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Abstract

This paper discusses nonparametric series estimation of integrable cointegration

models using Hermite functions. We establish the uniform consistency and asymptotic

normality of the series estimator. The Monte Carlo simulation results show that the

performance of the estimator is numerically satisfactory. We then apply the estimator

to estimate the stock return predictive function. The out–of–sample evaluation results

suggest that dividend yield has nonlinear predictive power for stock returns while

book–to–market ratio and earning–price ratio have little predictive power.

Key words: Cointegration, Hermite Functions, Return Predictability, Series Estima-

tor, Unit Root

JEL Classification Numbers: C14; C22; G17.

∗Corresponding author: Jiti Gao, Department of Econometrics and Business Statistics, Monash Univer-

sity, Caulfield East, Victoria 3145, Australia. Email:jiti.gao@monash.edu.

1



1 Introduction

Since Engle and Granger (1987), the concept of cointegration has become popular in eco-

nomics because cointegration relationships are often used to describe economic variables

which share some common stochastic trends or have long–run equilibrium relationships.

However, the idea that every small deviation from the long–run equilibrium will lead in-

stantaneously to error correction mechanisms is implicit in the definition. Nonetheless, as

argued by Blake and Fomby (1997), the presence of fixed costs of adjustment may prevent

economic agents from adjusting continuously, thus the movement towards the long–run equi-

librium need not occur in every period such that linear cointegration may fail. Also, there is

consensus in econometrics that nonlinearity is now the norm, rather than the exception (as

discussed in Granger 1995; Gao 2007; Teräsvirta, Tjøstheim and Granger 2010, for example).

Misspecifying a linear cointegration model may lead to non-finding of cointegration.

Recently, nonlinear cointegration models have become a hot topic in econometrics. Park

and Phillips (1999) discuss asymptotics for nonlinear transformation of unit root process

and Park and Phillips (2001) for nonlinear regression with a unit root process. Furthermore,

asymptotic properties for nonparametric estimation for nonlinear cointegration models have

been derived by Wang and Phillips (2009a; 2009b). Meanwhile, Karlsen and Tjøtheim

(2001) and Karlsen et al. (2007) also derive some limit theory for nonparametric estimation

of nonlinear cointegration based on different assumptions on the data generating process and

different mathematical techniques. Chen, Gao and Li (2012) consider estimation issues in a

partially linear model with nonstationary regressors. Gao and Phillips (2013) consider semi-

parametric estimation in triangular system equations with nonstationarity and endogeneity.

In addition to the kernel–based estimation proposed in the literature, the series esti-

mation method is an alternative to the kernel–based method. When the data are either

independent and identically distributed or stationary, estimation theories based on series

estimation methods have been discussed in Andrews (1991), Newey (1997) and Gao (2007)

for example. However, as far as we know, when the data is unit root nonstationary, there

are only a couple of studies based on series estimation. Dong and Gao (2011; 2012) were

among the first considering series expansion for nonstationary data. Dong and Gao (2011)

discuss series expansion for Lévy processes which can be considered as an orthogonal series

expansion based on time varying probability densities. In contrast to their papers, we pro-

pose using Hermite series expansion which is orthogonal with respect to Lebesgue density

without specifying the distribution of the innovation to unit root process. Thus, we allow for

much more general data generating assumptions. It is well known that the series estimation

has some advantages over the kernel–based estimation. For example, it’s easy to impose

some types of restrictions, such as additive separability. In addition, it is computationally
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convenient.

In this paper, we propose using a Hermite series estimation method for a class of nonpara-

metric cointegration models where the mean function is integrable. Meanwhile, we establish

an asymptotic distribution theory for a matrix of partial sums of nonlinear nonstationary

time series in Theorem 4 below. Such a result is of general interest and is applicable to deal

with inverses of matrices of unit root nonstationary time series. As a consequence, we are

able to establish asymptotic results for the nonparametric series estimator itself rather than

a transformed version as in Dong and Gao (2011). For instances, we establish some uniform

consistency results and an asymptotic normality for a series–based estimator with a rate of

convergence of an order of

√√
T p−1, where p is the truncation parameter involved in the

series approximation and T is the sample size. This rate is equivalent to that of
√√

Th

based on the kernel method when we choose h = p−1 with h being a bandwidth parameter.

We then apply the proposed estimation method to estimate the stock return predictive

function. The time series properties of stock returns and financial ratios (highly persistent

financial ratios and far less persistent stock returns) suggest that a nonlinear integrable

model should be more suitable than the simple linear model. Note that the linear model is

commonly used in the literature, although the linear model has some model identification and

specification problems for modelling a stationary return series by a linear function of unit root

nonstationary predictive time series. By contrast, a nonlinear integrable function of a unit

root nonstationary time series significantly reduces the nonstationarity of the original unit

root time series. Our empirical results support the existence of nonlinear predictive power

of the dividend yield, while the predictive power of book–to–market ratio and earning–price

ratio is very weak. A detailed analysis is given in Section 5 below.

The organisation of this paper is as follows. In Section 2, we propose the model and

discuss the estimation method. In Section 3, we derive the consistency and asymptotic

normality of the series estimator. Section 4 separately establishes an asymptotic consistency

results for a regression matrix of series estimation that is vital for the establishment of the

results given in Section 3. In section 5, we conduct Monte Carlo simulation to evaluate the

finite sample performance of the nonparametric series estimator. Section 6 applies the series

estimator to estimate the stock return predictive function and compare the out–of–sample

performance of an integrable model with the historic mean and linear models. Section 7

concludes the paper.

Throughout this paper, all limits are taken “as T →∞”,→D denotes weak convergence,

→P denotes convergence with probability approaching one, →a.s. denotes almost sure con-

vergence. OP (.) means stochastic order same as, oP (.) means stochastic order less than. For

a n×m matrix A, ‖A‖ = tr(AτA) =
m∑
i=1

n∑
j=1

a2
ij, with aij being the ij− th element of A, and

for a vector a, ‖a‖ = (
∑

i a
2
i )

1/2 with ai being the i − th element of a. The mathematical
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proofs are collected in two appendices.

2 The Model and Estimation

2.1 Preliminaries of Hermite Functions

In this paper, we use Hermite functions to estimate square integrable functionals of a unit

root process. The Hermite functions form a complete basis in L2(R) and have advantages

in the nonlinear nonstationarity setup. Unlike the stationary data case where orthogonality

is defined according to the marginal (stationary) distribution, in the nonstationary case, the

orthogonality is defined with respect to Lebesgue measure. In this case, Lebesgue measure is

the invariant measure. For more information about the invariant measure for a null recurrent

process, see Karlsen and Tjøtheim (2001). Thus, Hermite series are naturally orthogonal

without fully specifying the data generating process, i.e., we don’t need to impose restrictions

on the distribution of the unit root process. Also, it’s well known that the use of orthogonal

basis functions allows us to extract information of different pieces of the unknown function

effectively. In this subsection, we introduce some basic properties about Hermite functions.

Let {Hi(x)}i=0,1,2,... be the orthogonal Hermite polynomial system with respect to the

weight function exp(−x2). It’s well known that {Hi(x)}i=0,1,2,... is a complete orthogonal

system in Hilbert Space L2(R, exp(−x2)), in which the conventional inner product is used,

i.e., 〈f, g〉 =
∫
f(x)g(x) exp(−x2)dx. In addition, the orthogonality of the system can be

expressed as follows:

〈Hi(x), Hj(x)〉 =
√
π2ii!δij, (2.1)

where δij is the Kronecker delta function. Put ϕ(x) = exp(−1
2
x2) and define

hi(x) =
1

4
√
π
√

2ii!
Hi(x) and Fi(x) = hi(x)ϕ(x), i ≥ 0. (2.2)

Then, {Fi(x)}i=0,1,2,... are the so-called Hermite series or Hermite functions in the litera-

ture. {Fi(x)}i=0,1,2,... are complete orthonormal in L2(R), such that any continuous function

f(x) in L2(R) has an expression of the form

f(x) =
∞∑
i=0

θiFi(x), (2.3)

which is the projection coefficient of f(x) on Fi(x), where θi =
∫
f(x)Fi(x)dx.

The Hermite functions can be listed as follows: F0(x) = 1
4√π exp(−1

2
x2); F1(x) = 1

4√π
√

2
×

2x × exp(−1
2
x2); F2(x) = 1

4√π
√

8
× (4x2 − 2) × exp(−1

2
x2); F3(x) = 1

4√π
√

48
(8x3 − 12x) ×

exp(−1
2
x2), and so on.
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2.2 Model and Assumptions

Consider a nonparametric regression model of the form

yt = f(xt) + εt, t = 1, 2, . . . , T, (2.4)

where xt is a scalar unit root process and εt is a stationary error term. Letting f be a square

integrable function, it admits an expansion of the form:

f(x) =
∞∑
j=0

θjFj(x), (2.5)

where θj =
∫
f(x)Fj(x)dx, {Fi(x)}i=0,1,2,... j = 0, 1, 2, ... are Hermite functions. We then

have the following least squares estimator of θ of the form1

θ̂ =

[
T∑
t=1

Fp(xt)Fp(xt)
τ

]−1 T∑
t=1

Fp(xt)yt. (2.6)

Then, the series estimator of function f taking value at x is f̂(x) = Fpτ (x)θ̂, where

Fpτ (x) = [F0(x), F2(x), ..., Fp−1(x)]. We want to derive some asymptotic properties for

f̂(x)− f(x).

Observe that

f̂(x)− f(x) = Fpτ (x)[θ̂ − θ] +
∞∑
j=p

θjFj(x), (2.7)

where θ = [θ0, . . . θp−1]τ .

To derive asymptotic properties for f̂(x)−f(x), we need following technical assumptions.

Assumption 1. Let xt =
t∑
i=1

ζi for t = 1, 2, ..., T with x0 = OP (1), in which ζt =
∞∑
j=0

πjet−j,

where {et} is a sequence of independent and identically distributed (i.i.d.) random errors

with mean 0, variance 1 and E(|e1|6+δ) < ∞ for some δ > 0, π0 = 1,
∞∑
j=0

πj 6= 0 and

∞∑
j=0

j|πj| <∞. The characteristic function of e1 denoted by ϕ(t) satisfies
∞∫
−∞
|ϕ(t)|dt <∞.

Assumption 2. Let {εt,Ft}t≥1 be a martingale difference sequence satisfying E(ε2
t |Ft−1) =

σ2 a.s. and E(ε4
t |Ft−1) < ∞ a.s., for all t = 1, 2, . . . , T , where Ft is a sequence of σ–fields

defined by Ft = σ(ε1, ..., εt, x1, x2, ..., xt+1).

Assumption 3. f is square integrable such that

ex
2/2(dr/dxr)[e−

x2

2 f(x)] =
r∑
i=1

[r!/i!(i− r)!](−1)i2−i/2Hi(x/2
1/2)(dr−i/dxr−i)f(x)

exists and is square integrable for some r ≥ 5.

1From the proof of theorem 4, we can see that the inverse of
T∑
t=1

Fp(xt)Fp(xt)
τ is well defined asymptot-

ically, so we avoid the usage of a generalized inverse here.
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Assumption 4. Let the truncation parameter of the Hermite series expansion p satisfy

p = c[Tα], where c > 0 is a constant and 1
2(r−1)

< α < 3
22

.

Remark on Assumptions 1 and 2: Assumptions 1 and 2 are used widely in such kind

of problems, such as, Park and Phillips (2001), Wang and Phillips (2009a). We impose

some restricted assumptions on the moment condition of the innovation of unit root process

to ensure sufficiently fast rate of convergence when applying strong approximation. Under

Assumptions 1 and 2, the joint invariance principle holds. Define

W1Tr =
x[Tr]√
T

and W2Tr =
1√
T

[Tr]∑
t=1

εt. (2.8)

Then, we have (W1Tr,W2Tr) →D (B1(r), B2(r)), where (B1(r), B2(r)) is a two dimen-

sional Brownian motion.

Also, due to Skorohod-Dudley-Wichura representation, joint strong invariance principle

holds such that2 (
W1Tr

Ψ
,
W2Tr

σ

)
→a.s. (W1(r),W2(r)) (2.9)

in an expanded probability space, where W1(r) and W2(r) are individually standard Brow-

nian motion and (W1(r),W2(r)) is a two dimensional Brownian motion.

In this paper, we will avoid repetitious embedding
x[Tr]

Ψ
√
T

and W1(r) on the expanded

space. Because we only care about weak convergence, the convention is justified.

Obviously, xt = ΨSt +
t−1∑
k=0

Ψket−k +
∞∑
k=0

(Ψk+1−Ψk)e−k, with Ψk =
k∑
j=0

πj, Ψ =
∞∑
j=0

πj and

St =
t∑

k=1

ek. It can then be shown that in the same expanded space

sup
0<r<1

∣∣∣∣ S[Tr]

Ψ
√
T
−W1(r)

∣∣∣∣ = oP (1). (2.10)

That is, the unit root process can be decomposed into a random walk process (a unit

root process with i.i.d. innovation) and two asymptotically negligible terms such that the

random walk process converge in probability to the same limiting process in the expanded

space.

