
Towards Explainable Software Defect Prediction Models
to Support SQA Planning

Jirayus Jiarpakdee

Supervisors:
Dr. Chakkrit Tantithamthavorn (Main)

Professor John Grundy (Associate)

A thesis submitted for the degree of Doctor of Philosophy at
Monash University in 2021

Faculty of Information and Technology

June 3, 2021

ii

Copyright Notice

© Jirayus Jiarpakdee (2021).
I certify that I have made all reasonable e�orts to secure copyright permissions for third-

party content included in this thesis and have not knowingly added copyright content to
my work without the owner’s permission.

For publications included in Chapters 2, 3, 4, and 5 that have been published at IEEE venues:
In reference to IEEE copyrighted material which is used with permission in this thesis,

the IEEE does not endorse any of Monash University’s products or services. Internal or
personal use of this material is permitted. If interested in reprinting/republishing IEEE
copyrighted material for advertising or promotional purposes or for creating new collective
works for resale or redistribution, please go to http://www.ieee.org/publications_standards/
publications/rights/rights_link.html to learn how to obtain a License from RightsLink. If
applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may
supply single copies of the dissertation.

For a publication included in Chapter 4 that has been published at Empirical Software
Engineering, a Springer journal:

In reference to Springer copyrighted material which is used with permission in this
thesis, authors have the right to reuse their article’s Version of Record, in whole or in
part, in their own thesis. Additionally, they may reproduce and make available their thesis,
including Springer Nature content, as required by their awarding academic institution.
Authors must properly cite the published article in their thesis according to current citation
standards. For details, please refer to https://www.springer.com/gp/rights-permissions/
obtaining-permissions/882.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
https://www.springer.com/gp/rights-permissions/obtaining-permissions/882
https://www.springer.com/gp/rights-permissions/obtaining-permissions/882

iii

Acknowledgements

First and foremost I am extremely grateful to my principal supervisor, Dr. Chakkrit
Tantithamthavorn, for his valuable guidance both in life and academia, continuous sup-
port, and patience. His assistance has helped me overcoming roadblocks in my research and
daily life. I would like to express my sincere gratitude to my co-supervisor, Professor John
Grundy, for his insightful feedback, plentiful experience, and strong support. I would like to
o�er my sincere gratitude to my supervisor when I was with the University of Adelaide, Dr.
Christoph Treude, for his valuable advice and unwavering support. I would like to extend my
gratitude to all of the committee members, Professor Burak Turhan, Professor Dinh Phung,
Associate Professor Ron Steinfeld, and Dr. Li Li, for their immense knowledge and valuable
feedback during milestone presentations. I am deeply grateful to all of the collaborators,
Professor Ahmed Hassan, Associate Professor Hoa Khanh Dam, Associate Professor Katie
Walker, and Dr. Patanamon Thongtanunam, for their feedback and contribution to the
publications produced during my PhD study. Finally, I am deeply grateful to my family: my
parents, my grandmother, and my brother as well as my partner, Saiparn, for their mental
support and unwavering belief in me. Without their understanding and encouragement, it
would not be possible for me to complete my study.

This research was supported by the Beacon of Enlightenment PhD Scholarship from
the University of Adelaide (November 2017 to January 2019) and the FIT Research and
International Postgraduate Research Scholarships from Monash University (February 2019
to May 2021).
Thank you.

Jirayus Jiarpakdee
June 3, 2021

iv

Abstract

Software defects are expensive, but hard to detect and prevent. Thus, Software Quality
Assurance (SQA) activities (e.g., code review, software testing, and SQA planning) are applied
to ensure the highest quality of software systems by detection and prevention. However,
such SQA activities are time-consuming and demanding. Defect prediction models have
been proposed to help developers prioritise their limited SQA e�ort on the most risky files.
Yet, the adoption of defect prediction models is still limited due to the following reasons.
First, practitioners do not understand why a file is predicted as defective. Second, current
defect prediction models still fail to uphold the privacy laws (e.g., GDPR), which requires
an explanation of any decision made by an algorithm that a�ects practitioners. Third,
explanations are perceived as equally important as their predictions, but the explainability
of defect models still remains largely unexplored. These lead us to formulate the following
central research question: How to increase the explainability of defect prediction models to support

SQA planning? Thus, this thesis hypothesised that: Explainable defect prediction models are

needed to support SQA planning. Empirical studies are the way forward to identify the best explainable

defect prediction framework to generate the most reliable explanations.

To address this hypothesis, we first investigated (1) the impact of correlated metrics on the
explanations of defect models; (2) the best automated feature selection techniques to mitigate
correlated metrics for generating the explanations of defect prediction models; and (3) the
best model-agnostic techniques to explain the predictions of defect prediction models and
generate actionable guidance to support SQA planning. Through a series of empirical studies,
we derive the following suggestion: To develop an explainable defect prediction model,
correlated metrics must be mitigated to derive the most reliable and stable explanations by
using our proposed AutoSpearman automated feature selection technique and apply LIME
model-agnostic techniques to explain the predictions of defect models and apply rule-based
model agnostic techniques to generate actionable guidance on what developers should do
and should not do to prevent defects in the future.

v

Publications during Enrolment

The following publications have been published and are included in this thesis.
2021:

(1) (Full paper CORE A, Acceptance Rate 26%) Jiarpakdee, J., Tantithamthavorn, C., and
Treude, C. (2021). Practitioners’ Perceptions of the Goals and Visual Explanations
of Defect Prediction Models. In Proceedings of the International Conference on Mining

SoftwareRepositories (MSR).

2020:

(1) (Journal Impact Factor 6.112) Jiarpakdee, J., Tantithamthavorn, C., Dam, H. K., and
Grundy, J. (2020). An Empirical Study of Model-Agnostic Techniques for Defect
Prediction Models. Transactions on Software Engineering (TSE).

(2) (Journal Impact Factor 3.156) Jiarpakdee, J., Tantithamthavorn, C., and Treude, C.
(2020). The Impact of Automated Feature Selection Techniques on the Interpretation of
Defect Models. Empirical Software Engineering (EMSE).

2019:

(1) (Journal Impact Factor 6.112) Jiarpakdee, J., Tantithamthavorn, C., and Hassan, A. E.
(2019). The Impact of Correlated Metrics on the Interpretation of Defect Models.
Transactions on Software Engineering (TSE).

(2) (Short paper CORE A*) Jiarpakdee, J. (2019). Towards a More Reliable Interpretation
of Defect Models. In Proceedings of the International Conference on Software Engineering

(ICSE): Companion Proceedings, pages 210–213.

2018:

(1) (Full paper CORE A, Acceptance Rate 26%) Jiarpakdee, J., Tantithamthavorn, C., and
Treude, C. (2018). Autospearman: Automatically Mitigating Correlated Metrics for
Interpreting Defect Models. In Proceedings of the International Conference on Software

Maintenance and Evolution (ICSME), pages 92–103.

(2) (Short paper CORE A) Jiarpakdee, J., Tantithamthavorn, C., and Treude, C. (2018).
Artefact: An R Implementation of the AutoSpearman Function. In Proceedings of the

International Conference on Software Maintenance and Evolution (ICSME), pages 711–711.

vi

The following publications are not included in this thesis, but were produced in parallel to
the research described in this thesis.

(1) (Online Interactive Book) Tantithamthavorn, C., and Jiarpakdee, J. (2021). Explainable
AI for Software Engineering. Available at http://xai4se.github.io/.

(2) (Journal Impact Factor 6.112) Rajapaksha, D., Tantithamthavorn, C., Jiarpakdee, J.,
Bergmeir, C., Grundy, J., and Buntine, W. (2021). SQAPlanner: Generating Data-
informed Software Quality Improvement Plans. Transactions on Software Engineering

(TSE).

(3) (Journal Impact Factor 5.799) Walker, K., Jiarpakdee, J., Loupis, A., Tantithamthav-
orn,C., Joe, K., Ben-Meir, M., Akhlaghi, H., Hutton, J., Wang, W., Stephenson, M.,
Blecher,G., Buntine, P., Sweeny, A., and Turhan, B. (2021). Predicting Ambulance Pa-
tient Wait Times: A Multi-Center Derivation and Validation Study. Annals of Emergency
Medicine.

(4) (Journal Impact Factor 2.589) Jiarpakdee, J., Tantithamthavorn, C., and Grundy, J. (2021).
Actionable Analytics: Stop Telling Me What It is; Please Tell Me What To Do!. IEEE
Software.

(5) (Journal Impact Factor 2.491) Walker, K., Jiarpakdee, J., Loupis,A., Tantithamthavorn,
C., Joe, K., Ben-Meir, M., Akhlaghi, H., Hutton, J., Wang,W., Stephenson, M., Blecher,
G., Buntine, P., Sweeny, A., and Turhan, B. (2021). Emergency Medicine Patient Wait
Time Multivariable Prediction Models: A Multicentre Derivation and Validation Study.
Emergency Medicine Journal.

(6) (Full paper CORE A*, Acceptance Rate 20.6%) Yatish, S., Jiarpakdee, J., Thongtanunam,
P., and Tantithamthavorn, C. (2019). Mining Software Defects: Should We Consider
A�ected Releases? In Proceedings of the International Conference on Software Engineering

(ICSE).

http://xai4se.github.io/

vii

Thesis including Published Works Declaration

I hereby declare that this thesis contains no material which has been accepted for the award
of any other degree or diploma at any university or equivalent institution and that, to the
best of my knowledge and belief, this thesis contains no material previously published or
written by another person, except where due reference is made in the text of the thesis.

This thesis includes 4 original publications published in peer reviewed venues. The core
theme of the thesis is Towards Explainable Software Defect Analytics Tools to Support SQA

Planning. The ideas, development and writing up of all the papers in the thesis were the
principal responsibility of myself, the student, working within the Doctor of Philosophy
(0190) under the supervision of Dr. Chakkrit Tantithamthavorn (Main supervisor) and
Professor John Grundy (Associate supervisor).

The inclusion of co-authors reflects the fact that the work came from active collaboration
between researchers and acknowledges input into team-based research.

In the case of Chapters 2, 3, 4, and 5, my contribution to the work involved the following:

Thesis
Chapter Publication Title Status Student

contribution
Co-author(s)
contribution

2 Practitioners’ Percep-
tions of the Goals
and Visual Explana-
tions of Defect Pre-
diction Models

Published
at
MSR [92]

60%. Concept, design
survey, submit eth-
ics approval, conduct
a survey study, and
write first draft

(1) Dr. Chakkrit
Tantithamthavorn: in-
put into manuscript 25%;
(2) Professor John Grundy:
input into manuscript 15%

3 The Impact of Cor-
related Metrics on
the Interpretation of
Defect Models

Published
at
TSE [85]

60%. Concept, pre-
process data, conduct
experiments, and
write first draft

(1) Dr. Chakkrit
Tantithamthavorn: in-
put into manuscript 25%; (2)
Professor Ahmed E Hassan:
input into manuscript 15%

4 The Impact of Auto-
mated Feature Selec-
tion Techniques on
the Interpretation of
Defect Models

Published
at IC-
SME and
EMSE
[89, 91]

60%. Concept, pre-
process data, conduct
experiments, and
write first draft

(1) Dr. Chakkrit
Tantithamthavorn: in-
put into manuscript 25%; (2)
Dr. Christoph Treude: input
into manuscript 15%

5 An Empirical Study
of Model-Agnostic
Techniques for
Defect Prediction
Model

Published
at
TSE [81]

60%. Concept, pre-
process data, conduct
experiments, design
survey, submit eth-
ics approval, conduct
a survey study, and
write first draft

(1) Dr. Chakkrit
Tantithamthavorn: in-
put into manuscript 20%;
(2) Associate Professor Hoa
Khan Dam: input into ma-
nuscript 10%; (3) Professor
John Grundy: input into
manuscript 10%

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Nature of Software Defects . 1
1.2 Software Quality Assurance . 1
1.3 Thesis Motivation . 4
1.4 Thesis Statement and Research Questions 5
1.5 Thesis Overview . 6
1.6 Key Contributions . 8

2 Practitioners’ Perceptions of Explainable Defect Models 11
2.1 Introduction . 12
2.2 Related Work & Research Questions . 14

2.2.1 Related Work . 14
2.2.2 Research Questions . 18

2.3 Survey Methodology . 19
2.3.1 Survey Design . 20
2.3.2 An Evaluation of the Survey Instrument 22
2.3.3 Participant Recruitment and Selection 23
2.3.4 Data Verification . 23
2.3.5 Statistical Analysis . 23

2.4 Survey Results . 24
2.4.1 Demographics . 24

2.5 Threats to the Validity . 27
2.6 Conclusions . 28

2.6.1 Chapter Remarks . 28

3 Investigate the Impact of Correlated Metrics on the Explanation of Defect
Models 31
3.1 Introduction . 32

x Contents

3.1.1 Chapter Organisation . 34
3.2 Background and Motivation . 35

3.2.1 Analytical Modelling Process . 35
3.2.2 Correlated Metrics and Concerns in the Literature 35
3.2.3 Techniques for Mitigating Correlated Metrics 36
3.2.4 Techniques for Explaining Defect Models 38

3.3 Experimental Design and Setup . 40
3.3.1 Studied Datasets . 40
3.3.2 Remove Correlated Metrics . 42
3.3.3 Construct Defect Models . 42
3.3.4 Analyze the Model Interpretation 43
3.3.5 Analyze the Model Performance . 43

3.4 Experimental Results . 44
3.5 Practical Guidelines . 51
3.6 Threats to Validity . 52
3.7 Conclusions . 54

3.7.1 Chapter Remarks . 54

4 Automatically Mitigate Correlated Metrics when Explaining Defect Models 55
4.1 Introduction . 56

4.1.1 Chapter Organisation . 58
4.2 Related Work & Research Questions . 58
4.3 Experimental Design . 63

4.3.1 Studied Datasets . 63
4.3.2 Studied Feature Selection Techniques 64
4.3.3 Studied Classification Techniques . 70

4.4 Experimental Results . 70
4.5 Discussions . 91

4.5.1 The trends of correlated metrics that are elected by the commonly-
used feature selection techniques . 91

4.6 Threats to Validity . 92
4.7 Conclusions . 94

4.7.1 Chapter Remarks . 95

5 Explain the Predictions of Defect Models 97
5.1 Introduction . 98

5.1.1 Chapter Organisation . 101
5.2 Explainability in Software Engineering . 101

5.2.1 A Theory of Explainability . 102
5.2.2 A Theory of Explanations . 102

5.3 Techniques for Generating Explanations . 104

Contents xi

5.3.1 Explaining a black-box model . 105
5.3.2 Explaining an individual prediction 105

5.4 Experimental Design . 109
5.4.1 Studied Datasets . 110
5.4.2 Generate Training and Testing Samples 111
5.4.3 Remove Correlated Metrics . 111
5.4.4 Construct Defect Models . 112
5.4.5 Apply Model-specific Explanation Techniques 112
5.4.6 Apply Model-agnostic Techniques 113
5.4.7 Generate Predicted Probability . 113
5.4.8 Analyse Global Explanation and Instance Explanations 113
5.4.9 Analyse Model Performance . 113

5.5 Experimental Results . 115
5.6 Discussion . 126

5.6.1 A Comparison of Model-Agnostic Techniques with a Tree-based
Technique . 126

5.7 Related Work . 128
5.7.1 Explainable Software Analytics . 128
5.7.2 Analytical Models for Software Defects (i.e., Defect Models) 128

5.8 Threats to Validity . 130
5.8.1 Construct Validity . 130
5.8.2 Internal Validity . 131
5.8.3 External Validity . 131

5.9 Conclusions . 132
5.9.1 Chapter Remarks . 132

6 Conclusions 133

Bibliography 137

List of Figures

1.1 A generic process of software quality assurance. 2
1.2 An overview process of defect prediction models. 3
1.3 An overview of thesis structure. 6

2.1 The proportion of the goals of developing defect prediction models and the
proportion of the model-agnostic techniques used in prior studies. We note
that the summation of these percentage values does not add up to 100%
since a study may have multiple goals and may use multiple model-agnostic
techniques. 18

2.2 An illustrative overview of the goals of defect prediction models and the
model-agnostic techniques for generating visual explanations of defect pre-
diction models. 19

2.3 The likert scores of the perceived usefulness and the willingness to adopt
from the respondents for each goal of defect prediction models. 24

3.1 An overview of the analytical modelling process. 34
3.2 An overview diagram of the design of our study. 42
3.3 The percentage of the studied datasets for each di�erence in the ranks between

the top-ranked metric of the models that are constructed using the mitigated
and non-mitigated datasets. The light blue bars represent the consistent rank
of the metric between mitigated and non-mitigated models, while the red
bars represent the inconsistent rank of the metric between mitigated and
non-mitigated models. 45

3.4 The percentage of datasets where the top-ranked metric is consistent between
the two studied model interpretation techniques. While the lower-left side
of the matrix (i.e., red shades) shows the percentage before removing correl-
ated metrics, the upper-right side of the matrix (i.e., blue shades) shows the
percentage after removing correlated metrics. 48

3.5 The distributions of the performance di�erence (% pts) between non-mitigated
and mitigated models for each of the studied datasets. 50

3.6 The distributions of the stability ratio of non-mitigated to mitigated models
for each of the studied datasets. 51

xiv List of Figures

4.1 The percentage of metrics that are consistently selected when applying feature
selection techniques to the same training sample for all defect datasets. 71

4.2 The percentage of metrics that are consistently selected when applying feature
selection techniques to di�erent training samples from the same dataset. . . 73

4.3 The percentage of metrics that are consistently selected when applying feature
selection techniques with di�erent random seeds. 76

4.4 The percentage of metrics that are consistently selected when applying feature
selection techniques with di�erent model specifications. 78

4.5 The results of Stepwise Regression. 80

4.6 The percentage of subsets of metrics that contain correlated metrics for each
studied feature selection technique. The left boxplots present the percentage
of subsets of metrics with collinearity, while the right boxplots present the
percentage of subsets of metrics with multicollinearity. 81

4.7 The hierarchical cluster view of the correlation analysis of all metrics in the
Eclipse Platform 2 dataset. Correlated metrics that can be linearly predicted
by another metric and have their Spearman correlation coe�cient above 0.7
are highlighted in red, while non-correlated metrics are highlighted in green. 82

4.8 The Spearman rank correlation test on the subsets of metrics that are produced
by CFS, findCorrelation, and AutoSpearman, respectively. Correlated met-
rics that can be linearly predicted by another metric and have their Spearman
correlation coe�cient above 0.7 are highlighted in red, while non-correlated
metrics are highlighted in green. 83

4.9 The distributions of the performance di�erence (%pts) between defect models
that are constructed using subsets of metrics that are produced by the twelve
studied feature selection techniques and all metrics of a defect dataset, i.e.,
PFS – PAll. 86

4.10 The computational cost analysis of the twelve studied feature selection tech-
niques. 88

4.11 The distributions of Spearman correlation coe�cients of the most important
metrics produced by the baseline and correlation threshold values. 89

4.12 The Spearman rank correlation test on the top-5 important metrics accord-
ing to AutoSpearman using the correlation threshold values of 0.7 and 0.9.
Correlated metrics that can be linearly predicted by another metric and have
their Spearman correlation coe�cient above 0.7 are highlighted in red, while
non-correlated metrics are highlighted in green. 91

4.13 The number of correlated metrics selected by each studied feature selection
technique for an illustrative analysis of the Eclipse Platform 2 dataset. 92

4.14 The number of studied feature selection techniques that select each correlated
metric for an illustrative analysis of the Eclipse Platform 2 dataset. 93

List of Figures xv

5.1 An illustration of model-agnostic techniques. Model-agnostic techniques are
used to explain the predictions of unseen data, while the global explanation
is derived from the trained models from training data. In other words, one
model can have only one global explanation, but should have multiple instance
explanations. 99

5.2 An example of visual explanations for a decision tree model, and two model-
agnostic techniques (i.e., LIME and BreakDown). 103

5.3 An overview diagram of the design of our study. 109
5.4 The distributions of model performance for all studied defect datasets of each

classification technique. 114
5.5 The distributions of the goodness-of-fit (R2) of the local regression models

constructed with LIME and LIME-HPO for all of the studied defect datasets
and the studied classification techniques. 116

5.6 An illustrative example of instance explanations generated by LIME and
BreakDown, respectively. 117

5.7 The distributions of rank di�erences of each metric across instances explana-
tions for all studied defect datasets. 119

5.8 The distributions of the top-k overlapping metrics between the global ex-
planation and instance explanations for all of the studied defect datasets and
the studied classification techniques. 120

5.9 The distributions of rank di�erences of each metric when re-generating
instance explanations for all of the studied defect datasets. 121

5.10 An illustrative example of instances explanations of a defective testing instance
when regenerating instance explanations with LIME. 122

5.11 The distributions of computational time of model-agnostic techniques for
explaining the predictions of defect models for all of the studied defect datasets.123

5.12 An example of the Time-contrast explanations generated by model-agnostic
techniques for explaining the predictions of defect models. 124

List of Tables

2.1 A summary of type, granularity, and key information of the model-agnostics
techniques that are used in defect prediction studies [57, 82], and an example
of positive and negative feedback from practitioners (RQ2). 15

2.2 (RQ1) A summary of the ScottKnott ESD rank, the agreement percentage,
the disagreement percentage, and the agreement factor for the three goals of
defect prediction models. 25

2.3 (RQ2) A summary of the ScottKnott ESD rank, the agreement percentage,
the disagreement percentage, and the agreement factor for each model-
agnostic technique for generating visual explanations of defect prediction
models. 27

3.1 A summary of the studied correlation analysis techniques, the two studied
analytical learners, and the 9 studied interpretation techniques. 36

3.2 A statistical summary of the studied datasets. 41

4.1 An overview comparison of our study with respect to prior work. 60

4.2 A statistical summary of the studied datasets. 64

4.3 A summary of the detailed implementation for the twelve studied feature
selection techniques. 66

4.4 The subsets of metrics that are produced by all of the twelve studied feature
selection techniques on a training sample from the Eclipse Platform 2 dataset.
While a 3 mark indicates that a metric is selected by a feature selection
technique, a 7 mark indicates that a metric is not selected by a feature selection
technique. 72

4.5 The subsets of metrics that are produced by the correlation-based feature
selection technique (CFS) when applied on di�erent training samples. While
the green texts represent metrics that are consistently selected, the red texts
represent inconsistently selected metrics. 74

xviii List of Tables

4.6 The subsets of metrics that are produced by the Recursive Feature Elimination
technique with logistic regression (RFE-LR) when applied with di�erent
random seeds on the same training sample. While the green texts represent
metrics that are consistently selected, the red texts represent inconsistently
selected metrics. 77

4.7 The subsets of metrics that are produced by the forward direction Stepwise
Regression (Step-FWD) when applied with di�erent model specifications on
the same training sample. While the green texts represent metrics that are
consistently selected, the red texts represent inconsistently selected metrics. . 79

4.8 The Variance Inflation Factor analysis of the subsets of metrics that are
produced by the correlation-based feature selection technique (CFS), find-
Correlation, and AutoSpearman, respectively. Correlated metrics that can
be linearly predicted by a combination of other metrics and have their VIF
score of above 5 are highlighted in red. 83

4.9 The percentage of the studied defect datasets in which their most important
metrics are consistent among correlation threshold values. 89

4.10 The top-5 most important metrics according to the percentage of the studied
defect datasets in which their most important metrics are consistent among
correlation threshold values. 90

5.1 A statistical summary of the studied systems. 111

Chapter 1

Introduction

1.1 Nature of Software Defects

Software defects are conditions in software systems that do not follow software requirements
or users’ expectations. Software defects can arise from coding mistakes, wrong software
designs, and OS (operating systems) incompatibilities. These variants of software defects in
software systems can have varying impact on the functionality of such software systems. For
example, a software system with functional software defects may generate outputs that are
di�erent from the software specifications. A software system with security software defects
may enable potential malicious attacks.

Due to the wide-spread use of software systems in many industries, software defects can
be critically harmful to human health and expensive. For example, as high as 200 deaths per
year are caused by unnecessary defects in patient care systems in the UK [215]. The U.S.
national annual costs of software defects in software systems are estimated to range from
$22.2 to $59.5 billion [169]. Thus, ensuring a high quality of software systems is becoming
increasingly important.

1.2 Software Quality Assurance

Software Quality Assurance (SQA) activities (e.g., code review, software testing, and SQA
planning) are exercised to routinely check software systems to ensure that the developed
software systems meet the requirements and are high quality (defect-free). For example,
the source code of software systems must be tested thoroughly before the software releases.
Pull requests must be reviewed and approved by members of the development teams before
integrating into the main codebase. Figure 1.1 shows a generic process of software quality
assurance. The process involves managers and developers. Generally, there are 5 steps:

1. Managers establish a software quality assurance (SQA) plan (e.g., minimum reviewers
and minimum test coverage) that developers should follow.

2 Introduction

Figure 1.1 A generic process of software quality assurance.

2. Developers implement new features, producing a lot of changed files or commits.

3. Prior to merging to a master branch for release, given thousands of files, developers
have to manually localise and diagnose software defects.

4. The documentation of past mistakes will be used to update the SQA plan for quality
improvement in future releases.

5. After fixing defects of all features, the software is ready to build and ship to customers.

In this time of fast-paced software development and release cycles, recent software
development methodologies embed QA aspects throughout the software development life
cycle. Unlike the traditional waterfall development methodology that conducts verification
and validation after implementation, Agile testing includes SQA activities into the loop as
early as the requirement design and analysis phase. This allows QA engineers to foresee
potential issues and develop appropriate measures to address such issues as early as possible
to ensure high quality of software systems [149]. Nevertheless, such SQA activities are
time-consuming and demanding, especially for large-scale software systems.

To address the increasing e�ort to ensure the highest quality of large-scale software
systems, prior work proposed to use defect prediction models to predict which files [140, 238],
methods [71], and lines [223, 228] are likely to be defective in the future. Prior studies
developed defect prediction models using a statistical (e.g., regression [17, 153, 238]) or
machine learning (e.g., random forests [209]) model for various purposes (e.g., prediction
and explanations), which addresses various goals. Figure 1.2 presents an overview process of
defect prediction models. To construct defect prediction models, there are four generic steps:

1. select software metrics (e.g., lines of code) that are associated with defect-proneness,

2. construct a defect prediction model using a statistical or machine learning technique
(e.g., linear regression and random forests),

3. generate predictions to produce the ranking of the most risky files, and

4. apply model explanation techniques to generate model explanation (i.e., the most
important factors that are associated with software defects in the past).

1.2 Software Quality Assurance 3

Goal-2: Understanding the
characteristics that are
associated with software
defects in the past

lines-of-code

#reviewers

#juniors

TestCov
Scores

A prediction
score of

90%
Training

Data

Defect Prediction
Models

(Step 3)
Generate

predictions

Most
Risky

Least
Risky

Goal-1:
Prioritising the
limited SQA
resources on the
most risky files

(Step 1)
Select

software
metrics Selected

software metrics
(e.g., code complexity)

(Step 2)
Construct

defect
prediction

models

Apply model
explanation techniques

to generate model
explanation

Figure 1.2 An overview process of defect prediction models.

Below, we discuss the use of defect prediction models to address various goals.

Use defect prediction models to prioritise the limited SQA resources on the most risky files: Software
defects are prevalent in many large-scale software systems (e.g., 47K+ for Eclipse, and 168K+
for Mozilla) [112]. Developers have to exhaustively review and test each file in order to
identify and localize software defects. However, given thousands of files in a software system,
exhaustively performing SQA activities are likely infeasible due to limited SQA resources
(e.g., in a rapid release setting). Thus, prior studies use defect prediction models to predict
the likelihood of a file being defective in the future. Such predictions can be used to produce
a ranking of the most risky files that require SQA activities. This ranking of the most risky
files helps developers save inspection e�ort and prioritise their SQA resources on the most
risky files.

Use defect prediction models to understand the characteristics that are associated with software defects in

the past: Numerous characteristics are associated with software quality. For example, the static
and dynamic characteristics of source code [65, 238], software development practices (e.g.,
the amount of added lines) [96, 147], organizational structures (e.g., social networks) [153],
and human factors (e.g., the number of software developers, code ownership) [17, 216, 217].
Yet, di�erent systems often have di�erent quality-impacting characteristics. Thus, prior
studies used defect prediction models to better understand such characteristics that are
associated with software defects in the past. This understanding is used to build empirical
theories that are related to software quality to help managers chart appropriate SQA plans.
For example, software defects discovered in previous versions of a software project are
associated with code complexity. With this understanding derived from defect prediction
models, managers can chart SQA plans related to code complexity to ensure high quality of
the software system.

4 Introduction

1.3 Thesis Motivation

Despite being proposed for decades, the adoption of defect prediction models in practice is still
very limited due to the following key reasons:

First, practitioners do not understand why a file is predicted as defective. Recent
work raises a concern about a lack of explainability of software analytics in software en-
gineering [32]. Practitioners also share similar concerns that analytical models in software
engineering must be explainable and actionable [32, 115]. For example, Google [115] ar-
gued that defect prediction models should be more actionable to help software engineers
debug their programs. Miller [145] also argued that human aspects should be taken into
consideration when developing AI/ML-based systems.

Second, current defect predictionmodels still fail to uphold the privacy laws (e.g.,
GDPR), which requires an explanation of any decision made by an algorithm that
a�ects practitioners. Article 22 of the European Union’s General Data Protection Regula-
tion (GDPR) [179] states that the use of data in decision-making that a�ects an individual
or group requires an explanation for any decision made by an algorithm. Yet, current defect
prediction models can predict whether a file will likely be defective in the future but cannot
explain why models make such a prediction. For example, a model may predict one file to
likely be defective with a defective probability value of 80%, while predicting another file to
not likely be defective with a defective probability value of 15%. According to GDPR, these
predictions need to be better justified, particularly for those predicted as defective, since they
may a�ect the owners of such files.

Third, explanations are perceived as equally important as their predictions, but
the explainability of defect models still remains largely unexplored. To better under-
stand the current state of defect prediction research and practitioners’ perceptions of defect
prediction models, we first conducted a literature analysis and a qualitative survey (Chapter 2).
Particularly, we analysed defect prediction studies published in TSE, EMSE, and ICSE during
2015-2020. From this, we identified what are the goals of developing defect prediction
models in prior studies. Then, we conducted a qualitative survey on practitioners’ perceptions
of the goals of developing defect prediction models.

We found that most of the defect prediction studies published at the top SE venues during
2015-2020 (91%) focus on the prediction of defect prediction models. Despite receiving little
attention from the research community, the survey results show that 82% of the respondents
perceived that the explanation of defect prediction models are useful. These findings highlight
the need to explore the explainability of defect prediction models to support SQA planning.

Based on the 3 aforementioned reasons, we formulated the following overarching research
question:

Overarching Research Question (RQ)–How can we increase the explainability of defect prediction

models to better support SQA planning?

1.4 Thesis Statement and Research Questions 5

1.4 Thesis Statement and Research Questions

The goal of this thesis is to increase the explainability of defect prediction models to support
SQA planning. To address this goal, we formulate the following thesis statement:

Explainable defect prediction models are needed to support SQA planning. Empirical studies are the

way forward to identify the best explainable defect prediction framework to generate the most reliable

explanations.

However, little is known about the best defect prediction framework to generate the
most reliable explanations. Thus, we formulate the following 3 central research questions for
this work:
Motivation for RQ1 – The explanation of defect prediction models heavily relies on the
studied software metrics used to construct them. However, software metrics are often
correlated [54, 72, 73, 86, 207, 211, 235]. For example, Herraiz et al. [73], and Gil et al. [54]
point out that code complexity (CC) is often correlated with code size (size). Zhang et

al. [235] point out that many metric aggregation schemes (e.g., averaging or summing of
McCabe’s cyclomatic complexity values at the function level to derive file-level metrics)
often produce correlated metrics.

Recent studies raised concerns that correlated metrics may impact the interpretation
of defect models [211, 235]. This is a critical concern since such explanations of defect
prediction models constructed using correlated metrics may be used to chart misleading SQA
plans. Unfortunately, a literature survey by Emad [193] found that 63% of defect prediction
studies that are published during 2000-2011 do not consider correlation analysis prior to
constructing defect prediction models. Thus, we formulate the following research question:

(RQ1) How do correlated metrics impact the explanation of defect prediction models?

Motivation for RQ2 – Feature selection techniques are applied in defect prediction studies to
select an optimal subset of software metrics that are relevant to defect-proneness [5, 34, 40,
97, 140, 160, 198]. However, none of the prior studies investigated whether such feature
selection techniques mitigate correlated metrics for generating the explanation of defect
prediction models. Thus, we formulate the following research question:

(RQ2) Which feature selection techniques should be used to mitigate correlated metrics for

generating the most reliable explanation of defect prediction models?

Motivation for RQ3 – Commonly-used model explanation techniques (e.g., ANOVA ana-
lysis and variable importance) used by prior work [17, 56, 96, 147, 153, 177, 216, 217, 238] to
explain defect prediction models only explain the relationship at the project level. However,
these model explanations cannot explain the underlying reasoning behind each prediction.

6 Introduction

 Goal:
To increase the explainability of defect prediction models to support SQA planning

 Objective 2:
Investigate the Impact of Correlated

Metrics on the Explanation of
Defect Prediction Models

[Chapter 2]
MSR 2021 (CORE A conference)

[Chapter 3]
TSE 2019 (Journal IF 6.112)

[Chapter 4]
ICSME 2018 (CORE A conference)

EMSE 2020 (Journal IF 3.156)

[Chapter 5]
TSE 2020 (Journal IF 6.112)

Qualitative Survey

Empirical Evaluation

Empirical Evaluation

Empirical Evaluation and
Qualitative Survey

 Objective 4:
Investigate the Trustworthiness

and Reliability of
Model-Agnostic Techniques

 Objective 3:
Investigate the Consistency and

Correlation of Metrics Selected by
Feature Selection Techniques

 Thesis Statement:
Explainable defect prediction models are needed to support SQA planning. Empirical studies are

the way forward to identify the best explainable defect prediction framework
to generate the most reliable explanations.

 Objective 1:
Investigate Current Challenges of

Defect Prediction Models from
Practitioners’ Point of View

Figure 1.3 An overview of thesis structure.

Recent work (e.g., LIME [182] and BreakDown [201]) introduced model-agnostic tech-
niques that explain an individual prediction by diagnosing a prediction model. Yet, no defect
prediction studies to date have investigated whether such model-agnostic techniques should
be used to explain the predictions of defect prediction models. Thus, we formulate the
following research question:

(RQ3) Should model-agnostic techniques be used to explain

the predictions of defect prediction models?

1.5 Thesis Overview

To address these central research questions, we structure this thesis using the following
structure (Figure 1.3). We describe each chapter below.
[Chapter 2] Current Challenges of Defect Prediction Models from the Practitioners’
Point of View

1.5 Thesis Overview 7

To situate the thesis, in this chapter, we first conducted a literature analysis to understand
the current state of research in defect prediction studies. Then, we conducted a qualitative
survey to investigate practitioners’ perceptions of defect prediction models. We asked re-
spondents to assess the perceived usefulness, their willingness to adopt, and the challenges
of defect prediction models developed from current practice. The results of the literature
analysis show that most recent defect prediction studies (91%) focus on the prediction of
defect prediction models. Little research has been done on understanding defect prediction
models and their predictions to support SQA planning. Despite receiving little attention
from the research community, the results of the qualitative survey show that 82%-84% of
the respondents perceived understanding defect prediction models and their predictions as
useful and 74%-78% of the respondents are willing to adopt them. These findings motivated
us to further explore the explanation of defect prediction models to support SQA planning.

[Chapter 3] The Impact of Correlated Metrics on the Explanation of Defect Predic-
tion Models

In Chapter 2 work we found that there is a need to investigate the explanation of defect
prediction models to support SQA planning. Towards eXplainable Defect Prediction models,
we first started with software metrics that are used to construct defect prediction models.
Prior studies showed that software metrics are often correlated [54, 72, 73, 86, 207, 211, 235].
However, little is known whether such correlated metrics impact the explanation of defect
prediction models. Thus, in this chapter, we investigated the impact of correlated metrics on
the explanation of defect prediction models. Particularly, we investigated (1) the prevalence
of correlated metrics in defect datasets, (2) the impact of the number of correlated metrics
on the explanation of defect prediction models, (3) the impact of the ordering of correlated
metrics in a model specification on the explanation of defect prediction models, (4) the impact
of correlated metrics on the consistency and the level of discrepancy of the explanation
of defect prediction models, (5) the consistency of the explanation of defect prediction
models after removing correlated metrics, and (6) the impact on the model performance
and stability after removing correlated metrics. We found that correlated metrics impact
the consistency, the level of discrepancy, and the direction of the importance ranking of
metrics, especially for ANOVA techniques. On the other hand, we found that removing all
correlated metrics improves the consistency of the produced importance ranking of metrics
among the studied model explanation techniques while impacting the model performance
by less than 5 percentage points. These findings suggested that correlated metrics must be
mitigated when the goal is to derive sound explanation from defect prediction models.

[Chapter 4] Automated Feature Selection Techniques toMitigate CorrelatedMetrics
for Generating the Explanation of Defect Prediction Models

Chapter 3 work found that correlated metrics must be mitigated to derive sound explan-
ation from defect prediction models. Prior defect prediction studies [5, 34, 40, 97, 140, 160,
198] applied feature selection techniques to find an optimal subset of software metrics that
are relevant to defect-proneness. However, little is known whether these feature selection

8 Introduction

techniques mitigate strong correlation among software metrics. Therefore, in this chapter,
we investigated the consistency and correlation of subsets of metrics produced by feature
selection techniques. Particularly, we investigated (1) the consistency of the produced subsets
of metrics, (2) the correlation of the produced subset of metrics, (3) the performance, (4)
the computational cost, and (5) the impact on the explanation of defect prediction models.
We found that the subsets of metrics produced by commonly-used feature selection metrics
are inconsistent and correlated. To address this concern, we proposed an automated feature
selection technique, AutoSpearman, that mitigates correlated metrics better and produce more
consistent subsets of metrics than other commonly-used feature selection techniques. These
findings suggested that AutoSpearman should be used in future studies which aim at ensuring
high consistency and the automated mitigation of correlated metrics. Furthermore, this
work also opened up new research avenues in the automated selection of features for defect
prediction models to optimise for explainability.
[Chapter 5] Model-agnostic Techniques to Explain the Predictions of Defect Predic-
tion Models

Chapter 4 proposed AutoSpearman that automatically mitigates correlated metrics that
are shown in Chapter 3 to have an impact on the explanation of defect prediction models.
Nevertheless, commonly-used model explanation techniques (e.g., ANOVA analysis and
variable importance) used by prior work [17, 56, 96, 147, 153, 177, 216, 217, 238] to explain
defect prediction models only explain the relationship at the project level. These model
explanations cannot explain the underlying reasoning behind each prediction. Recent
work (e.g., LIME [182] and BreakDown [201]) introduced model-agnostic techniques that
explain an individual prediction by diagnosing a prediction model. Yet, no defect prediction
studies to date have investigated whether such model-agnostic techniques should be used to
explain the predictions of defect prediction models. Thus, in this chapter, we investigated
whether model-agnostic techniques should be used to explain the predictions of defect
prediction models. To do so, we investigated (1) the variation of explanations generated
by model-agnostic techniques, (2) the trustworthiness, (3) reliability, and (4) practicality
of model-agnostic techniques. We also conducted a post-evaluation as a qualitative survey
to investigate practitioners’ perceptions of the explanations generated by model-agnostic
techniques. We found that model-agnostic techniques are needed to explain individual
prediction of defect prediction models. We also found that more than half of the respondents
perceived such explanations as necessary (55%) and useful (65%). Since the implementation
of the studied model-agnostic techniques (i.e., LIME and BreakDown) are available in both
Python and R, we recommend model-agnostic techniques be used to explain the predictions
of defect models.

1.6 Key Contributions

The main contributions of this thesis are as follows:

1.6 Key Contributions 9

(1) We conducted a qualitative survey on practitioners’ perceptions of the goals of defect
prediction models and the model-agnostic techniques for generating visual explanations
of defect prediction models (Chapter 2).

(2) We investigated the key factors that impact practitioners’ perceptions of the goals of defect
prediction models and the model-agnostic techniques for generating visual explanations
of defect prediction model (Chapter 2).

(3) We identified a key set of implications for researchers including open questions for future
research on designing and developing the next-generation defect prediction models
(Chapter 2).

(4) We investigated the prevalence of correlated metrics in publicly-available defect datasets
(Chapter 3).

(5) We investigated the impact of the number and the ordering of correlated metrics on the
explanation of defect models (Chapter 3).

(6) We investigated the impact of correlated metrics on the consistency and the level of
discrepancy of the produced rankings by the model explanation techniques (Chapter 3).

(7) We investigated the consistency of the importance ranking of metrics after removing all
correlated metrics (Chapter 3).

(8) We investigated the impact of removing all correlated metrics on the performance and
stability of defect prediction models (Chapter 3).

(9) We investigated the consistency and correlation of subsets of metrics produced by feature
selection techniques (Chapter 4).

(10) We investigated the impact of feature selection techniques on the performance of defect
prediction models (Chapter 4).

(11) We investigated the computational cost and the correlation threshold values of feature
selection techniques (Chapter 4).

(12) We described an introduction to the explainability in software engineering from a
perspective of psychological science (Chapter 5).

(13) We described an introduction to model-agnostic techniques (i.e., BreakDown and LIME)
for explaining the predictions of defect models (Chapter 5).

(14) We investigated the trustworthiness, reliability, and practicality of model-agnostic
techniques (Chapter 5).

Chapter 2

Practitioners’ Perceptions of
Explainable Defect Models

An earlier version of the work in this chapter appears in the International Conference on
Mining Software Repositories (MSR) [92].

12 Practitioners’ Perceptions of Explainable Defect Models

2.1 Introduction

Software defects are prevalent, but hard to predict [140] and to prevent [153, 154]. Thus, prior
studies developed defect prediction models from historical software data using a statistical
or machine learning model for various purposes (e.g., prediction and explanations), which
addresses various goals. First is to predict the likelihood of a file being defective in the
future [65, 140]. Second is to understand the characteristics that are associated with software
defects in the past [153, 154]. Third is to explain their prediction about why a particular file
is predicted as defective [81, 109, 165, 166].

Prior studies hypothesized that the predictions could help practitioners prioritize the
limited inspection e�ort on the most risky files [71, 140, 223, 228, 238], while the insights
derived from defect prediction models could help managers chart appropriate quality im-
provement plans [153, 154, 199]. Recently, Wan et al. [222] conducted a survey study with
practitioners to investigate their perceptions of defect prediction models. However, Wan et

al. [222] only focused on the prediction goal, while the other two goals (i.e., understanding
models and explaining the predictions) have not been investigated. A better understanding
of the practitioners’ perceptions will help the research community to better understand
practitioners’ needs, allowing researchers to orient appropriate e�orts for the design and the
development of the next generation of defect prediction models.

Prior studies used various model-agnostic techniques–techniques that generate explana-
tions of defect prediction models and their predictions–(e.g., ANOVA and LIME) to generate
visual explanations to help practitioners understand defect prediction models and their predic-
tions [17, 81, 153, 216, 217]. In fact, di�erent model-agnostic techniques generate di�erent
key information, e.g., importance scores and relationship. However, none of the prior studies
investigates which model-agnostic techniques are considered as the most preferred by prac-
titioners to generate visual explanations. A better understanding of practitioners’ perceptions
of the visual explanations of defect prediction models is needed to guide researchers to devise
novel visualization techniques that suit practitioners’ needs.

In this study, we conducted a qualitative survey to understand the practitioners’ per-
ceptions of the goals of defect prediction models and the model-agnostic techniques for
generating visual explanations of defect prediction models. The analysis of related work
led us to focus on three goals of defect prediction models: (1) prioritizing the limited SQA
resources on the most risky files; (2) understanding the characteristics that are associated with
software defects in the past; and (3) understanding the most important characteristics that
contributed to a prediction of a file. We asked respondents to assess the perceived usefulness
and their willingness to adopt defect prediction models. Then, we asked the respondents to
describe the positive and negative impacts if these defect prediction models were adopted.

Guided by the analysis of related work, we focused on 8 model-agnostic techniques used
for generating visual explanations – ANOVA, Variable Importance, Partial Dependence Plots,
Decision Tree, LIME [182], BreakDown [55], SHAP [125], and Anchor [183]. We asked

2.1 Introduction 13

our survey respondents to assess each visual explanation generated by these techniques along
three dimensions, i.e., information usefulness, information insightfulness, and information
quality. We then asked the respondents to describe the positive and negative feedback of each
visual explanation of defect prediction models. Through a qualitative analysis of open-ended
and closed-ended questions of 50 software practitioners we addressed the following research
questions:

(RQ1) Which goals of defect prediction models that practitioners considered the
most useful?
82%-84% of the respondents perceived that the three goals of defect prediction models are

useful and 74%-78% of them are willing to adopt them. This was especially true for
respondents who use Java, have little years of experience, and work in a large team
size (more than 100 people). This finding highlights that not only defect predictions
but also the other two goals (i.e., understanding defect prediction models and their
predictions) receive similar perceptions of usefulness and willingness to adopt with
no statistically significant di�erence.

(RQ2) Which model-agnostic techniques are the most preferred by practitioners to
understand defect prediction models and their predictions?
LIME is the most preferred technique for understanding the most important characteristics

that contributed to a prediction of a file with an agreement percentage of 66%-78% along

three dimensions. ANOVA/VarImp is the second most preferred technique for under-
standing the characteristics that are associated with software defects in the past with
an agreement percentage of 58%-70% along three dimensions.

Based on these findings, future research (1) should put more e�ort into investigating
how to improve the understanding of defect prediction models and their predictions; and
(2) should adopt ANOVA/VarImp and LIME model-agnostic techniques to understand
defect prediction models and their predictions. We also discuss key lessons learned and
open questions for developing the next-generation of defect prediction models, e.g., how
to develop the highly scalable human-in-the-loop defect prediction models at the lowest
implementation cost, while maintaining its explainability.

The main contributions of this study are as follows:

• We conducted a qualitative survey on practitioners’ perceptions of the goals of defect
predictionmodels and the model-agnostic techniques for generating visual explanations
of defect prediction models. We also provided a detailed replication package as a Jupyter
notebook in the online supplementary materials [84].

• We investigated the key factors that impact practitioners’ perceptions of the goals
of defect prediction models and the model-agnostic techniques for generating visual
explanations of defect prediction models.

14 Practitioners’ Perceptions of Explainable Defect Models

• We identified a key set of implications for researchers including open questions for
future research on designing and developing the next-generation defect prediction
models.

The body of knowledge provided by the findings of this survey will allow the research
community to prioritise the practitioners’ needs and to orient future e�orts for the design
and development of better explainable defect prediction.
Chapter Organisation. Section 2.2 summarizes key related work to identify (1) the key
goals of developing defect prediction models, and (2) the model-agnostic techniques used to
generate visual explanations; and motivate the research questions based on the analysis of
related work. Section 2.3 describes the design of this study. Section 2.4 presents the results
of RQ1 and RQ2. Section 2.5 discusses threats to the validity. Finally, Section 2.6 concludes
the chapter.

2.2 Related Work & Research Questions

We first summarize key related work to identify (i) the key goals of developing defect
prediction models, and (ii) the model-agnostic techniques that are used to generate visual
explanations. We then motivate our research questions based on the analysis of related work.

