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Abstract. Minimum message length techniques are applied to problems over strings such as biological
macro-molecules. This allows the posterior odds-ratio of two theories or hypotheses about strings to be
calculated. Given two strings we compare the r-theory, that they are related, with the null-theory, that they
are not related. This is done for one, three and five-state models of relation. Models themselves can be
compared and this is done on real DNA strings and artificial data. A fast, approximate MML string
comparison algorithm is also described.
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1. Introduction.

Minimum message length (MML) encoding techniques are applied to inductive inference problems
over strings derived from sequencing biological macro-molecules[Allil]. The paper is framed in terms of
DNA strings but the techniques apply to proteins and to other strings.

Given two strings, we consider the questions are they related and, if so, how are they related? We
give algorithms to answer these questions for one, three and five-state models of relation. We also consider
the question of which is the right model for a family of strings and give some results for DNA. A fast
approximate MML algorithm is also described.

To illustrate the MML method of string comparison, consider a transmitter who must send two
strings to a receiver. They may previously have agreed on any algorithms, codes and conventions to be
used. The null-theory or hypothesis is that the strings are unrelated. In this case, the transmitter sends one
string and then the other which requires approximately two bits per character. Conversely, the r-theory is
that the strings are related. If the transmitter can find a "good" theory or hypothesis relating the characters
of the two strings then it may be possible to encode them more succinctly. The transmitter then sends a
message which states (a) the inferred theory and (b) encodes the strings using a code based on the theory.
The MML method selects the theory giving the shortest message. A very detailed theory may allow a very
short encoding of the strings proper but the details of the theory add to the message length. MML encoding
thus defines an optimal degree of detail in this trade off.

It is assumed that any one string is random in the sense of Kolmogorov complexity[Chai][Kolm][Li].
This is nearly the case for biological macro-molecules and it is difficult to encode a typical DNA string in
much less than two bits per character. This assumption is not essential to the MML method in principle but
makes its application easier. There is for example an echo of a presumed purine-any-pyrimidine (RNY)
ancient genetic code[Shep] which could be accommodated by considering codons to be the characters
within strings.

We relate strings by simple generation and mutation machines and consider one, three and five-state
machines in detail.

If accurate prior probabilities for strings and relations are known, an optimal code can be designed
for them. The minimum message length is minus log, of the probability of the event described. Often such

probabilities are not known in advance but a model having one or more parameters can be agreed on. A
message must include the parameter values and the best values give the shortest message. Two hypotheses
can be compared on the basis of message lengths and the difference in message lengths is minus log, of

their posterior odds-ratio. Because a natural null-theory exists, this leads to hypothesis testing. No
hypothesis having a message length longer than the null-theory is acceptable.

There are practical and theoretical advantages to MML encoding as a method of inductive inference.
It keeps us honest in that anything not agreed to apriori must be included in the message. When real-
valued parameters are involved, it implies an optimal degree of precision for their estimates. It is invariant
under monotonic transformation of parameters. It focuses attention on the language being encoded, on
what it can express and on the probabilities of messages. When accurate prior probabilities are not known,
all the techniques and heuristics of data-compression and of coding theory[Hamm] can be used to get a
good code. MML encoding is safe in that the use of a suboptimal code cannot make a theory appear more
acceptable than it should be.

Note that in practice no encoding actually takes place; we simply calculate what the message length
would be if encoded. Note also that arithmetic coding[Lang][Witt] is capable of transmitting information
in fractions of a bit.

MML string comparison is closely related to maximum-likelihood methods. An important difference
is that MML methods fully cost the model complexity. Felsenstein[Fels] gave a maximum-likelihood
method to infer an evolutionary tree for a family of strings in the absence of insertions and deletions, or
when the insertions and deletions are given externally. Bishop et al[Bish2] gave a maximum-likelihood
method to infer the time since two related strings diverged. It is similar to our MML method for a one-state
model. Bishop and Friday[Bish1] note that “there is as yet no formally developed method for assessing the
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significance of the difference in the likelihoods (of two different [phylogenetic] trees)." The MML method
does not suffer from this problem and has a formal interpretation of differences in message length and
indeed has a rigorous test of statistical significance. Reichert et al[Reic][Cohe][Wong] considered the brief
encoding of pairs of strings under a single model of relation but did not compare models.