The Brownian motion ΨW1(r) admits a local time L(t, s), defined by

L(t, s) = lim
ε→0

1

ε

t∫
0

I{|ΨW1(r)− s| < ε}dr, (2.11)

where I(A) denote the conventional indicator function.

2Strong approximation has different expression as in Park and Phillips (2001), we will use this expression

because it facilitates our derivation.
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Roughly speaking, the local time can be interpreted as a spatial occupation density in

s for Brownian motion ΨW1(r). The local time is a key tool in studying the intersection

of nonlinearity and nonstationarity, e.g., Park and Phillips (1999, 2001), Wang and Phillips

(2009a). Phillips (2001) provides some examples where the tool of local time can be used to

analyse economic time series which is called “spatial analysis of time series”.

Remark on Assumption 3: Assumption 3 requires f(x) to be sufficiently smooth and the

tail of f(x) to be sufficiently thin. A sufficient condition for Assumption 3 is L2 integrality

of |xif(x)|dx and |f i(x)| for i = 0, 1, ..., r, where f i(x) denotes i− th order of derivative. Due

to the choice of p, here we require a large r to make sure the bias term diminish. The classes

of f includes Gaussian functions, Laplace functions and functions with compact support.

Remark on Assumption 4: Assumption 4 restricts the increase of growth rate of the terms

of Hermite series to guarantee the convergence of the regression matrix. The condition of
1

2(r−1)
< α < 3

22
also requires r > 14

3
.

2.3 Consistency of Series Estimator

In this subsection, we discuss the consistency of the series estimator. According to (2.7), we

have

θ̂ − θ = [
1√
T
F τF ]−1F τ (Y − A)/

√
T + [

1√
T
F τF ]−1F τ (A− Fθ)/

√
T , (2.12)

where F ≡


F0(x1) ... Fp−1(x1)

... ...

F0(xT ) ... Fp−1(xT )

, Y = (y1, ..., yT )τ , and A = (f(x1), ..., f(xT ))τ .

The two terms in equation (2.12) can be regarded as the bias and variance terms for

nonparametric series regression. We now establish the first theorem of this paper.

Theorem 1. Under Assumptions 1-4, we have as T →∞∥∥∥θ̂ − θ∥∥∥ = oP (1). (2.13)

Theorem 1 shows that the estimated coefficients converge to the true coefficients. We

also have the uniform consistency result for the series estimator f̂(x).

Corollary 1. Under Assumptions 1-4, we have as T →∞

sup
x
|f̂(x)− f(x)| = oP (1). (2.14)

Remark: When the data are stationary, polynomials or splines are usually used as basis

functions, e.g., in Andrews (1991), Newey (1997), and Gao (2007). In their cases, the uniform
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consistency is usually based on more restrictive assumptions than those for the point–wise

consistency. In our case, due to uniform boundedness of the Hermite series, the uniform

consistency requires the same conditions as those for the point–wise consistency.

2.4 Asymptotic Normality

In this subsection, we will establish an asymptotic normality for the series estimator.

Theorem 2. Under Assumptions 1–4, we have as T →∞

4
√
T

ΣT

(
f̂(x)− f(x)

)
→D N(0, 1), (2.15)

where Σ2
T =

σ2
p−1∑
i=0

F 2
i (x)

L(1,0)
, in which L(1, 0) = lim

ε→0

1
ε

1∫
0

I{|ΨW1(r)| < ε}dr.

Remark: Since P (L(1, 0) > 0) = 1 and
p−1∑
i=0

F 2
i (x) > 0, Σ2

T is well defined. Moreover,

p−1∑
i=0

F 2
i (x) = O(p) uniformly in x because for any orthogonal polynomials Hi(x) on any

compact interval, we have
p−1∑
i=0

H2
i (x) = O(p) (see, p. 295 of Alexits 1961). Note that the rate

of convergence of the kernel estimator is T 1/4
√
h (see, for example, Theorem 3.1 of Wang

and Phillips 2009a), where h is the bandwidth parameter, and the rate of convergence of the

series estimator is T 1/4
√
p−1. They are equivalent if we replace h by p−1.

Remark: For the purpose of statistical inference, σ2 can be estimated by σ̂2 = 1
T

T∑
t=1

y2
t

because of 1
T

∑n
t=1 y

2
t = 1

T

∑T
t=1 ε

2
t + oP (1) →P E[ε2

1] = σ2, and L(1, 0) can be estimated

by 1√
T

T∑
t=1

F 2
0 (xt), since 1√

T

T∑
t=1

F 2
0 (xt) →P L(1, 0) ·

∫
F 2

0 (x)dx = L(1, 0) in the expanded

probability space.

Combining the above remarks, we have following theorem.

Theorem 3. Under Assumptions 1–4, we have as T →∞

4
√
T

Σ̂T

(
f̂(x)− f(x)

)
→D N(0, 1), (2.16)

where Σ̂2
T =

σ̂2
p−1∑
i=0

F 2
i (x)

F̂0
, in which F̂0 = 1√

T

T∑
t=1

F 2
0 (xt).

Remark: The term
p−1∑
i=0

F 2
i (x)/L(1, 0) can also be estimated by Fpτ (x)[ 1√

T
F τF ]−1Fp(x), as

discussed below.
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3 Asymptotic Convergence of 1√
T
F τF

As mentioned in the introductory section and seen in the above discussion, the least squares

estimator of θ involves an inverse matrix of 1√
T
F τF , which causes both theoretical and

computational difficulties. In the literature, such difficulties are avoided through using a

transformed version of θ̂ of the form θ̃ = F τF · θ̂ (see, for example, Dong and Gao 2011;

2012). As a consequence, it is difficult to obtain a rate of convergence for θ̂, although a rate

of convergence of θ̃ is available.

Therefore, we tackle this difficulty by studying the convergence of 1√
T
F τF directly. Our

experience suggests that such convergence itself is of general interest and may be applied

to significantly simplify the construction of existing estimation and specification procedures,

such as those discussed in Dong and Gao (2011; 2012).

We now have following theorem.

Theorem 4. Let Assumption 4 hold. Then, in an expanded probability space, we have as

T →∞ ∥∥∥∥ 1√
T
F τF − L(1, 0)I

∥∥∥∥→P 0, (3.1)

where I is an identity matrix of p× p order.

Remark: It follows from the definition of F that∣∣∣∣∣∣∣∣ 1√
T
F τF − L(1, 0) I

∣∣∣∣∣∣∣∣2 =

p−1∑
i=0

(
1√
T

T∑
t=1

F 2
i (xt)− L(1, 0)

)2

+

p−1∑
i=0

p−1∑
j=0, 6=i

(
1√
T

T∑
t=1

Fi(xt)Fj(xt)

)2

.

Since p→∞, existing results (see, for example, Wang and Phillips 2009a; 2011) are not

applicable. In Appendix B below, we therefore develop some new convergence results with

certain rates to complete the proof of Theorem 4.

Remark: From this theorem, we have λmin( 1√
T
F τF−L(1, 0)I) ≤ λmax( 1√

T
F τF−L(1, 0)I) =

oP (1), and thus we can also have L(1, 0) + oP (1) ≤ λmin(Q) ≤ λmax(Q) ≤ L(1, 0) + oP (1),

where λmax(Q) and λmin(Q) denote the largest and smallest eigenvalues of Q ≡ 1√
T
F τF.

Before the proofs of Theorems 1–4 are given in Appendices A and B below, we examine

the finite–sample performance of the series estimation in Section 4 below.

4 Simulation Study

In this section, we conduct some simulation studies to assess the finite sample performance

of the proposed nonparametric series estimation method for the following nonstationary
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models:

Model1 : yt =
1

2
exp(−|xt|) + εt, t = 1, ...T ; (4.1)

Model2 : yt =
1

π(1 + x2
t )

+ εt, t = 1, ...T ; (4.2)

Model3 : yt =
1

4
I(−2 ≤ xt ≤ 2) + εt, t = 1, ...T ; (4.3)

Model4 : yt = xt + εt, t = 1, ...T ; (4.4)

where xt = xt−1 + et for t = 1, ..., T , x0 = 0 and for t = 1, 2, · · · , T , we simulate (et, εt) by

{et, εt} ∼ i.i.d.N

0,

 0.12 ρ× 0.12

ρ× 0.12 0.12

 ,

where ρ = 0 or 0.9 corresponding to exogeneity or endogeneity respectively. The true

regression function of the first model is Laplace density, the second model is the Cauchy

density, the third model is indicator function with support on [−2, 2]. Models 1 and 3 are

integrable models satisfying Assumption 3, while Model 2 is integrable model but doesn’t

satisfy Assumption 3, because Assumption 3 requires the tails of the integrable functions to

be very thin. The fourth model is a linear (not integrable) model, which can’t be estimated

by the series estimation method proposed in this paper. Thus, it is expected that our method

will perform badly in this case.

The sample size is 300, 600 and 1200, the replication number is 5000. The truncation

parameters are set to be [c1 × T c2 ], where c2 = 5
44
, c1 = 1, 2, 3. The choice of c2 is relatively

less important than the choice of c1. Because by Assumption 3, c2 should be smaller than

3/22. when c2 = 3/22, to let [T c2 ] larger than 2, T should be larger than 162, and to let [T c2 ]

larger than 3, T should be larger than 3155 (there are few data sets in economics where T

is so large). Thus, with a data of normal size, [T c2 ] usually takes only values 1 or 2. Thus,

when [T c2 ] satisfies Assumption 3, the choice of p is less sensitive to c2 than c1, thus we just

report the case c2 = 5/44. And from our simulation results, by the root mean squared error

(RMSE) criterion, the choice of p should not be large such that c1 should be at most equal

to 2 (when the integrable function is the Cauchy function which is of heavy tail within the

integrable functions). So we choose c1 to be 1, 2 or 3.

The sample bias is defined by:

Bias =
1

N

1

T

N∑
n=1

T∑
t=1

(f̂n − fn(xt)), (4.5)

where fn(.) denotes the values of f in n− th replication and f̂n(.) is the series estimator of

the regression function in n− th replication, and f̂n = 1
T

T∑
t=1

f̂n(xt).
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The sample standard deviation is defined by:

Std =

√√√√ 1

N

1

T

N∑
n=1

T∑
t=1

(f̂n(xt)− f̂n)2, (4.6)

where N is the number of replications, and T is the sample size. The sample root mean

squared error (RMSE) is defined by:

Rmse =

√√√√ 1

N

1

T

N∑
n=1

T∑
t=1

(f̂n(xt)− fn(xt))2. (4.7)

The results of the simulation are summarised in following tables:

Table 1: Simulation Results for Bias: ρ=0

c1 T Model 1 Model 2 Model 3 Model 4

300 -0.0021 -0.0045 -0.0054 -0.0550

1 600 -0.0019 -2.5099×10−4 -0.0038 -0.2872

1200 -0.0018 -1.2862×10−4 -0.0025 -0.6497

300 -7.4710×10−4 0.0021 -0.0036 0.1023

2 600 -4.6000×10−4 0.0011 -0.0024 -0.1502

1200 -3.2299×10−4 2.9098×10−4 -0.0018 0.4936

300 -0.0021 -9.8858×10−4 -0.0031 0.0645

3 600 -2.9926×10−4 -2.3019×10−4 -0.0016 -0.8155

1200 -4.9918×10−5 -3.6976×10−4 -0.0014 -0.2671
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Table 2: Simulation Results for Std: ρ=0

c1 T Model 1 Model 2 Model 3 Model 4

300 0.0875 0.0786 0.0722 0.2421

1 600 0.0745 0.0655 0.0596 0.3790

1200 0.0583 0.0537 0.0473 0.3004

300 0.0911 0.0781 0.0734 0.5992

2 600 0.0750 0.0679 0.0612 0.5915

1200 0.0583 0.0542 0.0480 0.4789

300 0.0914 0.0820 0.0737 0.8324

3 600 0.0753 0.0689 0.0610 0.7824

1200 0.0593 0.0563 0.0490 0.6250

Table 3: Simulation Results for Rmse: ρ=0

c1 T Model 1 Model 2 Model 3 Model 4

300 0.0462 0.0592 0.0434 17.1426

1 600 0.0378 0.0440 0.0371 34.4133

1200 0.0285 0.0348 0.0293 68.9292

300 0.0512 0.0560 0.0503 17.3494

2 600 0.0416 0.0437 0.0423 34.8402

1200 0.0308 0.0346 0.0318 68.7829

300 0.0577 0.0578 0.0572 17.0786

3 600 0.0466 0.0477 0.0465 34.8762

1200 0.0388 0.0377 0.0362 69.4788
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Table 4: Simulation Results for Bias: ρ=0.9

c1 T Model 1 Model 2 Model 3 Model 4

300 -0.0018 -0.0046 -0.0058 -0.2738

1 600 -0.0026 -3.8877×10−4 -0.0044 0.6136

1200 -0.0016 -7.7728×10−5 -0.0027 0.1744

300 -0.0014 0.0016 -0.0043 0.1019

2 600 -6.0914×10−4 2.7683×10−4 -0.0025 -0.0778

1200 -4.8686×10−4 8.4685×10−5 -0.0016 0.3188

300 -0.0013 2.2917×10−4 -0.0023 -0.0405

3 600 3.8673×10−4 -2.3072×10−4 -0.0019 0.5984

1200 -1.4246×10−5 -9.7208×10−5 -0.0012 0.1447

Table 5: Simulation Results for Std: ρ=0.9

c1 T Model 1 Model 2 Model 3 Model 4

300 0.0846 0.0749 0.0686 0.2547

1 600 0.0712 0.0617 0.0572 0.3875

1200 0.0560 0.0497 0.0449 0.3072

300 0.0885 0.0757 0.0697 0.6120

2 600 0.0714 0.0649 0.0571 0.6111

1200 0.0565 0.0506 0.0453 0.4891

300 0.0888 0.0794 0.0711 0.8469

3 600 0.0728 0.0667 0.0577 0.7894

1200 0.0561 0.0524 0.0457 0.6373
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Table 6: Simulation Results for Rmse: ρ=0.9

c1 T Model 1 Model 2 Model 3 Model 4

300 0.0301 0.0484 0.0285 17.1768

1 600 0.0230 0.0335 0.0241 34.6006

1200 0.0183 0.0251 0.0183 68.8479

300 0.0327 0.0403 0.0333 17.3540

2 600 0.0262 0.0323 0.0269 34.8270

1200 0.0197 0.0236 0.0197 68.9452

300 0.0451 0.0570 0.0387 17.0256

3 600 0.0353 0.0328 0.0291 34.5640

1200 0.0207 0.0240 0.0214 69.1129

From the above six tables, we can see that for the first three models, the bias, standard

deviation and mean square error perform well that is consistent with our theory that Hermite

functions can be used to approximate this kind of models, while for the fourth model,

the simulation shows that the linear function can’t be approximated well by the Hermite

functions due to different asymptotic properties of homogeneous and integrable functions.

