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Abstract

In this thesis, I explore how Bayesian inference is used in the analysis of gravitational
waves, and in the analysis of astrophysical time series more broadly. I present the Bilby
project, a collaborative software package that has now become a standard analysis tool
for gravitational-wave signals. One specific application of Bayesian inference is the search
for nonlinear gravitational-wave memory, a hereditary effect in which gravitational-wave
strain builds up during an accompanying burst and remains at a constant value different
from zero after the wave has passed. This thesis presents the results of measuring mem-
ory in the first and second LIGO/Virgo gravitational-wave transient catalogue. This
catalogue contains 50 events that have been associated with the coalescence of compact
binary objects, with most of them being black holes. Combining the results from these
events I find that the hypothesis that memory is present in the catalogue is very slightly
favoured but not statistically significant. While memory will not be detectable in a single
gravitational-wave signal with current generation detectors, we provide the infrastruc-
ture with which to do it in O(2000) events, a milestone likely reached by the end of the
decade.

The generality and versatility of Bilby allows for the easy deployment of inference meth-
ods in wide contexts such as in astrophysical x-ray time series. I present the discovery
of a new bias in the search for quasi-periodic oscillations using frequency-domain meth-
ods that arises in non-stationary time series. Not accounting for this bias can lead to
a strong overestimation of the significance of quasi-periodic oscillations, especially when
periodograms and Whittle likelihoods are used. I show that one way of mitigating this ef-
fect is to employ Gaussian process modelling. Gaussian processes are in principle superior
as they can model deterministic trends, non-stationary behaviour, and heteroscedastic
data, but are more computationally expensive and involve more complex modelling pro-
cedures. Nevertheless, I show that using a narrow class of kernel functions Gaussian
processes are a viable method for finding and characterising quasi-periodic oscillations.
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Chapter 1

Introduction

Statistical inference in astrophysics is a fast-evolving field with a unique set of challenges.
Broadly speaking, astrophysical observations allows us to probe fundamental physics in
a way that would be impossible on Earth. The strong gravity around black holes and the
extreme states of matter in neutron stars could not possibly be replicated in a laboratory
and thus provide a unique way to understand the universe. However, the obvious trade-
off is that these objects are far away and much of the most interesting data we record
stems from faint, transient events. These transient events can in general be seen as a not
controlled and not reproducible natural experiment, and thus require careful statistical
treatment in their interpretation.

At the time of writing only 50 confident gravitational-wave transients from the mergers of
compact objects have been reported by the LIGO/Virgo Scientific Collaboration [20, 29],
and only one optical counterpart was ever detected for GW170817, a merger of two
neutron stars [277]. Still, these observations provide some of the best probes of extreme
gravity in many aspects. Thus, we must analyse these events carefully and use optimal
techniques to infer if their physical behaviour matches our models. One instance where
such careful treatment is especially important is the gravitational-wave memory effect,
a effect in general relativity which occurs in its purely nonlinear form in the merger of
binaries [79, 279]. Memory manifests as a constant offset in the strain long after the
wave has passed. It may be possible to detect memory using the LIGO/Virgo/KAGRA
network in the second half of this decade by combining the statistical evidence from
thousands of events.

There are other phenomena where observations remain scant and careful analysis is
paramount. One aspect of interest in time series analysis of these phenomena is the
presence of oscillatory behaviour near a fixed frequency, usually referred to as quasi-
periodic oscillations (QPOs). Magnetar hyperflares are extremely energetic outbursts of
x-rays from highly magnetised neutron stars. Multiple QPOs have been reported in those
flares’ tails, which has triggered a flurry of theoretical papers about their origin (e.g. [93,
180–182, 245, 260, 261, 263–265]). These hyperflares have only been confidently linked to
magnetars thrice, from SGR 0526-66 in 1979 [52, 197], from SGR 1900+14 [152] in 1998,
and from SGR 1806-20 in 2005 [153, 218], though the data from the first observation is
generally considered to be of low quality. In gamma-ray bursts (GRBs) the observational
evidence for QPOs has long remained weak [74, 92, 160], though there have been recent

1



2

reports suggesting that QPOs may be more common [274]. In solar flares, QPOs1 are
observed with great regularity, but identifying their origin remains a challenge, see e.g.
Ref. [289] and references therein. Additionally, searching for periodicity in solar-flare
lightcurves is challenging due to their non-stationary nature. Understanding QPOs from
solar flares may lead to better inferences of stellar flares from other stars [289].

In this thesis, I present my work on developing Bayesian inference techniques for as-
trophysical applications. This chapter serves to provide context on how the presented
publications are connected and some additional background information. I provide a
short synopsis of Bayesian inference and its use in astrophysics in Sec. 1.1. I have con-
tributed to the Bilby project, which is presented in Chap. 2 and on which I provide
additional information in Chap. 3. One application of Bayesian inference is the mea-
suring of the gravitational-memory effect, which I present in detail in Chaps. 4 and 5.
Sec. 1.2 in this chapter provides an overview of how the analysis works and what tech-
nical challenges had to be overcome. Finally, we take a look at how Bayesian inference
helps us to understand the challenges associated with finding QPOs within time series
data in Sec. 1.3, and Chaps. 6 and 7. In Chap. 6 I demonstrate that tests of periodicity
based on periodograms are often biased by non-stationarity behaviour which is present
in any astrophysical transient. This effect can greatly exaggerate the significance of a
QPO. In Chap. 7 I present how one can test time series for periodicity using Gaussian
process (GP) likelihoods. Unlike periodogram-based methods, GPs operate solely in the
time domain and can trivially overcome most biases that arise due to non-stationarities.

1.1 Bayesian Inference

Bayesian inference can be understood as a statistical paradigm that can be used both
for parameter estimation and hypothesis testing (model selection). Unlike classical (fre-
quentist) statistical inference, Bayesian inference relies on the choice of priors to describe
prior beliefs about the model. Since Bayesian inference does not rely on repeated sam-
pling from a population to draw inferences, it is a natural choice for astrophysics where
we often deal with unique, transient events that provide limited data.

1.1.1 Bayes’ Theorem

Bayes’ theorem stands at the centre of Bayesian statistics. In its most generic form it
describes how conditional probabilities of two events E1 and E2 relate to each other

p(E1|E2) =
p(E2|E1)p(E1)

p(E2)
, (1.1)

where we denote conditional probability p(E1|E2) to mean “probability of E1 if E2 already
occured”. The conditional probability is formally defined as

p(E1|E2) =
p(E1 ∩ E2)

p(E2)
(1.2)

1In solar flares QPOs are commonly referred to as quasi-periodic pulsations (QPP). We will stick
with “QPO” even in the solar flare context for consistency.
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where E1 ∩ E2 describes E1 and E2 both happening. Substituting Eq. 1.2 into Eq. 1.1
and using the commutativity of the ∩-operator thus immediately proves the theorem.

Equation 1.1 can be translated into a form that is useful for inference by identifying
E1 = θ, which is the set of parameters for a model M , and E2 = d, which is the data we
wish to analyse. We rewrite Eq. 1.1 and re-label the probability functions for clarity

p(θ|d,M) =
π(θ|M)L(d|θ,M)

Z(d|M)
. (1.3)

Here p(θ|d,M) is the posterior probability of the parameters given the data, π(θ|M)
is the prior probability of the parameters, L(d|θ,M) is the likelihood (sometimes also
called loss function) which describes the probability of obtaining the data given a set of
parameters, and Z(d|M) is the evidence or fully marginalised likelihood. In terms of
parameter estimation, we are interested in calculating the posterior, for which we need
to define adequate priors and find a likelihood function.

The evidence is obtained in practise by re-arranging and integrating 1.3 and using the
fact that the posterior is normalised by definition

Z(d|M) =

∫
π(θ|M)L(d|θ,M)dθ . (1.4)

We see in Eq. 1.4 that we obtain the evidence by integrating the likelihood times the prior
over the entire parameter space, which explains the likelihood’s alternative name “fully-
marginalised” likelihood. The evidence thus provides a probability of the data given a
model irrespective of any specific parameters. This implies the evidence’s usefulness in
model selection questions. We define the Bayes factor

BF =
Z(d|M1)

Z(d|M2)
(1.5)

which describes the ratio of probabilities of obtaining data given two modelsM1/2. Some-
times there are prior beliefs that may lead us to prefer one model over another, e.g. if
we have some independent measurement that already provided a Bayes factor. To cap-
ture this, we can introduce prior odds Π(M), which describes our prior belief about the
likelihood of a model. With this we can obtain the odds ratio

O =
Π(M1)

Π(M2)
BF , (1.6)

which combines the prior odds and the Bayes factor. In many astrophysical scenarios we
set the prior odds ratio Π(M1)/Π(M2) = 1 and effectively just consider the Bayes factor
as the deciding criterion for model selection.

It should be of note that there is no need for an “Occam-factor”, i.e. a penalty factor
for more complex models in Bayesian inference, that we might be tempted to add in
the prior odds. More complex models will typically feature more parameters and thus
a larger prior volume Vπ, which indicates a lower prior probability for any given set of
parameters θ. Equation 1.4 indicates that a larger prior volume thus reduces our evidence
and thus naturally penalises more complex models.
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1.1.2 Computational Implementations

Performing Bayesian inference for the many-dimensional problems that are common in
astrophysics cannot be achieved with trivial algorithms in practice. The most naive
approach of calculating posteriors and evidences is to cast a grid of points onto the
parameter space. However, this approach has computational complexity O(Nd) with
N being the number of grid points in each dimension d. This approach is feasible up
to d = 2 but does not scale to higher dimensions. To calculate posterior distributions
efficiently, we need to use sophisticated Markov-Chain Monte-Carlo algorithms to sample
the posterior space. Most of these algorithms lack the ability to calculate evidences. More
recent developments such as nested sampling [255, 256] recast the integral in Eq. 1.4 in
terms of the prior mass X such that

Z =

∫ 1

0
L(X)dX . (1.7)

This integral can be evaluated by finding nested shells of iso-likelihood during the sam-
pling process and is thus called “nested-sampling” [255, 256]. Conveniently, nested sam-
pling also yields the posterior distribution alongside the evidence and thus in effect
provides a unified method for parameter estimation and model selection.

1.2 Gravitational-wave Memory

Gravitational-wave memory is a phenomenon where the gravitational strain h does not
revert to zero after a burst of gravitational radiation has passed. Instead, h will settle
down to a constant value discretely different from zero. This means that the distance
between freely falling test masses will permanently change before and after the burst
Memory is an effect within general relativity and thus in principle present in any source
of gravitational radiation. The term memory was likely first mentioned in the literature
in Ref. [68], though the effect has been first described much earlier in Ref. [316].

In the following, I will briefly introduce the two kinds of memory that are described in
the literature, linear and nonlinear memory, and provide an intuitive understanding as
to why they exist.

1.2.1 Linear Memory

Linear gravitational-wave memory has been first mentioned by Ref. [316], where the
authors examined the emission of gravitational waves in superdense clusters of stars. In
such a cluster, bursts of gravitational waves can be sourced by flybys between stars. The
authors first note the memory effect in that they find that the gravitational strain does
not revert to zero after the burst. Over the following years the theory of gravitational-
wave memory, i.e. the behaviour of h in the zero-frequency limit, was developed further.
Eventually Ref. [69] provided a simple formula for calculating the amplitude of linear
memory in a detector at distance r for a burst sourced from N freely moving systems
indexed by A, with mass MA, moving with velocities vA at an angle θA relative to the
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direction to the detector

∆hTT
jk = ∆

N∑
A=1

4MA

r
√

1− v2
A

[
vjAv

k
A

1− vA cos θA

]TT

. (1.8)

Here ∆ refers to the difference in summation before and after the burst has passed. The
subscripts j and k refer to the x, y, and z coordinates and the TT superscript indicates
that we are working in the transverse-traceless gauge, i.e. the wave is propagating in
the z direction and hjz = hzj = 0. The quantities r, vjA, and θA are measured as in the
frame of the detector. From 1.8 it is clear that linear memory can only be sourced in
a group of unbound systems such as the flybys mentioned in Ref. [316], as a group of
bound systems could easily be recast as a single system with a fixed centre of mass.

Possible detectable sources of linear memory include supernovae and dynamic three black
hole interactions. In supernovae, detectable linear memory could be sourced if there is
a highly asymmetric emission of neutrinos or the stellar envelope, though could not be
detected in current generation detectors [69, 208]. Dynamic interactions at the centre
of galaxies could allow for the ejection of a black hole at high enough velocities for the
memory to be detected, though it remains unclear if these occur at sufficient rates to be
suitable targets for observation [69]. Thus, Linear memory is now seen as a more unlikely
candidate for detectable gravitational waves, though early theory thought it possible to
be among the first sources of gravitational waves [69].

1.2.2 Nonlinear Memory

Binary black-hole coalescences are the most common sources of gravitational waves we
observe today. Since these start as a fairly closely bound binary and finish as a single,
stationary black hole, it is clear that they cannot source memory as prescribed in Eq. 1.8.
It was long assumed that any nonlinear effects of gravitational waves could be neglected,
though Ref. [79] showed that bound systems nevertheless source a memory contribution
that can reach the same order of magnitude as the regular oscillatory wave at the detector.
Shortly after, Ref. [311] explicitly computed the memory for compact binary systems in
the quadrupole approximation. The argument made in Ref. [79] relies on highly complex
mathematical analysis and is less suitable for intuitive understanding of the nonlinear
memory effect.

A simple explanation, building upon the theory of the linear memory effect, is given in
Ref. [279], which pointed out that the result in Ref. [79] can be obtained by considering
radiated gravitons in the form of gravitational waves in Eq. 1.8. This works if we con-
sider the energy, rather than the mass, of the gravitational waves as they are naturally
massless. As a further extension to Eq. 1.8, we can also write down the time evolution
of the memory as this is a function of the energy E of the gravitational wave (see e.g.
Ref. [104])

δhTT
jk (tR,Ω) =

4

r

∫ tR

−∞
dt

∫
S2

dΩ′
d2E

dtdΩ′

[
njnk

1− n ·N

]TT

(1.9)

where tR is the retarded time at the detector, Ω is the solid angle, n(Ω′) is a unit vector,
N(Ω) is the unit line-of-sight vector between the source and the detector, and the energy
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flux is given by
d2E

dtdΩ
=

r2

16π

∣∣∣∣dh(t,Ω)

dt

∣∣∣∣2 . (1.10)

Here, we have used units of G = c = 1. Thus, given the “oscillatory” gravitational-wave
strain h(t,Ω) we can immediately calculate the associated memory.

Equation 1.9 displays the hereditary nature of the memory effect in that it is dependent
on the entire history of h, which leads to the constant offset observed from it. This
behaviour emerges since memory essentially describes the zero-frequency behaviour of
the gravitational-wave emission. As memory is sourced instantaneously with the emission
of oscillatory waves at time t, there is an infinitesimal direct current offset applied to
the wave at any instant. This hereditary nature and the term “memory” should not
be mistaken to think that knowing the memory at time tR allows us to know the past
evolution of the source, like a memory in the conventional sense, allows us to know
the past. Instead, it is rather the opposite: To know the memory at time tR exactly,
we need to know the entire history of the event and knowing δhTT

jk (tR,Ω) only gives
vague information about the event’s history. Memory can be somewhat thought of like
hysteresis in a magnetic material, which remains magnetised after the external field has
been switched off. However, it is different to hysteresis in the sense that the lasting DC
offset can not be measured on its own since spacetime is flat.

There are alternative ways to calculate memory other than Eq. 1.9. For instance, one can
also employ lengthy calculations using Post Newtonian calculations (see e.g. Refs. [63,
102]). There is also some recent progress in extracting nonlinear memory from numerical
relativity simulations, which has been difficult in the past for technical reasons [104,
205]. These simulations may eventually lead to viable surrogate models that can be
used for inference. As Chap. 4 lays out, we use the approach in Eq. 1.8 to search for
memory signatures in detected binary black hole mergers for practical reasons. Since real-
world detections of gravitational waves have all been of oscillatory waves from binary
coalescences [20, 29], we need an oscillatory model to fit the oscillatory part of the signal
and we can add the memory part to perform model selection. Additionally, extracting
memory from numerical relativity simulations is computationally expensive and there are
no viable surrogate models available yet [205]. Calculating memory from Eq. 1.9 on the
other hand is computationally cheap and is typically no more expensive than calculating
the oscillatory part of the waveform. We show an example waveform in Fig. 1.1. In the
remainder of the thesis, we will often refer to nonlinear memory just as “memory” as it
is the effect we are investigating.

1.2.2.1 Memory Phenomenology

In this section, we will review some of the major results about the shape and properties
of memory sourced from compact binaries. Most of this is based on the work of Marc
Favata who thoroughly explored this in Refs. [102–104].

In the simplest case, we consider the memory sourced by the leading quadrupolar order
modes of the oscillatory waveform. The standard choice of polarization tensors leads
to the entire memory effect being present in the plus mode h+ for circularised binaries.
Ref. [102] lists three important relations for the plus polarised memory hmem

+ . First, as
we would expect intuitively, memory is inversely proportional to the luminosity distance
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dL
hmem

+ ∝ 1/dL . (1.11)

This relation should be trivially true due to energy conservation. Next, the memory is
sensitively dependent on the inclination angle θjn between line of sight to the binary and
direction of total angular momentum

hmem
+ ∝ sin2 θJN(17 + cos2 θJN) . (1.12)

Concretely, this means that edge-on binaries (θJN = π/2) give us maximum memory
whereas face-on (θJN = 0, π) yield zero memory. This stands in contrast with oscillatory
gravitational radiation which is primarily beamed parallel to the angular momentum.
Yet, this should come as no surprise, if we remember the picture in which the memory
is the part of the wave which is sourced by the wave itself. The oscillatory wave is
beamed primarily perpendicular to the orbital plane, whereas the memory is then beamed
perpendicular to the oscillatory wave. Overall, Eq. 1.12 is quite favourable for us as
observers since we are looking more edge-on rather than face-on at most binaries. As we
will see later, this is additionally favourable for us since higher-order modes, which are
important to determine the sign of the memory, are also more easily visible for edge-on
events. Finally, memory sourced before the merger time depends on the masses of the
system

hmem
+ ∝ µ =

m1m2

m1 +m2
, (1.13)

where µ is the reduced mass, and m1 and m2 are the component masses of the binary.
This is only true before the merger time, but this is where most of the detectable signal
is sourced, so for purposes of memory detection, it is approximately true for the entire
waveform. This means that given a fixed total mass M = m1 +m2, memory is maximal
for equal component masses. Unlike Eq. 1.12, this relation should leave us a bit less
hopeful. While many binaries observed to date do have relatively close to equal masses,
slightly asymmetric masses are important to measure higher-order modes (perfectly equal
mass, non-spinning, binaries would show zero higher-order modes). As mentioned briefly
above, measuring higher-order modes is important to determine the sign of the memory.
Additionally, this relation indicates that the low mass binaries will source little memory.
Thus, recently detected binary neutron star and neutron star-black hole systems are
uninteresting for memory searches.

1.2.2.2 Importance of higher-order modes

As hinted at above, it is important to measure higher-order modes to correctly determine
the sign of the memory in the detector. This is because the quadrupolar modes (l,m) =
(2,±2) of a gravitational wave are degenerate under a simultaneous transformation

φc → φc ± π/2 (1.14)
ψ → ψ ± π/2 , (1.15)

where φc is the phase at coalescence and ψ is the polarisation angle [179]. Meanwhile,
the same transformation flips the sign of the memory. We can understand the approach
from Ref. [179], which we implement in Chap. 4, as adding up the memory signal from
multiple events, and thus increase the memory signal-to-noise ratio with square root of
the number of events. However, if we are unable to determine the sign of the memory,
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Figure 1.1: Plus mode of an IMRPhenomXHM waveform and memory for a
GW150914-like event.

the signal will not add up coherently and the signal-to-noise will increase much slower
with the fourth root of the number of events. The reality of this matter turns out to
be more complicated as not all gravitational-wave detections are created equal. While
including higher-order modes to break the degeneracy in phase and polarisation is helpful
to determine the sign of the memory, it will not always be sufficient in practice. None of
the events in the first two observing runs shows strong signs of higher-order modes [220].
Even for a strong gravitational-wave signal such as GW150914 [2, 3] the phase and
polarisation degeneracy is not broken, likely since it is close to being equal mass (see
Fig. 3 in Ref. [220]).

Higher-order modes should be included in the model regardless since they help constrain
posterior distributions. As we stated above, memory is sensitive to the inclination angle
θJN, which can be better constrained with higher-order modes [220]. As we show later
in the top of Fig. 5.3, even including some of the sub-dominant higher-order modes over
just the most dominant ones can shift the posterior distribution of θJN and affect the
inferred Bayes factor for memory. Thus, higher-order modes are also required to reduce
the presence of systematic waveform errors by as much as possible.
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1.2.3 Calculating and measuring Memory in Practice

There are several practical considerations and approaches when it comes to calculating
memory contributions to the waveform. As established in Ref. [103], we could use an an-
alytical “minimal-waveform model”. While this model is much faster than the extraction
of memory from the (l,m) modes via Eq. 1.9, it would be hard to match an oscillatory
waveform to it in a consistent way. After all, we are measuring memory from binaries
where a strong oscillatory signal is already present. To find the memory, we not only
have to distinguish memory from noise but also have to distinguish memory from the
oscillatory waveform. In the following, we lay out how we can perform model selection
that we apply in Chaps. 4 and 5. For more detail about the software packages, we wrote
to carry this out in practice see App.A.

We can write the combined oscillatory and memory waveform as

hosc+mem = hosc + hmem (1.16)

where hosc is the ordinary oscillatory waveform as calculated by waveform approximants,
and hmem is the part that we calculate in Eq. 1.9. In order to make a determination
about the presence of memory, we need to perform model selection between hosc+mem

and hosc. Bayesian model selection using Bayes factors are well suited for this task as
we are comparing discretely different models that have the same parameters [124]. The
latter property is especially favourable for Bayesian methods as this means that prior
choices will not directly impact the Bayes factor calculation.

Evidences and Bayes factors can be calculated with sophisticated algorithms such as
nested sampling. However, as we show in Chaps 4 and 5, the log Bayes factors we
obtain for hosc+mem and hosc are so small that they are swamped by sampling noise
using ordinary settings. Instead, we use the fact that hosc+mem and hmem have the same
priors π(θ), and also approximately the same posterior p(θ|d). Solving Bayes’ theorem
for π we get

π(θ) =
Z(d)p(θ|d)

L(d|θ) . (1.17)

We perform this step for both models and equate

Zosc+mem(d)posc+mem(θ|d)

Losc+mem(d|θ) =
Zosc(d)posc(θ|d)

Losc(d|θ)
. (1.18)

We move Losc+mem to the right hand side and integrate

Zosc+mem(d) =
Zosc(d)

n

n∑
k=1

Losc+mem(d|θk)
Losc(d|θk)

, (1.19)

where n is the number of posterior samples. We use the fact that posc+mem is normalised∫
posc+mem(θ|d)dθ = 1. The memory Bayes factor BFmem can then be obtained by

rearranging

BFmem =
Zosc+mem(d)

Zosc(d)
=

1

n

n∑
k=1

Losc+mem(d|θk)
Losc(d|θk)

. (1.20)
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This method is called “importance sampling” or sometimes “reweighting” in the context
of gravitational-wave analyses, and we write the weights as

wk =
Losc+mem(d|θk)
Losc(d|θk)

. (1.21)

The great advantage of this method is that we only need to calculate a single posterior
using hosc. This benefits us in two major ways. First, we reduce the computational
cost by more than half (hosc+mem is somewhat more expensive to evaluate than hosc).
Second, and more crucially, we greatly reduce the effect stochastic sampling noise has
on the Bayes factor calculation as we explain in more detail in Chap. 4. Importance
sampling works well if the distribution obtained from the oscillatory waveform closely
matches the combined waveform. Having a wide range of weights will effectively cause
samples with very low weights to be tossed out in the reweighted posterior. We can
calculate the number of effective samples remaining

neff =
(
∑

k wk)
2∑

k w
2
k

. (1.22)

The reweighting framework also sheds additional light on the importance of including
higher-order modes into our models. Assume we obtain two posterior samples using Losc,
one of which represents the true underlying parameter set θtrue, and one that is in the
degenerate mode θflip. In the idealised case of noise being zero ln(Losc+mem(θtrue)) = 0,
since all the residuals vanish. Additionally, ln(Losc(θtrue)) = ln(Losc(θflip)) = δh2 where
δh2 represents the weighted least-square difference between the oscillatory model and
the combined oscillatory and memory model. In gravitational-wave detectors, δh2 corre-
sponds to the square of the matched-filter signal-to-noise ratio. Finally, ln(Losc+mem(θflip)) =
4δh2, since model and signal are now 2δh apart. Putting this together to obtain a Bayes
factor, we find

BFmem =
1

2

(
Losc+mem(θtrue)

Losc(θtrue)
+
Losc+mem(θflip)

Losc(θflip)

)
(1.23)

=
1

2

(
eδh

2
+ e−3δh2

)
(1.24)

≈ 1− δh2 , (1.25)

where we have used the first order Taylor approximation of the exponential in the last
line. This result implies a negative log Bayes factor at least for small δh, though the
log Bayes factor turns positive for δh & 0.781. In practice, such small signals will be
dominated by noise, so the actual Bayes factors we obtain will not follow this relation
exactly. We display the shape of Eq. 1.23 in Fig. 1.2.

1.2.4 Prospects of measuring Memory

1.2.4.1 Ground-based Detectors

As we show in Chap. 4, we require 1830+1730
−1100 (90% CI) gravitational-wave detections of

binary black hole mergers with LIGO/Virgo at design sensitivity to confidently measure
memory (lnBFmem ≥ 8). This milestone will likely be reached in the second half of
the decade, at the beginning of the LIGO A+/Virgo+ era, when we will observe tens of
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Figure 1.2: lnBF given different memory matched-filter signal-to-noise ratios δh
assuming a toy model with two posterior samples, one of which is in the degenerate
φc − ψ mode. The lnBF is negative for small δh, highlighting the need to include
higher-order modes to break the degeneracy. Note that the location of lnBF = 0 is

only valid for this specific toy model and does not hold in the general case.

events every day. The large uncertainties on the number of required detections do not
take into account “unknown unknowns”, such as what specific low-frequency sensitivity of
future detector upgrades will yield, the detector duty cycles, and so forth. Reference [64]
shows that, in broad agreement with our study, about five years of data collection with
LIGO/Virgo at design sensitivity is required to reach a total memory SNR ρtot = 3,
which can be seen as a tentative measurement. While Ref. [64] investigates a wider
range of models of waveforms and memory, and uses somewhat different population
assumptions, they find that 1488+725

−879 (90% CI) events are required to reach ρtot = 3
using the assumptions we made in Chap. 4. It should also be noted that these estimates
sensitively depend on inferred merger rates, which will be better understood in the coming
years.

Third generation ground-based detectors will most likely be able to measure memory
in binary mergers, assuming they reach their sensitivity targets [162]. Einstein Tele-
scope [139, 230] may able to detect memory with ρmem & 8 from a GW150914-like merger,
but is most sensitive to memory from mergers with total massMtot = 1000M�−10000M�
if they exist, whereM� is the solar mass. Memory from a Mtot = 5000M� merger might
be detected with ρmem & 3 out to more than 10 Gpc. Cosmic Explorer [9, 237] will boast
even greater sensitivity to somewhat smaller masses, with Mtot = 2000M� being de-
tectable out to ∼ 20 Gpc. Cosmic explorer will also be highly sensitive to memory from
events such as in GWTC-1 [162].
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1.2.4.2 Space-based Instruments

The Laser Interferometer Space Antenna (LISA) is a proposed space-based gravitational-
wave detector, that is scheduled to launch in the early to mid 2030s [37]. Based on the
projected sensitivity LISA should be especially suitable for measuring the low-frequency
strain sourced by memory. LISA will likely detect between 1 and 10 memory events
with ρmem ≥ 5 within its planned 4-year mission [158]. LISA will be most sensitive to
events betweenMtot = 105M�−107M� and thus provide a nice complement to the third
generation ground-based detectors.

The Deci-hertz Interferometer Gravitational-wave Observatory (DECIGO) is a proposed
space-based detector that is supposed to close the frequency gap between LISA and
ground-based detectors [165]. DECIGO will be most sensitive between 0.1 Hz and 10 Hz,
which will make memory from GW150914-like mergers easily measurable out to cos-
mological distances. The same is true for any merger with total mass up to 106M�.
Similarly, the Big Bang Observer (BBO), a proposed successor to LISA which may be
launched in many decades, will be able to reach similar or higher sensitivity than DE-
CIGO across DECIGO’s sensitive band [89, 162].

1.2.4.3 Pulsar Timing

Pulsar timing is an avenue of detecting even lower frequency gravitational waves than
space-based detectors and is based on radio astronomy. Pulsar timing arrays work by
measuring the time of arrival of radio pulses from galactic millisecond pulsars. Memory
would manifest itself as a sudden change in the pulsar’s rotational frequency. Pulsar
timing remains a complex task as intrinsic noise properties of individual pulsars can
mimic a burst. Analyses thus rely on the combination of data from many pulsars (see
Ref. [140] for the methods used in pulsar timing).

There are several currently operating and proposed PTAs which can be used for memory
measurements from supermassive black hole binaries. The North American Observatory
for Gravitational Waves (NANOGrav) [36, 87, 232], the Parkes Pulsar Timing Array
(PPTA) [193], and the European Pulsar Timing Array (EPTA) [170] are currently oper-
ating, and the International Pulsar Timing Array [221, 299] aims to combine measure-
ments from these groups to increase sensitivity. The Square Kilometer Array (SKA)
is a future detector that will likely detect many more pulsars and also improve timing
residuals on known pulsars, thus significantly increasing sensitivity. Searches for memory
with PTAs have been carried out, though without any success yet (see Refs. [35, 41, 304]
for the most comprehensive studies). These searches are most sensitive to memory from
binaries between Mtot = 1011M� − 1012M�, which might not exist since supermassive
black holes likely cannot grow larger than ∼ 1010M�[162, 169]. On the other hand, the
SKA will likely be able to probe memory from supermassive systems down to 109M�
[162].

1.3 Quasi-periodic Oscillations

QPOs can be thought of as oscillatory behaviour in a time series with changing amplitude
or frequency that manifests as a narrow peak in the power spectrum. QPOs are thus
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often implicitly understood to arise from stochastic processes. It is thus natural that
tests for periodicity have mostly been developed in the frequency domain, where a QPO
would stand out as a visual feature. One common method to analyse QPOs is to calculate
a periodogram and assess significance by searching for frequency bins with excess power
relative to the underlying spectrum. Tests for periodicity vary and include frequentist
tests of excess power in individual frequency bins and fitting routines where the QPO is
modelled as some narrow feature in the power spectrum on top of the noise continuum.

1.3.1 Underlying physical processes

QPOs exist for many different astrophysical sources and thus do not have a single un-
derlying process. We specifically study QPOs in transient signals, such as magnetar
flares, gamma-ray bursts (GRBs), and solar flares. However, QPOs have also been ob-
served and studied in other objects such as X-ray binaries and active galactic nuclei (see
Refs. [156, 246] for reviews).

