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Abstract

Recent technological advancements across multiple frontiers have resulted in an exponen-

tial increase of data produced annually, and this has created an unprecedented demand for efficient,

reliable, and affordable data transmission and storage systems. Error control coding plays a vital

role in any such system, and thus, more and more focus is now being placed on related research.

Binary low-density parity-check (LDPC) codes are well-known, in both academia and

industry, for exceptional error-correcting performances that can be obtained with relatively low-

complexity, iterative decoding algorithms. While they are the codes of choice in many practical

standards and applications, their non-binary counterparts can offer even better performances, across

many different types of channels. But the wide-spread usage of non-binary LDPC (NB-LDPC)

codes has so far been restricted due to the high complexity of decoding algorithms.

In this dissertation, we propose a novel method to represent an NB-LDPC code over any

subfield of the finite field used in construction. This allows a code to be depicted in a number of

different ways, and we present a generic approach to adapt any decoding algorithm of NB-LDPC

codes for using on any such representation. Due to the smaller size of subfields, these schemes

offer significant gains in decoding complexity compared to decoding over the original field, while

performance losses are minimal. We focus particularly on the binary representation, which offers

the largest reduction of complexity, and also devise a binary majority-logic decoding algorithm

based on that for use with resource-constrained systems.

Furthermore, we propose using iterative, non-binary message-passing algorithms for de-

coding Reed-Solomon codes, which is a class of algebraic codes. We also present the alternative

parity-check matrices to facilitate this. These matrices are constructed in such a way that the num-

ber of sub-structures undesirable for iterative decoding is minimized, and the proposed decoding

scheme on them offers significant gains compared to algebraic methods, while keeping decoding

complexity at a reasonable level.
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Chapter 1

Introduction

In 1948, Shannon’s seminal paper, ‘A mathematical theory of communication’ [1], es-

tablished the foundations of the fields of information theory and channel coding. There, Shannon

defines the capacity of a channel as the maximum rate at which information can be transmitted vir-

tually free of errors over that channel. One of the more intriguing theorems in the paper then proves

the existence of coding schemes that enable nearly error-free transmission over any given channel at

any rate less than the capacity. However, the proof of this theorem is based on randomly constructed

codes with block lengths tending to infinity, which are not practically feasible due to high encoding

and decoding complexities. Thus, since the publication of Shannon’s paper, much effort has been

devoted to construction of coding schemes that achieve channel capacity at relatively low encoding

and decoding complexities.

The discovery of turbo codes in 1993 [2] marked a breakthrough in the search for the

elusive capacity achieving codes. Although they do not actually achieve capacity, turbo codes ap-

proach capacity with increasing block length. Around the same time, low-density parity-check

(LDPC) codes, introduced by Gallager in 1962 [3], were re-discovered [4]. Binary LDPC codes

were also observed to approach capacity, with performance often surpassing that of turbo codes.

Both these classes of codes employ simple, iterative decoding algorithms, and thus, in a practical

sense, they marked the end of the search for capacity approaching codes.

Currently, binary LDPC codes have become the error-correcting codes of choice for many

practical applications, such as Ethernet, Wi-Fi, and digital television, due to their exceptional per-

formance with low-complexity decoding algorithms. Davey and Mackay introduced the non-binary

(NB) counterparts of these codes in 1998 [5], and it was soon realized that NB-LDPC codes out-

perform the binary LDPC codes of comparable length, especially for short-to-moderate codeword
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CHAPTER 1. INTRODUCTION

lengths. But these performance gains are yet to be realized in practice due to the high complexity of

decoding algorithms. In the research community, a lot of focus has since been devoted to reducing

the decoding complexity of NB-LDPC codes so that practical applications may also benefit from

the significant performance gains.

The primary focus of this dissertation is also on reducing the decoding complexity of

NB-LDPC codes. In this regard, we employ novel graphical representations of the codes to design

low-complexity decoding schemes. Then we use the insights on performance of NB-LDPC codes

to invent new strategies to decode another well-known class of non-binary codes, Reed-Solomon

codes [6]. In the following section, we provide brief overviews of each chapter of the dissertation,

which also summarise our contributions.

1.1 Overview of Chapters and Contributions

Chapter 2 : Preliminaries

In this chapter, we present the preliminary definitions and concepts necessary for the

remaining chapters. We begin with some definitions and theorems from the study of finite groups

and fields which are instrumental in construction and decoding of NB-LDPC codes, and are made

use of in later chapters. Next we present an overview of the structure of NB-LDPC codes and their

constructions. Then we review the major decoding algorithms proposed in the literature for these

codes, all of which can be considered as extensions and simplifications of belief propagation, or

sum-product algorithm [4], to the non-binary domain. At the end of the chapter, we review an

alternative decoding approach, majority-logic decoding, proposed for resource-constrained systems

that use NB-LDPC codes.

Chapter 3 : Expansions of Non-binary Factor Graphs

This chapter contains our major contribution, a novel method to expand a non-binary

factor graph over any subfield of the original field. The method allows representing the same code in

a number of different ways, which are used later for designing low-complexity decoding schemes.

It could also be useful for constructing codes that are better suited for iterative decoding, which

would be discussed in another chapter. More focus is given to two special forms of the expansion,

those that result in the smallest and largest expanded graphs. We also provide brief overviews of the

two most well-known expansions proposed in the literature for NB-LDPC codes, which can only

produce binary graphs.
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CHAPTER 1. INTRODUCTION

Chapter 4 : Decoding Based on Expanded Graphs

Here we design novel decoding strategies for NB-LDPC codes using the expansions pre-

sented in the previous chapter. Since iterative decoding is impacted by certain graph structures,

we first present a brief literature review of those structures. Then we investigate how these are

transformed through the graph expansions discussed in the previous chapter, and show that special

conditions have to be met for a short cycle to exist in a graph produced by our expansion. Using

the insights on harmful graph structures, we present a strategy to adapt any algorithm proposed for

decoding NB-LDPC codes for any graph produced by that expansion. This makes many decoding

options available for any application that uses these codes, where each offers a unique performance-

complexity trade-off. Due to its unique features, we consider the binary case separately. This

dissertation provides simulation results and complexity comparisons that gives evidence of the at-

tractive complexity gains offered by the proposed strategies, obtained with minimal performance

losses. We also propose a novel binary majority-logic decoding algorithm for NB-LDPC codes,

which is based on our binary expansion. This algorithm outperforms similar existing algorithms

with only a marginal increase in complexity, as evidenced by the simulation results and complexity

analysis provided.

Chapter 5 : Iterative Soft Decoding of Reed-Solomon Codes

In this chapter we focus on a different class of non-binary codes, Reed-Solomon (RS)

codes. Main contribution here is a novel iterative soft-decoding scheme for these codes. We pro-

pose constructing alternative non-binary parity-check matrices for RS codes that better facilitate

iterative decoding. Insights on graphical structures undesirable for iterative decoding gained in the

previous chapter is again made of use here. Our soft-decoding strategy for the new matrices is able to

offer significant gains over hard-decoding, and is of much lower complexity than any soft-decoding

algorithms proposed for RS codes so far in the literature.
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Chapter 2

Preliminaries

This dissertation primarily focuses on decoding non-binary low-density parity-check (NB-

LDPC) codes, and therefore, we use this chapter to present some basic background knowledge on

them, primarily the related mathematical concepts and the decoding algorithms.

2.1 Groups and Finite Fields

Most of the time, NB-LDPC codes are constructed over finite fields, particularly those

of characteristic 2 [5]. Next few chapters of this thesis primarily deal with reducing decoding

complexity of such codes via expansions of the corresponding factor graphs. Expansions proposed

are based on certain concepts related to mathematical groups and finite fields, which are briefly

reviewed in this section.

2.1.1 Groups

In the following, we define a group, a fundamental algebraic structure instrumental in the

study of finite fields.

Definition 2.1. A group G is a set associated with a binary operation ⊗ that satisfies the following

four axioms.

1. Group is closed under the binary operation. That is;

∀gi, gj ∈ G, gi ⊗ gj ∈ G

2. Binary operation is associative. That is;

∀gi, gj , gk ∈ G, (gi ⊗ gj)⊗ gk = gi ⊗ (gj ⊗ gk)

4
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3. There exists an identity element ε. That is;

∃ε ∈ G such that ∀g ∈ G, ε⊗ g = g ⊗ ε = g

4. There exists an inverse for any group element. That is;

∀g ∈ G, ∃g−1 such that g ⊗ g−1 = ε

In addition to the four group axioms, in certain groups the binary operation is also com-

mutative. These are referred to as abelian groups, defined as follows.

Definition 2.2. An abelian group is a group G with a commutative binary operation ⊗. That is;

∀gi, gj ∈ G, gi ⊗ gj = gj ⊗ gi

The number of elements in a group G is referred to as the order of G, represented with

|G|. Many groups contain special subsets that exhibit properties of a group by themselves. These

are known as subgroups, which are defined as follows.

Definition 2.3. A subgroup H of a group G is a subset of G that forms a group under the same

binary operation ⊗ of G.

When H is a subgroup of G, this will be denoted as H ≤ G. For any group G, the

subset containing only the identity element, {ε}, would satisfy the definition of a subgroup. In the

literature, this is known as the trivial subgroup [7]. Also, G itself can be considered a subgroup. A

proper subgroup of G is a subgroup H 6= G, usually denoted as H < G.

An important concept related to subgroups is that of a normal subgroup, which may be

defined as follows. In the following definition, and onwards, we use⊗ to represent the group binary

operation, and g−1 as the inverse of g.

Definition 2.4. A normal subgroup N of a group G is a subgroup that is invariant under conjuga-

tion. That is;

∀n ∈ N, ∀g ∈ G; g ⊗ n⊗ g−1 ∈ N

When N is a normal subgroup of G, this will be denoted as N /G.

A special type of subsets of group G can be generated using any subgroup H of G. Known

as cosets, these subsets have certain special properties that make them quite useful in many different

fields, including coding theory. Concept of a coset is presented in definition 2.5.
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Definition 2.5. Let H be a subgroup of a group G. Then left cosets of H are the sets;

g ⊗H = {g ⊗ h;h ∈ H}; ∀g ∈ G

Right cosets are similarly defined as;

H⊗ g = {h⊗ g;h ∈ H}; ∀g ∈ G

If G is an abelian group, there would not be any distinction between the left cosets and the

right cosets of H. This is a condition equivalent to that in definition 2.4, which makes any subgroup

of an abelian group a normal subgroup [7]. As a majority of groups encountered in this thesis are

abelian, from here onwards, focus would only be on them. Any group should be considered as such,

unless explicitly stated.

Since a subgroup H matches definition 2.5, with g = ε, the identity element of G, it can

also be considered a coset of itself. But it is not a proper coset, which is a coset CH 6= H. Also,

any coset CH should be of the same cardinality as H. From the definition, it also seems that the

number of cosets should be equal to |G|. But all of these cosets would not be distinct. In fact,

any two non-disjoint cosets will be identical [7]. Thus, distinct cosets of a subgroup H will always

be disjoint, and the union of these will form the group G. These observations provide the basis

for the well-known Lagrange’s theorem. In the following, we state this theorem for the sake of

completeness, and direct the reader to [7] for the proof.

Theorem 2.1 (Lagrange’s Theorem). Let G be a finite group, and H any subgroup of G. Then the

order of H, |H|, will divide the order of G, |G|.

If the union of all distinct cosets of subgroup H forms the group G, the set of distinct

cosets can be considered a partioning of G. This is referred to as the coset decomposition of G,

with respect to H. If H is a normal subgroup, then the distinct cosets form a group themselves,

referred to as a quotient group, which can be defined as follows.

Definition 2.6. Let N be a normal subgroup of group G. Then the quotient group of N in G, G /N ,

is the set of cosets of N. Elements of G /N form a group under the same binary operation as G.

2.1.2 Homomorphisms

Often in the study of groups, one may encounter several of the same type. It might be

possible to find a mapping from one such group to another such that the structure of the groups are

6



CHAPTER 2. PRELIMINARIES

preserved. A structure preserving map of the sort between any two algebraic structures is called a

homomorphism, which may be defined in the context of groups as follows.

Definition 2.7. Let G and H be two groups, respectively associated with the binary operations ⊗
and 	. A group homomorphism from G to H is a mapping ψ : G→ H that preserves the structure

of the groups. That is;

∀gi, gj ∈ G, ψ(gi ⊗ gj) = ψ(gi)	 ψ(gj)

Two important concepts related to homomorphisms are those of kernel and image, which

are defined in the following.

Definition 2.8. Let G and H be two groups, and ψ a group homomorphism from G to H. Then;

• The kernel of ψ is the subset of all elements of G that are mapped to the identity element ε of

H. That is

kerψ = {g ∈ G; ψ(g) = ε}

• The image of ψ is the subset of all elements of H to which at least one element of G is mapped

by ψ. That is

imgψ = {ψ(g); g ∈ G}

Note that kerψ is a subgroup of G, and imgψ is a subgroup of H [7]. Also, for some

homomorphisms, imgψ = H, in which case they are called surjective homomorphisms. A special

class of homomorphisms are isomorphisms, defined, in the context of groups, as follows.

Definition 2.9. An isomorphism between two groups G and H is a homomorphism where each

element of G is mapped to only one element of H, and vice-versa.

In mathematical terminology, a one-to-one mapping between the elements of two sets,

such as the one described in definition 2.9, is referred to as a bijection, which makes an isomor-

phism a bijective homomorphism. In the following, we present an interesting theorem related to

isomorphisms, which is made of use in later chapters. This theorem is often referred to as the first

isomorphism theorem. Once more, we direct the reader to [7] for the proof.

Theorem 2.2 (First Isomorphism Theorem). Let G and H be groups, and ψ a homorphism from G

to H. Then:

• kerψ is a normal subgroup of G.

7
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• imgψ is a subgroup of H.

• imgψ is isomorphic to the quotient group G/kerψ .

It is clear from the theorem that in the case where ψ is surjective, H is isomorphic to
G/kerψ .

2.1.3 Finite Fields

As discussed previously, finite fields are the most commonly used algebraic structure to

construct NB-LDPC codes. These are widely studied mathematical objects, and the literature on

them is vast. Here we focus only on the properties of finite fields that are relevant for NB-LDPC

codes. A finite field may be defined as follows.

Definition 2.10. A finite field F is a set associated with two binary operations, commonly referred

to as addition (⊕) and multiplication (⊗), that satisfy the following conditions.

1. F is an abelian group under addition ⊕.

2. F∗ = F− {0} is an abelian group under multiplication ⊗, where 0 is the identity element of

the additive group.

3. Multiplication ⊗ is distributive over addition ⊕. That is;

∀β1, β2, β3 ∈ F, β1 ⊗ (β2 ⊕ β3) = (β1 ⊗ β2)⊕ (β1 ⊗ β3)

There only exists finite fields of order pk, where p is a prime, and k is a positive integer.

Furthermore, for any value of p and k, a finite field would exist [7]. In the field of order pk, Fpk ,

adding p copies of the same element together would always result in the additive identity 0. This

prime value p is called the characteristic of the field Fpk . This means that, in characteristic 2 fields,

which are the ones mostly used for NB-LDPC construction, adding an element to itself would result

in 0. Therefore, in a characteristic 2 field, additive inverse of any element is itself.

Finite fields are unique algebraic structures; there can only exist a single unique field of

any given order [7]. Thus, the only difference in two fields of the same order would be in the

labeling of elements. In such a case, an isomorphism would exist between the two, and one would

be called isomorphic to the other.

A finite field may contain one or many elements which can generate its multiplicative

group. Such an element is referred to as a primitive element of the field, which is formally defined

in the following. Primitive element is only unique for fields of order 2 and 3 [7].

8
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Definition 2.11. Let F be a finite field. Then a primitive element α is an element of F that can

generate its multiplicative group. That is;

∀β ∈ F, ∃i ∈ Z such that β = αi

Elements of a finite field may often be represented as powers of a primitive element,

similar to Definition 2.11. In such a representation, additive identity will be denoted with either 0

or α−∞.

An alternative representation of fields which is also quite common is the polynomial rep-

resentation. This representation uses the notion of irreducible polynomials, which can be defined

as follows.

Definition 2.12. An irreducible polynomial Π(x) is a polynomial of degree > 0 that cannot be

expressed as the product of two or more polynomials of degree > 0.

Elements of the finite field Fpk can be represented with polynomials of degree at most

(k − 1) with coefficients from Fp. Then the operations of addition and multiplication will all be

performed modulo some irreducible polynomial, which is usually referred to as the primitive poly-

nomial of the field. This irreducible polynomial, also over Fp, is of degree k, and the coefficient of

its highest degree term is 1 (multiplicative identity of Fp). Therefore, in mathematical terminology,

primitive polynomial is a monic irreducible polynomial.

At times, each finite field element may be represented with the vector of coefficients of

the respective polynomial, which is known as the vector representation. With such a representation,

addition operation becomes a vector addition in Fp.

Any monic polynomial over a field is associated with a matrix over the same field. This

matrix, referred to as the companion matrix, is quite useful in certain cases, such as when the

polynomial is irreducible [7]. Following definition presents the structure of the companion matrix,

for a general monic polynomial.

Definition 2.13. Let pq(x) = c0 + c1 · x+ c2 · x2 + . . .+ cn−1 · xn−1 + xn be a monic polynomial

of degree n over Fq. Then the companion matrix of pq(x) is the n×n square matrix C(pq) defined

9
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as follows, where −ci represents the additive inverse of ci.

C(pq) =



0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...

...
. . .

...
...

0 0 . . . 1 −cn−1


A less frequently used representation of a finite field uses the companion matrix of the

field’s primitive polynomial. For Fq, where q = pr for some prime p, primitive polynomial is a

monic irreducible polynomial of degree r, over Fp. Distinct sums of powers of the companion

matrix of such a polynomial has been observed to be isomorphic to Fq [8], and thus, the respective

set of matrices can be considered a representation of Fq, known as the matrix representation. It

should be noted that this set would contain the r × r all-zero matrix, which maps to the additive

identity. Also, any primitive element of the field would map to a matrix capable of generating all

other non-all-zero matrices [8].

Finite fields can also contain special subsets that act as fields themselves, similar to the

case with subgroups. These subfields are defined as follows.

Definition 2.14. A subfield K of a field F is a subset of F which is itself a field with the same two

binary operations as F.

In the literature, if K is a subfield of F, then F is sometimes called an extension field of K.

This is because, in such a case, it is possible to represent elements of F as polynomials, or vectors,

over K.

In the following we state a theorem on the existence of subfields, which will be used in

the remaining chapters of the thesis.

Theorem 2.3 (Subfield Criterion). Let Fpk denote a finite field. Any subfield of Fpk should be of

order pd, where d | k.

Proof of the theorem is available from [9].

2.2 Non-binary LDPC Codes

A non-binary LDPC code, also called a Q-ary LDPC code, can be thought of as the vector

space orthogonal to the row space of some sparse Q-ary matrix. In coding theory terminology,

10
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this matrix is referred to as the parity-check matrix (PCM) of the code. Sparsity of the PCM is

advantageous in terms of decoding, which will be discussed later in this chapter.

In the literature, factor graphs are often used in the analysis of NB-LDPC codes. A factor

graph is a bi-partite graph, where one type of nodes represents a set of variables, and the other type

represents the factors of some objective function in those variables. In the case of decoding LDPC

codes, the objective is finding the most likely codeword, factors are the parity-check equations, and

variables are the codeword symbols. Thus, in the general form of a PCM, rows are mapped to one

type of nodes, parity-check nodes, and columns to the second type, variable nodes. For the sake

of brevity, parity-check nodes are often referred to as simply check nodes. An edge exists between

check node i and variable node j only if (i, j)th position of the PCM is non-zero. Non-zero value at

that position will be used as the label, or the weight, of the edge. This graphical representation was

first introduced by Tanner in 1981 [10], and hence, the graphs are sometimes referred to as Tanner

graphs.

Figure 2.1 shows the factor graph representation of the 4 × 7 PCM Hx, given in (2.1).

Parity-check equations and the corresponding nodes are labeled with Cis, while codeword symbols

and the respective nodes are labeled with Vis. Non-zero values Xi are from a some suitable algebraic

structure.

Hx =

V1 V2 V3 V4 V5 V6 V7


X1 X3 0 X6 0 X10 0 C1

0 0 X4 0 X8 0 X12 C2

X2 0 X5 X7 0 0 0 C3

0 0 0 0 X9 X11 0 C4

(2.1)

Figure 2.1: Tanner graph for PCM Hx (in eq. 2.1)
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A variable node connected to some check node is considered to be in its neighborhood,

and vice versa. Number of nodes in the neighborhood of a node is called the degree of that particular

node. For example, in Figure 2.1, variable nodes V5, V6 and V7 are in the neighborhood of check

nodeC4, and thus, C4 is of degree 3. In the literature, degree of a check node and a variable node are

referred to as check degree (dc) and variable degree (dv) respectively. These degrees are sometimes

viewed from the perspective of the PCM, in which case they will be called the row weight and the

column weight.

NB-LDPC codes can be divided in to two categories based on node degrees, similar to

their binary counterparts. Codes where nodes of the same type are of the same degree are called

regular NB-LDPC codes, and those with different degrees are called irregular NB-LDPC codes.

For example, in code represented by Figure 2.1, check nodes are of degrees 2, 3 and 4, and hence, it

is an irregular code. With irregular codes, the average node degrees are often used in performance

analysis.

2.2.1 Construction of NB-LDPC Codes

An NB-LDPC code is constructed by labeling a factor graph (or a PCM) with suitable

properties for iterative, message passing decoding using elements of some algebraic structure. Any

structure that satisfies the following set of properties can be used in this regard [11].

• Structure should be finite.

• Structure should be closed under two operations, usually called addition and multiplication.

• An additive inverse should exist for the elements used in codewords.

• A multiplicative inverse should exist for the elements used as edge labels.

Many algebraic structures satisfy these requirements, and any of them can be used to

define an NB-LDPC code. The following secondary set of requirements are generally expected for

efficient implementation of encoding and decoding [11].

• Identity elements should exist for addition and multiplication.

• Addition should be commutative and associative.

• Multiplication should be commutative, associative, and distributive over addition.

12
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A finite field is an algebraic structure that satisfies all primary and secondary requirements

above. In addition to that, all of its elements have additive and multiplicative inverses, and thus, any

element can be used as an edge label or a code symbol. Also, they are well understood mathematical

structures, and are used in a number of other applications. Due to these reasons, finite fields are the

most widely used algebraic structure to construct NB-LDPC codes [5]. In the literature, structures

such as integer modulo rings have also been used for this purpose [11], [12].

A factor graph used to construct a NB-LDPC code is expected to have many of the prop-

erties expected of a graph used in binary LDPC construction. In binary LDPC codes, short cycles

are known to create stopping sets and trapping sets, substructures of a factor graph that negatively

impact the decoding performance [13], especially in the high signal-to-noise ratio (SNR) region,

leading to error floor. These graph substructures are also not desirable in the non-binary domain

[14]. Therefore, any graph used for binary LDPC codes, where the girth, or length of the shortest

cycle, has been maximized, can be used for constructing NB-LDPC codes. A more detailed review

on graph substructures that impact decoding of these codes will be given in Chapter 4.

Graph labeling step in NB-LDPC construction is often done in a random fashion, although

recently more focus has been given to deterministic labeling [15],[16],[17],[18]. These labels are

chosen in such a way that the minimum distance of the binary equivalent code is increased, and the

impact of the undesirable graph structures is minimized. Sets of optimized edge labels for some

code parameters are available in the literature [15],[17]. Simulation results show that such labeling

can offer significant performance improvements over random labeling.

In the binary domain, irregular codes are known to perform better than regular codes in

general, with some getting as close as 0.06dB to channel capacity [19]. But the structure of regular

codes makes encoding and decoding more efficient. With NB-LDPC codes, a significant difference

between performance of regular and irregular codes has not been reported in the literature. Best

performance, especially with codes over larger alphabets, is with using ultra sparse graphs, where

variable degree is set to the minimum possible value of 2 [15]. Codes with very good performance

has been constructed using protographs as well [16].

Rather than using a factor graph of a binary LDPC code or constructing one in a random

fashion, and then labeling it, one of the structured construction methods available in the literature

could be used [20],[21],[22],[23]. These methods are usually algebraic in nature, and often result in

cyclic or quasi-cyclic (QC), regular LDPC codes with a high variable degree (column weight). The

codes perform almost as well as randomly constructed ones. Moreover, due to their cyclic or quasi-

cyclic structure, these codes are much more efficient to encode. The high variable degree makes the
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codes better suited for majority-logic decoding [24], the hard-decision decoding equivalent of NB-

LDPC codes. Majority-logic decoding is the decoding approach of choice for resource-constrained

systems that use NB-LDPC codes, and we focus more on this in Chapter 4.

2.3 Q-ary Sum Product Algorithm

LDPC codes are most often used with the iterative message passing decoding algorithms.

They can be viewed as passing messages back-and-forth along the edges of the factor graph, the

reason for the term ‘message passing’. The Sum-Product algorithm (SPA) [4], also known as belief

propagation (BP), is the best performing message passing decoder for binary LDPC codes. Ca-

pacity approaching performance with long LDPC codes can be realized with the SPA [19], and its

complexity is not practically infeasible. The SPA can be easily extended for the non-binary, or

Q-ary, case, and this version is known as Q-ary sum product algorithm (QSPA) [5].

BP decoding, which includes both SPA and QSPA, attempts to compute the maximum

aposteriori probability (MAP) of each codeword symbol. In the case of SPA, MAP estimate can be

a single value (such as Pr(0)
Pr(1) ), and in QSPA, it would take the form of a probability mass function

(PMF). Computed MAP estimate will be exact only in the case where the corresponding factor

graph is completely free of cycles. But with codes of finite lengths this is not possible, and hence,

MAP estimate in BP decoding would only be suboptimal, which can be expected to get better with

the girth of the code.

In the following, we briefly go over the primary steps of QSPA, with a code defined over

a finite field Fq.

1. Initialization

Every variable node will be initialized with a PMF of length q, computed with the received

channel information. We denote this initial PMF of variable node n with In.

After initialization, variable node n would send the PMF In to each check node m in its

neighborhood. This operation is represented with the following equation, where r(0)n,m denotes the

message from variable node n to check node m during initialization (or the 0’th iteration).

r(0)n,m = In (2.2)

Maximum number of decoder iterations, kmax, is also set.
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2. Check Node Operations

A check node of a NB-LDPC code over Fq represents a parity-check equation over the

field. In each iteration, this node would receive PMFs from every variable node in its neighborhood.

Computations are then carried out to estimate a PMF for each such variable node using the PMFs

received from all other nodes, such that the parity-check constraint represented is satisfied. These

PMF estimates would be the messages sent back to the variable nodes.

Consider a check node m, and a variable node n in its neighborhood N(m) during the

k’th iteration of QSPA. For node n to take the value β ∈ Fq, and the parity-check equation to be

satisfied, there are several different configurations for the values of other variable nodes in N(m).

We represent this set of configurations as Cmn,β .

Cmn,β = {c = (x0, x1, . . . , xn−1, xn+1, . . . , xdmc −1);
∑

i∈N(m),i 6=n

hi · xi = −hn · β} (2.3)

Please note that c is of length (dmc − 1), where dmc is the degree of check node m, and

hi, xi ∈ Fq. Each xi represents the value taken by variable node i (i 6= n) such that node n can

take the value of β and parity-check equation is satisfied. his are the labels of the edges connected

to node m, and −(hn ·β) is the additive inverse of hn ·β. Probability of node n’s value being β can

then be computed as;

p(k)
m,n

(β) =
∑
c∈Cmn,a

∏
xi∈c

r
(k−1)
i,m (xi) (2.4)

Message from check node m to variable node n is the PMF p(k)
m,n

, the vector of values

computed as in 2.4.

3. Variable Node Operations

Compared with the check node operations, those at a variable node are relatively simple.

Main objective here is to update the respective PMF using estimates received from check nodes in

the neighborhood. If the updated PMFs at any of the variable nodes are inaccurate, which would

stop the decoder from converging to a codeword, each variable node would compute new PMF

estimates to be sent to all connected check nodes.

Updating the PMF of variable node n, V (n), during decoding iteration k, is given by the

following equation. Product is taken element-wise, and M(n) denotes the neighborhood of variable

node n.

V (k)
n = In ×

∏
i∈M(n)

p(k)
i,n

(2.5)
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Symbol with the maximum probability in V
(k)
n is chosen as the tentative decision on

node n. The vector of tentative decisions of all variable nodes is the decoder’s estimate for the

codeword at the k’th iteration. This vector is then evaluated by every parity-check node, and if

all the constraints are satisfied, which means the decoder has converged to a codeword, it would

terminate and output the corresponding codeword. If k = kmax, decoder would terminate with

failure. Otherwise, new PMF estimates for connected check nodes are computed at each variable

node. In keeping with the extrinsic principle of BP, estimate for check node m is computed using

messages from other check nodes only. With the decoder operating in the probability domain, a

normalization operation is also required here. The normalization N(), for a vector v of length l, can

be defined as follows.

N(v) = v
/∑l−1

i=0 vi

The new PMF estimates for connected check nodes are then computed as

r(k)n,m = N
(
In ×

∏
i∈M(n),i 6=m

p(k)
i,n

)
(2.6)

Of the three steps of QSPA, check node computations seem the most complex. In the literature,

these are usually viewed as a combination of two distinct sub-steps; permutation of PMFs and

convolution of PMFs [25].

If all edge labels were 1, (2.3) would take the following form.

Cmn,β = {c = (x0, x1, . . . , xn−1, xn+1, . . . , xdmc −1);
∑

i∈N(m),i 6=n

xi = −β} (2.7)

With an edge label hi 6= 1, as is often the case with NB-LDPC codes, probability of

some symbol β ∈ Fq in the PMF estimate sent by the variable node would turn in to probability of

hi · β ∈ Fq at the check node. This means the PMF estimate is undergoing a permutation due to

the edge label hi. Traditional approach is to first carry out this permutation, for all incoming PMF

estimates. Then all edge labels can be taken as 1 in any subsequent operation at check nodes. After

permutation sub-step (2.3) can be written in a form similar to (2.7) as follows, where x′i = hi · xi
and β′ = hn · β.

Cmn,β = {c = (x′0, x
′
1, . . . , x

′
n−1, x

′
n+1, . . . , x

′
dmc −1);

∑
i∈N(m),i 6=n

x′i = −β′} (2.8)

When the PMFs are permuted according to the edge labels, operation in (2.4) becomes a

circular convolution of them. This operation is shown in (2.9), where ~ represents circular convo-
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lution, and r′(k−1)i,m represents the permuted versions of PMFs received from variable nodes.

p(k)
m,n

= ~
i∈N(m);i 6=n

r
′(k−1)
i,m (2.9)

Reverse of the permutation applied to the estimate received from variable node n, r(k−1)m,n , has to be

applied to p(k)
m,n

before sending it as a message to that node.

A direct implementation of QSPA, using the equations presented above, is not suitable for

practical applications due to two reasons.

1. A probability domain implementation is not well suited for hardware.

2. A direct implementation repeats the same operation a number of times, particularly in com-

puting (2.6) and (2.9), which increases the decoding complexity.

When it comes to implementing QSPA in hardware, probability domain has several draw-

backs [26],[27]. Practical implementations of decoders almost always use fixed point arithmetic,

and calculations in probability domain can easily lead to underflow issues, especially in steps such

as (2.5). Also, channel information will have to be quantized, and effects of this would be felt more

severely in probability domain [26]. Furthermore, a probability domain implementation would re-

quire a large number of multiplications, which are more costly at hardware level [26], [27]. Because

of these reasons, practical implementations of QSPA would often be in either the log domain or the

log-likelihood-ratio (LLR) domain. This allows multiplications to be replaced with additions, a

more hardware friendly operation. Also, these implementations would not be as sensitive to quanti-

zation effects, and are better suited for fixed point arithmetic.

Carrying out a calculation such as (2.9) or (2.6) for each variable/check node separately

would see many operations getting repeated. For example, with a check node of degree five, many

pairs of received PMFs (r(k)n,m) would undergo a convolution at least twice when completing (2.9).

This is an unnecessary complexity cost, which could be easily avoided by carrying out any com-

putation only once, and saving the result for future use. Different implementations of QSPA use

different strategies in this regard.

In the following sub-sections, we briefly go over the two most common implementations

of QSPA, LLR-QSPA [26] and fast Fourier transform based QSPA (FFT-QSPA) [25]. Each of

these deals with the aforementioned shortcomings of a direct implementation in different ways, and

presents unique advantages.
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2.3.1 LLR-QSPA

LLR domain implementation of QSPA [26] is a generalization of the approach taken in

binary LDPC decoders, where operations are almost always in LLR domain, with individual proba-

bilities replaced with ln(Pr(0)Pr(1)). In LLR-QSPA, the ratio used is ln(Pr(β)Pr(θ) ), where θ is a fixed value,

often 0, the additive identity. With this, conversion of a probability vector v to an LLR vector V ,

which we denote with llr(v), can be represented as follows.

V (β) = llr(v) = ln{v(β)

v(0)
} (2.10)

Please note that due to the properties of logarithms, the operation llr(v1 × v2) can be

computed as llr(v1) + llr(v2).

The decoder will be operating in the LLR domain from initialization, and therefore, initial

PMFs In, in (2.2), (2.5) and (2.6), have to be converted to LLR vectors as in (2.10). In the following,

these initial LLR vectors will be represented with L(0)
n . We chose to represent the LLR domain

equivalent of V (k)
n in (2.5), the updated PMF of variable node n in iteration k, as L(k)

n . When

the message vectors, or PMF estimates r(k)n,m and p(k)
m,n

, in (2.2) to (2.9), are converted to the LLR

domain, they will be represented with R(k)
n,m and P (k)

m,n respectively.

In LLR-QSPA, an additional operation, that of converting initial PMFs In to LLR domain

has to be carried out during initialization. But any complexity increase therein is dwarfed by the

complexity gains in variable node operations. This is one of the biggest advantages of LLR-QSPA,

and therefore, we will first consider how variable node operations, represented by (2.5) and (2.6),

are changed in the algorithm.

As was seen previously, many real number multiplications are required to complete (2.5),

where the variable node PMFs are updated. But now, with message vectors in LLR domain, these

multiplications can be replaced with simple additions. (2.11) in the following represents this opera-

tion.

L(k)
n = llr(V (k)

n ) = llr{In ×
∏

i∈M(n)

p(k)
i,n
} = L(0)

n +
∑

i∈M(n)

P
(k)
i,n (2.11)

It is possible to change (2.6) by straightaway applying the llr() operation as in (2.11).

But an alternative approach is taken to compute the new PMF estimates in LLR-QSPA. Rather than

carrying out an expensive operation for each new estimate, the LLR vector received from check

node m is simply subtracted from the updated PMF L(k)
n . This results in (2.6) being changed to the
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following simpler form. Note that unlike in probability domain, a normalization operation is not

required here, which results in another complexity gain.

