
 

 

 

 

 

ISSN 1440-771X 

 

 

Department of Econometrics and Business Statistics 

 
http://business.monash.edu/econometrics-and-business-statistics/research/publications 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

April 2016 
 
 
 
 
 
 
 
 
 

Working Paper 09/16 
 

Auxiliary Likelihood-Based Approximate Bayesian 
Computation in State Space Models 

 
Gael M. Martin, Brendon P.M. McCabe, 

David T. Frazier, Worapree Maneesoonthorn and 

Christian P. Robert 

http://business.monash.edu/econometrics-and-business-statistics/research/publications


Auxiliary Likelihood-Based Approximate Bayesian
Computation in State Space Models∗

Gael M. Martin†, Brendan P.M. McCabe‡, David T. Frazier§,

Worapree Maneesoonthorn¶and Christian P. Robert‖

April 27, 2016

Abstract
A new approach to inference in state space models is proposed, using approximate

Bayesian computation (ABC). ABC avoids evaluation of an intractable likelihood
by matching summary statistics computed from observed data with statistics com-
puted from data simulated from the true process, based on parameter draws from
the prior. Draws that produce a ‘match’between observed and simulated summaries
are retained, and used to estimate the inaccessible posterior; exact inference being
feasible only if the statistics are suffi cient. With no reduction to suffi ciency being
possible in the state space setting, we pursue summaries via the maximization of
an auxiliary likelihood function. We derive conditions under which this auxiliary
likelihood-based approach achieves Bayesian consistency and show that - in a pre-
cise limiting sense - results yielded by the auxiliary maximum likelihood estimator
are replicated by the auxiliary score. Particular attention is given to a structure in
which the state variable is driven by a continuous time process, with exact inference
typically infeasible in this case due to intractable transitions. Two models for con-
tinuous time stochastic volatility are used for illustration, with auxiliary likelihoods
constructed by applying computationally effi cient filtering methods to discrete time
approximations. The extent to which the conditions for consistency are satisfied
is demonstrated in both cases, and the accuracy of the proposed technique when
applied to a square root volatility model also demonstrated numerically. In multi-
ple parameter settings a separate treatment of each parameter, based on integrated
likelihood techniques, is advocated as a way of avoiding the curse of dimensionality
associated with ABC methods.
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1 Introduction

The application of Approximate Bayesian computation (ABC) (or likelihood-free infer-

ence) to models with intractable likelihoods has become increasingly prevalent of late,

gaining attention in areas beyond the natural sciences in which it first featured. (See

Beaumont, 2010, Csillary et al., 2010; Marin et al., 2011, Sisson and Fan, 2011 and

Robert, 2015, for reviews.) The technique circumvents direct evaluation of the likelihood

function by selecting parameter draws that yield pseudo data - as simulated from the

assumed model - that matches the observed data, with the matching based on summary

statistics. If such statistics are suffi cient (and if an arbitrarily small tolerance is used in

the matching) the selected draws can be used to produce a posterior distribution that is

exact up to simulation error; otherwise, an estimate of the partial posterior, where the

latter reflects the information content of the set of summary statistics, is the only possible

outcome.

The choice of statistics for use within ABC, in addition to techniques for determining

the matching criterion, are clearly of paramount importance, with much recent research

having been devoted to devising ways of ensuring that the information content of the

chosen set of statistics is maximized, in some sense; e.g. Joyce and Marjoram (2008),

Wegmann et al. (2009), Blum (2010), Fearnhead and Prangle (2012) and Frazier et al.

(2015). In this vein, Drovandi et al. (2011), Gleim and Pigorsch (2013), Creel and Kris-

tensen (2015), Creel et al., (2015) and Drovandi et al. (2015), produce statistics via an

auxiliary model selected to approximate the features of the true data generating process.

This approach mimics, in a Bayesian framework, the principle underlying the frequen-

tist method of indirect inference (II) (Gouriéroux et al. 1993, Smith, 1993) using, as it

does, the approximating model to produce feasible inference about an intractable true

model. Whilst the price paid for the approximation in the frequentist setting is a possible

reduction in effi ciency, the price paid in the Bayesian case is posterior inference that is

conditioned on statistics that are not suffi cient for the parameters of the true model, and

which amounts to only partial inference as a consequence.

Our paper continues in this spirit, but with focus given to the application of auxiliary

model-based ABC methods in the state space model (SSM) framework. Whilst ABC

methods have been proposed in this setting, inter alia, Jasra et al., 2010, Dean et al., 2014,

Martin et al., 2014, Calvet and Czellar, 2015a, 2015b, Yildirim et al., 2015), such methods

use ABC principles (without summarization) to estimate either the likelihood function or

the smoothed density of the states, with established techniques (e.g. maximum likelihood

or (particle) Markov chain Monte Carlo) then being used to conduct inference on the

static parameters themselves. (Jasra, 2015, provides an extensive review of this literature,

including existing theoretical results, as well as providing comprehensive computational
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insights.)

Our aim, in contrast, is to explore the use of ABC alone and as based on some form of

summarization, in conducting inference on the static parameters in SSMs. We begin by

demonstrating that reduction to a set of suffi cient statistics of fixed dimension relative to

the sample size is infeasible in such models. That is, one is precluded from the outset from

using ABC (based on summary statistics) to conduct exact finite sample inference in SSMs;

only partial inference is feasible via this route. Given the diffi culty of characterizing the

nature of posterior inference that conditions on non-suffi cient statistics, we motivate the

use of ABC here by means of a different criterion. To wit, we give conditions under which

ABC methods are Bayesian consistent in the state space setting, in the sense of producing

draws that yield a degenerate distribution at the true vector of static parameters in the

(sample size) limit. To do this we adopt the auxiliary likelihood approach to produce the

summaries. This is entirely natural when considering the canonical case where continuous

time SSMs (for which the likelihood function is typically unavailable) are approximated by

discretized versions, and auxiliary likelihoods subsequently constructed. Use of maximum

likelihood to estimate the auxiliary parameters also allows asymptotic suffi ciency to be

invoked, thereby ensuring that - for large samples at least - maximum information is

extracted from the auxiliary likelihood in producing the summaries.

We give particular emphasis to two non-linear stochastic volatility models in which the

state is driven by a continuous time diffusion. Satisfaction of the full set of conditions for

Bayesian consistency is shown to hold for the model driven by a (latent) Ornstein-Ulenbeck

process when a discrete time linear Gaussian approximation is adopted and the auxiliary

likelihood function is evaluated by the Kalman filter (KF). For the second example, in

which a square root volatility process is assumed - and the auxiliary likelihood associated

with the Euler discretization is evaluated via the augmented unscented Kalman filter

(AUKF) (Julier et al., 1995, 2000) - all conditions other than an identification condition

can be theoretically verified.

We also illustrate that to the order of accuracy that is relevant in establishing the

theoretical properties of an ABC technique, a selection criterion based on the score of the

auxiliary likelihood - evaluated at the maximum likelihood estimator (MLE) computed

from the observed data - yields equivalent results to a criterion based directly on the

MLE itself. This equivalence is shown to hold in both the exactly and over-identified

cases, and independently of any (positive definite) weighting matrix used to define the

two alternative distance measures, and implies that the proximity to asymptotic suffi ciency

yielded by using the auxiliary MLE in an ABC algorithm will be replicated by the use of

the auxiliary score. Given the enormous gain in speed achieved by avoiding optimization

of the auxiliary likelihood at each replication of ABC, this is a critical result from a

computational perspective.
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Finally, we briefly address the issue of dimensionality that plagues ABC techniques

in multiple parameter settings. (See Blum, 2010, and Nott et al., 2014). Specifically, we

demonstrate numerically the improved accuracy that can be achieved by matching indi-

vidual parameters via the corresponding scalar score of the integrated auxiliary likelihood,

as an alternative to matching on the multi-dimensional score statistic as suggested, for

example, in Drovandi et al. (2015).

The paper proceeds as follows. In Section 2 we briefly summarize the basic principles

of ABC as they would apply in a state space setting, including the role played by summary

statistics and suffi ciency. We demonstrate the lack of finite sample suffi ciency reduction

in a SSM, using the linear Gaussian model for illustration. In Section 3, we then proceed

to demonstrate the theoretical properties of the auxiliary likelihood approach to ABC,

including the conditions under which Bayesian consistency holds, in very general settings.

The sense in which inference based on the auxiliary MLE is replicated by inference based

on the auxiliary score is also detailed. In Section 4 we then consider the auxiliary likelihood

approach explicitly in the non-linear state space setting, using the two continuous time

latent volatility models for illustration. Numerical accuracy of the proposed method -

as applied to data generated artificially from the square root volatility model - is then

assessed in Section 5. Existence of known (non-central chi-squared) transition densities

means that the exact likelihood function/posterior distribution is available for the purpose

of comparison. The accuracy of the auxiliary likelihood-based ABC posterior estimate is

compared with: 1) an ABC estimate that uses a (weighted) Euclidean metric based on

statistics that are suffi cient for an observed autoregressive model of order one; and 2) an

ABC estimate that exploits the dimension-reduction technique of Fearnhead and Prangle

(2012), applied to this latter set of summary statistics. The auxiliary likelihood-based

method is shown to provide the most accurate estimate of the exact posterior in almost all

cases documented. Critically, numerical evidence is produced that Bayesian consistency

holds when the auxiliary score is used to generate the matching statistics, in contrast to

the mixed evidence for the alternative ABC methods. Section 6 concludes. Technical

proofs are included in an appendix to the paper.

2 Auxiliary likelihood-based ABC in state space mod-
els

2.1 Outline of the basic approach

The aim of ABC is to produce draws from an approximation to the posterior distri-

bution of a vector of unknowns, θ, given the T -dimensional vector of observed data
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y = (y1, y2, ..., yT )′,

p(θ|y) ∝ p(y|θ)p(θ),

in the case where both the prior, p(θ), and the likelihood, p(y|θ), can be simulated.

These draws are used, in turn, to approximate posterior quantities of interest, including

marginal posterior moments, marginal posterior distributions and predictive distributions.

The simplest (accept/reject) form of the algorithm (Tavaré et al. 1997, Pritchard, 1999)

proceeds as follows:

Algorithm 1 ABC algorithm
1: Simulate θi, i = 1, 2, ..., N , from p(θ)
2: Simulate zi = (zi1, z

i
2, ..., z

i
T )′, i = 1, 2, ..., N , from the likelihood, p(.|θi)

3: Select θi such that:
d{η(y),η(zi)} ≤ ε, (1)

where η(.) is a (vector) statistic, d{.} is a distance criterion, and, givenN , the tolerance
level ε is chosen as small as the computing budget allows

The algorithm thus samples θ and z from the joint posterior:

pε(θ, z|η(y)) =
p(θ)p(z|θ)Iε[z]∫

Θ

∫
z
p(θ)p(z|θ)Iε[z]dzdθ

,

where Iε[z]:=I[d{η(y),η(z)} ≤ ε] is one if d {η(y),η(z)} ≤ ε and zero else. Clearly, when

η(·) is suffi cient and ε arbitrarily small,

pε(θ|η(y)) =
∫

z
pε(θ, z|η(y))dz (2)

approximates the exact posterior, p(θ|y), and draws from pε(θ, z|η(y)) can be used to

estimate features of that exact posterior. In practice however, the complexity of the models

to which ABC is applied, including in the state space setting, implies that suffi ciency is

unattainable. Hence, as ε → 0 the draws can be used to estimate features of p(θ|η(y))

only.