QPOs in magnetar flares have first been established in the SGR 1806_20 Giant flare ob-
served in 2004 [159, 218, 268, 307], which has caused a flurry of theories about their ori-
gin. Initial analysis suggested that QPOs are related to torsional oscillation modes [159].
Shortly after, Ref. [181] posed that coupling of crust to the core by strong magnetic fields
should cause the oscillations to damp within a few tenths of a second. More realistic
magnetic coupling scenarios were investigated shortly after [82, 117, 118, 182, 183, 300].
Additionally, torsional mode identification was explored as a probe to constrain prop-
erties of the neutron star such as mass and radius, and its internal composition [83,
204, 245, 261, 262, 264, 306]. However, the exact process by which QPOs arise remains
elusive.

There has been speculation about QPOs in long GRBs [195, 318] and a recent claim of
several detections [274]. However, the observational literature is found most claims of
QPOs to be contentious. Specifically, GRB090709A, which was originally reported to
have 8.06 s period, later proved not to be statistically significant [74, 92, 160]. There are
several possible sources of QPOs in GRBs. Reference [195] proposes that magnetoro-
tational instabilities in a hyperaccreting disk can cause episodic, intense mass accretion
onto a central black due to gravitational torque. Alternatively, Ref. [318] conjectures
QPOs to arise from a precessing magnetic field.

QPOs in solar flares are regularly observed across the electromagnetic spectrum. The
two prominent families of mechanisms proposed to explain these phenomena are magne-
tohydrodynamic oscillations present in coronal structures and quasi-periodic regimes of
magnetic reconnection [289, 319]. However, the exact origin of these oscillations remains
elusive since the models are generally qualitative in nature [319]. There have been efforts
in recent years to standardise the analysis of solar flare QPOs, which may eventually
shed light on their origin [154, 155].

1.3.2 Analysis methods

In Chap. 6 we show how some of the established and widely used methods are biased
if non-stationarities are present in the time series. This is because these methods rely
on the Whittle-likelihood function that is only valid for stationary time series (see e.g.
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Refs. [75, 309]). However, real astrophysical transients arise due to a combination of
deterministic and non-stationary stochastic processes. We demonstrate and quantify
this effect using Bayesian techniques using both theoretical and empirical calculations.
Additionally, we show how this has affected previous studies of solar flare QPOs.

The results in Chap. 6 motivate the work on Gaussian process (GP) methods presented in
Chap. 7. The GP likelihood is a generalisation of the Gaussian likelihood often employed
for time series data. This likelihood allows us to model stationary and non-stationary
stochastic processes in the time domain via the definition of a covariance matrix, de-
scribed by a kernel function. Unlike the Whittle likelihood, it also allows us to include
known errors for individual data points, which allows for the analysis of heteroscedastic
data sets which are common in astrophysics. Additionally, GPs can fit a deterministic
mean function simultaneously with the stochastic process.

The main hindrance in the adoption of GPs in time series analysis has likely been the
high computational cost of evaluating the likelihood, which is O(N3) in time and O(N2)
in memory for a time series with N elements in the general case. However, recent
innovations and software implementations such as celerite [113] have made it possible
to reduce both the time and memory complexity to O(N) for the class of stationary,
complex exponential kernel functions or combinations thereof. This makes the analysis
of light curves using Bayesian inference with GPs feasible. The class of allowed kernel
functions in celerite is particularly suitable in the analysis of QPOs. Using some minor
modifications, celerite can also fit some simple non-stationary extensions to stationary
models.

In Chap. 7 we develop physically motivated kernel functions for periodic and aperiodic
processes and implement these within the celerite framework. We then use a set of
studies using simulated data to demonstrate that we can accurately recover posterior dis-
tributions of Gaussian process parameters using Bilby. Finally, we deploy this method
on astrophysical and solar flare data and highlight its advantages over frequency-domain
based methods.
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Bilby: A user-friendly Bayesian
inference library for
gravitational-wave astronomy
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G. Ashton, M. Hübner, P. Lasky, C. Talbot, et al. 2019, Bilby: A User-friendly
Bayesian Inference Library for Gravitational-wave Astronomy, ApjS., 241, 27, arxiv:1811.02042

Bayesian parameter estimation is fast becoming the language of gravitational-wave as-
tronomy. It is the method by which gravitational-wave data is used to infer the sources’
astrophysical properties. We introduce a user-friendly Bayesian inference library for
gravitational-wave astronomy, Bilby. This python code provides expert-level parameter
estimation infrastructure with straightforward syntax and tools that facilitate use by
beginners. It allows users to perform accurate and reliable gravitational-wave parameter
estimation on both real, freely-available data from LIGO/Virgo, and simulated data. We
provide a suite of examples for the analysis of compact binary mergers and other types
of signal model including supernovae and the remnants of binary neutron star mergers.
These examples illustrate how to change the signal model, how to implement new like-
lihood functions, and how to add new detectors. Bilby has additional functionality to
do population studies using hierarchical Bayesian modelling. We provide an example
in which we infer the shape of the black hole mass distribution from an ensemble of
observations of binary black hole mergers.

2.1 Introduction

Bayesian inference underpins gravitational-wave science. Following a detection, Bayesian
parameter estimation allows one to estimate the properties of a gravitational-wave source,
for example, the masses and spins of the components in a binary merger [e.g., 3–5, 16, 21].
If the detection involves neutron stars, Bayesian parameter estimation is used to study
the properties of matter at nuclear densities via the signature of tidal physics imprinted
on the gravitational waveform [16, 21, 277]. The posterior probability distributions of
source parameters such as inclination angle can be used, in turn, to make inferences about
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electromagnetic phenomena such as gamma-ray bursts [e.g., 10]. Such parameter estima-
tion is also used to measure cosmological parameters such as the Hubble constant [11].
By combining data from multiple detections, Bayesian inference is used to understand the
population properties of gravitational-wave sources [e.g., 5, 99, 243, 257, 272, 275, 313,
and references therein], which is providing insights into stellar astrophysics. By extending
the gravitational-wave signal model, Bayesian inference is used to test general relativity
and look for evidence of new physics [6, 10, 12, 17, 18]

The field of gravitational-wave astronomy is growing rapidly. We have entered the “open
data era,” in which gravitational-wave data has become publicly available [285]. Since
Bayesian parameter estimation is central to gravitational-wave science, there is a need
for a robust, user-friendly code that can be used by both gravitational-wave novices and
experts alike.

The primary tool currently used by the LIGO and Virgo collaborations for parameter
estimation of gravitational-wave signals is LALInference [298]. This pioneering code
enabled the major gravitational-wave discoveries achieved during the first two LIGO
observing runs [e.g., 3–5, 16, 21]. The code itself is now almost a decade old, and years of
development have made it hard for beginners to learn, and difficult for experts to modify
and adapt to new challenges. More recently, PyCBC Inference [57] was released;
a modern, Python-based toolkit designed for compact binary coalescence parameter
estimation. This package provides access to several different samplers and builds on the
PyCBC package [213] – an open-source toolkit for gravitational-wave astronomy.

We introduce Bilby, a user-friendly parameter-estimation code for gravitational-wave as-
tronomy. Bilby provides expert-level parameter estimation infrastructure with straight-
forward syntax and tools that facilitate use by beginners. For example, with minimal
user effort, users can download and analyze publicly-available LIGO and Virgo data to
obtain posterior distributions for the astrophysical parameters associated with recent
detections of binary black holes [2, 5, 7, 12–14] and the binary neutron star merger [277].

One key functional difference between Bilby and LALInference/PyCBC Inference
is its modularity and adaptability. The core library is not specific to gravitational-wave
science and has uses outside of the gravitational-wave community. Ongoing projects in-
clude astrophysical inference in multimessenger astronomy, pulsar timing, and x-ray ob-
servations of accreting neutron stars. The gravitational-wave specific library is also built
in a modular way, enabling users to easily define their own waveform models, likelihood
functions, etc. This implies Bilby can be used for more than studying compact binary
coalescences—see Sec. 2.5. The modularity further ensures the code will be sufficiently
extensible to suit the future needs of the gravitational-wave community. Moreover, we
believe the wider astrophysics inference community will find the code useful by virtue of
having a common interface and ideas that can be easily adapted to a range of inference
problems.

The remainder of this paper is structured to highlight the versatile, yet user-friendly
nature of the code. To that end, the paper is example driven. We assume familiar-
ity with the mathematical formalism of Bayesian inference and parameter estimation
(priors, likelihoods, evidence, etc.) as well as familiarity with gravitational-wave data
analysis (antenna-response functions, power spectral densities, etc.). Readers looking
for an introduction to Bayesian inference in general are referred to Ref. [255], while
gravitational-wave specific introductions to inference can be found in Refs. [280, 298].
Section 2.2 describes the Bilby design philosophy, and Sec. 2.3 provides an overview
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of the code including installation instructions in Sec. 2.3.1. Subsequent sections show
worked examples. The initial examples are the sort of simple calculations that we expect
will be of interest to most casual readers. Subsequent sections deal with increasingly
complex applications that are more likely of interest to specialists.

The worked examples are as follows. Section 2.4 is devoted to compact binary coa-
lescences. In 2.4.1, we carry out parameter estimation with publicly-available data to
analyze GW150914, the first ever gravitational-wave event. In 2.4.2, we study a simu-
lated binary black hole signal added to Monte Carlo noise. In 2.4.3, we study the matter
effects encoded in the gravitational waveforms of a binary neutron star inspiral. In 2.4.4,
we show how it is possible to add more sophisticated gravitational waveform phenomenol-
ogy, for example, by including memory, eccentricity, and higher order modes. In 2.4.5,
we study an extended gravitational-wave network with a hypothetical new detector.

Section 2.5 is devoted to signal models for sources that are not compact binary coales-
cences. In 2.5.1, we perform model selection for gravitational waves from a core collapse
supernova. In 2.5.2, we study the case of a post-merger remnant. Section 2.6 is devoted
to hyper-parameterization, a technique used to study the population properties of an
ensemble of events. Closing remarks are provided in Section 2.8.

2.2 Bilby Design Philosophy

Three goals guide the design choices of Bilby. First, we seek to provide a parameter-
estimation code that is sufficiently powerful to serve as a workhorse for expert users.
Second, we aim to make the code accessible for novices, lowering the bar to work on
gravitational-wave inference. Third, we desire to produce a code that will age gracefully;
advances in gravitational-wave astronomy and Bayesian inference can be incorporated
straightforwardly without resort to inelegant workarounds or massive rewrites. To this
end, we adhere to a design philosophy, which we articulate with four principles.

• Modularity. Wherever possible, we seek to modularize the code and follow the
abstraction principle [222], reducing the amount of repeated code and easing de-
velopment. For example, the sampler is a modularized object, so if a problem is
initially analyzed using the PyMultiNest [72] sampler for example, one can eas-
ily switch to the emcee [114] sampler or even a custom-built gravitational-wave
sampler. For example, Bilby accesses samplers through a common interface; as
a result it is trivial to easily switch between samplers to compare performance or
check convergence issues.

• Consistency. We enforce strict style guidelines, including adherence to the pep8
style guide for Python 1. As a result, the code is relatively easy-to-follow and
intuitive. In order to maintain integrity of the code while responding to the needs of
a large and active user base, we employ GitLab’s merge request feature. Updates
require approval by two experts. The pep8 protocol is enforced using continuous
integration.

• Generality. Wherever possible, we keep the code as general as possible. For
example, the gravitational-wave package is separate from the package that passes

1https://www.python.org/dev/peps/pep-0008/

https://www.python.org/dev/peps/pep-0008/
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the likelihood and prior to the sampler. This generality provides flexibility. For
example, in Section 2.6, we show how Bilby can be used to carry out population
inference, even though the likelihood function is completely different to the one used
for gravitational-wave parameter estimation. Moreover, a general design facilitates
the transfer of ideas into and out of gravitational-wave astronomy from the greater
astro-statistics community.

• Usability. We observe that historically, people find it difficult to get started with
gravitational-wave inference. In order to lower the bar, we endeavour to make basic
things doable with very few lines of code. We provide a large number of tutorials
that can serve as a blueprint for a large variety of real-world problems. Finally,
we endeavour to follow the advice of the pep20 style guide for Python 2: “There
should be one—and preferably only one—obvious way to do it.” In other words,
once users are familiar with the basic layout of Bilby, they can intuit where to
look if they want to, for example, add a new detector (see Section 2.4.5) or include
non-standard polarization modes.

2.3 Code Overview

2.3.1 Installation

Bilby is open-source, MIT licensed, and written in python. The simplest installation
method is through PyPI 3. The following command installs from the command line:

$ pip install bilby

This command downloads and installs the package and dependencies. The source-code
itself can be obtained from the git repository [46], which also houses an issue tracker and
merge-request tool for those wishing to contribute to code development. Documentation
about code installation, functionality, and user syntax is also provided [47]. Scripts to
run all examples presented in this work are provided in the git repository.

2.3.2 Packages

Bilby has been designed such that logical blocks of code are separated and, wherever
possible, code is abstracted away to allow future re-use by other models. At the top
level, Bilby has three packages: core, gw, and hyper. The core package contains the
key functionalities. It passes the user-defined priors and likelihood function to a sam-
pler, harvests the posterior samples and evidence calculated by the sampler, and returns
a result object providing a common interface to the output of any sampler along with
information about the inputs. The gw package contains gravitational-wave specific func-
tionality, including waveform models, gravitational-wave specific priors and likelihoods.
The hyper package contains functionality for the hierarchical Bayesian inference (see
Sec. 2.6). A flowchart showing the dependency of different packages and modules is
available on the git repository [46].

2https://www.python.org/dev/peps/pep-0020/
3https://pypi.org/project/BILBY/

https://www.python.org/dev/peps/pep-0020/
https://pypi.org/project/BILBY/
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2.3.2.1 The core package

The core package provides all of the code required for general problems of inference.
It provides a unified interface to several different samplers listed below, standard sets of
priors including arbitrary user-defined options, and a universal result object that stores
all important information from a given simulation.

Prior and likelihood functions are implemented as classes, with a number of standard
types implemented in the core package: e.g., the Normal, Uniform, and LogUniform pri-
ors, and GaussianLikelihood, PoissonLikelihood, and ExponentialLikelihood like-
lihoods. One can write their own custom prior and likelihood functions by writing a new
class that inherits from the parent Prior or Likelihood, respectively. The user only
needs to define how the new prior or likelihood is instantiated and calculated, with all
other house-keeping logic being abstracted away from the user.

The prior and likelihood are passed to the function run_sampler, which allows the
user to quickly change the sampler method between any of the pre-wrapped samplers,
and to define specific run-time requirements such as the number of live points, num-
ber of walkers, etc. Pre-packaged samplers include Markov Chain Monte Carlo En-
semble samplers emcee [114], ptemcee [303], PyMC3 [244], and Nested samplers [255,
256] MultiNest [106–108] (through the Python implementation pyMultiNest [72]),
Nestle [53], Dynesty [266], and CPNest [296]. The Sampler class again allows users
to specify their own sampler by following the other examples.

Despite the choice of sampler, the output from Bilby is universal: an hdf5 file [276]
that contains all output including posterior samples, likelihood calculations, injected
parameters, evidence calculations, etc. The Result object can be used to load in these
output files, and also perform common operations such as generating corner plots, and
creating plots of the data and maximum posterior fit.

2.3.2.2 The gw package

The gw package provides the core functionality for parameter estimation specific to tran-
sient gravitational waves. Building on the core package, this provides prior specifications
unique to such problems, e.g., a prior that is uniform in co-moving volume distance, as
well as the standard likelihood used when studying gravitational-wave transients ([e.g.,
see 298] and Eq. 2.1), defined as the GravitationalWaveTransient class. The gw package
also provides an implementation of current gravitational-wave detectors in the detector
module, including their location and orientation, as well as different noise power spectral
densities for both current and future instruments. Standard waveform approximants are
also included in the source module, which are handled through the LALSimulation
package [184].

The gw package also contains a set of tools to load, clean and analyse gravitational-
wave data. Many of these functions are built on the GWpy [191] code base, which are
contained within bilby.gw.detector and primarily accessed by instantiating a list of
Interferometer objects. This functionality also allows one to implement their own
gravitational-wave detector by instantiating a new Interferometer object—we show an
explicit example of this in Sec. 2.4.5.
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2.3.3 The hyper package

The hyper package contains all required functionality to perform hierarchical Bayesian in-
ference of populations. This includes both a Modelmodule and a HyperparameterLikelihood
class. This entire package is discussed in more detail in Sec. 2.6.

2.4 Compact Binary Coalescence

In this section, we show a suite of Bilby examples analyzing binary black hole and
binary neutron star signals.

We employ a standard Gaussian noise likelihood L for strain data d given source param-
eters θ [287, 288, 297]:

lnL(d|θ) = −1

2

∑
k

{
[dk − µk(θ)]2

σ2
k

+ ln
(
2πσ2

k

)}
, (2.1)

where k is the frequency bin index, σ is the noise amplitude spectral density, and µ(θ)
is the waveform. The waveform is a function of the source parameters θ, which consist
of (at least) eight intrinsic parameters (primary mass m1, secondary mass m2, primary
spin vector ~S1, secondary spin vector ~S2) and seven extrinsic parameters (luminosity
distance dL, inclination angle ι, polarization angle ψ, time of coalescence tc, phase of
coalescence φc, right ascension and declination ra and dec, respectively. Table 2.1 shows
the default priors implemented for binary black hole systems. We show how these priors
can be called in Secs. 2.4.1 and 2.4.2. Unless otherwise specified, µ(θ) is given using the
IMRPhenomP approximant [251]. However, the approximant can be easily changed; see
Secs. 2.4.2 and 2.4.3. Moreover, it is relatively simple to sample in different parameters
than those listed above (e.g., chirp mass and mass ratio instead of m1 and m2); examples
for doing this are provided in the git repository [46].

2.4.1 GW150914: the onset of gravitational wave astronomy

The first direct detection of gravitational waves occurred on the 14th of September, 2015,
when the two LIGO detectors [1] in Hanford, Washington and Livingston, Louisiana
detected the coalescence of a binary black hole system [2]. The gravitational waves swept
through the two detectors with a 6.9+0.5

−0.4 ms time difference which, when combined with
polarization information, allowed for a sky-location reconstruction covering an annulus
of 590 deg2 [2]. The initially-published masses of the colliding black holes were given as
36+5
−4M� and 29+4

−4M� [3]. Subsequent analyses with more accurate precessing waveforms
constrained the masses to be 35+5

−3M� and 30+3
−4M� at 90% confidence [4]. The distance

to the source is determined to be 440+160
−180 Mpc [4].

In this example, we use Bilby to reproduce the parameter estimation results for GW150914.
The data for published LIGO/Virgo events is made available through the Gravitational
Wave Open Science Center [285]. Built-in Bilby functionality downloads and parses
this data. We begin with the following two lines.
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Table 2.1: Default binary black hole priors. The intrinsic variables are the two black
hole masses m1,2, their dimensionless spin magnitudes a1,2, the tilt angle between their
spins and the orbital angular momentum θ1,2, and the two spin vectors describing
the azimuthal angle separating the spin vectors δφ and the cone of precession about
the system’s angular momentum φJL. The extrinsic parameters are the luminosity
distance dL, the right ascension ra and declination dec, the inclination angle between
the observers line of sight and the orbital angular momentum ι, the polarisation angle
ψ, and the phase at coalescence φc. The phase, spins, and inclination angles are all
defined at some reference frequency. We do not set a default prior for the coalescence
time tc. ‘sin’ and ‘cos’ priors are uniform in cosine and sine, respectively, and ‘comoving’

implies uniform in comoving volume.

variable unit prior minimum maximum
m1,2 M� uniform 5 100
a1,2 - uniform 0 0.8
θ1,2 rad. sin 0 π
δφ, φJL rad. uniform 0 2π
dL Mpc comoving 102 5× 103

ra rad. uniform 0 2π
dec rad. cos −π/2 π/2
ι rad. sin 0 π
ψ rad. uniform 0 π
φc rad. uniform 0 2π

>>> import bilby
>>> interferometers = bilby.gw.detector.get_event_data("GW150914")

The first line of code imports the Bilby code-base into the Python environment. The
second line returns a set of objects that contain the relevant data segments and associ-
ated data products relevant for the analysis for both the LIGO Hanford and Livingston
detectors. By default, Bilby downloads and windows the data. A local copy of the data
is saved along with diagnostic plots of the gravitational-wave strain amplitude spectral
density.

In addition to the data, the two key ingredients for any Bayesian inference calculation
are the likelihood and the prior. Default sets of priors can be called from the gw.prior
module, and we also employ the default Gaussian noise likelihood (Eq. 2.1).

prior = bilby.gw.prior.BBHPriorDict(filename =" GW150914.prior")
likelihood = bilby.gw.likelihood.get_binary_black_hole_likelihood(
interferometers)

The above code calls the GW150914 prior, which differs from the priors described in
Tab. 2.1 in two main ways. Firstly, to speed up the running of the code it restricts the
mass priors to between 30 and 50 M� for the primary mass, and 20 and 40 M� for the
secondary mass. Moreover, this prior call restricts the time of coalescence to 0.1 seconds
before and after the known coalescence time. One can revert to the priors in Tab. 2.1
by replacing the above file call with filename="binary_black_holes.prior", but this
would require separately setting a prior for the coalescence time. We show how this can
be done in Sec. 2.4.2.

The next step is to call the sampler:
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>>> result = bilby.core.sampler.run_sampler(likelihood, prior)

This line performs parameter inference using the sampler default Dynesty [266], with a
default 500 live points. This number can be increased by passing the nlive= keyword ar-
gument to run_sampler(). The sampler returns a list of posterior samples, the Bayesian
evidence, and metadata, which is stored in an hdf5 file. One may plot a corner plot
showing the posterior distribution for all parameters in the model using the command

>>> result.plot_corner()

The above example code produces posterior distributions that by eye, agree reason-
ably well with the parameter uncertainty associated with the published distributions for
GW150914. The shape of the likelihood for the extrinsic parameters presents significant
challenges for samplers, due to strong degeneracy’s between different sky locations, dis-
tances, inclination angles, and polarization angles [see e.g., 100, 234]. For more accurate
results, we use the nested sampling package CPNest [296], which is invoked by changing
the run_sampler function above to include the additional argument sampler='cpnest'.
We also change the number of live points by adding nlive=5000 to the same function,
and specify a keyword argument maxmcmc=5000, which is the maximum number of steps
the sampler takes before accepting a new sample. To resolve the issue with the phase at
coalescence, we analytically marginalize over this parameter [100] by adding the optional
phase_marginalization=True argument to the instantiation of the likelihood. Bilby
has built in analytic marginalization procedures for the time of coalescence [100] and
distance [253, 254], which can both be invoked using time_marginalization=True and
distance_marginalization=True, respectively. These decrease the run time of the code
by minimizing the dimensionality of the parameter space. Posterior distributions can still
be determined for these parameters by reconstructing them analytically from the full set
of posterior samples [e.g., see 280].

Using Bilby we can plot marginalized distributions by simply passing the plot_corner
function the optional parameters=... argument. In Fig. 2.1 we show the marginalized,
two-dimensional posterior distribution for the masses of the two black holes as calculated
using the above Bilby code (shown in blue). In orange we show the LIGO posterior
distributions from Ref. [5], calculated using the LALInference software [298], and
hosted on the Gravitational Wave Open Science Center [285].

In Fig. 2.2 we show the marginalized posterior distribution of the luminosity distance
and inclination angle, where the Bilby posteriors are again shown in blue, and the
LALInference posteriors in orange. Figure 2.3 shows the sky localisation uncertainty
for both Bilby and LALInference.

The above example does not make use of detector calibration uncertainty, which is an
important feature in LIGO data analysis. Such calibration uncertainty is built in to
Bilby using the cubic spline parameterization [101], with example usage in the Bilby
repository.

2.4.2 Binary black hole merger injection

Bilby supports both the analysis of real data as in the previous section, as well as the
ability to inject simulated signals into Monte Carlo data. In the following two sections we



23

35 40 45
primary mass [M�]

25

30

35
se

co
nd

ar
y

m
as

s
[M
�

]

Figure 2.1: Marginalised posterior source-mass distributions for the first binary black
hole merger detected by LIGO, GW150914. We show the posterior distributions recov-
ered using Bilby (blue), and those using LALInference (orange), using open data
from the Gravitational Wave Open Science Centre [285]. The five lines of Bilby code

required for reproducing the posteriors are shown in Section 2.4.1.

inject a binary black hole signal and a binary neutron star signal, respectively, showing
how one can easily inject and recover signals and their astrophysical properties.

In this first example4, we create a binary black hole signal with parameters similar to
GW150914 [3], albeit at a luminosity distance of dL = 2 Gpc (cf. dL ≈ 400 Mpc for
GW150914). We inject the signal into a network of LIGO-Livingston, LIGO-Hanford [1]
and Virgo interferometers [32], each operating at design sensitivity. When doing examples
of this nature, it is time intensive to sample over all fifteen parameters in the waveform
model. Therefore, to get quick results that can be run on a laptop, we only sample over
four parameters in the waveform model: the two black-hole masses m1,2, the luminosity
distance dL, and the inclination angle ι. Bilby supports simple functionality to limit or
extend the number of parameters included in the likelihood calculation, as shown below.

We begin by setting up a WaveformGenerator object using a frequency domain strain
model that takes the signal injection parameters and specific waveform arguments such
as the waveform approximant as arguments. The WaveformGenerator also takes data
duration and sampling frequency as input parameters. With the source model de-
fined, we now instantiate an interferometer object that takes the strain signal from
the WaveformGenerator and injects it into a noise realisation of the three interferom-
eters. One could choose to do a zero-noise simulation by simply including the flag
zero_noise=True.

4This example is found in the Bilby git repository at https://git.ligo.org/Monash/bilby/blob/
master/examples/injection_examples/basic_tutorial.py.

https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/basic_tutorial.py
https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/basic_tutorial.py
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Figure 2.2: Marginalized posterior distributions on the binary inclination angle and
luminosity distance for the first binary black hole merger detected by LIGO, GW150914.
We show the posterior distributions recovered using Bilby (blue), and those using
LALInference (orange), using open data from the Gravitational Wave Open Science

Centre [285].

Priors are set up as in the previous open data example, except we call the binary_black_holes.prior
file instead of the specific prior file for GW150914. Moreover, to hold all but four of the
parameters fixed, we set the value of the prior for those other parameters to the injection
value. For example, setting

>>> prior['a_1']=0

sets the prior on the dimensionless spin magnitude of the primary black hole to a delta-
function at zero.

In general, we can change the prior for any parameter with one line of code. For example,
to change the prior on the primary mass to be uniform between m1 = 25 M� and 35
M�, say, one includes

>>> prior['mass_1']=bilby.core.prior.Uniform(minimum=25, maximum=35,
unit=r'$M_\odot$')↪→

Bilby knows about many different types of priors that can all be called in this way.
For this example we are also required to define priors on the coalescence time, which we
define to be a uniform prior with minimum and maximum one second either side of the
injection time.

The likelihood is again set up similarly to the open-data example of Sec. 2.4.1, although
this time we must pass the interferometer, waveform_generator, and prior. Finally,
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Figure 2.3: Sky localisation uncertainty for GW150914. The blue marginalized poste-
rior distributions are those recovered using Bilby, and the orange are those recovered
using LALInference, using open data from the Gravitational Wave Open Science

Center [285].

the sampler can be called in the same way as Sec. 2.4.1; for this example we use the
pyMultiNest nested sampler [72].

Figure 2.4 shows the recovered posterior distributions (blue) and the injected parameter
values (orange). For this example, using the PyMultiNest [72] nested sampling package
with 6000 live points took approximately 30 minutes on a laptop to sample fully the
four-dimensional parameter space. The parameters in Fig. 2.4 are recovered well with
the usual degeneracy present between the luminosity distance and inclination angle of
the source, dL and ι, respectively.
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Figure 2.4: Injecting and recovering a binary black hole gravitational-wave signal with
Bilby. We inject a signal into a three-detector network of LIGO-Livingston, LIGO-
Hanford, and Virgo and perform parameter estimation. The posterior distributions are
shown in blue and the injected values in orange. To speed up the simulation we only
search over the two black hole masses m1 and m2, the luminosity distance dL, and the

inclination angle ι.

2.4.3 Measuring tidal effects in binary neutron star coalescences

The first detection of binary neutron star coalescence GW170817 was a landmark event
signalling the beginning of multimessenger gravitational-wave astronomy [185, 277]. Gravitational-
wave parameter estimation of the inspiral is what ultimately determined that both ob-
jects were likely neutron stars, and provides the best-yet constraints on the nuclear
equation of state of matter at supranuclear densities [10, 185, 277].
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Table 2.2: Default binary neutron star priors. Λ1,2 are the tidal deformability
parameters of the primary and secondary neutron star defined in Eq. 2.2. For other
variable definitions, see Tab. 2.1. Note our commonly-used waveform approximant does
not allow misaligned neutron star spins, implying we do not require priors on those spin

parameters.

variable unit prior minimum maximum
m1,2 M� uniform 1 2
a1,2 - uniform -0.05 0.05
Λ1,2 - uniform 0 3000
dL Mpc comoving 10 500
ra rad. uniform 0 2π
dec rad. cos −π/2 π/2
ι rad. sin 0 π
ψ rad. uniform 0 π
φc rad. uniform 0 2π

One of the key measurements in determining the equation of state from binary neutron
star coalescences is that of the tidal parameters. The dimensionless tidal deformability

Λ =
2k2

3

(
c2R

Gm

)5

, (2.2)

is a fixed parameter for a given equation of state and neutron star mass. Here, k2 is the
second Love number, R and m are the neutron star radius and mass, respectively. The
binary neutron star merger GW170817 provided constraints of Λ1.4 = 190+390

−120 [16, 91],
where the subscript denotes this is the estimate on Λ assuming a 1.4 M� neutron star,
and the uncertainty is the 90% credible interval.

Bilby can be used to study neutron star coalescences in both real and simulated data.
We inject a binary neutron star signal using the TaylorF2 waveform approximant into
a three-detector network of the two LIGO detectors and Virgo, all operating at design
sensitivity 5. Our injected signal is an m1 = 1.3 M�, m2 = 1.5 M� binary at dL = 50
Mpc with dimensionless spin parameters a1,2 = 0.02, and tidal deformabilities Λ1,2 = 400.
Setting up such a system in Bilby is equivalent to doing the binary black hole injection
study of Sec. 2.4.2, except we call the lal_binary_neutron_star source function, which
requires the additional Λ1,2 arguments. We also have specific binary neutron star priors;
the default set can be called using

>>> priors = bilby.gw.prior.BNSPriorDict()

The standard set of binary neutron star priors are shown in Tab. 2.2. In this example
we use the Dynesty sampler [266].

The tidal deformability parameters Λ1 and Λ2 are known to be highly correlated. The
terms that appear explicitly due to the tidal corrections in the phase evolution are instead
Λ̃ and δΛ̃ [110] (for definitions of these parameters, see Eqs. (14) and (15) of Ref. [175]).
We therefore sample in Λ̃ and δΛ̃, instead of Λ1 and Λ2. Although we sample in all

5This example is found in the Bilby git repository at https://git.ligo.org/Monash/bilby/blob/
master/examples/injection_examples/binary_neutron_star_example.py.

https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/binary_neutron_star_example.py
https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/binary_neutron_star_example.py
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Figure 2.5: Injecting and recovering a binary neutron star gravitational-wave signal
with Bilby. We inject a signal into the three-detector network, and show here only
the marginalized two-dimensional posterior on the two tidal deformability parameters

(blue) with the injected values shown in orange.

binary neutron star parameters, we show only the two-dimensional marginalized posterior
distribution for Λ̃ and δΛ̃ in Fig. 2.5. The corresponding injected values of Λ̃ and δΛ̃ are
shown as the orange vertical and horizontal lines, respectively.

