
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(A) 

 

(B) 

 

Figure 6: Utilising the chunk size option. (A) Diagram illustrating how the software separates the input 
files into chunks and iterates through them when performing the FineMAV calculations. It proceeds to 
merge them into one output file. (B) A graph that compares the time taken and the maximum random 
access memory (RAM) when different chunk sizes for the GenomeAsia 100K dataset, which consists of  
66,236,516 biallelic SNPs. 
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(A) 

 

 (B) 

 

Figure 7: Screenshots of the FineMAV software’s (A) progress being printed out on the command line as 
it is running and the (B) log file that was produced at the end. 
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Northeast Asians, South Asians, Southeast Asians and Oceanians. Computational experiments 

were run on Ubuntu 16.04 LTS with 3.60 GHz 8-core Intel Core i7-4790 processors with 31.3 GB 

RAM and 950.6 GB of hard disk memory. The size of the input file, which contains the data 

extracted from the VCF file, and the VEP-generated file were 2.0 GB and 2.1 GB respectively. 

Figure 6B illustrates the maximum RAM usage and the time taken when different chunk sizes are 

utilised. As expected, the larger the chunk size, the faster the run time, up to a certain point. The 

optimal chunk size would vary depending on the size of the input files and the computing power. 

Another option that users can specify is the penalty parameter (𝑥) (Figure 5). If a user 

does not type in an 𝑥 value, the software can detect the number of populations. If the number 

of populations ranges from 2 to 7, default 𝑥 values are assigned according to Table 4, which are 

based on published data (Szpak et al., 2018). However, should the user intend to analyse more 

than 7 populations or decides on another value for 𝑥, they are able to change it.  

To ensure that the pipeline calculated the FineMAV scores correctly, I tested the pipeline 

using the 1000 Genomes Project African, East Asian, and European continental populations and 

obtained FineMAV scores that were highly correlated with the published data (Spearman’s 

correlation was 0.9999 for all three continental populations) (Szpak et al., 2018). When 

comparing the top 100 FineMAV outliers across all three continental populations of the published 

data, only 5/300 variants did not overlap with the published results and all five of these variants 

were missing from the 1000 Genomes Project dataset, because they were not biallelic SNPs and 

the sex chromosomes were filtered differently. 

To reiterate what was mentioned previously in Chapter 2.5, the software outputs three 

kinds of file: the log file (Figure 7B), a file containing the genome-wide FineMAV scores along with 

the intermediate calculations and the bigWig files. bigWig files (Kent et al., 2010) allow users to 

visualise the genome-wide FineMAV scores on genome browsers whether they be web-based, 

such as the UCSC Genome Browser (Kent et al., 2002), or a downloadable browser such as the 

Integrative Genomics Viewer (Robinson et al., 2011). An example of what this would look like 

with the Han Chinese, Singaporean Indian and Singaporean Malay FineMAV scores can be seen 

in Figure 8.  I will discuss the genome-wide FineMAV scores for these populations in the next  
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(A) 

 
 (B) 

 
 

Figure 8: Annotated screenshots of the bigWig files of the genome-wide FineMAV scores. (A) FineMAV 
scores for Han Chinese (90HC, orange), Singaporean Indian (SSIP, blue) and Singaporean Malay (SSMP, 
grey) populations displayed on the Integrative Genomics Viewer (IGV).The genomic region on display are 
the autosomal and the X chromosomes. The dashed horizontal line represents the 99.99th percentile of 
the FineMAV score distribution in each population. (B) A multi-locus view of two regions where the left 
panel displays a locus with a well-known positively selected missense variant in EDAR (rs3827760) in East 
Asians that also stands out in the SSMP population. The right panel displays a novel locus with two high 
scoring variants in SSIP: rs151233, a synonymous variant in APOBR and rs151234, an intronic variant in 
CLN3 that stand out in the SSIP. 
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section, Chapter 3.3. Within the genome browser, users could input a genomic position/region 

or gene name of their interest in a search bar and visualise its associated FineMAV statistic. They 

can navigate the genome by zooming and scrolling. Users are also able to add annotation tracks 

which enables users to make useful comparisons. The program is freely available on GitHub 

(https://github.com/fadilla-wahyudi/finemav), along with the documentation.  

3.3 Genome-wide FineMAV scores in Chinese and Singaporean 

datasets 

Figure 9 depicts the genome-wide FineMAV scores for the three population groups that 

were analysed and highlights a handful of novel outlier SNPs. The merged dataset consists of 

5,774,118 SNPs of which 581 of the derived alleles passed the 99.99th percentile threshold.  

When comparing the shape of the Manhattan plots, it is apparent that the FineMAV scores for 

Singaporean Indians vary greatly and have more population-specific signals compared to Han 

Chinese and Singaporean Malays. For comparison, the highest score for Singaporean Indians is 

7.68, but for Han Chinese and Singaporean Malays, it is 4.66 and 3.38 respectively (Appendix F). 

This is because Han Chinese and Singaporean Malays are genetically more closely related and 

FineMAV penalises allele sharing between populations, so as to highlight high frequency 

population-specific mutations. 

Besides replicating known SNPs that were polymorphic in the East and South Asian 

populations, the study highlighted several interesting SNPs in the Singaporean Malays (Table 7), 

a population group that is not well-represented in genome-wide selection scans. As this study 

only included SNPs that were polymorphic in all three populations, there were several, previously 

reported, strong selection signals that were missed out by this whole genome positive selection 

scan. For example, selection signals in melanoma-associated gene (MAGEE2) and protease serine 

S1 family member 53 (PRSS53), which have been reported to be selected in East and South Asians 

(Yngvadottir et al., 2009; Szpak et al., 2018; Wu et al., 2019), are not reported here. This is 

because the positively selected variants in these genes were absent from the VCF files in at least 

one of the populations and were filtered out. Since access to the alignment (*.bam) files for these 

population samples was not available, I could not regenerate a jointly-called VCF file to address 

https://github.com/fadilla-wahyudi/finemav
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this issue. In addition to high-scoring population-specific variants, like the ones found in MAGEE2 

and PRSS53, low-scoring variants, like the ones that would have been found in the counterpart  

 

Figure 9: Manhattan plots of the Han Chinese (90HC, orange), Singaporean Indian (SSIP, blue) and 
Singaporean Malay (SSMP, grey) genome-wide FineMAV scores. Each circle on the Manhattan plot 
signifies a SNP plotted against its GRCh37 genomic coordinates along the x-axis. The red line represents 
the 99.99th percentile of the FineMAV score distribution in each population.  
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populations, would have been excluded from this analysis too. This would explain the FineMAV 

distribution seen in Figure 10 in which the first bin of the histogram (i.e. the bin containing the 

lowest FineMAV scores) is only approximately 60%. Had the three datasets been jointly-called, I 

would expect the first bin to be more than 90%, similar to the FineMAV distribution of the 1000 

Genomes Project (Szpak et al., 2018). 

Table 7: Top 10 FineMAV hits from the Singaporean Malay dataset (SSMP) with the chromosome (Chr), 
genomic position (position), the SNP ID according to the dbSNP build 151, most severe variant consequence 
according to Ensembl and whether it has been detected in previous positive selection scans. The derived 
allele frequencies (DAF) of the Han Chinese (90HC) and Singaporean Indian (SSIP) dataset are included for 
comparison. 

Chr Position SNP ID Gene Consequence 
DAF 
90HC 

DAF 
SSIP 

DAF 
SSMP 

FineMAV Known or novel 

2 98272491 rs2290123:A>G ACTR1B  3 prime UTR 0.033 0.029 0.380 3.378 
Known (Wu et 
al., 2019) 

2 97613974 rs114979404:C>G FAM178B Intron 0.022 0.029 0.375 2.806 
Known (Wu et 
al., 2019) 

17 2238152 rs79597880:T>C TSR1 
Missense 
(p.Lys199Glu) 

0.089 0.014 0.297 2.747 Novel  

16 31088347 rs749671:G>A ZNF646 
Synonymous 
(p.Glu234=) 

0.906 0.043 0.776 2.616 
Known (Wu et 
al., 2019) 

7 100371358 rs2293766:G>A ZAN 
Stop gained 
(p.Trp1883Ter) 

0.528 0.257 0.557 2.531 
Known (Szpak et 
al., 2018) 

2 109513601 rs3827760:A>G EDAR 
Missense 
(p.Val370Ala) 

0.922 0.029 0.490 2.474 

Known (Sabeti 
et al., 2007; 
Szpak et al., 
2018; Wu et al., 
2019) 

3 98031307 rs2316271:T>A OR5H8  
Stop gained 
(p.Leu184Ter) 

0.767 0.314 0.599 2.424 Novel 

11 62848487 rs11231341:A>C SLC22A24 
Stop gained 
(p.Tyr501Ter) 

0.867 0.757 0.792 2.421 Novel 

12 57865558 rs2229300:G>T GLI1 
Missense 
(p.Gly1012Val) 

0.050 0.014 0.224 2.402 Novel 

16 31075175 rs2303223:G>A ZNF668 
Synonymous 
(p.Gly225=) 

0.911 0.043 0.781 2.290 Novel 

 

As known positively selected SNPs were missing in this analysis, I expected that other high 

frequency functional SNPs within its vicinity would also generate high FineMAV scores because 

of the effect of genetic hitchhiking. In the Manhattan plots (Figure 9), I noticed a high- 
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Figure 10: The frequency distribution of the genome-wide FineMAV scores for the Han Chinese (90HC), 
Singaporean Indian (SSIP) and Singaporean Malay (SSMP) populations. The vertical dashed line 
represents the 99.99th percentile. 
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scoring locus in chromosome 16 in all three populations (Figure 9). I suspected that PRSS53 

rs11150606 and rs201075024, that are known to be positively selected in East and South Asians, 

respectively (Szpak et al., 2018; Wu et al., 2019) may be responsible for this. To see if the PRSS53 

variants are in linkage disequilibrium (LD) with the high-scoring FineMAV variants, I performed 

pairwise comparisons of LD between them and other chromosome 16 outlier variants that are 

listed in the top 50 genome-wide FineMAV hits and found that they are in LD (average r2 value 

for both SNPs is 0.32) with each other, suggesting that the other high-scoring loci may be neutral 

and tagging the PRSS53 rs11150606 and rs201075024 variants (Figure 11). On the other hand, 

rs1343879 (MAGEE2), which is selected in East Asians (Yngvadottir et al., 2009; Szpak et al., 

2018), did not produce any other nearby high-scoring locus in 90HC. 

As the Han Chinese and Singaporean Malays are genetically related to each other, there 

were some SNPs that were positively selected in both. Examples of this are the derived alleles of 

rs3827760 in ectodysplasin A receptor (EDAR), rs2293766 in zonadhesin (ZAN) and rs2316271 in 

the olfactory receptor family 5 subfamily H member 8 (OR5H8) (Figure 9), in which the first two 

are established positively selected SNP that have been highlighted in several genomic scans for 

selection in East Asian populations (Sabeti et al., 2007; Szpak et al., 2018). Studies that have 

looked at the missense variant rs3827760 in EDAR have confirmed its pleiotropic effects. The 

non-synonymous mutation was found to be associated with hair thickness (Fujimoto et al., 2007; 

Fujimoto et al., 2008; Kamberov et al., 2013), shovel-shaped incisors (Kimura et al., 2009; Park et 

al., 2012a; Tan et al., 2014), ear morphology (Adhikari et al., 2015; Shaffer et al., 2017), increased 

density of eccrine sweat glands, reduced mammary fat pad and increased mammary ductal gland 

branching (Kamberov et al., 2013). Despite extensive studies, researchers still remain uncertain 

as to why this allele is positively selected. Some have theorised that increased sweat gland 

density results in better thermoregulation during warmer climates (Kamberov et al., 2013). 

Others hypothesise that male sexual preference may have played a role in its selection 

(Kamberov et al., 2013) while some have suggested that selection for greater mammary gland 

branching would lead to better mother-to-child nutrient transfer, especially for vitamin D, to 

prevent vitamin D deficiency in regions with lower ultraviolet (UV) levels (Hlusko et al., 2018).  
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Figure 11: LD plots for the Han Chinese (90HC), Singaporean Indian (SSIP) and Singaporean Malay (SSMP) 
populations. The chromosome ideogram is presented above each plot with the red box indicating the 
area of interest with the SNP locations indicated on the white bar below. SNPs include protein-altering 
(red), synonymous (green), untranslated (blue) and non-transcribed variants (black). Pairwise plots of LD 
between known positively selected variants, PRSS53’s rs1150606 and  rs201075024 in East and South 
Asians respectively (black rectangles), and the top 50 FineMAV SNPs from the same chromosome in each 
population. The colour of the squares signify the strength of LD (r2 values) between a pair of SNPs where 
the darker the colour, the stronger the LD. The r2 values, which are multiplied by 100, are shown in the 
squares. Figures were generated with Haploview (Barrett et al., 2005). 
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Another previously known signal that was replicated in East Asians occurred in ZAN, a 

gene that encodes an acrosomal protein in the sperm called zonadhesin. A study employing Zan 

knockout mice found that their sperms remained fertile and had increased adhesion to the jelly-

like coating of the egg (zona pellucida) of other species like pig, cow and rabbit (Tardif et al., 

2010). As ZAN is responsible for species-specific binding, it has been speculated that a truncation, 

as a result of this nonsense mutation (rs2293766), could have mediated interbreeding between 

archaic humans and modern humans in Asia (Skoglund and Jakobsson, 2011). 

A novel signal that was picked up in both Han Chinese and Singaporean Malay populations 

was the nonsense mutation (rs2316271) in olfactory receptor family 5 subfamily H member 8 

(OR5H8) (Figure 9), which is a pseudogene. There are studies that have shown that pseudogenes, 

when transcribed, can play a role in regulating gene expression (Rajkumar and Mark, 2008; An et 

al., 2017). However, in this instance, it is possible that the nonsense mutation has no phenotypic 

impact as the expression of OR5H8 ranges from low to negligible in various tissues (Flegel et al., 

2013; Papatheodorou et al., 2020).  

