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Abstract

High-amplitude and discrete-frequency screech tones generated from supersonic twin jets can induce
failure in the structure surrounding the jets. To mitigate this phenomenon, a greater understanding of
the resonance feedback loop that generates these screech tones is required. This thesis presents an
investigation of the resonance feedback loop, and the underlying coherent structures that comprise it,
for a round twin-jet system at low supersonic Mach numbers. Numerical modelling, via linear stability
theory, is used to calculate the characteristics of these coherent structures.

The downstream component of the resonance feedback loop is known to be the Kelvin-Helmholtz (KH)
instability. For a round twin jet, it is demonstrated that the upstream component, for screech tones at low
supersonic Mach numbers, is the guided-jet mode. The guided-jet mode has previously been considered
to close the feedback loop for screech in round single jets, indicating a similar description of screech
applies to both the single and twin jet. Screech-frequency predictions calculated considering the guided-
jet mode as the upstream component display strong agreement with experimental acoustic data. This
comparison is made for multiple jet separations.

Since it was first studied, the guided-jet mode has been known to exist over only a finite-frequency
range for a given jet operating condition. For a twin-jet system, this frequency range is seen to be also
dependent on the separation between the two jets. At large jet separations the twin-jet system behaves as
two individual jets, whereas when the two jets are brought together they behave as an equivalent single
jet. For each case, the existence region of the guided-jet mode must align. This imposes a constraint as
the existence region must transition from the single-jet value to the equivalent-jet value, leading to the
observed dependence of the existence region on the jet separation. The result is demonstrated first for a
planar twin jet, which has an equivalent geometry of a single planar jet of twice the width, and then for
the round twin jet, with an equivalent geometry similar in shape to an ellipse.

The behaviour of the downstream component of the feedback loop, the KH instability, also undergoes
changes as the two jets are brought together. For numerical modelling of twin jets, solutions may be
classified via an equivalent azimuthal mode number that mirrors the azimuthal Fourier modes of a single
axisymmetric jet. At large jet separations the shape of the KH structure about each jet matches that of the
single jet for that mode number. As the twin-jet system is brought together asymmetries are introduced
into the KH structure about each jet. These asymmetries take the form of a change in ratio between the
KH structure peaks along the jet axis. Depending on the jet operating condition, either the inner or outer
peak may decrease (or disappear entirely) compared to the other peak. Trends are characterised across
the twin-jet parameter space.

ii



Publications During Enrolment

Journal

• D. Rodríguez, M.N. Stavropoulos, P.A.S. Nogueira, D.M. Edgington-Mitchell and P. Jordan. On
the preferred flapping motion of round twin jets. Journal of Fluid Mechanics, 977:A4, 2023.

• M.N. Stavropoulos, M. Mancinelli, P. Jordan, V. Jaunet, J. Weightman, D.M. Edgington-Mitchell,
and P.A.S. Nogueira. The axisymmetric screech tones of round twin jets examined via linear
stability theory. Journal of Fluid Mechanics, 965:A11, 2023.

• T.Y.M. Wong, M.N. Stavropoulos, J.R. Beekman, A. Towne, P.A.S. Nogueira, J. Weightman, and
D. Edgington-Mitchell. Steady and unsteady coupling in twin weakly underexpanded round jets.
Journal of Fluid Mechanics, 964:A2, 2023.

Conference

• M. Stavropoulos, E. Martini, D.M. Edgington-Mitchell, P. Jordan, and P.A. Nogueira. Study of
the cut-on frequency of the guided jet mode in round twin jets. In AIAA AVIATION 2023 Forum,
2023. AIAA Paper 2023-3648.

• D. Rodríguez, P. Nogueira, M. Stavropoulos, D.M. Edgington-Mitchell, and P. Jordan. On the
preference of round twin jets to present flapping oscillations. In 28th AIAA/CEAS Aeroacoustics
2022 Conference, 2022. AIAA paper 2022-3084.

• M. Stavropoulos, M. Mancinelli, P. Jordan, V. Jaunet, D.M. Edgington- Mitchell, and P. Nogueira.
Analysis of axisymmetric screech tones in round twin-jets using linear stability theory. In 28th
AIAA/CEAS Aeroacoustics 2022 Conference, 2022. AIAA Paper 2022-3071.

• M. Stavropoulos, M. Mancinelli, P. Jordan, V. Jaunet, D.M. Edgington- Mitchell, and P. Nogueira.
Understanding twin-jet screech using a vortex-sheet model. In AIAA AVIATION 2021 FORUM,
2021. AIAA Paper 2021-2249.

iii



Declaration

I hereby declare that this thesis contains no material which has been accepted for the award of any other
degree or diploma at any university or equivalent institution and that, to the best of my knowledge and
belief, this thesis contains no material previously published or written by another person, except where
due reference is made in the text of the thesis.

This thesis includes two original papers published in peer-reviewed journals. The core theme of the
thesis is resonance in supersonic round twin jets. The ideas, development and writing up of all the
papers in the thesis were the principal responsibility of myself, the student, working within the
Department of Mechanical & Aerospace Engineering under the joint supervision of Associate
Professor Daniel Edgington-Mitchell, Dr Petrônio Nogueira, and Professor Peter Jordan from the
Université de Poitiers.

The inclusion of co-authors reflects the fact that the work came from active collaboration between
researchers and acknowledges input into team-based research.

In the case of Chapter 4 my contribution to the work involved the following:

iv



Title Status Student contribution Co-authors (contribution) Monash student
Chapter 4
Axisymmetric screech
tones of round twin jets
examined via linear
stability theory

Published
journal
paper

50%: Development of
ideas, data collection,
data analysis, figure
preparation, and
writing.

1. Mancinelli,
M. (10%: Input
into manuscript.)

2. Jordan, P. (10%:
Input into
manuscript.)

3. Jaunet, V. (5%: Input
into manuscript.)

4. Weightman, J. (5%:
Data collection
and input into
manuscript.)

5. Edgington-Mitchell,
D. (10%: Input into
manuscript.)

6. Nogueira,
P. (10%: Input into
manuscript.)

1. No
2. No
3. No
4. No
5. No
6. No



Declaration vi

I have renumbered sections of submitted or published papers in order to generate a consistent presentation
within the thesis.

Candidate’s signature: Date: 28/09/2023

I hereby certify that the above declaration correctly reflects the nature and extent of the student’s and co-
authors’ contributions to this work. In instances where I am not the responsible author I have consulted
with the responsible author to agree on the respective contributions of the authors.

Primary supervisor’s signature: Date: 28/09/2023



Acknowledgements

First, thank you to my supervisors, Associate Professor Daniel Edgington-Mitchell, Dr Petrônio
Nogueira, and Professor Peter Jordan. You have all provided constant support and feedback throughout
these last few years. Daniel, for starting me on the PhD pathway, guiding me in linking my numerical
results to the physical system, and introducing me to almost everyone in the field across multiple
conferences. Petrônio, for helping me understand the intricacies of numerical modelling, and always
knowing which paper to suggest reading. Peter, for elevating my research by always pushing for that bit
extra, and the wealth of knowledge that you shared.

I was fortunate to be surrounded by an incredible group of people working in the Shock Lab. Thank
you to, Daniel, Derrick, Jayson, Jeremy, Joel, Naia, Ravee, and Soudeh. From the mandatory
bouldering sessions, to the (also) mandatory 3pm walks, and our lunchtime discussions, you have all
made the PhD experience far more enjoyable. Alongside these, your continued support and feedback
during presentations of my work, experimental campaigns, and general discussions on jet noise, have
been much appreciated.

From the wider LTRAC group thank you to, Antonio, Bihai (my neighbour in the office), Daniel, Italo,
Kevin, Rina, and Shaun. You have all helped to create a great work environment. Also to past members,
AJ, Amir, Bhavraj, Harry, Jessica, Marcus, and Rhiannon, for your assistance as I began my PhD.

I was fortunate to spend part of my PhD working with Peter in Poitiers, France. This was a great
experience, made better by the people I met there. Barbara, Bernardo, Bruno, Clément, Diego, Filipe,
Iván, Marios, and Robin, thank you for all the fun nights, trips we went on, and your help in adjusting
to the French lifestyle.

Research is a collaborative endeavour, and I worked with many great researchers during my PhD. Thank
you to Matteo Mancinelli, Eduardo Martini, Daniel Rodríguez, and Vincent Jaunet. I have learnt a lot
working with all of you, and hope I can continue to do so.

During my time as a PhD student I joined the Australasian Fluid Mechanics Society (AFMS)
student/Early career researcher (ECR) subcommittee. Through this, I met an amazing group of
researchers across Australia, Azadeh, Bradley, Cat, Charith, James, Jana, Jisheng, Methma, and Paulo.
It was a pleasure working with you all.



viii

Most importantly, thank you to my parents, Con and Dianne, and my brother, Steven. Without your
support and constant encouragement I would not have been able to complete this thesis.

This research was supported by an Australian Government Research Training Program (RTP)
Scholarship.



Contents

Abstract ii

Publications During Enrolment iii

Declaration iv

Acknowledgements vii

Contents ix

List of Figures xii

List of Tables xix

Nomenclature xxiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4
2.1 Supersonic jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Coherent structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Kelvin-Helmholtz wavepacket . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Guided-jet mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Screech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Components of jet noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Resonance feedback loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Staging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.4 Upstream component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.5 Suboptimal wavenumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Twin jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 A round twin-jet system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Previous modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.4 Non-axisymmetric twin jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Methodology 28

3.1 Stability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



Contents x

3.2 Vortex-sheet and �nite-thickness models . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Act I: The resonance feedback loop 35
4.1 Introductory Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Paper: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Paper: Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Paper: Mathematical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Vortex-sheet model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.2 Finite-thickness model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.3 Prediction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Paper: Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.1 Comparison to past formulations . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.2 Waves involved in screech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.2.1 Characteristics of the KH andk*
p modes . . . . . . . . . . . . . . . . 46

4.5.2.2 Branch and saddle point bounds . . . . . . . . . . . . . . . . . . . . . 49
4.5.3 Predictions of screech frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.3.1 Single jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.3.2 Twin jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Paper: Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7 Paper: Appendix A. Matrix operators for �nite-thickness formulation . . . . . . . . . . . 59
4.8 Paper: Appendix B. Choice of velocity pro�le . . . . . . . . . . . . . . . . . . . . . . . 60
4.9 Paper: Appendix C. Validation of velocity pro�le . . . . . . . . . . . . . . . . . . . . . 61
4.10 Paper: References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.11 Concluding Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Act II: The upstream component 69
5.1 Introductory Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Mathematical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.1 Planar twin-jet vortex-sheet model . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.2 Finite-thickness model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.1 Planar twin jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.2 Round twin jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.7 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7.1 Matrix terms for the planar model . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.7.2 Formulation for an N-jet planar system . . . . . . . . . . . . . . . . . . . . . . 89
5.7.3 Comparison of velocity pro�les . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.7.4 Variation with jet parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Concluding Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Act III: The downstream component 97
6.1 Introductory Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



Contents xi

6.4 Mathematical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4.1 Twin-jet vortex-sheet model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4.2 Finite-thickness model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Experimental set-up and POD formulation . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6.1 General eigenfunction behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.6.1.1 Qualitative exploration . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.6.1.2 Azimuthal mode coe�cients . . . . . . . . . . . . . . . . . . . . . . 110

6.6.2 Parameter variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.6.2.1 Variation with St . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.6.2.2 Mode switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.6.2.3 Shear-layer e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6.3 Experimental evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.8.1 Alternative classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.9 Concluding Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Conclusions 133

Bibliography 135

A Steady and unsteady coupling in twin weakly underexpanded round jets 146

B On the preferred �apping motion of round twin jets 190



List of Figures

2.1 An NPR 3.6 underexpanded jet mean �ow. The shock-cell structure is clearly seen.
Schlieren courtesy of Jayson Beekman. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Schlieren visualisation at NPR = 2.12 (a), and axial velocity �eld from PIV for NPR =
2.135 (b). Both images are for a round twin jet at two diameters separation. PIV data
provided by Dr Joel Weightman, colourmap used in (b) from [1]. . . . . . . . . . . . . . 6

2.3 Kelvin-Helmholtz instability forming in the mixing layer between two �ows of di�erent
densities (a), and wavepacket structures (b). Image (a) from [2], reproduced with
permission from Cambridge University Press, and image (b) used with permission from
Annual Reviews Inc. from [3]; permission conveyed through Copyright Clearance
Center, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Wavenumber (k) and frequency (St) pairs, found through a vortex-sheet formulation,
corresponding to waves supported by the jet. Blue: KH mode, cyan: two types of
upstream-travelling duct-like modes, green: downstream-travelling duct-like mode, red:
guided-jet mode, black: free-stream acoustic waves forM j = 0:6 (solid) and
M j = 0:97 (dash-dot). Image from [4], reproduced under Creative Commons CC BY. . . 9

2.5 Pressure structure of the guided-jet mode (absolute value) in the radial (r) direction for
.0; 1/ (a), .0; 3/ (b), and.0; 5/ (c) classi�cations. Image from [5], reproduced with
permission from Cambridge University Press. . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Sound pressure level (dB/St) measured for the round single jet at NPR = 3.1 (a), and
directivity contour plot for an NPR = 3.1 round jet (b). Note, (b) uses an alternate
convention of� rather than' for the polar angle. Screech, BBSAN, and TMN are all
indicated. Annotations are added to (b), and reprinted with permission from [6].
Copyright 2020, Acoustic Society of America. . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 The resonance feedback loop within a free jet. All four components are labelled.
Schlieren courtesy of Jayson Beekman. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Sound pressure levels (dB/St) measured for the round single-jet system running at several
M j . Screech tones are visible as the high-amplitude bands and the stages are labelled. . . 13

2.9 Screech-frequency predictions using equation 2.8 for both a free-stream sound wave
(dotted white) and a guided-jet mode (solid red), and using equation 2.7 with a
guided-jet mode (solid black), compared to the A1 and A2 screech tones. Also shown
are the existence region bounds of the guided-jet mode: branch points (B), and saddle
points (S). Image from [7], reproduced with permission from Springer Nature. . . . . . . 15