2.4.4 Implementing New Waveforms

The preceding subsections have only given a flavour of what can be achieved with Bilby
for compact binary coalescences. It is trivial to implement more complex signal models
that include, for example, higher order modes, eccentricity, gravitational-wave memory,
non-standard polarizations. Examples showing different signal models are included in
the git repository [46]. Bilby has already been used in one such application: testing
how well the orbital eccentricity of binary black hole systems can be measured with
Advanced LIGO and Advanced Virgo [189]. An example script reproducing those results
can be found in the git repository [46].

If a signal model exists in the LAL software [184], then calling that signal model and
defining which parameters to include in the sampler is as simple as the above examples.
In Sec. 2.5 we also show how to include a user-defined source model. Moreover, one is free
to define and sample models in either the time or frequency domain. We include examples
for both cases in the git repository. The latter case of using a time-domain source model
requires doing little more than selecting the argument time_domain_source_model in
the WaveformGenerator, rather than selecting frequency_domain_source_model.

Of course, one may also want to set up the injection and the sampler using two different
waveform models, for example to inject a numerical relativity signal into Monte Carlo
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data and recover it with a waveform approximant (see also Sec. 2.5.1). This is possible
by simply instantiating two WaveformGenerators, injecting with one and passing the
other to the likelihood.

2.4.5 Adding detectors to the network

The full network of ground-based gravitational-wave interferometers will soon consist of
the two LIGO detectors in the US, Virgo, LIGO-India [161] and the KAGRA detector in
Japan [48], all of which are implemented in Bilby. A gravitational-wave interferometer
is specified by its geographic coordinates, orientation, and noise power spectral density.
By default, Bilby includes descriptions of current detectors including LIGO, Virgo, and
KAGRA, as well as proposed future detectors, A+ [202], Cosmic Explorer [9], and the
Einstein Telescope [230]. It is also possible to define new detectors, which is useful for
developing the science case for proposals and to optimize the design and placement of
new detectors. Among other things, this can be used in developing the science-case for
interferometer design and placement.

Bilby provides a common interface to define detectors by their geometry, location, and
frequency response. By way of example, we place a new four-kilometer-arm interferom-
eter in the Shire of Gingin, located outside of Perth, Australia; the current location of
the Australian International Gravitational Observatory (AIGO). We assume a futuristic
network configuration of the Australian Observatory together with the two LIGO detec-
tors in Hanford and Livingston, all operating at A+ sensitivity [202]. We generate A+
power spectral densities in the same script used to run Bilby by using the pygwinc
software [239], which creates an array containing the frequency and noise power spectral
density6 (one could equally use more sophisticated software such as Finesse [71] to create
more detailed interferometer sensitivity curves). We then create a new Interferometer
object using bilby.gw.detector.Interferometer(), which takes numerous arguments
including the position and orientation of the detector, minimum and maximum frequen-
cies, and the power or amplitude noise spectral density. The noise spectral density can
be passed as an ascii file containing the frequency and spectral noise density. With the
new detector defined, one can again calculate a noise realisation and signal injection in
a manner similar to what is done in Sec. 2.4.

In this example we inject a GW150914-like binary black hole inspiral signal at a lumi-
nosity distance of dL=4 Gpc, and recover the masses, sky location, luminosity distance
and inclination angle of the system. In this example we use the Nestle sampler [53].
Figure 2.6 shows the two-dimensional marginalized posterior for the sky-location un-
certainty when including (blue) and not including (orange) the Australian detector in
Gingin. In this instance, the sky localisation uncertainty decreases by approximately a
factor four when including the third detector.

While this example includes three detectors, it is straightforward to extend this analysis
to an arbitrary detector network. The likelihood evaluation simply loops over the number
of detectors passed to it and multiplies the likelihood for each detector to get a combined
likelihood for each point in the parameter space.

6This example is found in the Bilby git repository at https://git.ligo.org/Monash/bilby/blob/
master/examples/injection_examples/Australian_detector.py.

https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/Australian_detector.py
https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/Australian_detector.py
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Figure 2.6: Sky location uncertainty when including a gravitational-wave detector
in Gingin, Australia. Shown are the sky localisations (marginalized two-dimensional
posterior distributions) for an injected binary black hole signal using a two-detector
network of gravitational-wave interferometers Hanford and Livingston (orange) and a

three-detector network that also includes the Australian detector (blue).

2.5 Alternative signal models

Section 2.4 focuses on compact binary coalescences. However, the Bilby gw package
enables parameter estimation for any type of signal for which a signal model can be
defined. In this section, we show two illustrative examples: the injection and recovery
of a core-collapse supernovae signal, and a much-simplified model of a hypermassive
neutron star following a binary neutron star merger. The former example highlights
two key pieces of infrastructure; the ability to inject numerical relativity signals, and
to develop ones own source model that is not built into Bilby. The latter example
highlights the use of a different likelihood function that only uses the amplitude of the
signal, and throws away the phase information.
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2.5.1 Supernovae

Gravitational-wave signals from core-collapse supernovae are complicated and not well
understood in terms of their specific phase evolution. Numerous techniques have been
developed to deal with both detection and parameter estimation. One such method for
the latter problem involves principal component analysis [186, 224, 226], where the signal
is reconstructed using a weighted sum of orthonormal basis vectors. In this example, we
inject a gravitational-wave signal from a numerical relativity simulation [209] and recover
the principal components using Bilby7.

The injection is performed by defining a new signal class that, in this case, simply reads
in an ascii text file containing the gravitational-wave strain time series. The injection is
then performed in a way akin to the binary black hole and binary neutron star examples
in Sec. 2.4. We inject signal L15 from Ref. [209], which comes from a three-dimensional
simulation of a non-rotating core-collapse supernova with a 15 M� progenitor star. The
signal is injected at a distance of 5 kpc in the direction of the galactic center. The
amplitude spectral density of the injected signal is shown in Fig. 2.7 as the orange trace.

The signal is reconstructed using principal component analysis, such that the strain is
expressed as

h̃(f) = A
k∑
j=1

βjUj(f), (2.3)

where A is an amplitude factor, βj and Uj are the complex principal component ampli-
tudes and vectors, respectively. Equation (2.3) is implemented into Bilby as another
new signal model that takes the βj coefficients, luminosity distance (which is a proxy for
A), and sky location as inputs. Priors for each of the new parameters are established in
the same way as the example with the mass in Sec. 2.4.2. In this case, we set k = 5 and
use uniform priors between -1 and 1 for each of the βj ’s.

Figure 2.7 shows the injected (orange) and recovered (blue) gravitational-wave signal in
the frequency domain. The dark blue curve shows the maximum likelihood curve, and
the shaded blue region is a superposition of many reconstructed waveforms from the
posterior samples.

2.5.2 Neutron star post-merger remnant

There are a number of physical scenarios that can occur following the merger of two
neutron stars, including the existence of short- or long-lived neutron star remnants. In
the early phases post-merger (.1 s), these neutron stars are highly dynamic, and can emit
significant gravitational radiation potentially observable by Advanced LIGO and Virgo at
design sensitivity out to ∼ 50 Mpc [e.g., 80, and references therein]. While the ultimate
fate of binary merger GW170817 is unknown, no gravitational waves from a post-merger
remnant were found [15, 21], which is not surprising given the interferometers were not
operating at design sensitivity and the distances involved.

7This example is found in the Bilby git repository at https://git.ligo.org/Monash/bilby/blob/
master/examples/supernova_example/supernova_example.py.

https://git.ligo.org/Monash/bilby/blob/master/examples/supernova_example/supernova_example.py
https://git.ligo.org/Monash/bilby/blob/master/examples/supernova_example/supernova_example.py
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Figure 2.7: Parameter estimation reconstruction of a numerical relativity supernova
signal. A numerical relativity supernovae signal (orange) is injected into a three-
detector network of the two Advanced LIGO detectors and Advanced Virgo, all op-
erating at design sensitivity. The maximum likelihood reconstruction of the signal is
shown in dark blue, and the blue light band shows the superposition of many recon-

structed waveforms from the posterior samples.

Providing the sensitivity of gravitational-wave interferometers continues to increase, it
is possible a gravitational-wave signal from a post-merger remnant could be detected
in the relative near future. Such a detection would provide an excellent opportunity
to understand the nuclear equation of state of matter at extreme densities, as well as
the rich physics of these exotic objects [e.g., 50, 236, 252]. Parameter inference of such
short-lived signals is in its infancy [e.g., see 76], largely due to the paucity of reliable
waveforms [81, 97]. This is an ongoing challenge due to the expensive nature of numerical
relativity simulations and the complex physics that must be included in such simulations.

Simple models that provide approximate gravitational-wave signals fit to a handful of
numerical relativity waveforms exist [67, 97, 200], which may eventually be used for
full parameter inference. The phase evolution of such numerical relativity simulations
is rapid, and very difficult to model [97, 200]. However, it is the frequency content
of the signal that carries information about the equation of state and the physics of
the remnant [e.g., 271, and references therein]. It is therefore possible that parameter-
estimation algorithms may require one to throw away information about the phase, and
only keep amplitude spectral content. Such a process requires a different likelihood
function than the one that has been used to this point. This therefore provides good
motivation for showing how to include a different likelihood function in Bilby code.
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Figure 2.8: A proxy post-merger gravitational-wave signal from a short-lived neutron
star showing the implementation of a different likelihood function in Bilby. The orange
curve is an injected, double-peaked Gaussian signal injected into a constant noise real-
isation. The blue band shows the waveform reconstructions from the posterior samples
using a power-spectrum likelihood function; i.e., one that only uses the amplitude of

the signal and ignores the phase.

We implement a power-spectral density (“burst”) likelihood

lnL(|d| | θ) =

N∑
i=1

[
ln I0

(
|h̃i(θ)||d̃i|
Sn(fi)

)
− |h̃i|

2 + |d̃i|2
2Sn(fi)

+ ln |h̃i(θ)| − lnSn(fi)

]
, (2.4)

where I0 is the zeroth-order modified Bessel function of the first kind. This requires
setting up a new Likelihood class, that contains a log_likelihood function that reads
in the frequency array, noise spectral density and waveform model, and outputs a single
likelihood evaluation. Having defined a new likelihood function, one calls the remaining
functions in the usual way; the likelihood function is instantiated and passed to the
run_sampler() command.

We inject a double-peaked Gaussian, shown in Fig. 2.8 as the solid orange curve. We
recover this signal using the same model (with a constant noise spectral density), where
we use uniform priors for the amplitudes, widths and frequencies of each of the peaks.
Figure 2.8 shows the waveform reconstruction for each of the posterior samples, which
can be seen to cover the injected signal.
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2.6 Population Inference: hyperparameterizations

Individual detections of binary coalescences can provide stunning insights into various
physical and astrophysical questions. Increased detector sensitivities imply significantly
more events will be detected, enabling statements to also be made about ensemble proper-
ties of populations [e.g., 5, 99, 243, 257, 272, 275, 313, and references therein]. Extracting
information from a population of events is performed using hierarchical Bayesian infer-
ence where the population is described by a set of hyper-parameters, Λ. Bilby has
built-in support for calculating Λ from multiple sets of posterior samples from individual
events.

Bilby implements the conventional method whereby the posterior samples θji for each
event j are re-weighted according to the ratio of the population model prior π(θ|Λ) and
the sampling prior π(θ) to obtain the hyper-parameter likelihood

L(h|Λ) =

N∏
j

Zj
nj

nj∑
i

π(θji |Λ)

π(θji )
. (2.5)

Here, Zj is the Bayesian evidence for the data given the original model and nj is the
number of posterior samples in the jth event.

The Bilby implementation requires the user to define π(θ|Λ) and π(θ) which, along with
the set of posterior samples θji , are passed to the HyperparameterLikelihood in Bilby’s
hyper package. The hyperparameter priors are then set up in the usual way, and passed
to the standard run_sampler function.

As a demonstration 8 of this method we reproduce results [272] recovering parameters
describing a postulated excess of black holes due to pulsational pair-instability supernovae
(PPSN) [138, 312]. The posterior distribution for the hyperparameters determining the
abundance and characteristic mass of black holes formed through this mechanism are
shown in Fig. 2.9. The hyperparameter λ is the fraction of binaries where the more
massive black hole formed through PPSN, µpp is the typical mass of these black holes
and σpp determines the width of the “PPSN graveyard”.

This model contains seven additional hyperparameters describing the remainder of the
distribution of black hole masses that we hold fixed for the purposes of this example.
Additional hyperparameters may be added straightforwardly.

2.7 Analysis of arbitrary data: an example

Bilby is more than a tool for gravitational-wave astronomy; it can also be used as a
generic and versatile inference package. In the documentation examples, we demonstrate
how Bilby can be applied to generic time-domain data from radioactive decay processes.
Furthermore, Bilby is currently being used to analyse radio and x-ray data from neutron
stars, and to study multi-messenger signals associated with binary neutron star mergers.
Here we show an example that calculates posterior distributions for one of the letters in
the Bilby logo.

8This example is found in the Bilby git repository at https://git.ligo.org/Monash/bilby/blob/
master/examples/other_examples/hyper_parameter_example.py.

https://git.ligo.org/Monash/bilby/blob/master/examples/other_examples/hyper_parameter_example.py
https://git.ligo.org/Monash/bilby/blob/master/examples/other_examples/hyper_parameter_example.py
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Figure 2.9: Population modelling with Bilby hierarchical Bayesian inference module.
We show the recovery of parameters describing part of the mass distribution of binary
black holes using the model described in Ref. [272]. The population parameters are
drawn from values shown in orange, and the posterior distributions for the hyperpa-
rameters shown in blue. Here, λ is the fraction of binaries where the more massive
black hole formed through pulsational pair-instability supernovae, µpp and σpp are the
typical mass of these black holes and the width of the “PPSN graveyard”, respectively.

We import an image file containing the letter, map this to an x-y coordinate system and
sample in both dimensions with likelihood

lnL ∝ −1

xy
, (2.6)

assuming uniform priors on both variables. Figure 2.10 shows the posterior distribution
for the “B” in the Bilby logo. All letters are shown in Fig 2.11, where the axis labels
have been removed. The code for making this plot, and all other posterior distributions
in the logo, are available with the git repository [46] in sample_logo.py.
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Figure 2.10: The ‘B’ from the Bilby logo, generated using the Bilby package; see
Sec. 2.7
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Figure 2.11: All letters from the Bilby logo, generated using the Bilby package; see
Sec. 2.7

2.8 Conclusion

Gravitational-wave astronomy is fast becoming a data-rich field. With the significantly
increased activity in the field, there is a developing need for robust, easy-to-use inference
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software that is also modular and adaptable. We present Bilby: the Bayesian inference
library for gravitational-wave astronomy. Bilby is open-source software that can be used
to perform Bayesian inference. It is easily applied to data from LIGO/Virgo, including
open data available from the Gravitational Wave Open Science Center. We access and
manipulate LIGO data using GWPy [191]. Alternatively, Bilby may be used to study
simulated data. Bilby can also be used to perform hierarchical Bayesian inference for
population studies.

We present examples highlighting Bilby’s functionality and usability, including examples
using open data from the first gravitational-wave detection GW150914. Only five lines
of code are required to reconstruct the astrophysical parameters of GW150914. One can
redo the analysis using different priors, alternative waveform models, and/or a different
sampling method with only modest changes. We show how to inject binary black hole
and binary neutron star signals into Monte Carlo noise. We show how to define new
gravitational-wave detectors.

We emphasise that Bilby is a front-end system that provides a unified interface to a va-
riety of samplers, which are a primary workhorse of Bayesian inference. While numerous
off-the-shelf samplers are implemented (see Sec. 2.3.2.1), to the best of our knowledge
there is no universal sampling solution to gravitational-wave parameter estimation prob-
lems. Bilby is therefore only as good as the implemented samplers; initial studies show
that CPNest [296], Dynesty [266], and emcee [114, 303] sample the extrinsic parame-
ters of binary coalescences more accurately than Nestle [53] and pyMultiNest [72]. A
systematic comparison of all off-the-shelf and boutique samplers is currently underway
using Bilby.

Bilby is designed so as to be applicable to arbitrary signal models, not just compact
binary coalescences. To this end we show two examples: one of an injected numerical
relativity supernova waveform that we reconstruct using principal component analysis,
and another using a proxy for a neutron star post-merger waveform. The former example
highlights how one can include their own signal models to perform both injections and
signal recoveries, while the latter example demonstrates the ability to add a likelihood
function that is different from the standard gravitational-wave transient likelihood.
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Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and Hun-
garian institutes. The Bilby package makes use of the standard scientific Python
stack [163, 198, 216], matplotlib [144], corner [112], and healpy [129] for the gener-
ation of figures, deepdish [177] for hdf5 [276] file operations, and astropy [229, 238]
for common astrophysics-specific operations.



Chapter 3

Further Information about Bilby

3.1 Open Source Projects in the Scientific Context

The Bilby project has been a huge success by any measure since we published the first
paper in 2018 [44] 1. It has become one of the standard Bayesian inference tools by the
LIGO Scientific Collaboration for the analysis of gravitational waves (see e.g. Refs. [25–
27, 29–31, 278]). It has also been used in many specific studies such as measurements
of eccentricity [240, 241], physical detector calibration models [219, 302], and studies
of gravitational waves from supernovae [225] to name a few. Additionally, there has
been adoption outside gravitational-wave physics, for instance in the analysis of gamma-
ray bursts (e.g. Refs. [188, 247, 305]), fast radio bursts (e.g. Refs. [77, 98, 172, 231]),
pulsar timing (e.g. Refs. [127, 128, 171, 190]), the 2016 Vela pulsar glitch [42, 206], and
others [119, 201, 317].

As laid out in Chap. 2, we have put effort into using good coding practices, using a mod-
ular, abstract, object-oriented structure, and enforcing consistent code with the PEP8
protocol. Over the development of the project, we ensured backwards compatibility in
the application programming interface (API), which ensures that users can safely up-
grade to newer versions of Bilby. We additionally created unit tests which are covering
large parts of the code base [132]. Unit tests aim to test the code one feature at a time,
ensuring that the code can handle all edge cases correctly. Unit testing also encourages
overall good coding practises as it forces us to write “testable” code with small functions
and methods that perform as little logic at a time as possible. We execute unit tests au-
tomatically on several docker images with reference Python setups every time a commit
is pushed onto the repository.

Project management also has played a large role in the success of Bilby. The project
follows standard methods of software development on its GitLab page. We track iden-
tified issues and changes are submitted via merge requests on separate branches. Code
is only merged after it has been reviewed by at least two of the package maintainers. We
typically go through rounds of comments on merge requests to ensure contributors add
code that complies with the package standards. We also foster a community of users on
a dedicated Slack workspace.

1The repository is available at https://git.ligo.org/lscsoft/bilby
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3.2 Extensions to the Bilby Package

The Bilby project has focused on providing a stable and intuitive API. This has allowed
for extension packages and projects to be created that are in part or wholly based off of
Bilby.

3.2.1 Bilby pipe

With the increasing number of observed gravitational-wave events and the adoption
of Bilby as a standard tool, it has become vital to automate the deployment of the
analysis as much as possible. As an extension to Bilby, the bilby_pipe2 package was
introduced in Ref. [242]. bilby_pipe provides an interface either via the command
line or via the creation of submission files such as the one in Listing A.1. Creating
configuration files makes it much easier in practice to track the analysis settings and
identify issues. bilby_pipe interfaces with Bilby and GWpy to retrieve an analysis
segment around a specified trigger time and then calls to Bilby to perform the data
analysis.

Production gravitational-wave analysis is typically run on supercomputers that use a
scheduling system for job submissions. bilby_pipe automatically creates the required
job submission files for the Slurm and HTCondor systems that are used in the OzStar
and LIGO compute clusters. bilby_pipe is now the standard tool for job submission
and has been used in the GWTC-1 re-analysis in Ref. [242], and is actively being used for
O3 analysis runs [25–27, 29–31, 278]. Additionally, bilby_pipe can also create simulated
data and can thus be used for large-scale injection studies.

3.2.2 pBilby

Inference runs on gravitational-wave events can be exceptionally costly if the waveform
model is expensive to evaluate. Standard single-core analysis sometimes does not termi-
nate within an acceptable time for production analysis. Based off the Bilby package,
Ref. [258] introduced the “parallel Bilby” pBilby package. pBilby uses Message Parsing
Interface (MPI) to distribute a Bilby inference run that uses dynesty over multiple
cores. Effectively, pBilby achieves a speedup by using a pool of CPUs to draw samples
in parallel at each iteration of the nested sampling algorithm. The speedup S of this
depends on the number of live points nlive and the number of cores ncore

S = nlive ln

(
1 +

ncore

nlive

)
≈ ncore , (3.1)

where the approximation is valid if nlive � ncore.

Using pBilby is especially useful for events where we deal with expensive waveform
models and segment lengths. This is typically the case for binary neutron star mergers
and neutron star black hole mergers, or some lower-mass black hole binary systems. Ref-
erence [258] shows that the wall time of runs with some of the most expensive waveform
models such as SEOBNRv4PHM [217], can be analysed in O(week) for typical events
by leveraging hundreds of CPUs.

2Code available at https://git.ligo.org/lscsoft/bilby_pipe

https://git.ligo.org/lscsoft/bilby_pipe
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3.2.3 PESummary

While Bilby and bilby_pipe are central to performing the data analysis, practical col-
laboration work requires a standardised way of visualising and distributing results. Each
posterior from an analysed event still requires manual revision to ensure that analysis
parameters and priors were sufficient and that the posterior is converged. Within the
LIGO collaboration this is achieved with PESummary3 [142], which performs consistent
post-processing operations for Bilby and other LIGO inference software, LALInfer-
ence [298], PyCBC [57], and RIFT [176]. PESummary standardises the output into
a single “meta-file” that can be shared more easily across the collaboration and also
implements several plotting functions. More importantly, PESummary creates sum-
mary pages for the runs which can be accessed via a browser window. This means that
collaborators can be more easily involved in reviewing results without requiring expert
knowledge about the software.

3.2.4 Bilby-MCMC

bilby-MCMC is a parallel-tempered ensemble Metropolis-Hastings sampler, that im-
plements gravitational-wave specific proposals [43]. It has been released as part of the
main Bilby package and can be accessed the same way as the other sampling pack-
ages by using the sampler=’bilbymcmc’ keyword argument in the sampling interface.
For gravitational-wave specific problems, bilby-MCMC reaches a higher efficiency in
drawing new live points, thereby speeding up the sampling process. Evidence calcu-
lation within bilby-MCMC is performed via thermodynamic integration [178]. One
of the main advantages of bilby-MCMC is that it is embarrassingly simple and asyn-
chronously parallelised, which allows it to greatly reduce the time required to perform
analyses. Unlike pBilby, bilby-MCMC does not require much communication between
computing nodes. This makes it more suitable for use on high-throughput computing
clusters compared to pBilby.

3.3 Improvements in the Bilby Package

As a follow-up to Chap. 2, we published Ref. [242], which introduced new features and
validated the use of Bilby for gravitational-wave analyses. Many more features have
been added to the code base by the community of developers. In the following, I highlight
features that I have contributed in part or wholly to the project.

3.3.1 Constrained and conditional Priors

In many inference problems, we wish to remove parts of the prior space by placing
restrictions on relationships between parameters. For example, the usual convention
in gravitational-wave analysis when sampling in component masses is to enforce m1 ≥
m2. We can implement this constraint in Bilby by adding a Constraint prior and a
conversion function to the regular Bilby PriorDict. While the specific case of m1 ≥
m2 is coded into the CBCPriorDict, we show how to do it manually as a pedagogical

3The repository is located at https://git.ligo.org/lscsoft/pesummary/

https://git.ligo.org/lscsoft/pesummary/
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example in Listing 3.1. To define a constrained prior, we have to convert the component
mass parameters to a new parameter in which the constraint is given by a simple prior
bound. In our case, we use the asymmetric mass ratio q = m2/m1, which we can cap
to be 1 at maximum to enforce the constraint. After applying constraints, Bilby prior
distributions are no longer correctly normalised. To compensate for that we use an
updated normalisation based on a Monte-Carlo integral.

While constrained priors are handy in some simple applications, there are limits to
their usefulness. When drawing a prior sample, the constraint is evaluated after all
other parameters have been drawn and the sample is thrown out if the constraint is not
fulfilled. For our example with the component masses, this means we discard 50% of
the prior samples initially, though we discard far fewer samples as the live points are
converging towards the posterior distribution. However, if the constraints exclude a far
larger fraction of the parameter space, sampling can become relatively inefficient. For
example, suppose we would like to fit a time series with a number of identical Gaussians

f(t;A,µi, σ) =
N∑
i=1

A exp

(
−(µi − t)2

2σ2

)
, (3.2)

where the A and σ are amplitude and width of each Gaussian, and the µi are the times
of their peaks. This model will have N ! degenerate modes arising because the µi are not
ordered. Creating constraints by, e.g. enforcing δµi = µi+1 − µi > 0, is not scalable to
more than a few parameters since the probability of drawing all µi in the correct order
is 1/N !. One alternative is to use conditional priors. A conditional prior on a parameter
θ1 conditioned on θ0 can be written as π(θ1|θ0). This means we draw θ1 after θ0 and can
thus ensure that the posterior sample always fulfils our side constraints. Coming back to
the example in Eq. 3.2, we can define conditional priors for our problem in the following
way:

π(µ1) = Unif(tmin, tmax) ,

π(µ2|µ1) = Unif(µ1, tmax) ,

π(µ3|µ2) = Unif(µ2, tmax) ,

. . .

π(µN |µN−1) = Unif(µN−1, tmax) .

(3.3)

By iteratively drawing the µi we can now always be sure that our prior sample will
be valid and that there are no degeneracies due to the µi. There are multiple ways
to define conditional priors for this example. In Chap. 7 we show that we can use
conditional Beta functions as priors for the µi if we assume that all peaks were originally
uniformly distributed in time without being ordered in a specific way. Beyond that,
Bilby’s conditional priors are also used in the analysis of hierarchical models used to
infer the population properties of compact objects with LIGO/Virgo [30, 242]. For
example, one popular parametrisation of the population distribution of binary black
holes is

p(m1|mmin,mmax, α) =
m−α1

m1−α
max −m1−α

min

,

p(q|m1,mmin, β) =
m1+β

1 qβ

m1+β
1 −m1+β

min

,

(3.4)
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where mmin and mmax are the minimum and maximum allowed masses for the heavier
black holes, and α and β are power law indices[22, 109, 242].

Conditional priors are implemented in Bilby using a generic factory class pattern that
creates a conditional prior class for each regular prior class, e.g. there is a ConditionalUniform
class that is created by passing the Uniform prior class into the conditional_prior_-
factory in bilby.core.prior.conditional. This approach highlights the advantage of
the modular, object-oriented approach Bilby is built on. To evaluate conditional priors
in practice, we have to use the ConditionalPriorDict, which implements the logic of
resolving the correct order in which priors need to be drawn. This logic can resolve any
allowed chains or forks of conditions. We show how to implement a conditional prior
to solve the ordering of m1 and m2 in Listing 3.2. To do this, we need to implement
a function describing our condition. The first parameter of this function is a dictio-
nary of reference parameters, which refers to parameters of the prior rather than of the
model. For example, these reference parameters for a uniform prior are the minimum
and maximum we initially define. For a power-law shaped prior it would also include the
power-law index as a reference parameter. The remaining arguments are the names of
the other priors this conditional prior relies on, which is m1 in the case of a conditional
prior on m2. Since conditional priors in Bilby use the underlying logic of regular priors,
they are also automatically normalised without the need for Monte-Carlo estimates.

Conditional and constrained priors are both valid options for some examples like com-
ponent masses, but they should be used with caution as they yield different marginal
prior distributions in these parameters. When choosing between these two options some
care should be taken to understand how we impact the posterior distribution with these
choices. In some instances, it may also be desirable to simply reparametrise the problem
to a different set of parameters that are easier to sample in. As we show in Chap. 7, we
can also use conditional and constrained priors on different parameters within the same
ConditionalPriorDict.
import bilby

def conversion_function(samples):
out_samples = samples.copy()
out_samples['q'] = samples['m_2']/ samples['m_1']
return out_samples

priors = bilby.core.prior.PriorDict ()
priors['m_1'] = bilby.core.prior.Uniform(minimum=5, maximum =100)
priors['m_2'] = bilby.core.prior.Uniform(minimum=5, maximum =100)
priors['q'] = bilby.core.prior.Constraint(minimum =0.0, maximum =1.0)
priors.conversion_function = conversion_function

samples = priors.sample (100)
print(samples['m_2']/ samples['m_1'])

Listing 3.1: Minimal script to ensure m1 ≥ m2 during sampling using a constrained
prior.

import bilby

def condition_function_m_2(reference_parameters , m_1):
new_prior_m_2_prior_bounds = dict(minimum=reference_parameters['minimum '],

maximum=m_1)
return new_prior_m_2_prior_bounds

priors = bilby.core.prior.ConditionalPriorDict ()
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priors['m_1'] = bilby.core.prior.Uniform(minimum=5, maximum =100)
priors['m_2'] = bilby.core.prior.ConditionalUniform(

condition_func=condition_function_m_2 , minimum=5, maximum =100)

samples = priors.sample (100)
print(samples['m_2']/ samples['m_1'])

Listing 3.2: Minimal script to ensure m1 ≥ m2 during sampling using a conditional
prior.

3.3.2 Boundary Conditions

Bilby now implements three types of boundary conditions, periodic, reflective, and
None, for samplers that support these settings. Assume we have a parameter θ with a
uniform prior between 0 and 1. The periodic boundary condition moves a proposed
point 1+ε to ε, which means that 0 and 1 effectively describe the same point. reflective
boundaries on the other hand move the same point to 1− ε, and the None condition re-
jects the point outright. Not using boundary conditions can bias the posterior samples
close to the edges of the prior as we reject a disproportionate amount of points in their
vicinity [242]. Some problems can be rewritten to avoid these issues, but many param-
eters in gravitational-wave analyses such as the mass ratio q, the spin magnitudes a1/2,
or the sky position parameters, often have significant support close to their boundaries

The boundary conditions are implemented as a settable attribute in the Prior classes.
dynesty, which is the reviewed sampler used for LIGO/Virgo analyses, implements
all three boundary conditions [266], PyMultinest implements the periodic and None
conditions [72]. All other samplers do not support boundary conditions at this stage and
are effectively treated as None.