Singaporean Indians have more population-specific signals as their population is 

genetically distinct in comparison with the Han Chinese and Singaporean Malays. Population-

specific variants identified via FineMAV in Singapore Indians includes two missense variants; 

rs35675346 in F-box and leucine rich repeat protein 19 (FBXL19) and rs3099950 in MORN Repeat 

Containing 2 (MORN2) (Figure 9), in which the former is in moderate LD with rs201075024 

(PRSS53). FBXL19 has been linked to psoriasis susceptibility (Philip et al., 2010) and is associated 

with paradoxical adverse reactions to anti-tumour necrosis factor α (TNFα) drugs which are used 

to treat a specific type of psoriasis called plaque psoriasis (Cabaleiro et al., 2016). rs3099950 in 

MORN2 was detected in a genome-wide association study (GWAS) of chronic peritonitis 

(Offenbacher et al., 2016) where it was specifically associated with Porphyromonas gingivalis-

related inflammation. It cannot be verified as to whether South Asians have greater incidences 

of periodontal disease as epidemiological studies reported by the World Health Organization 

(WHO) are inconsistent. (World Health Organization, 2005). Furthermore, it is difficult to 

conclude whether incidences stem from genetic factors or other risk factors like chewing betel 

leaves, tobacco smoking or diabetes mellitus (Van Dyke and Dave, 2005).  
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A well-known stop-gain variant, rs601338 in fucosyltransferase 2 (FUT2), that is common 

in African and European populations (allele frequency is 0.49 and 0.44 respectively (The 1000 

Genomes Project Consortium, 2015)) was also picked up the in Singaporean Indians. This was 

expected because the derived allele for this variant is rarely found in East Asians (The 1000 

Genomes Project Consortium, 2015). The FUT2 enzyme is responsible for the secretion of ABO 

histo-blood group antigens and their expression in gastrointestinal tissues (Kelly et al., 1995). 

Individuals that are homozygous for the nonsense mutation are known as non-secretors (Kelly et 

al., 1995). Studies have shown that nonsense mutations in non-secretors confer protective 

effects from enteric pathogens such as rotavirus (Imbert-Marcille et al., 2014), norovirus 

(Thorven et al., 2005) and Helicobacter pylori (Ikehara et al., 2001), but increases risk of other 

diseases like Crohn’s disease (McGovern et al., 2010) and type I diabetes (Smyth et al., 2011). 

Some of these findings were corroborated with knockout mice studies (Magalhães et al., 2009; 

Tong et al., 2014). Gut modifications were seen from both the host and the gut microbiota. For 

example, one study observed changes in the gastric mucosa that hindered H. pylori adhesion 

(Magalhães et al., 2009). Another study, using gut microbial metagenomics on humans and mice, 

revealed certain pathways being enriched, like carbohydrate and lipid metabolism, and depleted, 

like amino acid-related biosynthesis (Tong et al., 2014). 

A genome-wide positive selection scan performed on the SG10K dataset, which comprises 

whole genome sequences from the Chinese, Malay and Indian populations in Singapore, 

identified several of the same loci that are top FineMAV hits from the Singaporean Malay dataset 

(SSMP). In the SG10K dataset, only one genomic region (chr2:97,477,374 – 98,332,858) was 

specific to Malays. The top two FineMAV hits in the Singaporean Malay dataset (SSMP), which 

are the derived alleles in rs2290123 in the 3’ untranslated region (3’-UTR) of actin related protein 

1B (ACTR1B) and rs114979404 in the intron of family with sequence similarity 178 member B 

(FAM178B), fall in this locus. According to the Genotype-Tissue Expression (GTEx) project, the 

derived allele in FAM178B (rs114979404) has been associated with a statistically significant 

increase in fumarylacetoacetate hydrolase domain containing 2C pseudogene (FAHD2CP) 

expression in the atrial appendage (The GTEx Consortium, 2017), which is a nearby gene within 

1,000 kb of FAM178B. Interestingly, the GPAT2-FAHD2CP locus has been reported to be 



 

49 
 

associated with diastolic blood pressure (Warren et al., 2017). Both ACTR1B and FAM178B could 

be responsible for brain function. ACTR1B encodes a subunit in dynactin, which is a protein 

complex that plays a role in cell division and intracellular transport (Eckley et al., 1999). SNPs in 

ACTR1B have also been picked up in other genome wide association studies (GWAS) in which 

these SNPs were associated with alcohol consumption and smoking behaviour (Karlsson Linner 

et al., 2019; Liu et al., 2019). FAM178B, on the other hand, is found in a genetic locus that has an 

effect on both schizophrenia susceptibility and lithium treatment response for patients with 

bipolar affective disorder (Amare et al., 2018). 

Examples of novel SNPs that were solely picked up in the Singaporean Malays are the 

missense variants rs2229300 in glioma-associated oncogene family zinc finger 1 (GLI1) and 

rs79597880 in pre-rRNA-processing protein TSR1 homolog (TSR1) (Figure 9). GLI is a well-

established oncogene and its protein is a drug target for several anti-cancer medication (Palle et 

al., 2015). According to the Catalogue of Somatic Mutations in Cancer (COSMIC), 65.60% of 

mutations that are observed in GLI1 are missense substitutions (Tate et al., 2019). However, 

there have not been any reports on rs2229300 (Tate et al., 2019) that is present at high frequency 

in Southeast Asians. With regards to TSR1, it was recently reported that rare (minor allele 

frequency < 1%) missense mutations of this gene may be associated with spontaneous coronary 

artery dissection (SCAD), a condition where the coronary artery tears resulting in two lumens: 

the true lumen and the false one (Sun et al., 2019b). TSR1, whose exact function is yet to be 

elucidated, plays a role in ribosome maturation (Urszula et al., 2016). Interestingly, the missense 

mutations they reported were all substitutions from arginine, a positively charged amino acid, to 

a neutral amino acid (Sun et al., 2019b). The researchers suspect that the positively charged 

clusters of arginine and lysine at the surface of the protein may be important to its functionality 

(Sun et al., 2019b). The missense mutation in rs79597880 is coincidently a substitution from a 

positively charged residue, lysine, to a negatively charged residue, glutamic acid and is predicted 

to be deleterious. There have yet to be any functional studies to confirm Sun et al.’s (2008) 

findings. 

The stop-gain variant in solute carrier family 22 member 24 (SLC22A24; rs11231341) was 

the eighth highest FineMAV outlier in SSMP (Table 7). This mutation is common worldwide (global 
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derived allele frequency is 0.75) (The 1000 Genomes Project Consortium, 2015) and it should 

have been penalised by DAP but because this variant has a high CADD_PHRED score (47.00) and 

there are not many population-specific variants in SSMP due to its admixture, it was obtained in 

the top 10 FineMAV hits. 

3.4 Genome-wide FineMAV scores in the GenomeAsia 100K 

dataset 

The genome-wide FineMAV scores for the GenomeAsia 100K populations from Northeast 

Asia, South Asia, Southeast Asia and Oceania are displayed in Figure 12. The dataset consists of 

66,236,516 SNPs of which 6,654 of the derived alleles passed the 99.99th percentile threshold. 

The Manhattan plot for the Oceanian populations indicate that there are more population-

specific signals compared to the other three continental regions, with Southeast Asian 

populations having the least population-specific signals. In Oceanian populations, the highest-

scoring derived allele is 12.55 while the Northeast Asian, South Asian and Southeast Asian 

populations it is 5.86, 9.81 and 3.03 respectively (Appendix F). 

The authors of this dataset performed a series of methods to infer the population 

structure, including PCA and ADMIXTURE analysis. Oceanian populations are represented by a 

single Melanesian ancestry group, with a handful of populations having some levels of Southeast 

Asian ancestry (GenomeAsia100K Consortium, 2019). As the continental region with the least 

admixture between the four regions, I correctly expected FineMAV to generate more high-

scoring hits for Oceania, similar to the Singaporean Indian population in the earlier dataset. In 

contrast, Southeast Asian populations are highly admixed as they share genetic ancestry with the 

other three continental regions, and, therefore, have fewer population-specific variant outliers. 

Several Mainland Southeast Asian populations, such as Burmese, Thai, and  Vietnamese, carry 

moderate levels of Northeast Asian ancestry (GenomeAsia100K Consortium, 2019). Indigenous 

Bruneian and Taiwanese populations as well as some Mainland Southeast Asians share genetic 

ancestry with many tribal groups living in India (GenomeAsia100K Consortium, 2019). 

Populations living in Flores, an island in Indonesia, carry varying degrees of Melanesian ancestry 

(GenomeAsia100K Consortium, 2019).  
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Figure 12: Manhattan plots of the GenomeAsia 100K Northeast Asian (NEA, orange), South Asian (SAS, 
blue), Southeast Asian (SEA, grey) and Oceanian (OCE, purple) genome-wide FineMAV scores. Each circle 
on the Manhattan plot signifies a SNP plotted against its GRCh37 genomic coordinates along the x-axis. 
The red line represents the 99.99th percentile of the FineMAV score distribution in each population.  
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Figure 13: The frequency distribution of the genome-wide FineMAV scores for the GenomeAsia 100K 
Northeast Asian (NEA), South Asian (SAS), Southeast Asian (SEA) and Oceanian (OCE) populations. The 
vertical dashed line represents the 99.99th percentile. 
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As opposed to the merged Chinese and Singaporean datasets, in which only SNPs that 

were polymorphic in all populations were analysed, the VCF files from the GenomeAsia 100K 

were jointly-called. This is evident in the distribution graph for the genome-wide FineMAV scores 

(Figure 13) where the first bin of the histogram contains more than 90% of the whole genome 

derived alleles. This distribution is similar to the 1000 Genomes Project in which individuals from 

each continental population were also jointly-called (Szpak et al., 2018). When comparing 

between the distribution of FineMAV scores for a merged dataset (the 90HC, SSIP and SSMP) and 

a jointly-called dataset (GenomeAsia 100K and 1000 Genomes Project) (Figure 10 and Figure 13), 

we can see that there are many SNPs unaccounted for in merged datasets due to the fact that 

homozygous reference alleles are not called and cannot, therefore, be distinguished from missing 

SNPs in the analysis. This goes hand-in-hand with my recommendation for users who would like 

to use the FineMAV software, in that I suggest users to use jointly-called data to achieve a more 

complete scan. 

In Northeast Asian populations, FineMAV was able to replicate missense variants in three 

genes that are known to be positively selected: EDAR (rs3827760), which was also picked up in 

90HC, the major facilitator superfamily domain containing 12 (MFSD12; rs2240751) and PRSS53 

(rs11150606) (Figure 12) (Sabeti et al., 2007; Yngvadottir et al., 2009; Adhikari et al., 2016; Szpak 

et al., 2018; Adhikari et al., 2019; Sun et al., 2019a; Wu et al., 2019).  

The rs2240751 (MFSD12) variant is the highest-scoring FineMAV variant in Northeast 

Asians. MFSD12 plays a role in skin pigmentation processing. It encodes a transporter lysosomal 

protein and is expressed in melanocytes (Crawford et al., 2017; Adhikari et al., 2019). 

Downregulation of MFSD12 was observed in melanocytes with darker pigmentation (Crawford 

et al., 2017) and significantly elevated expression was seen in melanoma tissue (Wei et al., 2019). 

The variant was first reported to be associated with lighter skin pigmentation in a GWAS in Latin 

Americans (Adhikari et al., 2019), and has since been associated with tanning ability in Japanese 

individuals (Shido et al., 2019) and facial pigmented spots in Koreans (Shin et al., 2020).  This 

variant is found in East Asians but not in Europeans suggesting that it may have been positively 

selected in East Asians after splitting from Europeans, although the estimated selection 

coefficient is weaker in comparison to other known pigmentation genes (Adhikari et al., 2019). It 
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was theorised that MFSD12 may be involved in the convergent evolution of lighter skin 

pigmentation in East Asians (Adhikari et al., 2019). UV radiation is considered a strong 

environmental selection pressure as skin colour has been correlated with solar radiation 

(Jablonski and Chaplin, 2000; Jablonski and Chaplin, 2010). Darker skin pigmentation can offer 

advantages in regions of higher UV radiation such as protection against skin cancer and prevent 

photolysis of folate, which could result in infertility (Branda and Eaton, 1978; Jablonski and 

Chaplin, 2000; Jablonski and Chaplin, 2010; Greaves, 2014). However, at higher latitudes in places 

with less UV radiation, this would be a disadvantage as melanin would block UV light and could 

hinder vitamin D biosynthesis, making lighter skin pigmentation a favourable trait (Jablonski and 

Chaplin, 2000; Jablonski and Chaplin, 2010).  

The variant in PRSS53 (rs11150606) is the third top-scoring FineMAV variant in Northeast 

Asians (Figure 12) and the sixth FineMAV hit in 1000 Genomes East Asian population (Szpak et 

al., 2018). rs11150606 was identified to be associated with hair shape in Latin Americans 

(Adhikari et al., 2016). Similar to rs3827760 (EDAR), the authors suggest that the PRSS53 variant 

is likely to have been positively selected in East Asians and may have influenced their scalp hair 

shape (Adhikari et al., 2016). However, a Han Chinese genome-wide study disagreed with this 

conclusion and the authors affirm that EDAR predominantly affects straight hair in East Asians 

(Wu et al., 2016). PRSS53 encodes a serine protease and is expressed in hair follicles. In vitro 

experiments confirm that that the variant, which results in a Q30R substitution, affects the 

processing and secretion of the protease (Adhikari et al., 2016). 

Examples of novel SNPs that were picked up in Northeast Asians are missense mutations 

in rs2274084 in gap junction beta-2 protein (GJB2), which encodes the gap junction protein 

connexin 26, and rs55975541 in CDC42 binding protein kinase gamma (CDC42BPG). Multiple 

studies have identified rs2274084 (GJB2) in Asian and Hispanic patients with hereditary non-

syndromic hearing loss, although this polymorphism is considered benign because it is also 

observed in healthy participants (Girish et al., 2007; Sung-Hee et al., 2008; Tekin et al., 2010; Wei 

et al., 2013; Zheng et al., 2015). It has been theorised that hearing loss risk increases when an 

individual carries two GJB2 mutations: rs2274084, which results in a V27I amino acid substitution, 

and rs2274083, that results in E114G substitution (Tekin et al., 2010; Choi et al., 2011). There are 
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conflicting reports from in vitro experiments that attempted to study the effects of these two 

mutations. One report concluded that the double mutant alleles hindered the function of the gap 

function (Tekin et al., 2010) while the other study indicated that it may not be pathogenic and 

even suggests that p.V27I may compensate for the loss of hemichannel activity of p.E114G (Choi 

et al., 2011). A study has also associated rs2274084 (GJB2) with Epstein-Barr virus positive 

nasopharyngeal carcinoma, and concluded that the homozygous derived allele genotype, TT, may 

be a risk factor (Xiao et al., 2018). The other novel SNP, rs55975541 (CDC42BPG) has been 

associated, in Japanese and Koreans, with elevated serum uric acid levels, an indication of kidney 

disease (Yamada et al., 2017; Lee et al., 2018; Yasukochi et al., 2018). 

