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Abstract 

  Sources of water pollutants such as waste disposal of natural and synthetic trace 

contaminants at the nanogram level have long-term negative impacts that are detrimental to 

human health and drinking water quality. Nowadays, it is critical to use biomaterials for 

wastewater treatment applications to provide environmentally friendly water purification 

processes and minimise pollution. Cellulose-based membranes to remove water contaminants 

have been gaining attention for water treatment due to their biocompatibility, renewability, and 

potential for surface modification. Combined filtration and adsorption using cellulose 

membrane is preferred due to having the advantages of both processes. Cellulose requires 

further modification to achieve higher adsorption. Modification approaches for cellulose suffer 

from limitations, including tedious separation methods, excessive chemical consumption, and 

costly procedures for their production. This thesis focuses on producing depth filters using in-

situ synthesised mesoporous silica on cellulose to produce a material with high adsorption 

capacity toward small charge molecules and size rejection at ultrafiltration level. This 

composite has biocompatibility, high specific surface area, high adsorption capacity and can 

be further modified. The cellulose-mesoporous silica composite can be separated via filtration 

under gravity and produced on large scales without using organic solvents. 

Higher loading of mesoporous silica on cellulose via in-situ precipitation is more desirable 

to enhance the surface area of the composite and supply more adsorptive sites for depth 

filtration. However, adsorption of contaminants through membrane filtration processes of the 

mesoporous silica-cellulose composite form was unavailable. In this thesis, we optimised 

mesoporous silica nanoparticle (MSN) loading on microfibrillated cellulose (MFC) and 

nanofibrillated cellulose (NFC) fibres using the in-situ synthesis approach via changing 

reaction time and the molar ratio of NFC to TEOS. Producing the NFC-MSN sample only 

required a short reaction time of 10-30 min. Using the NFC/tetraethoxysilane (TEOS) molar 

ratio equal to 0.27 yielded a composite with the high specific surface area (SSA) of 560 m2/g 

and MSN loading of 46 wt%, while the MSN loading decreased to 20 wt% by increasing the 

NFC/TEOS molar ratio to 1.37. In addition, the particle diameter is important for the stability 

of particles on cellulose fibres to avoid the detachment of particles. The size of MSN particles 

in NFC and MFC composites was 20-30 nm after all tested reaction durations. The reaction 

time longer than 10 min did not change particle sizes. The small median size of MSN can 
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provide a stable composite structure without detachment of particles. The structural 

characterisation of cellulose-mesoporous silica composites in this thesis provided insights to 

design composites in the forms of films and aerogels to apply them in water treatment. 

It was also important to evaluate the adsorption capacity of NFC-MSN composite 

membranes. The NFC-MSN composite aerogel with the highest surface area was used for 

adsorption of charged molecules, which led to methylene blue (MB) adsorption capacity of 291 

mg per gram of MSN. Single-layer membranes led to high flux and low adsorption due to their 

high porosity. Hence, double-layer membranes, including NFC and NFC-MSN layers, were 

formed to control the flux of the NFC-MSN depth filter and achieve high adsorption capacity. 

90% size rejection of 200 kDa polyethylene glycol (PEG) of the double-layer membrane was 

obtained, which displayed an improvement of size rejection of double-layer membranes 

compared to the NFC single-layer membrane. The composite double-layer membranes were 

advantageous for adsorption of charged molecules and size rejection by controlling flux using 

the NFC layer. 

  Higher flux and adsorption capacity and using higher gsm of depth filter are more desirable 

for industrial applications. The maximum gsm of the depth filter in the NFC-MSN double-layer 

membrane was 30 gsm, since the higher gsm led to decreasing flux. Thus, we synthesised 

mesoporous silica-bleached eucalyptus kraft pulp (BEK) composites to apply its higher gsm as 

depth filter layer and compare their flux and adsorption capacity with the NFC-MSN composite 

depth filter membranes. The optimum BEK-MS depth filter exhibited 9.5 LMH/bar flux and 

83.5 mg per g of MS for MB adsorption. The BEK-MS membrane also had metal removal 

efficiency and adsorption of anionic molecules after its modification with positively charged 

polyelectrolyte. Moreover, the BEK-MS double-layer membrane improved the size rejection 

of 20 kDa PEG compared to the single-layer membrane. BEK-MS composite depth filters 

provided insights into applying cost-effective depth filters with higher flux to eliminate the 

homogenisation step required for the NFC supplying for the depth filter production. Using 

BEK-MS composites with high adsorption capacity can reduce the cost of composite 

production on large scales compared to NFC. 

  In another part of this report, the selective removal of antibiotic pollutants is demonstrated. 

Wastewater streams from pharmaceuticals manufacturing and animal farming, including 

antibiotics, contribute to issues of antibiotic-resistant bacteria growth in the environment. 
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Selective adsorption of an antibiotic is desirable for its pre-concentration and detection for 

further analysis of large-scale contaminated water. Molecularly imprinted composite 

membranes using target molecules as the template in the composite membranes is an efficient 

approach toward selective adsorption of antibiotics. Chloramphenicol (CA) as the pore 

directing agent combined with PEI in the MSN fabrication was used to produce NFC-MSN 

composites with molecularly imprinted mesopores. The MIP membrane was tested for 

adsorption of CA to investigate its selective adsorption performance. MIP composites prepared 

by CA did not display non-selective adsorption toward thiamphenicol as the analogue 

antibiotic, while it has adsorption toward CA as the target. In addition, the non-selective 

adsorption of composites without molecularly imprinting toward the target molecule was 

negligible, suggesting the advantages of MIP for selective adsorption. This technique can be 

generalised to selectively detect specific antibiotics with bacterial gene resistance, which is 

important for correlating the concentration of a specific antibiotic to bacterial resistance genes. 

The prepared cellulose composite membranes are scalable, cost-effective, biocompatible, and 

applicable for wastewater treatment processes. This fundamental research can be effective for 

further modification of membranes for various applications. 
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1.1. Introduction  

In order to have recycled water for particular end-uses, efficient wastewater treatment 

processes are required to remove severe threats, including dyes and antibiotics [1, 2]. Among 

varied methods for water treatment, membrane filtration has been investigated extensively [3]. 

Although polymeric membranes with strong chemical and mechanical resistance have been 

used for membrane filtrations, they have undesirable points such as using oil-based polymers 

as well as their poor adsorption of small charged molecules [4, 5]. Cellulose, as the most 

abundant natural polymer, has numerous unique properties, including its cost-effectiveness, 

functional groups, and hydrophilicity [6], which offers it the best candidate for membrane 

fabrication. Removing water contaminants through cellulose-based membranes is possible 

through size exclusion. However, the adsorption of pollutants during filtration is also critical, 

which requires improvement of the low specific surface area (SSA) of cellulose. One feasible 

option to address the limited adsorptivity of cellulose is its modification to produce cellulose 

composites. However, environmental aspects, without consuming toxic chemicals and organic 

solvents, to reduce waste products need to be considered. In-situ precipitated mesoporous silica 

on cellulose can provide a biocompatible composite with high SSA to enhance water 

contaminant adsorption during filtration. Different sources of cellulose, including 

microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC), and BEK, were used to 

prepare composites to have insight into the impact of fibre sizes on mesoporous silica loading 

and SSA of these composites. The significance of this study was to determine if high adsorption 

of charged molecules can be achieved from a source of cellulose which requires less 

processing. Varied parameters were analysed to characterise NFC-MSN composites, which is 

invaluable for broader applications of this composite.  

