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Abstract

This article studies a simple, coherent approach for identifying and estimating error

correcting vector autoregressive moving average (EC-VARMA) models. Canonical

correlation analysis is implemented for both determining the cointegrating rank, using

a strongly consistent method, and identifying the short-run VARMA dynamics, using

the scalar component methodology. Finite sample performances are evaluated via

Monte-Carlo simulations and the approach is applied to model and forecast US interest

rates. The results reveal that EC-VARMA models generate significantly more accurate

out-of-sample forecasts than vector error correction models (VECMs), especially for

short horizons.
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1 Introduction

Many macroeconomic time series have stochastic trends (often integrated of order 1, I(1)),

and there are compelling theoretical reasons to expect that they are cointegrated. Cointe-

gration refers to situations where several I(1) variables share at least one common stochas-

tic trend. The Granger Representation Theorem (Engle and Granger, 1987) states that

all cointegrated time series have a vector error correction representation. Since most stud-

ies on cointegration are set within the context of finite-lag vector autoregressive (VAR)

models, the error correcting VARs are commonly referred to as vector error correction

models (VECMs). However, the Granger Representation Theorem allows for the time se-

ries of interest to have vector autoregressive moving average (VARMA) dynamics. In this

paper we provide a methodology for the identification and estimation of error correcting

VARMA models. While we could legitimately call such models VECMs as well, we refer to

them as EC-VARMA models, and use the term “VECM” exclusively for error correcting

VARs of finite order throughout the paper.

The literature on EC-VARMA models is quite limited. Lütkepohl and Claessen (1997)

are the first to consider EC-VARMA models by generalising the Echelon form specifica-

tion of VARMA models (Hannan and Kavalieris, 1984; Hannan and Deistler, 1988; Poskitt,

1992; Lütkepohl and Poskitt, 1996) to include an error correcting mechanism. They con-

sider a four variable EC-VARMA model in Echelon form for US money demand and find

that in general it substantially outperforms a VECM in terms of out-of-sample forecasting.

They also examine a more parsimonious version of the EC-VARMA model by dropping all

insignificant parameters, and this leads to an even better forecasting performance. Poskitt

(2003) provides a detailed technical discussion of the theoretical results that support the

EC-VARMA model in the Echelon form. Using a six variable model with U.S. macroeco-

nomic data as an illustration he also observes a superior forecasting performance of the

EC-VARMA model over a VECM but also a VARMA in levels.

Kascha and Trenkler (2014) generalize the final moving average (FMA) representation
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proposed by Dufour and Pelletier (2011) to cointegrated VARMA models, and use an in-

formation criterion to choose the AR and MA orders for the cointegrated VARMA model

in levels. They find promising results relative to a multivariate random walk and a stan-

dard VECM for predicting U.S. interest rates. Using the FMA representation makes their

specification strategy simpler than the Echelon form, however the FMA representation is

somewhat restrictive as it only focuses on a special subset of VARMA models in which the

MA operator is scalar. Furthermore, the rank of the cointegration rank is taken as given.

These limitations restrict the applicability of their methodology to empirical analyses.

This paper contributes to this literature in two aspects. The first is the determina-

tion of the cointegrating rank. With the exception of Poskitt (2003) the existing papers

either assume this away by taking the cointegrating rank as known (Kascha and Trenkler,

2014), or use the Johansen method (Johansen, 1988) to determine the cointegrating rank

(Lütkepohl and Claessen, 1997). The Johansen method is based on likelihood ratio tests

for cointegration under the assumption that the data generating process (DGP) is a finite

order VAR. Although this method is asymptotically justifiable for infinite order VARs as

well (see Lütkepohl and Saikkonen, 1999), its finite sample performance in such situations

is very poor. Here, we extend the nonparametric procedure of Poskitt (2000) (used in

Poskitt 2003) to choose the cointegrating rank, to also include the case where there are no

unit roots in the system. This selection procedure uses the canonical correlations between

the vector time series and its first lag, and does not require any parametric assumptions

about the dynamics of the underlying DGP.

The second aspect that we address is the identification and specification of the EC-

VARMA model. The existing papers either rely on the identification of VARMA models

in their Echelon form (Lütkepohl and Claessen, 1997), or opt for the FMA representation

that is less general but easier to identify (Kascha and Trenkler, 2014). The rules for the

identification of Echelon form VARMA models have often been found to be too unintuitive

to understand. For example, Dufour and Pelletier (2011) state,
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“We see that dealing with VARMA models in echelon form is not as easy

as dealing with univariate ARMA models .... This might be a reason why

practitioners are reluctant to employ VARMA models. Who could blame them

for sticking with VAR models when they probably need to refer to a textbook to

simply write down an identified VARMA representation?”

They then suggest specifying the FMA representation that reduces the vector moving

average component of a VARMA to a correlated set of scalar moving averages. These

correlated univariate moving averages cannot capture the full cross covariances of a vector

moving average process, and hence this method incurs some loss of information. Kascha

and Trenkler (2014) base their EC-VARMA representation on the final moving average

representation of Dufour and Pelletier (2011).

In this paper, we extend the Athanasopoulos and Vahid (2008a) method for the iden-

tification of stationary VARMA models to the partially non-stationary case. The Athana-

sopoulos and Vahid (2008a) method is based on the scalar component model (SCM)

methodology, originally proposed by Tiao and Tsay (1989). One of the main contributions

of this paper is that we establish the validity of the SCM methodology for non-stationary

VARMA models. Specifically, we show that the SCM methodology can be applied to par-

tially non-stationary time series in the exact same way as it is applied to stationary time

series. This method identifies a dynamically complete VARMA structure that embodies

at least all restrictions implied by Echelon form, which are necessary and sufficient for

unique identification of a VARMA structure, and may also include some over-identifying

restrictions that are supported by the data. The fact that the identification process is

based on a series of moment tests makes this methodology easier to comprehend and less

of a black box for applied econometricians.

In summary our paper offers a two step approach for specifying EC-VARMA models.

In the first step the cointegrating rank is identified by a simple to apply strongly-consistent

model selection criterion based on canonical correlations analysis. In the second step the
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VARMA dynamics are identified using the SCM methodology which comprises a sequence

of logical moment tests also cast in terms of canonical correlations. This makes these two

steps both conceptually and procedurally consistent with each other. Once the cointe-

grating rank and the structure of the VARMA specification in levels are determined, the

model can be formulated in its EC-VARMA form and all free parameters can be estimated

using full information maximum likelihood (FIML).

We use a Monte Carlo exercise to evaluate the finite sample performance of the ex-

tended Poskitt’s procedure in selecting the correct cointegrating rank and of the SCM

methodology in identifying the correct VARMA structure in levels. We also examine the

predictive ability of EC-VARMA models and VECMs when forecasting data generated

from an EC-VARMA DGP. The computational demands of maximum likelihood estima-

tion are impractical for Monte Carlo simulations, so we replace FIML estimation with

iterative OLS (IOLS) suggested by Kapetanios (2003), which we extend to EC-VARMA

models. As an empirical illustration, we use the proposed methodology to develop an

EC-VARMA model for US interest rates. We find that the EC-VARMA model produces

forecasts that are superior to those produced by VECMs, especially in short horizons.

The remainder of this paper is organized as follows. Section 2 defines the notation used

in this paper. Sections 3 and 4 discuss the method of determining the cointegrating rank,

and the SCM methodology for identifying the VARMA structure in levels for partially

nonstationary time series, respectively. The Monte Carlo evaluation of these methods is

conducted in Section 5. Section 6 presents an empirical application to forecasting the term

structure of interest rates. Section 7 concludes.