The top FineMAV candidate in South Asians in this analysis is the missense rs201075024 

in PRSS53. It was also the highest-scoring and only FineMAV variant highlighted in the 1000 

Genomes South Asian population (Szpak et al., 2018).  This variant lies 10 base pairs away from 

the aforementioned East Asian-specific PRSS53 variant, rs11150606. The effects of rs201075024 

on the PRSS53 serine protease is still unknown, although it can be hypothesised that this variant, 

like the East Asian-specific variant, may influence hair shape in South Asians.  

A novel SNP that was picked up in South Asians is a missense rs34725387 in myosin IH 

(MYO1H), which was the fourth highest-scoring FineMAV variant in the population. Zebrafish 

knockdown studies of MYO1H orthologs confirm that MYO1H is involved in craniofacial skeletal 

development (Sun et al., 2018). A few polymorphisms have been associated with malocclusion, 

especially with mandibular prognathism (Tassopoulou-Fishell et al., 2012; Cruz et al., 2017; Sun 

et al., 2018; Cunha et al., 2019), but rs34725387 was not reported to be causal in any of these 

studies.  

There are several variants that have a high allele frequency in Africans and/or Europeans 

and generate high FineMAV scores in South Asians because of their absence in Asians and 

Oceanians. Had I included African and/or European populations in the analysis, these variants 

would be penalized by FineMAV because of allele sharing. These variants include the nonsense 

mutation in FUT2 (rs601338), which was picked up in Singaporean Indians, and the 

nonsynonymous mutation in SLC24A5 (rs1426654). rs1426654 (SLC24A5) is a well-known, 
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positively selected variant that has reached fixation in Europeans and has spread to neighbouring 

regions such as sub-Saharan Africa, West Eurasia and South Asia (Lamason et al., 2005; Mallick 

et al., 2013). This mutation was first reported to be responsible for lighter skin pigmentation and 

was functionally validated in zebrafish (Lamason et al., 2005). Following that, rs1426654 was also 

found to be associated with iris and hair colour in South Asians and Latin Americans (Edwards et 

al., 2016; Adhikari et al., 2019; Jonnalagadda et al., 2019). 

Southeast Asians generated fewer population-specific signals (Figure 12), due to the 

extensive genetic admixture in the populations sampled from this region. However, FineMAV 

generated relatively high scores for variants that were common in other continental regions, such 

as the derived allele in rs11231341 (SLC22A24) (Figure 12) (The 1000 Genomes Project 

Consortium, 2015). rs11231341 was also picked up in SSMP, which is also a highly admixed 

population. Many of the top 50 variants in Southeast Asians have low DAP scores (32/50 have 

DAP scores that are less than 0.1) (Appendix F). The reason why these non-population-specific 

variants are in the top 50 is because they are highly deleterious and therefore, the CADD_PHRED 

scores are high (Appendix F). This may be a caveat that users of the FineMAV software need to 

keep in mind. Among the top FineMAV variants that produced high DAP scores, indicating that 

they were population-specific, were the missense rs11150606 (PRSS53) and rs3827760 (EDAR) 

mutations that were also identified as outliers in Northeast Asians, 90HC and SSMP. 

In Oceania, the highest-scoring FineMAV variant is the stop-gain variant rs16982743 in 

sialic acid-binding immunoglobulin-like lectins 12 (SIGLEC12). Siglec-12 belongs to a family of 

transmembrane proteins that regulate immune response, called Siglecs (Varki and Angata, 2006). 

Siglecs can recognise sialic acids, which is a type of acidic sugar that is important in self-associated 

molecular patterns or also known as “signature of self” (Pillai et al., 2012; Matthew et al., 2014). 

Siglec-12 preferentially binds to Neu5Gc, which is a form of sialic acid (Angata et al., 2001; Angata, 

2018). However, the gene that encodes the enzyme that forms Neu5Gc, has undergone 

pseudogenisation in non-human primates (Chou et al., 1998; Chou et al., 2002). In response to 

the loss of Neu5G on the cell surface membrane, a missense mutation (R122) in SIGELEC12, which 

results in the loss of recognition of Neu5Gc, spread and has even reached fixation in modern 

humans (Angata et al., 2001; Angata, 2018). It is likely that pathogens may have been the driving 
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selection pressure as it would offer protection against Neu5Gc-specific pathogens (Angata, 2018; 

Khan et al., 2020). The average allele frequency in humans for the stop-gain mutation in 

SIGELEC12 is 0.18 (The 1000 Genomes Project Consortium, 2015). Oceanians have the highest 

frequency (0.78) (GenomeAsia100K Consortium, 2019) compared to other continental regions, 

with Africans having the second highest at 0.37 (The 1000 Genomes Project Consortium, 2015). 

It may be possible that the stop-gain mutation increased in frequency in Oceanians because of 

positive selection, although this seems unlikely because the R122C substitution would have 

already rendered Siglec-XII (Roman numerals are used when it can no longer recognise sialic acid) 

non-functional. Perhaps the high allele frequency in Oceanians can be attributed to archaic 

human introgression. The stop-gain mutation occurs in 60% and 50% of Neanderthal and 

Denisovan genomes, respectively (Khan et al., 2020), and Oceanian populations have greater 

archaic human admixture, especially with Denisovans, compared to other continental regions 

(David et al., 2010; Reich et al., 2011; Jacobs et al., 2019; Gokcumen, 2020). This stop-gain variant 

has been associated with adverse cardiovascular outcomes in hypertensive patients on 

antihypertension therapy (McDonough et al., 2013). 

There are many missense mutations among the top FineMAV candidates in Oceania. 

Examples are rs79997355 in the gamma-aminobutyric acid type A receptor π subunit (GABRP), 

rs2271188 in erb-b2 receptor tyrosine kinase 3 (ERBB3), rs377326763 in fibroblast growth factor 

20 (FGF20), rs370064150 in collagen type IX alpha 2 chain (COL9A2) and rs377608586 in dual 

oxidase 2 (DUOX2) (Figure 12). What these variants have in common is that they are present in 

Oceania and, to a small degree, in Southeast Asians, but are virtually absent in the rest of the 

world (The 1000 Genomes Project Consortium, 2015; Lek et al., 2016; GenomeAsia100K 

Consortium, 2019; Karczewski et al., 2020; Phan et al., 2020). Since Oceanian and Southeast Asian 

populations are underrepresented in genomic datasets, not much is known about these variants. 

These genes are responsible for a wide range of functions. Both GABRP and ERRB3 have been 

associated with cancer (Sung et al., 2017; Jiang et al., 2019; Hafeez et al., 2020). With regards to 

ERRB3, conflicting conclusions have been made about whether it is a functional candidate gene 

in schizophrenia (Kanazawa et al., 2007; Li et al., 2009a). COL9A2 encodes a component in 

collagen and mutations in this gene are associated with musculoskeletal disorders like multiple 
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epiphyseal dysplasia and intervertebral disc disease (Muragaki et al., 1996; Annunen et al., 1999; 

Seki et al., 2006). FGF20 is expressed in dopaminergic neurons and has been linked to Parkinson’s 

disease (Itoh and Ohta, 2013). Mutations in DUOX2 have been linked with hyperthyroidism 

(Moreno and Visser, 2007; Kizys et al., 2017). 

3.5 Comparing the top 50 FineMAV variants 

I compared the top 50 FineMAV outlier variants I obtained from my analysis with each 

other, and to the published FineMAV scores Szpak et al. (2018) generated from the 1000 

Genomes East and South Asian populations and found that there was a lack of overlap between 

the populations (Figure 14). I speculated that this may be the case because of the manner in 

which these call sets were generated resulting in missing data and that perhaps these high-

scoring FineMAV variants are in LD with one another. Pairwise comparisons of LD between the 

top 50 variants from each population were performed (Figure 15 and Figure 16). Pairwise LD tests 

could not be performed on the GenomeAsia 100K dataset as their VCF files do not contain 

genotype information for each individual, which is required for LD tests, so I opted to conduct 

them using the 1000 Genomes Project East and South Asian populations.  

Several regions of LD were identified among Northeast/East Asian populations (Figure 15) 

and among South Asian populations (Figure 16). An LD region located in chromosome 16 was 

observed in both continental regions (Figure 15B and Figure 16B) and I suspected that the East 

Asian-specific and South Asian-specific PRSS53 variants, rs11150606 and rs201075024, 

respectively, may have genetically ‘hitch-hiked’ the neighbouring high-scoring SNPs. The LD block 

seen in chromosome 3 of East/Northeast Asian populations (from the 2nd to 11th SNP), for the 

most part, span across non-coding SNPs (intronic, upstream and intergenic) (Figure 15A). The 4th 

SNP (rs2072053) and the 9th SNP (rs2229647) of the block are missense mutations belonging to 

semaphorin 3F (SEMA3F) and interferon related developmental regulator 2 (IFRD2) respectively. 

This region has been picked up in the Singaporean SG10K dataset and hypothesised to be 

selected in the Chinese population either before or after their split from Malays (Wu et al., 2019). 

It is part of an introgressed segment that East Asians acquired from Neanderthals (Ding et al., 

2014). The authors suspect the hyaluronidase (HYAL) genes may be selected in response to UV-
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B irradiation (Ding et al., 2014). It is interesting to note that there are no high-scoring 

GenomeAsia 100K Northeast Asian SNPs in the LD block. This may be because the variant may be 

selected in the Southern parts of East Asia (e.g. Southern China, Mainland Southeast Asia) and 

not the Northern parts of Asia (e.g. Mongolia, Russia). In South Asian populations, I observed two 

regions of high LD in chromosome 15 (from 1st to 3rd SNP and from the 6th to 13th SNP) that also 

mostly spans across non-coding SNPs (intronic, 5’ UTR, downstream and intergenic) (Figure 16A). 

The 13th SNP (rs61741344) is a synonymous variant located in RNA binding protein with multiple 

splicing 2 (RBPMS2). None of these variants have been identified in genome-wide association or 

selection studies. This could possibly mean that one of them may be potentially positively 

selected or that the causal variant may be within the LD block but is missing from the sequencing 

dataset. 
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(A)  

 
(B) 

 
(C) 

 
 

Figure 14: Venn diagram illustrating the overlap in the top 50 FineMAV hits between (A) the 90 Han 
Chinese (90HC), Northeast Asians (NEA) from the GenomeAsia 100K dataset (GA100K) and East Asians 
from the 1000 Genomes Project; (B) the Singaporean Indians (SSIP) and South Asians (SAS) from the 
GA100K and the 1000 Genomes Project and (C) Singaporean Malays (SSMP) and Southeast Asians (SEA) 
from GA100K. 
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Figure 15: Pairwise LD plots for the top 50 FineMAV outliers from the Han Chinese (90HC, asterisk), 1000 
Genomes East Asians (EAS, triangle) and the GenomeAsia 100K Northeast Asians (NEA, circle) in (A) 
chromosome 3 and (B) chromosome 16. The chromosome ideogram is presented above each plot with 
the red box indicating the area of interest with the SNP locations indicated on the white bar below. SNPs 
include protein-altering (red), synonymous (green), untranslated (blue) and non-transcribed variants 
(black). The black rectangle represents the East Asian-specific PRSS53 variant. The colour of the squares 
signify the strength of LD (r2 values) between a pair of SNPs where the darker the colour, the stronger 
the LD. The r2 values, which are multiplied by 100, are shown in the squares. Figures were generated 
with Haploview (Barrett et al., 2005). 
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Figure 16: Pairwise LD plots for the top 50 FineMAV outliers from the Singaporean Indian (SSIP, asterisk), 
1000 Genomes South Asians (SAS, triangle) and the GenomeAsia 100K South Asians (SAS, circle) in (A) 
chromosome 15 and (B) chromosome 16. The chromosome ideogram is presented above each plot with 
the red box indicating the area of interest with the SNP locations indicated on the white bar below. SNPs 
include protein-altering (red), synonymous (green), untranslated (blue) and non-transcribed variants 
(black). The black rectangle represents the South Asian-specific PRSS53 variant. The colour of the squares 
signify the strength of LD (r2 values) between a pair of SNPs where the darker the colour, the stronger 
the LD. The r2 values, which are multiplied by 100, are shown in the squares. Figures were generated 
with Haploview (Barrett et al., 2005). 
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4 CONCLUSION 

4.1 Summary 

There were three objectives that have been addressed in this project. The first objective 

was to use FineMAV, which is a statistical method that was developed to prioritise candidate 

positively selected variants for functional follow-up. It was used to identify population-specific 

variants from whole genome sequences obtained from individuals across Southeast Asia. High-

coverage whole genome sequences were obtained from Chinese, Indian and Malay groups China 

and Singapore, as well as larger continental regions like Northeast Asia, South Asia, Southeast 

Asia, and Oceania. Southeast Asia and Oceania are particularly interesting as they are 

underrepresented in genome-wide positive selection scans. I replicated well-established 

selection signals, such as the ones in EDAR and PRSS53, and found novel SNPs that may be 

potentially interesting for modelling and functional follow-up. 

The second objective was to display the genome-wide FineMAV statistics in a human 

genome browser to enable graphical visualisation and genome annotations. This was achieved 

by creating bigWig files, containing the FineMAV scores, which were uploaded onto genome 

browsers such as the web-based UCSC Genome Browser (Kent et al., 2002; Navarro Gonzalez et 

al., 2020) and the downloadable IGV (Robinson et al., 2011). 

The third objective was to make FineMAV more accessible to researchers by creating a 

software program which allows researchers to calculate the FineMAV statistic for datasets of 

their interest. This was achieved by creating a software program that exists as a command-line 

interface and a graphical user interface. The software can output bigWig files which users can 

use to visualise the genome-wide FineMAV scores. It was built to be memory-efficient in 

anticipation of larger whole genome sequencing datasets. 
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4.2 Future directions 

After performing high-throughput FineMAV analysis, the next step would be to select 

variants for functional validation. A variant that would be useful to model in vivo would be the 

missense rs34725387 in MYO1H, which is a novel high-scoring SNP from South Asians. 