2.10 Normalised axial wavenumber spectra,ð‚� ð. Symbols areâ , ks;1; • , kKH * ks;1; ¸ , ks;2;
Ê , kKH * ks;2; +, free-stream acoustic wave. White lines in NPR indicate where screech
staging occurs. Image from [8], reproduced under Creative Commons CC BY. . . . . . . 17

2.11 Geometry of a round twin-jet system (a), and the exhaust of an F/A 18A Hornet (b):
image taken at San Diego Air & Space Museum. . . . . . . . . . . . . . . . . . . . . . 18

2.12 Representation of each of the four symmetries possible for a twin-jet system. . . . . . . . 19
2.13 Schlieren images of anS = 4 round twin jet for NPR = 2.89 SS coupling (a), and NPR

= 3.86 SA coupling (b). Visualisations are in thex * y plane as de�ned by �gure 2.11. . 20

xii



List of Figures xiii

2.14 Comparison of single and twin-jet screech tone amplitudes (a) [9], and comparison of
amplitudes for the B screech tone (b) [10]. Note, fully expanded Mach number refers to
M j . Images used with permission from AIAA, from [9] and [10] respectively;
permission conveyed through Copyright Clearance Center, Inc. . . . . . . . . . . . . . . 20

2.15 Screech frequencies of theS = 3 twin jet operating at multiple NPR. Overlaid are the
phase di�erences between the microphones (a), and screech-frequency predictions
following the formula of [11] (b). Note, due to notation di�erences the parameterm in
(b) is n in equation 2.10. Images used with permission from AIAA, from [12];
permission conveyed through Copyright Clearance Center, Inc. . . . . . . . . . . . . . . 22

2.16 Growth rates of the KH mode using a realistic velocity pro�le. Here,h is equivalent to
S and all four symmetries SS (solid), SA (dot-dash), AS (dashed) and AA (dotted) are
shown form = 0 and 1 equivalent modes. Image from [13], reproduced with permission
from Cambridge University Press. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.17 Comparison of axial (ðuð) and lateral (ðvð) velocity structures between linear stability
analysis and POD. Shown is the SSm = 1 mode for KH (a), (b) and guided-jet mode (c),
(d). Image from [14], reproduced with permission from Cambridge University Press. . . 26

3.1 Instantaneous (a), mean �eld (b), and �uctuations (c), of the axial velocity for a round
twin-jet system at NPR = 2.303 andS = 2. Colourmap from [1] and PIV data courtesy
of Dr Joel Weightman. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Comparison between the tailored mean �ow using equation 3.7, and experimental (PIV),
velocity pro�les for anS = 2, M j = 1:16twin jet at,x_D = 2 (a),x_D = 3 (b), andx_D
= 5 (c). Values used for the mean �ow are,Rj = 0.5, and� = 0.2 (a), 0.3 (b), and 0.5 (c).
Note,U_c0 = M U

Uj
, with M the acoustic Mach number. Figures from [15], reproduced

under Creative Commons CC BY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 (a) Twin-jet set-up and (b) experimental set-up. . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Visualisation of the twin-jet solution symmetries considered in this work, (a) SS and (b)

SA. Shown are the real components of thek*
p .0; 2/ pressure eigenfunctions found using

the �nite-thickness twin-jet model withS = 2, M j = 1.16,St = 0.69, � = 0.2. . . . . . . 40
4.3 Sample twin-jet mean �ow,U, used for the �nite-thickness model forM j = 1.16,S = 3,

� = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Comparison between the computed KH growth rates with those of Morris (1990) for (a)

SS and (b) SA withM j = 1.32 andSt = 1
�
. Note that growth rate values plotted here are

scaled by jet radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Comparison between the computed KH growth rates with those of Du (1993) for (a) SS

and (b) SA withM j = 1.32 andSt = 1
�
. Note that growth rate values plotted here are

scaled by jet radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Dispersion relation eigenvalues forM j = 1.16 for (a) SS,S = 2; (b) SS,S = 50; (c)

SA, S = 2; and (d) SA,S = 50, plotted here are just modes corresponding tom = 0
and 1. Branch (blue) and saddle (green) points are highlighted. Also shown is the sonic
line (yellow) for sound waves travelling upstream. Note that the green and blue bounds
for the.1; 1/ mode appear to be almost superimposed due to the close proximity of the
branch and saddle points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 Comparison of SAk*
p .0; 2/ branch point with the single-jet value for theM j = 1.16 jet.

This is compared directly in (a) and as a fraction in (b), also marked on (b) in red is the
line corresponding to a 1 % divergence from the single-jet value. . . . . . . . . . . . . . 48

4.8 Absolute value of normalised pressure eigenfunctions along they axis for SS (red) and
SA (black), (a) KH (m = 0) and (b)k*

p .0; 2/ mode. HereM j = 1.16, S = 3 andSt =
0.67. Jet edges are highlighted in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



List of Figures xiv

4.9 Absolute value of normalisedk*
p .0; 2/ pressure eigenfunctions along they axis for both

the vortex-sheet model and varying velocity pro�les in the �nite-thickness model. Here
M j = 1.16,S = 3 andSt = 0.67. Only one jet is shown for both the inter-jet.y_D < 1/,
inner.1 < y_D < 2/ and outer.y_D > 2/ regions. Results are shown for (a) SS and (b)
SA. Vortex sheet (black),� = 0.12 (blue),� = 0.2 (red) and� = 0.4 (green). . . . . . . . 50

4.10 Absolute value of normalised KH (m = 0) pressure eigenfunctions along they axis for
both the vortex-sheet model and varying velocity pro�les in the �nite-thickness model.
HereM j = 1.16, S = 3 and St = 0.67. Only one jet is shown for both the inter-jet
(y_D < 1), inner (1 < y_D < 2) and outer (y_D > 2) regions. Results are shown for (a)
SS and (b) SA. Vortex sheet (black),� = 0.12 (blue) and� = 0.2 (red). For� = 0.4, the
KH mode has stabilised. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.11 Variation in branch (blue) and saddle (green) points withM j andS for the k*
p .0; 2/

mode using the vortex-sheet model. Computed for SS (a) and SA (b) with+ S = 2, • S
= 3, ý S = 4 and¸ S = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.12 Variation in branch (blue) and saddle (green) points withM j and� for thek*
p .0; 2/ mode

using the �nite-thickness model. Computed for (a) SS and (b) SA. HereS= 3 with + �
= 0.12, • � = 0.2 andý � = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.13 Sound pressure levels (dB/St) measured for the single-jet system running at severalM j .
Screech-frequency predictions using the vortex-sheet model are shown, along withk*

p
.0; 2/ branch and saddle points. Lines highlighting the screech peaks are included.
Parameters used for these predictions ares = 4, p = 3 (A1 mode), 4 (A2 mode) and� = 0. 52

4.14 Sound pressure levels (dB/St) measured for the single-jet system running at severalM j .
Screech-frequency predictions using the �nite-thickness model with� = 0.2 are shown,
along withk*

p .0; 2/ branch and saddle points. Lines highlighting the screech peaks are
included. Parameters used for these predictions ares = 4, p = 4 (A1 mode), 5 (A2 mode)
and� = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.15 Sound pressure levels (dB/St) measured for the twin-jet system running at severalM j and
spacings (a)S = 2, (b) 3, (c) 4 and (d) 6. Screech-frequency predictions using the vortex-
sheet model are shown for both SS (ý, red) and SA (̧ , blue) symmetries. Along with
k*

p .0; 2/ branch and saddle points for SS (• , red) and SA (+, blue). Lines highlighting
the screech peaks are included. Parameters used for these predictions ares = 5, p = 4
(A1 mode), 5 (A2 mode) and� = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.16 Sound pressure levels (dB/St) measured for the twin-jet system running at severalM j
and spacings (a)S = 2, (b) 3, (c) 4 and (d) 6. Screech-frequency predictions using the
�nite-thickness model are shown for both SS (ý, red) and SA (̧ , blue) symmetries.
Along with k*

p .0; 2/ branch and saddle points for SS (• , red) and SA (+, blue). Lines
highlighting the screech peaks are included. Parameters used for these predictions ares
= 4, p = 4 (A1 mode), 5 (A2 mode) and� = 0. . . . . . . . . . . . . . . . . . . . . . . 56

4.17 Screech-frequency peaks of the A1 and A2 axisymmetric screech modes from experiment
and predicted by the �nite-thickness model. These predictions use the same parameters
as tables 4 and 6 forS = 2, 3, 4, 6 and the single jet. (a) Experimental data, (b) SS and
(c) SA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.18 Values of the shear-layer characterisation parameter� obtained when �tting the
hyperbolic tangent pro�le to single-jet PIV data. Several axial locations (x_D) are
considered forM j 1.08, 1.12 and 1.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.19 Growth rate of the axisymmetric twin-jet KH instability with shear-layer characterisation
parameter� for SS symmetry,S = 3 andM j = 1.12 atSt = 0.5, 0.6, 0.7 and 0.72. . . . 61

4.20 Comparison between the modelled, tanh superposition and experimental, PIV data,
velocity pro�les for anS = 2 twin jet at x_D = 2. Results are shown for (a)M j = 1.1
and (b)M j = 1.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



List of Figures xv

4.21 Comparison between the modelled (tanh superposition), and experimental (PIV),
velocity pro�les for anS = 2 twin jet at, (a)M j = 1.1 andx_D = 3, (b) M j = 1.1 and
x_D = 5, (c) M j = 1.16 andx_D = 3 and, (d)M j = 1.16 andx_D = 5. Values of�
used for the tanh superposition are 0.5 and 0.9 respectively forx_D = 3 and 5. . . . . . . 62

4.22 Sound pressure levels (dB/St) measured for the twin-jet system running at severalM j for
S = 2. A line highlighting the A1 screech peaks is included. Thek*

p .0; 2/ branch and
saddle points are computed atM j = 1.1 for the SA symmetry using a� of 0.2 (+, blue),
and 0.5 (• , red), respectively. A screech-frequency prediction using the �nite-thickness
model is shown (ý, red), with the KH andk*

p wavenumbers computed using a� of 0.2
and 0.5, respectively. Parameters used for this prediction ares = 4, p = 4 and� = 0. . . . 62

5.1 The planar (a), and round (b) twin-jet geometries. . . . . . . . . . . . . . . . . . . . . . 73
5.2 Sample AR = 2 elliptical jet mean �ow,U, used for the �nite-thickness model (a), and

mean �ow for anS = 1 round twin jet (b). Computed forM j = 1.16 and� = 0.2. . . . . 75
5.3 Variation in structure of the symmetric planar twin-jet pressure eigenfunctions of the

k*
p (0, 2) as the two jets merge (H ™ 1). Computed for,M j = 1:16, St = 0:25 andT

computed through an isentropic relation. Eigenfunctions are normalised by their
maximum absolute value. The inter-jet region is shaded in grey. . . . . . . . . . . . . . 76

5.4 Variation in structure of the antisymmetric planar twin-jet pressure eigenfunctions of the
k*

p (0, 2) mode as the two jets merge (H ™ 1). Shown for,M j = 1:16, T computed
through an isentropic relation, andSt = 0:27, (a) and (b), 0.29, (c), and 0.3, (d)-(f).
Eigenfunctions are normalised by their maximum absolute value. The inter-jet region is
shaded in grey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Eigenfunctions of the merged planar twin-jet system (H = 1) compared with those of the
double-width single jet for both the symmetric solution, (a), and antisymmetric solution
(b). Shown forM j = 1:16, andT computed through an isentropic relation.St values are
0.25 and 0.5 for (a), and 0.3 and 0.6 for (b), normalising using the twin and double-width
jet length scales respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Branch and saddle points for the symmetric and antisymmetric planar twin jet as a
function of jet spacingH at M j = 1.16 andT from an isentropic relation. Present also
in each �gure is the corresponding value of the symmetric single planar jet.St values
converged to atH = 1 correspond to half those of the double-width jet. . . . . . . . . . 79

5.7 Comparison between thek*
p (0,2) existence region between the planar twin jet (H = 1)

and double-width jet for symmetric, (a), and antisymmetric, (b). Computed forM j 1.16
andT from an isentropic relation. The twin-jet eigenvalues have been scaled by a factor
of two to adjust them to the double-width jet normalisation. . . . . . . . . . . . . . . . . 80

5.8 Comparison of.kh; St/ eigenvalue pairs between the planar twin jet (H = 1) and
double-width jet for symmetric, (a), and antisymmetric, (b). Computed forM j 1.16 and
T from an isentropic relation. The twin-jet eigenvalues have been scaled by a factor of
two to adjust them to the double-width jet normalisation. . . . . . . . . . . . . . . . . . 80

5.9 Dependence of thek*
p (0, 2) branch point with jet separation for both the SA (a) and SS (c)

round twin jet, and the antisymmetric (b) and symmetric (d) planar twin jet. Computed
for M j = 1.16 and� = 0.2 (round twin jet). Overlaid on (a) and (b) is an exponential
trendline, with a constant trendline on (c) and (d). . . . . . . . . . . . . . . . . . . . . . 81

5.10 Variation in structure of the SA round twin jet pressure eigenfunctions of thek*
p (0, 2)

mode as the two jets merge (S ™ 1). Computed for,M j = 1:16 and� = 0:2. Values
of St are 0.595 (a), 0.64 (b), 0.665 (c), and 0.695 (d). Eigenfunctions are normalised by
their maximum absolute value. The inter-jet region is shaded in grey. . . . . . . . . . . . 82



List of Figures xvi

5.11 Variation in structure of the SS round twin jet pressure eigenfunctions of thek*
p (0, 2)

mode as the two jets merge (S ™ 1). Computed for,M j = 1:16 and� = 0:2. Values
of St are 0.555 (a), 0.565 (b), 0.57 (c), and 0.58 (d). Eigenfunctions are normalised by
their maximum absolute value. The inter-jet region is shaded in grey. . . . . . . . . . . . 83

