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Abstract

This thesis describes a multifaceted experimental analysis of b! s‘+‘� transitions using
data taken with the LHCb experiment. The results of this work bring interesting and
important new insights to one of the most active discussions in modern particle physics —
that of the B anomalies and the search for New Physics in the flavour sector. The main
results are obtained through a comprehensive study of local and non-local amplitudes
contributing to the B0! K�0�+�� decay, whereby the angular distribution is analysed
over the complete available phase space including all dimuon resonance regions for the first
time. The findings provide support to previous LHCb measurements of this decay and
further allow for a data driven reappraisal of the theoretical assumptions inherent in the
comparisons of previous results to Standard Model expectations. An ongoing analysis of
the differential branching fraction of the �0

b! ��+�� decay as a function of the squared
dimuon invariant mass is also presented. This new analysis aims to achieve a significant
enhancement in precision relative to previous measurements and to observe the decay for
the first time in new regions of the dimuon invariant mass spectrum. Both of the analyses
presented in this thesis constitute important steps towards a deeper understanding of the
Weak Effective Theory for b! s‘+‘� transitions, which has been a major area of focus in
high energy physics for the past two decades.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is the modern pinnacle of physical theories.

It is capable of explaining a broad range of natural phenomena in terms of a relatively

simple collection of fundamental particles, which interact via just three fundamental

forces. Essentially all predictions of the SM have held up under scrutiny, all the way up

to the most extreme energies achievable by modern particle physics experiments. These

experiments, mostly consisting of particle accelerators such as the Large Hadron Collider

(LHC) [1], are speci�cally designed to push the SM to its energetic limits and to collect

enormous data samples for precision measurements. However, even as the energy scale

increases and experimental precision improves, the predictions of the SM remain largely

unwavering, with only a handful of measurements showing any appreciable tension.

Arguably, the most notable set of deviations from the SM are the so-calledB anomalies.

These measurements fall under the umbrella of 
avour physics, the study of 
avour changing

interactions of quarks and leptons. TheB anomalies refer speci�cally to a set of precision

measurements of processes involving ab! s`+ ` � transition that seemingly disagree with

the predictions of the SM at the level of around 3 standard deviations (3� ) [2{ 7].1 These

anomalous results have generated a lot of interest and the processes that harbour these

small disagreements between theory and measurement have been the subject of intense

study for more than a decade.

The main justi�cation for giving such weight to the B anomalies is that, despite the

many successes of the SM, the need for New Physics (NP) which goes beyond it is clear [8].

There are several important limitations of the SM that render it an incomplete theory |

with one example being the fact that a consistent theory of gravity is entirely absent in

the SM. Other examples include its failure to predict or explain dark matter [9, 10], and

1Throughout this document, charge conjugation of any process is implied unless otherwise speci�ed. That
is, for example,b! s`+ ` � , b! s`� `+ .
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the problem of baryon asymmetry in the universe [11]. A number of promising theoretical

frameworks have been and continue to be developed that can provide the necessary

extensions to the SM in a natural and aesthetic way | for example, supersymmetry [12]

(SUSY). However, the baseline requirements for SUSY have thus far failed to materialise

in experiment and the LHC has excluded a large portion of the parameter space for SUSY

theories [13, 14]. Other NP frameworks that aim to supersede the SM, such as string

theory [15], have not yet reached the level of making testable predictions. This predicament

has perplexed physicists for many years. However, if con�rmed, theB anomalies may just

provide the missing insight needed to make progress.

Whether the B anomalies will persist and provide a pathway towards NP is certainly

not incontrovertible. In fact, the most historically signi�cant measurements among theB

anomalies were that of the observables,RK and RK � 0 , which are de�ned as ratios between

the branching fractions of theB ! K (� )e+ e� and B ! K (� ) � + � � decays. The values of

RK and RK � 0 are among the most precisely predicted quantities in the SM, and theLHCb

measurements were found to deviate from the SM predictions by 2{3� [16, 17]. However,

a revised simultaneous measurement ofRK and RK � 0 was recently published byLHCb

that was found to be in agreement with the SM at 0:2� [18, 19]. The apparent anomaly in

the previous measurements was in fact due to a mixture of mischaracterised experimental

backgrounds and statistical 
uctuations. This highlights the unfortunate fact that even

very promising signs of NP can and often do vanish upon further investigation. It is

crucial to extract as much information as possible from the available data in order to

minimise the chance of spurious anomalies.

Within this thesis, a detailed investigation into the nature of theB anomalies is

undertaken. New experimental analyses of twob! s`+ ` � decay channels are presented,

which can contribute important new information in complementary ways. The �rst

analysis, presented in Chapter 4 of this thesis, consists of an amplitude analysis of the

B 0 ! K � 0� + � � decay in whichLHCb data is analysed in a completely novel way [20].

This decay channel harbours one of the most signi�cant individual deviations among

the remaining B anomalies | that of the P0
5 angular observable [4]. Smaller tensions

also exist for this decay in the di�erential branching fraction [21] and other angular

observables. However, recent conservative approaches to the SM calculation of these

observables suggest that the anomalies can be explained without any need for NP [22{ 25].

The explanation is centred around the in
uence of so-called nonlocal contributions in

which the B 0 ! K � 0� + � � decay proceeds through an intermediate hadronic state. The

calculation of these nonlocal contributions is notoriously di�cult and manifestly involves
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some assumptions, which until now have not been tested rigorously. In the amplitude

analysis presented here, the in
uence of the nonlocal contributions is determined for the

�rst time directly from data. The results are consistent with those of previousLHCb

measurements and, moreover, they allow to make concrete statements regarding the

theoretical interpretation with minimal assumptions.

The second analysis presented in this thesis, which is the subject of Chapter 5, is an

ongoing analysis of the di�erential branching fraction of the� 0
b ! �� + � � decay | a

quantity which has also shown imperfect agreement with the SM in a previousLHCb

measurement [26]. The new analysis aims to make the worlds most precise measurement

by analysing the full LHCb dataset collected during the years 2011{2018, representing

a roughly threefold increase in the size of the dataset. In the process, the new analysis

addresses several potential 
aws identi�ed in the previousLHCb measurement of Ref. [26].

The results of this analysis have not yet been revealed and will remain hidden until a

more rigorous evaluation of the systematic uncertainties involved in the �t procedure is

completed. Nevertheless, the full analysis procedure is described along with a sensitivity

study showing the expected statistical precision of the new measurement.

The structure and contents of the rest of the thesis is described below. An overview

of the relevant theoretical concepts is given in Chapter 2, which consists of a review of

mostly material that can be found in many particle physics textbooks. A description

of the LHCb experiment and detector is given in Chapter 3, which is a compilation of

material that can be found inLHCb papers and technical design reports. The amplitude

analysis ofB 0 ! K � 0� + � � decays described above is presented in full in Chapter 4,

which consists of original work performed alongside a small team of analysts within the

LHCb collaboration. The work presented in Chapter 4 builds upon foundations put in

place predominantly by the authors of Ref. [25] along with other members of theLHCb

collaboration. I have contributed to the redevelopment of some aspects of the model

along with: performing rigorous validation studies, a thorough investigation of systematic

uncertainties, and �nally carrying out the measurement onLHCb data and interpreting

the results in detail relative to state-of-the-art theoretical knowledge. This work concludes

almost a decade of collaborative research and has recently been submitted for publication

as anLHCb paper [20]. The di�erential branching fraction analysis of the� 0
b ! �� + � �

decay is presented in Chapter 5, which similarly consists of original work performed within

a small team ofLHCb analysts. Whilst some inspiration has been taken from previous

LHCb analyses of this decay, essentially all aspects of this analysis have been implemented

anew and are original to this thesis.
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Chapter 2

Theoretical background

2.1 The Standard Model

The SM is a quantum �eld theory (QFT) that describes the strong and weak nuclear inter-

actions along with the electromagnetic interaction | three of the four known fundamental

forces of nature. This section is intended to provide only a basic pedagogical overview of

the relevant concepts of the SM. The interested reader is referred to Refs. [27, 28], upon

which this section is based, for more detail.

In the SM, the particles we observe in experiments and that make up the world around

us, arise as excited states (quanta) of the fundamental �elds, the true objects at the heart

of the theory. The �eld content and dynamics of the SM are described by a Lagrangian

density function, L (henceforth simply Lagrangian), which will be the focus of this section.

It is informative to �rst write the SM Lagrangian as

L SM = L kinetic + L mass: (2.1)

The �rst term, L kinetic , essentially describes how the particles of the SM evolve and interact,

while the second term,L mass, is responsible for imparting mass to those particles. The

two components are constructed based on distinct underlying principles; hence, it is useful

to describe them separately as is done in the following sections.

2.1.1 The kinetic component

The kinetic component of the SM Lagrangian,L kinetic , is constructed by initially considering

a set of free (noninteracting)matter �elds and then requiring the Lagrangian to satisfy

certain symmetry relations. Symmetries are thoroughly important in QFT | continuous
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global symmetries of the Lagrangian imply the existence of conservation laws by Noether's

theorem. The conserved quantities are known ascurrents and they further imply the

existence of conservedcharges. For the kind of symmetries imposed on the SM Lagrangian,

the conserved currents and charges feature in couplings between the matter �elds and

force carrying �elds known asgauge �elds. The gauge �elds are introduced into the

Lagrangian to preserve the desired symmetries, which turns out to result in interactions

that correspond to the observed fundamental forces. To understand this, it is useful to

sketch an example of the procedure that will help to gain familiarity with the concepts

and terminology used in later sections.

For a �eld with a given intrinsic angular momentum (spin), it is possible to write down

the free Lagrangian which describes that �eld. For example, a scalar (spin 0) �eld,� , is

described by the Klein-Gordon Lagrangian,

L Klein-Gordon = @� @� � +
1
2

m2� 2; (2.2)

while a spinor (spin 1/2) �eld,  , is described by the Dirac Lagrangian,

L Dirac = � 
 � @�  � m �  ; (2.3)

where
 � are the Dirac gamma matrices, and� =  y
 0 is known as the adjoint �eld. A

vector (spin 1) �eld, A � , is described by the Proca Lagrangian,

L Proca = �
1
4

F�� F �� +
1
2

m2A � A � ; (2.4)

whereF�� = @� A � � @� A � is the �eld strength tensor. In each of these Lagrangians,m

represents the mass of the particle associated to the �eld1. Eqs. 2.2{2.4 are essentially the

building blocks of the SM Lagrangian. Particles with higher spins can be constructed in

the SM, but none of them are fundamental.

The fundamental matter particles of the SM, namely quarks and leptons, are spin 1/2

particles. The existence of these �elds in the SM Lagrangian is axiomatic in a sense,i.e.

L SM essentially begins as a sum of Dirac Lagrangians for each matter �eld j . Interactions

between particles are incorporated through the concept oflocal gauge invariance, meaning

the Lagrangian remains unchanged under spacetime dependent gauge transformations of

the �elds. For example, if L is a function of some matter �eld and U(x) is a unitary

1The form of the mass terms in each of Eqs. 2.2{2.4 is worth keeping in mind. In each case, the mass is
determined by the coe�cient of the term that is quadratic in the �eld. This term can be thought as the
lowest order self-interaction term, which acts to give the �eld a mass.
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transformation that may depend on the spacetime locationx, then local gauge invariance

requires2

L (U(x) ) = L ( ); where Uy(x)U(x) = 1 : (2.5)

Typically, U is based on a preexisting global symmetry | that is, the initial Lagrangian is

already invariant if U is constant over spacetime. However, such a global symmetry does

not hold locally if the Lagrangian contains only noninteracting matter �elds. Rather, it is

necessary to introduce a set of additional massless �elds, known as gauge �elds, which

couple to the matter �elds and transform in a speci�c way so as to ensure that Eq. 2.5 is

satis�ed. In the simple case ofU(x) 2 U(1), i.e. the gauge transformation corresponds to

multiplication by a complex phase, ! e� iq� (x)  , then a single gauge �eld is needed to

preserve the symmetry. Speci�cally, if one begins with the Dirac Lagrangian (Eq. 2.3) and

imposes local U(1) gauge invariance, a massless vector �eldA � is required that transforms

according toA � ! A � + @� � (x), such that the new Lagrangian given by

L = i � 
 � @�  � m �  �
1
4

(F�� )2 � (q � 
 �  )A � ; (2.6)

is invariant. The �nal term in Eq. 2.6 is an interaction term that couples A � to  via

the current J� = ( q � 
 �  ). This term is devised speci�cally to compensate for terms that

would otherwise spoil the U(1) gauge invariance. Evidently, since a local symmetry implies

a global symmetry, the new Lagrangian is also globally invariant under U(1) and the

associated conserved current isJ� . The term involving the �eld strength tensor, � 1
4 (F�� )2,

is just the Proca Lagrangian (Eq. 2.4) with no mass term,i.e. the free Lagrangian

describing the new massless spin 1 �eldA � . The Lagrangian of Eq. 2.6 turns out to be

exactly that of quantum electrodynamics (QED). The gauge �eld,A � , is identi�ed with

the electromagnetic vector potential whose quanta is the photon,J� is the electromagnetic

current, and q is the electric charge of the �eld that de�nes the strength and sign of its

coupling to the photon.

The easiest way to obtain Eq. 2.6 is by making the following replacement,

@� ! D � � @� + iqA � ; (2.7)

everywhere in Eq. 2.3 along with adding the free Lagrangian forA � . The D� operator

is called the covariant derivative and provides a universal method of creating a locally

2Actually, the Lagrangian can change by the total derivative of an arbitrary function, L ! L + @� F � , and
the transformation is still a symmetry. Such a term drops out when the Euler-Lagrange equations are
invoked to obtain the equations of motion for the system, thus the resulting physics will be unchanged.
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gauge invariant Lagrangian from a globally invariant one. Local gauge symmetries do not,

themselves, lead to any conservation laws; however, they logically imply an associated

global symmetry that does. The covariant derivative introduces new �elds into the

Lagrangian, thereby genuinely changing its physical content. However, it does so in a

controlled way that manifestly preserves symmetry and the gauge �elds always couple to

a conserved current in the new Lagrangian, which in certain cases happens to correspond

to an interaction realised in nature.

It is by this mechanism of imposing local gauge invariance that all the fundamental

interactions of the SM are generated. In general, for a gauge transformationU(x) 2 G,

whereG is some group3, invariance underG requires the introduction of a new gauge �eld

for each generator ofG. The gauge �elds enter through the covariant derivative, which

generally takes the form

D� � @� + igSaAa
� ; (2.8)

whereSa are the group generators,Aa
� are the gauge �elds, andg is a coupling constant.

The SM is constructed to be invariant under gauge transformations described by the

following group structure,

GSM
gauge = SU(3)C � SU(2)L � U(1)Y : (2.9)

The group SU(3)C gives rise to the strong interaction theory of quantum chromodynamics

(QCD). The subscript C stands for colour, which is a conserved property of particles

under the strong interaction | analogous to electric charge. There are eight generators

of SU(3)C , which gives rise to eight gauge �elds in the SM Lagrangian known as the

gluon �elds, Ga
� , which are the carriers of the strong nuclear force. The gluon �elds

couple to �elds that carry colour charge, which applies to quark �elds and the gluon �elds

themselves, while leptons and other gauge �elds do not interact via QCD. The group

SU(2)L � U(1)Y , gives rise to the uni�ed electroweak (EW) interaction that ultimately

separates out into the weak and electromagnetic interactions, albeit with a few subtle

twists. There are four gauge �elds associated with the EW symmetry group; three of

them, W b
� , correspond to the three generators ofSU(2), while the other, B � , corresponds

3The term \group" here refers to the algebraic structures covered by the branch of mathematics known
as group theory. Group theory is central to the SM and most textbooks on the subject, including
Refs. [27, 28], have a section covering the necessary aspects. For this thesis, it will mostly su�ce to
know some basic terminology and notation. Firstly, U(n) represents the set of alln � n unitary matrices
and, secondly, theS in SU(n) stands for \special", meaning \determinant 1". The generators of a group
consist in a spanning subset of group elements.
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to the one generator of U(1).

The four EW gauge �elds are related to the photon,
 , and the three weak interaction

force carriers, theW � and Z 0 bosons; however, some work is needed to make the connection

explicit. Recall that local gauge invariance requires the gauge �elds to be massless upon

introduction, whereas theW � and Z 0 bosons are observed to be massive in nature.

Therefore, the gauge �elds ofSU(2)L � U(1)Y are not directly equivalent to theW � , Z 0,

and 
 particles. Moreover, explicit mass terms for matter �elds of the formm �  , such as

those appearing in Eqs. 2.3 and 2.6, are not locally gauge invariant underSU(2)L either.

The reason is that the SM is a chiral theory, meaning that the Lagrangian treats the left-

and right-handed chiral projections of a �eld di�erently. In fact, the subscript L in SU(2)L
stands for left-handed chirality, indicating that the gauge transformation only acts on the

left-handed chiral projection of the �elds. A mass term of the formm �  can be rewritten

in terms of the chiral components of the �eld asm
� � L  R + � R  L

�
. However, since only

left-handed components transform nontrivially underSU(2)L , the product of left- and

right-handed �elds cannot be invariant. Consequently, neither matter nor gauge �elds can

enter the SM Lagrangian with explicit mass terms | local gauge invariance forbids it.

This is why the SM Lagrangian contains a dedicated component,L mass, which generates

masses for the particles in an alternative way, which is described in the next section.

Considering all of the above, the SM kinetic Lagrangian is written,

L kinetic = �
1
4

�
Ga

��

� 2
�

1
4

�
W b

��

� 2
�

1
4

(B �� )2 +
X

j

i � j 
 � D  j
�  j ; (2.10)

whereGa
�� , W b

�� , and B �� represent the �eld strength tensors for the gluon and EW gauge

�elds, and the covariant derivative takes the form,

D  j
� =

�
@� + igsGa

� L  j
a + igW b

� T  j
b + ig0B � Y  j

�
: (2.11)

In Eq. 2.11, the objectsL  j
a , T  j

b , and Y  j are the generators ofSU(3)C , SU(2)L , and

U(1)Y , respectively; whilegs, g, and g0, are the corresponding coupling constants. It is

important to note that D  j
� contains di�erent terms depending on the �eld j , since only

selected �elds are charged under each gauge interaction. Thus, it is useful to �nally de�ne

the SM matter �elds | the quarks and leptons. There are six quark �elds: u, d, s, c,

b, t; and six lepton �elds: e, � , � , � e, � � , � � . It is convenient to collect them as shown

in Table 2.1, where they are decomposed into their chiral components and grouped into

three generations. Left-handed quarks are charged under all three interactions, hence the

covariant derivative involves all of the gauge �elds. Right-handed quarks and leptons are
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Table 2.1: The matter �elds of the SM, each containing three generations labelled by the indexi .

Field Contents (i = 1; 2; 3) Description

U i
L uL , cL , tL Left-handed up-type quark singlets

D i
L dL , sL , bL Left-handed down-type quark singlets

U i
R uR , cR , tR Right-handed up-type quark singlets

D i
R dR , sR , bR Right-handed down-type quark singlets

E i
R eR , � R , � R Right-handed charged lepton singlets

N i
L � eL , � � L , � � L Left-handed neutral lepton singlets

Qi
L

�
U i

L
D i

L

�
Left-handed quark doublets

L i
L

�
E i

L
N i

L

�
Left-handed lepton doublets

not charged underSU(2)L , henceT  j
b = 0 for them, and no leptons are charged under

SU(3)C , henceL  j
a = 0 also for lepton �elds. Otherwise,L  j

a are the 3� 3 Gell-Mann

matrices,T  j
b are the 2� 2 Pauli matrices, andY  j are real numbers called hypercharges4.

2.1.2 The mass generating component

Masses for the gauge �elds

In order to make the connection between the �elds of the SM kinetic Lagrangian (Eq. 2.10)

and the particles observed in nature, an additional component must be added to the SM.

Speci�cally, an additional complex scalar �eld known as the Higgs �eld must be introduced

into the Lagrangian, and with it another foundational concept | that of spontaneous

symmetry breaking. While SU(2)L � U(1)Y is a symmetry of the SM Lagrangian, the

Higgs �eld is de�ned such that its minimum energy state, known as the vacuum state,

breaks this EW symmetry. Since the Higgs �eld is a scalar, its free Lagrangian is the

Klein-Gordon Lagrangian (Eq. 2.2). This is added to the SM along with a self-interaction

term that is quartic in the Higgs �eld, giving

L Higgs = ( D �
� � )y(D �

� � ) + � 2� y� � �
�
� y�

� 2
; (2.12)

where� and � are coupling constants. The Higgs �eld is constructed to be charged under

SU(2)L � U(1)Y , hence only the EW gauge �elds are present in the covariant derivative

4Hypercharge,Y , is related to electric charge,q, by q = Y + T3, where T3 is known as weak isospin and
is the charge associated with the third component of the EW gauge �eld,W 3

� .
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for the Higgs,

D �
� =

�
@� + igW b

� T �
b + ig0B � Y �

�
: (2.13)

The form of the Higgs self-interaction term de�nes the Higgs potential5 and, as chosen

in Eq. 2.12, is responsible for shifting the energy of the vacuum state away from zero to

� �=
p

2� . Through a rede�nition of the Higgs �eld,

� ! � +

 
0

v=
p

2

!

; (2.14)

wherev = �=
p

� , the Lagrangian is rewritten explicitly in terms of 
uctuations about

the vacuum state. When this is done, the Higgs �eld is said to acquire a nonzero vacuum

expectation value (VEV) de�ned by v. Each of the gauge �elds that couple to the

Higgs �eld through the covariant derivative D �
� (Eq. 2.13) then acquires a mass term in

the Lagrangian that is proportional to the Higgs VEV. The mass terms appear in the

Lagrangian after expanding out the �rst term in Eq. 2.12. Taking into account the form of

the matricesT �
b ,6 as well as the Higgs �eld hyperchargeY � = 1

2 , the covariant derivative

in Eq. 2.13 becomes

D �
� =

 
@� + igW 3

� + i
2gB� ig

�
W 1

� � iW 2
�

�

ig
�
W 1

� + iW 2
�

�
@� + igW 3

� � i
2gB�

!

: (2.15)

Ultimately, the mass terms are generated by the part of the Higgs �eld,� 0 =
�
0 v=

p
2
� |

,

that contains the VEV, therefore the quantity of interest is

(D �
� � 0)y(D �

� � 0) = g2 v2

8

"
�
W 1

�

� 2
+

�
W 2

�

� 2
+

�
g0

g
B � � W 3

�

� 2
#

: (2.16)

It is now evident that the �elds W 1
� , W 2

� , and the linear combination (g
0

g B � � W 3
� ) have

Proca mass terms (cf. Eq. 2.4) in the Higgs component of the SM Lagrangian that only

appear after the Higgs �eld acquires a VEV. The generation of mass terms in this way is

famously known as theHiggs mechanism.

The �elds in Eq. 2.16 are still not quite in direct correspondence with the familiarW � ,

5In analogy to classical mechanics, the Lagrangian can be expressed in the formL = T � V where T
is the kinetic energy of the system andV the potential energy. The Higgs self-interaction enters the
potential term and its minimum de�nes the vacuum state.

6The T �
b matrices are conventionally normalised with an extra factor 1

2 relative to the standard Pauli
spin matrices, that is T �

b = 1
2 � b with � b de�ned as per any textbook.
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Z 0, and 
 particles. It turns out, that the W 1
� and W 2

� �elds are related to the W � by

W �
� =

1
p

2

�
W 1

� � iW 2
�

�
; (2.17)

which highlights the fact that the W � bosons are an antiparticle pair withW �
� = ( W +

� )y.

Upon insertion into Eq. 2.16 this results in a single mass term that takes the form

m2
W W y

� W � , with mW = gv
2 . On the other hand, theW 3

� and B � �elds are related to the

Z 0 and A� �elds by

A � = B � cos� w + W 3
� sin� w ;

Z � = � B � sin� w + W 3
� cos� w ;

(2.18)

where� w � tan� 1 g
g0 is known as the weak mixing angle. This amounts to a rotation of

the basis states such that the mass terms in the Lagrangian are diagonalised with respect

to the �elds. After inserting Eqs. 2.17 and 2.18 into Eq. 2.16, the �nal mass terms in the

Lagrangian become

(D �
� � 0)y(D �

� � 0) = m2
W W y

� W � +
1
2

m2
Z Z � Z � ; (2.19)

where the masses are given by

MW =
gv
2

and MZ =
MW

cos� W
: (2.20)

Accordingly, the W � and Z obtain a physical mass through the Higgs mechanism, while

the photon (described by theA � �eld) remains massless.