Adaptations of the basic rejection scheme have involved post-sampling corrections of

the draws using kernel methods (Beaumont et al., 2002, Blum 2010, Blum and François,

2010), or the insertion of Markov chain Monte Carlo (MCMC) and/or sequential Monte

Carlo (SMC) steps (Marjoram et al., 2003, Sisson et al., 2007, Beaumont et al., 2009, Toni

et al., 2009, and Wegmann et al., 2009), to improve the accuracy with which p(θ|η(y)) is

estimated, for any given number of draws. Focus is also given to choosing η(.) and/or d{.}
so as to render p(θ|η(y)) a closer match to p(θ|y), in some sense; see Joyce and Marjoram

(2008), Wegmann et al., Blum (2010) and Fearnhead and Prangle (2012). In the latter

vein, Drovandi et al. (2011) argue, in the context of a specific biological model, that the

use of η(.) comprised of the MLEs of the parameters of a well-chosen approximating model,

5



may yield posterior inference that is conditioned on a large portion of the information in

the data and, hence, be close to exact inference based on p(θ|y). (See also Gleim and

Pigorsch, 2013, Creel and Kristensen, 2015, Creel et al., 2015, and Drovandi et al., 2015, for

related work.) It is the spirit of this approach that informs the current paper, but with our

attention given to rendering the approach feasible in a general state space framework that

encompasses a large number of the models that are of interest to practitioners, including

continuous time models.

Our focus then is on the application of ABC in the context of a general SSM with

measurement and transition distributions,

p(yt|xt,φ) (3)

p(xt|xt−1,φ) (4)

respectively, where φ is a p-dimensional vector of static parameters, elements of which may

characterize either the measurement or state relation, or both. For expositional simplicity,

and without loss of generality, we consider the case where both yt and xt are scalars. In

financial applications it is common that both the observed and latent processes are driven

by continuous time processes, with the transition distribution in (4) being unknown (or,

at least, computationally challenging) as a consequence. Bayesian inference would then

typically proceed by invoking (Euler) discretizations for both the measurement and state

processes and applying MCMC- or SMC-based techniques (potentially with some ABC

principles embedded within, as highlighted in the Introduction), with such methods being

tailor-made to suit the features of the particular (discretized) model at hand.

The aim of the current paper is to use ABC principles to conduct inference about (3)

and (4) using an approximation to the (assumed intractable) likelihood function. The full

set of unknowns constitutes the augmented vector θ = (φ′,x′c)
′ where, in the case when

xt evolves in continuous time, xc represents the infinite-dimensional vector comprising the

continuum of unobserved states over the sample period. However, to fix ideas, we define

θ = (φ′,x′)′, where x = (x1, x2, ..., xT )′ is the T -dimensional vector comprising the time t

states for the T observation periods in the sample.1 Implementation of the algorithm thus

involves simulating from p(θ) by simulating φ from the prior p(φ) , followed by simulation

of xt via the process for the state, conditional on the draw of φ, and subsequent simulation

of artificial data zt conditional on the draws of φ and the state variable. Crucially, our

attention is given to inference about φ only; hence, only draws of φ are retained (via the

selection criterion) and those draws used to produce an estimate of the marginal posterior,

p(φ|y), and with suffi ciency (or, more pertinently, lack thereof) to be viewed as relating to

φ only. Hence, from this point onwards, when we reference a vector of summary statistics,

1For example, in a continuous time stochastic volatility model such values may be interpreted as
end-of-day volatilities.
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η(y), it is the information content of that vector with respect to φ that is of importance,

and the asymptotic behaviour of pε(φ|η(y)) with reference to the true φ0 that is under

question. Similarly, in the numerical illustration in Section 5, it is the proximity of the

particular (kernel-based estimate of) pε(φ|η(y)) explored therein to the exact p(φ|y) that

is documented. We comment briefly on state inference in Section 6.

Before outlining the proposed methodology for the model in (3) and (4) in Section 3,

we highlight a key observation that provides some motivation for our particular approach,

namely that reduction to suffi ciency in finite samples is not possible in state space set-

tings. We use a linear Gaussian state space model to illustrate this result, as closed-form

expressions are available in this case; however, as highlighted at the end of the section,

the result is, in principle, applicable to any SSM.

2.2 Lack of finite sample suffi ciency reduction

When the cardinality of the set of suffi cient statistics is small relative to the sample size a

significant reduction in complexity is achieved and in the case of ABC, conditioning on the

suffi cient statistics leads to no loss of information, and the method produces a simulation-

based estimate of the exact posterior. The diffi culty that arises is that only distributions

that are members of the exponential family (EF) possess suffi cient statistics that achieve

a reduction to a fixed dimension relative to the sample size. In the context of the general

SSM described by (3) and (4) the effective use of suffi cient statistics is problematic. For

any t it is unlikely that the marginal distribution of yt will be a member of the EF, due

to the vast array of non-linearities that are possible, in either the measurement or state

equations, or both. Moreover, even if yt were a member of the EF for each t, to achieve

a suffi ciency reduction it is required that the joint distribution of y = {yt; t = 1, 2, ..., T}
also be in the EF. For example, even if yt were Gaussian, it does not necessarily follow that

the joint distribution of y will achieve a suffi ciency reduction. The most familiar example

of this is when y follows a Gaussian moving average (MA) process and consequently only

the whole sample is suffi cient.

Even the simplest SSMs generate MA-like dependence in the data. Consider the linear

Gaussian SSM, expressed in regression form as

yt = xt + et (5)

xt = δ + ρxt−1 + vt, (6)

where the disturbances are respectively independent N (0, σ2
e = 1) and N (0, σ2

v) variables.

In this case, the joint distribution of the vector of yt’s (which are marginally normal and

members of the EF) is y ∼ N(µι,σ2
x (rSNI + V)), where rSN = σ2

e/σ
2
x is the inverse of the

signal-to-noise (SN) ratio, µ = δ/(1− ρ), ι is the T -dimensional vector of 1’s and V is the
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familiar Toeplitz matrix associated with an autoregressive (AR) model of order 1. The

matrix V−1 has a tri-diagonal form, illustrated here without loss of generality for the case

of T = 5:

V−1 =


1 −ρ 0 0 0
−ρ ρ2 + 1 −ρ 0 0
0 −ρ ρ2 + 1 −ρ 0
0 0 −ρ ρ2 + 1 −ρ
0 0 0 −ρ 1

 .
In general V−k is (2k + 1)-diagonal.

To construct the suffi cient statistics we need to evaluate (rSNI + V)−1, which ap-

pears in the quadratic form of the multivariate normal density, with the structure of

(rSNI + V)−1 determining the way in which sample information about the parameters is

accumulated and, hence, the suffi ciency reduction that is achievable. To illustrate this, we

write

(rSNI + V)−1 = V−1 − rSNV−2 + r2
SNV−3 − ..., (7)

with the expression reducing to the result for an observed AR(1) process when rSN = 0. In

this case the suffi cient statistics are thus calculated from the quadratic form of the normal

density with mean µ and covariance matrix V−1. Using the conventional row/column

matrix notation to express a general quadratic form y′Ay as

y′Ay =
T∑
t=1

at,ty
2
t + 2

∑
s>t

T∑
t=1

as,tysyt, (8)

it is instructive to re-express the right-hand-side of (8) as

T∑
t=1

at,ty
2
t + 2

T∑
t>1

at,t−1ytyt−1 + 2
T∑
t>2

at,t−2ytyt−2 + ...+ 2
T∑

t>T−1

at,t−T+1ytyt−T+1 (9)

noting that the last term in the expansion is equivalent to 2aT,1yTy1. When A = V−1,

at,t−k = 0 for t > k > 2 and only the first 2 terms in (9) are present as a consequence.

Since V−1 has constant terms along the diagonals except for end effects (i.e. the different

first and last rows), the suffi cient statistics thus comprise

s1 =

T−1∑
t=2

yt, s2 =

T−1∑
t=2

y2
t , s3 =

T∑
t=2

ytyt−1, s4 = y1 + yT , s5 = y2
1 + y2

T . (10)

For rSN 6= 0 however, as characterizes a state space model with measurement error, the

extra terms in the expansion in (7) come into play. Taking the first-order approximation,

for example,A = V−1−rSNV−2 is 5-diagonal, at,t−k = 0 for t > k > 3, and the first 3 terms

in (9) remain. As a consequence, the dimension of the set of suffi cient statistics increases
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by 1. As the SN ratio declines, and rSN increases as a result, higher-order terms are

required to render the approximation in (7) accurate, and the dimension of the suffi cient

set increases correspondingly. Thus, for any rSN 6= 0, the structure of (rSNI + V)−1 is

such that information in the sample of size T does not accumulate, and reduction to a

suffi cient set of statistics of dimension smaller than T is not feasible.

This same qualitative problem would also characterize any SSM nested in (3) and (4),

with the only difference being that, in any particular case there would not necessarily be

an analytical link between the SN ratio and the lack of suffi ciency associated with any

finite set of statistics calculated from the observations. The quest for an accurate ABC

technique in a state space setting as based on an arbitrary set of statistics is thus not well-

founded and this, in turn, motivates the search for summary measures via the application

of MLE to an auxiliary likelihood. As well as enabling the extraction of the maximum

information from the auxiliary likelihood via the asymptotic suffi ciency of the auxiliary

MLE, standard regularity conditions on the approximating likelihood function are able to

be invoked for the purpose of establishing Bayesian consistency of the ABC posterior.

3 Auxiliary likelihood-based ABC

3.1 ‘Approximate’asymptotic suffi ciency

Asymptotic Gaussianity of the MLE for the parameters of (3) and (4) (under regularity)

implies that the MLE satisfies the factorization theorem and is thereby asymptotically

suffi cient for the parameters of that model. (See Cox and Hinkley, 1974, Chp. 9 for

elucidation of this matter.) Denoting the log-likelihood function by L(y;φ), maximizing

L(y;φ) with respect to φ yields φ̂, which could, in principle, be used to define η(.) in

an ABC algorithm. For large enough T (and for as ε → 0) the algorithm would thus

produce draws from the exact posterior. Indeed, in arguments that mirror those adopted

by Gallant and Tauchen (1996) and Gouriéroux et al. (1993) for the effi cient method of

moments (EMM) and II estimators respectively, Gleim and Pigorsch (2013) demonstrate

that if η(.) is chosen to be the MLE of an auxiliary model that ‘nests’the true model in

some well-defined way, asymptotic suffi ciency will still be achieved; see also Gouriéroux

and Monfort (1995) on this point.

Of course, if the SSM in question is such that the exact likelihood is accessible, the

model is likely to be tractable enough to preclude the need for treatment via ABC. Further,

the quest for asymptotic suffi ciency via a nesting auxiliary model conflicts with the quest

for an accurate non-parametric estimate of the posterior using the ABC draws, given that

the dimension of the parameter set in the auxiliary model is, by construction, likely to be

large. Hence, in practice, the appropriate goal in using the auxiliary likelihood approach
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to ABC in the SSM context is to define a sensible parsimonious approximation to the

true model in (3) and (4), for which the associated likelihood function can be evaluated

with computational ease and speed. Heuristically, if the approximating model is ‘accurate

enough’as a representation of the true model, such an approach will yield, via the ABC

algorithm, an estimate of the posterior distribution that is conditioned on a statistic that is

‘close to’being asymptotically suffi cient for φ. We certainly make no attempt in this paper

to formalize this statement in any way. Nevertheless, we do view the notion of asymptotic

suffi ciency of the auxiliary MLE as being a intuitively compelling characteristic of the

auxiliary likelihood-based approach to ABC, and the numerical results presented later

provide some support for its importance in practice. More critically, however, pursuing

the auxiliary likelihood route enables us to draw on regularity as it pertains to likelihood

functions, and maximization thereof, to prove the (Bayesian) consistency of the resultant

ABC posterior and, hence, the baseline accuracy of the inferences produced via this route.

