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Abstract

The protection of privacy during data exchange is a critical concern in the digital age, en-

compassing a wide range of applications from personal confidential information exchange

to sensitive business collaborative operations. This thesis explores privacy-preserving

technologies for secure file and data sharing, synthesising studies across various real-life

scenarios.

This thesis first investigates into a privacy-preserving file sharing web service designed

for personal and business use. We present OblivSend, which effectively protects sensi-

tive metadata while ensuring end-to-end encryption and user-controlled expiration by

utilising lightweight cryptographic primitives. A prototype implemented on Hyperledger

Fabric demonstrates OblivSend’s efficiency and user-friendliness.

Further, we consider an advanced privacy-preserving file sharing scheme OblivShare that

employs Oblivious RAM (ORAM) to enhance user control over file expiration, concealing

expiration metadata from the server and maintaining full obliviousness regarding file

access patterns and expiration states. This scheme ensures metadata privacy with poly-

logarithmic complexity relative to the number of files, bridging a significant gap in the

existing literature on secure file sharing.

In addition, we explore the application of privacy-preserving techniques in collaborative

autonomous unmanned aerial vehicles (UAVs) operations with SecuPath, a framework

integrating Secure Multi-Party Computation (SMPC) with generic path planning al-

gorithms. SecuPath enables multiple entities to collaboratively compute optimal UAV

paths without revealing sensitive and private data, elevating privacy and security stan-

dards in UAV operations while imposing minimal communication and computation over-

head.

Collectively, the studies contribute to the growing body of research on privacy-preserving

data sharing and collaboration technologies, offering robust solutions for secure data ex-

change in collaborative operations. The integration of advanced cryptographic protocols

and privacy-preserving techniques ensures the confidentiality of sensitive data, fostering

trust and collaboration in diverse domains.
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Chapter 1

Introduction

1.1 Motivation

The digital landscape, where data exchange is ubiquitous, witnesses an astounding vol-

ume of activity: every single minute, 188,000,000 emails are sent, 511,200 tweets are

posted, 55,140 Instagram photos are shared over the internet [2]. This rapid exchange is

propelled further by advancements in technologies such as cloud computing, Internet of

Things (IoT), and autonomous systems. As these technologies proliferate, so does the

need for reliable privacy-preserving mechanisms. Safeguarding sensitive data has thus

become crucial to mitigate risks and uphold privacy and security standards.

However, just in the recent decade, we have witnessed some biggest ever high-profile

data breaches including [3], [4], [5], [6], and [7] that impacted billions of accounts, ex-

posing personal information including but not limited to user identities, biometric data,

financial information, social media details. Far-too-frequent data leakages and increas-

ing privacy awareness bring up a growing group of privacy concerned users who demand

safe and private services. Users, encompassing both individuals and organisations, are

increasingly wary of potential privacy breaches, data misuse, unauthorised access to

their confidential information, and the prolonged retention of data on servers that can

become a significant vulnerability over time.

The consequences of privacy breaches and data leakage can be severe. For individu-

als, such breaches can lead to identity theft, financial loss, and personal safety risks.

For organisations, the repercussions include reputational damage, legal penalties, and

1
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significant financial loss [8]. For instance, data breaches in healthcare can result in

the unauthorised access to sensitive medical records, potentially jeopardizing patient

confidentiality and trust. In the corporate sector, leaked intellectual property can lead

to competitive disadvantages and substantial economic losses. According to IBM, the

global average cost of a data breach in 2023 was USD 4.45 million [9].

Despite the critical need for enhanced privacy and security, existing research in these

domains has several limitations. While end-to-end encryption (E2EE) ensures data con-

fidentiality during transmission, many privacy-preserving data sharing solutions either

fail to adequately protect metadata [10–12], which in general is data about data that

for instance includes the time of a data communication session, the identities of the

communicating parties, the frequency of data accessed, etc.. This not only can re-

veal significant information about the data being shared , or overlook the issue of data

residing on servers longer than necessary, leaving sensitive information vulnerable to

interception and misuse.

This thesis is motivated by the urgent need to develop innovative solutions that address

the concerns. The research targets two pivotal domain areas: privacy-preserving file

sharing with expiration control that enforces a file to expire at user’s control including

by when, for whom, after how many visits, etc.; and secure Unmanned Aerial Vehicle

UAV path planning in collaborative setting. These areas are particularly pertinent due

to the extremely sensitive nature of the data involved and the severe consequences of

potential privacy breaches. By exploring advanced cryptographic primitives and devel-

oping innovative cryptographic frameworks, this thesis aims to enhance data privacy

and security within these contexts, thereby contributing substantively to the broader

field of secure digital communication and data exchange.

1.2 Research Question

The primary research question guiding this thesis is:

How can we design a practical privacy-preserving mechanism

to enhance privacy and security while enabling data exchange?
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In particular, developing and applying advanced cryptographic techniques to enable

privacy-preserving data exchange efficiently, which includes file transfer and sharing,

general data sharing and database connection.

To address this question, the following key sub-questions are considered:

• Ensuring secure data exchange is fundamental to protecting sensitive information

and maintaining user trust in digital communication systems. A robust model

needs to be developed that can cater to various application scenarios while ensuring

data privacy and security. How to design a proper model to enable secure

data exchange in a privacy-preserving manner for various applications,

including file sharing and UAV path planning?

• Strong security and privacy are paramount in data exchange systems and appli-

cations, particularly when sensitive data is involved. While E2EE is commonly

adopted to primarily secure data in transit, parameters used to secure data at rest

or during computation lead to metadata privacy issues [13, 14]. It is essential to

employ cryptographic methods that not only secure data but also ensure meta-

data privacy. What cryptographic protocols can be employed to achieve

strong security and enhance privacy while preserving system function-

ality in data exchange scenarios?

• It is essential to ensure system efficiency to maintain usability, not sacrificing

performance hence user experience. Existing solutions adopt cryptographic prim-

itives such as Fully Homomorphic Encryption (FHE) that can be time-consuming

[15]. To validate the applicability, effectiveness, and reliability of proposed crypto-

graphic solutions, they must be deployed in practical scenarios and integrated with

existing services to evaluate their performance and security under real-world con-

ditions. What are the performance implications of integrating advanced

cryptographic protocols and how can the proposed privacy-preserving

frameworks be optimised for scalability and real-world deployment?

By addressing these research questions, this thesis aims to develop and validate advanced

cryptographic primitives that enhance the privacy and security of data exchange. The
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focus on designing robust models, achieving strong security and privacy, and ensur-

ing practical applicability and integration is intended to safer and more reliable data

exchange systems in various application domains.

1.3 Methodology

To address the research questions, this thesis employs a comprehensive approach com-

bining theoretical analysis, cryptographic protocol design, and practical evaluation to

address the research questions. The methodologies are structured as follows:

• Literature Review and Analysis: Conduct an extensive review of existing

cryptographic techniques, privacy-preserving models, and secure data exchange

frameworks. Analyze their strengths, limitations, and applicability to the research

questions.

• Cryptographic Protocol Design: Develop novel cryptographic protocols that

enhance privacy and security in data exchange, ensuring they can be applied to

various scenarios such as file sharing and UAV path planning. Focus on achieving

strong security and privacy while maintaining system efficiency.

• Implementation and Prototyping: Building proof-of-concept prototypes to

demonstrate the feasibility and effectiveness of the proposed solutions.

• Experimental Evaluation: Conduct extensive testing and evaluations to assess

the performance, security and efficiency of the implemented prototypes. Use both

theoretical analysis and empirical experiments to validate the effectiveness of the

proposed approaches.

• Comparative Analysis: Comparing the proposed solutions with existing ap-

proaches to highlight their advantages and potential improvements. Apply the

developed protocols to practical scenarios to demonstrate the real-world applica-

bility and benefits of the proposed solutions.
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1.4 Contributions

This thesis aims to make contributions to the fields of cryptographic systems and privacy-

preserving data exchange. The expected contributions are multifaceted, encompassing

system design, the application of cryptographic primitives, and the development of prac-

tical systems and protocols. These contributions are tightly aligned with the primary

research questions and sub-questions.

First, it presents a practical web system (OblivSend [16]) to support privacy-preserving

file sharing with expiration control atop of E2EE. Further, the thesis introduces a frame-

work that address the potential inference attack issue based on the proposed system and

improves its privacy performance, demonstrating its usability in general file and data

sharing scenarios. Finally, to extend the application of cryptographic framework in

the privacy-preserving data exchange context for other real-world scenarios, the thesis

also proposes a cryptographic scheme to support secure path planning in collaborative

setting.

Remark. This thesis focuses on the confidentiality and privacy of data; however, does

not guarantee the availability of data, which means data is available to the users at any

time of the day, whenever and wherever required.

The following sections outline the system design, cryptographic primitives and applica-

tion construct.

1.4.1 OblivSend: Secure and Ephemeral Privacy-Preserving File Shar-

ing Service

Chapter 3 introduces OblivSend, a secure and ephemeral file sharing framework that

provides users with advanced and oblivious expiration control to pre-set download con-

straints, such as limiting the number of downloads and the duration for which files

are accessible. OblivSend supports comprehensive file expiration control and ensures

expiration-metadata privacy, which can be integrated into other existing file-sharing

web services. It addresses the challenge of how to achieve expiration control over pro-

tected expiration metadata by utilising cryptographic secret sharing schemes and Gar-

bled Bloom Filters (GBFs). Additionally, it transfers the responsibility for checking
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expiration conditions from the server to the clients, ensuring that users maintain control

over their data. A proof-of-concept prototype of OblivSend was developed, including a

smart contract program on Hyperledger Fabric, demonstrating negligible extra compu-

tation and communication overhead compared to traditional E2EE systems. This work

directly addresses enhancing privacy and security in file sharing, specifically focusing

on metadata protection and user control over data expiration. It also demonstrates

real-world applicability and validates the theoretical contributions, addressing the over-

arching research question.

1.4.2 OblivShare: Privacy-Preserving File Sharing with Oblivious Ex-

piration Control

Chapter 4 proposes OblivShare, a privacy-preserving file-sharing scheme based on Obliv-

ious RAM (ORAM) to ensure the server is oblivious to file access patterns and expi-

ration states, providing robust privacy guarantees without compromising performance.

OblivShare hides user-defined download constraints from servers throughout the entire

course of file upload, sharing, and download. By using synchronised tree-based ORAMs

to store both file content and metadata, it ensures that servers cannot infer any informa-

tion about file operations. Additionally, secure computation is employed for oblivious

expiration control, guaranteeing that a single server cannot manipulate the expiration

control result. A proof-of-concept prototype of OblivShare was developed and validated

for complexity, performance, and security guarantees, demonstrating negligible extra

computation and communication overhead on top of a primitive ORAM file sharing sys-

tem. This work addresses metadata privacy and secure data management practices in

file sharing.

1.4.3 SecuPath: Secure and Privacy-Preserving Multi-Party Path Plan-

ning Framework

Chapter 5 further studies other real-world application of privacy-preserving data ex-

change and introduces SecuPath, a novel approach to address privacy challenges in

collaborative UAV path planning using secure multi-party secure computation (SMPC).

This framework allows multiple entities to collaboratively plan UAV paths while preserv-

ing the privacy of sensitive input data, such as the drone’s current location and planned
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path, from exposure to each other or unauthorised parties. SecuPath incorporates cryp-

tographic techniques to ensure the integrity and authenticity of the transmitted data,

effectively protecting against prevalent risks in wireless communication environments. It

balances efficiency and security by providing a detailed analysis of the communication

and computation complexities introduced by the SMPC and cryptographic operations,

demonstrating the protocol’s practical feasibility. This work addresses securing UAV

operations and collaborative computation, focusing on data privacy.

Overall, by addressing the limitations of current methodologies and applying advanced

cryptographic techniques, this research advances the state-of-the-art in privacy-preserving

systems. These contributions offer both theoretical insights and practical solutions that

can be implemented in real-world scenarios.

1.5 Thesis Structure

This thesis is organised as follows. Chapter 2 reviews existing literature related to global

background of this thesis and relevant cryptographic techniques. Related work specific

to each contribution is given in their corresponding chapters. Chapter 3 introduces

a privacy-preserving file sharing system OblivSend enhancing an existing web service

that supports end-to-end encryption and user-controlled file expiration, meanwhile effi-

ciently protects metadata. Chapter 4 presents an advance privacy-preserving file sharing

scheme OblivShare based on Oblivious RAM (ORAM) and Secure Multi-Party Compu-

tation (SMPC) that ensures the server is oblivious to file access patterns and expiration

states, which further improves the privacy performance of OblivSend. Chapter 5 extends

the application to UAV path planning, and presents SecuPath, a secure framework for

UAV path planning that leverages SMPC to enable collaborative computation of opti-

mal paths without revealing private inputs. Chapter 7 further discusses some possible

future directions in privacy-preserving systems, proposes potential future research di-

rections, including scalability, advanced cryptographic techniques, and integration with

emerging technologies. Finally, Chapter 6 summarises the key findings, contributions,

and implications of the research, and outlines future work.



Chapter 2

Related Work

This chapter reviews the state-of-the-art literature in the field of privacy-preserving data

exchange, including data sharing and collaborative computation. Our focus encompasses

both theoretical advancements and practical implementations that address the increas-

ing demand for robust privacy and security measures in various applications. This

review is organised into three primary sections: privacy-preserving data sharing, secure

multi-party computation (SMPC), and applications of privacy-preserving techniques in

emerging technologies. Note that this chapter only discusses general background related

to this thesis, and literature specific to each contribution is presented in chapter 3, 4,

and 5 accordingly.

2.1 Privacy-Preserving Technologies

Privacy-preserving data sharing has become a critical area of research and various ap-

proaches have been proposed to ensure data confidentiality, integrity, and availability

while sharing sensitive information.

2.1.1 End-to-End Encryption (E2EE)

One of the fundamental techniques in privacy-preserving data sharing is E2EE. E2EE

ensures that data is encrypted on the sender’s side and decrypted only by the intended

recipient, preventing intermediaries from accessing the plaintext data. Pioneering works

8
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such as Pretty Good Privacy (PGP) [17] and later, the Signal protocol [18, 19], have set

the standard for secure communication.

2.1.2 Oblivious RAM (ORAM)

ORAM is a cryptographic primitive designed to hide access patterns to data stored

in remote servers. It ensures that the server cannot learn which data items are being

accessed, thus preserving the privacy of the data even in a scenario where the server is

untrusted [20]. The Path ORAM scheme and its variants [21, 22] are notable examples

that balance efficiency and security .

2.1.3 Secure Multi-Party Computation (SMPC)

SMPC enables multiple parties to jointly compute a function over their inputs while

keeping those inputs private. This area has seen significant theoretical and practical

advancements.

Foundational Protocols: The foundational work by Yao on garbled circuits and Gol-

dreich, Micali, and Wigderson on general SMPC protocols laid the groundwork for secure

computation [23]. These protocols allow for secure function evaluation where the parties

learn only the output and nothing about each other’s inputs.

Efficiency Improvements: Early SMPC protocols, while theoretically sound, were

impractical due to high computational and communication costs. Subsequent research

has focused on improving the efficiency of these protocols. Techniques such as homo-

morphic encryption (HE) [24], secret sharing, and optimised garbled circuits (GC) [25]

have significantly reduced the overhead associated with SMPC.

Applications in Collaborative Environments: SMPC has found applications in

various collaborative environments where data privacy is crucial. For instance, Federated

Learning (FL) employs SMPC to train machine learning models across multiple data

sources without compromising the privacy of individual datasets [26]. This technique

is particularly relevant in scenarios like medical research and financial analysis, where

data sensitivity is a critical concern.



10

2.1.4 Metadata Hiding Tools

While E2EE protects the content of the messages, metadata privacy remains a significant

challenge. Metadata includes information about who is communicating with whom,

when, and how often. Techniques such as Onion Routing, implemented in the Tor

network, provide a degree of anonymity by routing communications through multiple

nodes to obscure the source and destination of the data [12]. Recent advancements have

focused on enhancing metadata privacy using cryptographic methods such as private

information retrieval (PIR) [27] and differential privacy [28].

2.2 Applications in Emerging Technologies

The principles of privacy-preserving data exchange have been applied to various emerging

technologies, enhancing security and privacy features across divers domains.

File Sharing: In the domain of file sharing, privacy-preserving techniques are increas-

ingly important due to the sensitive nature of the personal or business data being ex-

changed. For instance, the adoption of Attribute-Based Encryption (ABE) in file sharing

allows fine-grained access control and ensures that only authorised users can decrypt the

shared files [29]. Another significant development is the implementation of blockchain-

based file sharing systems that leverage decentralized storage and cryptographic tech-

niques to ensure data integrity and privacy [30]. These technologies ensure that shared

files remain confidential, even from the service providers, thereby addressing significant

gaps in traditional file sharing services.

Internet of Things (IoT): IoT devices often collect and transmit sensitive data, neces-

sitating robust privacy measures. Recent research has focused on integrating lightweight

cryptographic protocols and secure data aggregation techniques to protect IoT data from

unauthorized access and manipulation [31].

Blockchain and Distributed Ledgers: Blockchain technology inherently offers trans-

parency and immutability; however, privacy remains a challenge. Techniques such as

zero-knowledge proofs (ZKPs) and confidential transactions have been developed to en-

able private transactions on public blockchains such as Bitcoin and Ethereum. Projects
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like Zcash and Monero are notable implementations that emphasise transaction privacy

while maintaining the benefits of a distributed ledger [32, 33].

Autonomous Systems: The deployment of autonomous systems, such as UAVs and

other autonomous vehicles, raises significant privacy and security concerns. Privacy-

preserving path planning and secure communication protocols are critical to safeguard

sensitive operational data from interception and manipulation, ensuring secure and re-

liable operations in dynamic environments [34].

Overall, the above applications of privacy-preserving techniques into these diverse do-

mains demonstrates the versatility in addressing modern security and privacy challenges

of various emerging technologies, which proves the necessity and importance of their

integration into real-world applications.

Table 2.1 summarises existing top strategies in privacy-preserving data exchange, high-

lighting their advantages and limitations.

