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ABSTRACT

Multi-agent system technologies have earned substantial research interest over

the past two decades due to its potential for a wide variety of engineering and

industrial applications. A promising application is to realise autonomous multi-

vehicle and multi-robot systems. Traditionally, multi-agent control research fo-

cuses on the design of centralised, decentralised or distributed systems. However,

an upcoming and different perspective of control technique termed the Broad-

cast Control (BC) has been proposed for multi-agent systems. BC is a stochastic

gradient-based method and advantageous because it greatly decreases the com-

munication volume of the whole system. A variant of BC, Pseudo-perturbation-

based Broadcast Control (PBC) showcases higher performance compared to the

BC scheme. This thesis proposes the further enhancement of existing BC schemes

and explores the scheme’s possibilities for applications for physical agents in a

coverage task. The first part of the thesis develops a broadcast control scheme

named Multi-step Broadcast Control (MBC) that incorporates virtual multi-steps

along a horizon. This scheme differs from PBC in the literature, which incorpo-

rates virtual multi-steps from the current location. The second part of the thesis

aims to test the adaptability of the MBC scheme and its suitability for physical

agents. The MBC scheme has been developed to include agent path constraints to

achieve this. Finally, a novel predictive BC scheme named Receding Horizon based

Broadcast Control (RHBC) that samples multiple horizons in the virtual layer in

a cyber-physical model is developed. The proposed enhancements stand as the

best performing BC scheme to date for the coverage task of multi-agent systems.

The enhancements are also adaptable for coverage applications involving physical

agents.
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1 | Introduction

1.1 Introduction and Motivation

Multi-agent systems encompass multiple entities known as agents that collaborate

to achieve prede�ned individual or collective objectives in a shared environment [1].

The term agent has been traditionally used in the �eld of software engineering and

computer science to mean"an encapsulated computer system that is situated in

some environment and is capable of �exible, autonomous action in that environ-

ment in order to meet its design objectives"[2]. Examples of multi-agent systems

are prevalent in nature and can be seen in �ocks of birds �ying in migration,

schools of �sh swimming and in groups of ants transporting food.

Multi-agent systems play an essential role in both defence and civilian sectors,

potentially a�ecting areas such as search and rescue, transportation, and surveil-

lance. Individual agents (e.g., unmanned aerial/ground/underwater vehicles) in

those systems have restricted capabilities owing to short sensing and communi-

cation ranges and small processing capacity. However, compared to a single in-

telligent agent, their collective behaviour has substantial bene�ts, such as high

scalability, large-scale spatial distribution, robustness, and low cost [3]. The de-

ployment of large-scale multi-agent systems with restricted costs and smaller sizes

1
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can accomplish tasks that would otherwise be impossible to do by a single agent.

Multi-agent systems are helpful in a variety of applications, including search and

rescue [4], surveillance [5, 6], space exploration [7], tracking/classi�cation [8�10],

and radiation shielding and site cleaning [11].

Multi-agent systems have also been studied and used in �elds such as cooper-

ative mobile robotics [12], wireless sensor networks [13], distributed arti�cial in-

telligence and computing [14,15], social studies [16], biology [17], smart grids [18],

tra�c management [19,20], and supply-chain management [21]. Coverage control

is an appealing coordination strategy for many of the aforementioned applications

as it allows a group of mobile robots to spatially distribute themselves based on

the relative importance of di�erent areas within a domain, which is classically

de�ned by spatial �elds and denoted in the literature as density functions.

Figure 1.1: Types of communication network (a) centralized, (b) decentralised
and (c) distributed by Baran [22].

In the literature, three types of prevalent control techniques for multi-agent

systems are: (a) centralised [23], (b) decentralised [24], and (c) distributed multi-

agent control [3]. The communication network of these techniques can be visu-

alised as in Fig. 1.1. The centralised control approach assumes global knowledge
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of the multi-agent system. It attempts to achieve some control target while con-

sidering all agents' states, which necessarily su�ers from scalability issues. The

decentralised control scheme computes control actions based only on an agent's

local information. In contrast, the distributed control scheme computes control

actions based on both the agent's knowledge and the surrounding agents' infor-

mation.

Figure 1.2: Multi-agent system based on broadcast proposed by Azuma et al. [25]

Both decentralised and distributed control algorithms provide scalable solu-

tions and may be applied with little connectivity. All centralised, decentralised,

and distributed systems focus on agent-to-agent communication; however, a new

approach or outlook has been recently proposed for multi-agent systems, known

as Broadcast Control (BC) (Fig. 1.2). BC aims to solve the multi-agent problem

with a one-to-all broadcast system where the group performance is observed, and

the same signal is sent to all agents indiscriminately. It is relatively new in the

research �eld, and hence there is much unexplored in BC schemes for multi-agent

systems. Therefore the study of the BC schemes is the primary interest and focus

of this thesis.
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This thesis proposes enhancements for the BC scheme. The proposed ap-

proaches are twofold as follows:

ˆ Firstly, individual agents take virtual multi-steps along a horizon before a

physical step is taken. This scheme is named Multi-step Broadcast Con-

trol (MBC). Through this, the agents are capable of a foresighted target

of the environment, and it is useful considering uncertainties in a complex

environment.

ˆ Secondly, a complete BC scheme is run multiple times in a receding horizon

manner within a cloud framework (cyber layer) before positional data is

transmitted to physical agents in the physical layer. This scheme is named

Receding Horizon based Broadcast Control (RHBC).

In RHBC the virtual agents in the clouds are connected to their respective

physical world agents in the environment via wireless transmission. Speci�cally,

the physical agents are considered to be seamlessly integrated into the cloud net-

work. They can be controlled remotely and act as points of access to the physical

world from the virtual world. This setup places the intelligent processing workload

(control scheme) in cloud architecture.

The choice between MBC or RHBC scheme lies in the type and scale of the

problem, the number of agents and the resources available to the users. As BC

schemes in the literature do not include agent motion constraints, this aspect

is explored in this thesis. A decision-making scheme incorporated into the BC

scheme considering agent path constraints will produce less erratic, continuous

and realistic manoeuvres for the agents.
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1.2 Thesis Structure

This thesis is organised as follows. Chapter 2 presents a survey of the literature

that underlies the thesis. First, the multi-agent coverage coordination task is

introduced. Next, the origins of broadcast control are explored. The integration of

BC and the receding horizon control (RHC) method are also explored. Finally, the

possibility of combining BC and RHC in a cyber-physical system (CPS) framework

is reviewed.

In Chapter 3, the proposed MBC scheme is introduced. The necessary back-

ground material on existing BC schemes is presented to assist the interpretation

of the proposed MBC. The performance of the proposed MBC scheme is tested

against existing BC schemes in a coverage problem with varying density. The work

in this chapter has been published; its details are as follows: S. Darmaraju, M.

A. S. Kamal, M. Shanmugavel, and C.P. Tan, �Coverage control of mobile agents

using multi-step broadcast control,� Robotica, pp. 1�16, 2022 and S. Darmaraju,

M.A.S. Kamal, M. Shanmugavel and C.P. Tan, �Coverage Control of a Mobile

Multi-Agent Serving System in Dynamical Environment,� in 2018 Joint 7th Inter-

national Conference on Informatics, Electronics and Vision (ICIEV) and 2018 2nd

International Conference on Imaging, Vision and Pattern Recognition (icIVPR),

Kitakyushu, Japan, pp. 508-513, 2018.

The decision-making process to incorporate agent path constraints into the

MBC scheme is presented in Chapter 4. The agent path is designed as a subset of

Dubin's model, and its e�ect on the travel path is studied in the coverage problem

using varying Gaussian density functions. Furthermore, the scheme's adaptability
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is tested by varying the number of agents in the MBC scheme. The work in

this chapter has been published; its details are as follows: S. Darmaraju, M.A.S.

Kamal, M. Shanmugavel and C.P. Tan, �Area coverage by a group of UAVs using

the broadcast control framework,� IFAC-PapersOnLine, 52(12), pp. 370-375, 2019.

In Chapter 5, a di�erent approach to predictive BC is developed as the RHBC

scheme. In this version, the BC scheme is entirely run in the cyber layer of a CPS

infrastructure and results from a coverage control study are presented.

Finally, Chapter 6 summarises the contributions of the thesis and provides

suggestions for future research directions in this area.



2 | Literature Review

2.1 Introduction

The deployment of a large group of agents for various applications using multi-

robot and multi-vehicle systems is becoming increasingly popular. They are inher-

ently robust to failures of single-agent systems or communication links. Coverage

coordination is one of the fundamental tasks used to test such multi-agent sys-

tems' e�ciency. Coverage coordination tasks deal with how agents are deployed

over a domain of interest and are capable of various challenging applications such

as search and rescue, surveillance and environmental monitoring. The details of

the coverage task and control approaches utilised for agent deployment will be

reviewed in this chapter. In literature, a recent stochastic optimisation technique,

the broadcast control (BC) scheme, and its variant has been introduced as a low

communication-based paradigm for multi-agent systems and were shown to be ap-

plicable to coverage tasks. The origins of BC and its extensions are discussed as

part of the literature survey for the thesis's work.