3.2 Bayesian consistency and ABC

In the ABC setting, Bayesian consistency essentially requires that as T →∞ and ε→ 0,

the estimated posterior based on the selected draws from pε(φ|η(y)) concentrates around

the true parameter value generating the data; see, for example, Frazier et al. (2015) and

the references therein. With a slight abuse of terminology, from this point onwards we

denote the ‘ABC posterior’by pε(φ|η(y)), recognizing that the quantity produced via

ABC is actually the kernel-based density estimate constructed from a given number of

draws, N , from pε(φ|η(y)) as defined in (2).

In what follows, we use the following notation throughout the remainder of the paper.

For a d-dimensional vector X we denote the Euclidean norm of X as ‖X‖, and we let
E[X] denote the expectation of X under the true probability distribution. Let " P−→"
denote convergence in probability, where P denotes a generic probability measure, and

OP (an), oP (bn) and plim have the standard connotations. Denote by z(φi) the ith vector

of pseudo data, where the dependence of z(φi) on the ith random draw φi from the prior

p(φ) is made explicit.

For a given auxiliary model, with parameters β ∈ B ⊂ Rd, d ≥ p, and sample log-

likelihood function La(y;β), ABC can use as summary statistics for inference on φ the

maximizers of La(·;β), based on y and z(φi), which we represent respectively by

β̂(y) = arg max
β∈B

La(y;β) and β̂(z(φi)) = arg max
β∈B

La(z(φi);β).

Using β̂(y) and β̂(z(φi)) as summary statistics, we can take as the distance criterion in

(1),

d{η(y),η(z(φi))} =

√[
β̂(y)−β̂(z(φi))

]′
Ω
[
β̂(y)−β̂(z(φi))

]
, (11)
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where Ω is some positive definite matrix.

The intuition behind Bayesian consistency of ABC based on η(y) = β̂(y) follows from

the following sequence of arguments. Firstly, under mild regularity conditions, as T →∞
the criterion in (11) should satisfy

d{η(y),η(z(φi))} P−→
√[
β0 − b(φi)

]′
Ω
[
β0 − b(φi)

]
, (12)

where

β0 = arg max
β∈B

{
plim
T→∞

(1/T )La(y;β)

}
and, for any φi ∈ B,

b(φi) = arg max
β∈B

{
plim
T→∞

(1/T )La(z(φi);β)

}
.

Secondly, under identification conditions, φi = φ0 is the only value that satisfies β0 =

b(φi) (where φ0 is the parameter generating the observed data) and, as a consequence,

the only value that satisfies

d{β0,b(φi)} =

√[
β0 − b(φi)

]′
Ω
[
β0 − b(φi)

]
= 0. (13)

Hence, as T → ∞, the only value of φi satisfying d{η(y),η(z(φi))} ≤ ε for any ε ≥ 0 is

φi = φ0, and so for well-behaved β̂(y), as T → ∞, ε → 0 the ABC algorithm will only

select draws arbitrarily close to φ0.

Put formally, the ABC posterior, based on η(y) = β̂(y), will be Bayesian consistent

if, for Ψδ(φ0) := {φ ∈ Φ : ‖φ − φ0‖ > δ} and any δ > 0,
∫

Ψδ(φ0)
pε(φ|η(y))dφ = oP (1),

as T → ∞ and ε → 0. To formally establish Bayesian consistency for η(y) = β̂(y) and

the distance in (11), we require the following assumptions.

Assumption A:

(A1) The parameter spaces B ⊂ Rd and Φ ⊂ Rp are compact.

(A2) For any φi ∈ Φ, {zt(φi)}Tt=1 is stationary and ergodic.

(A3) The map (φi,β) 7→ La(z(φi);β) is continuous in (φi,β).2

(A4) For each β ∈ B, and φi ∈ Φ, E[|`(zt(φi);β)|] < ∞, where `(zt(φi);β) is the t-th

contribution to La(z(φi);β).

2In certain cases the sample paths of the simulated z(φi), may not be continuous in φi, invalidating
Assumption (A3). In these situations an alternative assumption, known as first-moment continuity (see,
for example, Hansen, 2012), can often be applied.
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(A5) L∞(φi;β) := plimT→∞(1/T )La(z(φi);β) exists and has unique maximum b(φi) =

arg maxβ∈B L∞(φi;β), where β0 = b(φ0) = arg maxβ∈B L∞(φ0;β).

Assumption I:

(I1) The prior p(φ) is continuous and p(φ0) > 0.

(I2) The mapping φ 7→ b(φ) is one-to-one; that is, for every β ∈ B the equation β =

b(φ) has a unique solution in φ.

Remark 1: Under correct specification of the model generating the data y, Assump-

tions (A1)-(A5) ensure that supβ∈B |(1/T )La(y;β)−L∞(φ0;β)| = oP (1), for L∞(φ0;β)

defined in (A5), and that ‖β̂(y) − β0‖ = oP (1). In addition, Assumptions (A1)-(A5)
are enough to ensure that supφi∈Φ ‖β̂(z(φi))− b(φi)‖ = oP (1). The uniform convergence

of β̂(z(φi)) to b(φi) is crucial as it ensures that the simulated paths z(φi), and the sub-

sequent η(z(φi)), are well-behaved over Φ.

Remark 2: The distance in (11) essentially mimics the Wald criterion used in the II
technique.3 Similar to II, in our Bayesian analyses, in which (11) is used to produce ABC

draws, Ω can also be defined as the sandwich form of a variance-covariance estimator

(Gleim and Pigorsch, 2013, and Drovandi et al., 2015), or as the inverse of the (estimated)

variance-covariance matrix for β, evaluated at β̂(y) (Drovandi et al., 2011). In these cases

it is more useful to denote the weighting matrix by Ω̂(y, β̂(y)) and Bayesian consistency

then requires, for some positive definite Ω∞(β0), ‖Ω̂(y, β̂(y))−Ω∞(β0)‖∗
P−→ 0, where, for

Ω an n×m matrix, ‖Ω‖∗ =
√
Trace(Ω′Ω).

Remark 3: Assumption (I1) ensures that the prior used within ABC places non-zero
probability on the truth, and is standard in the analysis of Bayesian consistency. Assump-

tion (I2) ensures that the limit distance in (13) is zero if and only if φ = φ0.

The following theorem formally establishes Bayesian consistency of the ABC posterior

pε(φ|η(y)). The proof is contained in Appendix A.1.

Theorem 1 For all δ > 0, if Assumptions (A) and (I) are satisfied, then for ε = o(1)

and ε−1 supφ∈Φ ‖β̂(z(φi))− b(φi)‖ = oP (1),∫
Ψδ(φ0)

pε(φ|η(y))dφ
P−→ 0, for η(y) = β̂(y), as T →∞,

where Ψδ(φ0) := {φ ∈ Φ : ‖φ− φ0‖ > δ}.
3In practice the implementation of II may involve the use of a simulated sample in the computation of

β̂(z(φi)) that is a multiple of the size of the empirical sample.
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Remark 4: Our focus on Bayesian consistency only requires a weak set of suffi cient con-
ditions on the auxiliary likelihood that can be readily verified in many cases, as illustrated

throughout the remainder. In particular, the tenants of Theorem 1 are weaker than those

considered in the ABC literature where asymptotic behaviour of ABC point estimates is

the focus; see, for example, Li and Fearnhead (2015) and Creel et al. (2015). For instance,

nothing about our conditions requires the summaries to satisfy a central limit theorem,

which allows for highly dependent data. We refer the reader to Frazier et al. (2015) for a

treatment of ABC consistency as it relates to conditioning on general summary statistics,

and in completely general model frameworks.

3.3 Auxiliary score-based ABC

With large computational gains, η(.) in (1) can be defined using the score of the auxiliary

likelihood. That is, the score vector associated with the approximating likelihood function,

when evaluated at the simulated data, and with β̂(y) substituted for β, will be closer to

zero the ‘closer’is the simulated data to the true. Hence, the distance criterion in (1) for

an ABC algorithm can be based on η(.) = S(.; β̂(y)) , where

S(z(φi);β) = T−1∂La(z(φi);β)

∂β
. (14)

This yields the selection rule

d{η(y),η(z(φi))} =

√[
S(z(φi); β̂(y))

]′
Σ
[
S(z(φi); β̂(y))

]
≤ ε, (15)

where S(y; β̂(y)) = 0 is invoked, and Σ denotes an arbitrary positive definite weighting

matrix. Implementation of ABC via (15) is faster (by orders of magnitude) than the

approach based upon η(.) = β̂(.), due to the fact that maximization of the auxiliary

likelihood is required only once, in order to produce β̂(.) from the observed data y. All

other calculations involve simply the evaluation of S(.; β̂(y)) at the simulated data, with

a numerical differentiation technique invoked to specify S(.; β̂(y)), when not known in

closed-form.

Once again in line with the proof of the consistency of the relevant frequentist (EMM)

estimator, the Bayesian consistency result in Section 3.2 could be re-written in terms

η(.) = S(.; β̂(y)), upon the addition of a differentiability condition regarding La(z(φi);β)

and the assumption that β = b(φ) is the unique solution to the limiting first-order

condition, ∂L∞(φ,β)/∂β = plimT→∞ T
−1∂La(z(φ);β)/∂β, with the convergence uniform

in β and φ. In brief, given that β̂(y)
P−→ b(φ0), as T →∞ the limiting value of the choice

criterion in (15) is

d{b(φ0),b(φi)} =

√[
∂L∞(φi; b(φ0))/∂β

]′
Σ
[
∂L∞(φi; b(φ0))/∂β

]
.
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Thus, once again, as T → ∞, and irrespective of the form of Σ, the only value of φi

satisfying (15) for any ε ≥ 0 is φi = φ0, and the ABC posterior estimate will concentrate

around φ0 accordingly.

Hence, under regularity conditions, Bayesian consistency will be maintained when using

the score of an auxiliary likelihood. However, a remaining pertinent question concerns

the impact on suffi ciency (or, more precisely, on the proximity to asymptotic suffi ciency)

associated with using the score instead of the auxiliary MLE itself. In practical terms this

question can be re-phrased as: do the selection criteria based on S(.; β̂(y)) and β̂(y) yield

identical draws of φ? If the answer is yes, then, unambiguously, for large enough T and

for ε → 0, the score- and MLE-based ABC criteria will yield equivalent estimates of the

exact posterior p(φ|y), with the accuracy of those (equivalent) estimates dependent, of

course, on the nature of the auxiliary likelihood itself.

For any auxiliary likelihood (satisfying identification and regularity conditions) with

unknown parameter vector β, we expand the (scaled) score function in (14), evaluated at

β̂(y), around the point β̂(z(φi)),

S(z(φi); β̂(y)) = S(z(φi); β̂(z(φi))) + D
[
β̂(y)− β̂(z(φi))

]
= D

[
β̂(y)− β̂(z(φi))

]
,

(16)

where

D = T−1∂
2La(z(φi); β̃(z(φi)))

∂β∂β′
(17)

and β̃(z(φi)) denotes an (unknown, and coordinate-specific) intermediate value between

β̂(y) and β̂(z(φi)). Hence, using (16), the criterion in (15) becomes√[
S(z(φi); β̂(y))

]′
Σ
[
S(z(φi); β̂(y))

]
=

√[
β̂(y)− β̂(z(φi))

]′
D′ΣD

[
β̂(y)− β̂(z(φi))

]
≤ ε. (18)

Subject to standard conditions regarding the second derivatives of the auxiliary likelihood,

the matrix D in (17) will be of full rank for β̂(z(φi)) close to β̂(y). As a consequence,

and given the positive definiteness of Σ, D′ΣD will be a positive definite matrix that

is some function of φi. Hence, whilst for any ε > 0, the presence of D affects selection

of φi, as ε → 0, φi will be selected via (18) if and only if β̂(y) and β̂(z(φi)) are equal.