Solomonoff[Solo] proposed MML encoding as a basis for inductive inference. Wallace and
Boulton[Wall1] first applied it in producing a practical classification algorithm. Georgeff and
Wallace[Geor] give a good introduction to MML methods and Wallace and Freeman[Wall2] describe the
statistical foundations.

2. Relation Models.

There are many ways of explaining or modeling two strings given that they are related. In the
mutation model, a simple machine reads one given string and a sequence of mutation instructions while
writing the second given string (figure 1). In the generative model, a different simple machine reads a
sequence of generative instructions while writing the two given strings in parallel (figure 2). Note that for
traditional reasons we use the terms change when a different character appears in each string, delete (del)
when a character appears in string A and not in string B and insert (ins) when a character appears in B and
not in A under both models but with appropriate meanings. For both models, a given sequence of
instructions is equivalent to a traditional alignment, see figure 3. It is therefore clear that the mutation and
generative models are equivalent and we usually prefer the generative model on grounds of symmetry. We
use the terms *alignment” and ‘instruction sequence’ interchangeably.

Note that alignments and sequences of generative or mutation instructions are not unique. Often we
want an optimal explanation, alignment or instruction sequence but even suboptimal explanations may be
plausible.

string A: TATACGTTACAC
instructions: copy, copy, ins(A), copy, copy,
change (G) , change (C),
CopYy., COpY.
del, copy, copy, copy, ins(A)
string B: TAATAGCTTCACA

Figure 1. Mutation Model Example.

instructions: match(T), match(A), ins(A), match(T), match(a),
change (C,G) , change (G, C),
match ((T), match(T),
del (A), match(C), match(ZA), match(C), ins(A)

string A: TATACGTTACAC
string B: TAATAGCTTCACA

Figure 2. Generative Model Example.
string A: TA-TACGTTACAC-
LT T T

string B: TAATAGCTT-CACA

Figure 3. An Alignment.
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Given two macro-molecules, A and B, it is often assumed that they evolved independently from a
common ancestor P. We could model this by two mutation machines, MA and MB, which each read P and
their own instruction sequence and produced A and B respectively. A and B have infinitely many possible
ancestors P but most are wildly improbable. Summing over all possible P gives the probability of A and B
being related under this model. If we knew P and the instruction sequences for MA and for MB, the
sequences could be synchronised to derive an alignment or an instruction sequence for a single generation
machine. An alignment corresponds to a set of possible ancestors (figure 4). Therefore the r-theory should
not be based on just one alignment but summed over all of them. We can decide if A and B are related but
P must remain uncertain unless extra information is provided. Note that there may have been characters in
P that were deleted in both A and B and for which no direct evidence remains. Note also that the
assumption of a constant rate of evolutionary mutation implies that MA and MB are equal and it is difficult
to see how one could make any other assumption given just two strings.

Traditional alignment programs[Bish3][Sank][Wate] select alignments that have a minimum cost, or
equivalently a maximum score, under some measure. The minimum message length principle implies that
the cost of an alignment should be the length of a message under an optimal code for alignments. To
answer the question, are A and B related, all alignments should contribute according to their probability.
The corresponding message and its code should transmit A and B given that they are related; it should not
transmit a single alignment.

Our models and codes may have parameters for the form of a generative machine and the
probabilities of its instructions which must be included in the message. In this way simple and complex
models may be compared on an equal footing. In following sections we specify and compare one, three
and five-state models.

3. The One-State M oded!.

The one-state generative machine has a single state and transitions or instructions of the following
forms: match(ch), change(chl,ch2), ins(ch), del(ch). The match instruction generates the same character
‘ch’ in both strings. The change instruction generates chl in string A and ch2 in string B. The insert (ins)
instruction generates a character in string A and the delete (del) instruction generates a character in string
B. A single instruction having probability *p’ is optimally encoded in -log,(p) bits plus two bits for each

character, except that the two characters in a change are different and together require log,(12)<4 bits.

Often we require that P(ins)=P(del). The probability of a sequence of instructions of fixed length is the
product of the probabilities of individual instructions and the message length of the sequence is the sum of
the message lengths of the instructions.