The knowledge obtained from the structural characteristics of NFC-MSN composites was 

used to manufacture the aerogel form of the composite for the adsorption of organic pollutants. 

Another objective is to form cellulose depth filters with both low MW size exclusion and 

adsorption capabilities of charged molecules. To achieve this objective, double-layer 

membranes, including an NFC barrier layer and the depth filter, were fabricated. Given that 

the homogenisation process can be time and energy-consuming, replacing NFC with cost-

effective BEK cellulose pulp to manufacture the BEK-MS composite and its depth filter is 

another target of this thesis. The NFC barrier layer is used on the BEK-MS depth filter layer to 
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control flux and adsorption. Double-layer membranes including BEK and BEK-MS were 

prepared to compare their flux and adsorption with NFC-MSN double-layer membranes. 

Moreover, selective adsorption of antibiotics is desirable for its pre-concentration and 

detection for further analysis of large-scale contaminated water. Molecularly imprinted 

composite membranes using target molecules as the template in the composite is an efficient 

approach toward selective adsorption of antibiotics, which is another objective of this thesis. 

The target molecule, chloramphenicol (CA), was used as the pore directing agent in the in-situ 

MSN fabrication to produce molecularly imprinted MSN and apply it to form its membrane. 

In addition, MSN covered by molecularly imprinted polymer (MIP) was formed to evaluate its 

adsorption toward the target molecule. 

Chapter 1 presents the review of cellulose composites and depth filters, which lead to the 

objectives of the thesis. Section 1.2 includes a literature review of cellulose, MSN, and 

cellulose composites. Different types of cellulose-MS depth filters, including double-layer 

depth filters, are also reviewed in section 1.2.7. Selective adsorption using MIP and cellulose 

membrane-based MIP was discussed in sections 1.2.8. Gaps of knowledge, objectives, and 

outlines of chapters are presented in sections 1.3, 1.4, and 1.5. 

1.2. Literature Review 

The aim of this literature review is to review the development of cellulose-mesoporous 

material composites for wastewater treatment applications to find gaps of knowledge. We used 

the terms MSN and MS for the nanometre range sized particles and larger particles, 

respectively. We use the general term of mesoporous silica without considering particle sizes. 

We present a brief overview of wastewater treatment techniques, cellulose, and mesoporous 

silica, to provide a background for further discussion about cellulose composites and depth 

filtration. This review then focuses on the formation, properties, and applications of cellulose 

composites for depth filtration. 

1.2.1. Wastewater concerns 

Clean water scarcity and pollution of water resources are due to their contamination on large 

scales in varied industries, improper waste disposal, and the presence of synthetic trace 

contaminants at the nanogram level [7]. Water pollution causes the low quality of surface and 



Chapter 1 

 

7 

 

groundwater for drinking. Water contaminants [8], including oil [4], pharmaceutical 

compounds [9], heavy metals [10], dyes [11], dissolved salts [12], and pesticides [13], 

accumulate in food chains due to their resistance to chemical and biological degradation [14], 

which end up in humans. Toxic pollutants create neurological disorders and carcinogenic 

diseases in humans [14]. Furthermore, plant nutrients such as nitrogen and phosphorous are 

increasing exponentially, creating increased aquatic plant growth such as algae and weed, 

affecting the colour, smell, and taste of water [15].  

A large proportion of dyes used in industries ends up in wastewater streams and land [16]. 

Textile dyeing effluents are one of the largest wastewater sources, containing various dyes, 

surfactants, traces of heavy metals [17], and organic contaminants [18]. Toxic dyes have 

adverse effects on aquatic systems and the environment over the long term [19]. Therefore, 

separation can be effective in minimizing the amount of wastewater in the environment and 

mitigating health issues of living organisms.  

Another significant source of water pollution is heavy metal ions that are released to waste 

streams of various industries, such as battery manufacturing, alloy production, and piping [7]. 

The accumulation of heavy metal ions in humans and animals can cause severe and long-term 

medical and cellular disorders, cancer, brain and nervous system diseases [7]. Therefore, 

purifying water from heavy metal ions can supply safe and clean water. In addition, heavy 

metal ions with high value can be collected and recovered for future application from waste 

streams. It is very critical in the future, where resources of heavy metals will be more limited 

over the next decades [20].  

The discharge of pharmaceuticals into water is another primary source of water 

contaminants [21]. The discharge of pharmaceuticals into water is not unprecedented, but the 

unregulated and continuous production and discharge of these compounds have exacerbated 

the issue [21]. A diverse range of these pollutants is generated through wastewater streams of 

manufacturing pharmaceuticals, from using them as growth promoters in agricultural and 

animal farming industries [22] and from their consumption in humans and veterinary medicine 

[23]. Humans and animals then excrete them into sewage systems [24], introducing 

pharmaceutical wastes into the aquatic and terrestrial environments [25]. The presence of 

antibiotics contributes to the development of multi-resistant strains of bacteria in the 

environment, which are harmful to living organisms [26]. Furthermore, aquatic organisms are 
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susceptible to the toxic effects of these antibiotics even at low concentrations [23]. This could 

potentially disrupt the ecological balance [25].  

The wastewater containing these antibiotics contain an active substance and thus requires 

chemical pre-treatment to manage these effluents prior to their release into the environment 

[25]. However, current pre-treatment solutions are ineffective in antibiotic removal [27]. 

Examples of current methods include membrane bioreactors and biological treatment using 

activated sludge and in wastewater treatment plants [28]. Zheng et al. investigated the removal 

efficiency of antibiotics for all detected antibiotics in a wastewater treatment plant. 

Biodegradation and adsorption using activated sludge showed 59.2% removal efficiency for all 

detected antibiotics; however, microfiltration displayed negligible removal efficiency of 

antibiotics. Although the biological treatment had decreased the concentration of the antibiotics 

within the wastewater, some antibiotics remained in the water after biological treatment [28]. 

In addition, the concentration of some types of antibiotics and their associated resistance genes 

in wastewater treatment plants may not be correlated, which cannot lead to an exact conclusion 

about the cause of a specific gene resistance [28]. A more advanced yet conventional method 

implemented in treating pharmaceutical wastewater is through membrane filtration or reverse 

osmosis. This process is the mechanical separation of particles through a membrane with 

pressure as a driving force. Although this process is relatively more efficient than sludge, it is 

highly dependent on the pore size of the membrane and the diameter of molecules and has high 

costs [29]. Therefore, it is necessary to develop efficient and cost-effective antibiotics removal 

systems and correlate the concentration of some specific antibiotics and their resistance genes 

via selective antibiotic detection. The following section provides overviews of methods for 

water treatment. 