Masses for the matter �elds

As for the matter �elds, their mass is acquired by direct couplings to the Higgs �eld,

known as Yukawa couplings. The mass generating component of the SM Lagrangian is

therefore written as

L mass = L Higgs + L Yukawa : (2.21)

Using the notation for the SM quark and lepton �elds de�ned in Table 2.1, the Yukawa

couplings for leptons are given by

�L leptons
Yukawa = Y e

ij
�L i

L �E j
R + h:c:; (2.22)
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while for quarks they are given by

�L quarks
Yukawa = Y d

ij
�Qi

L �D j
R � Y u

ij
�Qi

L
~�U j

R + h:c:; (2.23)

In the above, ~� = i� 2� � , where � 2 =

 
0 � i

i 0

!

refers to the second Pauli matrix, and

h:c: stands for the Hermitian conjugate of the preceding terms. The complex Yukawa

coupling constants,Y u;d;e
ij , form 3 � 3 matrices and are free parameters of the SM that

must be determined from experiment. However, it is worth noting that there is signi�cant

redundancy in the Yukawa matrices. For example, for quarks, 10 physical parameters are

su�cient to describe the full set of Yukawa couplings.

After EW symmetry breaking, i.e. when the Higgs acquires a VEV (Eq. 2.14), the

Yukawa interactions give rise to mass terms in the Lagrangian for the matter �elds of the

form,

�L quark
mass = mu

ij
�U i

L U j
R + md

ij
�D i

L D j
R + h.c. (2.24)

wheremq
ij = vp

2
Y q

ij . All masses in the SM are thus proportional to the Higgs VEV. In

order to relate these mass terms to physical particles, it is necessary to diagonalise the

matrices mq
ij . Doing so turns out to lead to a rich phenomenology of 
avour interactions,

which is covered in the following dedicated section.

2.2 Flavour physics

Referring back to Table 2.1, the chosen notation highlights a particular feature of the SM

which has been only vaguely alluded to thus far | namely, its 
avour structure. The

quarks and leptons evidently fall nicely into three generations, labelled 1 to 3. Moreover,

the quarks and leptons within each generation also fall nicely into two types: up and down

types for quarks; charged and neutral types for leptons. This gives six 
avours of both

quarks and leptons. Evidently, the Yukawa couplings of Eqs. 2.22 and 2.23 are the only

interactions in the SM which do not explicitly conserve 
avour. Thus, 
avour physics is

essentially the study of the Yukawa sector of the SM Lagrangian. The remainder of this

thesis will be primarily concerned with aspects of 
avour physics, hence a more detailed

overview is in order.
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2.2.1 Weak charged currents and the CKM matrix

By default, the mq
ij matrices in Eq. 2.24 are in theinteraction basis meaning they are

de�ned with respect to the quark eigenstates that interact via the weak charged current.

However, themq
ij mass matrices are evidently not diagonal in this basis. This means that

the quark eigenstates of the weak interaction are not the same as the quark mass eigenstates

that are observed experimentally. A consequence of this is that 
avour changing weak

interactions exist7. To show this, the mass matrices can be diagonalised,i.e. expressed in

the mass basis, via unitary transformations as follows. It can be shown that there exist

real diagonal matricesM q such that

mq
ij =

�
V q

L M qV qy
R

�

ij
; (2.25)

whereV q
L and V q

R are suitable unitary matrices. The quark �elds in Eq. 2.24 can undergo

a basis rotation to achieve this,

qi
L;R ! (VL;R ) ij qj

L;R : (2.26)

Making such a basis rotation has important consequences for the currents of the weak

interaction.

In the interaction basis, the weak currents inL kinetic are given by

�L quark
W � =

g
p

2

� �U i
L 
 � D i

L W +
� + �D i

L 
 � U i
L W �

�

�
; (2.27)

�L quark
Z 0 =

g
cos� w

� �U i
L 
 � U i

L Z � + �D i
L 
 � D i

L Z �
�

; (2.28)

indicating that the W � couples up-type quarks to down-type quarks and vice versa, while

the Z 0 couples up-type quarks to up-type quarks and down-type quarks to down-type

quarks.8 Both, however, respect the generation index. Upon rotation to the mass basis,

the latter is no longer true for the charged currents. Speci�cally, one obtains the following,

�L quark
W � =

g
p

2

h
�U i

L 
 � (V) ij D j
L W +

� + �D i
L 
 �

�
V y

�
ij

U j
L W �

�

i
; (2.29)

7Technically, this is con
ating the terms 
avour and generation | it really refers to intergenerational

avour changing interactions. The W � bosons are electrically charged and thus necessarily change quark

avours.

8The Z 0 actually couples to up and down type quarks with di�erent strengths that are determined by the
weak isospin and hypercharge quantum numbers of the quarks, therefore theUL and DL in Eqs. 2.27
and 2.28 are not in the same basis.
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whereV = V uy
L V d

L is known as the Cabibbo{Kobayashi{Maskawa (CKM) matrix. The

CKM matrix is usually written in the following form

V =

0

B
B
@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

C
C
A ; (2.30)

and experimentally the values of the CKM elements are found to be [29]

V =

0

B
B
@

0:97401� 0:00011 0:22650� 0:00048 0:00361+0 :00011
� 0:00009

0:22636� 0:00048 0:97320� 0:00011 0:04053+0 :00083
� 0:00061

0:00854+0 :00023
� 0:00016 0:03978+0 :00082

� 0:00060 0:999172+0 :000024
� 0:000035

1

C
C
A : (2.31)

Although the CKM matrix is markedly not the unit matrix, there is a strong suppression

of intergenerational 
avour changing interactions due to the smallness of the associated

CKM elements. This is often called Cabibbo or CKM suppression. TheW � interactions

described here are the only direct 
avour changing interactions in the SM, and are known

as 
avour changing charged current(FCCC) interactions. Analogous interactions for the

Z 0 do not exist in the SM as a consequence of the unitarity of the transformations in

Eq. 2.26. Applying similar �eld transformations in Eq. 2.28, one obtains

L quark
Z 0 =

g
cos� w

�
�U i

L 
 �
�

V uy
L V u

L

�

ij
U j

L Z � + �D i
L 
 �

�
V dy

L V d
L

�

ij
D j

L Z �

�

=
g

cos� w

� �U i
L 
 � � ij U j

L Z � + �D i
L 
 � � ij D j

L Z �
� (2.32)

which vanishes fori 6= j | that is, the weak neutral current conserves 
avour.

2.2.2 Flavour changing neutral currents

Processes in which quark 
avour is changed but electric charge is not are called
avour

changing neutral current (FCNC) interactions. Such processes do occur in the SM,

although they are highly suppressed. TheZ 0 cannot mediate them, therefore they occur

only via loop level processes such as theb! s`+ ` � processes shown in �gure 2.1 in which

two W � interactions result in an overall electrically neutral 
avour changing process. Such

loop induced decays are much rarer than the tree level FCCC decays, since the amplitudes

are suppressed by additional powers of the weak coupling constant that enters at each

vertex. In general, they are even further suppressed via the Glashow{Iliopoulos{Maiani
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(a) (b)

Figure 2.1: Lowest order Feynman diagrams for theb! s`+ ` � transition. Diagram (a) is called
an EW penguin process, while diagram (b) is called an EW box diagram.

(GIM) mechanism [30], an important consequence of the unitarity of the CKM matrix9.

Since each 
avour changing vertex is proportional to the corresponding CKM element,

the total amplitude for an FCNC process in whichq1 ! q2 + X whereX may be any

other allowed particle(s), is generally proportional to a sum of the form

M FCNC /
X

i = u;c;t (d;s;b)

Viq1 V �
iq2

F (
m2

i

M 2
W

); where q1; q2 2 f d; s; bg(f u; c; tg) : (2.33)

Here F (m2
i =M 2

W ) is a process dependent function that requires an integration of the

remaining amplitude components over the momenta of internal particles; however, its

explicit form is irrelevant to the present argument. The important fact is that it is

generally dependent on the internal quark masses and, moreover, the size of those masses

relative to the W mass. Unitarity of the CKM matrix implies

X

i = u;c;t (d;s;b)

Viq1 V �
iq2

= � q1q2 ; where q1; q2 2 f d; s; bg(f u; c; tg) ; (2.34)

meaning that Eq. 2.33 is only nonzero due to the di�erences in internal quark masses |

if all quarks had the same mass then FCNCs would be entirely forbidden. Even though

this is not the case in the SM, most of the quark masses are still small compared toMW .

For decays of up-type quarks, the GIM suppression is very e�ective since the heaviest

down-type quark, theb quark, has mb
M W

� 0:05. Therefore, relative toMW all of the quarks

in the loop have fairly similar small masses. For decays of down-type quarks, on the other

hand, such as theb! s`+ ` � process in Fig. 2.1, the GIM suppression is mostly broken by

the large discrepancy in mass scales between thet quark and the other up-type quarks.

In fact, the t quark mass is larger thanMW by more than a factor two, whicha priori

9Since the mass basis rotations (Eq.2.26) are unitary, the CKM matrix is unitary by construction:

V = V uy
L V d

L =) V yV =
�

V dy
L V u

L

� �
V uy

L V d
L

�
= 1 since both V d

L and V d
L are themselves unitary.
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appears to enhance rather than suppress the amplitude. However, the diagram with a top

quark in the loop always comes with a compensating CKM suppression factor from at

least one of the quark vertices (c.f. Eqs. 2.30 and 2.31). The broken GIM suppression in

FCNC decays of down-type quarks is the main reason they have been studied far more

extensively than those of up-type quarks | they are actually observable with current

experimental precision. In any case, FCNCs are very rare processes in the SM. This makes

them particularly attractive channels since they provide a promising means to search for

NP e�ects, as explained in the next subsection.

2.2.3 Searches for New Physics in the 
avour sector

As mention in the Chapter 1, the SM is not su�cient to explain all phenomena observed

in nature. It is therefore to necessary to search for NP e�ects experimentally. The general

methods underpinning these searches fall into two categories, namely, direct and indirect

searches. Direct searches involve looking for experimental signatures of the physical

production of some NP particle. For example, a NP particle may be produced in app

collision at the LHC and subsequently decay into SM particles, which would lead to a

peak in the invariant mass spectrum of those SM particles located at the mass of the NP

particle when analysed experimentally. It is also possible that the NP particle does not

decay back to SM particles and is rather detected as apparent missing energy by checking

for overall energy conservation in the collision. Direct searches are the means by which

all known particles of the SM were con�rmed to exist. However, NP is quite strongly

constrained from various sources to appear only at high energy scales [31]. Unfortunately,

direct searches face hard sensitivity cuto�s corresponding to the centre of mass energy

achievable by the experiment. Therefore, if the NP particle has a mass higher than

the collision energy, then it cannot be produced and can never be detected in a direct

search. Currently, the prospects for direct detection of NP particles at the LHC are

relatively bleak, mostly because the anticipated discovery of supersymmetric particles

has failed to materialise and there are few other promising candidates expected atLHC

energies [12{14].

Indirect searches, on the other hand, are not subject to such strict sensitivity limits.

This is due to the fact that physics from higher energy scales can nonetheless a�ect

the physics below the direct production cuto� through virtual contributions. Indirect

searches thus work by making precise measurements of known SM processes and looking

for deviations relative to the expected results, where the latter are obtained by making

precise predictions for the process considering only SM contributions. If an experimental
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result shows a signi�cant deviation from the SM prediction, it may be considered indirect

evidence for NP. Indirect searches are complementary to direct searches, and can provide

important input to pin down unknown parameters in the NP theory even when direct

production is possible. But most importantly, indirect searches can be sensitive to NP

contributions that originate from energy scales far beyond that which is directly probable

by the experiment.

One of the drawbacks of indirect high energy NP searches in general is that the NP

signals can be very small at low energy. This is a problem if the SM signal is sizeable, since

it essentially forms a background that drowns out any sensitivity to the small NP signal.

Thankfully, this is not always the case. Returning to the FCNC processes discussed in

Sec. 2.2.2, it is in the context of indirect NP searches that their utility becomes clear.

Since FCNC processes are in general highly suppressed in the SM, small contributions

from high energy NP processes can potentially be of the same order of magnitude or larger

than the SM process. To give an example, it is conceivable that a heavy NP particle

might directly mediate FCNC processes at tree-level, which would very likely produce a

noticeable di�erence in FCNC decay rates. Theories involving such particles are common

in the 
avour physics literature, for example, those involving so-called leptoquarks or

Z 0 bosons | an excellent review of such theories can be found in Ref. [32]. As will be

discussed in Sec. 2.3, the exact nature of the NP does not need to be known or even

hypothesised in order to search for its e�ects. The remainder of this thesis is exclusively

concerned with indirect searches for NP in the 
avour sector performed in a mostly model

independent way focusing onb! s`+ ` � transitions.

2.2.4 The importance of QCD in 
avour physics

Although QCD conserves 
avour and hence is not directly of interest in the context of


avour physics, it is nonetheless a crucial part of the �eld, not least because of colour

con�nement. Particles that carry colour charge,i.e. quarks and gluons, cannot exist

in isolation. Rather, they must combine with other quarks and gluons to form overall

colour neutral bound states called hadrons. Consequently, a quark level process such as

b! s`+ ` � can never be experimentally observed directly. Only hadronic level processes

of the form Hb ! Hs`+ ` � can be observed, whereHb(s) is any hadron containing ab (s)

quark. For most purposes, hadrons come in two types: mesons, made of one quark and

one antiquark (q1q2); and baryons, made of three quarks (q1q2q3).

An example of a hadronicb! s`+ ` � process is shown in Fig. 2.2, which corresponds

to a meson equivalent of the process in Fig. 2.1a. The internal gluon lines represent
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Figure 2.2: A hadronic b! s`+ ` � process. In this case, the meson decayB q ! K q`+ ` � .

the fact that the quarks are bound together by the strong interaction. At the energy

scale relevant to the QCD interactions that bind quarks into hadrons, usually denoted

� QCD � 200MeV, the strong coupling constant (gs in Eq. 2.11) takes on a value that is

O(1). This means that QCD is nonperturbative at the hadronic energy scale, making such

interactions notoriously di�cult to calculate. Any attempts to measure the parameters

of the SM 
avour sector are a�ected to some degree by hadronic interactions, hence,

progress in 
avour physics is intimately tied to progress in QCD. In particular, searching

for small NP e�ects in 
avour changing interactions requires accurate predictions of the

SM rates for such processes, and QCD e�ects are the leading source of uncertainty in

these SM calculations. E�orts to enhance understanding of QCD e�ects are therefore at

the forefront of 
avour physics.

2.3 E�ective �eld theory for b! s` + ` � decays

The procedure of searching for indirect high energy NP e�ects by precisely studying low

energy interactions does not necessarily require knowledge or assumptions about the NP

theory itself. In this section, the modern framework within which NP searches in the


avour sector are conducted is described. This framework allows searching for NP e�ects

in a model independent way that requires only knowledge of the SM. It is founded on the

idea that physics occurring at very high energy scales should not in
uence physics at low

energy scales in any dynamic fashion. Any in
uence that it does have can be captured by

appropriately de�ned e�ective interactions. Identifying evidence for NP is then a matter

of measuring the strength of the e�ective interaction and comparing it to what one expects

when considering only SM contributions. As it turns out, many SM interactions already

�t the description of high energy physics relative to the processes that are of interest in


avour physics. This same framework therefore allows to both simplify and improve the

accuracy of the calculations that provide the SM expectations. This concept is expanded

upon below in the speci�c context ofb! s`+ ` � decays.
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The weak bosons that mediate 
avour changing interactions have masses around

O(MW ) � 80 GeV. This sets the characteristic energy scale at which the dynamics of

these particles are important. On the other hand, the quarks that undergo 
avour

changing processes have much lower masses,O(mb) � 4GeV or below, which sets the

characteristic energy scale for processes observed in experimental 
avour physics. The

discrepancy between these scales implies that observables in 
avour physics should be

largely independent of the �ne dynamics of theW � and Z 0 bosons or any heavier particles,

which are associated with a considerably higher energy scale. In fact, weak decays were

already described reasonably well phenomenologically by the Fermi theory of beta decay

quite some time before theW � and Z 0 were ever posited to exist [27]. Fermi's theory is

now understood to be an example of ane�ective �eld theory (EFT) for the weak interaction

in which the W � and Z 0 do not feature directly, but their in
uence is encapsulated by

an e�ective coupling constant that describes a direct contact interaction between four

matter �elds. The same concept has since been extended to a complete low energy

e�ective description of possible interactions occurring at or above the EW energy scale

de�ned by � � MW [33]. In general, performing calculations in an EFT is much simpler

than performing the same calculations in the full theory, since the EFT contains fewer

propagating particles and loop diagrams, or none at all. Additionally, EFTs provide a

formal separation of scales and are equipped with tools to properly translate between

them which is often essential for ensuring well behaved perturbative calculations. An EFT

can be developed whenever one is in the presence of discrepant scales of some kind, which

turns out to be very common in particle physics.

An EFT classi�es and separates interactions based on the energy scales at which they

become relevant, with the end result being an approximate theory in which any irrelevant

or unresolvable e�ects are removed from the theory as dynamical degrees of freedom. For

example, ifE is the typical scale relevant to some process of interest, and � is the typical

scale of some high energy physics, thenE � � implies the high energy physics can be

neglected. In practice, this amounts to leveraging the scale hierarchy to construct a new

perturbative expansion parameter,e.g. E=�, and then truncating calculations at a given

order in the expansion [34]. Although the EFT is no longer the true theory, its predictions

remain valid so long asE � � is ful�lled, since this ensures that the neglected higher

order terms in the expansion remain small. This is often referred to asintegrating out

the degrees of freedom above the scale �. Detailed references on EFTs forB decays are

plentiful and the interested reader is directed to Refs. [35{ 41], from which this section is

derived, for further information.
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2.3.1 Operator Product Expansion

For the case of a separation in energy scales as one has inb! s`+ ` � decays, it can be

conceptually useful to translate the problem in terms of distance scales. This will also

help to illuminate the terminology used in later sections of this thesis. Ultimately, there is

an inverse relationship between the two,E � 1=x, meaning large energy scales correspond

to short distance scales and vice versa. For any given process in QFT, particles of any

mass that are consistent with the symmetries of the theory can in principle contribute to

the process virtually. However, they can only do so by going faro�-shell if their mass is

signi�cantly heavier than the energy scale of the process.10 The Heisenberg uncertainty

principle allows virtual particles to be o�-shell provided that they decay within a short

enough timespan. However, at a certain point the allowed timespan becomes so small

that the virtual particle cannot propagate any meaningful distance | its contributions

are con�ned to local interactions. For a low energy process such as ab! s`+ ` � transition,

the characteristic distance scalex � 1=mb is signi�cantly larger than, say, the distance

scalex � 1=MW at which virtual W � particles contribute. The same is true of any would

be contributions from heavy NP particles. All such contributions can be integrated out of

the theory and considered as local point interactions between the low energy SM �elds

involved. To exploit this, one can write down an e�ective Lagrangian that only contains

local interaction terms involving �elds below the mass scale � of the lightest particle

integrated out, called the EFT scale. Such a Lagrangian generally has the form

L e� =
X

i

Ci (� )Oi (� ); (2.35)

where � is an arbitrary energy scale usually known as the renormalisation scale. The

operatorsOi refer to e�ective local operators which contain the dynamical �elds still left

in the theory, while the e�ect of the heavy �elds is encapsulated by the e�ective coupling

constantsCi , known as Wilson Coe�cients, which are de�ned to be dimensionless numbers.

This method of constructing an e�ective Lagrangian is known as an operator product

expansion (OPE). In principle, the OPE contains in�nitely many terms, however, the

e�ective operators are associated with inverse powers of the EFT scale �. Therefore,

terms can be organised by their EFT scale suppression factors in a process known as

10Virtual particles are internal particles in a Feynman diagram and do not correspond to physically
observable particles. The term \o�-shell" is particle physics jargon for particles that do not satisfy
the relativistic energy-momentum relation, i.e. E 2 � j pj2 6= m2, where E is the particles energy,p
its momentum, and m its mass. Only virtual particles can be o�-shell, while physical states must be
on-shell.
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power counting, and terms beyond a chosen order in the power counting can be neglected.

In general, the values of the Wilson Coe�cients are calculated by matching the results

of calculations in the e�ective theory to the same calculations in the full theory. Doing so

requires equating matrix elements,

M =
X

i

Ci (� 0)hf jO i (� 0)ji i != hf jL Full ji i ; (2.36)

which represent the amplitude for a generici ! f process. The != sign indicates that this

condition is manually imposed on the otherwise unconstrained OPE to determine the

coe�cients. For example, to obtain SM predictions for the Wilson Coe�cients, one would

replaceL Full with L SM. Physical observables such as decay rates and cross-sections can

be calculated from the square of the matrix element,jMj 2. The value of any physical

observable is, of course, independent of the arbitrary renormalisation scale� ; however,

the scale dependence of the e�ective operators and Wilson Coe�cients themselves is

nontrivial. The matching calculations are performed at a chosen value� = � 0, which is

typically taken to be the EFT scale �. Since this scale is generally large relative to �QCD ,

the Wilson coe�cients can be calculated perturbatively via an expansion in the strong

coupling constant [41],

Ci = C(0)
i +

� s

4�
C(1)

i +
� � s

4�

� 2
C(2)

i + O(� 3
s); (2.37)

where � s = g2
s

4� is the strong interaction analogue of the �ne structure constant. The

values of the Wilson Coe�cients are then translated to the energy scales of interest via

renormalisation [37],

Ci (� ) =
X

ij

Uij (�; � 0)Cj (� 0) (2.38)

whereU(�; � 0) is called the evolution matrix, which is in general not diagonal and therefore

renormalisation leads to mixing between operators.

2.3.2 E�ective Lagrangian for b! s` + ` � decays

Returning to b! s`+ ` � processes, which in the SM are mediated by weak charged current

interactions, the scale separationmb � MW implies that the dynamical aspects ofW � ,

Z 0, H 0, and t can all be neglected. This particular EFT framework is known as the Weak

E�ective Theory (WET). An OPE is constructed by integrating out said particles from
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the full SM Lagrangian, resulting in the following e�ective Lagrangian [42],

L WET = L n f =5
QED + L n f =5

QCD + L bsll
WET ; (2.39)

where the superscriptnf = 5 indicates that there are only �ve active quark 
avours. The

part of this Lagrangian that speci�cally describesb! s`+ ` � transitions is written as,

L bsll
WET = �

GFp
2

X

q= u;c

VqbV �
qs

X

i

Ci (� )Oq
i (� ) (2.40)

=
GFp

2

"

VtbV �
ts

 
2X

i =1

Ci Oc
i +

10X

i =3

Ci Oi

!