2 Notation

The general form of a VARMA(p,q) process is

Φ0yt = Φ1yt−1 + · · ·+ Φpyt−p + Θ0ut + Θ1ut−1 + · · ·+ Θqut−q, (1)
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where yt is a K-dimensional time series, Φi and Θj are K×K matrices of coefficients,

i = 0, 1, . . . , p, j = 0, 1, . . . , q, and ut is a K-dimensional vector of i.i.d. Gaussian

white noise process with mean zero and nonsingular covariance matrix Σ = E (ut u
′
t).

The process in equation (1) can be written as

Φ(L)yt = Θ(L)ut,

where Φ(L) = Φ0−Φ1 L− · · · −Φp L
p, Θ(L) = Θ0 + Θ1 L+ · · · + Θq L

q, and L is the

lag operator, such that Lyt = yt−1. The matrix polynomials satisfy

det Φ(z) 6= 0 |z| ≤ 1, z 6= 1, and det Θ(z) 6= 0 |z| ≤ 1.

We allow for the AR operator Φ(z) to have roots at z = 1, to account for the integrated

and cointegrated components of yt. Each individual time series in yt is at most I(1).

The possibility that some elements in yt may be stationary without first differencing is

not excluded.

We obtain the EC-VARMA form representation from equation (1) by subtracting

Φ0yt−1 from both sides of the equation,

Φ0∆yt = Πyt−1 + Ψ1∆yt−1 + · · ·+ Ψp−1∆yt−p+1 + Θ0ut + Θ1ut−1 + · · ·+ Θqut−q, (2)

where Π = −(Φ0 −Φ1 − · · · −Φp), and Ψi = −(Φi+1 + · · · + Φp) for i = 1, . . . , p − 1.

Denote the true cointegrating rank by ρ0, i.e. there exist ρ0 linear combinations of the

components in yt that are stationary, which imposes the restriction that rank(Π) = ρ0.

Hence, Π can be decomposed into Π = αβ′, where α and β are both matrices of

dimension K × ρ0 with full column rank. The columns of β represent the cointegrating

vectors and β′yt represent ρ0 long-run equilibrium relationships in yt (Granger, 1981;

Engle and Granger, 1987).

In the remainder of the paper, we assume that we have a realization of size T ,
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{y1,y2, . . . ,yT }, generated from equation (1). For ease of notation, we use yt to de-

note both the random vector and one realization of the random vector. {y1,y2, . . . ,yT }

and {yt }Tt=1 are used interchangeably throughout the paper.

3 A non-parametric method for determining the cointegrat-

ing rank

The usual Johansen procedure for testing the cointegrating rank in the context of VECMs

will be disadvantageous for EC-VARMA models due to the presence of the moving average

component. Lütkepohl and Saikkonen (1999) show that the asymptotic distribution of the

test statistic in Johansen’s sequential likelihood ratio test remains unchanged even if the

true DGP is a VARMA process, provided the order of fitted VAR is allowed to increase as

the sample size increases to infinity. However, the power and size of the test is quite poor

for samples of the size available for applied macroeconomic research (this was noted in

Lütkepohl and Saikkonen, 1999, and is also evident from the simulation study in Section 5

below). Hence, we consider an extension of the non-parametric method of Poskitt (2000)

to determine the cointegration rank.

Lütkepohl and Poskitt (1998) and Gonzalo and Pitarakis (1995) point out that the

statistics for testing the cointegration rank of a multivariate system can be used to

construct model selection criteria for estimating the rank consistently. The Poskitt (2000)

method that we adopt here is such a model selection procedure, built on a canonical cor-

relation based testing procedure proposed by Yang and Bewley (1996). This method does

not require the true DGP to be a finite order VAR process. In fact it does not make any

assumptions about the short run dynamics.

Given a sample of T observations {yt}Tt=1, denote the sample squared canonical cor-

relations between yt and yt−1 (both in levels), in ascending order, as

λ(1),T ≤ λ(2),T ≤ · · · ≤ λ(K),T . (3)

7



For ρ = 0, . . . ,K − 1, let ΛT (ρ) be the ratio of the arithmetic to the geometric mean of

the K − ρ largest squared canonical correlations, ΛT (ρ) = λ̄ρ,T /λ̄
g
ρ,T , where

λ̄ρ,T = (K − ρ)−1
K∑

i=ρ+1

λ(i),T , and λ̄gρ,T =

 K∏
i=ρ+1

λ(i),T

1/(K−ρ)

.

We choose the cointegrating rank ρ̂ to be the one that minimizes the following criterion

function:

ζT (ρ) = T (K − ρ) ln(ΛT (ρ)) + ρ(2K − ρ+ 1)PT /2, for ρ = 0, . . . ,K − 1. (4)

The choice of the penalty term PT in equation (4) should satisfy the following conditions

(see Poskitt, 2000, Theorem 1.2):

lim
T→∞

PT /T = 0, and lim
T→∞

ln(lnT )/PT = 0. (5)

Under conditions in (5), the value of ρ̂ that minimizes equation (4) will converge to the

true cointegrating rank ρ0 with probability 1 under certain regularity conditions. We set

PT = lnT throughout the paper.

Note that the ratio of arithmetic to geometric mean of a set of positive numbers is

always greater than or equal to 1. It is equal to 1 if and only if all numbers in the set

are equal to each other. Hence, the above criterion (4) is determining how many of the

squared canonical correlations are equal to the largest one. However, it does not consider

whether the magnitude of the largest canonical correlation is 1. Therefore, the implicit

assumption of this selection criterion is that there is at least one unit root in the system.

In other words, we must make sure that our vector of time series is not stationary, i.e.

ρ is not equal to K. Although in practice, one always starts with univariate unit root

tests, and no one would consider cointegration when all series are I(0), we extend the

selection procedure to ensure that the largest squared canonical correlation is equal to 1
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for completeness, using the same rationale as the Poskitt (2000) method. This extension

avoids K individual unit root pre-tests. The following lemma is utilized in constructing

this selection criterion (see Poskitt, 2000, Lemma 1.1).

Lemma 1 Let λ(i),T , i = 1, . . . ,K be the ordered sample squared canonical correlations

in equation (3), and denote their population counterparts by λ(1) ≤ λ(2) ≤ · · · ≤ λ(K).

Then, with probability 1,

λ(i),T = λ(i) +O(

(
lnT

T

)1/2

), for i = 1, . . . , ρ0,

λ(i),T = 1 +O(

(
ln lnT

T

)1/2

), for i = ρ0 + 1, . . . ,K,

where 0 ≤ λ(i) < 1, for i = 1, . . . , ρ0 when the cointegrating rank in the true DGP is ρ0.

A significant consequence of Lemma 1 is that for large values of T , λ(ρ0+1),T , . . .,

λ(K),T can be arbitrarily close to unity, while λ(1),T , . . . , λ(ρ0),T are strictly less than

unity. Hence, to decide whether ρ = K, we can simply take the largest squared canonical

correlation λ(K),T , and compare it to 1− τ(lnT/T )1/2. The decision rule is

ρ̂ = K if λ(K),T ≤ 1− τ
(

lnT

T

)1/2

, (6)

where τ is some positive constant. We choose τ = 1 for ease of exposition. According to

Lemma 1, in the situation when ρ0 = K, the criterion in equation (6) will choose ρ̂ = ρ0

with probability 1. This is designed to be an extra step of the original selection criterion

of Poskitt (2000). They can be used in combination, as specified in the following steps:

Step 1 For a given sample of K-dimensional time series {yt }Tt=1, we first determine the

sample squared canonical correlations between yt and yt−1, in ascending order, as

λ(1),T ≤ λ(2),T ≤ · · · ≤ λ(K),T .

Step 2 Compare λ(K),T to 1 − (lnT/T )1/2. If λ(K),T ≤ 1 − (lnT/T )1/2, let ρ̂ = K.

Otherwise, go to step 3.
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Step 3 Construct the criterion in equation (4), and choose the cointegrating rank ρ̂ such

that

ρ̂ = arg min
ρ∈{0,1,...,K−1}

ζT (ρ).