2.2.1 Related Work

In identifying defect prediction studies used in this study, we conduct the following selection
steps. First, We collected the titles of full research track publications that were published in
the top SE venues (i.e., TSE, ICSE, EMSE, FSE, and MSR) during 2015-2020 from IEEE
Xplore, Springer, and ACM Digital Library (as of 11 January 2021). These venues are
premier publication venues in the software engineering research community. Second, we
used the “defect", “fault", “bug", “predict", and “quality" keywords to search for papers about
defect prediction models. This led us to a collection of 2,890 studies. Third, since studies
may use several keywords that match with our search queries and appear consistently across
the search results, we first identified and excluded duplicate studies. We found that 1,485
studies are duplicated and thus are excluded (1,405 unique studies). Fourth, we manually
read the titles and abstracts of these papers to identify whether they are related to defect
prediction models. For each paper, we manually downloaded each paper as a pdf file from
IEEE Xplore, Springer, and ACMDigital Library. We identified 131 studies that are relevant
to software defects prediction. Fifth, of the 131 studies, we excluded 7 studies that are not
primary studies of defect prediction models (e.g., secondary studies [78, 240]). Sixth, we
excluded 28 studies that are not full-paper and peer-reviewed defect prediction studies (i.e.,
short, journal first, extended abstract papers). Finally, we selected a total of 96 primary
full-paper and peer-reviewed defect prediction studies.

2.2 Related Work & Research Questions 15

Table 2.1 A summary of type, granularity, and key information of the model-agnostics
techniques that are used in defect prediction studies [57, 82], and an example of positive and
negative feedback from practitioners (RQ2).

Goal Technique Types/Granularity Information Positive feedback Negative feedback

(Goal 2)
Understanding the
characteristics that
are associated with
software defects
in the past

Anova/
VarImp A Post-hoc Ex-

plainer for Model
Explanation

(1) The importance scores
of each feature

R50 (“Explains risk values of
several factors.”)

R34 (“It is a very basic plot
which could even have been a

table.”)

Partial
Dependence
Plot (PDP)

A Post-hoc Ex-
plainer for Model
Explanation

(1) The relationship of
each feature on the out-
come

R5 (“I like that I can see a
trending pattern to read with

ease.”)

R27 (“Easy to visualize but hard
to process the info.”)

Decision
Tree An Interpretable

Model for Model
Explanation

(1) The decision rule of
each feature

R47 (“Very analytical, strong
with engineers, flow chart.”)

R34 (“Very difficult to read
especially when there are

multiple parameters and the tree
gets un-manageable.”)

(Goal 3)
Understanding the
most important
characteristics that
contributed to a
prediction of a file

LIME

A Post-hoc
Explainer for
Outcome
Explanation

(1) The prediction of the
local models R1 (“Risk scores are visually

oriented and users will
understand it faster.”)
R50 (“Easy to understand, we
just want to know what’s
already ok and what’s need to
improve.”)

R9 (“... But it also could be time
consuming to review depending
on if there are many different
files to review.”)
R50 (“... too large and too tired
to read 10 charts for 10 files.”)

(2) The decision point of
each feature
(3) The supporting scores
of each feature
(4) The contradicting
scores of each feature
(5) The actual feature value
of that instance

SHAP

A Post-hoc
Explainer for
Outcome
Explanation

(1) The prediction of the
local models R5 (“... It does highlight in the

explanation of what everything
is, which is nice. It gives
insightful data on what to look
out for.”)
R14 (“It describes the
involvement of each attribute
more clearly.”)

R9 (“This has a lot of information
which can be quite useful but lacks
a clean readability. It can be quite
time-consuming to read this graph.”)
R27 (“Takes a bit to figure out
what is going on.”)

(2) % of contribution for
each feature to the final
probability
(3) The actual feature value
of that instance

BreakDown

A Post-hoc
Explainer for
Outcome
Explanation

(1) The prediction of the
local models
(2) % of contribution for
each feature to the final
probability
(3) The actual feature value
of that instance

Anchor

A Post-hoc
Explainer for
Outcome
Explanation

(1) The decision rule of
each feature

R50 (“Exactly what I need, just
small and short information on

what to improve.”)

R36 (“... doesn’t provide a
visual aid to put the numbers

into perspective.”)

We read each of them to identify their goals of developing defect prediction models and
identify the model-agnostic techniques that are used to generate visual explanations. We then
further group the goals of developing defect prediction models using the Open Card Sorting

approach. First, we list all the goals of developing defect prediction models and categorize these
goals based on how such models are used in each study. Then, we discuss the inconsistency
among the authors to reach the final set of categories. Based on the selected 96 studies, we
identify the 3 goals of developing defect prediction models and 8 model-agnostic techniques
used to generate visual explanations. Guided by the Guidotti et al.’s Taxonomy [57], we
classify each technique according to types of model-agnostic techniques (i.e., interpretable
models vs. post-hoc explanations) and the granularity levels of explanations (i.e., model
explanation and outcome explanation [82]).

Goal 1—Prioritizing the limited SQA resources on the most risky files

Software defects are prevalent in many large-scale software systems (e.g., 47K+ for Eclipse,
and 168K+ for Mozilla) [112]. Developers have to exhaustively review and test each file
in order to identify and localize software defects. However, given thousands of files in a
software system, exhaustively performing SQA activities are likely infeasible due to limited
SQA resources (e.g., in a rapid release setting). Thus, prior studies use defect prediction

16 Practitioners’ Perceptions of Explainable Defect Models

models to predict the likelihood of a file being defective in the future. Such predictions
can be used to produce a ranking of the most risky files that require SQA activities. Prior
studies leveraged several Machine Learning approaches to develop defect prediction models
to predict which files [140, 238], methods [71], lines [228] are likely to be defective in the
future. For example, regression models [17, 153, 216, 217, 238], random forests [209], and
deep learning [225].

Goal 2—Understanding the characteristics that are associated with software defects
in the past

Numerous characteristics are associated with software quality. For example, the static and
dynamic characteristics of source code [65, 238], software development practices (e.g., the
amount of added lines) [96, 147], organizational structures (e.g., social networks) [153], and
human factors (e.g., the number of software developers, code ownership) [17, 216, 217]. Yet,
di�erent systems often have di�erent quality-impacting characteristics. Thus, prior studies
used defect prediction models to better understand such characteristics that are associated
with software defects in the past. This understanding could help managers chart appropriate
quality improvement plans. Below, we summarize the four model-agnostic techniques that
are used in prior studies to understand the characteristics that are associated with software
defects in the past.

Analysis of Variance (ANOVA) is a model-agnostic technique for regression analysis to
generate the importance scores of factors that are associated with software defects. ANOVA
measures the importance of features by calculating the improvement of the Residual Sum of
Squares (RSS) made when sequentially adding a feature to the model. Variable Importance
(VarImp) is a model-agnostic technique for random forests classification techniques to generate
the importance scores of factors that are associated with software defects. The VarImp
technique measures the importance of features by measuring the errors made when the
values of such features are randomly permuted (i.e., permutation importance). Random
forests also provides other variants of importance score calculations (e.g., Gini importance).
In this study, we choose the permutation importance technique to generate an example
of VarImp visual explanation since we find that permutation importance is more robust to
the collinearity issues [85]. We note that the ANOVA and VarImp plots only indicate the
importance of each feature, not the directions of the relationship of each feature i.e., positive
or negative.

Partial Dependence Plot (PDP) [48] is a model-agnostic technique to generate model
explanations for any classification models. Unlike visual explanations generated by ANOVA
and VarImp that show only the importance of all features, visual explanations generated by
PDP illustrate the marginal e�ect that one or two features have on the predicted outcome of
a classification model.

Decision Tree or Decision Rule is a technique to generate tree-based model explanations.
A decision tree is constructed in a top-down direction from a root node. Then, a decision

2.2 Related Work & Research Questions 17

tree partitions the data into subsets of similar instances (homogeneous). Typically, an entropy
or an information gain score are used to calculate the homogeneity among instances. Finally,
the constructed decision tree can be converted into a set of if-then-else decision rules.

Goal 3—Understanding themost important characteristics that contributed to a pre-
diction of a file

In my previous work, we et al. [82] argued that a lack of explainability of defect prediction
models could hinder the adoption of defect prediction models in practice (i.e., developers do
not understand why a file is predicted as defective). To address this challenge, we proposed to
use model-agnostic techniques to generate explanations of the predictions of defect prediction
models (i.e., what are the most important characteristics that contributed to a prediction of a
file?). Below, we summarize the four state-of-the-art model-agnostic techniques that were
used in prior studies to understand the most important characteristics that contributed to a
prediction of a file (i.e., LIME, BreakDown, SHAP, and Anchor).

Local Interpretability Model-agnostic Explanations (LIME) [182] is a model-agnostic tech-
nique to generate the importance score of the decision rule of each factor for any classification
models. The decision rule of each factor is discretized based on a decision tree. LIME aims
to generate supporting and contradicting scores which indicate the positive and negative
importance of each feature for an instance. For example, a LIME explanation for the LOC
feature with an importance score of 40% and a decision rule LOC > 100 => BUG indicates
that the condition of the file size that is larger than 100 LOCs would have 40% contribution
to the prediction that a file is defective.

BreakDown [55] is a model-agnostic technique for generating probability-based explana-
tions for each model prediction [201]. BreakDown uses the greedy strategy to sequentially
measure the contributions of each feature towards the expected predictions. For example, a
BreakDown explanation for the LOC feature with an importance score of 40% indicates
that the actual feature value of 200 LOCs of the file would have 40% contributions to the
final prediction of this particular file as being defective.

SHapley Additive exPlanations (SHAP) [125] is a model-agnostic technique for generating
probability-based explanations for each model prediction based on a game theory approach.
SHAP uses game theory to calculate the Shapley values (contributions) of each feature based
on the decision-making process of prediction models.

Anchor [183] is an extension of LIME [182] that uses decision rules to generate rule-based
explanations for each model prediction. The key idea of Anchor is to select if-then rules –
so-called anchors – that have high confidence, in a way that features that are not included
in the rules do not a�ect the prediction outcome if their feature values are changed. In
particular, Anchor selects only rules with a minimum confidence of 95%, and then selects
the rule with the highest coverage if multiple rules have the same confidence value.

18 Practitioners’ Perceptions of Explainable Defect Models

91%

41%

4%
0

25

50

75

100

Goal 1
(Predict)

Goal 2
(Understand)

Goal 3
(Explain)

of

 s
tu

di
es

 (%
)

Goals of developing
defect prediction models

18%

15%

5%

3%
2%

1%
0

5

10

15

20

ANOVA VarImp PDP Decision
Tree

LIME BreakDown

of

 s
tu

di
es

 (%
)

Techniques used in studies

0

5

10

15

20

25

2015 2016 2017 2018 2019 2020

of

 s
tu

di
es

 (%
)

Goal 1
(Predict)

Goal 2
(Understand)

Goal 3
(Explain)

Goals of developing defect prediction models over time

Figure 2.1 The proportion of the goals of developing defect prediction models and the pro-
portion of the model-agnostic techniques used in prior studies. We note that the summation
of these percentage values does not add up to 100% since a study may have multiple goals
and may use multiple model-agnostic techniques.

2.2.2 Research Questions

As shown in Figure 2.1, we found that most recent defect prediction studies focus on
prioritizing the limited SQA resources. This led us to hypothesize that the prediction goal
is perceived as more useful than the other two goals, i.e., understanding defect prediction
models and their predictions. However, it remains unclear how practitioners perceive the
three goals of defect prediction models. Thus, we formulate the following research question:

(RQ1) Which goals of defect prediction models that practitioners considered the most useful?

According to our analysis of related work, prior defect prediction studies also used model-
agnostic techniques to generate visual explanations to help practitioners understand (1) the
most important characteristics that are associated with software defects in the past; and (2) the
most important characteristics that contributed to a prediction of a file. Surprisingly, there
exist numerous model-agnostic techniques to generate visual explanations (e.g., ANOVA and
LIME) that have been used in the literature. Particularly, we found that 18% used ANOVA,

2.3 Survey Methodology 19

ANOVA

A prediction
score of

90%
Unseen

Data

Defect Prediction 
Models

Regression Models

Variable
Importance

Random  
Forests

Partial Dep. 
Plot (PDP)

Decision
Rule/Tree

Decision
Rule/Tree

Mo
de

l
Ex

pla
na

tio
n

Generate  
Predictions

Most  
Risky

Least  
Risky

Goal 2:
Understanding the
characteristics that are
associated with software
defects in the past

Goal 1:
Prioritizing the
limited SQA
resources on the
most risky files

lines-of-code

#reviewers
#juniors
TestCov

Scores

loc=1,000
#reviewers=5

#junior=0
TestCov=40%

Goal 3:
Understanding the most
important characteristics
that contributed to a
prediction of a file

LIME BreakDown SHAP Anchor

Ins
tan

ce
  

Ex
pla

na
tio

ns

If {LOC>100} 
then {BUG}

Figure 2.2 An illustrative overview of the goals of defect prediction models and the model-
agnostic techniques for generating visual explanations of defect prediction models.

15% used Variable Importance, 5% used Partial Dependence Plot, 3% used Decision Tree,
2% used LIME, and 1% used BreakDown to generate visual explanations. Recently, Esteves et
al. [41] also used SHAP [125] to understand the predictions of defect prediction models.
Anchor [183] (an extension of LIME [182]) was proposed to present the visual explanations
in the form of decision trees/rules.

Based on our analysis of the eight selected model-agnostic techniques (see Table 2.1) that
were used in prior studies, we found that visual explanations generated by these techniques
produce di�erent key information (e.g., important scores and relationship). It remains unclear
about which model-agnostic techniques are considered as the most preferred by practitioners
to understand defect prediction models and their predictions. Thus, we formulate the
following research question:

(RQ2) Which model-agnostic techniques are the most preferred by practitioners to understand defect

prediction models and their predictions?

2.3 Survey Methodology

The goal of this work is to assess practitioners’ perceptions of the goals of defect prediction
models and the model-agnostic techniques for generating visual explanations of defect
prediction models. To address our two research questions, we conducted a qualitative survey
study to investigate the practitioners’ perceptions of the goals of defect prediction models and
the model-agnostic techniques for generating visual explanations of defect prediction models.
We used a survey approach, rather than other qualitative approaches (e.g., interview), since

20 Practitioners’ Perceptions of Explainable Defect Models

we aim to assess their perceptions of the goals along 2 dimensions (i.e., perceived usefulness
and willingness to adopt) and the model-agnostic techniques along 3 dimensions (i.e., overall
preference, information usefulness, information insightfulness, and information quality).
Unlike an interview approach that is more unstructured, the closed-ended responses of the
survey approach can be structured and quantified on a Likert scale which can be further
analyzed to produce empirical evidence. The open-ended responses of the survey approach
also provide in-depth insights to synthesize and generate discussions. As suggested by
Kitchenham and Pfleeger [104], we considered the following steps when conducting our
study: (1) Survey Design (designing a survey and developing a survey instrument), (2) An
Evaluation of the Survey Instrument (evaluating the survey instrument), (3) Participant
Recruitment and Selection (obtaining valid data), (4) Data Verification (verifying the data),
and (5) Statistical Analysis (analysing the data). We describe each step below.

2.3.1 Survey Design

Our survey design is a cross-sectional study where participants provide their responses at one
fixed point in time. The survey consists of 9 closed-ended questions, 11 open-ended questions,
and 1 one-ended question for feedback on our survey. The survey takes approximately 20
minutes to complete and is anonymous. Our survey can be found in the online supplementary
materials [84].

To fulfil the objectives of our study, we created three sets of closed-ended and open-ended
questions with respect to the demographic information, and the two research questions. For
closed-ended questions, we used agreement and evaluation ordinal scales. To mitigate the
inconsistency of the interpretation of numeric ordinal scales, we labelled each level of ordinal
scales with words as suggested by Krosnick [110]. The format of our survey instrument is
an online questionnaire. We used Google Forms to implement this online survey. When
accessing the survey, each participant was provided with an explanatory statement which
describes the purpose of the study, why the participant is chosen for this study, possible
benefits and risks, and confidentiality. Below, we present the rationale for the information
that we captured:

Part 1–Demographics

We captured the following information, i.e., Role: engineers, managers, and researchers;
Experience in years (decimal value); Current country of residence; Primary programming
language; Team Size: 1-10, 11-20, 21-50, 51-100, 100+; Usage of static analysis tools: Yes /
No.

The collection of demographic information (i.e., roles, experience, country) about the
respondents allows us to (1) filter respondents who may not understand our survey (i.e.,
respondents with less relevant job roles), (2) breakdown the results by groups (e.g., developers,

2.3 Survey Methodology 21

managers, etc), and (3) understand the impact of the demographics on the results of our
study.

Team size may have an impact on SQA practices [155]. For example, small teams might
use a light-weight SQA practice (e.g., static analysis), while large teams might use a rigorous
SQA practice (e.g., CI/CD and automated software testing).

Primary programming languages may impact SQA practices [13]. For example, some
high-level programming languages might be easier to conduct SQA practices (e.g., Python
and Ruby languages) than some low-level programming languages (e.g., C language).

The usage of static analysis tools may impact the practitioners’ perceptions of the goals of
defect prediction models and the model-agnostic techniques for generating visual explana-
tions of defect prediction models. For example, practitioners who use static analysis may not
perceive the benefits of the prioritization goal of defect prediction models [222]. However,
the ranking of the most risky files is not the only goal of defect prediction models.

Part 2–Practitioners’ perceptions of the goals of defect prediction models

To understand how practitioners perceive the goals of defect prediction models, we first
illustrated the concept of defect prediction models then provided participants with a brief
definition of each goal. For each goal of defect prediction models, we assessed the practi-
tioner’s perceptions along two dimensions, i.e., perceived usefulness and willingness to adopt.
Perceived usefulness refers to the degree to which a person believes that using a particular
system would enhance his or her job performance [116] Willingness to adopt refers to the
degree to which a person is willing to adopt a particular system [222]. Thus, we asked the
participants to rate the perceived usefulness and the willingness to adopt using the following
evaluation ordinal scales:

• Perceived Usefulness: Not at all useful, Not useful, Neutral, Useful, and Extremely
useful

• Willingness to adopt: Not at all considered, Not considered, Neutral, Considered, and
Extremely considered

We then asked participants to describe the positive points and points for improvement
about these goals of defect prediction models, and how the use of defect prediction models
might impact their organizations when deploying in practice.

Part 3–Practitioners’ perceptions of the model-agnostic techniques for generating
visual explanations of defect prediction models

We provided participants with examples of visual explanation that are generated from the 6
model-agnostic techniques for defect prediction models (i.e., VarImp, Partial Dependence
Plots, Decision Tree, LIME, BreakDown, and Anchor). We combined ANOVA and VarImp

22 Practitioners’ Perceptions of Explainable Defect Models

since both techniques provide the same information. Similarly, we combined SHAP and
BreakDown since both techniques provide the same information. As suggested by Lewis et
al. [6, 116], we use the PSSUQ (Post-Study System Usability Questionnaire) framework
to evaluate the practitioners’ perceptions of the model-agnostic techniques for generating
visual explanations of defect prediction models. The PSSUQ framework focuses on four
dimensions, i.e., information usefulness, information quality, information insightfulness,
and the overall preference. Information usefulness, information quality, and information
insightfulness refer to the degree to which a person satisfies that using a particular visual
explanation is useful, able to comprehend, and insightful to understand the characteristics that
are associated with software defects and the characteristics that contributed to a prediction
of a file, respectively. For each dimension, we use the following evaluation ordinal scales:

• Extremely low, low, moderate, high, and extremely high.

We then asked participants to describe the strengths and weaknesses of each visual
explanation. Finally, we asked an open-question to describe the ideal preferences of visual
explanations for developing quality improvement plans.

To generate visual explanations for our survey, we used the release 2.9.0 and 3.0.0 of
the Apache Lucene software system from Yatish et al. [233]’s corpus. The release 2.9.0 data
(1,368 instances, 65 software metrics, and a defective ratio of 20%) was used to construct
defect prediction models, while the release 3.0.0 data (1,337 instances, 65 software metrics,
and a defective ratio of 12%) was used to evaluate such models to ensure that explanations
are derived from accurate models. We also used the release 3.0.0 data to generate visual
explanations of LIME, SHAP, BreakDown, and Anchor. To simplify the visual explanation
for readability, we selected only five metrics, i.e., AddedLOC, CommentToCodeRatio, LOC,
nCommit, and nCoupledClass. We provided the steps for generating visual explanations in
Zenodo [84].

2.3.2 An Evaluation of the Survey Instrument

We carefully evaluated our draft survey by using a pilot study for pre-testing [122], prior
to recruiting participants. We evaluated the survey with co-authors and 5 PhD students
who have background knowledge in software engineering research but may not restrict to
the defect prediction domain. They pointed out that the survey needs more context and
details, especially for non-domain experts. Particularly, the draft survey did not provide the
definition of software defect prediction, how they are handled in software companies, and
how defect prediction models are used to support decision-making. Thus, at the beginning
of Sections 3 and 4 of the revised draft survey, we included overview figures and scenario-
based explanations to address the concern. We repeatedly refined the survey instrument
to identify and fix potential problems (e.g., missing, unnecessary, or ambiguous questions)
until reaching a consensus among the pre-testing participants. Finally, the survey has been

2.3 Survey Methodology 23

rigorously reviewed, revised, and approved by the Human Research Ethics Committee of
our university.

2.3.3 Participant Recruitment and Selection

The target population of our study is software practitioners. To reach our target population,
we used the recruiting service provided by the Amazon Mechanical Turk. Unlike Stack-
Overflow or Linkedin, the Amazon Mechanical Turk platform comes with built-in options
to filter participants for participant selection and customize a monetary incentive for each
participant. Particularly, we applied the participant filter options of “Employment Industry -
Software & IT Services” and “Job Function - Information Technology” to ensure that we reached
the target population. Another benefit of using the Amazon Mechanical Turk is that we
can recruit filtered target participants relative fast. However, these benefits come with the
monetary costs. We paid 6.4 USD as a monetary incentive for each participant [38, 200]. In
total, our survey has 9 closed questions (450 responses) + 11 open questions (550 responses) +
1 open question (50 responses) for feedback.

2.3.4 Data Verification

We manually read all of the open-question responses to check the completeness of the
responses i.e., whether all questions were appropriately answered. We excluded 68 responses
that are missing and are not related to the questions. In the end, we had a set of 982 responses.
We summarized and presented the results of closed-ended responses in a Likert scale with
stacked bar plots, while we discussed and provided examples of open-ended responses.

2.3.5 Statistical Analysis

For the closed-end questions with ordinal scales, we converted the ratings into scores. For
example, we converted not at all useful, not useful, neutral, useful, and extremely useful
to 1, 2, 3, 4 and 5 respectively. Then, we applied the ScottKnott ESD test to clusters of
distributions into statistically distinct ranks. We used the implementation of the ScottKnott
ESD test as provided by the ScottKnottESD R package [206, 212, 213].

For ratings of statements, we calculated the percentage of respondents who strongly
agree or agree with each statement (% strongly agree+% agree) and the percentage of
respondents who strongly disagree or disagree with each statement (% strongly disagree+%
disagree). As suggested by Wan et al. [222], we also computed an agreement factor for
each statement. The agreement factor is a measure of agreement between respondents,
which is calculated for each statement by the following equation: (% strongly agree + %
agree)/(% strongly disagree + % disagree). High values of agreement factors indicate a
high agreement of respondents to a statement. The agreement factor of 1 indicates that the

24 Practitioners’ Perceptions of Explainable Defect Models

6%

10%

6%

84%

82%

82%

10%

8%

12%
(Goal 3) Understanding the most important

characteristics that contributed
to a prediction of a file

(Goal 2) Understanding the characteristics
that are associated with

software defects in the past

(Goal 1) Prioritizing the limited SQA
resources on the most risky files

100 50 0 50 100
Percentage

Response
Not at all useful Not useful
Neutral Useful
Extremely useful

(a) Perceived Usefulness

2%

10%

12%

78%

74%

74%

20%

16%

14%
(Goal 3) Understanding the most important

characteristics that contributed
to a prediction of a file

(Goal 2) Understanding the characteristics
that are associated with

software defects in the past

(Goal 1) Prioritizing the limited SQA
resources on the most risky files

100 50 0 50 100
Percentage

Response
Not at all considered Not considered
Neutral Considered
Extremely considered

(b) Willingness to adopt

Figure 2.3 The likert scores of the perceived usefulness and the willingness to adopt from
the respondents for each goal of defect prediction models.

numbers of respondents who agree and disagree with a statement are equal. Finally, low
values of agreement factors indicate that a high disagreement of respondents to a statement.

2.4 Survey Results

We present the demographics of our survey, and then the results of using survey data to
answer our research questions.

2.4.1 Demographics

The top two countries in which the respondents reside are India (58%) and the United
States (36%). Among the respondents, they described their job roles as: Developers (50%),
Managers (42%), and others (8%). The number of years of professional experience of the
respondents varied from less than 5 years (26%), 6–10 years (38%), 11–15 years (22%), 16–20
years (12%), and more than 25 years (2%). They described their team size as: less than 10
people (30%), 11–20 people (30%), 21–50 people (26%), 51–100 people (2%), and more than
100 people (12%). The respondents described their experience in programming languages
as: Java (44%), Python (30%), C/C++/C# (28%), and JavaScript (12%). They also answered
whether they are using static analysis tools in their organizations as follows: Yes (62%) and
No (38%).

These demographics indicate that the responses are collected from practitioners resided
in various countries, roles, years of experience, and programming languages, indicating that
our findings are likely not bound to specific characteristics of practitioners.

(RQ1)Which goals of defect prediction models that practitioners con-
sidered the most useful?

Figure 2.3 presents the Likert scores of the perceived usefulness and the willingness to adopt
from the respondents for each goal of defect prediction models. Table 2.2 presents a summary

2.4 Survey Results 25

Table 2.2 (RQ1) A summary of the ScottKnott ESD rank, the agreement percentage, the
disagreement percentage, and the agreement factor for the three goals of defect prediction
models.

Dimension Goal SK Rank % Agreement % Disagreement Agreement Factor

Perceived
Usefulness

Goal 1 – Prioritizing the limited SQA
resources on the most risky files 1 84% 6% 14.00

Goal 2 – Understanding the characteristics
that are associated with software defects
in the past

1 82% 10% 8.20

Goal 3 – Understanding the most
important characteristics that contributed
to a prediction of a file

1 82% 6% 13.67

Willingness
to Adopt

Goal 1 – Prioritizing the limited SQA
resources on the most risky files 1 74% 10% 7.40

Goal 2 – Understanding the characteristics
that are associated with software defects
in the past

1 78% 2% 39.00

Goal 3 – Understanding the most
important characteristics that contributed
to a prediction of a file

1 74% 12% 6.17

of the ScottKnott ESD rank, the agreement percentage, the disagreement percentage, and
the agreement factor for the three goals of defect prediction models.

82%-84% of the respondents perceived that the three goals of defect prediction
models are useful and nearly 80% of them are willing to adopt. Figure 2.3 shows that
82%-84% and 72%-78% of respondents rate that the goals of defect prediction models are
perceived as useful and considered willing to adopt, respectively. Table 2.2 also confirms
that the agreement factors are high across all goals with the values of 8.2-14 and 6-39 for
perceived usefulness and willingness to adopt, respectively. The high agreement factors
of responses provided by the respondents suggest that most respondents provide positive
responses (e.g., useful and extremely useful) when comparing negative responses (e.g., not
useful and not at all useful). Respondents provided rationales that if defect prediction models
were adopted, they are likely to save developers’ e�ort, e.g., (R6: “... saves developers a huge
amount of e�ort on reviewing or testing non-defective files ...”), and improve the e�ciency of code
inspection (R8: “Issues can be caught early in development.”, (R24: “More time will be focused

on critical areas. Less time will be wasted on areas without defects.”). The ScottKnott ESD test
also ranks all of the goals at the same rank, confirming that the scores among the goals have
negligible e�ect size di�erence. This finding highlights that not only the defect prediction goal
but also the other two goals (i.e., understanding defect prediction models and their predictions) receive

similar perceptions of usefulness and willingness to adopt with no statistically significant di�erence.

Below, we discuss further if the respondents’ demographics have any impact on their
perceptions.

The use of static analysis tools has no significant impact (with a negligible to
small e�ect size) on their willingness to adopt defect prediction models that are de-
veloped from various goals. The emergence of static analysis and defect prediction models
is in parallel with di�erent intellectual thoughts: one is driven by algorithms and abstraction
over code, while defect prediction models are driven by statistical methods over large defect
datasets [222]. Wan et al. [222] noted that static analysis shares some overlapping goals

26 Practitioners’ Perceptions of Explainable Defect Models

with defect prediction models, i.e., improving inspection e�ciency, finding minimal, and
potentially defective regions in source code. Thus, practitioners who use static analysis
may not be willing to adopt defect prediction models. In contrast, we did not observe any
significant impact of the use of static analysis tools on their willingness to adopt defect
prediction models. This finding is aligned with Rahman et al. [175] who found that both
static analysis and statistical defect prediction models provide comparable benefits.

We found that Team Size has the largest influence on their willingness to adopt.
To investigate the impact of various demographic factors on their willingness to adopt,
we built a linear regression model by using the ols function of the rms R package. The
independent variables are the years of experience, roles, team size, programming languages,
and static analysis, while the dependent variable is the willingness score. After using the
optimism-reduced bootstrap validation (i.e., a model validation technique that randomly
draws training samples with replacement then tests such models with original samples and
the samples used to construct these models), the regression model achieves a goodness-of-fit
(R2) of 0.35. Then, we analyzed the Chi-square statistics of the ANOVA Type-II analysis,
then normalized these Chi-square statistics into percentages to better illustrate the relative
di�erences among variables. The ANOVA analysis indicates that Team Size has the largest
influence on their willingness to adopt (i.e., 52.80% for TeamSize, 20.98% for useJava,
13.05% for usePython, 7.92% for Year, 5.01% for role). We found that the respondents who
use Java, with little years of experience and a large team size (more than 100 people) tend to
consider willing to adopt defect prediction models. We speculate that this has to do with
a more complex nature of compiled languages (e.g., Java) when comparing to interpreted
languages (e.g., Python). Nevertheless, we observe a minimal impact of the roles (developers
vs managers) on their perceptions. We provided a detailed analysis of marginal e�ect size of
each demographic factor on the estimated willingness to adopt defect prediction models in
Zenodo [84].

(RQ2) Which model-agnostic techniques are the most preferred by
practitioners to understand defect prediction models and their predic-
tions?

LIME is the most preferred model-agnostic technique to understand the most im-
portant characteristics that contributed to a prediction of a file with an agreement
percentage of 66%-78% along three dimensions. As shown in Table 2.3, LIME consist-
ently appears at the top-1 ScottKnott ESD rank for all three dimensions with an agreement
percentage of 76% for information usefulness, an agreement percentage of 68% for in-
formation insightfulness, and an agreement percentage of 66% for information quality.
Respondents found that LIME is very easy to understand, e.g., R1 (“Risk scores are visually
oriented and users will understand it faster.”) and R50 (“Easy to understand, we just want to know
what’s already ok and what’s need to improve.”). However, some respondents raised concerns

2.5 Threats to the Validity 27

Table 2.3 (RQ2) A summary of the ScottKnott ESD rank, the agreement percentage, the
disagreement percentage, and the agreement factor for each model-agnostic technique for
generating visual explanations of defect prediction models.

Dimension Techniques SK Rank %Agreement %Disagreement Agreement Factor

Usefulness

LIME 1 76% 6% 12.67
ANOVA/VarImp 2 60% 14% 4.29
PDP 2 60% 18% 3.33
BreakDown/SHAP 2 50% 18% 2.78
Decision Tree 2 54% 18% 3.00
Anchor/LORE 2 60% 28% 2.14

Insightfulness

LIME 1 68% 8% 8.50
Decision Tree 1 52% 10% 5.20
BreakDown/SHAP 2 58% 12% 4.83
PDP 2 54% 16% 3.38
ANOVA/VarImp 2 58% 18% 3.22
Anchor/LORE 3 46% 24% 1.92

Quality

LIME 1 66% 4% 16.50
ANOVA/VarImp 1 70% 8% 8.75
Decision Tree 1 70% 14% 5.00
PDP 2 56% 24% 2.33
BreakDown/SHAP 2 52% 26% 2.00
Anchor/LORE 2 56% 24% 2.33

that LIME generates too much information (i.e., too many characteristics for many defective
files), e.g., R9 (“... But it also could be time consuming to review depending on if there are many

di�erent files to review.”) and R50 (“... too large and too tired to read 10 charts for 10 files.”).

ANOVA/VarImp is the second most preferred technique to understand the char-
acteristics that are associatedwith software defects in the past with an agreement per-
centage of 58%-70% along three dimensions. As shown in Table 2.3, ANOVA/VarImp
consistently appears at the second ScottKnott ESD Rank, except for information quality,
with an agreement percentage of 60% for information usefulness, an agreement percentage
of 58% for information insightfulness, and an agreement percentage of 70% for information
quality. Similar to LIME, respondents found that the bar charts of ANOVA/VarImp are very
easy to understand, e.g., R50 (“Explains risk values of several factors.”). This finding indicates
that while both LIME and ANOVA/VarImp generate di�erent information, they are com-
plementary to each other. This suggests that while LIME should be used to understand the
most important characteristics that contributed to a prediction of a particular file (Goal 3),
ANOVA/VarImp is still needed to understand the overview of the general characteristics that
are associated with software defects in the past (Goal 2).

2.5 Threats to the Validity

Construct validity: We studied a limited period of publications (i.e., 2015-2020). Thus,
the results may be altered if the studied period is changed. Future research should consider
expanding our study to a longer publication period.

28 Practitioners’ Perceptions of Explainable Defect Models

Hilderbrand et al. [74] found that there are statistically gender di�erences in the cognitive
style of developers. Yet, gender is not considered in our survey. Thus, our recommendation
may not be generalized to all genders. Future studies should consider gender aspects when
collecting the demographics of respondents.

In this study, we design the survey with the assumptions of file-level defect prediction.
However, Wan et al. [222] found that commit level is the most preferred by practitioners.
Thus, our results may not be applicable to other granularity levels of predictions (e.g.,
commits, methods).

Internal validity: One potential threat is related to the bias in the responses due to
the imbalanced nature of the recruited participants. Also, practitioners’ perceptions may
biased and can change from one person to another or even one organization to another [36].
However, the population of the recruited participants is composed of practitioners of di�erent
roles, years of experience, country of residence, and programming languages. To mitigate
issues of fatigue bias in our survey study, we conducted a pilot study with co-authors and
PhD students to ensure that the survey can be completed within 20 minutes.

External validity: We recruited a limited number of participants. Thus, the results and
findings may not generalise to all practitioners. Nevertheless, we described the survey design
in details and provided sets of survey questions in the online supplementary materials [84]
for future replication.

2.6 Conclusions

We present the findings of the qualitative survey of 50 practitioners on their perceptions
of the goals of defect prediction models and the model-agnostic techniques for generating
visual explanations for defect prediction models. Through a qualitative analysis of a survey
study of 50 practitioners from multi-organisations, we conclude that: (1) Researchers should
put more e�ort into investigating how to improve the understanding of defect prediction
models and their predictions, since our analysis of related work found that these two goals
are still under research despite receiving similar perceptions of usefulness and willingness
to adopt with no statistically significant di�erence; and (2) Practitioners can use LIME and
ANOVA/VarImp to better understand defect prediction models and their predictions. Finally,
we discuss many open questions that are significant, yet remain largely unexplored (e.g.,
developers’ privacy and fairness when deploying defect prediction models in practice, and
human-in-the-loop defect prediction models).

2.6.1 Chapter Remarks

In this chapter, we introduce a concept of explainable defect models and conduct a survey
study of 50 software practitioners from multi-organisations. The results show that, despite
receiving little attention from the research community, most of the recruited software

2.6 Conclusions 29

practitioners perceived understanding defect prediction models and their predictions as
useful and are willing to adopt explainable defect models in practice. Thus, these findings
motivated us to further explore the explanation of defect prediction models to support SQA
planning.

Chapter 3

Investigate the Impact of
Correlated Metrics on the
Explanation of Defect Models

An earlier version of the work in this chapter appears in the Transaction on Software
Engineering (TSE) [85].

32 Investigate the Impact of Correlated Metrics on the Explanation of Defect Models

3.1 Introduction

Defect models are constructed using historical software project data to identify defective
modules and explore the impact of various phenomena (i.e., software metrics) on software
quality. The interpretation of such models is used to build empirical theories that are related
to software quality (i.e., what software metrics share the strongest association with software
quality?). These empirical theories are essential for project managers to chart software
quality improvement plans to mitigate the risk of introducing defects in future releases (e.g.,
a policy to maintain code as simple as possible).

Plenty of prior studies investigate the impact of many phenomena on code quality using
software metrics, for example, code size [236], code complexity [70, 128, 197], change
complexity [102, 153, 156, 197, 239], antipatterns [100], developer activity [197], de-
veloper experience [173], developer expertise [17], developer and reviewer knowledge [216],
design [9, 24, 25, 30, 37], reviewer participation [131, 217], code smells [99], and muta-
tion testing [20]. To perform such studies, there are five common steps: (1) formulating
of hypotheses that pertain to the phenomena that one wishes to study; (2) designing ap-
propriate metrics to operationalize the intention behind the phenomena under study; (3)
defining a model specification (e.g., the ordering of metrics) to be used when constructing
an analytical model; (4) constructing an analytical model using, for example, regression mod-
els [17, 153, 216, 217, 238] or random forest models [56, 96, 147, 177]; and (5) examining
the ranking of metrics using a model interpretation technique (e.g., ANOVA Type-I, one of
the most commonly-used interpretation techniques since it is the default built-in function
for logistic regression (glm) models in R) in order to test the hypotheses.

For example, to study whether complex code increases project risk, one might use the
number of reported bugs (bugs) to capture risk, and the McCabe’s cyclomatic complexity
(CC) to capture code complexity, while controlling for code size (size). We note that one
needs to use control metrics to ensure that findings are not due to confounding factors (e.g.,
large modules are more likely to have more bugs). Then, one must construct an analytical
model with a model specification of bugs⇠size+CC. One would then use an interpretation
technique (e.g. ANOVA Type-I) to determine the ranking of metrics (i.e., which metrics
have a strong relationship with bugs).

Metrics of prior studies are often correlated [54, 72, 73, 86, 88, 207, 211, 235]. For
example, Herraiz et al. [73], and Gil et al. [54] point out that code complexity (CC) is often
correlated with code size (size). Zhang et al. [235] point out that many metric aggregation
schemes (e.g., averaging or summing of McCabe’s cyclomatic complexity values at the
function level to derive file-level metrics) often produce correlated metrics.

Recent studies raise concerns that correlated metrics may impact the interpretation of
defect models [211, 235]. Our preliminary analysis also shows that simply rearranging
the ordering of correlated metrics in the model specification (e.g., from bugs⇠size+CC to
bugs⇠CC+size) would lead to a di�erent ranking of metrics—i.e., the importance scores

3.1 Introduction 33

are sensitive to the ordering of correlated metrics in a model specification. Thus, if one
wants to show that code complexity is strongly associated with risk in a project, one simply
needs to put code complexity (CC) as the first metric in their models (i.e., bugs⇠CC+size),
even though a more careful analysis would show that CC is not associated with bugs at
all. The sensitivity of the model specification when correlated metrics are included in a
model is a critical problem, since the contribution of many prior studies can be altered by
simply re-ordering metrics in the model specification if correlated metrics are not properly
mitigated. Unfortunately, a literature survey of Shihab [193] shows that as much as 63% of
defect studies that are published during 2000-2011 do not mitigate correlated metrics prior
to constructing defect models.

In this chapter, we set out to investigate (1) the impact of correlated metrics on the
interpretation of defect models. After removing correlated metrics, we investigate (2) the
consistency of the interpretation of defect models; and (3) its impact on the performance and
stability of defect models. In order to detect and remove correlated metrics, we apply the
variable clustering (VarClus) and the variance inflation factor (VIF) techniques. We construct
logistic regression and random forest models using mitigated (i.e., no correlated metrics)
and non-mitigated datasets (i.e., not treated). Finally, we apply 9 model interpretation
techniques, i.e., ANOVA Type-I, 4 test statistics of ANOVA Type-II (i.e., Wald, Likelihood
Ratio, F, and Chi-square), scaled and non-scaled Gini Importance, and scaled and non-scaled
Permutation Importance. We then compare the performance and interpretation of defect
models that are constructed using mitigated and non-mitigated datasets. Through a study of
14 publicly-available defect datasets of systems that span both proprietary and open source
domains, we address the following four research questions:

(RQ1) How do correlated metrics impact the interpretation of defect models?
ANOVA Type-I and Type-II often produce the lowest consistency and the highest
level of discrepancy of the top-ranked metric, and have the highest impact on the
direction of the ranking of metrics between mitigated and non-mitigated models
when compared to Gini and Permutation Importance. This finding highlights the
risks of not mitigating correlated metrics in the ANOVA analyses of prior studies.

(RQ2) After removing all correlated metrics, how consistent is the interpretation of
defect models among di�erent model specifications?
After removing all correlated metrics, the top-ranked metric according to ANOVA
Type-II, Gini Importance, and Permutation Importance are consistent. However,
the top-ranked metric according to ANOVA Type-I is inconsistent, since the rank-
ing of metrics is impacted by its order in the model specification when analyzed
using ANOVA Type-I (which is the default analysis for the glm model in R and is
commonly-used in prior studies). This finding suggests that ANOVA Type-I must
be avoided even if all correlated metrics are removed.

34 Investigate the Impact of Correlated Metrics on the Explanation of Defect Models

Hypothesis Metrics

(Variables)

Correlation

Analysis

Model

Construction

Model

Interpretation

The Highest
Ranked Metric

m1

m2

y ~ m1 + m2

Model

Specification

m

Figure 3.1 An overview of the analytical modelling process.

(RQ3) After removing all correlated metrics, how consistent is the interpretation of
defect models among the studied interpretation techniques?
After removing all correlated metrics, we find that the consistency of the ranking
of metrics among the studied interpretation techniques is improved by 15%- 64%
for the top-ranked metric and 21%-71% for the top-3 ranked metrics, respectively,
highlighting the benefits of removing all correlated metrics on the interpretation of
defect models, i.e., the conclusions of studies that rely on one interpretation technique
may not pose a threat after mitigating correlated metrics.

(RQ4) Does removing all correlated metrics impact the performance and stability
of defect models?
Removing all correlated metrics impacts the AUC, F-measure, and MCC perform-
ance of defect models by less than 5 percentage points, suggesting that researchers and
practitioners should remove correlated metrics with care especially for safety-critical
software domains.

Based on our findings, we suggest that: When the goal is to derive sound interpretation from

defect models, our results suggest that future studies must (1) mitigate correlated metrics prior to

constructing a defect model, especially for ANOVA analyses; and (2) avoid using ANOVA Type-I

even if all correlated metrics are removed, but instead opt to use ANOVA Type-II and Type-III

for additive and interaction models, respectively. Due to the variety of the built-in interpretation

techniques and their settings, our paper highlights the essential need for future studies to report the

exact specification (i.e., model formula) of their models and settings (e.g., the calculation methods of

the importance score) of the used interpretation techniques.

3.1.1 Chapter Organisation

Section 3.2 provides background and motivation. Section 3.3 describes the design and the
setup of our study, while Section 3.4 presents the results with respect to the four investigations.
Section 3.5 draws practical guidelines based on the experimental results. Section 3.6 elaborates
on the threats of the study. Finally, Section 3.7 draws conclusions.

3.2 Background and Motivation 35

3.2 Background and Motivation

3.2.1 Analytical Modelling Process

Figure 3.1 provides an overview of the commonly-used analytical modelling process. First,
one must formulate a set of hypotheses pertaining to phenomena of interest (e.g., whether
the size of a module increases the risk associated with that module). Second, one must
determine a set of metrics which operationalize the hypothesis of interest (e.g., the total lines
of code for size, and the number of field reported bugs to capture the risk that is associated
with a module). Third, one must perform a correlation analysis to remove correlated metrics.
Forth, one must define a model specification (e.g., the ordering of metrics) to be used when
constructing an analytical model. Fifth, one is then ready to construct an analytical model
using a machine learning technique (e.g., a random forest model) or a statistical learning
technique (e.g., a regression model). Finally, one analyzes the ranking of the metrics using
model interpretation techniques (e.g., ANOVA or Breiman’s Variable Importance) in order to
test the hypotheses of interest. The importance ranking of the metrics is essential for project
managers to chart appropriate software quality improvement plans to mitigate the risk of
introducing defects in future releases. For example, if code complexity is identified as the
top-ranked metric, project managers then can suggest developers to reduce the complexity
of their code to reduce the risk of introducing defects.

3.2.2 Correlated Metrics and Concerns in the Literature

Correlated metrics are metrics (i.e., independent variables) that share a strong linear cor-
relation among themselves. In this paper, we focus on two types of correlation among
metrics, i.e., collinearity and multicollinearity. Collinearity is a phenomenon in which one
metric can be linearly predicted by another metric. On the other hand, multicollinearity is
a phenomenon in which one metric can be linearly predicted by a combination of two or
more metrics.

Prior work points out that software metrics are often correlated [54, 72, 73, 86, 88,
207, 211, 235]. However, little is known about the prevalence of correlated metrics in the
publicly-available defect datasets. Thus, we set out to investigate how many defect datasets
of which metrics that share a strong relationship with defect-proneness are correlated.
Unfortunately, the results of our recent work [86] show that correlated metrics that share
a strong relationship with defect-proneness are prevalent in 83 of the 101 (82%) publicly
available defect datasets.

In addition, prior work raises concerns that correlated metrics may impact the interpret-
ation of defect models [211, 235]. To better understand how correlated metrics impact the
interpretation of defect models, we set out to investigate (1) the impact of the number of
correlated metrics on the importance scores of metrics, and (2) the impact of the ordering
of correlated metrics in a model specification on the importance ranking metrics. The

36 Investigate the Impact of Correlated Metrics on the Explanation of Defect Models

Table 3.1 A summary of the studied correlation analysis techniques, the two studied analytical
learners, and the 9 studied interpretation techniques.

Correlation
Analysis

Analytical
Learner

Interpretation
Tech-
nique

Test Statistic R function

Variable

Clustering

[150, 216, 217, 219]

Logistic

Regression

(glm and lrm)

[17, 18, 153, 154, 238]

Type-I Deviance stats::anova(glm.model)

Type-II

Wald car::Anova(glm.model, type=2, test.statistic=‘Wald’)

Likelihood Ratio (LR) car::Anova(glm.model, type=2, test.statistic=‘LR’)

Variance

Inflation Factor

[11, 36, 131, 194, 195]

F car::Anova(glm.model, type=2, test.statistic=‘F’)

Chi-square rms::anova(lrm.model, test=‘Chisq’)

Random Forest

[56, 59, 96, 147, 177]

Scaled Gini MeanDecreaseGini randomForest::importance(model, type = 2, scale = TRUE)

Redundancy

Analysis

[7, 95, 150, 196, 211]

Non-scaled Gini MeanDecreaseGini randomForest::importance(model, type = 2, scale = FALSE)

Scaled Permutation MeanDecreaseAccuracy randomForest::importance(model, type = 1, scale = TRUE)

Non-scaled Permutation MeanDecreaseAccuracy randomForest::importance(model, type = 1, scale = FALSE)

results of our preliminary analyses show that the importance scores of metrics substantially
decrease when there are correlated metrics in the models for both ANOVA analyses of
logistic regression and Variable Importance analyses (i.e., Gini and Permutation) of random
forest. The importance scores of metrics are also sensitive to the ordering of correlated
metrics (except for ANOVA Type-II).

3.2.3 Techniques for Mitigating Correlated Metrics

There is a plethora of techniques that have been used to mitigate irrelevant and correlated
metrics in the domain of defect prediction, e.g., dimensionality reduction [124, 153, 235],
feature selection [5, 140], and correlation analysis [36, 194, 217].

Dimensionality reduction transforms an initial set of metrics into a set of transformed
metrics that is representative to the initial set of metrics. Prior work has adopted dimen-
sionality reduction techniques (e.g., Principal Component Analysis) to mitigate correlated
metrics and improve the performance of defect models [124, 153, 235]. Since the set of
transformed metrics does not hold the assumption of the initial set of metrics, and is not
sensible for model interpretation and statistical inference [207], we exclude dimensionality
reduction techniques from this study.