R(k)
n,m = L(k)

n − P (k)
m,n (2.12)

In check node operations though, there are no clear advantages in using LLRs, as (2.9)

uses a number of additions in probability domain, for which there is no straight-forward counterpart

in LLR domain. In the literature, a probability domain addition carried out in log/LLR domain can

be referred to as a max* operation [26]. (2.13) in the following represents this operation, which

can be broken down to a comparison and a secondary computation. l1 and l2 represent LLRs of two

probability values.

max*(l1, l2) = ln(el1 + el2) = max(l1, l2) + ln(1 + e−|l1−l2|) (2.13)

Second term above, which is often called the correction term, is inversely proportional to

the difference of the two LLR values. It can be easily implemented with the help of a look-up table.

That way, a convolution between two PMFs in LLR domain can be completed using only additions,

comparisons, and table look-ups.

It is evident that converting (2.9) to LLR domain will result in a very similar computation;

convolution of LLR vectors, which can be completed with max* operations defined in (2.13) and

additions. But here also, in order to avoid repeating the same calculations, LLR-QSPA uses an

alternative approach, the forward-backward matrix [28], a computation strategy used in a wide

array of applications. In the following, we discuss how this strategy is applied.

Consider an arbitrary check node m of degree dc. In any iteration k, to estimate PMFs (in

LLR form) for each connected variable node, node m would first construct two matrices, forward

matrix F (k)
m and backward matrix B(k)m . Each matrix would be of dimension q × dc, where q is

the alphabet size, and they would be constructed using vectors R(k−1)
i,m received from neighboring

variable nodes.

The i’th column of F (k)
m will hold the result of circular convolution between its (i− 1)’th

column and the LLR vector received from the i’th variable node, R(k−1)
i,m . First column will be equal

to R(k−1)
1,m . Similarly, the i’th column of B(k)m will be the result of convolution between its (i+ 1)’th

column and R(k−1)
i,m . Here, the last, or the dc’th column, will be R(k−1)

dc,m
. Construction of the two

matrices are represented with following equations.

F (k)
m (:, i) = F (k)

m (:, i− 1) ~R
(k−1)
i,m ; i = 2, 3, . . . , dc (2.14)
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B(k)m (:, i) = B(k)m (:, i+ 1) ~R
(k−1)
i,m ; i = 1, 2, . . . , dc − 1 (2.15)

Now instead of computing (2.9), PMF estimate for an arbitrary variable node i ∈ N(m) can be

found using F (k)
m and B(k)m as follows.

P
(k)
m,i = F (k)

m (:, i− 1) ~ B(k)m (:, i+ 1); i = 2, 3, . . . , dc − 1 (2.16)

Estimate for the first node will be B(k)m (:, 2), and for the dc’th, it will be F (k)
m (:, dc − 1).

(2.14), (2.15), and (2.16) together complete the computation represented by (2.9) for all

neighboring variable nodes n of check node m. As stated previously as well, convolution of two

LLR vectors only requires additions, and max* operations, which can be completed with a compar-

ison, an addition, and a table look-up.

Forward-backward matrix approach makes sure that the same set of LLR vectors never

undergo a convolution operation more than once. This significantly reduces the complexity of (2.9),

when compared with a direct implementation. Convolution of two length q vectors is an operation

of O(q2) complexity, and this makes the overall complexity of forward-backward matrix approach

O(3dc · q2), since dc LLR vectors of length q undergo convolution three times, to create the for-

ward matrix, the backward matrix, and the final estimate for each variable node. For asymptotic

complexity, the factor of three may be safely disregarded, resulting in a complexity of O(dc · q2).

Otherwise a direct implementation of (2.9) would be of O(d2c · q2) complexity.

Thus, LLR domain implementation of QSPA manages to conduct decoding at a complex-

ity order ofO(q2), and only requires additions, comparisons and table look-ups, all more efficient at

hardware level than operations such as multiplications [29]. But the O(q2) complexity order is still

quite high, especially with larger values of q, for which NB-LDPC codes offer highest performance

gains [15].

2.3.2 FFT-QSPA

It is a well-known fact that a convolution operation becomes an element-wise multipli-

cation when the operands are transformed to an orthogonal domain, commonly referred to as fre-

quency, or Fourier, domain. FFT-QSPA uses this observation to reduce the O(q2) complexity of

check node operations in QSPA. This algorithm was first proposed for codes over finite fields of

characteristic 2 [25], the most commonly used algebraic structure for NB-LDPC codes. For these

codes Walsh-Hadammard domain would be used as the orthogonal domain, while for codes such as

those constructed over rings [11], Fourier domain could be used.
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This dissertation primarily focuses on codes defined over finite fields of characteristic 2.

Thus, for the sake of being more self-contained, we define the Walsh-Hadamard transform (WHT)

and its inverse (IWHT) in the following.

Definition 2.15. The Walsh-Hadamard transform (WHT) of a length 2m vector v is the vector V
computed as;

V =WHT (v) = v ·Hm

Hm is the Hadamard matrix of dimension 2m × 2m, which is defined for m > 0 as

Hm =

Hm−1 Hm−1

Hm−1 −Hm−1


and H0 = 1.

The inverse Walsh-Hadamard transform (IWHT) is used to compute v from V , as;

v = IWHT (V) = V ·H−1m

H−1m is the inverse of Hm.

WHT () and IWHT () represent the Walsh-Hadammard transform and its inverse, respectively.

More in-depth investigations of the WHT and Hadamard matrices are available in [30].

Relationship between convolution and multiplication in an orthogonal domain is valid

when vectors that undergo convolution are from the probability domain. Since the WHT of a PMF

can contain negative values, for which logarithms are undefined, this approach may not suit log/LLR

domain implementations well [27]. But a decoder operating entirely in probability domain is also

undesirable, due to hardware implementation issues discussed earlier. Therefore, FFT-QSPA usually

operates in log domain except at check nodes, where log values are first converted to probabilities

so that WHT becomes feasible, and later converted back to log domain, for subsequent operations.

Thus, initialization and variable node operations of this algorithm are very similar to those of LLR-

QSPA. In fact, the sole difference here is that instead of LLR vectors, the logarithms of probability

vectors are used, which also ensure that no multiplications are necessary for those steps. Therefore,

we will only focus on check node operations, which take a significantly different form in FFT-QSPA.

Due to the special relationship between convolution and multiplication in orthogonal do-

mains, (2.9) takes the following form in the Walsh-Hadamard domain, where P(k)
m,n and R′(k−1)i,m
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denote the WHTs of p(k)
m,n

and r′(k−1)i,m , respectively.

WHT (p(k)
m,n

) = P(k)
m,n =WHT

{
~

i∈N(m);i 6=n
r
′(k−1)
i,m

}
=

∏
i∈N(m);i 6=n

R′(k−1)i,m

It is evident that PMF estimates for variable nodes, p(k)
m,n

, can easily be computed with the

IWHT as

p(k)
m,n

= IWHT
{ ∏
i∈N(m);i 6=n

P(k−1)
i,m

}

These operations can be more succinctly represented as (2.17) in the following, which

replaces (2.9) in FFT-QSPA.

p(k)
m,n

= IWHT
{ ∏
i∈N(m);i 6=n

WHT {r′(k−1)i,m }
}

(2.17)

To facilitate the computation of (2.17), the incoming PMFs, which will be in log domain,

have to be first converted to probability domain. This operation is ususally conducted with look-up

tables.

Computing (2.17) for each n ∈ N(m) involves carrying out the same set of multiplica-

tions repeatedly. To avoid these repetitions, FFT-QSPA takes an approach similar to the forward-

backward matrix computation of LLR-QSPA. WHTs of each incoming PMF, which are computed

after permuting the received message vectors and transforming them to probability domain, are first

stored in memory, to be re-used when required. Then, instead of computing (2.17) for each n, full

product of WHTs, T(k)
m , is computed and stored. This operation is represented with the following

equation. r′(k−1)i,m represents one of the probability vectors computed after permuting the received

message vector.

T(k)
m =

∏
i∈N(m)

WHT {r′(k−1)i,m } (2.18)

Check node m’s PMF estimate for a neighboring variable node n, p(k)
m,n

, is then computed

as follows, whereWHT {r′(k−1)n,m } is now available in memory, and division is carried out element-

wise.

p(k)
m,n

= IWHT
{
T(k)
m /WHT {r′(k−1)n,m }

}
(2.19)

p(k)
m,n

above has to be converted to log domain, and re-permuted before sending to variable node n.

With this strategy, WHTs have to be computed only 2dc times, and only 2dc ·q multiplica-

tions and divisions are required. A direct implementation of (2.17) requires d2c WHTs, andO(d2c ·q)
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multiplications. Most complex computation in this approach is that of the WHT, which is of order

O(q · log q). Therefore, the FFT-QSPA is O(q · log q) complexity, which is a significant reduction

from O(q2) of the LLR-QSPA, especially for larger q.

Although FFT-QSPA is more advantageous in terms of complexity order, it does have

some issues in hardware implementation. Unlike LLR-QSPA, it requires many real number mul-

tiplications and divisions, more complex operations at hardware level, and a part of its operations

are in probability domain, which are more difficult to handle with fixed point arithmetic. Therefore,

LLR-QSPA is the version of QSPA considered most suitable for hardware implementations [27],

[29], particularly for small to moderate values of q, for which complexity gains of FFT-QSPA are

not very significant. In the interest of making FFT-QSPA more hardware friendly, a LLR domain

implementation of it is considered in [27], which uses additional look-up tables for dealing with

logarithms of negative values.

2.3.3 Simplifications

NB-LDPC codes offer very good performance with any implementation of QSPA dis-

cussed in the previous section, often outperforming their binary counterparts [15] which are the

codes of choice in many practical applications. Still, NB-LDPC codes are yet to reach that levels of

practical usage. This is mainly due to the high complexity of QSPA; O(q2) or O(q · log q) are too

high for many applications. With large alphabets, complexity of QSPA becomes especially high,

which is unfortunate since performance of NB-LDPC codes improve with alphabet size [15].

Complexity bottleneck of any QSPA implementation is the check node calculations step.

O(q2) andO(q · log q) complexity orders of LLR-QSPA and FFT-QSPA are both due to that. There-

fore, most approaches to reduce decoding complexity of NB-LDPC codes try to simplify check node

computations.

As (2.3) shows, when computing the PMF estimate for some variable node, each symbol

probability is calculated by summing up the probabilities of several different configurations. Some

of these configurations will be highly probable ones, with relatively large probability values, while

some others would have probabilities very close to zero. Impact of such highly improbable config-

urations on the final PMF estimate will be almost negligible, and therefore, one can afford to not

consider these if it is advantageous in terms of complexity. This observation provides the basis to a

number of simplifications of QSPA’s check node operations.

One such simplification is the max-log-SP algorithm [26], a modification of LLR-QSPA.
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In check node computations of LLR-QSPA, many different pairs of LLR vectors undergo convolu-

tion, for example in (2.14), (2.15), and (2.16). In such a convolution, each element of the resultant

vector is the combination of many different terms which are combined using the max* operation

(see (2.13)). Max-log-SPA considers only the largest term out of these, and thus, comparisons

are used instead of max* operations. So the computation which required one comparison, two

additions, and one table look-up is now approximated with a form that only requires a single com-

parison. This is the complexity advantage offered by max-log-SPA, but since it still needs to check

all different terms to find the largest, its complexity order remains O(q2). This algorithm can be

considered the straight-forward generalization of the binary min-sum algorithm [31] for NB-LDPC

codes [26],[28]. Results in the literature show that, although there is a complexity gain, performance

loss in using max-log-SPA is significant [26].

In the literature, [32] considers a similar approach with FFT-QSPA, where, at check nodes,

the n lowest values of a PMF received from a variable node are approximated with some uniform

probability value, before transforming the PMFs to Hadammard domain. With PMFs of this form,

a reduction in the number of operations required for WHT has been observed. But this complexity

reduction directly depends on n, and also on positions of the values approximated [32], which can

change for each PMF received by a check node. A larger value of n can be expected to significantly

reduce decoding complexity, but the corresponding performance loss would also be significant. On

the other hand, a smaller n would make performance losses minimal, but any gain in complexity

will also be negligible.

One of the more well-known simplifications of QSPA, the extended min-sum algorithm

(EMSA) [33], is also based on similar ideas. EMSA defines a configuration in a slightly different

way to (2.3). Rather than considering them per variable node and symbol value, as (2.3) does, a

configuration in EMSA is a set of dc values, one for each variable node in the neighborhood, that

together satisfy the parity-check constraint [33]. These can be defined as follows.

Cm = {c = (x0, x1, . . . , xdc−1);
∑

i∈N(m)

hi · xi = 0} (2.20)

EMSA attempts to reduce the number of configurations in Cm by enforcing two condi-

tions on them. First, a symbol value xi in any configuration should correspond to one of the nm

largest values in the PMF estimate received from variable node i. Here, nm is a user-defined pa-

rameter. In order to further reduce the number of configurations, a second restriction is applied; a

configuration is only allowed to differ from the most likely one in at most nc positions, where nc
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is also user-defined. These two restrictions make sure that only a fraction of the configurations in

(2.20) is used in decoding.

In the interest of efficient hardware implementations, EMSA generally operates in the

LLR domain. Similar to max-log-SPA [26], it approximates max* operation by a comparison,

thereby reducing the complexity of computing the LLR of a summation of two probabilities. But

since EMSA only considers the nm largest values in each received PMF estimate, the estimates have

to be sorted, which is the complexity bottleneck of the algorithm. Sorting ensures that the algorithm

is at least of O(q · log q) complexity, the complexity class of FFT-QSPA.

Other than sorting, check node operations of EMSA can be carried out using the forward-

backward matrix approach [33] presented in sub-section 2.2.1. With this approach, complexity of

the EMSA isO(nm ·q). Results in the literature show that for nm < log q, performance loss relative

to QSPA is too significant. Therefore, nm ≥ log q in most cases, which makes the complexity order

of the EMSA higher than that of the FFT-QSPA. But when considering the individual operations

required, it can be seen that complexity of EMSA is lower, since it mostly uses simple, hardware

friendly operations such as comparisons and additions.

Due to the number of approximations used, PMF estimates computed at check nodes of

EMSA can be quite different from those of QSPA, and this can lead to significant performance

losses. In the literature, [33] suggests using a correction term, either additive or multiplicative,

to make these estimates more accurate. This correction term have to be optimized through Monte-

Carlo simulations for each code used with the algorithm. With an optimized correction term, EMSA

manages to perform very close to QSPA [33]. An alternative, reduced complexity approach to

forward-backward matrix computation for check node operations of EMSA has been suggested in

the literature [34] along with a hardware architecture.

A somewhat different approach to reducing complexity of QSPA, ‘min-max decoding’, is

presented in [28]. An algorithm that operates in LLR domain, it uses a slightly different form of

LLRs to (2.10). To better understand the motive behind this different form of LLRs, it would first

be beneficial to consider how data is transmitted in practice.

It is well known that in wireless communication, modulation is employed to transmit data

[35], [36]. Simply put, digital modulation is changing different characteristics of a signal according

to the data that has to be transmitted. This signal is usually referred to as the carrier waveform, and

the characteristics that are changed could be any of amplitude, phase and frequency. For a more

in-depth discussion on modulation, please refer [36].

The number of different ways in which the characteristics of the carrier waveform may

25



CHAPTER 2. PRELIMINARIES

be changed is known as the modulation order, and each change is said to create a new modulation

symbol. In most modulation schemes, these different symbols could be represented as points in

a two dimensional plane, which is referred to as the modulation constellation [36]. The distance

from the origin of the plane to such a point represents the amplitude for that symbol, and the angle,

measured with respect to the horizontal axis, represents the phase. For any decoding scheme, the

computation of initial channel estimates is directly dependent on the modulation scheme.

Figure 2.2 shows the 8-PSK modulation constellation, where the eight symbols are shown

as red crosses. While the transmitter will only transmit one of these symbols, it may get corrupted

due to channel imperfections, and what is received may not be a valid symbol. For example, in

Figure 2.2, the black cross represents the received signal. The probability of a symbol being the one

that was actually transmitted is inversely proportional to the distance between that symbol and this

received signal. In min-max decoding, the traditional form of LLRs, given in (2.10), is changed in

such a way that this relationship between probabilities and distances is somewhat preserved [28]. It

should be noted though that this analogy is only valid when the size of the field used for constructing

the NB-LDPC code is equal to the order of the modulation scheme used.

Figure 2.2: Modulation Constellation for 8-PSK

Instead of using a fixed symbol for computing the ratio of probabilities, the most likely

symbol, which can change for each PMF and each iteration, is used in min-max decoding. With

this form of LLRs, given that the modulation scheme used in transmission and the finite field used

for code construction are of same size, each value in the message vector becomes analogous to the

distance between that particular symbol and the most likely one [28]. New form is given in (2.21),

where β∗ and γ∗ represent the most likely symbols. R(k)
n,m is the message from variable node n to
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check node m, and P(k)
m,n from m to n, both in k’th decoder iteration.

R(k)
n,m(γ) = ln{Pr(γ

∗)

Pr(γ)
} P(k)

m,n(β) = ln{Pr(β
∗)

Pr(β)
} (2.21)

Computation of message vector P(k)
m,n then becomes an evaluation of distances between

different symbols and the most probable symbol for node n. This most probable symbol is the

symbol β∗ for which the following configuration c∗ is in the set Cmn,β∗ (see (2.3)). γ∗i represents the

most likely symbol for variable node i according to the PMF estimate received from that node, and

hi represents the label of the edge between check node m and variable node i.

c∗ = (γ∗0 , γ
∗
1 , . . . , γ

∗
n−1, γ

∗
n+1, . . . , γ

∗
dc−1);

∑
i∈N(m),i 6=n

hi · γ∗i = −(hn · β∗n) (2.22)

In min-max algorithm, distance between β∗ and any symbol β is evaluated as the distance

between c∗ and the set of all possible configurations for symbol β, from the setCmn,β (see (2.3)) [28].

The distance between a specific point and another set of points can be considered as the minimum

distance between that point and any point in the set. Distance may be evaluated using any of the

p-norms [28]. For some configuration c = (γ0, γ1, . . . , γn−1, γn+1, . . . , γdc−1) ∈ Cmn,β , distance to

c∗ is computed as;

dist(c∗, c) = ‖dist(γ∗0 , γ0), . . . , dist(γ∗n−1, γn−1), dist(γ∗n+1, γn+1), . . . , dist(γ
∗
dc−1, γdc−1)‖p

(2.23)

But with the new form of LLRs, dist(γ∗i , γi) is simply γi, which simplifies (2.23) to the following

form.

dist(c∗, c) = ‖γ0, . . . , γn−1, γn+1, . . . , γdc−1‖p (2.24)

Min-max decoding uses infinity norm to compute (2.24), which is advantageous in terms

of complexity, since only comparisons are required. Also, it has been noted in [28] that using

infinity norm can help reduce the over-estimation error of check node estimates in the approximated

BP-based decoders, such as in binary min-sum decoding [31]. With infinity norm, (2.24) changes

to;

dist(c∗, c) = max(R(k−1)
0,m (γ0), . . . ,R

(k−1)
n−1,m(γn−1),R

(k−1)
n+1,m(γn+1), . . . ,R

(k−1)
dc−1,m(γdc−1)) (2.25)

Check node estimate for variable node n, P(k)
m,n, then takes the following form.

P(k)
m,n(β) = min

c∈Cmn,β
(max
γi∈c

R(k−1)
i,m (γi)) (2.26)
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Forward-backward matrix approach has been suggested in [28] for completing (2.26) for

all variable nodes in the neighborhood. Since the size of configuration sets Cmn,β (in (2.3)) are not

reduced with the approximations used in min-max algorithm, its complexity order stays at O(q2),

same as LLR-QSPA. But it is evident from (2.26) that only comparisons are required for check node

computations, which makes the min-max algorithm significantly more efficient at hardware level.

The new form of the LLRs of (2.21) requires some additional computations to be carried out at

variable nodes [28], but these can be completed with only comparisons and subtractions, and thus

their impact on complexity is minimal.

2.3.4 Performance and Decoding Complexity

Any decoding algorithm for NB-LDPC codes is evaluated on two main criteria; decoding

performance and complexity. Performance of the two major versions of QSPA, and two of its

simplifications, max-log-SPA [26] and min-max decoding [28], with two NB-LDPC codes, are

given in Figure 2.3 and Figure 2.4. Max-log-SPA is a special case of EMSA, where nm = q

and nc = dc − 1, the highest possible values for the two parameters [33], making it the most

performance-friendly configuration. Therefore, no other configuration of EMSA is considered in

the figures.

2.8 3 3.2 3.4 3.6 3.8 4 4.2

E
b
/N

0
(dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

F
E

R

llr-qspa

fft-qspa

min-max

max-log-spa

Figure 2.3: Perf. with a (1000, 861) code
over F23
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Figure 2.4: Perf. with a (361, 288) code
over F26

The decoding performances are compared in terms of their frame error rates (FER). A

rate 0.861, codeword length 1000 NB-LDPC code over F23 is used in Figure 2.3, and a rate 0.8,

codeword length 361 code over F26 is used in Figure 2.4. Maximum number of decoding iterations

is set to 50 for all algorithms. Performance of the two versions of QSPA, LLR-QSPA and FFT-
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QSPA, are almost identical in both cases. Also, min-max algorithm performs very close to QSPA,

with a gap less than 0.1dB. Max-log-SPA seems to suffer from a significant performance degradation

though. Its gap with QSPA is 0.3dB for the code over F23 , and close to 0.5dB for the code over F26 .

A correction factor, as suggested in [33], can help in reducing these gaps.

As discussed at the beginning of Section 2.2, decoding NB-LDPC codes consists of three

major steps; initialization, check node operations, and variable node operations. Initialization is

where the symbol probability values are computed for each variable node, based on channel obser-

vations. Therefore, this step is almost the same for every decoding algorithm. Decoding complexity

is dominated by check node operations, while variable node operations also have a significant im-

pact. Table 2.1 and Table 2.2 list complexities of these two steps for the two variants of QSPA,

EMSA, and the min-max algorithm. Since the type of operation is as relevant for decoding com-

plexity as the number of operations, four types are considered in the tables; comparisons (C), addi-

tions/subtractions (A/S), multiplications/divisions (M/D), and table look-ups (T ). Complexities

listed are for decoding a code over Fq, and are for a single node, in a single iteration. dv and dc

represent, respectively, the check degree and the variable degree of the code.

Algorithm C A/S M/D T
LLR-QSPA 3dc · q2 6dc · q2 - 3dc · q2
FFT-QSPA - 2dc · q · log q 2dc · q 2dc · q
EMSA 3dc · nm · q 3dc · nm · q - -
Min-max 6dc · q2 - - -

Table 2.1: Check Node Complexity of QSPA Variants

Algorithm C A/S M/D T
LLR-QSPA q 2dv · q - -
FFT-QSPA q 2dv · q - -
EMSA q 2dv · q - -
Min-max (dv + 1) · q 3dv · q - -

Table 2.2: Variable Node Complexity of QSPA Variants

The two simplifications of QSPA, EMSA and min-max algorithm, only require compar-

isons and additions for decoding. Multiplications are necessary only for check node operations of

FFT-QSPA, while table look-ups are required for max* operation of LLR-QSPA, and converting

between log and probability domains in FFT-QSPA. When considering the number and the type of

operations, EMSA seems the least complex of the four, but when used in practice, a correction term
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is necessary to ensure that the performance loss relative to QSPA does not become very significant

[33]. This increases the number of additions required. Min-max algorithm has the highest com-

plexity at variable nodes, due to the special form of LLRs it uses (see (2.21)), but as the increase

is mostly in the number of comparisons, impact on overall complexity is minimal. Also taking in

to account the performance of these algorithms (see Figure 2.3 and Figure 2.4), it can be deter-

mined that the min-max algorithm offers the best performance-complexity trade-off for decoding

NB-LDPC codes, since, in comparison to any version of QSPA, its performance loss is minimal and

the complexity gain is significant. The algorithm is also well suited for hardware implementations.

2.4 Majority Logic Decoding

Majority logic decoding (MLgD) is an approach that has successfully been used to decode

different classes of channel codes such as Reed-Muller codes and repetition codes. More recently, a

number of different decoding algorithms based on this approach has been suggested in the literature

for NB-LDPC codes [24], [37], [38], [39], [23]. These are iterative algorithms, similar to QSPA

and its simplifications, but require only a fraction of the operations necessary in those. Also, the

operations required are either finite field computations, or integer additions. Therefore, MLgD

algorithms are several times faster than QSPA variants. But this complexity gain comes at the cost

of severe performance degradation, especially for codes constructed in a random fashion (see sub-

section 2.1.1), which generally have low variable degrees [39]. These algorithms are intended to

be used with high variable degree codes, generated with structured construction methods similar to

[20], [21], [22],[23]. Even with those codes, performance of the MLgD algorithms is significantly

worse than that of QSPA variants, but their extremely low complexity allows NB-LDPC codes to

be used in resource-constrained settings. In such environments, NB-LDPC codes with MLgD often

outperform the alternatives such as Reed-Solomon codes (with Berlekamp-Massey decoding) [24],

[23]. In the following, we give a brief overview of MLgD of a code defined over Fq.

A variable node in an MLgD algorithm is initialized with an integer vector of length q,

where each value represents the reliability of the corresponding symbol being the correct estimate

for that node [24]. If some soft information is available, reliability of each symbol will be some

integer. Size of these integers, in number of bits, depends on the capabilities of the hardware.

Since MLgD is almost exclusively used in resource-constrained systems, integers used would often

be only a few bits wide. In certain cases, no soft information would be available. Then, in the

reliability vector, value for the hard decision symbol would be set to one, and others to zero. In many
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algorithms, this initial reliability vector Cn is scaled by some factor δ for improved performance

[24], [23]. Optimum value of δ has to be found through Monte-Carlo simulations for each code.

The following equation represents initializing variable node n, where V
(0)
n represents the symbol

reliability vector of node n after initialization.

V(0)
n = δ · Cn (2.27)

Unlike in QSPA variants, where a message is an estimate of the associated PMF, in MLgD,

a message between two neighboring nodes is the most likely symbol for the corresponding variable

node. These simplified messages reduce check node operations to a set of finite field computations,

which can be carried out efficiently with look-up tables [24]. Using the messages r
(k)
i,m received

from neighboring variable nodes, a check node m computes the most likely symbol for node n,

p
(k)
m,n, as in (2.28), where hi represents the label of the edge between nodes m and i, and h−1i is the

multiplicative inverse of hi.

p(k)m,n = h−1n ·
( ∑
i∈N(m);i 6=n

hi · r(k−1)i,m

)
(2.28)

When a check node sends a symbol to a neighboring variable node, it is often referred to as

a vote for that particular symbol being the correct estimate for that node. Variable nodes accumulate

these votes throughout iterations, combined with channel estimates, in symbol reliability vectors

V
(k)
i [24]. Symbol with the highest reliability in V

(k)
i is chosen as both the tentative decision, and

the message to all neighboring check nodes in the next iteration. This goes against the extrinsic

principle of message passing, but is advantageous in terms of decoding complexity. Reliability

vector update at a variable node n is represented by the following equation, where ui is the reliability

update for the vote from neighboring check node i.

V(k)
n (β) = V(k−1)

n (β) +
∑

i∈M(n),p
(k)
i,n=β

ui (2.29)

MLgD algorithms can be divided into two main categories, based on the availability of

soft channel information during initialization. Those that use soft information for decoding are

referred to as soft reliability based algorithms, and ones that have to rely on hard decisions from

the channel are called hard reliability based algorithms. Majority of algorithms in both categories

are modifications of either iterative soft reliability based (ISRB) MLgD or iterative hard reliability

based (IHRB) MLgD, both proposed in [24].
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Apart from information available for initialization, a main difference between soft relia-

bility based and hard reliability based algorithms is in the way reliability vectors at variable nodes

are updated using check node estimates. In hard reliability based algorithms, each vote increases

the corresponding symbol’s reliability value by one (ui in (2.29) is 1 for all i). But in soft reliability

based algorithms, a vote increases the reliability by a value≥ 1, which depends on the edge the vote

was sent through. This value is referred to as edge reliability [24] em,n (ui = ei,n in (2.29)), and is

computed for an edge between check node m and variable node n as follows, during initialization

of the decoder.

em,n = min
i∈N(m),i 6=n

(
max
β∈Fq

Ci(β)
)

(2.30)

Simulation results in the literature show a significant gap between performance of soft

reliability based and hard reliability based MLgD algorithms. But out of the two, hard reliability

based ones are much better suited for resource-constrained systems, since additions carried out in

decoding are always increments of one. [37] considers using soft information only during initial-

ization of IHRB-MLgD. This version is popularly known as enhanced IHRB-MLgD (EIHRB), and

it introduces another modification. During variable node operations, algorithm computes a differ-

ent estimate for each check node, by removing its most current vote from the vector of reliability

values. Initial soft information, and pseudo-extrinsic variable node messages, manage to reduce the

gap with ISRB-MLgD significantly [37].

[23] proposes two algorithms similar to IHRB-MLgD and EIHRB-MLgD, generalized bit

flipping (GBF), and modified generalized bit flipping (MGBF). These algorithms use truly extrinsic

messages, but, at each variable node, they need vectors of accumulated reliability values to be

maintained for each neighboring check node, which significantly increases memory requirements.

In all MLgD algorithms discussed so far, symbol reliability values are accumulated, which

can cause issues such as integer overflow, particularly since the algorithms are intended for systems

with limited resources. This is especially a problem in soft reliability based algorithms, where

reliability updates are generally in values > 1. In ISRB-MLgD, any value in risk of integer over-

flow is clipped, and the reliability vector is normalized to reflect the clipping [24]. [38] proposes

two variants of ISRB-MLgD and EIHRB-MLgD, improved ISRB-MLgD (IISRB) and improved

EIHRB-MLGD (IEIHRB), that do not accumulate reliability values. Instead, the tentative decision

and the estimate in each iteration is only based on the initial reliability vector, and votes received in

that iteration.

With each neighboring check node voting for a single symbol, all symbol reliability values
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of a variable node would not be updated in every iteration. Even with high variable degree codes,

this will be possible only if the code is over a small alphabet. In the literature, this is considered the

major reason for the high error-floor observed with MLgD [39]. For fixing this issue, [39] proposes

bit reliability based (BRB) MLgD, where reliability values of the constituent bits of a symbol are

used in place of symbol reliability values. Results show that while this improves the error floor, it

can lead to a performance loss, in comparison to ISRB-MLgD, in the waterfall region of decoding

[39].

FER performance of five different MLgD algorithms, ISRB-MLgD, IHRB-MLgD, EIHRB-

MLgD, IISRB-MLgD, and IEIHRB-MLgD, and LLR-QSPA, with two different NB-LDPC codes,

are given in following figures. Figure 2.5 shows performance of a (63, 37) code over F23 , con-

structed using the structured method proposed in [23]. This code has a relatively large variable

degree of 8. Figure 2.6 shows performance of a general NB-LDPC code defined over F24 , of rate
2
3 , symbol length 384, and average variable degree 3.375. In both cases, the maximum number of

decoding iterations is set to 50 for all algorithms, including LLR-QSPA. For soft reliability based

MLgD algorithms (ISRB-, and IISRB-MLgD), 12-bit quantization is used, and for ones that use soft

information only in initialization (EIHRB-, and IEIHRB-MLgD), 3-bit quantization is used. Scal-

ing factors used in all MLgD algorithms have been optimized for each code through Monte-Carlo

simulations.
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Figure 2.5: Perf. of a (63, 37) code over F23
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Figure 2.6: Perf. of a (384, 256) code over
F24

Performance of MLgD in the two cases are significantly different from each other. Fig-

ure 2.5 shows that with a high variable degree code, most MLgD algorithms manage to perform

within 1dB of QSPA, with the gap being the least for IEIHRB-MLgD, around 0.6dB. Considering
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the quite significant gains of MLgD in decoding complexity and resource requirements, this level

of performance loss should be acceptable in most cases. But, as can be seen in Figure 2.6, results

are quite different with the low variable degree code, where a gap > 3dB with QSPA is observable

for all MLgD algorithms. Additionally, FER curves for these algorithms show early signs of error-

floor. These observations suggest that MLgD is not a viable alternative to QSPA if the code being

used is not from a construction that guarantees high variable degrees. As noted earlier, with each

connected check node voting for just one symbol, only a few symbol reliability values are updated

in each iteration when the variable degree is low. This can cause the decoder to be stuck in one state,

especially if there are erroneous channel estimates with high reliability values.

Out of all MLgD algorithms, IEIHRB-MLgD is the best performing one in Figure 2.5,

closely followed by IISRB-MLgD. These improved algorithms outperform the original versions,

EIHRB-MLgD and ISRB-MLgD, by around 0.1-0.2dB. But in Figure 2.6, improved versions per-

form worse than the original ones, a phenomenon also observed in [39] for low variable degree

codes. In both cases, enhanced hard reliability based algorithms manage to outperform soft reli-

ability based ones, even though higher levels of quantization were used for the second type. This

suggests that the significant performance gap observed between IHRB-MLgD and remaining MLgD

algorithms is mostly due to the loss of soft information during initialization. Results suggest that

if NB-LDPC codes are to be used in a resource-constrained setting, then IEIHRB-MLgD with a

high variable degree code is the best choice. It marginally outperforms other MLgD algorithms,

and is slightly better suited for hardware implementations than those, as reliability values are not

accumulated.
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Expansions of Non-binary Factor

Graphs

As was established in previous chapters, non-binary LDPC (NB-LDPC) codes offer ex-

ceptional error-correcting performances with Q-ary sum-product algorithm (QSPA), but decoding

complexity is at a level that does not encourage practical usage. For a code over Fq, QSPA is

of O(q2) complexity. This is particularly unfortunate since best performing NB-LDPC codes are

over large fields, for which decoding complexity would be at very high levels. Furthermore, QSPA

requires a lot of hardware resources, especially memory, and therefore, it can only be practically im-

plemented in systems where that kind of resources are available. Due to these reasons, performance

gains of NB-LDPC codes are yet to be widely achieved in practice.

Many researchers in the field have attempted to simplify QSPA to reduce its complexity,

while ensuring that performance losses are minimal. A few approaches of the kind were discussed in

some detail in the previous chapter, such as the FFT-based implementation of QSPA [25], extended

min-sum algorithm [33], and min-max decoding [28]. Efficient hardware implementations have

also been suggested for some of these [34]. But the performance-complexity trade-offs offered by

sub-optimal decoding algorithms do not suit all applications that may benefit from using NB-LDPC

codes. Also, for significant complexity gains, performance loss in comparison to QSPA can be

significant.