Alignment 1: TA-TACGTTACAC-
LT T

TAATAGCTT-CACA

Ancestors 1: TA[A-]TA[CG] [CG]TT[A-]CACI[A-]

Alignment 2: T-ATACG-TT-ACAC
R R
TAATA-GCTTCACA-

Ancestors 2: T[A-]ATA[C-]G[C-]TT[C-]ACA[C-]

Figure 4: Alignmentsand Possible Ancestors.
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If the probabilities of instructions are known apriori, a fixed code can be based on them. The
dynamic programming algorithm (DPA) is modified to compute the message length of an optimal
instruction sequence (figure 5). Each instruction is given a weight based on -log, of its probability. Note
that a match does not have zero cost. DJi,j] is the message length of an optimal sequence to generate
A[1..i] and B[1..j]. It has been shown[Alli2] how to normalise Seller’s[Sell1][Sell2] and similar metrics so
as to extract the probabilities implicit in them. Ignoring the matter of coding lengths and parameter values
for now, the algorithm finds an alignment or instruction sequence having the minimum message length.

When probabilities are not known in advance, they must be inferred from the strings. A simple
iterative approach finds at least a local optimum. Initial probabilities are guessed and an alignment is
found. New probabilities are calculated from the frequencies of instructions in the alignment and used in
the next iteration. The process quickly converges. The inferred parameter values are included in the
message; Boulton and Wallace[Boul] give the necessary calculations.

The length of a sequence is not known in advance and must be included in any message. In the
absence of more information we use Rissanen’s[Riss] universal log” prior to transmit the length.

The overhead of transmitting the length of an instruction sequence and the parameter values becomes
a smaller fraction of the total message length as string length increases. Since the DPA does not consider
the overhead when finding an alignment, the overall result is not guaranteed to be optimal. In practice it is,
particularly for reasonably long strings.

Optimal alignments are not unique in general. Even suboptimal alignments make some contribution
to the r-theory. The ‘min’ in the DPA (figure 5) chooses the single alignment having the smallest message
length, the largest probability. If the probabilities are instead added, for they correspond to exclusive
events, then D[i,j] is the (-log,) probability that A[1..i] and B[1..j] arose through being generatively related

by the machine but in some unspecified way. This yields the probability of A and B given the r-theory. The
addition of probabilities is a probabilistic argument but a corresponding code has been devised by
Wallace[Wall3]. It reduces the message length of the r-theory below that of a single alignment. When
instruction probabilities are not known they must be inferred. The same iterative search is used, weighted
frequencies being added when alternative sequences are combined and their probabilities added.

The null-theory is that A and B arose independently and this is the complement of the r-theory. The
null-theory is encoded by encoding string A and then encoding string B. It must include their lengths.
Rather than transmit two lengths, we transmit the sum of the string lengths using the universal prior and the
difference of the lengths using a binomial prior. This is reasonable because random insertions and deletions
perform a random walk on the difference of the lengths. If P(ins)=P(del)=1/2, the null-theory and the
r-theory have the same prior over |A|-|B|. If P(ins)=P(del)<1/2, the r-theory has a tighter distribution on
|Al-IBI.

Boundary Conditions:
D[0, 0] :=0
D[i, 0] delete - i, di:=1..|A|
D[0, 7] insert - j, J:=1..|B|

General Step, i:=1..|A| and j:=1..]|B]:

D[i,j] := min( D[i-1,j ] + delete,
D[i ,j-11 + insert,
D[i-1,7j-1] +
if A[i]=B[j] then match

else change )

Figure 5. Dynamic Programming Algorithm.
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The odds-ratio of the r-theory and the null-theory is the binary exponential of the difference in their
message lengths. Since they are complementary, their posterior probabilities can be calculated.

Running the r-theory in reverse, D’[i+1,j+1] is (-log,) the probability of A[i+1..|A[] and B[j+1..[B]]
being generated. Thus, D[i,j]+D’[i+1,j+1] is the (-log,) probability of A[1..i] and B[1..j] being generated
and A[i+1..|A]] and BJ[j+1..|B|] being generated and is proportional to the probability of the "true"
alignment partitioning the strings in this way. A density plot of this function is a good way of visualising
possible alignments (figure 6). Note the areas of uncertainty where there are multiple reasonable
explanations, CG:GC and ACAC:CACA. In this example the r-theory is certainly acceptable but any single
alignment is at best marginally acceptable. The density plot is a "fuzzy" alignment. It is a good
representation of the possible ancestors of A and B for use in multiple string alignment or in phylogenetic
tree reconstruction[Alli3].