Feature selection produces an optimal subset of metrics that are relevant and non-
correlated. One of the most commonly-used feature selection techniques is the correlation-
based feature selection technique (CFS) [64] which searches for the best subset of metrics that
share the highest correlation with the outcome (e.g., defect-proneness) while having the low-
est correlation among each other. To better understand whether feature selection techniques
mitigate correlated metrics, we set out to perform a correlation analysis on the metrics that
are selected by feature selection techniques. We focus on the two commonly-used techniques
in the domain of defect prediction, i.e., Information Gain and correlation-based feature
selection techniques. The results of our preliminary analysis show that the metrics that are
selected by the two studied feature selection techniques are correlated (with a Spearman
correlation coe�cient up to 0.98), suggesting that the commonly-used feature selection
techniques do not mitigate correlated metrics.

3.2 Background and Motivation 37

Correlation analysis is used to measure the correlation among metrics given a threshold.
Prior work applies correlation analysis techniques to identify and mitigate correlated met-
rics [36, 194, 217, 219]. Based on a literature survey of Hall et al. [65] and Shihab [193],
we select the commonly-used correlation analysis techniques: Variable Clustering analysis
(VarClus), and Variance Inflation Factor (VIF).

Variable Clustering (VarClus) is a hierarchical clustering view of the correlation
between metrics [190]. We use the implementation of the variable clustering analysis
as provided by the varclus function of the Hmisc R package [67], which is made up of 2
steps.

(Step 1) Compute the correlations between metrics. We use the Spearman rank correlation test
(d) to assess the correlation between metrics. We choose the Spearman test instead of other
types of correlation (e.g., Pearson) because the Spearman test is resilient to non-normality
in a dataset as commonly present in software engineering and defect datasets, in particular.

(Step 2) Select one metric from each of the sub-hierarchies for inclusion in a model. Once, a
hierarchical overview of the correlation among metrics is constructed, we use the interpreta-
tion of correlation coe�cients (|d |) as provided by Kraemer et al. [107], i.e., a correlation
coe�cient of above 0.7 is considered a strong correlation. Thus, for each sub-hierarchy
of software metrics with a correlation |d | > 0.7, we select only one metric from the sub-
hierarchy for inclusion in our models. As suggested by prior studies [130, 132, 217], we
select the simplest metric to calculate (or interpret) for each sub-hierarchy.

While the variable clustering analysis (VarClus) technique reduces collinearity among
metrics, it does not detect all of the inter-correlated metrics (a.k.a. multi-collinearity), i.e., a
metric that can be predicted from the other metrics in the model with a certain degree of
accuracy.

Variance Inflation Factor (VIF) measures the magnitude of multi-collinearity [44].
We use the implementation of the Variance Inflation Factor analysis as provided by the vif
function of the rms R package [69]. Broadly speaking, VIF is made up of 3 steps.

(Step 1) Construct a regression model for each metric. For each metric, we construct a model
using the other metrics to predict that particular metric.

(Step 2) Compute a VIF score for each metric. The VIF score for each metric is computed
using the following formula: VIF = 1

1–R2 , where R2 is the explanatory power of the regression
model from Step 1. A highVIF score of ametric indicates that a givenmetric can be accurately
predicted by the other metrics. Thus, that given metric is considered redundant and should
be removed from our model.

(Step 3) Remove metrics with a VIF score that is higher than a given threshold. We remove
metrics with a VIF score that is higher than a given threshold. We use a VIF threshold of
5 to determine the magnitude of multi-collinearity, as it is suggested by Fox [43] and is
commonly used in prior work [11, 131, 194, 195]. Similar to the variable clustering analysis,
we repeat the above three steps until the VIF scores of all remaining metrics are lower than
the threshold.

38 Investigate the Impact of Correlated Metrics on the Explanation of Defect Models

3.2.4 Techniques for Explaining Defect Models

Since there are many analytical learners that can be used to investigate the impact of cor-
related metrics on defect models, the aforementioned surveys guide our selection of the
two commonly-used analytical learners: logistic regression [17, 18, 36, 103, 136, 153, 154,
178, 238] and random forest [56, 59, 96, 147, 177]. These techniques are two of the most
commonly-used analytical learners for defect models and they have built-in techniques for
model interpretation (i.e., ANOVA for logistic regression and Breiman’s Variable Importance
for random forest). Finally, we select 9 model interpretation techniques, ANOVA Type-I,
ANOVA Type-II with 4 test statistics (i.e., Wald, Likelihood Ratio, F, and Chi-square), scaled
and non-scaled Gini Importance, and scaled and non-scaled Permutation Importance.

Analysis of Variance (a.k.a. multi-way ANOVA) is a statistical test that examines the
importance of multiple independent variables (e.g., two or more software metrics) on the
outcome (e.g., defect-proneness) [42]. The significance of each metric in a regression model
is estimated from the calculation of the Sum of Squares (SS)—i.e., the explained variance of
the observations with respect to their mean value. A high SS value of a metric indicates that
the metric is highly important. There are two commonly-used approaches to calculate the
Sum of Squares for ANOVA, namely, Type-I and Type-II. We provide a description of the
two types of ANOVA below.

Type-I, one of the most commonly-used interpretation techniques and the default interpretation
technique for a logistic regression (glm) model in R, examines the importance of each metric in a
sequential order [28, 43]. In other words, Type-I measures the improvement of the Residual
Sum of Squares (RSS) (i.e., the unexplained variance) when each metric is sequentially added
into the model. Hence, Type-I attributes as much variance as it can to the first metric before
attributing residual variance to the second metric in the model specification. Thus, the
importance (i.e., produced ranking) of metrics is dependent on the ordering of metrics in
the model specification.

The calculation starts from the RSS of the preliminary model (y ⇠ 1), i.e., a null model
that is fitted without any software metrics. We then compute the RSS of the first metric by
fitting a regression model with the first metric (y ⇠ m1). Thus, the importance of the first
metric (m1) is the improvement between the unexplained variances (RSS) of the preliminary
model and the model that is constructed by the first metric.

SS(m1) = RSS(Modelnull) – RSS(m1) (3.1)

Similar to the computation of the importance of the first metric, the importance of the
remaining metrics is computed using the following equation.

SS(mi) = RSS(m1 + ... + mi–1) – RSS(m1 + ... +mi) (3.2)

Type II, an enhancement to the ANOVAType-I, examines the importance of eachmetric
in a hierarchical nature, i.e., the ordering of metrics is rearranged for each examination [28,

3.2 Background and Motivation 39

43]. The importance of metrics (Type-II) measures the improvement of the Residual Sum of
Squares (RSS) (i.e., the unexplained variance) when adding a metric under examination to
the model after the other metrics. In other words, the importance of metrics (Type-II) is
equivalent to a Type-I where a metric under examination appears at the last position of the
model. The intuition is that the Type-II is evaluated after all of the other metrics have been
accounted for. The importance of each metric (i.e., SS(me)) measures the improvement of
the RSS of the model that is constructed by adding only the other metrics except for the
metric under examination, and the RSS of the model that is constructed by adding the other
metrics where the metric under examination appears at the last position of the model. For
example, given a set of M metrics, and e, i, j 2 [1,M], the importance of each metric me can
be explained as follows:

SS(me) = RSS(mi + ... +mj) – RSS(mi + ... +mj +me) (3.3)

where me is the metric under examination and mi + ... +mj is a set of the other metrics except
the metric under examination.

In this study, we consider di�erent variants of test statistics for ANOVA Type-II (i.e.,
Wald, Likelihood Ratio (LR), F, and Chi-square).

Variable importance (a.k.a. VarImp) is an approach to examine the importance of software
metrics for random forest models. There are two commonly-used calculation approaches of
variable importance scores, namely, Gini Importance and Permutation Importance, which
we describe below.

Gini Importance (a.k.a. MeanDecreaseGini) determines the importance of metrics
from the decrease of the Gini Index, i.e., the distinguishing power for the defective class due
to a given metric [21, 22]. We start from a random forest model that is constructed using the
original dataset with multiple trees, where each tree is constructed using a bootstrap sample.
For each tree, a parent node (i.e., GParent) is split by the best cut-point into two descendent
nodes (i.e., GDesc.1 and GDesc.2). The calculation of the Gini Importance of each metric is
made up of 2 steps:

(Step 1) Compute the DecreaseGini for all of the trees in the random forest model. The De-
creaseGini is the improvement of the ability to distinguish between two classes across parent
and its descendent nodes. We compute the DecreaseGini using the following equation:

DecreaseGini(mi) = Imi
= GParent –GDesc.1 –GDesc.2 (3.4)

where G is the Gini Index, i.e., the distinguishing power of defective class for a given metric.

The Gini Index is computed using the following equation: G =
ÕNClass
i=1 pi(1 – pi), where

NClass is the number of classes and pi is the proportion of Classi.

(Step 2) Compute the MeanDecreaseGini measure. Finally, the importance of each metric
(i.e., MeanDecreaseGini) is the average of the DecreaseGini values from all of the splits of

40 Investigate the Impact of Correlated Metrics on the Explanation of Defect Models

that metric across all the trees in the random forest model. A high MeanDecreaseGini value
of a metric indicates that the metric is highly important.

In this study, we consider both the scaled and non-scaled importance scores for the Gini
Importance.

Permutation Importance (a.k.a. MeanDecreaseAccuracy) determines the import-
ance of metrics from the decrease of the accuracy (i.e., the misclassification rate) when the
values of a given metric are randomly permuted [21, 22]. Similar to MeanDecreaseGini, we
start from a random forest model that is constructed using an original dataset with multiple
trees, where each tree is constructed using an out-of-sample bootstrap. The calculation of
the Permutation Importance is made up of 2 steps:

(Step 1) Compute the DecreaseAccuracy of each tree in the random forest model. The De-
creaseAccuracy is the decrease of the accuracy (i.e., misclassification rate) between a model
that is tested using the original out-of-bag testing samples and a model that is tested using
permuted out-of-bag testing samples, i.e., a dataset with one metric permuted, while all
other metrics are unchanged).

(Step 2) Compute the MeanDecreaseAccuracy measure. Finally, the importance of each metric
(i.e., MeanDecreaseAccuracy) is the average of the DecreaseAccuracy values across all of the
trees in the random forest model. A high MeanDecreaseAccuracy value of a metric indicates
that the metric is highly important.

Similar to Gini Importance, in this study, we consider both the scaled and non-scaled
importance scores for the Permutation Importance.

We provide the detailed explanation of the studied correlation analysis techniques, ana-
lytical learners, and interpretation techniques in Table 3.1.

3.3 Experimental Design and Setup

3.3.1 Studied Datasets

In selecting the studied datasets, we identify four important criteria that need to be satisfied:
Criterion 1—Publicly-available defect datasets. Prior work raises concerns about the

replicability of software engineering studies [184]. In order to foster future replication of
our work, we focus on publicly-available defect datasets.

Criterion 2—Datasets that are reliable and high quality. Defect models rely greatly
on the quality of the datasets that are used to construct them [209]. Shepperd et al. [192] raise
concerns related to data quality in the NASA datasets. Furthermore, Petri∆ et al. [168] show
that problematic data remain in the cleaned NASA datasets. Thus, the quality of the NASA
datasets is questionable. To ensure that the studied datasets are reliable and high quality, we
exclude the NASA datasets from our study.

Criterion 3—Datasets with correlatedmetrics that have a strong relationshipwith
defect-proneness. Correlated metrics that have a weak relationship with defect-proneness

3.3 Experimental Design and Setup 41

Table 3.2 A statistical summary of the studied datasets.

Project Dataset Modules Metrics
Correlated
Metrics

EPV AUCLR AUCRF

Apache Lucene 2.4 340 20 9 10 0.74 0.77

POI 2.5 385 20 11 12 0.80 0.90

POI 3.0 442 20 10 14 0.79 0.88

Xalan 2.6 885 20 8 21 0.79 0.85

Xerces 1.4 588 20 11 22 0.91 0.95

Eclipse Debug 3.4 1,065 17 9 15 0.72 0.81

JDT 997 15 10 14 0.81 0.82

Mylyn 1,862 15 10 16 0.78 0.74

PDE 1,497 15 9 14 0.72 0.72

Platform 2.0 6,729 32 24 30 0.82 0.84

Platform 3.0 10,593 32 24 49 0.79 0.81

SWT 3.4 1,485 17 7 38 0.87 0.97

Proprietary Prop 1 18,471 20 10 137 0.75 0.79

Prop 4 8,718 20 11 42 0.74 0.72

may not be as important as metrics that have a strong relationship with defect-proneness.
To ensure that the studied metrics are of importance to practitioners when interpreting
defect models, we only focus on the correlated metrics that share a strong relationship with
defect-proneness.

Criterion 4—Datasets where we can accurately derive interpretations. Analysts
would only consider models (i.e., logistic regression and random forest) that fit the data well
(i.e., AUC > 0.7) and are stable (i.e., EPV > 10) [212]. Hence, we only focus on datasets that
produce such accurate and stable models.

To satisfy criterion 1, similar to prior work [210], we begin our study using a collection
of the 101 publicly-available defect datasets that are collected from 5 di�erent corpora, i.e.,
76 datasets from the Tera-PROMISE Repository, 12 clean NASA datasets as provided by
Shepperd et al. [192], 5 datasets as provided by Kim et al. [101, 230], 5 datasets as provided by
D’Ambros et al. [33, 34], and 3 datasets as provided by Zimmermann et al. [238]. To satisfy
criterion 2, we exclude 12 datasets where their data quality are questionable. To satisfy
criterion 3, we exclude 14 datasets where their correlated metrics do not share a strong
relationship with defect-proneness. To satisfy criterion 4, we exclude 58 datasets with an
EPV value below 10 and 3 datasets on which models that are constructed produce an AUC
value below 0.7. Hence, we focus on 14 datasets of systems that span across proprietary and
open-source systems.

42 Investigate the Impact of Correlated Metrics on the Explanation of Defect Models

Non-mitigated
Dataset

Mitigated
Dataset

Mitigated
Models

Remove
Correlated

Metrics
Defect
Dataset

Construct
Defect
Models Non-mitigated

Models

Analyze the
Model

Interpretation

Analyze the
Model

Performance

Figure 3.2 An overview diagram of the design of our study.

Table 3.2 shows a statistical summary of the studied datasets, while Figure 3.2 provides
an overview of the design of our study. Below, we discuss the design of the study that we
perform in order to address our four research questions.

3.3.2 Remove Correlated Metrics

To investigate the impact of correlated metrics on the performance and interpretation of
defect models and address our four research questions, we start by removing highly-correlated
metrics in order to produce mitigated datasets, i.e., datasets where correlated metrics are
removed. To do so, we apply variable clustering analysis (VarClus) and variable influence
factor analysis (VIF). We use the interpretation of Spearman correlation coe�cients (|d |) as
provided by Kraemer et al. [107] to identify correlated metrics, i.e., a Spearman correlation
coe�cient of above 0.7 is considered a strong correlation. We use a VIF threshold of 5 to
identify inter-correlated metrics, as it is suggested by Fox [43] and is commonly used in prior
work [11, 131, 194, 195]. We use the implementation of the variable clustering analysis as
provided by the varclus function of the Hmisc R package [67]. We use the implementation
of the VIF analysis as provided by the vif function of the rms R package [69].

3.3.3 Construct Defect Models

To examine the impact of correlated metrics on the performance and interpretation of
defect models, we construct our models using the non-mitigated datasets (i.e., datasets where
correlated metrics are not removed) and mitigated datasets (i.e., datasets where correlated
metrics are removed). To construct defect models, we perform the following steps:

(CM1) Generate bootstrap samples. To ensure that our conclusions are statistically
sound and robust, we use the out-of-sample bootstrap validation technique, which leverages
aspects of statistical inference [39, 47, 68, 205, 212]. We first generate bootstrap sample of
sizes N with replacement from the mitigated and non-mitigated datasets. The generated
sample is also of size N. We construct models using the bootstrap samples, while we measure
the performance of the models using the samples that do not appear in the bootstrap samples.
On average, 36.8% of the original dataset will not appear in the bootstrap samples, since the
samples are drawn with replacement [39]. We repeat the out-of-sample bootstrap process
for 100 times and report their average performance.

3.3 Experimental Design and Setup 43

(CM2) Construct defect models. For each bootstrap sample, we construct logistic
regression and random forest models. We use the implementation of logistic regression as
provided by the glm function of the stats R package [214] and the lrm function of the rms
R package [69] with the default parameter setting. We use the implementation of random
forest as provided by the randomForest function of the randomForest R package [23]
with the default ntree value of 100, since recent studies [210, 213] show that parameters
of random forest are insensitive to the performance of defect models. To ensure that the
training and testing corpora share similar characteristics and representative to the original
dataset, we do not re-balance nor do we re-sample the training data to avoid any impact on
the interpretation of defect models [208].

3.3.4 Analyze the Model Interpretation

To address RQ1, RQ2, and RQ3, we analyze the importance ranking of metrics of the models
that are constructed using non-mitigated datasets and mitigated datasets. The analysis of
model interpretation is made up of 2 steps.

(MI1) Compute the importance score of metrics. We investigate the impact of cor-
related metrics on the interpretation of defect models using di�erent model interpretation
techniques. Thus, we apply the 9 studied model interpretation techniques, i.e., Type-I, Type-
II (Wald, LR, F, Chisq), scaled and non-scaled Gini Importance, and scaled and non-scaled
Permutation Importance.

(MI2) Identify the importance ranking of metrics. To statistically identify the im-
portance ranking of metrics, we apply the improved Scott-Knott E�ect Size Di�erence (ESD)
test (v2.0) [206]. The Scott-Knott ESD test is a mean comparison approach that leverages a
hierarchical clustering to partition a set of treatment means (i.e., means of importance scores)
into statistically distinct groups with statistically non-negligible di�erence. The Scott-Knott ESD
test ranks each metric at only a single rank, however several metrics may appear within one
rank. Finally, we identify the importance ranking of metrics for the non-mitigated and mit-
igated models. Thus, each metric has a rank for each model interpretation technique and for
each of the mitigated and non-mitigated models. We use the implementation of Scott-Knott
ESD test as provided by the sk_esd function of the ScottKnottESD R package [206].

3.3.5 Analyze the Model Performance

To address RQ4, we analyze the performance of the models that are constructed using
non-mitigated datasets and mitigated datasets.

First, we use the Area Under the receiver operator characteristic Curve (AUC) to measure
the discriminatory power of our models, as suggested by recent research [52, 114, 174]. The
AUC is a threshold-independent performance measure that evaluates the ability of models in
discriminating between defective and clean modules. The values of AUC range between 0
(worst performance), 0.5 (no better than random guessing), and 1 (best performance) [66].

44 Investigate the Impact of Correlated Metrics on the Explanation of Defect Models

Second, we use the F-measure, i.e, a threshold-dependent measure. F-measure is a
harmonic mean (i.e., 2·precision·recall

precision+recall) of precision (TP
TP+FP) and recall (TP

TP+FN). Similar to

prior studies [5, 237], we use the default probability value of 0.5 as a threshold value for
the confusion matrix, i.e., if a module has a predicted probability above 0.5, it is considered
defective; otherwise, the module is considered clean.

Third, we use the Matthews Correlation Coe�cient (MCC) measure, i.e, a threshold-
dependent measure, as suggested by prior studies [127, 191]. MCC is a balanced measure
based on true and false positives and negatives that is computed using the following equation:

TP⇥TN–FP⇥FNq
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

.

3.4 Experimental Results

In this section, we present the results of our study with respect to our four research questions.

(RQ1) How do correlated metrics impact the interpretation of defect
models?

Motivation. Prior work raises concerns that metrics are often correlated and should be
mitigated [54, 72, 73, 86, 207, 211, 235]. For example, Herraiz et al. [73], and Gil et al. [54]
point out that code complexity is often correlated with lines of code. Unfortunately, a
literature survey of Shihab [193] shows that as much as 63% of prior defect studies do not
mitigate correlated metrics prior to constructing defect models. Yet, little is known about
the impact of correlated metrics on the interpretation of defect models.
Approach. To address RQ1, we analyze the impact of correlated metrics on the interpreta-
tion of defect models along with three dimensions, i.e., (1) the consistency of the top-ranked
metric, (2) the level of discrepancy of the top-ranked metric, and (3) the direction of the ranking
of metrics for all non-correlated metrics between mitigated and non-mitigated models.

To do so, we start from mitigated datasets (see Section 3.3.2). We first identify the
top-ranked metric for each of the 9 studied interpretation techniques. We use VarClus
to select only one of the metrics that is correlated with the top-ranked metric in order
to generate non-mitigated datasets. We then append the correlated metric to the first
position of the specification of the mitigated models. Thus, the specification for the mitigated
models is y ⇠ mtop_ranked + ..., while the specification for the non-mitigated models is
y ⇠ mcorrelated +mtop_ranked + ..., where mcorrelated is the metric that is correlated with the
top-ranked metric (mtop_ranked). For each of the mitigated and non-mitigated datasets, we
construct defect models (see Section 3.3.3) and apply the 9 studied model interpretation
techniques (see Section 3.3.4).

To analyze the consistency and the level of discrepancy of the top-ranked metric, we compute
the di�erence in the ranks of the top-ranked metric between mitigated and non-mitigated
models. For example, if a metric mtop_ranked appears in the 1st rank in both of mitigated

3.4 Experimental Results 45

Type−II (Chisq) Scaled and non−scaled Gini Scaled Permutation Non−scaled Permutation

Type−I Type−II (Wald) Type−II (LR) Type−II (F)

−8−7−6−5−4−3−2−1 0 1 2 −8−7−6−5−4−3−2−1 0 1 2 −8−7−6−5−4−3−2−1 0 1 2 −8−7−6−5−4−3−2−1 0 1 2

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Rank difference of the top−ranked metric

Pe
rc

en
ta

ge
 o

f t
he

 s
tu

di
ed

 d
at

as
et

s

Figure 3.3 The percentage of the studied datasets for each di�erence in the ranks between the
top-ranked metric of the models that are constructed using the mitigated and non-mitigated
datasets. The light blue bars represent the consistent rank of the metric between mitigated
and non-mitigated models, while the red bars represent the inconsistent rank of the metric
between mitigated and non-mitigated models.

and non-mitigated models, then the metric would have a rank di�erence of 0. However, if
mtop_ranked appears in the 3rd rank of a non-mitigated model and appears in the 1st rank of
a mitigated model, then the rank di�erence of mtop_ranked would be 2. The consistency of
the top-ranked metric measures the percentage of the studied datasets that the top-ranked
metric appears at the 1st rank in both mitigated and non-mitigated models. On the other
hand, the level of discrepancy of the top-ranked metric measures the highest rank di�erence
of the top-ranked metric between mitigated and non-mitigated models.

To analyze the direction of the ranking of metrics for all non-correlated metrics between
mitigated and non-mitigated models, we start with the ranking of important metrics that
appear in both mitigated and non-mitigated models. We then apply a Spearman rank
correlation test (d) to compute the correlation between ranks of all non-correlated metrics
between mitigated and non-mitigated models. The Spearman correlation coe�cient (d) of
1 indicates that the ranking of non-correlated metrics between mitigated and non-mitigated
models is in the same direction. On the other hand, the Spearman correlation coe�cient
(d) of -1 indicates that the ranking of non-correlated metrics between mitigated and non-
mitigated models is in the reverse direction. Since the produced ranking of each model and
defect dataset may be di�erent, the use of a weighted Spearman rank correlation test may
lead these rankings to be weighted di�erently. Thus, we select a traditional Spearman rank
correlation test for our study.

Results. ANOVA Type-I produces the lowest consistency of the top-ranked metric
between mitigated and non-mitigated models. We expect that the top-ranked metric
in the mitigated model will remain as the top-ranked metric in the non-mitigated model.
Unfortunately, Figure 3.3 shows that this expectation does not hold true in any of the
studied datasets for ANOVA Type-I. Figure 3.3 shows that, for ANOVA Type-I, none of the
top-ranked metric that appears in the 1st rank of mitigated models also appears in the 1st

rank of non-mitigated models. On the other hand, we find that the top-ranked metric of

46 Investigate the Impact of Correlated Metrics on the Explanation of Defect Models

mitigated models appears at the top-ranked metric in non-mitigated models for 84%, 67%,
55%, and 67% of the studied datasets for ANOVA Type-II (Wald), Type-II (LR), Type-II
(F), Type-II (Chisq), respectively. We suspect that the impact of correlated metrics on the
interpretation of Type-I has to do with the sequential nature of the calculation of the Sum of
Squares, i.e., Type-I attributes as much variance as it can to the first metric before attributing
residual variance to the second metric in the model specification.

ANOVA Type-I and Type-II produce the highest level of discrepancy of the top-
ranked metrics between mitigated and non-mitigated models. Figure 3.3 shows that
the rank di�erence for ANOVA Type-I and Type-II can be up to -6 and -8, respectively. In
other words, we find that the top-ranked metric in mitigated models appear at the 7th rank
and the 9th rank in non-mitigated models for ANOVA Type-I and Type-II, respectively.
We suspect that the highest level of discrepancy (i.e., the largest rank di�erence) for ANOVA
Type-I and Type-II has to do with the sharply drop of the importance scores when correlated
metrics are included in defect models.

For ANOVA Type-I and Type-II, correlated metrics have the largest impact on
the direction of the ranking of metrics of defect models. For ANOVA Type-I, we find
that the Spearman correlation coe�cients range from -0.1 to 0.84. For ANOVA Type-II,
we find that the Spearman correlation coe�cients range from 0.1 to 1. A low value of the
Spearman correlation coe�cients in ANOVA techniques indicates that the direction of the
ranking of metrics for all non-correlated metrics is varied in each rank, suggesting that
the ranking of non-correlated metrics is inconsistent across mitigated and non-mitigated
models.

Gini and Permutation Importance approaches produce the higest consistency
and the lowest level of discrepancy of the top-ranked metric, and have the least im-
pact on the direction of the ranking ofmetrics betweenmitigated andnon-mitigated
models. Figure 3.3 shows that the top-ranked metric of mitigated models appears at the
top-ranked metric in non-mitigated models for 88%, 92%, and 55% of the studied datasets
for Gini Importance, and scaled and non-scaled Permutation Importance, respectively. Fig-
ure 3.3 also shows that the rank di�erence for Gini and Permutation Importance is as low
as -1 and -3, respectively. Furthermore, we find that the Spearman correlation coe�cients
range from 0.9 to 1 for Gini and Permutation Importance. These findings suggest that
the lower impact that correlated metrics have on Gini and Permutation Importance than
ANOVA techniques have to do with the random process for constructing multiple trees and
the calculation of importance scores for a random forest model. For example, the random
process of random forest may generate trees that are constructed without correlated metrics.
In addition, the averaging of the importance scores from multiple trees may decrease the
negative impact of correlated metrics on trees that are constructed with correlated metrics
for random forest models.

3.4 Experimental Results 47

ANOVA Type-I and Type-II often produce the lowest consistency and the highest level of discrepancy

of the top-ranked metric, and have the highest impact on the direction of the ranking of metrics

between mitigated and non-mitigated models when compared to Gini and Permutation Importance.

This finding highlights the risks of not mitigating correlated metrics in the ANOVA analyses of prior

studies.

(RQ2) After removing all correlated metrics, how consistent is the in-
terpretation of defect models among di�erent model specifications?

Motivation. Our motivating analysis and the results of RQ1 confirm that the ranking of
the top-ranked metric substantially changes when the ordering of correlated metrics in
a model specification is rearranged, suggesting that correlated metrics must be removed.
However, after removing correlated metrics, little is known if the interpretation of defect
models would become consistent when rearranging the ordering of metrics.

Approach. To address RQ2, we analyze the ranking of the top-ranked metric of the models
that are constructed using di�erent ordering of metrics from mitigated datasets. To do so,
we start from mitigated datasets that are produced by Section 3.3.2. For each of the datasets,
we construct defect models (see Section 3.3.3) and apply the 9 studied model interpretation
techniques (see Section 3.3.4) in order to identify the top-ranked metric according to each
technique. Then, we regenerate the models where the ordering of metrics is rearranged—the
top-ranked metric is at each position from the first to the last for each dataset. Finally, we
compute the percentage of datasets where the ranks of the top-ranked metric are inconsistent
among the rearranged datasets.

Results. After removing correlated metrics, the top-ranked metrics according to
Type-II, Gini Importance, and Permutation Importance are consistent. However,
the top-ranked metric according to Type-I is still inconsistent regardless of the or-
dering of metrics. We find that Type-II, Gini Importance, and Permutation Importance
produce a stable ranking of the top-ranked metric for all of the studied datasets regardless of
the ordering of metrics.

On the other hand, ANOVA Type-I is the only technique that produces an inconsistent
ranking of the top-ranked metric. We find that for 71% of the studied datasets, ANOVA
Type-I produces an inconsistent ranking of the top-ranked metric when the ordering of
metrics is rearranged. We expect that the consistency of the ranking of the top-ranked
metrics can be improved by increasing the strictness of the correlation threshold of the
variable clustering analysis (VarClus). Thus, we repeat the analysis using stricter thresholds
of the variable clustering analysis (VarClus). We use Spearman correlation coe�cient (|d |)
threshold values of 0.5 and 0.6. Unfortunately, even if we increase the strictness of the
correlation threshold value, Type-I produces the inconsistent ranking of the top-ranked
metric for 43% and 50% of the studied datasets, for the threshold of 0.5 and 0.6, respectively.

48 Investigate the Impact of Correlated Metrics on the Explanation of Defect Models

The inconsistent ranking of the top-ranked metric according to Type-I has to do with
the sequential nature of the calculation of the Sum of Squares. In other words, Type-I
attributes the importance scores as much as it can to the first metric before attributing the
scores to the second metric in the model specification. Thus, Type-I is sensitive to the
ordering of metrics.

After removing all correlated metrics, the top-ranked metric according to ANOVA Type-II, Gini

Importance, and Permutation Importance are consistent. However, the top-ranked metric according to

ANOVA Type-I is inconsistent, since the ranking of metrics is impacted by its order in the model

specification when analyzed using ANOVA Type-I (which is the default analysis for the glm model

in R and is commonly-used in prior studies). This finding suggests that ANOVA Type-I must be

avoided even if all correlated metrics are removed.

(RQ3) After removing all correlated metrics, how consistent is the in-
terpretation of defect models among the studied interpretation tech-
niques?

7%

7% 43%

7% 43% 43%

0% 36% 29% 29%

43% 7% 7% 7% 0%

29% 7% 7% 7% 7% 71%

36% 14% 14% 14% 7% 64% 50%Permutation
(Scaled)

Permutation
(Non−scaled)

Gini
(Scaled/

non−scaled)

Type−II
(Chisq)

Type−II
(F)

Type−II
(LR)

Type−II
(Wald)

Type−I Type−II
(Wald)

Type−II
(LR)

Type−II
(F)

Type−II
(Chisq)

Gini
(Scaled/

non−scaled)

Permutation
(Non−scaled)

0 25 50 75100Percentage of datasets

(a) The top-ranked metric for non-
mitigated models.

64% 71% 71% 64% 71% 64% 86%

86% 86% 86% 50% 43% 64%

100% 86% 57% 50% 71%

86% 57% 50% 71%

50% 43% 64%

93% 79%

79%Permutation
(Non−scaled)

Gini
(Scaled/

non−scaled)

Type−II
(Chisq)

Type−II
(F)

Type−II
(LR)

Type−II
(Wald)

Type−I

Type−II
(Wald)

Type−II
(LR)

Type−II
(F)

Type−II
(Chisq)

Gini
(Scaled/

non−scaled)

Permutation
(Non−scaled)

Permutation
(Scaled)

0 25 50 75100Percentage of datasets

(b) The top-ranked metric for mitigated
models.

Figure 3.4 The percentage of datasets where the top-ranked metric is consistent between
the two studied model interpretation techniques. While the lower-left side of the matrix
(i.e., red shades) shows the percentage before removing correlated metrics, the upper-right
side of the matrix (i.e., blue shades) shows the percentage after removing correlated metrics.

Motivation. The findings of prior work often rely heavily on one model interpretation
technique [56, 95, 147, 150, 196, 211]. Therefore, the findings of prior work may pose a
threat to construct validity, i.e., the findings may not hold true if one uses another interpret-
ation technique. Thus, we set out to investigate the consistency of the top-ranked and top-3
ranked metrics after removing correlated metrics.
Approach. To address RQ3, we start from mitigated datasets that are produced by Sec-
tion 3.3.2 and non-mitigated datasets (i.e., the original datasets). We compare the two

3.4 Experimental Results 49

rankings that are produced from mitigated and non-mitigated models using the 9 inter-
pretation techniques for each of the studied datasets. Then, we compute the percentage of
datasets where the top-ranked metric is consistent among the studied model interpretation
techniques. Moreover, we also compute the percentage of datasets where at least one of
the top-3 ranked metrics is consistent among the studied model interpretation techniques.
Finally, we present the results using a heatmap (as shown in Figure 3.4) where each cell
indicates the percentage of datasets which the top-ranked metric is consistent among the
two studied model interpretation techniques.
Results. Before removing all correlated metrics, we find that the studied model in-
terpretation techniques do not tend to produce the same top-ranked metric. We
observe that the consistency of the ranking of metrics across learning techniques (i.e., logistic
regression and random forest) is as low as 0%-43% for the top-ranked metric (Figure 3.4a).
Furthermore, according to the lower-left side of the matrix of the Figure 3.4a, we find that,
before removing correlated metrics, the top-ranked metric of Type-II (Chisq) is inconsistent
with the top-ranked metrics of Type-I and Gini Importance for all of the studied datasets.

After removing all correlatedmetrics, we find that the consistency of the ranking
of metrics among the studied interpretation techniques is improved by 15%-64% for
the top-ranked metric and 21%-71% for the top-3 ranked metrics, respectively. In
particular, we observe that the consistency of the ranking ofmetrics across learning techniques
is improved by 28%-50% for the top-1 ranked metrics and 43%-71% for the top-3 ranked
metrics, respectively. Most importantly, we find that scaled Permutation Importance achieves
the highest consistency of the ranking of metrics across learning techniques. This finding
highlights the benefits of removing correlatedmetrics on the interpretation of defect models—
the conclusions of studies that rely on one interpretation technique may not pose a threat
after mitigating correlated metrics.

After removing all correlated metrics, we find that the consistency of the ranking of metrics among the

studied interpretation techniques is improved by 15%- 64% for the top-ranked metric and 21%-71%

for the top-3 ranked metrics, respectively, highlighting the benefits of removing all correlated metrics

on the interpretation of defect models, i.e., the conclusions of studies that rely on one interpretation

technique may not pose a threat after mitigating correlated metrics.

(RQ4) Does removing all correlated metrics impact the performance
and stability of defect models?

Motivation. The results of RQ1 show that correlated metrics have a negative impact on
the interpretation of defect prediction models, while the results of RQ2 and RQ3 show
the benefits of removing correlated metrics on the interpretation of defect models. Thus,
removing correlated metrics is highly recommended. However, removing correlated metrics

50 Investigate the Impact of Correlated Metrics on the Explanation of Defect Models

●

●

●
●

●

AUC F−measure MCC

Logistic
Regression

Random
Forest

Logistic
Regression

Random
Forest

Logistic
Regression

Random
Forest

−0.10

−0.05

0.00

0.05

0.10
Pe

rfo
rm

an
ce

 D
iff

er
en

ce
 (%

pt
s)

Figure 3.5 The distributions of the performance di�erence (% pts) between non-mitigated
and mitigated models for each of the studied datasets.

may pose a risk to the performance and stability of defect models. Yet, little is known if
removing such correlated metrics impacts the performance and stability of defect models.
Approach. To address RQ4, we first start from the AUC, F-measure and MCC performance
estimates and their performance stability of the non-mitigated and mitigated models. The
performance stability is measured by a standard deviation of the performance estimates as
produced by 100 iterations of the out-of-sample bootstrap for each model. We then quantify
the impact of removing all correlated metrics by measuring the performance di�erence
(i.e., the arithmetic di�erence between the performance of the non-mitigated and mitigated
models) and the stability ratio (i.e., the ratio of the S.D. of performance estimates of non-

mitigated to mitigated models, S.D. non-mitigated models
S.D. mitigated models). Furthermore, in order to measure

the e�ect size of the impact, we measure Cli� ’s |X | e�ect size for the performance di�erence
and the stability ratio across the non-mitigated and mitigated models.
Results. Removing all correlated metrics impacts the AUC, F-measure, and MCC
performance of defect models by less than 5 percentage points. Figure 3.5 shows that
the distributions of the performance di�erence between the models that are constructed
using non-mitigated and mitigated datasets are centered at zero. In addition, our Cli� ’s
|X | e�ect size test shows that the di�erences between the models that are constructed using
mitigated and non-mitigated datasets are negligible to small for the AUC, F-measure, and
MCC measures. However, the performance di�erence of 5 percentage points may be very
important for safety-critical software domains. Thus, researchers and practitioners should
remove correlated metrics with care.

Removing all correlated metrics yields a negligible di�erence (Cli� ’s |X |) for the
stability of the performance of defect models. Figure 3.6 shows that the distributions
of the stability ratio of the models that are constructed using non-mitigated and mitigated
datasets are centered at one (i.e., there is little di�erence in model stability after removing all

3.5 Practical Guidelines 51

●

●

AUC F−measure MCC

Logistic
Regression

Random
Forest

Logistic
Regression

Random
Forest

Logistic
Regression

Random
Forest

0.50

0.75

1.00

1.25

1.50
St

ab
ilit

y
R

at
io

Figure 3.6 The distributions of the stability ratio of non-mitigated to mitigated models for
each of the studied datasets.

correlated metrics). Moreover, our Cli� ’s |X | e�ect size test shows that the di�erence of the
stability ratio between the models that are constructed using mitigated and non-mitigated
datasets is negligible.

Removing all correlated metrics impacts the AUC, F-measure, and MCC performance of defect

models by less than 5 percentage points, suggesting that researchers and practitioners should remove

correlated metrics with care especially for safety-critical software domains.

3.5 Practical Guidelines

In this section, we o�er practical guidelines for future studies. When the goal is to derive
sound interpretation from defect models:

(1) Ones must mitigate correlated metrics prior to constructing a defect model, es-
pecially for ANOVA analyses, since RQ1 shows that (1) ANOVA Type-I and Type-II
often produce the lowest consistency and the highest level of discrepancy of the top-
ranked metric, and have the highest impact on the direction of the ranking of metrics
between mitigated and non-mitigated models. On the other hand, the results of RQ2
and RQ3 show that removing all correlated metrics (2) improves the consistency of the
top-ranked metric regardless of the ordering of metrics; and (3) improves the consistency
of the ranking of metrics among to the studied interpretation techniques, suggesting that
correlated metrics must be mitigated. However, the results of RQ4 show that the removal
of such correlated metrics impacts the model performance by less than 5 percentage
points, suggesting that researchers and practitioners should remove correlated metrics
with care especially for safety-critical software domains.

52 Investigate the Impact of Correlated Metrics on the Explanation of Defect Models

(2) Onesmust avoid usingANOVAType-I even if all correlatedmetrics are removed,
since RQ2 shows that Type-I produces an inconsistent ranking of the top-ranked metric
when the orders of metrics are rearranged, indicating that Type-I is sensitive to the order-
ing of metrics even when removing all correlated metrics. Instead, researchers should opt
to use ANOVA Type-II and Type-III for additive and interaction logistic regres-
sion models, respectively. Furthermore, the scaled Permutation Importance approach
is recommended for random forest since RQ3 shows that such approach achieves the
highest consistency across learning techniques.

We would like to emphasize that mitigating correlated metrics is not necessary for all
studies, all scenarios, all datasets, and all analytical models in software engineering. Instead,
the key message of our study is to shed light that correlated metrics must be mitigated
when the goal is to derive sound interpretation from defect models that are trained with
correlated metrics (especially for ANOVAType-I). On the other hand, if the goal of the study
is to produce highly-accurate prediction models, one might prioritize their resources on
improving the model performance rather than mitigating correlated metrics. Thus, feature
selection and dimensionality reduction techniques can be considered to mitigate irrelevant
and correlated metrics, and improve model performance. Finally, similar to Zeller et al. [234],
we also would like to emphasize that correlations do not imply causations. To show causation,
one needs to show that changing the cause (e.g., code complexity) also changes the e�ect
(e.g., code quality). One also needs a theory grounded from domain knowledge to explain
causation.

3.6 Threats to Validity

Construct Validity. In this work, we only construct regression models in an additive fashion
(y ⇠ m1 + ... +mn), since metric interactions (i.e., the relationship between each of the two
interacting metrics depends on the value of the other metrics) (1) are rarely explored in
software engineering (except in [191]); (2) must be statistically insignificant (e.g., absence)
for ANOVA Type-II test [28, 43]; and (3) are not compatible with random forest [21] which
is one of the most commonly-used analytical learners in software engineering. On the other
hand, the importance score of the metric produced by ANOVA Type-III is evaluated after
all of the other metrics and all metric interactions of the metric under examination have been
accounted for. Thus, if metric interactions are significantly present, one should use ANOVA
Type-III and avoid using ANOVA Type-II. Due to the same way in which the importance
scores of metrics according to ANOVA Type-II and Type-III are calculated in a hierarchical
nature for an additive model, we would like to note that the importance scores of metrics
according to ANOVA Type-II and Type-III are the same for such additive models.

Plenty of prior work show that the parameters of classification techniques have an
impact on the performance of defect models [49, 106, 133, 134, 210, 213]. While we use a

3.6 Threats to Validity 53

default ntree value of 100 for random forest models, recent studies [210, 213] show that the
parameters of random forest are insensitive to the performance of defect models. Thus, the
parameters of random forest models do not pose a threat to validity of our study.

Recent work point out that the selection [98, 210] and the quality [233] of datasets
dataset selection might impact conclusions of a study. Thus, our conclusions may alter
when changing a set of the studied datasets. Prior work [226] raise concerns related to the
imbalance nature of data in software systems that should be handled with care, i.e., only a
small percentage of software modules are defective. While we carefully mitigate correlations
among software metrics, we neither re-balance nor transform such studied datasets to
preserve the original distributions of software metrics. Finally, Tantithamthavorn et al. [212]
point out that randomness may introduce bias to the conclusions of a study. To mitigate this
threat and ensure that our results are reproducible, we set a random seed in every step in our
experiment design.

Internal Validity. Recent research uses ridge regression to construct defect models on the
dataset that contains correlated metrics [176]. However, our additional analyses show that
ridge regression improves the performance of defect model when comparing to logistic
regression, yet produces a misleading importance ranking of metrics. We observe that
metrics that are highly correlated appear at di�erent ranks. This observation highlights the
importance of mitigating correlated metrics when interpreting defect models.

We studied a limited number of model interpretation techniques. Thus, our results
may not generalize to other model interpretation techniques. Nonetheless, other model
interpretation techniques can be explored in future work. We provide a detailed methodology
for others who would like to re-examine our findings using unexplored model interpretation
techniques.

External Validity. The analyzed datasets are part of several corpora (e.g., NASA and
PROMISE) of systems that span both proprietary and open source domains. However, we
studied a limited number of defect datasets, particularly for proprietary datasets. Thus, the
results may not generalize to other datasets and domains. Additional replication studies are
needed.

In our study, we exclude (1) datasets that are not representative of common practice or (2)
datasets that would not realistically benefit from our analysis (e.g., datasets that most of the
softwaremodules are defective) with the selection criteria of the studied datasets. Nevertheless,
our proposed approaches are applicable to any dataset. Practitioners are encouraged to explore
our approaches on their own datasets with their own peculiarities.

The conclusions of our study rely on one defect prediction scenario (i.e., within-project
defect models). However, there are a variety of defect prediction scenarios in the literature
(e.g., cross-project defect prediction [27, 237], just-in-time defect prediction [96], hetero-
genous defect prediction [157]). Therefore, the practical guidelines may di�er for other
scenarios. Thus, future research should revisit our study in other scenarios of defect models.

54 Investigate the Impact of Correlated Metrics on the Explanation of Defect Models

3.7 Conclusions

In this chapter, we set out to investigate (1) the impact of correlated metrics on the interpret-
ation of defect models. After removing correlated metrics, we investigate (2) the consistency
of the interpretation of defect models; and (3) its impact on the performance and stability of
defect models. Through a study of 14 publicly-available defect datasets of systems that span
both proprietary and open source domains, we conclude that (1) correlated metrics have the
largest impact on the consistency, the level of discrepancy, and the direction of the ranking
of metrics, especially for ANOVA techniques. On the other hand, we find that removing all
correlated metrics (2) improves the consistency of the produced rankings regardless of the
ordering of metrics (except for ANOVA Type-I); (3) improves the consistency of ranking of
metrics among the studied interpretation techniques; (4) impacts the model performance by
less than 5 percentage points.

Based on our findings, we o�er practical guidelines for future studies. When the goal is
to derive sound interpretation from defect models:

1. Ones must mitigate correlated metrics prior to constructing a defect model, especially
for ANOVA analyses.

2. Ones must avoid using ANOVA Type-I even if all correlated metrics are removed.

Due to the variety of the built-in interpretation techniques and their settings, our paper
highlights the essential need for future research to report the exact specification of their
models and settings of the used interpretation techniques.

3.7.1 Chapter Remarks

In this chapter, we investigate the impact of correlated metrics on the explanation of defect
models. The experimental results show that correlated metrics, indeed, have an impact on
the explanation of defect models. The experimental results also lead us to suggest that, after
mitigating correlated metrics, ones should use the ANOVA Type-II technique to explain
logistic regression models, while using the scaled Permutation Importance technique to
explain random forests models. However, to mitigate correlated metrics, commonly-used
correlation analysis techniques involve manual processes. For example, for VarClus, the
technique requires manual inspection to select a representative metric from each group of
correlated metrics. Thus, in the next chapter, we investigate techniques that automatically
mitigate correlated metrics when explaining defect models.

Chapter 4

Automatically Mitigate
Correlated Metrics when
Explaining Defect Models

An earlier version of the work in this chapter appears in the International Conference on
Software Maintenance and Evolution (ICSME 2018) [88], while its extension appears in the
Springer Journal of Empirical Software Engineering (EMSE) [91].

56 Automatically Mitigate Correlated Metrics when Explaining Defect Models

4.1 Introduction

Defect models are statistical or machine learning models that are used to investigate the
impact of software metrics (e.g., lines of code) on defect-proneness and to identify defect-
prone software modules. The explanation of defect models is used to validate hypotheses to
develop empirical theories related to software quality, which are essential to chart quality
improvement and plans.

The conclusions of defect models heavily rely on the studied software metrics. However,
software metrics often have strong correlation among themselves [54, 86, 211, 235] and
some metrics are irrelevant to defect models [137, 192]. For example, my previous work et

al. [86] find that many metrics in defect datasets are correlated (e.g., the branch_countmetric
is linearly proportional to the decision_count metric in some NASA datasets). Shepperd et

al. [192] find that many metrics in the NASA datasets are irrelevant to defect models (e.g.,
constant metrics).

To address these concerns, feature selection techniques are often applied in the defect
prediction domain [5, 34, 40, 97, 140, 160, 198]. However, prior work [5, 34, 40, 97, 140]
often relies on one feature selection technique which may pose a threat to the construct
validity, i.e., conclusions may not hold true if another feature selection technique is applied.
In practice, feature selection techniques should be applied only on training samples to avoid
producing optimistically biased performance estimates and explanation [117]. Yet, the
conclusions (e.g., the most important metric) that are derived from defect models may be
unreliable (i.e., produce misleading importance rankings of metrics) if the produced subsets
of metrics are (1) inconsistent among feature selection techniques, (2) inconsistent among
di�erent training samples, (3) inconsistent among repetitions, and (4) inconsistent among
di�erent model specifications.

In this chapter, we investigate 11 commonly-used feature selection techniques and our
own contribution AutoSpearman along 5 dimensions: (1) the consistency of the produced
subsets of metrics; (2) the correlation of the produced subsets of metrics; (3) the performance;
(4) the computational cost; and (5) the impact on the explanation.