The field of privacy-preserving data exchange has made considerable strides in ad-

dressing the challenges associated with data privacy and security. From foundational

cryptographic protocols to advanced applications in emerging technologies, the research

landscape is rich with innovative solutions that enhance both security guarantees and

performance. As the demand for secure and private data exchange continues to grow,

ongoing research will undoubtedly yield further advancements, solidifying the role of

privacy-preserving techniques in safeguarding sensitive information.
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Technology Applications Advantages Limitations

E2EE [18, 19, 35] Messaging Apps,
File Sharing,
Email

Privacy guarantees Does not protect
metadata, key
management
challenges

FHE [24] Secure Data
Processing,
Cloud
Computation

Computation on
encrypted data;
privacy guarantees

Computational
overhead, resource
intensive, limited in
collaborative settings

ABE [29, 36, 37] Data Sharing,
Cloud Storage

Granular access
control

Computational
overhead, key and
policy management
challenges

SMPC [25] Data Analysis,
Autonomous
Systems,
Machine
Learning

Privacy guarantees,
security against
malicious servers,
secure collaboration

Computational and
communication
overhead, scalability
challenges

Differential
Privacy [28, 38]

Data Analysis,
Machine
Learning

Privacy guarantees Noise addition affects
accuracy

ZKPs [32, 39] Blockchain,
Authentication,
Data Sharing

Privacy guarantees,
verifies information
without revealing it

Computational
overhead,
implementation
complexity

ORAM-Based
Solutions [21, 22]

Cloud Storage,
Database
Queries

Access pattern
privacy, metadata
protection

Computational and
communication
overhead, scalability
challenges

PIR [27, 40, 41] Database
Queries

Privacy in database
access

Computational and
communication
overhead, limited in
collaborative settings

Blockchain-
Based
Solutions [30, 42]

IoT, Data
Sharing

Immutability,
decentralized trust

Resource-intensive,
scalability challenges

Table 2.1: Summary of Existing Privacy-Preserving Technologies and Their Applica-
tions.



Chapter 3

Secure and Ephemeral

Privacy-Preserving File Sharing

Service

Users have personal or business need to share most private and confidential documents;

however, often at the expense of privacy and security. A sought after feature in the

trending ephemeral context is to set download constraints of a particular file - a file

can only be downloaded a limited number of times and/or for a limited period of time.

Emerging end-to-end encrypted file sharing services with enhanced expiration control

are attempts to meet the needs. Although such new services have drawn much attention,

their server can still observe and control metadata of such download constraints, which

could reveal partial data information. To address this challenge, in this chapter, we

propose OblivSend, a privacy-preserving file sharing web service that 1) supports end-

to-end encryption, 2) allows a limited period of time and a limited number of downloads

at users’ control, and 3) protects expiration control metadata from the server efficiently

by lightweight cryptographic primitives. We develop a proof of concept prototype im-

plemented in Hyperledger Fabric on a Research Cloud and evaluations demonstrate that

our prototype can function as intended to achieve privacy of metadata without sacrificing

user experience.

13
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3.1 Introduction

Individuals’ security and privacy are fundamental rights, not only in the real world but

also the digital universe. Far-too-frequent high-profile data leakages and mass surveil-

lance projects [3, 5] remind people of the vulnerability and sensitivity of personal data,

hence the increasing privacy awareness brings up a growing group of privacy concerned

users, who demand safe and private services including file sharing services. Existing reg-

ulations and acts to protect personal data, such as such as the General Data Protection

Regulation (GDPR) [43] and the California Consumer Privacy Act (CCPA) [44], also

impose on service providers to grant individuals control over their private information.

There are a quantity of file sharing services in the market, such as Gmail, DropBox, even

instant messaging tools like WhatsApp, but these services often have constraints: emails

and instant messengers have harsh attachment size limit that a 30-second 1080p footage

can easily exceed; and most file hosting services do not support client-side encryption

or self-destruct, which means your long-lived files can be decrypted any time simply by

a rogue employee or if cooperated with government surveillance.

Among existing services, Firefox Send [1], officially launched by Mozilla in March 2019,

allows to share files up to 2.5GB at a time with end-to-end encryption (E2EE) from any

modern browsers. Send empowers a user to encrypt a file and its metadata including file

name, size and type before uploading (see figure 3.1); then send the file link (via a secure

channel of the user’s choice to dedicated receiver(s) who can then request the service

for downloading. In addition, it offers extra security control to users over the files they

share: setting files to expire after a certain period of time or number of downloads. Send

incorporates two most desired features, E2EE and ephemeral, which meets personal

needs of more secure connections and intimate sharing.

However, limitations of Send are also apparent: 1) Users have to fully trust the service

to honestly check if a file has expired. 2) Users send expiration control metadata, i.e.

download number and time limits that are used to check if a file has expired on a

download request, to Send in plaintext, which can be used to indicate the popularity

and sensitivity of specific file(s).

Metadata privacy has drawn increasingly attention after the Edward Snowden leaks.

“If you have enough metadata, you don’t really need content”, “we kill people based
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Figure 3.1: Firefox Send. Choose when a file expires and the number of downloads.[1]

on metadata” [45, 46]. Since sharing a file is similar to calling and messaging someone,

metadata access in file sharing is also concerning.

3.1.1 Motivation

To illustrate the motivation of hiding the expiration control metadata (expiration meta-

data for short in the rest of the chapter), we present some privacy issues resulted from

potential leakage of expiration metadata, even with E2EE file sharing systems.

User story 1: sensitivity derived from expiration metadata. Alice is an oncolo-

gist, and due to COVID-19, she shares files with patients and other contacts in an E2EE

system. Alice shares electronic medical records with her patients and sets each to expire

after 1 download or 1 day, and general files without expiration conditions. With the

knowledge of the expiration metadata, a curious server knows that Alice shares some

files of strict access, hence deduces they are sensitive. Bob is a patient of Alice and

downloads his report from the system. With Alice’s identity and the sensitivity of the
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file, the server thus infers Bob is suspected to have cancer, which has implications on

his insurance and other indemnities.

User story 2: frequency derived from expiration metadata. A medical institu-

tion distributes confidential reports to different teams of professionals using an E2EE

system and sets the download number limit as the number of team members. For in-

stance, a cancer service team has 6 doctors and all files shared to the team are set to

expire after 6 downloads. With side information about the institution’s teams, likely

available via a web search from its homepage, a server can infer the disease in each file.

Bob visits Alice in the institution, even without Alice’s identity, a server can reasonably

deduce Bob’s disease from the file Alice downloads without decryption.

User-input expiration metadata by itself may not be damaging; however, when combined

with other metadata, scaling to a great population, and observed in aggregate, it can

be meaningful and reveal sensitive information [46, 47].

3.1.2 Our Contributions

We propose OblivSend, a secure and ephemeral file-sharing system that for the first time

provides users with advanced and oblivious expiration control. OblivSend puts forward

a new framework of a file-sharing service that not only supports comprehensive file

expiration control, but is also expiration-metadata-private, which is a generic solution

that can be integrated into other file sharing services. To understand our contribution,

we now outline the main challenges OblivSend aims to address.

Challenge 1: how to achieve expiration control over protected expiration

metadata? We define expiration metadata as a download number limit and a download

time limit to ensure expiration control of a file sharing service. Users are not able

to download a file upon exceeding the pre-set number of downloads or elapse time.

Unfortunately, though more secure file sharing services promise expiration control as

a premium feature [1, 11, 14], inadequate discussion has since occurred to understand

the privacy of expiration metadata and how they impact the way people experience file

sharing over the network. To the best of our knowledge, whereas many scholars focus on

protection of general security control metadata in file sharing such as user identity and
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access pattern [48], there is no prior research aiming to prevent leakage of expiration

metadata, hence a gap exists to address such expiration-metadata-privacy.

Challenge 2: how to grant expiration control power to a user rather than a

service provider? Users pursue E2EE file sharing services because they do NOT trust

a service provider to keep their encryption keys. Therefore, it is an obvious defect that

users adopt an E2EE service, but completely trust the service to check the expiration

conditions and control if a file can be downloaded and decrypted. We assume a server

that provides file storage services and fulfils upload and download requests; but wants to

learn the expiration metadata, furthermore, actively manipulate its internal download

state that is compared to expiration conditions.

OblivSend supports E2EE meanwhile protects the expiration metadata through the

entire course with oblivious expiration control. Overall, our contributions are:

1 Hiding expiration metadata. We hide expiration metadata of file sharing ser-

vices, both download number and time limits, through the entire life cycle by

adopting cryptographic secret sharing scheme and garbled Bloom filter.

2 Oblivious expiration control. We enforce oblivious expiration control by trans-

ferring the responsibility for checking expiration conditions from a server to clients.

3 Precautionary detection. We audit and precautionarily detect forged download

state at a serve side leveraging the immutability of smart contract.

4 Implementation. We implement a OblivSend prototype and develop a smart

contract program cover a Hyperledger Fabric network. We also evaluate the per-

formance, which approves that OblivSend has negligible extra computation and

communication overhead on top of a traditional E2EE file sharing system.

3.2 Related Work

3.2.1 Existing Secure File Sharing Services

Table 3.1 compares several existing secure file sharing applications or web services. We

organise the comparison by the following properties: 1) Does the service support E2EE?
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Product E2EE Time Lim. No. Lim. Oblivious

OblivSend ✓ ✓ ✓ ✓

Firefox Send [1] ✓ ✓ ✓ ✗

DropSecure [11] ✓ ✓ Future ✗

SendSafely [14] ✓ ✓ ✗ ✗

WhatsApp [49] ✓ Future ✗ ✗

Digify [50] ✗ ✓ ✗ ✗

Dropbox [51] ✗ ✗ ✗ ✗

Table 3.1: Secure File Sharing Services.

2) Does the service support user-controlled file expiration? 3) Is the server oblivious of

the expiration control?

While E2EE has become increasingly preferred when users choose a web service, addi-

tional impermanence or ephemeral feature, such as Telegram Secret Chat [52] and Gmail

confidential mode [53], inspired and pioneered by SnapChat is another highly pursued

trend that dominates the internet [1, 11, 14, 49]. With certain expiration control, people

can be confident that what they share is only accessible to dedicated users for a limited

period of time or number of times, and they are able to wipe out all their “secrets”

with a Thanos snap so that nothing will stay in a server for longer than necessary and

become a vulnerability later. Emerging file sharing services that grant users expiration

control are the file-sharing versions of Snapchat.

In addition to Send, DropSecure and SendSafely claim to offer zero-knowledge E2EE.

DropSecure (premium) automatically destroys files from the servers after seven days and

plans to support download number limit in the future. As an instant messaging service,

WhatsApp also supports E2EE attachments, and has been developing its “Expiring

Messages” feature. Services such as Dropbox and Digify provide an addition layer of

security on top of server-side encryption, which enables a user to double encrypt files or

folders by setting a password.

Some email services also support E2EE but the size of attachments is limited to 25MB

per email [54, 55], and other approaches to share file securely online have low usability

for none technical users [35, 56, 57].
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3.2.2 Privacy-Preserving Web Services

In recent literature, researchers and practitioners have made great efforts to propose

and promote privacy-preserving systems. [58–60] allow privacy-preserving data aggre-

gation that enables monitoring, collection and analysis of statistics on the population

without explicitly learning each user’s individual contribution. [58, 61, 62] offers privacy-

preserving safe browsing experience, while the former two protect sensitive user infor-

mation entered into a browser and cached from auto-filled forms from sophisticated

attackers and malware without trusting any part of the web applications, and the latter

detects and blocks unsafe websites without leaking either users’ browsing history or the

lists of unsafe URLs maintained by third-party blacklist providers. [63] enables privacy-

preserving smart contracts that address blockchain’s lack of confidentiality by separating

consensus from execution. Similar attempts have been made to develop metadata-private

systems, but with a limited focus on secure messaging, either group messaging [64, 65],

or private messaging [66–69], and private presence and notification [70].

OblivSend is aiming to strike a good balance of the above desired features and usability;

further, address the security challenges mentioned in § 3.1.

3.3 Preliminaries

OblivSend makes black box use of secret sharing, garbled Bloom filter (GBF), smart

contract, collision-resistant pseudorandom functions and hash functions.

Notation. We define parameters, entities, denotations in OblivSend in Table 3.2.

Secret Sharing [71] is a fundamental cryptographic primitive that splits a secret s

into n shares such that the secret s can be recovered efficiently with any subset of t or

more shares. With any subset of less than t shares, the secret is unrecoverable and the

shares give no information about the secret. A scenario when t = n is applied in this

scheme, and a secret related to a file encryption key can be restored via simple ⊕(XOR)

operations.

The scheme generates n− 1 random bit strings r1, r2, ..., rn−1 of the same length as the

secret s, and computing rn = r1⊕r2⊕, ...,⊕rn−1⊕s. Each ri is a share of the secret s. It

is apparent that s can be recovered by (XOR)ing all the shares r1⊕ r2⊕, ...,⊕rn−1⊕ rn
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Notation Description

λ, σ, l security parameters

N (T ) a finite set of integers from 1 to download limit n (or elapsed
time unit limit t) that denotes all download numbers (or time
units) allowed by OblivSend

LN (LT ) a finite set of integers from 1 to lN (or lT ) where lN (lT ) is
the download number (or time) limit

SU a user secret shared securely between a data owner and
clients

EN (ET ) a key element bound to download number (or time)

FK a secret key used for file encryption that is composed of EN

and ET

KN (KT ) a finite set of protection keys enerated from a pseudorandom
function on SU to cipher a number (or time) key element

CEN
(CET

) a finite set of cipher number (or time) elements encrypted
using each element in KN (or KT )

ABN (ABT ) a finite set of encrypted payload messages used for GBFN

(or GBFT )

MN (MT ) a map of all elements in N (or T ) paired with their hash
values

k number of hash functions in a garbled Bloom filter

m length of a garbled Bloom filter

H a set of k independent hash functions {h0, ..., hk−1} each
hi(j) on input j outputs an index number over [0,m − 1]
uniformly

GBFN (GBFT ) a garbled Bloom filter encoding a set N (or T )

PRF a pseudorandom function {0, 1}2σ $←− {0, 1}σ × {0, 1}∗ that
on input a σ-bit key and some string, outputs a 2σ-bit pseu-
dorandom string

Table 3.2: OblivSend Notation

and any subset of less than n shares reveals no information about the secret and the

secret is unrecoverable.

Garbled Bloom Filter (GBF) is a data structure introduced in [72] that encodes

a set of at most n λ-bit strings in an array of length m, which supports membership

query with no false negative and negligible false positive. Instead of generating an array

of bits of 0 and 1 in a standard Bloom filter [73], a GBF adds secrets of x ∈ S using

the XOR-based secret sharing scheme depicted above. While querying the GBF for

membership checking, only if y ∈ S, the XOR operations will recover y from the GBF .

To add an element x ∈ S to a garbled Bloom filter, the element x is first split into
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k λ-bit strings using the the XOR-based secret sharing scheme depicted in the previous

paragraph, then is mapped by k hash functions into k index numbers and each location

hi(x) is allocated with one secret share to form an array of λ-bit strings. To query an

element y, the element y is mapped by the same k hash functions into k index numbers

and all bit strings at the corresponding array locations hi(y) are collected and XORed

together. To query an element y, the element y is mapped by the same k hash functions

into k index numbers and all bit strings at the corresponding array locations hi(y) are

collected and XORed together. If y ∈ S, the XOR operation will recover y as a result of

XORing its k shares retrieved from the garbled Bloom filter by their indices. If y ̸∈ S,

then the probability of the XOR result is the same as y is negligible in λ.

Remark : During the course, a specific location j ← hi(x) may have been occupied by a

share of a previously added secret, and in this case the existing share stored at GBF [j]

is reused (line 18 in Algorithm 2), otherwise, the previously added secret will not be

recoverable in the query phase. For instance, in Figure 3.2, when we add s2, GBF [7]

has already been occupied by s31 and reused as a share of s2, since s32 = s12 ⊕ s31 ⊕ s2,

s2 = s12 ⊕ s31 ⊕ s32 still stands.

x1, s1

s1
1 s2

1 s1
2* * s2

3 ** s1
3* * *

x2, s2

Index    0    1    2    3    4    5    6    7    8    9    10    11

Figure 3.2: Adding Secrets into a GBF. x1 is hashed into 3 numbers 0, 4, 7, and 3
shares of s1 are allocated to index 0, 4, 7; x2 is mapped to 2, 7, 9, where an existing

share s31 is reused at index 7.

According to [72], the false positive probability of a garbled Bloom filter, which is the

probability that for y ̸∈ S, the recovered string from XORing all GBFS [hi(y)] is the

same as y coincidentally, is at most 2−λ.
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In our proposed framework, x is either a download number or time unit, and the secret

whose shares are added is either a cipher key element or a payload message. When y,

which is the current download count or elapse time unit, is within the corresponding

download limit, the cipher key element can be recovered.

Smart Contract is a “computerised transaction protocol” first coined by Nick Szabo

in 1997 [74] that digitally enforces secure relationships and credible transactions over

public networks via a blockchain. It intends to minimises trust and eliminates needs

for third parties, and common application of a smart contract ranges from financial to

logistics, healthcare to energy resources. [75–77].

Since blockchain is a massive decentralised ledger by nature, once a transaction is val-

idated and written to the blockchain, it can neither be deleted nor modified without

a majority of collusion, which makes the blockchain immutable. Our proposed scheme

builds smart contract into the framework because it is automatic and direct, fast and

cheap, and tamper-proof.

3.4 System Overview

In OblivSend, when a data owner uploads a file, the data owner is able to set the file to

expire after a number of downloads or period of time. When a client makes a download

request to OblivSend, OblivSend sends the encrypted file to the client, and the client

can only decrypt the file if it has not expired. To understand how OblivSend performs

these operations securely, we present an overview of OblivSend’s design, threats and

security goals.

3.4.1 Intuition

We now present several attempts, beginning with naive approaches that are obviously

insecure and proceeding to a practical version of our proposed scheme.

Attempt #1: Client-end encryption of expiration metadata. A natural ap-

proach is to simply encrypt the expiration metadata and send the resulting ciphertext

to a server. Assuming we use proper encryption schemes so that the server is able to

verify a client’s download request by comparing its current internal download state with
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the ciphertext of download limits. Based on the comparison results, the server deter-

mines to send the encrypted file to the client or not. This design should offer metadata

privacy even when they are held by a malicious server.

It is obvious that although it prevents tampering with the stored metadata, it does not

prevent a malicious server from manipulating the comparison result. Such an attacker

can allow downloads after a file has expired by using an old internal state, and vice

versa. Further, the server is able to deduce the expiration metadata based on its internal

download state on the boundary if a new download request fails the comparison.

Attempt #2: Server is oblivious of the comparison. Instead of comparing the its

internal download state with encrypted download limits, a server computes an output

using its internal download state, and sends the output and the encrypted file to the

client. Only if the internal download state fulfils the pre-set expiration conditions, the

output can unveil the file encryption key.

This approach deprives the server of the ultimate power to grant or deny a download

request. The server is oblivious of the comparison outcome, moreover not able to learn

about the expiration metadata. However, it still requires a single trust party, the server,

to honestly compute the output using the correct internal download state. It is appar-

ently not desirable because a single authority is easy to attack and collude. Besides, this

protocol does not prevent the server from replaying an old computation result to the

client. In practice, such an attacker can always permit a download request regardless of

the pre-set expiration conditions.

Attempt #3: Use smart contract to audit state. In order to address the single

trust issue, we require decentralised trust that reduces the trust level of a single server.