3.4 Evidence Review

Extensive studies with Bilby to find best practices for analysis settings for the analy-
sis of compact binary coalescences have been carried out in Ref. [242]. One validation
study that in part led us to adopt dynesty as the default sampling back end was
the review of evidence calculations, which we have presented in Ref. [242], and pro-
vide more detail on here4. Evidence estimates the sampling packages produce may be
systematically biased without us noticing. We can test if this is the case if we use a
likelihood with analytically known evidence for a set problem. In this case, we use a 15-
dimensional multivariate normal distribution as a likelihood that we implemented using
the scipy.stats.multivariate_normal and is available via
bilby.core.likelihood.AnalyticalMultidimensionalCovariantGaussian, as this re-
flects the number of parameters we encounter in a typical binary system. The entries
in the covariance matrix are set such that COVij ranges between 0.15 and 0.25, which
means all parameters show some covariance with each other. We use uniform priors in
the range of [−20, 20], and since the likelihood is a normalised distribution with respect
to the parameters in this case, the evidence is approximately given by the prior volume
Vπ

lnZ ≈ − lnVπ = − ln 4015 ≈ −55.3 . (3.5)
4The code for this study is available at https://git.ligo.org/moritz.huebner/evidence_review/

https://git.ligo.org/moritz.huebner/evidence_review/
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Figure 3.1: lnZ versus the number of live points for the 15-dimensional multivariate
Gaussian distribution averaging 100 inference runs. We show that dynesty, nestle,
and PyPolychord infer the true value without bias given a sufficient number of live

points whereas the other samplers show systematic bias.

Nested sampling packages estimate an error on the inferred lnZ. The primary questions
thus are if the inferred lnZ is consistent with the analytically known one, and if the lnZ
error quoted by the nested sampling package is as broad as the one we can estimate by
running the same analysis many times.

We show a comparative study using six different back end samplers called with a varying
number of live points and the Bilby default settings in Fig. 3.1. We obtained the
error bars by taking the standard deviation of the inferred lnZ over 100 identical runs.
We see that dynesty [266] and PyPolychord [133] perform the best in that they
obtain the correct evidence unbiased for less than 1024 live points. nestle [53] also
recovers the evidence without bias for 1024 live points or more. More concerning, the
PyMultinest [72], cpnest [296], and the dynamic version of dynesty appear to be
systematically biased even for high numbers of live points. It may be possible to eliminate
this bias by choosing analysis settings more carefully for these samplers, though Bilby
mostly remains faithful to the defaults the packages set themselves.

In Fig. 3.2, we investigate dynesty’s quoted lnZ errors more closely. We obtain a
percentile-percentile plot by testing what x% of the time the true evidence is within the
x-percentile of the quoted lnZ credible interval. We find that the quoted lnZ errors are
broadly acceptable if we use more than 1000 live points. The slightly “S”-shaped curve
in the percentile-percentile analysis indicates that the evidence errors are not Gaussian
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Figure 3.2: Illustration of the frequency with which the true evidence is within a given
credible interval for a unimodal Gaussian-shaped likelihood when using the dynesty
sampler. The legend shows how many live points are used to produce the individual
curves. For a lower number of live points, systematic errors in the evidence estimation
cause significant underestimates of the error. Starting at 1024 live points, the evidence
error reasonably reflects the true uncertainty. The grey band shows the 90% confidence

interval. This plot was originally shown in [242]

distributed. Instead, the distribution appears to be tighter and produce fewer outliers
compared to a Gaussian.

We have more complex posteriors in the analysis of compact binaries. Specifically, the
shape of the sky position posterior is often shaped like a ring or a banana, and there are
degeneracies in phase and polarisation angle. Thus, we normally combine five runs when
analysing compact binaries to ensure good convergence. We tested this by performing
the same analysis on a bimodal multivariate Gaussian distribution for which we found
very similar overall results.



Chapter 4

Measuring gravitational-wave
memory in the first LIGO/Virgo
gravitational-wave transient catalog

Published as:

M. Hübner, C. Talbot, P. Lasky, E. Thrane 2020, Measuring gravitational-wave memory
in the first LIGO/Virgo gravitational-wave transient catalog, Phys. Rev. D, 101, 023011,
arxiv:1911.12496v1

Gravitational-wave memory, a strong-field effect of general relativity, manifests itself as
a permanent displacement in spacetime. We develop a Bayesian framework to detect
gravitational-wave memory with the Advanced LIGO/Virgo detector network. We apply
this algorithm on the ten binary black hole mergers in LIGO/Virgo’s first transient
gravitational-wave catalog. We find no evidence of memory, which is consistent with
expectations. In order to estimate when memory will be detected, we use the best current
population estimates to construct a realistic sample of binary black hole observations for
LIGO/Virgo at design sensitivity. We show that an ensemble of O(2000) binary black
hole observations can be used to find definitive evidence for gravitational-wave memory.
We conclude that memory is likely to be detected in the early A+/Virgo+ era.

4.1 Introduction

Gravitational waves from binary black hole mergers are now observed regularly with
LIGO and Virgo [1, 20, 32]. These observations allow us to investigate aspects of general
relativity that could not have been studied observationally until now [13, 23, 24, 126].
One such aspect is gravitational-wave memory, a strong-field effect of general relativity
that is sourced from the emission of gravitational waves. Memory causes a permanent
displacement between freely falling test masses [69, 279, 316].

In general, memory can arise both in the linearized Einstein field equations and in their
full non-linear form. Early research focused on the production of linear memory from
unbound systems such as supernovae or triple black hole interactions [69]. Non-linear
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contributions to memory were originally thought to be negligibly small [79]1. However,
further investigations showed that bound systems such as binary black holes produce
significant non-linear memory [79, 279]. Non-linear memory can be interpreted as the
component of a gravitational wave that is sourced by the emission of the gravitational
wave itself [279]. The amplitude of memory is typically no more than O(5%) of the
peak oscillatory waveform amplitude in typical binary black hole systems [69]. Detecting
gravitational-wave memory from a single merger with current generation detectors is
improbable due to the low amplitude of memory [162, 179].

Memory will be detectable from single events with proposed future detectors such as
LISA, Cosmic Explorer, and the Einstein Telescope [9, 158, 230]. While detecting mem-
ory with LIGO/Virgo [1, 32] directly from a single merger is not possible, it is potentially
detectable using an ensemble of mergers [179]. Proposed low-frequency improvements to
LIGO could substantially increase the sensitivity to the memory effect [315]. Searches for
memory from supermassive black-hole binaries with pulsar timing arrays also have been
proposed [86, 192, 290] and carried out (e.g. [35, 41, 304]), although without any detec-
tion yet. Future pulsar timing arrays, using data from the Square Kilometer Array [95],
may be able to detect memory from supermassive black hole binaries [162].

There are a number of proposed sources of memory besides binaries. These include high-
frequency sources outside the LIGO band such as dark matter collapse in stars [173],
black hole evaporation [130, 210], or cosmic strings [90]. While such sources are purely
conjectural, they would be able to produce memory that is detectable within the LIGO
band [199].

Recent work has also shown that there is a redshift enhancement in memory at cosmolog-
ical distances, which will become relevant for future detectors [55, 56]. Other theoretical
work has shown the links between the memory effect, soft gravitons, and asymptotic
symmetries in general relativity, which has implications for the black hole information
paradox [135, 164, 270]. Measurements of memory with gravitational waves may even-
tually prove useful studying these phenomena, though, it is not yet clear how.

In this paper, we perform the first search for gravitational-wave memory using the ten
binary black hole mergers that LIGO and Virgo observed during their first two observing
runs [20]. We find no evidence for memory, consistent with expectations. However,
the infrastructure developed here will be used on future observations. We show that,
using 1830+1730

−1100 gravitational-wave observations we will be able to accumulate enough
evidence to definitively detect gravitational-wave memory. With the memory signal
firmly established, it will then be possible to characterize the properties of memory to
see if they are consistent with general relativity.

We structure the remainder of this paper as follows. In Section 4.2, we discuss the
methods required to detect memory. In Section 4.3, we apply our algorithm to the
first ten binary black hole observations and report the results. In Section 4.4, we use
binary black hole population estimates from the first two LIGO/Virgo observing runs to
create a realistic sample of future binary black-hole merger observations and calculate
the required number to detect memory. Finally, in Section 4.5 we provide an outlook for
future developments.

1Reference [79] shows that nonlinear contributions are not negligible, but states that they were
conventionally thought to be so at the time.
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4.2 Methods

4.2.1 Signal models

The first major consideration in our analysis is the choice of our signal model. The most
precise signal models for binary black hole mergers are numerical-relativity simulations,
which solve the Einstein field equations numerically given a set of initial conditions.
However, numerical-relativity simulations may take months to carry out even for single
mergers. Surrogate models, i.e., models that interpolate between a set of pre-computed
waveforms, are hence preferred to create high fidelity waveforms in O(1s) [58, 293].
Unfortunately, numerical-relativity waveforms and their associated surrogates typically
do not include memory since memory is hard to resolve when carrying out numerical-
relativity simulations [104].

Recent advances have made it practical to calculate memory directly from the oscil-
latory part of the waveform [102, 103, 273]. We use the GWMemory package [273],
which calculates memory from arbitrary oscillatory waveforms, which we then add to
the oscillatory component to obtain the full waveform. We compute the memory using
IMRPhenomD [166], a phenomenological model that describes the gravitational wave
during the inspiral, merger, and ringdown phase for aligned-spin binary black holes.

One additional consideration was pointed out in [179]. The memory changes sign under a
transformation φ→ φ±π/4 and ψ → ψ±π/4 2. Here φ is the phase at coalescence and ψ
is the polarization angle of the waveform. At the same time, this transformation leaves
the lower order spin-weighted spherical harmonic modes (l,m) = (2,±2) unaffected,
which causes a degeneracy in the (φ, ψ) posterior space. If we only use (`,m) = (2,±2)
modes, this degeneracy implies the sign of the memory is unknown, which causes the
signal to add incoherently (like the fourth root of the number of mergers). Including
higher-order modes in the signal model to break this degeneracy is hence advantageous,
as they help us to determine the sign of the memory (which causes the signal to grow
like the square root of the number of mergers).

4.2.2 Bayesian methods

In order to determine whether a set of gravitational-wave observations contains a memory
signature, we perform Bayesian model selection using LIGO/Virgo data. We define our
“full" signal model to be the waveform that includes both the oscillatory and memory part
of the waveform. We test this model against an “oscillatory only" model (abbreviated
“osc”) that only contains the oscillatory part of the waveform.

The Bayes factor describes how much more likely one hypothesis is to have produced the
available data compared to another. We define the memory Bayes factor as

BFmem =
Zfull

Zosc
, (4.1)

where Zfull and Zosc are each an evidence (fully-marginalized likelihood) corresponding
to our two models. See Ref. [280] for a review of Bayesian statistics in the context

2This statement is incorrect and should actually be φ→ φ± π/2 and ψ → ψ ± π/2. This chapter is
identical to the published version, which also contains the incorrect transformation.
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of gravitational-wave astronomy. The total memory Bayes factor BFtot
mem can then be

accumulated over a series of N gravitational-wave observations,

BFtot
mem =

N∏
i=1

BFimem . (4.2)

Following convention (e.g. [179]), we consider lnBFtot
mem ≥ 8 a detection.

We calculate both the posterior probability distributions for the model parameters and
the evidence using a nested sampling algorithm [106, 256, 266]. In practice, we perform
all runs in this paper using the interface to the nested-sampling package dynesty [266]
within Bilby. Stochastic sampling noise in evidence calculations dominate our results
if the difference in evidence between both models is small. We resolve this issue by
sampling with the oscillatory-only model and reweighting the posterior samples to the full
model to determine the Bayes factor between these two models following the prescription
from [220]. A similar analysis has recently been carried out to search for eccentricity in
the existing binary catalog [241]. Given a set of n posterior samples θk and the observed
data d, we calculate the memory Bayes factor BFmem using the oscillatory-only likelihood
Losc and the full likelihood Lfull:

BFmem =
1

n

n∑
k=1

Lfull(θk|d)

Losc(θk|d)
≡ 1

n

n∑
k=1

wk. (4.3)

We refer to the likelihood ratio wk as “weights." This approach is valid if both models
have similar posterior distributions, which is true in our case. Since the Bayes factor is
now based on the same set of samples for both models, the stochastic sampling noise
cancels.

4.2.3 Reweighting study

In order to study the performance of the reweighting technique, we simulate GW150914-
like events with different signal strengths in the LIGO/Virgo detector network at design
sensitivity with a zero-noise realization using the Bilby software package [45]. We create
the oscillatory part of the waveform with IMRPhenomD and add the memory part of
the waveform by using the GWMemory package [273].

We use these software injections to compare reweighting to the naive method in which
we carry out separate sampling runs with Losc and Lfull. Since this study is purely
illustrative, we artificially break the (φ, ψ) degeneracy, by restricting the prior space by
±π/4 around the injected values for φ and ψ. By re-running the sampling algorithm
eight times for each distance, we obtain an estimate of the uncertainty in the Bayes
factor for both methods. Finally, we also compare the estimates for the Bayes factor
with the likelihood ratio at the injected parameter values, as this yields the Bayes factor
one would obtain assuming perfect knowledge of the binary parameters. The results
are shown in Figure 4.1. The upper panel 4.1 shows that reweighting is generally much
better at recovering the Bayes factor whereas separately sampling both models can lead to
significant sampling noise. In the lower panel of Figure 4.1 we display the stochastic error
of both methods after eight runs. This error (∆ lnBF) is defined as the standard error
of the sample mean of the eight lnBFs we obtained. Notably, the reweighting technique
yields a reduction of about a factor 102 in stochastic sampling noise. Stochastic sampling
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Figure 4.1: We compare the precision of calculating the Bayes Factors using different
techniques for a set different signal-to-noise ratios ρmf . In the upper panel, we see that
using the naive method of dividing the Bayes Factors from eight separate sampling runs
(blue triangles), we see a much wider spread away from the fiducial line of likelihood
ratios at the injected value (green curve) compared to the Bayes factors we obtained
using reweighting (orange squares). In the lower panel, we see that using the reweighting

method yields a statistical error that is about O(102) times smaller.

noise vanishes with computation time t as ∆ lnBF ∝ t−1/2 [78], which implies that the
∼ 102 improvement is equivalent to what would have been achieved by increasing the
computation time by a factor of ∼ 104.

4.2.4 Analyzing real events

The analysis of real events mostly follows the prescription in [220]. Initially, we perform
inference with the IMRPhenomD model to obtain a “proposal” posterior distribution.
Reweighting these posterior samples first with the NRHybSur3dq8, a surrogate wave-
form model that includes modes (`,m) up to (5, 5) [293], yields the Bayes factor for
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higher-order modes BFhom, since IMRPhenomD does not contain these modes. Then
reweighting with the full NRHybSur3dq8 plus memory model yields the combined
higher-order mode plus memory Bayes factor BFhom+mem. The memory Bayes factor is

BFmem =
BFhom+mem

BFhom
(4.4)

A final issue in the analysis is that NRHybSur3dq8 and IMRPhenomD define the
phase φ and time at coalescence tc differently, and there is no analytic way to map
posterior samples between those two definitions. Following [220], we map the posterior
samples from IMRPhenomD to NRHybSur3dq8 by maximizing the waveform overlap
in terms of φ and tc between both models for each posterior sample. The maximum over-
lap can be quickly found using common optimization techniques. Furthermore, optimiz-
ing over the (φ, tc) plane does not require us to evaluate the expensive NRHybSur3dq8
waveform at every step since these are not intrinsic parameters of the waveform. Instead,
we produce the waveform once for each posterior sample and project it into the (φ, tc)
space as desired. Results using this method analysing the gravitational-wave transient
catalog are presented in Section 4.3.

4.3 GWTC-1 Results

We apply the reweighting technique on posterior samples of the first ten binary black hole
mergers from the first two LIGO/Virgo observation runs. The results are summarized in
Figure 4.2. The original posterior samples for the proposal run are the same as in [220].
The total lnBFtot

mem = 3.0 × 10−3 provides no significant support for or against the
memory hypothesis. However, this small Bayes factor is expected; we explore why in
the subsequent section. We see that even the loudest event in the catalog, GW150914
(ρmf ≈ 26), contributes only weak evidence in favour of the memory hypothesis.

4.4 Population study

We construct a simulated population of gravitational-wave events observed by the LIGO/Virgo
detector network at design sensitivity so that we can estimate the number of required
observations until we reach lnBF ≥ 8. We assume a power-law distribution both in pri-
mary mass and in mass ratio as outlined in [22]. The mass distribution parameters are
still poorly constrained given the low number of observations in the first two observing
runs. From the posterior distributions in [22] we choose parameters that correspond to
the points of maximal posterior probability. We choose minimum and maximum black
hole masses mmin = 8M� and mmax = 45M� respectively, and use α = 1.5 and β = 3
as spectral indexes for the primary mass and mass ratio distribution, respectively.

We assume an aligned spin prior distribution [176], with a maximal allowed spin magni-
tude of amax = 0.5. Higher spins are disfavoured observationally [22] and on theoretical
grounds [116]. At any rate, we do not expect the spin distribution to greatly affect the
memory search because the absolute memory amplitude is mostly driven by the overall
signal amplitude, which primarily depends on the masses and the luminosity distance
of the source. Spin only has an O(10%) effect on the memory of a given binary. The
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Figure 4.2: Memory Bayes factors obtained for the first two LIGO/Virgo observation
runs. Overall, there is no significant evidence for or against the memory hypothesis.

remaining extrinsic parameters (inclination, luminosity distance, sky position, time and
phase at coalescence, polarisation angle) are chosen using standard priors. We restrict
the maximum luminosity distance to 5000 Mpc since more distant events are unlikely to
be detected.

We randomly sample parameters from the distributions in intrinsic and extrinsic param-
eters. However, the LIGO/Virgo detector network will only be able to actually detect
a fraction of all occurring binary black hole mergers in the Universe. We therefore only
keep events with a matched filter signal-to-noise ratio greater than 12 in the network
and/or greater than 8 in any single detector. Otherwise, the event is considered to be
undetected.

Following the steps outlined Section 4.2.4, we obtain Bayes factors for each event. In
practice, this works reliably up to a matched filter signal-to-noise ratio ρmf ≈ 32, i.e. we
recover the injected parameters and obtain an acceptable number of effective samples af-
ter reweighting [220]. At higher ρmf , systematic differences between IMRPhenomD and
NRHybSur3dq8 can cause the inference runs to converge to non-overlapping regions
in parameter space. In those cases the reweighting technique using the IMRPhenomD
model becomes invalid if the posterior does not extend over the true value of the injected
NRHybSur3dq8 data. We resolve this issue by performing inference with the NRHyb-
Sur3dq8 model directly and then reweighting the posterior samples to the NRHyb-
Sur3dq8 plus memory model. Since sampling with NRHybSur3dq8 is of far greater
computational expense, we do not extend its use to the ρmf < 32 events, which comprise
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Figure 4.3: Cumulative memory Bayes factors obtained for a set of 2000 injections.
The blue curve shows the recovered Bayes Factors using nested sampling and reweight-
ing. The dashed red line displays the threshold for detection. The gray lines show a

set of realizations using the the likelihood ratio at the injected parameters.

92.5% of all events in our population set. Instead, we use the reweighting technique with
IMRPhenomD proposal distribution for these events.

We perform the analysis on a set of 2000 events and re-run inference until each combined
posterior has at least 20 effective samples. By requiring this number of effective sam-
ples, we ensure that the samples are reasonably closely converged to the injected value.
Otherwise, the weights would wildly diverge and the number of effective samples would
hence always be close to unity.

We display the results of our population study in Figure 4.3 (blue curve). The population
passes lnBF > 8 after about 2000 events. We also simulate many more events for which
we estimate the Bayes factor by using the likelihood ratio at the injected values (gray
curves). Using this much larger population, we estimate the required number of events to
reach lnBF ≥ 8 to be 1830+1730

−1100 at the 90% confidence level. Although this study likely
overestimates the Bayes factors since it implicitly assumes that we can always break the
(φ, ψ) degeneracy, we still consider this to be a good approximation since most support
for memory comes from very few events with exceptionally high signal-to-noise ratios.
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4.5 Conclusion and Outlook

We have found a combined lnBF = 0.003 for the existence of memory in the gravitational
waves from the ten binary black holes observed by LIGO/Virgo in their first two observing
runs. We have shown that we need 1830+1730

−1100 events to reach lnBF = 8, which can be
considered to be a detection of memory [179]. This is likely to take place in the early
days of A+/Virgo+, when observatories will be detecting O(10) events a day. Adding
KAGRA [259] and LIGO-India [284] to the network will further reduce the time until
memory is detected. Furthermore, reducing noise at low frequencies has also been shown
to substantially decrease the number of detections required [315], reducing the time to
detection by a factor of 3. Once memory is observed, it may be possible to use it to
probe the nature of black holes and to look for physics beyond general relativity; see,
e.g., [314].

We have shown how recent innovations, such as memory waveforms [273], and waveforms
with higher-order modes enable us to know the sign of the memory, despite the com-
putational challenges. By introducing likelihood reweighting we reduce the stochastic
sampling error by a factor of O(102), which is equivalent in terms of error reduction
to an increase in sampling time by O(104). Additionally, we show that by fine-tuning
sampling parameters we can obtain confident measures of the Bayes factor within one
week of computation time even if we have to use costly waveform models.
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Transient Catalog
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M. Hübner, P. Lasky, E. Thrane 2021, Memory remains undetected: Updates from the
second LIGO/Virgo gravitational-wave transient catalog, Phys. Rev. D, 104, 023004,
arxiv:2105.02879

The LIGO and Virgo observatories have reported 39 new gravitational-wave detections
during the first part of the third observation run, bringing the total to 50. Most of these
new detections are consistent with binary black-hole coalescences, making them suitable
targets to search for gravitational-wave memory, a non-linear effect of general relativity.
We extend a method developed in previous publications to analyse these events to de-
termine a Bayes factor comparing the memory hypothesis to the no-memory hypothesis.
Specifically, we calculate Bayes factors using two waveform models with higher-order
modes that allow us to analyse events with extreme mass ratios and precessing spins,
both of which have not been possible before. Depending on the waveform model we find
a combined ln BFmem = 0.024 or ln BFmem = 0.049 in favour of memory. This result
is consistent with recent predictions that indicate O(2000) binary black-hole detections
will be required to confidently establish the presence or absence of memory.

5.1 Introduction

The gravitational-wave memory effect is a non-oscillatory part of any gravitational wave.
It can be understood as the part of the gravitational wave that is sourced by previously
emitted waves. Memory causes a permanent distortion in spacetime long after the wave
has passed [62, 69, 79, 279, 316]. Memory effects are not included in most numerical
relativity models and are hence typically not incorporated in gravitational waveforms
of compact binary coalescences. This is because memory appears in in the m = 0
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modes of the waveform which can not currently be resolved with numerical relativity
simulations [104, 205, 223].

The slow build-up of memory during compact binary coalescences causes low-frequency
contributions to the gravitational-wave signal. Due to the relatively low sensitivity at
lower frequencies (f . 20 Hz), the probability of measuring memory in any individual
compact binary detection with current generation gravitational-wave observatories is
vanishingly small [162, 179]. However, recent advances in modelling and gravitational-
wave signal analysis have made it possible to coherently search for the presence of memory
in an ensemble of gravitational-wave signals [45, 45, 143, 179, 273]1. Previous studies
have shown that thousands of gravitational-wave detections with LIGO/Virgo [1, 8, 19,
20, 29, 32, 33, 73, 134, 194, 283] operating at their design sensitivity may be required
to confidently detect memory, a milestone which is likely to occur during the LIGO
A+/Virgo+ era [64, 143].

Since memory arises due to explicitly non-linear effects in general relativity, any mea-
surement of memory can be considered to be a test of the theory in this regime. In this
study, we focus on measuring the presence of memory in the gravitational-wave signal
itself. Beyond the detection of memory, future studies will then be able to focus on tests
of the exact amplitude and shape of the memory part of the wave, which are motivated
by modified theories of gravity [122, 141, 248, 314], cosmology [55, 56] and possibly
cross-checks with waveform models [167].

5.2 Methods

We follow mostly the description laid out in Ref. [143], but make some adjustments to our
waveform models. For a detailed description of our methods see Refs. [143, 179]. Recent
advances in waveform modelling have made it more feasible to perform lengthy sampling
processes with models that include higher-order modes (see e.g. Refs. [84, 120, 228, 292,
293]). Including higher-order mode effects into the analysis is not just necessary to avoid
systematic errors in the waveform models that could affect the analysis, they are also
required to break a degeneracy that leaves the sign of the memory ambiguous [179]. This
degeneracy arises because memory changes its sign under a simultaneous 90° rotation of
the polarisation angle ψ and the phase at coalescence φc. The same transformation leaves
the quadrupolar (leading order) modes unchanged.

For our analysis we use two waveform models. First, the IMRPhenomXHM wave-
form model [84, 120, 227], which is an aligned-spin model and includes several of the
most dominant higher-order modes. Aligned-spins in this context refer to the black-hole
spins being parallel (or antiparallel) to the orbital angular momentum of the binary.
IMRPhenomXHM covers mass ranges of the more extraordinary gravitational-wave
observations such as GW190814 [26], which has not been possible for memory analyses
until now [143]. Furthermore, IMRPhenomXHM natively provides the time domain
representation of the waveform in the spherical harmonic mode decomposition, which is
required to calculate the memory contribution using the gwmemory package [273]. Fi-
nally, IMRPhenomXHM is among the most computationally efficient waveform models
that contain higher-order modes [120]. Additionally, we perform our analysis with the
NRSur7dq4 waveform model [292]. While NRSur7dq4 only extends to a mass ratio

1Reference [143] is also Chap. 4 in this thesis
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q = m2/m1 = 1/4, which mainly excludes GW190412, GW190814, and parts of the pos-
terior distributions of a few other events, it does include spin precession effects, which
have been shown to exist in the population of binaries [30]. NRSur7dq4 has been
trained on numerical-relativity simulations to a mass ratio of q = 1/4, and compares
favourably with alternative waveforms such as SEOBNRv3 in terms of mismatch down
to q = 1/6, though the mismatch rises quickly past q < 1/4 (see Fig. 10 in Ref. [292]).
We conservatively restrict the minimum of the prior to q = 1/4 when using NRSur7dq4.
Using both IMRPhenomXHM and NRSur7dq4 provides us with a cross-check on our
results and allows us to deploy at least one model on all events 2.

Although precession effects are present at the population level, we do not expect these
to cause substantially different memory estimates. None of the individual binary black-
hole mergers reported so far show significant signs of precession, though, GW190412 and
GW190521 exhibit a mild preference for precession [20, 25, 29]. Additionally, we find
in injection studies that precessing spins do not meaningfully change the signal-to-noise
ratio of the memory part of the waveform.

Recent studies of GW190521 suggest that it may be a highly eccentric (e ≥ 0.2) bi-
nary [28, 123, 240]. Eccentric binaries may become an interesting target to measure
memory in future generation detectors [105], however, since they are not yet firmly es-
tablished, we assume all binaries to be circular for this work.

We measure memory by performing model comparison on each event by calculating a
Bayes factor (BFmem) for the presence of memory. For a more in-depth discussion of
these methods we refer to our previous work [143, 179]. The memory Bayes factor
can be understood to be the fraction of evidences Zosc+mem and Zosc for the combined
oscillatory plus memory waveform and oscillatory-only waveform, respectively

BFmem = Zosc+mem/Zosc . (5.1)

In order to calculate the Bayes factors in practice, we perform initial sampling runs with
the dynesty [266] implementation within Bilby [45, 242] using the IMRPhenomXHM
and NRSur7dq4 waveform models without any memory contribution. We use the stan-
dard, frequency-domain Gaussian likelihood L for gravitational-wave strain data d given
source parameters θ [287, 288, 297],

lnL(d|θ) = −1

2

∑
i

{
[di − µi(θ)]2

σ2
i

+ ln(2πσ2
i )

}
, (5.2)

where i refers to the frequency bin index, σ is the noise amplitude spectral density, and
µ is the waveform, i.e. IMRPhenomXHM or NRSur7dq4 in our case.

2There are more waveform models such as IMRPhenomXPHM that both model extreme mass ratios
and precession [228], however it currently poses practical issues for memory calculations. The IMPPhe-
nomXPHM implementation in the LALSuite package [184] only provides the spherical-harmonic mode
decomposition in the frequency domain. Frequency-domain waveforms within LALSuite, unlike time-
domain waveforms, are defined so that the merger is exactly at the beginning/end of the data segment.
Calculating memory, which monotonically rises throughout the binary’s history, thus creates a discon-
tinuity at the merger time which can not fully be remedied by techniques such as signal windowing.
Furthermore, frequency-domain waveforms are cut-off at 20Hz which leads to an information loss below
this threshold when we apply an inverse Fourier transform.
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We employ standard priors as laid out in Ref. [45], with the following modifications. We
sample using a flat detector-frame total mass prior, and a prior flat in mass ratio which
is cut-off to match the limits of our waveforms. For the luminosity distance we use the
uniform source-frame prior as described in Ref. [45]. We use isotropic spin priors for
the NRSur7dq4 runs and the aligned spin prior laid out in Ref. [176] for the IMR-
PhenomXHM runs. We omit the use of calibration envelopes from this analysis since
calibration uncertainty does not impact inferences made for binary black hole systems
with a signal-to-noise ratio of less than 30 [219, 302].

Non-linear memory is sourced by the energy-flux of the radiated gravitational waves and
can thus be expressed as a time-integral of the multipole moments of the oscillatory
part of the gravitational wave [104, 279]. Thus we require our waveforms in the time-
domain and split in their (l,m)-mode decomposition. In order to calculate the memory
contribution in practice we adapt the gwmemory Python package [273] to support
IMRPhenomXHM and NRSur7dq4 and make additional modifications to produce
waveforms with a consistent length which is required for practical inference tasks.

Next, we combine the oscillatory and memory waveforms in the time-domain by simple
addition. We apodize the waveform using a Tukey-window [60] to avoid Gibbs’ phe-
nomena before we Fourier transform the combined waveform using standard methods
in Bilby [45]. Specifically, we use a shape factor α = 0.05, 0.025, 0.0125 as defined
in scipy [301] for signals with lengths 4 s, 8 s, 16 s. If the apodization is omitted, the
Fourier-transformed signal is dominated by an unphysical 1/f power law. Using the
combined model we calculate the Bayes factor for each event using importance sam-
pling [143, 220, 280]. We obtain the memory Bayes factor by summing the memory
weights wmem over all npost posterior samples θi

BFmem =
1

npost

npost∑
i=1

wmem(θi) . (5.3)

The weights are defined to be the ratios between the likelihoods L of the two hypotheses

wmem(θi) =
Lmem+osc(θi)

Losc(θi)
. (5.4)

Using importance sampling effectively suppresses stochastic sampling noise in the evi-
dence calculation, making it more suitable than performing inference, e.g. using nested
sampling [255], with both hypotheses separately and comparing the resulting evidence
values [143].

Since including memory does not add any additional parameters to our problem, we do
not need to consider effects due to increased prior volume. We set our prior odds on the
presence of memory to be 1, i.e. we give equal weight to memory either being present or
not. This means we could also interpret the memory Bayes factor as an odds.