1.2.2. Wastewater treatment approaches 

Conventional water treatment methods include membrane separation, aerobic and anaerobic 

digestion [16], evaporation, precipitation [30], flocculation [31], degradation [32], and 

electrochemical treatment [33]. Highly efficient, feasible and cost-effective water treatment 

processes are key elements to address water pollution to protect human health. Adsorption and 

membrane filtration are recognised as efficient water treatment techniques due to meeting the 

aforementioned criteria [32, 34]. However, the most important aspects of utilizing these 

approaches are to consider the use of sustainable methods and materials [35]. Utilising 
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sustainable materials decreases scale-up production costs of materials for adsorption processes 

[36] and reduces secondary waste products. Sustainable sources of materials [37] can facilitate 

large-scale water remediation technologies for the future [38].  

Nanocellulose is produced by mechanical or chemical treatment of cellulose pulp with 

median fibre diameter in nanometre range [39]. Nanocellulose can also stabilise nanomaterials 

with high adsorption capacity [32, 33]. Nanocellulose is a prominent alternative to 

conventional materials such as activated carbon in adsorption procedures. Nanocellulose can 

be functionalised further to improve its adsorption and used for membrane fabrication due to 

its low cost and sustainability. Hence, the combination of filtration and adsorption using 

nanocellulose can provide advantages of both techniques via producing nanocellulose 

composite membranes. 

The combined adsorption/membrane filtration, which is denoted depth filtration, can 

increase the efficiency of membranes. Cellulose composite-based depth filtration will be 

overviewed in section 1.2.10.1. In addition, MIP can be utilised in cellulose depth filtration for 

selective adsorption of different targets in water treatment. 

1.2.2.1. Adsorption 

Adsorption is one of the most attractive water treatment techniques due to its ease of 

operation and accessibility. Adsorption also has advantages over photocatalytic degradation 

since it does not produce hazardous intermediate products [19]. The adsorption mechanism is 

mostly through electrostatic interactions. Therefore, materials with high SSA can provide more 

reactive sites for adsorption. While the scale of contaminated water is significant, desorption 

processes from adsorbents can produce a lower volume of contaminated water, which is 

important in industrial scales of water remediation. Different types of interactions of  

adsorption processes are presented in Figure 1 [40]. 

Nanomaterials are deemed to have exceptional potential for improving adsorption efficiency 

and treating contaminated water resources due to their high SSA and their binding sites [31]. 

Effective nanostructure adsorbents include zeolite [7], carbon-based compounds [41], Al 2O3 

nanoparticles (NPs) [42], silver NPs, metal-organic framework (MOF), and silica NPs  [14]. 

However, these adsorbents have several issues, e.g. low adsorption [10], small scale of 

production, time-consuming preparation, and difficulty of separation after adsorption. Other 
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issues related to conventional adsorbents include the high cost of disposing of toxic sludge of 

adsorbents, which can inhibit its large-scale application. Hence, developing adsorbents with 

cost-effectiveness, easy operation, and excellent adsorption performance for large scale 

application is of high interest. Using bio-based adsorbents have attracted extensive attention 

for water remediation due to meeting the environmental criteria mentioned above. In addition, 

they can be considered for recycling to yield sustainable processes [14]. However, bio-based 

adsorbents have generally low adsorption capacity compared to metal oxide NPs [42]. This 

requires modification of their functionality with nanomaterials to improve performance. Cork 

and paper waste-based activated carbon resulted in high adsorption capacity toward MB [19]. 

Anionic NFC as an adsorbent also led to adsorption of the pharmaceutical salbutamol as an 

ionisable micropollutant [43]. Cellulose-based composites can also be utilised for adsorbing 

microelements and releasing them as fertiliser [44]. 

The separation of the dispersed NFC fibres used as adsorbents is a tedious process. 

However, membrane-based adsorbents are handled easily, portable, and disposable, which 

make them usable to provide potable clean water. Therefore, developing adsorbents into the 

membrane form is necessary to apply them practically in water treatment.  
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Figure 1. Adsorption mechanism for Pb2+ and Cu2+ ions using cross-linked cellulose 

nanofibrils , adapted from [40], Copyright 2018, with permission from Wiley-VCH. 

1.2.2.2. Molecularly imprint ed polymer for selective adsorption 

The direct determination of target analytes in any given sample of interest is difficult in the 

presence of a large number of matrix compounds and a possible low concentration of the target 

components. Over the past few decades, the development of sensors for the rapid detection of 

target analytes has garnered much attention within the scientific community [45, 46]. In these 

conditions, sample pre-treatment and/or extraction technique is required prior to final 

instrument analysis to ensure more effective analysis of the target component [47, 48]. Up to 

now, non-selective silica-based polymeric sorbents and, especially recently, nanostructured 

sorbents have been usually utilised, leading to the extraction of unwanted compounds [46]. 

Therefore, to selectively determine one target antibiotic with low concentration among multiple 

components in wastewater, it is useful to concentrate it. The concentrated analyte can be 

detectable easily using analytical instruments [46]. In order to create selective extraction 

techniques, MIP with specific detection sites towards a target molecule has emerged [49]. MIP 

is an artificial receptor-selective material that contains specific recognition sites towards a 



Chapter 1 

 

12 

 

defined target molecule due to their shape, size, and functionality recognition [50, 51]. MIP 

can adsorb various organic and inorganic target molecules such as metal ions, dyes, and 

antibiotics. Synthesis approaches for MIP include polymerisation of a target molecule as the 

structure-directing agent with a monomer [5, 52] followed by removing the template by solvent 

extraction to create template grooves in the polymer matrix [53]. Figure 2 presents a schematic 

of MIP formation by covalent or non-covalent approaches [54]. The most common imprinting 

method is via self-assembly of the target molecule to the polymerisable molecules to form non-

covalent imprinting. MIP on a heterogeneous phase can also be fabricated to enhance the mass 

transfer rate of the target molecules inside templates [54]. MIP has great mechanical and 

chemical stability, ease of preparation, low cost, and good specific adsorption. The reversible 

covalent bonding between the target and polymerisable molecule is related to covalent 

imprinting [54]. MIP can be recovered by desorption of target molecules due to hydrogen bonds 

and electrostatic interactions of target molecules and MIP [55]. This thesis focuses on antibiotic 

removal via nanocellulose membrane-based MIP samples. 

The conventional way of molecularly imprinting using commercial polymers results in 

directly converting the polymeric material to the molecular recognition material without the 

process of polymerisation for MIP formation [56, 57]. This procedure for preparing MIP is 

cost-effective, quicker, and more eco-friendly compared to conventional methods of antibiotic 

removal due to a reduction in the number of applied reagents such as catalysts, radical initiators, 

and monomers [45]. While MIP allows for high selectivity of target molecules, it exhibits a 

few deficiencies, including the difficulty of recovery in the reaction medium and the slow 

leaching of the template from the polymer matrix [58]. To combat this, NPs are used as 

excellent solid support materials for surface imprinting due to their large surface-to-volume 

ratio [46]. Surface imprinting enhances the MIP performance in terms of available binding sites 

of MIP and improves mass transport. In addition, NPs enhance the physical and chemical 

properties of MIP as they provide a quasi-spherical geometry with easier dispersion [59]. MIP 

formation of norfloxacin on magnetic halloysite nanotubes using the sol-gel approach was 

reported. The MIP system with magnetic property facilitates the target separation. Using the 

sol-gel approach for MIP formation is due to its mild reaction conditions and physical rigidity 

for the creation of binding sites and high selectivity [60]. 