Through an empirical investigation of 13 publicly-available defect datasets of systems
that span both proprietary and open source domains, we address the following eight research
questions:

(RQ1) Do feature selection techniques consistently produce the same subset of met-
rics when applied on the same training sample?
Feature selection techniques produce inconsistent subsets of metrics. As many as 94-
100% of the metrics are inconsistently selected among the studied feature selection
techniques, suggesting that the conclusions of prior work could be altered when
another feature selection technique is applied.

(RQ2) Do feature selection techniques consistently produce the same subset of met-
rics when applied across di�erent training samples?

4.1 Introduction 57

Surprisingly, when applying commonly-used feature selection techniques to dif-
ferent training samples from the same dataset, we find that 31-94% of the selected
metrics are inconsistent, suggesting that post-hoc multiple comparison tests (e.g., a
Scott-Knott test) should not be applied to identify the most important metrics when
explaining defect models. On the other hand, we observe that AutoSpearman yields
the highest consistency and leads to absolute improvements of consistency up to 86%
compared to other studied feature selection techniques.

(RQ3) Do feature selection techniques consistently produce the same subset of met-
rics when they are applied repeatedly?
The Recursive Feature Elimination technique is the only technique that produces
inconsistent subsets of metrics when repeated with di�erent random seeds. Such in-
consistency amounts to 62% and 13% of the subsets of metrics for logistic regression
and random forest, respectively. This finding indicates that even if Recursive Feature
Elimination is applied on the same training sample, simply altering a random seed
can lead the technique to produce di�erent subset of metrics.

(RQ4) Do feature selection techniques consistently produce the same subset of met-
rics when reordering the model specification of a defect model?
Regardless of the search directions, Stepwise Regression is the only studied feature
selection technique that produces inconsistent subsets of metrics when applied across
model specifications.

(RQ5) Do feature selection techniques mitigate correlated metrics?
AutoSpearman is the only studied feature selection technique that can mitigate
correlated metrics, i.e., collinearity and multicollinearity. We observe that other
studied feature selection techniques produce up to 100% of subsets of metrics with
collinearity and multicollinearity, suggesting that the explanation of defect models
constructed using the subsets of metrics that are produced by all of the studied feature
selection techniques (except for AutoSpearman) may be misleading.

(RQ6) What is the impact of feature selection techniques on the performance of
defect models?
The studied feature selection techniques impact the performance of defect models by
up to 5%pts. The results of the Mann-Whitney U test and the Kruskal-Wallis H test
suggest that all of the performance di�erences across feature selection techniques are
not statistically significant with the p-values of above 0.05. The results of the Cli� ’s
|X | e�ect size test also confirm that such performances are negligible to small for the
AUC, F-measure, and MCC measures.

58 Automatically Mitigate Correlated Metrics when Explaining Defect Models

(RQ7) What is the computational cost of applying feature selection techniques?
The computational cost of filter-based feature selection techniques andAutoSpearman is
cheap, while such cost is expensive for wrapper-based feature selection techniques
and the consistency-based feature selection technique. The computational cost of
wrapper-based feature selection techniques is as high as 7 hours and 30 minutes for
RFE-RF to find the best subset of metrics from one training sample of the Propri-
etary 2 defect dataset. Such expensive computation cost makes the application of
wrapper-based feature selection techniques undesirable, particularly, when validating
with model validation techniques that require several repetitions (e.g., bootstrap
validation technique).

(RQ8) Do correlation threshold values have an impact on the explanation of defect
models?
No. Indeed, 0–62% of the studied defect datasets produces di�erent most important
metrics among correlation threshold values. However, such di�erent most important
metrics are highly correlated with the spearman correlation of 0.84–1, suggesting
that correlation threshold values do not impact the explanation of defect models.

Our results lead us to conclude that the subsets of metrics produced by the commonly-used
automated feature selection techniques are (1) inconsistent among automated feature selection
techniques; (2) inconsistent among training samples; (3) inconsistent among repetitions; and
(4) highly-correlated. Since we find that the subsets of metrics produced by the commonly-
used feature selection techniques (except for AutoSpearman) are often inconsistent and
correlated, these techniques should be avoided when explaining defect models.

4.1.1 Chapter Organisation

Section 4.2 presents the research questions which are formulated from related work. Sec-
tion 4.3 describes the design and the setup of our study, while Section 4.4 presents the
results with respect to the eight research questions. Section 4.5 discusses the trends of the
commonly-selected correlated metrics. Section 4.6 elaborates on the threats to the validity
of our study. Finally, Section 4.7 draws conclusions.

4.2 Related Work & Research Questions

Feature selection has been widely used in software engineering to remove irrelevant metrics
(i.e., metrics that do not share a strong relationship with the outcome) [137, 192] and correlated
metrics (i.e., metrics that share a strong correlation with one or more metrics) [54, 86, 211,
235]. While a variety of feature selection techniques has been proposed in literature, little is
known about the best feature selection techniques for model explanation.

4.2 Related Work & Research Questions 59

Many ML research e�orts propose feature selection techniques and investigate the impact
of such techniques on the performance of prediction models [35, 64, 105]. For example,
Dash et al. [35] introduce the consistency-based feature selection technique and investigated
the impact of 5 search strategies of such technique on 10 benchmark datasets as provided by
the UC Irwin Machine Learning repository [19] using C4.5 and back-propagation neural
network. Mark Hall Hall and Smith [64] proposes the correlation-based feature selection
technique and evaluate the proposed technique comparing with a wrapper-based feature
selection technique on 15 benchmark datasets as provided by theUC IrwinMachine Learning
repository [19] using 3 classification techniques (i.e., IB1, Naive Bayes, and C4.5). Kohavi et
al. Kohavi and John [105] propose the wrapper-based feature selection and investigate the
model performance produced by the technique comparing with 4 other filter-based feature
selection techniques on 14 benchmark datasets as provided by the UC Irwin Machine
Learning repository [19] using 5 classification techniques (i.e., ID3, Naive Bayes, and C4.5).
Nevertheless, little is known whether these findings hold true for the context of software
engineering.

Prior studies investigate the impact of feature selection techniques on the performance of
defect models [53, 124, 161, 185, 231] (see Table 4.1). For example, Ghotra et al. Ghotra et al.
[53] investigate the impact of 29 feature selection techniques (as provided by Weka [50])
on 18 PROMISE [139] and NASA [192] datasets using 21 classification techniques. Lu et

al. Lu et al. [124] investigate the impact of 4 feature selection techniques (i.e., Information
Gain, Correlation-based, Forward selection, and Backward selection) on 3 releases of Eclipse
datasets as provided by Zimmermann et al. Zimmermann et al. [238] using random forests.
Osman et al.Osman et al. [161] investigate the impact of correlation-based andwrapper-based
feature selection techniques on 5 defect datasets as provided by D’Ambros et al. D’Ambros
et al. [34] using 5 classification techniques. Rodriguez et al. Rodríguez et al. [185] investigate
the impact of 5 feature selection techniques on 5 PROMISE datasets [139] using naive bayes
and C4.5. Xu et al. Xu et al. [231] investigate the impact of 19 feature selection techniques
on 11 NASA [192] and 4 AEEEM [34] datasets using random forests. Yet, no prior work
has investigated the impact of feature selection techniques when explaining defect models.
Thus, in this study, we investigate 11 commonly-used feature selection techniques and our
own contribution AutoSpearman along five dimensions: (1) the consistency of the produced
subsets of metrics; (2) the correlation of the produced subsets of metrics; (3) the performance;
(4) the computational cost; and (5) the impact on the explanation.

The conclusions of prior work often rely on one feature selection technique [5, 34, 40,
97, 140] which may pose a threat to the construct validity, i.e., conclusions may not hold true
if another feature selection technique is applied. Nevertheless, little is known about whether
feature selection techniques produce the same subset of metrics among training samples and
among feature selection techniques. We therefore formulate the following research question:

60 Automatically Mitigate Correlated Metrics when Explaining Defect Models

Table 4.1 An overview comparison of our study with respect to prior work.

St
ud

y
#D

at
as
et
s

#F
ea
tu
re

Se
le
ct
io
n

T
ec
hn

iq
ue
s

#C
la
ss
ifi
ca
tio

n

T
ec
hn

iq
ue
s

A
na
ly
se
s

G
ho

tr
a
et
al
.[
53
]

18
29

21
Pe
rf
or
m
an
ce

(A
U
C
)

Lu
et
al
.[
12
4]

3
5

1
Pe
rf
or
m
an
ce

(P
re
ci
sio

n,
R
ec
al
l,
A
cc
ur
ac
y,

an
d
A
U
C
)

O
sm

an
et
al
.[
16
1]

5
2

5
C
on

sis
te
nc
y
(A
gr
ee
m
en
to

n
th
e
se
le
ct
ed

m
et
ri
cs
)

an
d
Pe
rf
or
m
an
ce

(R
M
SE

)

R
od

rí
gu

ez
et
al
.[
18
5]

5
5

2
Pe
rf
or
m
an
ce

(A
cc
ur
ac
y
an
d
F-
m
ea
su
re
)

X
u
et
al
.[
23
1]

15
20

1
Pe
rf
or
m
an
ce

(A
U
C
)

O
ur

st
ud

y
13

12
2

C
on

sis
te
nc
y
(A
gr
ee
m
en
to

n
th
e
se
le
ct
ed

m
et
ri
cs
),

C
or
re
la
tio

n
(C

ol
lin

ea
ri
ty

an
d
M
ul
tic
ol
lin

ea
ri
ty
),

Pe
rf
or
m
an
ce

(A
U
C
),

C
om

pu
ta
tio

na
lC

os
t(
T
im

e)
,

an
d
Ex

pl
an
at
io
n
(C

on
sis
te
nc
y
an
d
C
or
re
la
tio

n

of
th
e
m
os
ti
m
po

rt
an
tm

et
ri
cs
)

4.2 Related Work & Research Questions 61

(RQ1) Do feature selection techniques consistently produce the same subset of metrics when applied

on the same training sample?

In practice, feature selection techniques should only be applied on training samples because of the
unavailability of defect labels in testing samples. Since training samples are often randomly
generated from model validation techniques (e.g., out-of-sample bootstrap validation or
10-folds cross-validation), feature selection techniques may produce di�erent subsets of
metrics for each training sample. Di�erent subsets of metrics among training samples may
pose a critical threat to the validity when analysing and identifying the most important
metrics. For example, prior work often applies a post-hoc multiple comparison test (e.g., a
Scott-Knott test) on the distributions of importance scores to identify statistically distinct
ranks of the most important metrics [85, 208, 219]. Nevertheless, little is known about
whether feature selection techniques produce the same subset of metrics among training
samples. We therefore formulate the following research question:

(RQ2) Do feature selection techniques consistently produce the same subset of metrics when applied

across di�erent training samples?

Some feature selection techniques involve randomisation in the process of sampling data
for validation to produce the best subset of metrics. Such randomisation may lead a feature
selection technique to produce di�erent subsets of metrics when the technique is applied
repeatedly. Nevertheless, little is known about whether feature selection techniques produce
the same subset of metrics when they are applied repeatedly. We therefore formulate the
following research question:

(RQ3) Do feature selection techniques consistently produce the same subset of metrics when they are

applied repeatedly?

In theory, feature selection techniques should produce the same subset of metrics regard-
less of the ordering of metrics in a model specification, e.g., FS(y ⇠ x1 +x2) = FS(y ⇠ x2 +x1).
However, in practice, some feature selection techniques consider whether to include (or
exclude) a metric in the output subset of metrics based on the ordering of metrics in a
model specification. Such process may lead a feature selection technique to produce di�erent
subsets of metrics, if di�erent model specifications are applied. Nevertheless, little is known
about whether feature selection techniques produce the same subset of metrics across di�er-
ent model specifications (when reordering the model specification of a defect model). We
therefore formulate the following research question:

(RQ4) Do feature selection techniques consistently produce the same subset of metrics when reordering

the model specification of a defect model?

62 Automatically Mitigate Correlated Metrics when Explaining Defect Models

The conclusions of prior defect studies rely on the usage of built-in model explanation
techniques of classification techniques (e.g., ANOVA for logistic regression, and Breiman’s
Variable Importance for random forest). However, recent work points out that such explana-
tion techniques are sensitive to correlated metrics [10, 85, 203, 211, 235]. For example, my
previous work et al. [85] show that the explanation of ANOVA Type-I can be altered by
simply rearranging the model specification (e.g., from y ⇠ m1 +m2 to y ⇠ m2 +m1 if m1 and
m2 are correlated). Despite posing a threat to the validity of previous work’s conclusion,
little is known about whether feature selection techniques mitigate correlated metrics. We
therefore formulate the following research question:

(RQ5) Do feature selection techniques mitigate correlated metrics?

Prior research e�ort has shown the benefits of applying feature selection techniques to
defect prediction models [53, 124, 231]. For example, Ghotra et al. [53], Lu et al. [124], and
Xu et al. [231] investigate the impact of feature selection techniques on the performance of
defect models. Nevertheless, their findings on the best feature selection techniques (i.e., lead
to the model with the highest model performance) are not always consistent. Prior studies
also often use di�erent defect datasets. While our goal is model explanation, practitioners
may question the explanation of inaccurate defect models. We set out to investigate the
impact of feature selection techniques on the performance of defect models, particularly,
on defect datasets from which we can accurately derive explanation through the following
research question:

(RQ6) What is the impact of feature selection techniques on the performance of defect models?

Due to the variation in metric selection, feature selection techniques may incur di�erent
computational cost. For example, filter-based feature selection techniques search for the
best subset of metrics regardless of model construction. Wrapper-based feature selection
techniques rely on classification techniques to assess each subset of metrics and find the best
subset of metrics. Thus, we set out to investigate the computational cost of feature selection
techniques through the following research question:

(RQ7) What is the computational cost of applying feature selection techniques?

Literature has suggested a variety of correlation threshold values to indicate strong
correlations among metrics. For example, Kraemer et al. [107] suggested the use of Spearman
correlation of 0.7 to indicate strong correlations between metrics. Similarly, Hinkle et al. [76]
suggested that the Spearman correlation of 0.7–0.9 indicates strong correlations between
metrics. Mason et al. [126], Fox et al. [44], and Hair et al. [61] suggested the use of VIF

4.3 Experimental Design 63

threshold values of 3, 5, and 10 to indicate strong correlations between metrics, respectively.
Such contradictory suggestion about the correlation threshold may produce di�erent subsets
of metrics and explanation of defect models. Particularly, a stricter correlation threshold value
identifies a higher number of correlated metrics and produces a smaller subset of metrics.
On the other hand, a more relaxed correlation threshold value identifies a less number of
correlated metrics and produces a larger subset of metrics. Thus, we set out to investigate
the impact of correlation threshold values on the explanation of defect models through the
following research question:

(RQ8) Do correlation threshold values have an impact on the explanation of defect models?

4.3 Experimental Design

4.3.1 Studied Datasets

In selecting the studied datasets, we identify four important criteria that need to be satisfied:
Criterion 1—Publicly-available defect datasets. Prior work raises concerns about the

replicability of software engineering studies [184]. In order to foster future replication of
our work, we focus on publicly-available defect datasets.

Criterion 2—Datasets that are reliable and of high quality. Defect models rely
greatly on the quality of the datasets that are used to construct them. [192] raise concerns
related to data quality in the NASA datasets. Furthermore, [168] show that problematic data
remain in the cleaned NASA datasets. Thus, the quality of the NASA datasets is questionable.
To ensure that the studied datasets are reliable and of high quality, we exclude the NASA
datasets from our study.

Criterion 3—Datasets that produce non-overly optimistic model performance.
Classification techniques that are trained on imbalanced data often favour the majority
class. When defective modules are the majority class, defect models are likely to produce
overly optimistic performance estimates. Thus, we exclude datasets that have a defective
ratio above 50%.

Criterion 4—Datasets fromwhichwe can accurately derive explanations. Analysts
would only consider models that fit the data well (i.e., AUC > 0.7) and are stable (i.e., EPV >
10) [212]. Hence, we only focus on datasets that produce such accurate and stable models. To
identify datasets that produce accurate models, we generate 100 sets of training and testing
samples using the out-of-sample bootstrap validation technique. While we use training
samples to construct defect models (i.e., logistic regression and random forests), we use testing
samples to evaluate such models using the AUCmeasure. We then compute the average AUC
estimation of all models and exclude datasets that producemodels with the average AUC estim-
ation of below 0.7. To identify datasets that produce stablemodels, we compute the EPVmeas-
ure for each dataset. EPV (Event-Per-Variables) is a measure of the risk of overfitting. EPV is

64 Automatically Mitigate Correlated Metrics when Explaining Defect Models

Table 4.2 A statistical summary of the studied datasets.

Project Dataset Modules Metrics
Defective
Ratio

EPV AUCLR AUCRF

Apache Xalan 2.6 885 20 46 21 0.79 0.85
Eclipse Debug 3.4 1,065 17 25 15 0.72 0.81

JDT 997 15 21 14 0.81 0.82
Mylyn 1,862 15 13 16 0.78 0.74
PDE 1,497 15 14 14 0.72 0.72
Platform 2 6,729 32 14 30 0.82 0.84
Platform 2.1 7,888 32 11 27 0.77 0.78
Platform 3 10,593 32 15 49 0.79 0.81
SWT 3.4 1,485 17 44 38 0.87 0.97

Proprietary Prop 1 18,471 20 15 137 0.75 0.79
Prop 2 23,014 20 11 122 0.71 0.82
Prop 4 8,718 20 10 42 0.74 0.72
Prop 5 8,516 20 15 65 0.7 0.71

calculated as a ratio of the number of occurrences of the least frequently occurring class of the
dependent variable (i.e., the number of defective modules) to the number of software metrics
that are used to train the model. We then exclude datasets that have the EPV values of below
10 since models that are constructed using such datasets have a high risk of overfitting [212].

To satisfy criterion 1, similar to prior work [210], we begin our study using a collection
of the 101 publicly-available defect datasets that are collected from 5 di�erent corpora, i.e.,
76 datasets from the Tera-PROMISE Repository [139], 12 clean NASA datasets as provided
by Shepperd et al. [192], 5 datasets as provided by Kim et al. [101], 5 datasets as provided by
D’Ambros et al. [33, 34], and 3 datasets as provided by Zimmermann et al. [238]. To satisfy
criterion 2, we exclude 12 datasets for which their data quality is questionable. To satisfy
criterion 3, we exclude 17 datasets that have a defective ratio above 50%. Finally, to satisfy
criterion 4, we exclude 59 datasets which have an EPV value below 10 and produce models
with an AUC value below 0.7. Hence, we focus 13 defect datasets from 4 corpora, i.e., 5
datasets as provided by Jureczko et al. [94], 3 datasets as provided by D’Ambro et al. [33, 34],
3 datasets as provided by Zimmermann et al. [238], and 2 datasets as provided by Kim et

al. [101].
Table 4.2 shows a statistical summary of the 13 studied datasets.

4.3.2 Studied Feature Selection Techniques

Feature selection is a data preprocessing technique for selecting a subset of the best software
metrics prior to constructing a defect model. There is a plethora of feature selection techniques
that can be applied [60], e.g., filter-based, wrapper-based, and embedded-based families.
Since it is impractical to study all of these techniques, we would like to select a manageable

4.3 Experimental Design 65

set of feature selection techniques for our study. Similar to Ghotra et al. [53], we select two
commonly-used families of feature selection techniques, i.e., filter-based feature selection
techniques and wrapper-based feature selection techniques. Thus, embedded-based feature
selection techniques are excluded from our analysis, as they are rarely explored in software
engineering.

In this study, we select 12 commonly-used feature selection techniques from three families
(i.e., 5 filter-based, 5 wrapper-based feature selection techniques, and one hybrid feature
selection techniques), and our own contribution AutoSpearman [89] for evaluation. For filter-
based feature selection techniques, we select correlation-based (CFS), information gain (IG),
chi-squared-based (j2), consistency-based (CON), and findCorrelation. For wrapper-based
feature selection techniques, we select Recursive Feature Elimination with two classification
techniques (i.e., logistic regression (RFE-LR) and random forest (RFE-RF)), and three
directions of Stepwise Regression (i.e., forward (Step-FWD), backward (Step-BWD), and
both (Step-BOTH)). For a hybrid feature selection technique, we use a combination of
chi-squared based filter-based and wrapper-based using logistic regression as provided by the
HybridFS R package [162]. We select these feature selection techniques since they are the
most commonly used ones in previous work on defect prediction[5, 34, 40, 97, 140, 160, 198].
Table 4.3 provides the summary of the detailed implementation for the twelve studied feature
selection techniques. Below, we provide the description of each studied feature selection
technique.

Filter-based feature selection techniques

Filter-based feature selection techniques search for the best subset of metrics according to
an evaluation criterion regardless of model construction. Since constructing models is not
required, the use of filter-based feature selection techniques is considered low cost and widely
used in the defect prediction literature [5, 26, 40, 97, 140, 160]. There are many variants of
filter-based feature selection techniques, which we describe below.

Correlation-based feature selection [63] is a deterministic feature selection technique
that searches for the best subset of metrics that shares the strongest relationship with the
outcome, while having a low correlation among themselves.

Information gain feature selection [148] is a deterministic feature selection technique
that ranks metrics according to the information gain with respect to the outcome. The
information gain is measured by how much information of the outcome is provided by a
metric.

Chi-Squared-based feature selection [129] is a deterministic feature selection tech-
nique that assesses the importance of metrics with the j2 statistic which is a non-parametric
statistical test of independence.

Consistency-based feature selection [35] is a deterministic feature selection technique
that uses the consistency measure (i.e., inconsistency rate) to evaluate a subset of metrics.

66 Automatically Mitigate Correlated Metrics when Explaining Defect Models

Table 4.3 A summary of the detailed implementation for the twelve studied feature selection
techniques.

T
yp

e
T
ec
hn

iq
ue

R
Pa

ck
ag

e
R
Fu

nc
ti
on

A
bb

re
vi
at
io
n

Fi
lte
r-
ba
se
d

Fe
at
ur
e
Se
le
ct
io
n

T
ec
hn

iq
ue
s

C
or
re
la
tio

n-
ba
se
d

FS
el

ec
to

r

[1
88
]

cf
s(

cl
as

s⇠
me

tr
ic

s,
da

ta
se

t)
C
FS

In
fo
rm

at
io
n
G
ai
n

in
fo

rm
at

io
n.
ga

in
(c

la
ss

⇠m
et

ri
cs

,
da

ta
se

t)
IG

C
hi
-S
qu

ar
ed
-b
as
ed

(j
2)

ch
i.

sq
ua

re
d(
cl

as
s⇠

me
tr

ic
s,

da
ta

se
t)

C
hi
sq

C
on

sis
te
nc
y-
ba
se
d

Hm
is

c
[6
7]

ca
re

t
[1
11
]

co
ns

is
te

nc
y(
cl

as
s⇠

me
tr

ic
s,

da
ta

se
t)

C
O
N

fin
dC

or
re
la
tio

n

ca
re

t

[1
11
]

co
rr

el
at

io
n.
ma

tr
ix

=
rc

or
r(

as
.m

at
ri

x(
da

ta
se

t[
,

me
tr

ic
s]

),
ty

pe
=

‘s
pe

ar
ma

n’
)$

r

co
rr

el
at

ed
.m
et

ri
cs

=
fi

nd
Co

rr
el

at
io

n(
co

rr
el

at
io

n.
ma

tr
ix

,
cu

to
ff

=
0.

7,
ex

ac
t

=
TR

UE
)

me
tr

ic
s[

-c
or
re

la
te

d.
me

tr
ic

s]

fin
dC

or
re
la
tio

n

W
ra
pp
er
-b
as
ed

Fe
at
ur
e
Se
le
ct
io
n

T
ec
hn

iq
ue
s

R
ec
ur
siv

e
Fe
at
ur
e
El
im

in
at
io
n

(L
og

ist
ic
R
eg
re
ss
io
n)

lr
Fu

nc
s.

AU
C

=
lr

Fu
nc

s

lr
Fu

nc
s.

AU
C$
su

mm
ar

y
=

tw
oC

la
ss

Su
mm

ar
y

co
nt

ro
l

=
rf
eC

on
tr

ol
(f

un
ct

io
ns

=
lr

Fu
nc

s.
AU

C,
me

th
od

=
"b

oo
t"

,
nu

mb
er

=
it

er
at

io
ns

)

rf
e(

x
=

da
ta
se

t[
,

me
tr

ic
s]

,
y

=
da

ta
se

t[
,

cl
as

s]
,

rf
eC

on
tr

ol
=

co
nt

ro
l,

me
tr

ic
=

"R
OC

")

R
FE

-L
R

R
ec
ur
siv

e
Fe
at
ur
e
El
im

in
at
io
n

(R
an
do

m
Fo

re
st
)

rf
Fu

nc
s.

AU
C

=
rf

Fu
nc

s

rf
Fu

nc
s.

AU
C$
su

mm
ar

y
=

tw
oC

la
ss

Su
mm

ar
y

co
nt

ro
l

=
rf
eC

on
tr

ol
(f

un
ct

io
ns

=
rf

Fu
nc

s.
AU

C,
me

th
od

=
"b

oo
t"

,
nu

mb
er

=
it

er
at

io
ns

)

rf
e(

x
=

da
ta
se

t[
,

me
tr

ic
s]

,
y

=
da

ta
se

t[
,

cl
as

s]
,

rf
eC

on
tr

ol
=

co
nt

ro
l,

me
tr

ic
=

"R
OC

")

R
FE

-R
F

St
ep
w
ise

R
eg
re
ss
io
n

(F
or
w
ar
d
D
ir
ec
tio

n)

st
at

s

[2
14
]

nu
ll

.m
od

el
=

gl
m(

cl
as

s⇠
1,

da
ta

=
da

ta
se

t,
fa

mi
ly

=
bi

no
mi

al
()

)

fu
ll

.m
od

el
=

gl
m(

cl
as

s⇠
me

tr
ic

s,
da

ta
=

da
ta

se
t,

fa
mi

ly
=

bi
no

mi
al

()
)

st
ep

(n
ul

l.
mo
de

l,
sc

op
e

=
li

st
(u

pp
er

=
fu

ll
.m

od
el

),
da

ta
=

da
ta

se
t,

di
re

ct
io

n
=

"f
wd

")

St
ep
-F
W

D

St
ep
w
ise

R
eg
re
ss
io
n

(B
ac
kw

ar
d
D
ir
ec
tio

n)

fu
ll

.m
od

el
=

gl
m(

cl
as

s⇠
me

tr
ic

s,
da

ta
=

da
ta

se
t,

fa
mi

ly
=

bi
no

mi
al

()
)

st
ep

(f
ul

l.
mo
de

l,
da

ta
=

da
ta

se
t,

di
re

ct
io

n
=

"b
wd

")
St
ep
-B

W
D

St
ep
w
ise

R
eg
re
ss
io
n

(B
ot
h
D
ir
ec
tio

ns
)

nu
ll

.m
od

el
=

gl
m(

cl
as

s⇠
1,

da
ta

=
da

ta
se

t,
fa

mi
ly

=
bi

no
mi

al
()

)

fu
ll

.m
od

el
=

gl
m(

cl
as

s⇠
me

tr
ic

s,
da

ta
=

da
ta

se
t,

fa
mi

ly
=

bi
no

mi
al

()
)

st
ep

(n
ul

l.
mo
de

l,
sc

op
e

=
li

st
(u

pp
er

=
fu

ll
.m

od
el

),
da

ta
=

da
ta

se
t,

di
re

ct
io

n
=

"b
ot

h"
)

St
ep
-B

O
T
H

H
yb

ri
d

(F
ilt
er

an
d
W
ra
pp
er
)

H
yb

ri
dF

S
Hy

br
id

FS
[1
62
]

Hy
br

id
FS

(d
at
as

et
,

cl
as

s)
H
yb

ri
d

A
ut
oS

pe
ar
m
an

Rn
al

yt
ic

a
[1
]

Au
to

Sp
ea

rm
an
(d

at
as

et
,

me
tr

ic
s,

sp
ea

rm
an

.t
hr

es
ho

ld
=

0.
7,

vi
f.

th
re

sh
ol

d
=

5)
A
ut
oS

pe
ar
m
an

4.3 Experimental Design 67

The technique finds the optimal subset of metrics whose inconsistency rate approximates the
inconsistency rate of all metrics.

findCorrelation is a deterministic feature selection technique that reduces pair-wise
correlations among metrics using a correlation matrix. The technique can be applied to any
correlation matrix (e.g., Pearson and Spearman). In our paper, we choose the Spearman rank
correlation test instead of other correlation tests (e.g., Pearson) since the test is resilient to
non-normal distributions as commonly present in defect datasets.

Table 4.3 summarises the detailed implementation of the studied filter-based feature
selection techniques.

Wrapper-based Feature Selection Techniques

Wrapper-based feature selection techniques [93, 105] use classification techniques to assess
each subset of metrics and find the best subset of metrics according to an evaluation criterion.
Wrapper-based feature selection is made up of three steps, which we described below.

(Step 1) Generate a subset of metrics. Since it is impossible to evaluate all possible subsets of
metrics, wrapper-based feature selection often uses search techniques (e.g., best first, greedy
hill climbing) to generate candidate subsets of metrics for evaluation.

(Step 2) Construct a classifier using a subset of metrics with a predetermined classification technique.

Wrapper-based feature selection constructs a classification model using a candidate subset of
metrics for a given classification technique (e.g., logistic regression and random forest).

(Step 3) Evaluate the classifier according to a given evaluation criterion. Once the classifier is
constructed, wrapper-based feature selection evaluates the classifier using a given evaluation
criterion (e.g., Akaike Information Criterion).

For each candidate subset of metrics, wrapper-based feature selection repeats Steps 2 and
3 in order to find the best subset of metrics according to the evaluation criterion. Finally,
it provides the best subset of metrics that yields the highest performance according to the
evaluation criterion.

In this study, we select two commonly-used variants of wrapper-based feature selection
techniques, which we describe below.

Recursive Feature Elimination (RFE) [60] searches for the best subset of metrics by
recursively eliminating the least important metric. First, RFE constructs a model using all
metrics and ranks metrics according to their importance score (e.g., Breiman’s Variable
Importance for random forest). In each iteration, RFE excludes the least important metric
and reconstruct a model. Finally, RFE provides the subset of metrics which yields the best
performance according to an evaluation criterion (e.g., AUC). In our study, we select the
AUC measure since it measures the discriminatory power of models, as suggested by recent
research [52, 114, 174, 208]. We use the implementation of the recursive feature elimination
using the rfe function as provided by the caret R package [111].

Stepwise Regression [28] finds the best subset of metrics by individually assessing each
metric and adding (or removing) a metric if it improves an evaluation criterion (e.g., Akaike

68 Automatically Mitigate Correlated Metrics when Explaining Defect Models

Algorithm 1: AutoSpearman
Input :M is a set of studied metrics,

sp.t is a threshold value for a Spearman rank
correlation test,
vi f .t is a threshold value for a Variance
Inflation Factor analysis.

Output :M0 is a set of non-correlated metrics based on a Spearman rank correlation
test and a Variance Inflation Factor analysis.

1 M0 = M
2 S = Spearman(M, M)
3 CS = {c(mi,mj) 2 S|abs(c(mi,mj)) � sp.t}
4 CS = sort(CS)
5 for c(mi,mj) in CS do
6 selected.metric = min(

mean(abs(Spearman(mi,M – {mi,mj}))),
mean(abs(Spearman(mj,M – {mi,mj}))))

7 removed.metric ={mi, mj}–selected.metric
8 CS = {c(mi,mj) 2 CS |

mi < removed.metric ^mj < removed.metric}
9 M0 = M0 – removed.metric

10 end
11 repeat
12 V = VIF(M0)
13 CV = {v(mi) 2 V |v(mi) � vi f .t}
14 removed.metric = {mi|

v(mi) 2 CV ^ v(mi) = max(CV)
15 M0 = M0 – removed.metric
16 until |CV | = 0;
17 return M0

Information Criterion). The process is repeated until there is no improvement from adding or
removing a metric. In this study, we investigate three directions (i.e., forward, backward, and
both directions) of Stepwise Regression. We use the implementation of Stepwise Regression
using the step function as provided by the stats R package [214].

AutoSpearman

In our recent work [89], we introduce AutoSpearman, an automated metric selection ap-
proach based on the Spearman rank correlation test and the VIF (Variance Inflation Factor)
analysis for statistical inference. Below, we describe AutoSpearman using Algorithm 1,
where S is a set of Spearman coe�cients for each pair of metrics, CS is a set of Spearman
coe�cients that are above a Spearman threshold value (sp.t), V is a set of VIF scores of metrics,
CV is a set of VIF scores of metrics that are above a VIF threshold value (vi f .t), and M0 is a

4.3 Experimental Design 69

set of non-correlated metrics based on the Spearman rank correlation test and the Variance
Inflation Factor analysis. The high-level concept of AutoSpearman can be summarised into
2 parts:

(Part 1) Automatically select non-correlated metrics based on a Spearman rank correlation test.

We first measure the correlation of all metrics using the Spearman rank correlation test
(d) (cf. Line 2). We use the interpretation of correlation coe�cients (|d |) as provided by
Kraemer et al. [107]—i.e., a Spearman correlation coe�cient of above or equal to 0.7 is
considered a strong correlation. Thus, we only consider the pairs that have an absolute
Spearman correlation coe�cient of above or equal to the threshold value (sp.t) of 0.7 (cf. Line
3).

To automatically select non-correlated metrics based on the Spearman rank correlation
test, we start from the pair that has the highest Spearman correlation coe�cient (cf. Line
4). Since the two correlated metrics under examination can be linearly predicted with each
other, one of these two metrics must be removed. Thus, we select the metric that has the
lowest average values of the absolute Spearman correlation coe�cients of the other metrics
that are not included in the pair (cf. Line 6). That means the removed metric is another
metric in the pair that is not selected (cf. Line 7). Since the removed metric may be correlated
with the other metrics, we remove any pairs of metrics that are correlated with the removed
metric (cf. Line 8). Finally, we exclude the removed metric from the set of the remaining
metrics (M0) (cf. Line 9). We repeat this process until all pairs of metrics have their Spearman
correlation coe�cient below a threshold value of 0.7 (cf. Line 5).

(Part 2) Automatically select non-correlated metrics based on a Variance Inflation Factor analysis.

We first measure the magnitude of multicollinearity of the remaining metrics (M0) from
Part 1 using the Variance Inflation Factor analysis (cf. Line 12). We use a VIF threshold
value (vi f .t) of 5 to identify the presence of multicollinearity, as suggested by Fox et al. [43]
and prior work [11, 85, 86, 131] (cf. Line 13).

To automatically remove correlated metrics from the Variance Inflation Factor analysis,
we identify the removed metric as the metric that has the highest VIF score (cf. Line 14).
We then exclude the removed metric from the set of the remaining metrics (M0) (cf. Line
15). We apply the VIF analysis on the remaining metrics until none of the remaining
metrics have their VIF scores above or equal to the threshold value (cf. Line 16). Finally,
AutoSpearman produces a subset of non-correlated metrics based on the Spearman rank
correlation test and the VIF analysis (M0) (cf. Line 17).

Similar to filter-based feature selection techniques, Part 1 of AutoSpearman measures the
correlation of all metrics using the Spearman rank correlation test regardless of model con-
struction. Similar to wrapper-based feature selection techniques, Part 2 of AutoSpearman con-
structs linear regression models to measure the magnitude of multicollinearity of metrics.
Thus, we consider AutoSpearman as a hybrid feature selection technique (both filter-based
and wrapper-based).

70 Automatically Mitigate Correlated Metrics when Explaining Defect Models

4.3.3 Studied Classification Techniques

Logistic regression is a statistical learner which explains the relationship between one binary
dependent variable (e.g., defect-proneness) and one or more independent variables (e.g.,
software metrics).
Random forests is a machine learner that constructs multiple decision trees from bootstrap
samples [21]. The final predicted class of a software module is the aggregation of the votes
from all of the constructed trees.

4.4 Experimental Results

(RQ1) Do feature selection techniques consistently produce the same
subset of metrics when applied on the same training sample?

Approach. To address RQ1, we investigate the consistency of the subsets of metrics that are
produced by feature selection techniques. We first generate training samples. Then, we apply
feature selection techniques on each training sample. Finally, we analyse the consistency of
subsets of metrics that are produced by the studied feature selection techniques. We describe
each step below.

(Step 1) Generate training samples. To generate training samples, we use the out-of-sample
bootstrap validation technique that (1) leverages aspects of statistical inference [39, 47, 68]; and
(2) produces the least bias and variance of performance estimates for defect prediction [212].
We randomly generate a bootstrap sample of size N with replacement from an original
dataset, where N is the size of the original dataset. On average, 36.8% of the original dataset
will not be selected, since a bootstrap sample is selected with replacement [39]. We repeat
the out-of-sample bootstrap process 100 times.

(Step 2) Apply feature selection techniques. We only apply feature selection techniques on a

training sample, instead of the whole dataset in order to avoid producing optimistically biased
performance estimates and explanation [117]. The subsets of metrics that are produced by
each studied feature selection technique for all studied datasets are available in the online
appendix [90].

(Step 3) Analyse the consistency of subsets of metrics among di�erent feature selection techniques.

Ideally, feature selection techniques should consistently produce the same subset of metrics.
We measure the consistency as a percentage of the unique metrics that consistently appeared
among all of the studied feature selection techniques compared to all of the unique metrics

for all studied feature selection techniques (i.e.,
|SFS1TSj\SFS2TSj ...\SFS9TSj |
|SFS1TSj[SFS2TSj ...[SFS9TSj |

, where SFSiTSj is a

subset of metrics that is produced by a feature selection technique (FSi) when applied on a
training sample (TSj)). We present the consistency percentage using boxplots in Figure 4.1.
Results. When applying the studied feature selection techniques to the same training
sample, only 0-6% of the metrics are consistently selected. Figure 4.1 shows the per-

4.4 Experimental Results 71

●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●

● ●●●●● ●●● ●●●●●● ●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

Eclipse 2.0
Eclipse 2.1
Eclipse 3.0

Eclipse Debug 3.4
Eclipse JDT

Eclipse Mylyn
Eclipse PDE

Eclipse SWT 3.4
Prop 1
Prop 2
Prop 4
Prop 5

Xalan 2.6

0 25 50 75 100
Percentage (%)

Figure 4.1 The percentage of metrics that are consistently selected when applying feature
selection techniques to the same training sample for all defect datasets.

centage of metrics that are consistently selected when applying feature selection techniques
on each training sample of each defect dataset. We observe that, at the median, only 0-6% of
the metrics are consistently selected among the studied feature selection techniques. In other
words, as many as 94-100% of the metrics are inconsistently selected among the studied
feature selection techniques, suggesting that feature selection techniques select di�erent
metrics even if they are applied on the same training sample. We provide an illustrative
example below.

Illustrative Example. We select the Eclipse Platform 2 dataset as the subject of this example,
since it is widely used in a large number of defect prediction studies [16, 151, 237]. We first
draw a bootstrap training sample (cf. Step 1 of RQ1) and apply all studied feature selection
techniques (cf. Step 2 of RQ1). Unfortunately, we observe that none of the metrics is
consistently selected across all studied feature selection techniques. The most commonly-
selected metric is pre, which is selected by the 10 studied feature selection techniques except
for information gain and chi-squared-based. This observation raises concerns related to the
construct validity of prior work that their conclusions could be altered when another feature
selection technique is applied. We report the produced subsets of metrics for this illustrative
example in Table 4.4.

Feature selection techniques produce inconsistent subsets of metrics. As many as 94-100% of the

metrics are inconsistently selected among the studied feature selection techniques, suggesting that the

conclusions of prior work could be altered when another feature selection technique is applied.

72 Automatically Mitigate Correlated Metrics when Explaining Defect Models

Table 4.4 The subsets of metrics that are produced by all of the twelve studied feature
selection techniques on a training sample from the Eclipse Platform 2 dataset. While a 3
mark indicates that a metric is selected by a feature selection technique, a 7 mark indicates
that a metric is not selected by a feature selection technique.

C
FS

IG
C
hi
sq

C
O
N

fin
dC

or
re
la
tio

n
R
FE

-L
R

R
FE

-R
F

St
ep
-F
W

D
St
ep
-B

W
D

St
ep
-B

O
T
H

H
yb

ri
d

A
ut
oS

pe
ar
m
an

AC
D

7
7

7
7

3
3

3
3

3
3

7
3

CC
_a

vg
7

7
7

3
7

7
3

7
7

7
7

7

CC
_m

ax
3

3
3

3
7

3
3

3
3

3
7

7

CC
_s

um
7

3
3

3
7

3
3

7
7

7
3

7

FO
UT

_a
vg

7
7

7
3

7
3

3
3

3
3

7
7

FO
UT

_m
ax

7
7

7
3

7
7

3
7

7
7

7
7

FO
UT

_s
um

7
7

7
7

7
3

3
3

3
3

7
7

ML
OC

_a
vg

7
7

7
7

7
7

3
7

7
7

7
7

ML
OC

_m
ax

7
7

7
3

7
3

3
3

3
3

7
7

ML
OC

_s
um

3
3

3
3

7
7

3
3

3
3

7
7

NB
D_

av
g

7
7

7
3

3
3

3
3

3
3

7
3

NB
D_

ma
x

3
7

7
3

7
3

3
3

3
3

7
7

NB
D_

su
m

3
3

3
3

7
3

3
7

7
7

3
7

NO
F_

av
g

7
7

7
3

3
7

3
7

7
7

7
3

NO
F_

ma
x

7
7

7
7

7
3

3
3

3
3

7
7

NO
F_

su
m

7
7

7
3

7
7

3
7

7
7

7
7

NO
I

7
7

7
7

7
7

7
7

7
7

7
7

NO
M_

av
g

7
7

7
3

7
3

3
3

3
3

7
3

NO
M_

ma
x

3
7

7
7

3
7

3
7

7
7

7
7

NO
M_

su
m

7
7

7
3

7
7

3
7

7
7

7
7

NO
T

7
7

7
7

3
7

3
7

7
7

7
3

NS
F_

av
g

7
7

7
3

3
7

3
3

7
3

7
3

NS
F_

ma
x

7
7

7
7

7
7

3
7

3
7

7
7

NS
F_

su
m

7
7

7
7

7
3

3
7

3
7

7
7

NS
M_

av
g

3
7

7
3

3
7

3
3

7
3

7
7

NS
M_

ma
x

7
7

7
7

7
7

3
7

3
7

7
7

NS
M_

su
m

7
7

7
7

7
7

3
7

7
7

7
7

PA
R_

av
g

7
7

7
3

7
3

3
3

3
3

7
3

PA
R_

ma
x

3
7

7
3

3
3

3
3

3
3

7
7

PA
R_

su
m

7
7

7
7

7
3

3
7

7
7

7
7

pr
e

3
7

7
3

3
3

3
3

3
3

3
3

TL
OC

7
3

3
3

7
7

3
7

7
7

3
7

4.4 Experimental Results 73

●

●

●

●●

AutoSpearman
Hybrid

Step−Both
Step−BWD
Step−FWD
RFE−RF
RFE−LR

findCorrelation
CON
Chisq

IG
CFS

0 25 50 75 100
Percentage (%)

Type Filter−based Wrapper−based Hybrid AutoSpearman

Figure 4.2 The percentage of metrics that are consistently selected when applying feature
selection techniques to di�erent training samples from the same dataset.

(RQ2) Do feature selection techniques consistently produce the same
subset of metrics when applied across di�erent training samples?

Approach. To address RQ2, we investigate the consistency of subsets of metrics across
di�erent training samples. Similar to RQ1, we start from the subsets of metrics that are
produced by all studied feature selection techniques for each training sample of each studied
dataset from RQ1 (cf. Step 2 of RQ1). Ideally, each feature selection technique should
produce the same subset of metrics for all of the 100 training samples. We compute the
consistency as a percentage of the unique metrics that consistently appeared among all of
the 100 training samples compared to all of the unique metrics for all training samples (i.e.,
|SFSiTS1\SFSiTS2...\SFSiTS100 |
|SFSiTS1[SFSiTS2...[SFSiTS100 |

, where SFSiTSj is a subset of metrics that is produced by a feature

selection technique (FSi) when applied on a training sample (TSj)). Finally, we present the
consistency percentage using boxplots in Figure 4.2.
Results. Surprisingly, when applying the studied feature selection techniques to dif-
ferent training samples from the same dataset, 6-69% of the metrics are consistently
selected. Figure 4.2 shows the percentage of metrics that are consistently selected when
applying feature selection techniques to di�erent training samples. We find that, at the
median, 8%, 17%, 29%, 29%, 63%, 6%, 41%, 13%, 14%, 10%, 11%, and 69% of the metrics
are consistently selected when applying CFS, IG, Chisq, CON, findCorrelation, RFE-LR,
RFE-RF, Step-FWD, Step-BWD, Step-BOTH, Hybrid, and AutoSpearman to di�erent
training samples, respectively. In other words, the selected metrics are 31-94% inconsistent
when applying the studied feature selection techniques to di�erent training samples from
the same dataset. We observe that AutoSpearman yields the highest consistency and leads

74 Automatically Mitigate Correlated Metrics when Explaining Defect Models

Table 4.5 The subsets of metrics that are produced by the correlation-based feature selection
technique (CFS) when applied on di�erent training samples. While the green texts represent
metrics that are consistently selected, the red texts represent inconsistently selected metrics.

Training Sample The Subset of Metrics that is produced by CFS

Sample 1 (TS1)
pre, MLOC_sum, NBD_sum, PAR_max, CC_max,

NBD_max, NOM_max, NSM_avg

Sample 2 (TS2)
pre, MLOC_sum, NBD_sum, PAR_max, CC_max,

FOUT_sum, NBD_avg, NSM_max, PAR_sum

to absolute improvements of consistency of up to 86% compared to other studied feature
selection techniques.

Although the training samples are drawn from the same original dataset, none of the
commonly-used feature selection techniques consistently produce the same subset of metrics.
We suspect that the inconsistency of subsets of metrics among training samples has to
do with the di�erences in the characteristics of data among such training samples. For
example, di�erent training samples may have di�erent correlation among metrics. Thus, the
correlation-based feature selection technique may produce di�erent subsets of metrics that
share the strongest relationship with the outcome while having a low correlation among
themselves for such di�erent training samples.

The inconsistency of subsets of metrics among training samples suggests that the random-
isation of training samples could produce defect models that are constructed from di�erent
subsets of metrics even if the training samples are drawn from the same dataset. Below, we
provide a detailed illustrative example to demonstrate such inconsistency of subsets of metrics
in practice.

Illustrative Example. Similar to prior illustrative examples in RQ1, we use the Eclipse
Platform 2 dataset and the correlation-based feature selection technique (CFS) for this
illustrative example. First, we draw two bootstrap training samples (cf. Step 1 of RQ1)
and apply CFS on these samples. We observe that only 5 of 12 metrics are consistently
selected. This inconsistency in subsets of metrics restricts an application of post-hoc multiple
comparison analyses (e.g., a Scott-Knott test) to identify the most important metrics when
explaining defect models, since the importance score of the metric may not be available for
multiple comparisons in another training sample if the metric is not selected by a feature
selection technique. We provide the subsets of metrics that are produced by CFS for this
illustrative example in Table 4.5.

4.4 Experimental Results 75

Surprisingly, when applying commonly-used feature selection techniques to di�erent training samples

from the same dataset, we find that 31-94% of the selected metrics are inconsistent, suggesting

that post-hoc multiple comparison tests (e.g., a Scott-Knott test) should not be applied to identify

the most important metrics when explaining defect models. On the other hand, we observe that

AutoSpearman yields the highest consistency and leads to absolute improvements of consistency up to

86% compared to other studied feature selection techniques.

(RQ3) Do feature selection techniques consistently produce the same
subset of metrics when they are applied repeatedly?

