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Forecasting Googlé search traffic for
the top few thousand searches by
region.
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Forecasting the government PBS
expenditure for the next five years.
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B¥ Common in business to have millions of time
series that need forecasting every day.

B3 Forecasts are often required by people who are
untrained in time series analysis.
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B¥ Common in business to have millions of time
series that need forecasting every day.

B3 Forecasts are often required by people who are
untrained in time series analysis.

Specifications
Automatic forecasting algorithms must:
w determine an appropriate time series model;

w estimate the parameters;
w compute the forecasts with prediction intervals.
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Abstract

This paper describes the M3-Competition, the latest of the M-Competitions. It explains the reasons for conducting the
competition and summarizes its results and conclusions. In addition, the paper compares such results/conclusions with those
of the previous two M-Competitions as well as with those of other major empirical studies. Finally, the implications of these
results and conclusions are considered, their consequences for both the theory and practice of forecasting are explored and
directions for future research are contemplated. © 2000 Elsevier Science BV. All rights reserved.
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M3-Competition: results, conclusions and implications

3003 time series.
Early comparison of automatic forecasting
algorithms.
All data from business, demography, finance 8 the
. those
and economics. ‘these
d and

Series length between 14 and 126.
Either non-seasonal, monthly or quarterly. wasting
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Winning commercial software
Method MAPE sMAPE MASE

ForecastPro 18.00 13.06 1.47 o e
ForecastX 17.35 13.09 1.42 those
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directions for future research are contemplated. © 2000 Elsevier Science BV. All rights reserved.
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Exponential smoothing methods

Seasonal Component

Trend N A M
Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) AN AA AM

A4 (Additive damped)| Ag4,N Agq.A Ag.M
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Exponential smoothing methods

Seasonal Component
Trend N A M
Component (None) (Additive) (Multiplicative)
N (None) N,N N,A N,M
A (Additive) AN AA AM
A4 (Additive damped)| Ag4,N Agq.A Ag.M

N,N: Simple exponential smoothing

ETS forecasts
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Exponential smoothing methods

Seasonal Component
Trend N A M
Component (None) (Additive) (Multiplicative)
N (None) N,N N,A N,M
A (Additive) AN AA AM
A4 (Additive damped)| Ag4,N Agq.A Ag.M

A,N: Holt's linear method

ETS forecasts
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Exponential smoothing methods

Seasonal Component

Trend N A M
Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) AN AA AM

A4 (Additive damped)| Ay4N Agq.A Ag.M

Ag4,N:  Additive damped trend method
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Exponential smoothing methods

Seasonal Component
Trend N A M
Component (None) (Additive) (Multiplicative)
N (None) N,N N,A N,M
A (Additive) AN AA AM
A4 (Additive damped)| Ag4,N Agq.A Ag.M

A,A: Additive Holt-Winters’ method

ETS forecasts
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Exponential smoothing methods

Seasonal Component

Trend N A M
Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) AN AA AM

A4 (Additive damped)| Ag4,N Agq.A Ag.M

A,M: Multiplicative Holt-Winters’ method
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Exponential smoothing methods

Seasonal Component

Trend N A M
Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) AN AA AM

A4 (Additive damped)| Ag4,N Agq.A Aq.M

v

A4,M: Damped multiplicative Holt-Winters’ method
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Exponential smoothing methods

Seasonal Component

Trend N A M
Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) AN AA AM

A4 (Additive damped)| Ag4,N Agq.A Ag.M

Each method can have an additive or multiplicative error,
giving 18 separate models.
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Exponential smoothing methods

Seasonal Component

Trend N A M
Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) AN AA AM

A4 (Additive damped)| Ag4,N Agq.A Ag.M

General notation ETS : ExponenTial Smoothing
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Exponential smoothing methods

Seasonal Component

Trend N A M
Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) AN AA AM

A4 (Additive damped)| Ag4,N Agq.A Ag.M

General notation ETS : ExponenTial Smoothing

Trend
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Exponential smoothing methods

Seasonal Component

Trend N A M
Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) AN AA AM

A4 (Additive damped)| Ag4,N Agq.A Ag.M

General notation ETS : ExponenTial Smoothing

Trend Seasonal
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Exponential smoothing methods

Seasonal Component

Trend N A M
Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) AN AA AM

A4 (Additive damped)| Ag4,N Agq.A Ag.M

General notation ETS : ExponenTial Smoothing

Error Trend Seasonal
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Exponential smoothing methods

Seasonal Component

Trend N A M
Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) AN AA AM

A4 (Additive damped)| Ag4,N Agq.A Ag.M

General notation ETS : ExponenTial Smoothing

Error Trend Seasonal
Examples:
A,N,N:  Simple exponential smoothing with additive errors
A,AN:  Holt’s linear method with additive errors
M,A,M:  Multiplicative Holt-Winters’ method with multiplicative errors
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Exponential smoothing methods

Innovations state space models

w All ETS models can be written in innovations
state space form (IJF, 2002).

w Additive and multiplicative versions give the
same point forecasts but different prediction

intervals.