7
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(a) (b)

Figure 2.1: The coverage environment partitioned to Voronoi cells for a set of 20
agents. (a) Non-optimal coverage (b) Optimal coverage.

2.2 Multi-agent Coverage Coordination Task

Coverage is a coordination task that deals with how to deploy agents in order to

optimise surveillance of a domain of interest. The domain of interest is typically

represented in Voronoi diagrams, and each agent will be in charge of a partitioned

Voronoi cell. For the given �nite set of points x1; ::xn , each point, xk , has a

corresponding Voronoi cell,Rk , that consists of every point in the plane whose

distance to xk are less than or equal to its distance to any other point from the

set. It makes sense to prescribe an equal division among the agents in the scenario

of homogeneous teams when the mass of each region is the same for all. Figure

2.1 shows the conditions of non-optimal and optimal coverage of agents for a
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given domain. Gage [26] introduced the notion of coverage as one of the ensemble

motion behaviour models of multi-robot systems. Gage de�nes three basic types

of coverage:

ˆ blanket coverage, where the goal is to achieve a static arrangement of nodes

that maximises the total detection area;

ˆ barrier coverage, where the goal is to minimise the probability of undetected

penetration through the barrier;

ˆ sweep coverage, which is more-or-less equivalent to a moving barrier.

According to taxonomy by Gage [26], the deployment task discussed in the

thesis is a blanket coverage problem. An example of an application using blanket

coverage is a communications relay task. Similarly, distributing submerged robots

equally across a coral reef to monitor coral health, deployment of wheeled robots

with cameras to cover a room for surveillance, groups of robots deployed to perform

clean-up over an oil spill or demining robots positioned to service a mine�eld are

examples of coverage applications for multi-robots [27].

On the other hand, the coverage problem is similar to the conventional art

gallery problem in computational geometry [28]. The art gallery issue aims to

identify the smallest number of cameras that may be put in a polygonal setting

to observe the complete gallery environment. While there are several techniques

for solving the art gallery problem, they all presume previous solid knowledge of

the domain.

The objective of the coverage task is to guide networked mobile agents to the

�nal con�guration by optimising a cost function. The coverage cost (objective)
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function is frequently used in coverage tasks to quantify how successfully agent

networks cover a mission �eld [27, 29�31]. Various coverage cost functions have

been considered in the literature; the total sensing performance of a sensor network

[32�36], the joint event detection probability [37�39], and as well as the reaction

time from a sensor network to any location in a mission �eld [40�42].

Cortés et al. [32] proposed a controller for multi-robot sensor coverage that

drives the robots continuously toward the centroids of Voronoi cells. This fun-

damentally geometric technique is a seminal work and has been widely used. It

has been extended to robots with a restricted sensing radius [40], heterogeneous

groups of robots and non-convex settings [43,44], and to integrate learning in un-

familiar situations [34]. Bullo et al. [45] and Martinez et al. [46] provide much of

the literature on distributed coverage systems in a uni�ed manner, while Schwager

et al. [47,48] successfully built coverage controllers for robotic systems. Recently,

Inoue et al. [49] have proposed a generalised Voronoi-tesselation method in an

optimal transport framework, which was shown to achieve better control than the

basic Voronoi-tesselation method [32].

Li and Cassandras [37], for example, o�er a method for placing robots to opti-

mise the probability of detecting an event in the environment. Another common

technique is for robots to drive away from or toward one another by following the

negative gradient of arti�cial potential �elds. These have been utilised for sensor

coverage [50]. Probability-based control methods for coverage were put forward

by Izumi et al. [51] and Inoue et al. [52]. Though geometric, potential �eld, and

probabilistic approaches to multi-agent/robot coverage have di�erent models and

purposes, they are all based on optimisation and controlled by controllers that

solve this optimisation through the evolution of a dynamical system [27].
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The work by Sunan et al. [53], is the latest review for coverage tasks with a

particular focus on unmanned aerial vehicles. In their work, they have categorised

previous work into ten classes; search space-based, sensing function, potential

function, spherical model, Voronoi partition, sensed space partition, detection

probability, and Markov decision-based methods. In the work of Sunan et al. [53],

there was no obvious category stated for broadcast control. The application of

broadcast control is minimal for coverage control and has been only shown in the

works of Azuma et al. [25] and Ito et al. [54]. The BC method is relatively new

in multi-agent systems as it provides a new outlook away from most literature.

However, the BC control framework as a technique viable for task coordination

of multi-agent systems has been acknowledged in review works of [55, 56] and

in [49,57].

2.3 Broadcast Control

The concept of broadcast control was �rst conceived by Ueda et al. [58], which

showed that their broadcast feedback approach was inspired by biological muscle

control. Speci�cally, the control architecture was designed for skeletal muscles

comprising a vast number of tiny functional units, called sarcomeres. The actuator

system's output is an aggregate e�ect of many cellular units, each with a bistable

ON-OFF state. The error between the aggregate output and a reference input is

"broadcast" by a central controller. Instead of commanding individual units to

perform speci�c actions, the central controller uniformly broadcast the total error

signal to all cellular units. Each cellular unit then takes a stochastic decision with

a state transition probability that is in�uenced by the broadcasted error.
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Results of [58] show that even though no individual commands are sent to the

individual cells when their state transition probabilities are adjusted in propor-

tion to the broadcasted error signal, the ensemble of cells can track the desired

trajectory. No addressing method is required for broadcast control because the

information is given to all cells rather than a speci�c cell. As a result, the ap-

proach was highly scalable to a wide range of cellular control systems. It is to be

noted that the cells were designed as a two-state discrete-time, non-homogeneous

Markov process. Julius et al. [59] applied a similar idea of [58] for the lactose

regulation system of the E.coli bacteria. Here the bacteria were also modelled

as a two-state Markov chain model. The feedback information is read from the

bacterial colony as a global quantity, which was considered the control system's

output.

Unlike in [58, 59], where broadcast control was proposed for Markov models,

Das and Ghose [60,61] proposed for multi-agent systems. However, the proposed

scheme was specialised only for the positional consensus problem. An excellent

example of consensus problems is when the agents want to converge to a point.

The work of Das and Ghose was inspired by Bretl [62], where a second-order

cone programming method technique [63�65] was used to show consensus for two

agents. When the number of agents was increased, the agents could only come close

within a certain distance to each other. Das and Ghose formulated their strategy

using a linear programming technique based on the basic Bretl's model with an

additional randomisation feature [66] that aids in dislodging the solution from local

minima. Their approach allowed many agents to achieve positional consensus or

point convergence on repeated algorithm applications without jeopardising the

broadcast constraint on the control command.
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Azuma et al. [25] introduced a stochastic gradient-based broadcast control

(BC) framework for multi-agent coordination. The scheme's goal was to design

the information to be broadcasted and the local actions of the agents to complete a

speci�ed motion-coordination task. It is demonstrated that the local actions must

incorporate randomness to realise the broadcast control. The task achievement

degree is broadcasted to achieve this approach, and the agents alternate between

random and deterministic walks. The BC has been shown to asymptotically ac-

complish the goal with probability 1. In their work, Azuma et al. conducted both

numerical simulation and experimentation to demonstrate the proposed scheme's

e�ectiveness. Unlike in [61], BC o�ers a general framework that can handle any

multi-agent coordination tasks such as coverage, rendezvous and assignment. BC

only requires observing the group performance (the achievement degree and highly

compressed information). In [61] complete observation of agents is required, and

the framework was speci�ed as a consensus problem. Other examples, such as

Berman et al. [67] and Mesquita et al. [68] developed stochastic control techniques

for multi-agent systems and mentioned the use of broadcast controllers. Never-

theless, these works are di�erent compared to the work of [25] and the component

regarded as broadcast controllers are not feedback controllers which utilise data

based on agents' states.

Several studies have extended the BC framework for: quantised environments

[69], instability studies [70], Markovian environment [71] and even consensus prob-

lem with agent-to-agent communication � broadcast mixed environment [72]. An

advanced BC theory was proposed by Ito et al. [54] as Pseudo-perturbation-based

Broadcast Control (PBC). The PBC showed improved control performance com-

pared to the BC law. As the BC scheme is based on stochastic optimisation tech-
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niques, the agents take numerous random actions. Such random actions degrade

control performance for coordinating tasks and lead to unsafe circumstances.