Approach. To address RQ3, we investigate the consistency of subsets of metrics when
feature selection techniques are applied repeatedly. Unlike Step 1 of RQ1 and RQ2, for
each studied defect dataset, we use only one bootstrap training sample. To foster future
replication studies, we set random seeds prior to applying feature selection techniques. Thus,
we apply feature selection techniques on one training sample for all studied defect datasets
with di�erent random seeds. Finally, we analyse the consistency of subsets of metrics that
are produced by feature selection techniques. We describe each step below.

(Step 1) Apply feature selection techniques on the training sample with di�erent random seeds.

Since the goal of this research question is to measure the consistency across di�erent random
seeds, we use 100 random seeds that range from 1 to 100 prior to applying feature selection
techniques. We then apply feature selection techniques on the training sample and produce
100 subsets of metrics for each technique and each defect dataset.

(Step 2) Analyse the consistency of subsets of metrics across di�erent random seeds. We start from
the 100 subsets of metrics that are produced in Step 1 for each technique and each defect
dataset. Ideally, each technique should produce the same subset of metrics for all 100 random
seeds. We compute the consistency as a percentage of the unique metrics that consistently
appeared among all of the 100 random seeds compared to all of the unique metrics for all

random seeds (i.e.,
|SFSiRS1TS\SFSiRS2TS...\SFSiRS100TS|
|SFSiRS1TS[SFSiRS2TS...[SFSiRS100TS|

, where SFSiRSjTS is a subset of metrics

that is produced by a feature selection technique (FSi) when applied with a random seed
(RSj) on a training sample (TS)). We present the consistency percentage using boxplots in
Figure 4.3.
Results. The Recursive Feature Elimination technique is the only studied feature
selection technique that produces inconsistent subsets of metrics when applied re-
peatedly with di�erent random seeds regardless of the classification techniques. Fig-
ure 4.3 shows the percentage of metrics that are consistently selected when repeatedly
applying feature selection techniques with di�erent random seeds. The results show that
the Recursive Feature Elimination technique is the only studied feature selection technique
that produces inconsistent subsets of metrics when applied with di�erent random seeds. We
observe that, at the median, 38% and 87% of the metrics are consistently selected when

76 Automatically Mitigate Correlated Metrics when Explaining Defect Models

●

AutoSpearman
Hybrid

Step−Both
Step−BWD
Step−FWD
RFE−RF
RFE−LR

findCorrelation
CON
Chisq

IG
CFS

0 25 50 75 100
Percentage (%)

Type Filter−based Wrapper−based Hybrid AutoSpearman

Figure 4.3 The percentage of metrics that are consistently selected when applying feature
selection techniques with di�erent random seeds.

repeatedly applying Recursive Feature Elimination with logistic regression and random
forest (i.e., RFE-LR and RFE-RF, respectively) with di�erent random seeds. In other words,
the selected metrics are 62% and 13% inconsistent for RFE-LR and RFE-RF, respectively.
Similar to RQ2, we observe a higher consistency of subsets of metrics when applying Recurs-
ive Feature Elimination with random forest compared to logistic regression. We suspect that
such a higher consistency of subsets of metrics has to do with the process of constructing and
using multiple trees for a random forests model. For examples, unlike logistic regression that
constructs only one model, random forests constructs multiple trees and uses the aggregated
results of these trees to generate predictions.

The inconsistency of subsets of metrics when applied repeatedly with di�erent random
seeds suggests that although these variants of Recursive Feature Elimination are applied
on the same sample, simply altering a random seed can lead them to produce di�erent
subset of metrics. We suspect that the inconsistency in subsets of metrics has to do with the
randomisation in the process of sampling data for validation in Recursive Feature Elimination.
We discuss and provide a detailed illustrative example below.
Illustrative Example. Similar to prior illustrative examples in RQ1 and RQ2, we use the
Eclipse Platform 2 dataset as the subject of this example. First, we draw a bootstrap training
sample (unlike Step 1 of RQ1, we use only one training sample) and apply RFE-LR with
two di�erent random seeds, i.e., set.seed(1) and set.seed(2). We find that RFE-LR
selects 16 metrics when applied with one random seed, while selecting 20 metrics when
applied with another random seed. Across these subsets of metrics, 16 metrics are consistently
selected. Such inconsistency in subsets of metrics when repeatedly applying Recursive
Feature Elimination technique raises concerns related to the reliability and the construct
validity.

4.4 Experimental Results 77

Table 4.6 The subsets of metrics that are produced by the Recursive Feature Elimination
technique with logistic regression (RFE-LR) when applied with di�erent random seeds
on the same training sample. While the green texts represent metrics that are consistently
selected, the red texts represent inconsistently selected metrics.

Random Seed The Subset of Metrics that is produced by RFE-LR

RS1
(set.seed(1))

ACD, CC_max, CC_sum, FOUT_avg, FOUT_sum, MLOC_max,

NBD_avg, NBD_max, NBD_sum, NOF_max, NOM_avg,

NSF_sum, PAR_avg, PAR_max, PAR_sum, pre

RS2
(set.seed(2))

ACD, CC_max, CC_sum, FOUT_avg, FOUT_sum, MLOC_max,

NBD_avg, NBD_max, NBD_sum, NOF_max, NOM_avg,

NSF_sum, PAR_avg, PAR_max, PAR_sum, pre,

NOF_avg, NOF_sum, NSM_avg, NSF_max

We provide the subsets of metrics that are produced by RFE-LR when applied with two
di�erent random seeds for this illustrative example in Table 4.6.

The Recursive Feature Elimination technique is the only technique that produces inconsistent subsets

of metrics when repeated with di�erent random seeds. Such inconsistency amounts to 62% and 13%

of the subsets of metrics for logistic regression and random forest, respectively. This finding indicates

that even if Recursive Feature Elimination is applied on the same training sample, simply altering a

random seed can lead the technique to produce di�erent subset of metrics.

(RQ4) Do feature selection techniques consistently produce the same
subset of metrics when reordering the model specification of a defect
model?

Approach. To address RQ4, we investigate the consistency of subsets of metrics across
di�erent model specifications. Similar to RQ3, for each studied defect dataset, we use only
one bootstrap training sample. Then, we apply feature selection techniques on the training
sample with di�erent model specifications for all studied defect datasets. Finally, we analyse
the consistency of subsets of metrics that are produced by feature selection techniques. We
describe each step below.

(Step 1) Apply feature selection techniques on the training sample with di�erent model specifications.

Since it is di�cult to measure the consistency across all possible model specifications (e.g.,
10 metrics would lead to 10! di�erent model specifications), in this study, we generate
100 model specifications by randomly rearranging the ordering of metrics of each studied
defect dataset di�erently for 100 times. For example, y ⇠ x1 + x2 + ..., y ⇠ x2 + x1 + ..., and

78 Automatically Mitigate Correlated Metrics when Explaining Defect Models

●●

●●

●●

AutoSpearman
Hybrid

Step−Both
Step−BWD
Step−FWD
RFE−RF
RFE−LR

findCorrelation
CON
Chisq

IG
CFS

0 25 50 75 100
Percentage (%)

Type Filter−based Wrapper−based Hybrid AutoSpearman

Figure 4.4 The percentage of metrics that are consistently selected when applying feature
selection techniques with di�erent model specifications.

y ⇠ x3 + x1 + We then apply feature selection techniques on the training sample with 100
model specifications and produce 100 subsets of metrics for each technique and each defect
dataset.

(Step 2) Analyse the consistency of subsets of metrics across di�erent model specifications. We
start from the subsets of metrics in Step 1 that are produced with 100 variations of model
specification on the training sample for each feature selection technique of each studied
dataset. Ideally, each feature selection technique should produce the same subset of metrics
for all 100 variations of model specification regardless of the ordering of metrics, e.g., FS(y ⇠
x1 +x2) = FS(y ⇠ x2 +x1). We compute the consistency as a percentage of the unique metrics
that consistently appeared among all of the 100 variations of the model specification compared

to all of the unique metrics for all model specifications (i.e.,
|SFSiMS1TS\SFSiMS2TS...\SFSiMS100TS|
|SFSiMS1TS[SFSiMS2TS...[SFSiMS100TS|

,

where SFSiMSjTS is a subset of metrics that is produced by a feature selection technique (FSi)
when applied with a model specification (MSj) on a training sample (TS)). We present the
consistency percentage using boxplots in Figure 4.4.

Results. The studied feature selection techniques (except for Stepwise Regression)
produce consistent subsets of metrics regardless of the ordering of metrics in model
specifications. Figure 4.4 shows the percentage of metrics that are consistently selected
when applying feature selection techniques with di�erent model specifications. We find
that all of the studied feature selection techniques (except for Stepwise Regression) produce
consistent subsets of metrics regardless of the ordering of metrics in model specifications.
We observe an inconsistency of subsets of metrics that are produced by Stepwise Regression
when reordering the model specification in 2 studied defect datasets, i.e., Eclipse PDE and
Eclipse SWT 3.4. We discuss and provide a detailed illustrative example below.

4.4 Experimental Results 79

Table 4.7 The subsets of metrics that are produced by the forward direction Stepwise
Regression (Step-FWD) when applied with di�erent model specifications on the same
training sample. While the green texts represent metrics that are consistently selected, the
red texts represent inconsistently selected metrics.

Model Specification The Subset of Metrics that is produced by Step-FWD

Specification 1 (MS1)
ageWithRespectTo., codeChurnUntil.,

linesAddedUntil., maxLinesRemovedUntil.,

numberOfRefactoringsUntil., numberOfVersionsUntil.

Specification 2 (MS2)
ageWithRespectTo., codeChurnUntil.,

linesRemovedUntil., maxLinesRemovedUntil.,

numberOfRefactoringsUntil., numberOfVersionsUntil.

Illustrative Example. We select the Eclipse PDE dataset, one of the problematic defect
datasets, as the subject of this example. Similar to the prior illustrative example in RQ3,
we draw only one bootstrap training sample and apply the forward direction Stepwise
Regression with two di�erent model specifications. Table 4.7 shows the subsets of metrics
that are produced by the forward direction Stepwise Regression when applied with two
di�erent model specifications. We observe that, while 5 metrics are consistently selected,
Stepwise Regression either selects linesAddedUntil or linesRemovedUntil depending on
which metric appears first in the ordering of metrics in a model specification. The result
of Stepwise Regression shows that including either of these metrics equally improves the
AIC value of a regression model. This finding leads us to conclude that, when including
(or excluding) either of the two metrics can equally improve the AIC value of a regression
model, Stepwise Regression includes (or excludes) the first metric that appears in the model
specification. We further investigate the correlation of these problematic metrics and find
that their Spearman correlation coe�cient is as high as 0.87, suggesting that they are highly-
correlated metrics. This finding raises concerns that correlated metrics may introduce the
inconsistency of subsets of metrics when applying Stepwise Regression with di�erent model
specifications. We provide the subset of metrics for this illustrative example in Table 4.7 and
the mentioned part of the results of Stepwise Regression in Figure 4.5.

Regardless of the search directions, Stepwise Regression is the only studied feature selection technique

that produces inconsistent subsets of metrics when applied across model specifications.

(RQ5) Do feature selection techniques mitigate correlated metrics?

Approach. To identify correlated metrics, we apply correlation analyses on subsets of
metrics that are produced by feature selection techniques. Similar to RQ1 and RQ2, we start
from the subsets of metrics that are produced by all studied feature selection techniques for

80 Automatically Mitigate Correlated Metrics when Explaining Defect Models

Figure 4.5 The results of Stepwise Regression.

each training sample of each studied dataset from RQ1 (cf. Step 2 of RQ1). Then, we analyse
the correlation among metrics for each subset of metrics that are produced by the studied
feature selection techniques. In this study, we focus on two types of correlation among
metrics, i.e., collinearity and multicollinearity. Collinearity is a phenomenon in which one
metric can be linearly predicted by another metric. On the other hand, multicollinearity is
a phenomenon in which one metric can be linearly predicted by a combination of two or
more metrics. We describe each step below.

(Step 1) Analyse collinearity. To analyse collinearity, we use a Spearman rank correlation
test (d) to measure the correlation between metrics. We choose the Spearman test instead
of other correlation tests (e.g., Pearson) since the Spearman test is resilient to non-normal
distributions as commonly present in defect datasets. We use the interpretation of correlation
coe�cients (|d |) as provided by [107], i.e., a Spearman correlation coe�cient of above 0.7 is

considered as a strong correlation. Thus, two metrics which have their Spearman correlation
coe�cient of above 0.7 are considered correlated. We use the implementation of the rcorr
function as provided by the Hmisc R package [67].

(Step 2) Analyse multicollinearity. To analyse multicollinearity, we use the Variance
Inflation Factor analysis (VIF) [44]. VIF determines how well a metric can be linearly
predicted by a combination of other metrics through a construction of a regression model.
A VIF score of a metric under examination is an R2 goodness-of-fit of the model that is
constructed by the other metrics to predict the metric under examination where a VIF score
is 1

1–R2 . We use a VIF threshold value of 5 to identify the presence of multicollinearity, as
suggested by [43] and prior work [11, 85, 86, 131]. Thus, metrics that have their VIF score

4.4 Experimental Results 81

● ●

●●

●●●

●●

●

●●

●● ●

●● ●

● ●

●

●●●

●●

Subsets of metrics
with collinearity

Subsets of metrics
with multicollinearity

0 25 50 75 100 0 25 50 75 100
AutoSpearman

Hybrid
Step−Both
Step−BWD
Step−FWD

RFE−RF
RFE−LR

findCorrelation
CON

Chisq
IG

CFS

Percentage (%)

Type Filter−based Wrapper−based Hybrid AutoSpearman

Figure 4.6 The percentage of subsets of metrics that contain correlated metrics for each
studied feature selection technique. The left boxplots present the percentage of subsets
of metrics with collinearity, while the right boxplots present the percentage of subsets of
metrics with multicollinearity.

above 5 are considered correlated. We use the implementation of the Variance Inflation
Factor analysis using the vif function as provided by the rms R package [69]. Finally, we
present the results using boxplots in Figure 4.6.

Results. All of the commonly-used feature selection techniques do not mitigate cor-
related metrics except for AutoSpearman. Figure 4.6 presents the percentage of subsets
of metrics that contain correlated metrics for each studied feature selection technique. The
studied feature selection techniques produce, at the median, 100% of subsets of metrics
with collinearity except for findCorrelation and AutoSpearman. Furthermore, except for
AutoSpearman, the studied feature selection technique produce, at the median, 3-100% of
subsets of metrics with multicollinearity.

Surprisingly, although CFS searches for the best subset of metrics that share the highest
correlation with the outcome (e.g., defect-proneness) while having the lowest correlation
among each other, our results show that correlated metrics are prevalent in subsets of metrics
that are produced by CFS. We observe that CFS tends to focus on the correlation of each
metric and the outcome more than the correlation between metrics. Thus, when CFS
is applied, correlated metrics are often selected if these correlated metrics share a strong
relationship with the outcome.

Furthermore, while findCorrelation can mitigate collinearity, the technique cannot
mitigate multicollinearity as its percentage of subsets of metrics with multicollinearity is
as high as 100% in some studied defect datasets. We observe that findCorrelation only
reduces pair-wise correlations among metrics using a correlation matrix (e.g., Spearman
correlation), leading to the mitigation of collinearity. Unfortunately, the usage of pair-wise
correlations among metrics of findCorrelation fails to detect and mitigate multicollinearity

82 Automatically Mitigate Correlated Metrics when Explaining Defect Models

NSM_avg
NSM_max
NSM_sum
NSF_avg
NSF_max
NSF_sum
PAR_avg
PAR_max
PAR_sum
pre
NOI
NOT
FOUT_sum
MLOC_sum
TLOC
NBD_sum
CC_sum
FOUT_avg
FOUT_max
NBD_avg
NBD_max
CC_avg
CC_max
MLOC_avg
MLOC_max
ACD
NOF_avg
NOF_max
NOF_sum
NOM_avg
NOM_max
NOM_sum

0.0 0.2 0.4 0.6 0.8 1.0

Spearman !

Non! correlated metrics
Correlated metrics

Figure 4.7 The hierarchical cluster view of the correlation analysis of all metrics in the
Eclipse Platform 2 dataset. Correlated metrics that can be linearly predicted by another
metric and have their Spearman correlation coe�cient above 0.7 are highlighted in red,
while non-correlated metrics are highlighted in green.

(i.e., a phenomenon in which one metric can be linearly predicted by two or more metrics),
suggesting that more advanced techniques (e.g., Variance Inflation Factor analysis) should
be applied. Below, we provide detailed illustrative examples.

Illustrative Example. Similar to prior illustrative examples in RQ1, RQ2, and RQ3, we
select the Eclipse Platform 2 dataset as the subject of this example. We first draw a bootstrap
training sample (cf. Step 1 of RQ1) and analyse the correlation among all software metrics,
i.e., collinearity and multicollinearity. Then, we apply three feature selection techniques
that consider the correlation among metrics when selecting metrics, i.e., a correlation-
based feature selection technique (CFS—one of the most commonly-used feature selection
technique in the defect prediction domain), findCorrelation, and AutoSpearman. Finally,
we analyse the correlation among the metrics in the subsets of metrics that are produced by
CFS and findCorrelation.

According to Figure 4.7, among the 32 metrics in the Eclipse Platform 2 dataset, we find
that 30 metrics are correlated with a Spearman correlation coe�cient of above 0.7. We find
that CFS selects 8 metrics that share the highest correlation with defect-proneness while

4.4 Experimental Results 83

0.92 0.9 0.85 0.56 0.33 0.55 0.35

0.92 0.89 0.95 0.69 0.35 0.58 0.38

0.9 0.89 0.86 0.53 0.29 0.51 0.36

0.85 0.95 0.86 0.77 0.34 0.58 0.37

0.56 0.69 0.53 0.77 0.05 0.5 0.29

0.33 0.35 0.29 0.34 0.05 0.25 0.14

0.55 0.58 0.51 0.58 0.5 0.25 0.24

0.35 0.38 0.36 0.37 0.29 0.14 0.24

CC_max

MLOC_sum

NBD_max

NBD_sum

NOM_max

NSM_avg

PAR_max

pre

CC_m
ax

M
LO

C_s
um

NBD_m
ax

NBD_s
um

NOM
_m

ax

NSM
_a

vg

PA
R_m

ax pr
e

Non! correlated metrics Correlated metrics

(a) CFS

0.38 0.27 0.27 0.18 0.13 0.04 0.06 0.25

0.38 0.31 0.34 0.6 0.15 0.26 0.34 0.32

0.27 0.31 0.49 0.41 0.2 ! 0.01 ! 0.08 0.15

0.27 0.34 0.49 0.24 0.12 0.04 0.06 0.27

0.18 0.6 0.41 0.24 0.14 0.21 0.16 0.16

0.13 0.15 0.2 0.12 0.14 0.28 ! 0.05 0.1

0.04 0.26 ! 0.01 0.04 0.21 0.28 0.18 0.14

0.06 0.34 ! 0.08 0.06 0.16 ! 0.05 0.18 0.1

0.25 0.32 0.15 0.27 0.16 0.1 0.14 0.1

ACD

NBD_avg

NOF_avg

NOM_avg

NOT

NSF_avg

NSM_avg

PAR_avg

pre

ACD

NBD_a
vg

NOF_a
vg

NOM
_a

vg
NOT

NSF_a
vg

NSM
_a

vg

PA
R_a

vg pr
e

Non! correlated metrics

(b) findCorrelation

0.38 0.27 0.27 0.18 0.13 0.06 0.25

0.38 0.31 0.34 0.6 0.15 0.34 0.32

0.27 0.31 0.49 0.41 0.2 ! 0.08 0.15

0.27 0.34 0.49 0.24 0.12 0.06 0.27

0.18 0.6 0.41 0.24 0.14 0.16 0.16

0.13 0.15 0.2 0.12 0.14 ! 0.05 0.1

0.06 0.34 ! 0.08 0.06 0.16 ! 0.05 0.1

0.25 0.32 0.15 0.27 0.16 0.1 0.1

ACD

NBD_avg

NOF_avg

NOM_avg

NOT

NSF_avg

PAR_avg

pre

ACD

NBD_a
vg

NOF_a
vg

NOM
_a

vg
NOT

NSF_a
vg

PA
R_a

vg pr
e

Non! correlated metrics

(c) AutoSpearman

Figure 4.8 The Spearman rank correlation test on the subsets of metrics that are produced
by CFS, findCorrelation, and AutoSpearman, respectively. Correlated metrics that can be
linearly predicted by another metric and have their Spearman correlation coe�cient above
0.7 are highlighted in red, while non-correlated metrics are highlighted in green.

Table 4.8 The Variance Inflation Factor analysis of the subsets of metrics that are produced by
the correlation-based feature selection technique (CFS), findCorrelation, and AutoSpearman,
respectively. Correlated metrics that can be linearly predicted by a combination of other
metrics and have their VIF score of above 5 are highlighted in red.

CFS

Metric VIF score

NBD_sum 18.02

MLOC_sum12.37

NOM_max 5.32

CC_max 3.24
NBD_max 2.18
PAR_max 1.40
pre 1.32
NSM_avg 1.17

findCorrelation

Metric VIF score

NSM_avg 7.24

NSF_avg 7.17

NBD_avg 2.10
NOT 1.84
pre 1.29
ACD 1.26
PAR_avg 1.15
NOM_avg 1.12
NOF_avg 1.11

AutoSpearman

Metric VIF score

NBD_avg 2.10
NOT 1.83
pre 1.29
ACD 1.26
PAR_avg 1.13
NOM_avg 1.12
NOF_avg 1.11
NSF_avg 1.02

84 Automatically Mitigate Correlated Metrics when Explaining Defect Models

having the lowest correlation among each other; findCorrelation selects 9 metrics through
the reduction of pair-wise Spearman correlations among metrics; and AutoSpearman selects
8 metrics based on the results of correlation analyses. Unfortunately, the results of correlation
analyses show that CFS and findCorrelation cannot mitigate correlated metrics. According
to Figures 4.8a and 4.8b, as many as 5 of the 8 metrics that are selected by CFS can be
linearly predicted by another metric and have their Spearman correlation coe�cient above
0.7. Furthermore, according to Table 4.8, 3 of the 8 metrics that are selected by CFS and 2 of
9 the metrics that are selected by findCorrelation can be linearly predicted by a combination
of other metrics and have their VIF score above 5. These findings suggest that (1) CFS,
while considering the correlation among metrics, does not mitigate correlated metrics; and
(2) findCorrelation can mitigate collinearity but not multicollinearity.

On the other hand, accroding to Figure 4.8c and Table 4.8, AutoSpearman mitigates
correlated metrics for both collinearity andmulticollinearity. We observe that the collinearity
analysis of AutoSpearman selects one representative metric from each group of correlated
metrics. Furthermore, the multicollinearity analysis of AutoSpearman further mitigates
correlated metrics that cannot be detected by collinearity analysis (i.e., the analysis of pair-
wise correlation among metrics).

AutoSpearman is the only studied feature selection technique that can mitigate correlated metrics, i.e.,

collinearity and multicollinearity. We observe that other studied feature selection techniques produce up

to 100% of subsets of metrics with collinearity and multicollinearity, suggesting that the explanation

of defect models constructed using the subsets of metrics that are produced by all of the studied feature

selection techniques (except for AutoSpearman) may be misleading.

(RQ6) What is the impact of feature selection techniques on the per-
formance of defect models?

Approach. To address RQ6, we analyse the performance of defect models that are construc-
ted using the subsets of metrics that are produced by the twelve studied feature selection
techniques, and a baseline (i.e., all metrics of a defect dataset). We start from the subsets of
metrics that are produced by all studied feature selection techniques for each training sample
of each studied dataset from RQ1 (cf. the Step 2 of RQ1). We then construct defect models
using these subsets of metrics and evaluate their performance. Consequently, we analyse the
impact of each studied feature selection technique on the model performance. We describe
each step below.

(Step 1) Construct defect models. For each training sample, we construct logistic regression
and random forest models using subsets of metrics that are produced by the twelve studied
feature selection techniques, and all metrics of a defect dataset. We use the implementation
of logistic regression as provided by the glm function of the stats R package [214] with the
default parameter setting. We use the implementation of random forest as provided by the

4.4 Experimental Results 85

randomForest function of the randomForest R package [23] with the default ntree value
of 100, since recent studies [210, 213] show that the performance of random forest models is
insensitive to the parameter setting. To ensure that the training and testing corpora share
similar characteristics and avoid any potential impact on the explanation of defect models,
we do not re-balance nor do we re-sample the training data [208].

(Step 2) Evaluate defect models. In our study, we evaluate defect models using three
performance measures. First, we use the Area Under the receiver operator characteristic
Curve (AUC) to measure the discriminatory power of our models, as suggested by recent
research [52, 114, 174, 207]. The AUC is a threshold-independent performance meas-
ure that evaluates the ability of classifiers in discriminating between defective and clean
modules. The values of AUC range between 0 (worst performance), 0.5 (no better than
random guessing), and 1 (best performance) [66]. Second, we use the F-measure, i.e., a
threshold-dependent measure. F-measure is a harmonic mean (i.e., 2·precision·recall

precision+recall) of pre-

cision (TP
TP+FP) and recall (TP

TP+FN). Similar to prior studies [5, 237], we use the default
probability value of 0.5 as a threshold value for the confusion matrix, i.e., if a module has
a predicted probability above 0.5, it is considered defective; otherwise, the module is con-
sidered clean. Third, we use the Matthews Correlation Coe�cient (MCC) measure, i.e, a
threshold-dependent measure, as suggested by prior studies [127, 191]. MCC is a balanced
measure based on true and false positives and negatives that is computed using the following
equation: TP⇥TN–FP⇥FNq

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
.

(Step 3) Analyse the impact on the model performance. We analyse the performance di�erence
between defect models that are constructed using subsets of metrics that are produced by
feature selection techniques (i.e., the twelve studied feature selection techniques) and all
metrics of a defect dataset (PFS–PAll). We also set out to investigate whether such performance
di�erence is statistically significant using the Mann-Whitney U test and its extension, the
Kruskal and Wallis H test. A p-value of the Mann-Whitney U test of below 0.05 suggests
that the di�erence between two input distributions is statistically significant, while a p-value
of the Kruskal and Wallis H test of below 0.05 suggest that the di�erences across multiple
input distributions are statistically significant. Finally, in order to measure the e�ect size
of the performance di�erence, we use Cli� ’s |X | e�ect size to analyse the magnitude of the
di�erence between these distributions. Cli� ’s |X | e�ect size ranges from 0 to +1, where a
zero value indicates that two distributions are identical. We use the interpretation of Cli� ’s
|X | estimates by Romano et al. [187] which maps Cli� ’s |X | to Cohen’s significance levels as
follows: Negligible: |X | < 0.147, Small: 0.147 |X | < 0.33, Medium: 0.33 |X | < 0.474, and
Large: 0.474 |X |. We present the results using boxplots in Figure 4.9.

Results. The studied feature selection techniques impact the performance of defect
models by up to 5%pts. Figure 4.9 shows the performance di�erence (%pts) between defect
models that are constructed using subsets of metrics that are produced by the twelve studied
feature selection techniques and all metrics of a defect dataset, i.e., PFS – PAll. We make three

86 Automatically Mitigate Correlated Metrics when Explaining Defect Models

!

!

!

!

!

! !

!

!

! !

!

!

!

!

! !

!

!!

!

!

!

! !

!

!

! !

!

!

!

!

!

!

! !!

!

! ! !!!

!! !

!

! !

! !

! !

!

!! !

!

!

! !

!

!

!

!

! !

!

! !!

!!

AUC F1 MCC

LR
R

F

! 0.05 0.00 0.05 ! 0.05 0.00 0.05 ! 0.05 0.00 0.05

AutoSpearman
Hybrid

Step! Both
Step! BWD
Step! FWD

RFE! RF
RFE! LR

findCorrelation
CON

Chisq
IG

CFS

AutoSpearman
Hybrid

Step! Both
Step! BWD
Step! FWD

RFE! RF
RFE! LR

findCorrelation
CON

Chisq
IG

CFS

Performance Difference (%pts)

Type Filter! based Wrapper! based Hybrid AutoSpearman

Figure 4.9 The distributions of the performance di�erence (%pts) between defect models
that are constructed using subsets of metrics that are produced by the twelve studied feature
selection techniques and all metrics of a defect dataset, i.e., PFS – PAll.

following observations: (1) filter-based feature selection techniques (except for CON) have
the highest impact on the performance of defect models by up to 5%pts (at the median); (2)
wrapper-based feature selection techniques have the least impact on the performance of defect
models by up to 1%pt (at the median); and (3) AutoSpearman impacts the performance of
defect models by up to 2%pts (at the median). The results of the Mann-Whitney U test and
the Kruskal-Wallis H test suggest that all of the performance di�erences are not statistically
significant with the p-values of above 0.05. Also, our Cli� ’s |X | e�ect size test shows that such
performance di�erences are negligible to small for the AUC, F-measure, and MCC measures.
We suspect that the highest impact on the model performance of filter-based (except for
consistency-based) and hybrid feature selection techniques has to do with the removal of
metrics that share a strong relationship with the outcome.

We observe that the finding regarding wrapper-based feature selection techniques is
consistent with Ghotra et al. [53], i.e., the performance of defect models is impacted by at
most 2%pts for the AUC measure when applying wrapper-based feature selection techniques.
We suspect that such a low impact on the model performance has to do with the low number
of irrelevant metrics (e.g., a constant metric) in defect datasets.

4.4 Experimental Results 87

The studied feature selection techniques impact the performance of defect models by up to 5%pts. The

results of the Mann-Whitney U test and the Kruskal-Wallis H test suggest that all of the performance

di�erences across feature selection techniques are not statistically significant with the p-values of above

0.05. The results of the Cli� ’s |X | e�ect size test also confirm that such performances are negligible to

small for the AUC, F-measure, and MCC measures.

(RQ7) What is the computational cost of applying feature selection
techniques?

Approach. To address RQ7, we analyse the computational cost of the twelve studied feature
selection techniques. For each defect dataset, we use only one bootstrap training sample.
Then, we measure the computational cost of applying the twelve studied feature selection
techniques on a training sample for each defect dataset. We measure the computational cost
using the microbenchmark function of the microbenchmark R package [144]. Finally, we
present the results using boxplots in Figure 4.10. Due to the enormous di�erence in the
computation cost across the studied feature selection techniques, we report the computational
cost (x-axis) using a log10 scale.
Results. The computational cost of wrapper-based feature selection techniques and
the consistency-based feature selection technique is expensive. Figure 4.10 shows the
computational cost analysis of the studied feature selection techniques using a log10 scale.
We observe that, at the median, the computational cost of the studied feature selection
techniques is 0.67s, 0.29s, 0.19s, 186s, 0.18s, 135.3s, 8965s (2 hours and 29 minutes), 6.92s,
3.27s, 12.53s, 1.53s, and 0.22s for CFS, IG, Chisq, CON, findCorrelation, RFE-LR, RFE-
RF, Step-FWD, Step-BWD, Step-BOTH, Hybrid, and AutoSpearman, respectively. In
particular, wrapper-based feature selection techniques and the consistency-based feature
selection technique are expensive to compute, and can cost up to 7 hours and 30 minutes
for RFE-RF to find the best subset of metrics from one training sample of the Proprietary
2 defect dataset. Such expensive computation cost makes the application of wrapper-based
feature selection techniques undesirable, particularly, when validating with model validation
techniques that require several repetitions (e.g., bootstrap validation technique).

The computational cost of filter-based feature selection techniques and AutoSpearman is cheap, while

such cost is expensive for wrapper-based feature selection techniques and the consistency-based feature

selection technique. The computational cost of wrapper-based feature selection techniques is as high as

7 hours and 30 minutes for RFE-RF to find the best subset of metrics from one training sample of the

Proprietary 2 defect dataset. Such expensive computation cost makes the application of wrapper-based

feature selection techniques undesirable, particularly, when validating with model validation techniques

that require several repetitions (e.g., bootstrap validation technique).

88 Automatically Mitigate Correlated Metrics when Explaining Defect Models

AutoSpearman

Hybrid

Step! Both

Step! BWD

Step! FWD

RFE! RF

RFE! LR

findCorrelation

CON

Chisq

IG

CFS

0.1 10 1000

log10(Time) (s)

Type Filter! based Wrapper! based Hybrid AutoSpearman

Figure 4.10 The computational cost analysis of the twelve studied feature selection techniques.

(RQ8) Do correlation threshold values have an impact on the explan-
ation of defect models?

Approach. To address RQ8, we analyse the impact of correlation threshold values when
producing subsets of metrics with AutoSpearman on the explanation of defect models along
2 dimensions, i.e., consistency and correlation. AutoSpearman relies on two threshold values,
i.e., the Spearman correlation threshold and the VIF threshold. While we use the Spearman
correlation threshold value of 0.7 as a baseline as suggested by Kraemer et al. [107] and
the VIF threshold value of 5 as a baseline as suggested by Fox et al. [44] to indicate strong
correlations between metrics, we perform sensitivity analyses for both threshold values. For
the sensitivity analysis of the Spearman correlation threshold, we use the VIF threshold value
of 5 and compare the explanation produced by the Spearman correlation threshold values
of 0.8 and 0.9 with those produced by the baseline. Similarly, for the sensitivity analysis of
the VIF threshold, we use the Spearman correlation threshold value of 0.7 and compare the
explanation produced by the VIF threshold values of 3 and 10 with those produced by the
baseline. Below, we explain how we generate the explanation of defect models and how we
analyse the impact of correlation threshold values on such explanation.

To generate the explanation of defect models, we adopted the defect modelling workflow
used in prior studies [85]. First, we mitigate correlated metrics using our proposed feature
selection technique, AutoSpearman. Second, we generate training and testing samples
using the out-of-sample bootstrap validation technique. Third, we use training samples to
construct defect models (i.e., logistic regression and random forests). Fourth, we generate the
importance score of metrics using the ANOVA Type-II analysis [43] for logistic regression
and the scaled permutation importance analysis [21] for random forests. Finally, we identify

4.4 Experimental Results 89

Table 4.9 The percentage of the studied defect datasets in which their most important metrics
are consistent among correlation threshold values.

Classification

Techniques

Model Explanation

Techniques

Spearman

Correlation

Threshold

VIF

Threshold

0.8 0.9 3 10

Logistic Regression ANOVA Type 2 69% 62% 85% 92%

Random Forests Scaled Permutation Importance 69% 38% 85% 100%

the importance ranking of metrics using the improved Scott-Knott E�ect Size Di�erence
(ESD) test [206].

We analyse the consistency and correlation of the most important metrics among cor-
relation threshold values. To do so, we compute the percentage of the studied datasets in
which their most important metrics are consistent among correlation threshold values. We
also compute the Spearman correlation of the most important metrics produced by di�erent
correlation threshold values.

!

!

! !

B
aseline and a S

pearm
an

correlation threshold
of 0.8

B
aseline and a S

pearm
an

correlation threshold
of 0.9

0.00 0.25 0.50 0.75 1.00

RF

LR

RF

LR

Spearman correlation coefficients (|! |)

(a) Spearman correlation

! !

!!

!

B
aseline and a V

IF
threshold of 3

B
aseline and a V

IF
threshold of 10

0.00 0.25 0.50 0.75 1.00

RF

LR

RF

LR

Spearman correlation coefficients (|! |)

(b) VIF

Figure 4.11 The distributions of Spearman correlation coe�cients of the most important
metrics produced by the baseline and correlation threshold values.

Results. Di�erent correlation threshold values may produce di�erent most import-
ant metrics. Table 4.9 shows the percentage of the studied defect datasets in which their
most important metrics are consistent among correlation threshold values. We find that
69% and 38-62% of the studied defect datasets has their most important metrics produced
by the Spearman correlation threshold values of 0.8 and 0.9 consistent with the baseline

90 Automatically Mitigate Correlated Metrics when Explaining Defect Models

Table 4.10 The top-5 most important metrics according to the percentage of the studied
defect datasets in which their most important metrics are consistent among correlation
threshold values.

Rank AutoSpearman(0.7) AutoSpearman(0.9)

1 NOM_avg NBD_sum

2 NBD_avg NBD_avg

3 pre NOM_avg

4 PAR_avg FOUT_avg

5 NOF_avg pre

(the Spearman correlation threshold value of 0.7), respectively. We also find that 85% and
92-100% of the studied defect datasets has their most important metrics produced by the
VIF threshold values of 3 and 10 consistent with the baseline (the VIF threshold value of
5), respectively. In other words, 31-62% of these studied datasets produces di�erent most
important metrics among Spearman correlation threshold values, while such inconsistency
among VIF threshold values are 0-15%.

The most important metrics produced by di�erent correlation threshold values
are highly correlated. Figure 4.11 shows the distributions of Spearman correlation coef-
ficients of the most important metrics produced by the baseline and correlation threshold
values. We find that, at the median, Spearman correlation coe�cients of the most important
metrics produced by the baseline and the Spearman correlation threshold values of 0.8 and
0.9 are 1 and 0.84-1 for both logistic regression and random forests. Similarly, at the median,
Spearman correlation coe�cients of the most important metrics produced by the baseline
and the VIF threshold values of 3 and 10 are 1 for logistic regression and random forests,
respectively. These findings show that while di�erent correlation threshold values may
produce di�erent most important metrics, such di�erent most important metrics are highly
correlated. The experimental results lead us to conclude that correlation threshold values do
not impact the explanation of defect models.

Illustrative Example. Similar to previous research questions, we use the Eclipse Platform 2
dataset as the subject of this example. Following the approach to generate the explanation
of defect models as explained above, we identify the importance rankings of metrics pro-
duced by AutoSpearman with the correlation threshold values of 0.7 (baseline) and 0.9 as
shown in Table 4.10. According to Figure 4.12, we find that NOM_avg (the most important
metric according to AutoSpearman(0.7)) and NBD_sum (the most important metric accord-
ing to AutoSpearman(0.9)) are highly correlated with the Spearman correlation of 0.73.
This example further illustrates that the little impact of correlation threshold values on the
explanation of defect models.

4.5 Discussions 91

0.83 0.71 0.34 0.39 0.3 0.37

0.83 0.74 0.31 0.34 0.34 0.32

0.71 0.74 0.53 0.74 0.23 0.37

0.34 0.31 0.53 0.49 ! 0.08 0.15

0.39 0.34 0.74 0.49 0.06 0.27

0.3 0.34 0.23 ! 0.08 0.06 0.1

0.37 0.32 0.37 0.15 0.27 0.1

FOUT_avg

NBD_avg

NBD_sum

NOF_avg

NOM_avg

PAR_avg

pre

FOUT_a
vg

NBD_a
vg

NBD_s
um

NOF_a
vg

NOM
_a

vg

PA
R_a

vg pr
e

Non! correlated metrics Correlated metrics

Figure 4.12 The Spearman rank correlation test on the top-5 important metrics according to
AutoSpearman using the correlation threshold values of 0.7 and 0.9. Correlated metrics that
can be linearly predicted by another metric and have their Spearman correlation coe�cient
above 0.7 are highlighted in red, while non-correlated metrics are highlighted in green.

No. Indeed, 0–62% of the studied defect datasets produces di�erent most important metrics among

correlation threshold values. However, such di�erent most important metrics are highly correlated with

the spearman correlation of 0.84–1, suggesting that correlation threshold values do not impact the

explanation of defect models.

4.5 Discussions

4.5.1 The trends of correlatedmetrics that are elected by the commonly-
used feature selection techniques

Approach. To investigate the trends of correlated metrics that are selected by the commonly-
used feature selection techniques, similar to the illustrative example in RQ1, we first select the
Eclipse Platform 2 dataset as the subject of this analysis. We draw a bootstrap training sample
and apply all studied feature selection techniques to generate subsets of metrics for each
studied technique. Then, we analyse the correlation among metrics for both collinearity and
multicollinearity to find correlated metrics in each subset of metrics produced by the studied
feature selection techniques (cf. Steps 1 and 2 of RQ5). Finally, we identify (1) the number of

92 Automatically Mitigate Correlated Metrics when Explaining Defect Models

AutoSpearman

Hybrid

Step! BOTH

Step! BWD

Step! FWD

RFE! RF

RFE! LR

findCorrelation

CON

Chisq

IG

CFS

 0 4 8 12 16 20 24 28 32
The number of correlated metrics

selected by feature selection techniques

Figure 4.13 The number of correlated metrics selected by each studied feature selection
technique for an illustrative analysis of the Eclipse Platform 2 dataset.

correlated metrics selected by each feature selection technique and (2) the number of feature
selection techniques that select each correlated metric.

Results. Most of the correlated metrics selected by commonly-used feature selection
techniques are aggregated metrics produced by metric aggregation schemes. Fig-
ure 4.14 shows the number of studied feature selection techniques that select each correlated
metric for an illustrative analysis of the Eclipse Platform 2 dataset. We find that correlated
metrics are selected by 1–9 studied feature selection techniques. We observe that most of
correlated metrics are aggregated metrics—metrics that are extracted at the method level and
are summarised to the file level using metric aggregation schemes, e.g., minimum, average,
and maximum. This observation is consistent with that of Zhang et al. [235] where metric
aggregation schemes often produce correlated metrics.

4.6 Threats to Validity

Construct Validity. Plenty of prior work show that the parameters of classification tech-
niques have an impact on the performance of defect models [49, 106, 133, 134, 210]. While
we use a default ntree value of 100 for random forest models, recent studies [80, 210, 220]
show that the performance of random forest models is insensitive to this parameter setting.
Thus, we believe that this threat is not a major limitation of our work.

The concept of non-correlated metrics in our paper relies on threshold values of correl-
ation analyses (i.e., 0.7 for a Spearman rank correlation test and 5 for a Variance Inflation

4.6 Threats to Validity 93

MLOC_avg
NOF_max
NSM_sum
NOM_max

CC_avg
FOUT_max

NOF_avg
NOF_sum
NOM_sum
PAR_sum
NSF_max
NSF_sum
NSM_max
NOM_avg

TLOC
NSF_avg
NSM_avg

FOUT_sum
CC_sum

FOUT_avg
MLOC_max

NBD_avg
PAR_avg

PAR_max
NBD_max
NBD_sum

MLOC_sum
CC_max

 0 2 4 6 8 10 12
The number of feature selection techniques

Figure 4.14 The number of studied feature selection techniques that select each correlated
metric for an illustrative analysis of the Eclipse Platform 2 dataset.

Factor analysis). To mitigate this threat, we perform an in-depth sensitivity analysis in RQ8
and find that correlation threshold values do not impact the explanation of defect models.

Internal Validity. Prior studies raise concerns related to the replicability [184], the data
quality [168, 192], and the risk of overfitting [212]. Nevertheless, we conduct a highly-
controlled experiment where we apply 4 dataset selection criteria to mitigate these concerns.
Thus, our study focuses 13 defect datasets from 4 corpora, i.e., 5 datasets as provided by [94],
3 datasets as provided by D’Ambros et al. [33, 34], 3 datasets as provided by Zimmermann et

al. [238], and 2 datasets as provided by Kim et al. [101] and Wu et al. [230].

External Validity. We studied a limited number of feature selection techniques. Thus,
our results may not generalise to other feature selection techniques. Nonetheless, other feature
selection techniques can be explored in future work. We provide a detailed methodology
for others who would like to re-examine our findings using unexplored feature selection
techniques.

Recent work [119, 224, 225] used advanced deep learning techniques to automatically
extract semantic features for predicting software defects. However, such semantic features
may impact distributions of original features and transform them into an unexplainable
form of features. Since the ultimate goal of this study is to constructing explainable defect
prediction models, we therefore excluded these approaches from our studied techniques.

The studied defect datasets are part of several systems (e.g., Eclipse) that span both
proprietary and open source domains. However, we studied a limited number of defect
datasets. Thus, the results may not generalise to other datasets and domains. Replication
studies are needed. The conclusions of our study rely on one defect prediction scenario

94 Automatically Mitigate Correlated Metrics when Explaining Defect Models

(i.e., within-project defect models). However, there are a variety of defect prediction
scenarios in the literature (e.g., cross-project defect prediction [27, 237], just-in-time defect
prediction [96], heterogenous defect prediction [157]). Therefore, the conclusions may di�er
for other scenarios. Thus, future research should revisit our study in other scenarios of defect
models.

4.7 Conclusions

In this chapter, we investigate 11 commonly-used feature selection techniques and our own
contribution AutoSpearman along 5 dimensions: (1) the consistency of the produced subsets
of metrics; (2) the correlation of the produced subsets of metrics; (3) the performance; (4) the
computational cost; and (5) the impact on the explanation. Through a study of 13 publicly-
available defect datasets of systems that span both proprietary and open source domains,
we find that the selected metrics of the commonly-used techniques (except for Stepwise
Regression) are consistent regardless of the ordering of metrics in model specifications.
However, we find that (1) 94-100% of the selected metrics are inconsistent among the
studied techniques; (2) 31-94% of the selected metrics are inconsistent among training
samples; (3) 0-62% of the selected metrics are inconsistent when the application of the
feature selection techniques is repeated; and (4) 3-100% of the produced subsets of metrics
contain correlated metrics—suggesting that the commonly-used automated feature selection
techniques are often unreliable. We also find that (5) 0–62% of the studied defect datasets
produces di�erent most important metrics among correlation threshold values while such
di�erent most important metrics are highly-correlated with the Spearman correlation of
0.84–1.

We are the first to provide empirical evidence that commonly-used feature selection
techniques in the defect prediction domain are inconsistent in nature. Such inconsistent
nature of these feature selection techniques (1) restricts an application of post-hoc multiple
comparison analyses (e.g., a Scott-Knott test) to identify the most important metrics when
explaining defect models; and (2) has a negative impact on the explanation of defect models
due to the presence of correlated metrics. Thus, to mitigate these concerns, the results of our
empirical investigations lead us to recommend AutoSpearman be used in future studies, since
AutoSpearman yields higher consistency than commonly-used feature selection techniques
and automatically mitigates correlated metrics. We also provide the implementation of
AutoSpearman as an R package [87]. Nevertheless, future research e�ort should develop
and explore a new automated feature selection technique that mitigates these concerns (e.g.,
produces subsets of metrics that are consistent and have no correlations among themselves).

Finally, we would like to emphasise that the goal of this work is not to claim the gen-
eralisation of our results for every dataset and every model in software engineering. In
addition, the best subset of metrics that one should include in studies depends on the goal of
the studies. For example, if the goal of the study is prediction (i.e., aiming to achieve the

4.7 Conclusions 95

highest predictive performance), one might prioritise resources on improving the model
performance regardless of the correlation among metrics. On the other hand, if the goal of
the study is model explanation (i.e., aiming to examine the impact of various phenomena on
software quality), one should avoid using commonly-used feature selection techniques when
explaining defect models. To mitigate the inconsistent nature of automated feature selection
techniques, we recommend AutoSpearman be used in future studies when explaining defect
models.

4.7.1 Chapter Remarks

In this chapter, we investigate techniques that automatically mitigate correlated metrics
when explaining defect models. The experimental results show that, when comparing to
commonly-used feature selection techniques, our contribution, AutoSpearman, yields higher
consistency and automatically mitigates correlated metrics. Thus, to derive the best defect
modelling workflow that produces the most accurate and reliable explanation of defect
models, the experimental results lead us to suggest that future research should automatically
mitigate correlated metrics with AutoSpearman prior to constructing and explaining defect
models.

According to the experimental results in Chapters 3 and 4, one should automatically
mitigate correlated metrics with AutoSpearman prior to constructing defect models; and use
the ANOVA Type-II technique to explain logistic regression models, while using the scaled
Permutation Importance technique to explain random forests models. However, these model
explanation techniques cannot justify each individual prediction of the models on testing
or unseen data. Thus, in the next chapter, we set out to investigate the best techniques for
explaining the predictions of defect models.

Chapter 5

Explain the Predictions of Defect
Models

An earlier version of the work in this chapter appears in the Transaction on Software
Engineering (TSE) [82].