We use a public ledger on a blockchain to keep a world download state, and a client

interacts with a smart contract to post and get the world download state. The server still

computes an output but the output is encrypted using its internal download state. The

client requests the world download state from the smart contract, and only if the world

download state in the ledger is consistent with the internal state used by the server, the

output can be recovered. It is impossible for an adversary to tamper the world download

state in the ledger without a majority of collusion because of the immutable nature of a

blockchain. This is a practical and more accepting setting, and exposes no extra trace

on the blockchain by publishing hashed digests rather than real data.
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Remark. Like the previous attempt, the protocol described above does not prevent a

server from replaying old computation results. However, it precautionarily detects such

replaying attack, and indeed prevents a client from downloading an expired file even if

the server keeps replaying old computation results, and hopefully ensures that the server

gains nothing from such attacks.

Our design intuition. The above attempts provide an intuition for our ideas, and

OblivSend uses the following techniques to realise our intuition. OblivSend hides expi-

ration metadata leveraging secret sharing and GBF. It first maps the download count

and time unit up to system default download limit (i.e. the maximum download count

or time unit allowed by OblivSend) into a GBF’s locations, and puts secret shares of a

cipher key element in locations mapped from counts or time units under the download

limit but a payload message in those over the limit. OblivSend builds two GBFs for

number and time limits respectively. On a download request, an OblivSend’s server

computes both GBFs using its internal download state and sends the result to a client.

If its internal download state does not exceed either limit, shares from corresponding

locations of each GBF result recover the corresponding cipher key element.

Further, OblivSend takes advantage of the immutability of a blockchain to audit the

server integrity. The client requests for the world download state on a blockchain via a

smart contract, and validates the server’s internal state. Only if the states are consistent

can a client decrypt the cipher key element, and with both key elements, the client

can rebuild the file decryption key and decrypt the file. The server is oblivious of

all the subsequent validation and decryption operations after handing over the GBF

computation results, hence is no longer a central authority to grand or deny a download

request and never knows if the expiration conditions have reached or not. Note this is a

loose description, the detailed construction is elaborated in § 3.5.

3.4.2 Framework

Figure 3.3 shows that OblivSend consists of four parties and three phases:

• Data Owner is a sender of file(s), who generates file encryption keys, encrypts

the file(s), sets download limits, and encodes the file encryption key and expiration

metadata into GBFs before uploading them to a server.
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3: File URL

2: TSupload, Encrypted File, GBFs
4: Hash file URL, Maps, TSupload

5: Share URL (file URL + user secret)

8: Hash file URL, TSdownload

9: Hash State

6: TSdownload, File URL

7: Encrypted File, GBF Results

Counter

File Server

* * ** * * *...

GBFN, GBFT

Encrypted File

Client

Data Owner

http://OblivSend.com/r/?fileid#usersecret

Legend: Upload Sharing Download Request Response

10: Validation and Decryption

1: Setup and Ecryption

Blockchain

Counter

MN, MT

Smart Contract

Blockchain

Figure 3.3: High-level Framework. Shaded areas are introduced by OblivSend.

• Server is where the encrypted files and GBFs are stored, who computes the GBFs

using its internal download state and returns the GBF results and encrypted files

on download requests.

• Smart Contract on a blockchain is a program that truthfully receives, updates,

and returns the world download state.

• Client is an expected recipient of the file(s) who retrieves the encrypted file(s)

and GBF results from the server, and the world download state from the smart

contract. The client validates the GBF results before it can decrypt the file(s).

Upload consists of 4 steps corresponding to steps on Figure 3.3: 1) Data Owner gen-

erates a file encryption key FK composed of a number EN and a time key element ET ,

and encrypts a file; then populates hashes for each allowed download count and time

unit and puts them into two maps; it generates a user secret SU and ciphers the two key

elements using the user secret and hashes, then put the cipher key elements CEN
and

CET
into two GBFs GBFN and GBFT based on the download limits lN and lT accord-

ingly. 2) Data Owner uploads the GBFs, the encrypted file and an upload timestamp to

Server. 3) Server returns a file URL. 4) Data Owner sends a hash value of the file URL

as a unique identifier, two maps of hashes, and an upload timestamp to Smart Contract.

During Sharing, Data Owner appends a user secret SU to the file URL and sends the

share URL to trusted Client(s) via some out-of-band communication independent of

OblivSend (as discussed in § 3.4.3).

Download includes the following operations shown on Figure 3.3: 6) Client renders the

share URL, and requests Server for the encrypted file by the file URL and an download
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timestamp. 7) Server returns the encrypted file and the GBF computation results using

its internal download state. 8) Client queries Smart Contract for hashes of the world

download state by the hash file URL and the download timestamp. 9) Smart Contract

returns the hashes by looking up the world download count number and elapse time unit

in the maps on the blockchain. 10) Client imports the user secret SU from the share

URL and validates Server’s download state by decrypting the GBF results with the user

secret SU and hashes. If Server’s internal state is consistent with the world state on the

blockchain, Client can decipher the GBF results. If neither the current download count

nor the elapse time unit has exceeded the pre-set download limits, the deciphered GBF

results are the two key elements EN and ET , and Client can rebuild the file encryption

key FK to decrypt the file.

OblivSend changes Send ’s framework to a minimal extend while improving its security

performance. A notable variation is the usage of GBF to hide expiration metadata and

ensure server obliviousness. Another extension is the introduction of Smart Contract on

the left hand side of Figure 3.3, which provides a mechanism to audit the server integrity

to detect any forged download state. We make such minimal extension on purpose so

as OblivSend’s oblivious expiration control is generic and can be applied to other file

sharing services.

3.4.3 Threat Models and Security Goals

Threat models. We assume that an attacker can compromise any set of users and an

OblivSend server, while at least one client is honest. In particular, OblivSend considers

the following threats:

a) The server would sniff the expiration metadata, hence deduces valuable informa-

tion of encrypted data.

b) The server would forge its internal download state. A replay attack is typical that

allows a client to download after a file has expired.

c) An attacker controlling a client would try to compromise the privacy of data that

is not shared with him/her.
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Assumptions. Out-of-band communication. A data owner in OblivSend shares a URL

with client(s) through third party end-to-end secured channels of their own control, such

as Telegram [52], Signal [13]. The share URL can be sent via secure messages similar

to communicating user identities or notifications in [48, 78]. OblivSend only uses such

out-of-band communication once at the sharing stage, which is the same as Send and a

common practice of other secure file sharing systems [1, 51], keeping all other activities

within OblivSend.

Blockchain. OblivSend makes black-box use of a blockchain and a standard assumption

that a blockchain is immutable. If any set of peer nodes are compromised or an attacker

seeks membership of a blockchain, who attempt to mutate the world download state on a

blockchain, it becomes visible to all participants who, by a simple majority of votes [79],

can prevent such unlawful actions from happening. We also inherent general blockchain

security assumptions, which is not narrated in this chapter.

Anonymous Network. In order to hide other metadata during file sharing, OblivSend

assumes the data owner and clients communicate with the server in an anonymous

manner that does not reveal their network information via existing tools such as Tor

[12] or secure messaging [64, 66, 69] based on decentralised trust.

Security goals. OblivSend sets the following goals to address the above threats:

a) Expiration metadata privacy. OblivSend ensures expiration metadata is totally

at a data owner’s control, and not visible in transit or at rest on either the server or

the blockchain.

b) Server integrity auditing. OblivSend uses the public audit-ability of a blockchain

underpinned by its immutability feature to detect forged download state on a server

before actual decryption takes place.

c) File confidentiality. A client is not able to recover the encryption key and decrypt

the file by guessing the current download state.

d) General metadata protection. OblivSend does not reveal to the blockchain the

following in plaintext: user IP, file URL, download limits, download state, upload

and download timestamps.
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OblivSend achieves the goals above based on common cryptographic assumptions and

we provide extended discussion in § 3.5.1.

OblivSend does not address denial-of-service (DOS) attacks.

3.5 Detailed Construction

In this section, we describe key components of OblivSend and present their algorithms.

We also provide security analysis of OblivSend.

Upload.Generate. Run by the data owner at the beginning of the upload phase to generate

a user secret SU , a file encryption key FK that composed of two key elements (EN , ET ),

and two maps (MN ,MT ) of all members in the system allowed download number set N

and time unit set T with their hashes. The data owner also generates a protection key

from a pseudorandom function on SU and a hash value of n ∈ N or t ∈ T (line 6, 12

in Algorithm 1) and ciphers the key elements using the protection keys (line 7, 13 in

Algorithm 1). The data owner encrypts a file using FK, sends SU to clients during the

sharing phase, and sends MN and MT to a smart contract. The cipher elements (CEN
,

CET
) and payload messages (ABN , ABT ) are to be added into GBFs in Upload.Encode.

Algorithm 1: Upload.Generate

Input: σ, N , T
Output: FK, SU , CEN

, CET
, ABN , ABT , MN ,MT

1 Initialisation;

2 Generate SU , EN , ET
$←− {0, 1}σ;

3 Compute FK ← hash(EN ||ET );
4 for p ∈ N do
5 p̂← hash(p), MN [p]← p̂;
6 KN [p]← PRFSU

(p̂);
// protect the key element

7 CEN
[p]← EncKN [p](EN );

8 ABN [p]← EncKN [p](“ABORT”);
9 endfor
10 for q ∈ T do
11 q̂ ← hash(q), MT [q]← q̂;
12 KT [q]← PRFSU

(q̂);
13 CET

[q]← EncKT [q](ET );
14 ABT [q]← EncKT [q](“ABORT”);
15 endfor



29

Upload.Encode. Run by the data owner to construct two GBFs (GBFN , GBFT ) encoding

the cipher key elements (CEN
, CET

). It has two purposes: 1) to encode the elements

that can compose the file encryption key into GBFs (line 17 in Algorithm 2) to ensure

E2EE; 2) to map the download limits into GBF locations (line 4, 7 in Algorithm 2) to

preserve expiration metadata privacy meanwhile enforce expiration control. The data

owner sends GBFN and GBFT to a server together with the encrypted file C and an

upload timestamp. Algorithm 2 takes the number element and download number limit

as an example. For download time limit, it takes inputs T , LT , m, k, λ, CET
, ABT , H,

and outputs GBFT .

Download.Compute. Run by the server on a download request from a client to compute

GBFN and GBFT using the current download count c and elapse time unit e. If c ∈ LN

and e ∈ LT , shares of the cipher key elements will recover CEN
[c] and CET

[e], otherwise

cipher payload messages (ABN [c], ABT [e]). The server returns the computation results

RN , RT to the client.

Download.Validate. Run by the client to decipher the GBF results RN and RT using the

hashes of current download state (ĉ∗, ê∗) fetched from the smart contract. Client first

regenerates the protection keys KN [c∗] and KT [c
∗] based on SU , then decipher the GBF

results. If both elements are deciphered successfully (line 4, 5 in Algorithm 4), it proves

that the current download state c and e used by the server are authentic, i.e. c = c∗

and e = e∗; otherwise, we must have KN [c∗] ̸= KN [c] and/or KT [e
∗] ̸= KT [e] that are

used to envelop the key elements in Upload.Generate (see line 6, 12 in Algorithm 1). The

unveiled secrets (EN
∗, ET

∗) are either (EN , ET ) or “ABORT” depending on whether the

current download state satisfies the download limits. Only if c ∈ LN and e ∈ LT , the

secrets are the key elements and the client can reassemble FK and eventually decrypt

the file.

3.5.1 Security Guarantee

We now present security guarantees of OblivSend with respect to the goals given in §

3.4.3.

Expiration metadata privacy. OblivSend hides expiration metadata from a server

yet is able to enforce the expiration control by using GBFs in Upload.Encode. The
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Algorithm 2: Upload.Encode

Input: N , lN , m, k, λ, CEN
, ABN , H

Output: GBFN

1 Initialise GBFN ;
2 for p ∈ N do
3 emptySlot← −1;

// under download limit
4 if p ≤ lN ;
5 final← CEN

[p];
6 for i = 0 to k − 1 do

// get an index via hashing
7 j ← hi(p);
8 if GBFN [j] == NULL then
9 if emptySlot == -1 then

// Reserve a location
10 emptySlot← j;
11 else

// generate a secret share

12 GBFN [j]
$←− (0, 1)λ;

13 final← final ⊕ GBFN [j];
14 else

// reuse an existing share
15 final← final ⊕ GBFN [j];
16 endfor

// store final in the reserved location
17 GBFN [emptySlot]← final;

// over download limit
18 else
19 final← ABN [p];
20 for i = 0 to k − 1 do
21 j ← hi(p);
22 if GBFN [j] == NULL then
23 if emptySlot == -1 then
24 emptySlot← j;
25 else
26 GBFN [j]

$←− (0, 1)λ;
27 final← final ⊕ GBFN [j];
28 else
29 final← final ⊕ GBFN [j];
30 endfor
31 GBFN [emptySlot]← final;
32 endfor
33 for i = 0 to m− 1 do
34 if GBFN [i] == NULL then

// store random strings

35 GBFN [j]
$←− (0, 1)λ;

36 endfor
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Algorithm 3: Download.Compute

Input: GBFN , GBFT , c, e, k, H
Output: RN , RT

1 Initialise RN , RT ← {0}λ;
2 for i ∈ [k] do
3 p← hi(c);
4 RN ← RN ⊕ GBFN [p];
5 q ← hi(e);
6 RT ← RN ⊕ GBFT [q];
7 endfor
8 return RN , RT ;

Algorithm 4: Download.Validate

Input: SU , RN , RT , ĉ∗, ê∗

Output: FK
1 Initialise EN

∗, ET
∗ ← NULL;

// element protection keys
2 KN [c∗]← PRFSU

(ĉ∗);
3 KT [e

∗]← PRFSU
(ê∗);

// fail on inconsistent download states
4 EN

∗ ← DecKN [c∗](RN );
5 ET

∗ ← DecKT [e∗](RT );
6 FK ← hash(EN

∗||ET
∗);

data owner maps each n ∈ N and t ∈ T to the GBF’s locations and adds shares of

cipher key elements only to the locations hashed from n ≤ lN and t ≤ lT (line 4-17

in Algorithm 2). All other locations are filled with cipher payload messages (line 18-

31 in Algorithm 2) or random strings (line 35 in Algorithm 2). Although the server

holds the GBFs, the standard secret sharing technique ensures the shares of the cipher

key elements and payload messages are of the same λ-length hence indistinguishable,

and each share reveals no information about the secret. OblivSend never discloses the

expiration metadata to a smart contract either, and the only information exposed is

the system default download limit in MN and MT populated in Upload.Generate (line 5,

11 in Algorithm 1), which is visible to all OblivSend users hence not introducing extra

security risks.

Further, OblivSend enforces the expiration control at the client side, hence neither the

server nor the smart contract is aware of the decryption outcomes to deduce the download

limits. If a server wants to learn the download limits, it needs to decrypt RN and RT

(line 4, 5 in Algorithm 4): if the decryption succeeds, the download state c and e used

are under the download limits; otherwise, over the limits. In order to decrypt RN (or

RT ), the server requires KN [c∗] (or KT [e
∗]) that is and output of PRF on SU . A security
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parameter σ is used to generate SU , and the probability of a server to find KN [c∗] is

2−σ, which is negligible for all sufficiently large σ. The smart contract does not have

RN or RT , thus not able to decrypt them and infer the download limits.

Server integrity auditing. OblivSend makes use of the public audit-ability of a

blockchain to precautionarily detect if a server has tampered its download state. Recall

the immutability assumption of a standard blockchain in § 3.4.3, the world download

state store on a blockchain is immutable, which means that the hash state (ĉ∗, ê∗) fetched

based on current download count and timestamp via the smart contract is authentic. If

a server uses a forged download state, e.g. a replay attack, we must have c ̸= c∗ and/or

e ̸= e∗. Note that the server computes RN and RT using its internal download state c

and e, and the secret shares from mapped locations of c and e recover CEN
[c] (or ABN [c]

if c > lN ) and CET
[e] (or ABT [e] if e > lT ), which are encrypted using KN [c] and KT [e]

respectively in Upload.Generate (line 7-8, 13-14 in Algorithm 1). The probability that

a client can decrypt RN using KN [c∗] is Pr(c ̸= c∗ : KN [c] = KN [c∗]). Since KN [i] is

an output of a PRF on SU and ĉ∗ (line 6 in Algorithm 3.5), the server’s probability to

trick the client into decrypting RN computed from an illegitimate download number c

is negligible if PRF is collision resistant.

Though OblivSend does not prevent a server from manipulating its state, it detects

the inconsistency and prevents file decryption from happening. As long as one honest

client reports the server’s misbehaviour to the data owner after a decryption failure, the

data owner can re-upload the file and share a new URL, hence such attack gains no

information and little value.

File confidentiality. OblivSend uses hash values rather than the original download

numbers and time units to protect the two key elements EN and ET , so that a semi-

honest client cannot recover the key elements and decrypt a file by guessing a download

state that has not expired without non-trivial computation. In Download.Validate, the

client already has RN , RT , SU , and wants to get EN and ET not using (ĉ∗, ê∗) but trying

a download state (u, v) that is as minimal as possible. In order to recover EN and ET ,

the client needs KN [c] and KT [e], hence ĉ and ê (line 2-5 in Algorithm 4). Therefore,

the client needs to find a pair of u and v so that û = ĉ and v̂ = ê and this event occurs

with at most negligible probability if the hash function is collision resistant.
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General metadata protection. OblivSend sends a hash file URL, upload and down-

load timestamps and two maps of system allowed download numbers and time units

to a smart contract, and the smart contract also updates and keeps a world download

state that includes a current count and elapse time unit corresponding to a file in a

public ledger on a blockchain. However, OblivSend only publishes a digest of hashes to

a ledger, therefore, no extra trace will be visible to adversaries because of the preim-

age resistance property of a hash function. Recall the anonymous network assumptions

OblivSend makes in §3.4.3, users’ IP addresses are garbled when communicating with

a server or a smart contract, and OblivSend encrypts metadata such as file name, size,

type in the same way as Send does [1]. OblivSend addresses general metadata privacy

in file sharing.

3.6 Implementation and Evaluation

3.6.1 Implementation

We implement a command-line-based OblivSend prototype on Hyperledger Fabric pro-

grammed in Go. Since the purpose is not to measure the AES efficiency or network

transmit throughput, we use a demo string instead of a real file in the prototype. We

have the following settings: security parameters σ = 128, l = 256 (SH-256). The size

of N (i.e. number of elements to be added to GBFN ) is 100 (maximum download

number), and the size of T is 2016 (maximum 7 days with a minimum of 5 minutes),

which follows Send ’s setting. Security parameter λ = 64 that yields a negligible false

positive probability 2−64. The number of hash functions k = 5, and the length of GBF

m = kn
ln2 ≈ 1.44kn that is optimal [72], both of which can be passed dynamically during

experiments. H is a family of 128-bit hash functions.

We present pseudo-codes of key functions performed by each party, and Pseudo-code 1

is an example that shows how a peer node executes a smart contract in response to a

client’s download request. Each peer in a blockchain network hosts a copy of the ledger,

and OlibvSend can perform read and write operations against the ledger by invoking

a smart contract which queries the most recent value of the ledger and returns it to

OblivSend and/or updates the value of the ledger. In Pseudo-code 1, the smart contract

takes a hash url and a download timestamp from the client’s request, and queries the
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most recent value of the ledger. It first validates its local copy of the ledger and then

returns the value, meanwhile increments the download count and synced an updated

digest to the world state.