5.3 Results

As discussed in Ref [143], ln BFmem > 8 can be considered to be very strong evidence
for the presence of gravitational-wave memory. We present the new findings for the
unambiguous 36 new binary-black hole observations plus GW190814 additionally to a
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Figure 5.1: Memory Bayes factors obtained for the first and second gravitational-
wave transient catalog using IMRPhenomXHM and NRSur7dq4 as fiducial waveform
models, as well as the results from [143] which used NRHybSur3dq8. Overall, there

is no evidence for or against the memory hypothesis.

re-analysis of the first ten binary-black hole observations in Fig. 5.1. We calculate a
cumulative ln BFmem = 0.025 using IMRPhenomXHM and ln BFmem = 0.049 using
NRSur7dq4, which indicate that there is no strong evidence favouring or disfavouring
the presence of memory in the signals.

We omit the analysis of GW190425 and GW190426_152155, which are most likely to
be a binary neutron star and a black hole-neutron star binary system, respectively, for
two reasons. First, low mass binaries produce far less memory within the LIGO band
than heavier binary black holes, which makes them less useful for memory studies [162].
Second, neither IMRPhenomXHM nor NRSur7dq4 model neutron star physics, and
we would thus need to implement and test another waveform model for very marginal
benefit. Additionally, GW190426_152155 has a relatively high false alarm rate of 1.4
per year and thus might not be of astrophysical origin. Since they are the other most
likely events to not be of astrophysical origin we also exclude GW190719_215514 and
GW190909_114149. We are otherwise liberal and include all events that have been
reported in the catalogs so far. For the NRSur7dq4 runs, we exclude GW151012,
GW190412, GW190814, GW190513_205428, GW190707_093326, GW190728_064510,
GW190924_021846, and GW190929_012149 since they show substantial posterior sup-
port for q < 1/4.

We visually verify that our parameter estimates are broadly consistent with what has
been reported in [29]. While we occasionally find minor differences, this is likely due
to the fact that some of the runs in the catalog [29] were performed using a sampling
frequency of 512 Hz, which implies that no physics beyond 256 Hz was included in the
analysis. However, most events have some contributions at higher frequencies due to
higher-order modes, which cause the posterior to shift. As we have explained earlier,
higher-order modes are important to determine the sign of the memory. Thus we use a
sampling frequency of 2048 Hz to ensure that these effects are fully represented. While
we do not find evidence for or against the presence of memory in any of the observed
systems, some of the obtained Bayes factors stand out and some events deserve our
attention.
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5.3.1 GW190521

GW190521 is the highest mass event that has been reported so far [28]. Even though
higher mass systems should in principle create more memory since they radiate off
more energy in gravitational waves, their memory is shifted outside of the observable
LIGO/Virgo band [162]. This is consistent with our finding that the measured memory
Bayes factor indicates GW190521 to be uninformative about memory.

5.3.2 GW190521_074359 and similar events
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Figure 5.2: The distribution of Bayes factors for a simulated population of events
from Ref. [143] exhibits wide tails. For visualization, we do not show the two most

extreme Bayes factors, which have values of ln BFmem = 2.4 and 4.0.

GW190521_074359 is a near equal mass binary with a total mass of around 75M� and is
also one of the loudest events observed so far (SNR ≈ 26) [29]. These properties generally
point towards it being a favourable event with which to measure memory. Despite
this, we find lnBFmem = −0.12 using IMRPhenomXHM and lnBFmem = −0.05 using
NRSur7dq4, which is the lowest memory Bayes factor but the highest by absolute
value for both waveform models. A negative lnBFmem for any individual event is not
concerning since they are expected to arise from noise fluctuations. To show this, we re-
examine the population study in Ref. [143]. While the population study is not perfectly
comparable with the set of the actual measured events as the former is based on a point
estimate of the inferred population of GWTC-1 [22], and used different waveform models,
it can still provide us with a cross-check to see if the observed distribution of Bayes factors
is sensible. We find that out of 2000 simulated events, 28 have lnBFmem < −0.12 despite
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memory being present, which indicates that our measurement GW190521_074359 is
broadly consistent with our expectations. Furthermore, as we show in Fig. 5.2, the
distribution of Bayes factors has wide tails, which means that single outlying values are
to be expected.

How is it then that the event that looks most likely to contain measurable memory returns
the lowest memory Bayes factor in the catalog? Events that are highly unfavourable to
measure memory with will return lnBFmem ≈ 0 as they can only be uninformative. On
the other hand, events like GW190521_074359 are more informative about memory, but
memory is still weak relative to detector noise. Hence, their signals are also prone to
noise fluctuations that may randomly cancel out the memory contributions, which results
in a negative log Bayes factor. This is only true for weak memory signals, though. If the
signal power of the memory is sufficiently larger than the noise power, it becomes much
less likely that we measure a negative log Bayes factor due to noise fluctuations. As
Fig. 5.2 demonstrates, the log Bayes factor of GW190521_074359 is still in the regime
in which we expect noise fluctuations to be able to change the overall sign of the result.

Other events with high absolute memory log Bayes factors (e.g. GW190630_185205,
GW190828_065509, GW190910_112807) follow a similar pattern to GW190521_074359
in that they are relatively high signal-to-noise ratio events, close to equal mass, and have
a total mass between 50− 80M�.

While most of the differences between the Bayes factors from our two waveform models
are minor, they do appreciably diverge for GW190521_074359. The difference is unlikely
to be due to stochastic sampling noise as this is strongly suppressed in the importance
sampling step [143]. In order to understand this difference, we examine the posteriors
of both IMRPhenomXHM and NRSur7dq4. In Fig. 5.3, we display the posterior as a
contour plot in terms of the obtained memory log weights lnwmem, and the inclination
angle θJN as well as the luminosity distance dL. The observed memory strain hmem is
highly sensitive to inclination angle θJN we are viewing the binary at

hmem(θJN) ∝ sin2 θJN(17 + cos2 θJN) . (5.5)

See e.g. Ref. [103] for a detailed derivation of this relation. Thus, memory is most
easily seen edge-on (θJN = π/2) as opposed to the oscillatory part which is preferably
emitted face-on (θJN = 0, π). In the posteriors, NRSur7dq4 has stronger support
to be closer to face-on whereas IMRPhenomXHM shows support for GW190521_-
074359 being an edge-on binary. This leads to the IMRPhenomXHM weights obtaining
larger absolute log weights. The preference of NRSur7dq4 being closer to face-on
conversely corresponds to a higher inferred luminosity distance than IMRPhenomXHM.
Overall, these inferred differences in posteriors are expected due to systematic differences
in the waveform models, e.g. NRSur7dq4 contains precession effects and all modes
up to (`, |m|) = (4, 4), whereas IMRPhenomXHM only has aligned spins and modes
(`, |m|) = (2, 2), (2, 1), (3, 3), (3, 2), (4, 4).

5.3.3 Comparison with GWTC-1 analysis

As part of our analysis we redo the analysis in Ref. [143] for the events of the first two
observing runs in which we originally used the hybridized surrogate model NRHyb-
Sur3dq8 [293]. We find that the difference between NRHybSur3dq8 and either IM-
RPhenomXHM and NRSur7dq4 to be in the same order of magnitude as differences
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between IMRPhenomXHM and NRSur7dq4. Again, this is most likely to be due
to systematic differences in the waveform models as stochastic sampling noise is sup-
pressed in the importance sampling step. We estimate the effect of stochastic sampling
noise by considering the Bayes factor we would obtain from alternative posterior sam-
ples. To do this we repeatedly draw half the posterior samples without replacement and
calculate the Bayes factor with importance sampling. The distribution of these Bayes
factors indicates that stochastic sampling noise at worst causes deviations only on the
scale of O(∆ ln BFmem) = 10−4. We also note that stochastic sampling error scales with
the square root of the number of events so even an error of 10−4 per event would only
scale up to an error of ∆(ln BFmem) ≈ 0.005 for the O(2000) events required to reach
ln BFmem = 8.

5.4 Conclusion and Outlook

We implement the memory waveforms associated with two waveform models, IMR-
PhenomXHM and NRSur7dq4, using the memory calculation method laid out in
Refs. [104, 273] . We perform Bayesian model comparison to search for the presence
of memory in the data. Using the IMRPhenomXHM (NRSur7dq4) model we find a
combined lnBFmem = 0.025 (0.049) in the first and second gravitational-wave transient
catalog. This is consistent with our expectation that O(2000) events are required to
reach lnBFmem = 8, which we consider to be very strong evidence [64, 143]. We find
that differences in the Bayes factors for each event are likely due to systematic differences
in the waveforms and to a lesser extent due to stochastic sampling noise.

We have shown that our approach outlined in our previous paper (Ref. [143]) is scalable
up to a large number of events, demonstrating the possibility to coherently search for
memory in the future. Given the rapid developments in the waveform community and
innovations such as massively parallel Bayesian inference [258], we anticipate that more
advanced waveform models can be used for inference in the future. These waveform
models may allow us to calculate higher-order and precessing effects at greater mass
ratios and thus remove the need for using multiple waveform models to cover all observed
events.
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Figure 5.3: Two dimensional contour plots of the inferred posterior of GW190521_-
074359 in terms of inclination and luminosity distance versus the calculated memory
weights for IMRPhenomXHM (blue) and NRSur7dq4 (orange). We show inclination
(θJN) in the top and luminosity distance (dL) in the bottom subfigure. The top subfigure
demonstrates why the IMRPhenomXHM have samples with on average larger weights.
NRSur7dq4 samples are somewhat further constrained away from θJN = π/2 which
corresponds to an edge-on binary for which observed memory is maximal. The bottom
subfigure demonstrates that samples at closer distances have larger absolute log weights
on average, corresponding to the fact that closer events are more informative than ones

further away.
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Quasi-periodic oscillations (QPOs) are an important key to understand the dynamic be-
havior of astrophysical objects during transient events like gamma-ray bursts, solar flares,
and magnetar flares. Searches for QPOs often use the periodogram of the time series and
perform spectral density estimation using a Whittle likelihood function. However, the
Whittle likelihood is only valid if the time series is stationary since the frequency bins are
otherwise not statistically independent. We show that if time series are non-stationary,
the significance of QPOs can be highly overestimated and estimates of the central fre-
quencies and QPO widths can be overconstrained. The effect occurs if the QPO is only
present for a fraction of the time series and the noise level is varying throughout the time
series. This can occur for example if background noise from before or after the transient
is included in the time series or if the low frequency noise profile varies strongly over
the time series. We confirm the presence of this bias in previously reported results from
solar flare data and show that significance can be highly overstated. Finally, we provide
some suggestions that help identify if an analysis is affected by this bias.

6.1 Introduction

Quasi-periodic oscillations (QPOs)1 are a common astrophysical phenomenon that are
regularly observed across a variety of sources. While there is ample discussion about how
they emerge in their respective sources, it is worth re-examining existing techniques for
their detection and characterization. Observations of QPOs are scant for some objects

1In solar physics the term “quasi-periodic pulsation” (QPP) is preferred. We apply the term QPO
generically throughout for simplicity.
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such as in magnetar flares [147–149, 159, 203, 267, 269, 307], or contentious in others
like gamma-ray bursts (GRBs) [74, 92, 160, 207, 274], and false detections may lead to
unjustified theoretical inferences. Moreover, even if there are ample detections of QPOs
like in solar flares [211, 289, 319] or X-ray binaries [156], making accurate inferences
about their parameters and significance is essential for understanding the mechanisms
that produce them.

There is an array of methods being applied to time series data to find QPOs. The most
common tests involve periodograms and are either based on outlier analyses or Bayesian
tests [294, 295]. Other methods include wavelet analyses [115, 174, 282] and those based
on Gaussian processes [88, 113, 233, 317].

In this paper, we explore the effects that the non-stationary nature of a transient
lightcurve, and the potential non-stationarity of a QPO within it, have on detection
significance and characterization when methods are used that assume the underlying
processes to be stationary. We show that we are likely to overestimate the significance
of the quasi-periodic signal under these conditions. This bias arises because neighboring
bins in periodograms are only statistically independent for stationary time series. We
thus refer to this effect as the “non-stationarity bias", which to the best of our knowl-
edge has not been reported in the astrophysical literature to date. We show that merely
adding photon counting noise before or after a transient leads one to greatly overestimate
the significance of a QPO and overconstrain the QPO parameters. More critically, this
effect also occurs if only the transient is selected for analysis but the QPO is only present
for a fraction of it.

It is our intuition that astrophysicists would rather be conservative and include more of
the time series that does not include the QPO, rather than “cherry-picking” the part of
the lightcurve that appears most likely to contain it. The erroneous reasoning behind
this might be the belief that adding more noise to the signal should not increase the
significance of the QPO.

We structure this paper as follows. In Sec. 6.2 we lay out the Bayesian methods and mod-
els that we use throughout. Thereafter, in Sec. 6.3, we explain how the non-stationarity
bias arises both on a conceptual level and with detailed mathematical arguments. We
show in Sec. 6.4 based on simulated data that the non-stationarity bias exists empir-
ically. In Sec. 6.5 we show how the non-stationarity bias affects the analysis of solar
flare lightcurves. We conclude in Sec. 6.6 and provide some outlook on how alternative
methods can potentially better handle non-stationary data sets.

6.2 Methods

In the following, we recapitulate the Fourier-based methods commonly used to analyze
QPOs which are relevant to this study. A general comprehensive overview on the topic
of spectral density estimation for time series analysis is given in many popular textbooks
such as chapter 7 in Chatfield [75], as well as in Barret & Vaughan [54], van der Klis
[286] in the context of astrophysical lightcurves.
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6.2.1 Whittle likelihood

A periodogram is an estimate of the power spectral density (PSD) of the signal based
on a given time series x(t). We calculate the periodogram I(f) as the absolute square of
the discrete Fourier transform of the signal

I(f) =

∣∣∣∣∣
N∑
i=1

x(ti) exp(−i2πfti)
∣∣∣∣∣
2

. (6.1)

Periodograms are established as a standard method in the search for QPOs in solar
flares [137, 154, 155] and QPOs in astrophysical transients elsewhere [e.g. 147–149, 151,
203]. Since individual frequency bins I(fj) = Ij are calculated by taking the sum of the
square of the normal-distributed real and imaginary parts of the Fourier series, it follows
that they are χ2

2-distributed around the PSD S(fj) = Sj [75, 309]. This specific case of
a χ2

2-distribution is identical to an exponential distribution around Sj

p(Ij |Sj) =
1

Sj
exp(−Ij/Sj) , (6.2)

where p(Ij |Sj) is the conditional probability to observe the power Ij given an underlying
PSD Sj . This relation is generically true for any individual frequency bin in any peri-
odogram. Assuming that all bins are statistically independent from another, we obtain
the Whittle likelihood function by taking the product over all N/2 frequency bins of a
periodogram corresponding to a time series with N points

L(I|S) =

N/2∏
j=1

1

Sj
exp(−Ij/Sj) . (6.3)

We emphasize here that this is only true in the stationary limit, and this will lead to
biased estimates of the PSD in general, as we show in Sec. 6.3. Nevertheless, Eq. 6.3 is
the standard likelihood that is used for spectral density estimation.

6.2.2 Models of power spectra

Many astrophysical transients show excess power at low frequencies, and it is often
assumed that this can be modeled using a red-noise process (see e.g. Broomhall et al.
70, Huppenkothen et al. 148, Inglis et al. 154, 155, Ingram & Motta 156, Miller et al.
203). One basic noise model that is commonly used is a combination of a red-noise power
law with amplitude A and spectral index α, and a white noise amplitude C [154, 155],
i.e.

SRW(f) = SR(f) + SW (6.4)
= Af−α + C ,

where we use the R and W superscripts as short-hand for “red noise” and “white noise”
respectively. This spectral shape usually emerges as a combination from the overall
structure of the transient, and additional variability on smaller time scales. The shape
is thus not due to a stationary process but rather due to a combination of unknown
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deterministic and non-stationary stochastic processes adding up to mimic a red noise
spectrum [148].

A common way to model a QPO is to add a Gaussian or Lorentzian enhancement to
SRW, e.g.

SRWQ(f) = SRW(f) + SQ(f) (6.5)

= SRW(f) +
B

πσ

σ2

(f − f0)2 + σ2
,

where B is the QPO amplitude, f0 is its mean frequency, and σ is the half-width half-
maximum scale parameter. Explicitly modeling the red noise component is important
as the QPO is likely to overlap with the red noise dominated part of the PSD. Not
considering the red noise dominated part of the PSD may thus lead to false positives.

There are extensions to the noise model, such as the broken or bent power law (B
superscript), that can fit more structured red noise and are often a better fit to the data

SBW(f) = Af−α1

(
1 +

(
f

δ

)α2−α1
)

+ C , (6.6)

where α1,2 are the power law indices present before and after the break frequency δ where
the power law changes, and we also enforce α2 < α1 to avoid degeneracies. There are
also various different formulations of bent or broken power laws with various degrees of
smoothness.

6.2.3 Model selection and parameter estimation

There are several ways to assert the significance of a QPO when using spectral density
estimation. A widely used frequentist way to detect QPOs is to use outlier statistics.
As a first step, one fits the PSD using a model that does not contain a QPO, e.g.
Eq. 6.4 or Eq. 6.6. Thereafter, every frequency bin is checked if its amplitude exceeds
a set probability threshold based on the χ2

2-distribution in Eq. 6.2. One also has to
account for the number of trials, i.e. the number of frequency bins tested by applying
a Bonferroni-correction [66]. Additionally, it is possible to rebin the periodogram into a
smaller number of bins. For QPOs with widths larger than the width of a single frequency
bin, rebinning may be useful because it increases the significance of the QPO relative to
the noise continuum.

Alternative to the outlier statistics, one can cast this as a model Bayesian selection
problem where we find the preferred model to fit our data, in our case Eqs. 6.4, 6.5,
and 6.6. There are multiple ways to quantify model preference in Bayesian statistics.
One approach that has been used in solar physics [154, 155, 157] is to calculate the
Bayesian Information Criterion (BIC)

BIC = k ln(n)− 2 ln(Lmax) (6.7)

where k is the number of free parameters (e.g. three for SRW, six for SRWQ, and five for
SBW), n = N/2 is the number of data points, and Lmax is the maximum likelihood value.
This method is relatively cheap computationally as the calculation of the maximum
likelihood can be obtained with relatively few likelihood evaluations using a maximization
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algorithm. A lower BIC indicates a better fit to the data, thus the difference in BIC
for SRW and SRWQ is a measure of statistical significance of the QPO,

∆BIC = BIC(SRWQ)−BIC(SRW) (6.8)

= (kRWQ − kRW) ln(N/2)− 2 ln
Lmax(I|SRWQ)

Lmax(I|SRW)
,

where ∆BIC < 0 would indicate that SRWQ is preferred and vice versa. We can also
perform model selection via calculation of Bayes factors BF . To understand Bayes
factors, we start with Bayes’ theorem

p(θ|d, S) =
π(θ|S)L(d|θ, S)

Z(d|S)
, (6.9)

where θ are the model parameters, d are the data, i.e. the periodogram in our case, p is
the posterior probability of the parameters, π is the prior probability of the parameters,
L is the likelihood of the data given the parameters, and Z is the evidence, or fully
marginalized likelihood. All these probabilities are conditioned on a model we want to
evaluate, e.g. a PSD S. The Bayes factor comparing two models is the ratio of their
evidences. For example, the Bayes factor comparing SRWQ and SRW is

BF =
Z(d|SRWQ)

Z(d|SRW)
. (6.10)

It thereby measures the relative odds of the underlying data to have been produced by
either model, though it does not measure if the model itself is a good fit to the data,
similar to the BIC. The evidence is calculated by rearranging and integrating Bayes’
theorem

Z(d|S) =

∫
π(θ)L(d|θ, S)dθ . (6.11)

Evaluating this integral is much more computationally challenging than calculating the
BIC, but can be achieved thanks to improvements in algorithms such as nested sam-
pling [256], and accessible software implementations such as Bilby [45, 242, 266]. The
Bayes factor obtained via evidence calculation is seen as the superior standard for model
selection in Bayesian statistics since it involves prior beliefs about the distribution of
parameters [308]. The penalty factor k ln(n) for the BIC also increases with the size of
the data set and can thus favor overly simplistic models [124, 308]. Since the BIC relies
on a point estimate of the likelihood, it is also a less reliable measure if the likelihood
has multiple modes. Additionally, nested sampling provides posterior distributions on
the model parameters which are interesting in their own right.

Bayes factors and BICs work best if the underlying models are truly discrete, but SRW

is a special case of both SRWQ and SBW. There are reasonable criticisms on the use of
Bayes factors or the BIC for cases like this as SRW is a subset of both SRWQ and SBW,
and thus not a truly discrete model [124]. In this case, the Bayes factor depends on prior
choices of the parameters specific to SRWQ and SBW. Alternatively, we could use tests
that measure if the posterior of the QPO amplitude B is inconsistent with being zero
and provides a better fit to the data. Nevertheless, we use Bayes factors as prior choices
since they will yield a constant difference in our Bayes factors and will not distort the
overall trend when we investigate the non-stationarity bias. We also consider the effects
on the ∆BICs where it is instructive.
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For all the Bayes factor calculations and posterior samples in this publication we use
dynesty via the Bilby interface [45, 242, 266].

6.3 Pitfalls of Periodograms

Assume a discrete time series of length T with N data points containing a QPO and
noise. The underlying stochastic process is characterized in the frequency domain as a
PSD S(f), which can be estimated by calculating a periodogram I(f). We recall that
the value in any specific of the N/2 frequency bins in the periodogram is proportional
to the absolute square of the Fourier amplitude.

In the top panel of Fig. 6.1 we extend a stationary time series by appending zeros on
either end until we reach a length xT with xN data points, where we call x the extension
factor. As we display in the bottom panel, this increases the number of frequency bins in
the periodogram to xN/2, while decreasing the periodogram to I(f)/x if we do not apply
a normalization. The non-stationarity bias occurs here because an increased number of
frequency bins boosts the calculated significance of a QPO in terms of the ∆BIC or
lnBF between, e.g. SRWQ and SRW.

The example displayed in Fig. 6.1 is not realistic in practice but serves to illustrate the
effect. A more realistic scenario occurs if the stationary time series is instead extended
with low amplitude white noise and the QPO is within the red noise dominated part of
the PSD. This raises the white noise level relative to red noise and the QPO. Yet it still
increases the significance of the QPO, which is determined by its amplitude relative to the
dominant red noise level. Such a scenario might occur if we overselect data surrounding
a transient

Another scenario is that the overall time series is non-stationary, and instead, the QPO
and the overall noise processes vary, or switch on and off, during a selected time window.
For example, the QPOs reported in the 2004 SGR1806-20 hyperflare are directly associ-
ated with specific rotational phases of the magnetar [147, 159, 203, 267, 268, 307]. Parts
of the time series might only contribute low levels of noise and thereby increase the num-
ber of bins without suppressing the QPO in the periodogram. These parts, therefore,
increase the significance of the QPO without having delivered any actual information
about it.

We now turn towards a more mathematical explanation of the non-stationarity bias.
Let us consider how we can calculate the SNR of a QPO when red and white noise are
present2. Given a single frequency bin fj , this is

ρ(fj) =
SQ(fj)

SRW(fj)
, (6.12)

where we denote the SNR as ρ. Assuming all frequency bins in a periodogram are
statistically independent, the SNR adds in quadrature

ρtot =

√√√√√N/2∑
j=1

ρ(fj)2 , (6.13)

2The argument here holds for arbitrary noise.
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Figure 6.1: Effects of extending a time series with zeros. In the top panel, we show
a stationary time series between −10 s and 10 s that we multiply with a Hann window
to ensure a smooth turn on from zero. We extended this time series with zeros on
either end up to a total duration of 200 s. The upper x-axis shows how the extension
factor x maps onto the time axis. Taking only the stationary data from −10 s to 10 s
corresponds to x = 1, i.e. no extension has been applied. The extension factor in
this case implies that we select data from −10x s to 10x s. In the bottom panel, we
show the periodogram given different extension factors, with the blue curve representing
the stationary data (x = 1). The other colors (orange, green, red) show the effect of
extending the time series with zeros on either end. In these curves, neighboring bins are
not statistically independent, which manifests itself in the emerging smooth structure
of the periodogram. The bins are also decreasing inversely proportional to x since we

do not apply a normalization.
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where we have summed over the N/2 bins in the periodogram and ρtot denotes the total
SNR of the QPO.

6.3.1 QPOs in stationary noise

As the most simple scenario, we consider a stationary time series with N elements made
up of a QPO and some arbitrary noise. We denote the SNR of this time series as ρNtot.
Suppose we look at an extended version of this time series with xN elements, which we
create with the same QPO and noise process. We intuitively expect the SNR to increase
proportionally to

√
x and indeed, we calculate

ρxNtot =

√√√√√xN/2∑
j=1

ρx(fj)2

=

√√√√√x

N/2∑
j=1

ρ(fj)2

=
√
xρNtot ,

(6.14)

where we write the SNR at a given frequency in the extended time series as ρx(fj), which
is the same as in the original time series. We also use the N and xN superscripts for the
SNRs to indicate whether we are looking at the original or extended time series. Note that
we have implicitly changed how the fj are indexed between the steps. Additionally, we
assume in the first step that the PSD is only slowly varying between frequency bins and
we can therefore approximate the newly added frequency bins by their closest neighbors
from the original PSD.

Alternatively, let us consider what happens when we consider a non-stationary extended
time series in which the noise is present over xN elements but the QPO is only present
for N elements. In that case, SRW is the same as in the original time series whereas
SQ gets reduced to SQ/x as we are effectively “diluting” the QPO, similarly to how the
periodograms decrease in amplitude with increasing x in the lower panel of Fig. 6.1. We
calculate Eq. 6.13 for the extended time series again

ρxNtot =

√√√√√xN/2∑
j=1

ρx(fj)2

=

√√√√√x

N/2∑
j=1

ρx(fj)2

=

√√√√√x

N/2∑
j=1

ρ(fj)2/x2

=
1√
x
ρNtot ,

(6.15)
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where we used the first same step as in Eq. 6.14 and used the fact that the QPO is sup-
pressed by the extension in the second step. These first two scenarios are fairly intuitive,
analyzing more of the same stationary process should naturally boost the significance,
whereas only adding more noise will dilute the QPO and reduce the significance.

Let us now consider what happens if we extend the time series with zeros on either
end, which is illustrated in Fig. 6.1. This scenario is not truly physical, as we always
expect some background noise. However, it is an instructive example to understand the
effects of non-stationarities. Extending with zeros implies both SRWQ → SRWQ/x and
SRW → SRW/x, so ρx(f) = ρ(f) and thus following the same steps as before

ρxNtot =
√
xρNtot , (6.16)

which is identical to Eq. 6.14. This is a curious result as extending a time series by zeros
clearly should not increase the SNR nor the significance of a signal. The resolution to this
seeming paradox is that it is invalid to assume that SNR adds in quadrature as we did
in Eq. 6.14. By extending the time series with zeros, we added bins to the periodogram
that are not statistically independent.

A further consequence is that the product in the Whittle likelihood becomes invalid. Due
to the extended segment length both the PSD and the periodogram need to be divided
by a factor of x. Therefore, we can rewrite the likelihood as

LxN (I|S(f |θ)) =

xN/2∏
j=1

x

Sj(θ)
exp(−Ij/Sj(θ)) (6.17)

≈ xxN/2
N/2∏
j=1

1

Sj(θ)
exp(−Ij/Sj(θ))

x

,

where θ is the set of parameters in the PSD and we use the N and xN superscipts on the
likelihoods to indicate if we are looking at the original or extended time series. Again,
we assume that the PSD is slowly varying with frequency and thus statistically non-
independent bins are reasonably approximated by the closest frequency bins obtained
from the stationary time series. The factor xxN/2 that we have introduced does not
matter since it is a constant. Hence we can write

lnLxN (I|S(θ)) ∝ x lnLN (I|S(θ)) . (6.18)

This means lnLxN (I|S(θ)) ≈ x lnLN (I|S(θ)), i.e. we have steepened the log likelihood
function by a factor of x

∂ lnLxN (I|S(θ))

∂θ
≈ x∂ lnLN (I|S(θ))

∂θ
. (6.19)

This steepening means that inferred posterior distributions are generally tighter which
leads to overconstrained parameter estimates. We calculate how this changes the Bayesian
information criterion

∆BICxN = (kRWQ − kRW) ln(xN/2)− 2x ln
LNmax(I|SQ)

LNmax(I|SRW)

= x∆BIC + (kRWQ − kRW)(lnx− (x− 1) ln(N/2)) ,

(6.20)
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where kRWQ = 6 and kRW = 3 are the number of free parameters for the respective
models, and xN is used as a superscript. Thus, ∆BIC is approximately proportional to
x or N since the impact of the lnx and constant terms are minimal. The impact this
has on the Bayes factor is not straight-forward to calculate in the general case. Since
likelihood ratios and ∆BICs can be understood as a related quantity of the lnBF , we
expect a similar approximately linear behavior, which we find empirically in Sec. 6.4.

6.3.2 QPOs in non-stationary red noise

Assume a stationary time series with red noise, white noise, and a QPO that sits in
the red-noise dominated part of the PSD. If we extend this time series with zeros, the
argument in Sec. 6.3.1 holds and the SNR calculated with Eq. 6.13 grows proportional
to
√
x. Extending with white noise instead of zeros will also lead to the SNR growing

with
√
x as long as the QPO remains in the red noise dominated part of the PSD. To

show this we define fbreak as the breaking frequency where white noise and red noise are
of equal magnitude

fbreak =

(
C

A

)−1/α

, (6.21)

which means that for f � fbreak red noise dominates whereas white noise dominates
for f � fbreak. If our QPO has f0 < fbreak it mainly competes with red noise in terms
of SNR, thus a rising level of white noise will not meaningfully reduce the SNR until
f0 ≈ fbreak. We can write this as

ρtot ≈ ρtot(f < fbreak) , (6.22)

where ρtot(f < fbreak) is the total SNR just based on frequencies less than the breaking
frequency. If we extend the time series with white noise or zeros by a factor of x, we
suppress the red noise term by 1/x and shift the breaking frequency

fxbreak =

(
Cx

A

)−1/α

= x−1/αfbreak , (6.23)

where the superscript x indicates that we are looking at the extended time series. We
can equate Eq. 6.23 to f0 and re-arrange to calculate the extension factor xbreak for which
the QPO will be in the white-noise dominated part of the periodogram

xbreak =

(
fbreak

f0

)α
=
A

C
f−α0 . (6.24)

Therefore, we are prone to artificially increase the SNR by extending our time series with
white noise up to an extension factor of xbreak. Conversely, if our QPO mainly competes
with white noise f0 > fbreak, we use the argument in Sec. 6.3.1 to show that we suppress
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the SNR with increasing x

ρtot,x =

√√√√√xN/2∑
j=1

(
SQ(fj)/x

SW

)2

≈ 1√
x

√√√√√N/2∑
j=1

(
SQ(fj)

SW

)2

≈ ρtot√
x
,

(6.25)

where we have used the fact that the PSD is slowly varying with frequency in the first
approximation, and that the frequencies where the QPO exceeds the noise continuum
are all white-noise dominated in the second approximation.

The most obvious case where this could become a practical problem is when we have to
decide where to start and end the segment. Not being aware of this bias may lead us
to overselect the data by O(10%) and infer a somewhat higher SNR and significance,
which by itself is not a big issue. But the issue becomes much worse in practice if the
QPO itself is non-stationary and only appears for a part of the transient, which implies
that selecting the entire transient may already be overextending the segment in which
the QPO is present.