5.12 Geometric comparison between theS = 1 round twin-jet system and an elliptical jet of
AR 1.5 (a), and 2 (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.13 Comparison of the existence regions of the SS and SAS = 1 round twin-jetk*
p (0, 2)

mode and the� = 0, 1 elliptical jet mode branch it lies closest to. Computed forM j =
1.16,� = 0.2, and AR = 1.5 (a), (c) and 2 (b), (d). Values ofSt for the twin-jet system
are scaled to match the normalisation of the ellipticalSt. Included also is the sonic line
representing the free-stream acoustic waves in red. . . . . . . . . . . . . . . . . . . . . . 85

5.14 Pressure eigenfunctions of the� = 0 and 1 ellipses, and the SS and SAS = 1 round twin
jet computed at the branch point. Shown for the radial pro�le (a) and (b), antisymmetric
contours (c) and (d), and symmetric contours (e) and (f). Computed forM j = 1.16, and
� = 0.2. Eigenfunctions are normalised by their maximum absolute value. . . . . . . . . 86

5.15 Comparison of the pressure eigenfunction behaviour between theS = 1 round twin jet,
(a) and (c), and the AR 2 ellipse, (b) and (d), when moving from the branch to saddle
point. Computed forM j = 1.16, � = 0.2, and AR = 2. Eigenfunctions are normalised
with the absolute value plotted along they axis. . . . . . . . . . . . . . . . . . . . . . . 87

5.16 Set-up of the planar n-jet system for both an even, (a), and odd, (b), number of jets. . . . 89
5.17 Comparison of mean �ow axial velocity pro�les between the AR 2 ellipse andS = 1

twin jet. Computed forM j = 1:16, � = 0:2 at � of 0, (a), 18, (b), 36, (c), 54, (d), 72, (e),
and 90, (f), all measured from the positivey axis. . . . . . . . . . . . . . . . . . . . . . 92

5.18 Variation in the ratio of the SA round twin-jetk*
p (0, 2) branch point and the single-jet

equivalent, acrossS andM j . Computed forT using an isentropic relation (a),T = 1 (b),
andT = 1.5 (c). Colourmap from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.19 Variation in the ratio of the round twin-jetk*
p (1, 1) branch point and the single-jet

equivalent, acrossS andM j . Computed using an isentropic relation forT and for SS
(a), SA (b), AS (c), and AA (d) solution symmetry. Colourmap from [1]. . . . . . . . . . 94

6.1 The twin-jet system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Twin-jet mean �ow used for the �nite-thickness formulation with decreasingS, plotted

along they-axis. Computed for,M j = 1:16, and� = 0:2. The coordinater in equation
6.8 is measured from the centre of each jet (y_D = , S_2). . . . . . . . . . . . . . . . . 103

6.3 Radial derivative of the twin-jet mean �ow used for the �nite-thickness formulation with
decreasingS. Computed for,M j = 1:16, and� = 0:2. The coordinater in equation 6.8
is measured from the centre of each jet (y_D = , S_2). . . . . . . . . . . . . . . . . . . 103

6.4 Absolute value pressure eigenfunction contours of them = 0 KH mode with decreasing
S. Computed for,M j = 1:16, St = 0:6, � = 0:2, and SS and SA symmetries using the
�nite-thickness model. Contours are normalised by their maximum absolute value. . . . 106

6.5 Absolute value pressure eigenfunction contours of them = 1 KH mode with decreasing
S. Computed for,M j = 1:16, St = 0:6, � = 0:2, and SS and SA symmetry using the
�nite-thickness model. Contours are normalised by their maximum absolute value. . . . 107

6.6 Absolute value pressure eigenfunction contours of them = 1 KH mode with decreasing
S. Computed for,M j = 1:16, St = 0:6, � = 0:2, and AS and AA symmetry using the
�nite-thickness model. Contours are normalised by their maximum absolute value. . . . 108

6.7 Absolute value pressure eigenfunction contours of them = 2 KH mode with decreasing
S. Computed for,M j = 1:16, St = 0:6, � = 0:2, and SS and SA symmetry using the
�nite-thickness model. Contours are normalised by their maximum absolute value. . . . 108



List of Figures xvii

6.8 Absolute value pressure eigenfunction contours of them = 2 KH mode with decreasing
S. Computed for,M j = 1:16, St = 0:6, � = 0:2, and AS and AA symmetry using the
�nite-thickness model. Contours are normalised by their maximum absolute value. . . . 109

6.9 Absolute value pressure eigenfunction contours of them = 0 KH mode using the vortex-
sheet model. Computed for,M j = 1:16, St = 0:6, T = 1, both SS and SA symmetry,
andS of 2.2 (a), (d), 2 (b), (e) and 1.4 (c), (f) using the vortex-sheet model. Contours
are normalised by their maximum absolute value. . . . . . . . . . . . . . . . . . . . . . 110

6.10 Normalised values of the �rst 5Am coe�cients for the m = 0 KH mode at multiple jet
separations for SS symmetry, (a), and SA symmetry, (b). Computed forM j = 1:16,
St = 0:6, andT = 1 using the vortex-sheet model. . . . . . . . . . . . . . . . . . . . . 111

6.11 Normalised values of the �rst 5Am coe�cients for them = 1 and 2 KH modes at multiple
jet separations for SS symmetry, (a) and (b), and SA symmetry, (c) and (d). Computed
for M j = 1:16, St = 0:6, andT = 1 using the vortex-sheet model. . . . . . . . . . . . . 112

6.12 Absolute value pressure eigenfunction contours as a function ofSt and along they-axis
for SS symmetrym = 0, (a), andm = 1, (b), and SA symmetrym = 0, (c), andm = 1,
(d), KH modes. Computed forM j = 1:16, T = 1, andS = 1:4 using the vortex-sheet
model. The edges of each jet are highlighted. . . . . . . . . . . . . . . . . . . . . . . . 114

6.13 KHm = 0 absolute value pressure eigenfunction contours as a function ofSt and along
they-axis forS = 2:2, (a),2, (b),1:8, (c),1:7, (d),1:6, (e), and1:2 (f). Computed for SS
symmetry,M j = 1;16, andT = 1 using the vortex-sheet model. The edges of each jet
are highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.14 KHm = 0 absolute value pressure eigenfunction contours as a function ofSt and along
they-axis forS = 2:2, (a),2, (b), 1:8, (c), 1:7, (d), 1:6, (e), and1:2 (f). Computed for
SA symmetry,M j = 1;16, andT = 1 using the vortex-sheet model. The edges of each
jet are highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.15 KHm = 0 absolute value pressure eigenfunction contours centred on jet 1 as a function
of S (� S = 0:01)and along they-axis for SS symmetry,St = 0:3, (a),0:4, (b), 0:5, (c),
and0:6 (d), and SA symmetry,St = 0:3, (e),0:4, (f), 0:5, (g), and0:6 (h). Computed for,
M j = 1:16, andT = 1 using the vortex-sheet model. The edges of the jet are highlighted,
with the second jet to the left side of each plot. . . . . . . . . . . . . . . . . . . . . . . . 116

6.16 Eigenvalues of them = 0 (+, red) andm = 1 (x, blue) KH modes fromS = 2:2 (ý, black)
to S = 1 (¸ , black). Computed for,M j = 1:16, T = 1, SS symmetry, andSt = 0:5, (a),
0:55, (b), 0:57, (c), and0:6, (d) using the vortex-sheet model. . . . . . . . . . . . . . . . 118

6.17 Eigenvalues of them = 0 (ý) andm = 1 (• ) KH modes fromSt = 0:31 to St = 0:69.
Computed for,M j = 1:16, T = 1, SS symmetry, andS = 2, (a),1:8, (b), 1:6, (c), and
1:4, (d) using the vortex-sheet model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.18 KHm = 0 absolute value pressure eigenfunction contours as a function ofSt and along
they-axis for� = 0:2, (a),0:15, (b), 0:1, (c), and0:05, (d). Computed for SS symmetry,
M j = 1:16, andS = 2 using the �nite-thickness model. The edges of each jet are
highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.19 KHm = 0 absolute value pressure eigenfunction contours as a function ofSt and along
they-axis for� = 0:2, (a),0:15, (b), 0:1, (c), and0:05, (d). Computed for SS symmetry,
M j = 1:16, andS = 1:4 using the �nite-thickness model. The edges of each jet are
highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.20 KHm = 0 absolute value pressure eigenfunction contours centred on jet 1 as a function
of S (� S = 0:1) and along they-axis for � = 0:2, (a),0:15, (b), 0:1, (c), and0:05, (d).
Computed for SS symmetry,M j = 1:16, andSt = 0:55using the �nite-thickness model.
The edges of the jet are highlighted, with the second jet to the left side of each plot. . . . 121



List of Figures xviii

6.21 KHm = 0 absolute value pressure eigenfunction contours centred on jet 1 as a function
of S (� S = 0:1) and along they-axis for � = 0:2, (a),0:15, (b), 0:1, (c), and0:05, (d).
Computed for SS symmetry,M j = 1:16, andSt = 0:6 using the �nite-thickness model.
The edges of the jet are highlighted, with the second jet to the left side of each plot. . . . 122

6.22 POD energy spectra, (a) and (c), and coe�cients, (b) and (d), forM j = 1:1 and 1.16
�ows. Computed usingve for M j = 1:1 and withvo for M j = 1:16. . . . . . . . . . . . 123

6.23 Leading POD modes forM j = 1:1, (a) and (b), andM J = 1:16, (c) and (d). Computed
usingve for M j = 1:1 and withvo for M j = 1:16. Modes are normalised by their
maximum value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.24 Wavenumber spectra obtained via an axial Fourier transform of� , and the KH mode
�ltered from ð� ðfor M j = 1:1, (a) and (b), andM J = 1:16, (c) and (d). Computed using
ve for M j = 1:1 and withvo for M j = 1:16. Figures (a) and (b) are the log10 of the
intensity and �gures (c) and (d) are normalised by their maximum values. . . . . . . . . 125

6.25 Absolute value pressure eigenfunction contours as a function ofSt and along they-axis
for m = 0, (a), andm = 1, (b), KH modes. Computed for SS symmetry,M j 1.16,T = 1,
andS = 1:4 using the vortex-sheet model. The edges of each jet are highlighted. . . . . 128

6.26 KHm = 0 absolute value pressure eigenfunction contours centred on jet 1 as a function
of S and along they-axis forSt = 0:4, (a), and0:6 (b). Computed for SS symmetry,M j
1.16, andT = 1 using the vortex-sheet model. The edges of the jet are highlighted, with
the second jet to the left side of each plot. . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.27 Eigenvalues of them = 0 (ý) andm = 1 (• ) KH modes fromSt = 0:31 to St = 0:69.
Computed for,M j = 1:16, T = 1, SS symmetry, andS = 2, (a),1:8, (b), 1:6, (c), and
1:4, (d) using the vortex-sheet model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.28 Eigenvalues of them = 0 (+, red) andm = 1 (x, blue) KH modes fromS = 2:2 (ý, black)
to S = 1 (¸ , black). Computed for,M j = 1:16, T = 1, SS symmetry, andSt = 0:5, (a),
0:55, (b), 0:57, (c), and0:6, (d) using the vortex-sheet model. . . . . . . . . . . . . . . . 130

6.29 Normalised values of the �rst 5Am coe�cients for the SS symmetry KH mode at multiple
jet separations form = 0, (a), andm = 1, (b). Computed forM j = 1:16, St = 0:6, and
T = 1 using the vortex-sheet model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



List of Tables

4.1 Value of, terms in twin-jet vortex-sheet model for each solution symmetry. . . . . . . . 43
4.2 Symmetry notation for solutions of a twin-jet vortex sheet. . . . . . . . . . . . . . . . . 46
4.3 Parameters used for single-jet vortex-sheet model predictions. . . . . . . . . . . . . . . 52
4.4 Parameters used for single-jet �nite-thickness model predictions. . . . . . . . . . . . . . 53
4.5 Parameters used for twin-jet vortex-sheet model predictions. . . . . . . . . . . . . . . . 55
4.6 Parameters used for twin-jet �nite-thickness model predictions. . . . . . . . . . . . . . . 56