1 func smartContractDownload

2 input: Request

3 output: Response, nImg, tImg

4 hashedUrl, dl = read hashedUrl from Request

5 state = get world state from the ledger(hashedUrl)

6 if error

7 return error "Failed to get world state", NULL

8 countDigest = state.countDigest

9 if countDigest == NULL

10 return error "Download count not found in world state", NULL

11 hashCount = Hash(count) //download count stored in local memory

12 if hashCount != countDigest

13 return error "Inconsistent download count", NULL

14 ulDigest = state.ulDigest

15 if ulDigest == NULL

16 return error "Upload timestamp not found in world state", NULL

17 hashUl = Hash(ul) //upload timestamp stored in local memory

18 if hashUl != ulDigest

19 return error "Inconsistent upload timestamp", NULL

20 etUnit = F(dl - ul)

21 hashNMap = Hash(nMap) //number image array stored in local memory

22 if hashNMap != state.nMapDigest

23 return error "Inconsistent number image array", NULL

24 hashTMap = Hash(tMap) //time image array stored in local memory

25 if hashTMap != state.tMapDigest

26 return error "Inconsistent time image array", NULL

27 nImg = nMap[count] //get number image by download count

28 count += 1

29 countDigest = Hash(count)

30 tImg = tMap[etUnit] //get time image by elapsed time unit

31 digest = new DigestStruct(hashedUrl, countDigest, ulDigest, nMap_Digest, tMap_Digest)

32 Put digest to the world state

33 if error

34 return error, NULL

35 return success, nImg, tImg

Pseudo-code 1: Function smartContractDownload

Pseudo-codes of other main functions are enclosed in Appendix. Note that the blockchain

architecture is out of scope hence the implementation of Hyperledger Fabric network,

e.g. how to build the network, and how to install smart contract (aka chaincode) onto

peers, are not detailed.

3.6.2 Evaluation

The prototype Hyperledger Fabric network is deployed on a single cloud instance. It

consists of one orderer node and two peer nodes, and runs in a docker-local container

environment. We created an instance in a Research Cloud on Ubuntu 18.04 LTS (Bionic)

amd64 (with Docker) version, with 2 virtual CPUs and 8 GB RAM. We used a Dell

Precision 5530 with Intel i7 2.6GHz CPU, 32 GB RAM to make a SSH connection to

the cloud instance.

Running Time. During the experiments, we measured the total running time of the

upload phase and download phase respectively. The running time of the upload phase

starts when a data owner initiates the upload request and ends after sending data to
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a smart contract, which includes the time consumed to build the GBFs, generate keys,

maps, a hash URL, and all underlying data processing. We also measured the total

download time that starts from a client extracting the file URL and ends immediately

after the client outputting the decrypted demo, which includes operation time at both

the server side (computing the GBFs) and the smart contract side (looking up for hashes

and communication overhead). The communication overhead when querying and syncing

the world state in a ledger on a blockchain is recorded separately as latency time. We

do not, however, include communication overhead at the smart contract end during the

upload phase as it occurs after data owner successfully uploads the data hence that does

not explicitly impact user experience. We set one client to request a download for each

experiment and ran 1000 independent experiments with random download limits, and

the calculated average time is recorded in table 3.3.

Phase Operation Latency Running Time

Upload 220.5283 NA 220.5283

Download 2.5385 1470.6911 1483.3837

Table 3.3: Average Total Running Time (ms) (record size = 1000).

We test the download number limit by fixing the time limit as the maximum of 7 days,

and experiment download time limit separately by setting the download number limit as

the default number 100. As can be seen in Figure 3.4a and Figure 3.4b, the total running

times are consistent over different download limit settings due to the undifferentiated

construction of GBFs. The average total running time that Data Owner takes to finish

all upload operations is 220.53 milliseconds, which is a satisfying performance. With

regard to the download phase, the average total running time 1483.38 milliseconds, of

which the latency time constitutes over 99 percent. However, our proposed protocol is

an privacy-enhanced extension of secure large file sharing system, and in a real scenario,

downloading a 25-MB file over mobile can take 8 seconds and a 1-GB file takes 3 minutes

on fixed broadband just for transit (according to [80], world-wide average download

speed for fixed broadband and mobile are 74.64 and 30.47 Mbps as of March 2020),

not considering all underlying data processing operations. Therefore, an average of 1.5-

second delay does not have substantial impact from the perspective of user interaction

and experience.

Scalability. OblivSend is a secure and impermanent file sharing system that is ded-

icated for confidential and intimate files, hence we refer to existing secure file sharing
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(a) Change Number Limit Only

(b) Change Time Limit Only

Figure 3.4: OblivSend Running Time

or messaging tools [49, 81] to determine pragmatic maximum allowed download number

and time, which are the size n (or t) of the GBFs. We consider the maximum set size

n = 5000 and the maximum set size t = 8640 (i.e. expiration time from 5 minutes to 30

days). According to [72], the running time of building a GBF increases almost linearly in

the set size, and the estimated running time of building the GBFs on a 128-bit security

parameter ≈ 1.3 seconds when uploading a file, which is not noticeable by an end user

during the course of uploading a file.
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Remark : The experiment demonstrates feasible application of GBF and smart contract

in secure file sharing solutions, but a limitation of OblivSend is that it does not process

download requests in a concurrent context. The order of a client raising a download re-

quest decides the current download count hence yields different decryption outcomes. An

existing solution [78] is to have the server, not the client to publish data to a blockchain.

However, this is not feasible in our protocol as OblivSend audits server’s integrity using

the immutable ledger on a blockchain as discussed in 3.5.1. The challenge related with

concurrent access remains to be solved and future work for this topic.

3.7 Conclusion

This chapter proposes OblivSend, a lightweight privacy-preserving file sharing web ser-

vice that for the first time protects expiration metadata from the server and meanwhile

ensures E2EE by adopting cryptography protocols like GBF and novel Smart Contract

technology. We have successfully implemented the design and built a prototype over

a Hyperledger Fabric network. We also conducted experiments to evaluate its perfor-

mance. The result is as expected and encouraging, demonstrating that OblivSend has

stronger security without performance sacrifice. OblivSend precautionarily detects ma-

licious mutations of a server’s internal state, and we consider a simple scenario that one

client requests download after another, both of which is open for further work.



Chapter 4

Privacy-Preserving File Sharing

with Oblivious Expiration Control

In this chapter, we revisit privacy-preserving file sharing systems with oblivious expi-

ration control and focus on further improving the privacy performance to make server(s)

fully oblivious of file accessed and corresponding expiration control metadata. In OblivSend,

although a server is oblivious of the expiration control, which is at the client’s end;

however, a curious server may deduce the expiration status of a file if it is no longer

requested.

This chapter therefore proposes OblivShare, a privacy-preserving file sharing scheme

to proactively protect the expiration control metadata, which is a subsequent privacy

concern along with the trending feature in the industry to set download constraints of

shared files as additional level of security control. The scheme is based on ORAM for

secure computation that 1) supports file expiration at users’ control, 2) hides expiration

metadata from the server, 3) server is fully oblivious of file access pattern and expiration

state of a file. We demonstrate that our protocol has a complexity poly-logarithmic to

the number of files while achieving privacy of metadata.

4.1 Introduction

Users sharing files with other users over the Internet are common practices today. How-

ever, data leakages and mass surveillance projects [3, 5] have drawn public attention of

38
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the vulnerability and sensitivity of personal data, and in turn promoted privacy aware-

ness of users. Further, existing regulations and acts to protect personal data [43, 44], also

impose on service providers to grant individuals control over their private information.

Therefore, sharing files securely and privately is becoming a fundamental requirement.

In order to achieve secure file sharing, systems and services have been developed to sup-

port end-to-end encryption (E2EE) [52], using which, a user encrypts file content before

it leaves their device and only authorised users are able to decrypt the file. However,

E2EE does not appear to fully protect the privacy of user or file metadata, and a file

can stay in servers indefinitely. Recent innovative services [1, 11] provide impermanence

of data store on top of E2EE, which offers extra security control to users over the files

they share: setting files to expire after a certain amount of time or number of down-

loads. On the one hand, such services incorporate two most desired features, E2EE

and ephemeral, which meets personal needs of more secure connections and intimate

sharing; on the other hand, limitations are also apparent: 1) Users send expiration con-

trol metadata (expiration metadata for short in the rest of this work), i.e. download

number and time limits to check if a file has expired, to servers in plaintext, which can

be used to deduce the popularity and sensitivity of specific file(s). 2) Expiration control

is at servers’ hand and users have to fully trust a service to honestly check if a file has

expired.

Inadequate discussion has since occurred to understand the privacy of expiration meta-

data. Therefore, we aim to propose a new protocol to solve this emerging problem with

practical values. This is a first attempt to focus on secure file expiration control, and the

proposed protocol has not yet been implemented in real cloud environment. Security

and performance analysis are provided in this chapter, and we consider real experimental

evaluation to illustrate the performance in the future.

4.1.1 Motivation

“If you have enough metadata, you don’t really need content”, “we kill people based

on metadata” [45, 46]. Sharing a file resembles calling or messaging someone from

the perspective of metadata exposure, hence metadata privacy in file sharing is also

concerning. While increasing service providers provide expiration control on top of

E2EE, a gap exists in both industry and academia. To illustrate the motivation of
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hiding expiration metadata and oblivious file sharing, we present some privacy issues

even with E2EE file sharing systems.

Sensitivity derived from expiration metadata. Alice is an oncologist, and shares

files with patients and other contacts in an E2EE system. Alice shares medical records

with her patients and sets each to expire after 1 download, and other files without

expiration conditions. With knowledge of the expiration metadata, a curious server

learns that Alice shares some files with strict access, hence deduces they are sensitive.

Bob is a patient of Alice and downloads his report from the system. With Alice’s

identity and the sensitivity of the file, the server thus infers Bob is suspected to have

cancer without decrypting the report.

4.1.2 Summary of Contributions

We now propose OblivShare, a secure and ephemeral file-sharing system that for the first

time provides users with advanced and oblivious expiration control. OblivShare puts

forward a new framework of a file-sharing scheme that not only supports comprehensive

file expiration control, but is also expiration-metadata-private and oblivious. This is a

generic solution that can be integrated into file sharing services to address metadata

privacy issues. To understand our contributions, we now outline the main challenges

OblivShare aims to address.

Challenge 1: how to achieve expiration control over protected expiration

metadata? We define expiration metadata as: 1) User-set download constraints, i.e.,

download number and time limits to facilitate expiration control. 2) Internal download

state, i.e., current download count used to compute expiration control outcome. Users

are not able to download a file if it has expired. To the best of our knowledge, whereas

many scholars focus on protection of general security control metadata in file sharing

such as user identity and access pattern [82], there is no prior research aiming to prevent

leakage of expiration metadata, hence a gap exists to address such expiration-metadata-

privacy.

Challenge 2: how to make download requests of a specific file indistinguish-

able from servers? Only hiding the expiration control process, outcome and metadata

is not sufficient, as a server can still infer that a file has expired if the specific file has
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Goal Technique

Expiration metadata privacy Secret sharing

Oblivious expiration control Secure two party computation

Oblivious file sharing ORAM

User IP addresses Anonymous network, e.g., Tor

Table 4.1: Overview of techniques to achieve the goals.

not been accessed for a long time. A server not fully oblivious of the file sharing process

learns which file is accessed for each download and can reasonably deduce the expiration

metadata.

4.1.2.1 Contribution

OblivShare supports E2EE meanwhile protects the expiration metadata through the

entire course with oblivious file access and expiration control. Our goals and techniques

are summarised in Table 4.1.

With OblivShare, we propose an efficient secure file sharing scheme that not only achieves

lightweight system design on top of ORAM (we present performance analysis in §4.5 that

proves OblivShare has poly-logarithmic complexity), but also enables expiration control

while hiding expiration metadata.

Overall, our contributions are:

1. We are the first to address metadata privacy issues in file sharing systems that

support expiration control. User-defined download constraints are hidden from

servers through the entire course of file upload, sharing and download. Internal

download state is also protected by secret sharing between servers, therefore the

servers cannot directly learn file expiration status.

2. We use synchronised tree-based ORAMs to store both file content and metadata,

which hides file access patterns from servers, hence the servers cannot distinguish

which file and how many times is requested so as to deduce file expiration status

and further expiration metadata.

3. We are the first to use secure computation for oblivious expiration control, which

not only guarantees that a single server cannot manipulate the expiration control

result, but is also efficient to implement using garbled circuits.
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4. We also demonstrate that our scheme has negligible extra computation and com-

munication overhead on top of a primitive ORAM file sharing system, which re-

quires one interaction with users hence not sacrifices user experience.

4.2 Related Work

4.2.1 Existing secure file sharing

Ephemeral content sharing is a highly pursued feature in industry [1, 11, 14, 49, 52, 83,

84]. With certain expiration control, users are confident that what they share is only

accessible to dedicated users for limited time or number of times, and never stay in a

server for longer than necessary and become a vulnerability later.

Table 4.2 compares several existing secure file sharing applications or web services. We

organise the comparison by the following properties: 1) Does it support E2EE ? 2) Does

it support file expiration? 3) Does it hide expiration metadata? 4) Is the server oblivious

of file access and expiration control if applicable?

[1], [11] and [14] claim to offer zero-knowledge E2EE. [11] (premium) provides client-side

encryption that keeps a public key protected encryption key in a key sever (isolated from

the file storage server), and only a client’s private key can decrypt the encryption key.

[14] uses OpenPGP encryption and the file encryption key consists of a server secret

(generated by the server) and a client secret (generated by the sender). Services such as

[51] and [50], though do not support E2EE, but provide an addition layer of password

security on top of server-side encryption. A user can double encrypt files or folders by

setting a password, and share it to clients outside the service. [49] also offers E2EE for

file attachments and has been developing its “Expiring Messages” feature.

Our solution is aiming to address the security weakness of existing systems mentioned

in §4.1 with a good balance of desired features and cost.

4.2.2 ORAM for file storage

Oblivious RAM (ORAM) [85] is an attempt to hide a user’s access pattern from service

providers meanwhile supporting extra operations. Traditional ORAM schemes usually
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Product E2EE Time
Limit

Number
Limit

Hide
Expiration
Metadata

Oblivious
Server

OblivShare ✓ ✓ ✓ ✓ ✓

OblivSend [16] ✓ ✓ ✓ ✓ ✗

Firefox Send [1] ✓ ✓ ✓ ✗ ✗

DropSecure [11] ✓ ✓ Future ✗ ✗

SendSafely [14] ✓ ✓ ✗ ✗ ✗

WhatsApp [49] ✓ Future ✗ ✗ ✗

Digify [50] ✗ ✓ ✗ ✗ ✗

Dropbox [51] ✗ ✗ ✗ NA ✗

Table 4.2: Secure File Sharing Services.

have worst-case communication complexity linear to their capacity and block size even

with amortized communication cost [86], and their single client setting [22, 85, 86] is not

suitable for file sharing. Multi-user ORAM schemes are promising designs that can be

applied in file sharing, but unfortunately, very few of such works exist. Among those that

support file sharing, GORAM [87] is a system that guarantees anonymity of users and

obliviousness of data access; but it does not protect the owner of a file. PIR-MCORAM

[88] is a multi-user ORAM-based file sharing system, but has a very high overhead hence

liner worst-case complexity. There are other ORAM schemes that focus on malicious

users but do not readily support file sharing [89, 90].

At the best of our knowledge, none of the existing ORAM schemes, either hide access

patterns and/or user identities or not, with linear or poly-logarithm complexity, has

addressed expiration control.

4.3 Preliminaries

OblivShare makes black box use of secure two party computation, and also follows

ORAM paradigm for metadata and file storage.

Notation. We define parameters, entities, denotations in OblivShare in Table 4.3.

4.3.1 Secure Computation

The Millionaires’ Problem first described by Yao [25] enables to solve the following

problem: Alice and Bob have their own secret inputs, which are their wealth xA and xB
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NotationDescription

λ ORAM’s statistical security parameters

tsU a timestamp that denotes the upload time

tsD a timestamp that denotes the download time

tsExp a timestamp that denotes the expiration time, that is tsU + t

D an array of data content stored in ORAM

x an positive integer that denotes a file index in ORAM, up to the
ORAM file number bound, and D[x] is the data stored in ORAM

Exp an expiration policy that stores download constraints and state
indexed by x

[s] a secret share of s

N the number of real data blocks in ORAM

h the height of the ORAM tree, that is ⌈log2N⌉
θ a threshold of timestamp difference that is accepted by OblivShare

Table 4.3: OblivShare Notation

million, respectively. Yao’s protocol enables that Alice and Bob can compute a function

f(xA, xB) −→ (yA, yB) such that Alice learns only its function output yA while Bob

knows only yB, i.e., who is richer, and nothing else about the other party’s wealth.

Since Yao’s secure computation protocol was proposed, researchers have advanced a

number of variations and extensions to address different scenarios. Recent secure multi-

party computation (MPC) solutions includes private sorting [91], private computational

geometry [92], private voting [93], and private data mining [94, 95] etc.

4.3.2 ORAM

OblivShare deploys ORAM for oblivious data storage and retrieval. More specifically,

we use ORAM for secure computation [96–98], so as to ensure oblivious data access

in MPC applications. There is a class of tree-based ORAM schemes [21, 22, 96] that

are efficient for practical implementations especially in MPC, among which, we consider

Circuit ORAM [96] as an appropriate scheme for our setting because of its competitive

performance. Comparing to schemes like SqrtORAM [97] and Floram [98], Circuit

ORAM client has complexity that is poly-logarithmic to the number of files, and also

reduces the circuit size comparing to Path ORAM [21] and SCORAM [99]. Circuit

ORAM is a tree-based ORAM. To store N files, Circuit ORAM constructs a binary tree

with height h =
⌈
log2N

⌉
. The tree is composed of tree nodes, each of which has three

blocks with fixed block size; apart from that, it also has a stash (up to the stash size
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Algorithm 5: ORAMAccess

Input op, idx, data
Output returnData

1. label← PositionMap[idx]

2. {idx||label||returnData} ← ReadnRemove(idx, label)

3. PositionMap[idx]← UniformRandom(0, ..., N − 1) //update position map

4. if op = ”read” then

(a) data← retrunData

5. stash.add({idx||PositionMap[idx]||data})

6. Evict()

7. Ouputs returnData

bound) that temporarily stores blocks that will be later evicted to the tree. Each block

either stores the data of a file or is left empty. To store a file D[x] in a file array D,

a block contains the file index x, the file data D[x], and its position that is the path

from leaf to root. If a block is cached in the stash, the block stores the corresponding

path that the block will be evicted onto. The file index x and its corresponding path p

constitute a position map. We adapt Metal’s protocol [48] as a underlying primitive for

efficient and oblivious data access in S2PC.