This procedure for selecting the cointegrating rank is not confined to the class of

VARMA models due to its non-parametric nature. This is preferable from both theoret-

ical and practical perspectives, because it allows us to determine the cointegrating rank

consistently without specifying the form of the short run dynamics.1

4 The SCM methodology

The scalar component model (SCM) was proposed by Tiao and Tsay (1989) and further

developed by Athanasopoulos and Vahid (2008a). We demonstrate the applicability of this

methodology to modelling partially stationary time series in this section. SCM VARMA

representation is generally more parsimonious than the canonical Echelon form (Hannan

and Kavalieris, 1984; Hannan and Deistler, 1988; Poskitt, 1992; Lütkepohl and Poskitt,

1996; Lütkepohl, 2005) since it allows for different AR and MA orders in each row. In

addition, it is also based on the canonical correlation analysis, which binds the two stages

of the model specification — selection of the cointegrating rank and specification of the

VARMA model — nicely together.

4.1 The SCM methodology in a stationary environment

In general, the model specification of a K-dimensional zero mean VARMA(p,q) process

has (p + q)K2 parameters. The difficulty with VARMA modelling is that certain linear

restrictions on the parameters can render a VARMA model unidentified. Take the simplest

1There are other system cointegration tests that use a VAR as an adjustment for short run dynamics,
in order to eliminate the effect of the unknown nuisance parameters (e.g. the principal components test
of Stock and Watson, 1988). Generalizing from a VAR to a VARMA adjustment may potentially improve
the performances of such tests as well, but we do not explore this possibility here.
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two-dimensional VARMA(1,1) process as an example,

y1t
y2t

 =

φ11 φ12

φ21 φ22


y1t−1
y2t−1

+

θ11 θ12

θ21 θ22


u1t−1
u2t−1

+

u1t
u2t

 . (7)

If φ21 = φ22 = θ21 = θ22 = 0, the second equation implies that y2,t−1 = u2t−1 and therefore

φ12 and θ12 cannot be uniquely identified in the first equation. In such situations, unlike

finite-lag VAR models, it is not possible to fit a VARMA(1,1) model to the data and then

test for statistical significance of the parameters. Moreover, it is not possible to fit VARMA

models with different combinations of p and q, and then use a model selection criterion

to choose among them. As a result, bespoke methodologies for VARMA modelling have

been developed, one of which treats the K-dimensional VARMA model as a collection

of K most parsimonious “scalar component models”. A scalar component model (SCM)

of orders (p1,q1) is a linear combination of yt that only depends on p1 lags of yt and q1

lags of ut. Hence, an SCM(p1,q1) can be uncovered from the implication that a linear

combination of yt, yt−1, . . ., yt−p1 is uncorrelated with yt−j for any j > q1. These SCMs

are identified through a sequence of tests for moment conditions.

For a stationary VARMA process yt, let a′yt denote a linear combination of the com-

ponents in yt. If a′yt is an SCM(p1,q1) with p1 < p and q1 < q, it implies the following

rank restrictions on the AR and MA coefficient matrices

a′ (Φp1+1, · · · , Φp, Θq1+1, · · · , Θq) = 0. (8)

As a result of the reduced rank structure, additional restrictions are necessary in order to

make Φ1, . . ., Φp and Θ1, . . ., Θq uniquely identifiable.

The SCM methodology uncovers such embedded SCMs sequentially, starting from the

lowest possible orders p1 = 0 and q1 = 0, and continuing until K linearly independent

SCMs are found. The overall orders of the VARMA model come from the highest AR

and MA order among the K SCMs. Then, instead of estimating a VARMA model with
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complicated cross-equation restrictions, a linear transformation of the VARMA process

implied by the collection of K SCMs is estimated. Using the two-dimensional process in

equation (7) as an example, if the testing procedure finds an SCM(0,0) and an SCM(1,1),

then the transformed VARMA model is

 1 0

φ20 1


y1t
y2t

 =

φ11 φ12

0 0


y1t−1
y2t−1

+

θ11 0

0 0


u1t−1
u2t−1

+

u1t
u2t

 . (9)

The left-hand side transformation matrix Φ0 is not an identity matrix, but has some

unknown parameters to be estimated. On the right-hand side, all of the rank restrictions

implied by the SCMs are translated into zero rows in the AR and MA coefficient matrices.

In addition, if p1 < p and q1 < q, identifiability requires some additional zero restrictions

to be placed on either the AR or the MA parameters. These restrictions are referred

to as the “rule of elimination” by Tiao and Tsay (1989). In the extension of the SCM

methodology in Athanasopoulos and Vahid (2008a), such zero restrictions are imposed on

the MA parameters when needed. In the case of equation (9) we have set θ12 = 0. All

other parameters are unconstrained. The resulting uniquely identifiable form is referred

to as a “canonical SCM VARMA” representation.

Once the VARMA model with the embedded SCMs is transformed into a uniquely

identifiable form, and hence a canonical representation is reached, it is estimated using

FIML. If the error term does not satisfy the normality assumption, the model can be

estimated using generalized method of moments. The full detail of the SCM methodology

is given in Athanasopoulos and Vahid (2008a).

4.2 The SCM methodology in a partially non-stationary environment

If yt is a partially non-stationary VARMA process, two questions arise. Firstly, what

restrictions does an SCM(p1,q1) imply on the EC-VARMA representation? Secondly, is it

legitimate to use the same test statistic and rely on the same asymptotic distribution to

uncover the embedded SCMs as in the stationary case?
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Given the relationship between the coefficients of a VARMA model in levels and its

corresponding error correction form, the implied restrictions of an SCM(p1,q1) for yt in

levels stated in (8) translate into the following restrictions on the parameters matrices

a′ (Ψp1 , · · · , Ψp−1, Θq1+1, · · · , Θq) = 0.

Therefore, the same linear transformation of the EC-VARMA representation produces

zero rows in the AR and MA coefficient matrices or order higher than p1 − 1 and q1,

respectively. Moreover, any restrictions needed to be imposed by the rule of elimination

are imposed on the MA parameters reaching a canonical SCM VARMA representation.

Therefore since the transformation from a VARMA model in levels to its error correction

form does not alter the MA parameters, these zero restrictions will carry over to the

EC-VARMA representation.

The special case is when there are one or more SCM(0,q1) embedded in the VARMA

model in levels. In this case, a′yt is an MA(q1) process, and is thus stationary. As a

result, a′yt has to be a cointegrating combination, where the vector a lies in the space

spanned by the cointegrating vectors. This implies that we cannot have more than ρ0

linearly independent SCM(0,q1) embedded in the VARMA model.

The next question is whether we can use the canonical correlation based tests that

are used for stationary VARMA processes to uncover the embedded SCMs in a partially

non-stationary environment. In the stationary case, in order to make use of the moment

conditions implied by the SCM(p1,q1) structure, we construct two K(p1 + 1)-dimensional

vectors as Yp1,t =

(
y′t, · · · , y′t−p1

)′
, and Yp1,t−q1−1 =

(
y′t−q1−1, · · · , y′t−q1−1−p1

)′
.

Following previous notation, we denote the ordered population squared canonical correla-

tion between Yp1,t and Yp1,t−q1−1 as

λ(1)(p1, q1) ≤ λ(2)(p1, q1) ≤ . . . ≤ λ(Kp1+K)(p1, q1).
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These are the ordered eigenvalues of the K(p1 + 1)-dimensional square matrix

A(p1, q1) =
[
E(Yp1,tY

′
p1,t)

]−1 E(Yp1,tY
′
p1,t−q1−1)[

E(Yp1,t−q1−1Y
′
p1,t−q1−1)

]−1 E(Yp1,t−q1−1Y
′
p1,t).

There exist r linearly independent SCM(p1,q1) if and only if the multiplicity of zero

eigenvalues in A(p1, q1) is r, i.e. λ(1)(p1, q1) = · · · = λ(r)(p1, q1) = 0, or equivalently,

rank(A(p1, q1)) = K(p1 + 1)− r.