5.1 Value of parameters for the exponential trendline �tted to the branch points in �gure 5.9 . 81

xix



Nomenclature

Abbreviations

AA Antisymmetric antisymmetric

AR Aspect ratio

AS Antisymmetric symmetric

BBSAN Broadband shock-associated noise

ICAO International civil aviation organization

KH Kelvin-Helmholtz

NP R Nozzle pressure ratio

P DF Probability-density function

P IV Particle image velocimetry

P OD Proper orthogonal decomposition

P SD Power spectral density

P SE Parabolised stability equations

RANS Reynolds-averaged Navier-Stokes

SA Symmetric antisymmetric

SJAF Supersonic jet anechoic facility

SP L Sound pressure level

SS Symmetric symmetric

T MN Turbulent mixing noise

Greek symbols

� Complex mode reconstructed from leading POD modes

 Ratio of speci�c heats

� Characterises shear-layer thickness

� Azimuthal angle

� 1 Azimuthal coordinate centred on jet 1

� 2 Azimuthal coordinate centred on jet 2

xx



Nomenclature xxi

� s Screech wavelength

� Floquet exponent

„� Mean density

� Period

� POD mode

� Phase di�erence for screech prediction model

' Polar angle

 Phase o�set for resonance loop

! Angular frequency

! s Screech frequency

Roman symbols

a Semi-major axis length

a.t/ POD mode temporal coe�cients

Am Azimuthal mode coe�cient

b Semi-minor axis length

„c Mean speed of sound

c0 Ambient speed of sound

D Nozzle diameter

D j Ideally-expanded diameter

f Frequency

g Gain

H Distance from centre of planar jet to symmetry point

h Half-width of planar jet

I Modi�ed Bessel function of the �rst kind

K Modi�ed Bessel function of the second kind

k Wavenumber

k* Wavenumber of upstream-travelling wave

k+ Wavenumber of downstream-travelling wave

k+
d Downstream-travelling duct-like mode

kg Wavenumber of generated wave

ki Imaginary component of the wavenumber

kr Real component of the wavenumber

ks Shock-cell wavenumber

kKH Wavenumber of KH instability



Nomenclature xxii

k*
p Guided-jet mode

L s Distance tosth shock cell

M Acoustic Mach number

m Azimuthal mode number

M c Convective Mach number

M d Design Mach number

M e Nozzle exit Mach number

M j Ideally-expanded, or jet, Mach number

N Truncated size of dispersion relation

n Number of concurrent disturbances

nr Radial mode number

P Pressure eigenfunction

p Number of cycles included in the resonance loop

‚P Pressure eigenfunction after applying Floquet ansatz

„q Mean �ow

ƒq Flow �uctuations

r Radial direction

r1 Radial coordinate centred on jet 1

r2 Radial coordinate centred on jet 2

Rj Ideally-expanded radius

Re Reynolds number

S Jet separation of round twin jet

s Shock-cell number

St Strouhal number

Stb Branch-point frequency

T Temperature ratio of jet to ambient

t Time

td Time taken to complete downstream component of resonance loop

tu Time taken to complete upstream component of resonance loop

U Mean axial velocity

u Axial velocity �uctuations

Uc Phase velocity of downstream instability

Uj Ideally-expanded velocity

v Transverse, or lateral, velocity �uctuations

ve Even transverse velocity �uctuations



Nomenclature xxiii

vo Odd transverse velocity �uctuations

x Axial direction

y Spanwise direction

z Vertical direction

Subscripts

c Convective condition

d Design condition

e Exit condition

j Ideally-expanded condition



Chapter 1

Introduction

1.1 Motivation

The expanded use of aircraft across multiple facets of modern society draws further attention to their

associated problems. A key problem is the noise they emit, noise whose magnitude and characteristics

vary depending on whether the aircraft is taking o�, landing, or cruising. Common sources of noise for

an aircraft are the air-frame (including landing gear) [16�18], and the engine exhaust (referred to as jet

noise) [3, 19]. For civilian aircraft operating at subsonic velocities, noise concerns are predominantly

based around meeting the restrictions imposed at airports [20]. These restrictions on noise levels are set

due to the negative impacts noise can have on people living in the surrounding areas including, among

others, sleep, mental health, and cardiovascular disease risk [21�23]. Many of these restrictions

originate from standards and recommended practices formulated by the International Civil Aviation

Organisation (ICAO). The ICAO releases an environmental report every three years which informs on

progress made in developing and updating these standards. Aircraft noise formed an important aspect

of the most recent 2022 report [24]. Whilst this thesis considers noise from supersonic aircraft,

advancements in its understanding also indirectly bene�t the civilian sector; each increment of progress

made moves the industry closer to a potential revival of civilian supersonic travel. This is re�ected in

the current work programme of the ICAO, which has recently included in one of their priorities the

development of a set of standards foren route noise/sonic boom certi�cation for supersonic �ight[24].

Military aircraft have signi�cantly higher exhaust velocities from their engines, operating often in the

supersonic regime, and these higher velocities increase the amplitude of the sound to the level where it

can damage the aircraft structure. The primary concern is the region surrounding the aircraft exhaust,

which can be susceptible to vibrations due to high-intensity tones emitted from the supersonic jet.

1
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A historical example of the damage these tones can cause is found in the report of Berndt [25] concerning

the B1 series aircraft. During testing, pieces of the �aps around the exhaust nozzle fractured and detached

from the aircraft. The subsequent investigation revealed that this was due to strong pressure �uctuations

in the inter-jet region. For certain con�gurations the power spectral density (PSD) of the pressure signal

revealed high-amplitude and discrete-frequency peaks, the characteristics of screech tones [26, 27]. The

strategy adopted in response to this issue was one of avoidance, with con�gurations chosen where this

resonance did not occur. These were then used for subsequent testing of the B1-B. However, to truly

eliminate screech tones they need to be understood at a fundamental level.

Since the early work of Powell [28, 29] modelling of the screech cycle for a round jet has predominantly

considered a single-jet system [8, 30�35] with considerations of screech in the round twin-jet system

more experimentally focused [10, 12, 36�40]. In the recent work of Nogueira and Edgington-Mitchell

[14], linear stability theory was applied to directly link waves from these models with the �ow

structures underpinning screech at a single jet Mach number and jet separation. A twin-jet system

introduces an additional parameter to the screech problem: the separation of the two jets. Models for

resonance in twin-jet systems must therefore be able to capture the dependency of the system on this

additional parameter, rendering them more complex than their single-jet counterparts. Though the

aforementioned study observed the same wave-like structures in a twin-jet as had been previously

identi�ed in single-jet screech, it did not propose a model integrating this additional parameter.

This thesis intends to investigate some of the physical mechanisms underpinning resonance in supersonic

round twin-jet systems. Numerical models, obtained through linear stability analysis, o�er a direct means

to study these underlying mechanisms. Linear stability theory is applied to model the �ow structures

within a round twin-jet system, with particular focus on the underlying coherent structures believed to be

involved in generating screech tones. Through this research a clearer understanding of the screech cycle

in a round twin-jet system and how it is a�ected by jet parameters is sought.

1.2 Thesis outline

The subsequent chapters of the thesis are structured as follows. In Chapter 2 a discussion concerning

the current understanding of screech, twin-jet systems, coherent structures, and their relation to each

other, is provided. Details on the modelling methodology utilised are provided in Chapter 3. Chapter 4

applies locally-parallel linear stability-based models to screech-frequency predictions for the round twin-

jet system. Using these models, it is sought to determine the closure mechanism of the screech cycle for

low supersonic jet Mach numbers. In Chapter 5, focus is directed solely on the upstream-propagating
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guided-jet mode and examining its behaviour in a twin-jet system as the two jets are brought together.

An explanation is sought for why these modes have a �nite existence region in frequency that varies with

jet separation in a twin-jet system. Chapter 6 considers the Kelvin-Helmholtz (KH) instability as the

two jets are brought together. It builds o� the preceding chapter and considers changes in structure and

behaviour. Conclusions are made in Chapter 7.



Chapter 2

Background

2.1 Supersonic jets

A jet is a �ow driven via a pressure gradient through a small aperture, or nozzle, into a larger region, with

a visualisation of this provided in �gure 2.1. An important parameter that characterises the behaviour of

jets is nozzle pressure ratio (NPR). This is the ratio of the total pressure upstream of the nozzle to the

static pressure of the ambient region into which the jet emerges. For experimental studies it is su�cient

to use only NPR, as this is the parameter that is physically adjusted. However, modelling of jets requires

a Mach number as input. The Mach number at the nozzle exit,M e, is dependent only on nozzle geometry

and does not change with NPR, unlike Mach numbers further downstream which do depend on NPR. Due

to this, the ideally-expanded, or jet, Mach numberM j is commonly utilised as it represents an average

FIGURE 2.1: An NPR 3.6 underexpanded jet mean �ow. The shock-cell structure is clearly seen.
Schlieren courtesy of Jayson Beekman.

4
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value over the downstream distance (x_D in �gure 2.1) [41]. This is related to the NPR through

M j =

v
2

 * 1

0
NP R

 *1
 * 1

1
; (2.1)

where is the ratio of speci�c heats. Equation 2.1 is obtained through an isentropic expansion and

represents the condition where the jet pressure at exit matches the ambient pressure. A supersonic jet can

be classi�ed in one of three ways; overexpanded, underexpanded, or ideally-expanded. Classi�cation of

a jet depends on the value ofM j relative to the design Mach number,M d, of the nozzle. The internal

contour of a nozzle may be purely-converging, which hasM d = 1, or converging-diverging, where

M d is found through the area-Mach relation. IfM j = M d, the exit pressure of the jet is equal to the

ambient pressure, and the jet is said to be ideally-expanded. There will be no shocks present in an ideally-

expanded �ow. Conversely ifM j ‘ M d, then the jet may be overexpanded (M j < M d) or underexpanded

(M j > M d), collectively referred to as non-ideally expanded. Both cases lead to a mismatch between

the jet exit pressure and ambient pressure. IfM j > 1, the condition for supersonic �ow, the non-ideally

expanded jet will form a series of expansion fans and oblique shock waves. These fans and waves form

the diamond pattern shown in �gure 2.1, known as the shock-cell structure. These shock and expansion

waves eventually dissipate further downstream from the nozzle exit due to the jet mixing with the ambient

�uid. An e�ective jet diameter,D j , can be de�ned based onM j andM d. This relation is provided in

Tam and Tanna [42] as

D j

D
=

L
1 + 0:5. * 1 / M j

2

1 + 0:5. * 1 / M d
2

M  +1
4. *1/ 0

M d

M j

1 1
2

: (2.2)

This relation represents the di�erence between the nozzle diameter,D, and diameter of the non-ideally

expanded �ow. For underexpanded jets, as shown in �gure 2.1, this di�erence arises from the expansion

waves that form at the jet exit, increasing the diameter of the �ow outside the nozzle.

2.2 Coherent structures

2.2.1 Identi�cation

Historically, turbulent jets were thought to be stochastic �ows. It was through the seminal work of Mollo-

Christensen [43] that this perception was changed. In this work, it was demonstrated that there exists

an underlying coherence within the �ow. The author positioned two microphones on either side of a

jet, taking recordings with multiple axial o�sets. The space-time correlation between the signals was

calculated, with the analysis performed for Mach numbers of 0.48 and 0.96. These correlations revealed

the signature of a structure moving downstream within the �ow, indicating the presence of deterministic
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(a) (b)

FIGURE 2.2: Schlieren visualisation at NPR = 2.12 (a), and axial velocity �eld from PIV for NPR =
2.135 (b). Both images are for a round twin jet at two diameters separation. PIV data provided by Dr

Joel Weightman, colourmap used in (b) from [1].

elements in the �ow. Further experimental evidence of coherent structures was shown by Crow and

Champagne [44] and Brown and Roshko [2]. As part of their investigation, Crow and Champagne [44]

used fog as a visualisation tool to view the structure of jets at multiple Reynolds numbers (104 to 7� 104).

They observed the presence ofpu�s, terminology used in reference to coherent structures, within the

�ow. These pu�s were described as sporadic, whereby:three or four pu�s form and induct themselves

downstream, an interval of confused �ow ensures, several more pu�s form, and so on[44]. Brown

and Roshko [2] sought to study the mixing layer formed between two parallel �ows of di�ering densities

(helium and nitrogen). Along this interface the authors also observed the presence of coherent structures,

suggesting that their behaviour may a�ect turbulent mixing and entrainment. These works were important

as they changed the way researchers thought of shear �ows, providing a new pathway to study jets via

these coherent structures.

One way of studying turbulent �ows and their underlying coherent structures is through visualisation

techniques, with schlieren imaging a common method for compressible �ows [45]. Schlieren imaging

is underpinned by the relationship between density and refractive index. A supersonic jet will create

density gradients in the �ow, and thus regions of di�ering local density, leading to subsequent gradients

in refractive index which can be visualised by passing light through it. A light source is collimated via a

parabolic mirror before passing through the �ow, and being de�ected by the refractive index gradients.

A second parabolic mirror then focuses the light to a sharp object known as the knife edge, which can

be adjusted to alter the light intensity, before passing through a lens and to the camera for imaging.

Schlieren is a path-integrated technique, and thus directly provides only qualitative density results.

Alternatively, a more quantitative analysis of the �ow can be achieved through particle image

velocimetry (PIV) [46]. PIV involves seeding both the �ow and ambient environment with small

particles; these are then illuminated via laser, with the displacement computed between two imaged

frames (separated by a small time increment) yielding a velocity for the �ow at that point. Seeding
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particles are carefully chosen so their velocities are representative of the �ow, without overly

in�uencing it. Examples of results obtained from both schlieren and PIV are shown in �gure 2.2. The

descriptions provided of these techniques are, of course, oversimpli�cations of the complex

experimental techniques for brevity. Additional information can be extracted from schlieren and PIV

data via �ow decomposition techniques [47, 48]. These decompositions seek to construct a series of

modes with which to represent the �ow, that can be used to further investigate the �ow behaviour.

The terminologymodeis commonly used in both numerical and experimental studies. For both, using

this term means that some part of the �ow have been decomposed into subsets that are easier to analyse.

In round jets, the �ow is naturally decomposed by means of a Fourier series in the azimuthal angle� ,

namely
ØÉ

m=0

ei 2��m
� ; (2.3)

wheremis the azimuthal mode number and� is the period (� = 2� for the round jet). Equation 2.3 forms

a basis ofmelements to describe the �ow in the azimuthal direction, with each element referred to as a

mode. Analysis of axisymmetric �ows is then commonly investigated by considering the behaviour of

these individual modes. In a similar manner, energy of di�erent coherent structures in the �ow (calculated

using PIV or numerical simulations, for instance) may be used as a means of decomposition. This is the

reasoning behind proper orthogonal decomposition (POD) [49], which separates the �ow structures into

a set of spatial modes as
É

j

aj .t/� j .x; y/; (2.4)

with aj .t/ the mode temporal coe�cients, and� j .x; y/ forming the basis elements. In equation 2.4

the � j .x; y/ elements are also referred to here as modes. In each instance, whether experimental or

numerical, usage ofmodeis in reference to an element comprising the basis representing the �ow and

must be clari�ed in each context. This basis may be imposed using simple mathematical expressions, as

in equation 2.3, or constructed using more sophisticated data post-processing techniques, as in equation

2.4.