Read from ORAM. To read a file, the two servers first check the file’s leaf label (hence

corresponding path) in the position map, then search for the block with the file index via

a linear scan over both the stash and path. The servers then read the file block stored

in the block. After reading the file, they randomly assign a new path to this block, put

it back into the stash, and update the position map accordingly.

Write to ORAM. To write a file, the steps are similar until when the two servers add

the block into the stash, and they replace it with the data to write provided by the user.

Stash eviction. Circuit ORAM performs a stash eviction for each read and write

operation, at which stage, blocks cached in the stash are evicted to the ORAM tree to

prevent stash overflowing. We do not elaborate the eviction algorithms of Circuit ORAM

in detail here, but will illustrate rearrangement steps that are relevant to OblivShare.

A generic Circuit ORAM data access operation is provided in Algorithm 5.
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4.3.3 Synchronised inside-outside ORAM trees

We identify that the synchronising inside-outside ORAM trees technique used by

METAL [48] is suitable for OblivShare. As has been introduced in 4.3.2, taking Circuit

ORAM as an instance, each block in an ORAM tree contains the file index x, the file

data D[x], and its position. METAL, however, splits position map (i.e. index and path

position) and actual file data, and stores them in two ORAM trees separately: one tree

contains files’ indices and positions stays inside S2PC procedures because it is small

while the other tree that stores actual file contents stays outside S2PC. The two trees

are maintained synchronised during initialisation and after each data access so that the

file identifier and content can be found at the same position in the two trees. By doing

so, the position of a file can be processed and revealed securely and efficiently in S2PC

without loading large file data, and the block fetching and eviction of the actual file

data are achieved by two protocols to keep the trees re-synchronised. METAL uses a

secret-shared doubly oblivious transfer protocol to ensure that servers fetch the actual

file data after revealing the position (in secret shares), and a distributed permutation

protocol to track the movement of blocks after eviction and apply the rearrangement to

according positions, without any servers learning the actual file’s position.

In what follows, we provide some background knowledge of METAL’s techniques relevant

to our setting and describe more details in Appendix A.1.

Secret-shared doubly oblivious transfer. In order to get the actual file block outside

S2PC, the two servers first process and reveal the file position inside S2PC, which means

that the i-th block on the path p stores the position map and file data respectively in

two ORAM trees. The S2PC then generates a list of keys for all the blocks on the path

and outputs all these keys to Server 1 that stores the ORAM of actual file data, and

Server 2 receives only one key corresponding to the actual file location i. Server 1 then

needs to encrypt all the file blocks on the path p using the corresponding keys in order

and re-randomise the encrypted blocks before sending them to Server 2. Server 2 uses

its key received from the S2PC and decrypt blocks received from Server 1 to obtain the

i-th block without either server getting the actual file location.

Distributed permutation. As has been mentioned in 4.3.2, stash eviction is called

after every read or write after fetching a data block in ORAM. Distributed permutation

[48, 97] captures the rearrangement of blocks, which is used when putting the read
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block into stash before eviction and later evicting stash blocks to selected paths. The

two servers in S2PC generate a permutation of an array of blocks, including the blocks

in the stash, the block read and the block to write; then secret shares the permutation;

and apply permutation shares accordingly. The result of the protocol is that the two

ORAMs store the permuted blocks in the same location as per the updated file position

map. By following this protocol, neither server learns the new position of the file after

eviction, and neither server knows which permutation, read or write, is performed.

4.4 System Overview

In OblivShare, a data owner encrypts a file and sets the file to expire at certain conditions

before uploading. OblivShare stores both the cipher file and expiration policy in a

secure manner. When a client makes a download request to OblivShare, OblivShare first

performs expiration control over download constraints and download state, then sends

the cipher file to the client if the file has not expired. To understand how OblivShare

fulfils these operations securely, we present an overview of OblivShare’s design, threats

and security goals.

4.4.1 System Architecture

A high-level framework of OblivShare is illustrated in Figure 4.1, which consists of two

servers, a data owner and multiple clients:

• Data Owner sends upload requests to OblivShare, and shares the file index and

file encryption key embedded in a URL to clients via secure channels.

• client(s) sends download requests to the servers, and receives results from OblivShare

as per expiration check.

• Servers each takes its share of the requests as inputs to the S2PC, and together

run S2PC procedures and send the outputs from S2PC to the clients. The servers

also keep updated ExpCtrlORAM and DataORAM, which is explained in detail

in §4.5.1.
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Figure 4.1: High level framework. A client sends its secret-shared request of file
access to the two servers. The request is reconstructed and executed in S2PC.

OblivShare incorporates two major components: OblivExp for expiration Control and

OblivData for file access. OblivExp is placed in front of OblivData to conduct

expiration control. A client request first arrives at OblivExp, which checks whether

the requested file has expired or not inside the S2PC by the two servers. If no, the

request is sent to OblivData for a file access. If yes, the request is also dispatched to

make the expiration control result indistinguishable to the servers, but in a manner to

access dummy data instead. This is a loose description, and detailed construction is

elaborated in §4.5.

OblivExp updates ExpCtrlORAM after each access and the changes to blocks as a re-

sult of stash eviction are applied to DataORAM during OblivData via synchronisation

between ExpCtrlORAM and DataORAM.

4.4.2 Threat Model and Security Goals

4.4.2.1 Assumptions

OblivShare makes the following assumptions:

At least one server is honest. An attacker can compromise one of the servers in the two

party secure computation while the other is not.

Key secrecy. A client does not reveal the URL with the key to adversaries.

Out-of-band communication. A data owner in OblivShare shares a URL with client(s)

through third party secured channels of their own control, such as Telegram [52] and
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Signal [13]. OblivShare only uses such out-of-band communication once at the sharing

stage, which is a common practice of other secure file sharing systems [1, 51], keeping

all other activities within OblivShare.

Anonymous Network. In order to hide other metadata during file sharing, OblivShare

assumes the clients communicate with servers in an anonymous manner that does not

reveal network information via existing tools such as Tor [12] or secure messaging [52]

based on decentralised trust.

Secure communication. Each client establishes secure connections with each server, e.g.,

Transport Layer Security, so that data in transition are secured.

4.4.2.2 Threats

OblivShare considers the following threats:

1. A server can see the expiration metadata of a file. It enables the server to learn

data sensitivity and popularity of the file, also deduces other valuable information

of encrypted data, which has been explained in § 4.1.

2. A server on its own has control over its internal download state metadata, hence

can forge the state, e.g. a small download count or an expiration timestamp that

never expire.

3. A server can observe the file access pattern, hence the server is able to learn which

specific file is accessed and the number of times the file has been accessed. If a

file no longer receives download request, the server can deduce that the file has

expired hence infer the user-set expiration metadata.

4. An attacker controlling a client tries to compromise the security of a file that has

expired.

5. A client can forge its download timestamp so as to make an invalid download pass

the expiration control check.

4.4.2.3 Security Goals

We now present security goals of OblivShare with respect to the threats given in §4.4.2.2.
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1. Expiration metadata privacy. OblivShare ensures expiration metadata is to-

tally at a data owner’s control, and not visible in transit or at rest on either server.

2. File confidentiality. OblivShare ensures that neither server learns the actual

file content; further, a compromised client cannot access the encrypted file and

decrypt the content after the file has expired.

3. Oblivious expiration control. OblivShare ensures both servers are oblivious

of the expiration control process. Though OblivShare does not prevent a server

from manipulating its download state or a client forging its timestamp, the S2PC

procedure for expiration control will fail if it detects compromised inputs to the

S2PC. Hence such attack gains no information and little value.

4. Oblivious file sharing. OblivShare ensures neither server learns access patterns

so that the servers are not able to infer if a specific file has expired hence expiration

metadata.

5. Download timestamp integrity. OblivShare ensures that the download times-

tamp is independent of a client’s input, but is controlled in S2PC.

6. General metadata protection. Recall the anonymous network assumptions

OblivShare makes in §4.4.2.1, users’ IP addresses are garbled when communicating

with a server, and OblivShare addresses general metadata privacy in file sharing.

OblivShare guarantees the goals above based on common cryptographic assumptions.

However, OblivShare does not address DOS attacks, which means OblivShare does not

prevent a dishonest server from denying a valid download request even if the time has

not expired or the number of downloads permissible has not been exceeded.

4.5 Detailed Construction

Note that in Circuit ORAM, the linear search of the file index happens within the

S2PC, the real data is too large to process. We identify that METAL’s synchronised

ORAM trees [48] benefits our design to reduce the data accessed inside the S2PC. Below

we introduce building blocks of OblivShare. In the following, we present our protocol

assuming each file is an single file block for simplicity, but in practice, an uploaded file

consists of multiple file blocks and is padded to have the same size.
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Figure 4.2: OblivShare has two tree ORAMs that store small metadata and large real
data respectively and synchronised in ExpCtrlORAM and DataORAM.

4.5.1 Synchronised ORAM trees

OblivShare has two ORAM trees, an ExpCtrlORAM tree to store the metadata in a

recursive manner and a DataORAM tree to store the actual file data. The two trees are

synchronised so that the content and the metadata of a file are at the same location in

DataORAM and ExpCtrlORAM.

ExpCtrlORAM is a set of trees that recursively stores small metadata, including: 1)

the position map; 2) the expiration metadata, i.e. download constraints set by the data

owner and the current download state. The ExpCtrlORAM is secret shared with two

servers, and will be completed loaded and accessed inside the S2PC. OblivShare uses

the standard recursive technique [48, 96] to store the metadata in ExpCtrlORAM, and

for simplicity purpose, we refer to the last tree when using ExpCtrlORAM in the rest

of this chapter.

DataORAM resembles ExpCtrlORAM’s last tree but only stores the data (encrypted

file). The DataORAM tree is stored on Server 1, and only relevant portion of the data

structure will be loaded into the S2PC .

Figure 4.2 shows the ORAM structure in OblivShare and how two ORAMs are synchro-

nised by storing corresponding metadata and data at the same location.

The read and write operations of Circuit ORAM still suffice data retrieval and update

in ExpCtrlORAM but no longer fulfil fetching data from and putting data into DataO-

RAM. OblivShare follows MTEAL’s secret-shared doubly oblivious transfer (SS-DOT)

[48] protocol to fetch the i-th block on path p from DataORAM. At the end of SS-DOT,

Server 2 obtains the fetched block, i.e. the i-th block (encrypted under ElGamal) in the

array, without either server learning i. We describe the details relevant to OblivShare
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in Appendix A.1.1. OblivShare also follows distributed permutation to make sure Ex-

pCtrlORAM and DataORAM are re-synchronised after each eviction by tracking and

permuting block movements. At the end of distributed permutation, Server 1 stores the

permuted file blocks in DataORAM in the same location as metadata blocks in Ex-

pCtrlORAM. By following this protocol, neither server learns the new location of the

evicted block. We give more details of how permutation is created, shared and applied

in Appendix A.1.2.

4.5.2 OblivExp for Expiration Control

4.5.2.1 Upload a file

During the initialisation stage at the Data Owner’s end, it generates an expiration policy

Exp locally, which is a description of file download constraints and download state that

is shared among the two servers. For example, a policy of a file that expires after 10

downloads and on “21 June 2021 21:21:21” has a policy “File Index x : 10, 21-06-

2021T21:21:21, 0” where x is the file index, 10 is the download count (e.g. expire after

10 downloads) chosen by the Data Owner, tExp is the expiration timestamp derived

based on upload timestamp (e.g. 18 June 2021 21:21:21) and download time setting

(e.g. expire after 3 days) chosen by the Data Owner, and 0 is the initial download

count. The Data Owner also encrypts a file using a secret key before the file is sent to

Server 1. Algorithm 6 shows the secure computation during Upload.

Remark. After ExpCtrlORAM’s stash eviction, evicted blocks are at new locations

but the blocks in DataORAM are not rearranged. To synchronise DataORAM, we use

distributed permutation protocol by applying the same rearrangement to data blocks in

DataORAM. We will elaborate how OblivData ensures the data blocks in DataORAM

is still synchronisation in §4.5.3.

4.5.2.2 Download a file

When a client requests a file download by a file index, the two servers search the file

index in ExpCtrlORAM, then retrieve the path p and the expiration policy Exp of the

file following primitive ORAM read process. The two servers then access DataORAM
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Algorithm 6: OblivExp.Upload

Input of S1: [x]1, [Exp]1, [ExpCtrlORAM ]1

Input of S2: [x]2, [Exp]2, [ExpCtrlORAM ]2

Output: [ExpCtrlORAM ]1, [ExpCtrlORAM ]2

1. x← [x]1 ⊕ [x]2, Exp← [Exp]1 ⊕ [Exp]2, ExpCtrlORAM ←
[ExpCtrlORAM ]1 ⊕ [ExpCtrlORAM ]2; //reconstruct

2. p← PositionMap[x]; //select a path

3. (ExpCtrlORAM
′
,⊥)← ORAMAccess(ExpCtrlORAM,x,Exp),

ExpCtrlORAM ← ExpCtrlORAM ′; //the distribute permutation protocol will
be invoked before and after ExpCtrlORAM’s stash eviction

4. [ExpCtrlORAM ]1 ← $, [ExpCtrlORAM ]2 ←
ExpCtrlORAM ⊕ [ExpCtrlORAM ]1; //secret share ExpCtrlORAM

5. Output to [ExpCtrlORAM ]1 to S1 and [ExpCtrlORAM ]2 to S2 respectively.

on the client’s behalf and return the file block back to the client via secret shares if

the expiration control check passes; otherwise a dummy instead. Note that the S2PC

locates the i-th block on the path p in ExpCtrlORAM is the block for file x by a linear

search, hence can access the encrypted data of file x in the i-th block of the same path

p in DataORAM due to the synchrony between two ORAMs.

During the expiration control check, the two servers inside the S2PC determine a mutu-

ally agreed download timestamp (e.g. agree on a deviation threshold θ and then take a

mean of the two timestamps from each server), and run the S2PC to compare download

constraints to internal download state.

The two servers in the S2PC also update lock status of a file requested on the fly to

indicate if the file is being accessed. The file is locked until the data, either the encrypted

file or a dummy, has been successfully returned to the client.

To ensure the servers do not know if a file has expired, the S2PC appends a dummy

block, and secret share the location i related to this dummy block instead of the actual

block if a file has expired (step 11 in Algorithm 7).

Remark. Note that the two servers cannot simply fetch the i-th block in DataORAM,

after revealing i in ExpCtrlORAM as the location i is related to the block history, i.e.

a location i that is closer to the root level of the ORAM is more likely to have been

accessed and evicted recently, and vice versa [100].
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Algorithm 7: OblivExp.Download

Input of S1: [x]1, [tsD]
1, [ExpCtrlORAM ]1

Input of S2: [x]2, [tsD]
2, [ExpCtrlORAM ]2

Public Input: θ
Output: [ExpCtrlORAM ]1, [ExpCtrlORAM ]2, [i]1, [i]2

1. tsD ← agree(ts1D, ts
2
D, θ); //agree on a download timestamp

2. if tsD = ⊥ then stop. //the procedure stops if the agreement fails

3. x← [x]1 ⊕ [x]2, ExpCtrlORAM ← [ExpCtrlORAM ]1 ⊕ [ExpCtrlORAM ]2;

4. locked← Exp(status); //check the current lock status

5. if locked = TRUE then stop.

6. else locked← TRUE; //change the lock status to locked

7. (ExpCtrlORAM ‘, {p,Exp})←
ORAMAccess(ExpCtrlORAM,x,⊥), ExpCtrlORAM ← ExpCtrlORAM ‘;
//run an ORAM read operation to get the expiration policy

8. i = search(x, p); //determine the i-th location on path p that stores Exp

9. r = isV alid(Exp(count), Exp(number), Exp(tsExp), tsD); //expiration check

10. if r = TRUE then Exp(count)+ = 1; //increments the current download count

11. else i← |stash|+3h+1; //add a dummy at the end of the array and point i to it

12. locked← FALSE and Exp(status)← locked; //reset the lock status

13. Generate [ExpCtrlORAM ]1,
[ExpCtrlORAM ]2 ← ExpCtrlORAM ⊕ [ExpCtrlORAM ]1

14. Generate [i]1, [i]2 ← i⊕ [i]1

15. Output [ExpCtrlORAM ]1, [i]1 to S1 and [ExpCtrlORAM ]2, [i]2 to S2
respectively.

To make Upload and Download indistinguishable, expiration policy is constructed as {File

Index: download number, expiration timestamp, download count, download timestamp,

lock status}, hence {File Index: download number, expiration timestamp, 0, ⊥, FALSE}

for Upload and {File Index: ⊥, ⊥, ⊥, download timestamp, ⊥} for Download.

4.5.3 OblivData for File Access

In what follows, we show how the two servers in combination fetch and put a file, which

is the same for each ORAM Upload and Download.
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4.5.3.1 Fetch data from DataORAM

In §4.5.2, we already provide a solution of indistinguishable file fetch regardless of expi-

ration status by appending a dummy block. After OblivExp completes the expiration

control, either passed or failed, it proceeds the request to OblivData that fetches a block,

either a real data block or a dummy depending on the expiration control result, in the

form of different values of the location i. As has been briefed in §4.5.1, at the end of SS-

DOT, Server 2 received ElGamal [101] cipher-texts of the data block at the i-th location

on path p in DataORAM, with neither server aware of i. Upon ElGamal decipher, the

result is either the actual file content or the dummy encrypted under a file encryption

key (shared by a data owner to dedicated clients during the share stage), which is finally

returned to the client who can further decrypt the result. Algorithm 15 in Appendix

A.1.1 shows how the SS-DOT protocol works in OblivData.

Remark. Note that in Algorithm 15, j is independent of i as a result of shuffle, hence

Server 2 is not aware of i all through the course.

4.5.3.2 Evict Data to DataORAM

After ExpCtrlORAM’s stash eviction, positions of blocks are updated in ExpCtrlORAM,

hence OblivData needs to ensure the corresponding real data blocks in DataORAM are

rearranged in the same manner. To guarantee that the two ORAMs are still synchro-

nised, OblivShare tracks the block movements in ExpCtrlORAM and apply the same

changes to DataORAM. We use Distributed Permutation again during this stage follow-

ing a similar manner of METAL to re-synchronising trees after each eviction.

Algorithm 16 in Appendix A.1.2 demonstrates how the re-synchronisation is achieved by

tracking the movement of blocks in ExpCtrlORAM and applying the same permutation

to DataORAM, hence Server 1 stores the blocks in the corresponding locations.

4.5.4 Security Guarantees

We now present security guarantees of OblivShare with respect to the goals given in §

4.4.2.3.
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1. Expiration metadata privacy. OblivShare hides expiration metadata from both

servers yet is able to enforce the expiration control by using secret sharing. The

standard secret sharing technique ensures the shares of the expiration metadata are

of the same length hence indistinguishable, and each share reveals no information

about the secret (line 1 in Algorithm 6). Also, OblivShare uses ElGamal encryption

for data blocks stored in ORAM, which prevents the leakage of sensitive expiration

metadata from the servers during the entire course.