To overcome these shortcomings, the PBC is designed to employ multiple vir-

tual random actions rather than the single physical action of the BC scheme. Like

BC, the PBC also realises coordination tasks with probability 1. Altogether, in

PBC, unavailing actions are minimised, and agents' states converge at least twice

as rapidly as under the BC scheme. Additionally, increasing the number of mul-

tiple virtual actions enhances control performance even further since averaging

several actions decreases randomness. The PBC has also been successfully ap-

plied as a coordination method for vehicles on merging roads to realise smooth

tra�c merging [73, 74]. Speci�c metrics had to be designed to solve the merging

task using PBC. Mainly a suitable time-invariant objective function which is also

locally convex to be globally minimised. The BC methods have been combined

with other elements such as the receding horizon technique and implemented in a

cyber-physical framework for better performance. These works will be reviewed

in the following subsections.

2.3.1 Combined Broadcast Control and Receding Horizon

Technique

In this section, literature that combines broadcast control for multi-agent systems

and the concept of receding horizon control is discussed. Kumar and Kothare

[75] proposed a broadcast stochastic receding horizon control scheme for multi-

agent systems. Like the general broadcast idea for closed-loop control systems,

the suggested strategy's primary vision is to generate and broadcast the optimal
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control input to all the agents in a swarm utilising aggregate agent behaviour

as the sole available feedback information. Their main addition was integrating

the broadcast concept with current probabilistic tools and the theory of optimum

control policy based on a �nite receding horizon. In this work, the dynamical

behaviour of individual agents is represented as a discrete-time �nite-state Markov

chain model. The controller employs the measured aggregate system error as the

solely available feedback information and designs the optimal control inputs in a

predictive framework. The computed control inputs are the agents' state transition

probabilities, subsequently broadcast to the entire swarm to accomplish the desired

system behaviour.

Using the same broadcast and receding horizon control framework, Kumar and

Kothare [76] have also shown the system can be executed for trappings of Brownian

ensemble. Their framework creates a control input independent of the number of

particles and broadcasts it to all particles in the ensemble using measurements from

a single particle as the only available feedback information. Using the suggested

control action, they demonstrate the existence of a minimal zone in which all

particles may be pushed and con�ned inde�nitely.

As BC schemes are implemented through wireless communication, vehicular

networking, based on wireless communications between vehicles and with other

infrastructures, has been an area highly sought after for applications of BC theory.

Accordingly, literature that combines BC with receding horizon control techniques

for vehicles is explored next. Kianfar et al. [77] presented a distributed receding

horizon approach adopted for active steering control of a cooperative vehicle pla-

toon in the lateral direction. Here, the vehicle computes its control action locally

and broadcasts its intention to its follower. Any deviation from the projected
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states from each vehicle's intention is penalised and constrained in the optimisa-

tion problem, which is addressed locally by the vehicles. The proposed system

was applied to the double lane change scenario.

In the case of cooperative vehicle safety systems, which rely on the periodic

broadcast of each vehicle state information to track neighbours' positions and

hence to predict likely collisions, Zhang et al. [78] have utilised a predictive model

to predict in a dynamic and receding-horizon fashion, the ideal information dissem-

ination rate by considering the dynamics of vehicle density. The model predicted

the state of information dissemination rate in a short-term manner and minimised

the prediction errors.

A work by Kamal et al. [79] provided a unique adaptive tra�c signal man-

agement strategy for a mixed manual-automated tra�c situation in a typically

isolated intersection. The tra�c lights are optimised in a receding horizon control

framework that minimises all vehicles' overall crossing time while accounting for

their dynamical states. By keeping the core elements of standard signal manage-

ment systems, the control method allows the comfortable crossing of manually

operated vehicles. The ideal signal change timings are broadcast one cycle ahead,

allowing autonomous vehicles to adjust their speed to cross the junction with the

least stop delay.
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2.3.2 Combined Broadcast Control and Receding Horizon

Technique in a Cyber-physical Framework

In a recent work, Kamal et al. [80] implemented broadcast and receding horizon

control for tra�c control in a cyber-physical framework to facilitate real-time

implementation of the tra�c control scheme. The receding horizon control (RHC)

approach performed robustly against uncertain tra�c factors. The application

in this work to determine the crossing time of vehicles can be taken as a one-

dimensional coverage problem as a Gaussian density shaped distribution was used

as a desirability function of green light for the tra�c signals.

Multi-agent systems and cyber-physical systems (CPS) have a lot in com-

mon. They may help each other accomplish complexity management, decentrali-

sation, intelligence, modularity, �exibility, resilience, adaptability, and responsive-

ness [81]. CPS blends two worlds: 1) embedded systems, which display real-time

and tightly deterministic behaviour, and 2) cloud systems, which exhibit highly

probabilistic and optimal behaviour with no rigid time restrictions [82]. The work

of Fortino et al. [83,84] proposes smart objects-oriented Internet of Things (IoT)

systems based on cloud and agents. On the other hand, Bradley and Atkins [85]

cover research on co-optimisation and co-regulation methods using both cyber and

physical resources, with applications to mobile robotic and vehicle systems.
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2.4 Summary

In this chapter, the literature on multi-agent coverage tasks and broadcast control

as a control technique for multi-agent systems were reviewed. Studies on coverage

tasks show that it is a fundamental coordination task employed to test the e�ec-

tiveness of multi-agent control algorithms. Correspondingly, the coverage task is

applicable for many real-life coordination tasks for multi-robot and multi-vehicle

systems. Though many coordination algorithms for multi-agent systems focus on

a distributed fashion, a new paradigm has been recently proposed in the literature,

termed Broadcast Control (BC).

The BC framework is based on a stochastic optimisation method that aims to

reduce the communication volume of the multi-agent system without any agent-

to-agent based communication. The work in this thesis is inspired by this control

scheme applicable to multi-agent systems. As BC has only been tested very spar-

ingly for coverage tasks of multi-agent systems, this thesis aims to address this

gap by proposing enhancements to the existing BC schemes using a few predictive

approaches to improve the coverage coordination tasks. The enhancements are

inspired by work in the literature that focused on combining broadcast control

with receding horizon techniques in a CPS framework for improved performance.



3 | Development of Multi-step

Broadcast Control (MBC) Scheme

3.1 Introduction

The previous chapter (Chapter 2) reviewed the literature on coverage tasks of

multi-agent systems, Broadcast Control (BC) schemes and its extensions using

the receding horizon technique and cyber-physical framework. This chapter in-

troduces the development of the Multi-step Broadcast Control (MBC) scheme

for multi-agent systems. In order to design a broadcast communication based

stochastic control scheme that is able to anticipate the target environment, two

main principles are used. First, the theory of simultaneous perturbation stochastic

approximation (SPSA) represents the randomness inherent in the agent's move-

ments. Secondly, the Broadcast Control (BC) scheme demonstrates how the con-

vergence of the collective dynamics of the multi-agent system can converge using

SPSA.

Section 3.2 begins by providing the theory of SPSA, which are fundamental to

developing the proposed MBC scheme. Section 3.3 describes the coverage problem

formulation applicable to the MBC scheme. Section 3.4 reviews the existing BC

19
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schemes. The development of the proposed MBC and the convergence properties

is outlined in Section 3.5. The numerical simulations using the MBC scheme

and its analysis are presented and discussed in Section 3.6. Finally, Section 3.7

summarizes the entire chapter with its �ndings and limitations.

3.2 Simultaneous Perturbation Stochastic Approx-

imation (SPSA)

Stochastic approximation (SA) is an established recursive procedure for �nding the

roots of equations in the presence of noisy measurements. SA can be implemented

to obtain the extremas of functions in stochastic optimisation problems such as in

this thesis.

The standard SA procedure depends onp-dimensional algorithms based on

standard �nite-di�erence gradient approximations. On the other hand, the simul-

taneous perturbation stochastic approximation (SPSA) utilises the �simultaneous

perturbation" gradient approximation which uses1=pth of the amount of data

needed as in the standard approach to reach the same level of estimation accu-

racy.

Considering the problem of �nding the root,� � of the gradient function,

g(� ) =
@L(� )

@�
= 0 (3.1)

for some di�erential loss functionL =: Rp ! R1. When L and g are observed
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directly, methods such as steepest descent, Newton-Raphson and scoring can be

used to �nd � � . Where L is observed in the presence of noise, an SA algorithm of

the generic Kiefer-Wolfowitz/Blum type is suitable. In contrast to SA algorithms

based on �nite di�erence methods, which necessitate2p (noisy) measurements of

L at each iteration, the simultaneous perturbation algorithm only requires2q,

q � 1, measurements ofL at each iteration, where for largep we typically have

q. Therefore through SPSA, there is potential for a signi�cant improvement in

e�ciency provided that the number of iterations does not increase to negate the

reduced amount of data per iteration.