In principle, extending the time series with red noise instead of white noise should not
cause the same issue as we would expect the same suppression by 1/

√
x that we have for

white noise in Sec. 6.3.1. However, in real transients, the low-frequency noise continuum
arises not due to a stationary noise process but due to a combination of deterministic
and non-stationary stochastic processes. Different parts of the time series might add up
roughly to a single power law or a broken power law, but smaller segments within the
transient may have vastly different shapes. For example, the rising and falling edge of
the transient may create different power laws, we may have segments that are fairly flat
and thus mostly add white noise, and so on. Additionally, deterministic aspects of the
time series, if not properly subtracted, are not appropriately modeled with a Whittle
likelihood as we show in Sec. 6.4.3. The deterministic parts of the lightcurve can not be
safely removed by filtering or smoothing methods as they are prone to create an artificial
structure that looks like oscillatory behavior [49]. Clearly, it is not possible to write
down a rigorous treatment of this rather large class of possible constellations in which
non-stationarity bias could occur.

We note here that using the outlier analysis is not prone to false detections due to
the non-stationarity bias since we are testing neighboring bins individually instead of
combining SNR from neighboring bins. The opposite is the case, since we add more
bins by having extended the time series, it is harder to exceed the Bonferroni-corrected
significance level. However, in practice periodograms are sometimes rebinned to add up
neighboring bins [e.g. 149]. The motivation behind this is to combine the SNR from
neighboring bins, making it easier to detect QPOs. Thus, rebinned outlier analyses are
prone to the same non-stationarity bias that affects the Bayesian methods as well.
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6.4 Simulated data

To demonstrate the impact of non-stationarities empirically, we analyze simulated data
using a variety of setups. For all studies on simulated data, we assume white noise levels
to be constant along with the time series. We discuss the impact of the Poissonian nature
of the photon counting process in Appendix 6.9.

6.4.1 Setup

To produce the time domain data, we use the algorithm by Timmer & König [281], as
it is implemented in the Bilby software package. Concretely, this works by creating a
white noise frequency series by randomly drawing both amplitudes and phases from a
normal distribution, coloring the noise by multiplying it with the square root of the PSD
and then applying an inverse Fourier transform to obtain a stationary time series. In
general, we create a continuous, non-stationary time series by using a combination of
addition, concatenation, and convolution with window functions. For example, we start
by creating a stationary time series using the QPO model and red noise SRQ = SR +SQ.
We apply a Hann window to ensure a smooth turn on from zero. This helps us to avoid
Fourier artifacts such as side-lobes in the periodogram which can appear if discontinuities
are present. Next, we create a much longer time series containing just white noise using
the Timmer & König [281] method, and add the SRQ time series in the center. We
are also interested in what happens when we extend the time series with zeros instead
of white noise. To do this we mask the parts containing just white noise and set those
values to zero. In all cases, we center the part of the time series in which the QPO is
present. This is to prevent the Hann window, which is applied when calculating the
periodogram, from diminishing the amplitude of the red noise and QPO components.
Note that this is separate from the Hann window we use to ensure the smooth turn-on
from zero.

For all simulated data in this section, we assume a constant white noise level throughout
the time series and place the QPO in the center of the time series between −10 s and 10 s.
We use a sampling frequency of 40 Hz and extend the time series up to 200 s (x = 10) or
400 s (x = 20) depending on the scenario. The specific parameters for each simulation
are listed in the tables in App. 6.8. We discuss the effect of non-stationary white noise
in App. 6.9. All parameters and priors are listed in Tabs. 6.2 and 6.3.

6.4.2 Non-stationary QPO in white noise

We start by considering a combination of a QPO and white noise where the setup is
effectively identical to what we describe in 6.4.1, but we use SQ instead of SRQ to omit
red noise. We consider both scenarios discussed in Sec. 6.3.1 where we either extend
the time series with zeros or with white noise. In terms of the parameter inference, we
deviate from the standard practice of using SRWQ(f) as there is no red noise component.
Instead we compare SWQ against the white noise hypothesis SW = C.

First, we consider what happens when we extend the time series with white noise. In
principle, the results should follow our discussion in Sec. 6.3.1 for QPOs in the white-
noise-dominated part of the periodogram, i.e. the SNR should decrease with 1/

√
x and
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the lnBF should decrease roughly inversely to x. The results, which we display in the
top panel of Fig. 6.2, are in agreement with our expectations.

We now consider the case where we extend the time series with zeros, similar to what
we did to produce Fig. 6.1. As we discussed in Sec. 6.3, we expect the SNR to increase
with

√
x and the lnBF roughly linearly. As we show in the bottom panel of Fig. 6.2,

this is almost perfectly the case for the lnBF and is also qualitatively true for the SNR.

6.4.3 Non-stationary QPO in a simple transient

We investigate the effect of analyzing a non-stationary QPO that appears on top of a
deterministic transient flare shape in the presence of white noise. The time series is
displayed in the top panel of Fig. 6.3. The flare shape mimics a red-noise continuum
that overlaps with the QPO in the periodogram (bottom panel of Fig. 6.3), though it is
not well described by a Whittle likelihood in the periodogram since it is not a stochastic
process. We see that there is conspicuously little fluctuation at low frequencies in Fig. 6.3.
For the flare shape we use a continuous exponential rise and fall described by

f(t) = Aflare

exp
(
t−t0
τr

)
if t < t0

exp
(
− t−t0

τf

)
if t ≥ t0

(6.26)

where Aflare is the amplitude, t0 is the peak time, and τr and τf are the rise and fall
timescales, respectively. This model is similar to the FRED model which is popular to
fit time series of gamma-ray bursts [214]. The advantage of using an exponential shape
for this simulation is that it produces a power law in the periodogram which matches
our red noise model. Since the flare is deterministic, low frequencies in the periodogram
are not well described by a Whittle likelihood. To create this time series, we repeat the
steps in Sec. 6.4.2, though we start with different parameters listed in Tab. 6.3, and add
the deterministic flare shape in the last step.

We perform the same test as in the previous section of extending the time series starting
from the 20 s segment in which the QPO is present (inset in the top panel of Fig. 6.3).
It is less intuitive why non-stationarity bias may occur and how it will manifest in this
scenario. Extending beyond the peak of the flare might reduce the apparent significance
as it will provide the strongest contribution to the low-frequency noise continuum. At
the same time, we extend towards the tail of the flare, which contributes little more than
white noise. As we can see in Fig. 6.4, the SNR and lnBF do indeed increase sharply
until x = 3, which corresponds to the point where we extend the selected window to
the peak of the transient. Past this point low-frequency contributions from the rising
edge of the transient obscure the QPO in the periodogram and quickly lead to the QPO
becoming undetectable for x > 7. We note that using a different set of parameters to
create the data can easily create situations where the lnBF continues to increase past
x = 3.

6.4.4 Non-stationary QPO in non-stationary red noise

In this scenario, we create a time series using a combination of red noise, white noise,
and a QPO using the SRWQ model. We extend this time series with either white noise
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Figure 6.2: SNR (blue) and lnBF (orange) vs the extension factor for a simulated
QPO plus white noise signal that is extended with white noise (top) or zeros (bottom).
The solid blue line displays the SNR of the maximum likelihood point and the shaded
blue region displays the SNR’s 90% credible interval. In the top panel both SNR and
lnBF decrease with increasing x which corresponds to the QPO vanishing in noise.
In the bottom panel the lnBF increases almost perfectly linearly due to the increased
number of frequency bins that make up the QPO, whereas the SNR increases roughly

with the square root.
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Figure 6.3: Simulated data of a non-stationary QPO in a deterministic transient
flare shape in the presence of white noise. The time series (top) shows the dominant
transient and the QPO that is present for 20 s on the tail of the flare (inset). We
remove the deterministic trend of the flare in the inset to make the QPO easily visible.
The periodogram (bottom) shows a visible QPO at 1 Hz and displays a low-frequency
continuum that arises due to the transient flare shape. The periodogram corresponds
only to the segment of the lightcurve that contains the QPO. Note that there is much less
variability than we would expect from the χ2

2-distribution for the bins at low frequencies
since the noise continuum is not due to a stationary stochastic process but due to a

deterministic process.
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Figure 6.4: SNR (blue) and lnBF (orange) vs the extension factor for the QPO
shown in Fig. 6.3. The solid blue line displays the SNR of the maximum likelihood
point and the shaded blue region displays the SNR’s 90% credible interval. Both the
lnBF and the upper edge of the SNR’s credible interval peak at x = 3 (black dashed
vertical line), which corresponds to the point where the selected data segment exceeds
past the peak of the flare. The strong differences in lnBF and SNR across extension

factors shows that differences data selection can greatly influence the results.

or zeros. Fig. 6.5 displays the time series for |t| < 30 s (top panel) and the periodogram
as obtained for |t| < 10 s.

In the case of extending with zeros, we expect the same relation as in Sec. 6.4.2, which we
recover in the bottom panel of Fig. 6.6. On the other hand, when we extend with white
noise the SNR first rises quickly until the extension factor reaches around xbreak = 2 (see
Eq.6.24) and then turns towards a slow descent proportional to 1/

√
x. We note that

the behavior in the case of x < xbreak for white noise is not well captured, but greater
extension factors would be less realistic and the simulated data set aims to qualitatively
show all effects.

We use models SRW and SRWQ as described earlier to calculate posterior distributions,
Bayes factors, and ∆BICs. As we show in the bottom panel of Fig. 6.6, the lnBF
increases almost perfectly linearly when we extend with zeros. In the top panel, we see
that if we extend with white noise the lnBF also increases with x even past xbreak, though
turns around eventually. The lnBF may be increasing past xbreak if the QPO feature in
the periodogram is better fit by the model for higher x compared to the feature’s shape
at xbreak.

We have shown that overall we can see a non-stationarity bias if white noise remains
stationary, but red noise vanishes for part of the lightcurve. This is in principle differ-
ent from the effect in Sec. 6.4.3, as the red noise is due to a stochastic rather than a
deterministic process.
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Figure 6.5: Simulated data of a non-stationary QPO and red noise in surrounding
stationary white noise. In the time series (top) we show how QPO and red noise are
transitioning smoothly into the surrounding part of the time series that is pure white
noise (|t| > 10 s) due to the Hann window that we have applied. In the periodogram

(bottom) for |t| ≤ 10 s the QPO is clearly visible by eye.
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6.4.5 Tests of stationarity

One noticeable property of the bias we have found is that it passes regular tests employed
to detect fitting validity. Nita et al. [212] demonstrates a χ2-like test for exponentially
distributed data

χ2
ν =

1

ν

N/2∑
j=1

(
1− Ij

Ŝj

)2

, (6.27)

where ν are the number of degrees freedom and Ŝ is the maximum likelihood PSD.
Analogously to the regular χ2-test, χ2

ν ≈ 1 indicates an appropriate fit to the data,
whereas χ2

ν > 1 indicates underfitting, and χ2
ν < 1 overfitting. Poor fits should in

general occur with non-stationary behavior in the red noise or QPO dominated part of
the PSD. That is because neighboring bins will be covariant and a fit may either align
more closely or further away than should be possible for independent bins, though χ2 ≈ 1
may still randomly occur. However, in practice, non-stationarities will affect the low-
frequency part of the PSD while high frequencies are dominated by white noise. Since
frequency bins are linearly spaced, the vast majority of all bins are almost always fitted
well in terms of the χ2-statistic if the periodogram reaches a white noise floor at high
frequencies. As we show in Fig. 6.7, the χ2-value for the entire PSD is very close to
the χ2-value for all the frequencies above the QPO frequency plus twice its width. For
comparison, setting f0 = 1 Hz with a 40 Hz sampling frequency, as it is the case in the
bottom panel of Fig. 6.7, about 95% off all frequency bins are greater than f0. Thus
even if we overfit locally around the QPO, it is unlikely that this greatly impacts the
overall χ2-value.

We propose a local χ2-test, where we calculate the χ2-value for just the frequencies
within 2σ around the QPO frequency. We show this test in Fig. 6.7 for data sets used in
Secs. 6.4.2 (top) and 6.4.4 (bottom). We note in the top panel that we obtain a reasonable
χ2 ≈ 0.92 for the local test if we just look at the stationary time series at x = 1, and
obtain χ2 < 0.6 for large x. This method has the downside that it will not work if there
are only very few bins available as is the case for x . 6 in the bottom panel of Fig. 6.7.
We need at least seven data points to compensate for the six degrees of freedom in the
SRWQ model. If more bins are available, this test can reliably flag whether the QPO
has been overfitted or underfitted. This test is required but not sufficient to show that
non-stationarities are not impacting the analysis. In general, we may find χ2 ≈ 1 even
for QPOs that are strongly affected by non-stationarity bias. For example, a time series
may in principle contain two QPOs at similar frequencies and non-stationarity bias. In
that instance, the overfitting due to covariance of neighboring bins may be compensated
by underfitting of the underlying multiple QPO shapes and yield χ2 ≈ 1 for the local
test.

6.5 Solar flare data

QPOs are a regularly reported phenomenon that have been observed in solar flares over
a wide range of wavelengths for decades, from radio waves to EUV as well as soft and
hard X-rays (see Nakariakov & Melnikov [211], Van Doorsselaere et al. [289] for recent re-
views). In this domain, they are usually referred to as quasi-periodic pulsations (QPPs).
Due to their ubiquity, progress has been undertaken to automate their analysis using
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Whittle likelihoods, e.g. with the Automated Flare Inference of Oscillations (AFINO)
method [137, 154, 155]. An extensive catalog of AFINO analyses is available online3.
AFINO defines models similar to SRW, SRWQ, and SBW, although it uses a Gaussian
instead of a Lorentzian pulse as the QPO component, and a slightly different broken
power-law model. AFINO uses a computationally efficient Scipy fitting routine to de-
termine the maximum likelihood values and calculate the ∆BIC with Eq. 6.8, though it
does not calculate Bayes factors or posterior distributions. The QPO model is “strongly
favored” if ∆BIC < −10, relative both to the red noise and broken power-law model.
This ensures a small number of false-positive values, as has been demonstrated on sim-
ulated data in Broomhall et al. [70]. Additionally, AFINO performs the χ2-test for
exponentially distributed data using Eq. 6.27. AFINO flags the results if the implied
p-value from the χ2

ν test is below or above a set threshold.

For a comparative study on the impact of non-stationarity bias, it is instructive to
consider some of the most significant QPOs. This is because these QPOs are visually
identifiable from the lightcurve, which guides us in their analysis. We look at a solar
flare observed by the X-Ray Sensor (XRS) onboard the GOES-15 satellite on May 12,
2013, at 20:17 UT for which AFINO reports the highest significance for a QPO with
∆BIC = −451.6 relative to red noise and ∆BIC = −278.2 relative to the broken power
law. This flare was of GOES magnitude M1.9 and originated from NOAA active region
11748, which was located on the East limb of the Sun at the time. AFINO finds a high
quality fit for the QPO model with χ2 = 1.06 but flags the fits with the broken power
law and red noise due to their high χ2 values, likely due to the very pronounced QPO
present at P = 12.6 s. We show the 46 minutes long GOES x-ray lightcurve we analyze
in Fig. 6.8. The QPO is visible by eye on the tail end of the distribution (inset) and
persists for about 200 s, much shorter than the 2760 s data segment. This particular QPO
may not be of solar origin, since it is not observed in other flare-observing instruments.
However, a similar signature is coincidentally seen in the GOES magnetometer data,
suggesting a possible artifact. Regardless of the origin, the QPO is clearly present and
confined to a small portion of the data, providing an ideal test case.

To demonstrate the presence of an artificial amplification of the SNR, we split the
lightcurve into three segments. The first segment covers the time before the QPO (0 s
to 1680 s) (after 20:17 UT), the second selects just the QPO (1680 s to 1880 s), and the
third segment selects everything after the QPO (1880 s to 2760 s). We perform Bayesian
inference separately on each of these segments and the combined segment independently
with the model SRW and SRWQ. We use the same priors as in the studies on simulated
data which we list in Tab. 6.2. If the lightcurve were stationary, it would be valid to
combine the Bayes factors and f0 posteriors as they represent independent draws from
the same distribution. However, as we show in Tab. 6.1, we are unable to detect the
reported QPO in the first and third segments. There is some weak evidence towards a
QPO in the first segment, though not at the reported 12.6 s period. The third segment
shows some weak support for a QPO with lnBF = 1.4, but the maximum likelihood
fit indicates that this is rather due to a broad feature in the periodogram that is bet-
ter fitted with a broken power law. As we show in Tab. 6.1, both the first and third
segments are better fitted with SBW than with SRWQ, which indicates that it is likely
no QPO present. In the second segment we find the QPO independently with a very
high significance lnBF = 27.5, and it is clearly visible in the fitted periodogram in
Fig. 6.9. Finally, we analyze the combined segments together and find the QPO with

3https://aringlis.github.io/AFINO/

https://aringlis.github.io/AFINO/
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Segment lnBF SRWQ lnBF SBW ∆BIC SRWQ ∆BIC SBW

0 s to 1680 s 3.0± 0.3 6.8± 0.3 -11.3 -5.0
1680 s to 1880 s 27.5± 0.2 −0.7± 0.2 -66.8 7.8
1880 s to 2760 s 1.4± 0.3 7.7± 0.2 -0.7 -6.8

0 s to 2760 s 229.4± 0.3 93.0± 0.3 -465.6 -175.8

Table 6.1: Results from analyzing the selected segments of the solar flare detected by
GOES. All errors are given based on 1−σ confidence or credible intervals. The segments
are given in seconds after 20:17 UT. All lnBF and ∆BIC values are calculated relative
to SRW. We reiterate that either a positive lnBF or a negative ∆BIC indicate that
SRWQ or SBW are preferred over SRW. We find broadly that the ∆BIC values in the
last row are in agreement with what AFINO reported. Deviations are likely due to
differences, in our model and slightly different data selection. While in all instances
Bayes factors and ∆BICs give the same indication about the preferred model, the
significance differs to some extent. This may be in part due to our wide prior choices.

lnBF = 229.4, a significance much higher than in segment two. We note that we find
the QPO at a slightly different period of 12.34 s± 0.06 s compared to the value reported
of AFINO. This may be due to slightly different QPO modeling choices between AFINO
and our method.

We perform the local χ2-test we introduced in Sec. 6.4.5 for the entire lightcurve and
find χ2 = 0.29 for the frequency bins surrounding the QPO. This indicates that the QPO
has been overfitted and is non-stationary.

It is evident that the solar flare segment we have analyzed contains a QPO and an
overestimation of its significance is not as critical as it would be for a marginal detection.
Trying to find an instance where a marginal detection was turned into a very confident
detection due to non-stationarity bias would be much harder. We would not be able to
determine the location of the QPO in the lightcurve by eye. Instead, we would have to
take a systematic approach and split the lightcurve into several smaller segments and
determine if the QPO exists in them individually. Of course, the significance in the
individual segments would always be lower, so it would be hard to determine whether
this is due to the reduced non-stationarity bias or because we split a persistent QPO
into multiple segments. As mentioned previously, we do not expect AFINO to report
many false detections, as has been established in Broomhall et al. [70]. This is due to
its conservative detection threshold ∆BIC < −10. Thus, if AFINO is coupled with a
more careful data selection method it could be possible to find more QPOs.

The non-stationarity bias in solar flare data arises most likely as a combination of the
effects we describe in Sec. 6.3, i.e. a non-stationary QPO, non-stationary noise processes,
and a deterministic overall flare shape all contribute to some extent. We can not easily
discern what the impact of each of these effects is.

Non-automated analyses of QPOs in solar flares are also likely less affected than the
stretch of GOES data we analyze in this section. Typically, parts of the lightcurve that
are of interest are selected manually for detailed analyses [e.g. 136], though this by
no means provides a guarantee that such results are without bias. As we have estab-
lished previously, the lnBF or the ∆BIC can grow linearly with x, thus even a mild
overselection of the lightcurve can lead to erroneous detections and inferences.
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6.6 Discussion and outlook

In this paper, we show that analyses based on Whittle likelihoods likely overstates the
significance of QPOs in lightcurves if the QPO or noise features in time series are non-
stationary. Specifically, this is the case if data is included in the time series that contains
only white noise when the QPO is in the red-noise-dominated part of the PSD. The
effect can also occur if the QPO is in the white-noise-dominated part of the PSD, but
the white noise is non-stationary (e.g. if the noise arises due to photon counting) and we
include weak white noise from parts of the lightcurve that have low photon counting rates.
Selecting an appropriate time segment for the analysis of transients is thus important
but remains difficult to do generically and without bias. A scientist’s natural intuition
may be to select data conservatively, i.e. select a longer time series while being aware
that the QPO may only be present for a part of it. The erroneous reasoning may be that
by selecting a longer segment they are not “cherry-picking” the segment with the most
pronounced QPO features. As we demonstrate in this paper, this choice may increase the
significance of the QPO artificially and lead to false detections due to the non-stationarity
bias.

There are some possible mitigation strategies that one may apply when the use of pe-
riodograms is still preferred. However, this means that it is a lot harder to devise a
generic process with which to analyze time series. Firstly, if we suspect that the QPO is
indeed only present for part of the transient, and the white noise level is relatively low
compared to the low-frequency continuum, as is indeed the case for x-ray lightcurves of
solar flares, it is reasonable to seek out the part of the lightcurve that looks by eye most
likely to contain a QPO, and then set the limits on the start and end of the segment
manually. However, this method requires significant human supervision and thus will not
scale to large data sets. It is open to other forms of selection bias, too. Secondly, for such
transients, we also suggest splitting the lightcurve up into several parts to see if one can
detect the QPO in all segments or only in some of them. For the final analysis, one should
only use segments if there is some evidence for the QPO. Next, for shorter transients
where we suspect the QPO to be present for most of the time, we should conservatively
trim the lightcurve after the onset and before the end of the segment. This way we are
less likely to make the lightcurve non-stationary. Finally, we have found that regular
χ2-like tests are unsuitable to detect non-stationary bias since only a few bins around
the QPO are affected. The overall χ2-value is mostly determined by the far greater share
of frequency bins that lie in the white-noise-dominated part of the PSD. We outline that
alternatively calculating χ2 based solely on the frequencies surrounding the QPO can
detect overfitting, which is a hallmark of statistically non-independent frequency bins.

Aside from periodograms, other methods that can be used for the search for QPOs.
Wavelet transforms are a popular way to analyze the time series by convolving a wavelet
function with a time series of interest [282]. Wavelet analyses are not restricted to
stationary data sets and may help us to find the specific times when a QPO occurs.
However, the statistics of detecting QPOs with wavelets in the presence of red noise
remains contentious since detrending methods are likely to lead to false detections [49].
Alternatively, we can avoid frequency-domain methods altogether and model the time
series as a Gaussian process with some mean function. The main drawback of Gaus-
sian processes is that they have computational complexity O(N3) and thus are only
suitable for short time series in the general case [233], though progress has been made



86

to reduce complexity to O(N) for stationary, complex exponential kernels or combina-
tions thereof [113]. We note that we expect the same non-stationarity bias if we apply
a stationary Gaussian process kernel to a non-stationary time series since the Whittle
likelihood explicitly derives from a Gaussian process likelihood. We have also found this
result empirically in some preliminary analyses (Huebner et al. 2021, in prep).

One advantage of Gaussian processes is that they allow us to fit the overall shape of
the transient and the stochastic process simultaneously, instead of lumping the shape of
the transient into the red noise, which can help us to prevent the bias demonstrated in
Sec. 6.4.3. It thereby allows us to avoid nonparametric methods that are likely to create
false periodicities [49]. Additionally, the Gaussian process likelihood can explicitly take
in the known variance for flux values within a lightcurve if they are available. Thus,
they also provide a natural resolution to the bias shown in App. 6.9. Finally, Gaus-
sian processes allow us to model relatively simple, non-stationary extensions to the fast,
stationary models that are popular now (Huebner et al. 2021, in prep). Further devel-
opment of Gaussian process methods may eventually allow us to create more complex
models of QPOs and their possible intermittency within transients.
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6.8 Appendix: Priors and simulated data parameter tables

We list the priors and parameters used for all the studies in Secs. 6.4 and 6.5 in Tabs. 6.2
and 6.3.

6.9 Appendix: Deterministic processes impact white noise

White noise observed in astrophysical lightcurves using photon counting does not arise
due to intrinsic properties of the source, but rather due to the Poissonian noise nature of
photon counting. Concretely, given a rate λ, the distribution of the number of observed
photons k in a unit of time is Poissonian

Pois(k;λ) =
λke−λ

k!
. (6.28)

Photon counting noise thus scales proportionally to the standard deviation of the Poisson
distribution

√
λ. This relation implies that photon-counting noise throughout a transient
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Parameter Description Prior Minimum Maximum
A Red noise amplitude LogUniform exp(−30) exp(30)

α, α1, α2 red noise / BPL spectral index Uniform 0 10
B QPO amplitude LogUniform exp(−60) exp(60)
f0 QPO central freq. LogUniform 2∆f fmax

σ QPO HWHM
Conditional-
LogUniform ∆f/π 0.25f0

C White noise amplitude LogUniform exp(−30) exp(30)
δ Breaking freq. for BPL LogUniform ∆f fmax

Table 6.2: Parameters and priors used throughout all studies in this paper. Priors
are referred to by their implementation in Bilby. We select wide priors in A, B, and
C for simplicity. Although the selection of priors this wide may have a slight impact
on the Bayes factor calculation, it will not qualitatively change the scaling of Bayes
factor with x. We also set a wide prior on α, or α1 and α2, and enforce α2 < α1

using a Constraint prior in Bilby to avoid degeneracies. The prior on f0 is motivated
by the available frequencies in the periodogram. We set the minimum f0 at twice the
difference between neighboring frequencies ∆f to ensure better convergence, and refer
to the highest frequency in the periodogram as fmax. We set σ, the width of the QPO
at half width half maximum (HWHM), to be conditional uniform in log between ∆f/pi,
i.e. on the scale of a single frequency bin, and 0.25f0, to prevent it from converging
towards wider features in the periodogram. For the broken power law analysis of solar

flare data, we use priors for α1,2 identical to α, and the listed δ prior

Parameter Sec. 6.4.2 z Sec. 6.4.2 wn Sec. 6.4.3 Sec. 6.4.4 App. 6.9
A - - - 4 -
α - - - 2 -
B 3 15 80 8 100
f0 5 5 1 1 5
σ 0.1 Hz 0.1 Hz 0.01 Hz 0.02 Hz 0.1 Hz
C 2 2 2 2 -

Aflare - - 20000 - 1000 s−1

t0 - - 70 s - 200 s
τr - - 10 s - -
τf - - 20 s - -

σflare - - - - 20 s
c0 - - - - 10 s−1

Segment length 400 s 400 s 200 s 400 s 400 s
Sampling frequency 40 Hz 40 Hz 40 Hz 40 Hz 40 Hz

Table 6.3: Values used to create the simulated data in Sec. 6.4. The column heads
refer to the subsection in which this set of parameters was used. We use two different
sets of parameters in Sec. 6.4.2 depending on whether we extend using zeros (z) or more

white noise (wn).

does not remain constant. We demonstrate a limit of this in Sec. 6.3.1 when we consider
what happens if we extend a time series with zeros. This limit corresponds to the case
in which a detector sees no photons at all. In realistic detectors, we will not reach this
limit as there are at least some background photons, though we can get close enough to
it for it to lead to wrong inferences about QPO significance.

The above effect points to a deficiency in periodograms more generally. For the cal-
culation of a periodogram we use the values x(ti) of a discrete time series, but we do
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not include their variances ∆x(ti) if they are available. In effect, this implies a loss of
information as the white noise is already encoded in the variance associated with the
photon counts. Instead, we infer it after the fact via power spectral density estimation
independently and lose knowledge about non-stationarity in the white noise.

To demonstrate this effect, we construct a transient similar to Sec. 6.4.3, though in a
way that its low-frequency contributions do not overlap with the QPO frequency, as to
demonstrate that this effect arises due to non-stationarity in the white noise. Concretely,
we construct the transient by generating a Gaussian profile plus a constant

f(t;Aflare, t0, σflare) = Aflare exp

(
−(t− t0)2

2σ2
flare

)
+ c0 , (6.29)

where Aflare is the amplitude, t0 is the time of the peak, σflare is the width, and the
constant c0 represents a possible background count rate. We add a 20 s non-stationary
QPO in the same manner as we describe in Sec. 6.4.3. We create photon counts, which
we show in Fig. 6.10, by simulating the Poisson process using the implementation in
scipy.stats.poisson.rvs. The specific parameters of this time series are listed in
Tab. 6.3. By construction, the QPO is set on the top of the Gaussian profile, which
corresponds to the highest level of photon counting noise. The Gaussian profile, unlike the
exponential from Sec. 6.4.3, contributes powers at lower frequencies than the exponential,
roughly up to 1/σflare ≈ 0.05 Hz. Additionally, we set our QPO frequency at 5 Hz and
cut off frequencies below 0.5 Hz so that we can avoid using a red noise component in our
modeling in the same way we did in Sec. 6.4.2.

On the tails of the flare, we expect the same effect as we observe when we extend with
zeros in our other simulations, though Fig. 6.11 clearly shows that we artificially increase
the significance already with very small extension factors. This is possible since the flare
quickly falls off on either side and the added photon counting noise does not compensate
for the increased number of frequency bins that contain the QPO. Overall, this effect
would be hard to account for just based on better methods for setting data cuts because
varying levels of white noise are expected in many transient lightcurves.
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Figure 6.6: SNR (blue) and lnBF (orange) vs the extension factor for simulated data
of a non-stationary QPO and red noise with white noise as described in Sec. 6.4.4 for
extension with white noise (top) and zeros (bottom). The solid blue line displays the
SNR of the maximum likelihood point and the shaded blue region displays the SNR’s

90% credible interval.
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Figure 6.7: Nita et al. [212] χ2-tests in the case of a QPO and white noise extended
with zeros as described in Sec. 6.4.2 (top), and the case of QPO, red noise and white
noise extended with white noise as described in Sec. 6.4.4 (bottom). We see in the top
panel that the overall fit (blue) and the fit for frequencies above the QPO frequency
(green) have χ2 ≈ 1, indicating a good fit. The local χ2-test around the QPO frequency
f0 indicates a good fit only for x = 1 and falls much below that for x > 1, indicating
overfitting. This implies that the local χ2-test can detect non-stationarity bias in this
instance. In the bottom panel, we display some of the limitations of the local χ2-test
when we deal with narrow QPOs. For x . 6 the local χ2-test (orange) around f0 swings
widely as we have too few frequency bins within the range. Above the x ≈ 6 enough
frequency bins accumulate within the range and we detect the overfitting. We also note
that the χ2-test for the entire PSD (blue) and frequencies above the QPO frequency

(green) indicate an overall good fit despite us overfitting the QPO
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Figure 6.8: Solar flare x-ray lightcurve as observed with GOES in the 1Å to 8Å
band. The figure shows the time selected as done with AFINO. The inset zooms in on

the tail of the lightcurve where the QPO is clearly visible.

Figure 6.9: Maximum likelihood fit of the periodogram just for the second segment
of the GOES lightcurve. The QPO is clearly visible and highly significant. We draw
the 2σ and 3σ detection limits based on the Bonferroni-corrected frequentist statistics.