2.2.2 Kelvin-Helmholtz wavepacket

A �ow structure often exhibited within jets, although not exclusive to them, is the Kelvin-Helmholtz

(KH) instability [50, 51]. The instability arises due to a di�erence in velocity between two mediums,

and forms along the boundary separating them. For a jet, this leads to a formation of vortices along the

shear layer between the high-speed core of the jet and the ambient medium surrounding the jet. This

distinctive shape is shown in �gure 2.3(a). It was the KH instability that was seen in early experimental
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(a) (b)

FIGURE 2.3: Kelvin-Helmholtz instability forming in the mixing layer between two �ows of di�erent
densities (a), and wavepacket structures (b). Image (a) from [2], reproduced with permission from
Cambridge University Press, and image (b) used with permission from Annual Reviews Inc. from [3];

permission conveyed through Copyright Clearance Center, Inc.

studies of coherent structures [2, 43, 44]. The KH is a convective instability that travels downstream

and grows exponentially in space until saturation. Fluctuations associated with it are strongest around

the jet boundary, and decrease strongly away from this region [5, 52]. Current considerations of the KH

instability now utilise the descriptorwavepacket[3, 53]. This description arises from the overall shape

of the structure in the axial direction: there is an initial region of growth, the growth rate decreases until

the structure is saturated, before then decaying. Figure 2.3(b) illustrates this wavepacket structure for two

di�erent azimuthal modes of the �ow,m = 0;1. This wavepacket structure has been shown to be a key

aspect of sound generation in jets [3, 54, 55].

2.2.3 Guided-jet mode

Another important structure within the jet is the guided-jet mode, which has recently been shown to

play a key role in the resonance feedback loop from which screech arises (to be discussed in Ÿ2.3). This

structure was �rst studied by Tam and Hu [5], with works by Towne et al. [56] and Schmidt et al. [57]

later expanding upon this. Towne et al. [56] showed that there are multiple upstream waves that can be

identi�ed within a jet. These are illustrated visually in �gure 2.4 for a range of subsonic Mach numbers,

hereSt is a non-dimensional frequency de�ned in terms of the jet diameter and ideally-expanded velocity

St = fD
Uj

. Three distinct upstream waves can be distinguished [4]. The �rst is coloured cyan and exists

for M j < 0:82. This wave is duct-like, in that it experiences the boundaries of the jet as soft-duct walls,

and can be accurately described by models for soft ducts [56]. The wave is seen to have.k; St/ pairs

describing it at all frequencies and thus is said to bepropagativefor all St. Second, is the wave coloured
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FIGURE 2.4: Wavenumber (k) and frequency (St) pairs, found through a vortex-sheet formulation,
corresponding to waves supported by the jet. Blue: KH mode, cyan: two types of upstream-travelling
duct-like modes, green: downstream-travelling duct-like mode, red: guided-jet mode, black: free-stream
acoustic waves forM j = 0:6 (solid) andM j = 0:97 (dash-dot). Image from [4], reproduced under

Creative Commons CC BY.

cyan for0:82 < M j < 1. This wave is also duct-like, however, due to the saddle it forms with the

downstream-travelling duct-like wave (green) [56], it will become evanescent asSt decreases below this

saddle frequency. Last, is the wave coloured red forM j > 0:82. This wave is propagative only over a

�nite range inSt before forming a saddle with the downstream-travelling duct-like mode; for frequencies

above the saddle frequency (or saddle point), it is evanescent. Unlike the previous two upstream waves,

with the exception of the region near the free-stream acoustic line for the cyan wave atM j < 0:82, it is

not duct-like and instead extends beyond the jet core. This wave is referred to as the guided-jet mode (or

k*
p mode), with the remainder of this section focusing on its characteristics and behaviour.

For supersonic Mach numbers, the characteristics of the guided-jet mode are the same as seen for the

subsonic case. It has negative group velocity (transports energy upstream), and a phase velocity very

close to that of an upstream-travelling free-stream acoustic wave. Upper and lower bounds of the guided-

jet mode's �nite propagative region inSt are referred to as the saddle and branch points respectively.

The saddle point was mentioned previously, whilst the branch-point frequency corresponds to where the

guided-jet mode aligns with the free-stream acoustic branch. A jet will contain multiple guided-jet modes

that may be classi�ed in the form.m; nr / [5]. Here,m is the azimuthal mode number, arising due to a

Fourier decomposition of the �ow in azimuth, andnr the radial mode number which refers to the number

of anti-nodes in the pressure structure. This is shown in �gure 2.5 for the.0; 1/, .0; 3/ and.0; 5/ guided-

jet modes. An additional feature of the guided-jet mode highlighted in �gure 2.5 is the spatial extent

that persists outside of the jet core (r
Rj

> 1 in �gure 2.5), it is not constrained by the jet boundary as the
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FIGURE 2.5: Pressure structure of the guided-jet mode (absolute value) in the radial (r) direction for
.0; 1/ (a), .0; 3/ (b), and.0; 5/ (c) classi�cations. Image from [5], reproduced with permission from

Cambridge University Press.

duct-like modes are. Due to its particular structure, the guided-jet mode could be involved in resonant

processes occurring outside the jet core, such as screech.

2.3 Screech

2.3.1 Components of jet noise

Interactions involving the KH and guided-jet mode structures (discussed in Ÿ2.2.2 and Ÿ2.2.3), can lead

to sound generation. For a non-ideally expanded supersonic jet, the noise produced can be categorised

into three components [19]; screech [26�28], broadband shock-associated noise (BBSAN) [58, 59], and

turbulent mixing noise (TMN) [3]. Of these components, only the TMN does not require the presence of

shocks. In �gure 2.6 an example sound pressure level (SPL) plot illustrates the contributions of each jet

noise component, with the dependence of each noise component on polar angle (' , measured from the

downstream axial direction) also shown. Turbulent mixing noise is found at lower frequencies, with lower

amplitudes than the other two noise components. The BBSAN component contributes sound across all

frequencies resulting in multiple smaller peaks that can be observed in the noise signal. These BBSAN

peaks are known to exhibit a dependence on' [58], with the peak frequency increasing with decreasing

' . Screech is identi�ed in �gure 2.6 by its characteristic high-amplitude and discrete-frequency peak,

with signi�cantly higher amplitude compared to the other noise contributions. The screech harmonic lies
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(a) (b)

FIGURE 2.6: Sound pressure level (dB/St) measured for the round single jet at NPR = 3.1 (a), and
directivity contour plot for an NPR = 3.1 round jet (b). Note, (b) uses an alternate convention of� rather
than' for the polar angle. Screech, BBSAN, and TMN are all indicated. Annotations are added to (b),

and reprinted with permission from [6]. Copyright 2020, Acoustic Society of America.

at a frequency twice that of the fundamental tone. Surrounding areas near a screeching jet may be driven

at the resonance frequency; this has the potential to then induce structural failure in the material. When

considering' = � (upstream direction) in the BBSAN peak-frequency prediction model of Tam et al.

[30], it reduces to a form resembling the frequency prediction model for screech (as will be discussed in

Ÿ2.3.4). Screech tones also radiate most strongly in this upstream direction (for the fundamental tone)

[28, 29], which has led to suggestions that screech may be a limiting case of BBSAN [30].

2.3.2 Resonance feedback loop

Powell [28, 29] described screech tones as arising through a resonant feedback loop within the �ow. An

illustration of the feedback loop is provided in �gure 2.7. Four components compose the feedback loop

[27]: �rst is a disturbance that propagates downstream. The role of this component is to transfer energy

downstream in the �ow; as the KH instability is the only wave that can extract energy from the mean

�ow, it is the downstream component. Second is an interaction involving the downstream-propagating

disturbance and the shock-cell structure at some downstream location. Here, some of the energy carried is

converted through the interaction into a disturbance that propagates upstream. This upstream-propagating

disturbance is the third component of the cycle and transfers energy back upstream towards a sensitive

region of the �ow. A forcing applied by the upstream-propagating disturbance at this sensitive region

forms the �nal component of the feedback loop. A new downstream-propagating disturbance is formed

through this forcing, completing the feedback loop. In both free and impinging jets the upstream location
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FIGURE 2.7: The resonance feedback loop within a free jet. All four components are labelled. Schlieren
courtesy of Jayson Beekman.

is considered as the nozzle lip; the upstream disturbance excites the new downstream disturbance by

perturbing the shear layer there. For an impinging jet the downstream location can be taken as the object

the jet is impinging upon. Whereas for a free jet, there are both studies that consider a discrete downstream

location in the shock-cell structure [7, 60], and those that consider an overall interaction with the shock-

cell structure (a distributed source) [41, 42]: where the shock-cell structure is instead treated as a wave.

Two criteria, as described by Powell [29], are imposed on the resonance feedback loop for it to be

sustained. The �rst
Ç

i

gi g 1; (2.5)

constrains the overall gain of the system to be, at minimum, 1. During the build-up of resonance, the

overall gain will be greater than 1; once the resonance loop is established and self-sustaining, this gain

will then be equal to 1. The second criterion imposes a timing restraint

n
f

= td + tu +  ; (2.6)

where td and tu are the times taken to complete the downstream and upstream components of the

resonance loop, andf is the resonance frequency. The value ofn is an integer representing the number

of concurrent disturbances (both upstream and downstream-travelling) in the �ow. A phase-o�set term,

 , is added which accounts for any additional time taken at either the upstream or downstream

conversion locations.
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FIGURE 2.8: Sound pressure levels (dB/St) measured for the round single-jet system running at several
M j . Screech tones are visible as the high-amplitude bands and the stages are labelled.

2.3.3 Staging

An important phenomena exhibited by screech tones is staging. Such behaviour is best described

visually and is illustrated in �gure 2.8. Here SPL in dB/St is given across both frequency andM j ;

screech tones can be identi�ed as the high-amplitude bands. These screech tones do not form a

continuous band across the spectrum. Instead, discontinuities can be observed between them allowing

for the bands to be distinctly identi�ed. It is these discontinuities in frequency, arising from a slight

change inM j , that is referred to as staging. This behaviour has long been observed across jets of

varying nozzle geometry including; round (axisymmetric), elliptical, and rectangular [61, 62]. For an

axisymmetric jet, the instabilities of the jet may be decomposed through a Fourier series in azimuth,

with azimuthal wavenumberm. The distinct screech bands visible in �gure 2.8 are then classi�ed based

on this corresponding azimuthal wavenumber. For the axisymmetric jet these are labelled A1 and A2,

corresponding to a toroidalm = 0 at low supersonicM j , and B, C, and D, corresponding to helical and

�apping m = 1 at greaterM j [63�65]. The corresponding modes and their labels are indicated in �gure

2.8. These screech tones are referred to collectively as fundamental tones. Their harmonics are

observed in the spectrum at integer multiples of the fundamental frequency (note that harmonics are not

a form of staging). The fundamental screech tones observed in �gure 2.8 are not consistent across all

conducted studies. Jet resonance has demonstrated a high degree of facility sensitivity [27], leading to

certain resonances appearing in some experimental facilities but not others. Examples of this include
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the appearance of additional tones labelled as u [65] and TM [34], and the disappearance of the C tone

[60]. Figure 2.8 can also be viewed as an example of this via the additional bands observed near the C

and D screech tones. Modelling of staging behaviour is complex and �rst requires knowledge of the

disturbances generating the feedback loop.

2.3.4 Upstream component

Historically, the upstream and downstream components of the resonance feedback loop were thought

to be a free-stream acoustic wave and the KH instability wave respectively [29]. Current opinion in

the literature has since shifted towards considering the guided-jet mode [5, 56], whose characteristics

were discussed in Ÿ2.2.3, as closing the resonance feedback loop in free jets, with it being previously

considered for impinging jets [66, 67]. It was the work of Shen and Tam [31] that �rst considered the

guided-jet mode to close resonance in a round free jet, but only for the A2 and C tones; the A1 and

B tones were still considered to be closed via a free-stream acoustic wave. Within the cited work the

weakest-link feedback model [30] was used to compute the screech frequency as

f s =
Ucks

2� .1 + M c/
; (2.7)

whereks is the shock-cell wavenumber,Uc the phase velocity of the downstream instability, andM c the

convective Mach number de�ned as the ratio ofUc to the ambient speed of soundc0. It has been noted

[8] that equation 2.7 is equivalent to the original formulation of Powell [28]. Through equation 2.7 the

authors found good agreement only for the A1 and B screech tones - leading to the assertion that the

A2 and C screech tones must be closed via an alternative to a free-stream acoustic wave, the guided-jet

mode.

Later, both Gojon et al. [32] and Edgington-Mitchell et al. [33] demonstrated that the A1 and A2 screech

tones can both be closed through the guided-jet mode. The �nite propagative region in frequency of this

wave was shown to form a close bound on the screech tone frequencies - screech tones did not appear

outside the frequency range in which the guided-jet mode is propagative. Building upon this work led

to predictions of the A1 and A2 screech tone frequencies [7, 34]. In these works, a resonance prediction

model [68] that assumes that conversion occurs at a discrete downstream location is used, based on the

success it had seen in describing jet-edge interactions [4]. This resonance model is summarised by the

equation

� k =
.2p + � /�

L s
; (2.8)
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FIGURE2.9: Screech-frequency predictions using equation 2.8 for both a free-stream sound wave (dotted
white) and a guided-jet mode (solid red), and using equation 2.7 with a guided-jet mode (solid black),
compared to the A1 and A2 screech tones. Also shown are the existence region bounds of the guided-
jet mode: branch points (B), and saddle points (S). Image from [7], reproduced with permission from

Springer Nature.

with � k the di�erence between the wavenumbers of the downstream and upstream components,p the

number of cycles included in the resonance loop, andL s the distance to thesth shock-cell location -

where the conversion from downstream to upstream disturbance is assumed to take place. The upstream

and downstream conversion locations are modelled as complex-valued re�ection coe�cients, with� the

phase di�erence between them as a fraction of� . The agreement obtained between equation 2.8 and

experimental acoustic data is highlighted in �gure 2.9. Within �gure 2.9, several key features can be

observed. The �rst is the existence region of the guided-jet mode bounding the A1 and A2 screech tones

[32, 33], and thus screech-frequency predictions are contained only within these bounds. This is a feature

that cannot be replicated by a free-stream acoustic wave as they are propagative for all frequencies, which

would lead to predictions of the screech frequency also in regions far outside of where the screech tones

are observed. Screech-frequency predictions using equation 2.8 align closely with the experimental data

and can account for staging between the two axisymmetric screech modes via adjusting the value ofp in

equation 2.8. Mancinelli et al. [7] also demonstrated that performing screech-frequency predictions with

equation 2.7 using the guided-jet mode provided poor agreement to the data, in contrast to their achieved

results. This suggested that considering an equivalent discreet downstream location for resonance may be

more representative of the physics than the distributed-source model of equation 2.7. More recent work

[69] has demonstrated the presence of the guided-jet mode experimentally in screeching jets. In the

cited work, it was shown that interactions between the downstream-propagating KH wavepacket and the

shock-cell structure creates new waves in the �ow - the guided-jet mode and a downstream-propagating
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duct-like mode. This can be represented in the wavenumber domain through the triadic interaction

kg = kKH , ks; (2.9)

with kKH the KH wavenumber,ks the wavenumber describing the shock-cell structure, andkg the

wavenumber of the newly generated wave. Such an interaction is in line with the distributed source

model proposed by Tam and Tanna [42]. Additional work by Nogueira et al. [35] also considered a

periodic shock-cell structure; however, here a numerical rather than experimental basis was used.