+ VubV �
us

X

i =1 ;2

Ci (Oc
i � O u

i )

#

(2.41)

+ ( Ci ! C
0

i ; Oi ! O
0

i )

whereGF =
p

2g2

8M 2
W

is called the Fermi constant. It is customary to factor out the CKM

elements so that the Wilson Coe�cients are independent of the internal quarks. In

Eq. 2.41, the unitarity of the CKM matrix has been used to eliminateVcbV �
cs. The terms

proportional VubV �
us are strongly CKM suppressed and are usually neglected but are kept

here for completeness. The e�ective operators typically considered important inb! s`+ ` �

processes are [42, 43]:

Oq
1 = (�sL 
 � TaqL ) (�qL 
 � TabL ) ;

Oq
3 = (�sL 
 � bL )

X

p

(�p
 � p) ;

Oq
5 = (�sL 
 � 
 � 
 � bL )

X

p

(�p
 � 
 � 
 � p) ;

O7 =
e

16� 2
mb (�sL � �� bR) F�� ;

O8 =
gs

16� 2
mb (�sL � �� bR) G�

�� ;

O9` =
e2

16� 2
(�sL 
 � bL ) �̀
 � `;

O10` =
e2

16� 2
(�sL 
 � bL ) �̀
 � 
 5`;

Oq
2 = (�sL 
 � qL ) (�qL 
 � bL ) ;

Oq
4 = (�sL 
 � TaqL )

X

p

(�p
 � Tap) ;

Oq
6 = (�sL 
 � 
 � 
 � TabL )

X

p

(�p
 � 
 � 
 � Tap) ;

O
0

7 =
e

16� 2
mb (�sR � �� bL ) F�� ;

O
0

8 =
gs

16� 2
mb (�sR � �� bL ) G�

�� ;

O
0

9` =
e2

16� 2
(�sR 
 � bR) �̀
 � `;

O
0

10` =
e2

16� 2
(�sR 
 � bR) �̀
 � 
 5`;

(2.42)

In principle, contributions from scalar and pseudoscalar operators are also possible but

are neglected in Eq. 2.41. In the above,e = gsin� W is the fundamental unit of electric

charge, and� �� = [
 � ; 
 � ] are commutators of the Dirac gamma matrices. The other

quantities are as de�ned in previous sections. The corresponding Wilson coe�cients are

calculated considering up to two-loop processes at the matching scale� = MW , referred

to as to next-to-next-to-leading order (NNLO) accuracy. The renormalised values at the
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relevant scale� = mb = 4:2 GeV are found to be [44, 45]

C1(mb) = � 0:291 � 0:009; C2(mb) = 1 :010 � 0:001;

C3(mb) = � 0:0062� 0:0002; C4(mb) = � 0:0873� 0:0010;

C5(mb) = 0 :0004� 0:0010; C6(mb) = 0 :0012� 0:0001; (2.43)

C7(mb) = � 0:3373� 0:0421; C8(mb) = � 0:1829� 0:0006;

C9(mb) = 4 :273 � 0:251; C10(mb) = � 4:166 � 0:033;

where the uncertainties account for variation of the renormalisation scale between� =

mb=2 = 2:1 GeV/c and � = 2mb = 8:4 GeV/c.

For b! s`+ ` � processes in practice, the dominant operators among those in Eq. 2.42

are O7;9;10; corresponding to the e�ective vertices shown in Fig. 2.3a and 2.3b. The

operators O9 and O10 describe a directb! s`+ ` � transition which proceeds through

a vector lepton current and an axial vector lepton current, respectively, while theO7

operator describes ab! s
 (! `+ ` � ) transition and thus comes along with a photon

propagator in the amplitude. For the operatorsO7 and O9, the renormalisation evolution

from MW down to mb results in signi�cant mixing with the four quark operatorsO1{6 ; since

the latter can similarly couple through a virtual photon to a vector lepton current. These

contributions are discussed further in the following subsection. Since theO10 operator

involves an axial vector lepton current, it is not subject to the same contributions.

2.3.3 Nonlocal operators

The dominant b! s`+ ` � operatorsO7;9;10 give genuine local contributions to the am-

plitudes involving only the e�ective vertex. Meanwhile, the operatorsOq
1;2 represent

tree-levelW � exchange between two quark currents, andO3{6 ;8 represent QCD penguin

processes (analogous to Fig 2.1a but with a gluon emitted from the loop rather than a

Z 0/ 
 ). These operators enterb! s`+ ` � amplitudes at loop level through diagrams of

the type shown in Fig. 2.3c. For this reason, they are said to be the source of nonlocal

contributions, since the composite operators that enter the amplitudes involve interactions

beyond those contained in the local operator basis of the OPE. The nonlocal contributions

are dominated byOq
1;2 and are described by the following operator,

K � (q) = 16� 2i
Z

d4xeiq�xT

(

J � (x);

 
X

i =1,2

Ci (Oc
i + Ou

i )

!

(0)

)

; (2.44)
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(a) (b) (c)

Figure 2.3: Examples of electroweak e�ective operators. (a) TheO7 electromagnetic dipole
operator corresponding to photon emission. (b) The semileptonic operatorsO9 and O10; corre-
sponding to vector and axial vector currents, respectively. (c) Nonlocal quark loop operator.

which is a function of the four-momentumq of the �nal state dilepton pair. The T in

Eq. 2.44 is known as the time ordering operator andJ � (x) =
P

 = u;c Q 
� 
 �  (x) is the

electromagnetic current withQ the electric charge. The most signi�cant contributions

come fromOc
i in K � and hence Eq. 2.44 is usually called the charm loop operator.

It is particularly di�cult to calculate the nonlocal contributions since the intermediate

quark loop can interact via nonperturbative QCD with the quarks in the initial and

�nal state. Moreover, the nonlocal contributions become dominant over the local ones

at certain values of the squared four-momentum transfer,q2, which is equivalent to the

squared dilepton invariant mass. This corresponds to when the internalqq pair in Fig. 2.3c

form a short lived on-shell hadronic state, known as a resonance, before decaying to

leptons. It is known that the leading order nonlocal e�ects manifest as corrections to

the local Wilson Coe�cients C7 and C9 [46{ 48]. As alluded to in the previous subsection,

these corrections are already evident in the renormalisation scale evolution ofC7 and C9,

however, the perturbative approach is not su�cient to describe them. Nonperturbative

methods are needed and the corrections in general depend on the value ofq2 and on the

hadronic channel and polarisations. Consequently, the size of the nonlocal corrections

is not well understood, even outside the resonant regions. In fact, understanding such

e�ects currently constitutes one of the main problems in 
avour physics and is the primary

motivation for the analysis presented in Chapter 4.

2.3.4 Hadronic matrix elements and form factors

As mentioned in section 2.2.4, free quark processes such as theb! s`+ ` � transition

cannot be observed directly. Instead, these interactions are taking place within hadrons.

Regardless of whether the quark level process is described in the full SM or in an EFT

such as the WET framework, it must be embedded within a transition between ingoing

and outgoing states containing hadrons in order to calculate any physical observables. For
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example, theB 0 ! K � 0� + � � decay is ab! s`+ ` � transition in which the initial b quark

and the �nal s quark are both bound with ad quark. The amplitude for this process in

the WET framework is given by

M =
X

i

Ci (� )hK � 0`+ ` � jO i (� )jB 0i

=
X

i

Ci (� )hK � 0j ~Oi (� )jB 0i L i ;
(2.45)

whereL i represents the leptonic part of the amplitude, which typically factorises from

the hadronic part (since leptons do not interact via QCD), and ~Oi is the remaining

hadronic part of the operator. Note that the Lorentz indices are omitted here. Each of

the operatorsOi contributing to the amplitude thus requires the calculation of a hadronic

matrix element,

Fi (p; k; � ) = hK � 0(k; � )j ~Oi jB 0(p)i ; (2.46)

wherep is the four-momentum of theB 0, k is the four-momentum of theK � 0 and � its

polarisation vector. These hadronic matrix elements describe nonperturbative QCD e�ects

and carry nontrivial Lorentz transformation properties in general. The method to deal

with them is to use a general Lorentz decomposition, which involves the introduction of one

unknown scalar functionFij (q2), called aform factor, for each independent allowed Lorentz

structure. Being scalar functions, theFij (q2) depend only on the squared momentum

transfer q2 = ( p� k)2. However, they area priori unconstrained and cannot be calculated

in perturbation theory. Moreover, they are directly degenerate with the Wilson Coe�cients

in the amplitude, which after the form factor decomposition takes the form

M =
X

ij

Ci (� )Fij (q2)Sij (p; k; � )L i ; (2.47)

whereSij (p; k; � ) represent the Lorentz structures used for the decomposition and have a

�xed functional form. As will be discussed further in the next section, one of the goals

of the WET approach is to have a model independent method to search for NP e�ects

by measuring the Wilson Coe�cients experimentally and comparing the results to SM

predictions. However, the Wilson Coe�cients are not themselves physical observables

| rather, their values must be inferred from experiment by �xing essentially all other

free parameters in the amplitudes. This requires, in particular, that the form factors

be known with relatively good precision. Currently the best approach to form factor
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predictions is lattice QCD (LQCD), which involves running numerical simulations of

QCD interactions on a discretised spacetime lattice. However, such calculations are

extremely computationally intensive and therefore remain limited in precision andq2

coverage. Another complementary method known as light cone sum rules (LCSRs) also

exists that covers someq2 regions that LQCD has not yet accessed. However, this method

also remains limited in precision for other reasons and will eventually by surpassed by

LQCD results. More details on form factors inb! s`+ ` � decays are given in Chapter 4.

2.4 The B anomalies and global �ts

As mentioned in the introduction, there are several measurements ofb! s`+ ` � processes

that appear to deviate from the predictions of the SM. These results are collectively referred

to as the B anomalies. One of the most prominent examples that still persists is the

P0
5 angular anomaly in theB 0 ! K � 0� + � � decay shown in Fig. 2.4a. The experimental

results generally sit above the SM predictions in the low-q2 region, most notably in

the 4 � q2 � 6GeV2=c4 and 6 � q2 � 8GeV2=c4 bins. The di�erential branching

fraction, dB(B 0 ! K � 0� + � � )=dq2, has also been measured by a number of experiments

and, although the deviation is less signi�cant than forP0
5, the experimental results generally

sit below the SM predictions for the branching fraction in the sameq2 bins.

Using the WET framework, measurements of physical observables such asP0
5 and

dB=dq2 can be translated into values of the underlying e�ective theory parameters,i.e. the

Wilson Coe�cients. Therefore, the B anomalies can be directly expressed as deviations

(a) (b)

Figure 2.4: Comparison of measurements and theoretical predictions for the optimised angular
observableP0

5 for the decay B 0 ! K � 0� + � � (�gures obtained from Ref. [49]). Experimental
results are shown forATLAS [50], CMS [51, 52],LHCb [4, 21, 53],CDF [54], and Belle [55, 56].
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(a) (b)

Figure 2.5: The present status of global �ts to b! s`+ ` � observables. The reader is referred to
Refs. [57, 58] for the full list of inputs. 1� (dark shaded) and 2� con�dence regions are shown
for two possible scenarios: (a) NP contributions are allowed to vary in (C9� ; C10� ); (b) NP
contributions are allowed to vary in (C9� ; C9e). Both scenarios are consistent withCNP

9� = � 1 at
1� . In the second scenario, LFU conserving NP is preferred withCNP

9e = CNP
9� . This scenario

provides the optimal �t to the data in the scenarios considered. Figure obtained from Ref. [58]

in the Wilson Coe�cients obtained from measured observables relative to their SM

values obtained via the methods described in Sec. 2.3.1. Since allb! s`+ ` � observables

ultimately depend on the same WET parameters, they can be analysed collectively through

global �ts in which the Wilson Coe�cients are considered as free parameters that are

varied to best match all available data. This allows to identify potential NP contributions

to speci�c Wilson Coe�cients without any dependence on speci�c NP models | in other

words, the best �t values are given byCi = CSM
i + CNP

i .

Global �ts of b ! s`+ ` � decays are widespread in the literature and have been

performed within a broad range of theoretical and statistical frameworks. Examples

including the most up to date experimental inputs can be found in Refs. [58{ 61]. The

current status of globalb! s`+ ` � �ts as determined in Ref. [58] is summarised in Fig. 2.5,

which shows two-dimensional con�dence regions for selected combinations of the Wilson

coe�cients. In these �ts, separate Wilson Coe�cients are allowed for each possible lepton


avour | e.g. C9� corresponds tob! s� + � � , while C9e corresponds tob! se+ e� . In

Fig. 2.5a, results are shown for �ts in whichC9� and C10� are allowed to vary, and the

preferred region in the global �t (blue) sits clearly away from the SM value, corresponding

to a NP shift of CNP
9� � � 1, while C10� is perfectly compatible with the SM. The other
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shaded regions show �ts to di�erent subsets of the observables which all show consistent

results. In Fig. 2.5b, the same �ts are performed this time allowingC9� and C9e to vary.

The results preferCNP
9� = CNP

9e � � 1, which is consistent with Fig. 2.5a and additionally

favours couplings that are universal with respect to the lepton 
avours. This latter

scenario provides the best description of the available data out of all those considered.

In performing b ! s`+ ` � global �ts and obtaining the Wilson Coe�cients from

experimental data, other parameters of the WET amplitudes must be �xed from SM

calculations, which includes parameterising and �xing the nonlocal contributions. There is

is currently no universally accepted method for doing this and di�erent approaches lead to

di�erent results. The authors of Refs. [57, 58] have noted that the results of global �ts have

generally shown little dependence on the chosen approach for the nonlocal contributions.

However, they are still relatively unconstrained and there is in principle room for nonlocal

contributions that by some mechanism produce corrections to the Wilson Coe�cients

that appear universal across the di�erent hadronic modes andq2 bins considered. If such

contributions exist, they would be indistinguishable from NP contributions even through

global �ts.

The possibility of NP in b! s`+ ` � decays and the in
uence of nonlocal contributions

will be discussed in more detail in the context of theB 0 ! K � 0� + � � decay in Chapter 4,

where a new method for determining their in
uence experimentally using data collected

with the LHCb detector is presented.
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Chapter 3

The LHCb experiment

3.1 Overview

The LHCb experiment is one of the four primary experiments taking place at theLHC, lo-

cated at the European Organisation for Nuclear Research (CERN) in Geneva, Switzerland.

It is a dedicated 
avour physics experiment designed to study decays of heavy quarks,

Figure 3.1: The LHCb detector as designed for its �rst two periods of data taking, Runs 1 and
2, which took place between 2011 and 2018. The interaction region wherepp collisions take
place is on the left of the diagram atz = 0 m. Figure obtained from Ref. [62].
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i.e. b and c quarks. The LHCb detector [62, 63] itself is a spectrometer covering the

forward region, which in collider language means concentrated mostly down the beam line.

Shown in Fig. 3.1 is a diagram of theLHCb detector as designed for its �rst two periods

of data taking, Runs 1 and 2, which took place between 2011 and 2018. The detector has

since been upgraded for the Run 3 data taking period; however, allLHCb data used for the

analyses described in this thesis was collected during the years 2011{2018. For this reason,

the con�guration and operation of the Run 3 detector will not be discussed in any detail

here. TheLHCb detector design is notably in contrast to the otherLHC experiments

whose detectors are built cylindrically around the beam line with the interaction region in

the centre in order to study the transverse (high-pT ) region. The geometrical acceptance

of the detector covers the pseudorapidity range 2< � < 5, which corresponds to a polar

angle of approximately 250mrad with respect to the beam axis. At theLHC collision

energies,bb pairs are predominantly produced in this forward region [62].

3.2 Detector components and operation

3.2.1 Tracking and vertexing system

The detector includes a high-precision tracking system that measures particle momenta

and locates interaction vertices. It identi�es charged particles as a series of hits in several

dedicated tracking stations spread throughout the detector. The tracking system starts

with a silicon-strip vertex locator (VELO) [64, 65] surrounding thepp interaction region

(z = 0 m in Fig. 3.1), which identi�es primary interaction vertices (PVs) with a high

spatial precision. The actual PV resolution achieved depends strongly on the number of

tracks used to reconstruct the PV, varying from around 35� m down to 10� m in the xy

plane and from around 300� m down to 50� m in the z axis. The VELO also identi�es

secondary vertices and provides high resolution measurements of the impact parameter

(IP), i.e. the distance of closest approach for tracks relative to the PV. This is crucial

for background rejection in the study ofb-hadron decays, since they are relatively long

lived particles and decay at a vertex that is displaced from the PV. The IP resolution is

inversely proportional to the transverse momentum (pT ) of the track and is better than

35� m for tracks with pT > 1 GeV/c.

Beyond the VELO, a large-area silicon-strip detector, the TT station, is located

upstream of a dipole magnet with a bending power of about 4Tm, and three stations

of silicon-strip detectors and straw drift tubes (T1, T2, T3) are placed downstream of

the magnet. The magnet causes the trajectory of charged particles to curve as they pass
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Figure 3.2: Track types at LHCb. Figure obtained from Ref. [67].

through it, with the curvature being proportional to the momentum of the particle.

The identi�cation of tracks performed using a dedicated pattern recognition algorithm.

This is followed by a Kalman �lter based track �tting algorithm [66] which allows the

precise measurement of the track properties including the momentum measurement. Lastly,

failed track �ts and duplicate tracks are removed to maintain the cleanest events possible.

Several track types are possible as illustrated in Fig. 3.2 and listed below:

ˆ VELO tracks: use measurements within the VELO only. They are used for vertexing

and (can) make up the �rst segment of longer tracks.

ˆ T tracks: use measurements from the main tracking stations, T1{T3. They make

up the �nal segment of longer tracks.

ˆ Long tracks: use measurements from the VELO and from the main tracking stations,

i.e. they traverse the full tracking system and give the most accurate momentum

and vertex measurements.

ˆ Downstream tracks: use measurements from the TT and T1{T3 stations (but not

the VELO). These tracks provide momentum and vertex measurements that are

less precise than long tracks.

In general, the tracking system provides a measurement of the momentum,p, of charged

particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0%

at 200GeV/ c. The IP of a track relative to the PV is measured with a resolution of

(15 + 29=pT ) � m, wherepT is the component of the momentum transverse to the beam,

in GeV/ c.

31



3.2.2 Particle identi�cation system

The LHCb detector has a multifaceted particle identi�cation (PID) system providing

discrimination between di�erent particle species | both charged and neutral. The various

PID subdetectors produce separate sets of variables that are used as input to several

multivariate (MVA) classi�ers trained to identify certain particle species.

Ring-imaging Cherenkov detectors

Di�erent types of charged hadrons are distinguished using information from two ring-

imaging Cherenkov (RICH) detectors, RICH1 and RICH2 [68]. The RICH detectors

consist of chambers of gas instrumented with mirrors, focusing optics, and photodetectors

to extract the Cherenkov radiation emitted by charged particles that pass through the

medium. This occurs for particles with a velocityv > c=n , wheren is the refractive index

of the medium. This is equivalent to a momentum threshold of

p >
mc

p
n2 � 1

; (3.1)

and the radiation is emitted at an angle

� C =
c

nv
=

p
m2c2 + p2

pn
: (3.2)

The RICH reconstruction requires input from the tracking system. It involves cal-

culating the expected� C angle for each track in the event under various sets of mass

hypotheses. That is, the momentum measurements from the tracking system are combined

with an assumption of the particle masses to determine the Cherenkov angles. The

expected� C angles are then compared to the actual distribution of Cherenkov photons

observed in the RICH detectors. The mass hypotheses are then varied to �nd the best

�tting set of particle types. More speci�cally, a global likelihood valueL (� hits ; � C jY ) is

calculated for the Cherenkov angle distribution,� hits , of photons in the RICH detectors

under the hypothesis that the tracks in the event have masses corresponding to the set

of particles Y. Since pions are the most abundant particles produced inpp collisions,

the baseline hypothesis assumes that all tracks in the event are pion tracks. An iterative

algorithm then loops over all tracks in the event and changes the mass hypothesis for the

track to Yi 2 f e; �; p; K g, recomputing the global likelihood each time. After considering

all hypotheses for all tracks, the change that leads to the largest improvement in the

likelihood is taken as the preferred hypothesis for that track, the optimal likelihood and

32



Table 3.1: Cherenkov thresholds for common particles in the LHCb RICH detectors.

Particle RICH1 RICH2

e 9.6 MeV/c 16.1 MeV/c
� 2.0 GeV/c 3.4 GeV/c
� 2.6 GeV/c 4.4 GeV/c
K 9.3 GeV/c 15.6 GeV/c
p 17.7 GeV/c 29.7 GeV/c

set of particlesY is updated accordingly, and the procedure is repeated until there is no

further improvement in the likelihood.1 The �nal output of the RICH reconstruction is a

set of variables,

DLLX = ln L (� hits ; � C jX; Y ) � ln L (� hits ; � C j�; Y ); (3.3)

for each track, representing the change in the global log likelihood when the track's mass

hypothesis is changed from the baseline pion hypothesis toX 2 f e; �; p; K g. The DLLX

variables can be used directly for selections. Alternatively, they can be combined with

complementary PID information from other subdetectors using MVA classi�cation tools.

The RICH1 detector is located upstream of the magnet and is attached directly to

the VELO exit window, covering the full LHCb angular acceptance. It is optimised for

low momentum particles, usingC4F10 as a radiator with refractive index n = 1:0014.

The RICH2 detector is downstream of the magnet with a reduced angular acceptance

extending to approximately 120mrad relative to the beam line. It is optimised for higher

momentum particles, which are typically produced at low angles. The RICH2 radiator is

CF4 with n = 1:0005. The Cherenkov radiation thresholds for the relevant particles at

LHCb are listed for both RICH detectors in Table 3.1.

Calorimeter system

Photons, electrons and hadrons are identi�ed by a calorimeter system consisting of a

scintillating-pad detector (SPD), a preshower (PS) detector, an electromagnetic calorimeter

(ECAL) and a hadronic calorimeter (HCAL). The ECAL is the primary apparatus in

the calorimeter system, and the other subdetectors mostly exist to augment the ECAL

information in the absence of tracking information. The reconstruction of the calorimeter

1A number of optimisations are made to the RICH algorithm to improve the average case complexity,
including adding early termination criteria and reducing the set of tracks in each iteration to only those
that are likely to change their preferred hypothesis.
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system proceeds in several stages, beginning with a basic clustering of hits in the ECAL.

The ECAL clusters are then associated with the PS, SPD, and HCAL readout from the

same cells. This information is used as input to the hardware trigger described in Sec. 3.2.5

to signal the presence of high energy photons, electrons, and hadrons. If an event is

accepted by the hardware trigger, a more comprehensive reconstruction is performed,

which utilises information from the tracking system to perform particle identi�cation.

Tracks are extrapolated to the calorimeter and matched with the clusters found in

the ECAL, which distinguishes charged clusters from neutral ones. The SPD provides

additional indication of charge to identify converted photon clusters. The total energy of

each cluster and other variables related to the energy deposition pro�le are calculated

using the ECAL, PS, and HCAL. All of this information is then provided as input to

MVA classi�ers trained to identify various species of charged and neutral particles.

3.2.3 Muon identi�cation system

Muons are primarily identi�ed by a dedicated system [69] composed of alternating layers

of iron shielding and multiwire proportional chambers. Muons penetrate much further

through the detector material than most other particle species, hence, the muon stations

are located at the end of the detector furthest away from the interaction region. The

interleaved layers of iron shielding take further advantage of this by �ltering out any

background particles that survive beyond the calorimeter system. There are �ve muon

stations (M1{M5), with one station (M1) being located before the calorimeter system,

and the rest behind it. Each muon station is segmented into 4 concentric rectangular

regions (R1{R4), as shown in Fig. 3.3, with increasing granularity towards the beam line

where the 
ux of particles is the highest.

Similar to the calorimeter system, the muon system undergoes a basic local recon-

struction that is used as input to the hardware trigger described in Sec. 3.2.5. If an event

is accepted by the hardware trigger, a more comprehensive reconstruction is performed

that utilises tracking information. In any case, since the muon stations have fairly little

background to contend with, the requirements to identify muons are kept as simplistic

as possible. In the full reconstruction based on extrapolated tracks, consecutive hits in

two or more muon stations are required, dependent upon the momentum of the track as

shown in Table. 3.2. This provides a binary muon identi�cation variable, calledisMuon,

which is close to 100% e�cient, especially for highpT muons. The isMuon algorithm

has a misidenti�cation rate � 2% for hadrons. The latter is improved upon by a second

algorithm that calculates a likelihood value for the set of observed hits in the muon
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Figure 3.3: Schematic diagram of a muon station viewed front-on. The station consists of four
concentric regions, R1{R4, with increasing granularity towards the beam line.

stations given the extrapolated tracks. The likelihood is calculated under the muon and

proton hypotheses and the �nal output is a variable, DLL� , representing the di�erence in

log likelihoods between the muon and non-muon2 hypotheses, similar to those produced

by the RICH reconstruction.

Track momentum Required hits
3 < p < 6 GeV/c M2 and M3
6 < p < 10 GeV/c M2 and M3 and (M3 or M4)
p > 10 GeV/c M2 and M3 and M3 and M4

Table 3.2: Requirements for a track of momentump to be identi�ed as a muon.