An alternative strategy to reduce decoding complexity of NB-LDPC codes is to use smaller

fields in decoding than the ones used in code construction. For that to be possible, a code should

first be suitably represented over a smaller field. Since an NB-LDPC code is usually defined by its
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parity-check matrix, and the associated factor graph, a suitable representation over a smaller field

would be an expansion of the parity-check matrix and the factor graph. Any variant of QSPA can

theoretically be used with the expanded graph. This is particularly attractive, as decoding complex-

ity for a code over Fq could then potentially be reduced to O(r2), where r << q.

In the literature, most of the focus in decoding based on expanded graphs has been devoted

to using binary expansions [40], [41], [42], which is understandable since that leads to the highest

complexity reduction. In the following sections, we first provide brief overviews of some of these

binary expansions. Then, based on a novel approach, we propose a more general expansion, which

allows a factor graph over Fq to be expanded into a graph over any subfield of Fq. If the field is of

characteristic 2, then the set of possible expansions would also include the binary one. This chapter

focuses only on the expansions, while decoding based on expanded graphs is planned for the next.

3.1 Existing Binary Expansions

3.1.1 Binary Image

A straight-forward approach to convert a parity-check matrix over F2r to a binary one is

to use the matrix representation of F2r , introduced in subsection 2.4.3. This representation, which is

based on the companion matrix of the primitive polynomial of F2r , uses an r × r binary matrix for

each element in the field. Thus, if the original matrix was of dimensionsm×n, its binary expansion

would be a rm× rn matrix. This is referred to as the binary image of the original F2r matrix.

In the following, as an example, we present the binary image of a matrix over F23 .

Example 3.1. Consider the following 3×4 matrixH , over F23 , whereα denotes a primitive element.

H =


0 α α5 0

1 0 α3 α6

α2 α4 0 1

 (3.1)

A primitive polynomial for F23 is Π(x) = x3 + x+ 1, over F2. Based on definition 2.13,

the corresponding companion matrix is;

A =


0 0 1

1 0 1

0 1 0

 (3.2)
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Matrix A has 7 distinct powers, with A7 being the 3× 3 identity matrix. These matrices,

together with the all-zero 3×3 matrix, form a field isomorphic to F23 . Following table presents this

representation, together with the power and vector representations of F23 .

0

0
0
0

 0 0 0
0 0 0
0 0 0


1

1
0
0

 1 0 0
0 1 0
0 0 1


α

0
1
0

 0 0 1
1 0 1
0 1 0


α2

0
0
1

 0 1 0
0 1 1
1 0 1



α3

1
1
0

 1 0 1
1 1 1
0 1 1


α4

0
1
1

 0 1 1
1 1 0
1 1 1


α5

1
1
1

 1 1 1
1 0 0
1 1 0


α6

1
0
1

 1 1 0
0 0 1
1 0 0


Table 3.1: Representations of F23

In the binary image of H , Hb, each symbol is replaced with the corresponding 3 × 3

matrix above. This results in

Hb =



0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 1 0 1 1 0 0 0 0 0

0 0 0 0 1 0 1 1 0 0 0 0

1 0 0 0 0 0 1 0 1 1 1 0

0 1 0 0 0 0 1 1 1 0 0 1

0 0 1 0 0 0 0 1 1 1 0 0

0 1 0 0 1 1 0 0 0 1 0 0

0 1 1 1 1 0 0 0 0 0 1 0

1 0 1 1 1 1 0 0 0 0 0 1



(3.3)

Binary image of a parity-check matrix (PCM), constructed as in Example 3.1, fully rep-

resents all the constraints in the original matrix. When it is used for decoding, codewords also have

to be considered in their binary forms. This conversion is through the vector representation of the

field, the concept of which was introduced in the previous Chapter. In that representation, a symbol

in F2r is represented with a length r binary vector, or r bits, the number of bits equivalent to the

information contained in one such symbol. When the channel in use has binary inputs, r bits will

be transmitted per non-binary symbol.
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From H and Hb in example 3.1, it becomes clear that the factor graph representation of

the binary image uses r binary nodes for each non-binary node of the original graph. Connections

between them are determined by the binary image, and the degree of any binary node will be equal to

or larger than the degree of the corresponding non-binary node. Binary variable nodes that replace a

non-binary variable node represent the constituent bits of the associated F2r symbol, whereas binary

check nodes compute their probability estimates. Each bit transmitted when using a binary input

channel is thus represented with a variable node in the factor graph of the binary image.

Although the binary image fully represents a PCM, its structure would not suit iterative

decoding in most cases, and decoding schemes that use this approach, for example [43], [41], and

[42], do not directly use it. Main reason for this is the large number of short cycles present in the

binary image in comparison with the original matrix. These short cycles can create stopping sets that

negatively impact iterative decoding [42]. This increase in short cycles is partly due to the matrix

representation of some symbols themselves containing such cycles. Further, the binary expansion of

a regular non-binary matrix may not have the same property. Example 3.1 above provides evidence

of these. There, matrix H , which is over F23 , has a single four-cycle, but its binary image, Hb, has

several. Also, while H is of regular column weight two, Hb has column weights ranging from two

to five.

Different decoding schemes based on the binary image use different strategies to limit

the impact of short cycles and associated stopping sets. A brief overview of these strategies are

presented in the next chapter.

3.1.2 Extended Binary Representation

Although it is fairly simple, binary image representation of the PCM of an NB-LDPC

code is too dense to be used with iterative decoding algorithms without significant modifications.

Extended binary representation, first proposed in [40], is an alternative approach that generates a

sparse binary matrix better suited for iterative decoding.

Extended binary representation of a m × n matrix over F2r is a binary matrix of dimen-

sions ((2r − 1)m+ (2r − 1− r)n)× (2r − 1)n, significantly larger than the binary image, which

is rm× rn. This expansion is achieved through alternative matrix and vector representations of the

field. As discussed in subsection 2.4.3, traditionally, β ∈ F2r is represented with a r × r binary

matrix, or a binary vector of length r. But in the alternative representations, proposed in [40], same

element will be represented with a (2r− 1)× (2r− 1) matrix and a vector of length (2r− 1). In the
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following, we present these representations, which we refer to as the extended matrix representation

and the extended vector representation. hβ and vβ denote, respectively, the traditional matrix and

vector representations of β ∈ F2r , while h̃β and ṽβ denote the new ones.

Definition 3.1. Extended matrix representation of a symbol β ∈ F2r is the (2r − 1) × (2r − 1)

matrix h̃β defined based on the traditional matrix representation of β, hβ , as follows.

h̃β(i, j) =

1; if ib · hβ = jb

0; otherwise
, 1 ≤ i, j ≤ 2r − 1 (3.4)

The binary representations of integers i and j, with the left most bit the least significant bit, are

denoted with ib and jb respectively.

For any β 6= 0, hβ is an invertible matrix, and for such a matrix, h̃β would be a permu-

tation of the (2r − 1) × (2r − 1) identity matrix, as proven in [44]. h̃0 is the (2r − 1) × (2r − 1)

all-zero matrix. Therefore, no cycle can exist in the extended representation matrix h̃β for any β, a

significant advantage over the traditional representation.

Definition 3.2. Let X2r be the r × (2r − 1) matrix, where columns are the binary representations

of integers i = 1, 2, . . . , (2r − 1), or X2r = [1b, 2b, . . . , (2
r − 1)b]. Then the extended vector

representation of a symbol β ∈ F2r is the vector ṽβ defined as follows.

ṽβ = vβ · X2r (3.5)

X2r in the above definition is actually the PCM of the (2r−1, 2r−1−r) binary Hamming

code [44], [45]. So the extended vector representations become codewords of its dual code, which

is the (2r−1, r) binary simplex code [45]. In other words, bits of the extended vector representation

of any symbol should satisfy the constraints of the simplex code generated by X2r . These additional

constraints should be a part of the extended binary representation, and for one codeword symbol,

(2r − 1− r) such constraints have to be added.

In the following, extended binary representation of matrix H in example 3.1 is con-

structed.

Example 3.2. Matrix X23 takes the following form.

X23 =


1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

 (3.6)
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Traditional representations of F23 presented in Table 3.1, and X23 above, are used to

derive the extended matrix and vector representations given in Table 3.2. It can be seen that all

extended vector representations are codewords of the (7, 3) binary simplex code, and that extended

matrix representations are permutations of the 7× 7 identity matrix.

0



0
0
0
0
0
0
0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



1



1
0
1
0
1
0
1





1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



α



0
1
1
0
0
1
1





0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0



α2



0
0
0
1
1
1
1





0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
1 0 0 0 0 0 0



α3



1
1
0
0
1
1
0





0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0



α4



0
1
1
1
1
0
0





0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0



α5



1
1
0
1
0
0
1





0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0



α6



1
0
1
1
0
1
0





0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0



Table 3.2: Extended Representations of F23

In the extended binary representation of matrix H in (3.1), denoted H̃b, each symbol is

first replaced by its extended matrix representation, from Table 3.2. This operation creates the top

half of H̃b, in (3.8). As discussed earlier, the constraints that only involve the (23 − 1) bits of the

extended vector representation of a F23 symbol also have to be added to H̃b. These constraints are

represented with Y23 below, which is the PCM of the simplex code represented by X23 .

Y23 =


1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 1 0

1 1 0 1 0 0 1

 (3.7)
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Since H (in (3.1)) represents a code of length 4, 4 sets of additional constraints have to

be added to H̃b. This adds (23 − 1 − 3) · 4 = 16 new rows to the extended binary representation.

These rows form the bottom half of H̃b, in (3.8).

H̃b =



0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1



(3.8)

Similar to the binary image, the extended binary representation of a PCM can also capture

all of its constraints. In decoding, extended vector representation will be used to convert codewords

to their binary forms, rather than the traditional vector representation used with the binary image.

This results in a binary codeword (2r−1) times longer than the non-binary one. Factor graph of the

extended binary representation uses (2r − 1) binary nodes for each non-binary node of the original
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graph. It also includes a number of new binary check nodes, (2r − 1 − r) per non-binary variable

node, which are due to the constraints imposed by the extended vector representation.

From example 3.2, it can be observed that although both are binary representations of

the same non-binary matrix H , H̃b is a much larger matrix than Hb in example 3.1. This larger

size allows H̃b to be sparser than Hb; it is free of 4-cycles, even though one exists in H . In fact,

4-cycles can only exist in the extended binary representation if the 4-cycles in the original matrix

satisfy a special condition. This is explored in chapter 4, which discusses graph sub-structures that

negatively impact iterative decoding of non-binary codes.

Even though its larger size makes the extended binary representation of a PCM better

suited to iterative decoding than the binary image, that becomes a disadvantage when it comes to

decoding complexity. A ((2r − 1)m + (2r − 1 − r)n) × (2r − 1)n matrix creates a significantly

larger number of variable and check nodes than a rm × rn matrix, even though they are of lower

degrees.

But this slight increase of complexity is not the major disadvantage of the extended binary

representation. It uses (2r − 1) bits for each symbol in F2r , although one such symbol contains

information equivalent to only r bits. As mentioned earlier, when the channel in use is a binary

input channel, r bits will be transmitted per non-binary symbol. Thus, data received from the

channel would only have information of that many bits. Initialization (see section 2.2) of the rest

is the biggest obstacle to overcome when using the extended binary representation for decoding. A

few strategies are proposed in the literature for this [44], [45], which will be discussed in the next

chapter.

3.2 Subfield Expansion

According to theorem 2.3, a finite field Fpr contains a subfield Fpm for each m | r. In this

section, we propose a method to expand a matrix over Fpr to a matrix over any of those subfields.

Any such expansion, could be used with a suitable algorithm for decoding NB-LDPC codes. This

presents a range of decoding options, each offering a different performance-complexity trade-off.

In the following, we first present the mathematical concepts and relations that make the

expansion possible, and then present the expansion, both from the perspective of the PCM, and

the associated factor graph. We then focus on two cases that are of special interest. First is the

binary expansion, possible when the fields are of characterisitic 2. Second is for codes constructed

over finite fields of the type Fp2m , which can be viewed as quadratic extensions of Fpm . A PCM
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of such a code can be expanded to a matrix over Fpm , which may sometimes be referred to as the

square-root expansion. While binary expansion offers the highest complexity reduction, square-root

expansion offers the best performance. Also, binary expansion our approach produces is the same

as the extended binary representation, although they are arrived at in completely different ways.

3.2.1 α-connected Subgroups

Consider a finite field of characteristic p, Fpr , where a primitive element is denoted with

α. Let G be a subgroup of the additive group of the field, H = {Fpr ,⊕}. More subgroups of H, of

the same order as G, can be generated using G, according to the following lemma.

Lemma 3.1. Let G be a subgroup of H = {Fpr ,⊕}. Then, the set created by multiplying all

elements of G with some αi ∈ Fpr is also a subgroup of the same order.

Proof. We denote addition and multiplication in Fpr with, respectively,⊕ and⊗. Let G′ = αi ·⊗G,

where ·⊗ represents element-wise multiplication of a set. We will proceed to show that G′ also

satisfies the group axioms, presented in definition 2.1.

1. G is a subgroup under ⊕, and therefore, ∀gj , gk ∈ G, gj ⊕ gk = gl ∈ G. From the definition of

G′, (αi ⊗ gj), (αi ⊗ gk), (αi ⊗ gl) ∈ G′. Since ⊗ is distributive over ⊕ in Fpr ;

(αi ⊗ gj)⊕ (αi ⊗ gk) = αi ⊗ (gj ⊕ gk) = (αi ⊗ gl) ∈ G′ (3.9)

Thus, G′ is closed under addition ⊕.

2. ⊕ is the binary operation of H, and therefore, its associative.

3. Let ε be additive identity in H. Since G is a subgroup of H, ε ∈ G. But ∀αi ∈ Fpr , αi ⊗ ε = ε.

Therefore, ε ∈ G′, and G′ contains an identity element.

4. Since G is a subgroup under ⊕, ∀gj ∈ G, the additive inverse (−gj) also exists in G. By

definition, (αi ⊗ gi), (αi ⊗−gj) ∈ G′. As ⊗ is distributive over ⊕;

(αi ⊗ gj)⊕ (αi ⊗−gj) = αi ⊗ (gj ⊕−gj) = αi ⊗ ε = ε (3.10)

Thus, additive inverse of (αi ⊗ gj) is (αi ⊗ −gj), and both exist in G′. So inverse of any element

of G′ exists in G′.

So G′ satisfies all group axioms under ⊕. And from the definition of G′, it is clear that it

contains the same number of elements as G. Therefore, G′ is an subgroup of H = {Fpr ,⊕} of the

same order as G.
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Since G′ can be obtained from G by multiplying all its elements with some power of α,

and vice versa, we call G and G′ α-connected subgroups. This term is formally defined as follows.

Definition 3.3. Subgroups G and G′ of H = {Fpr ,⊕}, where one can be obtained from the other

by multiplying all elements by some power of α, are called α-connected subgroups.

Let G1,G2 and G3 be subgroups of H. If G1 and G2 are α-connected, and so are G2 and

G3, then clearly G1 and G3 are also α-connected. This yields the following definition.

Definition 3.4. Let S = {G1, . . . ,Gn} be a set of subgroups of H = {Fpr ,⊕}, of the same order.

S is an α-connected set if;

1. Each Gi ∈ S is α-connected with all other Gj ∈ S.

2. If Gi ∈ S is α-connected with some G′, then G′ ∈ S.

An α-connected set S can be generated using any Gj ∈ S , simply by multiplying Gj

with different powers of α. Following lemma, which is on the cardinality of an α-connected set,

also outlines a structured approach to construct such a set using one of the subgroups.

Lemma 3.2. Let S be an α-connected set, in Fpr . Cardinality of S is i∗, where i∗ is the smallest

positive integer such that αi
∗ · ⊗ G = G, for some G ∈ S.

Proof. We consider generating S using one subgroup G. Other subgroups of S can be found using

the following procedure.

1. Start with i = 1, and S = {G}

2. Compute G′ = αi.⊗ G

3. If G′ = G, terminate

4. Otherwise, add G′ to S , increment i by 1, and repeat from step 2

Let i∗ be the smallest value of iwhen the above procedure is terminated, in step 3. Assume

that subgroups G′ generated until that point are not all distinct. This means that for some i1, i2 < i∗;

αi1 · ⊗ G = αi2 · ⊗ G (3.11)

Without loss of generality, we assume i1 < i2. Then, multiplying both sides of (3.11) with α−i1 ,

the multiplicative inverse of αi1 ;

G = αi2−i1 · ⊗ G (3.12)
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According to (3.12), procedure of generating S should have been terminated when i = i2− i1 < i∗,

which is a contradiction. Thus, all subgroups G′ generated for 0 < i < i∗ should be distinct. Then,

also counting G, S should contain i∗ subgroups.

Now we consider the case when i ≥ i∗. Then i may be written as i = ki∗ + iδ, where

k, iδ are positive integers, with k > 0 and iδ < i∗. Subgroup generated for such a value of i is

G′ = αi · ⊗ G = αki
∗+iδ · ⊗ G (3.13)

Since αi
∗ · ⊗ G = G;

G′ = αiδ · ⊗ G (3.14)

G′ is the subgroup generated for i = iδ < i∗, which is already in S. Thus, any G′ generated for

i ≥ i∗ would already have been generated for some other i < i∗.

Above shows that the cardinality of an α-connected set S is the minimum value of i > 0

for which G = αi · ⊗ G, where G is an arbitrary member of S.

A field Fpr will contain several α-connected sets, of subgroups of different orders. Our

focus is on sets where the subgroups are of order pr−m, where m | r. Out of those, the set of

minimum cardinality is of special interest, since such sets are instrumental in deriving the subfield

expansion. This minimum cardinality, which depends on values r andm, is discussed in the follow-

ing lemma. In the interest of simplicity, here onwards, we will be using + and · in place of ⊕ and

⊗ to denote addition and multiplication in a field. Also, 0 and 1 would be used as the additive and

multiplicative identities, respectively.

Lemma 3.3. Consider subgroups of H = {Fpr ,+}, of order pr−m, where m | r. Minimum cardi-

nality of an α-connected set of such subgroups is pr−1
pm−1 .

Proof. Let G be an arbitrary subgroup of H = {Fpr ,+}, of order pr−m. As proved in lemma 3.2,

cardinality of the α-connected set containing G is the minimum value of i > 0, denoted i∗, for

which αi ·G = G.

We denote with Si∗ the set of elements in Fpr generated by αi
∗
. Since αi

∗ · G = G, for

any αni
∗ ∈ Si∗ where n is an integer, αni

∗ · G = G. Then, from the definition above, i∗ is the

smallest non-zero power of an element in Si∗ .

Si∗ is a subgroup of the multiplicative group of Fpr , K = {Fpr , ·}, which is a cyclic

group. Therefore, Si∗ should contain the identity element of K, i.e. 1. As K is a cyclic group,
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1 = α0 = αp
r−1. Since i∗ is the smallest non-zero power in Si∗ , the following relationship should

hold for some positive integer n′ [7].

αn
′i∗ = αp

r−1 ⇒ n′i∗ = pr − 1 (3.15)

n′ is actually the order of Si∗ , and therefore

i∗|Si∗ | = (pr − 1) (3.16)

Since αni
∗ · G = G for any positive integer n, if g ∈ G, then g · Si∗ ⊂ G. We consider

two such subsets, for gj , gk ∈ G, where gj 6= gk and gj , gk 6= 0. gj · Si∗ and gk · Si∗ are of the

same cardinality. If the intersection of these two sets is non-empty, then, for some n1 and n2, where

n1 < n2;

αn1i∗ · gj = αn2i∗ · gk ⇒ gj = α(n2−n1)i∗ · gk (3.17)

Also, since α(n2−n1)i∗ ∈ Si∗ , α(n2−n1)i∗ · Si∗ = Si∗ . Then;

gj · Si∗ = α(n2−n1)i∗ · gk · Si∗ = gk · Si∗ (3.18)

(3.18) shows that when the intersection of gj · Si∗ and gk · Si∗ is non-empty, then they are

the same set. So ∀gj , gk ∈ G, sets gj · Si∗ and gk · Si∗ are either disjoint or the same set. Also, as

G is a subgroup of H, it must contain the additive identity of Fpr , i.e. 0, and 0 · Si∗ = {0}. Then,

considering the (pr−m − 1) elements of G that are not equal to 0, the following should hold for

some integer n.

n|Si∗ | = (pr−m − 1) (3.19)

(3.16) and (3.19) show that |Si∗ | is a factor of both (pr − 1) and (pr−m − 1). (3.16) also

shows that i∗ and |Si∗ | are inversely proportional. Thus, for {i∗}min, |Si∗ | should take the largest

possible value, which is the greatest common divisor of (pr − 1) and (pr−m − 1).

We observe the following relationships.

(pr − 1) = (pm − 1)

r
m
−1∑

i=0

(pm)i

(pr−m − 1) = (pm − 1)

r
m
−2∑

i=0

(pm)i

r
m
−1∑

i=0

(pm)i = pm

r
m
−2∑

i=0

(pm)i + 1 (3.20)
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Third relationship above shows that there are no common factors of
∑ r

m
−1

i=0 (pm)i and
∑ r

m
−2

i=0 (pm)i.

Then, from the first two relationships, it is possible to conclude that gcd(pr − 1, pr−m − 1) =

(pm − 1). For {i∗}min, we substitute this value in (3.16).

{i∗}min(pm − 1) = (pr − 1)

{i∗}min =
pr − 1

pm − 1
(3.21)

Thus, the smallest α-connected set containing subgroups of order pr−m of H has a cardi-

nality of pr−1
pm−1 .

Subfield expansion is based on the smallestα-connected sets, and while lemma 3.3 presents

the cardinality of such a set, it does not reveal a method to generate one, for given values of p, r and

m. As an initial step in this direction, we present the following lemma, which outlines a method to

construct an α-connected set.

Lemma 3.4. Let G be a subgroup of order pm in H = {Fpr ,+}, and ψ some surjective ho-

momorphism ψ : H → G. The kernels of the set of homomorphisms ψi(h) = ψ(α−i · h), for

i = {0, 1, ..., pr − 2}, form an α-connected set containing subgroups of order pr−m of H.

Proof. As discussed in the last chapter, kernel of a homomorphism between two groups is a sub-

group of the first. Thus, ker(ψ) is a subgroup of H. ψ is surjective, and therefore, as a consequence

of the first isomorphism theorem (theorem 2.2 in previous chapter) [7];

|H|
| ker(ψ)|

= |G|

| ker(ψ)| = pr

pm
= pr−m (3.22)

So ker(ψ) is of order pr−m.

Since ψi(h) = ψ(α−i · h), for αi · h ∈ H, we have;

ψi(α
i · h) = ψ(α−i · αi · h) = ψ(h) (3.23)

(3.23) shows that, under homomorphism ψi, αi · h ∈ H maps to the same element of G to which h

maps under homomorphism ψ. This means that when h ∈ ker(ψ), αi · h ∈ ker(ψi). Therefore, we

have;

ker(ψi) = αi · ker(ψ) (3.24)
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(3.24) shows that ker(ψ) and ker(ψi) are α-connected subgroups of H, of order pr−m.

Then, for any j, k ∈ {0, 1, . . . , pr − 2}, where j < k;

ker(ψk) = αk−j · ker(ψj) (3.25)

So the set of kernels S = {ker(ψ0), ker(ψ1), ..., ker(ψpr−2)} (with possible duplicates removed),

satisfy the first condition for an α-connected set, as given in definition 3.4.

Now consider some ker(ψj) ∈ S. Any subgroup α-connected with ker(ψj) is of the form

αk ker(ψj). This may be expressed as αk+j−j ker(ψj), where addition is modulus (pr − 1). Then,

according to (3.25), αk+j−j ker(ψj) = ker(ψk+j). S contains kernels of all homomorphisms ψi,

and therefore ker(ψk + j) ∈ S. Thus, S satisfies the second condition in definition 3.4.

Since both conditions of definition 3.4 are satisfied, it is possible to conclude that the set

of kernels of homomorphisms ψi create an α-connected set containing subgroups of H, of order

pr−m.

The cardinality of an α-connected set generated as in lemma 3.4 depends on the homo-

morphism ψ. Therefore, to construct the smallest α-connected set, one must find a suitable homo-

morphism. The homomorphism we use is based on the representation of Fpr as an extension of the

subfield Fpm . Following lemma establishes the structure of Fpm in Fpr .

Lemma 3.5. Consider Fpr and let m | r. Also, i′ = pr−1
pm−1 . Let Si′ be the set of elements in the

multiplicative group of Fpr generated by αi
′
. Then, Si′ ∪{0}, where 0 is the additive identity of Fpr ,

is the subfield Fpm .

Proof. Since m | r, according to theorem 2.3, Fpr should contain the subfield Fpm . We denote the

multiplicative groups of the two fields with K = {Fpr , ·} and J = {Fpm , ·}. J is a subgroup of K,

of order (pm − 1). As K is a cyclic group, it contains only a single subgroup of a particular order

[7].

The set of elements generated by αi
′
, Si′ , is a subgroup containing (pm − 1) elements,

and therefore J = Si′ , which leads to the conclusion that Fpm = Si′ ∪ {0}.

Homomorphisms we use to generate α-connected sets of minimum cardinality are based

on the polynomial representation of Fpr as an extension of Fpm . As briefly discussed in chapter 2,

in such a representation, αi ∈ Fpr is represented with a polynomial Eαi(x) over Fpm , of degree at

most ( rm − 1). For αi ∈ Fpm (when i = k p
r−1

pm−1 ), this polynomial will be of degree 0, a constant.
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Primitive polynomial for this representation, Π(x), is an irreducible polynomial over Fpm , of degree
r
m . We also observe that since Π(x) is irreducible, it must have a non-zero constant term.

To illustrate the above concepts, Table 3.3 presents the polynomial representation of F24

as an extension of F22 . α and ω represent the primitive elements of F24 and F24 respectively.

Primitive polynomial that has been used here is Π(x) = x2 + x+ ω, which is irreducible over F22 .

Note that i′ in lemma 3.5 evaluates to 24−1
22−1 = 5 here, and the set of elements generated by α5,

{1, α5, α10}, and 0 form the subfield F22 . Moreover, the polynomial representations of these four

elements, as listed in Table 3.3, are of degree zero.

0 : 0 α3 : ω2x+ ω α7 : ωx+ x2 α11 : ω2x
1 : 1 α4 : x+ 1 α8 : x+ ω2 α12 : ω2x+ 1
α : x α5 : ω α9 : ωx+ x α13 : ωx+ 1

α2 : x+ ω α6 : ωx α10 : ω2 α14 : ω2x+ ω2

Table 3.3: Polynomial Representation of F24 over F22

Based on the polynomial representation of Fpr over Fpm , we define a homomorphism ψ∗

between H = {Fpr ,+} and G = {Fpm ,+} that may be used to generate smallest α-connected sets.

Definition 3.5. Let H = {Fpr ,+}, and G = {Fpm ,+}. The homomorphism ψ∗ : H → G maps

h ∈ H to g ∈ G when the constant term in the polynomial representation of Fpr as an extension of

Fpm , Eh(x), is g.

Lemma 3.6 in the following proves that using the method proposed in lemma 3.4 with

homomorphism ψ∗ defined above generates an α-connected set of minimum cardinality.

Lemma 3.6. Define a set of homomorphisms from H = {Fpr ,+} to G = {Fpm ,+}, ψ∗i (h) =

ψ∗(α−ih), for i = {0, 1, . . . , pr − 2}, where ψ∗ is from definition 3.5. The set of kernels of these

homomorphisms, S∗, form an α-connected set containing additive subgroups of order pr−m, of H,

that is of the minimum possible cardinality pr−1
pm−1 .

Proof. According to definition 3.5, ψ∗ : H→ G, and thus, ker(ψ∗) is a subgroup of order pr−m of

H. Using ψ∗ as proposed in Lemma 3.4, it is possible to generate an α-connected set of such sub-

groups. This set, which we denote S∗, contains the kernels of homomorphisms ψ∗i (h) = ψ∗(α−ih),

for i = {0, 1, . . . , pr − 2}.
Consider generating S∗ using ker(ψ∗) = ker(ψ∗0), as in lemma 3.2. Then, the cardinality

of S∗ will be equal to the minimum value of j for which ker(ψ∗i ) = αj · ker(ψ∗0) = ker(ψ∗0). We

denote this value with jm.
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Let gk ∈ ker(ψ∗0) and αjm · gk = γk, where k = 1, ..., pr−m. Also, let polynomial

representations over Fpm of αjm , gk and γk, be, respectively, Eαjm (x),Egk(x) and Eγk(x), and

Π(x) denote the primitive polynomial of the extended representation. Then, these polynomials are

related as;

Eαjm (x)× Egk(x) = Π(x)×Pk(x) + Eγk(x) (3.26)

where Pk(x) is some polynomial over Fpm .

Since gk ∈ ker(ψ∗0), the constant term in Egk(x) should be 0. This in turn makes the

constant term of Eαjm (x)× Egk(x) zero. As αjm · ker(ψ∗0) = ker(ψ∗0), αjm · gk = γk ∈ ker(ψ∗0),

which means the constant term of Eγk(x) is 0 as well. Also observe that Π(x) is an irreducible

polynomial, where the constant term is non-zero. Based on these observations, we can arrive at the

conclusion that the constant term of Pk(x) is 0. As αjm · ker(ψ∗0) = ker(ψ∗0), this should be true

for k = 1, . . . , pr−m.

Order of ker(ψ∗0) is pr−m, and due to how the homomorphism is defined, constant terms in

polynomial representations of all g ∈ ker(ψ∗0) are zero. Maximum degree possible for a polynomial

representation is r
m − 1 < pr−m. Therefore, the set of polynomial representations of the elements

∈ ker(ψ∗0) should contain at least one polynomial of each possible degree, from degree 0 to degree
r
m − 1.

Now if deg(Eαjm (x)) > 0, then for at least one gk ∈ ker(ψ∗), Eαjm (x)× Egk(x) would

be of degree r
m . But Π(x) is also of degree r

m , which means that in such a case, Pk(x) would

be a degree 0 polynomial, a non-zero constant term. Then, from (3.26), constant term of Eγk(x)

cannot be zero, meaning αjm ·gk /∈ ker(ψ∗0). This contradicts our initial statement, αjm ·ker(ψ∗0) =

ker(ψ∗0), and therefore, we can conclude that deg(Eαjm (x)) = 0.

As discussed briefly earlier, in the polynomial representation of Fpr over Fpm , zero degree

polynomials are for elements of Fpm . Thus, if deg(Eαjm (x)) = 0, then αjm ∈ Fpm . According to

lemma 3.5, Fpm in Fpr is the set of elements generated by α
pr−1
pm−1 and 0. Since jm is the minimum

non-zero power of α satisfying αj · ker(ψ∗0) = ker(ψ∗0), jm = pr−1
pm−1 .

Lemma 3.3 proves that the minimum cardinality of an α-connected set containing sub-

groups of order pr−m, of H = {Fpr ,+}, is pr−1
pm−1 . As proved above, such a set may be generated by

following the procedure in lemma 3.4 with homomorphism ψ∗, given in definition 3.5.

Now consider some subgroup G′ of H = {Fpr ,+}. Let QG′ = {C0, C1, . . . , Cpm−1} be

the quotient group of G′, where Ci’s represent the pm cosets. C0 denotes the trivial coset, G′ itself.
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Cosets contain elements of Fpr , and using the multiplicative properties of the field, we define a

multiplication operation � on QG′ as follows.

Definition 3.6. Let G′ be a subgroup of H, and QG′ its quotient group. Operation β � QG′ , for

some β ∈ Fpr , is defined as β � Qψ = {β · C0, β · C1, . . . , β · Cpm−1}, where β · Ci is multiplying

all elements of Ci with β.

It turns out that the quotient groups of two α-connected subgroups also have an equivalent

relationship, under � defined above. This relationship is presented in the following lemma.

Lemma 3.7. Let Gj and Gk be two subgroups of H = {Fpr ,+}, that are α-connected; i.e. Gj =

αt ·Gk for some αt. We denote the respective quotient groups with QGj and QGk . Then, αt�QGk =

QGj .

Proof. Let QGj = {Cj0, C
j
1, . . . , C

j
pm−1} and QGk = {Ck0 , Ck1 , . . . , Ckpm−1}. Trivial cosets, Ci0, are

the subgroups themselves. A coset Cii may be represented with the subgroup Gi and a coset leader

term lii, as Gi + lii. Representing cosets of QGj and QGk with this form results in;

QGj = {Gj ,Gj + lj1, . . . ,Gj + ljpm−1}

QGk = {Gk,Gk + lk1 , . . . ,Gk + lkpm−1} (3.27)

Using the operation � (in definition 3.6) with αt and QGk yields;

αt �QGk = {αt ·Gk, α
t ·Gk + αt · lk1 , . . . , αt ·Gk + αt · lkpm−1} (3.28)

Cosets of Gk are mutually exclusive, and therefore, sets (αt · Gk + αt · lki ) are disjoint

with each other. Since we have Gj = αt ·Gk, (3.28) may be written as;

αt �QGk = {Gj ,Gj + αt · lk1 , . . . ,Gj + αt · lkpm−1} (3.29)

(3.29) shows that αt�QGk is a set containing Gj , and its (pm− 1) proper cosets, similar

to QGj . Thus, both QGj and αt � QGk represent the same set. There could be a difference in the

ordering of cosets, or the coset leader terms lii. When quotient groups are considered in some specific

order, as would be the case in decoding of NB-LDPC codes, αt�QGk will be some permutation of

QGj .

As was stated a number of times in earlier explanations, kernel of a surjective homomor-

phism ψ : H → G is a subgroup of order |G|, of H. Then, according to the first isomorphism
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theorem [7], also presented in chapter 2, quotient group of ker(ψ), which we denote Qψ, is isomor-

phic to H. Qψ contains the cosets of ker(ψ), including the trivial coset, and in the isomorphism

between Qψ and G, this trivial coset will map to the identity element of G, and other cosets to the

remaining elements.

For the subfield expansion, homomorphisms we consider, presented in definition 3.5 and

lemma 3.4, are between the additive group of the original field, H = {Fpr ,+}, and the additive

group of the subfield, G = {Fpm ,+}. The expansion uses the smallest α-connected set containing

subgroups of order pr−m, of H, which will be denoted with Θp
r,m from here onwards. Subgroups in

Θp
r,m are kernels of surjective homomorphisms from H to G, and thus, are isomorphic to G. Also,

since subgroups in Θp
r,m are α-connected, their quotient groups would also be related as in Lemma

3.7. These observations allow us to represent symbols of Fpr as matrices over Fpm , and provide the

basis for the subfield expansion.

Expansion we propose is presented in detail in the following subsection. It is discussed

mainly in the perspective of the factor graph, as that is the more intuitive approach when it comes to

decoding NB-LDPC codes. In the examples provided, the graph expansion and the corresponding

matrix expansion both are presented for the same NB-LDPC code.