4., TheThree-State Model.

We note that string alignment algorithms employing linear costs w(L)=a+b - L for indels of length L
are in common use. The constant ‘a’ is a start-up cost to discourage the inference of many short block
indels and is thought to be realistic for macro-molecules. This can be modelled by a three-state machine
(figure 7). When P(ins|S1) < P(ins|S2) there is a low start-up probability, a high start-up cost, on block

indels. A linear cost function corresponds to a geometric prior on indel lengths, for -Iogz(p'-q) = -log,(q) -
log,(p)- L.

Gotoh[Goto] has given an algorithm to infer an optimal alignment for linear weights. Briefly, the
DPA is modified to maintain three values in each cell of the D matrix. One value corresponds to each state.
As before, we have further modified the algorithm to add probabilities. Again probabilities must be
inferred from the strings if they are not known apriori. The iterative scheme described previously is used.

TAATAGCTTC CACA

T: . _

A e e -

T: - e - -

A T

C: - -+ # -

G: S oe 4 .

T: R

o - - # -

. - - # -
) -#+ f

C: T

key : e # + -

MML plus: 0..1..2..4..8..16 bits

null-theory= 62.4 r-theory= 58.5
probability related=0.94

Figure 6. Alignment Densities.



states:

S1:
S2:
S3:

match/change
insert state
delete state

transitions:

Sl--match--->S1
Sl1--insert-->82
S2--match--->S1
S2--insert-->82
S3--match--->81
S3--insert-->82

Inductive I nference over M acro-M olecules

state

S1--change-->81
S1--delete-->83
S2--change-->81
S2--delete-->83
S3--change-->51
S3--delete-->83

conservation:
p(m|Sj)+p(c|si)+p(i|si)+p(d|si)=1, j=1,2,3

Figure 7. Three-State Machine.

The algorithm is run forward and backwards and results added to produce alignment density plots.
The three-state model has more parameters than the one-state model and these add to the length of the
header part of the r-theory message.

5. TheFive-State M odel.

Gotoh[Goto] also provided an algorithm to find a single optimal alignment under piece-wise linear
indel costs. Bilinear indel costs can be modelled by a five-state machine (figure 8). We have modified the
DPA to maintain five values, one for each state, in the D matrix. This kind of model is appropriate if short
indels are thought to be relatively frequent and long indels rather infrequent which might account for point
mutations and larger events, perhaps introns/exons. A fully-connected five-state machine would have a
very large number of transitions and parameters. To reduce this we simply augment the three-state machine

states:
S1: match/change state
S2: (short-)insert state
S3: (short-)delete state
S4: long-insert state
S5: long-delete state
transitions:
S1, S2, S3 as before plus

S1--long-ins-->S4
S4--long-ins-->S4
S5--long-del-->85

S1--long-del-->85
S4--end-long-->S1
S5--end-long-->S1

conservation:
p(m|S1l)+p(c|S1l)+p(i]|S1l)+p(d|s1)+
p(long-ins|S1)+P(long-del|S1)=1 etc.

Figure 8: Five-State M odel
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with long-insert and long-delete states connected only to S1.

As before, probabilities of alternative sequences are added. Note that because of this a medium
length indel is considered to be partly long and partly short. Resulting indel costs are smooth and
asymptotically linear; figure 9 gives an example.

The search for optimal five-state parameter values is more difficult. Because long-indels are
expected to be rare they are initially given a low probability, a large start-up cost, but a high probability of
continuation. A further useful strategy is to run the three-state model first and base initial probabilities for
S1, S2 and S3 on the results with minor adjustments to conserve probability. The iterative process is used
from this starting point.

Note that a special case of five-state data is when the long indels occur at the ends of one or both
strings, when string A=A1;A2;A3 and B=B1;B2;B3 where A2 and B2 are related by a three-state-model
and Al, A3, Bl and B3 are unrelated, possibly null. This amounts to looking for a common pattern A2:B2
in A and B. This situation is rather common because interesting pieces of DNA from a chromosome may
have flanking regions attached.