For standard form for SPSA, the estimate for� at the kth iteration is given as

�̂ k+1 = �̂ k � ak ĝk(�̂ k) (3.2)

where the gain sequencea satis�es certain well-known conditions. The di�erence

being that in the method of steepest descentg(�) replacesĝk(�). The term �simul-

taneous perturbation� as applied to Eq. (3.2) arises from the fact that all elements

of the �̂ k vector are being varied simultaneously.

Though the stochastic approximation is not a solution for multi-agent prob-

lems but for static optimisation problems in a centralised manner, the Broadcast

Control (BC) schemes discussed in Section 3.4 have successfully implemented this

for stochastic multi-agent systems.
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3.3 Coverage Problem Formulation

Figure 3.1: Mobile agents provide coverage service over a bounded area (�eld).
The bounded area consists of densely and sparsely populated sections.

Consider an area with sections of varying density, with some being densely popu-

lated and some sparsely populated. To fairly and equitably serve the population

within the bounded area, multiple mobile agents need to be deployed optimally

depending on the number of available agents and population density pattern over

the area (Fig. 3.1). By allocating a portion of the area to each agent, the entire

area should be covered fully by all the agents. Such a deployment of multiple

agents is known as thecoverage task.

Traditionally, coverage problems involve deploying a set of agents to provide

equal coverage distribution over the bounded area, where agents are distributed at

an equal distance from each other. However, in this paper, the �nal distribution

of agents varies according to population density; i.e. not all agents are placed at

an equal distance to each other. For example, more agents need to be deployed to

dense sections than to sparsely populated sections.
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The objective function of the coverage task is [32]

Jobj (x) =
Z

Q
min

i 2 1;2;::N
f (jj q � x i jj )� (q)(dq) (3.3)

wheref is the coverage performance function. The termq represents the uniformly

distributed points in the environment, Q and � represents a weighting function

that determines the relative importance of points inQ. Also, x i is the position of

the i -th agent in the domain wherex i = [ x1; x2; :::xn ]T 2 Rn . The total number of

agents isN . The objective function,J (x(t)) aims to reduceJ , which is indicative

of the global coverage performance of the multi-agent system, given as

J (x(t)) = min
x2 Rn N

J (x) (3.4)

The minimum of J is achieved whenN agents are placed optimally in the

space. The Voronoi tessellation method [86], which partitions the entire area into

sub-areas, is used to compute and visualize the coverage achievement. Created by

points (p1; :::pn ), the optimal partition of Q follows the Voronoi partition V(P) =

f V1; :::Vng that is given by

Vi = f q 2 Qj k q � x i k�k q � x j k; 8j 6= ig (3.5)
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Figure 3.2: Framework of BC/PBC/MBC of a multi-agent system. The broadcast
system consists of N agentsA i , local controllersL i , and a global controllerGC .
In the BC scheme, no local controllerL i has to send its state� i to the global
controller, GC .

3.4 Broadcast Control Schemes

3.4.1 Broadcast Control (BC)

In this section, an overview of the BC [25] control scheme is given. The BC multi-

agent scheme consists of a global controller,GC , with N agents, each denoted as

A i ; i = 1; 2; :::N , and the respective local controllers,L i . The connectivity between

the agents and the controllers is shown in Fig. 3.2.

Here,step is de�ned as the physical move at time,t; the next physical move is

at t + 1 and so forth. In BC, at each consecutive step, agents alternate between

taking a randomly generated move and a deterministic move (Fig. 3.3(a)). The

global controller GC computes the collective performance of the whole system at

each step by evaluating the objective function,J (x). Using the di�erence between

the objective function of random and deterministic moves,GC calculates and
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broadcasts this value as a scalar control signal,� B to all agents. Using� B , the

local controller L i calculates and determines the control actionui (t). The state

equation of an agent is represented as follows:

A i : x i (t + 1) = x i (t) + ui (t); i = 1; 2; : : : ; N (3.6)

wherex i (t) 2 Rn is the position in the n-dimensional space andui (t) 2 Rn is the

control input.

The local controller L i of agent A i produces the control signal based on the

information received fromGC , as follows:

L i :

8
>><

>>:

� i (t + 1) = � (� i (t); � B (t); t)

ui (t) = � (� i (t); � B (t); t)

(3.7)

where � i (t) 2 Rn � and ui (t) 2 Rn are the state and output of the local con-

troller, L i , respectively. The initial state ofL i is set to � i (0) = 0 . � B (t) 2 R is the

broadcast signal provided byGC .

The controller functions� : Rn � � Rn � B � N ! Rn � and � : Rn � � Rn � B � N ! Rn

are de�ned as follows:

� (� i (t); � B (t); t) := [� i (t)T ; � B (t)]T (3.8)

� (� i (t); � B (t); t) :=



CHAPTER 3. DEVELOPMENT OF MBC SCHEME 26

8
>>><

>>>:

c(t)� i (t); if t 2 f 0; 2; 4; : : :g;

� c(t)� i 1(t) � a(t)
�

� B (t) � � i 2(t)
c(t)

�
� [� 1]

i 1 (t) if t 2 f 1; 3; 5; : : :g
(3.9)

where � i (t) := [ � i 1(t)T ; � i 2(t)]T ; � i 1 2 f� 1; 1gn with � i 2 2 R. � [� 1]
i 1 denoting the

element-wise inverse of� i 1, namely � [� 1]
i 1 := [1=� i 1;1; :::; 1=� i 1;n ]T . Also, � i 1(t) =

� i (t � 1) and � i 2(t) = � B (t � 1).

The random variable is de�ned as

� i (t) =

2

6
6
6
6
4

� i; 1(t)

...

� i;n (t)

3

7
7
7
7
5

2 f� 1; 1gn (3.10)

where each� i;j (t)( i 2 f 1; :::; ng; j 2 f 1; :::; Ng; t 2 f 0; 1; :::g) is represented as

a Bernoulli distribution with outcome � 1 with equal probabilities. Additionally,

a(t) 2 R+ and c(t) 2 R+ are the time-varying gains of controllerL i .

The broadcast signal fromGC is described as

GC : � B (t) = J (x(t)) 2 R (3.11)

where

x(t) :=

2

6
6
6
6
4

x1

...

xN

3

7
7
7
7
5

2 RnN (3.12)

is the collective state of all agents in the system. As timet tends to in�nity, the
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multi-agent system approaches the optimalJ as follows:

lim
t !1

J (x(t)) = min
x2 Rn N

J (x) (3.13)

where J : RnN ! R. The optimization process is based on the gradient of the

objective function with respect to each individual action. However, the objective

function is not known to individual agents; this is an advantageous feature of

the BC scheme where it accomplishes a task without providing the task details

or objective to the individual agents. Therefore, in the BC system, agents take

random and deterministic control actions alternately. At even time stepst 2

0; 2; 4; :::, agents take random moves, and at odd time stepst 2 1; 3; 5; :::, they

take deterministic moves. This is shown in Fig. 3.3(a).

Figure 3.3: (a) Two-step agent movements in the BC framework. Depending on
the feedback on the random move (� J ), an agent continues to move in the same
or opposite direction in the next step. The process repeats until the convergence.
(b) Single-step agent movement in the PBC framework.

In BC, the random movement of agents incurs movement cost and considerable

time for convergence. Ito et al. [54] introduced the Pseudo-perturbation based
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Broadcast Control (PBC). In the PBC scheme, each agent takes multiple virtual

random moves (Fig. 3.3(b)) within a single physical step.K is the total number

of multiple virtual random moves taken by an agent within a step. Through this,

an agent omits the costly single physical random move as taken by the agent in

the BC scheme. This causes PBC agents to accomplish a similar outcome in a

single step compared to two steps taken by agents using BC.

3.4.2 Pseudo-perturbation based Broadcast Control (PBC)

Next, the PBC [54] is reviewed. The state-space equation of agenti in PBC is

given as

x̂(k)
i (t + 1) := x i (t) + û(k)

i (t) for k=1,2,. . . ,K (3.14)

û(k)
i (t) := c(t)� (k)

i (t) for k=1,2,. . . ,K (3.15)

wherex̂(k)
i (t + 1) , û(k)

i (t) and � (k)
i (t) are the virtual input, virtual predictive state

and random action of agentsA i at each step. Each component of� (k)
i (t) 2

f� 1; 1gn (for each i 2 f 1; :::; Ng, k 2 f 1; :::; K g and t 2 f 0; 1; :::g) independently

obeys the Bernoulli distribution with outcome� 1 with equal probabilities. The

global controller, GC , calculatesû(k)
i (t) and x̂(k)

i (t + 1) using (x i (t), � (k)
i (t)) sent

from the agentA i . Additionally, x̂(k) and � (k)(t) are given as

x̂(k) :=

2

6
6
6
6
4

x̂(k)
1

...

x̂(k)
N

3

7
7
7
7
5

2 RnN (3.16)
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and

� (k)(t) :=

2

6
6
6
6
4

� (k)
1 (t)

...