98 Explain the Predictions of Defect Models

5.1 Introduction

Software analytics have empowered many software organisations to improve software
quality and accelerate software development processes. Such analytics are essential to guide
operational decisions and establish quality improvement plans. For example, Microsoft
leverages the advances of Artificial Intelligence and Machine Learning (AI/ML) capabilities
to predict software defects [154]. In addition, prior studies have proposed techniques to
estimate Agile story points [31], estimate software development costs [159], recommend a
reviewer [218], recommend a developer to fix a software defect [4].

Despite the recent advances in software analytics, such decision-making based on AI/ML-
based systems needs to be better justified and uphold privacy laws. Article 22 of the European
Union’s General Data Protection Regulation (GDPR) [179] states that the use of data in
decision-making that a�ects an individual or group requires an explanation for any decision

made by an algorithm. Recent work raises a concern about a lack of explainability of software
analytics in software engineering [32]. Practitioners also share similar concerns that analytical
models in software engineering must be explainable and actionable [32, 115]. For example,
Google [115] argues that defect models should be more actionable to help software engineers
debug their programs. Miller [145] also argues that human aspects should be taken into
consideration when developing AI/ML-based systems. Thus, Explainable Software Analytics—
a suite of AI/ML techniques that produce accurate predictions, while being able to explain
such predictions—is vitally needed.

Thus, researchers often generated global explanations, which refers to an explanation
that summarises the predictions of black-box AI/ML learning algorithms. Such global
explanations can be generated by model-specific explanation techniques of machine learning
techniques (e.g., an ANOVA analysis for logistic regression and a variable importance analysis
for random forests). Prior studies used these model interpretation techniques to understand
the relationship between studied variables and an outcome. For example, Menzies et al. [140]
investigated the impact of code attributes on software quality. Bird et al. [17] studied
the correlation between human factors and software quality. McIntosh et al. [131] and
Thongtanunam et al. [216] investigated the relationship between code review practices and
post-release defects.

However, such global explanations cannot justify each individual prediction of the models
on testing or unseen data. For example, an analytical model for software defects may generate
a predicted probability of 0.9 for a testing instance, suggesting that a software module will
be defective in the future. Such the predicted probability does not provide any explanation
from the models as to why the machine learning techniques make that prediction. A lack of
explanation of the predictions generated by such analytical models could lead to serious errors
in decision- and policy-making, hindering the adoption of software analytics in industrial
practices [32].

5.1 Introduction 99

A prediction
score of

90%

Model-
Agnostic!

Techniques

Unseen
Data

Model-specific
interpretation !
techniques!
(VarImp)

Black-Box !
Models

Global Explanation

Instance ExplanationPrediction

Figure 5.1 An illustration of model-agnostic techniques. Model-agnostic techniques are used
to explain the predictions of unseen data, while the global explanation is derived from the
trained models from training data. In other words, one model can have only one global
explanation, but should have multiple instance explanations.

Recently, model-agnostic techniques have been proposed to explain the prediction of
black-box AI/ML algorithms by identifying the contribution that each metric has on the
prediction of an instance according to a trained model. Yet, such techniques have never been
formally introduced and empirically evaluated in the context of software engineering. To
address this challenge, this study is the first to focus on generating instance explanationswhich
refers to an explanation of the prediction of defect prediction models (see Figure 5.1), by
answering a central question: Should model-agnostic techniques be used to explain the predictions
of defect models?

In this paper, we empirically evaluate three model-agnostic techniques, i.e., two state-
of-the-art Local Interpretability Model-agnostic Explanations (LIME) technique [182] and
BreakDown [55, 201] technique, and our improvement of LIME with Hyper Parameter
Optimisation (LIME-HPO) using a di�erential evolution algorithm. LIME constructs a local
regression model surrounding the instance to be explained to identify the contribution of
each metric to the prediction of the instance to be explained. On the other hand, BreakDown

decomposes the prediction of the instance to be explained into parts that can be attributed to
each studied metric as to their contribution to the prediction. We generate explanations of the
predictions of defect models that are constructed from six classification techniques (i.e., logistic
regression (LR), random forests (RF), C5.0, averaged neural network (AVNNet), gradient
boosting machines (GBM), and extreme Gradient Boosting Trees (xGBTree)). Through a
study of 32 publicly-available defect datasets of 9 large-scale open-source software systems,
we address the following six research questions:

(RQ1) Does LIME with Hyper Parameter Optimisation (LIME-HPO) outperform
default LIME in terms of the goodness-of-fit of the local regression models?
LIME-HPO always outperform default LIME in terms of the goodness-of-fit (R2)

100 Explain the Predictions of Defect Models

of the local regression models with an average improvement of 8% for all of the
studied classification techniques.

(RQ2) Can model-agnostic techniques explain the predictions of defect models?
Model-agnostic techniques can explain the predictions of defect models. Given the
same defect models, di�erent predictions have di�erent instance explanations. For
example, one metric that appears at the top rank for one instance could appear at the
rank 21 for another instance. Such high variation indicates that global explanations
do not imply instance explanations (and vice versa), highlighting the need for model-
agnostic techniques for explaining the predictions of defect models.

(RQ3) Do instance explanations generated by model-agnostic techniques overlap
with the global explanation of defect models?
Despite the variation of the ranking of the top-10 important metrics for instance
explanations (see RQ2), their overall ranking is mostly overlapping (but not exactly
the same) with that of the global explanations. We find that, at the median, 7, 10,
and 9 of the top-10 summarised important metrics of for instance explanations are
overlapping with the top-10 global important metrics for LIME, LIME-HPO, and
BreakDown, respectively.

(RQ4) Domodel-agnostic techniques generate the same instance explanationwhen
they are re-generated for the same instance?
Regardless of the studied classification techniques, LIME-HPO and BreakDown
consistently generate the same instance explanation for the same instance. On the
other hand, LIME generates di�erent instance explanations when re-generating
instance explanations of the same instance with a median rank di�erence of 7 ranks.

(RQ5) What is the computational time ofmodel-agnostic techniques for explaining
the predictions of defect models?
The computational time of LIME-HPO, BreakDown, and LIME techniques is less
than a minute to generate instance explanations for all of the studied classification
techniques, suggesting that all of the studied model-agnostic techniques are practical
to be used in real-world deployments in the future.

(RQ6) Howdo practitioners perceive the contrastive explanations generated bymodel-
agnostic techniques?
65% of the practitioners agree that model-agnostic techniques can generate a con-
trastive explanation within an object over time (Time-contrast) (e.g., why was file A
not classified as defective in version 1.2, but was subsequently classified as defective
in version 1.3?). In particular, 55% and 65% of the participants perceive that such
Time-contrast explanations are necessary and useful, respectively.

5.2 Explainability in Software Engineering 101

Since the implementation of the studied model-agnostic techniques is readily available in
both Python (LIME [180] and pyBreakDown [14]) and R (LIME [164] and BreakDown [15,
55]), we recommend model-agnostic techniques be used to explain the predictions of defect
models.
Novelty & Contributions. The key contributions of this study are as follows:

(1) An introduction to the explainability in software engineering from a perspective of
psychological science (Section 5.2).

(2) An introduction to the state-of-the-art model-agnostic techniques (i.e., LIME and
BreakDown) for generating instance explanations and our contribution approach –
An improvement of LIME using Hyper Parameter Optimisation (LIME-HPO) with a
di�erential evolution algorithm (Section 5.3).

(3) An empirical evidence of an improvement of LIME-HPO over LIME in terms of the
goodness-of-fit of the local regression models (RQ1) (Section 5.4).

(4) An empirical study of the need (RQ2), trustworthiness (RQ3), reliability (RQ4), com-
putational time (RQ5), and software practitioners’ perception (RQ6) of model-agnostic
techniques (Section 5.4).

5.1.1 Chapter Organisation

Section 5.2 introduces the explainability in software engineering. Section 5.3 introduces
model-agnostic techniques for generating instance explanation. Section 5.4 presents the
design of our study, while Section 5.5 discusses the results with respect to six research
questions. Section 5.6 discusses the key di�erences between model-agnostic techniques
and a simple tree-based technique. Section 5.7 discusses related work in order to situate
the contributions of our paper with respect to explainable software analytics and analytical
models for software defects. Section 5.8 discusses the threats to the validity of our study.
Finally, Section 5.9 draws conclusions.

5.2 Explainability in Software Engineering

Software engineering is by nature a collaborative social practice. Collaboration among
di�erent stakeholders (e.g., users, developers, and managers) is essential in modern software
engineering. As a part of the collaboration, individuals are often expected to explain decisions
made throughout software development processes to develop appropriate trust and enable
e�ective communication. Since tool support in software development processes is an integral
part of this collaborative process, similar expectations are also applied. Such tools should
not only provide insights or generate predictions for recommendation, but also be able to
explain such insights and recommendations.

102 Explain the Predictions of Defect Models

Recent automated and advanced software development tools heavily rely on Artificial
Intelligence and Machine Learning (AI/ML) capabilities to predict software defects, estimate
development e�ort, and recommend API choices. However, such AI/ML algorithms are
often “black-box”, which makes it hard for practitioners to understand how the models
arrive at a decision. A lack of explainability of the black-box algorithms leads to a lack of
trust in the predictions or recommendations produced by such algorithms.

5.2.1 A Theory of Explainability

According to philosophy, social science, and psychology theories, a common definition of
explainability or interpretability is the degree to which a human can understand the reasons behind a
decision or an action [146]. The explainability of AI/ML algorithms can be achieved by (1)
making the entire decision-making process transparent and comprehensible and (2) explicitly
providing an explanation for each decision [121] (since an explanation is not likely applicable
to all decisions [113]). In order to make the entire decision-making process transparent, prior
software engineering studies often use white-box AI/ML algorithms (e.g., decision trees and
decision rules). While such white-box AI/ML algorithms can increase the explainability of
the decision-making process, their predictions may not be as accurate as complex black-box
AI/ML techniques (e.g., random forest, extreme gradient boosting trees). Hence, research has
emerged to explore how to explain decisions made by complex, black-box models and how
explanations are presented in a form that would be easily understood (and hence, accepted)
by humans.

5.2.2 A Theory of Explanations

According to a philosophical and psychological theory of explanations, Salmon et al. [189]
argue that explanations can be presented as a causal chain of causes that lead to the decision.
Causal chains can be classified into five categories [75]: temporal, coincidental, unfolding,
opportunity chains and pre-emptive. Each type of causal chain is thus associated with an
explanation type. However, identifying the complete causal chain of causes is challenging,
since most AI/ML techniques produce only correlations instead of causations.

In contrast, Miller [146] argue that explanations can be presented as answers to why-
questions. Similarly, Lipton et al. [120] also share a similar view of explanations as being
contrastive. There are three components of why-questions [8]: (1) the event to be explained,
also called the explanandum (e.g., file A is defective); (2) a set of similar events that are similar
to the explanandum but did not occur (e.g., file A is clean); and (3) a request for information
that can distinguish the occurrence of the explanandum from the non-occurrence of the
other similar events (e.g., a large number of changes made to file A). Below, we describe
four types of why-questions:

• Plain-fact is the properties of the object. “Why does object a have property P?”

Example: Why is file A defective?

5.2 Explainability in Software Engineering 103

Figure 5.2 An example of visual explanations for a decision tree model, and two model-
agnostic techniques (i.e., LIME and BreakDown).

• Property-contrast is the di�erences in the Properties within an object. “Why does

object a have property P, rather than property P0?”
Example: Why is file A defective rather than clean?

• Object-contrast is the di�erences between two Objects. “Why does object a have

property P, while object b has property P0?”
Example: Why is file A defective, while file B is clean?

• Time-contrast is the di�erences within an object over Time. “Why does object a have

property P at time t, but property P0 at time t0?”
Example: Why was file A not classified as defective in version 1.2, but was subsequently
classified as defective in version 1.3?

Answers to the P-contrast, O-contrast and T-contrast why-questions form an ex-
planation. Contrastive explanations focus on only the di�erences on Properties within an object
(Property-contrast), between two Objects (Object-contrast), and within an object over Time (Time-
contrast) [221]. Answering a plain fact question is generally more di�cult than generating
answers to the contrastive questions [120]. For example, we could answer the Property-
contrast question (e.g., “Why is file A classified as being defective instead of being clean?”)
by citing that there are a substantial number of defect-fixing commits that involve with
the file. Information about the size, complexity, owner of the file, and so on are not re-
quired to answer this question. On the other hand, explaining why file A is defective in a
non-contrastive manner would require us to use all causes. In addition, humans tend to be
cognitively attached to digest contrastive explanations [146]. Thus, contrastive explanations
may be more valuable and more intuitive to humans. These important factors from both
social and computational perspectives should be considered when providing explainable
models or tool support for software engineering.

104 Explain the Predictions of Defect Models

Explanation is not only a product, as discussed above, but also a process [123]. In fact,
generating explanations is a cognitive process which essentially involves four cognitive systems:
(1) attention, (2) long-term memory, (3) working memory, and (4) metacognition [77, 113].
Recent work [146] further recognised the importance of considering explanation as being
not only a cognitive process but also a social process, in which an explainer communicates
knowledge to an explainee. Using this view, explanations should be considered as part of
a conversation between the explainer and explainee. The theories, models, and processes
of how humans explain decisions to one another are important to the work on explainable
software analytics and the development of explainable tool support for software engineering
in general.

5.3 Techniques for Generating Explanations

Prior studies often leverage white-box AI/ML techniques, such as decision trees [46] and
decision rules [171]. The transparency of such white-box AI/ML techniques allows us to
meaningfully understand the magnitude of the contribution of each metric on the learned
outcomes by directly inspecting the model components. For example, the coe�cients of
each metric in a regression model, paths in a decision tree, or rules of a decision rule model.
Figure 5.2 provides an example visual explanation of a white-box model (e.g., decision trees)
and model-agnostic techniques.

In contrast, white-box AI/ML techniques are often less accurate than complex black-box
AI/ML techniques and often generate generic explanations (e.g., one decision node may cover
100 instances). Recently, model-agnostic techniques (e.g., LIME [182] and BreakDown [55])
have been used to explain the predictions of any black-box AI/ML models at an instance level.
Guiding by a theory of explanations in Section 5.2.2, this study focuses on answering the
why-questions at an instance level for any predictions made by a black-box model. Below,
we present the formal definition of a black-box model, a global explanation, and an instance
explanation.

Definition 1.1: A black-box model. A black-box model is a function b : X(m) ! Y where

X(m) is the feature space with m corresponding to the studied metrics (i.e., independent
variables), and Y is the outcome space (e.g., defective or clean). Typically, training data
Dtrain is used for training a black-box model b(Dtrain), and testing data Dtest is used for
evaluating the accuracy of a black-box model b.

There are a plethora of techniques for generating explanations from these black-box
models where each technique has di�erent definitions and targets of explanations. Below,
we provide formal definitions and introduce techniques for explaining a black-box model
and techniques for explaining an individual prediction made by a black-box model.

5.3 Techniques for Generating Explanations 105

5.3.1 Explaining a black-box model

A global explanation (or a model explanation) refers to an explanation of the decisions
of a black-box model which summarises the logic of a classification technique based on
the conditional relationship between the independent variables (software metrics) and the
dependent variable (an outcome) with respect to a whole training data. Below, we present
the formal definition of global explanation and model-specific explanation techniques as
follows:

Definition 1.2: global explanation. A global explanation em = Y(b,Dtrain), if a global ex-
planation em is generated from an explanation function Y which summarises the logic of a
black-box model b that is learned from a training dataset Dtrain.

Model-specific explanation techniques focus on explaining the entire decision-making
process of a specific black-box model. For example, an ANOVA analysis for logistic regression
and a variable importance analysis for random forests. However, such global explanations
are often derived from black-box models that are constructed from training data, which are
not specific enough to explain an individual prediction.

5.3.2 Explaining an individual prediction

An instance explanation (or a local explanation) refers to an explanation of the decision
of a black-box model with respect to a testing instance. Below, we present the formal
definition of instance explanation and model-agnostic techniques as follows:

Definition 1.3: instance explanation An instance explanation eo = Y(b, x), if an instance
explanation eo is generated from an explanation function Y for a prediction b(x) of an instance
x 2 Dtest in a testing dataset Dtest.

Model-agnostic techniques (i.e., local explanation techniques) focus on explaining an in-
dividual prediction by diagnosing a black-box model. Unlike model-specific explanation
techniques discussed above, the great advantage of model-agnostic techniques is their flexib-
ility. Such model-agnostic techniques can (1) interpret any classification techniques (e.g.,
regression, random forest, and neural networks); (2) are not limited to a certain form of
explanations (e.g., feature importance or rules); and (3) are able to process any input data (e.g.,
features, words, and images [181]). According to the literature survey of model-agnostic
techniques [58], we selected and discussed two state-of-the-art model-agnostic techniques
(i.e., LIME and BreakDown). We also propose LIME-HPO—an improvement of LIME
using Hyper Parameter Optimisation based on the di�erential evolution technique.

LIME: Explaining a local model that mimics the global model

LIME (i.e., Local Interpretable Model-agnostic Explanations) [182] is a model-agnostic
technique that mimics the behaviour of the black-box model to generate the explanations of
the predictions of the black-box model. Given a black-box model and an instance to explain,
LIME performs 4 key steps to generate an instance explanation as follows:

106 Explain the Predictions of Defect Models

Algorithm 2: LIME’s algorithm [182]
Input :b is a black-box model,

x is an instance to explain,
n is a number of randomly generated
instances, and
k is a length of explanation

Output : e is a set of contributions of metrics on the prediction of the instance x.
1 D = !
2 for i in {1, ..., n} do
3 di = sample_around(x)
4 y0

i
= predict(b, di)

5 D = D [hdi, y0ii
6 end
7 l = K – Lasso(D, k)
8 e = get_coe�cients(l)
9 return e

• First, LIME randomly generates instances surrounding the instance of interest (cf. Line
3).

• Second, LIME uses the black-box model to generate predictions of the generated
random instances (cf. Line 4).

• Third, LIME constructs a local regression model using the generated random instances
and their generated predictions from the black-box model (cf. Line 7).

• Finally, the coe�cients of the regression model indicate the contribution of each metric
on the prediction of the instance of interest according to the black-box model (cf. Line
8).

Figure 5.2 shows a visual explanation of LIME (the middle column). The blue bars
indicate the supporting (+) scores of metrics towards the prediction as defective, while the red
bars indicate the contradicting (-) scores of metrics towards the prediction as defective. In this
example, the NotifyBuilder.java of the release 2.10.0 of the Apache Camel project is predicted
(74%) as defective due to a supporting score of 0.75 for a condition of {#ClassCoupled > 5},
a supporting score of 0.6 for a condition of {#LineComment > 24}, and a supporting score
of 0.5 for a condition of {#DeclareMethodPublic > 5}. On the other hand, the remaining
probability of 26% of not defective could be explained by a contradict score of 0.77 for a
condition of {#MajorDeveloper 2}.

LIME-HPO: Optimising the hyperparameter settings of LIME

Since LIME involves parameter settings (e.g., the number of randomly generated instances
that LIME uses to construct local regression models), we propose to optimise the parameter

5.3 Techniques for Generating Explanations 107

settings of the LIME algorithm using a Hyper Parameter Optimisation (LIME-HPO). We use
a di�erential evolution algorithm [202] to find an optimal value of the number of randomly
generated instances where the objective function is to maximise the goodness-of-fit (R2) of
the local regression models of LIME. We use the implementation of the di�erential evolution
technique as provided by the DEoptim function of the DEoptim R package [152] using the
following parameter settings:

• The lower boundary of 100 and the upper boundary of 10000 for the population of
the number of randomly generated instances used by LIME.

• The number of population (NP) of 10.

• The crossover probability (cr) of 0.5.

• The di�erential weighting factor from interval (f) of 0.8.

• The number of procedure iterations of 10 for generating population.

Given a black-box model and an instance to explain, LIME-HPO performs 6 key steps
to generate an instance explanation as follows:

• First, LIME-HPO randomly generates a set of candidate of size NP within the pop-
ulation boundary for the number of randomly generated instances surrounding the
instance of interest.

• Second, for each ca ndidate, LIME-HPO uses the black-box model to generate predic-
tions of the generated random instances and constructs local regression models (Steps
2 and 3 of LIME).

• Third, LIME-HPO find the best candidate of this generation for the number of
randomly generated instances that produces the local regression model with the highest
goodness-of-fit.

• Fouth, LIME-HPO generates a set of candidate for the next generation using the
set of candidate of the current generation with the crossover probability (cr) and the
di�erential weighting factor from interval (f).

• Fifth, LIME-HPO reiterates the procedure until reaching the number of procedure
iterations.

• Finally, LIME-HPO derives the coe�cients of the local regression model that yields
the highest goodness-of-fit across all generations as the contribution of each metric on
the prediction of the instance of interest according to the black-box model.

Since LIME involves random perturbation (Line 3 in Algorithm 1), di�erent samplings
may produce di�erent instance explanations. To mitigate the randomisation of LIME when

108 Explain the Predictions of Defect Models

Algorithm 3: BreakDown’s algorithm [201]
Input :b is a black-box model,

x is an instance to explain, and
Dtrain is a set of training instances used
to construct the black-box model.

Output : c is a set of contributions of metrics on the prediction of the instance x.
1 M = independent variables in x

2 Minitial = !
3 Y0

train
= predict(b,Dtrain)

4 EYinitial = average(Y0
train

)
5 Dinitial = Dtrain

6 for i in {1, ..., size(M)} do
7 for j in {M –Minitial} do
8 Dsubstituted = Dinitial
9 Dsubstituted[, j] = x[j]
10 Y0

substituted,j = predict(b,Dsubstituted)

11 dyj = abs(average(Y0
substituted,j) – EYinitial)

12 end
13 dymmax = find_max(dy{M–Minitial}

)
14 cmmax = dymmax

15 EYinitial = average(Y0
substituted,mmax

)

16 Dinitial[,mmax] = x[mmax]
17 Minitial = Minitial [mmax

18 end
19 return c

re-generating instance explanations, Ribeiro1 suggests to set a random seed prior to applying
LIME. Thus, our LIME-HPO follows this suggestion by setting a random seed.

BreakDown: Explaining a global model

BreakDown [55, 201] is a model-agnostic technique that uses the greedy strategy to sequen-
tially measure contributions of metrics towards the expected prediction. Given a black-box
model b, an instance to explain x, and training data used to construct the model Dtrain,
BreakDown performs 5 key steps to generate an instance explanation as follows:

• First, BreakDown generates the predictions of all instances in the training data and
computes the average estimation of such predictions (cf. Lines 3-4). In the first iteration,
BreakDown uses the original training data as the syntactic training data for calculation
(cf. Line 5).

1https://github.com/marcotcr/lime/issues/119#issuecomment-344743006

https://github.com/marcotcr/lime/issues/119#issuecomment-344743006

5.4 Experimental Design 109

Repeat 100 times l

Defect !
Models

Construct
defect
models

Apply
model-speciÞc

explanation
techniques

Remove
correlated

metrics Non-correlated !
Metrics

Defect!
Dataset

Generate
training "

and testing
samples

Analyse
global

explanation
and instance
explanations

Generate
predicted
probability

Apply
model-agnostic

techniques

Training!
Samples

Testing!
Samples

%
%
%
%
%
%

Predicted
Probabilities

%
%
%
%
%
%

Instance!
Explanations

Global!
Explanation

Analyse
model

performance

Figure 5.3 An overview diagram of the design of our study.

• Second, BreakDown sequentially substitutes the values of each metric in the syntactic
training data with the value of such metric appeared at the instance of interest (cf. Lines
7-9).

• Third, BreakDown generates the predictions of the substituted training data, and
identify the metric that produces the greatest absolute di�erence between the expected
predictions of the syntactic training data and the substituted training data (cf. Lines
10-13).

• Fourth, BreakDown allocates such greatest di�erence in expected predictions made by
the metric as its contribution (cf. Line 14).

• Finally, BreakDown considers the set of expected predictions of the substituted training
data with the greatest di�erence in expected predictions as the new set of expected
predictions (cf. Lines 15-16) and re-iterates to calculate the contributions of the metrics
in which their contributions are not allocated (cf. Line 17).

Figure 5.2 shows a visual explanation of BreakDown (the right column). The light blue
bars indicate the supporting (+) probability of metrics towards the prediction as defective,
while the light brown bars indicate the contradicting (-) probability of metrics towards
the prediction as defective. In this example, the NotifyBuilder.java of the release 2.10.0
of the Apache Camel project is predicted (74%) as defective due to a supporting probabil-
ity of 0.11 for #MajorDeveloper, a supporting probability of 0.09 for #LineComment, a
supporting probability of 0.9 for #ClassCoupled, and a supporting probability of 0.07 for
AverageCyclomatic.

5.4 Experimental Design

In this section, we discuss our criteria for selecting the studied datasets; and the design of
the case study that we perform to address our six research questions. Figure 5.3 provides an
overview of the design of our case study.

110 Explain the Predictions of Defect Models

5.4.1 Studied Datasets

Recently, Yatish et al. [233] showed that (1) some issue reports that are addressed within 6
months after a release do not realistically a�ect a studied release (false positive), while (2)
some issue reports that realistically a�ect the studied release are addressed later than 6 months
after the release (false negative). Thus, the approximation of post-release window periods
(e.g., 6 months) that were popularly-used in many defect datasets may introduce biases to
the construct to the validity of our results.

Thus, we select a corpus of publicly-available defect datasets provided by Yatish et al. [233]
where the ground-truths were labelled based on the a�ected releases. The datasets consist of
32 releases that span 9 open-source software systems. Each dataset has 65 software metrics
along 3 dimensions, i.e., 54 code metrics, 5 process metrics, and 6 human metrics. Table 5.1
shows a statistical summary of the studied datasets.

Code metrics describe the relationship between properties extracted from source code
and software quality. These code metrics are extracted using the Understand tool from
SciTools along 3 dimensions, i.e., complexity (e.g., McCabe Cyclomatic), volume (e.g.,
lines of code), and object-oriented (e.g., a coupling between object classes). Among these
code metrics, some properties are extracted at the method level, and thus three aggregation
schemes (i.e., minimum, average, and maximum) are used to summarise these metrics to the
file level.

Process metrics describe the relationship between development process and software
quality. For each instance, there are (1) the number of commits, (2) the number of added
lines of code, (3) the number of deleted lines of code, (4) the number of active developers,
and (5) the number of distinct developers. Similar to Rahman et al. [174], the number of
added and deleted lines of code of each instance is normalized by the total number of added
and deleted lines, respectively.

Human factors describe the relationship between the ownership of instances and soft-
ware quality [17, 173, 216]. Ownership metrics are based on the traditional code ownership
heuristics of Bird et al. [17], for each instance, the ownership of each developer is measured
using the proportion of the code changes made by the developer on the total code changes.
There are two granularities of code changes, i.e., lines of code level (LINE), and commit
level (COMMIT), while there are two levels of ownership of an instance for developers, as
recommended by Bird et al. [17]. That is, developers with low code ownership (i.e., less
than 5% code contribution on an instance) are considered as minor authors. On the other
hand, developers with high code ownership (i.e., more than 5% code contribution on an
instance) are considered as major authors. Ownership metrics consist of (1) the number of
the owner (i.e., the developer with the highest code contribution on an instance), (2) the
number of the minor authors, and (3) the number of major authors with respect to the two
granularities of code changes.

5.4 Experimental Design 111

Table 5.1 A statistical summary of the studied systems.

Name Description #DefectReports No. of files Defective Rate KLOC Studied Releases

ActiveMQ Messaging and Integration Patterns server 3,157 1,884-3,420 6%-15% 142-299 5.0.0, 5.1.0, 5.2.0, 5.3.0, 5.8.0

Camel Enterprise Integration Framework 2,312 1,515-8,846 2%-18% 75-383 1.4.0, 2.9.0, 2.10.0, 2.11.0

Derby Relational Database 3,731 1,963-2,705 14%-33% 412-533 10.2.1.6, 10.3.1.4, 10.5.1.1

Groovy Java-syntax-compatible OOP for JAVA 3,943 757-884 3%-8% 74-90 1.5.7, 1.6.0.Beta_1, 1.6.0.Beta_2

HBase Distributed Scalable Data Store 5,360 1,059-1,834 20%-26% 246-534 0.94.0, 0.95.0, 0.95.2

Hive Data Warehouse System for Hadoop 3,306 1,416-2,662 8%-19% 287-563 0.9.0, 0.10.0, 0.12.0

JRuby Ruby Programming Lang for JVM 5,475 731-1,614 5%-18% 105-238 1.1, 1.4, 1.5, 1.7

Lucene Text Search Engine Library 2,316 8,05-2,806 3%-24% 101-342 2.3.0, 2.9.0, 3.0.0, 3.1.0

Wicket Web Application Framework 3,327 1,672-2,578 4%-7% 109-165 1.3.0.beta1, 1.3.0.beta2, 1.5.3

5.4.2 Generate Training and Testing Samples

To generate training and testing samples, we opt to use an out-of-sample bootstrap validation
technique [39, 47, 68, 205, 212], which leverages aspects of statistical inference. We use
the out-of-sample bootstrap validation technique (1) to ensure that the generated training
samples are representative to the original dataset and (2) to ensure that the produced estimates
are the least bias and most reliable [212]. We first generate a bootstrap sample of sizes N
with replacement from the studied defect datasets. The generated sample is also of size N.
We construct defect models using the bootstrap samples, while we interpret the samples that
do not appear in the generated bootstrap samples at the instance-level. On average, 36.8%
of the original dataset will not appear in the bootstrap samples, since the samples are drawn
with replacement [39]. We repeat the out-of-sample bootstrap process for 100 times and
report their average calculations.

5.4.3 Remove Correlated Metrics

Prior studies raise concerns that collinearity (i.e., correlated metrics) often impacts the
global explanation of defect models [85, 87, 207, 211]. For example, a defect model that
is constructed with correlated metrics could produce di�erent global explanations when
reordering the model formula of regression models. Recently, the bagging technique for
random forest is proposed to mitigate collinearity (i.e., di�erent trees are constructed with
di�erent subset of metrics), prior studies found that some trees are still constructed with
correlated metrics [85, 203]. Since LIME builds a local regression model which is known to
be sensitive to collinearity [85, 207], it is necessary to remove correlated metrics to mitigate
such impact prior to constructing defect models.

Prior studies introduce many techniques to remove irrelevant metrics and correlated
metrics (e.g., Correlation-based Feature Selection (CFS), Information Gain (IG), and stepwise
regression) [5, 26, 34, 40, 97, 140, 160, 198]. My prior work [89] found that such feature
selection techniques cannot mitigate correlated metrics (e.g., CFS produces a subset of metrics
that are highly correlated with the dependent variable while having the least correlation
among themselves. Yet, some of the independent variables are still highly correlated),
suggesting that correlation analyses must be applied. However, such correlation analyses

112 Explain the Predictions of Defect Models

often involvemanual selection by a domain expert. To ensure the scalability of our framework,
we apply the AutoSpearman technique on the training samples. AutoSpearman automatically
selects one metric of a group of the highest correlated metrics that shares the least correlation
with other metrics that are not in that group [89]. We use the implementation of the
AutoSpearman technique as provided by the AutoSpearman function of the Rnalytica R
package [87]. We observe that AutoSpearman mitigates correlated metrics and selects only
22-27 of 65 metrics. In other words, as high as 38-43 metrics share strong correlations
among themselves, which are then removed by AutoSpearman.

5.4.4 Construct Defect Models

Shihab [193] and Hall et al. [65] show that logistic regression and random forests are the two
most-popularly-used classification techniques in the literature of software defect prediction,
since they are explainable and have built-in model explanation techniques (i.e., the ANOVA
analysis for the regression technique and the variable importance analysis for the random
forests technique). Recent studies [49, 210, 213] also demonstrate that automated parameter
optimisation can improve the performance and stability of defect models. Using the findings
of prior studies to guide our selection, we choose (1) the commonly-used classification
techniques that have built-in model-specific explanation techniques (i.e., logistic regression
and random forests) and (2) the top-5 classification techniques when performing automated
parameter optimisation [210, 213] (i.e., random forests, C5.0, AVNNet, GBM, and xGBTree).

We use the implementation of Logistic Regression as provided by the glm function of the
stats R package [214]. We use the implementation of automated parameter optimisation of
Random Forests, C5.0, AVNNet, GBM, and xGBTree as provided by the train function of
the caret R package [111] with the options of rf, C5.0, avNNet, gbm, and xgbTree for the
method parameter, respectively. We neither re-balance nor normalize our training samples
to preserve its original characteristics and to avoid any concept drift for the explanations of
defect models [208].

5.4.5 Apply Model-specific Explanation Techniques

We apply model-specific explanation techniques to generate global explanations—what
factors are associated with software quality. We use the ANOVA Type-II analysis for logistic
regression and the scaled Permutation Importance analysis for random forests, as suggested
by our recent work [85]. We use the usage (i.e., the percentage of training instances that
satisfy all of the terminal nodes after the split which are associated with the metric) of metrics
to the generate global explanation of C5.0 [172]. We use the combinations of the absolute
values of the weights derived across hidden layers in neural networks to generate the global
explanation of AVNNet [51]. We use the relative influence of metrics derived from boosted
trees to generate the global explanation of GBM and xGBTree [48, 158].

5.4 Experimental Design 113

We use the implementation of the ANOVA Type-II analysis as provided by the Anova
function of the car R package [45]. We use the implementation of the scaled Permuta-
tion Importance analysis as provided by the importance function of the randomForest R
package [23]. We use the implementation provided by the varImp function of the caret R
package [111] to generate global explanation of C5.0, GBM, and xGBTree.

5.4.6 Apply Model-agnostic Techniques

We apply model-agnostic techniques to generate instance explanations of the predictions
of defect models. We use three model-agnostic techniques, i.e., two state-of-the-art LIME
(Local Interpretable Model-Agnostic Explanations) and BreakDown, and our improvement
of LIME with Hyper Parameter Optimisation based on the di�erential evolution technique
(LIME-HPO) The technical descriptions are presented in Section 5.3 We use the implement-
ation of LIME as provided by the lime and explain functions of the lime R package [164].
We use the implementation of the di�erential evolution technique as provided by the DEoptim
function of the DEoptim R package [152]. We use the implementation of BreakDown as
provided by the broken function of the breakDown R package [15].

5.4.7 Generate Predicted Probability

We use defect models to generate predicted probabilities (i.e., defect-proneness) of testing
instances. The predicted probabilities range from 0 (not defective) to 1 (likely to be defective).
We use the classification threshold of 0.5 to map predicted probabilities to a binary decision
of defect and clean. Predicted probabilities of above 0.5 indicate defect, otherwise clean.

5.4.8 Analyse Global Explanation and Instance Explanations

We analyse global explanation and instance explanations to address RQs 1, 2, 3, 4, and 5. We
also conduct a survey study of 20 practitioners to evaluation instance explanations generated
by the studied model-agnostic techniques in RQ6. The motivation, approach, and results for
each RQ are explained in detail in Section 5.5.

5.4.9 Analyse Model Performance

To ensure that the generated global explanation and instance explanations are derived from
accurate defect models, we evaluate the model performance of the studied classification
techniques.

First, we use the Area Under the receiver operator characteristic Curve (AUC) to measure
the discriminatory power of our models, as suggested by recent research [52, 114, 174].
The axes of the curve of the AUC measure are the coverage of non-defective modules (true
negative rate) for the x-axis and the coverage of defective modules (true positive rate) for the

114 Explain the Predictions of Defect Models

!! !

!

! !

! !

! !

! !!!

!! ! !! !!!! !!! !!!!!!! ! !! !!! !! !! !!!! !!!! !!! !!

!!!!!!!!!!!!!!!!!

!! ! !!! ! ! !!! !! !! !!! ! !!!! !!!! !!! !! !! !!! !!! !! !

!!!!!

!

! ! !!! !!!!!!!! !! !!! ! !! !! !! !!! !! !!!!!! !!!!! !! !! !! !!!!!!!!!!! !!! !!! !!! !

!! ! !! !! !! !

!!! ! ! !! !!! !! !!! ! !

!

!! !!! !! !

! !! ! !!! !! ! !! !!

!!

A
U

C
IFA

P
opt (20)

0.00 0.25 0.50 0.75 1.00

0 5 10 15 20

0.00 0.25 0.50 0.75 1.00

xGBTree
GBM

AVNNet
C5.0

RF
LR

xGBTree
GBM

AVNNet
C5.0

RF
LR

xGBTree
GBM

AVNNet
C5.0

RF
LR

Figure 5.4 The distributions of model performance for all studied defect datasets of each
classification technique.

y-axis. The AUC measure is a threshold-independent performance measure that evaluates
the ability of models in discriminating between defective and clean instances. The values of
AUC range between 0 (worst), 0.5 (no better than random guessing), and 1 (best) [66].

Second, we use the Initial False Alarm (IFA) measure to identify the number of false
alarms encountered before the first defective module [79]. To calculate the IFA measure,
we sort the modules in descending order of their risk predicted by a model. Then, the IFA
measure is computed as k, where k is the number of non-defective modules that are predicted
as defective by a model before the first defective module. The values of IFA range from 1
(best) to n, where n is the number of all modules.

Third, we use the Popt measure [96, 135, 232] to measure the e�ort-aware predictive
performance of defect models. The Popt measure is defined by the area ! opt between the

5.5 Experimental Results 115

e�ort-based cumulative lift charts of the optimal model and a defect model. The axes of
the e�ort-based cumulative lift charts are the proportion of e�ort for the x-axis and the
coverage of defective modules for the y-axis. For the optimal model, all modules are sorted
in descending order of the actual defect density (i.e., the proportion of the number of defects
and the lines of code of each module). On the other hand, for a defect model, all modules are
sorted in decreasing order of the predicted probabilities of each module. The Popt measure
is computed as Popt = 1 – ! opt. The values of Popt range between 0 (worst), 0.5 (no better
than random guessing), and 1 (best).
Preliminary Analysis. Figure 5.4 shows the distributions of the model performance of all
of the studied classification techniques for all of the studied defect datasets. Our studied
classification techniques achieve a median AUC of 0.79-0.94, a median IFA of 1, and
a median Popt20 of 0.27-0.77, indicating that our studied classification techniques are
highly accurate.

5.5 Experimental Results

We present the results of our study with respect to our six research questions.

(RQ1) Does LIME with Hyper Parameter Optimisation (LIME-HPO)
outperform default LIME in terms of the goodness-of-fit of the local
regression models?

Motivation. Since LIME generates instance explanations from local regression models
that are constructed using the randomly generated instances around the neighbours of the
instance to be explained, we use the goodness-of-fit (R2) of the local regression models as a
proxy for measuring the performance of LIME when generating instance explanations. Prior
studies [49, 210, 213] have shown that hyper parameter optimisation can be used to improve
the performance of defect models. Yet, little is known about whether hyper parameter
optimisation can improve the goodness-of-fit of the LIME algorithm when generating
explanations for the predictions of defect models.
Approach. To address RQ1, we analyse the goodness-of-fit (R2) of LIME and LIME-HPO
when generating explanations for the predictions of defect models for all of the studied
datasets. For each bootstrap sample of each defect dataset, we use the overview diagram (see
Figure 5.3) to generate instance explanations of the testing instances. Then, we compute
the goodness-of-fit of the local regression models that are used to generate these instance
explanations for LIME and LIME-HPO. We apply Wilcoxon signed-rank test [229] to
identify whether distributions of the goodness-of-fit of the local regression models produced
by LIME and LIME-HPO are statistically di�erent. We also apply Cli� ’s |X | e�ect size test
to measure the magnitude of the di�erences. Finally, we report the results using boxplots in
Figure 5.5.

116 Explain the Predictions of Defect Models

!!! ! !

! !!!!!!! !! !!!!!! !! !!

! !!!!! !! !!! ! !!! !!! !!!! !!! !!! !! !! !!! !!!! ! ! !!! !! !!!! !! ! ! !!!! ! !!! !! !!!! !!! !!! !!!! !! !!! !! !!!!!! !!!! !!! !! !!!! !!!!! !! !!!!!!!!! ! !!! !!!!! !!! !!!! ! !!!!! !! !!!! ! !! ! ! !!! !! !!! !!!!!!!! !!!!!!!! !!! !! !!!! !!!!!!!!!!! ! !! !!! !!!!!! !! !!!!!!!!! ! !!!!!!!! !!!!!! !!! !! !!!!! !!!! !! !! !!! !!!! !! !!!! ! !! !!!!!!!!!! !!!!!!!!!!!! !!! !!!! !! !! !!! ! !! !! !!!!!!!! !! !!!!! !! !!!! !!!! !! !!!!!!! !!!!! !!!!! !!!!! !!! !!!! !!!

!!!!!! !!! !!! !!! !! !!! !!!!!!!!!! ! !! !! ! !! ! !! !!!! !!! ! !!!! !!! !!!!! !!! !!! ! !!!!!! !!! !! !!! !! !!! !! !! ! !! !!! !! !!! !!!! !!!! !! ! !!! !!! !! !! !!!!! !!!! !! ! !!!! !!!!!!!!!! !! !!!!!!!!!! !!! !!!! ! !!! !!!!! ! !!!!! !! !! !! !!!!! !! !! !!! !!! ! !! !

!!!! ! !! !! !!! !!!!!! !! ! !!!!!! !! !!!!!!!!!!!!!!!!!!! !! ! !!! ! !!! !!! ! ! !!!!!!!!!!!!!!!!! !!!!!!!!!!!

!!! ! !!! !! !!! !!!!! !!!!!! !!! !! !!!!!!! ! !!!!!!!! !!!! ! !! ! !!! ! !!!! !!!!!!!! ! !!! !! !! !!! !!!!!!

!!! !! !!!! !!!! !!! !!! !!!!! !!!! ! !!!!!!! !! !! ! !!!!! !!!! !!!!!! !!! !!! !!!!! !!!! !!! !! !! !!!!!!!!! !!!!!!!!!!!!!!!! !!!!!! !!!!!!!!!!!!!!

!! !! !!!! !! !!!! !! !!!! !!!! !!! !! ! !!!!!! !!! ! !!!! !!!

!!! !! !! !!!! !! !!!!! ! !!! !!!! !!!!!!!!! !!!!!!!! !!!!!! ! ! !! !! !! !! !! !! !!!! !! !! ! ! !!! !!! !!!!! !! !! !!! !!!! !!!! !!! !!!!!!! ! !! !! !! ! !!! !! !! !!! !! !!! !!! !! !!! !! !!! !! !! !! !! !! !!!!! !!! ! !!!!!!!! !!!! !!!!!!!!!!! !!!!!! ! !!!!! !!!! !!!!!!!!! !!!!!!!!!! !!! !!!! !!!!!! !!!! ! !! !!! ! !! ! !!!!!! !!!! ! !! !!!!! !! ! !! !! !!! ! !!! ! !!! !!!!! !! ! !!! ! ! !!! ! !

!!!!!!! !!! !!! !!!!!!!! !!!! ! ! !! !! !! !!!! ! !! !!! !! !! ! ! !!! !!!! !!!!! !!!!! !!!!! !!!!! ! !!!!! ! !! !! !!! !!!!! !! !! !!! !!!! !! ! ! !!!! !! !! !!!!!!!!! !! !!!!!! !!! !!!! !! !!! !! !! !! !! !! ! ! !! !!!! ! !!! ! !! !!! !! ! ! ! !!!!

R
F

avN
N

et
xgbTree

LR
C

5.0
G

B
M

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

LIME

LIME! HPO

LIME

LIME! HPO

LIME

LIME! HPO

Figure 5.5 The distributions of the goodness-of-fit (R2) of the local regression models
constructed with LIME and LIME-HPO for all of the studied defect datasets and the studied
classification techniques.

Results. LIME-HPO always outperform default LIME in terms of the goodness-of-
fit of the local regression models with an average improvement of 8%. Figure 5.5
shows the distributions of the goodness-of-fit of the local regression models constructed with
LIME and LIME-HPO for all studied defect datasets. After performing hyper parameter
optimisation (LIME-HPO), we find that LIME-HPO improves the goodness-of-fit of the
local regression models by (at the median) 6.6% for LR, 7.4% for RF, 6.7% for C5.0, 6.1%
for AVNNet, 8.0% for GBM, and 7.6% for xGBTree. We observe that the average R2

improvement among six classification techniques is 8%. Moreover, the results of Wilcoxon
signed-rank test confirm that the improvement in the goodness-of-fit of the local regression
models of LIME-HPO over LIME are statistically significant for all of the studied classification
techniques. The Cli� ’s |X | e�ect size test also shows that the e�ect size of such di�erences are
large for GBM; medium for LR, RF, C5.0, and xGBTree; and small for AVNNet.

(RQ2) Can model-agnostic techniques explain the predictions of de-
fect models?

Motivation. Traditionally, model-specific explanation techniques (e.g., ANOVA) are used
to generate global explanations. However, such global explanations cannot justify each
individual prediction of defect models—i.e., why a software module is likely to be defective
in the future. Recent research introduces model-agnostic techniques for explaining the
predictions of any black-box models [55, 182]. Yet, these model-agnostic techniques have not
been investigated in the context of software engineering (particularly for defect prediction).
Approach. To address RQ2, we investigate the variation of instance explanations generated
by model-agnostic techniques for explaining the predictions of defect models. In other words,

5.5 Experimental Results 117

given a model trained from the same training data, do di�erent predictions (i.e., test data) have
di�erent explanations. For each bootstrap sample of each defect dataset, we use the overview
diagram (see Figure 5.3) to generate instance explanations of the testing instances. Instance
explanations are the importance scores of each metric that contribute to the final probability
of each prediction. For each instance explanation, we transform the scores of metrics into
the ranking of metrics (e.g., from [ADEV = 0.8, MINOR_DEV = 0.15, CC = 0.05] to
[1st = ADEV, 2nd = MINOR_DEV, 3rd = CC]). We then compute the rank di�erences of
each metric among instance explanations of the correctly predicted defective instances. For
example, given two instance explanations, the ranking of one instance explanation is [1st =
ADEV, 2nd = MINOR_DEV, 3rd = CC], while that of another explanation is [1st = CC,
2nd = MINOR_DEV, 3rd = ADEV]. In this example, ADEV appears at the 1st rank in one
instance explanation, while appearing at the 3rd rank in another instance explanation. Thus,
the rank di�erence of ADEV is |1 – 3| = 2. We apply this calculation for all of the studied
metrics for all instance explanations and report the results using box plots.

Case: 1027
Label: Defect
Probability: 0.88
Explanation Fit: 0.64

! 0.2 0.0 0.2

CountDeclMethodPrivate <= 3

3 < ADEV

CountInput_Min <= 1

2 < CountDeclMethodProtected

MAJOR_LINE <= 1.5

Weight

F
ea

tu
re

Supports Contradicts

Case: 164
Label: Defect
Probability: 0.63
Explanation Fit: 0.7

! 0.2 0.0 0.2

CountInput_Min <= 1

CountDeclMethodProtected <= 2

1.5 < MAJOR_LINE <= 2.0

3.56 < CountInput_Mean

3 < ADEV

Weight

F
ea

tu
re

Supports Contradicts

Case: 1027
Label: Defect
Probability: 0.88
Explanation Fit: 0.64

! 0.2 0.0 0.2

CountDeclMethodPrivate <= 3

3 < ADEV

CountInput_Min <= 1

2 < CountDeclMethodProtected

MAJOR_LINE <= 1.5

Weight

F
ea

tu
re

Supports Contradicts

activemq-5.0.0/Destination.java !
Defect (63%)

activemq-5.0.0/BrokerTestSupport.java !
Defect (88%)

(a) An example instance explanation of LIME. The blue bars indicate supporting
(positive) scores towards a file being predicted as defective, while the red bars
indicate contradict (negative) scores towards its prediction.