3.2.4 Data 
ow and event reconstruction

In order to reconstruct complete events, the data from each subdetector system described

above must be combined and synchronised. The generalLHCb data 
ow which achieves

this is shown schematically in Fig. 3.4. The raw data collected by each subdetector is

processed in situ by the subdetector front-end boards (FEBs). These are typically custom

hardware devices consisting of application speci�c integrated circuits (ASICs) and �eld

programmable gate arrays (FPGAs) designed to amplify, shape, and digitise the signals

from the subdetectors. TheLHC operates at a bunch crossing3 frequency of 40MHz,

which means that each subdetector can expect to receive signals from a newpp collision

2The likelihood for the proton hypothesis is taken to be representative of all other hadrons.
3The LHC proton beams are pulsed, meaning that the beam constituents are distributed in bunches with
a �xed separation between each bunch. A bunch crossing thus refers to when bunches from two opposing
beams pass through the same region of space.
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Figure 3.4: The LHCb event reconstruction data 
ow. The diagram shows the main processing
stages required to go from raw data collected by the detector to fully reconstructed physics
analysis level data saved to permanent storage.

roughly every 25ns. The FEBs are designed to operate at a minimum of 40MHz to match

the bunch crossing rate. In some cases,e.g. for the ECAL and muon systems, the FEBs

perform some basic reconstruction tasks such as clustering of signals in order to crudely

evaluate the worthiness of the event for further processing. The subsequent processing

stages in the data 
ow are in general not designed to operate at the full bunch crossing

rate. Therefore, already at this �rst stage of the data 
ow, events which are deemed

unworthy of further processing are discarded completely. The decision of whether to keep

an event or to discard it is performed by the level zero (L0) hardware trigger unit, which

is described in more detail in Sec. 3.2.5. The L0 trigger reduces the rate of events down

to 1 MHz.

Following the initial processing in the FEBs, the data from each subdetector is

transmitted in a compressed packet format along with a bunch crossing identi�cation

number to a system of common data acquisition (DAQ) boards located away from the

detector, sometimes referred to as the back-end boards. The back-end DAQ system

contains FPGAs and is responsible for unpacking the data received from the FEBs

and aligning all packets belonging to same event,i.e. with the same bunch crossing

identi�cation number. This data is then passed in a standardised format to the event

builder (EB) network which begins the process of detector-wide event reconstruction. The

EB network [70] receives fragmented events asynchronously from the DAQ boards, and

36



has the task of routing all fragments belonging to the same event to a single destination

for processing by the high level trigger (HLT) system. This two stage software trigger,

described in more detail in Sec. 3.2.5, runs physics inspired algorithms over the complete

events received from the EB network in order convert the raw detector data into analysis

level data objects which can be associated to physical processes that took place in the

detector. For example, hits in the tracking detectors may be associated to tracks left by

charged particles that may subsequently be traced back to the decay of a parent particle

or to a PV. At the same time event reconstruction is taking place, �ltering of events is

also occurring to further reduce the data rate to a level that is practical for permanent

storage. The actual rate of events saved to permanent storage varied from around 3kHz

to 12.5 kHz over Runs 1 and 2 [71{73].

3.2.5 Trigger system

As mentioned in the previous subsection, the reconstruction and selection of events is

performed by a trigger [71, 72], which consists of a hardware stage based on information

from the calorimeter and muon systems, followed by a software stage, which applies a full

event reconstruction using information from all subdetectors. Data is processed in the

trigger by various "trigger lines", which are de�ned by a sequence of reconstruction and

selection algorithms. At each stage and within each line, trigger signals are associated with

reconstructed particles. Selection requirements can therefore be made on a given trigger

line decision itself (i.e. pass or fail) and on whether the decision was: due to the signal

candidate | referred to as the trigger on signal (TOS) category; or due to other particles

produced in the pp collision | referred to as the trigger independent of signal (TIS)

category. Trigger decisions can also be both TIS and TOS if both the signal candidate

and the rest of the event are each su�cient to trigger on the event. Alternatively, a trigger

decision could be neither TIS nor TOS, sometimes called trigger on both (TOB), if neither

the signal nor the rest of the event are themselves su�cient to trigger the event.

The set of active trigger lines and the requirements of a given trigger line can change

over time in realistic data taking, for example, in response to data quality and event rate

monitoring. This is especially true of the hardware trigger. The speci�c set of trigger

lines and requirements in use at any given time is uniquely identi�ed by a 32 bit trigger

con�guration key (TCK). The use of TCKs makes it possible to produce simulated data

with conditions relevant to speci�c data taking periods.
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Hardware trigger

The LHCb hardware trigger, known as L0, is a �xed latency trigger that uses input from

the calorimeter and muon systems to arrive at a decision on whether to process the event

or not within 4 � s. It receives input at the full LHC bunch crossing rate of 40MHz and

reduces this rate to 1MHz. The two input streams provide independent triggers and the

global L0 decision is a logical OR combination of them.

As explained in Sec. 3.2.3, the muon stations each consist of four regions. The four

regions are processed independently in the L0 trigger, and each region proposes two

candidates per event, corresponding to the two highestpT muon candidates identi�ed in

that region. The candidates are identi�ed as sequences of hits in the �ve muon stations

that form a straight line pointing back towards the interaction region. The muon trigger is

then composed of two subtriggers: a single muon trigger,L0Muon, which sets a threshold

on the highestpT , plargest
T , of the eight candidates; and a dimuon pair trigger,L0DiMuon,

which sets a threshold on the productplargest
T � p2nd largest

T of the two highestpT candidates.

The L0 calorimeter trigger is based on information from the PS, SPD, ECAL, and

HCAL and considers all 2� 2 clusters of cells as potential candidates. The ECAL and

HCAL are parallel processed by a collection of front-end board (FEBs) in regions of 9� 5

cells, therefore each FEB processes 32 possible cluster candidates. Each FEB retains the

cluster with the highest transverse energy, de�ned as

ET =
X

i

E i sin� i ; (3.4)

whereE i is the energy deposited in celli , � i is the angle between the beam line (z-axis)

and the centre of celli , and the sum runs over each cell in the cluster. Clusters with

energy deposits in the HCAL are considered as hadron candidates, while clusters with

energy deposits in the ECAL and PS but no HCAL or SPD hits are considered as photon

candidates. If the latter also have SPD hits, then the cluster is considered an electron

candidate. Ultimately, the retained candidates are compared against a �xedET threshold,

and if at least one candidate passes then the event is accepted by the L0 calorimeter

trigger.

Software trigger

The HLT system is a software trigger that processes events accepted by the L0 trigger. It

is divided into two stages known as HLT1 and HLT2.

The HLT1 stage performs a partial event reconstruction and some basic selections to the
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reduce the event rate from 1MHz to around 110kHz. The HLT1 processing focuses mainly

on the objects that were responsible for the L0 trigger decision and consists in identifying

primary vertices (PVs) and long tracks. In particular, several dedicated muon trigger

lines search for muon candidates by matching extrapolated VELO tracks to hits in the

muon stations. If these muon candidates satisfy certain �t quality criteria, then their hits

in the remaining tracking stations are reconstructed to make a momentum measurement.

Additionally, several inclusive trigger lines search for VELO tracks and vertices with

large displacement from any PV. The identi�ed tracks are similarly extrapolated to the

other tracking stations to perform a momentum measurement. Some cuts are additionally

placed on the minimumpT of the tracks found by the muon and inclusive lines. The

HLT1 processing is required to be fast, with� 30ms to execute, and consequently the

HLT1 algorithms are simpli�ed relative to the full reconstruction and less accurate. The

complete tracking is therefore run again in the HLT2 stage.

The HLT2 stage performs a full event reconstruction, which includes rerunning the

HLT1 tracking algorithms with less strict minimum momentum requirements and including

downstream tracks. The downstream tracks are identi�ed in the T-stations after the

magnet and then extrapolated backwards through the magnetic �eld to the TT station

in order to produce a momentum measurement. Neutral particles are reconstructed by

the calorimeter system and HLT2 then performs full PID using the tracking information,

the RICH detectors, the calorimeter system, and the muon system. In Run 1, further

o�ine processing was required to improve upon the HLT2 reconstruction; however, after

many algorithmic improvements and enhanced real time calibration, the Run 2 HLT2

reconstruction reached identical quality to the o�ine reconstruction, making any further

processing obsolete.

3.3 Simulation

Simulation is required for many purposes inLHCb. At the analysis level, it is required to

study and model the impacts of the �nite resolution and acceptance of the detector, and

likewise for the selection requirements imposed to produce the datasets to be analysed.

In the simulation, pp collisions are generated usingPythia [74] with a speci�c LHCb

con�guration [75]. Decays of unstable particles are described byEvtGen [76], in which

�nal-state radiation is generated usingPhotos [77]. The interaction of the generated

particles with the detector and its response are implemented using theGeant4 toolkit [78]

as described in Ref. [79]. The generation of simulated decays is based on Monte Carlo
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(MC) methods, hence the simulated samples are typically referred to as MC samples.

For the analyses presented in this thesis, several di�erent types of simulated datasets

are used. Namely,

ˆ Physics samples: fully simulated decays corresponding to a speci�c process of interest,

generated according to a dedicatedEvtGen model for that process. For example,

a model speci�c tob! s`+ ` � decays.

ˆ Phase space (PHSP) samples: fully simulated signal decays generated according to

a general purposeEvtGen model, which treats the matrix element for the process

as a constant. The samples are thus generated uniformly across the available phase

space up to the roughly linear dependence on the squared momentum transferq2.

ˆ Flat q2 (FLATQ2) samples: similar to the phase space samples, but the events are

reweighted such that the entire decay rate is modelled as a constant. This results in

a uniform distribution in all phase dimensions includingq2.

ˆ Generator-level samples: simulated signal decays which are not run through the

LHCb detector simulation. These may be generated according to any of the models

listed above.

Typically, phase space samples are used when no reliableEvtGen physics model for the

signal decay exists. The samples can be reweighted to reproduce a given physics modela

posteriori. With that said, it can in fact be preferable to use phase space samples,e.g.

for estimating absolute e�ciencies, since events are evenly produced across the phase

space. The FLATQ2 model is particularly useful for this since it extends the uniformity

to the q2 distribution. The generator-level samples are free of any in
uence from detector

e�ects and are used in this context as the denominator when calculating detector related

e�ciencies, such as the geometrical acceptance.
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Chapter 4

Analysis of B 0 ! K � 0� + � � decays

4.1 Overview

In this chapter, a model of theB 0 ! K � 0� + � � decay is developed using the WET

framework introduced in Sec. 2.3.2. An experimental analysis [20] of the decay is performed

using LHCb data in order to measure the Wilson Coe�cients and nonlocal contributions,

and the results are discussed in the context of theb! s`+ ` � global �ts described in

Sec. 2.5. The model combines the local and nonlocal amplitudes across the squared

dimuon mass range 0:1 � q2 � 18:0GeV2=c4, including for the �rst time all known vector

resonances coupling to muons, as well as two particle contributions fromD (� )D (� ) and

� + � � loops. It thereby simultaneously determines the nonlocal contributions and the

Wilson Coe�cients, C9; C10; C
0

9; C
0

10 and C9� that describe the local contributions. The

measurement is performed using proton-proton (pp) collision data corresponding to an

integrated luminosity of 8.4 fb� 1 collected during the years 2011{2012 and 2016{2018.

Recently, a similarLHCb analysis was carried out in which the nonlocal contributions

were parameterised following Refs. [42, 80, 81] using a truncated series expansion designed

to exploit the analytic properties of the hadronic matrix elements in the regionq2 � m2
 (2S) .

The coe�cients of the series expansion were determined experimentally by combining

LHCb data from the low-q2 (1:1 � q2 � 8:0GeV2=c4) and inter-resonance (11:0 � q2 �

12:5GeV2=c4) regions with independently obtained measurements of the polarisation

amplitudes and strong-phase di�erences at theJ= pole [82, 83]. This provided a direct

measurement of the Wilson Coe�cientsC9 and C10 along with a data driven estimate of

the size of the nonlocal contributions within theq2 bins used in previousLHCb angular

analyses of theB 0 ! K � 0� + � � decay. The analysis used the same dataset (2011{2012 and

2016) as Ref. [4],i.e. the most recentLHCb binned angular analysis of theB 0 ! K � 0� + � �
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decay. In doing so, it obtained a result indicating that the nonlocal contributions did

not a�ect prior measurements in a signi�cant way. That is, the impact of the nonlocal

contributions on the B 0 ! K � 0� + � � angular observables was found to be minimal and

the values of the Wilson Coe�cients determined from the �t to data were found to be

compatible with those extracted from the measurements of Ref. [4], which assumed only a

small in
uence from nonlocal contributions. The main di�erences of this approach relative

to the analysis presented in this thesis, is that the nonlocal model used in Refs. [82, 83]

did not consider the e�ects of light hadron resonances belowq2 = 1:1GeV2=c4 or broad

charmonium resonances and multibody states aboveq2 = m2
 (2S) , nor did it consider �nite

width e�ects of the J= and  (2S) resonances. Data from theq2 regions containing these

contributions was therefore not included in the measurement of Refs. [82, 83]. The present

analysis proposes a more comprehensive model of the nonlocal contributions covering

continuously the full range 0:1 � q2 � 18:0GeV2=c4. Moreover, it includesLHCb data

from 2017 and 2018, almost doubling the size of the total dataset. The results obtained

in this thesis are compared to those of Ref. [82, 83] as a crosscheck.

This chapter begins with the construction of the decay rate in Sec 4.2 followed by

a description of the amplitude model used to parameterise the decay rate in Sec. 4.3.

A description of the experimental considerations leading to the �nal complete model

accounting for all signal, background, and detector e�ects is given in Sec. 4.4. The strategy

for �tting the model to data is detailed in Sec. 4.5, followed by a detailed investigation

of possible systematic uncertainties in Sec. 4.6. The results of the �t toLHCb data are

presented in Sec 4.7, which is followed by a discussion and concluding remarks in Secs. 4.8

and 4.9, respectively.

The research presented in this chapter was performed in collaboration with other

members of theLHCb collaboration, hence, it is necessary to present some sections

containing work carried out by others. In particular, the development of the event

selection criteria described in Sec. 4.4.1, the corrections to simulated events described

in Sec. 4.4.2, the use of the simulated events to derive the coe�cients of the acceptance

model described in Sec. 4.4.3, the development of the veto-corrected background �t model

described in Sec. 4.5.2, and several of the studies pertaining to systematic uncertainties

presented in Sec. 4.6 are primarily attributed to other collaborators.

The most signi�cant of my own contributions to the analysis include reformulating

parts of the decay amplitude model described in Sec. 4.3 to better describe data and

reduce systematic uncertainties | in particular, the development of the e�ective S-wave

amplitude given in Eqs. 4.30 and 4.31, which allows the S-wave component to be reliably
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determined from data without relying on external input to �x the S-wave form factors.

This eliminates one of the most signi�cant contributions to the systematic uncertainty on

the determination of the main parameter of interest, theC9 Wilson Coe�cient. In addition

to this, I was involved in the debugging and �nalisation of the detectorq2 resolution model

described in Sec. 4.4.3 and the hadronic dispersion relation model described in Sec. 4.3.4

for the nonlocal contributions, which is one of the unique and core features of the analysis.

I performed a broad range of studies investigating systematic uncertainties, including all

of those related to the detector resolution inq2 and the decay angles. The studies focusing

on the q2 resolution model also involved studying the e�ects of �nal state radiation from

the K + � � system, which lead to the �nal choice for the reconstructedB 0 mass region in

which the analysis is performed. These studies are described in Sec. 4.6. Further to this,

I devised and implemented the machine learning based goodness of �t test described in

Sec. 4.5.5 along with carrying out numerous �t validation studies. These studies most

notably include: the analysis of �t convergence rates and parameter pull distributions

(see Sec. 4.5.4), which ultimately lead to the �nal chosen set of free parameters and the

application of asymptotic bias corrections to the �nal results of the analysis; comparisons

of observables and amplitudes to previous measurements; and searches for alternative

minima in the likelihood �t (see Sec. 4.5.6). Finally, I provided the interpretation and

discussion of results in Secs. 4.7 and 4.8.

4.2 Di�erential decay rate and angular observables

The B 0 ! K � 0� + � � decay, whereK � 0 refers speci�cally to the K � 0(892) meson is the

process of interest in this analysis. However, since theK � 0 is an unstable particle, the

actual decay observed experimentally isB 0 ! K � 0(! K + � � )� + � � , which is a four body

�nal state. The di�erential decay rate for such a process is calculated via Fermi's golden

rule [28]:

d� =
(2� )4

2mB
jM (B 0 ! K � 0� + � � )j2 d�( p; k1; k2; q1; q2) (4.1)

whereM (B 0 ! K � 0� + � � ) is the matrix element for the process, and d� is the Lorentz

invariant phase space element accounting for the kinematics of the process, withp, k1, k2,

q1 and q2 being the four-momenta of theB 0, K + , � � , `+ and ` � , respectively. Detailed

calculations of Eq. 4.1 for such a decay can be found in Ref. [84]. Ultimately, the phase

space is described by �ve independent kinematic variables, which are conventionally chosen

to be the three decay anglescos� ` , cos� K and � illustrated in Fig. 4.1, along with q2

and m2
K� , which denote the mass squared of the dimuon andK + � � systems, respectively.

43



Figure 4.1: A pictorial representation of the three decay angles� ` , � K , and � in the B 0 !
K � 0� + � � decay. Figure adapted from Ref. [85]. For theCP conjugate decayB 0 ! K � 0� + � � ,
the de�nition of � is 
ipped, i.e. � ! � � .

The angle� ` is de�ned as the angle between the direction of the� + (� � ) in the dimuon

rest frame and the direction of the dimuon in theB 0 (B 0) rest frame. The angle� K is

de�ned as the angle between the direction of the kaon in theK � 0 (K � 0) rest frame and the

direction of the K � 0 (K � 0) in the B 0 (B 0) rest frame. The angle� is the angle between

the plane containing the dimuon pair and the plane containing the kaon and pion from the

K � 0 meson. The angular basis used in this paper is identical to that de�ned in Ref. [85],

and is de�ned such that theB 0 and B 0 angular distributions have the same functional

dependence on the angles. It is worth noting that di�erent conventions do exist in the

literature.

With the phase space parameterisation described above, the �ve-dimensional di�erential

decay rate is written in the following compact form [41, 86],

d5 ( )

� ( B 0 ! K + � � � + � � )

dq2 d3~
 d m2
K�

=
9

32�

X

i

( )

Ji (q2)f i (cos� ` ; cos� K ; � )gi (m2
K� ); (4.2)

where � and � indicate the B 0 and B 0 decay rates, respectively, and likewise for the

Ji and �Ji functions.1 The latter are known as angular observables and are discussed in

more detail below. Thef i (cos� ` ; cos� K ; � ) functions describe the angular distribution in

terms of spherical harmonics, and thegi (m2
K� ) are functions describing the lineshape for

the K + � � system. In Eq. 4.2 and all of this section, d3~
 = d cos� ` d cos� K d� . For this

analysis, the di�erential decay rate of Eq. 4.2 is integrated over a small region inm2
K�

in order to simplify the analysis. This reduces the decay rate expression down to four

dimensions,

d4 ( )

� ( B 0 ! K + � � � + � � )

dq2 d~

=

9
32�

X

i

( )

Ji (q2)f i (cos� ` ; cos� K ; � )Gi ; (4.3)

1The seemingly mismatched bar notation is a convention in the literature. It traces back to the fact that
the B mesons contain theb antiquark, while the B mesons contain theb quark.
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where theGi are given by

Gi =
Z m2

K� =0 :9962 GeV2=c4

m2
K� =0 :7962 GeV2=c4

gi (m2
K� ) dm2

K� : (4.4)

Within the considered range 0:796 � mK� � 0:996GeV/ c2, the B 0 ! K + � � � + � �

decay receives amplitude contributions from P-waveK � 0(892) contributions, and S-wave

B 0 ! K � 0
0 (700)� + � � transitions.2 Considering previous measurements of higherK + � �

partial waves in B 0 ! K + � � � + � � and B 0 !  (0)K + � � transitions [87{ 89], contributions

from higher partial waveK + � � states in themK� range of this analysis are considered

to be negligible. The functionsgi (m2
K� ) represent bilinear products of the P-wave and

S-wave lineshape models. The P-wave lineshape is modelled using a relativistic Breit{

Wigner function, while the S-wave lineshape is modelled using the LASS parameterisation.

The de�nitions of these lineshapes are the same as in Ref. [82] and are also de�ned

in Appendix 4.C for completeness. In principle, thegi (m2
K� ) functions also carry aq2

dependence which is neglected in this analysis. This is a good approximation given the

q2 and m2
K� ranges considered are su�ciently far away from the kinematic endpoints.

Ultimately, the exact choice of lineshape models for theK + � � system is found to have a

negligible impact on the results of the analysis.

The angular observables
( )

Ji in Eq. 4.3 form a complete basis for the experimental

observables accessible toB 0 ! K � 0� + � � angular analyses [86]. As described in Sec. 4.3,

they contain all of the dependence on the parameters of the WET model to be determined in

this analysis. The explicit forms of the angular functionsf i are speci�ed in Appendix 4.B.

The angular observables can be measured experimentally by performing a �t to the

B 0 ! K � 0� + � � decay rate as a function of the decay anglescos� ` , cos� K , and � . Such

measurements are typically performed in bins ofq2 to make for a model independent

measurement, since the dependence on the angular functionsf i is determined by kinematics

alone. This is the approach taken in previousLHCb angular analyses of theB 0 ! K � 0� + � �

decay [2{ 4, 85]. Similar binned measurements have also been performed byATLAS ,

BaBar, Belle, CDF, and CMS in Refs. [50{ 52, 55, 56, 90{ 92]. Generally, the 
avour

speci�c observables
( )

Ji (q2) are not measured directly in experiment. Instead, it is common

2P-wave refers to a state of total angular momentumJ = 1, while S-Wave refers to a state with J = 0.
Unless otherwise speci�ed, the use ofK � 0 implicitly refers to the P-wave state, K � 0(892).
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to de�ne the following CP-averaged andCP-asymmetry observables,

Si =
1

d(� + �) =dq2

�
Ji + �Ji

�
; (4.5)

A i =
1

d(� + �) =dq2

�
Ji � �Ji

�
; (4.6)

which are normalised with respect to the total combinedq2 spectrum for B 0 and B 0

decays. With the angular convention used in this analysis, theCP-averaged decay rate

for the P-waveB 0 ! K + � � � + � � decay is written as,

1

d(� + �) =dq2

d4(� + �)

dq2 d~


�
�
�
�
P

=
9

32�

�
S1s sin2 � K + FL cos2 � K + S2s sin2 � K cos 2� `

+ S2c cos2 � K cos 2� ` + S3 sin2 � K sin2 � ` cos 2�

+ S4 sin 2� K sin 2� ` cos� + S5 sin 2� K sin� ` cos�

+
4
3

AF B sin2 � K cos 2� ` + S7 sin 2� K sin� ` sin�

+ S8 sin 2� K sin 2� ` sin� + S9 sin2 � K sin2 � ` sin 2�
�
:

(4.7)

It is conventional to make the replacementsFL � S1c and AF B � 3
4S6s, where the subscript

s(c) is also conventional and indicates that the observable carries asin2 � K (cos2 � K )

dependence. The motivation for these replacements follows from the de�nitions of

the observables in terms of the polarisation amplitudes given in Eq. 4.26 below |FL

corresponds to the fraction of longitudinal polarisation of theK � 0 meson, andAF B

corresponds to the forward-backward asymmetry of the lepton system. In most previous

B 0 ! K � 0� + � � angular analyses, the decay rate expression is simpli�ed by taking the limit

of massless leptons,i.e. m� ! 0. In this limit, the number of independent observables is

reduced from 11 to 8 through the relations,

S1s = 3S2s; S1c = � S2c; (massless leptons) (4.8)

along with the P-wave rate normalisation condition,

3
4

(2S1s + S1c) �
1
4

(2S2s + S2c) = 1 ; (4.9)

which together imply S1s = 1
4 (1 � FL ), S2c = � FL , and S2s = 1

4 (1 � FL ). Although the

massless lepton limit is a good approximation for most of theq2 range considered in this

analysis, terms involving the muon mass are retained. The observableS6c vanishes both in
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the limit of massless leptons and assuming no scalar currents [41]. The latter assumption

still applies to this analysis, hence this term is neglected.