Including the periodicity of the shock-cell structure allows the �ow to also support an absolute

instability mechanism [70, 71] rather than just the traditionally considered convective instability

mechanism that generates the KH wavepacket. This leads to screech being underpinned by an absolute

instability mechanism [35] formed through the KH wavepacket and guided-jet mode. Combined, these

studies all highlight the importance of the guided-jet mode in screech, but so far lack an overall

explanation for the staging behaviour screech exhibits, especially when these discontinuous changes in

frequency are not accompanied by a change in the azimuthal wavenumber of the disturbance.

2.3.5 Suboptimal wavenumbers

Early attempts to model the staging behaviour of screeching jets can be found in the work of Gao and

Li [11]. In this work, the authors proposed the following model for computing the wavelength of the

screech tone

� s =
�L
n

1 + M c

M c
; (2.10)

where� s is the screech wavelength,�L is the source region length (L being the average shock-cell

spacing),n represents the number of disturbances present in the �ow (as in equation 2.6), andM c the

convective Mach number. Staging is accounted for through changing the parametern in equation 2.10.

This model was compared with multiple experimental datasets [65, 72] and provided favourable

agreement with experimentally observed screech tones; discrepancies were only observed for the B

tone. The primary drawback of equation 2.10 is the large reliance on empirically-derived quantities,

with all terms on the right-hand-side requiring experimental input and/or observations. Note also that

the results of [11] consider a free-stream sound wave, and not the guided-jet mode, in closing the

resonance feedback loop.

More recent advances in understanding the onset of staging can be found in [8, 41], where the key step

taken in these works was to consider the non-uniform spacing of the shock-cell structure. The

quasi-periodicity of the shock-cell structure is well established in the literature [58]; however, previous
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FIGURE 2.10: Normalised axial wavenumber spectra,ð‚� ð. Symbols areâ , ks;1; • , kKH * ks;1; ¸ , ks;2;
Ê , kKH * ks;2; +, free-stream acoustic wave. White lines in NPR indicate where screech staging occurs.

Image from [8], reproduced under Creative Commons CC BY.

works including [30, 31, 69] only attribute a solitary wavenumber to describe the shock-cell structure.

Following [8, 41], it is more accurate to replaceks in equation 2.9 withks;n wheren represents thenth

wavenumber used to describe the shock-cell structure. These additional wavenumbers arise through

taking an axial Fourier transform on the jet mean �ow, with the largest peak in the wavenumber domain

corresponding to the dominant wavenumber (ks;1) and the smaller peaks to suboptimal wavenumbers

(ks;2, ks;3, ...). Staging behaviour of screech tones is then explained as the KH wavepacket interacting

with di�erent suboptimal wavenumbers to energise the guided-jet mode, thus no longer requiring

empirical input as in [11]. This was demonstrated �rst for the transition between the A1 and A2 screech

tones [41], and then as a general result [8]. Interactions between the KH wavenumber and both

dominant and suboptimal shock-cell wavenumbers can be seen in �gure 2.10. The top half of �gure

2.10 contains all the downstream-propagating (positive wavenumber) structures within the �ow. The

high-amplitude band is the KH wavepacket, with both the dominant (ks;1) and �rst suboptimal (ks;2)

shock-cell wavenumbers highlighted. In the bottom half of �gure 2.10 are the upstream-propagating

(negative wavenumber) structures. The high-amplitude band here corresponds to the guided-jet mode,

with the wavenumbers of the free-stream sound wave also marked. Using equation 2.9 the value of

kKH * ks;n is compared to the guided-jet mode wavenumber. In �gure 2.10 as staging occurs the

shock-cell wavenumber (ks;1 or ks;2) required to achieve agreement between equation 2.9 and the

guided-jet mode wavenumber switches. This highlights how the staging behaviour of jet screech is

caused by the KH wavepacket interacting with additional shock-cell wavenumbers - which then

energises the guided-jet mode to close resonance at that condition.
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(a) (b)

FIGURE 2.11: Geometry of a round twin-jet system (a), and the exhaust of an F/A 18A Hornet (b): image
taken at San Diego Air & Space Museum.

2.4 Twin jets

2.4.1 A round twin-jet system

Adding a second jet to form a twin-jet con�guration increases the complexity of the �ow dynamics;

widespread use in military aircraft necessitates the study of such a con�guration. The set-up for a round

twin-jet system is illustrated in �gure 2.11, supplemented by the practical example of an F/A 18A Hornet.

Each jet has a diameter,D, and the two jets are separated by a centre-to-centre distance,S. The distance

S is non-dimensional and is normalised by the jet diameter. This �gure demonstrates two key features

when moving from a single jet to a twin jet. The �rst is that the overall system is no longer axisymmetric.

A common method of analysis for a round single jet is to apply an azimuthal Fourier decomposition on the

�ow to re-express it as a series of azimuthal modesm, which requires axisymmetry. This can no longer

be applied to the entire twin-jet system, however, modes in a twin-jet system may still be classi�ed in

terms of their single-jet equivalent [13]. Determining the single-jet equivalent azimuthal mode requires

considering the second key feature: the jet separation,S. Jet separation is the new parameter introduced

in a twin-jet system, and is its most important geometric parameter. Large values ofS can lead to the

two jets no longer in�uencing each other, behaving as two individual jets. There is no set value ofS in

the literature dictating when jets will no longer interact, interactions have been observed for up toS = 7

[36]. Numerical modelling generally enforces that the two jets are coupled [13, 14], and so cannot inform

when the jets would no longer interact.

Early work on the round twin jet can be found from Bhat [73] and Kantola [74]. Here, interest was

in the potential for one jet to acoustically shield the other. Later, Okamoto et al. [75] considered low-

speed round twin-jet systems ofS = 5 and8:06. These �ows were investigated for axial distances up

to x_D = 50. The authors demonstrated that, as the twin-jet �ow develops downstream, it transitions

�rst to an elliptical shape, and later aligns with that of a single round jet. Since these early works, most



Chapter 2. Background 19

(a) (b)

(c) (d)

FIGURE 2.12: Representation of each of the four symmetries possible for a twin-jet system.

recent research has shifted its focus in this speci�c �ow. It was due to structural damage su�ered by both

the F-15E [10] and B1-A [25] aircraft, which feature closely-spaced round exhausts, that led to this new

research focus in round twin jets: understanding coupling and resonance.

2.4.2 Coupling

A signi�cant contributing factor to the complexity observed in the twin-jet system is coupling of the

motion of the two jets. This motion may be symmetric or antisymmetric about each axis, shown in

�gure 2.11. A commonly used convention is that of Rodríguez et al. [76], who de�ned four coupling

symmetries; SS, SA, AS and AA. The �rst letter denotes symmetric (S) or antisymmetric (A) motion

about thex * y plane, and the second letter about thex * z plane. This convention is illustrated in �gure

2.12, with experimental examples provided in �gure 2.13. By construction, the AS and AA symmetries
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(a) (b)

FIGURE 2.13: Schlieren images of anS = 4 round twin jet for NPR = 2.89 SS coupling (a), and NPR =
3.86 SA coupling (b). Visualisations are in thex * y plane as de�ned by �gure 2.11.

(a) (b)

FIGURE 2.14: Comparison of single and twin-jet screech tone amplitudes (a) [9], and comparison of
amplitudes for the B screech tone (b) [10]. Note, fully expanded Mach number refers toM j . Images used
with permission from AIAA, from [9] and [10] respectively; permission conveyed through Copyright

Clearance Center, Inc.

cannot represent an axisymmetric structure as this requires symmetry about the jet axis (x * y plane).

As such, when considering the screech tones identi�ed in Ÿ2.3.3, and applying this classi�cation to a

twin-jet system, the A1 and A2 screech tones could only be linked to SS or SA symmetry coupling.

Early investigations of coupling in the round twin jet by Norum and Shearin [9] and Seiner et al. [10]

utilised microphone measurements to compare the screech tones between single and twin jets as a

function of M j for S = 1:9; this jet separation was chosen to match the F-15E and B-1B aircraft.

Similar agreement was observed for the screech tones, with the exception of the B stage. Figure 2.14(a)

displays this comparison, where di�erences between the single and twin-jet B screech tone are seen to

be as large as 20dB. In �gure 2.14(b) the comparison between the B tones is shown in terms of the

measured pressure amplitude. Here, the twin-jet pressure amplitude is observed to be more than double

that of the single jet. This result demonstrated the signi�cant e�ect coupling can enact on resonance, as
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it produces an amplitude greater than the sum of two single jets. These works exempli�ed the

importance of considering interactions (in the form of coupling) between the two jets. A twin-jet

system cannot be modelled simply via the superposition of two single-jet solutions; such an

approximation would be unable to capture coupling e�ects and the in�uence they have on �ow

variables, such as pressure.

Further investigation of coupling is via the work of Wlezien [77]. In this work, multiple jet separations

of 1:8 f S f 3:2 were considered for1:1 f M j f 1:6. This extended prior considerations [9, 10]

where only a singleS was studied. The B screech tone was found to be dominant (in terms of screech

amplitude) once it arises, except for the region described byS g 2:8 andM j > 1:5 where the C tone

becomes dominant instead. This B tone was also most a�ected by changingM j , with di�erences in

amplitude up to 15dB observed. Schlieren images taken of the �ow revealed intermittent behaviour in

the form of coupling. However, it is important to keep in mind that, as was noted by the author, there

were slight manufacturing di�erences between the two nozzles, which was shown to yield di�erences

in screech frequency. As such, without further analysis, it cannot be de�nitively stated whether the

intermittency observed was between two twin-jet coupling states, or a switch due to the di�erent screech

frequencies of each jet. This highlights one of the key di�culties for experimental campaigns involving

twin jets: ensuring that the two nozzles are identical.

Attempts at screech suppression in a twin-jet system were made by Shaw [36]. The author trialled several

techniques, including the addition of tabs, changing jet separation, and introducing an axial o�set between

the jets. A combination of acoustic measurements and schlieren imaging were employed to assess the

e�ectiveness of suppression. The addition of a single tab was seen to disrupt the coupling between the

two jets, leading to a decrease in the screech amplitude; adding additional tabs (a maximum of three

were considered) yielded further decreases. Adjusting the axial displacement of one jet relative to the

other had an opposite result to the intended e�ect. The two jets were still observed to be coupled and a

small increase (1-2dB) was noted in the screech amplitude. Increasing the jet separation decreases the

dominant screech tone amplitude in the region3 f S f 5, depending on the NPR. For further increases

in S the screech tone amplitude begins to increase. This work further highlights the important connection

between coupling and resonance, and provides early practical attempts at mitigating twin-jet screech.

Moustafa [78] investigated the mean �ow of a round twin-jet system in a manner similar to previous

works [75], but for more jet separations and a faster �ow. The author outlines three regions in the mean

�ow; converging, merging and combining. Bending of the two jets towards each other in the converging

region increases with jet separation, and the �ow is seen to resemble that of a single jet far downstream.

Later, Alkislar et al. [37] applied microjets to an ideally-expandedM j = 1:5 round twin-jet system for

S = 3. This method of �ow control was able to both suppress the screech tones and reduce the sound
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(a)

(b)

FIGURE 2.15: Screech frequencies of theS = 3 twin jet operating at multiple NPR. Overlaid are the
phase di�erences between the microphones (a), and screech-frequency predictions following the formula
of [11] (b). Note, due to notation di�erences the parameterm in (b) is n in equation 2.10. Images used
with permission from AIAA, from [12]; permission conveyed through Copyright Clearance Center, Inc.

pressure level. The idea of using microjets to suppress screech can be found in a previous work [36], in

which it was shown to be e�ective only for a single jet and did not present results for a twin-jet system.

Further details on the studies discussed thus far may also be found in the review article by Raman et al.

[79], which summarises the work conducted for the round (and rectangular) twin jet up to that point in

time.

More recent experimental studies are found in the work of Kuo et al. [38]. Here, the authors identi�ed

regions of weak and strong twin-jet coupling as a function ofM j . They explored the e�ect of excitation

on the screech tones, demonstrating its potential for noise reduction. However, the e�ectiveness depends

on the original state of the �ow and the excitation applied. A helical excitation applied to a �apping mode

(M j = 1:3) reduced noise by 6dB, whereas a �apping excitation applied to a helical mode (M j = 1:23)

instead saw an increase of 6dB. Knast et al. [12] characterised twin-jet coupling using two microphones

placed at either side of the jets and in line with the system (y-axis of �gure 2.11), and schlieren imaging.

By considering the phase di�erence between them, di�erent coupling regions were described forS = 3

and 6 twin-jet systems. These could be divided into symmetric, antisymmetric, and a region of varying
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phase, as highlighted in �gure 2.15(a). The regions were found to be dependent both onS andM j .