Water treatment includes the removal of antibiotics due to their environmental issues [3, 61, 

62] and detrimental impacts on medical systems [63] and the food industry [64]. The constant 

exploitation of antibiotics and incomplete metabolisation of antibiotics by aquatic organisms 
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is directly proportional to the spread of gene-resistant microorganisms [1, 28, 65]. Therefore, 

it is required to design and develop new adsorbents for treating antibiotics. Yao [66] fabricated 

NFC-graphene oxide hybrid aerogels to remove antibiotics from water with reusability after 

desorption. The SSA and pore volume of the aerogel were 97.5 m2 g-1 and 0.4 cm3 g-1. The 

aerogel demonstrated adsorption capacities for different antibiotics ranging from 128.3 mg/g 

to 454.6 mg/g. Sayen [61] employed a lignocellulosic substrate from wheat bran for 

enrofloxacin removal from water with the maximum adsorption of 91.5 mg/g. MIP prepared 

without surface imprinting lacks easy separation from the reaction medium after adsorption of 

target molecules. Hence, preparing MIP in inorganic-organic hybrid composite membranes is 

more efficient to enrich a specific target and maintain MIP capacity for target recognition [53, 

58].  

However, polymerisation processes in MIP synthesis have tedious steps of their production, 

toxic solvent, and using monomers. Additionally, they require optimisation and controlling a 

variety of key elements, some of which are time, temperature, concentrations of monomers, 

and content of polymerisation initiators [5, 67-69]. Hence, using commercial polymers to 

eliminate the polymerisation step for MIP production has gained interest recently. Díaz-Liñán 

[49] applied immobilised MIP on filter paper by a polymerisation-free method. In this study, a 

solution of dissolved nylon-6 polymer was mixed with quinine as the target molecule and added 

to the filter paper. Afterwards, the template was removed by solvent extraction. Since quinine 

has fluorescence activity, it is useful for its detection after its adsorption to the system using 

fluorescent spectroscopy. 
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Figure 2. Molecular imprinting by covalent and non-covalent bonding, obtained from [54], 

Copyright 2020, with permission from the American Chemical Society; the yellow, blue and 

red parts represent imprinted molecules covalently and non-covalently bonded to monomers in 

covalent and non-covalent imprinting approaches. 

1.2.2.3. Filtration  

Liquid filtration has been an area of interest both for recovering valuable suspended solids 

and for water purification by removing different sizes of pollutants through the separation of 

particles and dissolved solute molecules from the feed solution. Retaining particles and 

dissolved molecules on the surface of filters based on mechanical entrapment is called surface 

filtration [70]. Filtration of any substance can be achieved by its different properties from other 

components in the feed solution. This leads to selecting the kind of filtration of the target 

compound with other materials correlated to differences in physical/chemical properties. These 

properties include molecule size, vapour pressure, freezing point, affinity, charge, density and 

chemical characteristics of components [5].  

Filtration is typically done by imposing pressure on the top side of the filter. Pressure is the 

driving force of filtration. The initial liquid fed to the top of the filter is called the feed solution, 

while the liquid that flows through the filter medium is called permeate or filtrate solution. Two 

modes of operation used in the filtration system include dead-end for lab-scale filtr ation and 

cross-flow filtration for commercial scale. In dead-end filtration and cross-flow filtration, the 

feed solution passes through the filter and across the membrane, respectively. The filtrate is 

accumulated on the membrane surface or within the membrane thickness. Adsorption or 

deposition of colloids and particles on the membrane surface or inside membrane pores create 

fouling of the membrane, which impacts the membrane permeability and performance [71]. In 

this thesis, dead-end filtration under constant pressure was used, and the flux was recorded in 

different time intervals as the variable. 

Filtration is classified based on the pore size distributions of membranes, while the pore size 

of membranes is reduced from microfibrillation toward reverse osmosis. Microfiltration (MF) 

and ultrafiltration (UF) processes are generally used in size exclusion. Microfiltration 

membranes, with pore sizes in the range of 0.1 to 5 ɛm, reduce the amounts of solids from 

waste streams, which could produce fouling. MF can be used in oil-water separation and 

removal of blood cells, large bacteria, and large macromolecules. Microfiltration has been used 
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extensively in food processing for clarification of fruit juices and beverages [72].  

Ultrafiltration membranes have pore sizes in the range of 10 to 100 nm. Higher pressure (1 

to 10 bar) is required for the operation of ultrafiltration membranes due to their smaller pore 

sizes. Ultrafiltration has practical applications in the food industry, removing proteins, colour, 

bacteria [17], and viruses. Ultrafiltration is preferred over microfiltration due to the disinfection 

of water streams from bacteria and viruses.  

Nanofiltration membranes have pore sizes in the range of 0.5 to 10 nm and operate under 

10 to 30 bar pressure. Nanofiltration and reverse osmosis processes can have the same principle 

for filtration to separate materials with low molecular weight (inorganic salts or small organic 

molecules). The salt rejection of nanofiltration membranes is not complete, in contrast to 

reverse osmosis membranes, which are used in the production of ultrapure water [25]. Figure 

3 presents a schematic of filtration by pressure-driven membranes from microfiltration to 

reverse osmosis for water treatment [73]. The focus of this thesis is to purify water using robust 

cellulose-nanocomposite membranes with ultrafiltration performance. 

 

Figure 3. Scheme of pressure-driven membranes, obtained from [73], Copyright 2017, 
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with permission from Springer. 

In the filtration system, polymeric membranes are more important than inorganic 

membranes due to their higher mechanical and chemical stability compared to inorganic 

membranes. Organic polymers for membrane fabrication include polyethersulfone, 

polyacrylonitrile, polyvinylchloride, polyvinyl alcohol, polyethersulfone, polyvinylidene 

fluoride, and polypropylene [33]. Due to the lower cost of petroleum-based polymers than 

polysaccharides, industries have used them more without considering their environmental 

impacts [35]. Issues associated with synthetic polymers include using toxic monomers [74] and 

organic and volatile solvents for their synthesis for membrane forming [75], which requires 

high costs for disposal. Therefore, industrial-scale water treatment technologies using 

renewable materials, with outstanding performance and lower secondary waste generation in 

their production steps, are more desirable to be developed for the future. Using natural 

polymers has more benefits than synthetic and petroleum-based polymers for industrial-scale 

water treatment in terms of their abundance, biodegradability, facile production, and low 

environmental impacts [30]. Natural polymers include cellulose, cyclodextrin, starch [76], 

chitosan, pectin [77], and poly(lactic acid) [11]. Cellulose is the most abundant natural 

polymer, which can be utilised for developing sustainable adsorption and filtration processes 

[32]. Cellulose pulp contains micron-sized cellulose fibres. Their breakdown into nano-sized 

cellulose fibrils leads to the production of nanocellulose [78]. Nanocellulose has additional 

advantages compared to cellulose pulp, including high mechanical strength and surface area 

[79]. The focus of this thesis is to utilise nanocellulose for composite and membrane 

fabrication, which will be reviewed in section 1.2.3.  