As is well known in the literature, in each case, the bias of the series estimator decreases

with larger p, while the standard deviation increases with larger p. From our simulation,

we can see that generally the value of p does not need to be large to deliver a satisfactory

result. Also, we find that there will be finite sample singularity problem when p is larger.

For Models 1 and 3, when c1 = 1, the estimator performs best by RMSE criterion. For

Model 2, when c1 = 2, the estimator performs the best. This is due to the fact that the

Cauchy density function has heavier tail than the Laplace function and truncated function.

Also, the truncation parameter can not be too large to avoid the singularity problem which

leading to inaccurate results. We can also see that the existence of endogeneity does not

affect the finite sample performance of the series estimator. This suggests that the theory

may be extendable to the case where xt and εt are correlated. We leave this as a future

topic.
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5 Empirical Study: Estimation of Stock Return Pre-

dictive Function

In this section, we will apply the estimator proposed here to estimate the stock return predic-

tive function. Whether the stock returns are predictable or not is one of the most important

questions in finance. It is not only of interest to the practitioners but also has implications

for financial models of risk and returns. Meanwhile, the issue of return predictability is also

very controversial because people usually reach different conclusions according to different

data sample periods as well as different statistical inferential methods.

In the last few decades, based on in–sample evidence, a consensus has emerged among

economists that the equity risk premium seems to vary considerably over the business cycle

and perhaps at lower frequencies as well. Campbell (2000) concludes that the stock returns

contain significant predictable components. However, the out–of–sample evidence of stock

return predictability is much weaker. Goyal and Welch (2003; 2008) find that the predictive

ability of a variety of popular financial and economic variables in the literature does not

hold up in out–of–sample forecasting exercises. They conclude that “the profession has yet

to find some variable that has meaningful and robust empirical equity premium forecasting

power.” Under the widely held view that predictive models require out–of–sample validation

(e.g., Campbell (2008) argues:“The ultimate tests of any predictive model is its out of sample

performance.”), the findings of Goyal and Welch (2003; 2008) cast doubt on the reliability

of return predictability.

In the study of predictive regression, affine functions are now pervasive in the litera-

ture, to name only a few, Stambaugh (1999), Lewellen (2004), Campbell and Yogo (2006).

However, the linear model has some pitfalls. First of all, the linear model is derived from

a simplified present value model, e.g., Campbell and Shiller (1988), which may not be a

good approximation in reality. Engstrom (2003) shows that under a reasonable theoretical

setting which just imposes the no arbitrage condition, the linear predictive relationship may

not hold and structural treatment of risk may lead to nonlinear relationship between return

and dividend yield. Secondly, there have been more and more empirical evidence suggesting

that the nonlinear model may provide better approximation than the linear model. Lattau

and Nieuwerburgh (2008) suggest that after controlling the structural shift in the mean of

dividend yield, the evidence of return predictability is much stronger. Also, Gonzalo and

Pitarakis (2012) show that the return predictability has different characteristics in different

economic regimes. Moreover, Chen and Hong (2010) show that the nonparametric model can

outperform the linear model. Thirdly, it is well known that the predicting financial ratios

are highly persistent that we can not reject that they contain unit roots. However, the stock

return is far less persistent, and thus is often regarded as a stationary process. A linear
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model will lead to an unbalanced relationship between left–hand–side and right–hand–side

variables in predictive regression which is called model inconsistency by Granger (1995).

We propose using the Hermite series–based estimator to estimate the return predictive

function. It is consensus in econometrics that the choice of an empirical model might be

suggested by economic theory, and often by the requirement that the model is capable

of generating the key characteristics of the data at hand. Note that the nonparametric

integrable model can be regarded as a time–varying model as discussed in Engstrom (2003)

where the parameter is smoothly co–evolving with dividend yield.

5.1 Data Description

In this paper, we will estimate the predictive function of dividend yield, book–to–market

ratio and earning–price ratio to stock return. Price and dividends come from Center for

Research in Security Prices (CRSP) dataset 3. We focus on NYSE equal and value–weighted

indices to be consistent with prior research. DY is calculated monthly on the value–weighted

NYSE index, and it is defined as dividends paid over the prior year divided by current level

of index. Thus DY is based on the rolling windows of annual dividends.

The returns data are from January, 1946 to December, 2007 with a total number of 744

data points. Here vwny denotes value–weighted NYSE stock return (nominal return), ewny

denotes equal–weighed stock return, evwny denotes excess value–weighted stock return (real

return or excess return) which is defined by value-weighted return minus t–bill rate, eewny

denotes excess equal–weighted stock return. Dy and log(dy) respectively denote the dividend

yield and logarithm of the dividend yield, have 744 data points. Bm denotes book–to–market

ratio with 744 data points4. Ep denotes earning–price ratio with sample size 536 5.

The sample mean, standard error, skewness, kurtosis and the first order autocorrelation

coefficient are summarised in following table.

3We thank Professor Lewellen for providing us with his dataset.
4Book equity uses data set (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/) available at Ken

French’s website.
5It is from Compustat, thus only starts from 1963.
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Table 7: Summary Statistics

variables mean std skewness kurtosis auto

vwny 0.0099 0.0401 -0.3830 4.8756 0.0414

ewny 0.0112 0.0470 -0.1863 6.8156 0.1417

evwny 0.0062 0.0403 -0.4119 4.8167 0.0483

eewny 0.0075 0.0472 -0.2163 6.7615 0.1463

dy 0.0359 0.0128 0.4047 2.5653 0.9904

log(dy) -3.3948 0.3757 -0.3398 2.4429 0.9927

bm 0.6060 0.2046 0.0703 1.9156 0.9872

log(bm) -0.5641 0.3676 -0.4561 2.2697 0.9908

ep 0.0657 0.0268 0.9577 2.9629 0.9877

log(ep) -2.7977 0.3833 0.3150 2.3562 0.9876

From the table, we can find that there are little serial correlations in stock returns.

Especially, the value–weighted return series is nearly white noise. At the same time, the

forecasting dividend yield, book–to–market ratio and earning–price ratio are highly persis-

tent with the first order autocorrelation close to 1. This suggests that there is no linear

cointegration relationship between stock return and its predictors, but can not rule out the

possibility that the the predictors can forecast stock return nonlinearly. The sample kurtosis

of the return series suggests the stock return has heavy tail as is well known in the litera-

ture. The conventional ADF and KPSS tests suggest there is unit root in dividend yield,

book–to–market ratio and earning–price ratio, while the stock returns are stationary. The

scatter plots of value–weighted stock return v.s. logarithm of dividend yield, logarithm of

book–to–market ratio, logarithm of earning–price ratios suggest there are no explicit pat-

terns of forecasting relationship of these financial ratios to stock return (see the graph below

for the scatter plot of value–weighted stock return v.s. logarithm of dividend yield).

These empirical facts suggest the relationships of stock return and its predictors should

not be linear and also the stock return inherently contains a sizable unpredictable component,

so the best forecasting models can explain only a relatively small part of stock returns.

5.2 Evaluation Strategy

We estimate the predictive regression relationship using there types of models:

(Model 1) Historic mean model

rt+1 = µ+ εt+1. (4.1)
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(Model 2) Linear model

rt+1 = µ+ βxt + εt+1. (4.2)

(Model 3) Integrable model ,

rt+1 = µ+

p−1∑
i=0

θiFi(xt) + εt+1, (4.3)

where p = [c1T
5/44] with c1 being chosen to be 1, 2, 3, x is log dividend yield, or, log book–to–

market ratio, or log earning–price ratio. The performances of the estimators are evaluated

based on out–of–sample criterion, because the out–of–sample performance provides more

convincing evidence as discussed above.

In the literature of economic forecasting, there are basically two methods widely used.

The first estimation method uses recursive (or expanding) window. The initial in–sample

period is the first [Tr] observations. Then, the estimator in each model is used to estimate

next period return using next period predictors. The performance of different models is

evaluated by its prediction accuracy through comparing the estimators with the true returns.

The next in–sample period is the first [Tr] + 1 observations. And then a period ahead

forecasting is made. The second estimation method uses a rolling window with the in–

sample size always being [Tr], i.e., in each recursion, one observation is abandoned and one

new observation is added.

Rolling windows are typically justified by appealing to structure breaks. However, as

demonstrated by Pesaran and Timmermann (2007), by criterion of the minimum square
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forecasting error, the optimal window size is a complicated function of timing and size of

breaks. It is not easy to account for the effect of breaks and to choose the window size. The

recursive window utilizes all the data when one forecasts next period return, and thus it may

increase the precision of in–sample estimation, which in turn, leads to better out–of–sample

forecasting. Considering the slow convergence rate of Hermite series estimation, this point is

especially important. Although not reported here, the performance of the recursive window

method is better than the rolling window for all the choice of r in our experiment for each

model. Thus, we just report the results of the recursive window method.

The performance of out–of–sample performance is evaluated by a root mean squared

forecasting error (RMSFE) of the form:

RMSFE =

√√√√ 1

T − [Tr]

T∑
s=[Tr]+1

(rs − r̂s)2. (4.4)

5.3 Predict Returns with Dividend Yield

Among instruments thought to capture some of the equity premium’s variation in the sense

of forecasting stock returns, the lagged dividend price ratio has emerged as a favourite.

However, the existence of return predictability by dividend yield is also a very controversial

issue. Fama and French (1988) find dividend–price ratio and book–to–market ratio are useful

in predicting stock return. Similar results are reported in Campbell and Shiller (1988).

Campbell (1991) and Cochrane (1992) attribute large fraction of the variance of dividend

price ration to the variation in expected returns. However, as noticed by Mankiw and Shapiro

(1986), Nelson and Kim (1993) and Stambaugh (1999), persistence of explaining variables

and correlation of explaining variables and error terms lead to over–rejection of the null

hypothesis of no predictability in finite sample, thus can be seriously biased towards finding

predictability. Stambaugh (1999) finds that after controlling the finite sample bias, there is

little evidence of stock return predictability, and the one–sided p–value is 0.15 when stock

return is regressed on dividend yield over the period 1952-1996. Contrary to Stambaugh

(1999), Lewellen (2004) finds that the evidence of predictability can be strong if we require

the explaining variables to be stationary (i.e., the first order autoregressive parameter is less

than 1). Using a robust test based on local to unit root framework, Campbell and Yogo

(2006) find that the dividend–price ratio predicts returns at annual frequency, but they can

not reject the null hypothesis of no predictability at quarterly and monthly frequencies.

The out–of–sample evidence of Goyal and Welch (2003; 2008) suggests that dividend yield

can not outperform the historic mean model. However, Campbell and Thompson (2008) show

that by imposing the restriction of the sign of regression coefficient, the dividend yield can

predict stock returns. Also, Lettau and Nieuwerburgh (2008) suggest the dividend yield can
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predict stock returns by controlling the structural break in dividend yield. These papers lead

us to conclude that the dividend yield should predict stock returns in a nonlinear fashion.