2. File confidentiality. Data owner of OblivShare encrypts a file before uploading

the file to servers and only shares the private key to authorised clients. In addition,

all data blocks in ORAM are ElGamal encrypted hence the servers cannot decrypt

the actual file content without non-trivial computation. OblivShare also prevents

invalid access to expired file by returning a dummy instead of the encrypted file

(ensured by line 11 in Algorithm 7) so that a compromised client cannot retrieve

a file that has expired even with the private key.

3. Oblivious expiration control. During OblivExp and OblivData, OblivShare

uses S2PC protocols to perform expiration control (line 7-11 in Algorithm 7 and the

first stage of SS-DOT that samples random keys in line 2(a)-2(d) in Algorithm 15).

The security of S2PC guarantees neither server learns or tampers the expiration

control result.

4. Oblivious file sharing. The obliviousness of ORAM guarantees that file access

patterns are hidden from the servers.

5. Download timestamp integrity. (line 1-2 in Algorithm 7) The security of

S2PC guarantees neither server learns the input timestamp of the other hence

cannot modify the actual timestamp or fabricate a new timestamp that is used in

the following expiration control operation (line 9 in Algorithm 7).

6. General metadata protection. OblivShare makes the anonymous network as-

sumptions in §4.4.2 that users’ identities and their online activity are encrypted

during client-server communications through existing secure tools [12, 52]. OblivShare

also encrypts metadata such as file name, size, type in the same way as it does for

a file hence addresses general metadata privacy in file sharing.
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Non-guarantees. As stated in S4.4.2, OblivShare does not address DOS attacks by

a server, neither protects from malicious server(s), which means OblivShare does not

guarantee the availability of a file if a dishonest server denies a valid download request.

4.5.5 Performance

We consider the system supports N files in total (for simplicity, each file is a single

block hence N data blocks) with block size S in DataORAM. As a result of METAL’s

synchronised inside-outside ORAM trees, the cost for accessing small metadata blocks

in ExpORAM is negligible and considered as constant comparing to accessing large data

blocks in DataORAM [48]. We use Oλ(·) to present the complexity, while Nblock is

polynomially bounded by λ. We parameterise to have 1
Nω(1) failure probability that is

the same as Circuit ORAM [96].

The amortised computational cost of Circuit ORAM is Oλ(S + log2N ) logN) · ω(1), and

OblivShare has minimal additional cost on top of Circuit ORAM. The file access, i.e.,

read and write operations in OblivShare’s Upload and Download are indistinguishable

and have the same cost that includes the cost of Circuit ORAM, SS-DOT and distributed

permutation. During Download, OblivShare’s expiration control incurs additional cost.

The cost for creating download timestamp (line 1-2 in Algorithm 7) is Oλ(1). Expiration

control is independent of data blocks in DataORAM and has constant cost Oλ(1) (line

3-12 in Algorithm 7). The total cost of SS-DOT, including Server 1 fetching blocks (line

1(a) in Algorithm 15), the S2PC generating keys (line 2(d) in Algorithm 15), Server

1 encrypting blocks (line 3(b) in Algorithm 15), and the maximum cost of Server 2

decrypting blocks (line 4(b) in Algorithm 15), is linear to the number of blocks fetched

on the path and in the stash (with constant size) hence is Oλ(logN). Distributed

permutation also has total cost linear to the blocks on the paths and in the stash (line

1 in Algorithm 16), therefore Oλ(logN).

Table 4.4 summaries the above cost and the total computational complexity of OblivShare

for both Upload and Download is Oλ((S+log2N ) logN)·ω(1). Upload and Download have

the same computational complexity and communication complexity following Metal’s

protocol [48], which is linear to the file size S and poly-logarithmic to the number of

files N .
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Stage Computational Complexity

Upload Oλ((S+log2N ) logN +logN) ·ω(1) = Oλ((S+log2N ) logN) ·
ω(1)

Download Oλ((S + log2N ) logN + logN + 1) · ω(1) = Oλ((S +
log2N ) logN) · ω(1)

Table 4.4: Total computational complexity for Upload and Download stages.

4.6 Conclusion

We proposed OblivShare, a lightweight privacy-preserving file sharing scheme that for

the first time protects expiration metadata together with file access patterns from servers

meanwhile ensures oblivious expiration control by adopting cryptography protocols in-

cluding Secure Computation and ORAM, which fill the gap in the previous chapter. We

prove that our protocol can achieve its security goals without additional cost that the

computation and communication complexity is poly-logarithmic to the number of files.



Chapter 5

Secure and Privacy-Preserving

Multi-Party Path Planning

Framework

The previous experiment of practical privacy-preserving file sharing focused on enhanc-

ing metadata privacy atop of E2EE, underscoring secure data management and access

control in digital communication. With the increasing deployment and growing popu-

larisation of unmanned aerial vehicles (UAVs), such as surveillance, package delivery,

and environmental monitoring from both civilian and even military use scenarios, pro-

tecting their sensitive operational data and metadata is essential to address emerging

privacy and security challenges. The secure computation primitives established in the

earlier chapter provide a solid cryptographic foundation to extend privacy-preserving

techniques to collaborative UAV operations, aiming to contribute to the growing field of

research addressing privacy concerns in drone applications and provide a foundation for

the development of secure and collaborative UAV systems across diverse domains with

a balance between robust security measures and operational feasibility.

This chapter presents a novel approach that employs SMPC techniques atop generic

path planning algorithms to address these security and privacy challenges. SecuPath, a

secure framework that leverages cryptographic protocols for secure communication and

computation, enables multiple entities to jointly compute optimal drone paths without

revealing their private inputs to any party. By integrating this privacy-preserving layer

59
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onto generic drone path planning algorithms, we ensure the optimality of the planning

process while significantly elevating the privacy and security standards of UAV path

planning operations. This framework not only preserves the confidentiality and privacy

of sensitive data, but also fosters collaboration in scenarios where data sharing is essen-

tial, such as in urban airspace management or disaster response. Moreover, this chapter

analyse the communication and computation overhead introduced by the SMPC and

demonstrate the protocol remains practical.

5.1 Introduction

5.1.1 Background

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have witnessed widespread

adoption in both civilian and military domains due to their versatility and capability

to perform a wide range of tasks. In civilian applications, drones are utilised for tasks

ranging from surveillance and package delivery to environmental monitoring, providing

efficient and cost-effective solutions [102, 103]. Simultaneously, in military operations,

UAVs play a pivotal role in reconnaissance, surveillance, and tactical operations, en-

hancing situational awareness and operational capabilities [104, 105].

However, the increasing deployment of drones into various applications has brought

forward a number of security and privacy concerns, particularly in the realm of data

exchanged during path planning. Path planning is a critical aspect of drone operations,

influencing their trajectory and optimal navigation. However, existing path planning

algorithms often require data communication between multiple parties, such as data

owners and edge servers, introduction potential threat to the privacy of sensitive infor-

mation shared during path planning. Issues such as GPS spoofing [106] and interception

of communication channels [107] have raised alarms regarding the confidentiality of data

exchanged between drones and their control systems.

In response to these concerns, several legal frameworks and regulations have been estab-

lished to safeguard the privacy of data collected and used in drone operations, whether

it be location data, images, or other identifiable details. Regulations such as the General

Data Protection Regulation (GDPR) [43] and specific guidelines provided by aviation
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authorities [108] set strict standards for the collection, storage, and processing of data,

emphasising the need for responsible and secure handling of sensitive information to

ensure that only the necessary and lawful information is shared among stakeholders to

protect against unauthorised access or data breaches.

5.1.2 Motivation

This chapter addresses the pressing need for enhancing the security and privacy of

drone path planning, focusing on the multi-party setting involving data owners, edge

servers, and other relevant entities. The objective is to enable secure collaboration

between multiple parties involved in the drone ecosystem without compromising the

confidentiality of their respective data.

The motivation behind this research question stems from the need to address emerging

and sophisticated security and privacy threats. As UAVs become integral to diverse

applications, ensuring the confidentiality, integrity, and availability of data exchanged

during path planning is crucial. We present some typical concerns to demonstrate why

data privacy is imperative for collaborative UAV path planning.

Prevent Path Inference Attacks. In the context of collaborative UAV search and

rescue operations, multiple organisations collaborate to plan paths for UAVs searching in

a disaster-stricken area. Adversaries may exploit shared path planning data to analyse

the trajectories of UAVs involved in search and rescue missions, which could reveal

sensitive information, such as the targeted locations or critical waypoints, potentially

compromising the safety and security of the mission. Preventing path inference attacks

can ensure that trajectories contributed by collaborating entities remain confidential,

maintaining the effectiveness and security of the collaborative UAV efforts in disaster

response scenarios.

Protect against Exposure of Operational Constraints. Consider a scenario where

multiple organisations collaborate on a UAV mission that involves surveillance in a sen-

sitive facility. The UAVs have specific operational constraints, including altitude limits,

speed restrictions, and predefined flight paths within the secure facility to prevent unau-

thorised access. An adversary may attempt to exploit the collaborative path planning
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data to extract specific operational constraints, e.g., altitude limits, to identify vulner-

abilities in the surveillance system. Safeguarding the operational constraints is vital to

prevent potential adversaries from gaining insights into the security measures in place,

protecting the privacy of UAV operational parameters, and adhere to regulations or

policies specific to the facility.

Preserve Identity Privacy in Collaborative Path Planning. Imagine a con-

sortium of engineering companies collaborates to deploy UAVs for inspecting critical

infrastructure, each contributing expertise and data for inspecting specific sections of

infrastructure. The shared path planning data may contain details about the expertise

of each company, their inspection methodologies, and specific sections of infrastructure

under their responsibility. An adversary could exploit the path planning data to deduce

the involvement of specific engineering company in the consortium, which could lead to

potential competitive disadvantages, industrial espionage or risks related to intellectual

property. Preserving data privacy is crucial to prevent potential identification of specific

collaborators involved in the consortium.

5.1.3 Challenges

There are multiple perspectives and respective approaches to achieve privacy-preserving

UAV path planning, and this research will focus on solving data privacy issues by ad-

dressing the following main technical challenges:

Challenge: how to preserve data privacy in collaborative UAV path planning

while maintaining effective communication and collaboration between drone

operators and edge servers? There are several security concerns that we aim to

address during path planning: 1) Data confidentiality and privacy: The data collected

by drones such as terrain information, ecological parameters and weather conditions that

are used in optimising the UAV’s route, the operational constraints such as maximum

flight height, restricted areas must be kept private and secure to protect the privacy of

customers. 2) Data integrity: The data sent and received by drones, such as current

geographic coordinates, planned way-points in the optimal path, must be accurate and

verified to ensure correct trajectories and mission objectives. 3) Authentication and

access control: It is crucial to verify the identity of the party that requests access to

the edge server, and hide collaborator identity data, such as responsibilities and access
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permissions of individuals or organisations involved in the planning process. 4) Secure

communication: All communications between the parties must be encrypted. To the

best of our knowledge, whereas many scholars have developed frameworks to optimise

UAV path planning [109], there is no prior research focusing on preserving data privacy

in the entire path planning life cycle, hence a gap exists to address such path planning

data privacy.

In summary, this research aims to establish an effective privacy-preserving path plan-

ning system to ensure anonymous and secure communication among collaborators, and

maintain the confidentiality and integrity of shared data. It will not design novel cryp-

tographic primitives, nor access control mechanisms.

5.1.4 Contributions to knowledge

We now propose SecuPath, a innovative approach to address privacy challenges in collab-

orative UAV path planning using multi-party secure computation. The key contributions

can be outlined as follows:

1. Privacy-Preserving Collaborative Framework We introduce a novel collabo-

rative framework that integrates SMPC techniques into UAV path planning. This

framework allows multiple entities to collaboratively plan UAV paths while pre-

serving the privacy of sensitive input data, such as the drone’s current location

and planned path, from exposing to the each other or other unauthorised parties.

2. Enhanced Security Mechanisms We incorporate cryptographic techniques to

ensure the integrity and authenticity of the transmitted data, effectively protect-

ing against prevalent risks in wireless communication environments, such as data

tampering and GPS spoofing.

3. Balanced Efficiency and Security We provide a detailed analysis of the com-

munication and computation complexities introduced by the SMPC and crypto-

graphic operations, demonstrating the protocol’s practical feasibility. It enhances

security and privacy performance while maintaining operational efficiency, mak-

ing it suitable for real-world UAV applications with stringent performance and

resource constraints.
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4. Application to Diverse UAV Scenarios The design of the privacy-preserving

approach allows for applicability and adaptability of the proposed protocol across

versatile UAV scenarios, such as environmental monitoring, search and rescue,

and agricultural surveillance. Its security mechanisms can be adjusted based on

the specific requirements and threat models of different applications, offering a

versatile framework for secure UAV path planning.

5. Scalable Multi-Party Secure Computation Protocol We also approve that

our proposed privacy-preserving framework is a scalable multi-party secure compu-

tation protocol tailored to the requirements of collaborative UAV path planning.

This ensures that the privacy-preserving mechanisms are practical for real-world

applications.

5.2 Literature Review

This literature review delves into existing research on privacy-preserving path planning

and secure computation, offering insights into prior work that informs and contextualises

the current study.

5.2.1 Related Work

5.2.1.1 Privacy-preserved location-based services

Privacy concerns in the domain of UAVs path planning have spurred considerable re-

search efforts, with a focus on safeguarding sensitive data during planning processes.

In this context, [38, 110–112] employ differential privacy mechanisms [28] to protect

sensitive trajectory data. Their work addresses the challenge of concealing location in-

formation, providing a foundation for privacy preservation in UAV trajectory planning.

Building on privacy-centric approaches, [113] extended the exploration to cooperative

route planning. Their framework delves into preserving privacy, particularly regarding

intermediate waypoints, through cryptographic techniques. This work discusses privacy

in collaborative settings.
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Recent contribution [114, 115] proposed frameworks based on homomorphic encryption

to ensure the confidentiality of private data and compute over encrypted data efficiently.

Their work demonstrates the viability of leveraging advanced cryptographic techniques

to facilitate UAV collaboration without compromising individual confidentiality.

5.2.1.2 Secure UAV communications and computations

In parallel, cryptographic techniques play a pivotal role in enhancing drone security

by ensuring secure communication channels, verifying data integrity, and protecting

sensitive identity. [116] provides a comprehensive overview of Public Key Infrastructure

(PKI)-based security mechanisms tailored for UAV systems using a unique public-private

key pair assigned to each drone and central authority. [117] explores the efficacy of Hash-

based Message Authentication Code (HMAC) authentication protocols in securing UAV

communication networks to verify the integrity and authenticity of messages exchanged

between UAVs and ground control stations (GCS). Moreover, [118] discusses the integra-

tion of Advanced Encryption Standard (AES) encryption to protect sensitive data stored

on drones and transmitted over communication channels secure communication between

the UAV and GCS, addressing implementation challenges and optimisation strategies

for efficient encryption in resource-constrained UAV environments.

[119, 120] contributed secure communication and computing protocols tailored explicitly

for UAVs’ computational offloading strategy. The protocols empower offloading large

computing tasks to multiple entities that compute tasks in the presence of an eavesdrop-

per while maintaining secure communications. [121] proposed path planning algorithms

to determine and verify positions in a secure manner while producing short path lengths

in a reasonable processing time. [122] formulated secure trajectory planning to guaran-

tee that either the robot moves from a source to destination along the nominal trajectory

or that attacks remain detectable.

Additionally, Identity-Based Encryption (IBE) simplifies key management by using en-

tities’ identities as public keys, offering a promising approach for secure communication,

access control and authentication in drone systems. [123] proposes a security model

based on Identity-Based (IB) authentication scheme for UAV-integrated HetNets.
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Notation Description

D Drone

ES Edge Server

λ statistical security parameters in S2PC

V the set of vertices (locations) in a graph presentation

E the set of edges (paths) in a graph presentation

G the graph representation of the geographic area, where
G = (V,E) with weights representing distances or costs

U the currently considered vertex in the graph

Lcurrent current location of the drone

Ldestination destination of the drone operation

skHMAC shared secret key for HMAC

|V | the number of vertices in the graph

|E| the number of edges in the graph

I the number of iterations required by Dijkstra’s Algorithm

Table 5.1: SecuPath Notation

To the best of our knowledge, there is no existing framework that directly apply se-

cure computation to UAV path planning. This chapter endeavors to contribute to this

research field by proposing a practical, scalable, and efficient mechanism employing

multi-party secure computation atop generic algorithms for UAV path planning.

With SecuPath, we propose a privacy-preserving path planning framework that not only

allows anonymous and secure path planning in collaborative settings, but also achieves

lightweight system design on top of Dijkstra’s Algorithm.

5.3 Preliminaries

SecuPath makes black box use of secure multi-party computation, and adapt from the

classic Dijkstra’s algorithm to ensure optimality in path planning.

Notation. We define parameters, entities, denotations in SecuPath in Table 5.1.

5.3.0.1 Multi-Party Secure Computation

Existing multi-party secure computation protocols provide a foundation for privacy

preservation during collaborative path planning, which include cryptographic techniques

to ensure secure collaboration among multiple entities.
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The Millionaires’ Problem first described by Yao [25] enables to solve the following

problem: Alice and Bob have their own secret inputs, which are their wealth xA and

xB million, respectively. SMPC enables that Alice and Bob can compute a function

f(xA, xB) −→ (yA, yB) such that Alice learns only its function output yA while Bob

knows only yB, i.e., who is richer, and nothing else about the other party’s wealth.

Since Yao’s secure computation protocol was proposed, researchers have advanced a

number of variations and extensions to address different scenarios. Recent secure multi-

party computation (MPC) solutions includes private sorting [91], private computational

geometry [92], private voting [93], and private data mining [94, 95] etc.

5.3.0.2 Dijkstra’s Algorithm

We consider generic path planning algorithms for UAVs that can efficiently deploy se-

cure computation techniques. Among several well-established algorithms [124–126], we

choose Dijkstra’s Algorithm, a fundamental path-finding algorithm renowned for its ef-

ficiency in determining shortest paths within weighted graphs. Leveraging a priority

queue for exploration, it guarantees optimality while systematically updating the costs

to reach each node [127].