SClIcial 1ivwauivii Ll 9 « ERApMpUIICIHHEIOI JIIIUULIIIIlg

T N
Error Trend Seasonal
Examples:
A,N,N:  Simple exponential smoothing with additive errors
A,AN:  Holt’s linear method with additive errors
M,A,M: Multiplicative Holt-Winters’ method with multiplicative errors
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ETS state space model

X1 Yt State space model
x; = (level, slope, seasonal)

Et
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ETS state space model

X1 Yt State space model
x; = (level, slope, seasonal)

&t —— Xt
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ETS state space model

X1 Yt State space model
x; = (level, slope, seasonal)

Et Xt Yt+1

€t+1
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ETS state space model

X1 Yt State space model
x; = (level, slope, seasonal)

Et Xt Yt+1

€t+1 - Xt+1
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ETS state space model

X1 Yt State space model
x; = (level, slope, seasonal)

Et Xt Yt+1
€t+1 Xti1 Yti2
Et42
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ETS state space model

X1 Yt State space model
x; = (level, slope, seasonal)

Et - Xt Yt+1
€t+1 Xti1 Yti2
Ety2 — Xt42
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ETS state space model

X1 Yt State space model
x; = (level, slope, seasonal)

Et - Xt Yt+1
€t+1 Xti1 Yti2
Et+2 D (I Yt+3

Et+3
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ETS state space model

X1 Yt State space model
x; = (level, slope, seasonal)

Et - Xt Yt+1
€t+1 Xti1 Yti2
Et+2 D (I Yt+3

Et+3  Xty3
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ETS state space model

X1 Yt State space model
x; = (level, slope, seasonal)

Et - Xt Yt+1
€t+1 Xti1 Yti2
Et+2 D (I Yt+3

€43 Xti3 - Yira

Et+4
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ETS state space model

X1 Yt State space model
x; = (level, slope, seasonal)

€t - Xt Yt+1
€t+1 Xt 1 Yiy2
Et+2 Xii2 Yt+3
€t4+3 Xt43 Ytra
Compute likelihood L from Et+4

ETlg€Dg o000 5EFo
Optimize L wrt model
parameters.
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ETS state space model

X1 Yt State space model
x; = (level, slope, seasonal)

Et - Xt Yt+1
€t+1 Xti1 Yti2
Et+2 D (I Yt+3

€43 Xti3 - Yira

Compute likelihood L from Et+4
ETlg€Dg o000 5EFo
Optimize L wrt model

parameters.

Q: How to choose

between the 18 ETS
models?
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Cross-validation

Traditional evaluation
Training data Test data

time
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Cross-validation

Traditional evaluation
Training data Test data

time

Standard cross-validation
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Cross-validation

Traditional evaluation
Training data Test data

time

Standard cross-validation
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Cross-validation

Traditional evaluation
Training data Test data

time

Standard cross-validation
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Cross-validation

Traditional evaluation
Training data Test data

time

Standard cross-validation

~ Also known as “Evaluationon |[*—~—~——
_a rolling forecast origin”

— 0000000000000 000000000 —>
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Akaike’s Information Criterion

AIC = —2log(L) + 2k J

where L = likelihood
k = number of estimated parameters in model.
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Akaike’s Information Criterion

AlCc = —2log(L) + 2k + 2 Dl+2) |

where L = likelihood
k = number of estimated parameters in model
and T = length of the series.
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Akaike’s Information Criterion

AlCc = —2log(L) + 2k + 2 Dl+2) |

where L = likelihood
k = number of estimated parameters in model

and T = length of the series.
m This is a penalized likelihood approach.
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Akaike’s Information Criterion

AlCc = —2log(L) + 2k + 2 Dl+2) |

where L = likelihood
k = number of estimated parameters in model

and T = length of the series.
m This is a penalized likelihood approach.
m If L is Gaussian, then

AlICc =~ constant + T log MSE + 2k J

where MSE is on 1-step forecasts on training set.
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Akaike’s Information Criterion

AlCc = —2log(L) + 2k + 2k1(2) |

where L = likelihood
k = number of estimated parameters in model

and T = length of the series.
m This is a penalized likelihood approach.
m If L is Gaussian, then

AICc =~ constant 4 T log MSE + 2k J

where MSE is on 1-step forecasts on training set.