3.2.2 Graph Expansion

Consider a NB-LDPC code ζ over Fpr , and letm | r. To decode ζ over Fpm , which would

provide significant complexity gains, it should be suitably represented over that field. With NB-

LDPC codes, this means expanding the PCM of ζ to a matrix over Fpm , which may also be viewed

as expanding the factor graph of ζ to a graph over Fpm . The expansion we propose is based on the

quotient groups of the subgroups in Θp
r,m, the smallest α-connected set of subgroups of order pr−m.

This set of quotient groups of Θp
r,m will be represented with Qp

r,m. According to lemma 3.3, Qp
r,m

is of cardinality pr−1
pm−1 . In the following, we first provide some motivation for the expansion, and

later present the expansion in a more structured way.

A quotient group ∈ Qp
r,m may be viewed as a way of dividing the symbols of Fpr in to pm

groups. In decoding NB-LDPC codes, as discussed in chapter 2, each variable node is associated

with a symbol probability vector, which contains probabilities of the respective value being each

symbol of the field. Similarly, given a quotient group, it is also possible to consider probabilities

of the said value belonging to each grouping of symbols in that quotient group. With a quotient

group in Qp
r,m, such a computation would result in a probability vector of length pm, whereas a

52



CHAPTER 3. EXPANSIONS OF NON-BINARY FACTOR GRAPHS

traditionally used symbol probability vector will be of length pr. Since the groupings in a quotient

group are cosets, we refer to these probability vectors as coset probability vectors (CPVs). As

|Qp
r,m| = pr−1

pm−1 , that many CPVs are required for a single variable node. Complexity advantage of

using CPVs in decoding is mainly in the check node computations step, the complexity bottleneck

of decoding NB-LDPC codes [33], [28].

As discussed in chapter 2, check node computations step can be considered as a combi-

nation of two sub-steps; permutation and convolution of symbol probability vectors (convolution

operation was represented in (2.9)) [25]. In the permutation sub-step, the simpler one of the two,

symbol probability vectors received by the check node are permuted, where the permutations are

determined by the respective edge labels. Since Qp
r,m contains the quotient groups of the subgroups

in Θp
r,m, an α-connected set, according to lemma 3.7, CPVs will also have to be permuted similarly.

Thus, the permutation sub-step would not be significantly altered by using CPVs. But the impact of

this approach on the convolution sub-step is much more significant.

In order to understand how our approach impacts the convolution sub-step, consider the

simple case of a degree 3 check node of ζ, with the parity-check equation v1 +v2 +v3 = 0 (all edge

labels are 1). For computing the estimate for the symbol probability vector of v3, ps
v3

, probability

vectors received from the other two variable nodes have to undergo a convolution operation. As

discussed in chapter 2, such an operation will be of complexity order O(p2r), since the vectors are

of length r.

Now assume we have to compute some i’th CPV of v3, pc
v3,i

. This computation also

only requires the i’th CPVs received from the other two nodes. As all quotient groups in Qp
r,m are

isomorphic to the additive group of Fpm , computation of pc
v3,i

should be similar to the convolution

sub-step at a check node of a code over Fpm . This means that pc
v3,i

is the result of a convolution

between two probability vectors of length m < r, which is of complexity order O(p2m), signif-

icantly less than O(p2r) of the traditional approach. However, since |Qp
r,m| = pr−1

pm−1 , that many

CPVs are required to replace a single symbol probability vector. Therefore, overall complexity of

the convolution sub-step when CPVs are used is
(
p2m× pr−1

pm−1
)
≈ O(pm+r), somewhat higher than

O(p2m). Nevertheless, when compared with O(p2r), this is a significant reduction of complexity,

particularly for cases when m� r.

These observations act as the motivation to convert ζ, a NB-LDPC code over Fpr , to a

form where CPVs can be used for decoding. This form is essentially an expansion of the PCM of ζ,

which we analyze from the perspective of the factor graph in the following sections.
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3.2.2.1 Initial Expansion

Initial step of the expansion we propose is relatively simple; each check node and variable

node of the original factor graph, i.e., the so-called Fpr nodes, are to be replaced with pr−1
pm−1 nodes,

one for each CPV. Since CPVs are treated as Fpm probability vectors due to the respective quotient

groups being isomorphic to {Fpm ,+}, we refer to the new nodes as Fpm nodes. Each Fpm node of

the set which replaced an Fpr variable node would represent some CPV of the respective variable,

whereas the new Fpm check nodes will be tasked with computing estimates of these CPVs. As a

consequence of Lemma 3.7, connections between the new variable and check nodes that replaced a

pair of Fpr nodes depend on the edge label between them in the original factor graph.

Consider a neighboring check node m and a variable node n in the original factor graph,

where the edge label is αk ∈ Fpr . According to Lemma 3.7, when multiplied with αk, Qψi ∈ Qp
r,m

becomes a permutation of some Qψj ∈ ΘQ
m. Therefore, in the expanded factor graph, the Fpm

variable node representing the i’th CPV of variable n, ni, should be connected to the Fpm check

node computing estimates of j’th CPVs,mj . (αk�Qψi) is a permutation of Qψj , and thus, the CPV

sent from ni to mj has to be permuted, similar to symbol probability vectors on the original factor

graph. From the perspective of the graph expansion, the requirement for a permutation translates to

connecting ni and mj with an edge labeled with some symbol from Fpm . Label in such a case is the

symbol of Fpm which induces the reverse permutation of the one on Qψj , on a symbol probability

vector.

As a toy example, consider the following degree 2 parity-check equation ρ, which is from

a code over F24 . α here denotes a primitive of that field.

ρ : α4 · v1 + α · v2 = 0 (3.30)

We consider representing ρ over F22 , a subfield of F24 . Set of quotient groups required

for the expansion, Q2
4,2, may be generated using the homomorphism presented in definition 3.5, and

by following the procedure outlined in lemma 3.4. Each Qψi ∈ Q2
4,2 is isomorphic to {F22 ,+},

and thus, cosets of Qψi can be mapped to symbols of F22 . Quotient groups of Q2
4,2, along with the

mappings between cosets and F22 symbols, are given in the following table, where ω represents a

primitive element of F22 .

Figure 3.1 presents the original factor graph for ρ, along with its expansion over F22 ,

which can be obtained by following the procedure discussed so far with quotient groups in Table 3.4.

Original factor graph, over F24 , is shaded in grey, and the expanded graph is below that. In both
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0 1 ω ω2

Qψ0 {0, α, α6, α11} {1, α4, α12, α13} {α2, α3, α5, α9} {α7, α8, α10, α14}
Qψ1 {0, 1, α5, α10} {α, α2, α4, α8} {α6, α7, α9, α13} {α3, α11, α12, α14}
Qψ2 {0, α4, α9, α14} {1, α, α3, α7} {α5, α6, α8, α12} {α2, α10, α11, α13}
Qψ3 {0, α2, α7, α12} {1, α8, α9, α11} {α, α5, α13, α14} {α3, α4, α6, α10}
Qψ4 {0, α3, α8, α13} {1, α2, α6, α14} {α4, α5, α7, α11} {α, α9, α10, α12}

Table 3.4: Quotient Groups in Q2
4,2

graphs, circles denote variable nodes and squares denote check nodes. In the figure, F22 variable

and check nodes are considered in the same order as in Table 3.4, as the labeling on the left hand

side indicates.

Figure 3.1: Initial Subfield Expansion

As discussed earlier, we have replaced the F24 variable nodes and the check node with five

nodes over F22 each. These represent, or compute, estimates of CPVs for the five quotient groups

given in Table 3.4.

To understand how the new nodes are connected, consider the F22 variable node that
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corresponds to Qψ0 of F24 node v1. The original edge label between v1 and the F24 check node is

α4. It is evident that multiplying Qψ0 with α4, as in Definition 3.6, results in Qψ1 . Interestingly,

α4 � Qψ0 produces Qψ1 in the same order as considered in Table 3.4. Representing this, the Qψ0

node of v1 is connected by an edge labeled with 1 to the new check node that computes estimates

of CPVs that correspond to Qψ1 .

Now consider the Qψ1 node of v1. Here, the operation α4 � Qψ1 produces the set Qψ2

but in a different order to the one used in Table 3.4. This variable node is therefore connected to

the new check node for Qψ2 , and the edge label is now ω, the F22 element that induces the reverse

permutation of the one caused by the operation α4 �Qψ1 .

In this manner, each edge of the original F24 graph in Figure 3.1 is replaced with 5 edges

labeled with F22 symbols. From the perspective of a matrix expansion, this is similar to replacing

each element in the original PCM with a 5× 5 matrix over F22 , or in other words, representing F24

symbols as 5 × 5 matrices over F22 . In the general case of Fpr and Fpm , each β ∈ Fpr will be

represented with a ( p
r−1

pm−1 ×
pr−1
pm−1) matrix over Fpm . This alternative matrix representation can be

defined as follows.

Definition 3.7. Consider Fpr and Fpm , where m | r. Alternative matrix representation of a symbol

β ∈ Fpr over Fpm is the matrix h∗β defined as follows.

h∗β(i, j)

6= 0; β · ker(ψi) = ker(ψj)

= 0; otherwise
, 0 ≤ i, j ≤

( pr − 1

pm − 1

)
− 1 (3.31)

When β · ker(ψi) = ker(ψj), then h∗β(i, j) = γ ∈ Fpm , where γ is the element that

induces the reverse permutation of the permutation of Qψj produced by operation β �Qψi .

For example, consider the case of F24 and F22 . Alternative matrix representations of F24

symbols as 5× 5 matrices over F22 are given in Table 3.5, which are based on the quotient groups,

and homomorphisms, presented in Table 3.3. In Table 3.5, α and ω denote a primitive element of

F24 and F22 , respectively.

Alternative matrix representations of F24 over F22 , as may be observed from Table 3.5,

are very sparse. Even though not permutation matrices, they also only contain a single non-zero

element per row and column. As the following lemma proves, this property is true for the general

case also.

Lemma 3.8. Consider the alternative matrix representation of Fpr over Fpm , where m | r. In any

such matrix h∗β , β ∈ Fpr , only a single position per row and per column is non-zero.
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0


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



1


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



α


0 0 0 ω 0
ω 0 0 0 0
0 1 0 0 0

0 0 0 0 ω2

0 0 1 0 0



α2


0 0 0 0 1

0 0 0 ω2 0
ω 0 0 0 0
0 0 ω2 0 0
0 1 0 0 0



α3


0 0 1 0 0
0 0 0 0 ω
0 0 0 ω2 0
0 ω2 0 0 0
ω 0 0 0 0



α4


0 1 0 0 0
0 0 ω 0 0
0 0 0 0 ω
1 0 0 0 0

0 0 0 ω2 0



α5


ω 0 0 0 0
0 ω 0 0 0
0 0 ω 0 0
0 0 0 ω 0
0 0 0 0 ω



α6


0 0 0 ω2 0
ω2 0 0 0 0
0 ω 0 0 0
0 0 0 0 1
0 0 ω 0 0



α7


0 0 0 0 ω
0 0 0 1 0
ω2 0 0 0 0
0 0 1 0 0
0 ω 0 0 0



α8


0 0 ω 0 0
0 0 0 0 ω2

0 0 0 1 0
0 1 0 0 0
ω2 0 0 0 0



α9


0 ω 0 0 0
0 0 ω2 0 0
0 0 0 0 ω2

ω 0 0 0 0
0 0 0 1 0



α10


ω2 0 0 0 0
0 ω2 0 0 0
0 0 ω2 0 0
0 0 0 ω2 0
0 0 0 0 ω2



α11


0 0 0 1 0
1 0 0 0 0

0 ω2 0 0 0
0 0 0 0 ω
0 0 ω2 0 0



α12


0 0 0 0 ω2

0 0 0 ω 0
1 0 0 0 0
0 0 ω 0 0
0 ω2 0 0 0



α13


0 0 ω2 0 0
0 0 0 0 1
0 0 0 ω 0
0 ω 0 0 0
1 0 0 0 0



α14


0 ω2 0 0 0
0 0 1 0 0
0 0 0 0 1
ω2 0 0 0 0
0 0 0 ω 0


Table 3.5: Alternative Matrix Representations of F24

Proof. From definition 3.7, h∗β(i, j) 6= 0 only if β · ker(ψi) = ker(ψj). Now assume there are two

non-zero positions on row i, which we denote j1 and j2. Then;

β · ker(ψi) = ker(ψj1) = ker(ψj2) (3.32)

ker(ψj1) and ker(ψj2) are subgroups of the smallest α-connected set, and therefore, by definition,

ker(ψj1) 6= ker(ψj2). Thus, there cannot be more than a single non-zero position on any row.

Then we assume there are two non-zero positions i1 and i2 on column j. Then;

β · ker(ψi1) = β · ker(ψi1) = ker(ψj) (3.33)

Again we have ker(ψi1) = ker(ψi1), which is not possible as explained earlier. Thus, there is only

a single non-zero position in a column as well.

So similar to the extended binary representation [40], no cycles can exist in a matrix h∗β
of the alternative binary representation.

As can be observed from Table 3.4, each Qψi ∈ Q2
4,2 is a different grouping of the same

set of symbols, those of F24 . Therefore, a CPV associated with some Qψi would contain some
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information about all such CPVs. In other words, CPVs cannot be considered as independent of

each other. But the initial expansion, presented in Figure 3.1, does not capture these dependencies,

as there are no paths between the F22 variable nodes representing CPVs of a single F24 node. In

general, when expanding a graph over Fpr to one over Fpm , it should be noted that the set of Fpm

variable nodes of a single Fpr variable node are dependant on each other. In the following, we first

analyze the nature of these dependencies, and then modify the expanded graph to accommodate

them.

3.2.2.2 An Alternative Vector Representation

Extended binary representation [40], also discussed at the beginning of this chapter, pro-

poses a new binary vector representation for symbols in F2r , which, together with the binary matrix

representation proposed in the same paper [40], form the basis for that expansion. We also introduce

a similar alternative vector representation to better understand the dependencies between CPVs.

Definition 3.8. Consider Fpr and Fpm , where m | r, and the set of quotient groups Qp
r,m, as defined

earlier. Value of β ∈ Fpr , with respect to some Qψi ∈ Qp
r,m, is the symbol of Fpm that maps with

the coset of Qψi containing β. Note that |Qp
r,m| = pr−1

pm−1 . Alternative vector representation of β

over Fpm is the vector of pr−1
pm−1 values defined with respect to each Qψi ∈ Qp

r,m.

As an example, consider the case of F24 and F22 once more. Alternative vector represen-

tations of F24 symbols as length 24−1
22−1 = 5 vectors over F22 are given in Table 3.6, which are based

on the quotient groups, and homomorphisms, presented in Table 3.4. Note that position i in a vector

of Table 3.6 maps to quotient group Qψi in Table 3.4.

0 : 00000 α3 : ωω21ω20 α7 : ω2ω10ω α11 : 0ω2ω21ω
1 : 10111 α4 : 110ω2ω α8 : ω21ω10 α12 : 1ω2ω0ω2

α : 011ωω2 α5 : ω0ωωω α9 : ωω01ω2 α13 : 1ωω2ω0
α2 : ω1ω201 α6 : 0ωωω21 α10 : ω20ω2ω2ω2 α14 : ω2ω20ω1

Table 3.6: Alternative Vector Representations of F24

It can be observed that the vectors in Table 3.6 form a 2-dimensional vector space over

F22 . In coding theory terminology, these are the codewords of a (5, 2) linear code over F22 . This

means that just two of the values with respect to Qψi ∈ Q2
4,2 are sufficient to derive the alternative

vector representation of any β ∈ F24 . The dependent relationships between Qψi’s can be fully

captured with the parity-check matrix of this code.
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In general, with Fpr and Fpm , where m | r, alternative representation vectors would form

a r
m dimensional vector space, or in other words a ( p

r−1
pm−1 ,

r
m) code, over Fpm . Each set of pr−1

pm−1

Fpm nodes of a Fpr variable node would form this code, and therefore, we refer to it as the ‘local

code’. Our proposal is to use the PCM of the local code, Hpr,m, to represent the dependencies

between CPVs. A ( p
r−1

pm−1 ,
r
m) code is actually from the family of non-binary simplex codes. Since

dual of such a code is the ( p
r−1

pm−1 ,
pr−1
pm−1 −

r
m) Hamming code over Fpm [35], Hpr,m would consist of

pr−1
pm−1 −

r
m Hamming codewords. As an example, the local PCM for the case of F24 and F22 , H2

4,2,

which consists of 3 codewords of the (3, 5) Hamming code over F22 , is given below.

H2
4,2 =


1 1 1 0 0

1 ω 0 1 0

1 ω2 0 0 1

 (3.34)

(3.34) shows that, when expanding a factor graph over F24 into one over F22 , three parity-

check equations are sufficient to capture the dependencies between the CPVs of a single variable

node. From the perspective of a factor graph, these equations may be viewed as new check nodes

that have to be added to the expanded graph. How that can be done is discussed in the following

section.

3.2.2.3 Final Expansion

In the preceding section, it was established that the parity-check equations of the PCM

that represents the local code have to be added to the expanded factor graph as new check nodes.

An instance of the local code exists among every set of Fpm nodes that replaced a Fpr variable node

in the expanded graph. Therefore, the number of new check nodes that have to be added would be

fairly high, ( p
r−1

pm−1 −
r
m) times the code length. It might initially seem that adding that many new

nodes would significantly increase decoding complexity, but these check nodes are of low degrees.

As discussed earlier, local code is a non-binary simplex code, and its dual code is a non-binary

Hamming code, which contains many codewords of weight 3. Local PCM can be constructed with

some of those, and then the new check nodes would be of degree 3. A more in-depth look at

decoding complexity on proposed expansions will be given in chapter 4.

So it seems that, in the proposed subfield expansion, there are two distinct types of check

nodes. First type are the ones that replace the Fpr check nodes. These were introduced in the initial

expansion section, and from here onwards, we refer to them as regular check nodes. The second
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type are the ones added to represent dependencies between CPVs, which we will call local check

nodes. The reason for distinguishing between the two types is more related to decoding on expanded

graphs, the focus of the next chapter.

Performance of a NB-LDPC code, with any form of iterative message passing decoding,

is dependant on the features of the graph used [13], [14]. As briefly discussed in chapter 2, in

the literature, short cycles are considered to be at the root of graphical structures that negatively

impact the decoding [13], [14]. These include stopping sets, and absorbing sets, known to cause the

undesirable error floor exhibited by some LDPC codes.

When it comes to binary codes, or binary graphs, short cycles are only distinguished by

their lengths, as all edge labels are 1. Negative impact of a cycle decreases with the length; length 4

cycles are the most undesirable. Any cycle in a binary graph can create a stopping or an absorbing

set, and thus, in LDPC construction methods, special focus is given to increasing the length of the

shortest cycle in the graph, also known as the girth of the corresponding code [13]. But the situation

is slightly different with NB-LDPC codes, as negative impact of a short cycle is also dependent

on the edge labels [14], [18]. While the length of a cycle is important here as well, cycles created

by sub-matrices in the PCM that are not of full-rank are considered the most troublesome. NB

absorbing sets, considered the major cause of error-floor in NB-LDPC codes, are created by such

cycles [14]. Thus, in construction of NB-LDPC codes, major focus will be on reducing these type

of cycles, rather than increasing the girth as in binary LDPC codes [18], although girth is also of

significance. Chapter 4 sheds some more light on graphical structures that impact iterative decoding

of NB-LDPC codes.

A factor graph can be made more suitable for iterative decoding by reducing the number

of undesirable graphical sub-structures as much as possible. Keeping this in mind, we propose

using a matrix with the lowest possible short cycle count as the local PCM, Hpr,m. As the structures

such as stopping and absorbing sets are caused by short cycles, this approach would result in a

local PCM that is much better suited for iterative decoding. Although one could use a canonical

generator matrix of a Hamming code (possibly with column permutations) as the local PCM, the

graph induced may contain short cycles. In such a scenario, row operations can be carried out on

the matrix until a better one, in terms of the number of short cycles, is obtained. This is particularly

important when the expansion results in a binary graph (p = 2 and m = 1), since then any short

cycle is detrimental for decoding. In the non-binary case (m > 1), it might not be possible to remove

all short cycles, and one might have to settle with a local PCM free only of those not satisfying the
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full rank condition [18], such as H2
4,2 in (3.34). Also, the decoding scheme we propose in the next

chapter employs a technique to further reduce the possible negative effects of cycles among local

check nodes.

Local check nodes are able to capture the dependencies between CPVs fully, and adding

these is the only modification necessary to the initial expansion, discussed in 3.2.2.1. Figure 3.2

presents the final expanded graph for the toy example of F24 and F22 , with parity-check equation ρ

in (3.30). H2
4,2 in (3.34) was used for the local code. Initial expansion of ρ, before accounting for the

dependencies between CPVs, was given in Figure 3.1. Once more, original graph is shaded grey,

and the F22 expansion is shown in white. Circles represent variable nodes, squares regular check

nodes, and hexagons local check nodes. Note that in the interest of a clearer figure, only the edge

labels 6= 1 are shown. Order of quotient group assignment to F22 nodes is the same as in Figure 3.1

and local check nodes correspond to H2
4,2 in (3.34).

Figure 3.2: Final Subfield Expansion

In the following, we summarize the different steps of the subfield expansion, when ex-

panding a graph over Fpr into one over Fpm .
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1. Obtain the smallest set of α-connected subgroups Θp
r,m, using the homomorphism in defini-

tion 3.5 with the procedure outlined in Lemma 3.4.

2. Derive the set of quotient groups Qp
r,m, using Θp

r,m from step 1.

3. Find the homomorphisms between elements of {Fpm ,+}, and each Qψi ∈ Qp
r,m.

4. Use the homomorphisms found in step 3 to derive the alternative vector representation of Fpr

elements.

5. Find a matrix suitable for iterative decoding, to be used as the PCM of the local code formed

by alternative representation vectors, derived in step 4.

6. Expand each node in the Fpr graph into ( p
r−1

pm−1) Fpm nodes. Connect the new nodes with

edges labeled with Fpm elements, based on the original edge labels.

7. Add local check nodes to represent the local PCM found in step 5.

While a number of different expansions are possible for a single factor graph, there are

two expansions that are of particular interest; the binary expansion, when p = 2 and m = 1, and the

square-root expansion, with r = 2m. Binary expansion offers the highest reduction in complexity,

while the square-root expansion is the best in terms of performance. Interestingly, while both are

instances of the general subfield expansion explained earlier, each can be derived in a more ad-hoc

manner as well. In the following, we present these derivations, as well as more detailed examples,

which would also provide a better understanding of the step-wise graph expansion procedure given

above.

3.2.3 Special Cases

3.2.3.1 Binary Expansion

Subfield expansion results in a binary graph when the original field is of characteristic 2,

or p = 2, and subfield is the binary field, or m = 1. Procedure outlined at the end of the previous

section can be followed to derive this binary graph.

1. Homomorphism ψ∗, in definition 3.5, is now based on the binary polynomial representation

of F2r symbols, and the smallest α-connected set Θ2
r,1 now contains 2r−1

21−1 = 2r−1 subgroups

of order 2r−1, of {F2r ,+}. Thus, the order of a subgroup used for the expansion is exactly
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half of the order of the field’s additive group. Cardinality of the smallest α-connected set is

one less than the order of the original field.

2. A quotient group in Q2
r,1 contains only two cosets; the trivial coset, and one proper coset.

3. In a homomorphism between {F2,+} and a Qψi ∈ Q2
r,1, the trivial coset will be mapped to

0 and the proper coset to 1.

4. Alternative vector representations will be length (2r − 1) binary vectors, codewords of the

(2r − 1, r) binary simplex code.

5. Local PCM will consist of codewords of the (2r − 1, 2r − r − 1) binary Hamming code. In

fact, a generator matrix of that code could be used as the PCM. As discussed in the previous

section, removing short cycles is quite important for the binary case, and thus, some row

operations might have to be carried out to make the local PCM better suited for iterative

decoding.

6. In the original factor graph, each non-binary node will be replaced with (2r−1) binary nodes.

The connections between the new variable and check nodes are dependent on the original edge

labels. Since the expansion is a binary graph, new edge labels will all be 1.

7. Local binary check nodes will correspond to the PCM derived in step 5.

The smallest α-connected set used for the binary expansion contains (2r − 1) subgroups,

as mentioned above. These subgroups are of order 2r−1, and it turns out that F2r contains only

(2r − 1) such subgroups, and they all are α-connected with each other. Thus, the α-connected

set used in the binary expansion is the set containing all subgroups of order 2r−1, of {F2r ,+}.
Following lemma establishes that there exists only (2r − 1) such subgroups.

Lemma 3.9. There are (2r − 1) distinct subgroups of order 2r−1 in H = {F2r ,+}.

Proof. H can be considered a binary vector space of dimension r. Similarly, a subgroup of order

2r−1 of H is a subspace of this vector space, of dimension (r−1). Thus, the number of such distinct

subgroups is equal to the number of distinct subspaces of dimension (r−1) in a binary vector space

of dimension r.

We now count the ways such a subspace can be constructed, which will be denoted with

nw. To construct a subspace of dimension (r − 1), one should simply chose (r − 1) linearly
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independent vectors from the original vector space, the set of which is usually referred to as the

basis of the subspace. For the first choice, any vector other than the all-zero vector is valid. For

the second, vectors linearly dependant on the first one picked have to be disregarded, but since the

vector space is binary, there are none. In the third choice, the vector resulting from the addition of

the first two has to be left-out. Continuing in this manner, we find;

nw = (2r − 1)(2r − 2)...(2r − 2r−2) (3.35)

In (3.36), we may have counted the same subspace several times, since one vector space

could have a number of different bases. Therefore, in order to find the number of distinct subspaces,

nw has to be divided by the number of different bases of a (r− 1)-dimensional vector space, which

we denote with nb. Following the same approach as before with the (r − 1)-dimensional space;

nb = (2r−1 − 1)(2r−1 − 2)...(2r−1 − 2r−2) (3.36)

Now, the number of distinct subspaces of dimension (r − 1), is simply nw
nb

.

nw
nb

=
(2r − 1)(2r − 2)...(2r − 2r−2)

(2r−1 − 1)(2r−1 − 2)...(2r−1 − 2r−2)
=

(2r − 1)2r−2

(2r−1 − 2r−2)
= 2r−1 (3.37)

Thus, the number of distinct subgroups of order 2r−1 of H is (2r − 1).

Although above lemma shows that there are only (2r − 1) subgroups of order 2r−1, they

have to form an α-connected set to be used in the expansion. Lemma 3.10 below establishes this.

Lemma 3.10. Let Θ be the set containing the (2r − 1) subgroups of order 2r−1, of H = {F2r ,+}.
Then, Θ is an α-connected set.

Proof. Let G ∈ Θ. As lemma 3.1 established, multiplying all the elements of G by some β ∈ F2r

results in a subgroup Gβ of the same order. Since, according to lemma 3.9, Θ contains all possible

subgroups of order 2r−1 of H, Gβ ∈ Θ.

In order to prove that Θ is an α-connected set, it is sufficient to show that the subgroup Gβ

produced by multiplying some G ∈ Θ with some β ∈ F2r , β 6= 0, 1, is different for each value of

β. Since there are (2r − 2) possible values for β, this would mean that each G is α-connected with

(2r − 2) subgroups of order 2r−1. Then together with G, there are (2r − 1) such subgroups, while

lemma 3.9 proves that only (2r − 1) exist in H. Therefore, a subgroup G ∈ Θ is α-connected with

all other subgroups of Θ, and any subgroup α-connected with G should be in Θ. Thus, Θ satisfies

the requirements of an α-connected set, as given in definition 3.4.
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Now assume that for some G ∈ Θ, subgroups generated by multiplying for two different

values of β, Gβ1 and Gβ2 , are not distinct. That is;

β1 ·G = β2 ·G

β−12 · β1 ·G = G (3.38)

Let β−12 · β1 = αd, where α is a primitive of F2r . Also, let K denote the set of powers

of α, of all elements in G except 0. K is a sub-set of the ring of integers modulo (2r − 1), with

(2r−1 − 1) elements. From the perspective of K, operation αd ·G is equivalent to d⊕K, where ⊕
is addition modulo (2r − 1).

Since according to (3.38) αd · G = G, d ⊕ K = K. Without loss of generality, assume

K = {x0, x1, ..., x2p−1−2} is an ordered set, and then, d⊕K should be some i’th cyclic shift of K.

This results in the following set of relations.

xj ⊕ d = xj◦i; j = 1, ..., 2r−1 − 1 (3.39)

◦ denotes the addition modulo 2r−1 − 1. With normal integer addition instead of modular addition,

we can express (3.39) as two sets of equations.

xj◦i − xj = d; j = 1, ..., 2r−1 − 1− i

xj◦i − xj + (2r − 1) = d; j = 2r−1 − i, ..., 2r−1 − 1 (3.40)

Summing up all (2r−1 − 1) equations in the two sets of (3.40) results in;

d =
i(2r − 1)

2r−1 − 1
(3.41)

Note that d has to be an integer, and that (2r − 1) and (2r−1 − 1) share no common factors. Thus,

i = (2r−1 − 1), and d = (2r − 1). This results in β−12 · β1 = α2r−1 = 1, and β1 = β2.

Above shows that all subgroups of the form β · G are distinct, and thus, Θ is an α-

connected set.

Lemmas 3.9 and 3.10 show that the proposed subfield expansion in the binary case may

be arrived at in a more direct way. The α-connected set used for the binary expansion is larger

than for other cases, with cardinality (2r − 1), which is expected since binary field is the smallest

subfield of F2r . With |Θ2
r,1| = (2r − 1), alternative vector representation of a symbol in F2r will

be a length (2r − 1) binary vector, while the alternative matrix representation will be of dimensions
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(2r − 1)× (2r − 1). According to lemma 3.8, since the subfield is now F2, matrix representations

will be permutation matrices, same as in the extended binary representation.

Comparing this binary expansion with the extended binary representation [40], discussed

in section 3.1.2, it can be observed that they produce essentially the same expanded matrix/factor

graph. Matrix and vector representations used in both are of the same dimensions, and in both the

additional constraints are those of a binary simplex code. In fact, the only difference between the ex-

tended representations and the alternative representations over F2 is in the labeling of rows/columns,

which means that one representation can be considered a permutation of the other. This difference

in labeling is partly due to the two significantly different approaches used to arrive at the binary

expansion. In the following, we derive the binary expansion of the matrix H , in (3.1) of example

3.1, which would show the similarities between the two expansions.

Example 3.3. We present matrix H , a 3× 4 matrix over F23 , once more.

H =


0 α α5 0

1 0 α3 α6

α2 α4 0 1


Table 3.7 lists the quotient groups used for the subfield expansion over F2, Q2

3,1, along

with the homomorphisms to F2.

0 1

Qψ0 {0, α, α2, α4} {1, α3, α5, α6}
Qψ1 {0, 1, α2, α6} {α, α3, α4, α5}
Qψ2 {0, 1, α, α3} {α2, α4, α5, α6}
Qψ3 {0, α, α5, α6} {1, α2, α3, α4}
Qψ4 {0, α3, α4, α6} {1, α, α2, α5}
Qψ5 {0, 1, α4, α5} {α, α2, α3, α6}
Qψ6 {0, α2, α3, α5} {1, α, α4, α6}

Table 3.7: Quotient Groups in Q2
3,1

Table 3.8 presents the alternative vector and matrix representations of F23 over F2, de-

rived using the quotient groups listed in Table 3.7.

Comparing Table 3.8 below with Table 3.2, it is easily observable that the alternative

vector and matrix representations permuted versions of the extended representations.
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0



0
0
0
0
0
0
0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



1



1
0
0
1
1
0
1





1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



α



0
1
0
0
1
1
1





0 0 0 0 0 0 1
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0



α2



0
0
1
1
1
1
0





0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0



α3



1
1
0
1
0
1
0





0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0



α4



0
1
1
1
0
0
1





0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0



α5



1
1
1
0
1
0
0





0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0



α6



1
0
1
0
0
1
1





0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
1 0 0 0 0 0 0



Table 3.8: Alternative Representations of F23 over F2

Local PCM for the expansion, H2
3,1, which is a generator matrix for the (7, 4) Hamming

code, is;

H2
3,1 =


1 0 1 1 0 0 0

1 1 1 0 1 0 0

0 1 1 0 0 1 0

1 1 0 0 0 0 1

 (3.42)

But H2
3,1 above contains 3 cycles of length 4, and since it is a binary matrix, they all can form

graphical substructures undesirable for iterative decoding. Thus, following step 5 of the subfield

expansion procedure, we carry out some row operations, and derive the following matrix, H̃2
3,1,

which is free of 4-cycles, and hence, is more suitable for iterative decoding.

H̃2
3,1 =


1 0 1 1 0 0 0

1 0 0 0 1 1 0

0 1 1 0 0 1 0

1 1 0 0 0 0 1

 (3.43)
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Using matrix representations in Table 3.8, and the local PCM in (3.43) above, H in (3.1)

can be converted to the binary matrix H∗b in (3.44). In the bottom half of H∗b , 0 denotes a 4 × 7

all-zero matrix.

H̃b =



0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

H̃2
3,1 0 0 0

0 H̃2
3,1 0 0

0 0 H̃2
3,1 0

0 0 0 H̃2
3,1



(3.44)

Our approach to derive a binary expansion of a matrix/factor graph over F2r is different

from the one in [40], and this difference allows us to propose a novel binary decoding scheme for

the corresponding code. This scheme, as well as the ones based on the extended representation, will

be discussed in the next chapter.

3.2.3.2 Square-root Expansion

Consider a code over Fpr , where r = 2m. From theorem 2.3, Fpm is a subfield of Fpr , and

it is possible to use the subfield expansion proposed earlier to expand the PCM or the factor graph

of the code to a matrix or graph over Fpm . As
√
pr =

√
p2m = pm, we refer to this expansion as

the square-root expansion.
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It is possible to derive the square-root expansion by following the general procedure out-

lined at the end of section 3.2.2. But it turns out that, for this case, there is an easier method to find

the smallest α-connected set, Θp
2m,m. Lemma 3.10 below outlines this alternative method.

Lemma 3.11. Consider H = {Fp2m ,+}, and G = {Fpm ,+}. Fpm is a subfield of Fp2m , and let

α denote a primitive element of Fp2m . The smallest α-connected set containing subgroups of order

pm, of H, can be generated by multiplying G with different αi’s.

Proof. Let i∗ = p2m−1
pm−1 = (pm + 1). According to lemma 3.5, subfield Fpm consists of the set of

elements generated by αi
∗
, which we denote Si∗ , and 0. Powers of α in the elements of Si∗ form a

subgroup of the ring of integers modulo (p2m − 1). Let this subgroup be Ki∗ .