Similarly, irrespective of the form of the (positive definite) weighting matrix in (11), the

MLE criterion will produce these same selections. This result obtains no matter what the

dimension of β relative to φ, i.e. no matter whether the true parameters are exactly or

over-identified by the parameters of the auxiliary likelihood. This result thus goes beyond

the comparable result regarding the II/EMM estimators (see, for e.g. Gouriéroux and

Monfort, 1996), in that the equivalence is independent of the form of weighting matrix

used and the degree of over-identification that prevails.
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Of course, in practice ABC is implemented with ε > 0, at which point the two ABC

criteria will produce different draws. However, for the models entertained in this paper,

preliminary investigation has assured us that the difference between the ABC estimates

of the posteriors yielded by the alternative criteria is negligible for small enough ε. Hence,

in the numerical section we operate solely with the score-based approach as the com-

putationally feasible method of extracting both consistency and approximate asymptotic

suffi ciency in the state space setting.

4 Auxiliary likelihood-based ABC for two latent volatil-
ity models

In this section we give consideration to the application of auxiliary likelihood-based ABC

in the specific context of the general non-linear non-Gaussian SSM defined in (3) and (4),

with the primary goal being to illustrate the extent to which the conditions for Bayesian

consistency, as presented in Theorem 1, are satisfied in practically relevant examples.

Specifically, we explore the consistency of ABC as applied to two continuous time latent

volatility models, using plausible approximating models and giving emphasis to computa-

tionally feasible evaluation of the auxiliary likelihoods.

4.1 Ornstein-Ulenbeck stochastic volatility model

Assume that the (logarithmic) return at time t, rt, has mean zero with volatility governed

by a continuous-time Ornstein-Ulenbeck (OU) process for the logarithm of its variance Vt,

rt = V
1/2
t εt, (19)

d ln(Vt) = κ(d− ln(Vt))dt+ σdWt, (20)

where Wt is a Brownian motion. We observe a discrete sequence of returns from the

structural model (19)-(20), and our goal is to conduct Bayesian inference on the parameters

governing the dynamics of volatility.

Defining xt = ln(Vt), on the interval [t, t+ ∆], the law-of-motion for dxt can be exactly

discretized to yield

xt+∆ = d(1− e−∆κ) + xte
−∆κ + σ

√
(1− e−2∆κ)

2κ
νt, (21)

where νt ∼i.i.d N(0, 1) and, for some M,ϕ, we have M ≥ κ, d, σ ≥ ϕ > 0. Taking ∆ = 1,

we may thus analyze the model in (19)-(20) by considering the discrete time version,

ln(r2
t ) = ω + xt + ζt (22)

xt = d(1− e−κ) + xt−1e
−κ + σ

√
(1− e−2κ)

2κ
νt ≡ γ + ρxt−1 + σvνt, (23)
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where γ = d(1− ρ), ρ = exp(−κ), σv = σ
√

(1− ρ2)/2κ, ω = −1.27, and with

ζt = ln(ε2t )− ω (24)

a mean-zero log-chi-squared random variable with variance σ2
ζ = π2/2. Before proceeding

we write the model in a more compact, yet equivalent, form

yt = ln(r2
t )− γ∗ = xt + ζt, (25)

xt = ρxt−1 + σvνt, (26)

where γ∗ = ω + γ/(1 − ρ). Given the exact discretization of the state in (20), (25)-(26)

form an equivalent representation of the model in (19)-(20), and so, hereafter, we refer

to the model in (25)-(26) as the true model under analysis (using the acronym: SV-OU),

characterized by the unknown structural parameters d, κ and σ. Using y = 1
T

∑T
t=1 yt, an

implied posterior for d can easily be constructed by appropriately scaling the observed and

simulated data to have unit variance, and using the accepted draws for κ, σ, obtained from

an ABC-based procedure. Therefore, we treat γ∗ as known and concentrate on verification

of the Assumptions in Theorem 1 for φ = (κ, σ)′.

To implement an auxiliary likelihood-based ABC algorithm, we adopt the following

linear Gaussian approximation of (25)-(26),

yt = xt + et, (27)

xt = β1xt−1 + β2vt, (28)

with et ∼ N(0, σ2
ζ), vt ∼ N(0, 1) and β = (β1, β2)′. The approximation thus invokes

the (incorrect) assumption that ζt in equation (24) is ζt ∼ N(0, σ2
ζ), whilst retaining the

correct specification for the conditional mean of yt, namely xt. Given that the unknown

parameters appear only in the conditional mean, verifying the conditions for Bayesian

consistency is simplified, with the parameters β1 and β2 in the approximating model being

continuous and one-to-one transformations of the corresponding structural parameters, as

follows,4

β1 = e−κ; β2 = σ

√
1− exp(−2κ)

2κ
.

The log-likelihood for the auxiliary model, La(y;β), can be readily constructed using the

Kalman filter (hereafter, KF), and the auxiliary MLE, β̂(y), obtained by maximizing

La(y;β). ABC could then be based on either the general distance in (11), or that in (18).

As the following corollary demonstrates, Bayesian consistency of ABC based on this

particular auxiliary likelihood is achieved. The proof of this corollary is detailed in Ap-

pendix A.2.

4The continuity and one-to-one nature of the transformation defining the auxiliary parameters ensures
compactness of the auxiliary parameter space B.
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Corollary 2 For the SV-OU model in (25)-(26) and true value φ0 = (κ0, σ0)′, the model

in (27)-(28), with auxiliary likelihood La(y;β) constructed via the KF, yields Bayesian

consistent inference for φ0 with η(y) = β̂(y) as T →∞ and ε→ 0.

4.2 Square root stochastic volatility model

Assume, again, we observe mean-zero returns and now consider the square root model for

Vt,

rt = V
1/2
t εt,

dVt = (δ − αVt)dt+ σv
√
VtdWt,

with Wt again a Brownian motion. We restrict the structural parameters as 2δ ≥ σ2
v to

ensure positive volatility, and for some M,ϕ, we impose M ≥ σv, α, δ ≥ ϕ > 0. With

these restrictions,Vt is mean reverting and as t→∞, Vt approaches a steady state gamma
distribution, with E[Vt] = δ/α and var(Vt) = σ2

vδ/2α
2. The transition density for Vt,

conditional on Vt−1, is

p(Vt|Vt−1) = c exp(−u− v)
(v
u

)q/2
Iq(2(uv)1/2),

where c = 2α/σ2
v(1 − exp(−α)), u = cVt−1 exp(−α), v = cVt, q = 2δ

σ2v
− 1, and Iq(.)

is the modified Bessel function of the first kind of order q. The conditional distribution

function is non-Central chi-square, χ2(2cVt; 2q+2, 2u), with 2q+2 degrees of freedom and

non-centrality parameter 2u. In the same spirit as above (and maintaining comparable

notation to adopted therein, but for xt := Vt), we take squares and logarithms of the

measurement equation, leading to the model

yt = ln(r2
t ) = ln(xt) + ζt (29)

dxt = (δ − αxt)dt+ σv
√
xtdWt, (30)

where ζt is, again, the log-chi-squared random variable defined in (24). We view (29)-(30)

as the true model under analysis and refer to it hereafter as the SV-SQ model.

To implement an auxiliary likelihood-based ABC algorithm, we adopt a Gaussian ap-

proximation for ζt in (29) and an Euler discretization for (30), yielding the approximating

model,

yt = ln(xt) + et (31)

xt = β1 + β2xt−1 + β3

√
xt−1vt, (32)

where et ∼ N(0, σ2
ζ), vt is a truncated Gaussian variable with lower bound, vt >

−β1
β3
, and

we define the auxiliary parameters as β = (β1, β2, β3)′. Similar parameter restrictions to
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those imposed on the structural parameters φ are required of the elements of β: M ≥ β1,

β3 ≥ ϕ > 0, ϕ ≤ β2 ≤ 1− ϕ, and 2β1 ≥ β2
3. Importantly, and in contrast to the situation

that obtains in the previous section, the discretization in (32) is not exact; hence φ 6= β,

and the precise link between the two sets of parameters impacts (in particular) on the

identification condition for consistency, I2. Moreover, non-linearities characterize both
(31) and (32); hence, and also in contrast with the previous example, the KF is not a

feasible method for evaluating the auxiliary likelihood function, La(y;β). Therefore, we

turn to the augmented unscented KF (AUKF) as an alternative means of evaluating the

likelihood of this approximation. General pseudo code detailing implementation of the

AUKF is given in Algorithm 2, with more detailed implementation instructions given in

Appendix A.3.1.

Algorithm 2 General AUKF algorithm
1: Initialize the system in (31) and (32) with a matrix of sigma-pointsXa,0 and a vector of
fixed weights; see, Appendix A.3.1 for the definition of these sigma-points and weights;

2: while t ≤ T do
3: Propagate Xa,t−1 through (32) to obtain xt sigma points for time t;
4: Using simple weighted sums of the xt sigma points, generate the predicted mean
and variance for xt;

5: Use the predicted mean and variance to generate a new matrix of sigma points
Xa,t;

6: Propagate Xa,t through (31) to obtain yt sigma points for time t;
7: Using simple weighted sums of the yt sigma points, generate the predicted mean
and variance for yt;

8: Use the predicted mean and variance to form a Gaussian conditional density for
yt;

9: Using the predicted mean and variance for yt and KF up-dating, produce the
filtered mean and variance for xt, given the observation of yt, and up-date the sigma
points Xa,t accordingly;

10: Set t = t+ 1;
11: end while
12: La(y;β) is the log-product of the increments in Step 8.

Given La(y;β) as evaluated via the AUKF, once again ABC could be based on either

distance: (11) or (18). However, unlike in the case of the SV-OU model, the precise

form of the auxiliary likelihood function depends on the first-order Euler discretization of

the continuous-time state process and the particular specifications used to implement the

AUKF. For the AUKF specification detailed in Appendix A.3.1, we state the following

corollary, the proof of which is given in Appendix A.3.2:

Corollary 3 For the SV-SQ model in (29)-(30) and true value φ0 = (δ0, α0, σv,0)′, the

model in (31) and (32), with auxiliary likelihood La(y;β) constructed via the AUKF filter,

and with η(y) = β̂(y), satisfies Assumption (A).
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Bayesian consistent inference for φ0 however, is also dependent on the satisfaction of

Assumption (I). Whilst I1 is trivially satisfied via the specification of a sensible prior,
I2 does not appear to be amenable to analytical investigation, or verification, given the
nature of the auxiliary likelihood, as numerically evaluated using the AUKF, and the role

played by the true and auxiliary parameters therein. Hence, we choose to investigate

consistency for this model numerically as part of the exercise that follows.