We apply the the evaluation strategy proposed in the last subsection to study the fore-

casting power of log dividend yield to stock return (nominal and real returns), the results

are summarised in following four tables:

Table 8: Forecasting VWNY with Dividend Yield: RMSFE×100

Sample r Model 1 Model 2 Model 3

c1=1 c2=2 c3=3

1/8 4.0492 4.0583 4.0534 4.0810 4.0908

1/6 4.0726 4.0689 4.0607 4.0899 4.1052

1946.1 1/4 4.1549 4.1470 4.1394 4.1678 4.1724

To 1/3 4.2260 4.2212 4.2126 4.2429 4.2462

2007.12 1/2 4.0519 4.0623 4.0481 4.0865 4.0841

5/8 3.9586 3.9894 3.9780 4.0178 4.0182

2/3 3.8941 3.9298 3.9100 3.9613 3.9597

[Tr]=240 4.2253 4.2164 4.2084 4.2384 4.2411

[Tr]=360 4.2392 4.2414 4.2276 4.2709 4.2723

Table 9: Forecasting EWNY with Dividend Yield: RMSFE×100

Sample r Model 1 Model 2 Model 3

c1=1 c2=2 c3=3

1/8 4.7287 4.7400 4.7352 4.7616 4.7808

1/6 4.7844 4.7834 4.7751 4.8034 4.8303

1946.1 1/4 4.9069 4.9001 4.8922 4.9198 4.9356

To 1/3 4.9916 4.9845 4.9764 5.0045 5.0225

2007.12 1/2 4.4265 4.4325 4.4145 4.4574 4.4720

5/8 4.1610 4.2000 4.1767 4.2182 4.2464

2/3 4.1426 4.1883 4.1588 4.2109 4.2348

[Tr]=240 4.9932 4.9837 4.9755 5.0044 5.0203

[Tr]=360 4.4057 4.4109 4.3946 4.4341 4.4496
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Table 10: Forecasting EVWNY with Dividend Yield:

RMSFE×100

Sample r Model 1 Model 2 Model 3

c1=1 c2=2 c3=3

1/8 4.0698 4.0805 4.0715 4.1000 4.1071

1/6 4.0937 4.0925 4.0800 4.1102 4.1221

1946.1 1/4 4.1754 4.1714 4.1590 4.1882 4.1896

To 1/3 4.2456 4.2473 4.2331 4.2648 4.2644

2007.12 1/2 4.0566 4.0834 4.0612 4.1013 4.0936

5/8 3.9472 3.9833 3.9683 4.0123 4.0112

2/3 3.8872 3.9290 3.9034 3.9597 3.9574

[Tr]=240 4.2471 4.2438 4.2304 4.2615 4.2606

[Tr]=360 4.0223 4.0475 4.0258 4.0655 4.0590

Table 11: Forecasting EEWNY with Dividend Yield:

RMSFE×100

Sample r Model 1 Model 2 Model 3

c1=1 c2=2 c3=3

1/8 4.7481 4.7608 4.7518 4.7814 4.7973

1/6 4.8041 4.8054 4.7925 4.8242 4.8475

1946.1 1/4 4.9262 4.9225 4.9098 4.9407 4.9528

To 1/3 5.0112 5.0090 4.9955 5.0272 5.0411

2007.12 1/2 4.4367 4.4572 4.4302 4.4790 4.4874

5/8 4.1650 4.2090 4.1800 4.2293 4.2542

2/3 4.1511 4.2025 4.1654 4.2259 4.2471

[Tr]=240 5.0148 5.0094 4.9960 5.0283 5.0401

[Tr]=360 4.4152 4.4344 4.4093 4.4548 4.4643

For the value–weighted return, if the initial estimation window is taken to be 20 years

(e.g., Goyal and Welch 2008; Chen and Hong 2010; Rapach and Zhou 2012), the inte-

grable model outperforms both the historic mean model and the linear model. If the initial

21



estimation window is taken to be 30 years (e.g., Lattau and Nieuwerburgh 2008), the inte-

grable model also outperforms both the historic mean model and the linear model. Hansen

and Timmermann (2012) show that out–of–sample tests of predictive ability have better

size properties when the forecast evaluation period is a relatively large proportion of the

available sample. Using reasonable in-sample size and larger proportion of the sample in

out–of–sample evaluation, i.e., r = 1/6, 1/4, 1/3, 1/2, the integrable model performs best

when the truncation parameter is chosen to be small. Using different measures of return

may lead to somehow different results, however, the conclusion that nonlinear predictive

ability of dividend yield seems to be robust to different measures of return.

To be more specific, when c1 = 1, the full–sample choice of p is equal to [7445/44] = 2.

The estimated regression is:

r̂t+1 = 0.0065 + 2.2676F0(xt) + 0.3379F1(xt)

= 0.0065 + (1.7032 + 0.4498 xt) · exp
(
−0.5 x2

t

)
, (4.5)

where xt is the log dividend yield, F0(x) = 1√√
π

exp
(
−1

2
x2
)
, F1(x) =

√
2√√
π
x · exp

(
−1

2
x2
)
,

and rt+1 is the value–weighted stock return6.

Model (4.5) shows that there is no support for neither the historic mean nor the simple

linear model.

5.4 Predict Return with Book–to–Market Ratio or Earning–Price

Ratio

Book–to–market ratio and earning–price ratio are two other commonly used stock return

predictors. As shown previously and elsewhere in the literature, the two ratios are also very

persistent. Using the annual data over the period of 1926–1991, Kothari and Shanken (1997)

show that book–to–market ratio is helpful in predicting stock return. Pontiff and Schall

(1998) show that the book-to-market ratio of the Dow Jones Industrial Average predicts

market returns and small firm excess returns over the period of 1926-1994. Both papers

also find that the predictability is not robust to different sub–samples. Using quarterly data

over the period of the first quarter of 1947 to the last quarter of 1994, Lamont (1998) shows

that earning price ratio can predict stock return. Generally speaking, the evidence of return

predictability of these two ratios are weaker than dividend yield. Lewellen (2004) shows that

these two ratios have limited predictive power.

The out–of–sample evidence by Goyal and Welch (2008) suggests that these two variables

are not helpful in predicting returns. However, Campbell and Thompson (2008) show that

6Of course, we can also write the estimated regression function for the case where r is equal–weighed

return or excess returns. To save space, we just report the results for the value–weighted return case.
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earning–price ratio can forecast excess return by imposing sign constraints on the regression

coefficient using monthly and annual data, while book–to–market can forecast excess return

using the annual data. In this subsection, we will compare out–of–sample performance of

the historic mean model, the linear model and the nonlinear integrable model using the same

strategy as in the last subsection, the results are summarised in the following eight tables.

Table 12: Forecasting VWNY with Book–to–Market Ratio:

RMSFE×100

Sample r Model 1 Model 2 Model 3

c1=1 c2=2 c3=3

1/8 4.0492 4.0641 4.0819 4.0869 4.1240

1/6 4.0726 4.0832 4.1045 4.1069 4.1428

1946.1 1/4 4.1549 4.1600 4.1828 4.1835 4.2141

To 1/3 4.2260 4.2340 4.2566 4.2518 4.2750

2007.12 1/2 4.0519 4.0731 4.1006 4.1037 4.1420

5/8 3.9586 4.0061 4.0365 4.0671 4.2542

2/3 3.8941 3.9398 3.9581 4.0052 4.0423

[Tr]=240 4.2253 4.2257 4.2491 4.2471 4.2710

[Tr]=360 4.0174 4.0376 4.0649 4.0677 4.1044

Table 13: Forecasting EWNY with Book–to–Market Ratio:

RMSFE×100

Sample r Model 1 Model 2 Model 3

c1=1 c2=2 c3=3

1/8 4.7287 4.7431 4.7646 4.7596 4.8069

1/6 4.7844 4.7960 4.8210 4.8123 4.8588

1946.1 1/4 4.9069 4.9103 4.9373 4.9256 4.9650

To 1/3 4.9916 4.9906 5.0191 5.0012 5.0233

2007.12 1/2 4.4265 4.4337 4.4724 4.4474 4.4825

5/8 4.1610 4.2007 4.2453 4.2424 4.2754

2/3 4.1426 4.1825 4.2162 4.2197 4.2551

[Tr]=240 4.9932 4.9881 5.0187 5.0057 5.0280

[Tr]=360 4.4057 4.4119 4.4495 4.4289 4.4609
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Table 14: Forecasting EVWNY with Book–to–Market Ratio:

RMSFE×100

Sample r Model 1 Model 2 Model 3

c1=1 c2=2 c3=3

1/8 4.0698 4.0848 4.1029 4.1019 4.1388

1/6 4.0937 4.1049 4.1263 4.1223 4.1579

1946.1 1/4 4.1754 4.1819 4.2047 4.1985 4.2289

To 1/3 4.2456 4.2582 4.2805 4.2685 4.2912

2007.12 1/2 4.0566 4.0904 4.1161 4.1106 4.1487

5/8 3.9472 3.9996 4.0317 4.0541 4.0936

2/3 3.8872 3.9388 3.9590 3.9965 4.0334

[Tr]=240 4.2471 4.2502 4.2732 4.2643 4.2878

[Tr]=360 4.0223 4.0549 4.0806 4.0741 4.1110

Table 15: Forecasting EEWNY with Book–to–Market Ratio:

RMSFE×100

Sample r Model 1 Model 2 Model 3

c1=1 c2=2 c3=3

1/8 4.7481 4.7626 4.7845 4.7732 4.8208

1/6 4.8041 4.8162 4.8416 4.8262 4.8728

1946.1 1/4 4.9262 4.9308 4.9580 4.9392 4.9789

To 1/3 5.0112 5.0133 5.0413 5.0161 5.0382

2007.12 1/2 4.4367 4.4546 4.4914 4.4575 4.4923

5/8 4.1650 4.2096 4.2563 4.2422 4.2757

2/3 4.1511 4.1969 4.2338 4.2245 4.2608

[Tr]=240 5.0148 5.0112 5.0413 5.0211 5.0435

[Tr]=360 4.4152 4.4317 4.4676 4.4375 4.4698
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Table 16: Forecasting VWNY with Earning–Price Ratio:

RMSFE×100

Sample r Model 1 Model 2 Model 3

c1=1 c2=2 c3=3

1/8 4.2694 4.2995 4.3543 4.8438 8.6921

1/6 4.2179 4.2416 4.2953 4.6907 8.5831

1963.5 1/4 4.2512 4.2765 4.3366 4.9392 4.9789

To 1/3 4.0969 4.0838 4.0919 4.1446 4.2798

2007.12 1/2 3.9929 3.9975 4.0213 4.0222 4.0501

5/8 3.5305 3.5496 3.5677 3.5727 3.6014

2/3 3.5727 3.5828 3.6073 3.5928 3.6423

[Tr]=240 3.9407 3.9418 3.9619 3.9734 4.0008

[Tr]=360 3.5912 3.6005 3.6258 3.6091 3.6563

Table 17: Forecasting EWNY with Earning–Price Ratio:

RMSFE×100

Sample r Model 1 Model 2 Model 3

c1=1 c2=2 c3=3

1/8 5.0249 5.0571 5.0842 5.4223 9.6600

1/6 4.9193 4.9434 4.9656 5.1813 9.5667

1963.5 1/4 4.8053 4.8283 4.8547 5.0752 5.0157

To 1/3 4.4650 4.4554 4.4409 4.5015 4.5669

2007.12 1/2 4.1776 4.1958 4.1870 4.2122 4.2424

5/8 3.6096 3.6661 3.6356 3.6683 3.6906

2/3 3.6633 3.6993 3.6776 3.6975 3.7365

[Tr]=240 4.1620 4.1775 4.1642 4.1899 4.2296

[Tr]=360 3.6842 3.7162 3.6965 3.7152 3.7513
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Table 18: Forecasting EVWNY with Earning–Price Ratio:

RMSFE×100

Sample r Model 1 Model 2 Model 3

c1=1 c2=2 c3=3

1/8 4.2854 4.3289 4.3847 4.8713 8.6528

1/6 4.2309 4.2691 4.3236 4.7164 8.5361

1963.5 1/4 4.2583 4.3017 4.3638 4.7242 4.4774

To 1/3 4.1021 4.1061 4.1139 4.1630 4.3074

2007.12 1/2 3.9898 4.0015 4.0206 4.0248 4.0580

5/8 3.5298 3.5551 3.5716 3.5756 3.6114

2/3 3.5696 3.5875 3.6087 3.5941 3.6512

[Tr]=240 3.9377 3.9466 3.9621 3.9754 4.0074

[Tr]=360 3.5880 3.6050 3.6268 3.6101 3.6654

Table 19: Forecasting EEWNY with Earning–Price Ratio:

RMSFE×100

Sample r Model 1 Model 2 Model 3

c1=1 c2=2 c3=3

1/8 5.0460 5.0939 5.1227 5.4579 9.6246

1/6 4.9368 4.9783 5.0021 5.2156 9.5253

1963.5 1/4 4.8187 4.8628 4.8923 5.1052 5.0483

To 1/3 4.4780 4.4879 4.4749 4.5321 4.6044

2007.12 1/2 4.1817 4.2061 4.1952 4.2229 4.2572

5/8 3.6172 3.6767 3.6476 3.6795 3.7072

2/3 3.6687 3.7097 3.6868 3.7081 3.7533

[Tr]=240 4.1676 4.1895 4.1745 4.2010 4.2453

[Tr]=360 3.6891 3.7267 3.7050 3.7258 3.7685

From the above tables, we can see that the predictive power of these two ratios are much

weaker than that of dividend yield, regardless of whether linear or nonlinear models are

used. The forecasting ability of these two ratios are restricted to only some special cases

(with colour different from black) for each return series. Thus, the predictability of these

two series, if exists, should be very weak.
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6 Conclusion and Discussion

In this paper, we have established the uniform consistency and asymptotic normality of the

Hermite series estimator of the proposed integrable cointegration model. The application

of the estimator to stock return predictive models suggests existence of nonlinear predictive

relationship between dividend yield and stock return. However, the book–to–market ratio

and earning–price ratio may have neither linear nor nonlinear predictive power.