According to lemma 3.1, αi · G, where αi ∈ Fp2m , produces a subgroup of order pm, of

H. While 0 ∈ G, αi · 0 = 0. From the perspective of the remaining elements of G, which are those

in Si∗ , operation αi · G is akin to i ⊕ Ki∗ , where ⊕ denotes addition modulo (p2m − 1). Thus,

the number of different subgroups that can be generated by multiplying G with αi is equal to the

number of unique sets i⊕Ki∗ .

Note that if the elements of Ki∗ are arranged in increasing order, then the gap between

two consecutive elements and the first and the last is (pm + 1). Therefore, (pm + 1)⊕Ki∗ = Ki∗ ,

and similarly, for any pair of non-negative integers i, j, (i + j(pm + 1)) ⊕ Ki∗ = i ⊕ Ki∗ . Thus,

i ⊕ Ki∗ is can only be unique for i = 1, . . . , pm. Also taking into account Ki∗ , there are only

(pm + 1) unique sets i ⊕ Ki∗ , which means the number of unique subgroups of the form αi · G is

also (pm + 1). Let this set of subgroups be θp2m,m.

Now from lemma 3.3, minimum possible cardinality of an α-connected set containing

subgroups of order pm, of H, is p2m−1
pm−1 = (pm + 1). Since cardinality of θp2m,m is (pm + 1), it is

such a set.

With Θp
2m,m generated as in lemma 3.11, the remaining steps of the subfield expansion

can be followed to expand a matrix/factor graph over Fp2m to one over Fpm . In fact, the example we

developed through the first half of this section, with F24 and F22 , is an instance of the square-root

expansion.

Fpm is the largest possible subfield of Fp2m . According to theorem 2.3, this is the case

where the subfield order, relative to the field order, is at its largest. Consequently, size of the smallest

α-connected set is at its lowest in the square-root expansion. While the relatively large size of the
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subfield limits the achievable complexity gain, performance loss in this case is the smallest among

all subfield expansions, as can be seen in chapter 5.

In the following, we provide a short example of the square-root expansion, once more

with F24 and F22 .

Example 3.4. Consider the following matrix H , over F24 , where α is a primitive element.

H =

α α5 0

0 1 α3

 (3.45)

H can be represented with the following factor graph, where squares represent rows, or

check nodes, and circles represent columns, or variable nodes.

Figure 3.3: Original Factor Graph of H

To derive the expansion over F22 of H , we use the set of quotient groups, Q2
4,2, in Ta-

ble 3.4, and the alternative matrix representations in Table 3.5. Since H2
4,2 in (3.34) does not

contain any sub-matrices that does not have full rank, it will be used to represent the local code.

Expanded factor graph of H , constructed in this manner, is presented in Figure 3.4, while

the expanded matrix, H∗, is given in (3.46). Once more, in the figure, squares represent check

nodes, circles variable nodes, and hexagons local check nodes. vn,i and cm,i denote, respectively,

the F22 nodes of the n’th variable node and the m’th check node of Figure 3.3 that compute the

CPV corresponding to Qψi of Table 3.4. Local parity-check equation represented by the i’th row of

H2
4,2 (in of (3.34)), for the set of nodes of the n’th variable node of Figure 3.3, is denoted with Ln,i.
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Figure 3.4: Expanded Factor Graph of H

H∗ =



0 0 0 ω 0 ω 0 0 0 0 0 0 0 0 0
ω 0 0 0 0 0 ω 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 ω 0 0 0 0 0 0 0

0 0 0 0 ω2 0 0 0 ω 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 ω 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 ω
0 0 0 0 0 0 0 1 0 0 0 0 0 ω2 0
0 0 0 0 0 0 0 0 1 0 0 ω2 0 0 0
0 0 0 0 0 0 0 0 0 1 ω 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 ω 0 1 0 0 0 0 0 0 0 0 0 0 0
1 ω2 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 ω 0 1 0 0 0 0 0 0
0 0 0 0 0 1 ω2 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 ω 0 1 0
0 0 0 0 0 0 0 0 0 0 1 ω2 0 0 1



(3.46)
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Chapter 4

Decoding Based on Expanded Graphs

In the last chapter, we presented overviews of the two most well-known binary expansions

of NB-LDPC codes, the binary image and the extended binary representation, along with a novel

approach that allows expanding a code over any subfield of the field used in construction. Major

purpose of these expansions, or representing a code over a smaller field, is to use in decoding, so

that the complexity can be reduced.

Since decoding complexity is directly dependant on the size of the field used in decod-

ing, representing codes over a smaller field can offer significant advantages. But the PCM, or the

factor graph, produced by an expansion may have some features that make it unsuitable for using

with an existing decoding algorithm. Therefore, any algorithm will have to be modified in certain

ways before using it on an expanded PCM/factor graph. Focus of this chapter is on such decoding

schemes.

In the literature, it is well established that the most harmful graph substructures for itera-

tive decoding are short cycles [46], [47]. As was briefly discussed in Chapter 3, short cycles could

be created in graph expansions even though none exist in the original graph. Interestingly, when it

comes to NB-LDPC codes, the impact of these structures can also depend on the associated edge

labels. In order to better understand the various decoding schemes discussed in this Chapter, all

of which use different strategies to mitigate the effects of cycles, some background knowledge on

them and their impact is essential.

In the following, we first present an overview of short cycles, undesirable graph struc-

tures created by them, and their impact on iterative decoding. As this dissertation mainly focuses on

NB-LDPC codes, non-binary cycles and associated structures are discussed in more detail. We also

provide a summary of decoding strategies that have been suggested in the literature for using with
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binary images and extended binary representations. Then we introduce a novel approach for mod-

ifying any iterative decoding algorithm of NB-LDPC codes for using with the subfield expansions

proposed in the last chapter. While this decoding strategy does not lose the complexity advantage

of decoding on a smaller subfield, performance losses are minimal, as the presented simulation re-

sults would show. We give more focus to decoding on the binary expansion, since that offers the

highest complexity reduction, and also propose a novel majority logic decoding algorithm on that

expansion, which manages to outperform existing MLgD algorithms in many cases.

4.1 Short Cycles in NB-LDPC Codes

As discussed in Chapter 2, decoding of LDPC codes is generally viewed from the per-

spective of the factor graph representations of their PCMs. The sparseness of these matrices lead to

factor graphs that are almost free of cycles; the primary reason for the exceptional performance of

LDPC codes with iterative decoding algorithms. In [46], it is proved that such decoding algorithms,

when implemented on cycle-free graphs, will produce the same estimates as MAP decoding. While

it is not practical to construct codes with PCMs that produce cycle-free factor graphs, when it comes

to LDPC codes, the sparse PCMs ensure that very few cycles will exist in the said graph. In this

case, it is understood that iterative algorithms will closely approximate MAP decoding [46].

Performance of LDPC codes is closely tied to the lengths and number of cycles present

in the factor graphs, with shorter cycles and higher cycle counts widening the gap between perfor-

mance of iterative and MAP decoding. When constructing LDPC codes, particular focus is placed

on increasing the length of the shortest cycle, otherwise known as the girth of the code [48]. All

constructions, random or structured, ensure that no cycle of length four exists, and most try to avoid

length six cycles as well [49], [50].

Cycles in a factor graph particularly impact decoding at low bit error rates. There, cycles

would cause the respective curve to flatten, and an increase in bit energy would not result in an

equivalent decrease of BER. This phenomenon is known as the error floor in the literature [13],

and codes with shorter cycles have been observed to exhibit error floors at relatively high BERs.

In [13], authors show that the error floors are not primarily caused by cycles, but are rather due to

the graphical sub-structures created by them, such as trapping sets and stopping sets. However, as

removing short cycles ensure that such undesirable sub-structures are not created, primary focus in

construction of LDPC codes is still to increase the girth.
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When it comes to NB-LDPC codes, where a number of different non-zero edge labels are

possible, effects of cycles become a bit more complicated. Edge labels, or rather the relationships

between them, determine to a level how harmful a short cycle could be for iterative decoding [14],

[18]. Similar to in the binary domain, here also it is the graph sub-structures created by the short

cycles that are actually harmful, and in [51], it has been observed that the most harmful type of

sub-structure depends on the channel being used. For the most commonly used AWGN channel, the

most harmful structure is known as a non-binary absorbing set [14], [51]. These absorbing sets are

created by short cycles where the respective edge labels create a sub-matrix in the PCM that is rank

deficient [14]. In the literature, such cycles are sometimes referred to as cycles not satisfying the

full rank condition (non-FRC), and as expected, absorbing sets created by shorter non-FRC cycles

are known to be particularly harmful for iterative decoding. This relationship between edge labels

and decoding performance has added another degree of flexibility to the construction of NB-LDPC

codes, which has been successfully explored in [15], [17].

In the following, we first give a brief overview of the graphical sub-structures considered

harmful for iterative decoding of NB-LDPC codes. As the AWGN channel is the most widely used

channel model in the field, we give particular focus to non-binary absorbing sets. Then we explore

how these undesirable graph structures are changed by the expansions discussed in Chapter 3.

4.1.1 Harmful Graph Structures for Iterative Decoding

The existence of graphical sub-structures that negatively impact iterative decoding was

first noticed in [47], when analyzing performance of LDPC codes over the binary erasure channel

(BEC). In that paper, authors presented the definition of a stopping set, the structure primarily

responsible for the error floors of LDPC codes on the BEC. For the sake of completeness, we

present this definition in the following.

Definition 4.1. Let G be the factor graph of a binary LDPC code, and V be the set of variable

nodes. A stopping set S is a subset of V such that all neighboring check nodes of S are connected

to S at least twice.

The subgraph induced by a stopping set consisting of three variable nodes, v1, v2 and v3,

is given in Figure 4.1. In this subgraph, each of the three neighboring check nodes, c1, c2 and c3, is

connected to exactly two of the three variable nodes.

In the literature, it is accepted that performance of LDPC codes over the BEC is com-

pletely determined by stopping sets, with smaller ones, containing a lesser number of nodes, lead-
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Figure 4.1: Factor Graph of a Stopping Set

ing to higher error floors [52]. But when it comes to the binary symmetric channel (BSC) and the

AWGN channel, the structures known as trapping sets are known to be more harmful [52]. Ex-

istence of trapping sets was first noticed in [53], when investigating the reason for the high error

floor of LDPC codes from the Margulis construction. In [53], trapping sets are actually referred

to as near codewords. The term trapping set was formally introduced in [13], which presents a

deeper exploration of the effects of trapping sets on iterative decoding. We present the definition of

a trapping set in the following.

Definition 4.2. Let G be the factor graph of a binary LDPC code, and V be the set of variable

nodes. Also, let S be a subset of V , and GS be the subgraph induced by S . O(S) and E(S) denote,

respectively, the sets of check nodes of GS connected an odd number of times and an even number

of times to S. Then, S is an (a, b) trapping set if |S| = a and |O(S)| = b.

Figure 4.2 presents the factor graph of a (3, 1) trapping set. The impact of these structures

can be more easily understood from the perspective of hard decision based bit-flipping decoding.

Observe that when using such an algorithm, if only the variable nodes in the trapping set in Fig-

ure 4.2 are received in error, then check nodes c2 and c3 will be satisfied, as they are connected

an even number of times to erroneous nodes. c1 will be the only unsatisfied node, but its estimates

might not be enough to correct the error in v1, as v1 is also connected to c3, which is satisfied.

The sub-class of the most harmful trapping sets for iterative decoding is known as absorb-

ing sets [14]. We present the definition of a binary absorbing set in the following, as a continuation

of definition 5.2.

Definition 4.3. S is an (a, b) absorbing set if S is an (a, b) trapping set, and each node in S has

strictly more neighbors in E(S) than in O(S).
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Figure 4.2: Factor Graph of a (3, 1) Trapping Set

Note that the additional constraint of each node in S having more neighboring check

nodes in E(S) than in O(S) makes it even harder to recover from a scenario where all variable

nodes in the absorbing set are in error. For example, consider the absorbing set in Figure 4.3, under

bit-flipping decoding. There, if only the nodes in the set are in error, check nodes c2, c3 and c4

will still be satisfied, since each has two erroneous nodes connected. c1 will not be satisfied, but it

cannot correct the error in v1, as its estimate will be out-voted by those of c2 and c3.

Figure 4.3: Factor Graph of a (3, 1) Absorbing Set

Above insights on trapping and absorbing sets make it easier to understand how they may

create an error floor in decoding. If all the bits, or variable nodes, belonging to such a set are

received in error, then the decoder would find it a very difficult state to recover from. Of course,

in the case of bit-flipping decoding and absorbing sets, such errors would be unrecoverable. For

the sake of brevity, we refer to these kind of errors as set errors from hereon. Increasing bit energy

reduces the likelihood of all errors, including these, but whenever a set error occurs, the code would

be unable to correct it. Therefore, at high bit energy, the slope of the bit error rate curve would

reflect the slowly decreasing probability of set errors occurring, and when considered relative to
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other parts, the curve would look almost parallel to the horizontal axis. This is the phenomenon

referred to as the error floor.

If the number of variable nodes in a trapping or absorbing set is relatively small, then there

is a higher probability of a corresponding set error occurring. Therefore, in the literature, smaller

trapping/absorbing sets are considered more harmful for decoding [52], and more focus is given to

removing those when designing LDPC codes. Small trapping/absorbing sets are most often of an

elementary form, with the neighboring check nodes connected to one or two of the nodes in the

set, and are sometimes referred to as elementary trapping/absorbing sets [52], [14]. Figure 4.2 and

Figure 4.3 both represent such elementary sets.

Different from the binary counterparts, in NB-LDPC codes, an edge label may take one of

many possible values. Then, for a graph sub-structure to affect decoding in a similar way to a binary

trapping/absorbing set, certain conditions have to be met with regard to edge labels, in addition to

the more topographical requirements given in Definitions 4.2 and 4.3. It has been observed that the

performance of NB-LDPC codes on the AWGN channel is mostly determined by the existence of

non-binary absorbing sets [14]. In the following, we present the definition of such a set.

Definition 4.4. Let H and H be, respectively, the PCM and the factor graph of a NB-LDPC code,

and V be the set of variable nodes. Also, let S be a subset of V , of cardinality ‘a’, and S be the

m × a sub-matrix containing the columns of H that correspond to the nodes in S. For S to be an

(a, b) absorbing set;

1. S could be partitioned into two sub-matrices E and O, of dimensions (m− b)× a and b× a
respectively, such that E is not of full rank but O is.

2. Each node in S should be connected to strictly more nodes that correspond to E than those

that correspond to O.

In the above definition, the sub-matrix E corresponds to the set of check nodes in the sub-

graph induced by S that will be satisfied by certain configurations of non-zero values of the variable

nodes in S. O represents the remaining, un-satisfied check nodes. Thus, E and O are analogous to

the sets E(S) and O(S) in Definition 4.3. First requirement above is simply the existence of some

satisfied check nodes, which is represented by E not being of full rank. Second requirement is the

same as that of a binary absorbing set; each variable node has to be connected to more satisfied

check nodes than un-satisfied ones.
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Factor graph of a (3, 1) absorbing set is presented in Figure 4.4, along with the relationship

between edge labels wi. Topographically, it is of the same structure as the binary absorbing set in

Figure 4.3, but unless the given relationship is satisfied, it would not be considered an absorbing set

in a non-binary setting. Certain configurations of values for v1, v2 and v3 would satisfy the check

nodes c2, c3 and c4, while c1 would remain un-satisfied. Observe that all check nodes in Figure 4.4

are of degree one or two, and as such, the absorbing set is an elementary one [14]. Similar to with

binary codes, small absorbing sets, which are quite often also elementary, are the most harmful for

iterative decoding even in the non-binary domain.

Figure 4.4: Factor Graph of a (3, 1) Non-binary Absorbing Set

A binary trapping set may not always involve a short cycle, and Figure 4.2 is an example

of this. Still, a short cycle would always create a trapping/absorbing set, and it is generally con-

sidered that such structures containing short cycles are more detrimental to iterative decoding [18].

Because of this, as we explained earlier as well, significant focus is still placed on increasing the

girth when designing LDPC codes. With NB-LDPC codes though, not all short cycles may create

an absorbing set. Ones that do create such structures will have to be labelled with values that sat-

isfy the relationship involving the edge labels. For example, in Figure 4.4, the (3, 1) absorbing set

contains a cycle of length 6, involving variable nodes v1, v2, v3 and check nodes c2, c3, c4, and the

relationship given is between the edge labels of that 6-cycle. From the perspective of the PCM, this

relationship may be viewed as the condition to be satisfied for the sub-matrix induced by the 6-cycle

to be rank deficient. As such, only short cycles that correspond to rank deficient sub-matrices of the

PCM can create non-binary absorbing sets. Also, in [15] it is shown that these non-FRC cycles lead

to the code having codewords of a low binary weight, which is another cause of error floor. Because

of this, more focus is given to limiting the non-FRC cycles when designing NB-LDPC codes, and

[14] reports significant gains by removing such cycles by changing the edge labels. Still, it should

be noted that short cycles of any type are undesirable when it comes to iterative decoding, as they
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create correlations between messages passed along the graph [54].

FRC and non-FRC cycles play a prominent role in the remainder of this Chapter, and also

in Chapter 5, where the distinction between the two types is used to design parity-check matrices

for soft decoding of Reed-Solomon codes. Definition 4.5 below formally defines these structures.

Definition 4.5. Let c be a cycle in the factor graph H of an NB-LDPC code defined by the parity-

check matrix H . Also, let V and C denote the sets of variable and check nodes involved in c. We

denote the sub-matrix of H that corresponds to c with Hc. Hc contains the labels of the edges that

connect nodes in V to those in C. Then;

1. c is called a cycle that does not satisfy the full rank condition, or a non-FRC cycle, if Hc is

rank deficient.

2. c is called a cycle that satisfies the full rank condition, or an FRC cycle, if Hc is of full rank.

In the following section, we observe how short cycles of both types get transformed from

the expansions discussed in Chapter 3. This section was primarily for establishing the necessary

theoretical background for that and subsequent sections, by providing brief overviews of the related

concepts. A deeper discussion of graph sub-structures in NB-LDPC codes is presented in [14] and

[51].

4.1.2 Short Cycles in Expanded Graphs

As discussed in Chapter 3, it is possible to represent a non-binary factor graph over one of

its subfields, which may allow decoding schemes of lower complexities to be designed. However,

the topographical changes introduced by an expansion may form undesirable graph sub-structures

that were not present in the original graph. If such structures existed in the original graph, then there

is also a chance of those being removed by the expansion. Since most undesirable graph structures

are created due to cycles, in this section, we explore how graph expansions create or eliminate short

cycles.

Chapter 3 presented three approaches for expanding a factor graph; the binary image

representation and the extended binary representation to derive a binary graph, and our proposal,

subfield expansions, that allow expanding a graph over any subfield of the original field. Later in

the chapter it was shown that extended binary representation produces the same factor graph as the

subfield expansion over the binary subfield. Therefore, here we focus only on the binary image

representation and subfield expansions.
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4.1.2.1 Cycles in Binary Image Representations

Binary image representation makes use of the matrix representation of a finite field, where

each element over F2r is represented as an r × r binary matrix. Here, it is possible that some

field elements are represented with dense matrices, sometimes even containing four-cycles. Thus,

the binary image representation of a non-binary factor graph will contain many short cycles, even

though the original graph may not have any. Example 3.1, in Chapter 3, provides evidence of this.

There, the original graph contains a single four-cycle, whereas several exist in the binary expansion.

Since the expanded graph is binary, effects of a cycle depend only on its length and any

can create structures such as stopping sets, trapping sets, or absorbing sets. Therefore, a binary

image representation may contain several graph sub-structures harmful for iterative decoding, and

in the literature, binary image representations are not directly used for decoding. Several techniques

are usually applied to mitigate the effects of short cycles and associated stopping/trapping sets, such

as changing the binary graph per decoding iteration [43], adding redundant binary check nodes [42],

[55], and using message passing schedules different from the conventional one [56]. Section 4.2.1

presents a more detailed review of decoding with binary image representations.

4.1.2.2 Cycles in Subfield Expansions

Subfield expansions, introduced in Chapter 3, allow expanding an Fpr graph over any

subfield Fpm , where m | r. As explained in that chapter, such an expansion can be viewed as

consisting of two principal stages; initial stage where variables and check nodes of the Fpr graph

are expanded and connected, and then the second stage, where the additional check nodes necessary

from a decoding perspective are added. However, all the modifications to short cycles that exist

in the original graph are captured in the initial stage, and therefore, in the following, our focus is

primarily on that.

Subfield expansion of a Fpr graph over Fpm makes use of the alternative matrix repre-

sentation of Fpr , where each element is represented as a pr−1
pm−1 ×

pr−1
pm−1 matrix over Fpm . This

representation is introduced in Definition 3.7, and it has a unique structure that is advantageous

in terms of the density of the expanded graph. According to Lemma 3.8, there is exactly a single

non-zero position in each row and column of the alternative matrix representation of any symbol

∈ Fpr . Thus, different from the binary image representation, no cycle of any length can exist in any

of the matrices used for the expansion. However, any short cycle that exists in the original graph

may create one or more such cycles in the expanded graph.
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A subfield expansion may be carried over a non-binary subfield as well, and in such

an instance, two types of short cycles need to be considered. As discussed earlier, the first type,

which we refer to as non-FRC cycles, can create non-binary absorbing sets, and the second, FRC

cycles, cannot, but still negatively impact decoding by making the messages passed along the graph

correlated. However, in the following lemma, which presents the conditions for a short cycle to

exist in a subfield expansion, we do not distinguish between the two types. Also, it should be noted

that although the Lemmas presented in this section focus on four-cycles, they may be generalized

to different lengths.

Lemma 4.1. Consider the expansion of a Fpr graph over Fpm , where m | r. After the initial stage,

a four-cycle may exist in the expanded graph only if there existed a non-FRC four-cycle between the

corresponding positions of the original graph.

Proof. Assume that a four-cycle exists between four Fpm nodes in the expansion, one each from

the sets that replaced variable nodes v1, v2, and check nodes c1, c2 in the original graph. It is clear

that for this to happen, a four-cycle must exist in the original graph between the same nodes. As it

makes identification of non-FRC cycles easier, we chose to view the expansion from the perspective

of the PCM. (4.1) presents the four cycle in the original PCM, where the corresponding edge labels

are a1, a2, b1 and b2.


v1 v2

c1 . . . a1 . . . b1 . . .

c2 . . . a2 . . . b2 . . .

 (4.1)

How the cycle exists in the expanded PCM is given in Figure 4.5, where it is shown in

red, and the alternative representation matrices that replaced the four elements a1, a2, b1 and b2 in

the original PCM are denoted with black squares. Moreover, the four-cycle is assumed to involve

the (i, k)’th element of the alternative matrix representation of a1, the (j, k)’th element of a2, the

(i, l)’th position of b1, and the (j, l)’th position of b2.

Now, according to definition 3.7, relationships in (4.2) should hold. ψi’s are the homo-

morphisms between the additive groups of Fpr and Fpm that are used for the subfield expansion.

a1 · ker(ψi) = ker(ψk) a2 · ker(ψj) = ker(ψk)

b1 · ker(ψi) = ker(ψl) b2 · ker(ψj) = ker(ψl) (4.2)
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Figure 4.5: A four-cycle in a subfield expansion

Simplifying the above leads to the following relationships.

a1 · ker(ψi) = a2 · ker(ψj)

b1 · ker(ψi) = b2 · ker(ψj) (4.3)

Taking the division of the two equations in (4.3) allows us to arrive at the following

relationship between the edge labels.

a1 · ker(ψi)

b1 · ker(ψi)
=
a2 · ker(ψj)

b2 · ker(ψj)
=⇒ a1

b1
=
a2
b2

(4.4)

Now consider the determinant D of the sub-matrix induced by the four-cycle in the origi-

nal PCM, given in (4.1).

D = a1 · b2 − a2 · b1 (4.5)

But due to (4.4), D = 0. Thus, the four-cycle in the original matrix is a non-FRC cycle.

Lemma 4.1 establishes that only a non-FRC cycle in the original graph can lead to a cycle

in the expanded graph. But it is possible that such a cycle creates more than a single cycle in the

expansion, which is explored in the following lemma.

Lemma 4.2. Consider the expansion of a Fpr graph over Fpm , where m | r. A non-FRC four-cycle

in the original graph will create pr−1
pm−1 four-cycles in the expanded graph.

Proof. We recall that in the subfield expansion, each element of the original PCM is replaced with

a pr−1
pm−1 ×

pr−1
pm−1 matrix over Fpm . According to Lemma 3.8, these matrices have only a single non-

zero entry per row or column. Then, if pr−1
pm−1 four-cycles are to be created, every row of a matrix that

82



CHAPTER 4. DECODING BASED ON EXPANDED GRAPHS

replaced one of the elements in the original cycle should be involved in a four-cycle. Once more,

we use (4.1) to represent the original cycle.

Consider the i’th row of the matrix that replaced a1, and assume its non-zero entry is on

the k’th column, similar to in Figure 4.5. By Lemma 3.8, i’th row of b1 must have a non-zero entry,

and let that be in the l’th column. Similarly, let the non-zero entry in the k’th column of a2 be at the

position corresponding to row j. Note that 0 ≤ i, j, k, l ≤ pr−1
pm−1 − 1. This configuration completes

two sides of the four-cycle, and three of the relationships in (4.2), which are given below, become

valid.

a1 · ker(ψi) = ker(ψk) a2 · ker(ψj) = ker(ψk) b1 · ker(ψi) = ker(ψl) (4.6)

For a four-cycle, it is required that (j, l)’th position of the matrix that replaced b2 is non-

zero. According to Definition 3.7, the non-zero position of the j’th row will be on the column t,

0 ≤ t ≤ pr−1
pm−1 − 1, that satisfies the following condition.

b2 · ker(ψj) = ker(ψt) (4.7)

Substituting for the RHS of (4.7) with the relationships in (4.6);

b2 · a1
a2

· ker(ψi) = ker(ψt) (4.8)

The four-cycle in the original PCM is non-FRC, and the edge labels satisfy (4.4). Using that with

(4.8);

b1 · ker(ψi) = ker(ψt) (4.9)

But from (4.6);

ker(ψl) = ker(ψt) (4.10)

Thus, the non-zero entry of the j’th row of b2 is on the l’th column, which completes the

four-cycle. Since no special constraints were placed on the row i, above proof is valid for any of the
pr−1
pm−1 rows of a1. This proves that the single non-FRC four cycle in the original PCM will create
pr−1
pm−1 four-cycles in the subfield expansion.

It turns out that any four-cycle created in the subfield expansion during the initial stage is

non-FRC. This is proved in Lemma 4.3.

Lemma 4.3. Consider the expansion of a Fpr graph over Fpm , where m | r. Any four-cycle that

exists in the expansion after the initial stage does not satisfy the full rank condition.
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Proof. As established in Lemma 4.1, a four-cycle will only exist in the expansion if there existed a

non-FRC four-cycle between the corresponding positions of the original graph. In such a scenario,

edge labels of the original graph should satisfy (4.4). Using that relationship, we represent the

original four-cycle as follows, where c ∈ Fpr .


v1 v2

c1 . . . a1 . . . b1 . . .

c2 . . . c · a1 . . . c · b1 . . .

 (4.11)

We focus on one of the four-cycles created in the expansion, involving positions (i, k) of

the matrix that replaced a1, (j, k) of c · a1, (i, l) of b1, and (j, l) of c · b2. While this four-cycle

is graphically represented in Figure 4.5, here we chose to view it as follows, where γ1, γ2, δ1, δ2 ∈
Fpm .


v1, k v2, l

c1, i . . . γ1 . . . δ1 . . .

. . . . . . . . . . . . . . .

c2, j . . . γ2 . . . δ2 . . .

 (4.12)

According to Definition 3.7, γ1 is the element that induces the reverse permutation of the

permutation of Qψk produced by operation a1 �Qψi . Similarly, γ2 should reverse the permutation

of Qψk produced by a2 � Qψj , or with the representation in (4.11), (c · a1) � Qψj . We recall that

a1 � Qψi is multiplying all elements in all cosets of Qψi with a1. Then it is clear that γ2 could

be written as κ · γ1, where κ ∈ Fpm reverses the permutation due to c ∈ Fpr . Applying the same

modification to δ2, (4.12) becomes;


v1, k v2, l

c1, i . . . γ1 . . . δ1 . . .

. . . . . . . . . . . . . . .

c2, j . . . κ · γ1 . . . κ · δ1 . . .

 (4.13)

Computing the determinant of the sub-matrix corresponding to the four-cycle in (4.13);

D = γ1 · κ · δ1 − δ1 · κ · γ1 = 0 (4.14)

Therefore, the four-cycle in (4.14) does not satisfy the full rank condition.

As established by Lemmas 4.1, 4.2, and 4.3, after the initial stage, the expanded graph

would contain only non-FRC four-cycles, pr−1
pm−1 cycles each for any such four-cycle in the original

84



CHAPTER 4. DECODING BASED ON EXPANDED GRAPHS

graph. FRC four-cycles, if they existed in the original, are removed in the expansion. This seems

advantageous in terms of iterative decoding, but any gain is offset by the increase of non-FRC

cycles, the most harmful type of the two.

In the second stage of the subfield expansion, new check nodes are added to account

for the dependencies between the coset probability vectors used for decoding. Chapter 3 proposes

conducting row operations to remove the cycles that might exist in the PCM used for the local check

nodes, but it might not be possible to remove all short cycles. For example, consider the local PCM

in (3.34), which contains three FRC four-cycles. Still, it should be possible to remove any non-FRC

short cycle.

Above discussions show that with regard to short cycles, the graphs produced by subfield

expansions may not necessarily be better than the original graphs. Still, the expanded graphs will

contain a significantly lesser number of cycles than the graphs produced by the binary image rep-

resentation. Thus, it is possible to conclude that subfield expansions produce graphs that are more

suited for iterative decoding.

Section 4.2 focuses on some of the more well-known decoding schemes proposed for ex-

panded graphs in the literature. Certain strategies are used in these algorithms to mitigate the effects

of short cycles, and the undesirable graph structures they create, which were reviewed previously.

Later, in Section 4.3, we propose novel decoding schemes for subfield expansions. Insights on short

cycles and their impact on iterative decoding, gained in this Section, are also made use of there.

4.2 Existing Decoding Schemes

4.2.1 Decoding on Binary Images

As discussed in the previous chapter, major obstacle in using the binary image representa-

tion for iterative decoding is the higher number of short cycles it contains. In the literature, different

strategies have been proposed to use this representation for decoding NB-LDPC codes [43], [41],

[42].

One of the more well-known decoding schemes suggested for the binary image represen-

tation is adaptive belief propagation (ABP). This was initially proposed in [43] for soft decision

decoding of Reed-Solomon (RS) codes. We also note that the soft decoding algorithm proposed

in [57] for RS codes also makes use of ABP. ABP considers using SPA [4] on the binary image
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representation of a non-binary PCM. In order to negate the impact of short cycles, the binary matrix

used for decoding is changed per iteration. We give a brief overview of how this is done in the

following.

In variable node operations of SPA, analogous to (2.4) of QSPA, a full LLR estimate is

computed for each node, by taking the sum of the initial channel estimate and neighboring check

node estimates [4]. If the magnitude of this value is close to zero for some node, then it is an

indication of significant differences between channel and check node estimates for that node, which

may be due to the effects of short cycles. Thus, such variable nodes are considered less reliable and

the LLR estimates sent out by them are more likely to be erroneous [43]. It would be advantageous

to limit their involvement in the decoding process, and with iterative decoding, one way to do that

is by reducing the node degree, which, in the perspective of the PCM, is the number of 1’s in the

respective column.

Now consider anm×nmatrix over F2r . Binary image of this would be amr×nr matrix.

When conducting ABP on such a matrix, at the end of each decoding iteration, the (nr−mr) least

reliable variable nodes are found by considering the magnitudes of the final LLR estimates, and

their degrees for the next iteration are made one by adapting the binary PCM in such a way that the

corresponding columns contain only a single 1. This matrix adaption is usually carried out with row

operations [43].

Simulation results given in [43] show that ABP offers very attractive performance gains

over hard decision decoding of RS codes, with gains at times exceeding 5dB. But the disadvantage

here is the equally significant increase of complexity, which is mainly due to the matrix adaption

procedure. Furthermore, ABP is not suitable for hardware implementations, since the PCM used in

decoding is changing each iteration.

[55] proposes some improvements to ABP in terms of complexity; instead of changing

the PCM per iteration, it uses a fixed binary matrix. This matrix is constructed by adding some

redundant parity-check equations to the binary image, and carrying out row operations to reduce the

number of 4-cycles. Additionally, [55] also proposes changing the sign of the channel estimates of

least reliable bits in each iteration. It should also be noted that [56] suggests a novel message update

scheme for ABP, which further improves performance.

A scheme sharing many similarities to [55] has been proposed in [41], where the focus

is on NB-LDPC codes rather than RS codes. The scheme proposes enhancing the binary image

representations by adding some redundant parity-check equations, but different from [55] which

targets 4-cycles, these are selected to remove the low-weight stopping sets. Some simulation results
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with short length NB-LDPC codes over small fields are presented in [41], which show the proposed

scheme performing very close to QSPA.

A somewhat different approach to decoding with the binary image representation is sug-

gested in [42]. In the binary image of a matrix over F2r , each row is replaced by r binary rows.

These r rows can be considered as a basis of an r dimensional binary vector space, which contains

2r vectors. [42] proposes using all those vectors, except the all-zero one, when constructing the bi-

nary image. Thus, in [42], each row of the original matrix is replaced by (2r − 1) binary rows. This

results in a significantly larger matrix than the traditional binary image, but it should also be noted

that the number of rows in this new matrix is equal to that in the extended binary representation.

[42] uses SPA on this larger binary image, but introduces some modifications to reduce the impact

of short cycles. In check node and variable node computations, rather than using all the estimates

received from neighboring nodes, only some are used. Particularly, estimates of smaller magnitudes

are not used since they are considered less reliable, as explained earlier. Simulation results show

that this decoding scheme manages to perform within a fraction of a dB of QSPA, even with codes

over large sized field, such as F28 .

As discussed above, while some of the strategies in the literature manage to perform

satisfactorily, decoding NB-LDPC codes with the binary image is yet to become popular. This

is mostly due to the performance-complexity trade-offs offered by the approaches not being very

attractive; performance losses tend to be heavy when complexity gains are significant.

4.2.2 Decoding on Extended Binary Representations

Extended binary representation is an alternative binary representation free of the major

shortcoming in the binary image, the large number of short cycles [40]. Extended representation

of an m × n matrix over F2r is a (2r − 1)m × (2r − 1)n matrix, significantly larger than the

mr × nr binary image. Although this matrix is quite sparse, generic decoding algorithms cannot

be implemented in a straight-forward manner on it either, since, as we explained in the last chapter,

the matrix contains more variable nodes than the number of bits transmitted through the channel.