5 Numerical assessment of the auxiliary likelihood-
based ABC method

We undertake a numerical exercise in which the accuracy of the auxiliary likelihood-based

method of ABC is compared with that of ABC methods based on a set of summary

statistics chosen without explicit reference to an auxiliary likelihood. We conduct this

exercise using the SV-SQ model in (29)-(30) as the example, with the auxiliary score

produced by evaluating the likelihood function of the approximating model (defined by

(31) and (32)) using the AUKF in the manner described above. We assess the accuracy of

all ABC posterior estimates with reference to the exact (marginal) posteriors for a given

(finite) sample size, as well as illustrating the behavior of the estimated densities as the

sample size increases. In particular, we illustrate that despite the diffi culty of formally

establishing the identification condition (Assumption I2) for the auxiliary likelihood-based
ABC approach, Bayesian consistency would appear to hold. In contrast, there is no clear

evidence that the summary statistic-based ABC estimates yield consistent inference. We

consider both the case where a single parameter (only) is unknown (and dimensionality

thus plays no role), and the case where two, and then all three parameters of the model

are unknown. In Section 5.2 we propose a dimension reduction technique for the multi-

parameter case, based on marginalization of the auxiliary likelihood. All results are then

documented in Section 5.3.

5.1 Data generation and computational details

For the purpose of this illustration we simulate artificially an ‘empirical’sample of size T

from the model in (29) and (30), with the parameters set to values that yield observations

on both rt and Vt that match the characteristics of (respectively) daily returns and daily

values of realized volatility (constructed from 5 minute returns) for the S&P500 stock

index over the 2003-2004 period: namely, α = 0.1; δ = 0.004; σv = 0.062. This relatively

calm period in the stock market is deliberately chosen as a reference point, as the inclusion

of price and volatility jumps, and/or a non-Gaussian conditional distribution in the model

would be an empirical necessity for any more volatile period, such as that witnessed
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during the 2008/2009 financial crisis, for example. The aim of this exercise being to assess

the accuracy of the alternative ABC methods in a non-linear state space setting, it is

important to have access to the exact posterior, and the SV-SQ model - without additional

distributional complexities - enables this posterior to be accessed, via the deterministic

non-linear filtering method of Ng et al. (2013). In brief, the method of Ng et al. represents

the recursive filtering and prediction distributions used to define the exact likelihood

function as the numerical solutions of integrals defined over the support of ζt in (29), with

deterministic integration used to evaluate the relevant integrals, and the exact transitions

in (30) used in the specification of the filtering and up-dating steps. Whilst lacking the
general applicability of the ABC-based method proposed here, this deterministic filtering

method is ideal for the particular model used in this illustration, and can be viewed as

producing a very accurate estimate of the exact density, without any of the simulation

error that would be associated with an MCMC-based comparator, for instance. We refer

the reader to Ng et al. for more details of the technique; see also Kitagawa (1987).5 The

likelihood function, evaluated via this method, is then multiplied by a uniform prior that

imposes the restrictions: 0 < α < 1; δ, σ2
v > 0 and 2δ ≥ σ2

v. The three marginal posteriors

are then produced via deterministic numerical integration (over the parameter space),

with a very fine grid on φ being used to ensure accuracy. For ease of interpretation we

report the posterior results for ρ = 1 − α, where values of ρ close to unity signify a very
persistent volatility process.

We compare the performance of the score-based technique with that of more conven-

tional ABC methods based on summary statistics that may be deemed to be a sensible

choice in this setting. For want of a better choice we propose a set of summary statistics

that are suffi cient for an observable AR(1) process (under Gaussianity), as given in (10).

Two forms of distances are used. Firstly, we apply the conventional Euclidean distance,

with each summary statistic also weighted by the inverse of the variance of the values of

the statistic across the ABC draws. That is, we define

d{η(y),η(z(φi))} = [
5∑
j=1

(sij − sobsj )2/var(sj)]
1/2 (33)

for ABC iteration i = 1., 2, ..., N , where var(sj) is the variance (across i) of the sij, and s
obs
j

is the observed value of the jth statistic. Secondly, we use a distance measure proposed

5We note that the application of this filter in Ng et al. is to a non-parametric representation of the
measurement error. In the current setting, in which ζt is specified parametrically, the known form of
the distribution of ζt is used directly in the evaluation of the relevant integrals. We refer the reader
to Section 2.2 of that paper for a full description of the algorithm. Preliminary experimentation with
the number of grid points used in the deterministic integration was undertaken in order to ensure that
the resulting estimate of the likelihood function/posterior stabilized, with 100 grid points underlying the
final results documented here. As an additional check we also evaluated the exact (normalized) likelihood
function using a bootstrap particle filter, based on 50,000 particle draws. The filtering-based estimate
was indistinguishable from the grid-based estimate and, hence, is not reproduced here.
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in Fearnhead and Prangle (2012) which, as made explicit in Blum et al. (2013), is a form

of dimension reduction method. We explain this briefly as follows. Given the vector of

observations y, the set of summary statistics in (10) are used to produce an estimate of

E(φj|y), j = 1, 2, 3, which, in turn, is used as the summary statistic in a subsequent ABC

algorithm. The steps of the Fearnhead and Prangle (FP) procedure (as modified for this

context) for selection of the scalar parameter φj, j = 1, 2, 3, are as given in Algorithm 3.

Algorithm 3 FP ABC algorithm
1: Simulate φi, i = 1, 2, ..., N , from p(φ)
2: Simulate xi = (xi1, x

i
2, ..., x

i
T )′ from (30) using the exact transitions, and pseudo data,

zi using p(z|xi)
3: Given zi, construct

si =
[
si1, s

i
2, s

i
3, s

i
4, s

i
5

]′
(34)

4: For φj = (φ1
j , φ

2
j , ..., φ

N
j )′, X =

[
1 1 · · · 1
s1 s2 · · · sN

]′
and φj = E[φj|Z] + e =

X
[
α γ ′

]′
+ e, where Z =

[
z1, z2, ..., zN

]
and γ is of dimension (5× 1), use OLS to

estimate E[φj|Z] as Ê[φj|Z] = α̂ +
[

s1 s2 · · · sN
]′
γ̂

5: For η(zi) = Ê(φj|zi) = α̂ + si
′
γ̂ and η(y) = Ê(φj|y) = α̂ + sobs

′
γ̂, where sobs denotes

the vector of summary statistics in (34) calculated from the vector of observed returns,
use:

d{η(y), η(zi)} =
∣∣∣Ê(φj|y)− Ê(φj|zi)

∣∣∣ =
∣∣∣si′γ̂ − sobs

′
γ̂
∣∣∣ (35)

as the selection criterion for φj.

The score-based method uses the distance measure in (15). The weighting matrix Σ

is set equal to the Hessian-based estimate of the variance-covariance matrix of the (joint)
MLE of β, evaluated at the MLE computed from the observed data, β̂(y). For the case

where a single parameter only is unknown, the absolute value of the relevant scalar score

is used to define (15).

5.2 Dimension reduction via integrated likelihood techniques

An ABC algorithm induces two forms of approximation error. Firstly, and most funda-

mentally, the use of a vector of summary statistics η(y) to define the selection criterion in

(1) means that a simulation-based estimate of p(φ|η(y)) is the outcome of the exercise.

Only if η(y) is suffi cient for φ is the partial posterior density p(φ|η(y)) equivalent to the

exact posterior p(φ|y). Secondly, the partial posterior density itself, p(φ|η(y)), will be

estimated with error, due to both the use of a non-zero tolerance, ε, and the use of a finite

set of draws, N to estimate p(φ|η(y)), for any given ε. Typically ε is chosen such that,

for a given computational burden (i.e. a given value of N), a certain (small) proportion

of draws of φi are selected, with attempts then made to reduce the error associated with
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non-parametric density estimation of p(φ|η(y)) via post-sampling corrections of the draws

(Beaumont et al., 2002, Blum, 2010, Blum and François, 2010). Critically, as highlighted

by Blum, the accuracy of the estimate of p(φ|η(y)) (for any given ε and N) will be less,

the larger the dimension of η(y). This ‘curse of dimensionality’obtains even when the

parameter φ is a scalar, and relates solely to the dimension of η(y). As elaborated on

further by Nott et al. (2014), this problem is exacerbated as the dimension of φ itself

increases, firstly because an increase in the dimension of φ brings with it a concurrent

need for an increase in the dimension of η(y) and, secondly, because the need to estimate

a multi-dimensional density (for φ) brings with it its own problems related to dimension.

As a potential solution to the inaccuracy induced by the dimensionality of the problem,

Nott et al. (2014) suggest allocating (via certain criteria) a subset of the full set of

summary statistics to each element of φ, φj, j = 1, 2, ...., p, using kernel density techniques

to estimate each marginal density, p(φj|ηj(y)), and then using standard techniques to

retrieve a more accurate estimate of the joint posterior, p(φ|η(y)), if required. However,

the remaining problem associated with the (possibly still high) dimension of each ηj(y),

in addition to the very problem of defining an appropriate set ηj(y) for each φj, remains

unresolved.6

The principle advocated in this paper is to exploit the information content in the MLE

of the parameters of an auxiliary likelihood, β, to yield summary measures on which to

condition. Within this framework, the dimension of β determines the dimension of η(y)

and the curse of dimensionality thus prevails for high-dimensional β. However, in this case

a solution is available, at least when the dimensions of β and φ are equivalent and there is

a natural link between the elements of the two parameter vectors, which is clearly so for the

model investigated in the numerical exercise, in which we produce an approximation by

discretization of the latent diffusion. In this case then, integrating the auxiliary likelihood

function with respect to all parameters other than βj and then producing the score of

this function with respect to βj (as evaluated at the integrated MLE from the observed

data, β̂j(y)), yields, by construction, an obvious scalar statistic for use in selecting draws

of φj and, hence, a method for estimating p(φj|y).7 If the marginal posteriors only are of

interest, then all p marginals can be estimated in this way, with p applications of (p− 1)-

dimensional integration required at each step within ABC to produce the relevant score

statistics. Importantly, we do not claim here that the ‘proximity’to suffi ciency (for φ) of

the vector statistic η(y), translates into an equivalent relationship between the score of

the integrated likelihood function and the corresponding scalar parameter, nor that the

associated product density is coherent with a joint probability distribution. If the joint

6See Blum et al. (2013) for further elaboration on the dimensionality issue in ABC and a review of
current approaches for dealing with the problem.

7For a general discussion of the use of integrated likelihood methods in statistics see Berger et al.
(1999).
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posterior (of the full vector φ) is of particular interest, the sort of techniques advocated by

Nott et al. (2014), amongst others, can be used to yield joint inference from the estimated

marginal posteriors.

Put more formally, let β−j = (β1, ..., βj−1, βj+1, ..., βp)
′ be a (p − 1)-dimensional pa-

rameter vector of auxiliary parameters and B−j ⊂ R(p−1) the parameter space associated

with β−j. For p(β−j|βj) the conditional prior probability of β−j, define the integrated
likelihood LIa(y; βj) as

LIa(y; βj) =

∫
B−j

La(y;β)p(β−j|βj)dβ−j.

For a given auxiliary model and conditional prior specification, LIa(y; βj) can be used to

obtain convenient scalar summary statistics for use in estimating p(φj|y) via ABC. In the

specific setting where the auxiliary model is a discretization of the continuous time model,

there is a natural link between the elements of the two parameter vectors β and φ, and

summary statistics for ABC can be based on integrated MLEs of the auxiliary likelihood

La(y;β), defined as

β̂j = arg max
βj

LIa(y; βj) and β̂j(φ) = arg max
βj

LIa(z(φ); βj),

or integrated scores evaluated at the integrated MLE β̂j, defined as

SI(y; β̂j) =
∂ log

(
LIa(y; βj)

)
∂βj

|βj=β̂j and S
I(z(φ); β̂j) =

∂ log
(
LIa(z(φ); βj)

)
∂βj

|βj=β̂j .