6. Model Comparisons.
The one, three and five-state algorithms were run on both artificial data and real DNA strings.

The cost of stating the parameters of a model is a decreasing fraction of the total message cost as
string lengths increase. For short strings, this may cause a simpler model to be favoured. To study this
effect, pairs of strings of various lengths were generated by a five-state model with various known
parameter values. For each setting, a collection of 15 to 30 pairs was generated. For each model and
collection, the r-theory algorithm was run and the message lengths averaged. This was done for the one,
three and five-state models. Figure 10(a) gives plots of the total message lengths per symbol versus string
length for strings generated by a five-state model having parameters indicated in table 1. In this case the
probability of changes was held very low to isolate the interaction between short and long indels. There is
a cross-over from favouring the three-state to favouring the five-state model at a string length of 500 to
1000 characters. (The inference for long strings is stronger than might be immediately apparent because
the cost per symbol is plotted.) A single pair of strings from an unknown source and shorter than this
cannot be identified as coming from a five-state rather than a three-state model.

A pair of strings longer than 500 to 1000 characters can be identified as coming from a five-state
model. Many pairs of shorter strings, assumed to be generated by the same model and parameter values,
can also be so identified. It is sufficient for the parameter values of the pairs to be related rather than
identical in this latter situation so that they need not be stated in full for each pair. To indicate what would
happen in an extreme case of this situation, figure 10(b) gives message lengths under the three models when
parameter costs are excluded. The data is the same as for figure 10(a). In this case, the cross-over from the
three-state to the five-state inference is at about 150 characters for the given parameter values. At this point
a pair is reasonably likely to have at least one long insert or delete for the given parameter values.

(see end of paper)
Figure9: Combining Length Costsof Long and Short Indels.

(see end of paper)
Figure 10(a): Total Message Length for 1, 3 and 5-State Alignment Algorithms.
Figure 10(b): Message L ength (minus parameter costs) for 1, 3 and 5-State Alignment Algorithms.
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S1 (match/change) :
P(match)=0.8 P(change)=0.000001
P(short insert)=P(short delete)=0.098
P(long insert)=P(long delete)=0.002
S2 (short insert):
P(match)=0.49 P (change)=0.000001 (return to S1)
P(short indel)=0.5 P(short delete)=0.01
S3 (short delete): similar to S2
S4 (long insert):
P(long insert)=0.98
P(end long)=0.02 (return to S1)
S5 (long delete): similar to S4

average short indel length = 2
average long indel length = 50

Table 1: 5-State Parametersfor Generating Test Data.

Note that the DNA coding regions for many proteins have lengths in the difficult range of 500 to
1000 characters. Note that the cross-overs would occur at shorter lengths for an alphabet size larger than 4.

When the similarity within each pair of strings is increased, the general picture is as described above
but the cross-overs occur at greater string lengths. Increasing similarity favours simpler models. In the
extreme case, two identical strings are best described by the one-state model.

It is clear that to draw any general conclusions about the "true™ model for real DNA, a pair of very
long related strings or a large number of pairs of related strings is required. Such data are hard to come by.

The Blur sequences are members of the large Alu family[Bain]. The typical Blur sequence is about
280 characters long. Table 2 gives some results of the one, three and five-state models on Blurs 8, 11 and
13. When whole strings are compared, the evidence strongly supports either the three or five-state model
rather than the one-state model. The three and five-state models give message lengths within a few bits of
each other which is insufficient to conclude in favour one rather than the other. Blurll’ and Blurl3” were
derived by forming an alignment and truncating any terminal overhanging segment on either string. Results
for this pair slightly favour the one-state model suggesting that the overhangs were the dominant factor in
the whole strings. The difficulty is probably that the Blur’s are too short. There are many Blurs but it is not
known how they are related. We suggest that the correct way to explain them is by an MML multiple
alignment with respect to a phylogenetic tree (or forest). Algorithms for this problem are the subject of

—————————————————————————— > model
Blurs8 :Blurl3 1039 946 943
(1016) (912) (909)
Blurll :Blurl3 1179 963 957
(1155) (928) (922)
Blurll’ :Blurl3’ 825 830 836
(801) (800) (802)

Lengths in parentheses are exclusive of parameter costs.

Table 2: Message Lengthsin bitsfor some Blur Sequences.
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current work.