The theory and application of this paper can be extended. The choice of the truncation

parameter should be discussed in more detail and a data driven choice of the truncation

parameter should be discussed. The theory can be extended to an additive multivariate

model with both stationary and nonstationary regressors or a partially linear cointegration

model. The application can be extended to data sharing similar characteristics to return

and dividend yield. For example, we may study the relationship of return of exchange rate

and forward rate premium, where the exchange rate return is far less persistent than the

forward rate premium.
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8 Appendix

8.1 Appendix A. Proofs of Section 2.

Lemma A.1 Let f(x) satisfy Assumption 3 and Fj(x) be Hermite functions and θj be the

projection coefficients of f(x) on Fj(x). Then, we have supx |f(x)−
p−1∑
j=0

θjFj(x)| = O
(
p−

r
2

+1
)

.

Proof. Under Assumption 3, Lemma 3 of Schwartz (1967), the coefficients involved in the

expansion f(x) =
∑∞

j=0 θjFj(x) satisfies

|θj | < c3(r)/(2j)r/2, (4.1)

where c3(r) is L2 norm of ex
2/2(dr/dxr)[e−

x2

2 f(x)], which is bounded by Assumption 3.

Because {Fj(x)}j=0,1,2... are bounded uniformly in j and x, we have

sup
x

∣∣∣∣∣∣
∞∑
j=p

θjFj(x)

∣∣∣∣∣∣ ≤ sup
x

∞∑
j=p

|θj ||Fj(x)| ≤ C
∞∑
j=p

|θj | ≤ C2

∞∑
j=p

(2j)−r/2 = Cp−r/2+1, (4.2)
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which completes the proof.

Proof of Theorem 1.

It’s easy to show that ∣∣∣∣(F τF )−1F
τ
ε
∣∣∣∣ =

{
ετF (F τF )−2F τε

}1/2
(4.3)

≤ 1√√
T

(1 +OP (1)) {ετF (F τF )−1 F
τ
ε}1/2

=
1√√
T

(1 +OP (1)) · √p = OP

(√√
Tp

)
(4.4)

using the result that E
[
ε
τ
FF

τ
ε
]

= O(
√
Tp) as proved in Theorem 3.1 of Dong and Gao (2012).

Meanwhile, by Theorem 4, we have∣∣∣∣∣∣∣∣[ 1√
T
F τF ]−1F τ (A− Fθ)/

√
T

∣∣∣∣∣∣∣∣
=

{
(A− Fθ)τ/

√
TF [

1√
τ
F τF ]−1[

1√
T
F τF ]−1F τ (A− Fθ)τ/

√
T

}1/2

≤ OP (1)
{

(A− Fθ)τF [F TF ]−1F T (A− Fθ)/
√
T
}1/2

≤ OP (1)
{

(A− Fθ)τ (A− Fθ)/
√
T
}1/2

(4.5)

by using bounds of Rayleigh quotient, e.g., Exercise 7.53 of Abadir and Magnus (2005).

And (4.5) can be bounded by

OP (1) ·


T∑
i=1

(f(xi)−
p−1∑
j=0

Fj(xi)θj)
2/
√
T


1/2

≤ OP (1) · {Tp−r+2/
√
T}1/2 = OP (T 1/4p−r/2+1).

Therefore, by

θ̂ − θ = [
1√
T
F τF ]−1F τ (Y −A)/

√
T + [

1√
T
F τF ]−1F τ (A− Fθ)/

√
T ,

we have

||θ̂ − θ|| ≤
∣∣∣∣∣∣∣∣[ 1√

T
F τF ]−1F τε/

√
T

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣[ 1√
T
F τF ]−1F τ (A− Fθ)/

√
T

∣∣∣∣∣∣∣∣
≤ OP (p1/2/T 1/4 + T 1/4p−r/2+1)→ 0

by Assumption 4.

Proof of Corollary 1. Note that

sup
x
|f̂(x)− f(x)|≤ sup

x
|Fpτ (x)(θ̂ − θ)|+ sup

x
|Fpτ (x)θ − f(x)|, (4.6)
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By the uniformly boundedness of Hermite functions, we then have

sup
x
‖Fp(x)‖ ≤ Cp1/2.

Thus, applying Cauchy Schwarz inequality and Theorem 1 for the first term and Lemma A.1

for the second term, we have

sup
x
|Fpτ (x)(θ̂ − θ)|+ sup

x
|Fpτ (x)θ − f(x)|

≤ sup
x
‖Fpτ (x)‖ ||θ̂ − θ||+ sup

x
|Fpτ (x)θ − f(x)|

≤ OP (p1/2p1/2/T 1/4 + p1/2T 1/4p−r/2+1 + p−r/2+1)→ 0

by assumption A4.

Proof of Theorem 2. Observe that

4
√
T

(
σ2

p−1∑
i=0

F 2
i (x)/L(1, 0)

)− 1
2 [
f̂(x)− f(x)

]

=
4
√
T

(
σ2

p−1∑
i=0

F 2
i (x)/L(1, 0)

)− 1
2

(A1 +A2).

To complete the proof, it suffices to show that

4
√
T (σ2

p−1∑
i=0

F 2
i (x)/L(1, 0))−

1
2A1 →D N(0, 1),

4
√
T (σ2

p−1∑
i=0

F 2
i (x)/L(1, 0))−

1
2A2 = oP (1), (4.7)

where A1 = Fpτ (x)[θ̂ − θ] and A2 =
∞∑
j=p

θjFj(x).

We first show that 4
√
T

(
σ2

p−1∑
i=0

F 2
i (x)

)
A2 = oP (1). Note that

4
√
T

(
σ2

p−1∑
i=0

F 2
i (x)

)− 1
2

A2 =
4
√
T

(
σ2

p−1∑
i=0

F 2
i (x)

)−1
2

.

∞∑
j=p

θjFj(x)

≤ OP

(
4
√
T p−1/2p−r/2+1) = OP (

4
√
T p−

r−1
2

)
= oP (1)

by Assumption 4.

We then show that

4
√
T (σ2

p−1∑
i=0

F 2
i (x)/L(1, 0))−

1
2A1 →D N(0, 1).
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Observe that

4
√
T

(
σ2

p−1∑
i=0

F 2
i (x)/L(1, 0)

)− 1
2

A1 =
4
√
T

(
σ2

p−1∑
i=0

F 2
i (x)/L(1, 0)

)−1
2

(A11 +A12),

where

A11 =

{
Fpτ (x)

T∑
t=1

[Fp(xt)Fp(xt)
τ ]−1

T∑
t=1

Fp(xt)εt

}
,

A12 =

Fpτ (x)

[
T∑
t=1

Fp(xt)Fp(xt)
τ

]−1 T∑
t=1

Fp(xt)

 ∞∑
j=0

θjFj(xt)

− θ
 .

We start to prove that

4
√
T

(
σ2

p−1∑
i=0

F 2
i (x)/L(1, 0)

)− 1
2

A11 →D N(0, 1),

4
√
T

(
σ2

p−1∑
i=0

F 2
i (x)

)− 1
2

A12 →P 0.

Meanwhile, by Assumption 4 and the proof of Theorem 1, we have

4
√
T

(
σ2

p−1∑
i=0

F 2
i (x)

)− 1
2
(

1√
T

T∑
t=1

Fp(xt)Fp(xt)
τ

)−1

× 1√
T

T∑
t=1

Fp(xt)

∞∑
j=p+1

θjFj(xt)

≤ CT 1/4p−1/2OP (T 1/4p−r/2+1) = oP

(
T 1/2p−r/2+1/2

)
→ 0.

We are then left to show that

4
√
T

(
σ2

p−1∑
i=0

F 2
i (x)/L(1, 0)

)− 1
2

A11 →D N(0, 1).

Observe that

4
√
T

(
σ2

p−1∑
i=0

F 2
i (x)/L(1, 0)

)− 1
2

Fpτ (x)

[
T∑
t=1

Fp(xt)Fp(xt)
τ

]−1 T∑
t=1

Fp(xt)εt


=


(
σ2L(1, 0)

p−1∑
i=0

F 2
i (x)

)−1/2

Fpτ (x)
1

4
√
T

T∑
t=1

Fp(xt)εt

 (1 + oP (1)).
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Thus, we need only to show that(
σ2

p−1∑
i=0

F 2
i (x)L(1, 0)

)− 1
2

Fpτ (x)
1

4
√
T

T∑
t=1

Fp(xt)εt

≡ L(1, 0)−1/2σ−1 1
4
√
T

T∑
t=1

m(xt)εt →D N(0, 1),

where m(y) =

[
p−1∑
i=0

F 2
i (x)

]−1/2 p∑
i=0

Fi(x)Fi(y).

To show this, we adopt similar approach as in Park and Phillips (2001). In the expanded space

as discussed in the remark for Assumptions 1 and 2, we have (W1Tr,W2Tr)→a.s. (W1r,W2r).

Define

MT (r) =
4
√
T

k−1∑
t=1

m

(√
TW1T

(
t− 1

T

))(
W2T

(τT,t
T

)
−W

(τT,t−1

T

))
+

4
√
Tm

(√
TW1T

(
k − 1

T

))(
W2T (r)−W

(τT,k−1

T

))
,

where τT,t, t = 1, . . . T are stopping times such that τT,k−1/T < r ≤ τT,k/T, and it can be seen that

MT (r) is a continuous martingale such that

1
4
√
T

T∑
t=1

m(xt)εt = MT

(τT,T
T

)
,

sup

∣∣∣∣(τT,tT −
τT,t−1

T

)
− 1

T

∣∣∣∣ = oa.s.(1).

The quadratic variation process [MT ] of MT is given by

[MT ]r =
√
T

k∑
t=1

[(
m

(√
TW1T

(
t− 1

T

)))2 (τT,t
T
−
τT,t−1

T

)]

+
√
T

k∑
t=1

(
mFi

(√
TW1T

(
k − 1

T

)))2 (
r −

τT,k−1

T

)
.

Note that m2(y) = (
p∑
i=0

λiFi(y))2, where λi = [
p−1∑
i=0

F 2
i (x)]−1/2Fi(x). By Cauchy Schwarz in-

equality, we have

m2(y) ≤
p∑
i=0

λ2
i

p∑
i=0

F 2
i (y) =

p∑
i=0

F 2
i (y).

Meanwhile, similarly to the proof of Theorem 3.1 of Dong and Gao (2012)7, we have as T →∞

Ψ√
Tp

T∑
t=1

p∑
i=0

F 2
i (xt)→P L(1, 0). (4.8)

7In their proof, they notice that (normalization of) the summation of infinite series of quadratic of

Hermite functions converges to the so-called Ullman density, and thus a two–step procedure is used to prove

the convergence result.
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By the dominated convergence theorem, we have

[MT ]r →P σ
2

∫ (p−1∑
i=0

λiFi(s)

)2

dsL(r, 0)(1 + oa.s.(1))

= σ2
p−1∑
i=0

λ2
i

∫
F 2
i (s)ds L(r, 0) + oP (1),

uniformly in r ∈ [0, 1]. Thus, we have

[MT ]1 →P

p−1∑
i=0

λ2
i

∫
F 2
i (s)dsL(1, 0) = σ2

p−1∑
i=0

λ2
iF

2
i (x)L(1, 0) = σ2L(1, 0).

Moreover, if we denote [Mn,W1T ] as the covariation process of Mn and W1T , then we have

[Mn,W1T ]r =
4
√
T

k∑
t=1

m

(√
TW1T

(
t− 1

T

))(τT,t
T
−
τT,t−1

T

)
σ12

+
4
√
T

k∑
t=1

m

(√
TW1T

(
t− 1

T

))(
r −

τT,k−1

T

)
σ12,

= σ12
4
√
T

r∫
0

m
(√

TW1(s)
)
ds · (1 + oa.s.(1)),

where σ12 is the covariance of W1 and W2.

In addition, p−11/12m(y) is integrable and square integrable by Lemma B.7 listed in Appendix

B below. Then, for all r ∈ [0, 1],∣∣∣∣∣∣ 4
√
T

r∫
0

m(
√
TW1(s))ds

∣∣∣∣∣∣ ≤ 1
4
√
T

(√
T

∫ ∣∣∣m(√TW1(s)
)∣∣∣ ds) = OP (p11/12/

4
√
T ).

According to Assumptions 1 and 2, we have

[Mn,W1T ]r ≤ OP (p11/12/
4
√
T ) = oP (1).

Therefore, we have shown

1
4
√
T

T∑
t=1

m(xt)εt →D MN(0, σL(1, 0)1/2), (4.9)

which implies

L(1, 0)−1/2σ−1 1
4
√
T

T∑
t=1

m(xt)εt →D N(0, 1). (4.10)

Therefore, the proof of Theorem 2 is now completed.