The inclusion of the S-wave contribution adds 8 more observables,S10{17 , which are

normalised with the respect to the totalq2 rate, while the P-wave observables remain

normalised to the P-wave only rate. The totalCP-averaged decay rate is given by,

1

d(� + �) =dq2

d4(� + �)

dq2 d~


�
�
�
�
P+S

=
�
1 �

3
2

�
S10 �

1
3

S12

��
1

d(� + �) =dq2

d4(� + �)

dq2 d~


�
�
�
�
P

+
9

32�

�
S10 + S11 cos� K + ( S12 + S13 cos 2� K ) cos 2� `

+ ( S14 sin 2� ` + S15 sin� ` ) sin � K cos�

+ ( S16 sin� ` + S17 sin 2� ` ) sin � K sin�
�
:

(4.10)

It is common to de�ne the S-wave fractionFS � � 3
� 2 S12. In the massless lepton limit,

FS = 3S10 = � 3S12. From the observables present in Eq. 4.7, it is possible to de�ne

so-called optimised angular observables,P (0)
i , which are appropriately chosen ratios of

observables that bene�t from some cancellation in hadronic form factor uncertainties [93].

The basis for the optimised observables used in this analysis is given by,

P1 =
S3

2S2s
; P2 =

AF B

6S2s
;

P3 =
� S9

4S2s
; P0

4 =
S4

2
p

� S2cS2s
;

P0
5 =

S5

2
p

� S2cS2s
; P0

6 =
S7

2
p

� S2cS2s
;

P0
8 =

S8

2
p

� S2cS2s
:

(4.11)

These de�nitions di�er notably from previous LHCb analyses (cf. Eq. (5) in Ref. [3]), since

the latter are de�ned in the massless lepton limit. Using Eqs. 4.8 and 4.9, one can verify

that the de�nitions used here produce the same observables as Ref. [3] in the massless

lepton limit.

The angular observables are not directly the quantities of interest in this analysis.

Rather, the free parameters in the �t to data are the parameters of the decay amplitude

(Eq. 4.12) which stem from the underlying WET model,i.e. the Wilson Coe�cients and

parameters describing the local and nonlocal hadronic form factors (see the next subsection

for details of the latter). The angular observables can be calculated post-analysis as

continuous functions ofq2 as a byproduct of �tting directly for the parameters in the decay
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amplitude. This allows to dissect the observables and reveal the separate contributions of

local and nonlocal origin. Doing so will illuminate the regions of phase space in which

the nonlocal contributions are most important. Their measured impacts can also be

contrasted against SM predictions to establish whether the extractions of the Wilson

Coe�cients from previous measurements of the observables are reliable.

4.3 Theoretical amplitude model

4.3.1 Matrix element for the B 0 ! K � 0� + � � decay in the WET

framework

The WET framework described in Sec. 2.3.2 can be applied to theB 0 ! K � 0� + � �

decay to calculate the matrix element (amplitude),M (B 0 ! K � 0� + � � ). The following

is performed under the assumption that theK � 0 is produced on-shell and is e�ectively

stable, allowing theK � 0 ! K + � � decay to be treated independently of theB 0 ! K � 0

process. This is known as the narrow width approximation [41]. The amplitude for the

process is written as

M (B 0 ! K � 0� + � � ) � h K � 0(k; � )� + (q1)� � (q2)jL WET jB (p)i

=
GF � emVtbV �

tsp
2�

� �
C9F L

� + C
0

9F R
�

�
L �

V

+
�

C10F L
� + C

0

10F
R
�

�
L �

A

�
L �

V

q2

h
2im b

�
C7F R

T;� + C
0

7F L
T;�

�
+ G�

i �
;

(4.12)

wherek and q � q1 + q2 are the �nal state four-momenta,p � q+ k is the initial state four-

momenta, and� is the K � 0 polarisation vector. The currentsL �
V (A) � �̀ (q1)
 � (
 5) `(q2)

represent vector (axial-vector) lepton currents, whileF L;R
(T );� are local vector (tensor)

hadronic matrix elements, andG� are nonlocal hadronic matrix elements. The local matrix

elements are de�ned as

F L;R
� (k; �; q ) = hK � 0(k; � )j �sL;R 
 � bL;R jB (p)i ; (4.13)

F L;R
T;� (k; �; q ) = hK � 0(k; � )j �sL;R � �� q� bR;L jB (p)i ; (4.14)
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and the nonlocal ones are de�ned as

G� (k; �; q ) = hK � 0(k; � )jK � (q)jB (p)i ; (4.15)

with K � corresponding to the charmloop operator de�ned in Eq. 2.44.

4.3.2 Transversity amplitudes

As described earlier in Sec. 2.3.4, the hadronic matrix elements of Eqs.(4.13){ (4.15) can

be expressed in terms of invariant functions via a Lorentz decomposition. That is, for some

hadronic matrix elementf � (k; �; q ), an appropriate set of Lorentz structuresS�
�� (k; q) can

be found such that [42]

f � (k; �; q ) = � � �
X

�

f � (q2)S�
�� (k; q): (4.16)

The resulting scalar functionsf � (q2) are known as hadronic form factors. A suitable set of

Lorentz structures,S�
�� (k; q), is provided in Appendix 4.D. The decomposition results in

a set of seven independent local form factors and three independent nonlocal form factors,

both of which are discussed further in the following sections. Using these form factors,

Eq. (4.12) is decomposed as follows,

M (B 0 ! K � 0� + � � ) =
GFp

2

� em

4�
mB

N
VtbV �

ts � � �
X

� =0 ;k;? ;t

�
AL

� L �
L + AR

� L �
R

�
S�

�� ; (4.17)

whereL �
L;R = 1

2 (L �
V � L �

A ) are the left- and right-handed chirality lepton currents, andN

is a constant given by

N = VtbV �
ts

s
G2

F � 2
emq2� 1=2� �

3 � 210� 5m3
B

; (4.18)

49



with � ` =
p

1 � 4m`=q2. The amplitudes, AL;R
� , in Eq. 4.17 are known as transversity

amplitudes.3 They are given by:

A L;R
0 (q2) = N0

� h�
C(e�) ;0

9 (q2) � C
0

9

�
�

�
C10 � C

0

10

�i
A12(q2)

+
mb

mB + mK �

�
C(e�) ;0

7 � C
0

7

�
T23(q2)

�
;

(4.19)

A L;R
k (q2) = Nk

� h�
C(e�) ;k

9 (q2) � C
0

9

�
�

�
C10 � C

0

10

�i A1(q2)
mB � mK �

+
2mb

q2

�
C(e�) ;k

7 � C
0

7

�
T2(q2)

�
;

(4.20)

A L;R
? (q2) = N?

� h�
C(e�) ;?

9 (q2) + C
0

9

�
�

�
C10 + C

0

10

�i V (q2)
mB + mK �

+
2mb

q2

�
C(e�) ;?

7 � C
0

7

�
T1(q2)

�
;

(4.21)

A t (q2) = N t

n
2

h
C10 � C

0

10

i
A0(q2)

o
; (4.22)

where the functionsV, A0, A1, A12, T1, T2, and T23 are the local form factors, whilst the

nonlocal form factors are absorbed into the e�ective Wilson Coe�cients,C(e�) ;�
7;9 (q2), as

explained in Appendix 4.E and elaborated on in Sec. 4.3.4. Eqs. 4.19{4.22 are referred to as

the longitudinal, parallel, perpendicular, and timelike transversity amplitudes, respectively.

The timelike amplitude does not require a lepton chirality label becauseSt
�� / q� (see

Appendix 4.D) and conservation of the lepton current impliesq� L �
V = 0. Therefore, only

the axial parts of the left- and right-handed amplitudes remain and it is convenient to

de�ne A t � A R
t � A L

t .

Thus far, only the P-waveK � 0(892) state is accounted for; however, experimentally

the P-wave state typically cannot be distinguisheda priori from other partial wave states.

The main source of contamination generally comes from S-waveK � 0 states, which is

estimated to be around the 10% level, and a statistical analysis is required to separate

them from the P-wave. Contributions from S-wave states must therefore be taken into

consideration in the amplitude for an accurate description of the process experimentally.

3The transversity amplitudes are closely related to the polarisation/helicity states of the K � 0 and the
virtual gauge boson that decays to the dilepton. For this reason, each of these terms are used almost
interchangeably in the literature when referring to the amplitudes of Eqs. 4.19{4.23. Formally, the term
\helicty amplitude" refers to a related but slightly di�erent basis.
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Doing so leads to an additional 2 transversity amplitudes, given by [94]

A L;R
00 (q2) = N00

�
(C(e�) ;00

9 � C 10)F1(q2) +
2mb

mB + mK � 0
0 (700)

C(e�) ;00
7 FT (q2)

�
; (4.23)

where Fi are the corresponding local S-wave form factors as de�ned in Ref. [95]. The

symbol mK � 0
0 (700) denotes the mass of theK � 0

0 (700) state [96]. The choice of theK � 0
0 (700)

mass is made to ensure that the model contains a description of the S-wave component

across the fullq2 range considered. Higher mass S-wave states such as theK � 0
0 (1430)

do not contribute aboveq2 � 14:8GeV2=c4. This choice is investigated as a potential

source of systematic uncertainty. The inclusion of the S-wave component in the model in

principle leads to an additional timelike amplitude; however, this contribution is ignored

in this analysis owing to the smallness of the S-wave contribution as a whole in them2
K�

range considered and the lepton-mass suppression of the timelike amplitudes. The triangle

(K•all�en) function, � , is given by

� = m4
B + m4

K � + q4 � 2(m2
B m2

K � + m2
K � q2 + m2

B q2); (4.24)

with the K � 0
0 subscript appearing in Eq. 4.23 indicating themK � ! mK � 0

0 (700) replacement.

The various normalisation factors appearing in the transversity amplitudes are given by

N0 =
� 8NmB mK �

p
q2

Nk = � N
p

2(m2
B � m2

K � )

N? = N
p

2�

N t =
N

p
�

p
q2

N00 = � N
� K � 0

0p
q2

;

(4.25)

with N de�ned as in Eq. 4.18.

Additional transversity amplitudes arise when considering contributions from other

operators in theb! s`+ ` � WET framework. For example, theB 0 ! K � 0� + � � can in

principle receive contributions from scalar and pseudoscalar operators which result in

additional terms in the timelike amplitude (Eq. 4.22) and one additional scalar transversity

amplitude [41]. These contributions are highly suppressed in the SM and potential NP in

these operators is not considered in this analysis. The main reason for this is that scalar

and pseudoscalar contributions are strongly constrained from otherb! s`+ ` � process,
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in particular, the B 0
s ! � + � � decay [41, 93]. Up to the possibility of additional NP

sensitive observables introduced through neglected operators, the transversity amplitudes

of Eqs. 4.19{4.23 are su�cient to calculate any observable accessible in aB 0 ! K � 0� + � �

angular analysis.

As mentioned in Sec. 4.2, the angular observables
( )

Ji in Eq. 4.3 are constructed using

the transversity amplitudes de�ned in Sec. 4.3.2. The P-wave angular observables are

built from the amplitudes A L;R
0 , A L;R

k , A L;R
? , and A t , as follows [41],

J1s(q2) =
2 + � 2

`

4

�
jA L

? j2 + jA L
k j2 + jA R

? j2 + jA R
k j2

�
+

4m2
`

q2
Re

�
A L

? A R�
? + A L

k A R�
k

�
;

J1c(q2) = jA L
0 j2 + jA R

0 j2 +
4m2

`

q2

�
jA t j2 + 2 Re

�
A L

0 A R�
0

��
;

J2s(q2) =
� 2

`

4

�
jA L

? j2 + jA L
k j2 + jA R

? j2 + jA R
k j2

�
;

J2c(q2) = � � 2
`

�
jA L

0 j2 + jA R
0 j2

�
;

J3(q2) =
� 2

`

2

�
jA L

? j2 � jA L
k j2 + jA R

? j2 � jA R
k j2

�
;

J4(q2) = �
� 2

`p
2

Re
�
A L

0 A L �
k + A R

0 A R�
k

�
;

J5(q2) =
p

2� `
�
Re

�
A L

0 A L �
? � A R

0 A R�
?

��
;

J6s(q2) = � 2� ` Re
�
A L

k A L �
? � A R

k A R�
?

�
;

J7(q2) = �
p

2� `
�
Im

�
A L

0 A L �
k � A R

0 A R�
k

��
;

J8(q2) =
� 2

`p
2

Im
�
A L

0 A L �
? + A R

0 A R�
?

�
;

J9(q2) = � � 2
` Im

�
A L �

k A L
? + A R�

k A R
?

�
;

(4.26)

where the parameter� ` is given by� ` =
q

1 � 4m2
`

q2 . Some of these de�nitions di�er slightly

from Ref. [41] by a minus sign, which is due to the use of di�erent conventions for de�ning

the decay angles.

The S-wave angular observables also involve the S-wave transversity amplitudesA L;R
00
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in addition to the P-wave amplitudes, and are given by [94]

J10(q2) =
1
3

�
�
jA L

00j
2 + jA R

00j
2
�

+
4m2

`

q2
2 Re(AL

00A
R�
00 )

�
;

J11(q2) =
2

p
3

Re
�

A L
00A

L �
0 + A R

00A
R�
0 +

4m2
`

q2

�
A L

00A
R�
0 + A L

0 A R�
00

�
�

;

J12(q2) = �
1
3

� 2
`

�
jA L

00j
2 + jA R

00j
2
�

;

J13(q2) = �
2

p
3

� 2
` Re

�
A L

00A
L �
0 + A R

00A
R�
0

�
;

J14(q2) = �

r
2
3

� 2
`

�
Re

�
A L

00A
L �
k

�
+ Re

�
A R

00A
R�
k

��
;

J15(q2) = 2

r
2
3

� 2
`

�
Re

�
A L

00A
L �
?

�
+ Re

�
A R

00A
R�
?

��
;

J16(q2) = � 2

r
2
3

� 2
`

�
Re

�
A L

00A
L �
k

�
� Re

�
A R

00A
R�
k

��
;

J17(q2) =

r
2
3

� 2
`

�
Re

�
A L

00A
L �
?

�
� Re

�
A R

00A
R�
?

��
:

(4.27)

4.3.3 Local form factors

Local P-wave form factors

The local P-waveB 0 ! K � 0 form factors | Fi 2 f V; A0; A1; A12; T1; T2; T23g | describe

the nonperturbative QCD e�ects associated with theB ! K � (892) transition. They are

inseparable from the Wilson Coe�cients in the decay amplitude, thus in order to disentan-

gle them, they must be calculated explicitly. This can be done with reasonable precision

in the frameworks of light cone sum rules (LCSR) [97] and lattice QCD (LQCD) [98, 99].

These two approaches are complementary in that each is best suited to a di�erent region

of q2 | LCSR works at low- q2, while LQCD works best at highq2. The current best

method for determination of the local form factors in the fullq2 region is to use the results

of both LCSR and LQCD and then interpolate between them. To do this, the form factors

are parameterised using a series expansion [100],

Fi (q2) =
1

1 � q2=m2
R i

2X

k=0

� i;k [z(q2) � z(0)]k ; (4.28)

where the� i;k coe�cients are parameters to be determined, andmR;i is the mass of the

lowest lying bs resonance withJ P quantum numbers matching those of the form factor
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Fi . The z function in Eq. 4.28 is de�ned as,

z(t) =
p

t+ � t �
p

t+ � t0p
t+ � t +

p
t+ � t0

; (4.29)

with t � = ( mB � mK � )2 and t0 = t+ (1�
p

1 � t � =t+ ). The � i;k parameters are determined

by �tting Eq. 4.28 to the LCSR and LQCD data points. Such a combined determination

has been performed in Refs. [42], which is used as input in this analysis to constrain

the local form factors in the �t to experimental data. Allowing the local form factors to

vary in the �t in this way, subject to the theoretical constraint, means that the Wilson

Coe�cients can be extracted from the data with uncertainties that already take into

account the theoretical uncertainty on the form factor predictions.

As mention earlier, theB 0 ! K � 0 from factors are typically calculated in the narrow

width approximation. Recent LCSR computations that account for the �niteK � 0 width

have shown that the narrow widthB 0 ! K � 0 form factors can be scaled by a global

factor of 1.1 to account for the �nite K � 0 width [42, 101]. This correction factor has only

been demonstrated to work in the large recoil (low-q2) region. Therefore, the form factor

parameters used in this analysis, provided in Ref. [42], implicitly account for this factor

in the region q2 < 8GeV2=c4 but not elsewhere. Developments in theoretical methods

and the increased availability of computational resources suggest that LQCD calculations

which go beyond the narrow width approximation will become available in the near

future [102]. However, such calculations remain in a preliminary stage at this time and

further theoretical work is required in order to establish a �nite width e�ect to B 0 ! K � 0

form factors across the entireq2 range.

Local S-wave form factors

As no reliable S-wave form factor predictions currently exist, in this analysis the S-

wave amplitudes are treated as nuisance parameters. This means decoupling the Wilson

Coe�cients appearing in A L;R
00 from those in the P-wave transversity amplitudes. Moreover,

an estimation of theB 0 ! K � 0
0 contribution using data is employed by adopting an e�ective

form factor in the S-wave amplitude given by

A L;R
00 = � N

� K � 0
0p
q2

�
Fe� (q2)

 

C(e�) S
9 � C S

10 +
2mb

mB + mK � 0
0 (700)

CS
7

! �
; (4.30)
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where the parametersC(e�) S
9 , CS

10 and CS
7 are independent of the Wilson Coe�cientsC9;

C10 and C7: The e�ective S-wave form factorFe� is in turn given by

Fe� (q2) =
F (0)

1 + 2:15(� F � 1)
�

q2

m2
B

�
+ 1:055(1� 2� F + � F )

�
q2

m2
B

� 2 : (4.31)

with the parameters� F and � F both positive. This form factor parameterisation describes

a very similar shape inq2 to that used in Ref. [95] but instead incorporates a polynomial

with restricted parameters in the denominator. In this way, the �t can accommodate the

wide range ofB 0 ! K � 0
0 form factors in the literature while at the same time staying well

behaved. Given Eqs. 4.30 and 4.31, a degeneracy exists between the decoupled S-wave

Wilson Coe�cients CS
7;9 and the e�ective form factor normalisation parameterF (0). In

the �t, the latter is allowed to vary along with CS
10, while CS

7 and CS
9 are �xed to the SM

values forC7 and C9, respectively. The� F and � F form factor parameters are also highly

correlated, requiring one of them (� F ) to be �xed for a reliable �t. The remaining free

parameters in Eqs. 4.30 and 4.31 are in general highly correlated, indicating that further

simpli�cations of the S-wave amplitude could be justi�ed. However, the chosen set of free

parameters are nonetheless found to give reliable results with proper statistical coverage.

4.3.4 Nonlocal form factors

Similarly to the local form factors, the nonlocal form factors are the invariant functions

arising in the Lorentz decomposition (Eq. 4.16) of the nonlocal hadronic matrix elements,

using the same set of Lorentz structures in Appendix 4.D. However, the resulting functions

are less well studied than the local form factors. No LQCD calculations exist for them,

and various di�erent approaches have been argued for in the literature, with di�erent

conclusions reached regarding their importance [22, 23, 42, 47, 81, 103]. In Eqs.(4.19){

(4.23), the nonlocal form factors are absorbed into the Wilson coe�cients, which highlights

the fact that the dominant e�ect of these contributions is aq2 and helicity dependent

correction to C9, given by

C(e�) ;�
9 = C9 + Yqq;� (q2): (4.32)
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The approach taken in this analysis begins with expressing the nonlocal term,Yqq;� (q2),

as a subtracted hadronic dispersion relation [44, 104],

Yqq;� (q2) = Yqq;� (q2
0) +

1
F � (q2)

(q2 � q2
0)

�

Z 1

4m2
�

ds
� qq;� (s)

(s � q2
0)(s � q2 � i� )

; (4.33)

where q2
0 is the subtraction point, discussed further in Sec. 4.3.6. The subtraction is

required in order to ensure convergence of the dispersion integral [47]. The spectral

density function � qq;� contains all the information on hadronic real intermediate states

that contribute to the B 0 ! K � 0� + � � decay in this model. The analytic structure of the

complex functionYqq;� (q2), i.e. the structure of it singularities in the form of poles and

branch cuts, is determined by the set of possible on-shell intermediate states [80]. This is

often referred to as the principle of maximum analyticity [105]. This analytic structure

is also inherited by� qq;� (s). Therefore, as described in the next subsection, the spectral

density function is decomposed into a sum over contributions from known intermediate

states in theB 0 ! K � 0� + � � decay. In principle, on-shell intermediate states also lead to

analytic in singularities in the variablep2, representing the invariant mass of the initialB

meson, which are not accounted for in the dispersion relation of Eq. 4.33 [60, 104]. This

includes, for example, rescattering processes such asB 0 ! DD s ! K � 0� + � � . However,

the largest of such charm rescattering contributions has recently been estimated to be no

larger than a few percent of the local contribution in theB 0 ! K 0`+ ` � decay channel [106].

The expression for the nonlocal contributions given by Eq. 4.33 exploits the fact that

Yqq;� (q2) is perturbatively calculable via an OPE in certain regions ofq2 | namely, in

the (unphysical) region,q2 . 0 [47]. If one performs such a calculation, thereby �xing

the subtraction term Yqq;� (q2
0), the second term in Eq.(4.33) then provides a means of

extrapolating the result to the physical regionq2 � 4m2
� by integrating the spectral density

function, � qq;� (s).

4.3.5 Parameterisation of speci�c nonlocal contributions

In order to �t for the nonlocal contributions in data, a parameterisation of the spectral

density function, � qq;� (s), in Eq. 4.33 is needed. In this analysis, a model is adopted

based on Refs. [44, 107]. In particular,� qq;� (s) is decomposed into a sum of parametric

contributions from all relevant one-particle (1P) and two-particle (2P) intermediate states,

� qq;� (q2) = � 1P
qq;� (q2) + � 2P

qq;� (q2) (4.34)
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and, correspondingly

Yqq;� (q2) = Yqq;� (q2
0) + � Y 1P

qq;� (q2) + � Y 2P
qq;� (q2) + Y� �;� : (4.35)

The vector statesj 2 f � (770); ! (782); � (1020); J= ;  (2S);  (3770);  (4040);  (4160)g are

considered for the 1P states, while for the 2P states, the various open-charm meson pairs

k 2 f DD; D � D; D � D � g are considered. The spectral density functions therefore formally

become,

� 1P
q�q;� (q2) /

X

j

M �
j (B ! K � 0Vj )� (q2 � m2

j ); (4.36)

and

� 2P
q�q;� (q2) /

X

k

Z
dp2

k

16� 2
� (q2 � p2

k)

�
Z

d3~pk1

Ek1

d3~pk2

Ek2

M �
k (B ! K � 0M k1 M k2 )� 4(pk � pk1 � pk2 );

(4.37)

where thej index represents the di�erent 1P states andk represents the 2P states.

In Eq. 4.36, the 1P states are treated as stable particles. In order to account for the

one-particle resonance widths, the dispersive integral of� 1P
q�q;� (q2) is modelled using the

expression [44]

� Y 1P
qq;� (q2) =

X

j

H �
j

(q2 � q2
0)

m2
j � q2

0
BW j (q2) �

X

j

jH �
j jei� �

j
(q2 � q2

0)
m2

j � q2
0

BW j (q2); (4.38)

with each

BW j (q2) =
mj � j�

m2
j � q2

�
� i m j � j

; (4.39)

describing a relativistic Breit{Wigner distribution. The pole massesmj and natural

widths � j are set to their world-average values [96]. The widths and pole masses are

�xed in the �t for all resonances, with the exception of theJ= and  (2S) resonances.

Since these narrow resonances are particularly sensitive to the modelling of the resolution

function and potentially small biases due to neglected exotic amplitudes (see Sec. 4.6.2),

the pole masses for theJ= and  (2S) resonances are allowed to vary.

The parametersjH �
j j which characterise each nonlocal amplitude in Eq. 4.38 are

normalised according to the branching fraction of the processesB 0 ! Vj (! � + � � )K � 0,

57



whereVj denotes aJ P C = 1 �� one-particle state, such that

jH �
j j = jA �

j j

2

6
6
4

~(m2
j � q2

0)2

� B

Z �
�N � (q2 � q2

0)BW j (q2)F �
vec(q

2)
�
�2

dq2

3

7
7
5

1=2

; (4.40)

whereF �
vec 2 (V=(mB + mK � 0 ); A1=(mB � mK � 0 ); A12), and N � 2 (N0; N? ; Nk) as de�ned

in Sec 4.3.2. ThejA �
j j are thus de�ned such that

jA �
j j2 = f �

j � B (B 0 ! V K � 0)B(V ! � + � � ); (4.41)

where f j
� represents the corresponding polarisation fraction,jA �

j j2=

 
X

� 0

jA � 0

j j2
!