Minimizing the Gaussian AlC¢ is asymptotically

equivalent (as T — oo) to minimizing MSE from 1-step
forecasts via time series cross-validation.
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ets algorithm in R

Based on Hyndman, Koehler,
Snyder & Grose (IJF 2002):

m Apply each of 18 models that are
appropriate to the data. Optimize
parameters and initial values
using MLE.
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ets algorithm in R

Based on Hyndman, Koehler,
Snyder & Grose (IJF 2002):

m Apply each of 18 models that are
appropriate to the data. Optimize
parameters and initial values
using MLE.

m Select best method using AlCc.
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ets algorithm in R

Based on Hyndman, Koehler,
Snyder & Grose (IJF 2002):

m Apply each of 18 models that are
appropriate to the data. Optimize
parameters and initial values
using MLE.

m Select best method using AlCc.

m Produce forecasts using best
method.
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ets algorithm in R

Based on Hyndman, Koehler,
Snyder & Grose (IJF 2002):

m Apply each of 18 models that are
appropriate to the data. Optimize
parameters and initial values
using MLE.

m Select best method using AlCc.

m Produce forecasts using best
method.

m Obtain prediction intervals using
underlying state space model.

Forecasting big time series data using R ETS forecasts 13



Exponential smoothing
Forecasts from ETS(M,A,N)
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Exponential smoothing
Forecasts from ETS(M,A,N)

o
81 fit <- ets(livestock)
fcast <- forecast(fit)

g| plot(fcast)
a n /
>
3
2 84
i) <
E

o

8_

19|60 19|70 19|80 19|90 20|00 20|10

Year
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Exponential smoothing
Forecasts from ETS(M,N,M)

©
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1.2

1.0

Total scripts (millions)
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T T T T
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Year

Forecasting big time series data using R ETS forecasts



Exponential smoothing
Forecasts from ETS(M,N,M)

1 fit <- ets(h02)
<| fcast <- forecast(fit)
plot(fcast)

Total scripts (millions)
1

T T T T
1995 2000 2005 2010

Year
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Method MAPE sMAPE MASE

ForecastPro 18.00 13.06 1.47
ForecastX 17.35 13.09 1.42

ETS 17.38 13.13 1.43




E] ARIMA forecasts
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ARIMA models
Inputs Output

\
‘/
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ARIMA models
Inputs Output

Autoregression (AR)
Yt model J

Yt—zk
/
yt—3/

Et

Yt
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ARIMA models
Inputs Output

Autoregression moving
Yt average (ARMA) model J

yt—2§
/—
yt—3/

Et

Yt

€t—1

Et—2
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ARIMA models

Inputs Output

Autoregression moving

Yt average (ARMA) model
yt_z\ ARIMA model

> Yt Autoregression moving
yt—3/ average (ARMA) model

£t applied to differences.

€t-1
€t-2
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ARIMA models

Inputs Output

Autoregression moving
Yt average (ARMA) model
yt_z\ ARIMA model
>‘ Yt Autoregression moving
yt—3/ average (ARMA) model
£t applied to differences.
£ Estimation

Compute likelihood L from
=7 €1y &g 000 o ET-

Use optimization
algorithm to maximize L.
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Auto ARIMA

Forecasts from ARIMA(0,1,0) with drift

500 550
1

millions of sheep
350 400 450
1

250 300

T T T T T T
1960 1970 1980 1990 2000 2010

Year
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Auto ARIMA
Forecasts from ARIMA(0,1,0) with drift

o | fit <- auto.arima(livestock)
[Te] .
fcast <- forecast(fit)

o

2] plot(fcast) ///////
(%]
S
E 3-

o

8 —

o

g —

19|60 19|70 19|80 19|90 20|00 20|10

Year
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Auto ARIMA
Forecasts from ARIMA(3,1,3)(0,1,1)[12]