1.2.3. Cellulose 

1.2.3.1. Cellulose terminology in this thesis 

In this thesis, the term ñcellulose pulpò refers to cellulose without 

microfibrillation. Microfibrillated cellulose (MFC) from wood is a bundle of stretched 

cellulose nanofibres. Refining and chemical pre-treatment of wood pulp before 

homogenisation subjected to high pressure can be performed to produce MFC. The MFC used 

in this thesis is a commercially purchased product. Further fibrillation of MFC was performed 

via disintegration and high-pressure homogenisation steps, which led to the production of 
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cellulose fibres with median fibre diameters in the range of 1-100 nm, which is smaller than 

those of the initial MFC sample. The term nanofibrillated cellulose (NFC) in this thesis refers 

to fibres produced by MFC homogenisation for 3 to 8 passes under high pressure. Cellulose 

hydrolysis by acid to remove its amorphous parts is used to make cellulose nanocrystals (CNC). 

We use the term cellulose when we want to address cellulose-based materials in this thesis and 

the term nanocellulose to cover both NFC and MFC in this thesis. 

1.2.3.2. Cellulose pulp 

Cellulose pulp can be extracted from varied sources, including wood and agricultural crops 

and wastes. Agricultural crops used to make nanocellulose include bagasse, rice straw, banana 

rachis [80], pineapple peel [81] and etc. Fibrillation of agricultural crops is less energy-

intensive due to the presence of cellulose in their primary cell walls. Therefore, the extraction 

of cellulose pulp from wood has costly processes due to the presence of cellulose in the 

secondary cell walls of wood [82], leading to the higher price of cellulose wood pulp. This 

generated more interest in agricultural crops and wastes for deriving cellulose. Figure 4 

presents the hierarchical breakdown of a plant from the cell wall to the microscopic scale of 

cellulose molecules. The cellulose pulp used in this thesis was supplied from bleached 

eucalyptus kraft pulp (BEK) extracted from wood.  
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Figure 4. Hierarchical breakdown of the plant cell wall to the cellulose molecule, obtained 

from [83], Copyright  2012, with permission from Elsevier.  

1.2.3.3. Nanocellulose  

Homogenisation and refining of cellulose pulp can produce nanocellulose. The major 

drawbacks of this mechanical process for nanocellulose production from wood-based cellulose 

are the high energy required [84] and clogging of the homogeniser [8]. However, energy 

consumption for MFC production can also be reduced using chemical and enzymatic pre-

treatments to improve the fibrillation degree [84]. However, some chemical pre-treatments to 

produce nanocellulose, such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation and 

carboxymethylation, have high costs [80]. The focus of this thesis was not to reduce the cost 

of nanofibrillation. In this thesis, further homogenisation of MFC was performed to produce 

NFC with a smaller median diameter compared to MFC.  

Nanocellulose has been used in various applications such as reinforcing bio-composites, 

electronic devices, the food industry [85], and medical applications [80]. Chromatographic 

columns for the separation of chiral enantiomers have used nanocellulose-based systems for 
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pharmaceuticals [86].  

Activated carbon is used in water treatment due to its high SSA and modification capability. 

However, the production of activated carbon requires carbonisation and activation stages. 

Moreover, regeneration of activated carbon is a costly and energy-intensive process since it 

requires a high temperature for calcination, which is another prohibitive element [30]. 

Remediation of wastewater using nanocellulose-based materials has been developed as an 

alternative towards activated carbon-based adsorption [15]. In addition, the high hydrophilicity 

and abundant hydroxyl (OH) groups that can interact electrostatically with contaminants [12] 

make nanocellulose an ideal material for adsorption of heavy metal ions and residual antibiotics 

in agricultural and industrial effluents and water purification. Nanocellulose is applied in 

different forms, including fibres [87], microspheres [88], aerogels [77], hydrogels [89], and 

membranes [90] for water purification. However, separation of cellulose fibres in particle and 

fibre forms can be prohibitive for large-scale, continuous systems of water purification. Charge 

modification and functionalizing of nanocellulose with chelating moieties such as amine, 

sulfonate, phosphoryl, acetyl, thiol, and carboxyl groups [8] can be performed for its 

corresponding applications [86]. In the following section, we focus on different aspects related 

to cellulose membranes.  

1.2.4. Preparation of nanocellulose films 

Spraying, casting, and vacuum filtration are the most important methods for cellulose 

membrane fabrication. Lab-based vacuum filtration includes pouring suspensions inside a 

filtration chamber and its agitation. Cellulose fibres will be settled at the bottom of the chamber 

on filter paper and form a filter cake under the vacuum. Then, wet samples will be pressed 

under pressure. Drying of cellulose films can be performed using a sheet dryer, oven dryer or 

hot press after the lab-scale vacuum filtration.  

The casting method is also limited to laboratory production scales. The main drawbacks of 

the casting method are related to its difficulty for film making using low cellulose solid 

contents. The spraying [91] and vacuum filtration [92] methods are applicable for the large 

scale production of cellulose membranes. The spraying method is less time consuming and 

reduces the water volume for film production [93]. Another advantage of the spraying approach 

is using it for higher cellulose solid content. However, it also has some drawbacks, such as 
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clogging the pump of the sprayer or the spray head, wasting cellulose samples during spraying, 

creating cracks and large pores in films, and lack of uniformity of solid content across film. All 

of these factors are prohibitive for the reproducibility of nanocellulose film formation and 

consistent filtration performances of differently prepared samples. Another downside of 

spraying is its occupational health risk to spray composites of nanocellulose-NPs due to its 

potentials to create aerosols [94]. However, it can be applied to produce the nanocellulose 

single-layer as the substrate layer of double-layer membranes on large scales. 

In this thesis, we applied vacuum filtration to produce single-layer membranes and double-

layer membranes of NFC-MSN and BEK-MS samples not to create aerosols of NPs. In 

addition, the sheet dryer was set at 112ºC, which dried wet films after around 10 min without 

creating cracks in samples. We also prepared a few double-layer membranes, including NFC 

single-layer membranes produced by spraying, where the nanocellulose layer was used as the 

substrate layer of the NFC-MSN suspension inside the filtration chamber. 

1.2.5. Properties and application of nanocellulose films 

1.2.5.1. Membrane filtration  

Nanocellulose membranes can be used for water purification to supply clean and safe water. 

In order to improve water purification performance, nanocellulose composites can be formed. 

Onur et al. reported using NFC-perlite composite films for dye adsorption [90]. Cellulose-

based antibacterial films can also be used for water treatment. Maliha et al. reported using 

bismuth complex-cellulose composite for disinfecting water [95]. Nanocellulose performs size 

rejection based on its pore sizes between fibres. Membrane pore size will decrease with 

nanocellulose fibre diameter. Thus, cellulose membranes with smaller pore sizes can be used 

for the separation of smaller molecules. Using cross-linkers to increase the entanglement of 

nanocellulose fibres is another approach to improve the size rejection of cellulose membrane 

[70]. Limitations of cellulose membranes are related to their chemical, thermal, and mechanical 

properties due to cellulose hydrophilicity. Therefore, nanocellulose modifications for film 

fabrication in terms of structural properties, functional groups, and charge can be done 

according to the targeted application [96]. Properties of petroleum-based polymer membranes 

can also be improved in terms of strength and water permeability by adding nanocellulose [96]. 
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1.2.5.2. Packaging 

Nanocellulose can be used as a component of the packaging and production of paperboards. 