0.147

0.268

0.147

0.127

0.072

! 0.049

! 0.079

0.634

(Intercept)

+ MAJOR_LINE = 2

+ CountDeclMethodDefault = 16

+ ADEV = 6

+ CountClassCoupled = 12

+ AvgLineComment = 0

remaining 20 variables

final_prognosis

0.0 0.5 1.0 1.5

0.147

0.478

0.244

0.084

0.026

! 0.097

0.002

0.884

(Intercept)

+ CountDeclMethodProtected = 30

+ MINOR_LINE = 1

+ CountClassCoupled = 29

+ ADEV = 7

+ CountInput_Mean = 20.2727272727273

remaining 20 variables

final_prognosis

0.0 0.5 1.0 1.5 2.0

activemq-5.0.0/Destination.java !
Defect (63%)

activemq-5.0.0/BrokerTestSupport.java !
Defect (88%)

(b) An example instance explanation of BreakDown. The x-axis presents the contri-
bution (probability score) of each metric in the y-axis.

Figure 5.6 An illustrative example of instance explanations generated by LIME and Break-
Down, respectively.

Results. Model-agnostic techniques can explain the predictions of defect models. To
illustrate the visual explanation of our studied model-agnostic techniques, we select the
Apache ActiveMQ 5.0.0 dataset and logistic regression (LR) as the subject of this illustrative
example. Figures 5.6a and 5.6b presents an illustrative example of instance explanations

118 Explain the Predictions of Defect Models

of two testing instances that are correctly predicted as defective (i.e., Destination.java and
BrokerTestSupport.java) produced by LIME and BreakDown, respectively. In this example,
Destination.java and BrokerTestSupport.java are predicted as defective files with the predicted
probability of 63% and 88%, respectively.

LIME. Figure 5.6a (left) shows the visual explanations for explaining the predictions of
Destination.java that is generated by LIME. The blue bars indicate the supporting (+) scores
of metrics towards the prediction as defective, while the red bars indicate the contradicting
(-) scores of metrics towards the prediction as defective. Figure 5.6a (left) shows that Destin-
ation.java is predicted (63%) as defective due to a supporting score of 0.3 for a condition of
{ADEV > 3} and a supporting score of 0.29 for a condition of {1.5 < MAJOR_LINE 2}.
On the other hand, the remaining probability of 37% of not defective could be explained by
a contradict score of 0.29 for a condition of {CountInput_Mean > 3.56}, a contradict score
of 0.27 for a condition of {CountDeclMethodProtected 2 }, and a contradict score of 0.22
for a condition of { CountInput_Min 1}. These instance explanations indicate the most
important conditions that support and contradict a file being predicted as defective.

BreakDown. Figure 5.6b (left) shows the visual explanations for explaining the predictions
of Destination.java that is generated by BreakDown. The light blue bars indicate the
supporting (+) probability of metrics towards the prediction as defective, while the light
brown bars indicate the contradicting (-) probability of metrics towards the prediction as
defective. Figure 5.6b (left) shows that Destination.java is predicted (63%) as defective due
to a supporting probability of 0.27 for MAJOR_LINE, a supporting probability of 0.15 for
CountDeclMethodDefault, a supporting probability of 0.13 for ADEV, and a supporting
probability of 0.07 for CountClassCoupled. In contrast, an CountClassCoupled value of
12 contradicts the prediction by a probability of 0.8, and an AvgLineComment value of 0
contradicts the prediction by a probability of 0.05.

Given the same defect models, di�erent predictions have di�erent instance ex-
planations. Figure 5.7 shows the distributions of the rank di�erence of the metric among
instance explanations for all of the studied defect datasets. We find that the rank di�erences
of metrics among instance explanations are, at the median, 20 for LIME, 22 for LIME-HPO,
and 21 for BreakDown. In other words, the most important metric of an instance may
appear as the rank 21th-23th of another instance. We observe similar results for all studied
classification techniques (the online appendix [83] provides the results of each classification
technique). As shown in Figures 5.6a and 5.6b, we observe that while these two instances are
predicted as defective by defect models, their instance explanations are di�erent. According
to this example, on the above sub-figure (LIME), the number of active developers (ADEV),
which appears as the most important metric of the instance explanation of Destination.java,
appears as the 4th important metric of the instance explanation of BrokerTestSupport.java.
Similarly, on the below sub-figure (BreakDown), the lines of code contributed by major
developers (MAJOR_LINE), which appears as the most important metric of the instance
explanation of Destination.java, appears as the 2nd important metric of the instance ex-

5.5 Experimental Results 119

!!! ! !! ! ! !!!! !! !! ! !!! !! !!! ! !!! !!!! ! !! !!!! !! !!! !! !!! !! !!! !!! !! !!! !!! !! !! !! !!!! !! ! !!! !! !! !!! !! !! !!! !!!! ! !! !! !! !!!! !! !! !!

!!!! !!! ! !!!!! !! ! ! !! !!! !! !!! ! !! !! ! !! !!!! ! !! !! !! !! !! !!!! !! !!! !! !!! !!!! !!!! !! !! ! !! !!! ! ! !! !!! !! ! !! ! !! ! !! !! !!! !! !! !!! ! !! ! !!!!! !!!!! !!! ! ! !! !!! !! !!! !! !! !! !! !!!! !! ! !!! ! !!!! !! !! ! !! !!! ! !! ! !! ! !! ! ! !!! !!! ! !!!!! !!! !!!! !!!!!!!!!! !!!!! ! !!! !! ! !!!! !!!!! !!! !!!! !!! !!!!!!!!!!!!!! !!! !!!!!!! !! !! ! ! !! !!! !!! !! !!! !!!!!!!!! !!! !!!!! !! !! !!!! !! !!! ! !! !!!!! ! !!! !!!!! !!! !! ! !! !!! ! !! !! !! !! !! !!!!!! ! !!! !! ! !!! !!! !!

!! !! !!! ! !!!!! ! !!!! !!! ! !! !!! !! !!!! ! !!! !!! ! !!! !!! ! !! !! !! ! !!! ! !!!! ! !! !! !!! ! !! ! !!!! ! !!!! !! !! !! ! !!! ! !!! ! !!! !!! !!!!! ! !!! !! !! !! !!!!! !! !! !!! !! !!!! !! !! !!!!!!!! ! !!! ! ! !!! !!! !!! !!! !!! !!! !!! !! !! !!! ! !! ! !! ! ! !!! ! ! !! ! !!!! ! !! !! !

LIME

BreakDown

LIME! HPO

0 5 10 15 20 25

Figure 5.7 The distributions of rank di�erences of each metric across instances explanations
for all studied defect datasets.

planation of BrokerTestSupport.java. The variation of instance explanations among the
predictions of defect models indicates that one global explanation of defect models does
not imply instance explanations (and vice versa), highlighting the need for model-agnostic
techniques for explaining the predictions defect models.

(RQ3) Do instance explanations generated by model-agnostic tech-
niques overlap with the global explanation of defect models?

Motivation. Recent research raised concerns about the trustworthiness of instance explana-
tions as generated by model-agnostic techniques. For example, Ribeiro et al. [182] argue
that instance explanations must correspond to how the trained model behaves. Guidotti et
al. [58] argue that the local approximation models should mimic the black-box models when
predicting an unseen dataset. The results of RQ2 suggest that instance explanations generated
by the studied model-agnostic techniques have a great variation among each prediction of
defect models. Yet, little is known about whether these instance explanations generated by
the studied model-agnostic techniques are overlapping with the global explanation of defect
models.
Approach. To address RQ3, we investigate whether instance explanations generated by
model-agnostic techniques are overlapping with the global explanation of defect models.
For each bootstrap sample, we use the overview diagram (see Figure 5.3) to generate a global
explanation from training instances and generate instance explanations from testing instances.
Since the out-of-sample bootstrap validation technique leverages aspects of statistical infer-
ence [39, 47, 68, 205, 212], both training and testing samples are approximately equivalent
to the population (i.e., the original dataset). Thus, explanations derived from both training
and testing instances should also be approximately equivalent. To generate a global explan-
ation, we use the ANOVA Type-II analysis for logistic regression, the scaled Permutation
Importance analysis for random forests, the usage of metrics for C5.0, the combinations of
the absolute weights across hidden layers for AVNNet, and the relative influence of metrics
derived from boosted trees for GBM and xGBTree. To generate instance explanations for
testing instances, we use the LIME, LIME-HPO, and BreakDown techniques.

120 Explain the Predictions of Defect Models

!!

!!!!!!!!

!!!! !!!!!

! !! !!! !!!!!!!!!! !!! ! !!!! !! !! !!!!! !!!! !!! !

Top!
3

Top!
10

0 2 4 6 8 10

LIME

BreakDown

LIME! HPO

LIME

BreakDown

LIME! HPO

Figure 5.8 The distributions of the top-k overlapping metrics between the global explanation
and instance explanations for all of the studied defect datasets and the studied classification
techniques.

While a defect model generates only one global explanation from training instances,
model-agnostic techniques generate many instance explanations from testing instances. Thus,
we need to summarise instance explanations to the model level prior to comparing with a
global explanation of each bootstrap sample. To summarise instance explanations, we apply
the Scott-Knott E�ect Size Di�erence test (ScottKnottESD) [206] to identify the ranking of
metrics that is statistically distinct across ranks while being non-negligible di�erent within
ranks. Then, we identify the top-k overlapping metrics between global explanations and
the summary of instance explanations. The top-k overlapping metrics are the number of
the top-k metrics of a global explanation that consistently appear in the top-k metrics of the
summary of instance explanations. For example, the global ranking of metrics is [1st = LOC,
2nd = CC, 3rd = ADEV], while the summarised ranking of metrics for instance explanations
is [1st = ADEV, 2nd = MINOR_DEV, 3rd = CC]. In this example, the top-3 overlapping
metrics are 2 out of 3 metrics. Finally, we apply Wilcoxon signed-rank test [229] to identify
whether the distributions of the top-k overlapping metrics between the global explanation
and instance explanation produced by LIME, LIME-HPO, and BreakDown are statistically
di�erent. We also apply Cli� ’s |X | e�ect size test to measure the magnitude of the di�erences.

Results. Despite the variation of the ranking of the top-10 important metrics for
instance explanations in RQ2, their overall ranking is mostly overlapping with (but
is not exactly the same) as that of the global explanations. Figure 5.8 shows that, at the
median, 7, 10, and 9 of the top-10 summarised important metrics for instance explanations
are overlapping with the top-10 global important metrics for LIME, LIME-HPO, and
BreakDown, respectively. The results of Wilcoxon signed-rank test show that the di�erences
of the top-10 overlapping metrics are statistically significant among the studied model-
agnostic techniques (for LIME and LIME-HPO, LIME-HPO and BreakDown, and LIME
and BreakDown). The Cli� ’s |X | e�ect size test also shows that the magnitude of such
di�erences are large for LIME and LIME-HPO, medium for LIME and BreakDown, and

5.5 Experimental Results 121

!! !!!!!! !! !! !!!! !!! !! !!!!!!!!!!!!!!!! !! !!! !! !! !!!!!!!!! !! !LIME

BreakDown

LIME! HPO

0 5 10 15 20 25

Figure 5.9 The distributions of rank di�erences of each metric when re-generating instance
explanations for all of the studied defect datasets.

negligible for LIME-HPO and BreakDown, suggesting that LIME-HPO is comparable
to BreakDown. On the other hand, at the median, at least one of the top-3 summarised
important metrics for instance explanations is overlapping with the top-3 global important
metrics. The detailed results of each studied classification techniques are available in the
online appendix [83].

(RQ4) Do model-agnostic techniques generate the same instance ex-
planation when they are re-generated for the same instance?

Motivation. Recent research raised concerns about the reliability of instance explanations
generated by model-agnostic techniques. For example, Lundberg et al. [125] argue that
instance explanations must remain the same when they are re-generated for the same instance.
Assuming that one wants to generate an explanation for a file predicted as defective, model-
agnostic techniques (that involve random perturbation like LIME) might generate di�erent
synthetic instances, leading to di�erent explanations for the same instance. Thus, little is
known about whether model-agnostic techniques generate the same instance explanation
when they are re-generated for the same instance and the same defect model.
Approach. To address RQ4, we analyse the reliability of the instance explanations generated
by LIME, LIME-HPO, and BreakDown. Ideally, re-generating instance explanations of
the same instance from the same model using the same model-agnostic technique should
produces the same explanation. Therefore, we use the variation in instance explanations
when re-generating with the same setting as a proxy for measuring the reliability of model-
agnostic techniques. Rather than generating instance explanations of all testing instances,
we randomly select only one testing instance as the instance of interest. Similar to RQs 1, 2,
and 3, we use the overview diagram (see Figure 5.3) to generate instance explanations of
this instance of interest. We re-generate the instance explanation of the selected instance
for 100 repetitions. We compute the rank di�erences of each metric when re-generating
instance explanations and report the results of all studied defect datasets using boxplots.
Results. Regardless of the studied classification techniques, LIME-HPO and Break-
Down consistently generate the same instance explanation for the same instance.
On the other hand, LIMEgenerates di�erent instance explanationswhen re-generating

122 Explain the Predictions of Defect Models
Case: 1027
Label: Defect
Probability: 0.88
Explanation Fit: 0.64

! 0.2 0.0 0.2

CountDeclMethodPrivate <= 3

3 < ADEV

CountInput_Min <= 1

2 < CountDeclMethodProtected

MAJOR_LINE <= 1.5

Weight

F
ea

tu
re

Supports Contradicts

Case: 164
Label: Defect
Probability: 0.63
Explanation Fit: 0.7

! 0.2 0.0 0.2

CountInput_Min <= 1

CountDeclMethodProtected <= 2

1.5 < MAJOR_LINE <= 2.0

3.56 < CountInput_Mean

3 < ADEV

Weight

F
ea

tu
re

Supports Contradicts

Case: 164
Label: Defect
Probability: 0.63
Explanation Fit: 0.64

! 0.2 0.0 0.2

4 < CountClassCoupled

3 < ADEV

CountInput_Min <= 1

CountDeclMethodProtected <= 2

1.5 < MAJOR_LINE <= 2.0

Weight

F
ea

tu
re

Supports Contradicts

activemq-5.0.0/Destination.java !
Defect (63%)

activemq-5.0.0/Destination.java !
Defect (63%)

Figure 5.10 An illustrative example of instances explanations of a defective testing instance
when regenerating instance explanations with LIME.

instance explanations of the same instance. Figure 5.9 shows the distributions of rank
di�erences of each metric when re-generating instance explanations for all studied defect
datasets. Ideally, instance explanations of an instance should be the same when re-generating
using the same model and the same model-agnostic technique. Regardless of the studied
classification techniques, we find that LIME-HPO and BreakDown consistently produce
the same instance explanation for the same instance. On the other hand, we find that LIME
produces inconsistent instance explanations across repetitions with the median rank di�er-
ences of 7. We report the detailed results of rank di�erences for each studied classification
technique in the online appendix [83].

To further illustrate the variation of instance explanations generated by LIME across
repetitions, similar to RQ2, we select the Apache ActiveMQ 5.0.0 dataset as the subject of
this illustrative example. Figure 5.10 shows an illustrative example of instance explanations
of a defective testing instance when re-generating instance explanations with LIME. We
observe that the model consistently identifies the instance as defective with the same predicted
probability of 0.63 for both repetitions. However, while these instance explanations of the
same instances are generated from the same model using the same model-agnostic technique
(LIME), such explanations—the top-5 important metrics—vary greatly.

(RQ5) What is the computational time of model-agnostic techniques
for explaining the predictions of defect models?

Motivation. The computational time is one of the most important criteria when deploying
software analytics in practice. Model-agnostic techniques may introduce significant overhead
to the current practices of defect modelling workflow. Yet, little is known about whether the
computational time of model-agnostic techniques is practical to be deployed by practitioners.
Approach. To address RQ5, we analyse the computational time of model-agnostic tech-
niques for explaining the predictions of defect models. To do so, similar to RQs 1, 2, 3, and
4, we use the overview diagram (see Figure 5.3) to construct defect models and generate
instance explanations. For each studied defect dataset, we generate one set of bootstrap

5.5 Experimental Results 123

!

!

!!!

!!

!!!

!!

!!

!!

Instance
E

xplanation
(LIM

E
!

H
P

O
)

Instance
E

xplanation
(B

reakD
ow

n)

Instance
E

xplanation
(LIM

E
)

0s 30s 1 minute

xgbTree

GBM

avNNet

C5.0

RF

LR

xgbTree

GBM

avNNet

C5.0

RF

LR

xgbTree

GBM

avNNet

C5.0

RF

LR

Figure 5.11 The distributions of computational time of model-agnostic techniques for
explaining the predictions of defect models for all of the studied defect datasets.

training and testing instances. We construct a defect model using bootstrap training instances.
Then, we randomly select one testing instance and generate an instance explanation using
model-agnostic techniques to measure their computation time. The computational time is
based on a standard computing machine with an Intel Core i7-8700K processor and 32GB
of RAM. Finally, we report the results using box plots.

Results. The computational time of LIME-HPO, BreakDown, and LIME is less than
a minute to generate instance explanations for all of the studied classification tech-
niques. Figure 5.11 shows the distributions of computational time of model-agnostic
techniques for explaining the predictions of defect models for all of the studied defect datasets.
We find that, regardless of the studied classification techniques, the computational time that
the studied model-agnostic techniques take to generate an instance explanation is at most
one minute for all of the studied defect datasets. This finding suggests that all of the studied
model-agnostic techniques is practical to be used in real-world deployments.

124 Explain the Predictions of Defect Models

Figure 5.12 An example of the Time-contrast explanations generated by model-agnostic
techniques for explaining the predictions of defect models.

(RQ6) How do practitioners perceive the contrastive explanations gen-
erated by model-agnostic techniques?

Motivation. Referring to a theory of explanations described in Section 5.2, Miller [146]
and Lipton et al. [120] argue that explanations can be presented as answers to why-questions
and humans tend to be cognitively attached to digest contrastive explanations. Contrast-
ive explanations focus on only the di�erences on properties within an object (Property-
contrast), between two Objects (Object-contrast), and within an object over Time (Time-
contrast) [221]. Thus, contrastive explanations may be more valuable and more intuitive to
humans. Yet, little is known about whether contrastive explanations generated by model-
agnostic techniques can answer why-questions.
Approach. To address RQ6, we conducted a survey study of 20 software practitioners to
investigate their perceptions of instance explanations generated bymodel-agnostic techniques.
As suggested by Kitchenham and Pfleeger [104], we performed the following steps when
conducting this survey study:

(Step-1) Setting the objectives: The survey aimed to investigate whether instance
explanations generated by model-agnostic techniques (1) can be used to answer the why-
questions (i.e., Property-contrast, Objective-contrast, and Time-contrast); (2) build appro-
priate trusts of the predictions of defect models; and (3) are necessary and useful.

(Step-2) Survey design: We first introduced a concept of explainable defect models
with respect to the literature of eXplainable Artificial Intelligence (XAI). Then, we used
the Releases 2.10.0 and 2.11.0 of the Apache Camel project as the subject of the study to
generate instance explanations. We presented 3 types of explanations for investigation,
i.e., Property-contrast explanation (e.g., why was file A predicted as defective rather
than clean?), Object-contrast explanation (e.g., why was file A predicted as defective,
while file B was predicted as clean?), and Time-contrast explanation (e.g., why was file A
predicted as defective in version 1.2, but was subsequently predicted as clean in version 1.3?).
Figure 5.12 illustrates an example of the Time-contrast explanations generated by model-

5.5 Experimental Results 125

agnostic techniques, while other examples of the Property-contrast and Object-contrast
explanations are provided in the online appendix [83].

The survey design is a cross-sectional study where participants provide their responses
at one fixed point in time. The survey consists of demographic and three sets of questions
with respect to the 3 objectives of the study. There are 11 closed-ended questions and
20 open-ended questions. The survey takes approximately 15 minutes to complete and is
anonymous.

(Step-3) Developing a survey instrument: For closed-ended questions, we used agree-
ment and evaluation ordinal scales. To mitigate the inconsistency of the interpretation of
numeric ordinal scales, we labelled each level of the ordinal scales with words as suggested
by Krosnick [110], i.e., strongly disagree, disagree, neutral, agree, and strongly agree. The
format of our survey instrument was an online questionnaire. We used an online question-
naire service provided by Google Forms.2 When accessing the survey, each participant was
provided with an explanatory statement that describes the purpose of the study, why the
participant is chosen for this study, possible benefits and risks, and confidentiality.

(Step-4) Evaluating the survey instrument: We carefully evaluated the survey (i.e.,
pre-testing [122]) prior to recruiting participants. We evaluated it with focus groups (i.e.,
practitioners) to assess the reliability and validity of the survey. We re-ran it to identify and
fix potential problems (e.g., missing, unnecessary, or ambiguous questions) until reaching a
consensus among the focus groups. Finally, the survey has been rigorously reviewed and
approved by Monash University Human Research Ethics Committee (MUHREC Project
ID: 22542). We also provide the ethics approval certificate in our online appendix [83].

(Step-5) Obtaining valid data: The target population of our study is software practi-
tioners. To reach the target population, we used a recruiting service provided by the Amazon
Mechanical Turk to recruit 20 participants as a representative subset of the target population.
We also applied participant filter options of "Employment Industry - Software & IT Services"
and "Job Function - Information Technology" to ensure that the recruited participants are
valid samples representing the target population.

(Step-6) Analysing the data: To analyse the data, we first checked the completeness
of the collected data (i.e., whether all questions are appropriately answered). Then, we
manually analysed the answers to the open-ended questions to extract in-depth insights. For
closed-ended questions, we summarised and presented key statistical results.
Results. 65% of the participants agree that model-agnostic techniques can generate
the Time-contrast explanation to answer the why-questions. Similarly, we found that
55% and 50% of the participants agree (and strongly agree) that model-agnostic techniques
can generate the Property-contrast and Object-contrast explanations, respectively.

55% and 65% of the participants perceived that the Time-contrast explanations
generated by model-agnostic techniques are necessary and useful, respectively. Sim-
ilarly, we found that 40% and 30% of the participants perceive that the Property-contrast and

2https://www.google.com/forms

https://www.google.com/forms

126 Explain the Predictions of Defect Models

Object-contrast explanations generated by model-agnostic techniques are necessary, respect-
ively. We found that 55% and 40% of the participants perceive that the Property-contrast and
Object-contrast explanations generated bymodel-agnostic techniques are useful, respectively.
Finally, we found that 50%, 45%, and 70% of the participants agree (and strongly agree)
that instance explanations generated by model-agnostic techniques can build appropriate
trusts of the predictions of defect models for the Property-contrast, Object-contrast, and
Time-contrast explanations.

5.6 Discussion

In this section, we discuss the key di�erences between model-agnostic techniques and a
tree-based technique.

5.6.1 AComparison ofModel-Agnostic Techniqueswith aTree-based
Technique

There are many approaches and granularity levels to explain the predictions of defect models
(i.e., global explanation, subgroup explanation, instance explanation). Traditionally, we
can use tree-based models to predict and explain the characteristics of defective files. For
example, Tan et al. [204] use Alternative Decision Tree technique (ADTree) as provided by
Weka [62] to explain the predictions of defect models. Chen et al. [29] use Fast-and-Frugal
Trees (FFT) technique to construct comprehensible defect models. An explanation of each
prediction can be generated by deriving a decision node of the decision tree that matches
with the instance to explain. Below, we select the ADTree technique as the subject of this
discussion and discuss the strengths and weakness of the tree-based technique with respect
to the model accuracy, the locality of the explanation, and the visual explanation.

Model Accuracy

Practitioners often make decisions whether defect models should be deployed in practice
based on their model accuracy. We first evaluate the model accuracy of the decision tree
technique for predicting defective files with respect to three performance measures (i.e.,
AUC, Initial False Alarm (IFA), and Popt(20)) for all of the 32 studied defect datasets. We
report the evaluation results of ADTree in the online appendix [83].

We find that ADTree achieves a median AUC of 0.75, a median IFA of 53, and a median
Popt(20) of 0.02. When comparing the model accuracy to other classification techniques as
shown in Figure 5.4, we find that ADTree is the least top-performing classification technique
in terms of AUC, IFA, and Popt(20), raising concerns that the explanations that are derived
from such inaccurate models could be misleading. However, such black-box AI/ML-based
classification techniques are complex and hard to explain. Thus, model-agnostic techniques

5.6 Discussion 127

play a key role in explaining the predictions of highly accurate yet complex classification
techniques.

Visual Explanation

Practitioners often make a decision whether the predictions should be trusted based on
the understand-ability of the visual explanations. We conduct a preliminary survey with
20 practitioners to better understand which visual explanations are the most preferred by
practitioners. We find that the visual explanation of ADTree is the most preferred by
practitioners (60% of practitioners agree or strongly agree), as such visual explanation is
simple to digest and involves logical reasoning. While the visual explanation of LIME also
involves logical reasoning, practitioners are confused about the bar colours of LIME that
explain the supporting and contradict scores (i.e., LIME uses the red colour to explain
contradicting scores, which imply that such metrics contribute towards a prediction as
clean). Despite the advantages of BreakDown that decompose the final probability score
into each score for each feature, practitioners raise concerns that the visual explanation lacks
necessary details (e.g., optimal threshold values for each metric) and is di�cult to understand.
Therefore, future studies should develop a novel visual explanation that is understandable to
domain experts using human-centred design approaches (e.g., a co-creation design session
and the Wizard-of-Oz prototyping technique).

The Locality of Explanation

Practitioners often make a decision as to whether the predictions should be trusted based
on the locality of the explanations. The locality of explanations refers to the scope that
such explanations are derived from. For example, an explanation generated by a variable
importance technique of the random forest technique is derived from the global level of
the prediction models. On the other hand, an explanation generated by a model-agnostic
technique (e.g., LIME) is derived from a local model that is constructed from instances around
their neighbours. Similarly, an explanation generated by a decision tree technique is derived
from a decision node which can cover N instances. Although the locality of explanation
between LIME and a decision tree is similar, the key di�erence is the flexibility of the visual
representation and the choice of AI/ML-based classification techniques. In other words, a
decision node can be used to explain only the decision tree technique. While the model
accuracy of such decision tree technique is not as competitive as complex AI/ML-based
classification techniques, model-agnostic techniques can be used to explain any classification
techniques.
Summary. Decision tree is easy to understand, but not as accurate as other complex AI/ML
learning algorithms. Complex AI/ML learning algorithms (e.g., xGBTree, neural network)
are more accurate, but it is very hard to understand their predictions. Thus, the main goal of
our paper is to leverage model-agnostic techniques to explain the predictions of any accurate

128 Explain the Predictions of Defect Models

yet complex AI/ML learning algorithms. However, practitioners perceive that decision tree
is the most preferred visual explanation, suggesting that future studies should invent new
visual explanations that are directed towards practitioners’ needs.

5.7 Related Work

We discuss key related work in order to situate the contributions of our paper with respect
to explainable software analytics and analytical models for software defects.

5.7.1 Explainable Software Analytics

Despite the advances in analytical modelling in software engineering, recent work raises
a concern about a lack of explainability of analytical models in software engineering [32].
Practitioners also share similar concerns that analytical models in software engineering
must be explainable and actionable in order to be of practical use [32, 115, 142]. For
example, Dam et al. [32] argue that making software analytics models explainable to software
practitioners is as important as achieving accurate predictions. Lewis et al. [115] emphasize
that defect modelling should be more actionable to help Google engineers debug their
programs. Menzies and Zimmermann [142] also emphasize that software analytics must be
actionable.
Key Di�erence. To the best of our knowledge, little research in software analytics explores
a theory of global explanations, the di�erences of the goals, scopes, and targets of global
explanations and instance explanations. Moreover, model-agnostic techniques, i.e. techniques
for explaining an individual prediction, have not yet been introduced in the context of
software engineering.

5.7.2 Analytical Models for Software Defects (i.e., Defect Models)

Analytical models for software defects play a foundational role in optimising the limited
resources of software quality assurance activities and in building empirical theories of software
quality. Below, we discuss the literature with respect to the two main purposes of defect
models.

To predict software defects. First, defect models are used to optimize the limited quality
assurance resources on the most risky software modules [33, 140, 210, 213]. There are a
plethora of studies focus on investigating advanced features and advanced techniques in order
to improve the predictive ability of defect models. For example, Wang et al. [227] leverage a
multiple kernel learning to produce a multiple kernel classifier through ensemble learning
method, which has the advantages of both multiple kernel learning and ensemble learning.
Wang et al. [224] use a deep belief network (DBN) to automatically learn semantic features
to improve the predictive ability of defect models.

5.7 Related Work 129

The improvement of the predictive ability of defect models is critical to practitioners
when deploying defect models in practice.
Key Di�erence. Unlike prior studies that focused on improving the predictive ability of
defect models, this study focuses on investigating techniques to explain software defect
predictions.

To explain software defects. Second, defect models are used (1) to understand factors
that are associated with software defects, (2) to establish e�ective quality improvement plans,
(3) to provide actionable guidance to avoid pitfalls that lead to software defects in the past,
and (4) to build empirical theories of software quality [17, 131, 216]. There are a plethora of
studies focusing on investigating the best modelling workflow and advanced techniques in
order to improve the explainability of defect models, which will be discussed below.

Investigating the best modelling workflow to improve the explainability of defect
models

Explanations of defect models may not be accurate and reliable if care is not taken in the
analytical modelling workflow for software defects. Hall et al. [65] raised a critical concern
that di�erent researchers often develop di�erent analytical workflows, which makes it hard to
derive practical guidelines of the best defect modelling workflows. Recent studies demonstrate
that if pitfalls are not mitigated when collecting defect datasets [209, 233] and designing the
analytical workflow [141, 205, 207] for software defects, the predictions and explanations
that are derived from defect models may be inaccurate and unreliable. For example, Menzies
and Shepperd [141] raised concerns that there are many components that could potentially
impact the predictions of defect models.

Recent studies reveal many components of the analytical workflow that impact the pre-
dictions and explanations of defect models [207]. For example, noise in defect datasets [52],
the quality of issue reports [209], defect labelling techniques [233], feature selection tech-
niques [53, 89], collinearity analysis [85, 86, 89], class rebalancing techniques [208], model
construction [52], parameter optimisation [2, 3, 49, 210, 213], model evaluation [212], and
model interpretation [85].
Key Di�erence. While these studies focused on developing practical guidelines to develop
the most accurate and reliable analytical models to predict and explain software defects, this
paper focused on investigating advanced techniques to improve the explainability of defect
models.

Investigating advanced techniques to improve the explainability of defect models

As discussed in Section 5.3, there are techniques to generate explanations with di�erent goals,
scopes, and target of explanations. Below, we discuss prior studies focused on (1) explaining
a black-box model; (2) explaining a group of predictions; and (3) explaining an individual
prediction.

130 Explain the Predictions of Defect Models

Explaining a black-box model

Prior studies have been leveraged well-established explainable classification techniques, such
as regression models [174, 177], random forests [97, 167], decision trees [237], decision
rules [186]. In addition, Chen et al. [29] point out that Fast-and-Frugal Tree is more ac-
curate, comprehensible, and operational than the well-established explainable classification
techniques in the context of software defect prediction. Moreover, a domain-specific clas-
sification technique like Bellwether [108] has shown to mitigate the conclusion instability
when transferring knowledge from one software project to another.

Despite the recent advances of well-established explainable classification techniques
and domain-specific classification techniques in the context of software engineering, such
techniques only derive knowledge of the learned models from the whole training dataset
without justifying an individual prediction. Instead of explaining a black-box model, prior
studies [12, 138] proposed techniques with an attempt to explain a smaller group of predictions
with similar data characteristics in order to improve the predictive ability and explainability
of defect models, such techniques still cannot justify each individual prediction and uphold
the privacy laws (i.e., GDPR).

Explaining an individual prediction

Recently, model-agnostic algorithms that treat the original model as a black-box have
been proposed to explain the predictions of any learners at the instance level. For example,
Ribeiro et al. [182] proposed a Local Interpretable Model-Agnostic Explanations (LIME)
that leverages the approximation of a simple linear model locally around the prediction.
Key Di�erence. Unlike prior studies that focus on explaining black-box models or a group
of predictions, this study is the first to investigate model-agnostic techniques for explaining
an individual prediction from testing instances in the domain of software engineering.

5.8 Threats to Validity

5.8.1 Construct Validity

Prior studies show that the parameters of learners have an impact on the performance of
defect models [49, 106, 133, 134, 210]. While we use a default parameter setting of 100 trees
for random forests, recent work [80, 210, 220] find that the parameters of random forests
are insensitive to the performance of defect models. Thus, the parameters of random forests
do not pose a critical threat to the validity of our study.

Due to the technical limitations of our studied classification techniques, correlated metrics
must be removed prior to explaining the prediction models. One might suggest that LASSO
should be used to penalise collinearity (i.e., correlated metrics). We found that the top-rank
metric that is correlated with another will be less important by half when using LASSO

5.8 Threats to Validity 131

(as they penalise the important score by half to another correlated metric). Yet, they are
still correlated. We noted that this is still an open problem for ML domains. Thus, software
practitioners should not draw implications solely from the most important metric, but should
also consider its group of correlated metrics.

We use 100 iterations to draw reliable bootstrap estimates of the studied measures in the
experiments. However, such high bootstrap iterations often come with a high computation
cost. Thus, 100 iterations of bootstrap validation may not be practical for compute-intensive
AI/ML algorithms like deep learning.

To ensure that our survey is reliable and valid, we carefully evaluated the survey (i.e.,
pre-testing [122]) prior to recruiting participants. We evaluated it with focus groups (i.e.,
practitioners) to assess the reliability and validity of the survey. We re-ran it to identify and
fix potential problems (e.g., missing, unnecessary, or ambiguous questions) until reaching a
consensus among the focus groups. Finally, the survey has been rigorously reviewed and
approved by Monash University Human Research Ethics Committee (MUHREC Project
ID: 22542).

5.8.2 Internal Validity

We studied a limited number of model-specific explanation techniques (i.e., the ANOVA
Type-II analysis for logistic regression and the scaled Permutation Importance analysis for
random forests) and model-agnostic techniques (i.e., BreakDown and LIME). Our results,
therefore, may not generalise to other defect explainers. However, other techniques for
generating explanations can be investigated in future studies. In this study, we provide a
detailed methodology for others who wish to revisit our study with other techniques for
generating explanations.

5.8.3 External Validity

In this study, our experiments rely on one defect prediction scenario, i.e., within-project
defect prediction. However, there are a variety of defect prediction scenarios in the literature
(e.g., cross-project defect prediction [27, 237], just-in-time defect prediction [96, 163], and
heterogenous defect prediction [157]). Therefore, the results may di�er in other scenarios.
Future studies should revisit our study in other defect prediction scenarios.

The number of our studied datasets is limited and thus may produce results that cannot be
generalised to other datasets and domains. However, it is a carefully curated dataset where
the ground truths were labelled based on the a�ected releases. Future work can revisit and
replicate our study with other datasets.

The number of survey participants is limited to a recruitment of 20 software practitioners
from Amazon Mechanical Turk. Thus, the results of the survey may not be representative to
the perceptions of all software practitioners. Future work can revisit and replicate the survey
study with other groups of software practitioners.

132 Explain the Predictions of Defect Models

5.9 Conclusions

We investigate model-agnostic techniques for explaining the predictions of defect models.
Through a study of 32 publicly-available defect datasets of 9 large-scale open-source software
systems, the experimental results lead us to conclude that (1) model-agnostic techniques are
needed to explain individual predictions of defect models; (2) instance explanations generated
by model-agnostic techniques are mostly overlapping with the global explanation of defect
models (except for LIME) and reliable when they are re-generated (except for LIME); (3)
model-agnostic techniques take less than a minute to generate instance explanations; and
(4) more than half of the practitioners perceive that the instance explanations are necessary
and useful to understand the predictions of defect models. Since the implementation of the
studied model-agnostic techniques is readily available in both Python and R, we recommend
model-agnostic techniques be used to explain the predictions of defect models.

5.9.1 Chapter Remarks

In this chapter, we set out to investigate the best techniques for explaining the predictions
of defect models. The experimental results lead us to suggest that future studies should use
both of the studied model-agnostic techniques (i.e., LIME and BreakDown) to explain the
predictions of defect models to support decision- and policy-making. The experimental
results from Chapter 4 enable the defect modelling workflow that produces the most accurate
and reliable explanation of defect models, while the experimental results from Chapters 3
and 5 suggest the best techniques for explaining defect models and their predictions. However,
our mission is not ended. Researchers and practitioners raise concerns that defect models must
be explainable [32, 115, 143]. Nevertheless, no prior studies investigate how do practitioners
perceive when adopting explainable defect models. Thus, as a post-evaluation study, we
plan to investigate how do practitioners perceive when adopting explainable defect models
produced by our recommended framework.

Chapter 6

Conclusions

In this thesis research, we aimed to increase the explainability of defect prediction mod-
els to better support SQA planning. To address this goal, we hypothesised that: Explain-
able defect prediction models are needed to support SQA planning. Empirical studies are the way

forward to identify the best explainable defect prediction framework to generate the most reliable

explanations. To validate the hypothesis, we formulated 3 key research questions: (1) how do
correlated metrics impact the explanation of defect prediction models?, (2) which feature
selection techniques should be used to mitigate correlated metrics for generating the most
reliable explanation of defect prediction models?, and (3) should model-agnostic techniques
be used to explain the predictions of defect prediction models?

In Chapter 2, we first conducted a literature analysis to understand the current state of
research in defect prediction studies. Then, we conducted a qualitative survey to investigate
practitioners’ perceptions of defect prediction models. The results of the literature analysis
show that most recent defect prediction studies (89%) focus on the prediction of defect
prediction models. Little research has been done on understanding defect prediction models
and their predictions to support SQA planning. Despite receiving little attention from
the research community, the results of the qualitative survey show that 82%-84% of the
respondents perceived understanding defect prediction models and their predictions as useful
and 74%-78% of the respondents are willing to adopt them. These findings motivated us to
further explore the explanation of defect prediction models to support SQA planning.

Through studies of publicly-available defect datasets that span across proprietary and
open source domains, the experimental results show that:

(1) Correlated metrics impact the explanation of defect prediction models (Chapter 3).

(2) Removing correlated metrics improve the consistency of the explanation of defect
prediction models with little impact on model performance. After removing correlated
metrics, ones should use the ANOVA Type-II technique to explain logistic regression
models, while using the scaled Permutation Importance technique to explain random
forests models (Chapter 3).

134 Conclusions

(3) Commonly-used feature selection techniques do not mitigate correlated metrics. On the
other hand, AutoSpearman automatically mitigates correlated metrics with little impact
on model performance (Chapter 4).

(4) BreakDown and LIME can explain the predictions of defect prediction models within a
few seconds. Since the implementation of the both studied techniques is readily available,
future studies should use BreakDown and LIME to explain the predictions of defect
prediction models to support decision- and policy-making (Chapter 5).

Below, we discuss the implications to researchers and practitioners, and highlight some
key future research opportunities for software analytics researchers.

Implications for researchers

=)More research e�ort is needed to improve the explainability of defect prediction
models to understand such models and their predictions. The analysis of related work
in Chapter 2 shows that most of research e�ort (91%) has been put to improve the predict-
ability of defect prediction models. On the other hand, little research has been done on
understanding defect prediction models and their predictions. Despite receiving little atten-
tion from research community, as high as 82% of the respondents perceive understanding
defect prediction models and their predictions as useful and 74%-78% of the respondents are
willing to adopt them. These findings highlight the need for future research to put more
e�ort in improving the explainability of defect prediction models to understand such models
and their predictions.
=) Strong correlation among studied metrics may impact the conclusions of prior
studies that rely on the explanation of defect predictionmodels. The results of Chapter 3
show that correlated metrics that impact the explanation of defect prediction models are
prevalent in publicly-available defect datasets. Thus, the conclusions of prior studies that rely
on such defect datasets and do not mitigate correlated metrics may be altered after mitigating
correlated metrics. To refine and ensure the reliability of the conclusions of such studies,
future research can revisit such studies and mitigate correlated metrics with correlation
analyses, e.g., AutoSpearman (Chapter 4) that automatically mitigates correlated metrics
better than other commonly-used feature selection techniques, prior to constructing defect
prediction models.
=) Explainability of defect prediction could be used to uncover new knowledge and
refine the conclusions of prior studies. Prior studies apply model explanation techniques
to understand the most influential factors that impact software quality, assuming that such
influential factors are representative to all of the defective code. However, the results of
Chapter 5 show that such generic model explanation does not hold true for all instances since
each individual instance explanation varies across di�erent instances. More fine-grained
approaches, e.g., model-agnostic techniques like LIME, BreakDown, and SHAP, could
be used to uncover new knowledge about why a software module is likely to be defective

135

and refine the conclusions of prior studies like code ownership [17, 216], code review
practices [131, 216, 217], and code smells [99]. Thus, future work should revisit prior
conclusions with instance explanations to better understand the influential factors at a more
fine-grained level.
=) Instance explanations may be applicable to other software engineering research
topics. (Chapter 5) Model-agnostic techniques like LIME, BreakDown, and SHAP can be
used to open the black-box of predictive models in software engineering. Due to the nature
of the model-agnostic techniques that can explain any learning algorithms, we advocate
that such instance explanations should be applied beyond mining software engineering data
for predictions. Thus, future work should integrate such model-agnostic techniques to
understand how predictive models in software engineering work and why they make such
predictions.

Implications for practitioners

=) AutoSpearman can be used to automatically mitigate strong correlation among
studied metrics prior to constructing and explaining defect prediction models. The
results of Chapter 3 highlight the negative impact of correlated metrics on the explanation
of defect prediction models and suggest that correlated metrics must be mitigated prior to
constructing and explaining defect prediction models. To do so, in Chapter 4, we investigated
the consistency and correlation of subsets of metrics produced by commonly-used feature
selection techniques and our contribution, AutoSpearman. The experimental results show
that AutoSpearman mitigates correlated metrics better than other commonly-used feature
selection techniques, suggesting that AutoSpearman should be used to automatically mitigate
correlated metrics when aiming to explain defect prediction modes and their predictions.
=) Instance explanations can providemore actionable guidance thanmodel explan-
ations. Instance explanations can be used to answer why a file is predicted as defective (and
not defective). As shown in Chapter 5, model-agnostic techniques can generate reliable
instance explanations that are needed to explain individual predictions of defect prediction
models. Such reliable instance explanations can help software practitioners in defect diagnosis
and potentially provides clues towards solutions. Thus, software practitioners should adopt
instance explanations.

Future Research Opportunities

Finally, our results also highlight future research opportunities for software analytics re-
searchers (but not limited to):
=) Developing practical guidelines of data science pipeline that enable a reliable
explanation in software engineering. Prior studies show that data science pipelines often
impact the predictive accuracy [53, 207, 209, 210, 212, 213, 233] and the explainability [85,
86, 89] of prediction models in software engineering. Thus, future work should focus on

136 Conclusions

developing practical guidelines for analytical modelling workflow that enable a reliable
model-level and instance-level explanation, which is one crucial step towards actionable
software analytics.
=) Developing domain-specific model-agnostic algorithms for software engineer-
ing. Many model-agnostic techniques are originated from XAI literature. However, ac-
cording to the experimental results in Chapter 5, there are rooms for improvement. We
envision that a domain-specific model-agnostic technique for software engineering, that
is more adapted to the characteristics of software engineering data, can address the limit-
ation of the current state-of-the-art model-agnostic techniques. Furthermore, studies in
this thesis mainly focus on the file-level defect prediction. We encourage future studies to
develop domain-specific model-agnostic algorithms for other levels of defect prediction, e.g.,
JITLine [170] which is developed for the line-level defect prediction.
=) Exploring the explanation of defect prediction models in other scenarios. Studies
in this thesis mainly focus on with-in project defect prediction models. However, there
are various other scenarios of defect prediction models, e.g., cross-project [118, 157]. This
thesis provides a detailed explanation of experimental setups and techniques used in each
study. Thus, future work can explore the explanation of defect prediction models in other
scenarios.

Bibliography

[1] (2020). Rnalytica: An R package of the Miscellaneous Functions for Data Analytics
Research.

[2] Agrawal, A. and Menzies, T. (2018). Is Better Data Better Than Better Data Miners?:
On the Benefits of Tuning SMOTE for Defect Prediction. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 1050–1061.

[3] Agrawal, A., Menzies, T., Minku, L. L., Wagner, M., and Yu, Z. (2018). Better Software
Analytics via" DUO": Data Mining Algorithms Using/Used-by Optimizers. arXiv preprint
arXiv:1812.01550.

[4] Anvik, J., Hiew, L., andMurphy, G. C. (2006). Who Should Fix This Bug? In Proceedings
of the International Conference on Software Engineering (ICSE), pages 361–370.

[5] Arisholm, E., Briand, L. C., and Johannessen, E. B. (2010). A Systematic and Compre-
hensive Investigation of Methods to Build and Evaluate Fault Prediction Models. Journal
of Systems and Software (JSS), 83(1):2–17.

[6] Assila, A., Ezzedine, H., et al. (2016). Standardized Usability Questionnaires: Features
and Quality Focus. Electronic Journal of Computer Science and Information Technology: eJCIST,
6(1).

[7] Barnett, J. G., Gathuru, C. K., Soldano, L. S., and McIntosh, S. (2016). The Relationship
between Commit Message Detail and Defect Proneness in Java Projects on GitHub. In
Proceedings of the International Conference on Mining Software Repositories (MSR), pages
496–499.

[8] Bas, C. V. F. (1980). The Scientific Image. Oxford University Press.

[9] Basili, V. R., Briand, L. C., and Melo, W. L. (1996). A Validation of Object-
oriented Design Metrics as Quality Indicators. Transactions on Software Engineering (TSE),
22(10):751–761.

[10] Berry, W. D. (1993). Understanding Regression Assumptions, volume 92. Sage Publica-
tions.

[11] Bettenburg, N. and Hassan, A. E. (2010). Studying the Impact of Social Structures on
Software Quality. In Proceedings of the International Conference on Program Comprehension

(ICPC), pages 124–133.

[12] Bettenburg, N., Nagappan, M., and Hassan, A. E. (2012). Think Locally, Act Globally:
Improving Defect and E�ort PredictionModels. In Proceedings of the International Conference
on Mining Software Repositories (MSR), pages 60–69.

138 Bibliography

[13] Bhattacharya, P. and Neamtiu, I. (2011). Assessing Programming Language Impact on
Development and Maintenance: A Study on C and C++. In Proceedings of the International

Conference on Software Engineering (ICSE), pages 171–180.

[14] Biecek, P. and Grudziaz, A. (2017). pyBreakDown: Python implementation of R
package breakDown. Github Repository https://github.com/MI2DataLab/pyBreakDown.

[15] Biecek, P. and Grudziaz, A. (2018). breakDown: Model Agnostic Explainers for
Individual Predictions. R package version 0.1.6. Software available at URL: https://cran.r-

project.org/package=breakDown.

[16] Bird, C., Bachmann, A., Aune, E., Du�y, J., Bernstein, A., Filkov, V., and Devanbu,
P. (2009a). Fair and Balanced?: Bias in Bug-fix Datasets. In Proceedings of the European

Software Engineering Conference and the Symposium on the Foundations of Software Engineering

(ESEC/FSE), pages 121–130.

[17] Bird, C., Murphy, B., and Gall, H. (2011). Don’t Touch My Code ! Examining the
E�ects of Ownership on Software Quality. In Proceedings of the European Conference on

Foundations of Software Engineering (ESEC/FSE), pages 4–14.

[18] Bird, C., Nagappan, N., Devanbu, P., Gall, H., and Murphy, B. (2009b). Does
Distributed Development A�ect Software Quality?: An Empirical Case Study ofWindows
Vista. Communications of the ACM, 52(8):85–93.

[19] Blake, C. and Merz, C. (1998). UCI Repository of Machine Learning Databases.
University of California, Irvine, CA, 55.

[20] Bowes, D., Hall, T., Harman, M., Jia, Y., Sarro, F., and Wu, F. (2016). Mutation-
Aware Fault Prediction. In Proceedings of the International Symposium on Software Testing

and Analysis (ISSTA), pages 330–341.

[21] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

[22] Breiman, L. (2002). Manual on setting up, using, and understanding random forests
v3. 1. Statistics Department University of California Berkeley, CA, USA, 1.