However, a few approaches have been proposed for decoding NB-LDPC codes using the extended

binary representation in the literature [40], [44], [45].

[40] presents an iterative hard decision decoding algorithm with the extended binary rep-

resentation, for using with the binary erasure channel (BEC). In that algorithm, only r of the (2r−1)

binary nodes of a single F2r node is initialized with channel information; the rest are marked as era-
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sures. An iterative soft decoding algorithm for general channels is suggested in [44], where initial

estimates for the set of (2r − 1) binary nodes are derived using the channel estimate for the cor-

responding F2r node, based on simplex code constraints of the extended vector representation (see

definition 3.2). But in this approach, binary Fourier transform has to be applied at variable node

operations, which makes it of the complexity order O(r2r) [44], same as FFT-QSPA [25]. Thus,

the complexity advantage of using a binary representation is lost.

Two decoding strategies for the extended binary representation is proposed in [45], a hard

decision decoding strategy, and a hybrid decoding strategy, which has components of both hard and

soft decoding. [45] considers the vector space spanned by the rows of the extended binary matrix

of the non-binary PCM, and picks a set of vectors that satisfy certain criteria to form the matrix

used for decoding. In the proposed iterative hard decision decoder, simplex constraints are used

to derive the initial estimates, similar to [44]. On the other hand, for the hybrid decoding scheme,

which conducts a number of soft decoding iterations and a number of hard decoding iterations

consecutively, the authors propose transmitting all bits of the extended vector representation. While

the simulation results presented show good performance, this decoding strategy actually changes

the rate of the code, and may not be appropriate in many situations.

4.3 Subfield Decoding

Consider decoding an NB-LDPC code over Fpr using one of its subfield expansions, pro-

posed in Chapter 3. New factor graphs produced by the expansion fully capture the relationships in

the original graph, and any iterative, message-passing decoding algorithm proposed for NB-LDPC

codes could be adapted for using on such an expanded graph. Advantage herein is the expansion

being over a smaller field Fpm , where m | r, than the original, which results in a significantly lower

decoding complexity, since the complexity order is quadratic in field size. The original factor graph

could be expanded over any subfield of Fpr , and this produces a few different graphs that could

be used for decoding. Each graph could also be used with any decoding algorithm, given that the

algorithm is suitably modified. Decoding algorithms include simplifications of more complex ones,

such as EMSA and QSPA, introduced in Chapter 2. Pairing such an algorithm with an expanded

graph would offer the combined complexity gains of the simplification and the graph expansion

both. With a few different expanded graphs and a few different decoding algorithms, a number of

different pairings are possible for decoding a particular NB-LDPC code, and each of these would

offer a unique performance-complexity trade-off.
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Due to their certain special characteristics, graphs obtained through the proposed subfield

expansion cannot be used with a decoding algorithm of NB-LDPC codes in a straight-forward man-

ner. Some modifications need to be applied to such an algorithm in order to make it compatible with

an expanded graph. Although there could be differences in implementations, the modifications nec-

essary are common to any algorithm. In the following, we present these modifications, and explain

why they are required. It should be noted that the explanations are from the perspective of a soft

decision decoding (SDD) algorithm, such as QSPA and its many variations, but the reasons for the

modifications are valid for different types of algorithms as well, such as majority-logic decoding.

1. Computing Initial Estimates

Any SDD algorithm has to be initialized with probability estimates computed based on

information received from the channel. As explained in Chapter 2, in QSPA and its variants, these

initial probability estimates are computed per variable node, and they take the form of symbol prob-

ability vectors, as a variable node represents a position in the codeword. In the subfield expansions

we propose, variable nodes represent different CPVs. Therefore, when using those for decoding,

channel information has to be converted to initial estimates for CPVs.

Consider some quotient group Qψi , used for expanding a graph over Fpr over some sub-

field Fpm . Each coset Cij of Qψi contains a subset of symbols in Fpr . This observation makes

computing initial estimates for CPVs quite straight-forward, i.e., probability of the value of a Fpr

code symbol being from a particular sub-set of Fpr symbols is simply the sum of the individual prob-

abilities of those symbols that belong to the subset. These symbol probabilities can be computed

using channel information, similar to in QSPA and its variants, which were reviewed in Chapter 2.

(4.15) in the following presents the computation of the initial estimate for the i’th CPV of some Fpr

variable node n. pc
n,i

(j) represents the j’th coset probability of that CPV, ps
n

represents the initial

symbol probability vector for node n, and βk denotes Fpr symbols in the coset under consideration,

Cij .
pc
n,i

(j) =
∑
βk∈Cji

ps
n
(βk) j = 0, 1, . . . , (pm − 1) (4.15)

As explained in Chapter 2, decoders operate on either log or log-likelihood ratio (LLR)

domain in most practical applications, due to hardware stability concerns [29]. Therefore, an initial

CPV pc
n,i

, computed as in (4.15), has to be converted to one of those domains, for the decoding

algorithm to be usable in practice. For example, (4.16) below presents the conversion to LLR

domain. Note that this computation is the same as that of converting a symbol probability vector
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over Fpm to LLR domain.

Lcn,i(j) = log
pc
n,i

(j)

pc
n,i

(0)
j = 0, 1, . . . , (pm − 1) (4.16)

When expanding an Fpr graph to an Fpm one, each node in the original graph will be

replaced by pr−1
pm−1 nodes, as discussed in chapter 3. Each new node of a Fpr variable node would

represent one of its CPVs, and has to be initialized as in (4.15) and (4.16). This may not seem

problematic, but observe that only a single symbol probability vector ps
n

will be used for initializing
pr−1
pm−1 nodes. This symbol probability vector corresponds to a single Fpr symbol transmitted through

the channel. Channel information of such a symbol contains information equivalent to r symbols

of Fp, or r
m symbols of Fpm . Therefore, since ps

n
is derived from channel information of one such

Fpr symbol, it should only be sufficient to compute initial estimates of r
m Fpm nodes/CPVs. But

if we proceed as in (4.15), pr−1
pm−1 CPVs are initialized. This means that directly applying (4.15) to

compute initial estimates of all CPVs duplicates channel information of a single Fpr node. This

also creates dependencies between initial CPV estimates. Furthermore, any error present in channel

information would get magnified, and can propagate through the graph in subsequent decoding

iterations, leading to significant performance losses.

One seemingly straight-forward way to reduce error propagation is to initialize only r
m

nodes out of the pr−1
pr+1 with channel information as in (4.15), and set initial estimates for all other

CPVs to zero. But this could also impact decoding performance, since error-free portions of channel

information that could have been duplicated without impacting decoding negatively end up being

used only once. Therefore, a method with characteristics of both the approaches discussed so far,

initializing all CPVs and only a limited number, may be more appropriate for decoding on subfield

expansions. What we propose is using an optimized scaling factor δ (0<δ<1) in (4.16). All initial

CPV estimates will be derived as in (4.15), in probability domain, but when converting to LLR

domain, ( p
r−1

pm−1 −
r
m) are multiplied with δ, reducing their magnitudes. Thus, magnitudes of any

errors present in those CPVs also get reduced, and impact of error propagation would not be as

severe as before. Also, we end up using full channel information as in a majority of SDD algorithms,

since r
m nodes are initialized without the scaling factor. The following equation shows how scaling

is used with (4.16). Note that this does not apply for r
m CPVs, and that scaling factor δ has to be

optimized per code.

Lcn,i(j) = δ · log
pc
n,i

(j)

pc
n,i

(0)
j = 0, 1, . . . , (pm − 1) (4.17)
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Recall the concept of the local code, introduced in Section 3.2.2.2, in the previous chapter.

This allows us to view the pr−1
pm−1 nodes of a Fpr variable node as representing code positions of a

( p
r−1

pm−1 ,
r
m) code over Fpm . Then, in turn, we can consider r

m of the new nodes as representing

information positions, and the others as representing parity positions. Our method of initializing is

appropriate in this perspective as well, where it may be interpreted as using full channel information

for the r
m nodes representing information positions and using a scaling factor with the remaining

nodes, those that represent parity positions. Any suitable set of r
m nodes/CPVs could be chosen for

representing information positions, and (4.17) should only be used with the rest. Simulation results

we present later in the chapter validate modifying the initialization step in this manner.

2. Distinguishing Local Checks from Regular Checks

As discussed in Section 3.2.2.3, expanded graphs contain two different types of check

nodes; local check nodes that represent dependencies between CPVs, and regular check nodes,

those that replaced check nodes in the original graph. A local check node is only connected with

some of the
( pr−1
pm−1

)
Fpm nodes that were added for a single Fpr variable node, whereas a regular

check node will be connected with at most one node of each such set.

The two types of check nodes actually represent constraints of two different codes, the

code represented by the original factor graph, and the simplex code of the alternative vector rep-

resentation, presented in Definition 3.8. As seen in Section 3.2.2, an instance of the same simplex

code is created between the set of Fpm nodes of each Fpr variable node, and local check nodes are

added for each such set. Thus, estimates from a local check node can be considered to only de-

pend on a single variable of the original code. These observations suggest that treating probability

estimates from the two types of check nodes similarly may not be the best approach to follow.

When expanding a graph, the initial step we proposed in Section 3.2.2 is replacing each

original node with a set of nodes from the subfield, and connecting these new nodes based on the

original edge label. In the perspective of a matrix expansion, this corresponds to replacing each

value in the original PCM with their alternative matrix representation (see Definition 3.7) over

the subfield. These alternative matrix representations are very similar to permutation matrices, as

proved in Lemma 3.8. Due to special characteristics of the alternative matrix representation, the

initial expansion would contain short-cycles only if the original graph contained short-cycles that

satisfy certain conditions, as was seen in Lemma 4.1, and therefore, the factor graph after the initial

expansion could be sparser than the original.

However, the local PCM, which is a generator matrix of a Hamming code, could contain
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short cycles, and in many cases it does. Thus, the final expansion will be more dense than the

original graph. Short-cycles added will only involve the local check nodes, and, as discussed in

Section 3.2.2.3, they may not even be of the most damaging type. Still, estimates computed by a

certain check node involved in such a cycle in two consecutive decoding iterations will be correlated

to some degree, which could make check node estimates over-confident of a variable node taking a

particular value. This is only an issue with local check nodes though.

Taking into consideration the short cycles in the local PCM, and the differences between

estimates computed by the two types of check nodes, we propose using another scaling factor ψ

(0<ψ<1) for estimates of local check nodes. Similar approaches have been suggested in the litera-

ture to reduce the impact of short cycles in iterative decoding, for example in [43].

(4.18) in the following shows how check node estimates are combined at a variable node

n in the expanded graph, with this modification. It is presented for an algorithm implemented in

LLR-domain, such as LLR-QSPA, discussed in Section 2.2.1. Similar to (2.11), hereL(k)
n represents

the combined estimate for node n in decoding iteration k, L(0)
n is the channel estimate for that node,

and P (k)
j,n are estimates from neighboring check nodes j. Mr(n) denotes the set of regular check

nodes in the neighborhood of node n, while Ml(n) denotes the set of local check nodes.

L(k)
n = L(0)

n +
∑

j∈Mr(n)

P
(k)
j,n + ψ ·

∑
j∈Ml(n)

P
(k)
j,n (4.18)

(4.19) shows how the message for a connected check node m, R(k)
n,m, is computed with

this modification, for the two possible cases of m; a regular check node, and a local check node.

R(k)
n,m = L(k)

n − P (k)
m,n; m ∈Mr(n)

R(k)
n,m = L(k)

n − ψ · P (k)
m,n; m ∈Ml(n) (4.19)

Similar to δ in initialization, ψ also has to be optimized per code.

3. Testing for Convergence

An important part in iterative decoding of NB-LDPC codes is testing whether the decoder

has converged to a valid codeword. If so, the decoding process can be terminated early, which

increases the decoding efficiency. As explained in Section 2.2, this test for convergence is carried

out after variable node operations, with the vector of tentative decisions taken by each such node.

In the test, constraints in the PCM, which are represented by check nodes in the factor graph, are

evaluated, since for the decoder to converge, all such constraints have to be satisfied.
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It is possible to follow the same approach when decoding on subfield expansions. Con-

sider decoding on a graph over Fpm , obtained by expanding a Fpr graph. Tentative decision at

each Fpm variable node will be some Fpm symbol that is the most likely for that node. Constraints

represented by both regular check nodes and local check nodes have to be evaluated in the conver-

gence test. With
( pr−1
pm−1 −

r
m

)
local check nodes per variable node of the original graph, number of

constraints will be fairly high here. If all constraints are satisfied, meaning that the decoder has con-

verged, the output will be a vector of Fpm elements that is pr−1
pm−1 times longer than the original code

length. For recovering the original codeword, each set of consecutive pr−1
pm−1 symbols in the output

vector can be mapped to a single Fpr symbol, via the alternative vector representation, discussed in

Section 3.2.2.2.

An alternative approach for testing convergence when decoding over subfield expansions

is to first map each set of Fpm symbols to a Fpr symbol, and then use the constraints of the original

graph for the test. Since validating constraints only involves simple field arithmetic, complexity

of the operation does not depend much on the field size. But the original graph will have a much

lower number of constraints, which makes this approach advantageous in terms of complexity. Field

arithmetic is usually carried out with look-up tables, and this requires tables for both Fpr and Fpm

to be available in a decoder, which seems a disadvantage when it comes to hardware resource

requirements. Still, since Fpm is a subfield of Fpr , sections of the larger field’s look-up tables could

be used for the smaller one.

Straight-forward way to map
( pr−1
pm−1

)
Fpm symbols to a single Fpr symbols is through

the alternative vector representation introduced in the last chapter. But recall that the alternative

vector representations are codewords of a
( pr−1
pm−1 ,

r
m

)
simplex code, and thus, if the decoder had

converged, only the r
m information symbols of the pr−1

pm−1 are required to map to a Fpr symbol.

Therefore, we propose only using the information symbols when mapping between the two fields

for convergence testing. This is advantageous when one or more of the parity nodes out of a set of
pr−1
pm−1 are not converging to the proper Fpm symbol. Using only the information nodes could allow

decoding to be terminated a few iterations early in such a case. Note that certain information nodes

converging to inaccurate symbols would result in the decoder termination only if they converge to

specific symbols that still form a codeword. Probability of such a case is directly dependent on the

minimum distance properties of the code, as is common with any type of decoding, using subfield

expansions or otherwise.

With the modifications proposed above, any iterative soft-decoding algorithm proposed
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for NB-LDPC codes, such as the ones in [26], [25], [28], [33], may be used with expanded graphs.

A case of special interest here is when the subfield used is the binary field, or F2. In such a case,

quotient groups used for the expansion are isomorphic to F2, and CPVs are only of length 2. Thus,

decoding can be conducted with algorithms proposed for binary LDPC codes [4], [31], given that

the modifications proposed are applied appropriately. A brief overview of this case is provided in

the following.

4.3.1 Decoding on Binary Expansions

With binary expansions, each node over F2r is expanded to (2r − 1) binary nodes, as

seen in Section 3.2.3. CPVs these nodes represent contain only two elements; the probability of the

corresponding variable being from a subgroup of size 2r−1, and the probability of it being from that

subgroup’s proper coset. Therefore, it is not necessary to use probability vectors in computations.

Instead, scalar LLR values can be used, similar to decoding of binary LDPC codes [4]. We chose to

define the LLR represented by the i’th binary node of the n’th F2r variable node as follows. Gi and

Ci represent the corresponding subgroup and its coset, whereas p(n ∈ Gi) and p(n ∈ Ci) represent

the probabilities of the symbol for node n being from Gi and Ci respectively.

Ln,i = log
p(n ∈ Ci)
p(n ∈ Gi)

(4.20)

Unlike NB-LDPC codes, only a few algorithms have been suggested in the literature for

binary LDPC codes. This is probably due to the best known decoder, binary sum-product algorithm

(SPA) [4], not been as complex as QSPA, and its simplification, min-sum algorithm (MSA) [31],

not loosing much on performance. In this section, we focus on how SPA is modified for decoding

on binary expansions. To make the discussions more related to the practical case, we assume data

is transmitted through the binary-input, additive white Gaussian noise (BI-AWGN) channel, with

BPSK modulation.

1. Initialization

Although each F2r node is replaced with (2r−1) binary nodes, when using a binary-input

channel, only r bits are transmitted for each F2r symbol. The bits transmitted are the ones that con-

stitute the traditional binary representation of a symbol. The set of F2r symbols for which a specific

bit in that representation is high should form a subgroup of order 2r−1 of H = {F2r ,+}. According

to Lemmas 3.9 and 3.10, such subgroups belong in the set that is used for the binary expansion, and
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the expanded graph contains nodes that represent probabilities of F2r variables belonging or not

belonging to them.

As discussed earlier, the (2r − 1) binary nodes of a non-binary variable node can be

divided into two groups; ones that represent information bits of the local code, and the ones that

represent parity bits. In this case, the local code, first introduced in Section 3.2.2.2, is a (2r − 1, r)

binary simplex code. We propose choosing the nodes that map to the bits transmitted through the

channel as the ones that represent information bits. This allows us to initialize them in a very simple

manner, as follows. L(0)
n,i denotes the initial estimate for the i’th binary node of the n’th F2r variable

node, and yn,i represents the value received from the BI-AWGN channel for the corresponding bit,

while σ2 is the noise variance.

L
(0)
n,i =

2 · yn,i
σ2

; i = 1, . . . , r (4.21)

Remaining (2r−r−1) binary nodes represent the parity bits of the local code. This means

that each of them can be written as a linear combination of the r information bits, which are initial-

ized with channel values, as in (4.21). These relationships are represented with some codeword in

the dual code of the local simplex code, and can be used with the initial estimates of information

bits to initialize the parity bits. But the first modification to iterative decoding algorithms we pro-

posed earlier applies here. Simply duplicating channel information can lead to error propagation

and inferior decoding performance, and therefore, an optimized scaling factor ψ has to be used in

the computation. (4.22) below represents this computation, for a node j that represents a parity bit.

Ij denotes the set of information bits involved in generating the parity bit j.

L
(0)
n,j = δ · 2 tanh−1

∏
k∈Ij

tanh
L
(0)
n,k

2
; j = r + 1, . . . , 2r − 1 (4.22)

One significant advantage in this approach is that symbol probability vectors now do not

have to be computed with channel information, unlike when using the original graph for decoding.

Therefore, using the binary expansion results in complexity gains even in the initialization step.

2. Check Node Operations

Subfield expansions contain two types of check nodes; regular ones and local ones. One

of the modifications proposed earlier was for distinguishing between estimates from these two types

of check nodes. This was done with another scaling factor ψ, which was applied at variable nodes.

Thus, when it comes to check node operations, both regular and local nodes operate the same way,
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as a check node in a binary LDPC decoder [4]. Following equation represents how such a node m

computes the probability estimate for some variable node n in its neighborhood during k’th decoder

iteration, using the probability estimates sent from other variable nodes in the previous iteration.

P (k)
m,n = 2 tanh−1

∏
i∈N(m); i 6=n

tanh
R

(k−1)
i,m

2
(4.23)

3. Variable Node Operations

Variable node operations in binary SPA [4] and QSPA [26] take almost the same form,

with the only difference being QSPA using probability vectors instead of single probability values,

as in binary SPA. First operation at variable nodes in both cases is combining the probability es-

timates received from neighboring check nodes with the initial estimate, which, in LLR domain,

amounts to simple additions of the respective values. When it comes to decoding on binary expan-

sions though, a slight modification is necessary to distinguish between estimates of regular check

nodes and local check nodes. This operation, which is analogous to (4.18), is given in the following,

for some binary variable node n of the expanded graph. Note that the symbols used represent the

same quantities as in (4.18).

L(k)
n = L

(0)
i +

∑
j∈Mr(n)

P
(k)
j,n + ψ ·

∑
j∈Ml(n)

P
(k)
j,n (4.24)

Next operation at variable nodes is the test for convergence, which is carried out with their

tentative decisions, taken based on L(k)
n values above. In traditional decoding of a code over F2r ,

where its original factor graph will be used, 2r comparisons between real numbers are necessary

at each variable node to take a tentative decision. As proposed earlier, when decoding on subfield

expansions, only the r nodes that represent information symbols of the local code need to be con-

sidered for that, and with a binary node, only a comparison against zero is necessary for deciding

on the bit value [4]. Therefore, only r such comparisons are now required, as opposed to the 2r if

the original graph was used.

In the event that the test for convergence failed, decoding will continue for another itera-

tion, and the final step of variable node operations is computing the probability estimates for each

neighboring check node, to be used in that iteration. When using the binary expansion, due to the

modification in (4.24), this operation is slightly different for the two types of check nodes, as shown

in the following.

R(k)
n,m = L(k)

n − P (k)
m,n; m ∈Mr(n)

R(k)
n,m = L(k)

n − ψ · P (k)
m,n; m ∈Ml(n) (4.25)
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4. Simplifications

Although complexity of binary SPA is not at levels that discourage practical usage, op-

erations such as tanh and tanh−1 computations, and real number multiplications, all necessary at

check node operations, are considered complex at hardware level. The well-known simplification

of binary SPA, min-sum algorithm (MSA) [31], reduces these computations to some comparisons,

without losing much on performance.

MSA can also be used with binary expansions, granted that the modifications proposed

are first applied. Since the sole difference between SPA and MSA is in check node operations, in

the following we only present the respective computation, which is a simplification of (4.23). Note

that since no modifications are proposed for this step, computation is exactly the same as with a

binary LDPC code.

P (k)
m,n =

∏
i∈N(m); i 6=n

sign(R
(k−1)
i,m ) · min

i∈N(m); i 6=n
{|R(k−1)

i,m |} (4.26)

In the case of binary LDPC codes, it has been identified that the small performance loss

in MSA when compared to SPA is due to the check node estimates computed as in (4.26) being

overestimates of the actual value [58]. Various methods to correct this overestimation error has

been suggested in the literature [58], [59], [60], among which the simplest is to use a constant

scaling factor ω (0 < ω ≤ 1) with check node estimates [58]. We propose using this approach

to further improve performance of MSA on the binary expansions. With this simple modification,

(4.26) takes the following form where, once more, ω represents the scaling factor.

P (k)
m,n = ω ·

∏
i∈N(m); i 6=n

sign(R
(k−1)
i,m ) · min

i∈N(m); i 6=n
|R(k−1)

i,m | (4.27)

An operation similar to (4.26) is carried out during initialization as well, in (4.22), to de-

rive initial estimates for the set of nodes that represent parity bits of the local code. It is possible

to use the min-sum simplification there as well, but the resulting complexity gain will be minimal,

since the operation is only necessary for initialization. Further, this would also result in SPA and

MSA using different initial probabilities for decoding the same vector. Therefore, we propose leav-

ing (4.22) as is when using MSA for decoding on binary expansions.

Subfield expansions we introduced in Chapter 3 can be used with most decoding algo-

rithms suggested for NB-LDPC codes in the literature, after applying the modifications proposed

in this section. With a few expansions available for a single NB-LDPC code, a large number of
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decoding strategies become possible. For applications where decoding latency is of primary con-

cern, either a simplification of QSPA, such as min-max decoding [28], can be used with an expanded

graph, or if the field is of characteristic 2, the binary expansion can be used with MSA. Such options

offer the combined complexity gains of both the simplification and the expansion. In the following

section, we present some results from decoding simulations where a few of these different strategies

were implemented.

4.3.2 Performance

In this section, we evaluate performance of some decoding schemes on subfield expan-

sions, implemented with the modifications proposed earlier. Since NB-LDPC codes are most often

constructed over finite fields of characteristic 2 [5], only such codes were used for the performance

evaluation. We consider different expansions of the same Tanner graph (different m for a fixed r),

and use QSPA [5] and min-max algorithm [28] when m > 1. With binary expansions (m = 1),

SPA [4] and MSA [31] are used instead. Frame error rate (FER) performance of these schemes are

compared with using QSPA, min-max algorithm, and max-log-SPA [26] (also see Section 2.2.3)

on the original graph. All algorithms are implemented in LLR domain, and it is assumed that data

is transmitted over a BI-AWGN channel, using traditional BPSK modulation where 0 → +1 and

1 → −1. Scaling factors δ, ψ and ω, introduced in the previous section, were optimized for each

code and each algorithm using Monte-Carlo simulations. When analyzing performance of different

decoding schemes in the following, we use the algorithm along with the field size to refer to each;

i.e. Fpr -QSPA when using QSPA on a Fpr graph.

Figure 4.6 presents performance of some decoding schemes with C1, a rate 0.88 NB-

LDPC code over F24 , of 1998 symbols in length. Code was generated through random re-labeling

of a regular graph of variable degree 4 and check degree 36, from [61]. We consider using two

expansions of C1, with the two subfields of F24 , F22 , and F2, the binary field. Maximum number of

decoding iterations was set to 50 for all schemes.

It can be observed from the figure that the decoding schemes over expanded graphs man-

age to perform quite close to the same algorithms implemented on the original graph. For example,

QSPA over the F22 expansion manages to perform within 0.2dB of F24-QSPA, at a FER of 10−4.

Gap between F24-min-max and F22-min-max is also around 0.2dB. As expected, when it comes to

the binary expansion, performance loss relative to using the original graph widens. Still, gap of SPA

with F24-QSPA is less than 0.4dB, while for MSA, it is about 0.55dB.
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Figure 4.6: FER Performance with a (1998, 1776) Code over F24

When considering the gap with the optimal decoding scheme, QSPA on the original graph,

closest is F24-min-max, but it should be noted that this is over the original graph, and thus is more

complex than even QSPA on expanded graphs, as will be made evident in the next section. In-

terestingly, the second simplification of QSPA, max-log-SPA, although it is used with the original

graph, is outperformed by all decoding schemes on expanded graphs. F24-max-log-SPA has a gap

of almost 0.4dB with F22-QSPA and, and even MSA on the binary expansion, the least complex

decoding scheme of all, marginally outperforms it. Results shows that the information loss in max-

log-SPA, due to discarding all the LLR values other than the highest [26], can be costly. As results

with other codes would show, the loss becomes more significant when the variable degree increases.

If the variable degree is relatively higher, then the variable nodes would receive a higher number

of PMF estimates (in LLR form), all of which are suffering from the information loss due to the

approximation at check nodes. Therefore, the combined estimate at a given variable node, and the

PMF estimates it sends out in the next iteration, could be significantly different from the ones in

QSPA, which leads to the observed performance degradation.

As mentioned earlier, scaling factors used for decoding schemes on expanded graphs

were all optimized with simulations. For F22-QSPA, optimum values of δ and ψ were found to be,
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respectively, 0.75 and 0.25, while for F22-min-max, these were 0 and 0.35. Optimum values of δ

and ψ for SPA and MSA were 0.7 and 0.25, and ω = 0.9 was found to be the best for MSA.
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Figure 4.7: FER Performance with a (1998, 1776) Code over F26

Same graph as the one used for C1 was re-labelled over F26 , resulting in the code C2,

which is of the same rate, symbol length, and node degrees as C1. Performance of various decoding

schemes with C2 are given in Figure 4.7. In this case, we considered F23 and F22 expansions of C2,

and maximum number of decoding iterations was set to 50, same as with C1 earlier.

Figure shows that decoding schemes on expanded graphs perform quite close to those on

the original graph in this case as well. Gap between F26-QSPA and F23-QSPA is only about 0.2dB,

at a FER of 10−4. For min-max algorithm, moving from the original F26 graph to the F23 expansion

results in an even smaller performance loss, about 0.15dB. With the F22 expansion, gap between

using the original and expanded graph is around 0.35dB for QSPA, and 0.4dB for min-max.

With C2 also, closest algorithm to the optimal scheme, F26-QSPA, is min-max on the

original graph. But the performance gap between that scheme and F23-QSPA is only 0.1dB, while

the second is of much lower complexity. Once more, we find that max-log-SPA on the original graph

performs worse than the considered decoding schemes using expansions. F23-QSPA manages to

outperform this scheme by close to 0.4dB, while the decoding scheme with the lowest complexity,
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F22-min-max, outperforms it by 0.1dB.

Optimum values for δ and ψ were found to be 0.75 and 0.25 with C2, both for F23-QSPA

and F22-QSPA. For both F23-min-max and F22-min-max, δ = 0 was the optimum, while ψ was 0.3

for the first and 0.4 for the second.
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Figure 4.8: FER Performance with a (816, 408) Code over F23

Figure 4.8 presents performance of different decoding schemes with C3, a rate 1
2 code

over F23 , of 816 symbols in length. This code was generated by randomly re-labeling a regular

graph, with column degree 5 and check degree 10, also obtained from [61]. F23 contains a single

subfield, F2, and thus, only subfield decoding schemes considered are SPA and MSA on the binary

expansion. Maximum number of decoding iterations was set to 50 for all cases.

With C3, SPA on the binary expansion is the closest performing scheme to the optimum

one, F23-QSPA. Gap between the two is around 0.25dB, at a FER of 10−4. At the same FER

level, F23-min-max has a gap of close to 0.4dB with F23-QSPA. A loss of about 0.3dB from SPA

can be observed for MSA on the binary graph. Once more, subfield decoding schemes manage to

outperform max-log-SPA on the original graph; SPA on the binary graph outperforms it by about

0.6dB, and MSA by close to 0.3dB.

Optimum values for δ and ψ were, respectively, 0.5 and 0.25, with both F2-SPA and
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F2-MSA, while for ω in MSA, it was found to be 0.7.
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Figure 4.9: FER Performance with a (1000, 816) Code over F24

Figure 4.9 illustrates FER performance of some decoding schemes with C4, a rate 0.861

code over F24 , of 1000 symbols in length. C4 was constructed by re-labeling a factor graph of

regular variable degree 3 and average check degree 22, generated with the progressive edge growth

algorithm [48]. For this code, we consider expansions over the two subfields of F24 , F22 and F2, the

binary field. Once more, maximum number of decoding iterations was set to 50 for all schemes.

It is observable from the figure that the decoding schemes on graph expansions perform

almost as well as those on the original graph. Gap between using QSPA on the original graph

and its F22 expansion is less than 0.3dB at a FER of 10−4. Performance loss of replacing QSPA

by its simplification min-max algorithm is about 0.1dB for both original and expanded graphs.

With C4, performance of max-log-SPA on the original, F24 graph, is very close to F22-min-max,

although its complexity is much higher. When compared with F24-QSPA, SPA on the binary graph

results in a 0.5dB loss in performance. Simplifying SPA to MSA only loses a further 0.05dB.

Although a 5.5dB loss seems significant, using MSA on the binary expansion provides even more

significant advantages in complexity and hardware implementation costs, as will be explained in the

next section.
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Optimum values for scaling factors δ and ψ were 0.5 and 0.25 for F22-QSPA, SPA, and

MSA, while for F22-min-max, they were 0 and 0.3. Best value of ω, in MSA, was found to be 1.
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Figure 4.10: FER Performance with a (32, 16) Code over F24

FER performance of a few decoding strategies with C5, a rate 0.5 code over F24 , 32

symbols in length, is presented in Figure 4.10. This code was originally proposed in [16] based on

an irregular protograph, and is also presented as a candidate for short block length transmissions in

space data systems [62]. Once more we consider expansions over F22 and the binary field F2. As

performance of F22-min-max was found to be very close to SPA, the respective curve was removed

in the interest of a clearer figure. Further, performance of max-log-SPA on the original graph was

identical to that of F24-min-max, and therefore that curve was also removed. Here, we set the

maximum number of decoding iterations to 100 for all decoding schemes.

It can be seen from the figure that with C5, F24-min-max performs closest to the optimal

scheme, F24-QSPA, within 0.15dB at a FER of 10−5. At the same level, F22-QSPA has a gap of

about 0.4dB. This widens to 0.5dB when the binary expansion is used with SPA, while the min-sum

simplification results in a further 0.075dB loss.

Optimum values for δ and ψ were found to be, respectively, 0.2 and 0.3, for all three

decoding schemes on graph expansions, F22-QSPA, F2-SPA, and F2-MSA. Best value for ω, in
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MSA, was 1.

As discussed at the start of Section 4.3, scaling factors play an important role when using

subfield expansions for decoding. While they were optimized through Monte-Carlo simulations for

obtaining the results presented in this section, a rough idea on the suitable ranges for the scaling

factors could be obtained by analyzing the results.

The motivation for scaling factor δ, used in initialization (see (4.17) and (4.22)), is to

mitigate the effects of erroneous channel estimates. When using subfield expansions for decoding,

initial estimates for the parity symbols of the local code are computed using channel estimates for

the information symbols. Therefore, any error in them could get duplicated a number of times and

then significantly damage decoding performance. In the expansion of a code with a relatively low

check degree, a higher percentage of neighboring variable nodes of a check node could represent

parity symbols. In such a scenario, check node computations get dominated by estimates sent from

those nodes, and duplicated errors in channel estimates would have a larger negative impact on

decoding. Therefore, the optimum value of δ will generally be small for codes with relatively low

check degrees. Moreover, due to the different form of LLR computation in min-max decoding (see

(2.21)), where the most likely symbol is given more importance, erroneous initial estimates could

be especially damaging. Therefore, the best option when using min-max decoding on subfield

expansions is to set the initial estimates for parity symbols to zero, or δ = 0.

The second scaling factor ψ is used to reduce the negative impacts of short cycles among

the local check nodes. These checks have no relation to the constraints of the NB-LDPC code.

Rather, they ensure that the set of new nodes that replaced a single variable node of the original

graph converge to a valid codeword of the local code. As discussed earlier as well, considering the

impact of short cycles, and the fact that the local code is of less importance in the decoding process,

a small value should be picked for ψ. In the results presented here also, optimum value for ψ was

found to be 0.25 in many cases.

Simulation results show that decoding algorithms implemented on proposed graph expan-

sions are capable of performing quite close to those that use the original graph. For any algorithm,

performance gap of decoding on the expanded graph and using the original widens when the size

of the field used for the expansion decreases. With a few different graph expansions possible, many

decoding options are available for any given code. As discussed in the next section, all these decod-

ing schemes provide attractive complexity gains, with different levels of performance-complexity

trade-offs.
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4.3.3 Complexity

In the following, we analyze the complexities of some decoding schemes on expanded

graphs. The two popular versions of QSPA, LLR-QSPA [26] and FFT-QSPA [25], are of different

complexity orders and therefore, they are considered separately in the complexity analysis. We

also consider min-max algorithm [28], the best performing simplification of QSPA as was seen

in the previous section. Decoding complexities of using these algorithms on the original graph,

and on subfield expansions with the modifications proposed in Section 4.3, are compared since

the complexity gain offered by an expansion is dependant on the algorithm used. As NB-LDPC

codes are most often defined over finite fields of characteristic 2 [5], a code over F2r is used in the

complexity analysis, and m is used to denote a factor of r.

Similar to the previous section, we consider using SPA and MSA on binary expansions.