N
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Auto ARIMA
Forecasts from ARIMA(3,1,3)(0,1,1)[12]

&k fit <- auto.arima(h02)

N fcast <- forecast(fit)
- plot(fcast) ﬂ
: 3
; |

T T T T
1995 2000 2005 2010

Year
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How does auto.arima() work?

m Number of differences selected using unit root
tests.
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How does auto.arima() work?

m Number of differences selected using unit root

tests.
m Number of autoregressive and moving average

terms selected by minimizing AlCc.
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How does auto.arima() work?

m Number of differences selected using unit root
tests.

m Number of autoregressive and moving average
terms selected by minimizing AlCc.

m Inclusion of constant/drift determined by
minimizing AlCc.
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How does auto.arima() work?

m Number of differences selected using unit root
tests.

m Number of autoregressive and moving average
terms selected by minimizing AlCc.

m Inclusion of constant/drift determined by
minimizing AlCc.

m Use stepwise search to traverse model space,
starting with a simple model and considering
nearby variants.

Forecasting big time series data using R ARIMA forecasts 25



Method MAPE sMAPE MASE

ForecastPro 18.00 13.06 1.47
ForecastX 17.35 13.09 1.42

ETS 17.38 13.13 1.43
AutoARIMA 19.12 13.85 1.47

ETS-ARIMA  17.92 13.02 1.44

ARIMA forecasts



F] TBATS forecasts
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US finished motor gasoline products

Thousands of barrels per day
6500 7000 7500 8000 8500 9000 9500
|

T T T T T T T
1992 1994 1996 1998 2000 2002 2004

Weeks
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Number of calls to large American bank (7am—-9pm)

400
1

300
1

Number of call arrivals
200
1

100
1

T T T T T T
3 March 17 March 31 March 14 April 28 April 12 May

5 minute intervals
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Electricity demand (GW)

Turkish electricity demand

0|
N
o
N
0|
-
o
—
T T T T T
2000 2002 2004 2006 2008
Days
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TBATS model
TBATS

Trigonometric terms for seasonality

B ox-Cox transformations for heterogeneity
ARMA errors for short-term dynamics
Trend (possibly damped)

Secasonal (including multiple and non-integer periods)

Automatic algorithm described in AM De Livera,
RJ Hyndman, and RD Snyder (2011). “Forecasting
time series with complex seasonal patterns using
exponential smoothing”. Journal of the American
Statistical Association 106(496), 1513-1527.
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E Forecasts from TBATS(0.999, {2,2}, 1, {<52.1785714285714,8>})

81 fit <- tbats(gasoline)
. | fcast <- forecast(fit)
5 g| Plot(fcast)
c g

T T T
1995 2000 2005

Weeks
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i Forecasts from TBATS(1, {3,1}, 0.987, {<169,5>, <845,3>})

8- fit <- tbats(callcentre)
. fcast <- forecast(fit)
¥ plot(fcast)
| |
z

T T T T T T T T
3 March 17 March 31 March 14 April 28 April 12 May 26 May 9 June

5 minute intervals
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E Forecasts from TBATS(0, {5,3}, 0.997, {<7,3>, <354.37,12>, <365.25,4>})

Q- fit <- tbats(turk)
fcast <- forecast(fit)

z plot(fcast)
B &
©
IS
g
2
L

3_

20|00 20|02 20|O4 20|06 20|08 20|10
Days
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E Optimal forecast reconciliation
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Australian tourism demand

AAAAA

W < -3%
W 3% to 0 “f“f
] oto3% :
[ >3%
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Australian tourism demand

® Quarterly data on visitor night from
1998:Q1 -2013:Q4

m From: National Visitor Survey, based on
annual interviews of 120,000 Australians
aged 15+, collected by Tourism Research
Australia.

m Split by 7 states, 27 zones and 76 regions
(a geographical hierarchy)

m Also split by purpose of travel

Holiday

Visiting friends and relatives (VFR)

Business

Other s
m 304 bottom-level series %

Forecasting big time series data using R Optimal forecast reconciliation



Hierarchical time series

A hierarchical time series is a collection of
several time series that are linked together in a
hierarchical structure.
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Hierarchical time series

A hierarchical time series is a collection of
several time series that are linked together in a
hierarchical structure.

Example
m Tourism by state and region
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Grouped time series

A grouped time series is a collection of time
series that can be grouped together in a number of
non-hierarchical ways.
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Grouped time series

A grouped time series is a collection of time
series that can be grouped together in a number of
non-hierarchical ways.