It also has high rigidity and barrier properties due to the high entanglement of nanofibres 

compared to the more porous structure of paperboard made from cellulose pulp. Plastic 

packaging can be difficult to recycle and can accumulate in the environment. Therefore, the 

development of nanocellulose-based materials for packaging is highly desirable for saving the 

environment due to being biomass-based and biodegradable [93]. However, it has high water 

vapour permeability (WVP) under high humidity due to its high hydrophilicity and swelling 

through water adsorption. However, adding inorganic materials such as montmorillonite 

(MMT) to nanocellulose can result in nanocellulose composites with reduced WVP, suitable 

for its packaging application. Since the vacuum filtration approach to producing the 

nanocellulose-MMT composite films requires a long time (24 h to 4 days), it is inefficient for 

large-scale packaging applications [97]. However, using the spraying technique to produce the 

nanocellulose-MMT composite films is more convenient [93]. Another application of cellulose 

films in packaging is incorporating materials with antimicrobial and antioxidant properties to 

provide food safety [98]. 

1.2.6. General aspects of nanocellulose aerogel  

Aerogels have low density, high porosity and SSA, and low density [99] produced by freeze-

drying or supercritical drying of suspensions [78]. The freeze-drying method removes the 

solvent from the frozen sample by sublimation and is a widely applied technique compared to 

supercritical drying [100]. The ice crystal formation during the freezing step creates the porous 

structure of the aerogel [101]. However, the large-scale production of aerogels using the 

aforementioned drying methods is energy-intensive and time-consuming compared to 

membrane forming by drying at ambient temperature [7]. Cellulose can reinforce and 

immobilise organic and inorganic materials, yielding cellulose composite aerogels with higher 

SSA than pure cellulose aerogels [102]. Cellulose-based aerogels can be used in environmental 

applications such as water treatment [32], air filtration [103], and catalyst support [104]. 

Zeolitic imidazolate framework-67/bacterial cellulose (BC)/chitosan aerogel displayed 200.6 

mg/g adsorption toward Cu2+ ions [96]. They can also be applied as thermal insulators, electro-

conductive materials [105], and supercapacitors [106]. Cellulose-based aerogels can be utilised 
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in medical applications such as wound healing, drug delivery, and sensors [104]. 

1.2.7. Mesoporous silica synthesis 

In recent decades, porous materials have exhibited great potential to offer long-lasting 

solutions to global issues, including the increasing energy demands and reducing the industrial 

pollutants, exhaustion of resources, and health improvement [107, 108]. In particular, 

mesoporous materials have garnered much attention from the scientific community since the 

first report of M41S-type ones by Mobil researchers in 1992 [109]. According to its IUPAC 

definition, a mesoporous material has pore sizes between 2-50 nm [110]. Among the various 

available mesoporous materials, mesoporous silica, which features a purely inorganic siloxane 

framework, has proven to be an extremely promising class of porous materials and has been 

extensively researched [111]. This is due to its many unique properties, such as its large SSA 

[112, 113], biocompatibility [114], high hydrophilicity, and ease of functionalisation [114].  

Mesoporous silica is generally synthesised by bottom-up approaches based on sol-gel 

chemistry [115]. This process involves the hydrolysis and condensation of silanes or 

organosilanes. The kinetics of both processes can be regulated by acids and bases [116]. The 

commonly used silica precursor is tetraethoxysilane (TEOS) in a sol-gel reaction. The first 

hydrolysis step generates reactive Si-O groups that can condense with other organosilanes, 

forming covalent siloxane bonds (Si-O-Si), and thus a sol of silicate oligomers [117]. This 

process produces silica or polysiloxane frameworks (Figure 5). To obtain a mesoporous 

structure, soft templates (cationic surfactants, e.g. cetyltrimethylammonium bromide (CTAB)) 

and the mixture of a hard template (e.g. cellulose) with a soft pore directing agent are often 

utilised as a pore-directing agent [115]. The negatively charged reactive OH groups of silica 

interact electrostatically with positively charged CTAB micelles [117]. The cooperative 

assembly and aggregation result in the precipitation from a gel, during which microphase 

separation and continuous condensation of silicate oligomers occur. The removal of organic 

templates can be performed by solvent extraction, calcination, and microwave-assisted 
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template removal to produce mesopores in the structure [118]. 

 Figure 5. The procedure to synthesise mesoporous silica, obtained from [111], Copyright 

2018, with permission from Elsevier. 

Mesoporous silica structures have been created using cellulose as a hard template to direct 

pore formation. Zhang et al. [119] prepared mesoporous silica nanotubes by using cellulose 

filter paper as a biotemplate and coating the NFC surface with a titania film. According to this 

study, there was no formation of mesoporous silica nanotube on cellulose nanofibres of the 

filter paper without its modification with titania. Song [120] investigated the synthesis of 

mesoporous silica nanotubes with cetylmethylammonium bromide (CTAB) and cellulose 

nanocrystal (CNC) as the template to produce mesoporous silica nanotubes on the surface of 

the CNC particles (Figure 6). CTAB creates a layer around the surface of CNC due to its 

electrostatic interaction. The positively charged side of CTAB then interacts with the 

negatively charged CNC, decreasing the CTAB concentration for micelle formation around 

TEOS. Therefore, more silanes are adsorbed on CNC owing to the positive charge of CNC 

covered by CTAB. Cai [121] used nanoporous regenerated cellulose for cellulose-mesoporous 

silica composite aerogel preparation. The purpose of using regenerated cellulose was its high 

mechanical strength, high SSA, and mesoporous structure to act as a template for mesoporous 

silica synthesis. The SSA of mesoporous silica after removing cellulose by calcination was 

similar to mesoporous silica aerogel prepared without cellulose.  
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Figure 6. Mesoporous silica nanotubes formed using CNC and CTAB, obtained from 

[120], Copyright 2014, with permission from the American Chemical Society. 

1.2.8. Mesoporous silica properties and application 

  Functionalised mesoporous silica can be applied in water treatment applications to adsorb 

pollutants due to its high SSA and the interaction of its functional groups with contaminants. 

It can be combined with solid supports such as graphene for environmental remediation [14]. 

Tao [122] reported material production using a polyelectrolyte to adhere mesoporous silica to 

cotton for wastewater remediation. Mesoporous silica can be changed from hydrophilic to 

hydrophobic using silanol precursors containing aliphatic substitutes [4] to adsorb oil and 

organic solvents [123].  