The test for r linearly independent SCM(p1,q1) uses the r smallest sample squared

canonical correlations λ(1),T (p1, q1), . . ., λ(r),T (p1, q1), which are the eigenvalues of:

AT (p1, q1) = (
T∑
t=1

Yp1,tY
′
p1,t)

−1(
T∑
t=1

Yp1,tY
′
p1,t−q1−1)

(
T∑
t=1

Yp1,t−q1−1Y
′
p1,t−q1−1)

−1(
T∑
t=1

Yp1,t−q1−1Y
′
p1,t). (10)

The test statistic is

C(p1, q1) = −(T − p1 − q1)
r∑
j=1

ln

{
1−

λ(j),T (p1, q1)

dj(p1, q1)

}
, (11)

where

dj(p1, q1) = 1 + 2

q1∑
i=1

ρ̂i(γ
′
(j),TYp1,t)ρ̂i(δ

′
(j),TYp1,t−q1−1),

ρ̂i(xt) is the i-th lag sample autocorrelation of the process xt , and γ(j),T and δ(j),T are

the canonical covariates corresponding to the eigenvalue λ(j),T (p1, q1). Asymptotically, the

test statistic follows a χ2 distribution with r2 degrees of freedom under the null hypothesis

of r zero eigenvalues.

In the partially non-stationary case, we consider a different normalization of the process

yt. For a time series yt that comes from a VARMA(p,q) process, there exists a K × K

nonsingular transformation matrix H such that Hyt = (n′t, s
′
t)
′, where st is a purely

stationary process (see Poskitt, 2000, for an example of such a transformation). Given

14



the cointegrating relationship in yt, it follows that st has dimension ρ0 × 1. Thus, the

difference stationary component nt has dimension (K − ρ0)× 1. Let

xt = GT Hyt =

nt/T 1/2

st

 , where GT =

IK−ρ0/T 1/2 0

0 Iρ0


and Im the m×m identity matrix. We construct K(p1 +1)-dimensional vectors Xp1,t and

Xp1,t−q1−1 as follows

Xp1,t =

nt/T 1/2

s̃p1,t

 =



GT Hyt

yt − yt−1
...

yt−(p1−1) − yt−p1


=



GT H 0 · · · 0 0

IK −IK · · · 0 0

...
...

. . .
...

0 0 · · · IK −IK


Yp1,t = F Yp1,t,

(12)

and Xp1,t−q1−1 =
(
n′t−q1−1/T

1/2, s̃′p1,t−q1−1
)′

= F Yp1,t−q1−1. Note that F is nonsingular.

It follows from equation (12) that s̃p1,t and s̃p1,t−q1−1 — the last (Kp1 + ρ0) components

of Xp1,t and Xp1,t−q1−1 — are strictly stationary.

The sample squared canonical correlations between Xp1,t and Xp1,t−q1−1 are the eigen-

values of

Ax
T (p1, q1) = (

T∑
t=1

Xp1,tX
′
p1,t)

−1(
T∑
t=1

Xp1,tX
′
p1,t−q1−1)

(
T∑
t=1

Xp1,t−q1−1X
′
p1,t−q1−1)

−1(
T∑
t=1

Xp1,t−q1−1X
′
p1,t). (13)

We denote these eigenvalues ordered from smallest to largest by

λx(1),T (p1, q1) ≤ λx(2),T (p1, q1) ≤ . . . ≤ λx(Kp1+K),T (p1, q1),

and their corresponding eigenvectors by ζ(j),T , j = 1, . . . ,Kp1 +K. The following lemma

states a set of results that lead us to the conclusion that the same testing procedure can
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be used for identifying SCMs in the partially non-stationary case.

Lemma 2 Let
{
λ(j),T ,γ(j),T , j = 1, . . . ,Kp1 +K

}
and

{
λx(j),T , ζ(j),T , j = 1, . . . ,Kp1 +K

}
be eigenvalue, eigenvector pairs of matrices AT (p1, q1) and Ax

T (p1, q1) defined in equations

(10) and (13). Then,

1. λx(j),T (p1, q1) = λ(j),T (p1, q1) for j = 1, . . . ,Kp1 +K and all T ;

2. ζ′(j),TXp1,t = γ ′(j),TYp1,t for j = 1, . . . ,Kp1 +K and all T ;

3. When Yp1,t and Yp1,t−q1−1 do not overlap, the largest K − ρ0 eigenvalues converge

to 1, and the rest converge to probability limits that are less than 1, and the rate of

convergence of the largest K − ρ0 eigenvalues to 1 is faster than that of the rest.

4. When Yp1,t and Yp1,t−q1−1 do have m common elements, m eigenvalues will be iden-

tically equal to 1. Among the remaining eigenvalues, K − ρ0 converge to 1 and the

rest converge to probability limits that are less than 1, and the rate of convergence

of the largest K − ρ0 eigenvalues to 1 is faster than that of the rest.

5. Every eigenvalue that has probability limit less than 1, converges to a population

squared canonical correlations between s̃p1,t and s̃p1,t−q1−1. Moreover, the corre-

sponding canonical covariate γ ′(j),TYp1,t in the limit will only involve s̃p1,t, the sta-

tionary components of Yp1,t. Then δ′(j),TYp1,t−q1−1, the corresponding combination

of Yp1,t−q1−1 that has the highest correlation with γ ′(j),TYp1,t will also only involve

s̃p1,t−q1−1 in the limit.

Proof. 1 and 2 are immediate consequences of

Ax
T (p1, q1) = (F ′)−1AT (p1, q1)F

′.

3, 4 and 5 are straightforward generalisations of Lemma 1.

The test for r linearly independent SCM(p1,q1) is implemented as a test for the joint

significance of the r smallest eigenvalues in AT (p1, q1). Lemma 2 demonstrates that under
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the null, these r eigenvalues are solely determined by the stationary components of Yp1,t.

Thus, the test would be the same as testing for r zero canonical correlations between s̃p1,t

and s̃p1,t−q1−1. Moreover, γ ′(j),TYp1,t and δ′(j),TYp1,t−q1−l for j = 1, . . . , r are consistent

estimators of covariates corresponding to the r smallest canonical correlations between

s̃p1,t and s̃p1,t−q1−1. Therefore, the test statistic C(p1, q1) defined in (11) will have the

same asymptotic distribution as in the stationary case.

5 Monte Carlo simulation

We use a Monte Carlo simulation to assess the performance of the methods for selecting

the cointegrating rank, and for identifying the SCM structure presented in Sections 3 and

4. We also evaluate the predictive ability of the identified EC-VARMA models versus

alternative VECM specifications for which the cointegrating rank is selected by the Jo-

hansen procedure. The lag length for VAR in levels is selected by the AIC, HQ or BIC as

is usual in practice. The DGP we use in the simulation is a 3-dimensional VARMA(1,1)

in levels,

yt =


0.75 0.25 0

0.11 0.89 0

−0.1 0.1 1

yt−1 + ut +


−0.35 0.2 −0.54

0.7 0.5 0.1

−0.4 0.75 0.6

ut−1, (14)

where ut is i.i.d. N (0, I3). The AR and MA orders are both one to simplify the illus-

tration. The EC-VARMA(0,1) representation is ∆yt = Πyt−1 + ut + Θ1ut−1, where

Π = αβ′, α = (−0.25, 0.11, −0.1)′ and β = (1, −1, 0)′. Hence the true cointegrating

rank is ρ0 = 1. All three eigenvalues of Θ1 are close to 0.8, indicating the presence of a

relatively strong propagation mechanism in the MA dynamics.
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5.1 Selection of cointegrating rank, lag length and the SCM structure

We determine the cointegrating rank using the extended Poskitt (2000) procedure devel-

oped in Section 3. We simulate 1000 replications for four different sample sizes: T = 100,

200, 400 and 1000. As shown in Figure 1, the proposed procedure correctly selects the

true cointegrating rank, ρ̂ = ρ0 = 1, 100% of the time, even for samples with 100 obser-

vations.2 The non-parametric nature of the Poskitt (2000) procedure and its extension

proposed here allows for this procedure to be used independently of the assumed under-

lying model. In contrast, the Johansen procedure is dependent on the lag length of the

assumed underlying cointegrated VAR. Figure 2 plots the distribution of the estimated

lag lengths for VARs in levels for different sample sizes. The maximum lag length is set to

20. All three of the information criteria choose longer lags as the sample size T increases.

The AIC has the tendency to choose very long lags for T = 100.