Although they are special cases of QSPA and EMSA [33], SPA and MSA have a particularly unique

feature that is absent in a direct implementation of QSPA or EMSA over F2. LLR domain versions

of SPA and MSA use a single LLR value, instead of a vector of length 2. This makes the convolution

operation unnecessary at check nodes of SPA [4]. Thus, complexities for a general m do not fully

represent the complexities of these algorithms, and we present them separately.

Complexities of the two major steps in iterative decoding, check node operations and

variable node operations, are compared separately. For the comparison, we consider operations at a

single node of each type, in the original graph, during one iteration. Since the proposed expansions

replace each node over F2r with 2r−1
2m−1 nodes, complexity of that many nodes together is considered

for decoding schemes on expanded graphs. Also, as explained in the previous chapter, these graphs

have the additional feature of local check nodes. Since ( 2r−1
2m−1 −

r
m) such nodes are added per

variable node of the original graph, variable node complexities of schemes on expanded graphs

include complexities of local check nodes.

At hardware level, apart from the number of operations, the type of operation also affects

the complexity. It is well-known that operations such as multiplications are more complex than

comparisons [29]. Therefore, we consider the number of operations of a few different types; com-

parisons (Comp), additions/subtractions (Add), multiplications/divisions (Mult) and table look-ups

(LUT). Note that max∗ operation in LLR-QSPA can be performed with one comparison, two addi-

tions, and one table look-up [26]. Transformation between log and probability domains, required in

FFT-QSPA, and tanh and arctanh computations in SPA can be carried out with look-up tables. It

has also been assumed that the forward-backward approach [28] is used in check node operations of
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the three algorithms. Further, cost of permuting probability vectors has been disregarded, since its

impact on total complexity is negligible. We also disregard the complexities of multiplication and

division by 2, used in (4.23) of SPA, and computation of the sign, in (4.26) of MSA, as at hardware

level, these only amount to some bit-wise operations.

When representing complexities, we use dc and dv to denote the average degrees of a

check node and a variable node in the original graph over Fpr , while dl denotes the degree of a local

check node in an expanded graph. Due to these new check nodes, average variable node degree

would be slightly higher than dv in the expanded graphs, and we denote this new value with d̃v,

which can be computed as;

d̃v = dv + dl × (
2r − 1

2m − 1
− r

m
)× (

2r − 1

2m − 1
)−1 (4.28)

As discussed in the previous chapter, local check nodes represent constraints of a simplex

code, which are codewords of its dual, a Hamming code. Therefore, it could always be ensured that

all local check nodes are of degree 3, and the complexity analysis we present here is for such a case.

Simplifying (4.28) and substituting dl = 3 result in;

d̃v = dv + 3− 3× r(2m − 1)

m(2r − 1)
(4.29)

Because of the higher complexity reductions it offer, we wil focus more on the binary

expansion in this section. For the binary case, average variable node degree will be represented

with d̃∗v, which takes the following value.

d̃∗v = dv + 3− 3× r

2r − 1
(4.30)

Note that the average degree of regular check nodes in any expanded graph remains dc.

Table 4.1 below lists complexities of check node operations of each decoding setup, while

Table 4.2 considers variable node operations. In order to make the tables more succinct, we use Ef

and Lf to denote, respectively, the number of Fpm nodes per Fpr node, and the number of local

check nodes per Fpr variable node. We remind that the values represented are

Ef =
2r − 1

2m − 1
Lf =

2r − 1

2m − 1
− r

m
(4.31)

With the binary expansion, where m = 1, the values are;

E∗f = 2r − 1 L∗f = 2r − 1− r (4.32)

106



CHAPTER 4. DECODING BASED ON EXPANDED GRAPHS

Algorithm
Check Node Operations

Comp Add Mult LUT
F2r -LLR-QSPA (3dc − 4)× (3dc − 4)× 0 (3dc − 4)×

2r(2r − 1) 2r(3.2r − 2) 2r(2r − 1)

F2m-LLR-QSPA Ef (3dc − 4)× Ef (3dc − 4)× 0 Ef (3dc − 4)×
2m(2m − 1) 2m(3.2m − 2) 2m(2m − 1)

F2r -FFT-QSPA 0 2dc× (2dc − 1)× 2dc×
2rr 2r 2r

F2m-FFT-QSPA 0 Ef .2dc× Ef (2dc − 1)× Ef .2dc×
2mm 2m 2m

F2r -Min-Max (3dc − 4)× 0 0 0
2r(2.2r − 1)

F2m-Min-Max Ef (3dc − 4)× 0 0 0
2m(2.2m − 1)

F2-SPA 0 0 (2r − 1)× (2r − 1)×
(2dc − 1) 2dc

F2-MSA (2r − 1)× 0 0 0
(2dc − 3)

Table 4.1: Comparison of Check Node Complexity

Table 4.1 shows that using expanded graphs to implement a decoding algorithm offers

complexity reductions when compared to using the same algorithm on the original graph. The

significance of this complexity gain depends on the algorithm itself. For both LLR-QSPA and min-

max decoding, using an expanded graph instead of the original results in a significant reduction in

complexity, while for FFT-QSPA, the gains are more modest.

In the case of LLR-QSPA, using the original graph requires approximately 3dc×22r com-

parisons, additions, and table look-ups, which results in an overall complexity ofO(22r). However,

with the expansion over F2m , only around 3dc × 2r+m operations of each type become necessary,

which results in an overall complexity ofO(2r+m). This is a significant gain, especially in the cases

with a large r, and we feel that, as a trade-off, the small performance losses observed in the previous

section are justifiable. A similar level of complexity reduction can also be observed for the min-max

algorithm, from O(22r) to O(2r+m). Although they are of the same complexity order, it should be

noted that min-max decoding is significantly simpler than LLR-QSPA, since only comparisons are

required. Using min-max algorithm on an expanded graph offers combined complexity gains of

both the simplified algorithm and the graph expansion. The performance-complexity trade-off of-

fered by this particular scheme is very attractive, especially since the performance loss relative to
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the best performing algorithm is less than 0.5dB, as seen earlier. Gains of using expanded graphs

reduce in the case of FFT-QSPA. Here, the number of multiplications and table look-ups required

are almost the same, approximately 2dc × 2r, when using the original graph or one of its expan-

sions. There is a slight reduction in the number of additions though, from approximately 2dc × 2rr

to 2dc×2rm. Thus, the overall complexity of FFT-QSPA on an expanded graph isO(2rm), slightly

lower than O(2rr) on the original graph.

Table also shows that using SPA and MSA on the binary expansion is the most advanta-

geous in terms of complexity. Although FFT-QSPA on the original graph and SPA on the binary

graph require roughly the same number of multiplications and table look-ups for check node oper-

ations, SPA does not require any additions. Its complexity is linear in field size 2r, O(2r), a very

significant reduction when compared with the usual quadratic complexity, O(22r). MSA on the

binary expansion is of the same linear complexity class, but since only comparisons are required,

it would be even less complex at hardware level. If compared with using min-max algorithm on

the original graph, which also only uses comparisons at check nodes, it can be observed that MSA

requires only a 1
2r fraction of the comparisons necessary for min-max decoding.

As explained earlier as well, we include the complexity of the Lf local check nodes added

for each F2r variable node when computing variable node complexities of decoding schemes on

expanded graphs. Note that complexity of one such node can be derived by substituting dl = 3 as

the node degree, and 2m as the field size, in the expressions for the respective algorithm in Table 4.1.

Due to this additional cost, complexity at variable nodes are slightly higher in proposed schemes,

but not high enough to completely offset the complexity gain obtained at check node operations,

especially when using LLR-QSPA and min-max decoding, or binary expansions.

Table 4.2 presents variable node complexities of the decoding schemes considered in Ta-

ble 4.1. There, for the schemes that use expanded graphs, complexity at new variable nodes and

local check nodes are given separately, but should be considered together when comparing different

decoding strategies. As the table shows, complexity at variable nodes for all algorithms on the orig-

inal graph isO(2r). By substituting for Lf , d̃v and d̃∗v from (4.29) and (4.30), it can be seen that for

algorithms on expanded graphs, complexity isO(2r+m). But as explained with Table 4.1, complex-

ity order changes fromO(22r) toO(2r+m) (O(2r) with the binary expansion) at check nodes when

using expanded graphs with LLR-QSPA and min-max algorithm, a more significant reduction than

the increase at variable nodes. Thus, for those algorithms, the overall complexity gain would still be

quite significant, while for FFT-QSPA, which had a more modest gain at check nodes, overall gain

could be minimal.
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Algorithm
Variable Node Operations

Comp Add Mult LUT
F2r -LLR-QSPA 2r − 1 2dv× 0 0

2r

F2m-LLR-QSPA (r/m)× Ef .2d̃v× 0 0
(2m − 1) 2m

Local Checks 5Lf× 5Lf× 0 5Lf×
2m(2m − 1) 2m(3.2m − 2) 2m(2m − 1)

F2r -FFT-QSPA 2r − 1 2dv× 0 0
2r

F2m-FFT-QSPA (r/m)× Ef .2d̃v× 0 0
(2m − 1) 2m

Local Checks 0 6Lf× 5Lf× 6Lf×
2mm 2m 2m

F2r -Min-Max (dv + 1)× 3dv× 0 0
2r 2r

F2m-Min-Max (Ef .d̃v + r/m) Ef .3d̃v× 0 0
×2m 2m

Local Checks 5Lf× 0 0 0
2m(2.2m − 1)

F2-SPA r (2r − 1)× 0 0

2d̃∗v
Local Checks 0 0 (2r − r − 1)× 5 (2r − r − 1)× 6

F2-MSA r (2r − 1)× 0 0

2d̃∗v
Local Checks (2r − r − 1) 0 0 0

Table 4.2: Comparison of Variable Node Complexity

Table 4.1 and Table 4.2 demonstrate that decoding on expanded graphs is advantageous

in terms of asymptotic complexity, while the actual performance gains would depend on parameters

of the code used, such as field sizes, code length, rate, and average node degrees. In Table 4.3, we

present complexities in terms of the number of operations required per iteration for decoding two

different NB-LDPC codes; a (1998, 1776) code over F26 (C2 in previous section) and a (816, 408)

code over F23 (C3 in previous section). Decoding schemes considered are LLR-QSPA, FFT-QSPA,

and min-max decoding on the original graph, and the ones on expanded graphs for which FER

performances were depicted in Figure 4.7 and Figure 4.8.

Due to different operations being of different complexities when implemented in hard-

ware, Table 4.3 presents number of operations required of four different types; comparisons (Comp),
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Code Algorithm
Number of Operations (×105)

Comp Add Mult LUT

C2

F26-LLR-QSPA 932.17 2817.73 - 930.91
F23-LLR-QSPA 155.8 507.01 - 155.52

(≈ 17%) (≈ 18%) (≈ 17%)
F22-LLR-QSPA 79.94 287.93 - 79.76

(≈ 8%) (≈ 10%) (≈ 8%)
F26-FFT-QSPA 1.26 71.61 10.09 10.23
F23-FFT-QSPA 0.28 72.89 16.94 18.22

(≈ 22%) (≈ 101%) (≈ 168%) (≈ 178%)
F22-FFT-QSPA 0.18 66.17 20.43 22.06

(≈ 14%) (≈ 92%) (≈ 202%) (≈ 215%)
F26-Min-Max 1882.99 15.35 - -
F23-Min-Max 342.7 27.33 - -

(≈ 18%) (≈ 178%)
F22-Min-Max 197.38 33.09 - -

(≈ 10%) (≈ 215%)

C3

F23-LLR-QSPA 59.98 193.23 - 59.4
F23-FFT-QSPA 0.58 26.11 6.2 6.53

SPA 0.24 7.67 7.06 7.67
(≈ 41%) (≈ 29%) (≈ 114%) (≈ 118%)

F23-Min-Max 131.21 9.79 - -
MSA 5.43 7.67 - -

(≈ 4%) (≈ 78%)

Table 4.3: Number of Operations per Iteration with C2 and C3

additions/subtractions (Add), multiplications/divisions (Mult), and table look-ups (LUT). Of these,

comparisons are the least complex in practical implementations, while multiplications/divisions are

the most complex. Table look-ups are not very complex operations, but require special hardware for

implementing. For decoding schemes over expansions, we also present the number of operations

required as a percentage of the requirement when using the same algorithm with the original graph.

Since SPA and MSA do not have direct equivalents in the non-binary domain, we compare with,

respectively, FFT-QSPA and min-max algorithm instead.

In Table 4.3, we observe that, in the case of C2, using LLR-QSPA on expanded graphs

offer exceptional complexity gains. Less than 20% of the operations required for decoding on the

original graph are necessary when using the F23 expansion. This reduces further with the F22

expansion, to less than 10%. These gains correspond to speed-ups of more than 5 times in the F23

case, and more than 10 times in the F22 case. Considering that the performance losses, as shown in
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Figure 4.7, are only 0.2dB and 0.3dB, the complexity gains here are very attractive. Implementing

FFT-QSPA on expanded graphs are not particularly advantageous though. Only gain with the F23

expansion, when compared with using the same algorithm on the original F26 graph, is in the number

of comparisons required. Both decoding schemes use a similar number of additions, while the setup

on the expanded graph needs significantly more multiplications and table look-ups. This is due to

the operations of local check nodes, which are absent in the original graph. With F22 expansion, the

number of comparisons required reduces further, and the number of additions is also slightly less

than in the F26 case. Since F22 expansion has more local check nodes than the F23 one, the number

of multiplications and table look-ups have increased even further. Thus, for C2, using FFT-QSPA

with any of the two expansions considered is not advantageous in terms of complexity. The case

of min-max decoding is very similar to that of LLR-QSPA; complexity gains are significant, and

they are higher when the size of the subfield used for the expansion is smaller. Once more, due

to local check nodes, the number of additions when using expanded graphs is higher than with the

original graph. Nevertheless, since the reduction in the number of comparisons is much higher in

magnitude, min-max decoding on expanded graphs is significantly less complex for C2.

For C3, only one graph expansion is possible, which is over the binary subfield F2. With

this expansion, decoding algorithms operating in the binary domain can be used, and in Figure 4.8,

we considered SPA and MSA. Number of operations required in these schemes are given in Ta-

ble 4.3, and it can be seen that both provide exceptional complexity gains. SPA requires signif-

icantly less comparisons and additions, and slightly more multiplications and table look-ups than

FFT-QSPA on the original graph. Since the reduction in the number of additions is quite large in

magnitude, overall complexity advantage here is still very significant. The gain is even bigger if we

compare with LLR-QSPA, the version of QSPA that is better suited for hardware implementations

[29]. Largest gain in complexity is offered by MSA on the binary expansion. It can be observed

from the table that this scheme needs only 4% of the comparisons required by its closest non-binary

counterpart, min-max algorithm on the original graph. It requires significantly less additions as

well. As seen in Figure 4.8, SPA and MSA on binary expansions have gaps of 0.25dB and 0.55dB

with QSPA on the original graph, and when considering the gains in complexity, performance losses

of this level would be readily accepted in most applications.

Combining above complexity analysis with the results presented in the previous section,

it is clear that the strategy of using expanded graphs for decoding is capable of offering very attrac-

tive performance-complexity trade-offs. Most decoding algorithms proposed for NB-LDPC codes

in the literature are of complexity O(22r) for a code over F2r , and implementing those algorithms
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on expanded graphs results in significant complexity gains with minimal performance losses. For

algorithms where complexity is not polynomial in field size, such as FFT-QSPA, the proposed strat-

egy may not be advantageous. But as [29], [63] and [64] point out, LLR-QSPA is the more suitable

version of QSPA for hardware implementations. It does not require any multiplications, and as the

algorithm operates entirely in LLR domain, normalization is unnecessary, which improves stability

[64]. Further, in practical implementations of decoders, any value will be represented with a finite

number of bits, and therefore, channel information will have to undergo some form of quantization.

It has been observed that LLR-QSPA is less sensitive to effects of quantization, when compared

with FFT-QSPA [64]. Therefore, from the perspective of practical usage, decoding on expanded

graphs can be considered a strategy that offers exceptional complexity gains.

Also, NB-LDPC codes over a field larger than F28 are not widely adopted in practice due

to complexity issues as well as the fact that permutation of probability vectors at check nodes is

only practically feasible for small field sizes [29]. But, with the proposed strategy, a code defined

over a large field could be decoded over a much smaller subfield, thereby allowing us to circumvent

these practical issues. Thus, it enables realizing the promised gains of NB-LDPC codes over large

fields in practice.

Out of all decoding schemes considered, most attractive complexity gains are offered by

those on binary expansions. Since SPA and MSA are decoding algorithms of binary LDPC codes,

which are widely used in practice, very efficient hardware implementations for them are already

available commericially. They have been optimized over many years, and would be considerably

less costly to implement than the ones for QSPA or any of its simplifications. Our proposal allows

these technologies to be used for decoding NB-LDPC codes as well.

In conclusion, decoding schemes on expanded graphs that we propose could be used to

reduce decoding complexity in most practical applications that adopt NB-LDPC codes. In particular,

our proposed strategy enables decoding a code defined over a large field using a graph over a much

smaller field, while providing a good performance and complexity tradeoff, leading to a practical

solution to decoding NB-LDPC codes.

4.4 Coset Reliability based Majority Logic Decoding

For NB-LDPC codes, majority logic decoding (MLgD) is the approach closest to bit flip-

ping decoding that is used with its binary counterparts. As discussed in Chapter 2, main focus of

MLgD algorithms is to reduce the decoding complexity of NB-LDPC codes so that they may also be
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used in resource-constrained systems. Many such algorithms have been proposed in the literature,

for example in [24], [37], [38], [39], [23], and these are of very low complexity when compared with

any QSPA variant. Moreover, they require only additions and finite field arithmetic, and as such,

can be very efficiently implemented in hardware. But the performance losses of MLgD algorithms,

relative to QSPA, are also very significant, particularly with randomly constructed NB-LDPC codes,

where gaps in excess of 1dB has been observed. Further, many instances where these algorithms

exhibit significantly high error floors have also been reported in the literature [39].

In this section we propose a novel MLgD algorithm based on the binary expansion of a

code over F2r , presented in Chapter 3. The new algorithm falls into the category of soft reliability

based MLgD algorithms, meaning some soft information from the channel is required for decoding.

We specifically chose the binary expansion since this allows us to devise an algorithm that operates

in the binary domain. This is advantageous due to two reasons. First is in relation to the error floor.

High error floors of MLgD algorithms for NB-LDPC codes are often attributed to not all symbol

reliabilities getting updated in every iteration [39]. An algorithm operating in the binary domain

would not have this short coming. The second reason is in relation to hardware implementations.

Many calculations in a binary decoding algorithm can be reduced to bit-wise operations, which

makes the algorithm more efficiently implementable in practice. It should also be noted that bit-

wise operations are also advantageous in terms of complexity.

As explained in Chapter 3, binary expansion we propose for a code over F2r is based on

additive subgroups of order 2r−1 and their proper cosets. Section 4.3.1 presented the soft decoding

scheme on this expansion, which operates in the LLR domain, with the LLRs defined as in (4.20).

Similarly, with MLgD, we propose using reliability values of variables over F2r belonging to the

proper cosets of the subgroups used for the expansion. Therefore, the novel algorithm will be

referred to as coset reliability based majority-logic decoding (CRB-MLgD). In the following, we

outline the three major steps of CRB-MLgD, initialization, check node operations, and variable

node operations. For the explanation, we consider a code over F2r , transmitted over the BI-AWGN

channel, with traditional BPSK modulation, where 0 → +1 and 1 → −1. Also, it is assumed

that the system on which the novel algorithm is implemented has the capacity to use integers of

a maximum bit length bl. Similar to other soft reliability based MLgD algorithms [24], [38], at

the receiver, values sampled from the channel will be uniformly quantized into (2bl − 1) intervals,

with symmetrical clipping with respect to the origin. Each interval can then be represented with an

integer of bl bits.
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1. Initialization

In the expansion, each F2r variable node is represented with (2r − 1) binary variable

nodes. As explained in Chapter 3, each set of such binary nodes can be considered to form an

instance of a (2r − 1, r) linear code. Thus, similar to soft decision decoding (see Section 4.3.1), r

of the nodes can be chosen to represent the information bits of this local code. These r nodes are

initialized with scaled versions of their quantized channel information, where the scaling factor wc

has to be optimized per code. The following represents this operation for the n’th F2r variable node.

Cn,i is the quantized channel information for the i’th binary node of node n, and V
(0)
n,i represents the

reliability value of this binary node after initialization.

V
(0)
n,i = wc · Cn,i i = 0, 1, . . . r − 1 (4.33)

Keeping in mind that BPSK modulation is used for data transmission, the most likely

value for each of the r bits in (4.33) can be simply obtained by comparing V
(0)
n,i (or Cn,i) with 0; if

V
(0)
n,i ≥ 0, the most likely value for the i’th bit of node n, e(0)n,i , is 0, else it is 1.

Remaining (2r − 1 − r) binary nodes represent the parity bits of the local code, and

therefore, the most likely values e(0)n,i for i‘ = r, . . . , 2r − 2, can be derived using the constraints of

that code. This operation is given in the following, where Ii‘ denotes the set of information bits i

involved in generating parity bit i‘, and ⊕ represents binary addition.

e
(0)
n,i‘ =

⊕
i∈Ii‘

e
(0)
n,i i‘ = r, . . . , 2r − 2 (4.34)

Sign of the reliability values of the parity bits will be decided by the most likely values

computed as in (4.34); if e(0)n,i‘ = 0, reliability will be positive, else negative. We propose computing

a magnitude for the reliability values, as in (4.35) given below, where the constraints of the local

code are used once more.

|V(0)
n,i‘| = ceil

(
δ ·min

i∈Ii‘
|V(0)

n,i |
)

i‘ = r, . . . , 2r − 2 (4.35)

where δ is another scaling factor (0<δ<1), which plays the same role as δ in (4.22), reducing error

propagation caused by duplication of channel information. Similar to wc in (4.33), δ also has to be

optimized per code.

After initialization, each binary node will send its estimated value, along with the relia-

bility, to neighboring check nodes. The connection between a F2r node, and the binary nodes that

replaced it, is mostly used during the initialization. Therefore, we change our notations from hereon,
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in order to make the expressions more succinct. Instead of referring to a binary node in relation to

the F2r node it replaced, as (n, i), each binary check node and variable node would be considered

on its own, and referred to with, respectively, m and n.

2. Check Node Operations

Task of a binary check node in the expansion is to compute a bit estimate for each neigh-

boring variable node, along with a value that reflects its reliability. It is possible to compute these

without violating the extrinsic principle of message passing, while ensuring that complexity or

resource requirements are not increased significantly when compared with existing soft MLgD al-

gorithms [24], [38].

(4.36) in the following represents the computation of ep
(k)
m,n, the bit estimate for the n’th

variable node at the m’th check node, during the k’th decoding iteration. er
(k)
n,m denotes the estimate

sent from variable node n to check node m, and N(m) is the neighborhood of that check node.

ep(k)m,n =
⊕

i∈N(m); i 6=n

er
(k−1)
i,m (4.36)

Similar to the initialization, sign of the reliability value will be decided by the bit estimate,
ep

(k)
m,n. Its magnitude can be computed as;

|vp(k)m,n| = min
i∈N(m); i 6=n

|vr(k−1)i,m | (4.37)

where vp
(k)
m,n and vr

(k)
n,m are the reliability values sent from, respectively, check node m to variable

node n, and variable node n to check node m, in iteration k.

3. Variable Node Operations

Upon receiving messages from the neighboring check nodes, each variable node n will

update its reliability value, V(k)
n , as;

V(k)
n = V(0)

n + we ·
∑

j∈M(n)

vp
(k)
j,m (4.38)

(4.38) is very similar to the operation depicted in (4.24), of soft decoding on the binary

expansion. Similar to that, updating the reliability value consists of simply adding the initial relia-

bility, computed as in (4.33)-(4.35), to those provided by the check nodes in the particular node’s

neighborhood M(n). But unlike in (4.24), here we do not differentiate between the estimates of

regular and local check nodes of the expansion, since due to the simplistic nature of the decoding
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algorithm, all reliability estimates are lacking in accuracy. Instead, we use a scaling factor we with

the combined estimates of all neighboring check nodes, which has to be optimized per code.

After updating, V(k)
n is used to take a tentative decision on the bit represented with node

n. Similar to any iterative decoding algorithm, the tentative decisions are used to test for conver-

gence. As we proposed in Section 4.3, this test can be conducted with only the r information bits,

and mapping each set to F2r symbols through the alternative vector representation. But this requires

conducting calculations over F2r , for which specialized hardware, such look-up tables, are neces-

sary. Therefore, since MLgD is targeted primarily for resource constrained systems, better option

for convergence test is to simply use the constraints in the binary graph. Only bit-wise XOR opera-

tions are necessary to test each such constraint, and therefore, this approach does not lose much in

terms of complexity.

In the majority of MLgD algorithms, extrinsic principle is violated at variable node oper-

ations [24], [38]. This is mostly due to the gain in complexity by not having to compute a separate

message for each neighboring variable node. Since most MLgD algorithms accumulate reliabil-

ity values through iterations [24], [23], adhering to the extrinsic principle would also require more

memory. But even in MLgD algorithms that do not accumulate reliability values, such as IISRB-

MLgD [38], extrinsic principle is not followed at variable nodes. As these algorithms still operate

in the non-binary domain, not all symbol reliability values will be updated in each iteration, and

therefore, by following the extrinsic principle, there is a risk that the symbol reliability vector sent

to some neighboring check nodes being very similar to the one sent in the earlier iteration, which

can impact the speed of convergence. Out of these reasons, only the issue of complexity applies

to CRB-MLgD, since it is an algorithm that operates in the binary domain, without accumulating

reliability values. Nevertheless, that complexity gain could be quite significant since savings are per

iteration, and therefore, we take the approach of simply sending V
(k)
n , in (4.38), as the reliability

value to all neighboring check nodes. The tentative decision taken based on V
(k)
n will be the bit

estimate.

Similar to any soft reliability based MLgD algorithm, CRB-MLgD could be used in sce-

narios where the channel offers some soft information, but available hardware resources do not

permit using a more established soft decoding algorithm. In the following, we compare FER per-

formance of CRB-MLgD with some other soft reliability based MLgD algorithms proposed in the

literature. Later on, we analyze the complexity of the proposed scheme, and compare with existing

algorithms.
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4.4.1 Performance

We compare performance of CRB-MLgD with the two most well-known soft reliability

based MLgD algorithms in the literature, ISRB-MLgD [24] and IISRB-MLgD [38]. Both system-

atically constructed codes with larger variable degrees, and randomly constructed codes, are used

in the comparison. Performance of QSPA is used as the benchmark to compare performance of

MLgD algorithms. BI-AWGN channel was used for the simulations, with BPSK modulation. All

algorithms use 12-bit uniform quantization, with symmetrical clipping with respect to the origin,

which allows reliability values to be represented with 12-bit integers. Scaling factors λ in ISRB-

MLgD [24], ξ1 and ξ2 in IISRB-MLgD [38], and wc, we and δ in CRB-MLgD were optimized for

best performance through simulations. Maximum number of decoding iterations was set to 50 for

every algorithm.
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Figure 4.11: FER Performance with a (63, 37) Code over F28

Figure 4.11 shows FER performance of the MLgD algorithms considered, and QSPA,

with a (63, 37) code over F23 , the same code used in Figure 2.5, constructed following the method

proposed in [23]. The code has a relatively large variable degree of 8, and thus, is better suited

for MLgD. This can be observed from the figure, where all three MLgD algorithms can be seen

to perform within 1dB of QSPA at a FER of 10−4. Proposed scheme is the closest to QSPA, with

a gap of just over 0.5dB. Another interesting observation could be made regarding the error floor.

Both existing MLgD algorithms, particularly IISRB-MLgD, show early signs of error floor, while
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the curves for QSPA and CRB-MLgD exhibit similarly sharp descents. This is an advantage of

decoding over the binary expansion. There, in every decoding iteration, all bit reliability values are

updated, whereas in other algorithms, only a few symbol reliability values will be updated, a reason

for an early error floor [39].

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

E
b
/N

0
(dB)

10-5

10-4

10-3

10-2

10-1

100
F

E
R

qspa

isrb-mlgd

iisrb-mlgd

crb-mlgd

Figure 4.12: FER Performance with a (384, 256) Code over F24

Performance of MLgD algorithms with a (384, 256) NB-LDPC code over F24 is given

in Figure 4.12. This is the same code we used for Figure 2.6, and was constructed by randomly

re-labelling a binary graph obtained from [65]. Since the code is not from a structured construction

method, its variable degree is relatively low, 3.375. MLgD approach is considered not quite suitable

for using with such codes, for which Figure 4.12 supplies evidence. There is a very significant gap,

several dBs large, between QSPA and MLgD algorithms. Here also the smallest gap is with the

proposed approach, which is just over 2dB at a FER of 10−4. Both ISRB-MLgD and IISRB-MLgD

have gaps over 3dB with QSPA, at a quite high FER of 10−2. Also, both algorithms show very early

signs of error floor, while the curve for the proposed scheme almost parallels that of QSPA.

Figure 4.13 presents FER performance of the algorithms with a (255, 175) code over F24 .

This code was also constructed using the method proposed in [23], and is of variable degree 16,

which is fairly high when compared with randomly constructed codes. The high variable degree has

resulted in reducing the gap between QSPA and MLgD algorithms, as the figure shows. At a FER of

10−4, both CRB-MLgD and IISRB-MLgD have gaps around 0.25dB with QSPA. ISRB-MgD shows
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Figure 4.13: FER Performance with a (255, 175) Code over F24

a significantly higher gap though, about 0.6dB at a FER of 10−3. It can also be seen that at higher

error rates, IISRB-MLgD marginally outperforms the proposed approach. But around 10−4 FER,

the two curves cross over, and at a FER of 10−5, the proposed approach is leading IISRB-MLgD by

about 0.1dB.

Simulation results presented show that CRB-MLgD is successful in reducing the gap be-

tween MLgD and QSPA, for both high variable degree constructions and random constructions.

But in the case of random constructions, it does not manage to reduce the said gap to a level which

makes MLgD practically feasible for such codes. Nevertheless, performance gains the proposed

approach offers for high variable degree codes are very attractive, particularly with regard to the

error floor. This gain in performance does not incur any significant complexity cost, as the analysis

in the next section shows.

4.4.2 Complexity and Hardware Requirements

In the following, we analyze the decoding complexities and the resource requirements of

ISRB-MLgD, IISRB-MLgD, and CRB-MLgD. As complexity is a primary concern when it comes

to this class of algorithms, cost of initialization should also be considered in any analysis [39]. As

such, we compare the complexity of the three algorithms during initialization, check node opera-

tions and variable node operations separately. Similar to in Section 4.3.3, the number of operations
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required of a few different types, comparisons (Comp), additions/subtractions (Add), scaling oper-

ations (Scal), table look-ups (LUT), and XOR operations, are considered. It should be noted that

all operations except XOR are carried out with integer operands. Scaling operations are the multi-

plications with optimized scaling factors, necessary to complete calculations such as (2.27), (4.33),

(4.35), and (4.38). In most cases, these scaling factors would be hardware-friendly values, such as

powers of 2, which allows multiplications to be completed with bit shifts. To reflect this, we chose

to refer to them as scaling operations, rather than as multiplications. A code over F2r is used for the

complexity analysis, which is assumed to be represented with a n×m PCM. Further, it is assumed

that data is transmitted over the BI-AWGN channel.

Here also we consider the operations required to complete one decoding iteration, at one

check/variable node, similar to in 4.2.3. Since it is more natural to view initialization from the

perspective of variable nodes, complexity of that step is presented per one such node. In the case of

CRB-MLgD, complexity of (2r − 1) nodes together are considered, as the expansion replaces one

non-binary node with that many binary nodes. Further, although here we do not distinguish between

regular and local check nodes, complexity of local check nodes are added to that of variable nodes,

for the sake of convenience. In the following, we use dc and dv to represent check and variable

degrees, and d̃∗v, given by (4.30), for variable degree in the binary expansion, which is larger than

dv due to additional connections with local check nodes. All local check nodes are considered to be

of degree 3, which, as explained earlier, should always be possible. Complexity of testing decoder

convergence is disregarded, since the operations required are almost the same for every algorithm.

Algorithm
Initialization

XOR Comp Add Scal
ISRB-MLgD - 2r − 1 + 2dc · mn 2r · r 2r

IISRB-MLgD - 2r − 1 + 2dc · mn 2r · r 2r

CRB-MLgD (2r − r − 1) · |Ĩ| (2r − r − 1) · |Ĩ| - 2r − 1

Table 4.4: Initialization Complexity of MLgD Algorithms

Table 4.4 lists the complexities of initialization, for the three algorithms. In ISRB-MLgD

and IISRB-MLgD, during initialization, computation of edge reliability values is carried out at

check nodes, considering initial reliability vectors of all neighboring variable nodes [24], [38]. As

the focus is on per variable node complexities, these values have been normalized by n, the number

of variable nodes. In CRB-MLgD, since decoding is in binary domain, channel information received

could be directly used to initialize the nodes representing the information bits of the local code. But

120



CHAPTER 4. DECODING BASED ON EXPANDED GRAPHS

to derive the initial estimates for the remaining nodes, computations in (4.34) and (4.35) have to be

carried out. When considering the complexities of those computations, we have used |Ĩ| to denote

the average number of information bits involved in generating a parity bit in the local code. Note

this is different from the degree of a local check node, as one such node could be connected to more

than a single node representing parity bits.

Table 4.4 shows that during initialization, CRB-MLgD has a slight edge in complexity

when compared with the other two algorithms. Both ISRB-MLgD and IISRB-MLgD require a fairly

high number of comparisons, mainly due to the computation of edge reliability values. In CRB-

MLgD, most of the operations required is for computing initial estimates for the nodes representing

parity bits of the local code, and a significant number of those are XOR operations, which are very

simple at hardware level.

Algorithm
Check Node Operations

XOR Comp LUT
ISRB-MLgD - - 4dc
IISRB-MLgD - - 4dc
CRB-MLgD (2r − 1) · 2dc (2r − 1) · 2dc -

Table 4.5: Check Node Complexity of MLgD Algorithms

At check nodes though, the proposed approach is slightly more complex than the others.

While only field arithmetic is required for ISRB-MLgD and IISRB-MLgD, which can be carried out

using look-up tables, CRB-MLgD requires a number of comparisons, since the reliability update

sent by check nodes change from iteration to iteration there. But we feel that the complexity cost

of these dynamic reliability updates is justified by the gain in performance, particularly at low error

rates, where the other two algorithms show error floor effects. Apart from comparisons, CRB-

MLgD also requires a fair number of XOR operations, but their impact on complexity will be

minimal.