Knockdown experiments using MYO1H orthologs in zebrafish has determined that it plays a role 

in craniofacial skeletal development (Sun et al., 2018) and it would be interesting to investigate 

the effects of this missense mutation. Additionally, FineMAV analysis could be performed on 

newly released whole genome sequencing datasets such as the Genome Aggregation Database 

(gnomAD) and the recently sequenced HGDP as well as upcoming sequencing initiatives like the 

ones proposed in India, France and the United Kingdom to identify additional variants that can 

be prioritized for modelling by other researchers (Sudlow et al., 2015; Lévy, 2016; Department of 

Health and Social Care, 2018; Rajagopal, 2019; Bergström et al., 2020; Koch, 2020). It is just the 

beginning of the quest to understanding human evolutionary adaptations. The availability of 

millions of deeply phenotyped whole human genomes in the coming decade will provide unique 

opportunities to functionally validate some of the FineMAV outliers identified in this study and 

add to the growing catalogue of functionally validated variants driving population-specific 

selection in modern humans. 
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6 APPENDICES 

6.1 Appendix A 

Glossary 

Allele  One of the alternative forms of a gene or any other locus on a 
chromosome. 

Ancestral allele  An allele that is not derived. 

Derived allele  An allele that arises due to mutation during the evolution of a species. 

Fitness The ability of an individual to survive and reproduce relative to the 
rest of the population. 

Fixation  The change in a gene pool from a situation where there exists at least 
two alleles in a given population to a situation where only one of the 
alleles remain. 

Genetic hitchhiking  When the selection of one allele increases the frequency of other 
neutral alleles in a population that are in proximity to it on the same 
genomic segment. 

Haplotype  A group of genes within an organism that was inherited together from 
a single parent. 

Hard selective sweep  A type of selective sweep in which a new advantageous mutation 
arises, and spreads quickly to fixation due to natural selection. 

Incomplete selective sweep  A type of selective sweep in which an advantageous allele increases 
rapidly from low frequency, but has not yet reached fixation. 

Linkage disequilibrium Non-random association between alleles in a population due to their 
tendency to be co-inherited because of reduced recombination 
between them. 

Neutral allele  An allele that does not affect the fitness of the carrier. 

Population differentiation  The process by which allele frequencies in two or more populations 
diverge over time. 

Positive selection  Any selection that acts upon new, favourable mutations.  

Selective sweep  An event in which the frequency of an advantageous allele increases 
rapidly due to selection . 
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6.2 Appendix B 

List of software and online resources that were used in this project 

Software or resource Reference URL 

Deposited data 

Deep whole-genome 
sequencing of 90 Han 
Chinese genomes 

(Lan et al., 2017) 
https://www.ebi.ac.uk/ena/data/view/ 
PRJEB20820 

Singapore Sequencing 
Indian Project 

(Wong et al., 2014) 
https://blog.nus.edu.sg/sshsphphg/singapore
-sequencing-indian/ 

Singapore Sequencing 
Malay Project 

(Wong et al., 2013) 
https://blog.nus.edu.sg/sshsphphg/singapore
-sequencing-malay/ 

1000 Genomes Project 
(Phase 3) 

(The 1000 Genomes 
Project Consortium, 
2015) 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/ 
release/20130502/ 

GenomeAsia 100K 
(GenomeAsia100K 
Consortium, 2019) 

https://browser.genomeasia100k.org/#tid=d
ownload 

PHRED-like CADD scores 
(v1.4, GrCh37/hg19)  

(Kircher et al., 2014) 
https://krishna.gs.washington.edu/download
/CADD/v1.4/GRCh37/whole_genome_SNVs.t
sv.gz 

FASTA files of the ancestral 
sequences for Homo 
sapiens (release 71) 

(Paten et al., 2008a; 
Paten et al., 2008b) 

ftp://ftp.ensembl.org/pub/release75/fasta/a
ncestral_alleles/homo_sapiens_ancestor_GR
Ch37_e71.tar.bz2  

Software 

ADMIXTURE (v1.3) (Alexander et al., 2009) 
http://dalexander.github.io/admixture/ 
download.html  

BCFtools (v1.9) (Li et al., 2009b) 
https://samtools.github.io/bcftools/bcftools.
html 

Haploview (v4.2) (Barrett et al., 2005) 
https://www.broadinstitute.org/haploview/h
aploview  

PLINK (v.1.9) (Chang et al., 2015) https://www.cog-genomics.org/plink2 

SnpSift (v.4.3.1) (Cingolani et al., 2012) http://snpeff.sourceforge.net/SnpSift.html  

Variant Effect Predictor 
(VEP) (v98) 

(McLaren et al., 2016) https://github.com/Ensembl/ensembl-vep.git 

https://www.ebi.ac.uk/ena/data/view/PRJEB20820
https://www.ebi.ac.uk/ena/data/view/PRJEB20820
https://blog.nus.edu.sg/sshsphphg/singapore-sequencing-indian/
https://blog.nus.edu.sg/sshsphphg/singapore-sequencing-indian/
https://blog.nus.edu.sg/sshsphphg/singapore-sequencing-malay/
https://blog.nus.edu.sg/sshsphphg/singapore-sequencing-malay/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://browser.genomeasia100k.org/#tid=download
https://browser.genomeasia100k.org/#tid=download
https://krishna.gs.washington.edu/download/CADD/v1.4/GRCh37/whole_genome_SNVs.tsv.gz
https://krishna.gs.washington.edu/download/CADD/v1.4/GRCh37/whole_genome_SNVs.tsv.gz
https://krishna.gs.washington.edu/download/CADD/v1.4/GRCh37/whole_genome_SNVs.tsv.gz
ftp://ftp.ensembl.org/pub/release75/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh37_e71.tar.bz2
ftp://ftp.ensembl.org/pub/release75/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh37_e71.tar.bz2
ftp://ftp.ensembl.org/pub/release75/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh37_e71.tar.bz2
http://dalexander.github.io/admixture/download.html
http://dalexander.github.io/admixture/download.html
https://samtools.github.io/bcftools/bcftools.html
https://samtools.github.io/bcftools/bcftools.html
https://www.broadinstitute.org/haploview/haploview
https://www.broadinstitute.org/haploview/haploview
https://www.cog-genomics.org/plink2
http://snpeff.sourceforge.net/SnpSift.html
https://github.com/Ensembl/ensembl-vep.git
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6.3 Appendix C 
The population names and codes of the 1000 Genomes Project Phase 3 dataset (The 1000 

Genomes Project Consortium, 2015). 

Continental population 
and code 

Population description 
Population 
code 

African (AFR) 

Esan in Nigeria ENS 

Gambian in Western Division, Mandinka GWD 

Luhya in Webuye, Kenya LWK 

Mende in Sierra Leone MSL 

Yoruba in Ibadan, Nigeria YRI 

African Caribbean in Barbados ACB 

People with African Ancestry in Southwest USA ASW 

Admixed American 
(AMR) 

Colombians in Medellin, Colombia CLM 

People with Mexican Ancestry in Los Angeles, CA, USA MXL 

Peruvians in Lima, Peru PEL 

Puerto Ricans in Puerto Rico PUR 

European (EUR) 

Utah residents (CEPH) with Northern and Western 
European ancestry 

CEU 

British in England and Scotland FBR 

Finnish in Finland FIN 

Iberian Populations in Spain IBS 

Toscani in Italia TSI 

East Asian (EAS) 

Chinese Dai in Xishuangbanna, China CDX 

Han Chinese in Beijing, China CHB 

Southern Han Chinese CHS 

Japanese in Tokyo, Japan JPT 

Kinh in Ho Chi Minh City, Vietnam KHV 

South Asian (SAS) 

Bengali in Bangladesh BEB 

Gujarati Indians in Houston, TX, USA GIH 

Indian Telugu in the UK ITU 

Punjabi in Lahore, Pakistan PJL 

Sri Lankan Tamil in the UK STU 
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6.4 Appendix D 
The populations from the GenomeAsia 100K dataset (GenomeAsia100K Consortium, 2019) that 

was used in this project.  

Continental population 
and code 

Number of 
individuals 

Country of origin Population group(s) 

Northeast Asia (NEA) 346 

China 

Daur, Han, Hezhen, Mongola, Naxi, 
Oroqen, She, Tu, Tujia, Uygur, Xibo, Han 
Chinese in Beijing (CHB) and Southern 
Han Chinese (CHS) from the 1000 
Genomes Project 

Japan 
Japanese, Japanese (JPT) from the 1000 
Genomes Project 

Korea Korean 

Kyrgyzstan Kyrgyz 

Mongolia Buryat, Mongola, Xhalxh 

Russia 

Aleut, Altaian, Chukchi, Eskimo Chaplin, 
Eskimo Naukan, Eskimo Sireniki, Even, 
Itelman, Mansi, Tlingit, Tubalar, Ulchi, 
Yakut 

Oceania (OCE) 68 

Australia Australian 

New Zealand Maori 

Papua New 
Guinea 

Ata, Baining, Bougainville, Lavongai, 
Mamusi, Mussau, Nailik, Nakanai, 
Nakanai Bileki, Nakanai Loso, Papuan, 
Pasismanua 

United States Hawaiian 

South Asia (SAS) 681 

Bangladesh 
Bengali (BEB) from the 1000 Genomes 
Project 

India 

Abujmaria, Agharia, Bagdi, Birhor, Bison 
Horn Maria, Birhor, Brahmin, Chakma, 
Chamar, Chanchu, Dhurwa, Dorla, Gaud, 
Halba, Hill Korwa, Indian Telugu, Indian, 
Irula, Iyangar, Iyer, Jamatia, Jarwa, 
Kamar, Kapu, Kaya Dora, Khatri, Khonda 
Dora, Konda Reddy, Kota, Lambada, 
Lodha, Madiga, Mahar, Mala, Manipuri, 
Mog, Munda, Muria, Nav Buddha, 
Nicobarese, Onge, Oraon, Paniya, Rana 
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Tharu, Relli, Saryupari Brahmin, 
Sourasthra Brahmin, South Indian, Tanti, 
Toda, Toto, Urban Bangalore, Urban 
Chennai, West Bengal Brahmin, Yadava, 
Gujarati Indians in Houston, Texas, 
United States (GIH) from the 1000 
Genomes Project 

Nepal Kusunda 
 

Pakistan 

Balochi, Brahui, Brusho, Burusho, Gujjar, 
Hazara, Kalash, Makrani, Parsi, Pathan, 
Punjabi, Rajput, Sindhi, Punjabi in 
Lahore (PJL) from the 1000 Genomes 
Project 

 Sri Lanka Sri Lankan Tamil in the United Kingdom 
(STU) from the 1000 Genomes Project 

Southeast Asia (SEA) 333 

Brunei Dusun 

Cambodia Cambodian 

China 
Dai, Lahu, Miao, Yi, Chinese Dai in 
Xishuangbanna (CDX) from the 1000 
Genomes Project 

Indonesia 
Austronesian, Flores Bena, Flores Cibal, 
Flores Rampasasa 

Malaysia 
Kenisu, Kintak, Malaysian, Senoi Che 
Wong, Senoi Semai, Senoi Smak Beri, 
Temuan 

Philippines Aeta, Ati, Igorot 

Taiwan Ami, Atayal 

Thailand Thai 

Singapore Burmese 

Vietnam 
Kinh in Ho Chi Minh City (KHV) from the 
1000 Genomes Project 
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6.5 Appendix E 
Histograms of the pairwise PI_HAT values between the individuals in the 90 Han Chinese 

(90HC), Singaporean Indian (SSIP), Singaporean Malay (SSMP) and the 1000 Genomes Project 

datasets. 

(A) 

 
(B) 

 
Figure A1. Panel A shows a histogram representing proportional distribution of the PI_HAT values 

ranging from 0.0 to 1.0. Panel B shows a histogram representing the frequency distribution of PI_HAT 

values ranging from 0.12 to 1.00. The red dotted line at PI_HAT = 0.35 represents the threshold that 

was used to filter the datasets. Setting a lower threshold would have excluded multiple samples, 

compromising allele frequency calculations in the individual populations.  
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6.6 Appendix F 

Lists of top FineMAV candidates 

The following pages contain the top 50 FineMAV hits from the Han Chinese (90HC), 

Singaporean Indian (SSIP) and Singaporean Malay (SSMP) datasets as well as the top 100 

FineMAV hits from the GenomeAsia 100K Northeast Asian (NEA), South Asian (SAS), Southeast 

Asian (SEA) and Oceanian (OCE) populations. The values in the columns are rounded to two 

decimal places. 

HGVS (hg19/GRCh37) Genomic Human Genome Variation Society (HGVS) nomenclature 

using the hg19/GRCh37 reference genome 

SNP ID  Single Nucleotide Polymorphism ID 

DER  Derived allele 

GENE Gene name 

CONSEQUENCE Most severe variant consequence according to Ensembl (NC stands 

for non-coding; UTR stands for untranslated region) 

CADD PHRED-like scaled Combined Annotation-Dependent Depletion score 

DAF Derived allele frequency of the population 

DAP Derived allele purity 

FineMAV Fine-Mapping of Adaptive Variation score of the population 
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Top 50 FineMAV hits for the Han Chinese dataset (90HC). 