Insert Figure 1 here.

Insert Figure 2 here.

Conditional on the selected lag lengths, the distributions of the estimated cointegrating

rank ρ̂ selected by the Johansen procedure are also plotted in Figure 1. It is evident that

the actual size of the Johansen procedure is far from its nominal size of 5% even for

T = 1000. This result is in accord with Lütkepohl and Saikkonen (1999) when the DGP

is a cointegrated VARMA process. Furthermore, for T = 100, the Johansen procedure

coupled with AIC chooses the correct specification of the cointegrating rank for below

60% of the time. This reveals that the cointegrating rank estimated using the Johansen

procedure depends crucially on the lag length of the VECM. Clearly the evidence in this

2We have also performed more comprehensive simulations for selecting the cointegrating rank with the
Poskitt procedure using 100 different DGPs and 1000 simulations for each DGP, and we find that the
procedure can choose the true cointegrating rank for at least 95% of the time even when T = 100. These
simulation results are available upon request.
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simulation supports using the modified Poskitt (2000) procedure instead of the Johansen

method for correctly selecting the cointegrating rank.

We next evaluate the performance of the SCM methodology to identify the VARMA

dynamics. Athanasopoulos and Vahid (2008a) and Athanasopoulos et al. (2012) have

found that the SCM identification procedure is quite successful in identifying VARMA

structures in a stationary setting. We find similar results here for data generated from

a cointegrated VARMA process. Due to the manual implementation of the SCM identi-

fication process for each simulated sample for this part of the simulation we restrict the

number of iterations to 100 for each of the sample sizes: T = 100, 200, 400 and 1000. We

present the results in Table 1. The SCM structure implied by the DGP of equation (14)

is three SCM(1,1). The testing procedure is able to identify the correct structure for more

than 95% of the time, even for T = 100.

5.2 Estimation of the EC-VARMA models

The common approach in the literature is to estimate all of the unknown parameters in

the EC-VARMA model simultaneously using FIML. However, it is infeasible and com-

putationally inefficient to use FIML in Monte Carlo simulations. Therefore, we use an

iterative OLS (IOLS) procedure to estimate the EC-VARMA models in the simulation.

This procedure extends the IOLS method suggested by Kapetanios (2003) for stationary

VARMA models.

Given an identified EC-VARMA(p − 1,q) model with K embedded SCMs, we only

include variables with non-zero coefficients as the explanatory variables on the right-hand

side. In each iteration, we replace the lagged error terms ut−1, . . ., ut−q by the lagged

residual series obtained from the last iteration. The initial estimate of the error sequence

is obtained from the residual of a finite VAR fitted to the simulated data. We let the

lag length of the VAR be dlnT e as was suggested by Lütkepohl and Poskitt (1996). De-

note the estimated cointegrating rank as ρ̂, the cointegrating vectors are re-estimated in

each iteration. We calculate the partial canonical correlations between ∆yt and yt−1 after
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controlling for ∆yt−1, . . ., ∆yt−p+1, and ût−1, . . ., ût−q. The canonical covariates corre-

sponding to the largest ρ̂ squared partial canonical correlations are taken as the estimated

cointegrating vectors. The rest of the unknown parameters are then estimated using OLS

regression with the error correction terms and the lagged error terms taken as known.

If the iterative procedure converges such that the estimated covariance matrix of the

residual sequence stabilizes, then the OLS estimates of the coefficients from the last it-

eration are adopted. However, if the convergence condition cannot be achieved within a

pre-specified maximum number of iterations, we suggest to use the estimator given by Han-

nan and Kavalieris (1984) to produce the final estimates. Appendix A presents detailed

steps for the implementation of the IOLS procedure.

5.3 A forecast evaluation of EC-VARMA models versus VECMs

For each sample path, we generate forecasts from the identified EC-VARMA specifications

and the VECMs. We select the cointegrating rank for the VECMs using the Johansen pro-

cedure (denoted as ρ̂J in Tables 2 and 3), as well as the modified Poskitt (2000) approach

(denoted as ρ̂P ). The modified Poskitt (2000) approach is used by default for selecting

the cointegrating rank of the EC-VARMAs.

Insert Table 2 here.

Insert Table 3 here.

We compare the forecasts generated by the estimated models to the theoretical fore-

casts, i.e., the forecasts generated from the EC-VARMA(0,1) DGP with the true parame-

ters. We refer to this as the “oracle”. We evaluate the forecast performance over horizons

h = 1, . . . , 24, and consider two measures of forecasting accuracy — the trace of mean

squared forecast errors (tr(MSFE)) for yt in levels, and the generalized forecast error

second moment (GFESM). The GFESM is the determinant of the forecast error second
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moment matrix pooled across all horizons,

GFESMh =
(

det
(
E[vec(e1, . . . , eh) vec(e1, . . . , eh)′]

) )1/h
,

where ei is the K×1 dimensional vector of the i-th step ahead forecast error, i = 1, . . . , h.

The main advantage of GFESM is that it is invariant to non-singular, scale preserving lin-

ear transformations for all forecast horizons (see Clements and Hendry, 1993, for details).

Tables 2 and 3 present the percentage differences in tr(MSFE) and GFESM between

the estimated models and the “oracle”. For example, in the first row of Table 2, the

entry in the column under “EC-VARMA” denotes that for h = 1 the tr(MSFE) from the

EC-VARMA models estimated using IOLS, is 16.3% larger than the “oracle” for samples

of T = 100. Similar interpretations can be drawn from Table 3 for the GFESM. Entries in

bold indicate the model specification that is most accurate amongst the estimated models

for that forecast horizon. A negative entry shows an improvement over the “oracle”.

The results in Tables 2 and 3 show that in general, given the typical sample sizes

available for macroeconomic data, approximating an EC-VARMA process with a VECM

generates a considerable loss in forecast accuracy. For relatively small sample sizes, the

losses are quite substantial for short forecast horizons.

The columns labeled ρ̂J and ρ̂P in Tables 2 and 3 allow us to examine the effects on

the forecasting accuracy of using different cointegrating ranks. The lag lengths of VECMs

are selected by the same information criteria, but the cointegrating ranks are chosen by the

Johansen procedure and the extended Poskitt (2000) method, respectively. These tables

show that the use of the extended Poskitt (2000) method produces smaller forecast error,

especially when the sample size is small.

6 Term structure of interest rates

It is commonly accepted that interest rates with different maturities are cointegrated (see

Hall et al., 1992). The cointegrating vector between any two interest rate series should be
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close to (1, -1), i.e., the interest rate spreads should be stationary, despite the fact that

most interest rates are regarded as I(1) series. Many studies of interest rates have been

conducted within the VECM framework. To name one among others, Hall et al. (1992)

find that yields to maturity of US treasury bills specify an error correction model with

post-1982 data, which proves to be useful in forecasting changes in yields.

In a recent paper Kascha and Trenkler (2014) show that a cointegrated VARMA model

generates superior forecasts for US interest rates. Our application differs from theirs in

several aspects. First, Kascha and Trenkler (2014) extend the FMA representation of

Dufour and Pelletier (2011) to specify their VARMA model. This approach is simpler but

less general and less parsimonious than the SCM representation employed here. Moreover,

Kascha and Trenkler (2014) only take the cointegrating rank as given (ρ = K − 1) for

their forecast evaluation, whereas we test for cointegration rank for each sample.