Algorithm
Variable Node Operations

XOR Comp Add Scal
ISRB-MLgD - 2r − 1 2dv -
IISRB-MLgD - 2r − 1 2dv dv
CRB-MLgD 6(2r − r − 1) 6(2r − r − 1) + r (2r − 1) · 2d̃∗v (2r − 1) · d̃∗v

Table 4.6: Variable Node Complexity of MLgD Algorithms
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Table 4.6 shows that when it comes to variable node operations, CRB-MLgD is at a dis-

tinct disadvantage in terms of complexity. This is mainly due to operations of local check nodes,

which we have considered together with variable node operations. As the table shows, proposed

approach requires significantly more additions and scaling operations compared to the other two,

and a higher number of comparisons as well. CRB-MLgD also needs a number of XOR operations,

which is not necessary for ISRB-MLgD and IISRB-MLgD, but their impact on complexity will be

minimal, as mentioned earlier as well.

Apart from decoding complexity, hardware resources required is also a critical considera-

tion when it comes to MLgD. In Table 4.7, we present the amount of memory necessary for the op-

erations of the three algorithms. We consider the size of a single message exchanged between a pair

of neighboring variable and check nodes, and the size of the values that have to be stored in memory

during the decoding process. This is given per variable node, since no values are being stored at

check nodes. Similar to the complexity comparison, we consider messages/memory of (2r − 1)

binary nodes together for CRB-MLgD. In the instances where values being exchanged/stored are

integers, the number of bits utilized would depend on the system.

Algorithm
Resource Requirements

Message Memory
ISRB-MLgD r bits 2r + 2 · mn integers
IISRB-MLgD r bits 2r + 2 · mn integers
CRB-MLgD (2r − 1) bits (2r − 1) integers

(2r − 1) integers

Table 4.7: Resource Requirements of MLgD Algorithms

Table 4.7 shows that the messages transmitted in CRB-MLgD are significantly larger than

in the other two algorithms, primarily because a reliability value is transmitted along with the bit es-

timate, whereas ISRB-MLgD and IISRB-MLgD transmit a symbol estimate only. But CRB-MLgD

requires less memory, since there only the initial reliability values of the binary nodes need to be

stored. In ISRB-MLgD and IISRB-MLgD, in addition to the symbol reliability vectors, individual

edge reliability values also have to be stored. Although every edge in the graph is associated with

such a value, all of them would not be unique. In fact, due to the nature of the computation [24],

there are only two different edge reliability values possible per check node. This has been taken into

account in Table 4.7.

CRB-MLgD offers a few advantages in hardware implementation that may not be imme-
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diately apparent from the above comparisons. Since it requires only integer additions, integer com-

parisons, scaling operations and XOR operations, relatively simpler hardware could be designed for

the algorithm. Also, due to the low hardware resources of the systems that these algorithms are

usually implemented on, integer overflow is a very common issue [24]. This is guaranteed with

algorithms that accumulate reliability values, such as ISRB-MLgD, but is also possible in other

cases as well. With symbol reliability vectors, a normalization operation has to be carried out if

one value exceeds the capacity of the system. In CRB-MLgD though, since bit reliability values are

not considered relative to each other, a simple clipping operation is sufficient to deal with integer

overflow.

From simulation results in the earlier section, and the analysis on complexity and resource

requirements above, it can be seen that CRB-MLgD offers significant performance gains at a some-

what higher complexity than existing soft reliability based algorithms. Hardware requirement of the

new approach is fairly similar to existing ones. Thus, it could be used to bridge the significant gap

between QSPA and MLgD, and used in practical applications with high column weight NB-LDPC

codes.
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Chapter 5

Iterative Soft Decoding of Reed-Solomon

Codes

Reed-Solomon (RS) codes are a very well-known class of algebraic codes, first introduced

in 1960 [6] and still widely used in communication and storage systems. Their popularity is largely

due to the excellent distance properties they posses as maximum distance separable (MDS) codes,

which allow them to correct a large number of channel-induced errors. In an overwhelming majority

of the applications where RS codes are used, they are decoded via the popular Berlekamp-Massey

(BM) algorithm [66], [67], an algebraic HDD method.

The BM algorithm is very efficient, and therefore, fits the requirements of many practical

applications that employ RS codes. The algorithm is classified as syndrome based decoding, since

decoding procedure is based on the syndrome of the received vector. It is capable of correcting up

to bdmin−12 c errors, where dmin denotes the minimum distance of the code. As RS codes are MDS,

for an (n, k) RS code, dmin = n−k+1, and the BM algorithm can correct at most n−k2 errors [35].

In 1999, Guruswami and Sudan proposed a different HDD algorithm for RS codes [68],

based on an alternative approach to syndrome based decoding. This algorithm perceives the received

values as points on a two dimensional plane, and computes a list of possible transmitted codewords

by curve-fitting and interpolation on that set of points. Although computationally more expensive

than BM algorithm, the Guruswami-Sudan (GS) algorithm is capable of correcting more than n−k
2

errors. It is classified as interpolation based decoding.

Soft information could be made available in many applications that use RS codes, and it

is generally accepted that SDD has the potential to outperform HDD by several dBs. In order to
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realize these gains, many algorithms for SDD of RS codes have been proposed over the years, such

as the well-known Koetter-Vardy (KV) algorithm, proposed in 2003 [69]. KV algorithm could be

considered as the soft decoding version of the GS algorithm, and offers significant gains over both

GS and BM algorithm, especially with lower rate codes. This interpolation based soft decoding

approach has been further developed in [70] and [71]. Syndrome based soft decoding algorithms

have also been proposed for RS codes, such as [72] that makes use of the generalized minimum

distance (GMD) decoding strategy, originally proposed for linear codes in [73]. Chase decoding

[35] has also been considered in the literature, using both syndrome based algorithms and interpo-

lation based algorithms for the selection of the most likely codeword, for example refer [74]. Still,

none of these SDD schemes are widely used in practice yet, particularly due to the high decoding

complexity and the requirement for specialized hardware resources.

More recently, schemes based on iterative decoding, made popular by Turbo and LDPC

codes, have been considered for SDD of RS codes, primarily due to the approach being relatively

low in complexity when compared with others. Main obstacle here is the high density of the PCMs,

which negatively impacts decoding through the creation of a large number of short cycles and other

graph sub-structures, which were reviewed in Section 4.1. The adaptive belief propagation (ABP)

[43], one of the earliest iterative decoding schemes proposed for RS codes, uses binary image rep-

resentations of non-binary PCMs, and circumvents the issue of cycles by changing, or adapting,

the matrix through Gaussian operations in each decoding iteration. A more detailed overview of

ABP, and its improvements [55], [56], were given in Section 4.2.1. Although ABP offers impres-

sive performance gains, often outperforming KV algorithm, it is even more complex, and is also

not well suited for hardware implementations, as the PCM changes in each iteration. Thus, ABP or

related schemes have not been considered for practical applications so far. Somewhat related, but

a significantly simpler scheme is proposed in [54], where a fixed binary PCM with a large number

of redundant parity-check equations is used. Still, sorting is a primary operation in the algorithm,

which increases its complexity at hardware levels. Also, an enhanced hard decision decoder has to

be used after each decoding iteration.

Based on the observations on non-binary absorbing sets in Chapter 4, in this Chapter we

propose a novel approach for soft decoding of RS codes. In this strategy, we consider constructing

non-binary PCMs better suited for iterative decoding of these codes. As discussed previously, ef-

fects of short cycles are more complex when it comes to non-binary codes. Although no short cycle

is desirable, most harmful ones are non-FRC cycles, or those that induce rank deficient sub-matrices

in the PCM (see Definition 4.5). Reducing these non-FRC cycles has led to improved performances
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with NB-LDPC codes, as seen in [18], [15]. We take a similar approach here, and construct alterna-

tive non-binary PCMs for RS codes without any non-FRC cycle, or a few at most. The construction

considers only the sparsest possible matrices, thus reducing the overall number of short cycles, and

then attempts to reduce the number of non-FRC cycles. Results show that the new method is able to

improve significantly over hard decision decoding (HDD), while its complexity, relative to different

soft decision decoding (SDD) strategies proposed in the literature, is low. In the following, we first

discuss the construction of suitable PCMs, with some examples, and then present simulation results

and a complexity analysis.

5.1 Construction of PCMs Suitable for Iterative Decoding

Traditionally, RS codes are represented with PCMs that are of the so called Vandermonde

form. These matrices do not contain a single zero, and are thus not suitable for iterative decoding

at all. Cycles of many lengths exist in them, starting from the shortest possible four-cycles [43],

[54]. For iterative SDD of RS codes, we propose constructing alternative PCMs where the number

of short cycles has been reduced as much as possible. As explained in section 5.1, shorter cycles

are much more harmful for iterative decoding, and therefore, in the following, our focus will be

on reducing the number of shortest cycles, the cycles of length four and six. Initially, we do not

differentiate between FRC and non-FRC cycles, but attempt to reduce the overall number of cycles,

prior to shifting our focus to limiting the number of non-FRC cycles.

5.1.1 Reducing Short Cycles

The straight-forward approach to limit the number of short cycles in the PCM of an RS

code is to build the said matrix using the minimum-weight codewords of the dual code. It is well

known that the dual code of the (n, k) RS code is the (n, n − k) RS code over the same field [30].

Following lemma on the dual codewords establishes the platform for constructing PCMs with the

minimum possible short cycle count.

Lemma 5.1. Consider the (n, k) RS code over Fq. In the dual code of this code;

1. A codeword can contain at most n− k − 1 zeros.

2. A codeword exists with zeros at any given n− k − 1 positions.
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Proof. We adopt the original definition of RS codes, the one based on polynomial evaluation [6], to

prove the two statements. As previously noted, the dual code of the (n, k) RS code is the (n, n− k)

RS code over Fq. According to the original definition, any codeword cd of the dual code may be

expressed as;

cd = {(f(α1), . . . , f(αn)) | f ∈ Fq[x], deg(f) < n− k} (5.1)

Here Fq[x] denotes the set of functions with coefficients from Fq.

It can be easily seen that the first statement is true, as a function of degree at most (n−k−
1) can have at most that many zeros. Further, since (5.1) does not put any constraint on the function

f other than the one on degree, it should always be possible to find some codeword cd with zeros

at any given (n − k − 1) positions by using a suitable function f with roots at the corresponding

values. This proves that the second statement is also true.

From the above lemma, it is easy to see that the sparsest PCM possible for an (n, k) RS

code will have only (n− k)× (n− k − 1) zeros, i.e., (n− k − 1) per row. But the count of short

cycles is not only impacted by the number of zeros in the PCM; their relative positions also matter.

One possible approach to construct a PCM with the least count of short cycles is to first construct a

binary, (n − k) × n matrix with constant row weight (k + 1), using a suitable LDPC construction

method, and then create the required RS PCM by picking the dual codewords with zeros in the exact

same positions as that first matrix. Second statement in Lemma 5.1 guarantees the existence of such

codewords. As discussed ealier, LDPC construction methods are focused on limiting the number

of short cycles as much as possible [48], [75], and therefore, this approach would produce a matrix

with the least cycle count. Note that it is important to evaluate the rank of the produced matrix, as

it is possible that some of the dual codewords used are linearly dependent. If it is found that the

matrix is not of full rank, same procedure could be repeated with the zeros at different positions.

With high rate RS codes, where n is not significantly greater than k, the number of zeros

in the sparsest possible PCM would be quite small. In such a case, it is possible to construct the

matrix with the least cycle count by limiting the number of zeros per column. That is, if n ≥
(n − k) × (n − k − 1), the best possible matrix should have at most one zero per column. As an

example, imagine that two zeros have to be placed in a 2 × n matrix of all ones, one per each row.

Prior to placing the zeros, the matrix would have
(
n
2

)
four-cycles. Placing the first zero anywhere

would eliminate
(
n−1
1

)
of these. If the second one is placed in the same column, no additional

four-cycles will be removed, but if it is placed in a separate column,
(
n−2
1

)
more will get eliminated.
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For a given (n, k) RS code, there will be a number of matrices with the least possible

count of four-cycles and six-cycles. But the number of non-FRC cycles will not be the same in all

these. This is due to the fact that satisfying the full rank condition is dependant on the edge labels

in the matrix, as well as the topology of the underlying graph. But as discussed in Section 4.1, the

number of non-FRC cycles can be expected to significantly impact iterative decoding performance

with any chosen PCM. Therefore, in the next section, we attempt to reduce the count of non-FRC

cycles in the sparsest possible PCMs, those that were discussed in this section, for a given RS code.

Once more, we focus our study only on non-FRC cycles of lengths four and six, since they are the

most detrimental for iterative decoding.

5.1.2 Reducing Non-FRC Short Cycles

While our goal is to reduce the count of both non-FRC four-cycles and six-cycles, it is not

guaranteed that the lowest count of both will be with the same matrix. Four-cycles are considered

the most harmful for decoding, but if the matrix with the lowest four-cycle count has a significant

number of six-cycles, then that will not be quite suitable for iterative decoding. Therefore, some

quantitative measure other than simply the count of non-FRC cycles is necessary for picking the

best-suited matrix. For this purpose, we define a cost Cm for a matrix as follows.

Cm = wn4 + n6 (5.2)

n4 and n6 are the number of non-FRC four-cycles and the number of non-FRC six-cycles, respec-

tively, and w ≥ 1 is parameter that depends on the code. Primary purpose of w is to reflect that

four-cycles are more damaging to iterative decoding than six-cycles.

The matrix with the least cost will be considered the one best-suited for decoding. Best

value for w for any code is to be selected by first decoding that code with a few matrices for which

the cycle counts are known. By comparing the BER performances of these, a suitable value for w

may be selected. From our simulations, it was observed that w should increase both with the rate of

the code and the size of the field over which the code is defined. w values used for some RS codes

are presented in the next section.

The search for the matrix with the least cost should ideally consider all possible PCMs for

the given RS code. But such an approach is computationally infeasible even for very short codes.

Therefore, we limit our search to the matrices comprising of only the minimum-weight codewords

of the dual, like those discussed in the previous section. Apart from the complexity issue, we take
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such an approach since it is reasonable to expect that the number of non-FRC cycles will decrease

with the number of short cycles, and also since any short cycle can affect iterative decoding, as

discussed at the beginning of this chapter.

For an (n, k) RS code over Fq, the search for the best PCM formed by minimum-weight

dual codewords will have to consider a vector space of size q
(

n
n−k−1

)
. But one useful observation

on non-FRC cycles allows us to reduce this size significantly. The count or even the positions of

such cycles in a given matrix will not change if the rows were multiplied with constants. This helps

reduce the size of the vector space for the search to
(

n
n−k−1

)
. Also, since RS codes are cyclic [30],

and dual codes themselves are RS codes, the set of matrices produced by cyclically shifting a single

matrix would have the same number of non-FRC cycles.

Even with making use of the aforementioned properties, it is impossible to reduce the

complexity of the search to a computationally feasible level, especially for RS codes over higher

order fields. In the following lemma, we present a condition on the existence of non-FRC four-

cycles between a pair of dual codewords, which leads to a simpler method of constructing a PCM

free of such cycles for any RS code.

Lemma 5.2. Consider two minimum-weight dual codewords of an (n, k) RS code over Fq, each

with (n− k− 1) zeros. If the two share (n− k− 2) of the zeros, then between the codewords, there

does not exist any cycle not satisfying the full rank condition.

Proof. Let the two dual codewords be c1 and c2, which are from the (n, n− k) RS code. Following

the classical definition, c1 and c2 could be represented as polynomials f1, f2 ∈ Fq[x] as follows.

z
(j)
i ’s denote the zeros of the two polynomials in Fq.

f1(x) =
n−k−2∏
i=0

(x− z(1)i )

f2(x) =

n−k−2∏
i=0

(x− z(2)i ) (5.3)

Now consider the 2 × n matrix created by c1 and c2, and any 2 × 2 sub-matrix S of it.

Let the columns corresponding to S be j1 and j2. The determinant of S may be expressed as in

(5.4),where α denotes a primitive element of Fq.

|S| = f1(α
j1)f2(α

j2)− f2(αj1)f1(α
j2) (5.4)

For the existence of a non-FRC cycle, S should be singular. Then;

|S| = f1(α
j1)f2(α

j2)− f2(αj1)f1(α
j2) = 0 (5.5)
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Substituting to (5.5) f1(αji) and f2(αji), for i = 1, 2, evaluated with (5.3);

n−k−2∏
i=0

(αj1 − z(1)i )
n−k−2∏
i=0

(αj2 − z(2)i )−
n−k−2∏
i=0

(αj1 − z(2)i )
n−k−2∏
i=0

(αj2 − z(1)i ) = 0 (5.6)

Since f1 and f2 share (n− k− 2) zeros, (5.6) can be simplified further as follows, where

z
(1)
u and z(2)u denote the zeros that are not shared between the two polynomials.

(αj1 − z(1)u )(αj2 − z(2)u )− (αj1 − z(2)u )(αj2 − z(1)u ) = 0 (5.7)

Then (5.7) may be further simplified to

(αj1 − αj2)(z(1)u − z(2)u ) = 0 (5.8)

(5.8) will only be satisfied when j1 = j2, which contradicts the assumption of distinct

columns. This shows that no 2× 2 sub-matrix of the 2× n matrix created by c1 and c2 is singular.

Thus, there cannot exist cycles not satisfying the full rank condition between the pair of codewords.

If a PCM for an RS code consists only of minimum-weight dual codewords, then Lemma

5.2 guarantees that it would be free of non-FRC four-cycles if every pair of rows share all but one

zero. This is a simpler method to construct a matrix suitable for iterative decoding, since such a

matrix would also be free of the smallest possible non-binary absorbing sets [14]. A number of

matrices, all free of non-FRC four-cycles, may be constructed from following this approach, but

the number of non-FRC six-cycles would not be the same in every such matrix. If that number was

also minimized, iterative decoding performance can be expected to improve further. We propose

evaluating the cost of each matrix constructed following Lemma 5.2 using (5.2), and choosing the

one with the lowest cost for decoding.

In the following section, we present some examples of alternative PCMs constructed for

different RS codes, along with their non-FRC cycle counts, and associated costs.

5.1.3 Some Alternative Parity-check Matrices

In Section 5.1.1, constructing PCMs for RS codes with the lowest short cycle count was

discussed, while in Section 5.1.2, focus was on reducing the non-FRC cycle count in the sparsest

possible matrices. While the construction inspired by Lemma 5.2 produces a matrix with zero non-

FRC four-cycles, it may not be the best matrix for iterative decoding, as many non-FRC six-cycles
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could exist. Therefore, in our simulations, we consider the following two types of matrices for each

RS code, results of which are provided in the next section. It is expected that a comparison of the

BER performances with the two matrices would provide better insight to refine the cost function

defined in (5.2).

• Type-A: The matrix with the lowest cost (according to (5.2)) among those constructed with

minimum-weight dual codewords, found through a computer-based search

• Type-B: The matrix with the lowest non-FRC six-cycle count, among those with zero non-

FRC four-cycles, found through a computer-based search

Note that when searching for the best matrices, care should be taken to eliminate any

rank-deficient matrix. Such a matrix would not be a full representation of the code, and in fact,

eliminating them can actually make the computer-based search faster. For example, for an (n, k)

code where n − k > 3, all matrices containing three linearly dependant dual codewords could be

eliminated during intermediate steps of the search, saving a lot on compelxity.

In the following, we present as examples the alternative type-A and type-B PCMs con-

structed for (7, 3) and (15, 11) RS codes.

Example 5.1. Traditional PCM for the (7, 3) RS code, which is of the Vandermonde form, contains

4 non-FRC four-cycles, and 72 non-FRC six-cycles, apart from a large number of FRC short cycles.

This matrix, HO
7,3 is given in (5.9), where ω denotes a primitive of F23 .

For this code, search for the best type-A and type-B matrices produced the same matrix,

which does not contain any non-FRC cycle of length four or six. It does contain a few FRC short-

cycles though. (5.10) presents this matrix, which we denote HA
7,3.

HO
7,3 =


1 ω ω2 ω3 ω4 ω5 ω6

1 ω2 ω4 ω6 ω ω3 ω5

1 ω3 ω6 ω2 ω5 ω ω4

1 ω4 ω8 ω5 ω2 ω6 ω3

 (5.9)

HA
7,3 =


0 ω ω6 ω4 0 1 0

1 0 0 1 0 1 1

ω5 ω4 ω6 0 0 0 ω2

ω3 0 ω 0 ω5 0 0

 (5.10)
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Example 5.2. When it comes to the (15, 11) RS code, the traditional PCM contains significantly

more non-FRC short cycles, which is to be expected due to its larger dimensions. It contains 15

non-FRC four-cycles and 780 non-FRC six-cycles. The matrix is given in the following, where α

denotes a primitive of F24 .

HO
15,11 =


1 α α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

1 α2 α4 α6 α8 α10 α12 α14 α α3 α5 α7 α9 α11 α13

1 α3 α6 α9 α12 1 α3 α6 α9 α12 1 α3 α6 α9 α12

1 α4 α8 α12 α α5 α9 α13 α2 α6 α10 α14 α3 α7 α11

 (5.11)

Our search for the best type-A PCM produced a matrix with 8 non-FRC four-cycles and

134 non-FRC six-cycles. While the count of non-FRC cycles is not low by any measure, it is still a

significant reduction from the traditional PCM. Value of w, in (5.2), was set to 5 for the search. As

discussed earlier, this value was based on a comparison of the BER performances of a few PCMs

with known cycle counts. The matrix, HA
15,11, is given in (5.12).

HA
15,11 =


0 1 1 α10 1 0 α5 α5 1 α5 0 α10 α10 α5 α10

α5 0 α6 α5 α5 α6 α9 0 α9 α5 α9 α9 α6 α6 0

α α14 α5 0 α2 α11 α11 α3 0 α12 α10 0 α4 α α3

α3 α α14 α5 0 α2 α11 α11 α3 0 α12 α10 0 α4 α

 (5.12)

While the best type-B matrix, HB
15,11, does not contain any non-FRC four-cycles, as guar-

anteed by lemma 5.5, it has 189 non-FRC six-cycles. This results in HB
15,11 having a marginally

higher cost than HA
15,11, and how big a difference in performance this cost difference would lead

to can be observed from the simulation results provided in the next section. HB
15,11 is presented in

(5.13).

HB
15,11 =


0 1 1 α10 1 0 α5 α5 1 α5 0 α10 α10 α5 α10

α9 α14 α2 1 α12 α10 α9 α12 0 1 α12 0 0 α5 α4

α7 α2 α7 α6 α6 α2 0 α13 α9 α10 α5 0 0 α4 α8

α6 α12 α13 0 0 α14 α9 α13 α7 0 α6 1 α5 α11 α11

 (5.13)

5.2 Performance and Complexity

As discussed in the previous sections, best type-A and type-B PCMs found for a given

RS code would have properties that make them more suited for iterative decoding. We propose
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simply using QSPA on these matrices for SDD of RS codes. In comparison with existing soft

decision decoders, such as [69], [43], [56], this approach seems significantly simpler and much

more straightforward. However, we suggest two minor modifications to QSPA that would improve

performance of the new decoding scheme significantly. The modifications are presented in some

detail in the following. Note that similar approaches are commonly used for improving performance

of iterative decoding algorithms, particularly when it comes to NB-LDPC codes.

1) Scaling factors with check node estimates:

Although our search procedure attempts to reduce the number of cycles as much as possible, due to

the nature of RS codes, some cycles, of both FRC and non-FRC types, will still be present in the

matrices selected. Also, as we put more focus on reducing non-FRC cycles, most of the remaining

would be FRC cycles. These do impact iterative decoding, particularly by making the messages

passed in the graph highly correlated. This correlation can make the estimates computed at nodes

somewhat unreliable, and in particular, they could be over-confident of a variable node taking a

particular symbol value. Thus, in such a situation, it is better to use them as mere metrics indicating

the possibility of a variable node taking some value, rather than as close approximations of the MAP

value[54]. Considering all these, we suggest using a scaling factor κ, 0 < κ ≤ 1, with the estimates

received from check nodes, before combining them at variable nodes. Scaling factors have been

used to improve performance of iterative decoders quite often in the literature, such as in [42], [33],

and [76]. In fact, we also proposed the use of scaling factors with the novel decoding algorithms

presented for NB-LDPC codes, in Chapter 4.

2) Redundant rows in the PCM:

In [77], it has been observed that for iterative decoding of an (n, k) code, using a PCM with more

than (n− k) rows can offer significant performance improvements, particularly when the code can-

not be represented with a sparse PCM. These additional rows are usually referred to as redundant

rows, since they do not affect the row space of the matrix, and adding them would make the PCM

rank deficient. As reviewed in Chapters 2 and 4, such PCM representations have also been used

for decoding NB-LDPC codes constructed with structured methods, which are mainly targeted for

iterative, majority-logic based approaches. A larger number of rows would naturally increase the

number of estimates received by variable nodes, which may lead to faster convergence. But at the

same time, these new rows may create additional short cycles as well. We suggest adding a few

redundant rows to the best PCMs produced by the search. These rows should also be minimum-
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weight codewords of the dual, so as not to significantly add to the cycle counts.

Optimum damping coefficient κ, and the optimum number of redundant parity-check

equations to add, would depend on the code and to a degree on the PCM selected for decoding.

These parameters can be optimized through simulations.

5.2.1 Performance

In the following, we present simulation results of our scheme with some RS codes. For

each code, FER performance with both type-A and type-B matrices are given. We also evaluate the

performance gain by increasing the maximum number of decoding iterations allowed, and in the

figures, plots are labelled with the matrix type and this number, for example type-A-20 when using

a type-A matrix with maximum number of iterations set to 20. Further, FER performance with a

matrix with redundant rows is given for most of the codes, which is labelled type-R. As proposed

earlier, the optimum number of such rows was found through simulations.

Figure 5.1 presents performances of our schemes, along with that of HDD with the BM

algorithm, and ML decoding, for the (7, 3) RS code. As explained in the previous section, the best

type-A and type-B matrices happen to be the same one for this code, which is HA
7,3, given in (5.10).

In the figure, we have labelled the corresponding plots as type-A. It can be seen that our scheme is

able to achieve performance gains of more than 2dB over HDD, at a FER of 10−5, even with just

20 decoding iterations. This increases by a further 0.25dB, at 10−6 FER, when maximum decoding

iterations is increased to 100. When compared with performance of ML decoding, our scheme

is only about 0.3dB away, at a FER of 10−4. Exceptional performance in this case is primarily

due to the PCM used being free from all length four and six non-FRC cycles. The presence of a

few FRC cycles does not seem to affect decoding performance much, as the FER curves do not

exhibit an error floor, running almost parallel to the curve of HDD. In this case we did not apply

the modifications to QSPA discussed previously, due to the exceptional performance and the PCM

being quite sparse.

Figure 5.2 shows FER performance in decoding the (15, 11) RS code with traditional

HDD, some existing SDD schemes, and different variations of the proposed scheme. The PCMs

used for the novel schemes are HA
15,11 and HB

15,11, given in, respectively, (5.12) and (5.13). In this

case we applied the modifications proposed earlier, and the optimum scaling factor κ was found to

be 0.65 for both matrices. Decoding was attempted with redundant rows added toHA
15,11, and it was
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Figure 5.1: FER Performance with (7, 3) RS Code

observed that adding more than two such rows does not offer significant performance gains.

Out of the SDD schemes, ABP performs the best, offering gains in excess of 2dB over

HDD with 20 decoding iterations and one decoding round [43]. KV algorithm [69], when used

with no complexity limitations, is able to offer around 1dB gain over HDD, while the proposed

scheme, with both type-A and type-B matrices, offer gains in excess of 1.3dB, at a FER of 10−5.

As discussed in example 3.2, the value of w used in the search for the best type-A matrix was 5,

which, according to (5.2), results in the cost of HA
15,11 being 174, and that of HB

15,11 being 189. It

is observable from the figure that the slightly low cost of HA
15,11 has resulted in the corresponding

decoding scheme performing marginally better than the one usingHB
15,11, thus supporting our choice

for w. Interestingly, increasing the maximum number of decoding iterations to 40 from 20 does not

seem to have any impact on iterative decoding performance with the type-A matrix, which suggests

that QSPA is converging in less than 20 iterations in most cases. Further, there is no discernible

error floor here as well, with sharper slopes than HDD at lower error rates, despite the two matrices

used having quite a few short cycles of both types. This could be due to the use of the optimized

scaling factor κ, which reduces the correlation among messages that is created by the cycles.

Performances with both matrices has gaps around 1dB with ABP, which decreases to

about 0.7dB when using the type-A matrix with redundant rows. Novel schemes manage to outper-

form KV algorithm by more than 0.3dB in all cases. Complexity-wise, it has significant advantages

over both ABP and KV algorithm, which will be briefly discussed in the next section.
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Figure 5.2: FER Performance with (15, 11) RS Code

Figure 5.3, Figure 5.4, and Figure 5.5 present decoding performances of our schemes

and HDD with, respectively, (15, 7), (31, 27), and (63, 59) RS codes. In interest of brevity, we

present the various parameters associated with iterative SDD of these codes in Table 5.1. There, the

optimum value ofw in (5.2) is listed for each code, along with the non-FRC four-cycle and six-cycle

counts (n4 and n6) in the traditional Vandermonde PCM, the best type-A PCM, and the best type-B

PCM. The costs Cm of the two alternative PCMs are also given, computed as in (5.2), using the

listed value of w. Since we apply both modifications proposed when decoding, the optimum values

of scaling factor κ, and the optimum number of redundant rows in the PCMs (rN ) are listed as well.

Note that as adding redundant rows is considered only for the best type-A matrix, rN is given only

for that.

Code w
type-A type-B Traditional

n4 n6 Cm κ rN n4 n6 Cm κ n4 n6
RS (15, 7) 4 6 134 158 0.65 4 0 900 900 0.5 195 10320
RS (31, 27) 5 32 1810 1970 0.6 3 0 2412 2412 0.6 0 3720
RS (63, 59) 7 131 10964 11881 0.6 2 0 12790 12790 0.6 63 15372

Table 5.1: Decoding Parameters for Some RS Codes

Figures show that proposed decoding scheme is capable of offering gains in excess of 1dB

over HDD with all three codes. In fact, for (15, 7) and (31, 27) codes, gains of the best performing
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Figure 5.3: FER Performance with (15, 7) RS Code

Figure 5.4: FER Performance with (31, 27) RS Code

variant of the novel strategy is very close to 1.5dB, while for (63, 59) code, it is closer 1.25dB.

Interestingly, there is a big difference between performance of type-A and type-B matrices with the

(15, 7) code. There, type-B matrix is only able to offer marginal gains over HDD. This is due to the

significantly large cost of that matrix, caused by the large number of non-FRC six-cycles present.

As given in Table 5.1, the cost of the best type-A matrix is 134, while that of the type-B matrix

is 900, a percentage increase of almost 700%. For the other two codes, cost difference between

the two types of matrices is not that significant, and this is further validated by the almost similar

performances of associated decoding schemes. But there also, type-A matrices have lower costs,

and decoding performance with them is marginally better.
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Figure 5.5: FER Performance with (63, 59) RS Code

In all three cases, performance can be improved through adding some redundant rows

to the PCM. Optimum number of rows to add depends on the code itself, as values presented in

Table 5.1 show. Significance of this gain also depends on the code, which is highest for the (15, 7)

code, where it is close to 0.5dB. For the (31, 27) code, this gain is about 0.15dB, and in the case

of the (63, 59) code, it is marginal, less than 0.1dB. Performance gain by increasing the maximum

number of decoding iterations follows a similar trend. Increasing this number from 20 to 40 results

in a gain of around 0.15dB for the (15, 7) code, while the gains for the other two codes are negligible.

Once more, we observe no error-floor, which we attribute to the first proposed modification to QSPA,

use of optimized scaling factors with check node estimates.

During our simulations, it was observed that the gains offered by the new scheme for RS

codes over fields larger than F25 , decreases when the dimension, or rate, of the dual code increase.

This behaviour is to be expected, as the number of rows in the PCM would also increase with

the dual code rate, which results in more short cycles, including non-FRC ones. How to improve

performance of the scheme in such cases is still an open problem.

5.2.2 Complexity

As seen from the simulation results presented in the previous section, the novel iterative

SDD strategy is able to offer impressive performance gains over HDD in most instances. It was also

compared with ABP and KV algorithm, two of the most well-known SDD schemes for RS codes,

in Figure 5.2. There it was seen that the proposed scheme has a significant gap with ABP, while it
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outperforms KV algorithm comfortably. But when it comes to decoding complexity and hardware

implementations, the new scheme has a number of advantages over any SDD scheme proposed for

RS codes in the literature. In this section, we present a brief overview of those advantages, starting

with a rough complexity comparison with ABP, which is the best performing SDD scheme for RS

codes in the literature.

Since ABP uses the binary image representation of the PCM [43], for an RS code over

Fq, it is actually using q log q variable nodes in decoding (as in most cases code length ≈ q).

This makes its decoding complexity in one iteration to be of order O(q3 log3 q), due to the matrix

adaption operation carried out through Gaussian elimination. In contrast, dominant complexity

term of the proposed algorithm is of order O(q2 log q), which corresponds to the complexity of

all the check node operations in one iteration. Additionally, ABP also has complexity terms of

orders O(q log q log(q log q)), for sorting bits based on LLR values, and O(q log q), for operations

of SPA. Proposed method has only one additional complexity term, of order O(q2), for variable

node operations. Thus, when used with the same number of iterations, the proposed method has

significantly lower complexity when compared to ABP.

Use of QSPA, which is generally considered to be of a high complexity level, might

seem a disadvantage of the proposed scheme, when it comes to decoding complexity. But the fast

convergence of QSPA, when used with the alternative PCMs we propose, offsets any complexity

increase due to the algorithm. As an example, in Figure 5.6, we present the mean and standard

deviation of the number of iterations taken for QSPA to converge when decoding the (15, 11) RS

code, using the best type-A matrix found. Maximum number of iterations was set to 20 here, and

the figure shows that in most cases, QSPA converges rapidly, in much less than 20 iterations.

The primary reason for SDD not been used with RS codes in practical applications is

the lack of an algorithm that can be efficiently implemented in hardware. KV algorithm contains

many operations that are significantly complex at hardware level, which makes efficient implemen-

tations of the algorithm impossible. Most iterative SDD schemes for RS codes employ equivalent

binary PCMs for decoding [43], [55], [56], obtained through the binary image representation of

the traditional PCM. But as discussed earlier in the chapter, these contain many short cycles, and

to make them better suited for iterative decoding, these strategies use various techniques, such as

changing the matrix in each iteration [43], or based on the properties of the noisy vector received

from the channel [54]. But in the proposed scheme, the PCM is fixed at all times, and it does not

require expensive operations, such as Gaussian elimination, necessary in ABP and its many vari-

ants, or sorting, used in almost every iterative soft decision decoder proposed for the codes. Thus,
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Figure 5.6: Convergence of QSPA with (15, 11) RS Code

with the new scheme, efficient hardware implementations, similar to those suggested in [29] for

short-to-medium length codes over fields of characteristic 2, become possible for SDD of RS codes.
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