HGVS (hg19/GRCh37) SNP ID DER Gene Consequence CADD 
DAF 
90HC 

DAF 
SSIP 

DAF 
SSMP 

DAP 
FineMAV 
90HC 

NC_000002.11:g.109513601A>G rs3827760 G EDAR Missense (p.Val370Ala) 21.70 0.92 0.03 0.49 0.23 4.66 

NC_000005.9:g.176099727A>G rs13186794 G - Intergenic 16.22 0.49 0.06 0.05 0.51 4.11 

NC_000005.9:g.176099728A>G rs13186795 G - Intergenic 17.15 0.49 0.06 0.06 0.48 4.10 

NC_000004.11:g.31442427G>A rs56345433 A - Intergenic 11.56 0.53 0.09 0.02 0.53 3.21 

NC_000003.11:g.98031307T>A rs2316271 A OR5H8 Stop gained (p.Leu184Ter) 43.00 0.77 0.31 0.60 0.09 3.10 

NC_000016.9:g.31088347G>A rs749671 A ZNF646 Synonymous (p.Glu234=) 20.30 0.91 0.04 0.78 0.17 3.05 

NC_000005.9:g.76129053T>C rs631465 T F2RL1 Synonymous (p.Ile207=) 19.19 0.52 0.01 0.21 0.30 3.01 

NC_000002.11:g.109451118A>G rs72627476 G CCDC138 Intron 13.82 0.92 0.03 0.48 0.23 2.96 

NC_000012.11:g.132106717T>C rs10794470 T AC117500.3 Intron 11.54 0.27 0.00 0.01 0.94 2.94 

NC_000007.13:g.14587199G>A rs10236893 A DGKB Intron 19.92 0.42 0.03 0.12 0.35 2.89 

NC_000003.11:g.50326020G>A rs2229647 A IFRD2 Synonymous (p.His446=) 19.84 0.67 0.01 0.40 0.22 2.87 

NC_000010.10:g.3173092A>T rs71502284 T PFKP Intron 10.61 0.32 0.01 0.01 0.81 2.78 

NC_000016.9:g.31075175G>A rs2303223 A ZNF668 Synonymous (p.Gly225=) 17.64 0.91 0.04 0.78 0.17 2.67 

NC_000007.13:g.14587021T>C rs10252073 C DGKB Intron 17.43 0.43 0.03 0.12 0.36 2.66 

NC_000016.9:g.55060635T>C rs4517796 C - Intergenic 11.27 0.39 0.03 0.03 0.61 2.66 

NC_000011.9:g.62848487A>C rs11231341 C SLC22A24 Stop gained (p.Tyr501Ter) 47.00 0.87 0.76 0.79 0.07 2.65 

NC_000003.11:g.50187637T>C rs58137261 C SEMA3F Upstream gene 17.75 0.69 0.01 0.41 0.22 2.64 

NC_000018.9:g.22511045C>T rs17188214 T AC018697.1 Downstream gene 21.50 0.36 0.03 0.10 0.34 2.63 

NC_000016.9:g.31374535C>G rs2230429 G ITGAX Missense (p.Pro517Arg) 24.30 0.73 0.11 0.54 0.14 2.57 

NC_000015.9:g.64759279C>T rs35685348 T AC091231.1 Upstream gene 22.00 0.78 0.09 0.64 0.15 2.56 

NC_000007.13:g.14535608T>C rs16878192 C DGKB Intron 16.85 0.54 0.07 0.17 0.28 2.56 

NC_000002.11:g.104599371T>G rs78407975 G LINC01965 Intron 19.97 0.31 0.01 0.07 0.42 2.55 

NC_000014.8:g.66950852A>G rs28655067 G AL359232.1 Intron 9.52 0.46 0.04 0.03 0.59 2.54 

NC_000020.10:g.22384894G>T rs12481108 T AL133464.1 Intron 19.62 0.42 0.03 0.15 0.31 2.53 

NC_000011.9:g.21745636C>T rs12418851 T - Intergenic 15.16 0.28 0.00 0.05 0.59 2.52 

NC_000008.10:g.117645029T>A rs62510171 A - Intergenic 8.47 0.41 0.01 0.03 0.72 2.51 

NC_000003.11:g.50198840G>C rs74595980 C SEMA3F Intron 16.99 0.68 0.01 0.41 0.22 2.48 

NC_000001.10:g.36225948T>C rs7537203 C CLSPN Missense (p.Asn525Ser) 24.80 0.84 0.24 0.59 0.12 2.45 

NC_000016.9:g.31088625A>G rs749670 G ZNF646 Missense (p.Glu327Gly) 16.32 0.91 0.04 0.78 0.17 2.45 

NC_000002.11:g.26676395G>T rs12623642 T DRC1 Missense (p.Val633Phe) 26.10 0.64 0.14 0.37 0.15 2.45 

NC_000008.10:g.129884159T>C rs13276570 C - Intergenic 20.90 0.76 0.07 0.62 0.15 2.44 

NC_000008.10:g.3920668A>C rs77891957 C CSMD1 Intron 5.25 0.63 0.03 0.03 0.73 2.42 

NC_000009.11:g.73150984C>T rs6560142 T TRPM3 Missense (p.Arg1670Gln) 33.00 0.82 0.37 0.67 0.09 2.40 

NC_000007.13:g.100371358G>A rs2293766 A ZAN Stop gained (p.Trp1883Ter) 52.00 0.53 0.26 0.56 0.09 2.40 

NC_000014.8:g.97272382T>G rs2224442 G VRK1 Intron 19.81 0.87 0.16 0.63 0.14 2.38 

NC_000003.11:g.62986072A>G rs34047489 G LINC00698 Intron 15.03 0.33 0.01 0.06 0.48 2.37 

NC_000004.11:g.100436354A>G rs78349254 G C4orf17 Intron 10.17 0.43 0.01 0.07 0.54 2.36 

NC_000003.11:g.50197092C>T rs2072053 T SEMA3F Synonymous (p.Leu13=) 16.15 0.68 0.01 0.41 0.22 2.36 

NC_000015.9:g.40581543T>C rs936212 C PLCB2 Missense (p.Glu1095Gly) 20.30 0.62 0.04 0.40 0.19 2.35 

NC_000009.11:g.125273435G>A rs41277120 A OR1J2 Missense (p.Ala119Thr) 23.00 0.37 0.09 0.08 0.27 2.33 

NC_000002.11:g.170010985T>C rs2075252 T LRP2 Missense (p.Lys4094Glu) 22.60 0.55 0.09 0.28 0.19 2.31 

NC_000005.9:g.66908751T>G rs59491487 G AC112206.1 Downstream gene 20.40 0.80 0.14 0.56 0.14 2.31 

NC_000001.10:g.66036441A>G rs1137100 G LEPR Missense (p.Lys109Arg) 18.75 0.87 0.14 0.64 0.14 2.31 

NC_000002.11:g.37968684G>A rs72802008 A AC006369.2 Upstream gene 11.97 0.32 0.03 0.02 0.60 2.28 

NC_000016.9:g.31000809G>A rs13708 A STX1B 3 prime UTR 18.00 0.92 0.14 0.80 0.14 2.27 

NC_000003.11:g.50249500G>A rs4688744 A SLC38A3 Intron 16.01 0.67 0.01 0.41 0.21 2.27 

NC_000010.10:g.73452238T>A rs76555066 A CDH23 Intron 18.68 0.34 0.03 0.09 0.36 2.26 

NC_000012.11:g.112477055T>C rs12231744 C NAA25 Missense (p.Lys876Arg) 23.80 0.61 0.06 0.50 0.15 2.25 

NC_000016.9:g.48258198C>T rs17822931 T ABCC11 Missense (p.Gly180Arg) 24.00 0.91 0.41 0.50 0.10 2.25 

NC_000021.8:g.30331935G>A rs57646126 A LTN1 Missense (p.Ala859Val) 22.80 0.40 0.01 0.20 0.24 2.23 
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Top 50 FineMAV hits for the Singaporean Indian dataset (SSIP). 

HGVS (hg19/GRCh37) SNP ID DER GENE CONSEQUENCE CADD 
DAF 
90HC 

DAF 
SSIP 

DAF 
SSMP 

DAP 
FineMAV 
SSIP 

NC_000016.9:g.28506428C>T rs151233 T APOBR Synonymous (p.Leu22=) 16.22 0.01 0.57 0.03 0.83 7.68 

NC_000016.9:g.30936081G>A rs35675346 A FBXL19 Missense (p.Glu10Lys) 23.10 0.06 0.80 0.19 0.39 7.21 

NC_000016.9:g.28505660G>C rs151234 C CLN3 Intron 14.89 0.01 0.57 0.03 0.80 6.84 

NC_000016.9:g.31044683A>G rs58726213 G STX4 Upstream gene 21.60 0.09 0.87 0.21 0.36 6.69 

NC_000015.9:g.64592833T>C rs114713921 C CSNK1G1 5 prime UTR 17.45 0.01 0.49 0.04 0.75 6.34 

NC_000016.9:g.30666367C>T rs3747481 T PRR14 Missense (p.Pro359Leu) 22.90 0.10 0.86 0.24 0.31 6.09 

NC_000019.9:g.49206674G>A rs601338 A FUT2 Stop gained (p.Trp154Ter) 52.00 0.01 0.19 0.02 0.62 6.03 

NC_000015.9:g.91452595A>G rs2106673 A MAN2A2 Missense (p.Gln412Arg) 18.43 0.02 0.51 0.06 0.61 5.75 

NC_000010.10:g.17407147G>T rs729170 T ST8SIA6 Intron 18.64 0.01 0.34 0.01 0.90 5.74 

NC_000015.9:g.64653984G>T rs8026043 G PCLAF Downstream gene 15.76 0.01 0.49 0.04 0.75 5.73 

NC_000001.10:g.10271688C>G rs11121529 G KIF1B Intron 18.67 0.01 0.36 0.01 0.86 5.72 

NC_000016.9:g.30999462T>C rs2305880 T HSD3B7 Synonymous (p.Arg356=) 17.74 0.08 0.86 0.20 0.37 5.68 

NC_000007.13:g.21068814A>G rs12665958 G - Intergenic 22.20 0.01 0.29 0.01 0.88 5.57 

NC_000007.13:g.25696612T>C rs11509164 C AC005165.1 Intron 19.71 0.06 0.60 0.09 0.46 5.44 

NC_000004.11:g.135297559C>T rs1486995 C - Intergenic 19.94 0.01 0.40 0.04 0.67 5.38 

NC_000015.9:g.65042560G>A rs61741344 A RBPMS2 Synonymous (p.Ile62=) 17.38 0.01 0.37 0.02 0.82 5.32 

NC_000002.11:g.39109558G>A rs3099950 A MORN2 Missense (p.Glu48Lys) 25.50 0.01 0.26 0.01 0.81 5.31 

NC_000006.11:g.106535936C>T rs1340065 C PRDM1 Intron 19.03 0.01 0.49 0.07 0.57 5.29 

NC_000015.9:g.64792896G>A rs640005 G ZNF609 Intron 15.06 0.01 0.41 0.02 0.84 5.24 

NC_000008.10:g.110547482A>G rs72669129 G EBAG9 Upstream gene 13.06 0.01 0.59 0.06 0.68 5.21 

NC_000016.9:g.31090407G>C rs35713203 C ZNF646 Missense (p.Gly921Ala) 16.19 0.09 0.86 0.20 0.36 5.00 

NC_000001.10:g.53153432T>C rs443751 C COA7 Missense (p.Lys219Arg) 21.70 0.02 0.40 0.05 0.57 4.99 

NC_000015.9:g.64940203T>C rs6494484 T ZNF609 Intron 14.24 0.01 0.41 0.02 0.84 4.95 

NC_000001.10:g.51121198T>C rs11205753 C FAF1 Splice region (p.Val220=) 14.72 0.01 0.41 0.02 0.81 4.91 

NC_000001.10:g.49620445T>C rs549430 C AGBL4 Intron 19.16 0.04 0.44 0.03 0.58 4.89 

NC_000020.10:g.30753270T>C rs14316 T TM9SF4 3 prime UTR 13.57 0.00 0.59 0.09 0.61 4.86 

NC_000015.9:g.48426484A>G rs1426654 A SLC24A5 Missense (p.Thr111Ala) 19.66 0.01 0.43 0.07 0.58 4.86 

NC_000012.11:g.111847740A>G rs3803170 A SH2B3 Intron 21.40 0.06 0.67 0.19 0.34 4.84 

NC_000001.10:g.50576710T>A rs4357572 A ELAVL4 Intron 20.30 0.04 0.44 0.04 0.54 4.83 

NC_000015.9:g.64513415A>G rs116046132 G CSNK1G1 Intron 13.81 0.01 0.47 0.04 0.74 4.83 

NC_000001.10:g.49796157A>G rs1494462 G AGBL4 Intron 19.21 0.04 0.46 0.04 0.55 4.80 

NC_000005.9:g.87929869T>C rs10060622 C LINC00461 Intron 14.38 0.02 0.46 0.02 0.73 4.80 

NC_000015.9:g.37632513G>T rs28588437 T - Intergenic 18.17 0.02 0.33 0.01 0.80 4.76 

NC_000002.11:g.42181679A>T rs6740960 A C2orf91 Upstream gene 17.73 0.03 0.54 0.09 0.49 4.76 

NC_000009.11:g.594262A>C rs2641998 C KANK1 Intron 20.80 0.08 0.59 0.10 0.39 4.74 

NC_000002.11:g.80479986G>A rs76873192 A CTNNA2 Intron 14.81 0.01 0.39 0.02 0.83 4.74 

NC_000005.9:g.60199363C>T rs4647102 C ERCC8 Intron 18.28 0.06 0.49 0.04 0.53 4.69 

NC_000018.9:g.53963907A>G rs1558536 G - Intergenic 21.90 0.04 0.50 0.10 0.43 4.69 

NC_000016.9:g.77587338T>A rs282978 T - Intergenic 18.67 0.04 0.46 0.05 0.55 4.68 

NC_000012.11:g.48736985T>G rs2732481 G ZNF641 Missense (p.Gln363Pro) 22.50 0.01 0.47 0.11 0.44 4.67 

NC_000010.10:g.28468459A>C rs34772309 C MPP7 Intron 11.98 0.01 0.49 0.03 0.80 4.67 

NC_000015.9:g.37625116A>G rs28440992 G - Intergenic 17.67 0.02 0.33 0.01 0.80 4.63 

NC_000008.10:g.110283353T>G rs34660136 G NUDCD1 Missense (p.Asn394His) 23.50 0.01 0.33 0.05 0.60 4.60 

NC_000017.10:g.54942723A>C rs9911132 A DGKE 3 prime UTR 13.26 0.03 0.63 0.08 0.55 4.60 

NC_000005.9:g.60299072G>A rs162242 G NDUFAF2 Intron 17.25 0.05 0.49 0.04 0.55 4.58 

NC_000010.10:g.28439185C>T rs1781836 T MPP7 Intron 11.72 0.01 0.49 0.03 0.80 4.57 

NC_000015.9:g.37780648G>A rs17446248 A AC068875.1 Intron 17.29 0.02 0.36 0.02 0.74 4.56 

NC_000004.11:g.13242982A>G rs59531204 G - Intergenic 20.50 0.01 0.29 0.02 0.78 4.56 

NC_000016.9:g.30995669T>C rs6950 T SETD1A 3 prime UTR 14.25 0.08 0.86 0.20 0.37 4.56 

NC_000004.11:g.13174536A>G rs28368703 G - Intergenic 17.22 0.01 0.34 0.02 0.77 4.55 
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Top 50 FineMAV hits for the Singaporean Malay dataset (SSMP). 