The OH groups of the polysiloxane network can form hydrogen bonds with the OH groups 

of biopolymers [111]. Molecules can be filled into abundant mesopores of mesoporous silica 

and decorated on the surface of particles, providing them with additional functions [115]. These 

properties equip them to serve as multifunctional nano-vessels. Functionalised mesoporous 

silica is applied in catalytic systems as nanoreactors to load active species for industrial 

catalytic reactions [124]. Mesoporous silica has many outstanding physicochemical properties 

for hybridizing organic and inorganic components to its structure [115], including adjustable 

particle size [125], tunable pore size [126, 127], and morphology [128-130]. Therefore, it 

serves as a robust nanocarrier to carry drugs [131] and can provide organic anticorrosive 

coatings [132] for therapeutic [133], diagnostic, and anticorrosion applications [134]. 
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Mesoporous silica can also be added to biopolymers to create composites for the controlled 

release of oil and drugs in food packaging [135], tissue engineering applications [136, 137], 

and wound dressing materials [138]. In addition, a mesoporous silica coating on magnetic 

graphene oxide particles as the core provides a preventive oxidation layer for the magnetic core 

and prevents aggregation of magnetic particles. This composite formed a honeycomb 

mesoporous structure with accessible channels for molecular adsorption and desorption 

capacities [54]. Linear polymers, which form a brush layer into pores and/or on the mesoporous 

silica pores, can create responses to different stimuli such as light, pH, light, etc., which is also 

critical for biomedical applications [139]. The varied applications and properties of MSN are 

presented in Figure 7. 

Since mesoporous silica by itself poses risks to health due to aerosolizing, many researchers 

have studied the benefits of its surface modification and combination with different substrates, 

biocompatible polymers, and functional agents to minimise risks to human health.  

Using biodegradable materials is important for sustainable wastewater treatment [140]. 

Therefore, the biodegradability of MSN can be advantageous for its utilising in water treatment 

[114]. It was reported in the literature that mesoporous silica could be biodegradable in water 

after modification with chitosan, which is due to the hydrogen bonding of silanol groups on the 

MSN surface and water as the degradation medium [141]. In addition, coating MSN with 

stimuli-responsive components can lead to biodegradation of MSN [114]. For example, 

biodegradable mesoporous silica has been produced by the incorporation of Ca2+ and PO4
3- 

ions in the mesoporous silica network, where biodegradability was obtained due to dissolving 

the incorporated ions in acidic conditions [142].  
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Figure 7. Advances and attributes of MSN, obtained from  [114], Copyright 2020, Wiley-

VCH.  

1.2.9.  Production of nanocellulose composites 

The low SSA of pristine nanocellulose, compared to inorganic nanomaterials, makes it 

difficult for adsorption processes due to the low number of reactive sites for electrostatic 

interactions. The adsorption capacity can be improved by combining nanocellulose with 

different metal oxide NPs, including SiO2 NPs [123], TiO2 NPs [143], Al2O3 NPs [144], zeolites 

[145], and transition metal structures [102], through electrostatic interactions [96]. Using 

nanocellulose as the scaffold can maintain their SSA in the cellulose network and avoid 

aggregation of NPs. Thus, nanocellulose hybrid materials can combine the properties of their 

components. Some methods for composite fabrication of nanocellulose-silica NPs include 

impregnating silica NPs into wet coagulated nanocellulose [121], forced-flow of the suspension 

of silica NPs into wet coagulated nanocellulose [146], in-situ formation of the SiO2 NPs-

nanocellulose composite [145], and dispersing silica NPs into the nanocellulose suspension 

[81]. As both nanocellulose and SiO2 NPs have negative charges in neutral pH, a cationic 
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polyelectrolyte is required to cover the surface of metal oxide NPs to stabilise them on 

nanocellulose via electrostatic interactions [147, 148]. However, coating metal oxides with 

polymers, which is required for combination with nanocellulose, can prevent the interaction of 

the particle surface with the target species [33]. In addition, it is critical for membrane 

fabrication to have a homogeneous dispersion of inorganic materials into nanocellulose. Using 

polymer for incorporation of nanocellulose and SiO2 NPs can create poor dispersion of SiO2 

NPs in the cellulose network [12]. In this regard, nanocellulose-metal oxide composites in 

different forms of aerogel and membrane can be formed for various applications. Composite 

fabrication with nanocellulose also facilitates removing nanocellulose-based composites after 

their synthesis and adsorption processes. Nanocellulose composite separation can be performed 

via filtration under gravity instead of centrifugation [149]. This also can reduce energy and 

avoid the loss of adsorbents during draining processes [150, 151].  

Co-polymerisation of nanocellulose and inorganic precursors [146, 152], such as sol-gel co-

condensation of organosilane and titanium precursors and nanocellulose, generates a 

monophasic composite created by dispersed nucleation sites of nanocellulose [153]. 

Organosilane precursors will hydrolyse and then condense with C-OH or acetate groups in 

nanocellulose [145] to combine silica NPs and nanocellulose. In addition, nanocellulose can 

support materials with low mechanical stability, such as silica aerogels [77]. The formation of 

nanocellulose-organic silica composites can combine advantages of both components, 

including higher thermal stability and mechanical stability [104].   

Mesoporous silica is a biocompatible metal oxide, which can be used for the nanocellulose 

composite formation to combine its versatile characteristics with cellulose [122]. Using 

calcination to remove the surfactant and produce highly ordered mesoporous silica is energy-

intensive and requires a long processing time [118]. In addition, the calcination process forms 

agglomerates, which impacts negatively on the dispersion of mesoporous silica [154]. The 

agglomeration of NPs can be prohibitive for their use in membrane composite formation and 

adsorption processes due to the uneven distribution of particles in the membrane [155]. 

Mesoporous silica can also be detrimental to human health due to the dust cloud created during 

their usage. Noncoated mesoporous silica nanoparticles also aggregate after template removal, 

surface modification, and drying [156], which reduces its dispersion in the reaction medium 

and its SSA. Blocking mesopores by adding polyelectrolytes is also another downside of the 

direct blending of cellulose and mesoporous silica. Therefore, blending mesoporous silica can 
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cellulose can lead to the reduction of mesoporous silica adsorption performance due to the 

reasons outlined above. However, the in-situ combination of cellulose and mesoporous silica 

can eliminate dust production created by mesoporous silica synthesis, high energy consumption 

for calcination, and using a polyelectrolyte for its combination with cellulose. It can retain the 

pore volume of mesoporous silica and avoid further aggregation of particles [157]. Therefore, 

the in-situ fabrication of nanocellulose-mesoporous silica composite has more advantages. 

Another impact of nanocellulose-mesoporous silica formation is improving nanocellulose 

membrane permeability for filtration processes. There is a significant gap of knowledge how 

the nanocellulose fibre diameter controls on the median size and SSA of mesoporous silica 

particles prepared by in-situ precipitation.  This gap will be investigated in this thesis. 

1.2.10. Properties and applications of cellulose composites 

Cellulose-SiO2 NPs composites possess developed hydrophobicity because of SiO2 weak 

permeability [145, 158]. Moreover, a low wt% of cellulose nanocrystal (CNC)-SiO2 composite 

was employed as a reinforcement additive to different polymers such as polystyrene [159], 

polyurethane [160], polylactic acid [161], and poly(acrylic acid) [162] to improve mechanical 

strength for waterborne coating applications. Composites of cellulose and mesoporous silica, 

including amidoxime functionalised CNC-mesoporous silica [103] and microcrystalline 

cellulose-mesoporous silica [163] composites, were applied for CO2 capture at ambient and 

120°C temperatures. Pereira [123] reported oleophobic cotton textile production using 

hydrophobic MSN prepared by a co-condensation of a hydrophobic organosilane and TEOS 

using both soft and hard templates to create mesopores. MSN coated the outer surface of cotton 

textile and retained a mesoporous structure without mesopores being blocked by fibres (Figure 

7).  
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Figure 8. Production of superamphiphobic cotton textiles by hydrophobic mesoporous 

silica nanoparticles, obtained from [123], copyright  © 2011, with permission from the 

American Chemical Society. 