32



Proof of Theorem 3. We have

1√
T

T∑
t=1

F 2
0 (xt)→P L(1, 0) (4.11)

by Wang and Phillips (2009a).

Simple derivations imply as T →∞

1

T

T∑
t=1

y2
t =

1

T

T∑
t=1

(f2(xt) + ε2
t + 2f(xt)εt)→P σ

2,

because 1
T

T∑
t=1

f2(xt) = OP (T−1/2), 1
T

T∑
t=1

2f(xt)εt = OP (T−3/4) and 1
T

T∑
t=1

ε2
t →P σ2. This com-

pletes the proof of Theorem 3.

8.2 Appendix B: Proof of Theorem 4.

We start some lemmas required to complete the proof of Theorem 4. The proofs of the lemmas are

given before the proof of Theorem 4.

Lemma B.1. Let ζt =
∞∑
j=0

πjet−j and xt =
t∑

j=1
ζt, where {et} is i.i.d. sequence with mean

zero and variance 1 and E(|e|q1) < ∞ for some q > 2,, in which π0 = 1,
∞∑
j=0
|πj | < ∞ and

∞∑
j=1

πj = Ψ 6= 0. Decompose xt = ΨSt + R
′
t + R

′′
t . Then, in an extended probability space, with

T 1/q ≤ hT ≤ C1(T log T )1/2, we have

(1) P (max0≤k≤T |Sk −W (k)| ≥ hT ) ≤ C2Th
−q
T and max0≤k≤T |Sk −W (k)| = o(T 1/q) a.s.;

(2) ∀ T, P (max1≤k≤T |R
′
k| ≥ hT ) ≤ CTh−qT , P (max1≤k≤T |R

′′
k | ≥ hT ) ≤ CTh−qT and E(|R′k|q) <

∞ and E(|R′′k |q) <∞.

Proof: The argument (1) follows from Komlos et al. (1976) or Einmahl (1989). The proof of

argument (2) can be found in proof of Lemma 2 of Akonom (1993).

Lemma B.2 (Rothental Inequality) Let q ≥ 2, and {wi}i=1,...,T be a sequence of independent

random variables with zero mean and E|wqi | <∞. Then we have

E

{∣∣∣∣∣
T∑
i=1

wi

∣∣∣∣∣
q}
≤ cq max


T∑
i=1

E [|wi|q] ,

(
T∑
i=1

E
(
w2
i

))q/2 ,

where cq is constant depending on q.

Proof: See Rothental (1970).

Lemma B.3. Let ζt =
∞∑
j=0

πjet−j and xt =
t∑

j=1
ζt, where {et} is i.i.d. sequence with mean zero and

variance 1 and E(|e1|q) <∞ for some q > 2, in which π0 = 1,
∞∑
j=0
|πj | <∞ and

∞∑
j=1

πj = Ψ 6= 0.
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Then supr | 1
Ψ
√
T
x[Tr] − W1(r)| →P 0 in a suitably extended space for some W1(r), and

supr | 1√
T

[Tr]∑
t=1

et − W1(r)| →P 0. That is, the random walk generated by the innovation process

converges in probability to the same limiting process.

Proof: We have following decompositions:

xt =
t∑

k=1

ζk =
t∑

k=1

(
∞∑
j=0

πjek−j) = π0et + (π0 + π1)et−1 + ...+ (π0 + π1 + ...+ πt−1)e1

+

∞∑
k=0

(πk+1 + ...+ πk+t)e−k = ΨSt +R
′
t +R

′′
t ,

where R′t =
t∑

k=1

(Ψt−k −Ψ)ek and R′′t =
∞∑
k=0

(Ψt+k −Ψk)e−k, in which Ψk =
k∑
j=0

πj .

Thus, to show the result, it suffices to show that:

max
0≤t≤T

∣∣∣∣ 1√
T
R
′
t

∣∣∣∣→P 0 and max
0≤t≤T

∣∣∣∣ 1√
T
R
′′
t

∣∣∣∣→P 0.

According to Lemma 2 of Akonom (1993), we have

max
0≤t≤T

∣∣∣R′t/√T ∣∣∣ = oP (T 1/q−1/2) and max
0≤t≤T

∣∣∣R′′t /√T ∣∣∣ = oP (T 1/q−1/2).

This completes the proof of Lemma B.3.

Lemma B.4. Let e1, ..., eT be a sequence of i.i.d. random variables with mean zero and variance

1, and E(|e1|6+δ) <∞ for some δ > 0. One can construct a probability space (Ω, P, F ) and random

variable ST and UT such that ST =
T∑
t=1

et and UT =
T∑
t=1

ut with ut being i.i.d N(0, 1) such that

E[|ST − UT |2] ≤ CT 2/3.

Proof: Let E[|ei|q] < ∞ for some q ≥ 1. According to Akonomn (1993 p. 77), for hT satisfying

T 1/q ≤ hT ≤ C1(T log T )1/2, we can construct a probability space (Ω, P, F ) such that

P ( max
0≤k≤T

|e1 + ...+ ek − Uk| ≥ hT ) ≤ C2Th
−q
T .

Because {|ST − UT | ≥ hT } ⊆ {max0≤k≤T |e1 + ...+ ek − Uk| ≥ hT }, we have

P (|ST − UT | ≥ hT ) ≤ CTh−qT ,

E(|ST − UT |2) ≤ h2
T + E[|ST − UT |21{|ST−UT |>hT }]

≤ h2
T + [E|ST − UT |3]2/3(P{|ST − UT | > hT })1/3.

Letting hT = Tα with 2
q ≤ α <

1
3 , we have

(P{|ST − UT | > λ})1/3 ≤ [CTh−qT ]1/3 = C1/3T
1
3

(1−αq).
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By Minkowski inequality, we then have

E[|ST − UT |3]2/3 ≤ 2{E[|ST |3]2/3 + [E|UT |3]2/3}.

By Rothental inequality in Lemma B.2, we obtain

E|ST |3 ≤ C1T
3/2,

and due to the property of Normal distribution,

[E|UT |3] ≤ CT 3/2.

Thus, [E|ST − UT |3]2/3 ≤ CT . This, together with

[E|ST − UT |3]2/3(P{|ST − UT | > hT })1/3 ≤ CT
4
3
−αq

3 ,

implies

E(|ST − UT |2) ≤ T 2α + CT
4
3
−αq

3 ≤ C T
2
3

by the choice of α. This completes the proof of Lemma B.4.

Lemma B.5. Write Ψi =
i∑

j=0
πj , S̃n =

n∑
i=0

Ψiei ≡
n∑
i=0

ẽi, and Λ2
n =

n∑
i=0

Ψ2
i . Define fn(t) =

EeitS̃n/Λnand let hn(x) be the density function of S̃n/Λn. Then

(1) hn(x) is uniformly bounded, and E(S̃n)2 = Λ2
n implies S̃n/Λn →d N(0, 1) as n→∞.

(2) supx |hn(x)− n(x)| = O( 1√
n

), where n(x) is the density of U ∼ N(0, 1).

Proof: The first argument is due to the proof of Corollary 2.2 of Wang and Phillips (2009a). Now,

we prove the second argument. By Fourier inverse transformation, we have

sup
x
|hn(x)− n(x)| ≤ 1

2π

∞∫
−∞

|fn(t)− e−t2/2|dt,

1

2π

∞∫
−∞

|fn(t)− e−t2/2|dt =
1

2π

∫
|t|≤A

|fn(t)− e−t2/2|dt+
1

2π

∫
|t|>A

|fn(t)− e−t2/2|dt

≡ I1n + I2n.

It follows similarly from proof of Corollary 2.2 of Wang and Phillips (2009a), we have

I2n ≤ 2

∫
|t|>A

e−t
2/8dt+ Cηn/2−1,

with 0 < η < 1.
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Notice that

e−t
2/2 = e

− t
2

2
·

n∑
j=0

(Ψj)2

Λ2
n = Πn

j=0e
− t

2

2
·
Ψ2
j

Λ2
n ,

E

[
e
itS̃n
Λn

]
= Πn

j=0E

[
e
itẽj
Λn

]
.

We know that8 for any complex value |aj | ≤ 1 and |bj | ≤ 1 for j = 1, ..., n,

|a1...an − b1...bn| ≤
n∑
j=1

|aj − bj | .

Thus, we have ∣∣∣EeitS̃n/Λn − e−t2/2∣∣∣ = e−t
2/2
∣∣∣E [eitS̃n/Λn] /e−t2/2 − 1

∣∣∣
= e−t

2/2

∣∣∣∣∣∣∣∣
∏n
j=0E

[
eitẽj/Λn

]
∏n
j=0 e

− t2
2
·
Ψ2
j

Λ2
n

− 1

∣∣∣∣∣∣∣∣ ≤ e
− t

2

2

n∑
j=0

∣∣∣∣∣∣∣∣
E

[
e
itẽj
Λn

]
e
− t2

2
·
Ψ2
j

Λ2
n

− 1

∣∣∣∣∣∣∣∣ .

When t < minj

√
2 Λ2

n
(Ψj)2 = C

√
n (due to the fact that Λ2

n ∼ d2
n ∼ Ψ2n, see Wang and Phillips

(2009a, p. 731.), we have

E

[
e
itẽj/Λn+ t2

2
·
Ψ2
j

Λ2
n

]
= 1− (Ψj)

2t2

2Λ2
n

− i
t3E(|ẽ3

j |)
6Λ3

n

+
(Ψj)

2t2

2Λ2
n

+
t4

4
·

Ψ4
j

2Λ4
n

+ o

(
t3

Λ3
n

)
+ o

(
t4

Λ4
n

)
.

Hence, we have

e−
t2

2

n∑
j=0

∣∣∣∣∣∣∣∣
E

[
e
itẽj
Λn

]
e
− t2

2
·
Ψ2
j

Λ2
n

− 1

∣∣∣∣∣∣∣∣ ≤ Ce
−t2/2(|t|3/Λn + t4/Λ2

n),

which suggests choosing A = minj

√
2 Λ2

n
(Ψj)2 = C

√
n to imply

I1n ≤ C
1

Λn

∫
|t|<A

e−t
2/2|t|3dt+ C

1

Λ2
n

∫
|t|<A

e−t
2/2|t|4dt

= O

(
1

Λn

)
= O

(
1√
n

)
.

Obviously, I2n is of order smaller than 1√
n

. Thus

sup
x
|hn(x)− n(x)| = O

(
1√
n

)
. (4.1)

8See Feller (1971) p. 519.
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Lemma B.6. Conditional on Fk,T = σ(..., ek−1, ek), sup
(l,k)∈ΩT (η)

sup
|u|<δ

|hl−k(u)− hl−k(0)| ≤ C1
1√
ηT

+

C2δ, where ΩT (η) = {(l, k) : ηT ≤ k ≤ (1− η)T, k + ηT ≤ l ≤ T}.

Proof: Observe that

xl =
l∑

j=1

j∑
i=−∞

πj−iei =
k∑
j=1

j∑
i=−∞

πj−iei +
l∑

j=k+1

j∑
i=−∞

πj−iei

= xk +
l∑

j=k+1

k∑
i=−∞

πj−iei +
l∑

j=k+1

j∑
i=k+1

πj−iei

≡ xk + x1l + x2l.

Note that x2l =D S̃l−k, where “=D” means the same in distribution, and S̃T =
T∑
i=1

Ψiei and

Ψi =
i∑

j=0
πj .

Conditional on Fk,T , (xl − xk)/Λl−k = (x1l + x2l)/Λl−k has a density9 of the form hl−k(x −

x1l/Λl−k), where Λ2
T =

T∑
i=0

Ψ2
i . We then have

sup
l−k∈ΩT

sup
|u|<δ

|hl−k(u− x1l/Λl−k)− hl−k(−x1l/Λl−k)|

≤ sup
l−k∈ΩT

sup
|u|<δ

∣∣∣∣hl−k(u− x1l/Λl−k)−
1√
2π
e−(u−x1l/Λl−k)2/2 +

1√
2π
e−(u−x1l/Λl−k)2/2

− 1√
2π
e

(−x1l/Λl−k)2

2 +
1√
2π
e

(−x1l/Λl−k)2

2 − hl−k(−x1l/Λl−k)

∣∣∣∣
≤ 2 sup

l−k∈ΩT

sup
x

∣∣∣∣hl−k(x)− 1√
2π
e
−x2

2

∣∣∣∣+
1√
2π

sup
|u|<δ

sup
x

∣∣∣e−(x+u)2/2 − e−x2/2
∣∣∣ .

It is obvious that

1√
2π

sup
|u|<δ

sup
x

∣∣∣e−(x+u)2/2 − e−x2/2
∣∣∣ ≤ C2δ.

Because of l − k ≥ ηT , according to Lemma B.5, we have

sup
l−k∈ΩT

sup
x

∣∣∣∣hl−k(x)− 1√
2π
e
−x2

2

∣∣∣∣ ≤ C1
1√
ηT

,

which completes the proof of Lemma B.6.

Lemma B.7. Three Properties of Hermite Functions.