. The

jA �
j j and � �

j parameters, to be determined from data, are the relative magnitude and

phase of each resonance. The phase convention used here de�nes the longitudinal phases,

� 0
j , relative to C9; while the phases for the other polarisation components,� k

j and � ?
j , are

de�ned relative to the longitudinal component.

This analysis constitutes the �rst measurement of the phase di�erences between

the local and nonlocal amplitudes in theB 0 ! K � 0� + � � decay in the range

0:1 < q2 < 18 GeV2=c4. The relative phase di�erences between the helicity components

of the B 0 ! J= K � 0 decay have been measured previously [88, 108] and the same is

true of the B 0 !  (2S)K � 0 decay [109]. These measurements provide a cross-check of

the parameterisation. Previous measurements of the polarisation amplitudes for the

decaysB 0 ! � 0K � 0 and B 0 ! !K � 0 from Ref. [110], andB 0 ! �K � 0 [111] are used in

combination with the measured branching fractions [96] to �x the magnitudes and relative

phases for these contributions such that only the overall phase relative toC9 is measured

for each. A di�erent phase convention is used in this analysis, which amounts to shifting

the previously measured phases by +� .

The relativistic Breit{Wigner approximation is a good description of well-separated

narrow states. For the broad overlapping resonances above the open-charm region and

below the � (1020) meson, the modelling of the one-particle amplitudes constitutes an

approximation that has been shown to be valid given the relatively small amount of signal

in the open-charm region of this rare decay [112].

Following the recipe of Ref. [107], the two-particle amplitudesM �
k (B ! K � 0M k1 M k2 ),

appearing in Eq. 4.37, are described using the two-body phase-space function for a state

with centre-of-mass energy
p

s =
p

q2 decaying into the stateM k1 M k2 , characterised by
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massesmk1 and mk2 with relative orbital angular momentum L set to the lowest partial

wave allowed by angular momentum conservation. For the set of two-particle states

k 2 f DD; D � D; D � D � g, the spectral density function takes the form

� 2P
q�q (q2) =

X

k1k2

�
� (q2; m2

k1
; m2

k2
)

q2

� 2L +1
2

; (4.42)

with L = 0 for D � D, and L = 1 for DD and D � D � , resulting in two-particle terms given

by

� Y 2P
q�q;� (q2) = A �

D � D hS(mD � D ; q2) +
X

n= D D;D � D �

A �
nhP (mn ; q2); (4.43)

wherehS and hP are de�ned as in Ref. [107]. Similarly to the one-particle states, the

complex parametersA �
k1k2

� j A �
D � D

jei� �
k 1k 2 represent the relative magnitude and phase

of each two-particle nonlocal amplitude to be determined from data. The quantity

m ~D = ( mD + mD � )=2 is an approximate e�ective mass for aD � D state, while � ~D and

� ~D are its magnitude and phase. A Gaussian constraint is placed on the open-charm

components relating the size of the real and imaginary parts for each polarisation of the

three open-charm contributions. A systematic uncertainty is assigned for potential biases

in the parameters due to this constraint, described in Sec. 4.6.4.

If lepton 
avour universality is violated, then b ! s� + � � transitions are described

by independent Wilson Coe�cients relative to the muon channel. It is possible, through

subsequent� + � � ! 
 � ! � + � � rescattering, to measure theC9� Wilson Coe�cient via

its contribution to the B 0 ! K � 0� + � � decay. This contribution is included in the model

via a nonlocal two-particle amplitude following Ref. [107],

Y� �� (q2) = �
� EM

2�
C9�

�
hS(m� ; q2) �

1
3

hP (m� ; q2)
�

: (4.44)

Finally, the only S-wave nonlocal contributions considered are those stemmingB 0 !

J= K � 0
0 and B 0 !  (2S)K � 0

0 amplitudes, contributing to C(e�) ;00
9 . The S-wave amplitudes

of other nonlocal contributions are expected to be subdominant compared to their already

relatively suppressed P-wave counterpart and are therefore ignored in this study.

4.3.6 Subtraction constant

The once-subtracted dispersion relation shown in Eq. 4.33 requires knowledge ofYqq(q2
0)

that is in principle di�erent for charm- and light-quark hadronic states. In this analysis, a

subtraction point of q2
0 = � 4:6GeV2=c4 is chosen and the value of the subtraction constant
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is taken from the OPE-based two-loop calculation of the dominant nonlocal contributions

presented in Ref. [48].

As the light-quark contributions are CKM suppressed, the same subtraction constant

is used for both the charmed and light-quark hadronic dispersion relation by default. A

systematic uncertainty for this approach is assessed by studying the behaviour of the

�t under an unsubtracted dispersion relation for light-quarks and it is found to make a

negligible di�erence to the �t results.

4.3.7 Further empirical components

Global �ts to B 0 ! K � 0
 , B 0 ! K � 0e+ e� and B 0
s ! �
 measurements have placed

stringent constraints on NP contributions to the Wilson Coe�cients C7 and C
0

7 [113, 114].

As such, in this analysis,C7 and C70 are �xed to their SM values [115]. Instead, a helicity-

dependent shift toC7 is introduced, encoded asC(e�) ;�
7 = C7 + � C�

7 , where � C�
7 are three

complex parameters to be determined from the data. Such a parameterisation allows for

the presence of an additional helicity-dependent complex phase constant acrossq2 in an

empirical way [25].

When performing the amplitude �ts, the parameters � Ck;0
7 are degenerate with the

tensor form factor coe�cients � T2 ;0, � T23 ;0. Therefore, the choice is made to �x� T2 ;0 and

� T23 ;0 to their values provided in Ref. [42]. In order to assess the level of compatibility

between the entire set of nominal and post-�t form-factor coe�cients, a separate �t is

performed where the parameters �Ck;0
7 are instead �xed and the coe�cients � T2 ;0, � T23 ;0

are allowed to vary in the �t.

4.4 Experimental model of the signal

In order to accurately describe the data, the theoreticalB 0 ! K � 0� + � � decay rate must

be augmented with a model for the detector response and must account for the e�ciency

of event reconstruction. A general description of theLHCb detector and simulation

framework is given in Sec. 3 and this section further details the components used in this

analysis along with the event selection requirements. Using simulation, a model for the

total e�ciency of the event reconstruction and selection, called the acceptance model, is

developed. Additionally, a model for theq2 resolution of the detector is presented. Both of

these are described in Sec. 4.4.3. Some corrections to the simulated samples are required

in order to ensure accurate modelling of these e�ects as described in Sec. 4.4.2. The �nal

form and implementation of the signal model is described in Sec. 4.4.4.
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4.4.1 Signal candidate selection

The B 0 ! K � 0� + � � signal candidates are �rst required to pass the hardware trigger, which

selects events containing at least one muon with highpT . The minimum pT threshold

varies between 1:36GeV and 1:8GeV for single muons, depending on the year of data

taking. For pairs of muons, a threshold is placed on the product of theirpT , which varies

between 1:68GeV2 and 3:24GeV2, depending on the year of data taking. In the subsequent

software trigger, at least one of the �nal-state particles is required to havepT > 1:7GeV/ c,

unless the particle is identi�ed as a muon in which casepT > 1:0GeV/ c is required. The

�nal-state particles that satisfy these transverse momentum criteria are also required to

have an impact parameter larger than 100� m with respect to all PVs in the event to

reject prompt particles produced directly inpp collisions. Finally, a dedicated trigger line

is employed to select multibodyB meson candidates based on the topology of the decay

products. This trigger requires that the tracks of two or more of the �nal-state particles

form a vertex that is signi�cantly displaced from any PV. At all stages of the trigger, only

TOS candidates are retained.

Signal candidates are formed from a pair of oppositely charged tracks that are identi�ed

as muons, combined with aK � 0 meson candidate. TheK � 0 candidate is formed from

two oppositely charged tracks that are identi�ed as a kaon and a pion, respectively. The

four tracks of the �nal-state particles are required to have a signi�cant impact parameter

with respect to all PVs in the event and form a good-quality common vertex. The impact

parameter of theB 0 candidate with respect to one of the PVs is required to be small and

the vertex of the B 0 candidate is required to be signi�cantly displaced from the same PV.

The angle between the reconstructedB 0 momentum and the vector connecting the PV to

the reconstructedB 0 decay vertex is required to be small. Candidates are required to have

reconstructedB 0 mass,mB � m(K + � � � + � � ) in the range 4800< m B < 6500MeV/ c2.

Finally, the reconstructed mass of theK + � � system,m(K + � � ), is required to be in the

range 796< m (K + � � ) < 996 MeV/c2.

To improve the q2 resolution, a constraint is applied when determining the value ofq2.

The constraint involves performing a kinematic re�t of the decay chain using a Kalman

�lter [116] to vary the four-momenta of the �nal state particles within their uncertainties

such that the reconstructed parent mass is constrained to be the knownB 0 mass. Unless

otherwise stated, the use ofq2 throughout this paper always refers to the constrained

value.

A signi�cant background contribution arises from candidates formed by the random

combination of kaons, pions, and muons originating from di�erent parent particles (referred
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to as combinatorial background). To reduce the level of combinatorial background, a

Boosted Decision Tree [117, 118] (BDT) classi�er is trained to discriminate between

signal and background based on a set of input variables corresponding to reconstructed

particle information. The BDT algorithm is trained entirely using data, with background

subtracted B 0 ! J= (! � + � � )K � 0 events used as a signal proxy, andB 0 ! K � 0� + � �

candidates with a mass above 5500MeV/ c2 used as a background proxy. For the background

proxy, events with dimuon masses close to the� (1020), J= , and  (2S) resonance masses

are excluded to avoid biasing the training with many events that contain real resonant

dimuons. A total of thirteen training variables are used, and the ones found to provide

the most discriminating power include various kinematic properties of theB meson, along

with PID and isolation variables of the daughter particles. The �nal cut placed on the

BDT output is chosen to optimise the signal signi�cance,S=
p

S + B. The BDT classi�er

achieves a signal e�ciency of approximately 87% and 90% in Runs 1 and 2, respectively,

whilst maintaining a consistent background rejection rate of greater than 98%.

4.4.2 Monte Carlo simulation and corrections

In this analysis, simulated datasets are used to model the combined e�ciency to reconstruct

and select the signal decay as well as to model the e�ects of �nite detector resolution.

They are also used to study various possible systematic e�ects contributing to the total

uncertainty in the �nal results.

In order to ensure agreement between the simulation andLHCb data, independent

samples are used to calibrate the simulation and correct for potential discrepancies.

Corrections are applied speci�cally to ensure agreement in the hardware trigger and

tracking e�ciencies, the multiplicity of tracks in an event, and the distributions of PID

and B 0 meson kinematic variables.

Hardware trigger e�ciency

The L0 trigger e�ciencies are known to be imperfectly modelled in simulation. Weights

are applied to the simulated events to correct for this, which are derived by calculating

the trigger e�ciency independently in background subtracted data using the TISTOS

method [119]. For this purpose, samples ofB 0 ! J= K � 0 data and B 0 ! J= K � 0 MC,

both with J= ! � + � � , are used in order to maximise the available statistics. Since

the TIS trigger category and the TOS trigger category de�ned in Sec. 3.2.5 are not

independent, the intersection between them provides a data driven estimate of the TOS

e�ciency. Using the TISTOS method, the L0 (di)muon trigger e�ciency is determined by
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calculating the ratio

� TOS (p� +

T ; p� �

T ) =
N TISTOS (p� +

T ; p� �

T )

N TIS (p� +

T ; p� �

T )
: (4.45)

The ratio between the data and MC e�ciencies is calculated in two dimensions as a

function of the pT of the two muons and is then applied as a correction theB 0 ! K � 0� + � �

simulations.

Tracking e�ciency

Minor di�erences in the e�ciency of track reconstruction between data and simulation are

corrected using standardLHCb calibration samples from theTrackCalib package [67].

The corrections are small, on the order of 1-5%, and are found to have a negligible impact

on the �nal results of the analysis.

Particle identi�cation e�ciency

The distributions of PID variables in MC are known to be generally in disagreement with

data. In this analysis, the choice is made to correct these distributions using thePIDCalib

package [120]. For muon PID variables, thePIDGentool is used, which resamples the

variable using a probability density function derived from a calibration sample. The

hadron (K + , � � ) PID variables are corrected using thePIDCorr tool, which parameterises

the existing distributions and applies a transformation to them in order to reproduce

the same distributions in calibration samples. The latter has the bene�t of preserving

correlations between variables, which is important for this analysis as some of the hadron

PID requirements applied in the selection involve products of potentially correlated PID

variables. ThePIDCorr tool was unavailable for muon PID variables at the time this

analysis was performed. However, only independent cuts are placed on individual PID

variables in this case, thus correlations between variables are not important.

The e�ects of the PID corrections are illustrated in Fig. 4.2, which shows the distri-

butions of PID variables in background subtractedB 0 ! J= K � 0 control channel data.

These are compared against the same distributions in simulation, before and after applying

the PID corrections described above. The agreement between the corrected simulation

shown in red and the data shown in black is signi�cantly improved relative the uncor-

rected simulation shown in green. Some residual di�erences remain after applying the

corrections. This is investigated as a potential source of systematic uncertainty, however,

it us ultimately found to have a no signi�cant impact on the �nal results of the analysis.
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Figure 4.2: Comparisons of the PID variable distributions in B 0 ! J= K � 0 decays. The
distributions are shown for in simulation before (green) and after (red) applying corrections with
PIDCorr and PIDGen. The distributions of background subtracted (sWeighted) B 0 ! J= K � 0

decays in data are shown in black. The two rows correspond to 2012 (top) and 2018 (bottom),
which are representative of the distributions in Run 1 and Run 2 samples, respectively.

Kinematics of the B 0 meson

The distributions of �ve event variables are used to determine an additional set of correc-

tions related to the kinematics of theB 0 meson. These properties comprise the number of

tracks in an eventnTracks, the B 0 transverse momentumpT , the B 0 vertex quality � 2
VTX ,

the B 0 impact parameter signi�cance� 2
IP , the B 0 pseudorapidity � . The distributions are

compared between theB 0 ! J= K � 0 simulations samples andB 0 ! J= K � 0 decays in

data which have been background-subtracted using thesPlot technique [121]. Weights

are derived to correct each of the �ve distributions after all other corrections have been

applied, and in an iterative fashion following the order in which they are listed above.

The most signi�cant di�erences are observed in theB 0 pT and nTracks distributions, as

shown in Figs. 4.3 and 4.4 for the year 2018. The ratio between data and MC is used to

reweight the simulation, thus correcting the mismatched distributions.

4.4.3 Modelling of the detector e�ciency and response

The reconstruction and selection of signal candidates sculpt the phase space of the

signal decay. This e�ect is accounted for in the �t to data via an acceptance function,

� (q2
true ; cos� ` ; cos� K ; � ), which includes the e�ects of the detector geometry, triggering,

reconstruction, and selection of events. Additionally, a resolution model,R(q2 � q2
true ),

is implemented to account for the smearing of reconstructed dimuon masses relative

to their true values. This e�ect is the combined result of the �nite resolution in each

subdetector involved in the reconstruction of muons. The resolution in the decay angles is
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(a) (b)

Figure 4.3: Ratio of data and MC for the distributions of (a) nTracks , representing the number
of tracks in each event, and (b) the transverse momentum ofB 0 meson. The ratios are applied
as weights to correct the simulation.

(a) (b)

Figure 4.4: Comparison between data and MC for the distributions of (a)nTracks , representing
the number of tracks in each event, and (b) the transverse momentum ofB 0 meson.

far less impactful and is neglected for the simplicity of the model, to which a systematic

uncertainty is assigned as described in Sec. 4.6.

In this section, the formulation of the acceptance and resolution functions is described

along with the methods for their determination from simulation and/or data.

Acceptance

The acceptance function encodes the e�ects of the detector geometry, triggering, recon-

struction, and selection of events and is determined in the four-dimensional phase space

described bycos� ` , cos� K , � , and q2. The acceptance function is modelled using an
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expansion in Legendre polynomials,

� (~
 ; q2) =
X

klmn

cklmn Pk(cos� K )Pl (cos� ` )Pm (� )Pn (q2); (4.46)

wherePi refers to the Legendre polynomial of orderi , and each of phase space variables

x 2 f cos� ` ; cos� K ; �; q 2g are rescaled to the range� 1 � x � 1. The coe�cients cklmn are

determined using the orthonormality of the Legendre polynomials,

Z 1

� 1
Pi (x)Pj (x)dx =

2
2i + 1

� ij ; (4.47)

where� ij is Kronecker delta. Using this property the coe�cients are given by,

cklmn =
�

2k + 1
2

� �
2l + 1

2

� �
2m + 1

2

� �
2n + 1

2

� Z 1

� 1

Z 1

� 1

Z 1

� 1

Z 1

� 1
� (~
 ; q2)

� Pk(cos� K )Pl (cos� ` )Pm (� )Pn (q2) d cos� ` d cos� K d� dq2 :

(4.48)

In practice, the acceptance coe�cients are obtained using the method of moments

applied to simulated samples ofB 0 ! K � 0� + � � decays generated with the FLATQ2

model (see Sec. 3.3). Since these samples are generated with a uniform distribution in each

of the four phase space dimensions, any deviation from uniformity in the �nal samples

after reconstruction and selection is a direct encoding of the acceptance. It is important

to note that the acceptance function is quanti�ed using truth-level information for the

simulated decays that are reconstructed. This is done in order to avoid double counting

of resolution e�ects, which are separately described by a dedicated detector resolution

model that is determined using data.

The full simulated sample used for the acceptance consists of a combination of sub-

samples corresponding to each year of data taking. When the subsamples for each year

are combined, weights are assigned to the events in order to reproduce the correct rel-

ative integrated luminosities,i.e. to match the proportions of each year in data. For a

�nal combined sample containingN events with per-event weightswj , the acceptance

distribution is de�ned as

� (~
 ; q2) �
1

P N
j =0 wj

NX

j =0

wj � (cos� K � cos� K;j )� (cos� ` � cos� l;j )� (� � � j )� (q2 � q2
j );

(4.49)

where the indexj runs over all events in the sample and the Dirac delta functions indicate
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that each event corresponds to a single point in the four-dimensional phase space. This

amounts to approximating the integrals of Eq. 4.48 by MC integration. With this, the

acceptance coe�cients are obtained from the MC sample as

cklmn =
1

P N
j =0 wj

NX

j =0

wj

� �
2k + 1

2

� �
2l + 1

2

� �
2m + 1

2

� �
2n + 1

2

�

� Pk(cos� K;j )Pl (cos� l;j )Pm (� j )Pn (q2
j )

�
:

(4.50)

The weightswj are the combined event weights from several sources | namely, the relative

integrated luminosity weights for combining the data taking years described above, the

simulation corrections described in Sec. 4.4.2, and an additional set of weights applied to

ensure proper 
atness of theq2 distribution at generator level. The latter are necessary

because, despite its name, the FLATQ2 model does not actually produce a completely


at q2 distribution in the case of decays to an unstable particle,i.e. the K � 0 in the

B 0 ! K � 0� + � � decay. The �nite width of the K � 0 results in a residualq2 dependence of

the simulated decay rate at the edges of the phase space. This e�ect must be corrected

with additional weights before determining the acceptance coe�cients. The procedure for

calculating these weights involves the use of large generator-level FLATQ2 samples which

precisely quantify the non
atness.

The maximum order polynomial for each dimension is chosen empirically to give the

set of lowest orders which are su�cient to model the acceptance well, leading to the

choice of a 9th order polynomial for theq2 dimension, 7th order for thecos� K dimension,

4th order for the cos� ` dimension, and 6th order for the� dimension. The resulting

acceptances are shown in Fig. 4.5 and a systematic uncertainty is assigned to choice of

Legendre polynomial orders as described in Sec. 4.6.3.
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Figure 4.5: One-dimensional projections of the acceptance function determined for the combined
Run 1 and Run 2 data.

Resolution

The invariant mass resolution for muons,i.e. the q2 resolution, plays a particularly

important role in this analysis. This is because the measurement involves �tting several

narrow qq resonances | namely, the � (1020), J= , and  (2S)| whose natural widths

are small compared to the resolution inq2, despite theB 0 mass constraint discussed in

Sec. 4.4.1. This makes an accurate description of the resolution critical in the vicinity of

these resonances. A slight side-e�ect of theB 0 mass constraint is that theq2 resolution

varies depending on the value ofq2 itself, as shown in Fig. 4.6, which quanti�es the

resolution using the standard deviation of theq2 reconstruction error distribution in

simulated B 0 ! K � 0� + � � decays. At q2 � m2
� � 1 GeV2=c4, the resolution is around

0.01GeV2=c4, while at q2 � m2
J= � 9:6 GeV2=c4 and at q2 � m2

 (2S) � 13:6 GeV2=c4, the

resolution is around four times worse at approximately 0.04 GeV2=c4.

The q2 resolution model is built up from the sum of a Gaussian function,G(� q2; � ;� ),

and two Crystal Ball (CB) functions [122],Cl;u (� q2; �; �; � l;u ; nl;u ), with tails on opposite
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Figure 4.6: The q2 resolution as a function of the reconstructedq2 value in simulated B 0 !
K � 0� + � � decays, quanti�ed by the mean and standard deviation of theq2 reconstruction error
distribution, q2

true � q2.

sides,

Ri (� q2) = f GG(� q2; � i ; � G;i )

+ (1 � f G;i )
1

NC;i

�
C(� q2; � i ; � C;i ; � u;i ; nu;i ) + C(� q2; � i ; � C;i ; � l;i ; nl;i )

�
:

(4.51)

where � q2 � q2 � q2
true , f G is the Gaussian fraction, andNC is a normalisation factor for

the CB sum component. The optimal parameters of the resolution model are determined

using either simulation or data, depending on theq2 region. The analysis is performed

simultaneously in threeq2 regions, allowing variations in the resolution model and back-

ground composition to be modelled. These three regions | referred to as low-, mid-, and

high-q2 | are chosen primarily to isolate the three narrow qq resonances, the� (1020),

J= , and  (2S), since their natural widths are signi�cantly narrower than the resolution.

The q2 region are de�ned according to Table 4.1. The variation of the resolution within

each of these regions is ignored, which has little impact on the measurement since the

other resonances considered are generally much broader than the resolution and thus the

decay rate does not vary rapidly outside of the three narrow resonances mentioned. One

possible exception to this is the low-q2 region in which the decay rate increases rapidly

due to the photon pole atq2 = 0. The potential systematic uncertainty due to this is

investigated in Sec. 4.6.

In the low-q2 region, the resolution parameters are obtained through an unbinned

maximum likelihood �t to the distribution of q2 reconstruction errors in simulatedB 0 !

K � 0� + � � decays. The reconstruction error is de�ned as �q2 � q2 � q2
true , where q2

true

is calculated using the trueB 0 and K � 0 4-momenta, i.e. q2
true � (pB 0 ;true � pK � 0 ;true )2.

This de�nition guarantees that any �nal state radiation (FSR) emitted by the muons
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Table 4.1: Threeq2 regions de�ning the simultaneous �t categories when determining the Wilson
Coe�cients.

Category Region

1 Low-q2 0:10 � q2 < 3:24 GeV2=c4

2 Mid-q2 3:24 � q2 < 11:56 GeV2=c4

3 High-q2 11:56 � q2 � 18:00 GeV2=c4

is incorporated into the true q2 value. This is important to ensure that the resolution

function accounts for the FSR tails in the narrow dimuon resonances. The� l;u parameters

of the CB tails are symmetrised in the low-q2 region to improve stability, while the

remaining parameters of the resolution model are allowed to vary freely in this �t. The

model provides an excellent description of the resolution in simulation, and the results

of this �t are shown in Fig. 4.7a, with the corresponding best �t parameters listed in

Table 4.2. The low-q2 resolution parameters are �xed in the �t to data using the results

from simulation, since statistics in this region are insu�cient to allow them to vary freely.

No signi�cant systematic e�ects are observed due to this.