The algorithm starts by initialising the distances from the source (which is the starting

node) to all other nodes in a graph to infinity and the distance from the source to itself

to 0. The weighted directed graph is represented as an adjacency list. Next, a priority

queue is created, where each node is inserted with its current distance as the key. Then

the algorithm enters a loop that continues until the priority queue is empty. In each

iteration, the node with the minimum distance, which is extracted from the priority

queue, is selected for further exploration. For each neighbor of the selected node, the

algorithm explores potential paths by checking whether the distance from the source to

the neighbor node can be improved by going through the selected node. If a shorter

path is found, the distance is updated. This process continues until all nodes have been

processed, and the algorithm ensures that the final distances represent the shortest paths

from the source node to all other nodes in the graph. Given the source node, destination

node, and the predecessors obtained from the Algorithm 8, the Algorithm 9 outputs the

list of nodes representing the shortest path from the source to a destination node.
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Algorithm 8: Main Algorithm

Input graph, source
Output distances, predecessors

1. distances, predecessors← initialise(graph, source); //initialise the distance

2. Q← priorityQueue(graph.nodes, distances); //create a priority queue and
insert all nodes with their distances

3. while Q is not empty then

u← extractMin(Q); //extract the node with the minimum distance from
the priority queue

for v, edgeWeight in neighbors(u, graph)

tentativeDistance← distances[u] + edgeWeight; //calculate the
tentative distance from the source to the neighbor through the current
node

if tentativeDistance < distances[v]

distances[v]← tentativeDistance; //update the distance of the
neighbor

predecessors[v]← u; //set the current node as the predecessor of
the neighbor

updatePriorityQueue(Q, v, tentativeDistance); //update the
priority queue with the new distance of the neighbor

4. return distances, predecessors;

Algorithm 9: Reconstruct Shortest Path

Input source, destination, predecessors
Output path

1. path← []; //initialise an empty list

2. currentNode← destination; //from the destination node

3. while currentNode is not None then //until the source node

path.insert(0, currentNode); //inert nodes at the beginning of the list

current← predecessors[currentNode]; //backtrack by following the
predecessor links

4. return path;

It’s important to note that the efficiency of Dijkstra’s Algorithm is greatly enhanced

when using a priority queue data structure to efficiently extract the node with the

minimum distance in each iteration. The “relax” function is a key part of the algorithm

where the distances are updated if a shorter path is discovered.

As a conclusion of literature review, the privacy issue in UAV path planning has been

explored in the last several decades; however, none of the existing provides a holistic
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approach to privacy-preservation throughout the entire path planning life cycle. To

fill the gap, this chapter will try to apply the cryptographic primitives to construct a

privacy-preserving secure and anonymous path planning scheme.

5.4 System Overview

In this section, we propose a privacy-preserving path planning system by leveraging

Dijkstra’s Algorithm as the foundation for calculating the shortest path. A high-level

framework will be presented, and how to satisfy the privacy-preserving requirements will

be further discussed.

In SecuPath, the collaborative path planning process involves two main parties: a repre-

sentative drone responsible for collecting location data, and an edge server tasked with

performing path planning computations securely. While, for simplicity, we illustrate the

system with one drone and one edge server, it’s important to note that this configu-

ration can be seamlessly expanded to accommodate multiple entities. The overall goal

remains consistent, which is to ensure the privacy of sensitive location information while

determining the optimal route for the drone or any additional entities involved.

To understand how SecuPath fulfils the path planning operations securely, we present

an overview of SecuPath’s design, threats and security goals.

5.4.1 System Architecture

A high-level framework of SecuPath is illustrated in Figure 5.1, which consists of one

edge server, and one drone client (in this chapter, drone is used interchangeably with

drone client):

5.4.1.1 Parties Involved

• Drone Client represent the UAV responsible for collecting environmental data

from its surroundings and initiating path planning requests, acting as one of the

parties in the S2PC protocol. It takes as input the initial and destination loca-

tions, along with the graph representing the environment, and any operational
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constraints. The drone encrypts its input data using a secure encryption scheme

to maintain the confidentiality of sensitive location information and then sends

the encrypted request to the edge server. It receives and executes the path plan

result from the edge server, and also updates the edge server periodically with

its real-time status and any changes in the environment that might require a path

re-calculation. The drone is equipped with light computing capabilities to perform

preliminary data processing.

• Edge Server serves as the second party in the S2PC protocol, and execute the

path planning algorithm securely to generate an optimal path. It takes the en-

crypted data received from the drone as the input and any additional information

available to the server. The edge server performs the S2PC with the encrypted

inputs, utilising cryptographic techniques to compute the shortest path without

gaining knowledge of any sensitive information such as the actual locations. The

output is an encrypted representation of the optimal path and the edge server sends

the encrypted path back to the drone. It also monitors ongoing operations and

suggest path adjustments in response to changing conditions or threats detected.

The edge server acts as computational hubs with enhanced processing capabilities

compared to drones, and execute resource-intensive tasks such as S2PC and path

optimisation algorithms.

5.4.1.2 Data Flow

1. Input Collection and Encryption Drone Client collects initial environment

data such as terrain information, obstacle positions, and weather conditions. The

Drone processes its initial data locally to extract relevant features and reduce

dimensionality, and encrypts using SMPC encryption techniques.

2. Request Path Planning Drone Client sends encrypted data securely to the Edge

Server using cryptographic protocols requesting for an optimal path. Communi-

cation channels are safeguarded to prevent unauthorised access or tampering.

3. Secure Path Planning Edge Server receives the encrypted data from Drone and

executes S2PC protocols to collaboratively compute optimal paths while preserving

data privacy. Dijkstra’s Algorithm is executed on the encrypted data to determine

the most efficient paths. Edge server encrypts the output of the path planning
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Edge Server  
Intensive Computation

2. Encrpted input data transmission

4. Encrpted output data transmission

Drone
Light Computation

1. Input preparation

Zone 2

Zone 3

Zone 1

3. Secure path planning

5. Output decryption

S2PCS2PC

Figure 5.1: High level framework. A drone client sends its request of path planning
with encrypted inputs to the edge server. The edge server executes the request in S2PC
and sends back the encrypted path planning response. The drone then decrypts the

encrypted path for further navigation.

computation using S2PC techniques. S2PC ensures that sensitive data remains

encrypted throughout the computation process, preventing exposure to any single

entity.

4. Path Planning Response Edge Server sends the encrypted path planning result

back to the requesting drone securely.

5. Result Decryption The drone decrypts received paths locally using SMPC de-

cryption techniques, ensuring data confidentiality is maintained until the final

execution stage.

6. Continuous Updating During the entire course of the flight, the drone sends

periodic updates to the edge server and the edge server can re-compute the path

based on the updates and send updated commands to the drone, ensuring contin-

uous secure communication.

As has been mentioned before, the system can be extended to include multiple drones.

Also GCS can be added to the framework between a drone and an edge server that can

perform intermediate computation and forward encrypted data to the edge server and

send optimal path or route plan back to drones. Furthermore, as drones can fly over

long distance covering a extensive area, the edge server is whichever responsible one in

respective zones.
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5.4.2 Threat Model

The following section provides a structured overview of the threat model for the pro-

posed protocol by clarifying assumptions, identifying vulnerabilities, and guiding the

implementation of security mechanisms, which establishes the security landscape for the

secure computation protocol for drone path planning.

5.4.2.1 Assumptions

SecuPath makes the following assumptions:

Honest-but-Curious Entities SecuPath assumes that both the drone and the edge server

are honest-but-curious, which means that they will follow the protocol but may attempt

to learn sensitive information from the protocol execution.

Secure Communication Channel SecuPath assumes a secure communication channel

between the drone and the edge server via existing encryption and authentication mech-

anisms such as Transport Layer Security [128] to ensure data in transit are secured.

Secure Environment Both the drone and the edge server operate in a secure environment

against malicious physical or network access, e.g. firewalls, intrusion or hazard detection

and response systems are implemented to prevent unauthorised access.

Network Resilience The communication network is assumed to have advanced defense

mechanisms against DoS attacks, not only including rate limiting and traffic analysis but

also redundancy to ensure the path planning services remain available despite potential

network-based threats.

5.4.2.2 Threats

SecuPath considers the following threats:

1. An adversary may attempt to intercept the communication between the drone and

the edge server and deduce sensitive information such as location data.

2. An adversary may tamper with the data in transit to disrupt the protocol execu-

tion, leading to incorrect optimal path calculation or false results.
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3. An adversary can spoof the edge server’s identity to send malicious commands to

the drone or replay old computation results to disrupt the operation.

4. An adversary may exploit unintended sensitive information leakage through analysing

timing patterns or power consumption.

5.4.2.3 Security Goals

We now present security goals of SecuPath with respect to the above threats.

1. Confidentiality SecuPath ensures sensitive information including path planning

inputs, outputs and intermediate computations results remain confidential and not

accessible to unauthorised parties throughout the protocol execution via secure

computation.

2. Integrity SecuPath ensures the accuracy and completeness of information utilising

cryptographic mechanisms to prevent data tampering during the communication

between the drone and the edge server.

3. Authenticity SecuPath verified the identities of participating parties using se-

cure channels and authentication mechanisms to prevent illegitimate parties from

accessing the computation environment.

SecuPath guarantees the goals above based on common cryptographic assumptions.

However, OblivShare does not address physical or DoS attacks, which has been clarified

in the §5.4.2.

5.5 Detailed Construction

The proposed protocol SecuPath involves collaborative computation between the drone

and the edge server to calculate the optimal path while preserving data privacy. The pro-

posed protocol leverages existing SMPC technique for the implementation of Dijkstra’s

Algorithm, aiming to achieve the security goals while ensuring operational efficiency.

Note that in SecuPath, the edge server is responsible for performing heavy compu-

tational tasks, such as circuit generation for secure computations and executing the
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encrypted form of Dijkstra’s Algorithm. The drone, on the other hand, participates in

the S2PC protocol by sharing encrypted inputs and decrypting the received path plan-

ning results. This setup minimises the computational load on the drone, conserving its

resources while leveraging the edge server’s more substantial computational capabilities.

5.5.1 Path Planning in S2PC

SecuPath consists of several steps, which are depicted in the remaining of this section.

5.5.1.1 Input Preparation

The drone and the edge server each prepare their respective inputs for the Dijkstra’s

Algorithm computation and establish a secure communication channel.

The drone collects location data and initiates the path planning request by securely

sending its current location (i.e., starting node) and destination, both encrypted, to the

edge server.

The edge server prepares the encrypted graph representation for the shortest path com-

putation by encrypting each edge weight using S2PC protocols, ensuring all data used

in the computation is in encrypted form suitable for S2PC without revealing the actual

weights or the structure of the graph to any party.

Note that in SecuPath, the drone establishes a secure session by initiating a secure session

to the edge server and incorporate mutual authentication and nonce-based mechanisms

to ensure message freshness as shown in Algorithm 10 and 11.

5.5.1.2 Secure Path Computation

1. Initialisation. The edge server initialises the distances from the starting point to

all other vertices in the graph to infinity, except for the starting vertex, which is set

to zero following Dijkstra’s Algorithm, and all these distances are also encrypted.

2. Circuit Generation. Next, the edge server sets up the secure computational en-

vironment by generating the necessary S2PC circuits, e.g., a comparison circuit

to compare two encrypted values to determine which is smaller, and an addition
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Algorithm 10: Drone: Input Preparation

Input Lcurrent, Ldestination

Output L∗
current, L

∗
destination, noncereq, valueHMAC

1. noncereq ← generateNonce(); //Generate a unique nonce for the session to
prevent replay attacks

2. L∗
current ← encrypt(Lcurrent, skD), L

∗
destination ← encrypt(Ldestination, skD);

//encrypt current location and destination using SMPC-compatible encryption

3. valueHMAC ← generate(L∗
current + L∗

destination + noncereq, skHMAC) //generate
HMAC for the encrypted data including the nonce to ensure integrity and
authentication

4. return L∗
current, L

∗
destination, noncereq, valueHMAC ;

Algorithm 11: Edge Server: Input Preparation

Input L∗
current, L

∗
destination, noncereq, valueHMAC

Output G∗

1. if NOT verifynonce(noncereq)

raise Exception; //verify the nonce to prevent replay attacks

2. if NOT verifyHMAC(L
∗
current + L∗

destination + noncereq, valueHMAC , skHMAC) :

raise Exception; //verify HMAC to ensure the integrity and authenticity
of the received data

3. G∗ ← {}; //proceed with preparing the encrypted graph for path planning

4. for each V // iterate over each vertex in the graph

E∗ ← {};
for neighbor, weight in edgesofV // iterate over each neighbor and edge
weight connected to the current vertex

weight∗ ← encrpytSMPC(weight); // encrypt the edge weight using
SMPC

E∗[neighbor]← weight∗ // store the encrypted edge weight for the
current vertex

G∗[V ]← E∗; // store the dictionary of encrypted edge weights for the
current vertex in the encrypted graph

5. return G∗

circuit to securely add two encrypted values to update distances. The circuits

incorporate operations for graph traversal, distance calculation, and shortest path

determination, hence are crucial for executing Dijkstra’s Algorithm securely to

find the minimum distance on encrypted data.



76

3. Dijkstra’s Algorithm Execution. The edge server then executes Dijkstra’s Algo-

rithm using the encrypted graph and distances, employing the previously gener-

ated S2PC circuits for all comparisons and additions. The computation iteratively

updates the encrypted distances to each vertex until the shortest path is deter-

mined without decrypting any intermediate results, thus preserving privacy. After

computing the shortest distances, the edge server utilises secure circuits to recon-

struct the path from the start vertex to the destination, ensuring that the path

itself remains encrypted and private.

4. Result Reconstruction. Once the shortest path is determined, the edge server

utilises secure circuits to reconstruct the path from the start vertex to the desti-

nation, and securely sends the encrypted path result back to the drone.

Algorithm 12 shows the secure computation on the edge server side.The edge server

manage all the intensive computational tasks, including preparing the graph, generating

S2PC circuits for secure operations, executing Dijkstra’s Algorithm in an encrypted

domain, and securely reconstructing the optimal path, while ensuring the process adheres

to S2PC principles. This ensures that heavy lifting computations are offloaded to the

edge server, which has more resources.

5.5.1.3 Result Retrieval

The drone receives the encrypted path and decrypts it to retrieve the optimal path

planning result and act upon the optimal path for further navigation. This step is

computationally light, aligning with the intention to minimise the drone’s processing

load.

The decryption process is a collaborative effort where the final computation result,

i.e., the encrypted path can only be decrypted by the drone, which relies on the unique

capabilities of SMPC to securely aggregate computations and reveal only the final output

to authorised parties.

To secure the transmission of the computed path from the edge server to the drone,

SecuPath uses HMAC for message integrity and authentication, along with a new nonce

to prevent replay attacks.
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Algorithm 12: Edge Server: Secure Path Computation

Input L∗
current, L

∗
destination, G

∗

Output path∗

1. circuitcomp ← GenerateComparisonCircuitSMPC(); // generate SMPC circuits
for secure computations

2. circuitadd ← GenerateAdditionCircuitSMPC();

3. distances∗, predecessors∗ ← initialiseSMPC(G
∗); // setup initial encrypted

distances and previous nodes using SMPC encryption technique

4. Q← G∗.keys(); // create a priority queue to select the node with the lowest
tentative distance

5. while Q is not empty then

U ← extractMinSMPC(Q, distances∗); // extract the unvisited node with
the smallest distance

Q.remove(U);

for neighbor, weight in G∗[U ] // explore the neighbors of the current node

tentativeDistance← addSMPC(circuitadd, distances
∗[U ], weight); //

calculate tentative distance to neighbor

if compareSMPC(tentativeDistance, distances∗[neighbor]) // compare
if the tentative distance is less than the current distance

distances∗[neighbor]← tentativeDistance; // update the distance
and the predecessor node

predecessors[neighbor]← U ;

6. path∗ = reconstructSMPC(predecessors
∗, L∗

current, L
∗
destination); // securely

reconstruct the path from the destination to the start

7. return path∗

Algorithm 13: Edge Server: Result Retrieval

Input path∗

Output path∗, nonceresp, pathHMAC

1. nonceresp ← generateNonce(); //Generate a new nonce for the session

2. pathHMAC ← generate(path∗ + nonceresp, skHMAC) //generate HMAC for the
encrypted path

3. return path∗, nonceresp, pathHMAC ;

5.5.2 Security Guarantee

The proposed protocol ensures the confidentiality, integrity, and authenticity of path

planning computations between the drone and the edge server, under the security as-

sumptions outlined in § 5.4.2.
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Algorithm 14: Drone: Result Retrieval

Input path∗, nonceresp, pathHMAC

Output path
1. if NOT verifynonce(nonceresp)

raise Exception; //verify the nonce to prevent replay attacks

2. if NOT verifyHMAC(path
∗ + nonceresp, pathHMAC , skHMAC) :

raise Exception; //verify HMAC to ensure the integrity and authenticity
of the received data

3. path← decryptSMPC(path
∗); //decrypts the path using its part of the SMPC

decryption protocol to obtain the actual navigational instructions

4. return path

The proposed S2PC protocol for Dijkstra’s Algorithm securely computes the shortest

path in a semi-honest model, where the participating parties follow the protocol but are

curious to learn additional information.

The detailed construction achieves the security goals mentioned in the Threat Model

section as follows:

1. Confidentiality SecuPath utilise encrypted sessions and S2PC to ensure sensi-

tive information remains confidential. Given the secure computation environment,

path planning upon the encrypted data does not reveal any information about

the underlying inputs values or intermediate computation result. The protocol

ensures that neither the drone’s current location and destination nor the details

of the computed path are revealed to the edge server.

2. Integrity SecuPath uses nonce to prevent replay attacks, and HMACs for subse-

quent data exchanged between the drone and the edge server to ensure that the

data hasn’t been tampered with.

3. Authenticity SecuPath uses HMACs as a mechanism for authenticating the origin

of the messages for each data communication. Derived from a shared secret key,

only the legitimate parties that possess the shared key can generate or verify the

correct HMAC for a message, therefore achieves mutual authentication during the

secure communication session.
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5.5.3 Performance Evaluation

We will provide an analysis of both communication and computation complexity for

SecuPath. Given that SMPC introduces overhead due to the encryption, decryption,

and secure computation processes, we will evaluate how these aspects impact the overall

performance on top of the Dijkstra’s Algorithm. We use the Big O notation Oλ(·) to

present the complexity, while

5.5.3.1 Communication Complexity

The primary communication occurs during Input preparation andResult Retrieval,

when the drone sends its encrypted data to the edge server and receives the encrypted

path from the edge server. Each involves a single round of communication, with the data

size depending on the encryption scheme but typically proportional to the size of the

input data. The complexity of secure session establishment is O(1), and cryptographic

operations for encryption and HMAC generation/verification in Algorithm 10 and 11

also have a complexity of O(1). The complexity of transmitting the path planning

requests and results can vary based on the path length but generally remains small.

Therefore, the overall communication complexity is O(1) assuming fixed-size encrypted

data (both the inputs and the output path result) and the SMPC encryption does not

significantly alter the size of the transmitted data.