6.1 Data

We use monthly data of the US federal funds rate, and 3-month and 6-month treasury

bill rates to form a three-variable system. Let yt = (fft, i3t, i6t)
′. The available sample

period is from 1958:12 to 2011:09, leads to a total of 634 observations. Figure 3 plots the

three interest rate series over the entire sample period. The movements in the three series

clearly share a similar pattern, especially for the 3-month and 6-month treasury bill rates.3

Insert Figure 3 here.

We use the first 400 observations as the initial estimation sample to forecast future

interest rates for up to 12-step ahead. We use an expanding window which adds one ob-

servation to the estimation sample at a time, and repeat the same forecasting exercise 222

3One may want to drop the observations during the last global financial crisis (2008:01-2011:09, the last
45 observations), due to the possibility of a structural break. We experimented with this shorter sample
as well, and it produces qualitatively similar results. The forecast errors are smaller in almost all cases,
but the ranking among the competing models does not change.
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times until the end of the sample.4 We re-identify and re-estimate the model specification

for each estimation sample. We calculate the tr(MSFE), the determinant of the MSFE

(det(MSFE)) and the GFESM over the 222 estimation windows.

6.2 Selection of cointegrating rank

Theoretically for a K-dimensional system of interest rates the cointegrating rank should

be ρ = K − 1. In our system the theoretically supported rank is ρ = 2. As shown by the

last row in Table 4, the modified Poskitt (2000) procedure chooses ρ̂ = 2 consistently for

all 222 estimation samples. Table 4 also shows the rank chosen by the Johansen procedure

conditional on the lag length selected for a VAR in levels by the three model selection

criteria. The maximum lag length set to 24, i.e., two years for monthly data. The re-

sults show that the AIC chooses a VAR(21) in levels 100% of the time. Allowing for this

very long lag length leads the Johansen procedure to select a cointegrating rank ρ̂ = 1,

52% of the time and ρ̂ = 0 the rest of the time. The Johansen procedure coupled with

the AIC never selects the theoretically supported rank of ρ̂ = 2. In contrast, the shorter

lag lengths selected by the BIC and the HQ lead to selecting ρ̂ = 2 almost 100% of the time.

Insert Table 4 here.

6.3 Canonical SCM VARMA identification

We use the SCM methodology to determine the orders and the corresponding canonical

structure of the VARMA model in levels. Conditional on the identified tentative overall

VARMA(1,1) structure for yt, we search for each individual SCM. Starting from the most

parsimonious SCM(0,0), the underlying SCMs identified are SCM(1,1), SCM(1,1) and

SCM(1,0). After testing the SCM structure of the sub-systems and imposing identification

restrictions on Φ0 (see Athanasopoulos and Vahid, 2008a), the canonical SCM VARMA

4We have also implemented a rolling window to generate forecasts, which can account for the possible
structural breaks over the time span that we consider. The results are very similar to what we report here
using an expanding window, and hence are omitted here. Those results are available upon request.
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model has the following error correction representation,


1 0 0

0 1 0

a0 0 1

∆yt =


α11 α12

α21 α22

α31 α32




1 β12

β21 1

β31 β32


′

yt−1 + ut +


θ111 θ112 θ113

θ121 θ122 θ123

0 0 0

ut−1. (15)

We find exactly the same SCM structure for all 222 estimation windows. There are no zero

restrictions imposed on Φ1 by the canonical SCM structure. Hence, the rank restrictions

on Π only come from the cointegrating relationships. We estimate equation (15) using

FIML. In order to provide good initial estimates for maximum likelihood estimation, we

put the algorithm of Hannan and Rissanen (1982) into the context of EC-VARMA models,

and use their estimates as the starting values for the maximum likelihood iteration.

6.4 Forecast evaluation of the interest rates

The forecast evaluation results are presented in Table 5. We set the identified SCM EC-

VARMA specification (15) with the theoretically supported cointegrating vectors as our

benchmark. The cointegrating vectors are specified as

β =

[(
1, −1, 0

)′
,

(
1, 0, −1

)′]
. (16)

We evaluate the forecasting performance of the identified EC-VARMA model (15) when

the cointegrating rank is specified by the modified Poskitt method, and the cointegrating

vectors are estimated from the data. We denote these as EC-VARMAP (last column of

Table 5). It is worth pointing out that the only difference between EC-VARMAP and the

benchmark is solely due to the estimation of the two cointegrating vectors as the modified

Poskitt method selects ρ̂ = 2, 100% of the time.

For the alternative VECM specifications, we impose the theoretically supported cointe-

grating vectors (16) as shown in columns 2-4 in Table 5. We also estimate the cointegrating

relationships after the cointegrating rank has been selected by the Johansen procedure,
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which is denoted as VECMJ in columns 5-7 in Table 5.

The entries in Table 5 show the percentages by which the measures of forecasting

accuracy for each model specification are larger than the benchmark EC-VARMA with

theoretical cointegration imposed. Hence a negative entry indicates an improvement in

forecasting accuracy over the benchmark. Entries in bold indicate the largest percent-

age gain over the benchmark for that forecast horizon. If no entries in bold exist, the

benchmark generates the most accurate forecasts for the horizon.

The results clearly show that for all three measures of forecasting accuracy, EC-

VARMA models are the more accurate than VECMs. EC-VARMA models are substan-

tially more accurate than VECMs especially for the shorter forecast horizons. Considering

the tr(MSFE), the EC-VARMAs having imposed the theoretically supported cointegrating

vectors are the most accurate whereas considering the det(MSFE) and the GFESM the

ECVARMAs having estimated the cointegrating relationships are the most accurate.

In evaluating the forecasting performance of the VECM specifications, the results

clearly show that selecting lag length using the AIC generates the least accurate forecasts.

It is most likely that the large estimation error associated with the large number of pa-

rameters in these specifications causes this result. Selecting the lag length using the BIC

generates the most accurate forecasts for the VECMs. For all the VECMs, it seems that

imposing the theoretically supported cointegrating vectors improves, or at the very least

does not hinder their forecasting accuracy especially for short forecast horizons.

Insert Table 5 here.

In columns 5-7 of Table 5, we also report Diebold-Mariano (DM) test results (Diebold

and Mariano, 1995; West, 1996; Giacomini and White, 2006) for comparing the predictive

accuracy between the EC-VARMAP models and the alternative VECMJ specifications,

both of which use estimated cointegratiion vectors. These specifications are the ones most

commonly implemented in practice. We test for the equality of MSFE of each pair of
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forecasts for each series ff t, i6 t and i3 t individually, and also for the tr(MSFE) using

a generalisation of the DM test for multivariate models. The test hypotheses for the

individual series are

H0 : E
[
e21,i,h

]
− E

[
e22,i,h

]
= 0, against H1 : E

[
e21,i,h

]
− E

[
e22,i,h

]
< 0,

and for the tr(MSFE),

H0 : E

[
3∑
i=1

e21,i,h

]
− E

[
3∑
i=1

e22,i,h

]
= 0, against H1 : E

[
3∑
i=1

e21,i,h

]
− E

[
3∑
i=1

e22,i,h

]
< 0,

where e1,i,h and e2,i,h denote the h-step ahead forecast errors of the i-th component of

yt = (fft, i6t, i3t)
′ for i = 1, 2, 3, generated from the estimated EC-VARMAP and VECMJ

specifications respectively. Newey-West standard errors are used in these tests.

Table 5 presents the results for the tr(MSFE) using a superscript symbol for each

tr(MSFE) entry and the individual test results using three comma-separated symbols

(one for each series) below each tr(MSFE) entry. A ∗∗ (∗, †) indicates the rejection of the

null hypothesis in favor of the one sided alternative at 1% (5%,10%) level of significance.