The globin genes and pseudogenes are often used in phylogenetic studies of primates|[Holm]. Table 3
gives the results of the r-theory algorithms of the three models on human beta type globin pseudogene and
owl monkey psi beta 1 globin pseudogene. The three and five-state models give similar results and the one-
state model performs significantly worse.

The above results strongly suggest that the one-state model is not the correct one to use with DNA.
They do not distinguish between the three and five-state models. It is clear that a great many more tests are
required to discover if one of these, or some other model, is the correct one to use.

7. A Fast Approximate Algorithm.

The basic DPA takes O(JA|- B|) time and space. If a single optimal MML alignment is required,
Hirschberg’s[Hirs] divide and conquer technique can be used to reduce the space complexity to O(|B|).
This is not applicable if the MML of the r-theory is required. Observations of alignment density plots
(figure 6) indicate that most of the probability is concentrated in a narrow region. Fast approximate MML
algorithms can take advantage of this fact.

An approximate three-state algorithm has been programmed. Firstly, Ukkonen[Ukko] gave an
O(JA| - D(A,B)) edit-distance algorithm for Seller’s metric. This is fast for similar strings. The algorithm
does not calculate the D matrix directly but rather the location of contoursin it. The algorithm halts when a
contour reaches D[|A|,|B|]. We applied Ukkonen’s technique to linear indel costs. Secondly, as mentioned
in section 3, arbitrary costs in a metric can be normalised to yield instruction probabilities. This process
can be reversed to choose integer weights corresponding to "reasonable” probabilities. This is used to find
an optimal alignment. Finally, a window containing all D cells that lie within a diagonal distance ‘w’ of the
optimal alignment is formed and the r-theory algorithm is run only within this window. All cells outside
this window are considered to have probability zero and an infinite message length. The time and space
taken for this step is O(max(JAl,|B|) -w). A graph of message lengths against w is given in figure 11. The
random data was generated by a three-state model. The dominant influence on required window size is the
probability of a match in state 1 which is indicated. It can be seen that a small window includes almost all
the probability. This windowing technique could be applied to other models.

8. Conclusions.

We have solved the question of two strings being related (the r-theory) for one, three and five-state
models of string relation. The biological validity of such models is open to debate but we note that one and
three-state models are implicit in alignment algorithms in common use. A major advantage of a formal

l-state 3-state b5-state

HSBGLOP : ATRB1GLOP 6414 6004 6007 including parameters
(6383) (5960) (5958) excluding parameters

Genbank id HSBGLOP: human beta type globin pseudogene 2153bp.
Genbank id ATRB1GLOP: owl monkey psi beta 1 globin pseudogene 2124bp.

Table 3: Message Lengths (in bits) for two Globin Pseudogenes.

(see end of paper)
Figure 11: Message L ength v. Window Size.
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model is that its assumptions are explicit and available for scrutiny and modification. We have given an
objective method of comparing models of relation over a given set of strings and have applied it to the one,
three and five-state models. The tests performed are only a first step and the models can be elaborated to
account for unequal probabilities of changes, effects of codon bias, the genetic code and so on. The
assembly of a large body of real biological test data remains a problem.

In general, a single alignment is excessively precise. All alignments are possible; some are more
probable than others. The r-theory should include them all.

Modulo normalisation, an arbitrary cost function w(L) on blocks of matches, changes, inserts or

deletes of length L implies a prior probability distribution 2% on run lengths. Problem specific
knowledge can be used to design a good prior. Conversely if a cost function gives results judged
(externally) to be good, it gives information about good priors and mechanisms relating strings.

A piecewise linear cost function on runs of instructions implies a finite-state machine or model. All
such models have an O(JA|- B|) MML algorithm for the r-theory and for alignment probability densities.
However, the number of transitions in the machine and thus the complexity of the algorithm rapidly
increases with the number of linear segments making the cost function. Miller and Myers[Mill] have given
an O(JA|-BJ) or O(JA|-B|-log(max(JA|,|B|))) algorithm to find a single optimal alignment for arbitrary
concave functions. There does not seem to be an r-theory algorithm or a density algorithm with this
complexity for such functions.

Given a single pair of strings from an unknown source, over an alphabet of size four and of length
less than 500 to 1000 characters it is not possible to identify them as being the products of a five-state
process even if they are. Longer strings or many pairs of shorter strings generated by the same five-state
process can be so identified.
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