� (k)
N (t)

3

7
7
7
7
5

(3.17)

The GC in PBC calculates the objective function,J for all virtual steps taken

as follows:

� P (t) :=

2

6
6
6
6
6
6
6
6
4

J (x̂(1) (t + 1)) � J (x(t))

J (x̂(2) (t + 1)) � J (x(t))

...

J (x̂(K )(t + 1)) � J (x(t))

3

7
7
7
7
7
7
7
7
5

2 RK (3.18)

where� P
(k)(t) := J (x̂(k)(t + 1)) � J (x(t)) and � P (t) is given as

� P (t) =

2

6
6
6
6
4

� (1)
P (t)

...

� (K )
P (t)

3

7
7
7
7
5

(3.19)

In PBC, the local controller, L i determines its state, � i (t) and the control

output, ui (t) as

� i (t) := [� i
(1) (t)T ; : : : ; � i

(K )(t)T ]T 2 f� 1; 1gnK (3.20)

ui (t) := � a(t)
1
K

KX

k=1

� P
(k)(t)

c(t)
� (k)[ � 1]

i (t) (3.21)

where� (k)[ � 1]
i denotes the element-wise inverse of vector� (k)

i . Compared to (3.9),
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we can notice that the termc(t)� i (t) (which represents the physical random ac-

tion) is removed in PBC.

In PBC, the global controller, GC , also receives the predicted random state� i

from the local controller, L i , whereas in BC,L i does not share its state withGC .

Even with this extra cost of communication, PBC converges to the optimal point

twice as fast as BC. To date, the PBC framework has been e�ectively applied for

the real-time coordination of vehicles at a merging road [74].

3.5 Development of Multi-step Broadcast Control

(MBC) Scheme

This section presents the novel scheme proposed in this research, the Multi-step

Broadcast Control (MBC) scheme, which incorporates a predictive multi-step

move in a horizon within a single physical step. The multiple steps taken is

useful to predict uncertainties several steps ahead, which could be a dense section

to move towards to. Figure 3.4 depicts the concept of the action taken under the

proposed scheme. The inspiration behind this concept comes from the theory of

model predictive control (MPC). Like MPC, the proposed multi-steps are driven

along a horizon to anticipate and consider future events to optimise the current

iteration/time.

In the case of MBC,K denotes the maximum number of predictive virtual steps

taken along the horizon. At each iteration, an agent provides its current state

x i (t) and its random action,� (k)
i ; k = 0; 1; 2; : : : ; K � 1, and using that the global
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Figure 3.4: Agent movement taking multi-steps along a horizon in the MBC
scheme.

controller, GC , calculates the future virtual statesx̂(k)
i with x̂(0)

i = x i (t) as

x̂(k+1)
i (t) := x̂(k)

i (t) + û(k)
i (t) for k=0,1,2,. . . ,K -1 (3.22)

û(k)
i (t) := c(t)� (k)

i (t) for k=0,1,2,. . . ,K -1 (3.23)

whereû(k)
i is the corresponding virtual input. The collective states of all agents

at k is de�ned as

x̂(k) :=

2

6
6
6
6
4

x̂(k)
1

...

x̂(k)
N

3

7
7
7
7
5

2 RnN (3.24)

resulting from corresponding collective random variables de�ned as

� (k)(t) :=

2

6
6
6
6
4

� (k)
1 (t)

...

� (k)
N (t)

3

7
7
7
7
5

(3.25)
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The global controller computes the broadcast signal,� M , through a compound-

ing method as follows:

� M (t) :=

2

6
6
6
6
6
6
6
6
4

J (x̂(1) (t)) � J (x̂(0) (t))

J (x̂(2) (t)) � J (x̂(1) (t))

...

J (x̂(K )(t)) � J (x̂(K � 1)(t))

3

7
7
7
7
7
7
7
7
5

2 RK (3.26)

where� M
(k)(t) := J (x̂(k+1) (t)) � J (x̂(k)(t)) and � M (t) is given as

� M (t) =

2

6
6
6
6
4

� (0)
M (t)

...

� (K � 1)
M (t)

3

7
7
7
7
5

(3.27)

The state, � i (t), and the control output, ui (t), of the local controller, L i , are

given as

� i (t) := [� (0)
i (t)T ; : : : ; � (K � 1)

i (t)T ]T 2 f� 1; 1gnK (3.28)

ui (t) := � a(t)
1

P K � 1
k=0 � (k)

K � 1X

k=0

� M
(k)(t)� (k)

c(t)
� (k)[ � 1]

i (t); (3.29)

where � (k)[ � 1]
i denotes the element-wise inverse of vector� (k)

i and � 2 (0; 1) is a

discount factor of a weighted average technique. Through the use of� , immediate

action is given a higher weight, and as the number of steps increases, the respec-

tive weightage is decreased gradually. The reduction in weights is designed as

such because the probability of accurate prediction in an uncertain environment

decreases with an increase in steps in forward prediction. While the use of the
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arithmetic average technique is a quick general representation of a data set (as

used in PBC), the use of the weighted average technique in (3.26)-(3.29) is more

descriptive of a speci�c problem and is capable of yielding better accuracy.

The computing complexity of BC schemes can be expressed in terms of com-

munication volume. The MBC scheme will have similar communication data with

that of PBC if the number of steps,K, is the same. It is shown in Ito et al [87] that

the communication volume of the PBC scheme is about half of that of centralized

unicast protocols. On the other hand, BC will have slightly lower communication

volume than both MBC and PBC as it does not transmit random variable (K vir-

tual steps). Nevertheless, both MBC and PBC have better control performance

than the BC scheme as random physical action is eliminated, and agents' state

converges quicker.

3.5.1 Convergence analysis

Theorem 1 (Convergence of the MBC Scheme)

Consider the multi-agent system shown in Fig. 3.2, an objective functionJ (x),

and the MBC scheme in (3.26), (3.28) and (3.29) withK > 1. If the following

conditions (c1)-(c3) hold, thenx(t) in (3.12) converges to a (possibly sample-path-

dependent) solution set to@xJ (x) = 0 with probability 1.

(c1) The objective functionJ (x) : RnN ! R is de�ned as

J (x(t)) := � (kxk)Jobj (x) + (1 � � (kxk))xT x; (3.30)
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� (kxk) :=

8
>><

>>:

1(kxk � l1)

0(kxk � l2)

(3.31)

whereJ (x) and Jobj (x) in (3.3) is nonnegativeC2 continuous onRnN , and there

exists a solution to @xJ (x) = 0 . xT x is a nondecreasing function with respect

to the distance from the origin, and� is the switching function wherel1 and l2

speci�es the environment.

(c2) The compact connected internally chain transitive invariant sets of a gradi-

ent system _z(� ) = � @zJ (z(� )) are included in the solution set to the equation

@zJz = 0 (i.e., to @xJ (x) = 0 ), and there exists an asymptotically stable equi-

librium for the gradient system, wherez(� ) 2 RnN and the stability are in the

Lyapunov sense [25].

(c3) lim t !1 a(t) = 0 ,
P 1

t=0 a(t) = 1 ; lim t !1 c(t) = 0 ,
P 1

t=0 (a(t)=c(t))2 < 1

and
P 1

t=0 (a(t)c(t))2 < 1 .

Remark 2

Convergence of the proposed MBC scheme is proven by showing that the transi-

tion of the MBC scheme converges to@xJ (x) = 0 , which implies that the system

of x(t) in (3.12) has and reaches a local minimum value for the coverage problem.

Remark 3

Condition (c1) holds asJobj in (3.3) is twice di�erentiable and xT x is a quadratic
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potential function, resulting in J (x(t)) which is su�ciently smooth. Condition

(c2) holds as the Hessian matrix ofJ (x) is nonsingular at eachx satisfying

@xJ (x) = 0 [88]. Condition (c3) is applied to prevent gainsa(t) and c(t) from

reaching a very low value; in Section 3.6 (Numerical Simulations and Analysis),

the gains will be designed as in (3.41) to satisfy condition (c3).