Example
m Tourism by state and purpose of travel

Forecasting big time series data using R Optimal forecast reconciliation



Hierarchical time series

(Total>
®» ©® ©
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Hierarchical time series

y: . observed aggregate of all
@ series at time t.
Yx @ Observation on series X at

time t.
0 9 G b, : vector of all series at

bottom level in time t.
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Hierarchical time series

y: . observed aggregate of all
@ series at time t.
Yx @ Observation on series X at

time t.
0 9 G b, : vector of all series at

bottom level in time t.

111 y

100 At
Yt:D/tayA,tayB,tayC,t]/: 010 YBt

00 1/ Vet
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Hierarchical time series

y: . observed aggregate of all
@ series at time t.
Yx @ Observation on series X at

time t.
0 9 G b, : vector of all series at

bottom level in time t.
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Hierarchical time series

y: . observed aggregate of all
@ series at time t.
Yx @ Observation on series X at

time t.
0 9 G b, : vector of all series at

bottom level in time t.

111 y
100 At
Yt:D/tayA,tayB,tayC,t]/: 010 YBt
00 1/t
N—— b:
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Hierarchical time series

y: . observed aggregate of all
@ series at time t.
Yx @ Observation on series X at

time t.
0 9 G b, : vector of all series at

bottom level in time t.

111
/ 100 Yat
Yyt = D’t,)’A,t,YB,t,YC,t] =lo1o0 YBt
00 1 Ycit
y: = Sb; s b
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(A) (B) ©
(a0 () (a) (&0 (&) (82 0 (@ (@

4

Yt 111 1 1 1 1 1 1

Yat 111 00 00 0 0
yB,t 0 0 0 1 1 1 0 0 0 Yax,t
Yc,t 0 0 0 0 0 0 1 1 1 YAyt
YAX t 1 0 0 0 0 0 0 0 0 YAzt
YAyt 0 1 0 0 0 0 0 0 0 YBX,t
yt = YAzt jr— 0 0 1 0 0 0 0 0 0 YBy,t
YBX,t 0 0 01 00 O O O YBZ,t
yBy,t 0 0 0 0 1 0 0 0 0 Yex,t
YBz,t 0 0 0 0O0O1 0 0 O yev.t
Yexit 0 0 0 0 0 0 1 0 0 ycz,t

K}’CY,t 0 0 0 00O 0 1 O

Yez it 0 0000 O 0 0 1 b
N ~~ 4
S
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Yt 111 1 1 1 1 1 1

Yat 111 00 00 0 0
yB,t 0 0 0 1 1 1 0 0 0 Yax,t
Yc,t 0 0 0 0 0 0 1 1 1 YAyt
YAX t 1 0 0 0 0 0 0 0 0 YAzt
YAyt 0 1 0 0 0 0 0 0 0 YBX,t
yt = YAzt jr— 0 0 1 0 0 0 0 0 0 YBy,t
YBX,t 0 0 01 00 O O O YBZ,t
yBy,t 0 0 0 0 1 0 0 0 0 Yex,t
YBz,t 0 0 0 0O0O1 0 0 O yev.t
Yexit 0 0 0 0 0 0 1 0 0 ycz,t

Yev,t 0 0 0 0 00 0 1 O

Kycz,t 0000 O0O0UO0 0 1 b; Y: = Sh;
N ~~ 4
S
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Grouped data

® @ @

X () Cotal>
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Grouped data
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yi: =
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/
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y: = Sb;
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Hierarchical and grouped time series

Every collection of time series with aggregation
constraints can be written as

y: = Sb; |

where
m y;: is a vector of all series attime t
m b; is a vector of the most disaggregated series
attime t
m S is a “summing matrix” containing the
aggregation constraints.
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Forecasting notation

Let y,(h) be vector of initial h-step forecasts, made
at time n, stacked in same order as y;.
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Forecasting notation

Let y,(h) be vector of initial h-step forecasts, made
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Forecasting notation

Let y,(h) be vector of initial h-step forecasts, made
at time n, stacked in same order as y;. (They may
not add up.)

Yn(h) = SPy,(h)

Reconciled forecasts must be of the form:
for some matrix P.
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Forecasting notation

Let y,(h) be vector of initial h-step forecasts, made
at time n, stacked in same order as y;. (They may
not add up.)