Marginal ABC-based posterior estimates of p(φj|y) are then obtained by ‘selecting’draws

of φij according to the selection criterion in (1), with η(y) given by either of the univariate

summaries β̂j or S
I(y; β̂j).More generally, for a well-chosen auxiliary model, there is likely

a qualitative link between the auxiliary and structural parameters (e.g. location, scale,

tail behavior, persistence) that can be exploited to decide which univariate summary to

use as the selection statistic for any given φj.

5.3 Numerical results

5.3.1 Finite sample accuracy

In order to abstract initially from the impact of dimensionality on the ABC methods, we

first report results for each single parameter of the SV-SQ model, keeping the remaining

two parameters fixed at their true values, and for a relatively small sample size of T =

500. Three ABC-based estimates of the relevant exact (univariate) posterior, based on

a uniform prior, are produced in this instance, with all estimates produced by applying

kernel smoothing methods to the accepted draws for each ABC algorithm. Three matching
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statistics are used, respectively: 1) the (uni-dimensional) score based on the auxiliary

likelihood function as evaluated via the AUKF (ABC-score); 2) the summary statistics

in (10), matched via the Euclidean distance measure in (33) (ABC-summ stats); and

3) the summary statistics in (10), matched via the FP distance measure in (35) (ABC-

FP). We produce representative posterior (estimates) in each case, to give some visual

idea of the accuracy (or otherwise) that is achievable via the ABC methods. We then

summarize accuracy by reporting the average, over 50 runs of ABC, of the root mean

squared error (RMSE) of each ABC-based estimate of the exact posterior for a given

parameter, computed as:

RMSE =

√
1

G

G∑
g=1

(p̂g − pg)2, (36)

where p̂g is the ordinate of the ABC density estimate and pg the ordinate of the exact

posterior density, at the gth grid-point used to produce the plots. All single parameter

results are documented in Panel A of Table 1, with (average) RMSEs for a given parameter

reported as a ratio to that of ABC-score.

Figure 1, Panel A reproduces the exact posterior of (the single unknown parameter)

ρ and the three ABC-based estimates, for a single run of ABC. As is clear, the auxiliary

score-based ABC estimate (denoted by ‘ABC - score method’in the key) provides a very

accurate estimate of the exact posterior, using only 50,000 replications of the simplest

accept/reject ABC algorithm, and fifteen minutes of computing time on a desktop com-

puter. In contrast, the ABC method based on the summary statistics, combined using

a Euclidean distance measure, performs very poorly. Whilst the dimensional reduction

technique of Fearnhead and Prangle (2012), applied to this same set of summary statis-

tics, yields some improvement, it does not match the accuracy of the score-based method.

Comparable graphs are produced for the single parameters δ and σv in Panels B and C

respectively of Figure 1, with the remaining pairs of parameters (ρ and σv, and ρ and

δ respectively) held fixed at their true values. In the case of δ, the score-based method

provides a reasonably accurate representation of the shape of the exact posterior and, once

again, a better estimate than both summary statistic methods, both of which illustrate a

similar degree of accuracy (to each other) in this instance. For the parameter σv, none of

the three ABC methods provide a particularly accurate estimate of the exact posterior.

The RMSE results recorded in Panel A of Table 1 confirm the qualitative nature of

the single-run graphical results. For both ρ and δ, the score-based ABC method produces

the most accurate estimate of the exact posterior of all comparators. In the case of σv the

Fearnhead and Prangle (2012) method yields the most accurate estimate, but there is

really little to choose between all three methods.

The results recorded in Panels B to D highlight that when either two or three para-

meters are unknown the score-based ABC method produces the most accurate density
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Figure 1: Posterior densities for each single unknown parameter of the model in (29) and
(30), with the other two parameters set to their true values. As per the key, the graphs
reproduced are the exact posterior in addition to the three ABC-based estimates. The
exact posterior is evaluated using the grid-based non-linear filter of Ng et al. (2013). The
ABC-based estimates are produced by applying kernel smoothing methods to the accepted
draws. All results are based on a sample size of T = 500.
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Table 1: Average RMSE of an estimated marginal posterior over 50 runs of ABC (each
run using 50,000 replications); recorded as a ratio to the (average) RMSE for the

(integrated) ABC score method. ‘Score’refers to the ABC method based on the score of
the AUKF model; ‘SS’refers to the ABC method based on a Euclidean distance for the
summary statistics in (10); ‘FP’refers to the Fearnhead and Prangle ABC method,

based on the summary statistics in (10). For the single parameter case, the (single) score
method is documented in the row denoted by ‘Int Score’, whilst in the multi-parameter
case, there are results for both the joint (Jt) and integrated (Int) score methods. The
bolded figure indicates the approximate posterior that is the most accurate in any

particular instance. The sample size is T = 500.

Panel A Panel B Panel C Panel D
One unknown Two unknowns Two unknowns Three unknowns

ρ δ σv ρ σv ρ δ ρ δ σv
ABC
Method

Jt Score - - - 0.873 1.843 1.613 1.689 0.408 1.652 1.015
Int Score 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SS 5.295 1.108 1.044 5.079 2.263 4.129 1.986 2.181 1.582 1.093
FP 1.587 1.254 0.926 1.823 2.286 3.870 2.416 1.877 2.763 1.101

estimates in all cases, with the integrated likelihood technique described in Section 5.2

(recorded as ‘Int. Score’ in the table) yielding a further improvement in accuracy in

five out of the seven cases, auguring quite well for this particular approach to dimension

reduction.

5.3.2 Large sample performance

In order to document numerically the extent to which the ABC posteriors become increas-

ingly concentrated around the true parameters (or otherwise) as the sample size increases,

we complete the numerical demonstration by recording in Table 2 the average probability

mass (over the 50 runs of ABC) within a small interval around the true parameter, for all

three ABC posterior estimates. For the purpose of illustration we record these results for

the (three) single unknown parameter cases only, using the ABC kernel density ordinates

to estimate the relevant probabilities, via rectangular integration. The boundaries of the

interval used for a given parameter (recorded at the top of the table) are determined by

the grid used to numerically estimate the kernel density.

The results in Panel A (for T = 500) accord broadly with the qualitative nature of the

single run results recorded graphically in Figure 1, with the score-based method producing

superior results for ρ and δ and there being little to choose between the (equally inaccurate)
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Table 2: Posterior mass in given intervals around the true parameters, averaged over 50
runs of ABC using 50,000 replications. ‘Score’refers to the ABC method based on the
score of the AUKF model; ‘SS’refers to the ABC method based on a Euclidean distance
for the summary statistics in (10); ‘FP’refers to the Fearnhead and Prangle ABC

method, based on the summary statistics in (10). The bolded figure indicates the largest
(average) posterior mass for each case. Results in Panel A are for T = 500 and those in

Panel B for T = 2000. One parameter at a time is treated as unknown.

Panel A: T = 500 Panel B: T = 2000

ρ δ σv ρ δ σv

True value: ρ0 = 0.9 δ0 = 0.004 σν0 = 0.062 ρ0 = 0.9 δ0 = 0.004 σν0 = 0.062

Interval: (0.88, (0.003, (0.052, (0.88, (0.003, (0.052,
0.92) 0.005) 0.072) 0.92) 0.005) 0.072)

ABC
Method

Score 0.88 0.90 0.44 0.94 1.00 0.85
SS 0.28 0.84 0.44 0.24 0.78 0.87
FP 0.76 0.89 0.41 0.61 0.91 0.87

estimates in the case of σv. Importantly, when the sample size increases the score-based

density displays clear evidence of increased concentration around the true parameter value,

for all three parameters, providing numerical evidence that the identification condition I2

holds. For the two alternative methods however, this is not uniformly the case, with

increased concentration occurring for σv only. Theoretical results in Frazier et al. (2015)

indeed highlight the fact that Bayesian consistency is far from assured for any given set

of summary statistics; hence the lack of numerical support for consistency when ABC is

based on somewhat arbitrarily chosen conditioning statistics is not completely surprising.

We refer to the reader to that paper for further discussion of this general point.

6 Conclusions and discussion

This paper has explored the application of approximate Bayesian computation in the

state space setting. Certain fundamental results have been established, namely the lack

of reduction to finite sample suffi ciency and (under regularity) the Bayesian consistency

of the auxiliary likelihood-based method. The (limiting) equivalence of ABC estimates

produced by the use of both the maximum likelihood and score-based matching statistics
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has also been demonstrated. The idea of tackling the dimensionality issue that plagues the

application of ABC in high dimensional problems via an integrated likelihood approach

has been proposed. The approach has been shown to yield some benefits in the particular

numerical example explored in the paper. However, a much more comprehensive analysis

of different non-linear settings (and auxiliary models) would be required for a definitive

conclusion to be drawn about the trade-offbetween the gain to be had frommarginalization

and the loss that may stem from integrating over an inaccurate auxiliary likelihood.

Indeed, the most important challenge that remains, as is common to the related fre-

quentist techniques of indirect inference and effi cient methods of moments, is the speci-

fication of a computationally effi cient and accurate approximation. Given the additional

need for parsimony, in order to minimize the number of statistics used in the matching

exercise, the principle of aiming for a large nesting model, with a view to attaining full

asymptotic suffi ciency, is not an attractive one. We have illustrated the use of one simple

approximation approach based on an auxiliary likelihood constructed via the unscented

Kalman filter. The relative success of this approach in the particular example considered,

certainly in comparison with methods based on other more ad hoc choices of summary

statistics, augurs well for the success of score-based methods in the non-linear setting.

Further exploration of approximation methods in other non-linear state space models is

the subject of on-going research.

Finally, we note that despite the focus of this paper being on inference about the static

parameters in the state space model, there is nothing to preclude marginal inference on

the states being conducted, at a second stage. Specifically, conditional on the (accepted)

draws used to estimate p(φ|y), existing filtering and smoothing methods (including the

recent methods, referenced earlier, that exploit ABC at the filtering/smoothing level)

could be used to yield draws of the states, and (marginal) smoothed posteriors for the

states produced via the usual averaging arguments. With the asymptotic properties of

both approaches established (under relevant conditions), of particular interest would be

a comparison of both the finite sample accuracy and the computational burden of the

hybrid ABC-based methods that have appeared in the literature, with that of the method

proposed herein, in which p(φ|y) is targeted more directly via ABC principles alone.
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A Proofs of Technical Results

This appendix collects the proofs for the technical results stated in the paper. The proof

of Theorem 1 relies on several intermediate results, which, in the name of space, have been

detailed in a supplemental appendix, available at http://users.monash.edu.au/~gmartin/.

A.1 Proof of Theorem 1

To simplify the notation, in what follows we use β̂ := β̂(y) and β̂(φ) := β̂(z(φ)). The

proof is broken into three parts. First, we demonstrate that the distance

d {η(y),η(z(φ))} = d
{
β̂, β̂(φ)

}
≡
√(

β̂−β̂(φ)
)′

Ω
(
β̂ − β̂(φ)

)
converges uniformly in φ to d {β0,b(φ)} . The second piece focuses on showing that the
only value for which d {β0,b(φ)} ≤ ε as ε→ 0 and T →∞ is φ0. After one and two have

been established, we go on to show that all posterior mass concentrates asymptotically on

sets of the form {φ ∈ Φ : d {β0,b(φ)} = 0} .
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We first demonstrate the uniform convergence of d{β̂, β̂(φ)}. The triangle inequality
yields

d{η(y),η(z(φ))} ≤ d
{
β̂,b(φ)

}
+ d

{
b(φ), β̂(φ)

}
.

Consider d
{
β̂,b(φ)

}
and note that,

d
{
β̂,b(φ)

}
≤ d

{
β̂,β0

}
+ d {β0,b(φ)} .