The tr(MSFE) generated from the estimated EC-VARMAP models is significantly

lower than the tr(MSFE) of VECMJ specifications for short horizons. Specifically, it is

significantly lower than: VECMJ with BIC up to 3-step ahead at 1% significance level;

VECMJ with HQ up to 4-step ahead at 10% significance level; and VECMJ with AIC

up to 6-step ahead at 5% significance level. Examining the testing results for individual

series, these statistically significant differences seem to be driven by more accurate forecasts

generated from the EC-VARMAP for fft, although statistically significant differences can

also be seen for i6t and the i3t. It is important to highlight here that there are some cases

for the individual series where the EC-VARMAP specifications generated a larger MSFE

than the VECMs. However, in each of these cases, the differences are all statistically

insignificant.
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7 Conclusion

Applied researchers have tended to favor finite order VARs and VECMs rather than the

more general and flexible VARMA models in macroeconomic modelling. This is due

mainly to the specification and estimation difficulties encountered with VARMA models.

In this paper we combine cointegration relationships among non-stationary time series with

VARMA models and address the specification of EC-VARMA model from two aspects. We

first extend the non-parametric approach of Poskitt (2000) for determining the cointegrat-

ing rank to include the possibility of I (0) variables. Our Monte Carlo simulations show

that this extended version has good finite sample performance in determining the true

cointegrating rank. Moreover it has a significant advantage over the traditional Johansen

procedure when the underlying data generating process is a cointegrated VARMA.

Secondly, we demonstrate that the testing procedure of the SCM methodology for

identifying the canonical SCM structure of stationary VARMA models (Athanasopoulos

and Vahid, 2008a) is valid in the partially non-stationary environment. Our Monte-Carlo

results show that the SCM methodology performs well in identifying VARMA structures

in a partially non-stationary setting, similarly to the results of Athanasopoulos and Vahid

(2008a) and Athanasopoulos et al. (2012) for a stationary setting.

Athanasopoulos and Vahid (2008b) provide extensive evidence that in a stationary

environment not accounting for moving average dynamics hinders significantly the fore-

casting accuracy of multivariate models. In this paper we ask a similar question in a

partially non-stationary setting using Monte Carlo simulations. The answer is again the

same. Approximating EC-VARMA dynamics with long order VECMs significantly hin-

ders forecasting accuracy especially for short horizons. Using our extension to the Poskitt

(2000) method to determine the cointegrating rank has significant impact in improving

forecasting accuracy, especially in small samples.

In our empirical application we model and forecast the term structure of US interest

rates. The results provide further evidence supporting the forecast superiority of EC-
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VARMA models over VECMs. We estimate EC-VARMA models and VECMs with the

cointegrating relationships either estimated from the data or dictated by economic theory.

The EC-VARMA models with either estimated or theoretical cointegrating relationships

always produce more accurate forecasts than VECMs. Diebold-Mariano tests show that

these differences are statistically significant, especially in the short run.

This paper contributes to the growing body of literature on the identification and es-

timation of VARMA models. It suggests that EC-VARMA models can be both beneficial

and relatively straightforward to estimate using the methods we explore here. The em-

pirical evidence in favor of both stationary and partially non-stationary VARMA models

over VARs is mounting. We hope that this evidence coupled with the methodological

improvements in overcoming modelling complexities will lead to VARMA models being

utilized more comprehensively by the applied econometrician in macroeconomic modelling

and forecasting.
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Appendix A: The iterative OLS procedure

The VARMA(p,q) model to be estimated is in the error correction form:

Φ0∆yt = αβ′yt−1 + Ψ1∆yt−1 + · · ·+ Ψp−1∆yt−p+1 +ut + Θ1ut−1 + · · ·+ Θqut−q, (17)

where α and β are both K × ρ̂ dimensional matrices of full column rank, and there are

proper restrictions imposed on the coefficient matrices in order to ensure unique identifi-

cation. The traditional approach in the literature is to estimate all unknown parameters

simultaneously using FIML, which is the exact method that we use for the empirical ap-

plication in Section 6. However, it is both infeasible and computationally inefficient to

use FIML with large scale simulations in Section 5, because it may occasionally fail to

converge. Thus, we use the following iterative procedure to estimate model (17) in the

Monte Carlo simulation. This procedure is built upon the iterative OLS (IOLS) estimation

suggested by Kapetanios (2003) for stationary VARMA models.

The initial estimate of the error sequence û0
t is obtained from the residual of a VAR,

where the lag length of the VAR is an increasing function of the sample size T , and is

larger than the AR order of the identified VARMA DGP. We let the lag length be dlnT e,

i.e. the smallest integer that is greater than lnT , as was suggested by Lütkepohl and

Poskitt (1996). The residual obtained from this VAR(dlnT e), namely û0
t , is a consistent

estimate of the true error ut.

The cointegrating vectors in the error correction model are estimated in the first step

of the IOLS procedure. We calculate the partial canonical correlations between ∆yt

and yt−1 after controlling for ∆yt−1, . . ., ∆yt−p+1 and û0
t−1, . . ., û

0
t−q. The canonical

covariates corresponding to the largest ρ̂ squared partial canonical correlations are taken

as the estimated cointegrating vectors, β̂0. (β̂0)′yt−1 is commonly referred to as the error

correction term. The rest of the parameters are then estimated by the OLS regression

of equation (17) with (β̂0)′yt−1 and û0
t−1, . . ., û

0
t−q taken as known, subject to its zero
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restrictions in equation (17).

There are a few important issues which should be noted in the OLS estimation of

equation (17). First, the zero restrictions imposed by the SCMs on the coefficient matrices

Ψi and Θj should be taken into account in the estimation, i = 1, . . . , p, j = 1, . . . , q.

To put it differently, if some elements of Ψi or Θj are restricted to be zero, then the

corresponding variables need to be excluded from the OLS estimation.

More importantly, the restrictions on Φ0 should be reflected in the estimation as

well. Recall that Φ0 is a non-singular matrix with unit diagonal elements for the SCM

representation. Consider the OLS estimation of the i-th row of the system equation (17),

i = 1, . . . ,K. If the ij-element of Φ0 is non-zero, j = 1, . . . ,K and j 6= i, the j-th

contemporaneous variable, ∆yj,t should be put on the right hand side as an explanatory

variable. Specifically, the OLS estimation should be conducted using the following equation

∆yt = α(β̂0)′yt−1 + Ψ1∆yt−1+ · · ·+ Ψp−1∆yt−p+1

+(I −Φ0)∆yt + Θ1û
0
t−1 + · · ·+ Θqû

0
t−q + ut,

where ut is the residual.

The contemporaneous variables (I−Φ0)∆yt are not included in the estimation of the

cointegrating vectors, because it will not affect the estimated values of β̂0. This can be

seen by pre-multiplying both sides of equation (17) by Φ−10 :

∆yt = Φ−10 αβ
′yt−1 + Φ−10 Ψ1∆yt−1 + · · ·+ Φ−10 Ψp−1∆yt−p+1

+ Φ−10 ut + Φ−10 Θ1ut−1 + · · ·+ Φ−10 Θqut−q

= α̃β′yt−1 + Ψ̃1∆yt−1 + · · ·+ Ψ̃p−1∆yt−p+1 + ũt + Θ̃1ut−1 + · · ·+ Θ̃qut−q, (18)

where α̃ = Φ−10 α, ũt = Φ−10 ut, Ψ̃i = Φ−10 Ψi, and Θ̃j = Φ−10 Θj , i = 1, . . . , p − 1,

j = 1, . . . , q. Hence equation (18) will give rise to different estimates of the coefficient

matrices, but the estimates of interest— β̂0 will not change.
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The same set of rules applies to each iteration of the OLS estimation hereafter, although

we do not state this explicitly in each case. The estimated residual is denoted by û1
t . In

the subsequent iteration of estimating β̂1 and the OLS regression in the form of equation

(17), û1
t is used in place of û0

t . Formally, suppose that the j-th iteration is evaluated

and ûjt is obtained. Let Ω̂j be the sample covariance matrix of ûjt . The IOLS procedure

takes the following steps for an error correction VARMA model.