HGVS (hg19/GRCh37) SNP ID DER GENE CONSEQUENCE CADD 
DAF 
90HC 

DAF 
SSIP 

DAF 
SSMP 

DAP 
FineMAV 
SSMP 

NC_000002.11:g.98272491A>G rs2290123 G ACTR1B 3 prime UTR 15.06 0.03 0.03 0.38 0.59 3.38 

NC_000002.11:g.97613974C>G rs114979404 G FAM178B Intron 11.67 0.02 0.03 0.38 0.64 2.81 

NC_000017.10:g.2238152T>C rs79597880 C TSR1 Missense (p.Lys199Glu) 25.90 0.09 0.01 0.30 0.36 2.75 

NC_000016.9:g.31088347G>A rs749671 A ZNF646 Synonymous (p.Glu234=) 20.30 0.91 0.04 0.78 0.17 2.62 

NC_000007.13:g.100371358G>A rs2293766 A ZAN Stop gained (p.Trp1883Ter) 52.00 0.53 0.26 0.56 0.09 2.53 

NC_000002.11:g.109513601A>G rs3827760 G EDAR Missense (p.Val370Ala) 21.70 0.92 0.03 0.49 0.23 2.47 

NC_000003.11:g.98031307T>A rs2316271 A OR5H8 Stop gained (p.Leu184Ter) 43.00 0.77 0.31 0.60 0.09 2.42 

NC_000011.9:g.62848487A>C rs11231341 C SLC22A24 Stop gained (p.Tyr501Ter) 47.00 0.87 0.76 0.79 0.07 2.42 

NC_000012.11:g.57865558G>T rs2229300 T GLI1 Missense (p.Gly1012Val) 25.80 0.05 0.01 0.22 0.42 2.40 

NC_000016.9:g.31075175G>A rs2303223 A ZNF668 Synonymous (p.Gly225=) 17.64 0.91 0.04 0.78 0.17 2.29 

NC_000017.10:g.2116822G>A rs17221357 A SMG6 Intron 22.10 0.09 0.01 0.29 0.35 2.27 

NC_000023.10:g.136126021G>A rs7066345 A - Intergenic 16.87 0.01 0.01 0.20 0.66 2.19 

NC_000022.10:g.22385399G>A rs117052129 G IGLV4-69 Stop gained (p.Trp3Ter) 34.00 0.94 0.97 0.98 0.06 2.15 

NC_000009.11:g.125377734A>G rs727913 G OR1Q1 Missense (p.Thr240Ala) 25.90 0.26 0.10 0.49 0.17 2.12 

NC_000016.9:g.31088625A>G rs749670 G ZNF646 Missense (p.Glu327Gly) 16.32 0.91 0.04 0.78 0.17 2.11 

NC_000005.9:g.118811533G>A rs25640 A HSD17B4 Missense (p.Arg131His) 33.00 0.49 0.24 0.65 0.10 2.11 

NC_000015.9:g.64759279C>T rs35685348 T AC091231.1 Upstream gene 22.00 0.78 0.09 0.64 0.15 2.11 

NC_000002.11:g.97630870G>A rs186840997 A FAM178B Intron 9.07 0.02 0.03 0.34 0.65 2.02 

NC_000008.10:g.129884159T>C rs13276570 C - Intergenic 20.90 0.76 0.07 0.62 0.15 2.00 

NC_000015.9:g.42149506G>C rs12442525 C SPTBN5 Missense (p.Gln2851Glu) 22.50 0.97 0.33 0.87 0.10 1.99 

NC_000011.9:g.5444136C>T rs2647574 T OR51Q1 Stop gained (p.Arg236Ter) 35.00 0.72 0.50 0.78 0.07 1.99 

NC_000009.11:g.125014475C>T rs1888218 T RBM18 Intron 16.71 0.33 0.07 0.62 0.19 1.99 

NC_000011.9:g.115254729T>A rs75680309 A CADM1 Intron 16.49 0.07 0.03 0.31 0.39 1.98 

NC_000004.11:g.27219736A>G rs13118735 G LINC02261 Intron 21.00 0.41 0.01 0.53 0.18 1.97 

NC_000023.10:g.136126139G>T rs73567910 T - Intergenic 15.19 0.01 0.01 0.20 0.66 1.97 

NC_000016.9:g.31000809G>A rs13708 A STX1B 3 prime UTR 18.00 0.92 0.14 0.80 0.14 1.96 

NC_000016.9:g.89261482C>A rs2270416 C CDH15 Stop gained (p.Tyr788Ter) 36.00 0.81 0.94 0.83 0.07 1.96 

NC_000001.10:g.152088040C>T rs79969175 T TCHH Upstream gene 21.30 0.02 0.01 0.18 0.52 1.96 

NC_000009.11:g.73150984C>T rs6560142 T TRPM3 Missense (p.Arg1670Gln) 33.00 0.82 0.37 0.67 0.09 1.95 

NC_000011.9:g.115255842T>C rs10488708 C CADM1 Intron 17.22 0.07 0.03 0.30 0.37 1.91 

NC_000002.11:g.98261636A>G rs2071038 G COX5B Upstream gene 8.51 0.03 0.03 0.38 0.59 1.91 

NC_000016.9:g.31374535C>G rs2230429 G ITGAX Missense (p.Pro517Arg) 24.30 0.73 0.11 0.54 0.14 1.90 

NC_000009.11:g.129253264A>G rs10987302 G MVB12B Intron 22.10 0.54 0.07 0.59 0.14 1.89 

NC_000001.10:g.226555302A>G rs1136410 G PARP1 Missense (p.Val762Ala) 28.10 0.44 0.01 0.40 0.17 1.87 

NC_000015.9:g.38129204T>G rs1502409 G - Intergenic 20.70 0.73 0.14 0.71 0.13 1.86 

NC_000016.9:g.90048327G>A rs45456401 A AFG3L1P Splice donor 26.70 0.28 0.01 0.39 0.18 1.86 

NC_000012.11:g.112477055T>C rs12231744 C NAA25 Missense (p.Lys876Arg) 23.80 0.61 0.06 0.50 0.15 1.84 

NC_000010.10:g.127271548C>A rs7096815 A TEX36-AS1 Downstream gene 15.93 0.17 0.03 0.43 0.27 1.84 

NC_000001.10:g.54606804C>T rs3766465 T CDCP2 Missense (p.Gly244Arg) 31.00 0.84 0.83 0.92 0.06 1.84 

NC_000010.10:g.55955444T>G rs4935502 G PCDH15 Missense (p.Asp435Ala) 28.40 0.84 0.43 0.78 0.08 1.83 

NC_000001.10:g.152192813G>A rs72477389 A HRNR Missense (p.Ser431Phe) 15.76 0.01 0.01 0.18 0.63 1.82 

NC_000017.10:g.2090215G>A rs78081565 A SMG6 Intron 17.60 0.08 0.03 0.30 0.35 1.81 

NC_000009.11:g.118378191G>T rs10982846 G - Intergenic variant 20.80 0.58 0.14 0.69 0.13 1.80 

NC_000004.11:g.167199148A>G rs1675016 A - Intergenic variant 21.20 0.80 0.21 0.73 0.11 1.77 

NC_000002.11:g.98270329A>G rs78168940 G ACTR1B Downstream gene 8.26 0.03 0.03 0.35 0.60 1.75 

NC_000016.9:g.30666367C>T rs3747481 T PRR14 Missense (p.Pro359Leu) 22.90 0.10 0.86 0.24 0.31 1.74 

NC_000016.9:g.59197916A>G rs7194050 G AC092121.1 Downstream gene 20.70 0.71 0.19 0.72 0.12 1.74 

NC_000011.9:g.104763117G>A rs497116 A CASP12 Stop gained (p.Arg125Ter) 27.00 0.99 0.96 1.00 0.06 1.73 

NC_000014.8:g.97272382T>G rs2224442 G VRK1 Intron 19.81 0.87 0.16 0.63 0.14 1.73 

NC_000019.9:g.39307103C>T rs2229259 C ECH1 Missense (p.Gly217Arg) 32.00 0.95 0.94 0.83 0.07 1.73 
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Top 50 FineMAV hits from the GenomeAsia 100K Northeast Asian (NEA) continental population.  

HGVS (hg19/GRCh37) SNP ID DER GENE CONSEQUENCE CADD 
DAF 
NEA 

DAF 
SAS 

DAF 
SEA 

DAF 
OCE 

DAP 
FineMAV 
NEA 

NC_000019.9:g.3548231A>G rs2240751 G MFSD12 Missense (p.Tyr182His) 25.50 0.35 0.01 0.04 0.00 0.66 5.86 

NC_000002.11:g.109513601A>G rs3827760 G EDAR Missense (p.Val370Ala) 21.70 0.85 0.09 0.53 0.03 0.23 4.23 

NC_000016.9:g.31099011T>C rs11150606 C PRSS53 Missense (p.Gln30Arg) 22.50 0.82 0.08 0.59 0.01 0.23 4.19 

NC_000013.10:g.20763642C>T rs2274084 T GJB2 Missense (p.Val27Ile) 23.10 0.33 0.04 0.04 0.00 0.52 3.94 

NC_000016.9:g.21689879T>A rs78970023 A OTOA Missense (p.Phe15Tyr) 17.69 0.41 0.06 0.05 0.02 0.44 3.19 

NC_000011.9:g.64597201G>A rs55975541 A CDC42BPG Missense (p.Arg1237Trp) 32.00 0.20 0.01 0.04 0.01 0.48 3.07 

NC_000011.9:g.62848487A>C rs11231341 C SLC22A24 Stop gained (p.Tyr501Ter) 47.00 0.85 0.81 0.80 0.45 0.07 2.93 

NC_000014.8:g.37154111C>T rs201299512 C SLC25A21 Stop gained (p.Trp208Ter) 45.00 1.00 1.00 1.00 1.00 0.06 2.88 

NC_000006.11:g.134385155C>G rs78562617 G - Intergenic 18.66 0.19 0.01 0.01 0.00 0.79 2.87 

NC_000003.11:g.4774832C>T rs750361124 C ITPR1 Stop gained (p.Arg1746Ter) 44.00 1.00 1.00 1.00 1.00 0.06 2.82 

NC_000016.9:g.48258198C>T rs17822931 T ABCC11 Missense (p.Gly180Arg) 24.00 0.92 0.46 0.49 0.12 0.13 2.81 

NC_000015.9:g.28228553C>T rs74653330 T OCA2 Missense (p.Ala481Thr) 24.70 0.12 0.00 0.00 0.00 0.93 2.76 

NC_000014.8:g.21500218C>G rs76101114 C TPPP2 Stop gained (p.Tyr165Ter) 43.00 1.00 1.00 1.00 1.00 0.06 2.76 

NC_000002.11:g.109451118A>G rs72627476 G CCDC138 Intron 13.82 0.84 0.08 0.53 0.03 0.23 2.68 

NC_000003.11:g.98031307T>A rs2316271 A OR5H8P Stop gained (p.Leu184Ter) 43.00 0.79 0.37 0.62 0.52 0.08 2.64 

NC_000008.10:g.145736038T>A rs143475431 T MFSD3 Stop gained (p.Cys296Ter) 41.00 1.00 1.00 1.00 1.00 0.06 2.63 

NC_000014.8:g.51219349G>A rs61755995 A NIN Missense (p.Arg1613Cys) 32.00 0.14 0.00 0.03 0.00 0.57 2.58 

NC_000015.9:g.28197037T>C rs1800414 C OCA2 Missense (p.His615Arg) 23.00 0.40 0.02 0.24 0.00 0.28 2.57 

NC_000016.9:g.77756501G>T rs182579196 G NUDT7 Stop gained (p.Glu8Ter) 40.00 1.00 1.00 1.00 1.00 0.06 2.56 

NC_000005.9:g.145176022G>A rs375685870 G PRELID2 Stop gained (p.Arg165Ter) 40.00 1.00 1.00 1.00 1.00 0.06 2.56 

NC_000011.9:g.61664711A>T rs76095489 T RAB3IL1 Downstream gene 19.55 0.35 0.06 0.08 0.00 0.37 2.52 

NC_000008.10:g.10555301G>T rs77073793 T C8orf74 Missense (p.Cys145Phe) 23.30 0.17 0.01 0.02 0.00 0.63 2.52 

NC_000017.10:g.76121318G>A rs12449858 A TMC6 Missense (p.Leu153Phe) 25.10 0.36 0.04 0.08 0.07 0.28 2.50 

NC_000016.9:g.31088347G>A rs749671 A ZNF646 Synonymous (p.Glu234=) 20.30 0.91 0.20 0.73 0.23 0.13 2.47 

NC_000016.9:g.49164641T>C rs1510986 C - Intergenic 18.64 0.63 0.24 0.22 0.03 0.20 2.39 

NC_000004.11:g.5755658G>T rs146232611 G EVC Stop gained (p.Glu488Ter) 37.00 1.00 1.00 1.00 1.00 0.06 2.37 

NC_000001.10:g.18808668T>G rs544927168 T KLHDC7A Stop gained (p.Leu398Ter) 36.00 1.00 1.00 1.00 1.00 0.06 2.31 

NC_000006.11:g.168694840A>T rs61674641 A DACT2 Stop gained (p.Cys256Ter) 36.00 1.00 1.00 1.00 1.00 0.06 2.31 

NC_000002.11:g.68019552C>T rs6735221 T LINC01812 Downstream gene 20.40 0.19 0.02 0.02 0.00 0.58 2.30 

NC_000003.11:g.30209136A>G rs17025010 G - Intergenic 21.20 0.21 0.01 0.03 0.01 0.53 2.29 

NC_000012.11:g.133683020C>T rs2229373 T ZNF140 Missense (p.Ala386Val) 17.47 0.40 0.04 0.15 0.00 0.32 2.29 

NC_000003.11:g.135745911G>A rs16843645 A PPP2R3A Missense (p.Asp745Asn) 23.00 0.16 0.01 0.02 0.00 0.63 2.27 

NC_000017.10:g.7386280G>A rs7214088 A SLC35G6 Stop gained (p.Trp326Ter) 38.00 0.91 0.75 0.91 0.97 0.07 2.27 

NC_000011.9:g.45975130C>T rs3736508 T PHF21A Missense (p.Arg347His) 22.50 0.61 0.12 0.41 0.08 0.16 2.25 