Proof

The local controller output, ui (t) of BC as in (3.9) performs a two-stage state

transition as follows:

x(t + 2) = x(t) � a(t)
� B (t + 1) � � B (t)

c(t)
� [� 1](t) (3.32)

where

� B (t) = J (x(t)) (3.33)

� B (t + 1) = J (x(t) + c(t)�( t)) (3.34)

hold for t 2 f 0; 2; 4; :::g. Then the system (3.32) becomes

x(t + 2) = x(t) � a(t)g(t; �( t)) ; t 2 f 0; 2; 4; :::g (3.35)

where the stochastic functiong(t; �) is de�ned as

g(t; �) :=
�

J (x(t) + c(t)�) � J (x(t))
c(t)

�
� [� 1](t) (3.36)

If J (x) is a C2 continuous function with c(t) ! 0 (as implied by conditions

(c1) and (c3)), then the expected value ofg(t; �( t)) (which is E in (3.37)) reduces
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to a stochastic approximate gradient ofJ (x) based on simultaneous perturbation

stochastic approximation (SPSA) [89] as follows:

E[g(t; �( t)) jx(t ) ] = @xJ (x(t)) + O(c(t)) (3.37)

Similarly, following (3.35), the state transition of multi-steps in the MBC scheme

is given by

x(t + 1) = x(t) � a(t)
1

P K � 1
k=0 � (k)

K � 1X

k=0

g(t; � (k)(t)) � (k) ; 8t (3.38)

Next, we de�ne the following function e(t) for brief notation:

e(t) :=
1

P K � 1
k=0 � (k)

K � 1X

k=0

g(t; � (k)(t)) � (k) � E

"
1

P K � 1
k=0 � (k)

K � 1X

k=0

g(t; � (k)(t)) � (k) jx(t )

#

(3.39)

Substituting (3.37) and (3.39) into (3.38), then asc(t) ! 0, the transition of x(t)

under the MBC scheme is given by

x(t + 1) = x(t) � a(t)f @Jx (x(t)) + e(t) + O(c(t))g (3.40)

The system (3.40) is identical to the stochastic approximation algorithm in

equation (A.1) (in Appendix A.1) of Azuma et al [25]. Then, Lemma 2 of Azuma

et al [25] shows that (A.1) converges to a (possibly sample path dependent) com-

pact connected internally chain transitive invariant set of the gradient system,
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_z(� ) = � @zJ (z(� )) . Conditions (c1) and c(3) imply the conditions for the almost-

sure convergence of Lemma 2 [25] for (30), and thus if (c1) and (c3) hold, then it

follows that (3.40) converges to a compact connected internally chain transitive in-

variant set _z(� ) = � @zJ (z(� )) ; then, if (c2) holds, (3.40) converges to@xJ (x) = 0

and the proof is complete.�

3.6 Numerical Simulations and Analysis

The number of agents in the two-dimensional state space is set toN = 25, i.e.

n = 2. The size of the coverage work area is �xed at 200 x 200 square units.

Initially, all agents are evenly distributed within the x-coordinate (80: 120) and y-

coordinate (0:40). The terminal simulation time is set to 5,000 iterations, and the

number of multi-steps used isK = 10. The controller gainsa and c are determined

as follows:

a(t)jMBC =
a0�

t
2

+ 1 + av

� ap ;

c(t)jMBC =
c0�

t
2

+ 1
� cp ;

(3.41)

for t 2 f 0; 1; 2; :::g wherea0 > 0 and c0 > 0 hold to satisfy a(t) > 0 and c(t) > 0.

The performance study to evaluate the e�ectiveness of MBC against BC and

PBC is conducted through three di�erent scenarios. The �rst scenario is for a

singledense section, secondly fortwo dense sectionsand thirdly for an increased

number of agents, from 15 to 25 agents.
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3.6.1 Coverage with a single dense section

The performance of MBC for a single dense section is �rst discussed. For this

scenario, the value ofao and co are 1.2 and 14.5, respectively.av, ap and cp are set

as 15.5, 0.7 and 0.16 for all scenarios. Figure 3.5 shows the corresponding agent

distributions during speci�c intervals of iteration of 500, 1,500, 2,500 and 5,000

in all three schemes. BC is represented by the left column, followed by PBC in

the middle and proposed MBC in the right column. As the number of iterations

increase, it can be observed that the agents begin to disperse from their initial

positions and distribute themselves equally in the environment. The number of

agents in the dense section increases as the iteration progresses. The dense shaded

section holds two agents by iteration 5,000 for all the three schemes. However, it

is clear that MBC achieves this �rst by iteration 1,500, followed by PBC by 2,500

and lastly by BC by iteration 5,000. These show that the schemes can achieve the

same allocated number of agents in the dense section, making them comparable

for convergence study.

Figure 3.6 shows the evolution of the objective function for BC, PBC and

MBC. From the chart, it can be observed that both PBC and MBC have similar

initial steeper gradient descent compared to BC. However, after the initial drop,

MBC shows the quickest convergence to the �nal value, followed by PBC and

�nally by BC.
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BC PBC MBC

(a) Iteration=500

(b) Iteration=1,500

(c) Iteration=2,500

(d) Iteration=5,000

Figure 3.5: The coverage task's achievement with a single dense section is shown
by agents' positions in the Voronoi diagram at various iterations. Comparison of
three di�erent schemes: BC (left), PBC (middle), and proposed MBC (right).

This con�rms that the proposed MBC shows better convergence performance

than the PBC scheme based on the execution di�erence (23) and (24). The per-

formance of BC is very di�erent compared to both PBC and MBC as it takes

two physical steps to accomplish what PBC and MBC achieve through a single

physical step with multiple virtual steps. Therefore, for the subsequent scenarios,
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Figure 3.6: Evolution of objective function for BC, PBC and MBC for coverage
task with a dense section.

a comparison study will be conducted only for PBC and MBC. (Note: BC is able

to reach the same performance albeit much more slowly).

3.6.2 Coverage with two dense sections

The earlier section's coverage study can be expanded to multiple dense sections,

and here two dense sections are studied. For this speci�c study, the value ofao is

0.55 andco is 12.5.

Figure 3.7 shows the comparison between PBC agent distribution on the left

column and MBC on the right column for iteration 1,000, 2,000 and 4,000. At

iteration 1,000, both PBC and MBC have equally acquired a single agent in the

right dense section. By iteration 2,000, MBC has managed to allocate two agents

in both the dense sections, while PBC only manages two agents in the left dense

section. However, by iteration 4,000, PBC has managed to catch up and converge
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similarly to MBC.

The objective function in Fig. 3.8 shows these results clearly where MBC has

converged faster by iteration 1,500 and PBC at about iteration 3,000. This shows

the MBC outperforms PBC in a coverage task with double dense sections.

3.6.3 Coverage for an increased number of agents

The two scenarios discussed above for single and double dense sections utilise 15

agents. This section studies the performance of the proposed MBC scheme with

an increased number of agents. Here, 25 agents are used, and the initial positions

of the agents are now �ve rows. Two extra rows of agents are included in the

existing three rows of agents. The values of initial gain utilised areao = 0:3 and

co = 7:5.

With an increased number of agents for coverage with a single dense section,

the comparison of agent distribution for PBC and MBC is shown in Fig. 3.9. The

distribution is captured at iterations 1,500, 2,500 and 4,000. Intuitively, we can

expect that by using dense sections of the same size and increasing the number

of agents, more agents will be allocated in the sections. Figure 3.9 shows that

this is true, as now at convergence, there are three agents in the dense section.

Referring to the same �gure, by iteration 1,500, MBC has two agents allocated

in the dense section compared with PBC, which has one. At iteration 2,500, the

number of agents for MBC within the dense section has increased to three, where

else for PBC, it has increased to two. Finally, by iteration 4,000, both methods

show similar distribution. This is presented in Fig. 3.10 where the MBC scheme
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PBC MBC

(a) Iteration=1,000

(b) Iteration=2,000

(c) Iteration=4,000

Figure 3.7: The coverage task's achievement with double dense sections is shown
by agents' positions in the Voronoi diagram at various iterations. Comparison of
two di�erent schemes: PBC (left) and proposed MBC (right).
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Figure 3.8: Evolution of objective function for PBC and MBC for coverage task
with double dense sections.

displays quicker convergence performance than PBC.

In addition, the initial BC scheme proposed by Azuma [25] was tested exper-

imentally for uniform coverage task using mobile ground robots, and the results

showed that the numerical scheme is transferable to physical execution. On the

same note, the MBC scheme is expected to perform experimentally with similar

success as it follows a similar physical execution protocol. The only di�erence here

is the additional virtual computation load and decrease in physical steps taken by

each robot. This, alongside the numerical simulations conducted in this paper,

validates the proposed scheme for successful implementation in a coverage control

task.
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PBC MBC

(a) Iteration=1,500

(b) Iteration=2,500

(c) Iteration=4,000

Figure 3.9: The achievement of 25 agents in a coverage task with a single dense
section is shown by agents' positions in the Voronoi diagram at various iterations.
Comparison of two di�erent schemes: PBC (left) and proposed MBC (right).
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Figure 3.10: Evolution of objective function for PBC and MBC for coverage task
with a single dense section using 25 agents.

3.7 Summary

In this chapter, a novel broadcast control-based scheme called Multi-step Broad-

cast Control (MBC) was developed. This scheme is designed to overcome the

limited one-step look-ahead of the existing BC schemes. This was achieved by

introducing several virtual random stages along the horizon. By using� , immedi-

ate action is given a higher weight, and the weighting is gradually reduced as the

number of steps increases.