In the (j + 1)-th iteration, we first calculate the partial canonical correlation between

∆yt and yt−1 after controlling for ∆yt−1, . . ., ∆yt−p+1 and ûjt−1, . . ., ûjt−q. The

estimated cointegrating vectors β̂j+1 are formed by the canonical covariates correspond

to the largest ρ̂ sample squared partial canonical correlations. We then use OLS to

estimate the regression model of the following form:

∆yt = α(β̂j+1)′yt−1 + Ψ1∆yt−1+ · · ·+ Ψp−1∆yt−p+1

+(I −Φ0)∆yt + Θ1û
j
t−1 + · · ·+ Θqû

j
t−q + ut. (19)

Denote the residual estimates obtained from equation (19) by ûj+1
t , and its covariance

matrix estimate by Ω̂j+1. If the iterative procedure converges such that ‖ ln |Ω̂j+1| −

ln |Ω̂j |‖ < ε for some pre-specified constant ε > 0, then the OLS estimates of the co-

efficients in equation (19) are adopted. Otherwise, we should proceed to evaluate the

(j + 2)-th iteration.

The sequence of the residual ûjt is redefined with each iteration j, and therefore there

is no guarantee that this iterative process will converge. Kapetanios (2003) points out

that iterations of ûjt will converge if this procedure produces a contraction mapping.

Hence, he suggests to check the eigenvalues of the Jacobian at each iteration. If any

of these eigenvalues are greater than unity, then this signals that the iterative process

is unlikely to converge. However, it is difficult to implement this procedure in practice

when the dimension of the parameter space is high. Hence, it is necessary to set a pre-

specified maximum number of iterations, Mmax. If the convergence condition ‖ ln |Ω̂j+1|−
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ln |Ω̂j |‖ < ε cannot be achieved within Mmax iterations, there are a few possible solutions

to resort to.

Similar to the numerical maximum likelihood methods, good starting values of the

parameters are important for convergence of the iterative algorithm. We can perturb

the initial estimates of the coefficients using û0
t , and repeat the iterative procedure a

few times. Alternatively, we can use other estimators as the starting values. To name a

few, the Hannan-Rissanen method (Hannan and Rissanen, 1982), the Hannan-Kavalieris

procedure (Hannan and Kavalieris, 1984) and the generalized least squares procedure

proposed by Koreisha and Pukkila (1990) can all serve this purpose. Kascha (2012)

conducts an extensive comparison of these estimators for stationary VARMA DGPs via

Monte Carlo simulations. His results suggest that the algorithm of Hannan and Kavalieris

(1984) is generally preferable to other algorithms. Hence, if all attempts to initialize the

IOLS procedure with good starting values fail and convergence still cannot be achieved,

we suggest to use the estimator given by Hannan and Kavalieris (1984) to produce the

final estimates.

References

Athanasopoulos, G., Poskitt, D. S. and Vahid, F. (2012), ‘Two Canonical VARMA Forms:
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Figure 1: Distribution of the estimated cointegrating rank ρ̂ when the true cointegrating
rank is ρ0 = 1.
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Figure 2: Distribution of the estimated lag length for VARs in levels when the DGP is a
cointegrated VARMA(1,1).
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Figure 3: The three interest rate series (%), 1958:12 to 2011:09.
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Table 1: Frequency of identified SCMs using the Athanasopoulos and Vahid (2008a)
SCM identification procedure in a non-stationary setting.

Identified SCMs
(%)

T = 100 T = 200 T = 400 T = 1000

(1,1)(1,1)(1,1)∗ 95 95 96 96
(1,2)(1,1)(1,1) 4 3 0 3
(1,2)(1,2)(1,1) 1 1 0 0
(2,2)(1,1)(1,1) 0 0 2 1
Other 0 1 2 0

∗ The true structure is a cointegrated VARMA(1,1) with three SCMs each of order (1,1).
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Table 4: Distributions of the estimated lag lengths for VAR in levels and the
cointegrating rank for all 222 estimation windows.

Information Lag (%)

criterion length Cointegrating rank ρ̂

0 1 2∗

AIC 21 48.2 51.8

3 64.9

HQ 9 0.9 11.3

16 23.0

BIC
2 70.3

3 29.7

Poskitt’s Method 100.0

∗ρ̂ = 2 is the theoretically supported cointegrating rank.
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Table 5: Percentage difference in forecast accuracy compared to the benchmark
EC-VARMA specifications having imposed theoretically supported cointergating vectors

as specified by equation (16).

Theoretical Data-specified
Cointegration Cointegration

VECM VECMJ EC-VARMAP

h AIC HQ BIC AIC HQ BIC

tr(MSFE)

1 56.6 31.5 14.7 59.0∗∗ 33.1∗∗ 16.3∗ 0.9
(∗∗,∗∗,∗∗) (∗,∗∗,∗∗) (∗,– ,∗)

2 49.6 19.3 7.4 52.8∗∗ 20.9∗∗ 7.7∗∗ 2.0
(∗∗,∗∗,∗∗) (∗,∗∗,∗∗) (∗,–,–)

3 48.4 18.4 9.3 51.8∗∗ 19.6∗∗ 8.4∗∗ 3.0
(∗∗,∗∗,∗∗) (∗∗,∗,–) (∗,–,–)

4 40.1 12.1 6.1 43.1∗∗ 13.8† 5.1 3.8
(∗∗,∗∗,∗) (∗,–,–) (∗,–,–)

5 33.4 7.4 4.4 35.5∗∗ 9.8 3.8 4.7
(∗∗,∗∗,∗) (†, –,–)

6 30.3 5.0 3.8 31.0∗ 8.4 3.9 5.6
(∗,∗,†)

8 23.0 1.8 3.8 21.3 6.8 4.7 6.9
12 17.8 −1.1 4.4 11.9 5.6 6.0 7.3

det(MSFE)

1 112.4 52.0 17.7 118.9 54.7 28.8 −4.8
2 108.4 54.0 20.0 118.5 55.1 32.0 −12.4
3 93.0 45.3 18.1 104.2 39.0 21.5 −20.9
4 72.4 35.3 16.9 85.4 25.5 14.6 −22.6
5 47.6 30.3 23.4 61.7 20.0 16.9 −25.8
6 31.0 17.8 17.0 46.2 4.7 5.1 −28.3
8 20.0 16.7 17.0 37.2 1.9 1.5 −35.8

12 0.0 0.8 16.5 14.5 −26.4 −19.9 −48.9

GFESM

1 112.4 52.0 17.7 118.9 54.7 28.8 −4.8
2 109.0 50.7 12.7 114.2 49.9 17.6 −7.3
3 104.5 44.3 7.9 108.7 41.4 9.2 −8.4
4 101.5 39.0 6.2 105.2 36.4 6.2 −6.9
5 100.4 36.4 4.7 103.5 34.4 4.0 −5.9
6 99.9 34.3 3.0 102.6 32.7 1.9 −5.0
8 97.9 29.9 2.0 99.7 29.2 1.0 −3.9

12 90.3 23.9 0.8 23.8 23.8 −0.0 −2.2

The symbol for each tr(MSFE) entry in columns 5-7 represent the Diebold-Mariano test results of equal

tr(MSFE) between the EC-VARMAP and the alternative VECMJ specifications. The null of equality is

rejected at ∗∗: 1%, ∗: 5% and †: 10% level of significance against the one sided alternative of lower forecast

errors from EC-VARMAP compared to the alternative. The triplet (·,· ,·) below each tr(MSFE) entry

represents the results for testing equal MSFE for each ff t, i6 t and i3 t individually.
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