We note that the QPO is located in the red noise dominated part of the PSD.
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Figure 6.10: Simulated data of a non-stationary QPO in a deterministic transient
flare shape in the presence of white photon counting noise. The time series (top) shows
the dominant transient and the QPO that is present for 20 s on the top of the flare
(inset). The periodogram for the entire 400 s time series (bottom) has a relatively wide
(σ = 0.1) QPO at 5 Hz (barely visible). For our analysis, we cut off all frequencies
below 0.5 Hz to avoid any effects arising from the power in low frequencies due to the

flare shape.
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Figure 6.11: We calculate the Bayes factors for the presence of a QPO in a transient
flare for different extension factors with x = 1 corresponding the 20 s inset from the top
of Fig. 6.10. While we already start with very strong evidence of a QPO at x = 1, the
Bayes factors continue to increase as we extend the time series to include more of the

transient.



Chapter 7

Detecting Quasi-periodic
Oscillations with Gaussian Processes

We are following up on the discussion from the preceding chapter about how non-
stationarities can bias the search for quasi-periodic oscillations (QPOs) when we use
periodogram-based analysis methods. An alternative way to look at time-series data
is to understand them as a Gaussian process (GP), i.e. a combination of a determin-
istic and stochastic process in which all data points are part of a multivariate normal
distribution (see Ref. [233] for a comprehensive introduction). A GP is characterised
by a kernel function k(t0, t1), which describes the stochastic aspect via the covariance
between two different points in time ti, and the mean function µ(t), which describes the
deterministic aspect. GPs are entirely modelled in the time domain and thus obviate
the need for Fourier transforms. Using GPs also has several challenges associated with
it, especially motivating the choice of kernel function and computing the GP likelihood
in an acceptable amount of time.

In this chapter, we discuss how we can use a GP approach to search for QPOs and how
this can explicitly address the issues we encountered in the previous chapter. Time-
domain modelling allows us to distinguish stochastic from deterministic aspects of the
light curve as these form different parts of the model which can be inferred concurrently.
Although creating and evaluating general non-stationary QPO models is complicated,
we show how we can make some relatively easy tweaks to stationary models to allow the
exploration of simple, non-stationary structures.

As we show, there are also some trade-offs to using GPs. The statistics only works for
Gaussian data and is unsuitable if we are analysing, e.g., Poissonian data with very low
count rates, which are common in some x-ray observations. Next, GP likelihoods are
computationally expensive to evaluate in the general case (O(N3) for N data points),
though fast evaluation algorithms exist for some classes of kernel functions. We utilise an
O(N) complexity algorithm that is available for the class of complex exponential kernel
functions and combinations thereof [113], which is suitable for exploring periodicity 1.

In this chapter, we show that using Bayesian inference, properties of a QPO such as
its frequency can be inferred, and that model selection between QPOs and alternative

1Strictly speaking, celerite has O(NJ2) complexity, where J is the number of complex exponential
terms we combine to create a kernel function, which is no more than two in this study

94
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models such as red noise can be performed reliably. We layout in detail what GPs are
and motivate a kernel function that corresponds to QPOs in Sec. 7.1. In Sec. 7.2, We
demonstrate on simulated data that both parameter estimation and model selection work
reliably. This method is easily transferable to many astrophysical data sets. We show
this by applying the method to some selected astrophysical time-series data, such as
GRBs, magnetar flares, and the solar flare we investigated in the preceding chapter, in
Sec. 7.3. We discuss the results in Sec. 7.4.

7.1 Methods

In the following, we briefly introduce the core definitions of GPs, specifically in the one-
dimensional case relevant to this study. For a more in-depth introduction, the reader
can refer to Ref. [233].

7.1.1 Gaussian Processes Overview

A GP is defined by a covariance matrix K(α) and a mean function µθ(t), with α and
θ being their respective parameters2. The mean function describes non-stochastic be-
haviour in our data and could thus also be called the “trend function" in the context of
astrophysical light curves which are a function of time.

We define the coordinate vector t and data vector y with N entries each. The GP
log-likelihood is defined as

lnL(θ, α) = −1

2
rTθ K

−1
α rθ −

1

2
ln detKα −

N

2
ln(2π) , (7.1)

where
rθ = y − µθ(t) , (7.2)

is the residual vector and the covariance matrix elements are given by the kernel function
[Kα]nm = σ2

nδnm + kα(tn, tm) where σ2
n are the variances due to white noise and δnm

is the Kronecker delta. In the simplest case of kα(tn, tm) = 0 the likelihood function
becomes a simple Gaussian likelihood which is typically employed to fit Gaussian data.
The fact that we can take the σn into account, unlike for periodograms, means that we
automatically correctly treat heteroscedastic data.

It is important to underline that σn, i.e. the white noise estimate on any data point if
known, is intrinsically part of the GP likelihood, which is not the case for the Whittle
likelihood. If we analyse a time series using the Whittle likelihood we have to infer the
white noise level from y, and will only be able to assume the white noise level to be
constant, which is not the case in most astrophysical light curves. This points directly
to an advantage of GP modelling.

The σn in astrophysical light curves often arise due to photon counting which is described
by a Poisson distribution

Pois(k;λ) =
λke−λ

k!
, (7.3)

2In the context of GP regression, the parameters α are often referred to as “hyperparameters", which
should not be confused with the hyperparameters used in hierarchical inference.
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for k photon counts given a photon rate λ. Both mean and variance of the distribution
are λ. Since the distribution is Gaussian for high counting rates, it is valid to apply a
GP likelihood by approximating σn ≈

√
λ(tn) ≈ kn, where kn is the number of photon

counts in the nth bin.

One of the main drawbacks of GPs is that in general, the likelihood takes O(N3) steps
to evaluate [233]. There are numerous sophisticated approaches to reduce this complex-
ity to a more manageable level [111, 121, 310], including GPU acceleration [94]. Most
suitable for us is the celerite software package, which solves performance issues by
restricting itself to one-dimensional problems and the class of complex exponential ker-
nel functions and combinations thereof which reduces the complexity to O(NJ2) [113]
with N being the number of data points and J being the number of exponential terms
that form the kernel. celerite achieves this by exploiting the semi-separable structure
of the covariance matrices, which allows for the use of a fast solver for the Cholesky
factorisation [113]. We investigate in the following section why the class of exponential
kernel functions is sufficient for our purposes.

7.1.2 Kernel Functions

As explained in the previous section, the kernel and the mean function are the two
elements that model a GP. There exists exhaustive literature on popular kernel functions,
but it is not always clear which kernel function should be used and how to interpret
their hyperparameters. In fact, for many applications of GPs, this is not even the goal.
Instead one may be interested in GP’s predictive power to interpolate and extrapolate
data, which can be tested and tuned on training sets. However, we are interested in
being able to interpret the kernel function and associate it with an underlying physical
process. By choosing to use celerite, we need to use a kernel that is in the class of
complex exponential kernels.

We start by defining a kernel describing a periodic oscillation

kpo(τ) = a cos(2πfτ) , (7.4)

where a is the amplitude of the oscillation and f is its frequency. This kernel corresponds
to a perfect harmonic oscillation; its representation in the power spectrum would be a
delta peak at f . In order to make this kernel quasi-periodic, we add another factor to
account for variations in amplitude over time

kqpo(τ) = exp(−cτ)kpo(τ) . (7.5)

This kernel corresponds to a QPO with a parameter c that describes on which time scale
1/c oscillations are excited and damped. In the frequency domain, this kernel corresponds
to a Lorentzian function with peak frequency f and full-width at half maximum c, which
directly corresponds to the model that we used in the preceding chapter.

In practice, many astrophysical systems will display both red noise and QPO at the same
time. In the context of celerite, we can model red noise as a simple exponential

krn(τ) = a exp(−cτ) . (7.6)
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Physically, this kernel corresponds to a damped random walk (Ornstein-Uhlenbeck pro-
cess), and its power spectrum is a f−2 power law.

In order to obtain a kernel that both describes the QPO and the red noise process, we
simply add both kernels

kqpo+rn(τ) = kqpo(τ) + krn(τ) (7.7)
= aqpo exp(−cqpoτ) cos(2πfτ) + arn exp(−crnτ) (7.8)

denoting QPO and red noise component with the subscripts “qpo” and “rn” respectively.
This kernel is somewhat different to a QPO kernel proposed in [113]

k(τ) =
a

2 + b
exp(−cτ) [cos(2πfτ) + (1 + b)] , (7.9)

which also both models QPO and red noise features, but makes them share the c param-
eter. Since we do not find that cqpo = crn in general, we use Eq. 7.7 as our model for the
general case and Eq. 7.5 for the case that we only encounter a QPO but no red noise.

There are alternative ways to describe periodic behaviour outside the domain of celerite
compatible kernel functions. One example has been used in Ref. [39] in the astrophys-
ical context, who adapted it from Ref. [233] who used it to model seasonal changes in
atmospheric CO2 levels

k(τ) = a exp

(
− τ2

2`2
− Γ sin2 (πfτ)

)
. (7.10)

This kernel combines a squared exponential with an oscillatory term such that a pa-
rameter Γ controls the amount of covariance between two points that are roughly one
period away from each other. For high values of Γ, only points exactly integer multi-
ples of a period away from each other have high covariance. This way arbitrary curves
with a repeating shape can be described using this kernel, although a QPO kernel as in
Eq. 7.7 has shown to be sufficient to correctly infer the frequency [113]. Furthermore,
while Eq. 7.10 is useful to fit arbitrary curves, it may be hard to interpret the under-
lying physics from the inferred parameters and comes with the high computational cost
of general GP kernels. Alternatively, Eq. 7.10 could also be approximated by a Fourier
series since the celerite kernel family forms a Fourier basis. However, this approach
would also incur far higher computational costs since the celerite likelihood complex-
ity scales quadratically with the number of terms required to build the kernel and the
Fourier coefficients to be inferred would drastically increase the parameter space.

There are also alternative ways to define aperiodic kernels. Within the support of
celerite models, Ref. [113] proposed using a critically damped stochastic harmonic
oscillator

k(τ) = S0ω0e
− 1√

2
ω0τ cos

(
ω0τ√
2− π

4

)
, (7.11)

which is commonly used to model background granulation noise in asteroseismic and he-
lioseismic oscillations [113]. Outside of the celerite support, the squared exponential,
Matern-3/2 and rational square kernel functions are employed in a great number of con-
texts. Recently some of these kernels have also been applied in the search for oscillations
in blazar light curves [88], but they are difficult to physically motivate and the O(N3)
complexity restricted their use to maximum likelihood estimates rather than Bayesian
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evidence calculation. We stick to the red noise kernel for our analyses as we consider
this to be a basic framework that may be able to describe many physical systems to a
first degree.

7.1.3 Mean Functions

Choosing a mean model is similarly difficult in general if there is no universally physically
motivated model for the underlying background trend. The simplest mean model is to
just take the (weighted) average of all recorded data points. This is tantamount to
assuming that all variability in the light curve is due to stochastic processes. If there is
a substantial background trend present this assumption quickly breaks down and leads
to incorrect inferences about the red noise content in the light curve. It is thus not a
suitable way to approach the problem in most cases.

Another approach is to use filter methods such as the boxcar filter or the Savitzky-Golay
filter [249] and subtract the filtered light curve from the original light curve. As we have
mentioned in the preceding chapter, using filtering methods is prone to cause artificial
periodicities [49]. Some problems feature a relatively simple background trend that could
be modelled as a linear trend or another low-order polynomial instead of a filter. Other
problems may have existing physical or phenomenological models for their trend, e.g.
there are popular models of gamma-ray burst (GRB) light curves such as the “fast-rise
exponential decay” (FRED) model.

For general problems, one can employ methods such as shapelet fitting, in which the
problem is expressed as a sum of orthonormal basis functions. Alternatively, for burst-
like light curves, it is often possible to identify several base flare shapes (e.g. (skewed)
Gaussians, fast-rise exponential decays [150], etc.) that can be used to model the overall
shape of the burst. While one has to be careful with the definition of priors in this
inherently degenerate problem, we show that this may be a worthwhile approach for
many problems.

In the following we introduce some flare mean models that we use throughout this Chap-
ter. As the most basic models we used skewed Gaussians and skewed exponentials, i.e.

µGAUSS(t;A, t0, σ1, σ2) =

A exp
(
− (t−t0)2

2σ2
1

)
if t ≤ t0

A exp
(
− (t−t0)2

2σ2
2

)
if t > t0

(7.12)

and

µEXP(t;A, t0, σ1, σ2) =

A exp
(
− t−t0

σ1

)
if t ≤ t0

A exp
(
t−t0
σ2

)
if t > t0 .

(7.13)

There are a number of other approaches to define FRED models. We focus on the ones
defined in Refs. [214, 215], which can assume a wide variety of shapes. The regular
FRED model is defined as

µFRED(t;A, t0,ψ,∆) =

A exp

(
−ψ

(
t+ ∆

t0
+

t0
t+ ∆

))
exp(2ψ)

(7.14)
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for t < 0. The maximum of this model coincides with t = t0, and we can interpret
∆ as an “offset" parameter that allows us to fit the full range of flare shapes with
arbitrary offsets from t = 0. Finally, ψ serves as a symmetry parameter, with the
curve becoming increasingly symmetrical for large values of ψ. The additional factor
exp(2ψ) is optional in the model definition and serves as a normalisation factor such
that µ(t = t0;A, t0, ψ, 0) = A, which eases the definition of the amplitude prior.

We can extend the regular FRED model by adding extra exponents to the terms in the
exponential. This allows the model to assume some more “peaky” structures.

µFRED−x(t;A, t0, ψ,∆, µ, ν) =

A exp

(
−ψµ

(
t+ ∆

t0

)µ
− ψν

(
t0

t+ ∆

)ν)
exp(2ψ)

(7.15)

As we show later, any of the models we have introduced here perform reasonably well in
terms of fitting general flare shapes. Performing Bayesian inference with these models
thus naturally yields comparable evidences. For general problems, it is prudent to run the
analysis with multiple mean models and select the one that yields the highest evidence.

7.1.4 Towards non-stationary Models

We have already laid out how GPs resolve the issues we found with Whittle-likelihood
based analyses in the case of heteroscedastic data and in case a deterministic trend seeps
into frequency bins that contain the QPO. The other issue we face is if the QPO and
noise process are non-stationary. Specifically, we are considering the following scenario:
a time series that is split into three parts, the first and last contain only white noise
whereas the middle contains both a QPO and red noise. Additionally, we allow for a
continuous mean function to be present everywhere. We show how we can implement
this basic, non-stationary process and how we can use it to infer when QPOs start and
end.

Stationarity in the context of GPs is defined as

k(t0, t1) = k(‖t1 − t0‖) = k(τ) , (7.16)

i.e. the matrix looks the same if we move forwards or backwards in time. As a simple
example, we consider a system that has some regular x-ray emission characterised by
white noise, then flares for some time, and then goes back to its regular emission. If we
do not select the data we want to analyse carefully, we are likely to incur some biases
due to the non-stationarity bias, which occurs due to the white noise at the beginning
and the end of the segment. As Whittle likelihoods are based on the same assumptions
as stationary GP likelihoods, the bias is very similar in both cases.

By breaking the time series into three segments, we can model a very basic, non-
stationary process without having to resort to a more general likelihood solver. Instead,
we split the likelihood into two parts, one for the two disjoint, white noise segments
on either end and one for the stochastic process in the centre. The covariance matrix
can then be decomposed into two submatrices correspondingly. We obtain one “inner”
covariant submatrix by deleting all rows and columns that only contain the diagonal
σn and one “outer” non-covariant submatrix by deleting all the other rows and columns
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from the original covariance matrix. Since the covariant submatrix forms a block, we
can calculate the inverse and the determinant independent from the remaining entries.
The same operations are trivial for the non-covariant blocks. We can re-write Eq. 7.1 to
describe this explicitly

lnL(θ, α) =− 1

2

∑
nout

r2
nout

σ2
n

−
∑
nout

lnσnout −
Nout

2
ln(2π)

− 1

2
rTin,θK

−1
in,αrin,θ −

1

2
ln detKin,α −

Nin

2
ln(2π)

(7.17)

where the likelihood coming from the outer non-covariant submatrix is in the first line
and the inner covariant submatrix is in the second line. Here nout are the indices of the
outer Nout non-covariant row/columns, Kin,α is the inner covariant submatrix, and rin

are the residuals of the Nin inner rows/columns. We introduce two additional parameters
to our model tstart, and tend, that describe the transition point between those segments.

7.1.5 Assumptions and Limits of GPs

While GPs show great flexibility, their use implies certain assumptions about the systems
we investigate. Firstly, we are assuming that QPOs are an additive process, i.e. the QPO
does not depend on the value of the mean function at any point. This is likely not a
perfect model. At the very least we expect no QPOs long before and after a transient.
This implies that there is some connection between the mean function and the GP, which
is not modelled using our framework.

The QPO model we propose is also inherently stationary as this is one of the requirements
of the celerite package, and we can only model a narrowly limited set of non-stationary
time series as we have shown in Sec. 7.1.4. QPOs that drift in frequency over long time
scales can not be properly modelled and would require us to use a different framework of
GP solvers. Once frequency shifts become too large, our QPO kernel is certain to fail. We
can detect shifting frequencies by splitting the light curve into multiple segments that we
analyse independently and compare the QPO frequency posteriors. For a more rigorous
analysis, we would have to evaluate a more expensive non-stationary QPO model.

Astrophysical x-ray data is typically recorded by counting the number of photons that
arrived at a detector in a specific time interval, a process that is by its nature Poissonian.
Real data is often more complicated and may feature aspects of Gaussian and Poissonian
properties. Meanwhile, GP modelling inherently assumes that the underlying data are
Gaussian. While Poisson counting data are Gaussian to a good approximation if there
are sufficient counts per bin, data with lower count rates are not correctly modelled by
GPs. There are some approaches to deal with photon-counting data with low count
rates. The easiest way is to apply a variance stabilising transform which makes the data
approximately Gaussian with σ = 1 [40, 51]. However, these transformations are still
far off for bins with just zero or one photon. Other methods like a sigmoidal Gaussian-
Cox process treat Poisson data effectively as Gaussian by converting the data with a
sigmoid function [34]. In any case, using these methods makes it harder to interpret the
hyperparameters because they also will be transformed. Alternatively, we can also use
the GPs ability to treat data that is not equally spaced. If we encounter Poissonian data
that in parts has bins with few counts, we combine neighbouring bins with low counts.
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By doing that we need to divide the combined bin by the number of bins we combined
to account for the increased value.

We also assume that dead-time, i.e. the property of detectors that they are unable
to detect a second photon for a short period after they counted the first photon, does
not play a significant role in our data. Dead-time effects are particularly a problem
for strongly flaring sources. Modelling dead-time in practice is difficult and requires
sophisticated techniques such as simulation-based inference [145]. For this study, we are
assuming that our data are not significantly influenced by dead-time effects.

7.1.6 Bayesian Inference with Gaussian Processes

Bayesian inference with GPs works much the same as the general framework that we
have laid out in Sec. 1.1. Similar to Chap. 6, we are interested in distinguishing a
combination of red noise and QPOs from pure red noise, given some mean model that
is identical in both cases. Bayes factor calculations for model selection has normally not
been considered viable (Refs. [88, 317] are notable exceptions). Alternative methods such
as the Akaike or Bayesian information criterion can be computed much faster based on
a maximum likelihood estimate. However, these metrics are less reliable if the posterior
distribution is not Gaussian or features multiple modes.

The main motivation for using approximate methods is that these are computationally
cheap to obtain. However, when we deal with celerite models, performing the nec-
essary number of likelihood evaluations for full posterior and evidence calculations is
relatively trivial. We find that nested sampling can be performed in O(minutes) using
celerite for a light curve with a few hundred bins when using the QPO GP model and a
skewed Gaussian mean model. Furthermore, even beyond the class of celerite models,
full Bayesian inference may be possible on many data sets with the use of efficient GP
evaluation algorithms [94, 111, 121, 310] or the use of massively parallel inference [258].

Priors for GP parameters must be chosen carefully. Generally, we employ priors that
are uniform in logarithm for amplitude a, inverse decay time c, and frequency f , since
these prior spaces span several orders of magnitude. These priors can also be adjusted
depending on the application. We must also consider the ranges of the priors for two
reasons. First, the prior range impacts the evidence calculation; making the prior range
overly large would suppress the evidence and disfavour the model. Second, there are parts
of the parameter space that are not reasonable to sample in, e.g. amplitude parameters
that are much too small for the given data points.

The prior range of the amplitude parameters a for red noise and QPO can be set fairly
widely, though if there is indeed no QPO/red noise present in the data, we only obtain an
upper limit below which we infer the prior distribution. To avoid this, we set the lower
limit to be the same as the smallest σn, meaning that we assume that the QPO/red
noise process has to be at least as strong as the white noise. This helps us to distinguish
kqpo+rn and krn because kqpo+rn can no longer look like krn by having very low aqpo

values. Setting a generic upper limit on a is somewhat more difficult, but also has a
smaller impact on the results. When we compare evidence for red noise against evidence
for QPO plus red noise, a wider prior on the amplitude will disfavour the latter evidence
more as it will contain a greater prior volume Vπ. In case the prior is uniform, then the
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prior can be extracted from the evidence integral

Z =
1

Vπ,θ

∫
L(d|θ)dθ (7.18)

For example, in the case that we set the prior to be 0 < ln < 20, which is much larger
than any data set we expect to encounter, we have a QPO amplitude prior volume
lnVπ,ln a = ln 20 ≈ 3.0. celerite is not numerically stable much above 30 because it
encounters issues with the limited size of floats. However, such a wide prior is may not
be reasonable since the possible amplitudes do not span this many magnitudes. Suppose
we find that 0 < ln aqpo < 5 is a more reasonable prior, then the associated prior volume
is lnVπ,ln a = ln 5 ≈ 1.6. Overall, this will only make a difference of about 1.4 in lnZ,
which will not greatly affect the interpretation of our results.

The frequency parameter f should not be less than 1/T , with T being the length of the
data segment, and not be greater than the Nyquist frequency, which is half the sampling
rate. This is assuming the data points are equally spaced.

The decay parameter c can in principle take on infinitely low values (e.g. for an undamp-
ened harmonic oscillation) which is rarely the case in real data sets of interest. We find
that if we have a data set with a persistent, high-quality QPO, the cqpo posterior will be
consistent with zero and have some upper limit. Below some threshold then all values of
cqpo are effectively equivalent, and the ln cqpo posterior will be flat in this regime. It is
thus sensible to define a lower limit based on the segment length. We set the minimum
of c to be 1/(10T ), which means that a QPO or red noise kernel has to at least fall by
≈ 10% throughout the data segment.

The upper limit on c requires more care and a distinction for the QPO and red noise
case. In the red noise case, the upper limit should be not greater than the sampling
frequency fs = 1/∆t of the data because otherwise, the kernel will decay to less than 1/e
within ∆t. At this point, the red noise model is not functionally different from a white
noise model. Additionally, the kernel is functionally the same for even higher values of
crn which manifests itself as a plateau in the posterior distribution of ln crn. A similar
argument can be applied for cqpo, however, we do not consider the sampling frequency
of the data, but the frequency of the QPO. In the limit of low QPO frequency, fqpo and
short decay time 1/cqpo the QPO kernel is identical to a red noise kernel. Hence we
employ the limit that the QPO kernel may only decay to 1/e within one period, which
implies an upper limit of fqpo on the prior. We implement this relation in practice using
the constraint prior features in Bilby (see Chap. 3).

Finally, we also consider the priors of our analytic mean flare shapes. Again, these
depend in general on the underlying data we want to analyse. For the constant offset,
we apply we choose a prior uniform in logarithm that reaches from the minimum to the
maximum value in the data set. The amplitude priors are uniform in logarithm between
10% and 120% of the difference between minimum and maximum of the data. The prior
on the width parameter of our flares depends on the model. In general, we aim for the
width parameter to have a uniform-in-logarithm prior that spans roughly from the time
difference between two data points to the entire time range of the data. We also have to
parametrise the peak time of the flare. This prior requires especially careful treatment
because the mean model is degenerate under a permutation in the order of the flares.
Not breaking this degeneracy makes the parameter space much harder to sample since
we end up with n degenerate permutations for n flare components. For this, we use a
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result from order statistics for uniform distributions. Assuming n flares are uniformly
distributed throughout the interval. We label these flares in order from 0 to n−1 indexed
by k. The t0,k prior is distributed according to a conditional beta distribution with α = 1
and β = n − k between the t0,k−1 flare and the end of the interval [125]. Putting this
together, we obtain

π(t0,k|t0,k−1) = (n− k)

(
1− t0,k − t0,k−1

tmax − t0,k−1

)n−k−1

, (7.19)

where tmax is the time of the last element of the light curve. For the special case of k = 0
the prior is not conditional and we have instead

π(t0,k=0) = n

(
1− t0,k=0 − tmin

tmax − tmin

)n−1

, (7.20)

where tmin is the first element of the light curve.

The priors on the parameters of non-stationary extension of the celerite model, tstart,
and tend, are chosen in the same way as in Eq. 7.19 and Eq. 7.20, but with n = 2.

7.2 Simulated Data

We begin validating our model on simulated data before we move on to real data. This
ensures that we can be confident that our parameter estimates are robust and unbiased.

In the following we look at different configurations of the models we described earlier.
We examine both the QPO kernel and our red noise kernel with different parameters.
We also investigate what happens when we infer parameters with the wrong model, e.g.
if we create red noise data and perform inference with kqpo+rn.

Given a set of parameters, GP data is generated in two steps. First, we obtain the
deterministic part of the data by evaluating the mean function. Second, we produce
the stochastic process that arises due to the covariance between the data points. We
create the stochastic process data by drawing a sample from the multivariate normal
distribution that is associated with this covariance matrix. To do this in practise we use
the GP.sample() method in celerite. Finally, we add the deterministic and stochastic
parts to create the overall time series.

7.2.1 Percentile-Percentile Analysis

If the inference process is unbiased then the true value of the parameters has to be in
the x-percentile of the posterior distribution x% of the time. This kind of test is called
a percentile-percentile (PP) analysis and can be used to tune the analysis settings based
on simulated data before the analysis is deployed on real data [85]. PP-tests fail if the
analysis settings are not sufficient to sample the posterior without bias, e.g. if we use too
few live points. This occurs if parameters are hard to sample. PP-tests should pass if we
use the same model and priors for data creation and inference. Concretely, the PP-test
finds a p-value for each parameter using a Kolmogorov–Smirnov test [196] to check if the
fraction of events in a particular credible interval is drawn from a uniform distribution.
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Figure 7.1: Percentile-percentile plot to show that our sampling methods are not
biased. PP-plots are obtained using the respective function in Bilby [242]. We show
the confidence interval (CI) on the horizontal axis, and what fraction of events have
the true value within the CI on the vertical axis. The grey bands indicate the 1σ, 2σ,
and 3σ-levels. The overall p-value of 0.1528 indicates that the observed deviations are
consistent with randomness, though the individual relatively low values for fqpo and
arn indicate that these parameters may be harder to sample and may benefit from more

finely tuned settings.

The PP-test combines these individual p-values to a combined p-value, e.g. using the
scipy.stats.combine_pvalues function in scipy package. Conventionally, p < 0.05
indicates that the fraction of events is not uniformly distributed to the 2σ-level.

We perform the PP-test using the kqpo+rn model and a single skewed Gaussian as an
arbitrary mean model. We create 100 simulated 1 s long data sets sampled with 256 time
bins ti that are randomly uniform distributed in time and using parameters randomly
drawn from the priors in Tab. 7.1. We choose a random distribution of ti instead of
an equidistant one since some astrophysical light curves have gaps or changing sampling
frequencies. Using a random distribution thus validates the method in the general case.

As we display in Fig. 7.1, using dynesty’s random walk sampling with 1500 live points
is sufficient to sample the parameter space without significant biases in the posterior.
The overall p-value of 0.1528 indicates that the observed deviations are consistent with
randomness, though the individual relatively low values for fqpo and arn indicate that
these parameters may be harder to sample and may benefit from more finely tuned
settings.

7.2.2 Model Selection

We want to have an understanding of how much the obtained Bayes factors fluctuate if we
produce multiple noise realisations with the same set of parameters. GP simulations are
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Parameter Prior class Minimum Maximum
arn LogUniform exp(−1) exp(1)

crn LogUniform exp(−1) exp(1)

aqpo LogUniform exp(−1) exp(1)

cqpo LogUniform exp(−1) exp(1)

fqpo LogUniform 1 64
A LogUniform 10 100
t0 Uniform 0 1
σ1 LogUniform 0.1 1
σ2 LogUniform 0.1 1

Table 7.1: Priors for PP-test. The prior is used to randomly draw parameters for
simulated data sets and during the inference process. There is also a prior constraint

such that cqpo < fqpo, which we introduced in Sec. 7.1.6.

different from normal analytical models because noise realisations of the same parameters
can indeed be vastly different.

For this study, we set the mean to be constant at zero. We create two different sets of
simulated data, using krn and kqpo+rn. Next, we use both kernel functions to calculate a
lnBFQPO for both sets of data. We expect that the lnBF should generally be positive
if the data was produced using kqpo+rn, and negative otherwise. We create the data on
a 1 s interval sampled equidistantly at 256 Hz using the parameters listed in Tab. 7.2.

In Fig. 7.2 we show the result of performing this analysis for 1000 simulated data sets
produced from either kernel. The data sets containing a QPO are about equally split
between having a positive or negative lnBFQPO, but some data sets yield lnBFQPO > 20,
indicating very high significance. This split is because QPO features are sometimes not
pronounced enough to be recovered and krn is favoured due to its smaller prior volume.
On the other hand, 92% of the data sets containing only red noise yield a lnBFQPO < 0,
though the distribution is much narrower. This narrower distribution is likely because
krn is a limiting case of kqpo+rn. A data set created using krn thus is always fit well
with kqpo+rn, and the preference for the krn kernel model is achieved from the smaller
prior volume. On the other hand, if there is significant oscillatory behaviour, krn can not
provide a good fit.

If we chose a longer segment or a higher sampling frequency, the lnBFQPO should increase
at least linearly with the number of data points. For example, we consider one 2 s segment
drawn from a GP. If we calculate a lnBFQPO for the first and second half individually, it
should approximately add up to the lnBFQPO we obtain for the entire segment. In reality,
there is some covariance between the two consecutive 1 s segments which further enhances
our understanding of the data. Especially for the case of QPOs, having more oscillation
periods is advantageous. Thus, all other parameters being equal, higher frequency QPOs
should be more easily identifiable.

7.2.3 Non-stationarity Bias

Since the Whittle likelihood is directly derived from the assumption that the time series
is a stationary GP, it is intuitive that the non-stationarity bias should also exist in
GP likelihoods. GPs account for heteroscedasticity and deterministic trends, but the



106

Parameter krn values kqpo+rn values
arn exp(1) exp(1)

crn exp(1) exp(1)

aqpo - exp(−2)

cqpo - exp(1)

fqpo - 20

Table 7.2: Injection parameters for model selection study.
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Figure 7.2: Normalised histogram of the lnBFQPO obtained from data sets produced
with identical kqpo+rn (blue) and krn (orange). Only 52.9% of the kqpo+rn data sets are
correctly identified as such (The logarithmic scale is somewhat deceiving). This shows

that there is substantial spread in terms of the possible Bayes Factors.

stationary kernels we are using can not account for non-stationary behaviour in the
noise as we explored in Sec. 6.4.4 with periodograms. We laid out in Sec. 7.1.4 how we
can create a simple, non-stationary GP model using celerite.