Convergence of the proposed MBC scheme is proven by showing that the tran-

sition of the MBC scheme converges to@xJ (x) = 0 , which implies that the system

(collective agent dynamics) has and reaches a local minimum value for the cover-

age problem. While using the arithmetic averaging technique is a quick general

representation of a data set (as used in PBC), in MBC, the local controller output

has been calculated using a weighted averaging technique that better describes a
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speci�c problem and is capable of better accuracy.

The performance of the proposed MBC has been tested in terms of the coverage

problem with single and double density sections and for an increasing number

of agents. The results of the study suggest that the introduction of multiple

virtual steps in a horizon increases task ful�lment and deployment e�ciency. It

is noteworthy that MBC outperforms the existing BC schemes and converges the

fastest as the gradient is calculated from several steps along the horizon where

the dense sections appear earlier to the agents compared to BC and PBC. In this

chapter, path constraints experienced by physical agents are not modelled into

the MBC scheme. Therefore, the next chapter will focus on developing the MBC

scheme to accommodate the path constraints of the agents.



4 | Development of MBC scheme

considering Agent Path

Constraints

4.1 Introduction

The previous chapter (Chapter 3) introduced the Multi-step Broadcast Control

(MBC) scheme. The MBC scheme is a novel Broadcast Control (BC) scheme

employing a weighted averaging technique of multiple virtual steps along a horizon

to increase performance parameters in a coverage problem with non-uniformity in

the importance of coverage area. However, in the previous chapter, it was assumed

that the agents can always reach the predicted position at the future time step from

the initial time step. This is not always feasible in a realistic/practical scenario

where agents are physical autonomous robots or vehicles.

Any real physical agent is constrained in its motions along the travel path. For

example, physical agents are limited in their motion based on its turning limit and

heading direction. The original BC scheme does not consider these constraints of

the agents. Ideally, control schemes must re�ect the actual position that an agent

reaches as the starting point for the next iteration.

47
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This chapter develops an integrated framework that outlines how an agent's

path constraints can be taken into consideration in the development of the MBC

scheme. Here, agents will be assumed as �xed-wing autonomous unmanned aerial

vehicles (UAVs). Section 4.2 describes the path constraints for UAVs using subsets

Dubin's curve [90]. The following section, Section 4.3, outlines the decision making

procedure for trajectory planning. Section 4.4 describes the coverage task suited

for UAVs. Nextly, Section 4.5 demonstrates the e�ectiveness of the developed

scheme via numerical simulation of the integrated framework and its corresponding

analysis. Finally, Section 4.6 summarises the chapter with its �ndings and possible

improvements for better overall performance.

4.2 Agent Path Constraints

The previous chapter showed that the MBC scheme produces the desired point for

each agent at every iteration. Agents were assumed to travel between the points

following straight-line paths. Figure 4.1 illustrate these paths.

However, paths of straight-line segments result in discontinuous trajectories,

which is not realistic in a physical system. The main assumption presuming agents

can always reach the predicted point at each step is unrealistic. This assumption

concludes that the agent's heading direction is always in the direction of the pre-

dicted point. This requires the physical agents to rotate in the current position

to face the new direction before travelling to the desired point following a straight

path.
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Figure 4.1: Straight-line paths of agents using the BC/PBC/MBC scheme. Paths
are shown for 2 agents.

This section describes the path constraints that are introduced for the agents.

Two main constraints are introduced; the agent's heading direction and path de-

sign. The constraints are detailed as follows.

Heading direction

ˆ The heading direction of each agent is set at the start of the simulation.

ˆ The heading direction is expected to change after each step.

ˆ The heading of an agent is expected to remain the same as the previous step

only if the agent travels in straight-ahead motion.

ˆ The heading direction of the agents are logged into the simulation at every

iteration continuously.
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Path design

ˆ The available paths for the agents are; straight-ahead motion, clockwise

(right) turn or an anticlockwise (left) turn.

ˆ The paths are designed as subsets of Dubin's path planning.

ˆ Paths are planned for each iteration.

ˆ The shortest path between the computed and possible points is selected.

Typical path planning procedures in literature are performed di�erently from

the current study. Typically for each agent, the path planning connects a known

start position and direction to the desired �nal position and direction by a path.

The goal locations and the initial position of the task is usually determined before

the start of the mission. The shortest route between these two points is computed,

and the full trajectory of the mission is planned ahead. Examples of these are pre-

sented in the works of Shanmugavel et al. [91�93] for multiple UAVs. One of these

works is shown in Fig. 4.2. The �gure shows that paths designed for the UAVs

consist of circular arcs and straight lines connecting the start position(bottom of

�gure to the goal position(top of �gure). Such a path design is known as Dubin's

curve [90].
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Figure 4.2: Travel paths for multiple UAVs by Shanmugavel et al. [91]

Figure 4.3: Dubin curve'sCLC and CCC paths [94]
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A Dubins path is the shortest path that connects two con�gurations in a plane

under the restriction of a curvature [90]. In a 2D plane, a line represents the

shortest distance between two points, while an arc is the shortest curve of constant

curvature�the combination of these two results in the shortest route. Typically

the Dubins path is formed by linking two circular arcs with common tangents

or three successive tangential circular arcs. The former is aCLC path, and the

latter is a CCC path, whereC stands for arc andL for the line segment. These

paths are depicted in Fig. 4.3. This work focuses on a subset of Dubins's path;

either a line or a circular arc. The theory of Dubin state that the path must be a

continuously di�erentiable curve that consists of not more than three pieces, each

of which is either a straight line segment or an arc of a circle of radiusR. The use

of subsets of Dubins curves allows obtaining smooth paths compliant with �ight

mechanics constraints for the case of UAVs.

Integrating heading direction and path design constraints into to MBC scheme

will produce a continuous and feasible path for �xed-wing UAVs. Additionally, in

this thesis, the path planning procedure will be conducted for every iteration, as

the goal position of the coverage task is not immediately known. For each iteration,

the shortest path will also be computed and selected. The method employed to

decide on the shortest path will be discussed in the next section.
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4.3 Decision Making Procedure for Trajectory Plan-

ning

Figure 4.4: UAV taking multi-steps along a horizon in the Multi-step Broadcast
Control scheme.

This section describes the process of decision making used to choose between the

available paths, which were earlier discussed as path constraints. The alternating

virtual and deterministic UAV motion following the MBC scheme is depicted in

Fig. 4.4.

Each UAV position in spacex, y, z is x i (t) and its yaw angle (heading) is i (t).

Throughout the mission, the UAV altitudes are maintained. Therefore, there is

no change inz of the UAV pose. The possible paths that the UAV can take are

constrained to either a straight-ahead direction, a clockwise (right) or an anti-

clockwise (left) turn. The UAV computes the future position of all three path

possibilities to make this decision. It calculates the Euclidean distance from these

possible points to the point computed by the mission control framework. The path

with the shortest di�erence in distance,dis, is selected. Figure 4.5 illustrates the

possible manoeuvres for an UAV.
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Figure 4.5: Schematic diagram of UAV decision making for 3 possible manoeuvres.

The path for each UAV is calculated following the below steps.

1. Based on the UAV heading, the �nal pose of the UAV for all three paths of

possible manoeuvres is computed.

2. Euclidean distance from all three poses to the predicted point in space com-

puted by the UAV �ight controller is determined.

3. The path with the shortest di�erence in Euclidean distance is selected.

4. UAV performs the selected manoeuvre in Step 3.

5. UAV returns current coordinate to integrated MBC system and the next

iteration is repeated.

Following Fig. 4.6, the UAV �ies with the selected manoeuvre, and the pose

will be either one from the below.
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Figure 4.6: Manoeuvre of the UAV : Current position and heading (x i (t), i (t)) to
next position and heading (x i (t + 1) , i (t + 1) ).

Pose of UAV at x i (t + 1) for forward motion:

A i : x i (t + 1) = x i (t) + r cos( i (t)) ;

yi (t + 1) = yi (t) + r sin( i (t)) :
(4.1)

Pose of UAV at x i (t + 1) for clockwise manoeuvres:

A i : x i (t + 1) = x i (t) + r cos( i (t) � (�= 2)) + r cos( i (t)) ;

yi (t + 1) = yi (t) + r sin( i (t) � (�= 2)) + r sin( i (t)) :
(4.2)

Pose of UAV at x i (t + 1) for anti-clockwise manoeuvres:

A i : x i (t + 1) = x i (t) + r cos( i (t) + ( �= 2)) + r cos( i (t)) ;

yi (t + 1) = yi (t) + r sin( i (t) + ( �= 2)) + r sin( i (t)) :
(4.3)
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4.4 Coverage Problem for a Group of UAVs

Figure 4.7: Multiple UAVs provide coverage for a region with varying distribution
of ground users/IoT devices.