(a) |Fi(x)| ≤ 0.816, uniformly in i = 0, 1, 2.... and x ∈ R.

(b)
∫
x2F 2

i (x) = i
2 + i+1

2 .

9this equals to (xl,T − xk,T )/dl,k,T as defined in Wang and Phillips 2009a, p. 731, line 13, and dl,k,T

satisfies Assumption 2.3 of Wang and Phillips (2009a).
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(c)
∫
|Fi(x)|dx ≤ C × i5/12.

Proof: (1) Property (a) is Cramer’s inequality, which can be found in Abramowit and Stegun

(1965) or Schwartz (1967).

(2) To prove property (b), first notice the recursive relationship

xFi(x) =

√
i

2
Fi−1(x) +

√
i+ 1

2
Fi+1(x), i = 1, 2, ...,

x2F 2
i (x) =

i

2
F 2
i−1(x) +

i+ 1

2
F 2
i+1(x) + 2

√
i

2

√
i+ 1

2
Fi−1(x)Fi+1(x).

Thus, we have∫
x2F 2

i (x) =

∫
i

2
F 2
i−1(x) +

i+ 1

2
F 2
i+1(x) + 2

√
i

2

√
i+ 1

2
Fi−1(x)Fi+1(x)

=
i

2
+
i+ 1

2
.

(3) Due to Muckenhoupt (1970a, 1970b), there exist positive constants C and D such that

|Fi(x)| ≤ C[|N − x2|+N1/3]−1/4, for x2 < N,

|Fi(x)| ≤ C exp−Dx
2
, for x2 ≥ N,

where N = 2i+ 1.

Thus, we have ∫
|Fi(x)| dx =

∫
x2<N

|Fi(x)| dx+

∫
x2≥N

|Fi(x)| dx

≤ C

∫
x2<N

[|N − x2|+N1/3]−1/4dx+ C

∫
x2≥N

exp−Dx
2
dx

≤ C × i5/12 + o
(
i5/12

)
.

Lemma B.8. Let g(x) be a zero energy function, i.e.,
∫
g(x)dx = 0, g2(x) is integrable and square

integrable with
∫
|g(t)|dt < ∞ and |ĝ(t)| < C min{|t|, 1}, where ĝ(x) = 1√

2π

∫
eitxg(t)dt and C is

positive constant. Then, as T →∞

1

T

T∑
t=1

E
[
g2(xt)

]
= CT−1/2,

2

T

T∑
s=2

s−1∑
t=1

E [|g(xt)g(xs)|] = C log(T ) · T−1/2.

Proof: Observe that

1

T

T∑
t=1

E
[
g2(xt)

]
=

1√
T

1√
T

T∑
t=1

E
[
g2(xt)

]
=

1√
T

1√
T

T∑
t=1

E

[
g2

(
Ψ
√
T

xt

Ψ
√
T

)]
.
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Since xt
Ψ
√
t

has a uniformly bounded density ht (due to the proof of Corollary 2.2 of Wang and

Phillips 2009a), we have

1√
T

1√
T

T∑
t=1

E

[
g2

(
Ψ
√
t
xt

Ψ
√
t

)]
=

1√
T

1√
T

T∑
t=1

∫
g2(
√
tx)ht(x)dx

=
1

T

T∑
t=1

∫
g2(u)ht(u)

1√
t
du ≤ C√

T

for some C > 0.

Using equation (3.8) of Lemma 3.2 of Wang and Phillips (2011), we have as T →∞

2

T

T∑
s=2

s−1∑
t=1

E [|g(xt)g(xs)|] ≤ C ·
1√
T

1√
T

(
C +

T∑
k=1

1√
t

)(
C +

T∑
k=1

1

t

)
≤ C log(T )T−1/2,

which completes the proof.

Lemma B.9. Let fij(x) = 1
i5/12j5/12Fi(x)Fj(x) for i = 1, ..., p − 2 and j = i + 1, ..., p − 1. Then,

fij(x) satisfy the conditions of Lemma B.8 uniformly over i and j.

Proof: (1) They are zero energy functions due to the orthogonality of Fi(x) and Fj(x) when

i 6= j.

(2) The function
[

1
i5/12j5/12Fi(x)Fj(x)

]2
is integrable and square integrable due to the fact that

1
i5/12j5/12Fi(x)Fj(x) ∈ L∞ and L1 uniformly over i and j. Thus 1

i5/12j5/12Fi(x)Fj(x) ∈ Lk, where

k ≥ 1 is an integer.

(3) They are integrable uniformly in i and j. By Cauchy Schwartz inequality, we have∫
|fij(x)|dx ≤ 1

i5/6

[∫
F 2
i (x)dx

∫
F 2
j (x)dx

]1/2

=
1

i5/6
.

(4) The property
∫
|xfij(x)|dx <∞ holds uniformly in (i, j),∫
|xfij(x)|dx ≤

∫ ∣∣∣∣x 1√
j
Fi(x)Fj(x)

∣∣∣∣ dx
≤ 1

i5/12

1

j5/12

[∫
F 2
j (x)dx

∫
x2F 2

i (x)dx

]1/2

=

√
2i+1

2

i5/12j5/12
,

which is bounded uniformly in (i, j) because j > i.

(5)
∫
|f̂ij($)|d$ <∞ uniformly in (i, j), where f̂ij($) is the fourier transformation of fij(x).

Note that the Hermite functions are eigenfunctions of itself such that

F̂i(t) = (i)jFj(t) =
1√
2π

∫
eitxFj(x)dx
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And by convolution theorem, the Fourier transformation of h(x) =
∫
f(x)g(x+ y)dy is ĥ(t) =

f̂(t)ĝ(t). And by the property of double Fourier transformation, we have
̂̂
h(t) = h(−t). Thus, we

have

f̂ij(t) =
1√
2π

∫
eitx

1

i5/12
Fi(x)

1

j5/12
Fj(x)dx

=
1√
2π

∫
eitx

1

i5/12
(i)−iF̂i(x)

1

j5/12
(i)−jF̂j(x)dx,

which implies ∣∣∣f̂ij(t)∣∣∣ =

∣∣∣∣∫ 1

i5/12
Fi(−t)

1

j5/12
Fj(−t+ y)dy

∣∣∣∣ .
Therefore, we have ∫ ∣∣∣f̂ij(t)∣∣∣ dt =

1

i5/12

1

j5/12

∫ ∣∣∣∣∫ Fi(−t)Fj(−t+ y)dy

∣∣∣∣ dt
≤ 1

i5/12

1

j5/12

∫
|Fi(t)|dt

∫
|Fj(y)|dy.

By Lemma B.7 (c), we then have
∫
|Fi(x)|dx = O

(
i

5
12

)
. Thus, we have

∫
|f̂ij(t)|d$ ≤ C. This

completes the proof of part (5).

Lemmas B.1–B.9 are needed in the proofs of Lemmas B.10–B.13 below, which are needed for

the proof of Theorem 4.

Proof of Theorem 4.

To prove the result, it suffices to show that as T →∞

E

∥∥∥∥ 1√
T
F TF − L(1, 0)I

∥∥∥∥2

= E

p−1∑
i=0

p−1∑
j=0, 6=i

[
1√
T

T∑
t=1

Fi(xt)Fj(xt)

]2


+

p−1∑
i=0

E

[ 1√
T

T∑
t=1

F 2
i (xt)− L(1, 0)

]2
→ 0.

Due to Lemmas B.8 and B.9, we have

p−1∑
i=0

p−1∑
j=0, 6=i

E

[
1√
T

∑
Fi(xt)Fj(xt)

]2

=
1

T

p−1∑
i=0

p−1∑
j=0, 6=i

T∑
t=1

E
[
F 2
i (xt)F

2
j (xt)

]
+

2

T

p−1∑
i=j+1

p−1∑
j=0, 6=i

T∑
t=s+1

T−1∑
s=1

E [Fi(xt)Fj(xt)Fi(xs)Fj(xs)]

≤ 1

T

p−1∑
i=0

p−1∑
j=0, 6=i

T∑
t=1

E
[
F 2
i (xt)F

2
j (xt)

]
+

4

T

p−1∑
i=j+1

p−2∑
j=0

T∑
t=s+1

T−1∑
s=1

E [|Fi(xt)Fj(xt)Fi(xs)Fj(xs)|]

=
1

T

p−1∑
i=0

p−1∑
j=0, 6=i

T∑
t=1

E
[
F 2
i (xt)F

2
j (xt)

]
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+
4

T

p−1∑
i=j+1

p−2∑
j=0

i5/6j5/6
T∑

t=s+1

T−1∑
s=1

E

(∣∣∣∣ 1

i5/6
1

j5/6
Fi(xt)Fj(xt)Fi(xs)Fj(xs)

∣∣∣∣)
≤ Cp2T−1/2 + Cp2p5/3(T−1/2 + log(T ) · T−1/2)→ 0

by Assumption 4.

Define

LT = LT i =
1√
T

T∑
t=1

F 2
i (xt),

LT,ε = LT i,ε =
1√
T

T∑
t=1

∞∫
−∞

F 2
i

(
Ψ
√
T

(
1

Ψ
√
T
xt + zε

))
φ(z)dz,

where φ(x) = φ1(x) and φε(x) = 1
ε
√

2π
exp(− x2

2ε2
) for some ε > 0.

Then, we have for each given i(
1√
T

∑
F 2
i (xt)− L(1, 0)

)2

=

(
LT − LT,ε + LT,ε −

1

T

T∑
t=1

φε

(
1

Ψ
√
T
xt

)

+
1

T

T∑
t=1

φε

(
1

Ψ
√
T
xt

)
−

1∫
0

φε (W1(t)) dt+

1∫
0

φε(W1(t))dt− L(1, 0)

2

.

By Cauchy Schwarz inequality, we have

E

(
1√
T

∑
F 2
i (xt)− L(1, 0)

)2

≤ 4E [LT − LT,ε]2 + 4E

[
LT,ε −

1

T

T∑
t=1

φε

(
1

Ψ
√
T
xt

)]2

+ 4E

 1

T

T∑
t=1

φε

(
1

Ψ
√
T
xt

)
−

1∫
0

φε(W1(t))dt

2

+ 4E

 1∫
0

φε (W1(t)) dt− L(1, 0)

2

≡ 4E(I2
1 ) + 4E(I2

2 ) + 4E(I2
3 ) + 4E(I2

4 ).

By Lemmas B.10–B.13 below, letting ε = T−1/2, we have

E

[
1√
T

∑
F 2
i (xt)− L(1, 0)

]2

≤ CT−1/4.

Thus, we have

p∑
i=1

E

[
1√
T

T∑
t=1

F 2
i (xt)− L(1, 0)

]2

≤ C p√√
T
→ 0

by Assumption 4.

Thus by Markov inequality ∥∥∥∥ 1√
T
F τF − L(1, 0)I

∥∥∥∥→P 0,
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which completes the proof of Theorem 4.

Lemma B.10. E(I2
1 ) ≤ Cε+ Cε1/2 as T →∞.

Proof: By Cauchy-Schwartz inequality and the fact that
∫
φ(z)dz = 1, we have

E(I2
1 ) ≤ 1

T
E

 ∞∫
−∞

{
T∑
t=1

Yt,T (z)}2φ(z)dz

 ∞∫
−∞

φ(z)dz (4.2)

=
1

T
E

 ∞∫
−∞

{
T∑
t=1

Yt,T (z)}2φ(z)dz

 ≤ 1

T

∞∫
−∞

E

{
T∑
t=1

Yt,T (z)

}2

φ(z)dz,

where Yt,T ≡ F 2
i (xt)− F 2

i

[
Ψ
√
T
(

1
Ψ
√
T
xt + zε

)]
.

Using the fact that the density of xt
Ψ
√
t

is uniformly bound, we have

1

T

T∑
t=1

E
[
Y 2
t,T (z)

]2
=

1

T

∞∑
t=1

∞∫
−∞

∣∣∣F 2
i

(√
tx+ Ψ

√
Tzε

)
− F 2

i

(√
tx
)∣∣∣2 ht(x)dx

=
1

T

∞∑
t=1

1√
t

∞∫
−∞

∣∣F 2
i (u+ Ψzε)− F 2

i (u)
∣∣2 gt (u/√t) du

≤ 2C

T

T∑
t=1

1√
t

∫
F 4
i (u)du = O(T−1/2).

Let ΩT = {(l, k) : ηT ≤ k ≤ (1− η)T, k + ηT ≤ l ≤ T} and let η = ε1/2. Then

2

T

T∑
k=1

T∑
l=k+1

|E{YkT (z)YlT (z)| = 2

T

 ∑
l>k,(l,k)/∈ΩT

+
∑

(l,k)∈ΩT

 |E{YkT (z)YlT (z)|

≤ 1

T 2

∑
l−k≤ηT

A+
A

T 2

T∑
k=1

√
T√
k

T∑
l=k+1

√
T√

l − k

×

 ∫
|y|≥
√
T

|F 2
i (x)|dx+ sup

(l,k)∈ΩT

sup
|u|<Czε1/2

∣∣hl|k(u)− hl|k(0)
∣∣
 ,

where hl|k(u) is the conditional density of xl−xk
Λl−k

with Λl−k being introduced in the proof of Lemma

B.5, and A = C
√
n as chosen in the proof of Lemma B.5.