Yn(h) = SPy,(h)

Reconciled forecasts must be of the form:
for some matrix P.

m P extracts and combines base forecasts y,(h)
to get bottom-level forecasts.
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Forecasting notation

Let y,(h) be vector of initial h-step forecasts, made
at time n, stacked in same order as y;. (They may
not add up.)

Yn(h) = SPy,(h)

Reconciled forecasts must be of the form:
for some matrix P.

m P extracts and combines base forecasts y,(h)
to get bottom-level forecasts.

m S adds them up
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General properties

yn(h) = SP)’\/n(h)
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General properties

yn(h) = SPy,(h)

Revised forecasts are unbiased iff SPS = S. I
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General properties
Revised forecasts are unbiased iff SPS = S. \

Variance
The error variance of the revised forecasts is

Var[.Vn+h — )N/n(h) ’ Yi,... a.Vn] = SPW,P'S’

where Wy, = Var[ynin — ¥n(h) | y1,. .., ¥n]
is the error variance of the base forecasts y,(h)
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Optimal forecast reconciliation

Theorem
For any P satisfying SPS = S, then

min = trace[SPW,P'S’]

has solution P = (S'W|S) 1s'W/.
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Optimal forecast reconciliation

Theorem
For any P satisfying SPS = S, then

min = trace[SPW,P'S’]

has solution P = (S'W|S) 1s'W/.

u W; is generalized inverse of Wj,.
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Optimal forecast reconciliation

Theorem
For any P satisfying SPS = S, then

min = trace[SPW,P'S’]

has solution P = (S'W|S) 1s'W/.

u W,T) is generalized inverse of Wj,.

m Problem: W, hard to estimate, especially for
h>1.
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Optimal combination forecasts

Vn(h) = S(S'W}S) *S'W]y,(h) |
Revised forecasts Base forecasts
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Optimal combination forecasts

Vn(h) = S(S'W}S) *S'W]y,(h) |
Revised forecasts Base forecasts

Solution: WLS
m Suppose we approximate W by its diagonal
and assume that Wy, o« W.
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Optimal combination forecasts

Vn(h) = S(S'W}S) *S'W]y,(h) |
Revised forecasts Base forecasts

Solution: WLS
m Suppose we approximate W by its diagonal
and assume that W, « W;.
m Easy to estimate, and places weight where
we have best forecasts.
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Optimal combination forecasts

Vn(h) = S(S'W}S) *S'W]y,(h) |
Revised forecasts Base forecasts

Solution: WLS
m Suppose we approximate W by its diagonal
and assume that W, « W;.
m Easy to estimate, and places weight where
we have best forecasts.
m Still need to estimate covariance matrix to
produce prediction intervals.
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hts package for R

hts: Hierarchical and grouped time series
Methods for analysing and forecasting hierarchical and grouped
time series

Version: 4.5

Depends: forecast (> 5.0), SparseM

Imports: parallel, utils

Published: 2015-06-29

Author: Rob ] Hyndman, Earo Wang and Alan Lee

with contributions from Shanika Wickramasuriya
Maintainer: Rob ] Hyndman <Rob.Hyndman at monash.edu>
BugReports: https://github.com/robjhyndman/hts/issues
License: GPL (> 2)
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Example using R

library(hts)

# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))

Optimal forecast reconciliation
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Example using R

library(hts)

# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))
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Example using R

library(hts)

# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))

summary(y)
smatrix(y)

# Forecast 10-step-ahead using WLS combination method
# ETS used for each series by default
fc <- forecast(y, h=10)
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Australian tourism

W < -3%
W 3% to 0
[] 0to3%
[ >3%
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Australian tourism

Hierarchy: |
m States (7)
m Zones (27)
m Regions (82)

/

W 3% to 0
[] 0to3%
[ >3%
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Australian tourism

Hierarchy: |
m States (7)
m Zones (27)
m Regions (82)

/

Base forecasts
ETS (exponential smoothing)
models

] 0to3%
[ >3%
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Base forecasts