We apply the krn and kqpo+rn kernel on the data from Sec. 7.1.4 using both the stationary
and the non-stationary GP model. Fig. 7.3 shows the maximum likelihood fit of the x = 2
time series using the non-stationary GP model. The tstart/end parameters delineate where
the transition between GP and white noise occurs. Because of this, the non-stationary
GP yields a near-constant lnBFQPO regardless of the extension factor, as we show in
Fig. 7.4. On the other hand, the lnBFQPO that we obtain for stationary GP models or
the periodogram rises first due to non-stationarity bias and then falls off again as the
QPO is overwhelmed by increasing white noise. The bias is stronger for the periodogram,
though it is not clear why. Possibly, windowing choices made during data creation are
having an impact on the inferred significance with the GP models.

As we show in Fig. 7.5 for x = 2, the two dimensional tstart/end posterior is well con-
strained. We also note that these parameters have a peaky posterior distribution, making
them possibly harder to sample. The posterior we infer for tstart is not consistent with
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Figure 7.3: Maximum likelihood fit
of the data (black) from Sec. 6.4.4 for
x = 2 with a non-stationary GP model.
We use a constant zero mean model
(green). The teal lines indicate the
maximum likelihood tstart/end of the
red noise and QPO GP. We underesti-
mate the real duration of the GP which
is 20 s. This is because we used a Hann
window in the data creation which sup-
presses the amplitude closer to ±10 s.
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Figure 7.4: lnBFQPO depending on
the extension factor x using a pe-
riodogram (blue), a stationary GP
model (orange), and the non-stationary
extension to the GP model (green).
While the periodogram and the sta-
tionary GP model are affected by
the non-stationarity bias, the non-
stationary GP model yields a near con-

stant lnBF .

the true start time of −10 s in Sec. 6.4.4. This is because the Hann window we applied
when creating the data strongly suppresses red noise and QPO close to t = ±10 s.

Figure 7.6 shows the lnBF between the stationary and non-stationary kqpo+rn model. As
we expect, the non-stationary model is preferred for any x and preferred more strongly
for larger x.

7.3 Real data

7.3.1 Gamma-ray Bursts

There is ample speculation about the possibility for QPOs in long GRBs [195, 318], and
there have been some recent claims about possible detections [274]. One of the most
tantalising events is GRB090709A, a long GRB for which Ref. [74] found a marginal
2σ 8.06 s period QPO in the prompt emission. Independent analyses have since found
similar significance levels between 2 and 3.5σ [96, 131, 160, 318]. GRB090709A had
its strongest emission for about 100 s and a visible afterglow for several hundreds of
seconds afterwards. Ref. [74] primarily relied on the Swift light curve for their analysis,
though they also considered the Suzaku light curve which did not increase the significance.
Further analyses of the Swift and XMM-Newton light curves by Ref. [92], who interpreted
GRB090709A as a distant, standard, long GRB, also showed no periodicity above the
3σ-level. Konus and SPI-ACS also recorded light curves of GRB090709A, though it
is not firmly established if the combined data of all instruments would yield higher
significance [160]. References [74, 92] detrend the light curve before calculating the
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Figure 7.5: 2D tstart/tend posterior
for x = 2. These parameters are harder
to sample as they tend to be multi-

modal.
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Figure 7.6: lnBF of the non-
stationary GP model relative to the
stationary GP model depending on the
extension factor. The non-stationary
model is preferred since it correctly
models the change from red noise,
white noise, and QPO to just white

noise

periodogram to enhance the periodicity. However, Ref. [49] suggests that detrending is
very likely to cause false detections of QPOs.

For our re-analysis of this event, we focus on the Swift light curve. We select 107 s of
the overall light curve as suggested by Ref. [74]. We carry out inference with all the
models we defined earlier in Sec. 7.1.3, i.e. the skewed exponential and Gaussian models,
as well as the FRED and FRED-x model, and allow a constant positive offset with all
these models. Furthermore, we analyse the data with 1-3 flare components to see if there
is a substantial improvement when using multiple components. As with our framework
described in 7.1.2, we perform inference both with krn and kqpo+rn for Bayesian model
selection.

Fig. 7.7 shows the considered data and a maximum likelihood fit of the mean function as
well as the prediction curve generated by celerite. We note that there is a large spread
in possible parameters in the mean model. Some posterior samples produce mean model
curves that are almost consistently above the observed data points. These samples also
have a high arn and low crn, i.e. an almost constant red noise kernel that does not decay
much over the 107 s light curve. These red noise kernels allow for a constant offset in the
mean model of the magnitude arn without decreasing the likelihood significantly.

We display the obtained evidences in Fig. 7.8. We find generally that adding more
components to our mean models does not meaningfully improve their evidences. This
hints that already a single component model is a reasonable fit for the data. Furthermore,
while there is some difference between the evidences between the individual mean models,
the difference is relatively minor, but the FRED and FRED-x models yield somewhat
lower evidences. Overall, we find that the kqpo+rn hypothesis is disfavoured or about
equally favoured consistently in all runs with a lnBFQPO between ≈ −3.5 and ≈ 0.
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Figure 7.7: GRB090709A maximum likelihood fit using two skewed exponentials and
the kqpo+rn kernel. We show the mean function from the maximum likelihood sample
(dark green) and ten other samples from the posterior (light green). The orange curve
is the prediction based on the maximum likelihood sample and the 1-σ confidence band.
Some mean model samples have a strong offset from the data points. This is due to

samples with a high arn and a low crn.

On the other hand, we find that we obtain a well constrained P = 1/f = 8.34+0.46
−0.38

(68%CI) posterior (see Fig. 7.9) that is consistent with the previously reported P = 8.1 s
period [74, 92].

In the future, the combination of data from multiple observatories should also be con-
sidered, similar to the approach in Ref. [160]. The challenge is that instruments have
different observing bands, different sensitivities, different responses, and are far apart
from each other that the light curves need to be barycentred. We can not naively add
the significances from different instruments via the addition of lnBFQPO since red noise
and QPO, unlike white noise, are covariant between different instruments. Data from
different instruments should thus not be seen as statistically independent.

7.3.2 Magnetar bursts

Magnetar bursts show a strong bursting behaviour, ranging from series of low-energetic
recurrent bursts to rare giant flares of which few have been observed. Some mechanisms
may trigger a QPO in a magnetar burst, such as torsional Alfvén oscillations [182, 265],
but the observational evidence remains scant. So far there have only been definitive
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GRB090709A using two skewed expo-
nentials. The period is well constrained
P = 8.34+0.46

−0.38 (68% CI) and consistent
with the results from Refs. [74, 92], but
has wide tails with low probability.

detections in the SGR1806-20 and SGR1900+14 Giant flares [159, 267, 268, 307] and in
some recurring smaller bursts [146, 148, 149].

We demonstrate our method on a single magnetar burst 080823478 from SGR0501+4516,
a magnetar that has been first discovered in 2008 by the Swift satellite [235]. As we can
see in Fig. 7.10 the burst has a shape that, by eye, appears to be periodic, with 3 roughly
equally spaced peaks after the main peak. Following the same steps we have used for the
GRB, we find that krn is slightly preferred over kqpo+rn as we show in Fig. 7.11. Moreover,
the period posterior in Fig. 7.12 shows that we are also unable to consistently constrain
fqpo. This is in agreement with the conclusions of Ref. [148], which used this burst as a
template for studies of red noise in magnetar bursts and also found no periodicity.

Alternatively, we also tested a constant mean model, meaning we model all variability as
arising due to the GP. In that case, kqpo+rn is strongly preferred (lnBFQPO = 6.8), but
has a much lower evidence (lnZ = −382.1) than any of the runs with mean models in
Fig. 7.11. This highlights the benefit of using mean models as they help us to disentangle
whether variability arises from the overall shape of the burst or due to a stochastic
process.

7.3.3 Giant Magnetar Flare

The SGR1806-20 giant flare was recorded on December 27, 2004, by multiple x-ray
observatories including the Rossi X-ray Timing Explorer (RXTE) [153, 218]. The flare,
which lasted about 380 s, has been extensively studied for the presence of QPOs [147,
159, 203, 267, 268, 307]. Notably, QPOs were associated with specific phases in the
7.56 s rotational period [268], which indicate that QPOs are associated with a specific
region on the magnetar surface that is turning in and out of view. Reference [268]
specifically identified the most significant QPOs at 18 Hz, 26 Hz, 29 Hz, 93 Hz, 150 Hz,
625 Hz, and 1837 Hz. These early reported results were based on averaged periodograms
that were obtained by selecting the same time interval in subsequent rotational phases
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Figure 7.10: Magnetar burst 080823478 maximum likelihood fit using two skewed
exponentials and the kqpo+rn kernel. We show the mean function from the maximum
likelihood sample (dark green) and ten other samples from the posterior (light green).
The orange curve is the prediction based on the maximum likelihood sample and the
1-σ confidence band. Similarly to the fit of GRB090709 in Fig. 7.7, we see some mean
fits that have a constant offset relative to the data due to their high arn and low crn.
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of the magnetar. Naturally, these results are therefore prone to be affected by non-
stationarity bias.

Ref. [203] took a more systematic approach in analysing the giant flare by using a 1 s
sliding window that they moved across the flare light curve in 0.945 s steps. This way
they were able to locate when specific QPOs were occurring, though the time resolution is
limited to ≈ 1 s. They also used a periodogram-based analysis method, though unlike the
method we described in Chap. 6, they used a different likelihood function that normalises
the Poisson noise power and fixes the red noise power-law index to 2.

Given our findings of the non-stationarity bias in Chap. 6, identifying when QPOs start
and end in the flare light curve is an important key to assessing their significance. We
can use our non-stationary model from Sec. 7.1.4 to make quantitative statements for
individual QPOs.

For this study, we focus on a specific 23 Hz QPO that was located in the RXTE light
curve by Ref. [203] to occur about 122.060 s after the beginning of the light curve at
December 27, 2004, 21:30:31.378 UTC. To see whether we can localise when the QPO
occurs, we use the non-stationary model and select a 2 s segment starting at 121.060 s.
Ref. [203] also reported a 92 Hz QPO to occur at the same segment. Thus, we choose
a relatively coarse binning of the time-tagged events of 64 Hz so that we can focus on
the lower frequency QPO. As we display in Fig. 7.13, we can constrain the time when
the QPO occurs within the light curve. The inferred QPO mean frequency from the
non-stationary model is fqpo = 22.60+0.60

−0.74 Hz (68% CI). We find that the QPO lasts
for 1.20+0.08

−0.18 s (68% CI) and is primarily located on the top and tail side of the peak.
We obtain lnBFQPO = 4.9 using the non-stationary GP model, and lnBFQPO = 3.8
using the stationary model, and that the non-stationary kqpo+rn is preferred over the
stationary one with lnBF = 4.7.

Next, we analyse this light curve using periodograms as we described in Chap. 6, using
the same 2 s segment as before and also a 1 s segment starting at 122.060 s, which is the
segment Ref. [203] considered. We bin the light curve at 4096 Hz as higher sampling
frequencies help to constrain the white noise level in periodogram-based analyses. To
avoid the posterior converging to a higher frequency QPO, we set the prior limit fqpo <
32 Hz. Visual inspection of the periodogram shows that the QPO central frequency is
located in the white-noise dominated part of the spectrum. Thus, we expect the non-
stationarity bias to primarily occur due to the lower white noise levels on either end of
the segment, as we explored in Sec. 6.9. We find lnBFQPO = 6.0 and lnBFQPO = 9.6
for the 1 s and 2 s segments, respectively. This result indicates that these lnBFQPO are
affected by non-stationarity bias and are likely exaggerated.

Using these observations we can also explain why the stationary GP has a lower lnBFQPO

than the non-stationary one. If the non-stationarity bias is mainly due to varying levels of
white noise, then it is already accounted for by construction in the GP likelihood. What
is remaining is the overall added white noise on the tails suppressing the significance of
the QPO, yielding an overall lower lnBFQPO.

Expanding on this method by analysing more segments may allow us to explore the
temporal structure of the QPOs in more detail. The specific segment we have considered
contains one of the most significant QPOs in the entire flare. More marginal QPOs are
harder to find and characterise. Eventually, hierarchical models may allow us to better
understand the nature of QPOs in giant flares by taking a broader view of the entire
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Figure 7.13: Giant flare maximum likelihood fit from our selected 2 s segment using
two skewed Gaussians using the non-stationary kqpo+rn model. We show the mean
function from the maximum likelihood sample (dark green) and ten other samples from
the posterior (light green). The orange curve is the prediction based on the maximum

likelihood sample and the 1-σ confidence band.

400 s of data. Concretely, we may be able to constrain where QPOs in the pulse period
start and end, and use information from multiple segments to find all frequency modes.

7.3.4 Solar Flares

Analysing solar flare data with GPs is much more difficult compared to the examples
we have treated above for several reasons. Firstly, there is practically no white noise in
the GOES data and the light curves have a much more smooth and structured overall
shape. While this seems advantageous at first glance, it makes finding a mean model
that fits the light curve reasonably much harder. Additionally, unlike the solar flare we
analysed in Sec. 6.5, the QPO will be hard to spot by eye in most cases. Hence, it is
near impossible to determine tstart and tend either manually or using our non-stationary
GP model.

We revisit the GOES solar flare from Sec. 6.5 and zoom in on the segment containing
the QPO. The mean models we employed previously are unsuitable since we only fit a
small segment of the flare. It is thus more sensible to use a linear mean function to
fit the data. The GOES data also does not contain information about the white noise
present. Thus, we add a jitter_term in celerite, which is a kernel term that is
constant across the diagonal of the covariance matrix. We show the fit in Fig. 7.14 and
obtain a lnBFQPO = 23.5 and a period P = 12.35 ± 0.18 s (68% CI), which is similar
to the lnBFQPO = 27.5 and P = 12.38 ± 0.22 s (68% CI) that we obtained in Chap. 6
using periodograms.
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Figure 7.14: Maximum likelihood fit of the solar flare from May 12, 2013, observed
by GOES using a linear mean model and the kqpo+rn kernel. We only select the 200 s
segment that contains this QPO. We show the mean function from the maximum like-
lihood sample (dark green) and ten other samples from the posterior (light green). The
orange curve is the prediction based on the maximum likelihood sample and the 1-σ

confidence band.

A drawback of the GP model at this point is the limitation to the class of exponential
mean models. Using an exponential kernel implies that we are assuming an α = 2
power-law model while we found α = 3.10+0.52

−0.48 (90% CI) using the periodogram. The
low-frequency noise in this case is also most likely to arise from a red noise process
rather than the linear mean function. This may also explain the different lnBFQPO

that we obtained from the GP and periodogram methods. This issue can eventually be
corrected by implementing kernel functions outside the celerite support, specifically
with the Matérn class of covariance functions, which can emulate a wide class of power-
law processes [233].

7.4 Discussion and Outlook

We have introduced a new method to search for and analyse QPOs in light curves using
a combination of GP modelling and Bayesian inference with evidence calculation. Using
this method we can directly model all aspects of the x-ray flare in the time domain.
We use a set of phenomenological mean models to describe the overall flare shape and
different GP models to model either red noise or a combination of red noise and QPOs.
Using studies on simulated data we have shown that we can accurately estimate the true
parameters, distinguish QPOs from red noise, model simple non-stationary GPs, and
avoid some of the biases that non-stationary behaviour causes in Whittle-likelihood based
methods. We have demonstrated that this framework can be easily applied with few
modifications on many different astrophysical x-ray transients. Overall, the findings we
obtain from real data are in agreement with results previously reported in the literature.
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We find that the application of GP methods in the analysis of x-ray time series is thus
very promising and many improvements and extensions can be implemented soon.

celerite limits us to a narrow class of kernel functions, which can be extended by using
a more general GP framework with fast solvers. For example, the HODLR solver, which
is implemented in the george package, operates in O(N log2N) and thus can be run
in acceptable time for the real data sets we have analysed [38]. Specifically, this would
allow us to implement kernels such as the Matérn class of covariance functions or the
squared exponential covariance function, which allows us to model a larger class of noise
processes.



Chapter 8

Summary and future directions

I have explored how we can apply Bayesian inference techniques to two specific challenges
in astrophysics: The measuring of gravitational-wave memory and identifying QPOs
within x-ray light curves. We introduced the Bilby package in Chaps. 2 and 3, which
is an object-oriented implementation of Bayesian inference in Python and interfaces
with several dedicated sampling packages such as dynesty [266]. The wide adoption of
Bilby highlights the benefit of building versatile software for science applications.

8.1 Gravitational-wave Memory

As we have shown in Chaps. 4 and 5, LIGO/Virgo are not yet sensitive enough for
memory to be detected. Using the events from GWTC-2, we have reached a lnBF =
0.024 or lnBF = 0.049 for the presence of memory depending on the waveform model.
This should be considered extremely marginal evidence. We have designed the method
to be scalable to a large number of events which will allow us to confidently measure
memory in future LIGO/Virgo observing runs. Specifically, we are using Bilby and
bilby_pipe to automate large parts of the analysis.

We have forecast that memory will be detectable by combining evidence from O(2000)
events, a milestone likely reached early in the second part of the decade. This result is in
broad agreement with results found by a similar study [64]. Thanks to its scalability, it is
likely that the method we developed will be used to confidently measure memory for the
first time. Since waveform models are certainly going to improve in the coming years, it
will be necessary to implement these waveforms within the gwmemory and memestr
packages, which I describe in App. A. There is also the possibility that there will be
surrogate models available which contain memory [205]. However, calculating memory
from the time-domain spherical harmonic decomposition is likely to remain a widely used
method since it allows us to calculate memory for generic waveforms. Whether or not
memory will be measured using these surrogate models in the future will depend on their
fidelity and whether these surrogate models end up being the preferred mode of analysis
for future events. To perform model selection, it will also be necessary to have an option
to switch memory contributions on and off.

Measuring memory from compact binary coalescences is a test of general relativity in the
nonlinear regime. Moreover, the inclination angle dependence of the memory amplitude
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can also be used as a test of general relativity [314]. Beyond that, there are some
avenues to test theories using memory. Memory is significantly different in theories
with more than four non-compactified spacetime dimensions [122, 141, 248]. In massive
graviton theories, the memory amplitude depends on the mass of the graviton and is
discretely different from general relativity [168]. Memory is also linked to soft gravitons
and asymptotic symmetries in general relativity, which has implications for the black
hole information paradox [135, 164, 270]. Measurements of memory with gravitational
waves may eventually prove useful studying these phenomena, though, it is not yet clear
how.

8.2 Gaussian Processes and Quasi-periodic Oscillations

In Chap. 6 we used Bayesian inference to investigate how non-stationarities in lightcurves
impact searches for QPOs with periodogram-based methods. These methods commonly
rely on the assumption that frequency bins within periodograms are statistically inde-
pendent, which is only true for stationary time series. We have found that, counter to
what would be intuitive, we may highly overestimate the significance of the QPO even
if most of the time series does not contain a QPO, an effect we call the “non-stationarity
bias”. Furthermore, we demonstrated that this bias is present at least in some analyses
of solar flares. Since transient light curves are always non-stationary to some degree,
the non-stationarity bias is likely present in many analyses. We also presented a method
based on a modified χ2-statistic [212], with which we can identify non-stationarities just
from the periodogram after we finish the inference step. It may be valuable to investi-
gate how the non-stationarity bias affects other methods. For example, the Lomb-Scargle
periodogram [187, 250, 291] is a commonly used technique to analyse light curves with
unequally sampled data.

In Chap. 7 we explored how we can use Gaussian process modelling in conjunction
with Bayesian inference as an alternative to periodogram-based methods. Gaussian pro-
cesses immediately solve non-stationarity biases arising from deterministic trends and
heteroscedasticity. Given N data points in a time series, Gaussian processes take in
general O(N3) steps in time and O(N2) space in memory, which is generally considered
to be too large to scale. However, using the celerite package [113], we can evaluate
stationary Gaussian processes in O(N), by restricting ourselves to the class of complex
exponential kernel functions or combinations thereof. We have shown that we can make
a slight modification to the celerite model which allows us to evaluate some very sim-
ple non-stationary models. Using simulated data, we established that this method can
reliably distinguish periodic and aperiodic time series. We showed that this framework
can be applied to a large class of astrophysical transients, such as GRBs and magnetar
flares, as well as solar flares. Gaussian processes can also natively deal with data that
are not equally spaced, which is of great benefit for some data. Hence, we believe that
Gaussian processes can become an established method for QPO detection and parametric
inference in the future.

It will be valuable to apply this method to transients that have previously been char-
acterised using different methods and to gain a better understanding of whether non-
stationarities have biased past results. Additionally, it may be valuable to perform com-
parative studies with Gaussian processes and wavelet transforms. Specifically, creating
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simulated data using Gaussian processes could help improve assessing how one should
assess significance from wavelet transforms.

One major challenge is to develop and deploy models for non-stationary signals, e.g.
a QPO that is continuously drifting in frequency. Aside from celerite, there are a
number of fast solvers for GPs such as the O(N log2N) HODLR solver [38], which
is implemented in the george package1. Additionally, many astrophysical lightcurves
are Poisson distributed, which is only approximately Gaussian for sufficient count rates.
These light curves may be better modelled using such methods as the Gaussian-Cox
process, for which tractable likelihoods exist [34, 111].

1The george repository is available at https://github.com/dfm/george

https://github.com/dfm/george


Appendix A

Software implementation for
gravitational-wave memory

A.1 The gwmemory package

Ref. [273] presented the gwmemory package which implements the memory extraction
by way of integrating the oscillatory h`m modes. To keep this process efficient, gwmem-
ory splits the evaluation of the double integral in Eq. 1.9 into space and time which
are described by the tensors. The spherical integral is pre-computed generically and
summarised in a tensor Γ`1m1`2m2

`m , which links oscillatory input modes (`1,m1, `2,m2) to
memory output modes (`,m). During run-time, only the time integral is evaluated and
written in terms of a tensor H`1m1`2m2

`m (t0, tR) where t0 is the start time of the oscillatory
waveform. In terms of this formalism, we calculate the memory at time tR as

δh`m(tR, t0,Ω) = Γ`1m1`2m2
`m (Ω)H`1m1`2m2

`m (t0, tR) . (A.1)

Pre-computing Γ`1m1`2m2
`m turns out to be of crucial importance as this reduces the eval-

uation of a single memory waveform from the order of minutes down to a small fraction
of a second.

For purposes of measuring memory, we implemented some changes in gwmemory that
exist on a fork of the project1. Primarily, this involved interfacing between gwmemory
and more waveform models. The original implementation featured IMRPhenomD [166],
NRSur7dq2 [59], SEOBNRv4 [65], and the minimal waveform model[103]. In Chap. 4
we use the implementation of IMRPhenomD and the newly implemented NRHyb-
Sur3dq8 [293] to calculate memory for the first gravitational-wave transient catalogue.
We expand and improve on this in Chap. 5 by implementing IMRPhenomXHM [227]
and NRSur7dq4 [292]. The reason for the addition of more waveform models is due
to the evolving state of the art of waveform modelling and practical considerations for
which waveforms are suitable to perform lengthy sampling processes. NRSur7dq2 only
has mass ratios down to q = 1/2 and is relatively slow, SEOBNRv4 is also relatively
expensive to evaluate. IMRPhenomD on the other hand is faster but does not contain
higher-order modes. Thus, for the study in Chap. 4, we implemented NRHybSur3dq8,

1https://github.com/MoritzThomasHuebner/gwmemory
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which only models aligned spins but allows for mass ratios down to q = 1/8. We ulti-
mately used a combination of IMRPhenomD and NRHybSur3dq8 as we were able to
re-purpose the posterior samples obtained in Ref. [220]. During this, we also discovered
and fixed some minor bugs in the original code that caused some higher-order memory
modes to receive an incorrect sign. This was specifically due to an error in the spherical-
harmonic mode calculation for which we now use the implementation in LAL [184].
Additionally, we modified the call to the spherical harmonic function to be with π − φc
instead of φ to match the LAL convention. Finally, the waveforms in gwmemory are
calculated in the time domain, whereas the analysis of gravitational waves is usually
performed in the frequency domain. Thus, the time domain waveform we obtain must
be suitable to be used in a fast Fourier transformation as it is implemented in standard
inference software such as Bilby. This means that all waveforms have to be of equal
length and contain 2n elements. NRSur7dq4 and similar waveforms are defined to
be equal length in terms of geometric time, which depends on the overall mass of the
system, and thus do not provide us with the waveform in the desired format. We thus
implemented a function that matches the waveform to a given time series given three
cases:

1. The waveform is too long: we crop off data points from the inspiral until we fit the
time series

2. The waveform is too short: we add zeros to the end of the waveform to match the
time series

3. The waveform is the correct length: we return the waveform

A.2 The memestr package

While gwmemory provides suitable time-domain waveforms, some steps are still re-
quired to perform actual inference. For this, I created the memestr package2 (MEMory
ESTimatoR), which takes waveforms provided by gwmemory and performs model se-
lection to calculate a Bayes factor for the presence of memory in the signal. Creating
waveforms suitable for inference with memestr turns out to be a somewhat tricky un-
dertaking. Firstly, memory waveforms by their nature have a constant offset from zero
at the end of the segment. Thus, we need to window the output by gwmemory with
a Tukey window to avoid Fourier artefacts which would otherwise dominate our signal
in the time domain [60, 61]. Next, the LAL convention for waveforms is such that the
waveform segment ends with the merger as defined by the maximum point of |h+− ih×|,
and we need to shift the correctly time-ordered waveform gwmemory provides to make
that so. When we calculate combined memory and oscillatory waveforms we take special
care at this point as the maximum of |h+ − ih×| needs to be calculated solely based on
the oscillatory waveform. If we included the memory here, we would in effect shift the
maximum slightly and thus create a discrepancy between the oscillatory, and the com-
bined oscillatory plus memory waveform. Finally, we perform a fast Fourier transform
to obtain the frequency domain. We used reference waveforms as provided directly from
LAL to perform regression tests to assure that the oscillatory waveforms are identical
up to machine precision.

2https://github.com/MoritzThomasHuebner/memestr

https://github.com/MoritzThomasHuebner/memestr
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memestr provides waveforms that are suitable for Bayesian inference with Bilby for
IMRPhenomD, IMRPhenomXHM, the minimal-waveform model, NRHybSur3dq8,
NRSur7dq4, and TEOBresumS. The waveforms are implemented as a functional
Python interface in the waveforms subpackage within memestr. We generally pro-
vide six functions per waveform model. Those are the (ordinary) oscillatory model, the
memory part of the waveform, and the combined oscillatory plus memory model, both
in the time and frequency domain. The minimal-waveform model does not have an as-
sociated oscillatory model, so we only provide the memory. For IMRPhenomXHM, we
provide a fast interface that does not calculate the modes when only evaluating the os-
cillatory polarisations. Additionally, we provide a function for IMRPhenomXHM that
allows us to input individual modes.

Scaling is another challenge in measuring memory in many events. We analyse almost
50 events in Chap. 5, which is a challenging task in its own right. One consideration was
to use the publicly available posterior samples to calculate Bayes factors, however, we
were unable to perfectly reconstruct the analysis settings used to obtain these samples.
As memory is such a small effect, even slight differences in the oscillatory waveform
can create an overwhelming systematic bias. Moreover, even slight differences in set-
tings, such as reference frequencies, for instance, can completely change some extrinsic
parameter estimates such as the phase. Additionally, some of the published posterior
samples, as of the time of writing for Chap. 5, used settings that we found insufficient to
fully explore the higher-order mode content of these events, and some events were not
analysed with NRSur7dq4 (for no obvious reason). Instead, we opted for performing
Bayesian inference ourselves, running most events with both the IMRPhenomXHM and
NRSur7dq4 waveform models. To achieve this scaling, we leverage the bilby_pipe
package, which allows us to define and submit jobs by writing an ini file [242]. We also
chose established settings for standard sampling runs, which are meant to ensure safe
convergence and reasonable evaluation times [242]. We show an example listing for the
analysis of GW150914 with NRSur7dq4 in Listing A.1. Though there is a long list of
settings that we need to change from the defaults, it turns out that there are only seven
settings that need to be adjusted for each event.

1. The trigger time

2. The event name

3. The detectors (e.g. detectors = [H1, L1])

4. The duration of the data segment

5. The dictionary with the data channels

6. The dictionary with the PSD files

7. The reference frequency for GW190521 for the NRSur7dq4 analysis is 11 Hz in-
stead of 20 Hz

Hence, we decided to automate the writing of ini files into a script named write_-
ini_files.py, which is in the scripts/O3a folder in the memestr project. The main
information about all events is stored in events.py within the memestr package and
contains a comprehensive, and easy-to-edit list of all events with the necessary informa-
tion to build set up the ini files. We obtained information about trigger time and signal
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duration from the ini files provided in the public data release3. Nevertheless, managing
a large number of runs remains a challenging task and all posteriors need to be reviewed
to ensure proper convergence.

It is unlikely that we will ever scale up this approach to thousands of events, as this would
hardly be manageable by a single person or a small team. Realistically, there are two
options for future studies. First, we may want to restrict ourselves to the most promising
events in terms of signal-to-noise ratio. As we discuss in Chaps. 4 and 5, only very few
events will ever show a lnBF that is meaningfully different from zero. While we predict
O(2000) events to be required, it will likely be possible to find memory by analysing
the loudest 10 − 100 events within that ensemble. Alternatively, future catalogues may
perhaps provide posterior samples with more consistent settings, use the same waveforms
across most of the events, and provide better ways to reconstruct the waveform, and it
might thus be feasible to use these posterior samples.
trigger -time = 1126259462.391
outdir = GW150914_prec_2000
detectors = [H1, L1]
duration = 4
channel -dict = {H1:GWOSC , L1:GWOSC}
psd -dict = {H1:GWTC2_PSDs/GW150914_LIGO_Hanford_psd.txt , L1:GWTC2_PSDs/

↪→ GW150914_LIGO_Livingston_psd.txt}

label = run
accounting = ligo.dev.o3.cbc.pe.lalinference
scheduler = slurm
scheduler -args = mem=4G
scheduler -module = python /3.7.4
scheduler -analysis -time = 7 -00:00:00
submit=True

coherence -test = False

sampling -frequency =2048
frequency -domain -source -model = memestr.waveforms.nrsur7dq4.fd_nr_sur_7dq4

calibration -model=None

minimum -frequency =0
reference -frequency =20
deltaT = 0.2
time -marginalization=False
distance -marginalization=False
phase -marginalization=False

prior -file = precessing_spin.prior

sampler = dynesty
sampler -kwargs = {nlive: 2000, sample: rwalk , walks =100, n_check_point =2000, nact

↪→ =10, resume=True}

n-parallel = 5

create -plots=True
local -generation = True
transfer -files = False
periodic -restart -time = 1209600

Listing A.1: ini file example for GW150914

3The catalogue is online available at https://git.ligo.org/publications/O3/o3a-cbc-catalog/
-/wikis/home

https://git.ligo.org/publications/O3/o3a-cbc-catalog/-/wikis/home
https://git.ligo.org/publications/O3/o3a-cbc-catalog/-/wikis/home
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