In the mid-q2 and high-q2 regions, all of the resolution parameters are allowed to vary

freely in the �t to data. Fits to the J= and  (2S) peaks in simulatedB 0 ! J= K � 0

and B 0 !  (2S)K � 0 decays are shown in Figs. 4.7b, and 4.7c, respectively, along with

a comparison to the �nal resolution shape obtained from the �t to data. Excellent

agreement between the resolution models obtained from data (orange) and simulation

(blue) is observed in all areas except for the far tails of the resonance peaks, giving

additional con�dence in the accuracy of the simulations and therefore also in the low-q2

Table 4.2: The resolution parameters in the low-q2 region determined from a �t to simulated
B 0 ! K � 0� + � � decays. The� 1;u are forced to be equal in the �t. The resolution parameters
for the low-q2 region are �xed to these values in the �nal �t to data.

Low-q2 resolution results

� 1 0:2786� 0:0035
� u 0:2786� 0:0035
nl;1 50:7 � 7:0
nu;1 20:0 � 1:1
� G;1 (6:17� 0:39) � 10� 4

� C;1 (19:13� 0:33) � 10� 4

f G;1 (2:22� 0:28) � 10� 2
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resolution model. The best �t parameters for the mid- and high-q2 resolution obtained

from the �nal �t to data are listed in Table. 4.3.

A small lump in the data in the upper tail is visible in Fig. 4.7c, which is not perfectly

well described by the resolution model and biases the �t slightly in the upper tail. This

feature is attributed to unreconstructed FSR from theK + � � system, which results in

a distortion of the data due to theB 0 mass constraint applied in the calculation ofq2.

Potential systematic e�ects due to this are investigated and discussed in Sec. 4.6 and are

ultimately found to be negligible.

Table 4.3: The resolution parameters in the mid- and high-q2 regions determined from the �nal
�t to data.

Mid- and high-q2 resolution results

� l;2 � 1:746� 0:045 � l;3 � 1:221� 0:090
� u;2 1:829� 0:038 � u;3 1:299� 0:133
nl;2 7:86� 0:98 nl;3 2:60� 0:38
nu;2 4:88� 0:39 nu;3 2:93� 0:60
� G;2 (2:78� 0:03) � 10� 2 � G;3 (1:91� 0:70) � 10� 2

� C;2 (4:56� 0:10) � 10� 2 � C;3 (3:41� 0:28) � 10� 2

f G;2 0:582� 0:028 f G;3 0:088� 0:136
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(a)

(b) (c)

Figure 4.7: One-dimensional �ts to the q2 resolution in simulation. (a) shows the �t to the low
q2 region, 0:1 < q2 < 3:24GeV2=c4, for simulated B 0 ! K � 0� + � � events (blue), along with the
Gaussian core (red) and double CB (green) contributions separately. (b) shows the �t to the mid
q2 region (blue), 3:24 < q2 < 11:56GeV2=c4, for simulated B 0 ! J= K � 0 events and (c) shows
the �t to the high q2 region (blue), 11:56 < q 2 < 18:0GeV2=c4, for simulated B 0 !  (2S)K � 0

events. In the latter two plots, the dashed orange curves show the �nal resolution shape after
the �t to data, which agrees well with the results from simulation.
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4.4.4 Full signal probability density function

The full signal probability density function (PDF) in each of the q2 regions given in

Table 4.1 has the following form,

PSig;i (~
 ; q2) =
1
N

�
d4

�
� + �

�
(B 0 ! K � 0� + � � )

dq2
true d~



 Ri (q2 � q2
true )

�
� (~
 ; q2); (4.52)

where the 
 symbol denotes a convolution. The subscripti labels the q2 region and

emphasises the fact that the resolution function depends on theq2 region. The angular

resolution of the detector is not accounted for in the signal model. The resolution in the

angles is much less important thanq2 given that the angular distributions contain no

narrow peaks or rapid variations. Based on simulation, the angular resolution is around

40mrad for � l and � K , and around 100mrad for � , with little dependence onq2 (see

Appendix 4.I). The angles andq2 used in the determination of the acceptance in Eq. 4.46

refer to the true values in the simulation and not the reconstructed ones. However, here

in Eq. 4.52 the acceptance is used for the reconstructed values, which means that the

reconstruction resolution could in principle result in an incorrect acceptance correction.

However, as the variation in the acceptance is slow in all dimensions and the resolution is

comparatively good, this e�ect only leads to a negligible systematic uncertainty on the

results. TheCP-averagedB 0 ! K � 0� + � � theoretical decay rate contains all parameters

of interest, including the Wilson Coe�cients and all parameters describing both the local

and nonlocal hadronic form factors. It is a complicated expression built up by constructing

the angular coe�cients of Eq. 4.3 from the transversity amplitudes given in Eqs. 4.19{4.23,

as described in Eqs. 4.26 and 4.27. The acceptance function is �xed from simulation,

whilst the q2 resolution adds a small number of nuisance parameters to the signal model

which are either allowed to vary in the �t to data or are �xed from simulation, as already

described in Sec. 4.4.3.

Implementation of the resolution convolution

Some additional comments are requisite regarding the implementation of the acceptance

and resolution e�ects and the order in which they are applied. Only after the acceptance

is accounted for does it make complete sense to apply the experimental resolution. This is

because the resolution is essentially de�ned as the di�erence between true and reconstructed

values, and such a di�erence is unde�ned if the latter does not exist. This is notably at

odds with the ordering of terms in Eq. 4.52. After inserting the explicit forms of the
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acceptance function of Eq. 4.46 and the decay rate model of Eq.(4.3), it turns out that

applying the acceptance prior to the resolution requires performing the following series of

convolutions,

J conv
i (q2) �

X

n

�
Ji (q2

true )Pn (q2
true )

�

 R(q2 � q2

true ); (4.53)

for each angular observableJi . However, there are 19 angular observables in the signal

model and 10 orders ofq2 Legendre polynomials considered in the acceptance model. This

would require performing 190 separate convolutions per evaluation of the PDF, which

must be done each time any of the parameters change in the �t. This would be extremely

computationally intensive. In order to avoid this complication, we approximate Eq.(4.53)

by the following,

J conv
i (q2) !

X

n

Pn (q2
true )

�
Ji (q2

true ) 
 R(q2 � q2
true ):

�
(4.54)

In other words, we reverse the order of application of the acceptance and resolution which

removes the dependence of the convolution on theq2 acceptance order and thus reduces

the number of convolutions required by a factor 10 down to just 19. The impact of this

approximation is assessed in Sec. 4.6 and is ultimately found to have a negligible impact.

The convolution with the resolution function is implemented by making use of the

convolution theorem,

Ji (q2
true ) 
 R(q2 � q2

true ) = F � 1
�

F
�

Ji (q2
true )

	
� F

�
R(q2 � q2

true )
		

; (4.55)

whereF f f g represents the Fourier transform of the functionf . The angular observables

and the resolution function are discretised using 150000 small bins, and the calculation

of Eq. 4.55 is performed using an e�cient implementation of the discrete fast Fourier

transform [123, 124]. The �neness of theq2 discretisation is checked for possible systematic

biases when integrating the PDF over the narrow resonances. With the chosen number of

bins, any e�ects due to theq2 discretisation are found to have a negligible impact. This

implementation method is also the reason for assumingq2 independence of the resolution

function within the three regions considered.

Normalisation of the signal PDF

The signal PDF given in Eq. 4.52 is required to be renormalised whenever one or more of

the signal parameters changes in the �t. As the resolution function is itself normalised,
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the signal normalisation is performed on the PDF before the convolution takes place.

The acceptance function of Eq. 4.46 can also be reexpressed in a di�erent basis in terms

of powers of the phase space variables. Therefore, the normalisation corresponds to

calculating

N =
ZZZZ X

�;�;
;�

c��
� (q2)� (cos� K )� (cos� ` )
 � �

�
9

32�

X

i

Ji (q2)f i (cos� ` ; cos� K ; � ) dq2 d cos� K d cos� ` d�:
(4.56)

Several simpli�cations can be made to avoid having to numerically integrate the full 4D

function. Firstly, the order of the sums and integrals can be changed, and the terms can

be regrouped to gather similar parameter dependencies as follows,

N =
X

i;�

ZZZ
9

32�

X

�;
;�

c��
� (cos� K )� (cos� ` )
 � �

� f i (cos� ` ; cos� K ; � ) d cos� K d cos� ` d�
Z

(q2)� Ji (q2) dq2:

(4.57)

The angular functions,f i , are combinations of simple trigonometric functions (see Eqs. 4.97

and 4.98 in Appendix 4.B). Therefore, the angular integrals for eachq2 polynomial order

can be calculated analytically. Speci�cally, the following series of integrals is computed,

� i;� =
ZZZ X

�;
;�

c��
� (cos� K )� (cos� ` )
 � � f i (cos� ` ; cos� K ; � ) d cos� K d cos� ` d�: (4.58)

The � i;� constants are calculated once, independently of theq2 integration, and the results

are tabulated and cached. The remainingq2 integral required to normalise the PDF can

then be written as

N =
9

32�

Z X

i;�

� i;� (q2)� Ji (q2) dq2; (4.59)

where the order of the sum and integral has again been swapped such that only one integral

is performed over the sum of all terms. This is dramatically more e�cient and numerically

stable compared to integrating each term separately, of which there are 190 in the baseline

�t model. The integral is performed using GSL [125] numerical integration functions.

Since theq2 spectrum contains both slow and fast varying regions, it is bene�cial to

split the q2 range into subsections and integrate each subsection separately. With this

approach, a �ner discretisation can be applied in the fast varying regions around the
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narrow resonances which improves the overall numerical accuracy of the integration.

4.4.5 Background composition

The model requires to describe the contribution from processes other than the signal decay

which contaminate the �nal sample. The combinatorial background, discussed already in

Sec. 4.4.1, is the only contribution which remains signi�cant after the full selection and is

modelled as described in Sec. 4.5.2. Beyond this, several physical background sources are

identi�ed, referred to as peaking backgrounds, which are suppressed using a combination

of dedicated vetoes and machine-learning techniques.

The B + ! K + � + � � mode mimics the signal decay when a random� � is combined

with the daughters of the true decay. This background is vetoed by removing all candidates

with m(K + � � � + � � ) > 5380MeV/ c2 in which the mass of theK + � + � � combination is

also compatible with the knownB 0 mass. TheB 0
s ! K + K � � + � � decay forms a peaking

background when one of the kaons is misidenti�ed as a pion. The dominant contribu-

tion arises fromB 0
s ! � (1020)� + � � decays followed by the transition� (1020)! K + K � .

Several vetoes are applied to remove this contribution, accounting for both the resonant

and nonresonant parts of them(K + K � ) spectrum. Candidates are �rst reconstructed,

assigning the kaon mass to the pion. For the resonant� (1020) channel, strict pion PID

requirements are applied to those candidates with reconstructedB and K + K � masses

that are compatible with the known B 0
s and � (1020) masses. For the nonresonant mode,

the requirement that the reconstructedK + K � mass is compatible with the� (1020) mass

is removed, and slightly modi�ed PID cuts are applied. The decayB 0 ! � + � � � + � �

forms a peaking background in a similar way if one of the pions is misidenti�ed as a kaon.

In this case, the dominant contribution comes via theB 0 ! � 0(! � + � � )� + � � resonant

decay. Analogous PID requirements are applied to remove these decays after assigning a

pion mass hypothesis to the reconstructed kaon. Backgrounds stemming from the double

misidenti�cation of the �nal state particles in signal decays,e.g. when the � � (K + ) of

the K � 0 meson is misidenti�ed as aK � (� + ) and vice versa, are highly suppressed due to

PID requirements on the �nal state particles.

Several more peaking background sources arise from the� 0
b ! pK � � + � � and

� 0
b ! p� � � + � � decays, which mimic the signal if one or both hadrons are misidenti�ed

and are reconstructed as aK � 0 decay. These backgrounds are removed by reconstructing

decays under the alternative mass hypotheses, and requiring that the �nal-state hadrons

satisfy strict PID criteria if the mass is close to the known� 0
b mass.

Double misidenti�cation leads to peaking backgrounds that originate from true resonant
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signal decays,B 0 ! J= K � 0 and B 0 !  (2S)K � 0, with two of the �nal-state particles

swapped. The most signi�cant contribution comes from hadron-lepton swaps,i.e. when

the � � (K + ) is misidenti�ed as a � � (� + ) and vice versa. These decays are vetoed by

assigning the muon mass to the pion (kaon), and removing events for which the� � � +

(K + � � ) combination has a mass close to either the knownJ= or  (2S) mass, and the

� � (K + ) also fails to satisfy stringent PID criteria.

An additional peaking background can be formed fromB + ! K � + � + � � decays with

either K � + ! K 0
S� + or K � + ! K + � 0 states and the charged hadron from these decays

is combined with a random charged pion or kaon from elsewhere in the event to create

the K � 0 candidate. These events are less trivial to separate from the signal; hence, two

BDT classi�ers are trained using simulation for the purpose of discriminating between

B 0 ! K � 0� + � � decays andB + ! K � + � + � � decays in each of the twoK � + decay modes.

A total of fourteen variables are used to train the BDT algorithm including various

kinematic and isolation variables, with the highest discriminating power provided by the

signi�cance of the impact parameter with respect to the PV of the randomly charged

hadron used to create theK � 0 candidate, i.e. the K � in the BDT classi�er trained to

reject B + ! K � + (! K 0
S� + )� + � � decays, and the� � in the BDT algorithm trained to

reject B + ! K � + (! K + � 0)� + � � decays.

4.5 Data analysis

To recall, the primary aim of the analysis is to determine the Wilson Coe�cients of

the b! s`+ ` � WET Lagrangian, as well as to obtain a full description of the nonlocal

amplitudes. The analysis is performed by �tting theB 0 ! K � 0� + � � angular distribution

of Eq. 4.3, which provides sensitivity to the WET parameters through theq2 dependent

angular observables. The latter are parameterised in terms of the transversity amplitudes

described in Sec. 4.3.2, which depend directly on theb ! s`+ ` � Wilson Coe�cients

and various parameters describing the nonlocal contributions. The signal decay rate is

modelled in �ve dimensions in total | namely, the three helicity angles cos� ` , cos� K , and

� , along with q2, and the reconstructedB mass,m(K + � � � + � � ). The model is ultimately

used to perform an unbinned maximum likelihood �t to the data, simultaneously in the

cos� ` , cos� K , � , and q2 dimensions, within the range 0:1 < q2 < 18:0GeV2=c4. The

kinematically allowedq2 region ofB 0 ! K � 0(! K + � � )� + � � decays ranges from 4m2
� to

(mB � mK� )2. In this analysis, themK� range considered extends tommax
K� = 0:996GeV/ c2

as discussed in Sec. 4.2. This results in a fully accessibleq2 phase-space range of 0:044<
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Table 4.4: The �ve q2 regions used for the simultaneousB 0 mass �t to determine the signal
fraction. The regions are chosen to isolate di�erent combinatorial background contributions.

Category q2 region [ GeV2=c4 ]

1 Low-q2 [0:10; 3:24)
2 Fully combinatorial mid-q2 [3:24; 8:20) [ [10:6; 11:56)
3 Resonant mid-q2 [8:20; 10:6)
4 Fully combinatorial high-q2 [11:56; 12:40) [ [14:40; 18:00]
5 Resonant high-q2 [12:40; 14:40)

q2 < 18:34 GeV2=c4. Beyond this upper limit, the maximum allowedq2 value is dependent

upon the mK� value of the given event. In order to reduce the model dependence of the

q2 resolution in regions where the decay rate varies rapidly withq2, the measurement is

performed in the reconstructedq2 range of 0:1 < q2 < 18:0 GeV2=c4. In order to perform

such an analysis using experimental data, it is necessary to account for any e�ects that

can distort or pollute the sample of events. In particular, it is necessary to account for the

distortion of the spectrum due to the e�ects of reconstruction resolution and e�ciency, and

to account for the contributions from background process that contaminate the sample.

In order to constrain the background, two separate �ts are performed in di�erent ranges

of the B 0 mass,mB , as described in Secs. 4.5.1 and 4.5.2.

4.5.1 Determination of the signal fraction

One-dimensional �ts to the m(K + � � � + � � ) distribution are performed in order to deter-

mine the fraction of signal events relative to the background. These �ts are performed in

the range 5220� m(K + � � � + � � ) � 5840MeV/ c2, henceforth referred to as the full mass

range. The signal fraction is determined simultaneously in �ve separateq2 regions given

in Table 4.4. These regions correspond to the same three regions as those in Table 4.1,

but with the mid- and high-q2 regions further subdivided. This is done in order to capture

the fact that the combinatorial background composition di�ers depending on whether the

q2 value is within one of the resonance peaks, or outside of them. In particular, within

the resonance regions (labelled resonant mid- and high-q2 in Table 4.4), the dominant

contribution comes from true resonant dimuon candidates combined with a randomK + � �

combination, resulting in a strongly peakingq2 distribution. Outside the resonance regions,

fully random combinations ofK + � � � + � � are the dominant contribution with no peaking

structure, referred to as fully combinatorial.

Similarly to previous LHCb analyses ofB 0 ! K � 0� + � � [3, 4], the shape of the signal
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Table 4.5: Fitted parameter values for the B 0 mass simultaneous �t. The tail parameter n is
�xed to the value 4.23 used in previous analyses [3]. In the background �t to the upperB 0 mass
sideband, these parameters are allowed to vary again but are subjected to a Gaussian constraint
based on these results.

B 0 mass �t results

� 5278:29� 0:022 � 1:185� 0:005
� 1 16:95� 0:05 f 1 0:7227� 0:0028
� 2 15:57� 0:10 f B 0

s
(8:2 � 2:0) � 10� 3

f � + � �

B 0
s

(5:7 � 2:4) � 10� 3

s1 (2:5 � 0:6) � 10� 3 f full
Sig;1 0:9193� 0:0089

s2 (3:5 � 0:3) � 10� 3 f full
Sig;2 0:8026� 0:0094

s3 (3:5 � 0:2) � 10� 3 f full
Sig;3 0:9945� 0:0002

s4 (2:7 � 0:4) � 10� 3 f full
Sig;4 0:8653� 0:0089

s5 (4:5 � 0:4) � 10� 3 f full
Sig;5 0:9882� 0:0010

mass,m � m(K + � � � + � � ), is modelled using the sum of two single-sided CB functions,

PB 0 (m) =
1
N

[f 1C(m; �; � 1; �; n ) + (1 � f 1)C(m; �; � 2; � �; n )] ; (4.60)

wheref 1 represents the fraction of the �rst CB component andN is normalisation constant.

The best description of the data is obtained with symmetric CB tails on opposite sides of

the Gaussian core, in contrast to the previous analyses which preferred both CB functions

to have the power-law tail on the low mass side. Due to high correlations between the tail

parameters, only the� parameter is allowed to vary in the �t, while the n parameter is

�xed to the value obtained in Ref. [3]. For the signal, both aB 0 and B 0
s component with

the same shape are included with a �xed peak o�set given by the known di�erence in the

B 0
s and B 0 masses �m � m(B 0

s ) � m(B 0) = 87:19MeV/ c2 [96]. The fraction, f B 0
s
, of the

B 0
s component relative to theB 0 component is allowed to vary. The parameters of the

signal PDF are shared between all of theq2 regions. The combinatorial background is

modelled with an exponential function, leading to a totalmB PDF of the form

PTotal ;i (m) = f full
Sig;i

�
(1 � f B 0

s
)PB 0 (m) + f B 0

s
PB 0

s
(m)

�
+ (1 � f full

Sig;i )PBkg;i (m); (4.61)

where the index,i , labels theq2 region. The signal fractions,f full
Sig , obtained in this �t

correspond to the full mass range. The �ts to the di�erentq2 regions can be seen in

Fig. 4.8. The best �t parameter results are given in Table 4.5. The signal fractions of

Eq. 4.4 are used to calculate the number of background events perq2 region contained

in mB signal region, which is de�ned as a 40MeV region around theB 0 mass peak,
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Figure 4.8: The mass distribution, m(K + � � � + � � ), of candidates in the data in �ve separate
q2 regions. The data is overlaid with the results of a simultaneous �t to determine the signal
fractions.

5259:58 � m(K + � � � + � � ) � 5299:58MeV/ c2. The conversion of the signal fraction from

the full mass range to signal region is detailed further in Sec. 4.5.3.
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4.5.2 Background �t in the upper B 0 mass sideband

Following the determination of the signal fractions, a �t to the upperB 0 mass sideband

(5440 � m(K + � � � + � � ) � 5840MeV/ c2) is performed simultaneously in the threeq2

regions de�ned in Table 4.1. The upper mass sideband is used since the combinatorial

background is the only signi�cant contribution in this region and the results can subse-

quently be extrapolated into the signal region in order to isolate the signal component

of the data in the �nal �t. The lower mass sideband also contains combinatorial back-

ground events, but is not used for this purpose due to the presence of additional physical

backgrounds from partially reconstructed decays and genuine low-mass signal events. The

latter are particularly troublesome for reasons to be explained shortly. Certain choices

made in the reconstruction and selection of events, in particular the use of aB 0 mass

constraint, necessitates a rather complex strategy for the background �t.

Strategy to correct for the B 0 mass constraint

Special care must be taken in the sideband �t to account for the use of aB 0 mass constraint

in the �t to the signal region. The combinatorial background events are not the decay

products of a realB 0 meson; however, the mass constraint still tries to correct theq2

value to obtain the knownB 0 mass for the reconstructed parent particle. Consequently,

the mass constraint causes a distortion of the backgroundq2 distribution in a way that is

correlated with the reconstructedB 0 mass. This e�ect can be observed by contrasting

Fig. 4.9a, which shows the reconstructedB mass as a function ofq2 without the mass

constraint, and 4.9b showing the same with the mass constraint. Theq2 positions of

the J= and  (2S) dominated combinatorial peaks are observed to vary as a function of

mB in a way that is impractical to model. To remedy this, the upperB 0 mass sideband

is divided into 10 windows, each of width 40MeV/ c2 as de�ned in Table 4.6. In each

window, the reconstructedm(K + � � � + � � ) mass is constrained to the centre of the region,

so as to mimic the distortion of the backgroundq2 distribution that occurs in the signal

region that also is 40MeV/ c2 wide. As a result of this, theJ= and  (2S) peaks are

aligned between the subregions and the signal region, as shown in Fig. 4.9c. While this

procedure mostly resolves issues arising from theB 0 mass constraint in the upper mass

sideband, it further complicates matters in lower mass sideband. This is due to the fact

that the lower mass sideband contains a signi�cant portion of signal events which are

wrongly mass constrained to the centre of the sideband region. The systematic uncertainty

introduced by attempting to model these contributions outweighs any bene�t of �tting

the combinatorial background in the lower mass sideband.
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Table 4.6: Mass regions used in the di�erent �ts to data.

Region name Mass requirement

Full mass range 5220< m (K + � � � + � � ) < 5840 MeV/c2

Signal region 5239:58 < m (K + � � � + � � ) < 5319:58 MeV/c2

Sideband 1 5440< m (K + � � � + � � ) < 5480 MeV/c2

Sideband 2 5480< m (K + � � � + � � ) < 5520 MeV/c2

Sideband 3 5520< m (K + � � � + � � ) < 5560 MeV/c2

Sideband 4 5560< m (K + � � � + � � ) < 5600 MeV/c2

Sideband 5 5600< m (K + � � � + � � ) < 5640 MeV/c2

Sideband 6 5640< m (K + � � � + � � ) < 5680 MeV/c2

Sideband 7 5680< m (K + � � � + � � ) < 5720 MeV/c2

Sideband 8 5720< m (K + � � � + � � ) < 5760 MeV/c2

Sideband 9 5760< m (K + � � � + � � ) < 5800 MeV/c2

Sideband 10 5800< m (K + � � � + � � ) < 5840 MeV/c2

In each of the tenmB regions, the background shape is modelled in thecos� ` , cos� K ,

� , and q2 dimensions, separately for the �veq2 regions de�ned in Table 4.4. Those �ve

regions are then reduced to the three regions of Table 4.1 by adding the PDFs for the

relevant contributions in each region. The PDF for the sideband �t is de�ned as

PBkg (~
 ; q2) =

8
>>><

>>>:

Pcomb(~
 ; q2) low-q2

(1 � f J= )Pcomb(~
 ; q2) + f J= PJ= (~
 ; q2) mid-q2

(1 � f  (2S))Pcomb(~
 ; q2) + f  (2S)P (2S)(~
 ; q2) high-q2

; (4.62)

where f J= and f  (2S) represent the resonant background fractions relative to the fully

combinatorial components in the mid- and high-q2 regions, respectively.