NC_000003.11:g.151599300G>A rs953734807 G SUCNR1 Stop gained (p.Trp323Ter) 35.00 1.00 1.00 1.00 0.96 0.06 2.25 

NC_000007.13:g.30806001C>T rs766413713 C 
INMT-
FAM188B 

Stop gained (p.Arg134Ter) 35.00 1.00 1.00 1.00 1.00 0.06 2.25 

NC_000008.10:g.145640410C>T rs561005562 C SLC39A4 Stop gained (p.Trp251Ter) 35.00 1.00 1.00 1.00 1.00 0.06 2.25 

NC_000019.9:g.16620328C>T rs3826726 C C19orf44 Stop gained (p.Gln390Ter) 35.00 1.00 1.00 1.00 1.00 0.06 2.24 

NC_000016.9:g.31075175G>A rs2303223 A ZNF668 Synonymous (p.Gly225=) 17.64 0.91 0.20 0.73 0.20 0.14 2.23 

NC_000008.10:g.32306158G>A rs72612108 A NRG1 Intron 17.31 0.62 0.14 0.35 0.00 0.21 2.23 

NC_000016.9:g.49283154T>C rs194416 C - Intergenic 20.10 0.65 0.35 0.23 0.02 0.17 2.22 

NC_000015.9:g.62932556G>C rs35757182 G AC100839.1 Intron 35.00 0.99 0.93 1.00 1.00 0.06 2.22 

NC_000008.10:g.32345444G>A rs72612111 A NRG1 Intron 18.14 0.59 0.14 0.34 0.00 0.21 2.20 

NC_000016.9:g.4445327C>T rs3747579 T CORO7 Missense (p.Arg193Gln) 27.80 0.78 0.50 0.56 0.15 0.10 2.19 

NC_000002.11:g.213682880C>G rs76287803 G AC093865.1 Intron 19.71 0.18 0.01 0.02 0.00 0.63 2.19 

NC_000003.11:g.167183137G>T rs1577176453  G SERPINI2 Stop gained (p.Tyr241Ter) 34.00 1.00 1.00 1.00 0.99 0.06 2.18 

NC_000002.11:g.27803325C>T rs530926787 C C2orf16 Stop gained (p.Arg1296Ter) 34.00 1.00 1.00 1.00 1.00 0.06 2.18 

NC_000019.9:g.45821185G>C rs554894916 G CKM Synonymous (p.Tyr82=) 34.00 1.00 1.00 1.00 1.00 0.06 2.18 

NC_000016.9:g.22264427T>G rs7201033 T EEF2K Intron 14.37 0.21 0.01 0.01 0.00 0.73 2.18 

NC_000019.9:g.22940732C>T rs148884059 C ZNF99 Stop gained (p.Trp660Ter) 35.00 0.97 1.00 0.99 1.00 0.06 2.17 
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Top 50 FineMAV hits from the GenomeAsia 100K South Asian (SAS) continental population.  

HGVS (hg19/GRCh37) SNP ID DER GENE CONSEQUENCE CADD 
DAF 
NEA 

DAF 
SAS 

DAF 
SEA 

DAF 
OCE 

DAP 
FineMAV 
SAS 

NC_000016.9:g.31099000C>T rs201075024 T PRSS53 Missense (p.Gly34Ser) 25.10 0.00 0.45 0.02 0.00 0.88 9.81 

NC_000019.9:g.49206674G>A rs601338 A FUT2 Stop gained (p.Trp154Ter) 52.00 0.04 0.19 0.01 0.01 0.48 4.85 

NC_000015.9:g.48426484A>G rs1426654 A SLC24A5 Missense (p.Thr111Ala) 19.66 0.11 0.49 0.03 0.00 0.49 4.74 

NC_000012.11:g.109872909C>T rs34725387 T MYO1H Missense (p.His695Tyr) 27.30 0.01 0.22 0.01 0.00 0.71 4.22 

NC_000016.9:g.28506428C>T rs151233 T APOBR Synonymous (p.Leu22=) 16.22 0.01 0.39 0.04 0.01 0.67 4.19 

NC_000002.11:g.104817402A>G rs4851673 G - Intergenic 20.30 0.06 0.37 0.02 0.00 0.54 4.09 

NC_000002.11:g.42181679A>T rs6740960 A C2orf91 Upstream gene 17.73 0.05 0.46 0.05 0.02 0.49 4.00 

NC_000016.9:g.30998152T>C rs200458768 C HSD3B7 Intron 10.65 0.00 0.42 0.02 0.00 0.88 3.90 

NC_000016.9:g.28505660G>C rs151234 C CLN3 NC transcript exon 14.89 0.01 0.39 0.04 0.01 0.66 3.83 

NC_000002.11:g.104830710A>T rs34938541 T - Intergenic 18.37 0.06 0.37 0.03 0.00 0.54 3.67 

NC_000020.10:g.38797747T>G rs6071961 G - Intergenic 21.80 0.02 0.27 0.02 0.01 0.61 3.59 

NC_000001.10:g.18809351G>C rs137875112 C KLHDC7A Missense (p.Ala626Pro) 28.00 0.00 0.14 0.00 0.00 0.89 3.56 

NC_000004.11:g.152147235C>T rs371652018 T SH3D19 5 prime UTR 19.35 0.00 0.20 0.01 0.00 0.90 3.55 

NC_000001.10:g.51121198T>C rs11205753 C FAF1 Splice region (p.Val220=) 14.72 0.01 0.29 0.01 0.00 0.80 3.38 

NC_000010.10:g.74020044T>C rs10740396 T - Intergenic 22.30 0.05 0.35 0.04 0.03 0.43 3.38 

NC_000003.11:g.52867718C>T rs2276820 T 
TMEM110-
MUSTN1 

Missense (p.Gly121Arg) 19.37 0.01 0.23 0.02 0.00 0.73 3.27 

NC_000001.10:g.83484014A>G rs2225576 G LINC01362 Intron 18.48 0.02 0.24 0.01 0.00 0.72 3.22 

NC_000015.9:g.64592833T>C rs114713921 C CSNK1G1 5 prime UTR 17.45 0.00 0.25 0.02 0.00 0.74 3.22 

NC_000002.11:g.29152456A>G rs1140697 G WDR43 Synonymous (p.Glu439=) 19.26 0.12 0.50 0.07 0.03 0.33 3.20 

NC_000007.13:g.143747870A>G rs2961144 G OR2A5 Missense (p.Ile126Val) 23.70 0.03 0.30 0.05 0.01 0.44 3.15 

NC_000001.10:g.50576710T>A rs4357572 A ELAVL4 Intron 20.30 0.08 0.33 0.01 0.01 0.46 3.14 

NC_000015.9:g.65042560G>A rs61741344 A RBPMS2 Synonymous (p.Ile62=) 17.38 0.00 0.22 0.01 0.00 0.81 3.12 

NC_000019.9:g.17837512G>A rs12983721 A MAP1S Missense (p.Cys440Tyr) 21.60 0.02 0.24 0.03 0.01 0.58 3.02 

NC_000001.10:g.37560090G>A rs11263973 A - Intergenic 21.00 0.06 0.35 0.06 0.00 0.41 3.01 

NC_000001.10:g.49620445T>C rs549430 C AGBL4 Intron 19.16 0.08 0.34 0.01 0.01 0.46 2.99 

NC_000016.9:g.81242198G>A rs7499011 A PKD1L2 Stop gained (p.Gln220Ter) 61.00 0.01 0.11 0.02 0.00 0.45 2.99 

NC_000015.9:g.64792896G>A rs640005 G ZNF609 3 prime UTR  15.06 0.00 0.24 0.02 0.00 0.81 2.97 

NC_000015.9:g.64653984G>T rs8026043 G AC087632.1 Intron 15.76 0.00 0.25 0.02 0.00 0.75 2.96 

NC_000002.11:g.104788566A>G rs35135256 G - Intergenic 15.65 0.07 0.36 0.02 0.00 0.52 2.96 

NC_000001.10:g.49796157A>G rs1494462 G AGBL4 Intron 19.21 0.08 0.33 0.02 0.01 0.46 2.95 

NC_000016.9:g.77359919A>T rs11640912 A ADAMTS18 Missense (p.Leu626Ile) 23.90 0.12 0.53 0.17 0.06 0.23 2.92 

NC_000002.11:g.173846130A>C rs16861119 C RAPGEF4 Intron 21.70 0.00 0.17 0.01 0.00 0.79 2.91 

NC_000016.9:g.82033810G>A rs11542462 A SDR42E1 Stop gained (p.Gln30Ter) 40.00 0.02 0.14 0.02 0.00 0.54 2.91 

NC_000002.11:g.210291373A>G rs6435527 G MAP2 Intron 14.68 0.04 0.33 0.03 0.00 0.60 2.88 

NC_000014.8:g.37154111C>T rs201299512 C SLC25A21 Stop gained (p.Trp208Ter) 45.00 1.00 1.00 1.00 1.00 0.06 2.88 

NC_000002.11:g.173868790C>A rs12053389 C RAPGEF4 Intron 15.84 0.14 0.55 0.07 0.04 0.33 2.86 

NC_000003.11:g.4774832C>T rs750361124  C ITPR1 Stop gained (p.Arg1746Ter) 44.00 1.00 1.00 1.00 1.00 0.06 2.82 

NC_000002.11:g.104642666A>T rs7568863 A LINC01965 Intron 17.69 0.04 0.28 0.02 0.00 0.56 2.81 

NC_000015.9:g.64940203T>C rs6494484 T ZNF609 Intron 14.24 0.00 0.24 0.02 0.00 0.81 2.79 

NC_000001.10:g.171397015C>T rs6671126 T - Intergenic 14.20 0.02 0.29 0.02 0.00 0.69 2.79 

NC_000002.11:g.104763415A>G rs4508618 G AC096554.1 Intron 15.12 0.06 0.35 0.02 0.00 0.52 2.78 

NC_000020.10:g.62119717C>T rs1042796 T EEF1A2 Synonymous (p.Glu442=) 15.56 0.00 0.19 0.00 0.00 0.95 2.78 

NC_000011.9:g.62848487A>C rs11231341 C SLC22A24 Stop gained (p.Tyr501Ter) 47.00 0.85 0.81 0.80 0.45 0.07 2.78 

NC_000001.10:g.24417415T>C rs6700245 C MYOM3 Missense (p.Gln435Arg) 18.40 0.02 0.27 0.02 0.01 0.55 2.77 

NC_000015.9:g.91452595A>G rs2106673 A MAN2A2 Missense (p.Gln412Arg) 18.43 0.07 0.44 0.12 0.00 0.34 2.77 

NC_000014.8:g.21500218C>G rs76101114 C TPPP2 Stop gained (p.Tyr165Ter) 43.00 1.00 1.00 1.00 1.00 0.06 2.76 

NC_000009.11:g.594262A>C rs2641998 C KANK1 Intron 20.80 0.14 0.47 0.08 0.03 0.28 2.76 

NC_000002.11:g.210261721G>A rs11677857 A - Intergenic 15.80 0.03 0.28 0.02 0.00 0.62 2.76 

NC_000011.9:g.19561284C>G rs35070300 G NAV2 Intron 18.65 0.00 0.19 0.02 0.00 0.79 2.75 

NC_000016.9:g.23313882A>T rs114177172 T SCNN1B Intron 18.40 0.00 0.16 0.00 0.00 0.95 2.73 
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Top 50 FineMAV hits from the GenomeAsia 100K Southeast Asian (SEA) continental population.  

HGVS (hg19/GRCh37) SNP ID DER GENE CONSEQUENCE CADD 
DAF 
NEA 

DAF 
SAS 

DAF 
SEA 

DAF 
OCE 

DAP 
FineMAV 
SEA 

NC_000016.9:g.31099011T>C rs11150606 C PRSS53 Missense (p.Gln30Arg) 22.50 0.82 0.08 0.59 0.01 0.23 3.03 

NC_000014.8:g.37154111C>T rs201299512 C SLC25A21 Stop gained (p.Trp208Ter) 45.00 1.00 1.00 1.00 1.00 0.06 2.88 

NC_000003.11:g.4774832C>T rs750361124  C ITPR1 Missense (p.Arg1746Gly) 44.00 1.00 1.00 1.00 1.00 0.06 2.82 

NC_000014.8:g.21500218C>G rs76101114 C TPPP2 Stop gained (p.Tyr165Ter) 43.00 1.00 1.00 1.00 1.00 0.06 2.76 

NC_000011.9:g.62848487A>C rs11231341 C SLC22A24 Stop gained (p.Tyr501Ter) 47.00 0.85 0.81 0.80 0.45 0.07 2.74 

NC_000002.11:g.109513601A>G rs3827760 G EDAR Missense (p.Val370Ala) 21.70 0.85 0.09 0.53 0.03 0.23 2.63 

NC_000008.10:g.145736038T>A rs143475431 T MFSD3 Stop gained (p.Cys296Ter) 41.00 1.00 1.00 1.00 1.00 0.06 2.63 

NC_000005.9:g.145176022G>A rs375685870 G PRELID2 Stop gained (p.Arg165Ter) 40.00 1.00 1.00 1.00 1.00 0.06 2.57 

NC_000016.9:g.77756501G>T rs182579196 G NUDT7 Stop gained (p.Glu8Ter) 40.00 1.00 1.00 1.00 1.00 0.06 2.56 

NC_000006.11:g.32632638C>A rs1130385 A HLA-DQB1 Stop gained (Glu106Ter) 76.00 0.22 0.41 0.40 0.22 0.08 2.43 

NC_000004.11:g.5755658G>T rs146232611 G EVC Stop gained (p.Glu488Ter) 37.00 1.00 1.00 1.00 1.00 0.06 2.37 

NC_000006.11:g.32660661G>A rs150369468 A - Intergenic 15.87 0.02 0.02 0.24 0.01 0.61 2.36 

NC_000001.10:g.18808668T>G rs544927168  T KLHDC7A Stop gained (p.Leu398Ter) 36.00 1.00 1.00 1.00 1.00 0.06 2.31 

NC_000006.11:g.168694840A>T rs61674641 A DACT2 Stop gained (p.Cys256Ter) 36.00 1.00 1.00 1.00 1.00 0.06 2.31 

NC_000006.11:g.32660659C>A rs142700936 A - Intergenic 15.35 0.02 0.02 0.24 0.01 0.61 2.29 

NC_000017.10:g.7386280G>A rs7214088 A SLC35G6 Stop gained (p.Trp326Ter) 38.00 0.91 0.75 0.91 0.97 0.07 2.27 