The first term is of order Cε1/2 (see, for example, Page 1494 of Phillips 2009). Due to the

property that there exist positive constants C and D, such that

|Fi(x)| ≤ C[|N − x2|+N1/3]−1/4, for x2 < N,

|Fi(x)| ≤ C exp−Dx
2

for x2 ≥ N,

for N = 2i+ 1, and using the property of the exponential function and for |x| >
√
T , Assumption

A2 implies x2 ≥ N and then ∫
|x|>
√
T
|F 2
i (x)|dx = C

(√
T
)−c

,

42



where c is a arbitrarily large constant.

According to Lemma B.6, we have

sup
(l,k)∈ΩT

sup
|u|<Czε1/2

|hl|k(u)− hl|k(0)| ≤ Czε1/2,

and when 1
(ε1/2T )1/2 < ε1/2,

A

T 2

T∑
k=1

√
T√
k

T∑
l=k+1

√
T√

l − k
× sup

(l,k)∈ΩT

sup
|u|<Czε

|hl|k(u)− hl|k(0)| ≤ Czε1/2.

Therefore, by the dominated convergence theorem and the fact that
∫
|x|pφ(x)dx < ∞ for all

p, we have

E(I2
1 ) ≤ Cε1/2,

because
∫

|y|≥
√
T

|F 2
i (x)|dx is of smaller magnitude than ε1/2.

Lemma B.11. For some δ > 0, we have E(I2
2 ) ≤ C(T−1/2−δ).

Proof: Define GT (y) =
y∫
−∞

√
TF 2

i (
√
Tu)du, and G(y) =

∫
F 2
i (x)dx = 1 if y ≥ 0 and G(y) = 0

if y < 0. By construction, GT (y) → G(y) for all continuity points of G(y) and G(b) − G(a) = 0 if

0/∈ (a, b].

Now, LT,ε has the following form:
∞∫
−∞

( 1
T

T∑
t=1

φε(y− 1
Ψ
√
T
xt−x))dGT (y). The difference between

this and
∫
|y<ν|(

1
T

T∑
t=1

φε(y − 1
Ψ
√
T
xt − x))dGT (y) is bounded in absolute value by

C

∣∣∣∣∣
∫
|y>ν|

dGT (y)

∣∣∣∣∣ = C

∫
|u>ν

√
T |
F 2
i (u)du

because φε(y) is uniformly bounded over ε and y.

Because Fi(u) are Hermite series, similarly to the arguments used in the proof of Lemma B.10,

choosing ν = Tα with 0 >= α > −1/2, we have for any q > 0

C

∫
|u>ν

√
T |
F 2
i (u)du ≤ C(T 1/2−α)−q.

Define ym,i, i = −m, ..., 0, ..,m such that ym,−m = −[ν] < ym,−m+1 < ... < ym,m−1 < ym,m = [ν]

and supi |ym,i−ym,i−1| = 2∗ νm . Then, the difference between
∫
|y<ν|(

1
T

T∑
t=1

φε(y− 1
Ψ
√
T
xt−x))dGT (y)

and
m∑

i=−m
( 1
T

T∑
t=1

φε(y − 1
Ψ
√
T
xt − x))

ym,i+1∫
ym,i

dGT (y) is bounded in absolute value by

C
ν

m

∫
{|y|≤v}

d|Fn|(y) ≤ C ν

m
.
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Further, the difference between
m∑

i=−m
( 1
T

T∑
t=1

φε(y− 1
Ψ
√
T
xt−x))

ym,i+1∫
ym,i

dGT (y) and
m∑

i=−m
( 1
T

T∑
t=1

φε(y−

1
Ψ
√
T
xt − x))

ym,i+1∫
ym,i

dG(y) is bounded in absolute value by

C

m∑
i=−m

∣∣∣∣∣∣∣
ym,i+1∫
ym,i

d(GT (y)−G(y))

∣∣∣∣∣∣∣ .
When 0 is in (ym,i, ym,i+1], we have

∣∣∣∣∣ym,i+1∫
ym,i

d(GT (y)−G(y))

∣∣∣∣∣ ≤ C ν
m .

Let
√
T ν
m →∞, as T →∞. When 0 is not in (ym,i, ym,i+1], and ym,i > 0, we have∣∣∣∣∣∣∣

ym,i+1∫
ym,i

d(GT (y)−G(y))

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
ym,i+1∫
ym,i

dGT (y)

∣∣∣∣∣∣∣ = GT (y)−GT (ym,i)

=

ym,i+1∫
ym,i

√
TF 2

i (
√
Tu)du =

√
Tym,i+1∫
√
Tym,i

F 2
i (
√
Tu)d

√
Tu

≤
∞∫

√
Tym,i

F 2
i (y)dy. ≤ C(T 1/2 ν

m
)−l

by a similar argument to the proof in Lemma B.10.

When 0 is not in (ym,i, ym,i+1], and ym,i+1 < 0, we have∣∣∣∣∣∣∣
ym,i+1∫
ym,i

d(GT (y)−G(y))

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
ym,i+1∫
ym,i

dGT (y)

∣∣∣∣∣∣∣ = GT (y)−GT (ym,i)

=

ym,i+1∫
ym,i

√
TF 2

i (
√
Tu)du =

√
Tym,i+1∫
√
Tym,i

F 2
i (
√
Tu)d

√
Tu

≤

√
Tym,i+1∫
−∞

F 2
i (y)dy. ≤ C(T 1/2 ν

m
)−l.

Thus, the trem C
m∑

i=−m
|
ym,i+1∫
ym,i

d(GT (y)−G(y))| is bounded by

C
v

m
+ C(T 1/2 ν

m
)−l.

As a consequence, |I2| is bounded surely b C · (T 1/2−α)−l + ( νm) + ( νm + (T 1/2 ν
m)−l), where l

can be sufficiently large.

Because the above approximation procedure is a deterministic procedure, we have

|I2|2 ≤ C
[
(T 1/2−α)−2l + (

ν2

m2
) + C(T 1/2 ν

m
)−2l

]
.
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Because ν and m can be chosen, and l is sufficiently large positive constant, we can choose
1
T < ν2

m2 < T−1/2−δ such that

|I2|2 ≤ CT−1/2−δ,

which can be improved for suitable choice of ν and m. However, for our purpose, the above choice

is enough to guarantee convergence of the diagonal terms.

Lemma B.12. E
[
I2

3

]
≤ C(T−1/3) as T →∞.

Proof: Observe that

E
[
I2

3

]
= E

 1

T

T∑
t=1

φε

(
1

Ψ
√
T
xt

)
−

1∫
0

φε(W1(t))dt

2

.

Then, we have

E

∣∣∣∣∣∣ 1

T

T∑
t=1

φε

(
1

Ψ
√
T
xt

)
−

1∫
0

φε(W1(r))dr

∣∣∣∣∣∣
2

= E

∣∣∣∣∣∣ 1

T

T∑
t=1

φε

(
1

Ψ
√
T
xt

)
− 1

T

T∑
t=1

φε

(
W1

(
t

T

))
−

1∫
0

φε(W1(r))dr +
1

T

T∑
t=1

φε

(
W1

(
t

T

))∣∣∣∣∣∣
2

≤ 2E

[
1

T

T∑
t=1

φε

(
1

Ψ
√
T
xt

)
− 1

T

T∑
t=1

φε

(
W1

(
t

T

))]2

+ 2E

− 1∫
0

φε(W1(r))dr +
1

T

T∑
t=1

φε

(
W1

(
t

T

))2

≤ 2

T

∑
E

[
φε

(
1

Ψ
√
T
xt

)
− φε (W1 (t/T ))

]2

+ E

∣∣∣∣∣∣−
1∫

0

φε(W1(r))dr +
1

T

T∑
t=1

φε

(
W1

(
t

T

))∣∣∣∣∣∣
2

≡ J1 + J2.

For the J1 term, we have∣∣∣∣φε( 1

Ψ
√
T
xt

)
− φε(W1T (t))

∣∣∣∣ =

∣∣∣∣φ′ε(ξ)( 1

Ψ
√
T
xt −W1(t/T )

)∣∣∣∣ ,
where ξ lies between 1√

T
xt and W1(t/T ). And we have∣∣∣φ′ε(x)
∣∣∣ =

∣∣∣∣ 1

ε
√

2π
exp(− x

2

2ε2
)(
−x
ε2

)

∣∣∣∣ ≤ C uniformly over x, ε.

Thus, we have

1

T

∑
E

[∣∣∣∣φε( 1

Ψ
√
T
xt

)
− φε(W1(t/T )

)∣∣∣∣2 ≤ C

T

∑
E

(
1

Ψ
√
T
xt −W1

(
t

T

))2

.
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Recalling the following definitions and decompositions:

xt =
t∑

k=1

(
∞∑
j=0

πket−j) = π0et + (π0 + π1)et−1 + ...+
∞∑
k=0

(πk+1 + ...+ πk+t)e−k,

Ψk =
k∑
j=0

πj and Ψ =
∞∑
j=0

πj ,

we have

xt = ΨSt +

t−1∑
k=0

Ψket−k +

∞∑
k=0

(Ψk+1 −Ψk)e−k,

or equivalently,

xt = ΨSt +R
′
t +R

′′
t

where St =
t∑

k=1

et, R
′
t =

t∑
k=1

((Ψk+1 −Ψ)ek and R
′′
t =

t∑
k=1

((Ψk+1 −Ψk)e−k. This means that xt can

be decomposed into a random walk plus two additional terms.

We then have

E

(
1√
T
St +

1

Ψ
√
T
R
′

t +
1

Ψ
√
T
R
′′

t −W1(
t

T
)

)2

= E

(
χt +

1

Ψ
√
T
R
′

t +
1

Ψ
√
T
R
′′

t

)2

≤ 2E
[
χ2
t

]
+ 2E

(
1

Ψ
√
T
R
′

t

)2

+ 2E

(
1

Ψ
√
T
R
′′

t

)2

,

where χt = 1√
T
St −W1( t

T
).

Due to Lemma B.3, we have

E(χ2
T ) ≤ C(T−1/3).

Using the property that χt has independent increments (because St and W1(t) have independent

increments), we have

E
(
χ2
t

)
≤ C(T−1/3 t

T
),

Therefore, we obtain

1

T

T∑
t=1

E
[
χ2
t

]
≤ C(T−1/3).

By Akonom (1993 p. 76), we know that for all t = 1, .., T,

E

(
1√
T
R
′
t

)2

≤ C1/T,

E

(
1√
T
R
′′
t

)
=
C1

T
E

(
1√
T
R
′′
t

)2

≤ C2/T,
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both of which lead to

1

T

T∑
t=1

E

(
1√
T

ΨSt +
1√
T
R
′
t +

1√
T
R
′′
t −W1

(
t√
T

))2

≤ C
(

1

T
+ T−1/3

)
.

For the J2 term, using the following equations:

1

T

T∑
t=1

φε

(
W1

(
t

T

))
=

1∫
0

φε

(
W1

(
[rT ]

T

))
+

1

T
φε

(
W1

(
T

T

))
− 1

T
φε (W1(0))

=

1∫
0

φε

(
W1

(
[rT ]

T

))
+
C

T
,

E

(∫ ∣∣∣∣φε(W1

(
[rT ]

T

))
− φε(W1(r))

∣∣∣∣ dr)2

≤ E

(∫ ∣∣∣∣φε(W1

(
[rT ]

T

))
− φε (W1(r))

∣∣∣∣2 dr
)

=

(∫
E

∣∣∣∣φε(W1

(
[rT ]

T

))
− φε(W1(r))

∣∣∣∣2 dr
)
≤

1∫
0

sup
∣∣∣φ′ε(x)

∣∣∣2E [∣∣∣∣W1

(
[rT ]

T

)
−W1(r)

∣∣∣∣2
]
dr

≤ C

T
,

we have J2 ≤ C
T .

Combining the results for J1 and J2, we have derived that

E
[
I2

3

]
≤ C

(
T−1/3

)
.

Lemma B.13. E
[
I2

4

]
≤ Cε as ε→ 0.

Proof: Observe that

E
[
I2

4

]
= E

 ∞∫
−∞

φ(x)L(1, εx)dx−
∞∫
−∞

φ(x)dx L(1, 0)

2

.

Let F (x) = Φ(x) − I(x ≥ 0), where Φ(x) is the CDF of normal variable U ∼ N(0, 1) and I(.)

denote the conventional indicator function. We have F (∞) = F (−∞) = 0.

Note that L(1, 0) =
∞∫
−∞

L(1, εx)I(x ≥ 0) dx for any ε > 0. We thus have

ε−1/2


∞∫
−∞

φ(x)L(1, εx)dx− L(1, 0)

 = ε−1/2

∞∫
−∞

L(1, εx)dF (x).

By the definition of L(1, y) just above equation (1.2) and then equation (2.15) of Borodin (1986),

we therefore obtain

E

ε−1/2

∞∫
−∞

L(1, εx)dF (x)

2

≤ C,

which implies

E
[
I2

4

]
≤ Cε,

which completes the proof of Lemma B.13.
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