The result β̂ P−→ β0 holds by noting the following two points: one, under Assumptions

(A1)-(A4), Proposition 1 in the supplemental appendix ensures that La(y;β)/T satisfies

the uniform law of large numbers (ULLN)

sup
β∈B
|La(y;β)/T − L∞(φ0;β)| P−→ 0;

two, by (A5) L∞(φ0;β) has unique maximizer β0 = b(φ0). From one and two we have,

by standard arguments, see, e.g., Theorem 5.9 of van der Vaart (1998), β̂ P−→ β0.

Consistency of β̂ for β0 implies

d
{
β̂,b(φ)

}
≤ oP (1) + d {β0,b(φ)} ,

and so

d{η(y),η(z(φ))} ≤ d
{
β̂,b(φ)

}
+d
{

b(φ), β̂(φ)
}
≤ d {β0,b(φ)}+d

{
b(φ), β̂(φ)

}
+oP (1).

By definition,

d
{

b(φ), β̂(φ)
}
≤ sup

φ∈Φ
d
{

b(φ), β̂(φ)
}
.

The first term on the right hand side of the above inequality is oP (1) if supφ∈Φ ‖β̂(φ) −
b(φ)‖ P−→ 0. Now, note that, by Corollary 1 in the supplemental appendix, ∀δ > 0, as

T →∞
sup
φ∈Φ

sup
‖β−β0‖≤δ

|L(z(φ);β)/T − L∞(φ;β)| P−→ 0, (37)

and by (A5) the limit criterion L∞(φ;β) has unique maximizer, with respect to β, b(φ).

Using these two facts, we now show, under the maintained assumptions,

sup
φ∈Φ

∥∥∥β̂(φ)− b(φ)
∥∥∥ = oP (1). (38)

Define the following terms:

Q̃(φ;β) = La(z(φ);β)/T − L∞(φ; b(φ)),

Q̃∞(φ;β) = L∞(φ;β)− L∞(φ; b(φ)).
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Note that, by (A3), for all δ > 0, if supφ∈Φ ‖β̂(φ)− b(φ)‖ > δ, there exists ε(δ) > 0,

such that

sup
φ∈Φ
‖Q̃∞(φ;β̂(φ))‖ > ε(δ).

From here, note that

Pr
(

sup
φ∈Φ
‖β̂(φ)− b(φ)‖ > δ

)
≤ Pr

(
sup
φ∈Φ
‖Q̃∞(φ; β̂(φ))‖ > ε(δ)

)
.

The result in (38) then follows if supφ∈Φ ‖Q̃∞(φ;β̂(φ))‖ = oP (1).

Uniformly in φ,

‖Q̃∞(φ; β̂(φ))‖ ≤ ‖Q̃∞(φ; β̂(φ))− Q̃(φ; β̂(φ))‖+ ‖Q̃(φ; β̂(φ))‖
= ‖L∞(φ;β̂(φ))− La(z(φ);β̂(φ))/T‖+ ‖Q̃(φ; β̂(φ))‖
≤ sup

β∈B
‖L∞(φ;β)− La(z(φ);β)/T‖+ ‖Q̃(φ; β̂(φ))‖

≤ oP (1) + ‖Q̃(φ; β̂(φ))‖. (39)

The first inequality follows from the triangle inequality, the second from the definition of

Q̃∞(φ;β), Q̃(φ;β), the third from the definition of sup, and the last from Corollary 1 in

the supplemental appendix.

From (39), the result follows if

sup
φ∈Θ
‖Q̃(φ;β̂(φ))‖ = oP (1).

By the definition of β̂(φ), uniformly in φ,

‖Q̃(φ; β̂(φ))‖ ≤ inf
β∈B
‖Q̃(φ;β)‖+ oP (1)

≤ inf
β∈B
‖Q̃(φ;β)− Q̃∞(φ;β)‖+ inf

β∈B
‖Q̃∞(φ;β)‖+ oP (1)

≤ sup
β∈B
‖La(z(φ);β)/T − L∞(φ;β)‖+ 0 + oP (1)

≤ oP (1). (40)

Combining equations (39) and (40) yields supφ∈Φ

∥∥∥β̂(φ)− b(φ)
∥∥∥ = oP (1). It then follows

that d
{

b(φ), β̂(φ)
}

= oP (1), uniformly in φ and so

d{η(y),η(z(φ))} = d
{
β̂, β̂(φ)

}
P−→ d {β0,b(φ)} .

The second portion of the proof is complete if we demonstrate, as T →∞ and ε→ 0,

the only value of φ which the ABC algorithm selects is φ = φ0. From the definition of

the algorithm and the triangle inequality, for T large enough,

d
{
β̂, β̂(φ)

}
≤ d

{
β̂,β0

}
+ d

{
b(φ), β̂(φ)

}
+ d {β0,b(φ)}

≤ ε/3 + ε/3 + d {β0,b(φ)}
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A draw from the prior p(φ), will then be accepted if

d {β0,b(φ)} ≤ ε/3.

By Assumption (I2), the only value of φ such that d {b(φ),β0} ≤ ε/3 as ε→ 0 is φ = φ0.

Now, the result follows if for any δ > 0, as T →∞ and for some sequence ε→ 0,

Pr
(
d {φ0,φ} > δ|d{β̂, β̂(φ)} ≤ ε

)
→ 0

in probability. First, consider the set

Aε(δ
′) :=

{
(z,φ) : {d{β̂, β̂(φ)} ≤ ε} and {d {β0,b(φ)} > δ′}

}
and the probability

Pr
(
d {β0,b(φ)} > δ′|d{β̂, β̂(φ)} ≤ ε

)
.

For all (z,φ) ∈ Aε(δ′), we have, by the triangle inequality:

δ′ < d {β0,b(φ)} ≤ d
{

b(φ), β̂(φ)
}

+ d
{
β̂(φ), β̂

}
+ d

{
β̂,β0

}
.

For T large enough, d
{
β̂,β0

}
≤ ε/3 and we have

δ′ − (4/3)ε < d
{

b(φ), β̂(φ)
}
.

Note that, for δ′ ≥ (5/3)ε, and Pφ(·) the conditional distribution of z given φ,

Pr[Aε (δ′)] ≤
∫

Φ

Pφ (d {β0,b(φ)} > δ′) dp(φ)

≤
∫

Φ

Pφ

(
d
{

b(φ), β̂(φ)
}
> δ′ − (4/3)ε

)
dp(φ),

Hence, we can conclude, for δ′ = 4/3ε+ s and s ≥ ε/3,

Pr
(
d {β0,b(φ)} > δ′|d{β̂, β̂(φ)} ≤ ε

)
≤

∫
Φ
Pφ

(
d
{

b(φ), β̂(φ)
}
> s
)
dp(φ)∫

Φ
Pφ

(
d{β̂, β̂(φ)} ≤ ε

)
dp(φ)

. (41)

First, focus on the denominator in (41). By the triangle inequality

d{β̂, β̂(φ)} ≤ d{β̂,β0}+ d{b(φ), β̂(φ)}+ d{β0,b(φ)}.

From β̂
P−→ β0 and the uniform convergence in equation (38) we have, for T large enough

and any φ ∈ Φ,

d{β̂, β̂(φ)} ≤ ε/3 + ε/3 + d{β0,b(φ)}.
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Then, for any any φ ∈ Φ with d{β0,b(φ)} ≤ ε/3∫
Φ

Pφ

(
d{β̂, β̂(φ)} ≤ ε

)
dp(φ) ≥

∫
d{β0,b(φ)}≤ε/3

Pφ

(
d{b(φ), β̂(φ)} ≤ ε/3

)
dp(φ)

≥ Pr [d{β0,b(φ)} ≤ ε/3]

2
+ o(1), (42)

where the last inequality follows from the uniform convergence in equation (38) and the

dominated convergence theorem. By Assumption I, the prior probability Pr [d{β0,b(φ)} ≤ ε] >

0 for any ε→ 0. Therefore, using equation (42) within equation (41) yields

Pr
(
d {β0,b(φ)} > δ′|d{β̂, β̂(φ)} ≤ ε

)
≤

2
∫

Φ
Pφ

(
d
{

b(φ), β̂(φ)
}
> s
)
dp(φ),

Pr [d{β0,b(φ)} ≤ ε/3] + o(1)
. (43)

The result follows if the numerator on the right-hand-side of (43) (equivalently, the nu-

merator of (41)) converges to zero. Using (38), for any φ ∈ Φ, Pφ

(
d
{

b(φ), β̂(φ)
}
> s
)

=

o(1) for s → 0 slower than d
{

b(φ), β̂(φ)
}
→ 0. Hence, with ε ≤ 3s as defined above,

taking ε = o(1), such that ε−1 supφ∈Φ d
{

b(φ), β̂(φ)
}

= oP (1), and using (38) yields

Pr
(
d {β0,b(φ)} > δ′|d{β̂, β̂(φ)} ≤ ε

)
→ 0.

The result now follows from the arbitrary choice of δ′, and the continuity and injectivity

of the map φ 7→ b(φ). �

A.2 SV-OU Example: Proof of Corollary 2

The result follows by verifying the Assumptions of Theorem 1. First, we consider verifi-

cation of Assumption A, which requires establishing that La(y;β) and La(z(φi);β) are

suffi ciently well-behaved. To this end, with reference to (28), define the one-step-ahead

predictors, x̂t|t−1 = β1x̂t−1 and P x
t|t−1 = β2

1P
x
t−1 + β2, and for the filtering steps define

x̂t|t = x̂t|t−1 + P x
t|t−1ξt/ft|t, P

x
t|t = P x

t|t−1 − (P x
t|t−1)2/ft|t, (44)

where ξt = yt − x̂t|t−1, and ft|t = P x
t|t−1 + σ2

ζ . Likewise, denote the versions of x̂t|t and P
x
t|t

based on simulated data {zt(φi)}Tt=1 by x̂t|t(φ
i) and P x

t|t(φ
i), where x̂t|t(φ

i) and P x
t|t(φ

i)

are defined equivalently to x̂t|t and P x
t|t (respectively) in (44) with yt replaced by zt(φ

i).

To close the recursions, for simplicity, let the initial conditions be known and given by

a0 = 0, P0 = β2/(1− β1).

Using these definitions, the filtered auxiliary log-likelihood function is given by, up to

a constant,

La(y;β) =

T∑
t=1

`(yt;β) = −
T∑
t=1

1

2
ln(ft|t) +

1

2
(ξ2
t/ft|t).
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From these definitions we can now verify Assumptions (A2)-(A5) (Assumption (A1) can
be verified by inspection) for the approximating model for the SV-OU model.

(A2) The conditionM ≥ κ ≥ ϕ > 0 ensures e−κ < 1−e−ϕ, which ensures xt is stationary.
The stated restrictions M ≥ σ ≥ ϕ > 0 then guarantees satisfaction of (A2).

(A3) To determine the continuity of (φi,β) 7→ La(z(φi);β), i.e., satisfaction of (A3),
first note that continuity with respect to β follows from the definitions of x̂t|t, P x

t|t and

La(z(φi);β). Continuity with respect to φi follows from continuity, in φi, of zt(φ
i),

x̂t|t(φ
i), P x

t|t(φ
i), and the definition of La(z(φi);β).

(A4) Assumption (A4) follows from the stated restrictions on Φ and the fact that β is a

continuous bounded transformation of φ; i.e., β = (exp(−κ), σ
√

1− exp(−2κ)/2κ)′ and

so if κ ≥ ϕ > 0, β1 < 1 and if σ ≥ ϕ, β2 ≥ ϕ, which together imply Eφi [|`(zt(φi),β)|] <∞.