5.5.3.2 Computation Complexity

In Secure Path Computation, assuming the use of a priority queue for efficiency

and given the number of iterations I is equal to the number of vertices V , i.e. I = V

iterations, the computation complexity of executing Dijkstra’s Algorithm is O(|E| +

|V | log |V |). In the SMPC setting, the complexity remains the same, but the operations

are performed on encrypted data, leading to increased computational overhead. Assum-

ing the SMPC encryption operations have a complexity of O(λ), where λ presents the

security parameter affecting SMPC encryption operations, thus, the effective computa-

tion complexity is Oλ(|E|+ |V | log |V |). During result reconstruction, the complexity is

linear in the size of the path, O(p), where p is the path length, which is much smaller

than E or V , hence minimal compared to distance computation. The complexity of
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initial encryption and final decryption in SMPC in Input Preparation and Result

Retrieval typically have a complexity of O(n), when n is the size of the encrypted

inputs and outputs. However, this additional complexity is not substantial compared

to the complexity of executing Dijkstra’s Algorithm under SMPC, especially since n is

typically much smaller than the size of the graph data (|V | and |E|). Therefore, the

overall computation complexity is Oλ(|E|+ |V | log |V |).

5.6 Conclusion

In this chapter, we presented a novel framework SecuPath for privacy-preserving collab-

orative UAV path planning leveraging SMPC and Dijkstra’s Algorithm. Our framework

addresses the critical need for protecting sensitive information such as the drone’s cur-

rent location, destination, and computed paths remains encrypted throughout the path

planning operations, particularly in scenarios involving multiple parties with privacy

concerns.

SecuPath addresses significant security concerns including privacy-preserving computa-

tion, integrity and authenticity, replay attack mitigation, and a balance between security

and efficiency. By using a combination of SMPC and cryptographic techniques, despite

the added computational overhead of secure computation, SecuPath offers robust se-

curity solution to secure drone path planning while maintaining reasonable complexity.

SecuPath also ensures that the security measures do not excessively burden the drone’s

limited computational resources by offloading the computation intensive tasks to the

edge server.

SecuPath also offers feasibility and effectiveness for real-world applications, with the

capability to accommodate large-scale drone networks and can be easily adapted to

involve multiple entities (e.g. multiple drones, edge servers, and GCS) while maintaining

data privacy.
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Conclusion

This thesis has explored innovative approaches to enhancing privacy and security in vari-

ous contexts of data sharing and exchange. By focusing on privacy-preserving file sharing

with oblivious file expiration control and secure collaborative UAV path planning, the

research contributes significant advancements in cryptographic and privacy-preserving

systems.

The first contribution of this thesis is improving privacy performance atop of an exist-

ing E2EE file sharing web service Send in the industry, and proposes OblivSend that

supports oblivious expiration control by concealing the expiration control metadata in

GBF. It also demonstrates feasible application of Smart Contract in secure file shar-

ing solutions to take advantage of the immutability of a blockchain to detect malicious

mutations. OblivSend supports E2EE and allows users to set download constraints,

meanwhile efficiently protects metadata privacy by making the server oblivious of the

expiration control, which is entirely at the user’s control.

Building on the concept of metadata privacy, the second contribution of this thesis

is furthering OblivSend to design OblivShare, a privacy-preserving file sharing scheme

that employs ORAM for secure computation. OblivShare addresses the need for privacy-

aware users to ensure data security throughout the entire life cycle, preventing indefinite

cloud storage. The scheme supports user-controlled file expiration, conceals expiration

metadata from the server, and ensures the server is oblivious to file access patterns and

expiration states. The protocol’s complexity is poly-logarithmic to the number of files,

demonstrating its efficiency while maintaining privacy.

81
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Further, the third contribution of this thesis extends the scope of privacy-preserving

techniques to collaborative UAV path planning that involves data sharing and exchange

between client and server, addressing the increasing deployment of autonomous UAVs

in sensitive applications. SecuPath leverages SMPC to enable multiple entities to jointly

compute optimal drone paths without revealing their private inputs. This approach en-

sures data confidentiality and privacy, fostering collaboration in scenarios such as urban

airspace management and disaster response. The framework’s integration of crypto-

graphic protocols with generic path planning algorithms preserves the confidentiality of

sensitive data while maintaining the optimality of the planning process.

The research presented in this thesis has several important implications:

• Enhanced Privacy and Security: The proposed systems provide robust solu-

tions to ensure the privacy and security of sensitive data exchanged in file sharing

and UAV operations, addressing critical challenges in modern digital communica-

tion and autonomous systems.

• User Empowerment: By allowing users to control expiration constraints and

protect metadata, the research empowers users with greater control over their data,

fostering trust and confidence in digital services.

• Scalability and Efficiency: The proposed schemes demonstrate efficient perfor-

mance and scalability, making them practical for real-world deployment in various

applications.

This thesis has made contributions to the field of privacy-preserving systems by address-

ing key challenges in secure data sharing and UAV path planning. The proposed solu-

tions demonstrate the feasibility and effectiveness of advanced cryptographic techniques

in enhancing privacy and security. The suggested future research directions provide

a comprehensive roadmap for advancing the field, ensuring that privacy and security

remain at the forefront of digital innovation.

Through rigorous exploration and innovative solutions, this research has laid a solid foun-

dation for future advancements in privacy-preserving data exchange systems, paving the

way for more secure and trustworthy digital interactions in an increasingly intercon-

nected world.
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Future Directions

Building on the foundational work in privacy-preserving data exchange in file sharing and

UAV path planning, this chapter outlines some future directions that aim to advance the

field of privacy-preserving technologies leveraging the underlying cryptographic primi-

tives.

• Scalability and Performance Optimisation: Future research should focus

on developing scalable cryptographic protocols and algorithms that can efficiently

handle large datasets and accommodate increasing numbers of concurrent users.

Techniques such as parallel processing, distributed computing, and optimised cryp-

tographic primitives should be explored to minimise computational overhead and

latency. For instance, A* algorithm’s heuristic approach to guide the search to-

wards the most promising paths first can effectively reducing the number of nodes

evaluated and therefore lead to faster path calculations [129, 130], especially in sce-

narios with large datasets or complex network topologies where the path-finding

task involves evaluating numerous potential routes. In addition, PySyft’s opti-

misation techniques, such as parallelisation and resource allocation can enhance

computational efficiency and minimise latency in SMPC operations to improve

performance.

• Verifiable Data Exchange Framework: This thesis focuses on data and meta-

data confidentiality with semi-honest server setting. One future direction is to

extend current research to develop protocols that are robust against active adver-

saries capable of arbitrary deviations from the protocol, ensuring that the system

83
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remains secure even when some parties behave maliciously. This involves exploring

advanced cryptographic primitives and constructions for verifiable computation,

secure function evaluation, and authenticated data structures, also investigating

the incorporation Byzantine fault tolerance [131] into privacy-preserving systems

to ensure system reliability and security where components may fail and give con-

flicting information to different parts of the system. Such verifiable framework will

ensure users can trust the data and results provided by the system, even in the

presence of potentially malicious actors.

• Secure Collaborative Framework and Protocols: Advance research on se-

cure protocols for multi-party computation and collaborative data analysis. De-

velop techniques that enable secure and private collaboration while multiple parties

are involved with conflicting interests or varying levels of trust, ensuring fairness

and integrity in joint computations. Expand the application of SMPC to en-

able privacy-preserving computations across distributed and heterogeneous envi-

ronments. Investigate scalable and efficient protocols for secure data aggregation

and collaborative decision-making. This includes exploring FL [132], where mul-

tiple parties collaboratively train machine learning models without sharing raw

data, thereby preserving privacy and confidentiality.

• Integrating Machine Learning with Privacy Preservation: Explore the

integration of privacy-preserving data exchange techniques with machine learning

models.

There are some potential topics under the above context:

– Privacy-Preserving Machine Learning. This includes developing comprehen-

sive frameworks to train machine learning algorithms on encrypted data, en-

suring that the training process does not reveal sensitive information and

compromise data privacy.

– Secure Model Sharing and Verification. Investigate protocols for securely

sharing trained models and verifying the correctness of models and their pre-

dictions. This involves developing robust algorithms that can withstand at-

tempts to manipulate training data or model parameters to produce incorrect

outputs, hence defend against adversarial manipulations on machine learning

models in privacy-preserving settings.
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– Federated Learning. As has been mentioned above, FL allows multiple clients

to collaboratively train machine learning models without revealing personal

data, which incorporates privacy preservation with distributed training and

aggregation across a large population. Future research could focus on enhanc-

ing the privacy and security of FL by incorporating cryptographic techniques

such as SMPC and differential privacy [28]. This would ensure that the contri-

butions of each party remain confidential while achieving accurate and robust

models.



Appendix A

An Appendix

A.1 METAL’s synchronised inside-outside ORAM trees

A.1.1 Secret-shared doubly oblivious transfer

Let N be an array of the blocks in the stash and the 3h blocks on path p:

1. The two servers inside S2PC, generate n keys k1, . . . , kn such that S1 receives as

output all these keys, and S2 receives only ki. n = |stash|+ 3h+ 1.

2. For each j ∈ 1, . . . , n, S1 uses kj to encrypt 0 and mj to obtain cipher-texts zj and

cj respectively. S1 shuffles all the (zj , cj) pairs and sends them to S2.

3. S2 uses ki to decrypt the first cipher-text of each pair: only one zj , will decrypt

to 0. It then decrypts the corresponding cj and hence obtain mi.

A.1.2 Distributed permutation

Recall that Circuit ORAM selects two paths during eviction, hence we need to track

the movement of blocks in the stash and on the two paths, which has |stash| = 6h− 3

blocks.

Before each eviction, OblivShare appends a number tracker from 1 to |stash| = 6h− 3

to each block on the stash and two paths in ExpCtrlORAM inside S2PC. After the

86
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Algorithm 15: OblivData.Fetch

Input of S1: [i]1, p,DataORAM
Input of S2: [i]2

Output: mi

1. S1:

(a) blocks← Fetch(DataORAM, p). //fetch all blocks in stash and on path p

2. S2PC:

(a) i← [i]1 ⊕ [i]2

(b) blocks.Append(⊥); //add a dummy block at the end of the array

(c) n← |blocks|+ 1; //so that n = |stash|+ 3h+ 1

(d) for j = 1 to n do kj
$←− (0, 1)l; //generate n keys

(e) Outputs k1, . . . , kn to S1 and ki to S2.

3. S1:

(a) M ← {}[n] //initialise an array to store the encrypted pairs

(b) for j = 1 to n do (zj , cj)← Enckj (0,mj)); M.add((zj , cj));

(c) M.Shuffle();

(d) Sends M to S2.

4. S2:

(a) found← FALSE;

(b) p← 1 while p ≤ n and !found do

i. (zp, cp)←M [p− 1]; z
′
p ← Decki(zp);

ii. if z
′
p = 0 then found← TRUE; mp ← Decki(cp) = mi; //mi is the

i-th block on path p in DataORAM

iii. p++;

(c) Outputs mi.

ExpCtrlORAM’s stash eviction, the protocol extracts the trackers and construct an

array of the numbers. Note that some numbers no longer exist as the attaching blocks

are removed during the eviction. In order to generate a permeation of the same |stash| =

6h− 3 elements, OblivShare searches for the missing trackers using a linear scan and fill

in the empty slots with unused numbers.

Below, we present how the two servers in secure computation put a block into the

DataORAM’s stash before eviction:

1. The S2PC places the following in an array: the blocks in the stash, the block read,

and the block to write, which has (|stash|+ 2) blocks.
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2. The S2PC finds that the k-th block of the stash is vacant, then generates a per-

mutation σread or σwrite, which exchanges the k-th block with the read block for

σread or the block to write for σwrite. As a result, the correct block is inserted into

the stash (i.e. the first |stash| blocks of the permuted array).

3. The S2PC secret shares the permutation (σread or σwrite) into two permutations

σ1 and σ2, when σ2 = σ ◦ (σ1)−1. ◦ denotes composition of permutation and

σ ◦ (σ)−1 is the identity permutation.

4. S1 re-randomise the blocks, apply the permutations σ1, and sends the permuted

blocks to S2.

5. S2 re-randomise the blocks received, apply the permutations σ2, and sends the

permuted blocks back to S1.

6. S1 stores the permuted blocks in the corresponding location in DataORAM.
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Algorithm 16: OblivData.Sync

Input of S2PC: M
Output: M

′

1. for i = 0 to |stash|+ 6h− 4 do M [i].Append(i+ 1); //attach a tracker to each
block before ExpCtrlORAM’s stash eviction

2. M
′ ← ExpCtrlORAM.Evict(); //extract trackers after stash eviction

3. trackers← {}; //initialise an array to store the missing trackers
//do a linear scan to find numbers in {1, 2, . . . , |stash|+ 6h− 3} that are missing

4. for t = 1 to |stash|+ 6h− 3 do

(a) found← FALSE;

(b) k ← 0 while k ≤ 18 and !found do

i. if M
′
[k] = t then found = TRUE;

ii. else k ++;

(c) if !found then

i. trackers.add(i);

(d) t++

//do a linear scan to fill missing trackers into the empty slots

5. r ← 0

6. for j = 0 to |stash|+ 6h− 4 do

(a) if M
′
[j] = ⊥ then M

′
[j] = trackers[r]; r ++; //locate the empty slots and

fill in missing trackers

(b) j ++

7. σ ← Permutation.Gen(M,M
′
) //generate a permutation σ so that M

′
= M ◦ σ

8. σ1 ← $ //sample a random permutation

9. σ2 ← σ ◦ (σ1)−1 //composition of σ and inversion of σ1

10. Outputs σ1 to S1 and σ2 to S2;

11. S1:

(a) Re-randomise the cipher-texts of blocks;

(b) M1 = M ◦ σ1; //apply σ1 to M

(c) Sends M1 to S2.

12. S2:

(a) Re-randomize the cipher-texts of the blocks in M1;

(b) M2 = M1 ◦ σ2 = M
′
; //apply σ2 to M1

(c) Sends M
′
to S1.



Bibliography

[1] Nick Nguyen. Introducing firefox send, providing free file transfers while keeping

your personal information private, 2019. URL https://blog.mozilla.org/blo

g/2019/03/12/introducing-firefox-send-providing-free-file-transfers

-while-keeping-your-personal-information-private/.

[2] DOMO. Data never sleeps 7.0, 2019. URL https://www.domo.com/learn/dat

a-never-sleeps-7.

[3] Robert McMillan and Ryan Knutson. Yahoo triples estimate of breached accounts

to 3 billion, 2017. URL https://www.wsj.com/articles/yahoo-triples-est

imate-of-breached-accounts-to-3-billion-1507062804.

[4] Carole Cadwalladr and Emma Graham-Harrison. Revealed: 50 million facebook

profiles harvested for cambridge analytica in major data breach. The Guardian,

17:2018, 2018.

[5] Jason Silverstein. Hundreds of millions of facebook user records were exposed on

amazon cloud server, 2019. URL https://www.cbsnews.com/news/millions-f

acebook-user-records-exposed-amazon-cloud-server/.

[6] Zack Whittaker. Adultfriendfinder network hack exposes 412 million accounts,

2016. URL https://www.zdnet.com/article/adultfriendfinder-network-h

ack-exposes-secrets-of-412-million-users/.

[7] Jonathan Stempel and Nandita Bose. Target in $39.4 million settlement with

banks over data breach, 2015. URL https://www.reuters.com/article/us-t

arget-breach-settlement-idUSKBN0TL20Y20151203.

90

https://blog.mozilla.org/blog/2019/03/12/introducing-firefox-send-providing-free-file-transfers-while-keeping-your-personal-information-private/
https://blog.mozilla.org/blog/2019/03/12/introducing-firefox-send-providing-free-file-transfers-while-keeping-your-personal-information-private/
https://blog.mozilla.org/blog/2019/03/12/introducing-firefox-send-providing-free-file-transfers-while-keeping-your-personal-information-private/
https://www.domo.com/learn/data-never-sleeps-7
https://www.domo.com/learn/data-never-sleeps-7
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.cbsnews.com/news/millions-facebook-user-records-exposed-amazon-cloud-server/
https://www.cbsnews.com/news/millions-facebook-user-records-exposed-amazon-cloud-server/
https://www.zdnet.com/article/adultfriendfinder-network-hack-exposes-secrets-of-412-million-users/
https://www.zdnet.com/article/adultfriendfinder-network-hack-exposes-secrets-of-412-million-users/
https://www.reuters.com/article/us-target-breach-settlement-idUSKBN0TL20Y20151203
https://www.reuters.com/article/us-target-breach-settlement-idUSKBN0TL20Y20151203


Bibliography 91

[8] Cisco. Cisco 2024 data privacy benchmark study, January 2024. URL https:

//www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs

/cisco-privacy-benchmark-study-2024.pdf.

[9] IBM. Cost of a data breach report 2023, July 2023. URL https://www.ibm.co

m/reports/data-breach.

[10] Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable

constant-size fair e-cash. In International Conference on Cryptology and Network

Security, pages 226–247. Springer, 2009.

[11] DropSecure. Enabling true file transfer security: How dropsecure safeguards your

confidential data. Technical report, DropSecure, 2019.

[12] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-

generation onion router. Technical report, Naval Research Lab Washington DC,

2004.

[13] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is less: on the end-to-end

security of group chats in signal, whatsapp, and threema. In 2018 IEEE European

Symposium on Security and Privacy (EuroS&P), pages 415–429. IEEE, 2018.

[14] SendSafely. Powerful security that’s simple to use, 2019. URL https://www.se

ndsafely.com/howitworks/.

[15] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from

learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.

In Advances in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference,

Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 75–92.

Springer, 2013.

[16] Yanjun Shen, Bin Yu, Shangqi Lai, Xingliang Yuan, Shi-Feng Sun, Joseph K Liu,

and Surya Nepal. Oblivsend: Secure and ephemeral file sharing services with

oblivious expiration control. In International Conference on Information Security,

pages 269–289. Springer, 2022.

[17] Philip R Zimmermann. The official PGP user’s guide. MIT press, 1995.

[18] Trevor Perrin and Moxie Marlinspike. The double ratchet algorithm. GitHub wiki,

112, 2016.

https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-privacy-benchmark-study-2024.pdf
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-privacy-benchmark-study-2024.pdf
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-privacy-benchmark-study-2024.pdf
https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach
https://www.sendsafely.com/howitworks/
https://www.sendsafely.com/howitworks/


Bibliography 92

[19] Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Jörg

Schwenk, and Thorsten Holz. How secure is textsecure? In 2016 IEEE European

Symposium on Security and Privacy (EuroS&P), pages 457–472. IEEE, 2016.

[20] Rafail Ostrovsky. Efficient computation on oblivious rams. In Proceedings of the

twenty-second annual ACM symposium on Theory of computing, pages 514–523,

1990.

[21] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. Path oram: an extremely simple oblivious

ram protocol. In Proceedings of the 2013 ACM SIGSAC conference on Computer

& communications security, pages 299–310, 2013.

[22] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious ram

with o ((logn) 3) worst-case cost. In International Conference on The Theory

and Application of Cryptology and Information Security, pages 197–214. Springer,

2011.

[23] Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on

foundations of computer science (sfcs 1982), pages 160–164. IEEE, 1982.

[24] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings

of the forty-first annual ACM symposium on Theory of computing, pages 169–178,

2009.

[25] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Sym-

posium on Foundations of Computer Science (sfcs 1986), pages 162–167. IEEE,

1986.

[26] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
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