[23] Breiman, L., Cutler, A., Liaw, A., and Wiener, M. (2006). randomForest : Breiman
and Cutler’s Random Forests for Classification and Regression. R package version 4.6-12.
Software available at URL: https://cran.r-project.org/package=randomForest.

[24] Briand, L. C., Melo, W. L., and Wust, J. (2002). Assessing the Applicability of Fault-
proneness Models across Object-oriented Software Projects. Transactions on Software

Engineering (TSE), 28(7):706–720.

[25] Briand, L. C., Wüst, J., Daly, J. W., and Porter, D. V. (2000). Exploring the Rela-
tionships between Design Measures and Software Quality in Object-oriented Systems.
Journal of Systems and Software (JSS), 51(3):245–273.

[26] Cahill, J., Hogan, J. M., and Thomas, R. (2013). Predicting Fault-prone Software
Modules with Rank Sum Classification. In Proceedings of the Australian Software Engineering

Conference (ASWEC), pages 211–219.

Bibliography 139

[27] Canfora, G., De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., and Panichella, S.
(2013). Multi-objective Cross-project Defect Prediction. In Proceedings of the International

Conference on Software Testing, Verification and Validation (ICST), pages 252–261.

[28] Chambers, J. M. (1992). Statistical Models in S. Wadsworth. Pacific Grove, California.

[29] Chen, D., Fu, W., Krishna, R., and Menzies, T. (2018). Applications of Psychological
Science for Actionable Analytics. In Proceedings of the European Software Engineering

Conference and the Symposium on the Foundations of Software Engineering (ESEC/FSE), pages
456–467.

[30] Chidamber, S. R. and Kemerer, C. F. (1994). A Metrics Suite for Object Oriented
Design. Transactions on Software Engineering (TSE), 20(6):476–493.

[31] Coelho, E. and Basu, A. (2012). E�ort Estimation in Agile Software Development
using Story Points. International Journal of Applied Information Systems (IJAIS), 3(7).

[32] Dam, H. K., Tran, T., and Ghose, A. (2018). Explainable Software Analytics. In
Proceedings of the International Conference on Software Engineering: New Ideas and Emerging

Results (ICSE-NIER), pages 53–56.

[33] D’Ambros, M., Lanza, M., and Robbes, R. (2010). An Extensive Comparison of Bug
Prediction Approaches. In Proceedings of the International Conference on Mining Software

Repositories (MSR), pages 31–41.

[34] D’Ambros, M., Lanza, M., and Robbes, R. (2012). Evaluating Defect Prediction
Approaches: A Benchmark and an Extensive Comparison. Empirical Software Engineering
(EMSE), 17(4-5):531–577.

[35] Dash, M., Liu, H., and Motoda, H. (2000). Consistency based Feature Selection. In
Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD),
pages 98–109.

[36] Devanbu, P., Zimmermann, T., and Bird, C. (2016). Belief & Evidence in Empirical
Software Engineering. In Proceedings of the International Conference on Software Engineering

(ICSE), pages 108–119.

[37] Di Penta, M., Cerulo, L., Guéhéneuc, Y.-G., and Antoniol, G. (2008). An Empirical
Study of the Relationships between Design Pattern Roles and Class Change Proneness. In
Proceedings of the International Conference on Software Maintenance (ICSM), pages 217–226.

[38] Edwards, P., Roberts, I., Clarke, M., DiGuiseppi, C., Pratap, S., Wentz, R., and Kwan,
I. (2002). "Increasing Response Rates to Postal Questionnaires: Systematic Review". Bmj,
324(7347):1183.

[39] Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Springer US,
Boston, MA.

[40] Elish, K. O. and Elish, M. O. (2008). Predicting Defect-prone Software Modules using
Support Vector Machines. Journal of Systems and Software (JSS), 81(5):649–660.

[41] Esteves, G., Figueiredo, E., Veloso, A., Viggiato, M., and Ziviani, N. (2020). Under-
standing Machine Learning Software Defect Predictions. Automated Software Engineering.

140 Bibliography

[42] Fisher, R. (1925). Intraclass correlations and the analysis of variance. Statistical Methods

for Research Workers, pages 187–210.

[43] Fox, J. (2015). Applied regression analysis and generalized linear models. Sage Publications.

[44] Fox, J. and Monette, G. (1992). Generalized Collinearity Diagnostics. Journal of the
American Statistical Association (JASA), 87(417):178–183.

[45] Fox, J., Weisberg, S., and Price, B. (2020). car: Companion to Applied Regression. R
package version 3.0-2. Software available at URL: https://cran.r-project.org/web/packages/car.

[46] French, S. (2014). Decision Analysis. Wiley StatsRef: Statistics Reference Online.

[47] Friedman, J., Hastie, T., and Tibshirani, R. (2001). The Elements of Statistical Learning,
volume 1. Springer series in statistics.

[48] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
Annals of Statistics, pages 1189–1232.

[49] Fu, W., Menzies, T., and Shen, X. (2016). Tuning for Software Analytics: Is it really
necessary? Information and Software Technology, 76:135–146.

[50] Garner, S. R. et al. (1995). Weka: The Waikato Environment for Knowledge Analysis.
In Proceedings of the New Zealand Computer Science Research Students Conference (NZCSRSC),
pages 57–64.

[51] Gevrey, M., Dimopoulos, I., and Lek, S. (2003). Review and comparison of methods to
study the contribution of variables in artificial neural network models. Ecological Modelling,
160(3):249–264.

[52] Ghotra, B., McIntosh, S., and Hassan, A. E. (2015). Revisiting the Impact of Classifica-
tion Techniques on the Performance of Defect Prediction Models. In Proceedings of the

International Conference on Software Engineering (ICSE), pages 789–800.

[53] Ghotra, B., Mcintosh, S., and Hassan, A. E. (2017). A large-scale study of the impact
of feature selection techniques on defect classification models. In Proceedings of the 14th

International Conference on Mining Software Repositories, pages 146–157.

[54] Gil, Y. and Lalouche, G. (2017). On the Correlation between Size and Metric Validity.
Empirical Software Engineering (EMSE), 22(5):2585–2611.

[55] Gosiewska, A. and Biecek, P. (2019). iBreakDown: Uncertainty of Model Explanations
for Non-additive Predictive Models. arXiv preprint arXiv:1903.11420.

[56] Gousios, G., Pinzger, M., and Deursen, A. v. (2014). An Exploratory Study of the
Pull-based Software Development Model. In Proceedings of the International Conference on

Software Engineering (ICSE), pages 345–355.

[57] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D.
(2018a). A survey of methods for explaining black box models. ACM computing surveys

(CSUR), 51(5):1–42.

[58] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Pedreschi, D., and Giannotti, F.
(2018b). A Survey Of Methods For Explaining Black Box Models. 51(5):1–45.

Bibliography 141

[59] Guo, L., Ma, Y., Cukic, B., and Singh, H. (2004). Robust Prediction of Fault-proneness
by Random Forests. In Proceedings of the International Symposium on Software Reliability

Engineering (ISSRE), pages 417–428.

[60] Guyon, I. and Elissee�, A. (2003). An Introduction to Variable and Feature Selection.
Journal of Machine Learning Research, 3:1157–1182.

[61] Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., Tatham, R. L., et al. (2006).
Multivariate Data Analysis (Vol. 6).

[62] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.
(2009). The WEKA data mining software: an update. ACM SIGKDD explorations

newsletter, 11(1):10–18.

[63] Hall, M. A. (1999). Correlation-based feature selection for machine learning. PhD thesis,
University of Waikato Hamilton.

[64] Hall, M. A. and Smith, L. A. (1997). Feature Subset Selection: A Correlation Based
Filter Approach.

[65] Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell, S. (2012). A Systematic
Literature Review on Fault Prediction Performance in Software Engineering. Transactions
on Software Engineering (TSE), 38(6):1276–1304.

[66] Hanley, J. a. and McNeil, B. J. (1982). The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143(4):29–36.

[67] Harrell Jr, F. E. (2013). Hmisc: Harrell miscellaneous. R package version 3.12-2.
Software available at URL: http://cran.r-project.org/web/packages/Hmisc.

[68] Harrell Jr, F. E. (2015). Regression Modeling Strategies : With Applications to Linear Models,

Logistic and Ordinal Regression, and Survival Analysis. Springer.

[69] Harrell Jr, F. E. (2017). rms: Regression Modeling Strategies. R package version 5.1-1.

[70] Hassan, A. E. (2009). Predicting Faults using the Complexity of Code Changes. In
Prooceedings of the International Conference on Software Engineering (ICSE), pages 78–88.

[71] Hata, H., Mizuno, O., and Kikuno, T. (2012). Bug prediction based on fine-grained
module histories. In Proceedings of the International Conference on Software Engineering

(ICSE), pages 200–210.

[72] Hemmati, H., Nadi, S., Baysal, O., Kononenko, O., Wang, W., Holmes, R., and
Godfrey, M. W. (2013). The MSR Cookbook: Mining a Decade of Research. In
Proceedings of the International Conference on Mining Software Repositories (MSR), pages
343–352.

[73] Herraiz, I., German, D. M., and Hassan, A. E. (2011). On the Distribution of Source
Code File Sizes. In Proceedings of the International Conference on Software Technologies

(ICSOFT), pages 5–14.

142 Bibliography

[74] Hilderbrand, C., Perdriau, C., Letaw, L., Emard, J., Steine-Hanson, Z., Burnett, M.,
and Sarma, A. (2020). Engineering gender-inclusivity into software: ten teams’ tales from
the trenches. In Proceedings of the International Conference on Software Engineering (ICSE),
pages 433–444.

[75] Hilton, D. J., McClure, J. J., and Slugoski, B. R. (2005). The Psychology of Counter-
factual Thinking. chapter The course of events: counterfactuals, causal sequences, and
explanation, pages 44–60. Routledge Research International Series in Social Psychology,
Routledge, Abingdon, Oxon, UK.

[76] Hinkle, D. E., Wiersma, W., and Jurs, S. G. (2003). Applied Statistics for the Behavioral
Sciences, volume 663. Houghton Mi�in College Division.

[77] Horne, Z., Muradoglu, M., and Cimpian, A. (2019). Explanation as a Cognitive Process.
Trends in Cognitive Sciences.

[78] Hosseini, S., Turhan, B., and Gunarathna, D. (2017). A Systematic Literature Review
and Meta-analysis on Cross Project Defect Prediction. Transactions on Software Engineering
(TSE), 45(2):111–147.

[79] Huang, Q., Xia, X., and Lo, D. (2017). Supervised vs Unsupervised Models: A Holistic
Look at E�ort-Aware Just-in-Time Defect Prediction. In Proceedings of the International

Conference on Software Maintenance and Evolution (ICSME), pages 159–170.

[80] Jiang, Y., Cukic, B., and Menzies, T. (2008). Can Data Transformation Help in the
Detection of Fault-prone Modules? In Proceedings of the International Workshop on Defects

in Large Software Systems (DEFECTS), pages 16–20.

[81] Jiarpakdee, J., Tantithamthavorn, C., Dam, H. K., and Grundy, J. (2020). An Empirical
Study of Model-Agnostic Techniques for Defect Prediction Models. Transactions on

Software Engineering (TSE).

[82] Jiarpakdee, J., Tantithamthavorn, C., Dam, H. K., and Grundy, J. (2020). An Empirical
Study of Model-Agnostic Techniques for Defect Prediction Models. Transactions on

Software Engineering (TSE), page To Appear.

[83] Jiarpakdee, J., Tantithamthavorn, C., Dam, H. K., and Grundy, J. (2020a). Online
Appendix for “An Empirical Study of Model-Agnostic Techniques for Defect Prediction
Models”. https://github.com/awsm-research/model-agnostic-online-appendix.

[84] Jiarpakdee, J., Tantithamthavorn, C., and Grundy, J. (2021a). Online supplementary
materials for Practitioners’ Perceptions of the Goals and Visual Explanations of Defect
Prediction Models. Available at URL: https://doi.org/10.5281/zenodo.4536698.

[85] Jiarpakdee, J., Tantithamthavorn, C., and Hassan, A. E. (2019a). The Impact of Correl-
ated Metrics on the Interpretation of Defect Models. Transactions on Software Engineering
(TSE).

[86] Jiarpakdee, J., Tantithamthavorn, C., Ihara, A., and Matsumoto, K. (2016). A Study
of Redundant Metrics in Defect Prediction Datasets. In Proceedings of the International

Symposium on Software Reliability Engineering Workshops (ISSREW), pages 51–52.

https://github.com/awsm-research/model-agnostic-online-appendix

Bibliography 143

[87] Jiarpakdee, J., Tantithamthavorn, C., and Treude, C. (2018a). Artefact: An R Imple-
mentation of the AutoSpearman Function. In Proceedings of the International Conference on

Software Maintenance and Evolution (ICSME), pages 711–711.

[88] Jiarpakdee, J., Tantithamthavorn, C., and Treude, C. (2018b). AutoSpearman: Auto-
matically Mitigating Correlated Metrics for Interpreting Defect Models. In Proceeding of

the International Conference on Software Maintenance and Evolution (ICSME), pages 92–103.

[89] Jiarpakdee, J., Tantithamthavorn, C., and Treude, C. (2018c). AutoSpearman: Auto-
matically Mitigating Correlated Software Metrics for Interpreting Defect Models. In
Proceedings of the International Conference on Software Maintenance and Evolution (ICSME),
pages 92–103.

[90] Jiarpakdee, J., Tantithamthavorn, C., and Treude, C. (2019b). Online Appendix for
“The Impact of Automated Feature Selection Techniques on the Interpretation of Defect
Models”. Available at URL: https://github.com/software-analytics/autospearman-extension-

appendix.

[91] Jiarpakdee, J., Tantithamthavorn, C., and Treude, C. (2020b). The Impact of Automated
Feature Selection Techniques on the Interpretation of Defect Models. Empirical Software
Engineering (EMSE).

[92] Jiarpakdee, J., Tantithamthavorn, C., and Treude, C. (2021b). Practitioners’ Perceptions
of the Goals and Visual Explanations of Defect Prediction Models. In Proceedings of the

International Conference on Mining Software Repositories (MSR).

[93] John, G. H., Kohavi, R., and Pfleger, K. (1994). Irrelevant Features and the Subset
Selection Problem. In Proceedings of the International Conference on Machine Learning (ICML),
pages 121–129.

[94] Jureczko, M. and Madeyski, L. (2010). Towards Identifying Software Project Clusters
with Regard to Defect Prediction. In Proceedings of the International Conference on Predictive

Models in Software Engineering (PROMISE), page 9.

[95] Kabinna, S., Shang, W., Bezemer, C.-P., and Hassan, A. E. (2016). Examining the
Stability of Logging Statements. In Proceedings of the International Conference on Software

Analysis, Evolution, and Reengineering (SANER), pages 326–337.

[96] Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus, A., Sinha, A., and Ubayashi,
N. (2013). A Large-Scale Empirical Study of Just-In-Time Quality Assurance. Transactions
on Software Engineering (TSE), 39(6):757–773.

[97] Kaur, A. and Malhotra, R. (2008). Application of Random Forest in Predicting Fault-
prone Classes. In Proceedings of International Conference on the Advanced Computer Theory

and Engineering (ICACTE), pages 37–43.

[98] Keung, J., Kocaguneli, E., and Menzies, T. (2013). Finding Conclusion Stability for
Selecting the Best E�ort Predictor in Software E�ort Estimation. Automated Software
Engineering, 20(4):543–567.

[99] Khomh, F., Di Penta, M., and Gueheneuc, Y.-G. (2009). An Exploratory Study of
the Impact of Code Smells on Software Change-proneness. In Proceedings of the Working

Conference on Reverse Engineering (WCRE), pages 75–84.

144 Bibliography

[100] Khomh, F., Di Penta, M., Guéhéneuc, Y.-G., and Antoniol, G. (2012). An Exploratory
Study of the Impact of Antipatterns on Class Change-and Fault-proneness. Empirical
Software Engineering (EMSE), 17(3):243–275.

[101] Kim, S., Zhang, H., Wu, R., and Gong, L. (2011). Dealing with Noise in Defect
Prediction. In Proceedings of the International Conference on Software Engineering (ICSE),
pages 481–490.

[102] Kim, S., Zimmermann, T., Whitehead Jr, E. J., and Zeller, A. (2007). Predicting Faults
from Cached History. In Proceedings of the International Conference on Software Engineering

(ICSE), pages 489–498.

[103] Kirbas, S., Caglayan, B., Hall, T., Counsell, S., Bowes, D., Sen, A., and Bener, A.
(2017). The Relationship between Evolutionary Coupling and Defects in Large Industrial
Software. Journal of Software: Evolution and Process, 29(4).

[104] Kitchenham, B. A. and Pfleeger, S. L. (2008). Personal opinion surveys. In Guide to

Advanced Empirical Software Engineering, pages 63–92.

[105] Kohavi, R. and John, G. H. (1997). Wrappers for Feature Subset Selection. Artificial
Intelligence, 97(1-2):273–324.

[106] Koru, A. G. and Liu, H. (2005). An Investigation of the E�ect of Module Size on
Defect Prediction Using Static Measures. Software Engineering Notes (SEN), 30:1–5.

[107] Kraemer, H. C., Morgan, G. A., Leech, N. L., Gliner, J. A., Vaske, J. J., and Harmon,
R. J. (2003). Measures of Clinical Significance. Journal of the American Academy of Child &
Adolescent Psychiatry (JAACAP), 42(12):1524–1529.

[108] Krishna, R. and Menzies, T. (2017). Simpler Transfer Learning (Using "Bellwethers").
pages 1–23.

[109] Krishna, R. and Menzies, T. (2020). Learning Actionable Analytics from Multiple
Software Projects. Empirical Software Engineering (EMSE), 25(5):3468–3500.

[110] Krosnick, J. A. (1999). Survey research. Annual Review of Psychology, 50(1):537–567.

[111] Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper,
T., Mayer, Z., Kenkel, B., Team, R., et al. (2017). caret: Classification and regres-
sion training. R package version 6.0–78. Software available at URL: https://cran.r-

project.org/web/packages/caret.

[112] Lamkanfi, A., Pérez, J., and Demeyer, S. (2013). The Eclipse and Mozilla Defect
Tracking Dataset: A Genuine Dataset for Mining Bug Information. In Proceedings of the

International Conference on Mining Software Repositories (MSR), pages 203–206.

[113] Leake, D. B. (2014). Evaluating Explanations: A Content Theory. Psychology Press.

[114] Lessmann, S., Baesens, B., Mues, C., and Pietsch, S. (2008). Benchmarking Classifica-
tion Models for Software Defect Prediction: A Proposed Framework and Novel Findings.
Transactions on Software Engineering (TSE), 34(4):485–496.

Bibliography 145

[115] Lewis, C., Lin, Z., Sadowski, C., Zhu, X., Ou, R., and Whitehead Jr, E. J. (2013).
Does Bug Prediction Support Human Developers? Findings from a Google Case Study.
In Proceedings of the International Conference on Software Engineering (ICSE), pages 372–381.

[116] Lewis, J. R. (1992). Psychometric evaluation of the post-study system usability
questionnaire: The PSSUQ. In Proceedings of the Human Factors and Ergonomics Society

Annual Meeting, volume 36, pages 1259–1260.

[117] Li, J., Cheng, K.,Wang, S., Morstatter, F., Trevino, R. P., Tang, J., and Liu, H. (2017a).
Feature Selection: A Data Perspective. ACM Computing Surveys (CSUR), 50(6):94.

[118] Li, Z., Jing, X.-Y., Zhu, X., and Zhang, H. (2017b). Heterogeneous Defect Pre-
diction through Multiple Kernel Learning and Ensemble Learning. In Proceedings of the

International Conference on Software Maintenance and Evolution (ICSME), pages 91–102.

[119] Liang, H., Yu, Y., Jiang, L., and Xie, Z. (2019). Seml: A semantic LSTM model for
software defect prediction. IEEE Access, 7:83812–83824.

[120] Lipton, P. (1990). Contrastive explanation. Royal Institute of Philosophy Supplement,
27:247–266.

[121] Lipton, Z. C. (2016). The Mythos of Model Interpretability. In Proceedings of the 2016

ICML Workshop on Human Interpretability in Machine Learning, pages 96–100.

[122] Litwin, M. S. (1995). How to Measure Survey Reliability and Validity, volume 7. Sage.

[123] Lombrozo, T. (2006). The structure and function of explanations. Trends in Cognitive
Sciences, 10(10):464–70.

[124] Lu, H., Kocaguneli, E., and Cukic, B. (2014). Defect Prediction between Software
Versions with Active Learning and Dimensionality Reduction. In Proceedings of the

International Symposium on Software Reliability Engineering (ISSRE), pages 312–322.

[125] Lundberg, S. M. and Lee, S.-I. (2017). A Unified Approach to Interpreting Model
Predictions. In Advances in Neural Information Processing Systems (NIPS), pages 4765–4774.

[126] Mason, C. H. and Perreault Jr, W. D. (1991). Collinearity, Power, and Interpretation
of Multiple Regression Analysis. Journal of Marketing Research (JMR), pages 268–280.

[127] Matthews, B. W. (1975). Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure,
405(2):442–451.

[128] McCabe, T. J. (1976). A Complexity Measure. Transactions on Software Engineering
(TSE), (4):308–320.

[129] McHugh, M. L. (2013). The Chi-square Test of Independence. Biochemia Medica,
23(2):143–149.

[130] McIntosh, S. and Kamei, Y. (2017). Are Fix-Inducing Changes a Moving Target?
A Longitudinal Case Study of Just-In-Time Defect Prediction. Transactions on Software
Engineering (TSE).

146 Bibliography

[131] McIntosh, S., Kamei, Y., Adams, B., and Hassan, A. E. (2014). The Impact of Code
Review Coverage and Code Review Participation on Software Quality. In Proceedings of

the International Conference on Mining Software Repositories (MSR), pages 192–201.

[132] McIntosh, S., Kamei, Y., Adams, B., and Hassan, A. E. (2016). An Empirical Study of
the Impact of Modern Code Review Practices on Software Quality. Empirical Software
Engineering (EMSE), 21(5):2146–2189.

[133] Mende, T. (2010). Replication of Defect Prediction Studies: Problems, Pitfalls and
Recommendations. In Proceedings of the International Conference on Predictive Models in

Software Engineering (PROMISE), pages 1–10.

[134] Mende, T. and Koschke, R. (2009a). Revisiting the Evaluation of Defect Prediction
Models. Proceedings of the International Conference on Predictive Models in Software Engineering

(PROMISE), pages 7–16.

[135] Mende, T. and Koschke, R. (2009b). Revisiting the Evaluation of Defect Predic-
tion Models. In Proceedings of the International Conference on Predictor Models in Software

Engineering (PROMISE), page 7.

[136] Meneely, A., Williams, L., Snipes, W., and Osborne, J. (2008). Predicting Failures
with Developer Networks and Social Network Analysis. In Proceedings of the International

Symposium on Foundations of Software Engineering (FSE), pages 13–23.

[137] Menzies, T. (2018). The Unreasonable E�ectiveness of Software Analytics. IEEE
Software, 35(2):96–98.

[138] Menzies, T., Butcher, A., Cok, D., Marcus, A., Layman, L., Shull, F., Turhan, B., and
Zimmermann, T. (2013). Local Versus Global Lessons for Defect Prediction and E�ort
Estimation. Transactions on Software Engineering (TSE), 39(6):822–834.

[139] Menzies, T., Caglayan, B., Kocaguneli, E., Krall, J., Peters, F., and Turhan, B. (2012).
The Promise Repository of Empirical Software Engineering Data.

[140] Menzies, T., Greenwald, J., and Frank, A. (2007). Data Mining Static Code Attributes
to Learn Defect Predictors. Transactions on Software Engineering (TSE), 33(1):2–13.

[141] Menzies, T. and Shepperd, M. (2012). Special Issue on Repeatable Results in Software
Engineering Prediction. Empirical Software Engineering (EMSE), pages 1–17.

[142] Menzies, T. and Zimmermann, T. (2018a). Software Analytics: So What? IEEE

Software, (4):31–37.

[143] Menzies, T. and Zimmermann, T. (2018b). Software Analytics: Whats next? IEEE

Software, (4).

[144] Mersmann, O., Beleites, C., Hurling, R., and Friedman, A. (2019). microbench-
mark: Accurate Timing Functions. R package version 1.4-4. Software available at URL:

https://cran.r-project.org/package=microbenchmark.

[145] Miller, K. W. and Larson, D. K. (2005). Agile software development: human values
and culture. IEEE Technology and Society Magazine, 24(4):36–42.

Bibliography 147

[146] Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences.
Artifical Intelligence, 267:1–38.

[147] Misirli, A. T., Shihab, E., and Kamei, Y. (2016). Studying High Impact Fix-Inducing
Changes. Empirical Software Engineering (EMSE), 21(2):605–641.

[148] Mitchell, T. M. (1997). Machine Learning. McGraw Hill.

[149] Mohanty, H., Mohanty, J., and Balakrishnan, A. (2017). Trends in Software Testing.
Springer.

[150] Morales, R., McIntosh, S., and Khomh, F. (2015). Do Code Review Practices Impact
Design Quality? : A Case Study of the Qt, VTK, and ITK Projects. In Proceedings of the

International Conference on Software Analysis, Evolution and Reengineering (SANER), pages
171–180.

[151] Moser, R., Pedrycz,W., and Succi, G. (2008). AComparative Analysis of the E�ciency
of Change Metrics and Static Code Attributes for Defect Prediction. In Proceedings of the

International Conference on Software Engineering (ICSE), pages 181–190.

[152] Mullen, K., Ardia, D., Gil, D. L., Windover, D., and Cline, J. (2011). DEoptim: An R
package for global optimization by di�erential evolution. Journal of Statistical Software,
40(6):1–26.

[153] Nagappan, N. and Ball, T. (2005). Use of Relative Code Churn Measures to Predict
System Defect Density. Proceedings of the International Conference on Software Engineering
(ICSE), pages 284–292.

[154] Nagappan, N., Ball, T., and Zeller, A. (2006). Mining Metrics to Predict Component
Failures. In Proceedings of the International Conference on Software Engineering (ICSE), pages
452–461.

[155] Nagappan, N., Murphy, B., and Basili, V. (2008). The Influence of Organizational
Structure on Software Quality. In Proceedings of the International Conference on Software

Engineering (ICSE), pages 521–530.

[156] Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K., and Murphy, B. (2010).
Change Bursts as Defect Predictors. In Proceedings of the International Symposium on Software

Reliability Engineering (ISSRE), pages 309–318.

[157] Nam, J., Fu, W., Kim, S., Menzies, T., and Tan, L. (2017). Heterogeneous Defect
Prediction. Transactions on Software Engineering (TSE), page In Press.

[158] Natekin, A. and Knoll, A. (2013). Gradient Boosting Machines, A Tutorial. Frontiers
in Neurorobotics, 7:21.

[159] Nelson, E. A. (1967). Management Handbook for the Estimation of Computer
Programming Costs. Technical report, SYSTEM DEVELOPMENT CORP SANTA
MONICA CA.

[160] Okutan, A. and Yıldız, O. T. (2014). Software Defect Prediction using Bayesian
Networks. Empirical Software Engineering (EMSE), 19(1):154–181.

148 Bibliography

[161] Osman, H., Ghafari, M., and Nierstrasz, O. (2018). The Impact of Feature Selection
on Predicting the Number of Bugs. arXiv preprint arXiv:1807.04486.

[162] Pandari, Y., Thangavel, P., Senthamaraikannan, H., and Jagadeeswaran, S. (2019).
HybridFS: A Hybrid Filter-Wrapper Feature Selection Method. R package version 0.1.3.
Software available at URL: https://cran.r-project.org/package=HybridFS.

[163] Pascarella, L., Palomba, F., and Bacchelli, A. (2018). Fine-Grained Just-In-Time
Defect Prediction. Journal of Systems and Software (JSS).

[164] Pedersen, T. L. and Benesty, M. (2019). lime: Local Interpretable Model-Agnostic
Explanations. R package version 0.4.0. Software available at URL: https://cran.r-

project.org/web/packages/lime.

[165] Peng, K. and Menzies, T. (2020a). Defect Reduction Planning (using TimeLIME).
arXiv preprint arXiv:2006.07416.

[166] Peng, K. and Menzies, T. (2020b). How to Improve AI Tools (by Adding in SE
Knowledge): Experiments with the TimeLIME Defect Reduction Tool. arXiv preprint
arXiv:2003.06887.

[167] Petkovic, D., Sosnick-Pérez, M., Okada, K., Todtenhoefer, R., Huang, S., Miglani,
N., and Vigil, A. (2016). Using the random forest classifier to assess and predict student
learning of Software Engineering Teamwork. In The Frontiers in Education Conference

(FIE), pages 1–7.

[168] Petri∆, J., Bowes, D., Hall, T., Christianson, B., and Baddoo, N. (2016). The Jinx
on the NASA Software Defect Data Sets. In Proceedings of the International Conference on

Evaluation and Assessment in Software Engineering (EASE), pages 13–17.

[169] Planning, S. (2002). The Economic Impacts of Inadequate Infrastructure for Software
Testing. National Institute of Standards and Technology.

[170] Pornprasit, C. and Tantithamthavorn, C. (2021). JITLine: A Simpler, Better, Faster,
Finer-grained Just-In-Time Defect Prediction. In Proceedings of the International Conference

on Mining Software Repositories (MSR).

[171] Quinlan, J. R. (1987). Simplifying Decision Trees. International Journal of Man-machine

Studies, 27(3):221–234.

[172] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning.

[173] Rahman, F. and Devanbu, P. (2011). Ownership, experience and defects: a fine-
grained study of authorship. In Proceedings of the International Conference on Software

Engineering (ICSE), pages 491–500.

[174] Rahman, F. and Devanbu, P. (2013). How, and Why, Process Metrics are Better. In
Proceedings of the International Conference on Software Engineering (ICSE), pages 432–441.

[175] Rahman, F., Khatri, S., Barr, E. T., and Devanbu, P. (2014). Comparing Static Bug
Finders and Statistical Prediction. In Proceedings of the International Conference on Software

Engineering (ICSE), pages 424–434.

https://cran.r-project.org/package=HybridFS

Bibliography 149

[176] Rahman, F., Posnett, D., Herraiz, I., and Devanbu, P. (2013). Sample Size vs. Bias in
Defect Prediction. In Proceedings of the Joint Meeting of the European Software Engineering

Conference and the Symposium on the Foundations of Software Engineering (ESEC/FSE), pages
147–157.

[177] Rajbahadur, G. K., Wang, S., Kamei, Y., and Hassan, A. E. (2017). The Impact of
Using Regression Models to Build Defect Classifiers. In Proceedings of the International

Conference on Mining Software Repositories (MSR), pages 135–145.

[178] Ray, B., Posnett, D., Filkov, V., and Devanbu, P. (2014). A Large Scale Study of
Programming Languages and Code Quality in Github. In Proceedings of the International

Symposium on Foundations of Software Engineering (FSE), pages 155–165.

[179] Regulation, G. D. P. (2016). Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the Protection of Natural Persons with regard to
the Processing of Personal Data and on the Free Movement of such Data, and Repealing
Directive 95/46. O�cial Journal of the European Union (OJ), 59(1-88):294.

[180] Ribeiro, M. (2016). lime: Explaining the predictions of any machine learning classifier.
Github Repository https://github. com/marcotcr/lime.

[181] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016a). Model-agnostic Interpretability
of Machine Learning. arXiv preprint arXiv:1606.05386.

[182] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016b). Why should i trust you?:
Explaining the predictions of any classifier. In Proceedings of the International Conference on

Knowledge Discovery and Data Mining (KDDM), pages 1135–1144.

[183] Ribeiro, M. T., Singh, S., and Guestrin, C. (2018). "Anchors: High-precision model-
agnostic explanations". In Proceedings of the AAAI Conference on Artificial Intelligence.

[184] Robles, G. (2010). Replicating MSR: A Study of the Potential Replicability of Pa-
pers Published in the Mining Software Repositories Proceedings. In Proceedings of the

International Conference on Mining Software Repositories (MSR), pages 171–180.

[185] Rodríguez, D., Ruiz, R., Cuadrado-Gallego, J., and Aguilar-Ruiz, J. (2007). Detecting
Fault Modules Applying Feature Selection to Classifiers. In Proceedings of the International

Conference on Information Reuse and Integration (IRI), pages 667–672.

[186] Rodríguez, D., Ruiz, R., Riquelme, J. C., and Aguilar-Ruiz, J. S. (2012). Searching
for Rules to Detect Defective Modules: A Subgroup Discovery Approach. Information
Sciences, 191:14–30.

[187] Romano, J., Kromrey, J. D., Coraggio, J., and Skowronek, J. (2006). Appropriate
Statistics for Ordinal Level Data: Should we really be using T-test and Cohen’s d for
Evaluating group di�erences on the NSSE and other surveys. In Annual meeting of the

Florida Association of Institutional Research (FAIR), pages 1–33.

[188] Romanski, P. and Kottho�, L. (2013). FSelector: Selecting attributes. R package
version 0.19. Software available at URL: https://cran.r-project.org/web/packages/FSelector.

[189] Salmon, W. C. (1984). Scientific explanation and the causal structure of the world.
Princeton University Press Princeton, N.J.

150 Bibliography

[190] Sarle, W. (1990). The VARCLUS Procedure. SAS/STAT UserGuide. SAS Institute.
Inc., Cary, NC, USA.

[191] Shepperd, M., Bowes, D., and Hall, T. (2014). Researcher Bias: The Use of Machine
Learning in Software Defect Prediction. Transactions on Software Engineering (TSE),
40(6):603–616.

[192] Shepperd, M., Song, Q., Sun, Z., and Mair, C. (2013). Data Quality: Some Comments
on the NASA Software Defect Datasets. Transactions on Software Engineering (TSE),
39(9):1208–1215.

[193] Shihab, E. (2012). An Exploration of Challenges Limiting Pragmatic Software Defect

Prediction. PhD thesis, Queen’s University.

[194] Shihab, E., Bird, C., and Zimmermann, T. (2012). The E�ect of Branching Strategies
on Software Quality. In Proceedings of the International Symposium on Empirical Software

Engineering and Measurement (ESEM), pages 301–310.

[195] Shihab, E., Jiang, Z. M., Ibrahim, W. M., Adams, B., and Hassan, A. E. (2010).
Understanding the Impact of Code and Process Metrics on Post-release Defects: A Case
Study on the Eclipse Project. In Proceedings of the International Symposium on Empirical

Software Engineering and Measurement (ESEM), pages 4–10.

[196] Shimagaki, J., Kamei, Y., McIntosh, S., Hassan, A. E., and Ubayashi, N. (2016). A
Study of the Quality-Impacting Practices of Modern Code Review at Sony Mobile. In
Proceedings of the International Conference on Software Engineering (ICSE), pages 212–221.

[197] Shin, Y., Meneely, A., Williams, L., and Osborne, J. A. (2011). Evaluating Complexity,
Code Churn, and Developer Activity Metrics as Indicators of Software Vulnerabilities.
Transactions on Software Engineering (TSE), 37(6):772–787.

[198] Shivaji, S., Whitehead, E. J., Akella, R., and Kim, S. (2013). Reducing Features to
Improve Code Change-Based Bug Prediction. Transactions on Software Engineering (TSE),
39(4):552–569.

[199] Shrikanth, N. and Menzies, T. (2020). Assessing Practitioner Beliefs about Software
Defect Prediction. In Proceedings of the International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP), pages 182–190.

[200] Smith, E., Loftin, R., Murphy-Hill, E., Bird, C., and Zimmermann, T. (2013). "Im-
proving Developer Participation Rates in Surveys". In Proceedings of the International

Workshop on Cooperative and Human Aspects of Software Engineering (CHASE), pages 89–92.

[201] Staniak, M. and Biecek, P. (2018). Explanations of Model Predictions with live and
breakDown Packages. arXiv preprint arXiv:1804.01955.

[202] Storn, R. and Price, K. (1997). Di�erential Evolution–A simple and e�cient heuristic
for global optimization over continuous spaces. Journal of Global Optimization, 11(4):341–
359.

[203] Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and Zeileis, A. (2008). Condi-
tional Variable Importance for Random Forests. BMC Bioinformatics, 9(1):307.

Bibliography 151

[204] Tan, M., Tan, L., Dara, S., and Mayeux, C. (2015). Online Defect Prediction for
Imbalanced Data. In Proceedings of the International Conference on Software Engineering

(ICSE), volume 2, pages 99–108.

[205] Tantithamthavorn, C. (2016). Towards a Better Understanding of the Impact of
Experimental Components on Defect Prediction Modelling. In Companion Proceeding of

the International Conference on Software Engineering (ICSE), pages 867—-870.

[206] Tantithamthavorn, C. (2017). ScottKnottESD : The Scott-Knott E�ect Size Dif-
ference (ESD) Test. R package version 2.0. Software available at URL: https://cran.r-

project.org/web/packages/ScottKnottESD.

[207] Tantithamthavorn, C. and Hassan, A. E. (2018). An Experience Report on Defect
Modelling in Practice: Pitfalls and Challenges. In Proceedings of the International Conference

on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP), pages 286–295.

[208] Tantithamthavorn, C., Hassan, A. E., and Matsumoto, K. (2018a). The Impact of Class
Rebalancing Techniques on The Performance and Interpretation of Defect Prediction
Models. Transactions on Software Engineering (TSE), page In Press.

[209] Tantithamthavorn, C., McIntosh, S., Hassan, A. E., Ihara, A., and Matsumoto, K.
(2015). The Impact of Mislabelling on the Performance and Interpretation of Defect
Prediction Models. In Proceeding of the International Conference on Software Engineering

(ICSE), pages 812–823.

[210] Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and Matsumoto, K. (2016a).
Automated Parameter Optimization of Classification Techniques for Defect Prediction
Models. In Proceedings of the International Conference on Software Engineering (ICSE), pages
321–332.

[211] Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and Matsumoto, K. (2016b).
Comments on Bias: The Use of Machine Learning in Software Defect Prediction”.
Transactions on Software Engineering (TSE), 42(11):1092–1094.

[212] Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and Matsumoto, K. (2017). An
Empirical Comparison of Model Validation Techniques for Defect Prediction Models.
Transactions on Software Engineering (TSE), 43(1):1–18.

[213] Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and Matsumoto, K. (2018b). The
Impact of Automated Parameter Optimization on Defect Prediction Models. Transactions
on Software Engineering (TSE), page In Press.

[214] Team, R. C. and contributors worldwide (2017). stats : The R Stats Package. R
Package. Version 3.4.0.

[215] Thomas, M. and Thimbleby, H. (2018). Computer Bugs in Hospitals: A New Killer.
IT, Cybersecurity and Risk to Patients, Gresham College, Gresham College, available at:(accessed

26 February 2018).

[216] Thongtanunam, P., McIntosh, S., Hassan, A. E., and Iida, H. (2016). Revisiting Code
Ownership and its Relationship with Software Quality in the Scope of Modern Code
Review. In Proceedings of the International Conference on Software Engineering (ICSE), pages
1039–1050.

152 Bibliography

[217] Thongtanunam, P., McIntosh, S., Hassan, A. E., and Iida, H. (2017). Review Particip-
ation in Modern Code Review. Empirical Software Engineering (EMSE), 22(2):768–817.

[218] Thongtanunam, P., Tantithamthavorn, C., Kula, R. G., Yoshida, N., Iida, H., and
Matsumoto, K.-i. (2015). Who Should Review My Code? A File Location-based Code-
reviewer Recommendation Approach for Modern Code Review. In Proceedings of the

International Conference on Software Analysis, Evolution, and Reengineering (SANER), pages
141–150.

[219] Tian, Y., Nagappan, M., Lo, D., and Hassan, A. E. (2015). What Are the Character-
istics of High-Rated Apps? A Case Study on Free Android Applications. In Proceedings of

the International Conference on Software Maintenance and Evolution (ICSME), pages 301–310.

[220] Tosun, A. and Bener, A. (2009). Reducing False Alarms in Software Defect Prediction
by Decision Threshold Optimization. In Proceedings of the International Symposium on

Empirical Software Engineering and Measurement (ESEM), pages 477–480.

[221] Van Bouwel, J. and Weber, E. (2002). Remote Causes, Bad Explanations? The Journal

for the Theory of Social Behaviour, 32:437–449.

[222] Wan, Z., Xia, X., Hassan, A. E., Lo, D., Yin, J., and Yang, X. (2018). Perceptions,
expectations, and challenges in defect prediction. Transactions on Software Engineering

(TSE).

[223] Wang, S., Chollak, D., Movshovitz-Attias, D., and Tan, L. (2016a). Bugram: Bug
Detection with N-gram Language Models. In Proceedings of the International Conference on

Automated Software Engineering (ASE), pages 708–719.

[224] Wang, S., Liu, T., Nam, J., and Tan, L. (2018). Deep Semantic Feature Learning for
Software Defect Prediction. Transactions on Software Engineering (TSE).

[225] Wang, S., Liu, T., and Tan, L. (2016b). Automatically Learning Semantic Features
for Defect Prediction. In Proceedings of the International Conference on Software Engineering

(ICSE), pages 297–308.

[226] Wang, S. and Yao, X. (2013). Using Class Imbalance Learning for Software Defect
Prediction. Transactions on Reliability, 62(2):434–443.

[227] Wang, T., Zhang, Z., Jing, X., and Zhang, L. (2016c). Multiple Kernel Ensemble
Learning for Software Defect Prediction. Automated Software Engineering, 23(4):569–590.

[228] Wattanakriengkrai, S., Thongtanunam, P., Tantithamthavorn, C., Hata, H., and
Matsumoto, K. (2020). Predicting Defective Lines Using a Model-Agnostic Technique.
IEEE Transactions on Software Engineering (TSE).

[229] Wilcoxon, F. (1992). Individual Comparisons by Ranking Methods. In Breakthroughs
in statistics, pages 196–202.

[230] Wu, R., Zhang, H., Kim, S., and Cheung, S.-C. (2011). Relink: Recovering Links
between Bugs and Changes. In Proceedings of the European Software Engineering Conference

and the Symposium on the Foundations of Software Engineering (ESEC/FSE), pages 15–25.

Bibliography 153

[231] Xu, Z., Liu, J., Yang, Z., An, G., and Jia, X. (2016). The Impact of Feature Selection
on Defect Prediction Performance: An Empirical Comparison. In Proceedings of the

International Symposium on Software Reliability Engineering (ISSRE), pages 309–320.

[232] Yang, Y., Zhou, Y., Liu, J., Zhao, Y., Lu, H., Xu, L., Xu, B., and Leung, H. (2016).
E�ort-Aware Just-In-Time Defect Prediction: Simple unsupervised models could be
better than supervised models. In Proceedings of the International Symposium on Foundations

of Software Engineering (FSE), pages 157–168.

[233] Yatish, S., Jiarpakdee, J., Thongtanunam, P., and Tantithamthavorn, C. (2019). Min-
ing Software Defects: Should We Consider A�ected Releases? In In Proceedings of the

International Conference on Software Engineering (ICSE), page To Appear.

[234] Zeller, A., Zimmermann, T., and Bird, C. (2011). Failure is a Four-Letter Word: A
Parody in Empirical Research. In Proceedings of the International Conference on Predictive

Models in Software Engineering (PROMISE), pages 1–7.

[235] Zhang, F., Hassan, A. E., McIntosh, S., and Zou, Y. (2017). The Use of Summation
to Aggregate Software Metrics Hinders the Performance of Defect Prediction Models.
Transactions on Software Engineering (TSE), 43(5):476–491.

[236] Zhang, H. (2009). An Investigation of the Relationships between Lines of Code and
Defects. In Proceedings of the International Conference on Software Maintenance (ICSME),
pages 274–283.

[237] Zimmermann, T., Nagappan, N., Gall, H., Giger, E., and Murphy, B. (2009). Cross-
project Defect Prediction. In Proceedings of the European Software Engineering Conference

and the Symposium on the Foundations of Software Engineering (ESEC/FSE), pages 91–100.

[238] Zimmermann, T., Premraj, R., and Zeller, A. (2007). Predicting Defects for Eclipse.
In Proceedings of the International Workshop on Predictor Models in Software Engineering

(PROMISE), pages 9–19.

[239] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S. (2005). Mining Version
Histories toGuide SoftwareChanges. Transactions on Software Engineering (TSE), 31(6):429–
445.

[240] Zou, W., Lo, D., Chen, Z., Xia, X., Feng, Y., and Xu, B. (2018). How Practitioners
Perceive Automated Bug Report Management Techniques. Transactions on Software

Engineering (TSE).

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Nature of Software Defects
	1.2 Software Quality Assurance
	1.3 Thesis Motivation
	1.4 Thesis Statement and Research Questions
	1.5 Thesis Overview
	1.6 Key Contributions

	2 Practitioners' Perceptions of Explainable Defect Models
	2.1 Introduction
	2.2 Related Work & Research Questions
	2.2.1 Related Work
	2.2.2 Research Questions

	2.3 Survey Methodology
	2.3.1 Survey Design
	2.3.2 An Evaluation of the Survey Instrument
	2.3.3 Participant Recruitment and Selection
	2.3.4 Data Verification
	2.3.5 Statistical Analysis

	2.4 Survey Results
	2.4.1 Demographics

	2.5 Threats to the Validity
	2.6 Conclusions
	2.6.1 Chapter Remarks

	3 Investigate the Impact of Correlated Metrics on the Explanation of Defect Models
	3.1 Introduction
	3.1.1 Chapter Organisation

	3.2 Background and Motivation
	3.2.1 Analytical Modelling Process
	3.2.2 Correlated Metrics and Concerns in the Literature
	3.2.3 Techniques for Mitigating Correlated Metrics
	3.2.4 Techniques for Explaining Defect Models

	3.3 Experimental Design and Setup
	3.3.1 Studied Datasets
	3.3.2 Remove Correlated Metrics
	3.3.3 Construct Defect Models
	3.3.4 Analyze the Model Interpretation
	3.3.5 Analyze the Model Performance

	3.4 Experimental Results
	3.5 Practical Guidelines
	3.6 Threats to Validity
	3.7 Conclusions
	3.7.1 Chapter Remarks

	4 Automatically Mitigate Correlated Metrics when Explaining Defect Models
	4.1 Introduction
	4.1.1 Chapter Organisation

	4.2 Related Work & Research Questions
	4.3 Experimental Design
	4.3.1 Studied Datasets
	4.3.2 Studied Feature Selection Techniques
	4.3.3 Studied Classification Techniques

	4.4 Experimental Results
	4.5 Discussions
	4.5.1 The trends of correlated metrics that are elected by the commonly-used feature selection techniques

	4.6 Threats to Validity
	4.7 Conclusions
	4.7.1 Chapter Remarks

	5 Explain the Predictions of Defect Models
	5.1 Introduction
	5.1.1 Chapter Organisation

	5.2 Explainability in Software Engineering
	5.2.1 A Theory of Explainability
	5.2.2 A Theory of Explanations

	5.3 Techniques for Generating Explanations
	5.3.1 Explaining a black-box model
	5.3.2 Explaining an individual prediction

	5.4 Experimental Design
	5.4.1 Studied Datasets
	5.4.2 Generate Training and Testing Samples
	5.4.3 Remove Correlated Metrics
	5.4.4 Construct Defect Models
	5.4.5 Apply Model-specific Explanation Techniques
	5.4.6 Apply Model-agnostic Techniques
	5.4.7 Generate Predicted Probability
	5.4.8 Analyse Global Explanation and Instance Explanations
	5.4.9 Analyse Model Performance

	5.5 Experimental Results
	5.6 Discussion
	5.6.1 A Comparison of Model-Agnostic Techniques with a Tree-based Technique

	5.7 Related Work
	5.7.1 Explainable Software Analytics
	5.7.2 Analytical Models for Software Defects (i.e., Defect Models)

	5.8 Threats to Validity
	5.8.1 Construct Validity
	5.8.2 Internal Validity
	5.8.3 External Validity

	5.9 Conclusions
	5.9.1 Chapter Remarks

	6 Conclusions
	Bibliography