The screech-frequency formula of Gao and Li [11] (equation 2.10) was applied to the measured screech

frequencies, shown in �gure 2.15(b), but was unable to explain the staging behaviour of the screech tones.

In addition, changes in symmetry outside of staging were also observed - which too cannot be explained

through this model. This indicates alternative screech-frequency prediction models that are capable of

accounting for staging will need to be considered for the twin-jet system.

An additional factor to consider is intermittency of the coupling. This was observed in early studies

[36, 77] but not thoroughly investigated. This intermittency usually takes the form of a switch between

twin-jet coupling symmetries. Bell et al. [39] focused on the region of varying phase seen previously

[12, 80] for theS = 3 twin jet ( 3:5 ¿ NP R ¿ 4;4). It demonstrated that for the NPR values in this

region a high degree of intermittency is observed in the coupling. Additionally, for some conditions the

two jets were seen to exhibit distinct motions from each other and thus were not coupled. Later, Wong

et al. [40] studied intermittency over a lower range of2 ¿ NP R ¿ 2:4, for jet separations of 2, 3, 4 and

6. This region corresponds to the A1 and A2 screech tones. Wavelet analysis was used to examine the

changes in coupling across time. Depending onS and NPR, the jets were found to exhibit either: steady

coupling, unsteady coupling, or were uncoupled entirely. This work is included in Appendix A.

Due to the focus of this thesis on resonance in free jets, a discussion of other twin-jet areas of study such

as, impinging twin-jet �ows [81, 82] or recent considerations of acoustic shielding [83, 84] has been

omitted.

2.4.3 Previous modelling

Attempts to better understand the behaviour of twin jets has motivated modelling of the underlying

coherent structures. Such modelling can be traced back to the initial work of Sedel'Nikov [85]. In this

early work, only a formulation for a twin-jet vortex-sheet model was derived, no calculations using the

model were performed. Later, Tam and Seiner [86] also derived a vortex-sheet model for a round twin

jet. This work also did not present any calculations using the model. Both works identi�ed that the

formulations can support modes that are symmetric or antisymmetric about the perpendicular jet axis

(z-axis of �gure 2.11); these modes correspond to SS and SA symmetry respectively under the current

convention.

The work of Morris [13] considered the behaviour of the KH instability within a round twin-jet system.

Growth rates for each of the four symmetries were computed as a function ofS using a vortex-sheet

model form = 0;1;2. These results showed that the growth rate of the KH mode increases withm for

all symmetries; an exception is only found for the SSm = 1 mode which, forS < 1:4, has a greater



Chapter 2. Background 24

FIGURE 2.16: Growth rates of the KH mode using a realistic velocity pro�le. Here,h is equivalent toS
and all four symmetries SS (solid), SA (dot-dash), AS (dashed) and AA (dotted) are shown form = 0 and
1 equivalent modes. Image from [13], reproduced with permission from Cambridge University Press.

growth rate than the SSm = 2 mode. An additional insight provided by these results is that the growth

rates for the di�erent symmetries match forS > 3. This suggests that, when utilising a vortex-sheet

model, interactions between the two jets at these spacings are no longer strong enough to a�ect the KH

growth rate. Note that, as the jets are coupled by construction in this formulation, such a result cannot be

interpreted to imply an uncoupling of the jets. A more realistic velocity pro�le was also used in the cited

work, which models the shear layer of the jets, with the change in the KH mode growth rates considered

for varyingSt, shear-layer thickness, and jet separation. The SA symmetry growth rates were found to

be greater than those of the SS symmetry except at very lowS (S < 1:4) or low St (St < 0:2). In �gure

2.16, the SA symmetry growth rate is shown to dominate for bothm = 0 and 1 at larger jet separations,

but reduces below the other symmetries as the two jets are brought together. This work provided the �rst

characterisations of the KH instability in a round twin-jet system, setting a foundation for future works

to build upon.

The works of Du [87, 88] continued on from Morris, also utilising a vortex-sheet formulation. In addition
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to the KH instability, characteristics of the guided-jet mode were also considered. At the time, this wave

was newly discovered [5] and thus this work represented the �rst time it was considered for a twin-jet

system. A characterisation was conducted across symmetry and mode classi�cation.m; nr / for both the

wavenumber-frequency pairs that describe the guided-jet mode (eigenvalues), and their corresponding

pressure distributions (eigenfunctions). Du also considered the same �nite-thickness mean-�ow pro�le

as Morris [13]. This was used to explore the dependence of the KH mode growth rate on shear-layer

thickness for each symmetry, form = 0;1;2, with all other jet parameters constant. Through this, a

broad overview of both the KH and guided-jet mode behaviours was provided. Green and Crighton [89]

assumed disturbances of very large wavelengths (k << 1) in order to arrive at a simpli�ed equation

to describe the waves present in a round twin-jet system. They identi�ed the same possible twin-jet

symmetries as in previous works.

Interest in modelling round twin jets has been reignited through the recent work of Rodríguez et al. [76].

In that work, parabolised stability equations (PSE), initialised using linear stability analysis, were applied

for aM j = 0:4 twin jet. A key point of di�erence between this and preceding works is the investigation

of a subsonic, rather than a supersonic, twin-jet system. The analysis focused on the SS and SAm = 0

KH modes, solved for via the PSE formulation, considering their three-dimensional pressure and velocity

�elds. The authors demonstrated that, whilst the SS �elds show little dependence on jet separation, the

SA symmetry �elds exhibit stabilisation/destabilisation depending on the combination ofSt andS. This

work moved beyond previous considerations that focused on the KH growth rate and provided insight

into the structure of the KH wavepacket in a twin-jet system and how it is a�ected by parameters of

the system. The PSE formulation was later expanded and applied to the case of an ideally-expanded

M j = 1:5 twin jet [90]. More recent work by Rodríguez et al. [91] considered both the growth rates and

phase velocities of them = 1 KH mode for all four twin-jet symmetries, using linear stability analysis. At

largerS these were found to be equal and the system may exhibit a helical motion. By decreasingS, the

eigenvalues for each symmetry deviate from each other. This leads to the system no longer supporting

a helical motion, instead preferring a �apping motion. The dominant �apping symmetry acrossM j , S,

St, and temperature ratio was explored. This work is included in Appendix B.

It was within the work of Nogueira and Edgington-Mitchell [14] that an application of the guided-jet

mode to resonance in supersonic twin jets was made; this was shown at a solitary jet-operating

condition ofM j = 1:7 andS = 3. Linear stability results for both the KH wavepacket and guided-jet

mode, computed using an experimental mean �ow, were compared with their experimentally equivalent

coherent structures obtained via velocity data. The wavenumbers, frequencies and structure of the KH

wavepacket and guided-jet mode aligned well between model and experiment. These comparisons are

presented in �gure 2.17. This level of agreement strongly suggested that the guided-jet mode is the
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FIGURE 2.17: Comparison of axial (ðuð) and lateral (ðvð) velocity structures between linear stability
analysis and POD. Shown is the SSm = 1 mode for KH (a), (b) and guided-jet mode (c), (d). Image

from [14], reproduced with permission from Cambridge University Press.

upstream component, responsible for closing resonance for a twin-jet system. It also demonstrates the

strong level of agreement possible between such simpli�ed models and the actual twin jet. The work is

signi�cant as this was the �rst time the guided-jet mode was considered in the context of resonance for

a twin-jet system; however, it is also limited in scope as it considers only a solitaryM j andS.

2.4.4 Non-axisymmetric twin jets

Whilst this thesis focused on round twin jets, signi�cant work has also been produced in studying the

behaviour of non-axisymmetric twin jets - primarily a rectangular con�guration. Usage of rectangular

twin jets was motivated by thrust vectoring, among other bene�ts, that they provide [79] over round twin

jets. Early work by Lin and Sheu [92] demonstrated that two parallel rectangular jets will eventually

merge to resemble a single jet far downstream, as was seen for the round twin jet [75, 78]. Raman

and Taghavi [93] explored the coupling of a rectangular twin-jet con�guration, with a dependence on

both the jet separation and NPR found. The authors proposed that a switch between an antisymmetric

and symmetric form of coupling is caused by the e�ective screech source moving further downstream.
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Karnam et al. [94] characterised behaviours of an aspect ratio 2 rectangular twin-jet system at multiple

NPR. The authors found the turbulent kinetic energy to be stronger in the outer jet shear layers than the

inner shear layers, for both major and minor axis alignment. More recent works have considered the

possibility of multiple paths to close the resonant feedback loop [95, 96]. The addition of a second jet

presents the possibility for the upstream component of the feedback loop to travel instead to the other

jet and close resonance in this way. Coupling prediction models considering this alternate pathway have

yielded good agreement with experimental data for rectangular twin jets [97].

2.5 Summary

In this chapter, along with a discussion on supersonic jets, three inter-related topics were presented:

coherent structures in jets, screech, and twin-jet systems. Screech tones arise through a resonance

feedback loop formed by coherent structures. In a twin-jet system this resonance cycle is strengthened

further via coupling of the two jets, which may take one of four symmetries. The twin-jet system

introduces an additional parameter, the separation of the two jets, which a�ects resonance.

The current understanding of screech for a single jet is that the KH wavepacket and guided-jet mode

form the downstream and upstream components of the resonance cycle respectively. Screech-frequency

prediction models considering this have produced strong agreement with tones found at low supersonic

M j [7, 34]. Despite the success of models that include the guided-jet mode in axisymmetric jets, this

mode has only been linked to resonance for a solitary condition [14] at greaterM j in twin jets. It is not

known whether the guided-jet mode is involved in twin-jet resonance at other conditions, nor whether

recent screech-frequency prediction models applied to the single jet may provide similar success for

the twin-jet system. Whilst the model of Gao and Li [11] was unsuccessful at higherM j , considering

instead the model used in Mancinelli et al. [7] may prove useful for understanding screech at lowM j

twin-jet systems. Additionally, modelling of the KH wavepacket and guided-jet mode across the twin-

jet parameter space is still incomplete. Aside from the works of Morris [13] and Rodríguez et al. [91],

changes in behaviour of the coherent structures as the system approaches very low jet separations, and

the subsequent e�ects it would have on resonance, are unknown.

This thesis will utilise linear stability theory for the twin-jet system to compute characteristics of the

KH wavepacket and guided-jet mode. These characteristics will be applied to the study of the resonance

cycle for low supersonicM j . A comparison of the screech frequencies between model and experiment

will be made, and the evolution of coherent structures in closely-spaced jets detailed. The form of linear

modelling that will be used in this thesis is discussed in the next chapter.



Chapter 3

Methodology

3.1 Stability theory

Linear stability theory is the primary method utilised in this thesis to examine the characteristics of

coherent structures in jets. Without loss of generality, the discussion in this section will use cylindrical

coordinates (r; �; x ). Linear stability theory divides the �ow into a mean,„q, and �uctuating,ƒq, component

Q.r; �; x; t / = „q.r; �; x / + ƒq.r; �; x; t /: (3.1)

A visual representation of this separation is provided in �gure 3.1 for the axial velocity of a supersonic

twin-jet system, showing an instantaneous velocity-�eld snapshot (a), a mean velocity �eld (b), and

instantaneous �ow �uctuations (c). The method aims to evaluate some of the �ow features present in

the latter �eld (c), using as input a base �ow that is chosen as the temporal mean shown in (b). The

(a) Full �ow (b) Mean (c) Fluctuations

FIGURE 3.1: Instantaneous (a), mean �eld (b), and �uctuations (c), of the axial velocity for a round
twin-jet system at NPR = 2.303 andS = 2. Colourmap from [1] and PIV data courtesy of Dr Joel

Weightman.
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�uctuating component is assumed to take the form

ƒq.r; �; x; t / = q.r; � /ei .kx* !t / ; (3.2)

wherek is the streamwise wavenumber, and! the frequency. Equation 3.2 is known as the normal-

mode ansatz, representing a Fourier transform in the axial direction (x) and a Laplace transform in time

(t). This form of solution was suggested based on experimental observations of coherent structures

[43]. By considering this form of solution, the governing equations may be linearised and arranged into

an eigenvalue problem, which can be solved numerically using standard methods. In this formulation,

the termq represents the spatial support of the �ow �uctuations, obtained as an eigenfunction in the

problem. The corresponding eigenvalue,k (or ! ) represents the wavenumber (or frequency) of each

solution. The choice of eigenvalue depends on whether spatial or temporal stability is considered. In

temporal stability analysis (as presented in [98, 99])k is real-valued whilst! , the eigenvalue, is complex-

valued. For jets, as they are dominated by convective instabilities that are spatially evolving, temporal

analysis is generally reserved for the analysis of absolute or global instabilities. An absolute instability

is where an initial disturbance will grow in time and spread across the spatial domain [100]. A spatial

stability analysis (as found in [5, 52, 101, 102]) considers! to be real-valued whilstk, the eigenvalue,

may be complex-valued. The negative of the imaginary component ofk dictates whether the wave is

exponentially growing (* ki > 0), decaying (* ki < 0), or convectively neutral (ki = 0). Spatial stability

analysis is used in identifying the dominant convective instabilities of the �ow. A convective instability

will, at any spatial location, eventually decay with time [100]. Due to the interest of this thesis in the KH

and guided-jet mode structures within jets, a spatial stability analysis will be considered. Spatial stability

analyses of jets are generally performed due to interest in the KH instability, which has been observed

[2, 43, 44] to be of convective nature for cold jets.