(A5) Satisfaction of (A5) requires that b(φi) uniquely maximize L∞(φi,β) = Eφi
[
`(zt(φ

i);β)
]
,

where Eφi [·] denotes expectation under φ and not φ0. Primitive conditions guaranteeing

this are as follows (see, e.g., Newey and McFadden (1994)): 1) Eφi [|`(zt(φi),β)|] <∞ for

all β ∈ B; 2) `(zt(φ
i);β) 6= `

(
zt(φ

i); β̃
)
for all β 6= β̃. Condition 1) is satisfied by the

restrictions on Φ and (A4). Condition 2) is satisfied by the uniqueness of the Kalman
recursion for this particular model.

The result now follows if our prior p(φ) places non-zero probability on φ0 and if the one-

to-one condition in Assumption I2 is satisfied. Any p(φ) that places positive probability

on [ϕ,M ]2 satisfies Assumption I1.
To verify Assumption I2 first define:

h(φ) =

(
f(κ)
g(κ, σ)

)
=

(
e−κ

σ
√

1−e−2κ
−2 log(e−κ)

)
,

where, by construction, β = h(φ), with h(·) one-to-one. Hence, by the invariance property
of the maximum likelihood principle, β̂(y) = h

(
φ̂(y)

)
, where

φ̂(y) := arg max
φ∈Φ

La(y;h−1(β)) ≡ arg max
φ∈Φ

L̄a(y;φ)

and the result follows.
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A.3 SV-SQ Example

A.3.1 Detailed Implementation of the AUKF

Given the assumed invariance (over time) of both et and vt in (31) and (32) respectively,

the sigma points needed to implement the AUKF are determined as:

e1 = E(et); e
2 = E(et) + ae

√
var(et); e

3 = E(et)− be
√
var(et)

and

v1 = E(vt); v
2 = E(vt) + av

√
var(vt); v

3 = E(vt)− bv
√
var(vt)

respectively, and propagated at each t through the relevant non-linear transformations,

ht(.) and kt(.). The values ae, be, av and bv are chosen according to the assumed distribution

of et and vt, with a Gaussian assumption for both variables yielding values of ae = be =

av = bv =
√

3 as being ‘optimal’. Different choices of these values are used to reflect

higher-order distributional information and thereby improve the accuracy with which the

mean and variance of the non-linear transformations are estimated; see Julier et al. (1995;

2000) for more details. Restricted supports are also managed via appropriate truncation

of the sigma points. The same principles are applied to produce the mean and variance

of the time varying state xt, except that the sigma points need to be recalculated at each

time t to reflect the up-dated mean and variance of xt as each new value of yt is realized.

In summary, the steps of the AUKF applied to evaluate the likelihood function of (31)

and (32) are as follows:

1. Use the (assumed) marginal mean and variance of xt, along with the invariant mean

and variance of vt and et respectively, to create the (3 × 7) matrix of augmented

sigma points for t = 0, Xa,0, as follows. Define:

E(Xa,0) =

 E(xt)
E(vt)
E(et)

 , Pa,0 =

 var(xt) 0 0
0 var(vt) 0
0 0 var(et)

 , (45)

and
√
Pa,0j as the jth column of the Cholesky decomposition (say) of Pa,0. Given

the diagonal form of Pa,0 (in this case), we have

√
Pa,01

=

 √var(xt)
0
0

 ;
√
Pa,02

=

 0√
var(vt)

0

 ;
√
Pa,03

=

 0
0√

var(et)

 .
The seven columns of Xa,0 are then generated by

E(Xa,0); E(Xa,0) + aj
√
Pa,0j ; for j = 1, 2, 3; E(Xa,0)− bj

√
Pa,0j ; for j = 1, 2, 3,

where a1 = ax, a2 = av and a3 = ae, and the corresponding notation is used for bj,

j = 1, 2, 3.
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2. Propagate the t = 0 sigma points through the transition equation asXx,1 = k1 (Xa,0,β)

and estimate the predictive mean and variance of x1 as:

E(x1|y0) =
7∑
i=1

wiX
i
x,1 (46)

var(x1|y0) =
7∑
i=1

wi(X
i
x,1 − E(x1|y0))2, (47)

where X i
x,1 denotes the ith element of the (1× 7) vector Xx,1 and wi the associated

weight, determined as an appropriate function of the aj and bj; see Ponomareva and

Date (2010).

3. Produce a new matrix of sigma points, Xa,1, for t = 1 generated by

E(Xa,1); E(Xa,1) + aj
√
Pa,1j ; for j = 1, 2, 3; E(Xa,1)− bj

√
Pa,1j ; for j = 1, 2, 3,

(48)

using the updated formulae for the mean and variance of xt from (46) and (47)

respectively, in the calculation of E(Xa,1) and Pa,1.

4. Propagate the t = 1 sigma points through the measurement equation as Xy,1 =

h1 (Xa,1,β) and estimate the predictive mean and variance of y1 as:

E(y1|y0) =
7∑
i=1

wiX
i
y,1 (49)

var(y1|y0) =
7∑
i=1

wi(X
i
y,1 − E(y1|y0))2, (50)

where X i
y,1 denotes the ith element of the (1× 7) vector Xy,1 and wi is as defined in

Step 3.

5. Estimate the first component of the likelihood function, p(y1|y0), as a Gaussian

distribution with mean and variance as given in (49) and (50) respectively.

6. Given observation y1 produce the up-dated filtered mean and variance of xt via the

usual KF up-dating equations:

E(x1|y1) = E(x1|y0) +M1(y1 − E(y1|y0))

var(x1|y1) = var(x1|y0)−M2
1 var(y1|y0),

where:

M1 =

7∑
i=1

wi(X
i
x,1 − E(x1|y0))(X i

y,1 − E(y1|y0))

var(y1|y0)

and the X i
x,1, i = 1, 2, ..., 7 are as computed in Step 3.
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7. Continue as for Steps 2 to 6, with the obvious up-dating of the time periods and

the associated indexing of the random variables and sigma points, and with the

likelihood function evaluated as the product of the components produced in each

implementation of Step 5, and the log-likelihood produced accordingly.

A.3.2 Proof of Corollary 3

Define Xa,0 to be the (3× 7) matrix of initial sigma-points, as referenced in Appendix

A.3.1, where Xa,0(j, i) is the element in the j-th row and i-th column of Xa,0. For fixed

weights {wi}7
i=1, with

∑7
i=1wi = 1, wi > 0, i = 1, .., 7, we initialize the system by

propagating Xa,0 through the state equation (32). To build the auxiliary likelihood using

the AUKF, then define the predicted mean and variance of xt as

x̂t|t−1 =
7∑
i=1

wik (Xa,0(1, i), Xa,0(2, i),β) ,

P x
t|t−1 =

7∑
i=1

wi
[
k (Xa,0(1, i), Xa,0(2, i),β)− x̂t|t−1

]2
,

k (Xa,0(1, i), Xa,0(2, i),β) = β1 + β2Xa,0(1, i) + β3

(√
Xa,0(1, i)

)
Xa,0(2, i),

where the sigma points reflect the positivity of the variance. From x̂t|t−1 and P x
t|t−1 the

new matrix of sigma points is produced, Xa,1, following (48). Define the predicted mean

and variance for the observed yt, based on the Xa,t−1 matrix of sigma-points, as

ŷt|t−1 =
7∑
i=1

wih (Xa,t−1(1, i), Xa,t−1(3, i),β) ,

P y
t|t−1 =

7∑
i=1

wi
[
h (Xa,t−1(1, i), Xa,t−1(3, i),β)− ŷt|t−1

]2
,

h (Xa,t−1(1, i), Xa,t−1(3, i),β) = log (Xa,t−1(1, i)) +Xa,t−1(3, i).

For ζt = yt − ŷt|t−1, the augmented Kalman filtering steps for xt are as follows:

x̂t|t = x̂t|t−1 +Mt|tζt,

P x
t|t = P x

t|t−1 −M2
t|tP

y
t|t−1

Mt|t =

∑7
i=1wi

[
k (Xa,t1−(1, i), Xa,t−1(2, i),β)− x̂t|t−1

] [
h (Xa,t−1(1, i), Xa,t−1(3, i),β)− ŷt|t−1

]
P y
t|t−1

.

In accordance with the AUKF algorithm in the Appendix A.3.1, and noting the structure

of the approximating model in (31) and (32), the time-t matrix of sigma points Xa,t is

given by

Xa,t =

(
x̂t|t x̂t|t+a1

√
Px
t|t x̂t|t x̂t|t x̂t|t−b1

√
Px
t|t x̂t|t x̂t|t

λ∗ λ∗ λ∗+a2
√
var(vt) λ∗ λ∗ λ∗−b2

√
var(vt) λ∗

γ∗ γ∗ γ∗ γ∗+a3
√
π2/2 γ∗ γ∗ γ∗−b3

√
π2/2

)
, (51)

40



where a1 = a2 = a3 = b1 = b2 = b3 =
√

3, γ∗ = −1.27,

λ∗ =
φ
(
−β1
β3

)
1− Φ

(
−β1
β3

) and var(vt) =

[
1− λ

(
−β1

β3

)(
λ

(
−β1

β3

)
− −β1

β3

)]
. (52)

Using the definitions ŷt|t−1, P
y
t|t−1, ζt, the auxiliary log-likelihood is given by

La(y;β) =

T∑
t=2

`(yt|yt−1;β) = −
T∑
t=2

ln(P y
t|t−1) +

1

2

ζ2
t

P y
t|t−1

,

where a Gaussian approximation for the components of the likelihood function is adopted

at this point.

In what follows, denote the simulated versions of x̂t|t and P x
t|t based on simulated data

by x̂t|t(φ
i) and P x

t|t(φ
i), where x̂t|t(φ

i) and P x
t|t(φ

i) have the same definition as x̂t|t and

P x
t|t but with yt replaced by z

i
t. Likewise, let ŷt|t−1(φi), P y

t|t−1(φi) denote the simulated

counterparts of ŷt|t−1 and P
y
t|t−1.

From these definitions we can now verify Assumptions (A2)-(A5) (Assumption (A1)
can be verified by inspection) for the SV-SQ model in (29)-(30).

(A2) The stated restrictions on Φ guarantee the satisfaction of (A2).

(A3) Continuity of (φi,β) 7→ La(z(φi);β) with respect to β follows from the definitions

of x̂t|t, P x
t|t and La(z(φi);β). Continuity with respect to φ follows from continuity,

in φ, of zt(φ
i), x̂t|t(φ

i), P x
t|t(φ

i), and the definition of La(z(φi);β).

(A4) Assumption (A4) follows from the stated restrictions on B and Φ.

(A5) Primitive conditions guaranteeing (A5) are as follows: 1) Eφi [|`(zt(φi),β)|] < ∞
for all β ∈ B; 2) `(zt(φ

i);β) 6= `
(
zt(φ

i); β̃
)
for all β 6= β̃. Condition 1) is satisfied

by the restrictions onΦ andB. For Condition 2) to be satisfied, the AUKF recursions

must be unique in β. Uniqueness of the AUKF recursions requires that the matrix of

sigma-points be unique in β for each t ≥ 1. Denote by Xa,t(β) the (3× 7) matrix of

sigma-points in (51) constructed for a given β. Focusing on the elements of Xa,t(β)

due to x̂t|t, by the Kalman recursions for this model, x̂t|t is a unique function of β

and so Xa,t(β) 6= Xa,t(β̃) if β 6= β̃, and the result follows.8

8We focus on the elements within the Kalman recursion portion of Xa,t(β), since λ
∗(β) is not one-to-

one in the parameters β1, β3 and so there exists β̃ 6= β such that λ∗(β) = λ∗(β̃).
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