Consider a group of N �xed-wing UAVs(Ui ; i = 1; 2; :::; N ) equipped with wireless

ad-hoc capabilities and airborne sensors performing a cooperative area coverage

mission in a region,Q such as in Fig. 4.7. The multi-UAVs aim to e�ciently

provide network coverage for the whole environment considering the ground users

(or IoT devices) density distributions. The search environment is taken as a

rectangular plane of sizelx x ly in a two-dimensional Euclidean space.

The following assumptions and requirements about the multi-UAV systems are

made for the coverage control problem.

ˆ All the UAVs are homogeneous and �y at the same altitude,H .

ˆ The ground users' position or IoT devices is only known to the cloud/global

controller.
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ˆ Each UAV calculates its trajectory and �ight parameters (heading angles)

in real-time.

ˆ To decrease communication load, the UAVs are not connected.

ˆ Mission goal is not made known to individual UAVs to maintain con�den-

tially and security in case of random UAV hijack or loss.

For practical execution of the above assumptions, a cloud system must fully

observe the coverage region. Hence, the coverage task can be realistically executed

in a smart city environment.

4.4.1 Integration of Loiter Manoeuvre into Coverage Func-

tion

Figure 4.8: Design of loiter manoeuvre.
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When the UAVs reach their �nal positions, they are set to enter a loiter phase.

This is done so that the UAVs can �y around their coverage region to provide their

services as required to the respective ground users or IoT devices. The UAVs will

loiter at the same altitude the loiter was entered into.

Additionally, the loiter phase serves as a transitional phase before the UAVs

are assigned to return to the base or to continue towards their next mission.

The loiter manoeuvre as represented in Fig. 4.8 can be modelled as a sinusoidal

approximation model. This loiter model is included as an additional term in the

coverage cost function and is executable at the end of the task. The coverage

function inclusive of the loiter model can be represented as:

J (x(t)) = J (x(t))min + Asin (t) (4.4)

The path taken by a UAV will be a combination of subsets of Dubins' curve

and the loiter manoeuvre.

4.5 Results and Discussions

This section presents the results of the integrated MBC scheme with agent con-

straints. The UAV path trajectories, the evolution of the objective function and

the coverage distribution are discussed. The importance of certain sections of the

coverage domain is designed using Gaussian density functions. Furthermore, the

increase of agents is also modelled to test the adaptability of the scheme.
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To begin with, the path taken by a UAV which is a combination of subsets of

Dubins' curve and the loiter manoeuvre, is shown in Fig. 4.9. The resulting path

travelled by the UAV is continuous and realistic. This is attributed to the fact

that the agents (UAVs) are now constrained to move in only two di�erent modes

(straight lines or circular arcs) from its heading direction. Therefore, compared

to the earlier straight-line paths as in Fig. 4.1 the overall trajectory becomes

continuous and less erratic. Figure 4.10 shows the path courses for 4 UAVs.

Figure 4.9: Sample path taken by an UAV during the coverage mission. The
path's direction is from bottom to top. The circular manoeuvre represents the
loiter maneuver of the UAV at the end of the task.

Next, numerical simulations conducted to validate the developed MBC scheme

inclusive of path constraints are discussed. Here, four di�erent scenarios are tested.

The number of agents in the two-dimensional state space is set toN = 20, i.e.

n = 2. The size of the coverage area is �xed at 100 x 100 square units. The

controller gainsa and c are determined using the formula below:
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a(t)jMBC =
a0�

t
2

+ 1 + av

� ap ;

c(t)jMBC =
c0�

t
2

+ 1
� cp ;

(4.5)

for t 2 f 0; 1; 2; :::g wherea0 > 0 and c0 > 0 hold to satisfy a(t) > 0 and c(t) > 0.

For all scenarios, the value ofao and co are 9.5 and 0.15, respectively. Additionally,

the values ofav, ap and cp are set as 15.5, 0.7 and 0.16.

Figure 4.10: Travel path of four UAVs during coverage mission.
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1. Uniform density distribution of ground users.

In this task, 20 UAVs are assigned to provide uniform coverage. The UAVs be-

gin from their initial position that is evenly distributed within the x-coordinate

(20:70) and y-coordinate (0:100) as shown in Fig. 4.11(a). The UAVs begin to

converge to a Voronoi distribution to provide full coverage of the environment

from the initial position. The �nal distribution at convergence is shown in Fig.

4.11(b). Figure 4.11(c) shows that the objective function decreases smoothly. The

smooth decrease shows that the MBC scheme can perform seamlessly even when

the agents' constraints are applied. From the same �gure, minor perturbations of

the objective function can be observed fromt = 400 to t = 450, which illustrate

loiter manoeuvre being executed.
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(a)

(b)

(c)

Figure 4.11: a) Initial Voronoi con�guration of 20 UAVs in an environment with a
uniform density of ground users/IoT devices. (b) Final centroidal Voronoi con�g-
uration of 20 UAVs in an environment with a uniform density of ground users/IoT
devices. (c) Mission cost function.
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Figure 4.12: Trajectories of UAVs during coverage task with uniform density of
ground users/IoT devices.

The complete path trajectory taken by the UAVs is presented in Fig. 4.12.

Even with additional decision-making components integrated into the MBC scheme,

the UAVs can follow a continuous travel path to reach their �nal goal.

2. Gaussian density distribution of ground users.

In this task, 20 UAVs are assigned to provide coverage for an area following a

Gaussian density distribution function. The distribution used is described as

f (x) = 50 exp(� 0:5(((X � 100)=40)2) � 0:5(((Y � 100)=40)2)) (4.6)
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This distribution is illustrated in Fig. 4.13.

Figure 4.13: Gaussian density distribution.

The UAVs begin from their initial position that is evenly distributed within the

x-coordinate (40:60) and y-coordinate (40:60) as shown in Fig. 4.14(a). The UAVs

begin to converge to a Voronoi distribution to provide full coverage of the environ-

ment from the initial position. The �nal distribution at convergence is shown in

Fig. 4.14(b). Figure 4.14(c) shows that the objective function decreases smoothly.

The smooth decrease shows that the MBC scheme can perform seamlessly even

when the agent constraints are applied for the case of non-uniform coverage of the

domain of interest. Similar in nature to Fig. 4.11(c), minor perturbations of the

objective function can be observed fromt = 800 to t = 850 as it illustrates the

loiter manoeuvre being performed.

The entire path trajectory taken by the UAVs is presented in Fig. 4.15. The

paths show that the UAVs have successfully orientated themselves through their

heading direction to move towards the denser part of the coverage environment,

located at the top right of the domain, to achieve the coverage mission successfully.
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(a)

(b)

(c)

Figure 4.14: (a) Initial Voronoi con�guration of 20 UAVs in a non-uniform density
of ground users/IoT devices; (b) Final centroidal Voronoi con�guration of 20 UAVs
in an environment with Gaussian density distribution of ground users/IoT devices;
(c) Mission cost function.
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Figure 4.15: Trajectories of UAVs during coverage task with a non-uniform density
of ground users/IoT devices expressed using Gaussian function.

3. Increased number of UAVs (scalability test).

The scalability of the developed scheme in this chapter is validated in this scenario.

Here, the number of UAVs being tested is increased to 30. The UAVs begin from

their initial position that is evenly distributed within the x-coordinate (30:70)

and y-coordinate (40:60) as shown in Fig. 4.16(a). A similar Gaussian density

distribution as in Eq. 4.6 is applied to the coverage domain.

The UAVs begin to converge to a Voronoi distribution to provide full coverage

of the environment from the initial position. The �nal distribution at convergence

is shown in Fig. 4.16(b). As expected, the number of agents distributed at the

denser section at the top right of the domain has increased compared to the earlier

scenario consisting of 20 UAVs.
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(a)

(b)

(c)

Figure 4.16: (a) Initial Voronoi con�guration of 30 UAVs in an environment with
a non-uniform density of ground users/IoT devices; (b) Final centroidal Voronoi
con�guration of 30 UAVs in an environment with Gaussian density distribution of
ground users/IoT devices; (c) Mission cost function.
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Figure 4.17: Trajectories of UAVs during coverage task with a non-uniform density
of ground users/IoT devices expressed using Gaussian function with increased
number of agents.

Figure 4.16(c) shows that the objective function decreased smoothly. The

smooth decrease shows that the MBC scheme can perform well despite the increase

in number of agents in the task. The minor perturbations caused by the loiter

manoeuvre can be observed fromt = 800 to t = 850 in Fig. 4.16(c).

The complete path trajectory taken by the UAVs is presented in Fig. 4.17.

The paths show that even with the increase in the number of UAVs, the devel-

oped MBC scheme can successfully orientate the UAVs to move toward the denser

part of the coverage environment while maintaining good coverage throughout the

whole domain. However, Fig. 4.15 with 20 UAVs shows visually smoother paths

compared to Fig, 4.17 with 30 UAVs.
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