While the sign of the imaginary component of the wavenumber indicates growth or decay in a particular

direction, it is ambiguous whether a given solution represents a wave that is decaying while travelling

in one direction, or growing while travelling in the other. Identifying the direction of propagation of

di�erent waves predicted by linear stability analysis from calculated spatial eigenvalues uses the criteria

outlined by Briggs [103] and Bers [104], which is summarised here. A large complex value
 is added

to the real-valued frequency such that,! ™ ! + i
 . The wavenumber is then solved for at this value and

the path it follows in the complexk-plane is tracked as
 ™ 0. Downstream-propagating waves will start

in the top-half (ki > 0) plane for large
 , and upstream-propagating waves will start in the bottom-half

(ki < 0) plane. A crossing of the lineki = 0 by the spatial eigenvalue as
 ™ 0 indicates an unstable

wave, no crossing by the eigenvalue indicates an evanescent wave, and if the eigenvalue reaches the axis

it is neutrally stable.
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In the present thesis, equation 3.1 is substituted �rst into the inviscid Euler equations, with any products

of �uctuations assumed to be very small and thus neglected. Then equation 3.2 is substituted, which

yields an equation for the pressure �uctuation

) 2P.r; � /
)r 2

+
0

1
r

+
2k

! * kU
dU
dr

*
1
„�
d „�
dr

1
)P .r; � /

)r
+

1
r2

) 2P.r; � /
)� 2

+
0

.! * kU /2

„c2
* k2

1
P.r; � / = 0;

(3.3)

with U the mean axial velocity,„c the mean speed of sound, and„� the mean density. The use of an

inviscid formulation is justi�ed due to the high (Re > 105) Reynolds numbers of the jets considered. For

an axisymmetric �ow, a further simpli�cation may be applied by decomposing the eigenfunctions into a

series ofmazimuthal Fourier modes

P.r; � / = P.r/eim� : (3.4)

This simpli�cation is only applicable when the jet is axisymmetric, and thus periodic in the azimuthal

direction. Using equation 3.4 reduces equation 3.3 from a PDE to an ODE of the form

d2P.r/
dr2

+
0

1
r

+
2k

! * kU
dU
dr

*
1
„�
d „�
dr

1
dP.r/

dr
+

0
.! * kU /2

„c2
* k2 *

m2

r2

1
P.r/ = 0: (3.5)

The next consideration in solving equation 3.5 is the form of mean �ow,U, to use. This choice will

depend on the linear model considered.

3.2 Vortex-sheet and �nite-thickness models

This thesis uses two types of linear models, considering the stability of an in�nitely thin vortex sheet, or

a shear layer of �nite thickness. In the vortex-sheet formulation (as presented in [5, 52, 56, 101]) bothU

and „� are considered constant inside the jet, and the ambient velocity is taken to be zero. This creates a

top-hatshape for the velocity pro�le in this model. The simpli�cation is applied to equation 3.5 for each

region of �ow (inside and outside of the jet), with continuity of pressure and displacement enforced at

the jet boundary [52]. From this a dispersion relation

f .k; ! / = 0; (3.6)

is obtained. For a given set of jet operating parameters the.k; ! / pairs that satisfy equation 3.6 describe

the waves supported by the model. Equation 3.6 is analytic and so may be readily solved, facilitating the

exploration of large parameter spaces.
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In contrast, a �nite-thickness formulation considersU = f .r/ in an axisymmetric jet. The velocity

pro�le is now another input into the model and so the choice will a�ect the calculated eigenvalues and

eigenfunctions. Pro�les used may be obtained directly from experimental data, or assumed to have a

functional form that closely resembles the experiment. Commonly used pro�les include the hyperbolic-

tangent pro�le (used in [102, 105])

U = Uj

4
0:5 + 0:5 tanh

0
1
2�

0 Rj

r
+

r
Rj

115
; (3.7)

and half-Gaussian (used in [13, 102, 106])

U =

h
n
l
n
j

Uj r f Rj

Uj e
� r* Rj

�

� 2

r g Rj ;
(3.8)

where� characterises the shear-layer thickness. In equations 3.7 and 3.8 the parametersUj , Rj , and� all

vary with x. They may be determined through curve-�tting to experimental mean �ows, or by selecting

values for the parameters and subsequently comparing to experimental pro�les. By adjusting these three

parameters, the �nite-thickness model can consider �ow characteristics at di�erent axial locations. Note

that in the limit as� ™ 0, results from the �nite-thickness model will approach those of the vortex-sheet

model. If a velocity pro�le such as those in equations 3.7 and 3.8 is used as the mean �ow in equation

3.5, an analytic solution is no longer obtainable. Instead, an eigenvalue problem

Lq = kFq (3.9)

must be solved. Here, operatorsL andF will be functions of the mean �ow, its derivatives, and the jet

operating conditions. Additional considerations now required for equation 3.9 include discretisation

scheme (points and placement) [107, 108], method of solving [109], boundary conditions, and

convergence.

These two formulations may be adapted for a round twin-jet system. An initial di�erence is that the

overall round twin-jet system is not axisymmetric, thus equation 3.3 must be solved instead of equation

3.5. For the vortex-sheet model, the outer �ow region will contain pressure contributions from both

jets. These contributions are divided into four components, each representing one of the four twin-jet

symmetries, SS, SA, AS and AA. The two letters denoting symmetry or antisymmetry about thex* y and

x * z planes respectively, as discussed in Ÿ2.4.2. The pressure eigenfunctions in this outer �ow region are

expressed in terms of Bessel functions, with the contributions then combined through the Bessel addition
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formula [110, 111]

Km.gr2/ cos.m�2/ =
ØÉ

n=*Ø

.*1/ nKm* n.gS/I n.gr1/ cos.n� 1/

=
ØÉ

n=0

.*1/ n� n
�
Km* n.gS/ + Km+n.gS/

�
I n.gr1/ cos.n� 1/;

(3.10)

whereK is the modi�ed Bessel function of the second kind, (r1; � 1) and (r2; � 2) are the coordinate systems

centred on each jet,m is an equivalent azimuthal mode number,S the jet separation centre-to-centre,g

is a function of the �ow parameters, and� n = 0:5 for n = 0, and� n = 1 otherwise. Using this formula,

the resultant dispersion relation for the round twin jet assumes the form of the determinant of anm• n

matrix. However, as seen in equation 3.10, the dimension of the matrix will be in�nite and so must be

truncated instead to a �nite valueN . This truncation leads to two di�erences between the dispersion

relations for a single jet and twin jet. First, is that convergence of the solution must now be considered

with N . The second di�erence is that truncating to a value ofN will solve for the �rst N equivalent

azimuthal modes. For the single jet,m is an input and hence the model solves only at a single value.

For the �nite-thickness model a twin-jet mean �ow must now be constructed. The approach taken in this

thesis follows previous studies [76, 90], where atailoredmean �ow is introduced. Following this, a twin-

jet mean �ow is considered to be equal to the superposition of two single-jet mean �ows. It is important

to emphasise that this is not the same as superimposing two single-jet solutions, which experimental

studies have shown to be a poor approximation [9, 10]. Only the mean �ow involves this superposition,

with the �uctuations found by solving the resultant equation describing the twin-jet system. Additional

terms must also be added to equation 3.3 withU and „� now able to vary with� , as the system is no longer

axisymmetric. These are,
1
r2

0
2k

! * kU
)U
)�

*
1
„�
) „�
)�

1
)P
)�

: (3.11)

The �nite-thickness formulation computes over only half the twin-jet domain, divided about the mid-

plane between the two jets, and uses a Floquet exponent [14, 112, 113],ei�� to extend this solution to the

other half of the domain. This is related to the twin-jet symmetries through� = 0 corresponding to SS

and AA, and� = 1 corresponding to SA and AS [14].

The exact forms of the dispersion relations, for the vortex-sheet models, and operators, for the �nite-

thickness models, are detailed as they are introduced in the subsequent chapters.



Chapter 3. Methodology 33

3.3 Validity

The use of any model carries with it a set of underlying assumptions that must be considered during

application. As these models are linear, the immediate limitation is that they are unable to capture any

non-linear e�ects that may occur. Justi�cation for the use of linear mean �ow models in general, can be

found in Beneddine et al. [114]. Within this work the authors demonstrated that for mean �ows subject

to a strong convective instability, a low-rank representation of the �ow can be made which will agree

well with results from local spatial stability theory. The �ows considered in this thesis all contain the

dominant KH instability, and hence meet this required condition. Justi�cation may also be found in the

success of linear stability theory, as applied previously for jets including [4, 14, 32�34, 56], among others.

Both vortex-sheet and �nite-thickness models consider the mean �ow to be independent ofx. Although

the terms in equations 3.7 and 3.8 may be found as a function ofx, values for a speci�c axial location

are used, leaving no dependence onx for U. This is known as thelocally-parallel approximation. In

contrast, there exist global models which do consider the mean �ow variables to be also dependent on

the streamwise coordinate [69, 115�117]. However, for this work, it is su�cient to make use of

locally-parallel models. As the twin-jet system is no longer axisymmetric the computational cost is

signi�cantly greater than a single jet, and would be increased further for a global model. Additionally,

the locally-parallel model is able to isolate the upstream and downstream components of resonance,

which cannot be achieved through a global analysis. The models herein are used to compute

eigenvalues (wavenumbers) and eigenfunctions (pressure �uctuations), for use in screech-frequency

prediction models and to characterise the behaviour of �ow structures. The e�ect of axial position can

be considered in a discrete manner, where the velocity pro�le is adjusted for di�erentx and calculations

then performed for eachx to track dependence. Furthermore, recent applications of locally-parallel

models to twin-jet systems [14] has shown them to agree strongly with wavenumbers and structures

obtained experimentally (as discussed in Ÿ2.4.3) providing further justi�cation for the choice. Although

the vortex-sheet model cannot consider di�erent axial locations, it is utilised in unison with the

�nite-thickness model as a low-cost tool for exploring the large twin-jet parameter space.

The tailored twin-jet mean �ow was considered previously for both subsonic [76] and supersonic [90]

�ows, with the individual single-jet mean �ows informed via past studies [53, 118]. These tailored mean

�ows agreed well with past experimental twin-jet studies [75, 78], however they may not be representative

further downstream as the two jets merge together. In this thesis the region of focus is at low supersonic

M j , corresponding to the A1 and A2 screech stages. Comparisons between experimental velocity data,

and a tailored mean �ow using equation 3.7 are shown in �gure 3.2 for this region. It is only at distances

of x_D = 5 that discrepancies between the experimental and modelled mean �ows are seen. Outside of
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(a) x_D = 2 (b) x_D = 3 (c) x_D = 5

FIGURE 3.2: Comparison between the tailored mean �ow using equation 3.7, and experimental (PIV),
velocity pro�les for anS = 2, M j = 1:16twin jet at,x_D = 2 (a),x_D = 3 (b), andx_D = 5 (c). Values

used for the mean �ow are,Rj = 0.5, and� = 0.2 (a), 0.3 (b), and 0.5 (c). Note,U_c0 = M U
Uj

, with M

the acoustic Mach number. Figures from [15], reproduced under Creative Commons CC BY.

these discrepancies the tailored mean �ow captures the experimental pro�le well, including in the inter-

jet region. To assess whether the tailored mean �ow captures an adequate region of the twin-jet �ow, the

spatial extent of the shock structures that underpin screech can be considered. The shock-cell spacing is

known to depend onM j . Following Mancinelli et al. [7], the distance to thesth shock cell can be found

by combining the expression for the �rst shock-cell distance from Pack [119] with the distance between

subsequent shock cells from Harper-Bourne and Fisher [58]. Merging these approaches leads to

L s =
�

2:4048
..1 * � / s + � /

t
M 2

j * 1 ; (3.12)

where� = 0:06 [58]. From equation 3.12 atM j = 1:16, the �rst �ve shock cells are all located up to

x_D = 5. Thus for calculations in the region0 f x_D f 5, which is the case for this thesis, use of the

tailored mean �ow can be justi�ed.



Chapter 4

Act I: The resonance feedback loop

4.1 Introductory Statement

Linear models have demonstrated considerable success when applied to single-jet screech in round jets.

Recent works have demonstrated that the upstream component of the feedback loop is thek*
p mode

[32, 33] and that prediction models incorporating it can accurately capture the A1 and A2 screech tones

[7, 34]. These prediction models consider a simple feedback loop with an upstream re�ection point at

the nozzle lip, and a downstream re�ection point within the shock-cell structure. In this work, it will

be considered whether such a prediction model can achieve the same success when applied to a twin-jet

system. Prior work on the round twin-jet has only linked thek*
p mode to resonance at a single jet-

operating condition [14]; this work will provide generality to that result, and an extension to another

screech stage.

If a similar description of screech can be applied to both single and twin round jets then it would have

implications on the path the feedback loop takes. Following the resonance framework with two re�ection

points, the presence of a second jet means the system could allow for an alternative feedback loop pathway

- the upstream components of each jet could cross-propagate to the other jet. This alternative pathway

has been considered for rectangular twin-jet systems [97]. Empirical prediction models constructed have

achieved strong agreement with data from [93, 97, 120], being able to correctly predict coupling at 11

of 12 nozzle pressure ratios tested. The prediction model considered within this work assumes that there

is no crossing of the modes from one jet to the other, and that any changes in the upstream-propagating

wave are already included in the formulation by the use of a higher-�delity model. If the model is shown

to accurately describe screech for the round twin-jet system, it would imply that the system does not

support feedback loops involving crossing between the jets. An important note to keep in mind is that

35
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the nozzle pressure ratios considered in the previous works [93, 97, 120] are larger than those considered

in this work. Hence, di�erentiating between whether the round and rectangular twin-jet systems have

di�erent feedback loop pathways, or if the pathway changes between low and high nozzle pressure ratio,

cannot be achieved through this work alone.

Validation of the linear model used is undertaken �rst through a comparison to previous works [13, 87].

Some characteristics of both the KH andk*
p mode are shown before focusing on the screech-frequency

predictions. These predictions are compared with experimentally-obtained acoustic data. Four jet

separations of 2, 3, 4, and 6 diameters are considered, with comparisons made also for the single-jet

case.

This chapter is presented as a journal paper published in The Journal of Fluid Mechanics as [15]. This

article is reprinted under Creative Commons CC BY license from Cambridge University Press: Journal

of Fluid Mechanics, "The axisymmetric screech tones of round twin jets examined via linear stability

theory", Stavropoulos, Michael N, et al.©2023. Aspects of this work were included in conference papers

for the 2021 AIAA/CEAS Aeroacoustics conference [121] and 2022 AIAA Aviation Forum [122].
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