Domestic tourism forecasts: Total

Visitor nights

60000 65000 70000 75000 80000 85000

T T T T T T
1998 2000 2002 2004 2006 2008

Year
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Base forecasts

Domestic tourism forecasts: NSW

Visitor nights

T T T T T T
1998 2000 2002 2004 2006 2008

Year
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Base forecasts

Domestic tourism forecasts: VIC

16000 18000
1 1

Visitor nights
14000
|

12000
1

10000
1

T T T T T T
1998 2000 2002 2004 2006 2008

Year
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Base forecasts

Domestic tourism forecasts: Nth.Coast.NSW

8000 9000
1

Visitor nights
7000

6000
1

5000
1

T T T T T T
1998 2000 2002 2004 2006 2008

Year
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Base forecasts

Domestic tourism forecasts: Metro.QLD

Visitor nights

8000 9000

T T T T T T
1998 2000 2002 2004 2006 2008

Year
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Base forecasts

Domestic tourism forecasts: Sth.WA

Visitor nights
800 1000 1200 1400
| | |

600
1

400
1

T T T T T T
1998 2000 2002 2004 2006 2008

Year
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Base forecasts

Domestic tourism forecasts: X201.Melbourne

Visitor nights
5000 5500 6000
|

4500

4000

T T T T T T
1998 2000 2002 2004 2006 2008

Year
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Base forecasts

Domestic tourism forecasts: X402.Murraylands

Visitor nights
200 300
| |

100
1

T T T T T T
1998 2000 2002 2004 2006 2008

Year
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Base forecasts

Domestic tourism forecasts: X809.Daly

60 80 100
1

Visitor nights

20

T T T T T T
1998 2000 2002 2004 2006 2008

Year
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Forecast evaluation

Training sets
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Forecast evaluation

Training sets Testseth=1
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Forecast evaluation

Training sets Test set h =2
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Forecast evaluation

Training sets Test set h=3
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Forecast evaluation

Training sets Testseth=14
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Forecast evaluation

Training sets Testset h=>5
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Forecast evaluation

Training sets Testset h=06
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Hierarchy: states, zones, regions

Forecast horizon
RMSE h=1 h=2 h=3 h=4 h=5 h=6 Ave

Australia
Base 1762.04 1770.29 1766.02 1818.82 1705.35 1721.17 1757.28
Bottom 1736.92 1742.69 1722.79 1752.74 1666.73 1687.43 1718.22
WLS 1705.21 1715.87 1703.75 1729.56 1627.79 1661.24 1690.57
States
Base 399.77 404.16 401.92 407.26 395.38 401.17 401.61
Bottom 404.29 406.95 404.96 409.02 399.80 401.55 404.43
WLS 398.84 402.12 400.71 405.03 394.76 398.23 399.95
Regions
Base 93.15 93.38 93.45 93.79 93.50 93.56 93.47
Bottom 93.15 93.38 93.45 93.79 93.50 93.56 93.47
WLS 93.02 93.32 93.38 93.72 93.39 93.53 93.39

Forecasting big time series data using R Optimal forecast reconciliation



ﬂ Future plans for forecasting in R
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Forecasts about the forecast package

¥ Automatic algorithms will become more
general — handling a wider variety of time
series.
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Forecasts about the forecast package

Automatic algorithms will become more
general — handling a wider variety of time
series.

Bl Model selection methods will take account of
multi-step forecast accuracy as well as
one-step forecast accuracy.
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Forecasts about the forecast package

B¥ Automatic algorithms will become more
general — handling a wider variety of time
series.

B} Model selection methods will take account of
multi-step forecast accuracy as well as
one-step forecast accuracy.

Bl Automatic forecasting algorithms for very
high dimensional time series will be developed.
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Forecasts about the forecast package

B¥ Automatic algorithms will become more
general — handling a wider variety of time
series.

B} Model selection methods will take account of
multi-step forecast accuracy as well as
one-step forecast accuracy.

B} Automatic forecasting algorithms for very
high dimensional time series will be developed.

B Automatic forecasting algorithms that include
covariate information will be added.
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Forecasts about the forecast package

B¥ Automatic algorithms will become more
general — handling a wider variety of time
series.

B} Model selection methods will take account of
multi-step forecast accuracy as well as
one-step forecast accuracy.

B} Automatic forecasting algorithms for very
high dimensional time series will be developed.

B Automatic forecasting algorithms that include
covariate information will be added.

B Better reconciliation methods using full
covariance matrix (hts package).
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For further information
robjhyndman.com

m Slides and references for this talk.
m Links to all papers and books.

m Links to R packages.

m A blog about forecasting research.




For further information
robjhyndman.com

m Slides and references for this talk.
m Links to all papers and books.

m Links to R packages.

m A blog about forecasting research.

OTexts.org/fpp

m Free online textbook on forecasting
using R
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