1.2.10.1. Cellulose composite depth filters 

Cellulose adsorbents can produce cellulose composites for depth filtration [164]. In depth 

filters, adsorbents are included in the bulk of the membrane, while size rejection can occur on 

the surface and in bulk. Adsorption in the membranes is generally limited to small charged 

molecules. Size rejection of depth filters is generally limited to large molecules due to their 

porous structures. Therefore, strategies to fabricate depth filters with lower (molecular weight 

cut-off) MWCO are required. Double-layer cellulose composite membranes for water 

treatment can also perform depth filtration [39], while using a low porosity barrier layer in 

double-layer cellulose composite membranes can also improve size rejection. However, the 

optimal structure has not yet been established that can minimise performance both as a barrier 

and as a depth filter. Therefore, this gap will be addressed in this thesis. 

A combination of cellulose and metal or metal oxide NPs to form cellulose-based 

membranes can improve dye and metal removal efficiency [35]. Adding copper [165] and Ag 

NPs [166] can improve the antimicrobial and antiviral properties of membranes. Integration of 

ZnO NPs [167] to nanocellulose also can be utilised for photocatalytic degradation. Moreover, 

adding metal oxides can improve the porosity and flux of membranes [35]. However, it is not 
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clear what the increased flux does to adsorption.  

In addition, cellulose composite depth filter membranes can enrich organics and nutrients. 

The adsorbed nutrients to cellulose composites are beneficial to be utilised for renewable 

energy production and fertilisers [34]. Indeed, cellulose composites, after adsorption of 

nutrients, can release them slowly to perform as a fertiliser, which can be used in soil [168]. 

Hence, the biodegradability of cellulose composites is of great importance for using them as 

fertiliser in the soil. 

1.2.10.2. Cellulose composite-based molecularly imprinted polymer  

Cellulose-based adsorbents can be utilised for antibiotic removal with high efficiency [169]. 

However, they performed non-selectively, which led to the adsorption of multiple components. 

In another study, 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] ionic 

liquid was used to coat magnetic cellulose nanoparticles for non-selective detection of different 

antibiotics [170]. The adsorption capacity of the adsorbent was in the range of 11-24 µg L-

1.  The selective adsorption using the MIP system in cellulose composite membranes is of great 

importance for the detection of the concentration of special targets for further analysis. Water-

compatible cellulose acetate membrane photo-grafted by melamine imprinted nanospheres was 

prepared by polymerisation with methacrylic acid as functional monomer, ethylene 

glycol dimethacrylate as cross-linker, acetonitrile as porogen, and melamine as template 

molecule. MIP-modified cellulose acetate membranes exhibited a high affinity to melamine in 

dry milk. Composite membranes were used as a solid-phase extraction medium for melamine 

from dry milk samples. The melamine loading was 0.020 µg/ml. Results showed a higher 

binding capacity for melamine imprinted membranes in comparison with the non-imprinted 

membranes [171]. 

Mesoporous silica can provide some channels for the creation of MIP around themselves to 

adsorb antibiotics. Zhao et al. synthesised nanocomposite cellulose membrane-based MIP 

using polymerisation of dopamine as the monomer and norfloxacin on TiO2 NPs and filtering 

the MIP on a commercial regenerated cellulose membrane (Figure 8) [58]. The MIP-

nanocomposite adsorbed 25.3 mg/g of norfloxacin, which was 18.9 mg/g higher than the non-

imprinted nanocomposite membrane. 

Mesoporous silica has been recognised in the field of nanotechnology for its uniform 
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structure and pores, along with its large surface area. When made into molecularly imprinted 

polymers, MSN can increase the efficiency of the adsorption of target molecules by forcing 

these molecules to the mesopores walls for rapid point position recognition using imprinting 

mesopores with the target molecule as the structure-directing agent [53]. MIP and mesoporous 

silica are both advanced materials. MIP compounds have been applied as biomimetic materials 

in applications ranging from separation and sensing to catalysis by acting as synthetic receptors 

with antibody-like binding properties or enzyme-like activities [172]. Additionally, MSN with 

highly ordered mesopores is also important for catalysis, separation, and sensing. MSN in 

recent years has been favoured for its mesoporous structure and mechanical and chemical 

stability. The surface properties can also be modified with abundant active bonds on the pore 

walls. The adsorption of heavy metal ions is increased effectively after the functionalisation of 

mesoporous silica. The modification does not affect the mesoporous silica structure but the 

functional groups that are adsorbed onto the exterior of the MSN or within its pores [55]. 

The combination of these respective advanced materials is highly desirable for prospective 

applications due to the great selectivity, binding capacity, and size-sieving from both materials 

[56]. Since the mesoporous structure of silica can improve the SSA of the MIP effectively, 

applying mesoporous silica in MIP technology allows for both enhancement of adsorption 

capabilities and more effective selective adsorption. Images of Mesoporous silica-MIP show 

uniformly sized NPs where the approximate average diameter is 147.8 nm, while the imprinting 

layer thickness of the polymer was around 11.7 nm, producing faster adsorption [57]. In an 

experiment with perfluorooctane sulfonate at 50 ɛM and EtOH/0.1 M HCl (v/v, 8: 2) to remove 

template molecules, MIP adsorption capacities decreased by less than 5% after five cycles, 

displaying the reusability and regenerability of the polymer [57]. Mesoporous silica-MIP has 

higher adsorption capacity as it has more binding sites of the target in comparison with silica 

NPs without enough binding sites to adsorb target molecules. 

The efficiency of mesoporous silica-MIP composites in removing trace lead amounts from 

solutions was also investigated. It was found that mesoporous silica-MIP was cost-effective 

due to the reusability of the adsorbents. This was tested by repeating adsorption/desorption 

procedures six times on the same mesoporous silica-MIP sample, and it was found that for all 

six runs, the adsorption efficiency was almost constant, which substantiates the remarkable 

stability and reusability of mesoporous silica-MIP [58].  
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According to the mechanism of the formation of the mesoporous structure, the imprinted 

cavities within the MIP are mostly embedded on the surface of the mesoporous silica, causing 

the expansion of regular mesopores and improving the SSA of mesoporous silica. This also 

increases the mass transfer of the template within the mesopores [59]. Mesoporous structures 

provide excellent selectivity, large SSA for adsorption, homogenous binding site distributions, 

site accessibility, and fast mass transfer, making them an appropriate candidate for MIP usage 

[60]. Based on the mentioned strategy, a fluorescence probe was made from a hybrid quantum 

dot-mesoporous silica-MIP, and this structure was used for tetracycline detection in a serum 

sample [173]. In the literature, mesoporous silica-MIP with a high SSA was fabricated for 

efficient separation of perfluorooctane sulfonate [174] and dicyandiamide [175]. 

 

Figure 9. Schematic of cellulose-based MIP membrane preparation, obtained from [58], 

Copyright 2018, with permission from Elsevier. 

 