NC_000015.9:g.62932556G>C rs35757182 G AC100839.1 Intron 35.00 0.99 0.93 1.00 1.00 0.06 2.25 

NC_000007.13:g.30806001C>T rs766413713  C 
INMT-
MINDY4 

Stop gained (p.Arg134Ter) 35.00 1.00 1.00 1.00 1.00 0.06 2.25 

NC_000008.10:g.145640410C>T rs561005562 C SLC39A4 Stop gained (p.Trp251Ter) 35.00 1.00 1.00 1.00 1.00 0.06 2.25 

NC_000019.9:g.16620328C>T rs3826726 C C19orf44 Stop gained (p.Gln390Ter) 35.00 1.00 1.00 1.00 1.00 0.06 2.24 

NC_000003.11:g.151599300G>A rs953734807  G SUCNR1 Stop gained (p.Trp323Ter) 35.00 1.00 1.00 1.00 0.96 0.06 2.24 

NC_000019.9:g.22940732C>T rs148884059 C ZNF99 Stop gained (p.Trp660Ter) 35.00 0.97 1.00 0.99 1.00 0.06 2.23 

NC_000007.13:g.100371358G>A rs2293766 A ZAN Stop gained (p.Trp1883Ter) 52.00 0.43 0.15 0.50 0.50 0.09 2.22 

NC_000003.11:g.167183137G>T rs1577176453  G SERPINI2 Stop gained (p.Tyr241Ter) 34.00 1.00 1.00 1.00 0.99 0.06 2.18 

NC_000019.9:g.45821185G>C rs554894916 G CKM Stop gained (p.Tyr82Ter) 34.00 1.00 1.00 1.00 1.00 0.06 2.18 

NC_000002.11:g.27803325C>T rs530926787 C C2orf16 Stop gained (p.Arg1296Ter) 34.00 1.00 1.00 1.00 1.00 0.06 2.18 

NC_000006.11:g.32678064C>T rs113556552 T MTCO3P1 Upstream gene 14.62 0.02 0.02 0.24 0.01 0.61 2.17 

NC_000022.10:g.22385399G>A rs117052129 G IGLV4-69 Stop gained (p.Trp3Ter) 34.00 0.94 0.98 0.99 1.00 0.06 2.15 

NC_000001.10:g.152057802G>A - G TCHHL1 Stop gained (p.Gln786Ter) 33.00 1.00 1.00 1.00 1.00 0.06 2.12 

NC_000004.11:g.438045T>A rs777532496 T ZNF721 Stop gained (p.Lys71Ter) 33.00 1.00 1.00 1.00 1.00 0.06 2.12 

NC_000004.11:g.98552931A>G rs188128811 G STPG2 Intron 20.50 0.00 0.00 0.17 0.03 0.59 2.11 

NC_000004.11:g.101770683G>A rs182265527 A EMCN Intron 17.18 0.00 0.00 0.16 0.01 0.75 2.06 

NC_000003.11:g.98031307T>A rs2316271 A OR5H8 Stop gained (p.Leu184Ter) 43.00 0.79 0.37 0.62 0.52 0.08 2.06 

NC_000005.9:g.170236616C>T rs79997355 T GABRP Missense (p.Arg293Cys) 34.00 0.02 0.04 0.12 0.70 0.52 2.06 

NC_000016.9:g.20499710C>T rs79632868 C 
ENSG00000
267824 

Downstream gene 33.00 1.00 0.96 0.97 0.95 0.06 2.06 

NC_000006.11:g.32024552C>T rs202211608 T TNXB Missense (p.Glu2652Lys) 23.20 0.00 0.01 0.12 0.01 0.73 2.05 

NC_000003.11:g.150106188A>C rs12638326 C - Intergenic 20.20 0.22 0.05 0.49 0.09 0.21 2.05 

NC_000022.10:g.44495983A>G rs11539650 G PARVB Missense (p.Lys118Glu) 23.60 0.01 0.01 0.18 0.03 0.47 2.04 

NC_000015.9:g.45392075G>A rs269868 A DUOX2 Missense (p.Ser1067Leu) 24.10 0.85 0.96 0.91 0.22 0.09 2.02 

NC_000006.11:g.154360569C>T rs17174638 C OPRM1 Stop gained (p.Gln57Ter) 31.00 1.00 1.00 1.00 0.93 0.06 1.99 

NC_000016.9:g.31088347G>A rs749671 A ZNF646 Synonymous (p.Glu234=) 20.30 0.91 0.20 0.73 0.23 0.13 1.98 

NC_000008.10:g.71646084C>T rs115507207 T XKR9 Stop gained (p.Gln183Ter) 44.00 0.01 0.02 0.09 0.00 0.50 1.97 

NC_000016.9:g.89261482C>A rs2270416 C CDH15 Stop gained (p.Tyr788Ter) 36.00 0.76 0.95 0.82 0.92 0.07 1.93 

NC_000006.11:g.32663243A>G rs111940765 G - Intergenic 13.08 0.02 0.02 0.24 0.01 0.61 1.93 

NC_000004.11:g.89363604C>T rs4413373 C HERC6 Stop gained (p.Gln1021Ter) 30.00 1.00 1.00 1.00 1.00 0.06 1.93 

NC_000007.13:g.25924084T>C rs17152880 C - Intergenic 20.80 0.25 0.06 0.42 0.01 0.22 1.91 

NC_000006.11:g.32587530A>G rs369095149 G - Intergenic 12.68 0.02 0.03 0.27 0.01 0.55 1.89 

NC_000001.10:g.54606804C>T rs3766465 T CDCP2 Missense (p.Gly244Arg) 31.00 0.88 0.86 0.91 0.99 0.06 1.83 

NC_000016.9:g.69354963A>G rs1127231 A VPS4A Synonymous (p.Lys287=) 21.10 0.84 0.67 0.84 0.11 0.10 1.81 

NC_000017.10:g.48557348T>C rs2290861 T RSAD1 Missense (p.Leu126Ser) 22.10 0.74 0.57 0.76 0.07 0.11 1.80 
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Top 50 FineMAV hits from the GenomeAsia 100K Oceanian (OCE) continental population.  

HGVS (hg19/GRCh37) SNP ID DER GENE CONSEQUENCE CADD 
DAF 
NEA 

DAF 
SAS 

DAF 
SEA 

DAF 
OCE 

DAP 
FineMAV 
OCE 

NC_000019.9:g.52004903G>A rs16982743 A SIGLEC12 Stop gained (p.Gln29Ter) 35.00 0.03 0.10 0.10 0.78 0.46 12.55 

NC_000005.9:g.170236616C>T rs79997355 T GABRP Missense (p.Arg293Cys) 34.00 0.02 0.04 0.12 0.70 0.52 12.53 

NC_000012.11:g.56495023G>A rs2271188 A ERBB3 Missense (p.Arg1127His) 29.10 0.01 0.00 0.03 0.53 0.79 12.13 

NC_000008.10:g.16859307T>C rs377326763 C FGF20 Missense (p.Ile79Val) 25.60 0.00 0.01 0.05 0.58 0.76 11.28 

NC_000011.9:g.116469150A>T rs193134517 T - Intergenic 15.84 0.00 0.00 0.02 0.72 0.91 10.29 

NC_000001.10:g.40776388G>A rs370064150 A COL9A2 Missense (p.Pro228Ser) 27.10 0.00 0.00 0.02 0.42 0.89 10.16 

NC_000015.9:g.45402692G>A rs377608586 A DUOX2 Missense (p.Ser325Phe) 29.80 0.00 0.00 0.00 0.34 0.99 10.14 

NC_000001.10:g.186140508G>A rs150188026 A HMCN1 Missense (p.Arg5205His) 19.06 0.01 0.01 0.04 0.68 0.78 10.10 

NC_000019.9:g.46974003C>T rs7248888 T PNMA8A Missense (p.Cys97Tyr) 22.00 0.01 0.01 0.03 0.59 0.77 10.02 

NC_000010.10:g.17145204T>C rs750735519 C CUBN Missense (p.Ser484Gly) 23.10 0.00 0.00 0.01 0.47 0.91 9.83 

NC_000006.11:g.138196957A>C rs141807543 C TNFAIP3 Missense (p.Ile207Leu) 22.00 0.00 0.00 0.06 0.59 0.74 9.60 

NC_000001.10:g.208397575T>C rs17259450 C PLXNA2 Intron 20.20 0.02 0.03 0.03 0.66 0.72 9.51 

NC_000022.10:g.30642644G>A rs201805161 A AC004264.1 NC transcript exon 16.08 0.01 0.01 0.04 0.75 0.78 9.39 

NC_000002.11:g.76927928A>G rs72915629 G - Intergenic 20.80 0.00 0.00 0.03 0.54 0.82 9.24 

NC_000006.11:g.138229771G>A rs373854868 A - Intergenic 21.00 0.00 0.00 0.06 0.59 0.74 9.16 

NC_000006.11:g.154479929C>A rs951667384  A IPCEF1 3 prime UTR 19.89 0.00 0.01 0.01 0.50 0.88 8.79 

NC_000009.11:g.83255484G>T rs913504 T - Intergenic 20.30 0.00 0.04 0.04 0.61 0.70 8.73 

NC_000017.10:g.48658282A>G rs198553 G CACNA1G Intron 16.14 0.03 0.04 0.05 0.81 0.65 8.48 

NC_000006.11:g.137793302C>T rs376613871 T - Intergenic 21.40 0.00 0.00 0.04 0.49 0.80 8.42 

NC_000006.11:g.153453344T>A rs372597711 A RGS17 Upstream gene 20.50 0.00 0.00 0.02 0.47 0.87 8.41 

NC_000011.9:g.61557979G>A rs369511941 A TMEM258 Synonymous (p.Thr33=) 17.25 0.00 0.00 0.02 0.55 0.88 8.40 

NC_000013.10:g.72667695A>G rs373350507 G - Intergenic 20.30 0.00 0.00 0.01 0.44 0.92 8.22 

NC_000006.11:g.138226361A>C rs376195905 C - Intergenic 20.00 0.00 0.00 0.06 0.55 0.74 8.12 

NC_000001.10:g.208989631T>C rs187254348 C - Intergenic 15.86 0.01 0.01 0.06 0.69 0.73 8.03 

NC_000003.11:g.169378799G>A rs73032054 A MECOM Intron 14.43 0.00 0.03 0.02 0.68 0.81 8.00 

NC_000001.10:g.185255201T>G rs374745720 G SWT1 Intron 14.11 0.00 0.03 0.03 0.74 0.77 7.97 

NC_000021.8:g.15942551T>A rs377229395 A SAMSN1 Intron 17.65 0.00 0.00 0.01 0.48 0.93 7.89 

NC_000012.11:g.56538344T>C rs58663297 C ESYT1 3 prime UTR 18.25 0.01 0.00 0.03 0.53 0.80 7.79 

NC_000012.11:g.56548150T>A rs79606241 A MYL6B Intron 18.56 0.01 0.00 0.05 0.57 0.73 7.74 

NC_000001.10:g.95392451G>C rs144969776 C CNN3 5 prime UTR 21.70 0.00 0.00 0.02 0.41 0.87 7.69 

NC_000008.10:g.16861280T>C rs140142364 C FGF20 Upstream gene 18.51 0.00 0.01 0.05 0.55 0.75 7.68 

NC_000016.9:g.70500801C>T rs572099494  T FUK Missense (p.Pro143Leu) 31.00 0.00 0.00 0.01 0.26 0.94 7.66 

NC_000010.10:g.78391460G>A rs374777852 A - Intergenic 21.30 0.00 0.00 0.01 0.38 0.95 7.62 

NC_000008.10:g.105266371G>T rs57490000 T RIMS2 3 prime UTR 19.64 0.02 0.01 0.05 0.57 0.68 7.60 

NC_000012.11:g.14664250A>G rs2287541 G PLBD1 Missense (p.Val377Ala) 24.80 0.03 0.12 0.10 0.73 0.42 7.59 

NC_000008.10:g.105360994C>A rs61682032 A DCSTAMP Missense (p.Leu72Met) 21.40 0.02 0.02 0.04 0.53 0.66 7.52 

NC_000010.10:g.78499696A>G rs374415709 G - Intergenic 21.40 0.00 0.00 0.01 0.37 0.94 7.51 

NC_000002.11:g.59688550T>G rs189747995 G AC007179.2 Intron 17.38 0.00 0.02 0.03 0.56 0.77 7.49 

NC_000003.11:g.169500397T>C rs35406871 C MYNN Synonymous (p.Ser455=) 17.80 0.01 0.02 0.06 0.62 0.68 7.47 

NC_000016.9:g.1595600C>T rs56342298 T TMEM204 Intron 18.63 0.03 0.07 0.15 0.84 0.47 7.47 

NC_000012.11:g.92397023G>A rs11106391 A LINC01619 Intron 17.11 0.00 0.01 0.03 0.53 0.81 7.44 

NC_000016.9:g.73646124T>C rs7197725 C - Intergenic 18.87 0.00 0.00 0.02 0.46 0.86 7.43 

NC_000015.9:g.55722882C>A rs57809907 A DNAAF4 Stop gained (p.Glu417Ter) 43.00 0.01 0.07 0.03 0.38 0.46 7.43 

NC_000018.9:g.60193406A>T rs72941625 T ZCCHC2 Intron 12.31 0.01 0.03 0.01 0.73 0.83 7.42 

NC_000015.9:g.67692059T>A rs77919550 A IQCH Intron 17.41 0.01 0.02 0.06 0.63 0.68 7.38 

NC_000003.11:g.5020036C>T rs367938373 T 
BHLHE40-
AS1 

Intron 22.60 0.00 0.00 0.01 0.36 0.89 7.34 

NC_000012.11:g.17653296T>G rs140229689 G - Intergenic 17.22 0.00 0.00 0.04 0.55 0.78 7.33 

NC_000012.11:g.56516569C>G rs57280585 G AC034102.6 Intron 17.17 0.01 0.00 0.03 0.53 0.80 7.33 

NC_000009.11:g.127140816C>G rs544483898 G PSMB7 Intron 20.70 0.00 0.00 0.01 0.40 0.89 7.31 

NC_000003.11:g.122474121G>C rs61756481 C HSPBAP1 Missense (p.Leu243Val) 24.10 0.00 0.01 0.01 0.35 0.86 7.31 

 