Parameterisation of the background angular distribution

Each of the PDFs in Eq. 4.62 is assumed to factorise completely such that each dimen-

sion can be modelled independently. This assumption has been tested with a dedicated

goodness of �t test and is found to provide a good description of the data. In each dimen-

sion, the three di�erent combinatorial background types are modelled using empirically

chosen functions. A summary of the functions used is given in Table 4.7. The Weibull

function [126] is de�ned as

PWeibull (x; a; b) = ab(bx)a� 1 � e� (bx)a
: (4.63)
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(a) (b)

(c)

Figure 4.9: Distributions of candidates in data with di�erent treatments of the B 0 mass constraint
when determining q2. In (a), no constraint is applied, in (b), the �nal state is constrained to the
B 0 mass, while in (c), the �nal-state mass is constrained to the centre of each of the 40MeV/ c2

wide signal and background regions.

The Chebyshev function refers to a 2nd order Chevychev polynominal de�ned as

PChebyshev(x; a; b) = a(2x2 � 1) + bx+ 1; (4.64)

Table 4.7: Functions used to describe the di�erent combinatorial background contributions in
each of the phase space dimensions.

q2 cos� ` cos� K �

Pcomb Weibull Chebyshev Bernstein Chebyshev
PJ= CB Chebyshev Bernstein Chebyshev
P (2S) CB Chebyshev Bernstein Chebyshev

83



where the variablex is assumed to be rescaled to the range� 1:0 < x < 1:0. As before

CB refers to a Crystal Ball function. The Bernstein polynomial is de�ned as

PBernstein (x; a; b) = (1 � 2a + b)x2 + 2x(a � 1) + 1; (4.65)

and has the property that the function is always positive (in the range 0< x < 1) when

a; b > 0. This function is used for thecos� K distribution to ensure �t stability and to

prevent the PDF becoming negative at the edges of the range.

All of the background parameters for each combinatorial type are shared between the

10 sideband regions, which gives 33 shape parameters and two fractions in total. In order

to ensure stability of the �t, several of the background parameters are �xed in the �nal �t

to the data. The �xed parameters include the second Weibull parameter,bq2

comb, for the

fully combinatorial q2 distribution, as well as the CB tail parameters,nq2

J= , nq2

 (2S) , and

� q2

 (2S) , for the resonant combinatorialq2 distributions.

Mass dependence of the background parameters

To model the shape of the combinatorial background in the signal region, an extrapolation

is made of the parameters obtained from the upperB 0 mass sideband �t. The angular

distribution in the signal region is thus also described by Eq. 4.62. In general, all of

the background shape parameters could vary as a function ofmB , which needs to be

accounted for when extrapolating the parameters from the upper mass sideband back into

the signal region. To this end, all the background shape parameters are supplemented

with a linear mass dependent term as follows,

pi = p0 + p1mi ; (4.66)

wheremi is the distance between the centre of sideband regioni and the centre of the

signal region, whilep0 and p1 are the �t parameters. In the case of thecos� K dimension,

a slightly di�erent parameterisation is used (1st order Bernstein polynomial)

pi = p0 + ( p1 � p0)mi ; (4.67)

to ensure the parameters stay positive, as required by the 2nd order Bernstein polynomial

describing the cos� K distribution.

The mass dependent terms in the background parameters add a signi�cant number of

degrees of freedom to the model and are in general highly correlated with the constant
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Figure 4.10: The fraction of decays removed by theB + ! K + � + � � peaking background veto
(see Sec.4.4.1) as a function of the �ve phase space variables and the reconstructedB mass. The
plots are based on large samples of simulatedB 0 ! K � 0� + � � decays produced with the PHSP
model. Figure obtained from Ref. [127].

terms. Most of the parameters are found to be mass independent to a good approximation

and a su�ciently good description of the data is obtained with most of mass dependent

terms �xed to zero. In the baseline �t, only the cos� K parameters are allowed to be

mass-dependent.

Correction for the B + ! K + � + � � peaking background veto

An additional complication arises due to theB + ! K + � + � � peaking background veto

described in Sec. 4.4.5. While the veto has no e�ect in the signal region, it �lters out

a signi�cant number of combinatorial background events in the upper mass sideband.

This e�ect is illustrated in Fig. 4.10, which shows the fraction of events removed by

the B + ! K + � + � � veto as function of each of the phase space variables used in the

analysis. The e�ect is most prominent in thecos� K distribution in which the fraction

of events removed is sharply peaked at highcos� K values. Non-trivial dependencies
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are also observed in theq2, mB , and m2
K� dimensions. Consequently, the e�ect of the

B + ! K + � + � � veto is not captured by the simple parameterisations of the background

angular distribution described above. Moreover, it di�ers in each of the sideband regions

due to the mB dependence. If ignored, this e�ect leads to the wrong background shape

extrapolated into the signal region. The solution employed is to cut out the a�ected

regions from the data entirely by applying an explicit veto in the upper mass sideband. A

corresponding correction to the background PDF is applied which sets the PDF to zero in

the vetoed region, that is,

Pwith-cut
Bkg (~
 ; q2; m) =

8
<

:

0 in cut volume

PBkg (~
 ; q2; m) otherwise:
(4.68)

The \cut volume" refers to the region of phase space that is removed by the explicit veto.

This approaches sacri�ces some statistical precision on the background parameters by

removing additional events from the upper mass sideband. However, it greatly reduces

the systematic uncertainty from a biased extrapolation of the background into the signal

region.

In order to determine the appropriate cut volume, a non-parametric approach is taken

in which large samples of simulatedB 0 ! K + � � � + � � decays produced with the PHSP

model are used to identify the veto a�ected phase space region. Since the simulated samples

contain only genuine signal decays, a workaround is needed to assess themB dependence

of the B + ! K + � + � � veto. To this end, a total of 50 samples are produced, each with a

di�erent B 0 mass distributed evenly over the range 5440� m(B 0) � 5860MeV/ c2. Only

events within the nominalK + � � mass window 796< m K� < 996MeV/ c2 are used for this

investigation. Based on Fig. 4.10, only thecos� K , q2, and mB dimensions are non-trivially

a�ected. The m2
K� dimension is integrated out in the �nal �t to data and therefore does

not need to be explicitly corrected for. A three-dimensional cut volume is obtained by

merging the 50 PHSP MC samples, inverting theB + ! K + � + � � veto requirements, and

binning the �nal selected sample in (cos� K ; q2; mB ). The resulting 3D histogram is shown

in Fig. 4.11a. The cut volume is de�ned as the set of bins in this histogram with at least

1 entry4. The chosen cut volume reduces the total number of events in the sideband �t by

approximately 6%.

4A smoothing algorithm is applied during the binning process to ensure that the cut volume is continuous,
i.e. it does not miss empty bins that are contained within the a�ected region. The latter are simply due
to limited MC statistics.
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(a) (b)

Figure 4.11: The distribution of candidates a�ected by (a) the B + ! K + � + � � veto in a 3D
volume in (cos� K ; q2; mB ), and (b) the signal in sideband veto in a 2D region in (q2; mB ). These
histograms represent the cut volume used to correct the background PDF in the upper mass
sideband. Figures obtained from Ref. [127].

Veto and correction for signal events in the sidebands

The �rst two sideband regions are at low enoughB 0 masses that the tail of the

B 0 ! K � 0J= contribution is still of a nonnegligible size, causing genuine signal events

to leak into the sidebands. This e�ect is visible in Fig. 4.9c as the diagonal band in the

�rst two sideband regions at q2 values slightly larger than the nominalJ= mass. The

signal decays have a quite di�erent angular distribution to the background. Hence, to

avoid biasing the determination of the backgroundq2 distributions in these sidebands,

the a�ected regions of phase space are excluded from the samples following a similar

strategy to that discussed above for theB + ! K + � + � � veto. As shown in Fig. 4.11b,

a two-dimensional cut region in (q2; mB ) is removed based on the observed e�ect of the

signal in sideband veto in simulation. The background PDF is corrected for the cut region

in the same manner as Eq. 4.68.

Results of the sideband �t

When performing the sideband �t, all of the free parameters from theB 0 mass �t are

allowed to vary again subject to a Gaussian constraint. The constraint uses the central

values~� M�t and covariance matrixK MFit from the B 0 mass �t to construct a multivariate

Gaussian penalty term,

c = � 0:5(~� � ~� M�t )K � 1
MFit (~� � ~� M�t ); (4.69)
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which is added to the negative log likelihood. The vector~� contains the central values

for the mass �t parameters in the sideband �t. Note that mB is not one of the �t

dimensions in the sideband �t. The mass �t parameters are allowed to vary but are

entirely determined by the constraint term. This approach allows the uncertainty in

the B 0 mass �t parameters to be propagated through to the sideband �t parameters.

Moreover, it means that the sideband �t produces a combined covariance matrix that

can subsequently be used to constrain all of the free parameters from the sideband and

B 0 mass �ts when performing the signal region �t. The results of the upperB 0 mass

sideband �t are displayed in Appendix 4.G, and the best �t parameter values are listed

Table 4.8. In the �nal �t to the signal region, the parameters of the sideband �t are

allowed to vary again subject to a constraint using these results.
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Table 4.8: Fitted parameter values for the upperB 0 mass sideband simultaneous �t. In the
�nal �t to the signal region, these parameters are allowed to vary again but are subjected to a
Gaussian constraint based on these results.

Upper B 0 mass sideband �t results

a`
comb 0:1429� 0:06 b̀comb � 0:0645� 0:06

aK; 0
comb 0:0000� 0:006 bK; 0

comb 1:7719� 0:4
a�

comb � 0:0180� 0:07 b�
comb � 0:0357� 0:06

aq2

comb 1:4460� 0:12 bq2

comb {
a`

J= � 0:072� 0:029 b̀J= � 0:364� 0:031
aK; 0

J= � 0:3 � 0:6 bK; 0
J= 2:67� 0:26

a�
J= � 0:011� 0:029 b�

J= 0:018� 0:028

� q2

J= 9:5991� 0:0019 � q2

J= 0:1035� 0:0017

� q2

J= 0:89� 0:06 a`
 (2S) � 0:06� 0:11

b̀ (2S) � 0:47� 0:13 aK; 0
 (2S) 3:6 � 2:2

bK; 0
 (2S) 1:20� 0:10 a�

 (2S) � 0:25� 0:11

b�
 (2S) � 0:01� 0:11 � q2

 (2S) 13:589� 0:011

� q2

 (2S) 0:155� 0:011 � q2

 (2S) {
f J= 0:899� 0:017 f  (2S) 0:65� 0:06

aK; 1
comb 2:1 � 0:5 bK; 1

comb 0:24� 0:20
aK; 1

J= 4:0 � 0:6 bK; 1
J= 0:16� 0:14

aK; 1
 (2S) 3:0 � 1:7 bK; 1

 (2S) � 0:4 � 0:4

s1 0:0024� 0:0006 f full
Sig;1 0:9207� 0:0089

s2 0:0031� 0:0003 f full
Sig;2 0:8097� 0:0093

s3 0:0037� 0:0002 f full
Sig;3 0:9942� 0:0002

s4 0:0026� 0:0004 f full
Sig;4 0:8670� 0:0088

s5 0:0047� 0:0004 f full
Sig;5 0:9877� 0:0010

� 5278:2885� 0:0218 � 1:1865� 0:0045
� 1 16:9596� 0:0470 f 1 0:7233� 0:0028
� 2 15:5435� 0:1021 f B 0

s
0:0082� 0:0002

f � + � �

B 0
s

0:0066� 0:0024
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4.5.3 Fit in the signal region

The �nal step consists of a four-dimensional unbinned maximum likelihood �t to thecos� ` ,

cos� K , � , and q2 distributions in the signal region. The �t is performed simultaneously in

the three q2 regions given in Table 4.1, with the total PDF in each region given by

PTotal ;i (~
 ; q2) = f Sig;i PSig;i (~
 ; q2) + (1 � f Sig;i ) PBkg;i (~
 ; q2); (4.70)

wherePSig;i (~
 ; q2) is the full experimental signal PDF given in Eq. 4.52 with the resolution

model forq2 regioni , and PBkg;i (~
 ; q2) is the corresponding background PDF from Eq. 4.62.

The signal fraction, f Sig;i , represents the number of signal events relative to the total

number of events within themB signal region. These fractions di�er from those in Eq. 4.61,

which correspond to the full mass range and the �veq2 regions of Table 4.4. The signal

fractions in Eq. 4.70 are de�ned as

f Sig;i = (1 �
NBkg;i

NTotal ;i
) (4.71)

whereNBkg;i and NTotal ;i are the background and total event yields, respectively, in the

signal region. The total yield in the signal region is trivially obtained as the number of

events in the sample after applying the mass cut, while the background yield must be

calculated from other information contained in the �t results from Secs. 4.5.1 and 4.5.2.

Speci�cally, the number of background events in themB signal region is calculated for

each of the �ve q2 regions in Table 4.4 using

NBkg;j =
�
1 � f full

Sig;j

�
N full

Total ;j

R
signal PBkg;j (m) dmB
R

full PBkg;j (m) dmB
; (4.72)

whereNTotal ;j is the total number of events in the full mass range forq2 region j , and

PBkg;j (m) is the corresponding background mass �t PDF from Eq. 4.61. The resonant

and fully combinatorial contributions in the mid- and high-q2 regions are then recombined

to obtain the total background yields for the threeq2 regions used in the �nal �t. The

�nal signal fractions after all �tting is complete are listed in Table 4.9 for both the full

mass range and the signal region.

The baseline �t con�guration consists of 150 free parameters. A summary of the

parameters of the signal model is given in Table 4.F.1 in Appendix 4.F. A number of these

parameters are constrained in the signal region �t to ensure stability. The local P-wave

form factors are constrained using theoretical calculations of the expansion parameters in

90



Table 4.9: The signal fraction in eachq2 region after all �tting is complete. The fraction is given
over the full mass range for the �ve q2 regions used in theB 0 mass �t (de�ned in Table 4.4).
For the three q2 regions used in the �nal signal region �t (de�ned in Table 4.1), the fraction is
given within the signal region.

Category Signal fraction

Full mass range f full
Sig;i

1 Low-q2 0:9196� 0:0088
2 fully combinatorial mid-q2 0:8045� 0:0093
3 Resonant mid-q2 J= -dominated 0:9934� 0:0002
4 fully combinatorial high-q2 0:8656� 0:0088
5 Resonant high-q2  (2S)-dominated 0:9862� 0:0010

Signal region f Sig;i

1 Low-q2 0:9871� 0:0131
2 Mid-q2 0:9985� 0:0003
3 High-q2 0:9959� 0:0020

Eq. 4.28. The background yields and shape parameters are constrained in the signal region

�t using the extrapolated results of the sideband andmB mass �ts. This is implemented

through a Gaussian penalty term,

c = � 0:5(~� � ~� SB�t )K � 1
SB�t (~� � ~� SB�t ); (4.73)

added to the negative log likelihood. The vectors~� and ~� SB�t contain the central values

for the background and mass �t parameters from the signal region and sideband �ts,

respectively, whileK SB�t is the covariance matrix from the sideband �t. The latter contains

the covariance information from both the sideband and mass �ts.

The complex amplitudes for each polarisation state of the nonlocal components,A �
j ,

appearing in Eqs. 4.38 and 4.43 are determined from the �t to the data. For amplitudes

that are expected to be signi�cantly di�erent from zero, the �t is performed in terms of

the magnitude jA �
j j and phase� �

j , while for components with a small expected amplitude

the �t is performed in terms of the real < (A j
� ) and imaginary = (A �

j ) components ofA �
j .

This ensures better stability of the �t, since otherwise the phase of the amplitude becomes

unde�ned when the magnitude approaches zero.

The scale of both theB 0 ! K � 0� + � � local and nonlocal amplitudes are determined

through the known value of the compound branching fractionB(B 0 ! J= K � 0)B(J= !
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� + � � ) and by scaling the three polarisation amplitudesA0;k;?
J= of the J= such that

B(B 0 ! J= K � 0)B(J= ! � + � � ) = jA0
J= j2 + jAk

J= j2 + jA?
J= j2: (4.74)

The branching fractionB(B 0 ! J= K � 0) is taken from Ref. [88] and the branching fraction

B(J= ! � + � � ) is taken from Ref. [96]. In the �t this is implemented by calculating

jA0
J= j from Eq. 4.74 rather than having it as a free parameter. The uncertainty of the

branching fraction B(B 0 ! J= K � 0) is a limiting source of uncertainty on numerous

nonlocal parameters and is the largest systematic uncertainty on the Wilson Coe�cients,

as discussed in Sec. 4.6.

4.5.4 Blinding procedure and analysis validation

Blinding procedure

The analysis is performed in a blind fashion until �nalised by implementing an unknown

o�set to the values of the Wilson Coe�cients C(0)
9;10 and C9� . Additionally, the signs of the

NP components,i.e. the di�erences between the Wilson Coe�cients and their SM values,

are switched randomly. In other words, the blinding transformation is given by,

Ci; blind = CSM
i + S� CNP

i + O; (4.75)

where S 2 f� 1; 1g is randomly chosen with 50/50 probability, andO 2 [� 0:5; 0:5] is

randomly drawn from a uniform distribution. The criteria for unblinding the analysis

consists in a set of crosschecks against previous results which are detailed further in

Sec. 4.5.7.

Validation of the analysis with pseudoexperiments

To validate the analysis method, pseudoexperiments are performed following an identical

procedure to that used for the data �t. The statistical behaviour of the �t and thus the

validity of the results is assessed using pull distributions that are obtained for each of the

free parameters. The pull for a given parameterx is de�ned as

Pull =
x �t � x true

� (x)
; (4.76)

wherex true and x �t are the generated and best �t values for the parameterx, respectively,

and � (x) is the estimated 1� statistical uncertainty on the best �t value. The errors are
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Figure 4.12: The means and widths of the pull distributions for the B 0 mass �ts obtained from
Gaussian �ts. The blue dots indicate the mean position, while the shaded boxes indicate the
� 1� interval around the mean.

estimated using theHESSEtool from the Minuit package [128], which is based on the

calculation and inversion of the Hessian matrix. For a well behaved �t, the pulls should

follow unit normal distributions [129]. If there are biases in the �t, then the means of the

pull distributions will be shifted accordingly. If there are problems in with estimation of

parameter uncertainties, then the spread of the pull distributions will re
ect this.

Validation of the B 0 mass �t for the signal fraction

The initial B 0 mass �t described in Sec. 4.5.1 is validated using an ensemble of two

hundred pseudoexperiments. The pull distributions are �tted with Gaussian functions,

and the means and widths are shown in Fig. 4.12. The error coverage is observed to be

accurate; however, several nonegligible biases are observed. These e�ects are understood

and are ultimately found to have no signi�cant impact on the �nal �t in the signal region.

For example, the� 1 and � 2 parameters describing the core width of the signal mass

peak are strongly anticorrelated, hence the bias in one is cancelled by the opposing bias

in the other. A signi�cant bias is also seen in the combinatorial slope parameters5 in

the resonant high-q2 region (labelled MASSFITSLOPE QR3 RESO in Fig. 4.12) which

has a more subtle explanation. The mid- and high-q2 regions in the pseudoexperiments

contain mixtures of resonant and fully combinatorial events in the same way as the data,

and the PDF used to generate these regions is the sum of two exponential functions

with di�erent slopes. The B 0 mass �t is simultaneous in �ve q2 regions to best isolate

these contributions, however, the isolation is not perfect. In particular, the resonant

combinatorial contributions sit atop the fully combinatorial ones which have a di�erent

slope. However, only the resonant component is included in the PDFs that are �t to
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the resonant mid- and high-q2 regions. Evidently, the fully combinatorial contamination

causes a bias in the determination of the background slopes in the resonant regions. It is

most noticeable in the resonant high-q2 region since the (2S) peak dominates slightly

less over the fully combinatorial background in comparison to theJ= peak.

Additional pseudoexperiments are used to con�rm the source of the biases in the

slope parameters. In these studies, the pseudoexperiments are generated with the same

slopes in eachq2 region causing the resonant and fully combinatorial backgrounds to have

the same shape. As a result, the biases in the slopes seen in Fig. 4.12 disappear. The

eventual impact of the biased combinatorial slopes on the signal amplitude paramaters is

investigated as a potential source of systematic uncertainty and is found to be insigni�cant.

This is done using pseudoexperiments that include the signal region �t. For all parameters

of interest, the e�ect is less than 2% of the statistical uncertainty.

Validation of the background �t in the upper mass sideband

Another ensemble of 200 pseudoexperiments is used to validate the background angular

�t in the upper B 0 mass sideband described in Sec. 4.5.2. In these studies, theB 0 mass is

�rst performed in the same way as above in order to obtain the covariance matrix which is

used a constraint in the background �t. Following the mass �t and sideband angular �ts,

the pull distributions for each background parameter are �tted with Gaussians and the

means and widths shown in Fig 4.13. A similar pattern of biases are observed in the mass

�t parameters as is discussed above. These biases persist throughout the various �tting

stages since the mass �t covariance matrix is used a constraint. Most of the background

shape parameters are largely unbiased and have the correct error coverage. Among the

background shape parameters, those describing thecos� K distribution appear to be the

worst behaved in the �t, with some biases and incorrect error coverage showing in the

pull distributions. In fact, the Gaussian �ts to the cos� K parameter pull distributions

fail in a number of cases. These issues stem mostly from parameter boundary e�ects

in the Bernstein polynomial parameterisation, which imposes a restricted range on the

parameters.

Validation of the signal region �t

An ensemble of 150 pseudoexperiments is used to obtain the pull distributions for all

�t parameters, and each pull distribution is �tted with a Gaussian function. The mean

� and width � of the pull distribution for each parameter is shown in Fig. 4.14, and

the numerical values for the Wilson Coe�cients are also listed in Table. 4.10. Excellent
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Table 4.10: The means and widths of the pull distributions in pseudoexperiments for the Wilson
Coe�cients. The bias is quoted as a fraction of the statistical uncertainty on the parameter.

Variable Mean (bias) Width (coverage)

C9 � 0:27� 0:06 1:00� 0:04
C10 � 0:13� 0:06 0:94� 0:04
C0

9 � 0:09� 0:06 1:05� 0:04
C0

10 � 0:34� 0:06 0:99� 0:04
C9� � 0:20� 0:06 1:03� 0:04

statistical behaviour is observed considering the number of free parameters in the �t. The

error coverage is accurate for most parameters and, for the signal parameters especially,

the observed biases are small compared to the statistical uncertainty. The biases that do

exist are accounted for as slight corrections to the �nal results.

Figure 4.13: The means and widths of the pull distributions for all free background parameters
in the upper B 0 mass sideband �t obtained from Gaussian �ts. The blue dots indicate the mean
position, while the shaded boxes indicate the� 1� interval around the mean.
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Figure 4.14: The means and widths of the pull distributions for the �nal �t in the signal region
obtained from Gaussian �ts. The blue dots indicate the mean position, while the shaded boxes
indicate the � 1� interval around the mean. Results are shown for all free signal amplitude
model parameters (top) and all free parameters of the resolution, background, and mass �t
models (bottom).

4.5.5 Goodness of �t assessment

A machine learning based two-sample classi�cation test [130] is employed to asses the

goodness of �t for the baseline model. The test ultimately extracts a p-value for the

dataset under the assumption (null hypothesis) that the baseline best �t model is the

true distribution describing the data. If the p-value for the dataset is small, this would

indicate that the dataset is an unlikely sample given the baseline �t model, suggesting

that the model does not describe the data well. The formal explanation of the method for

performing this test is somewhat recondite and is relegated to Appendix 4.H. However,

the main essence of the test is conceptually simple. It is designed to answer the following

question: can the dataset be reliably distinguished from a random sample drawn from the

baseline model? To do this, a test statistic denoted �� i;j is formulated, which quanti�es

the distinguishability of any two datasetsi and j . If j� � i;j j 6= 0 within an acceptable

tolerance, then datasetsi and j can be considered distinguishable, implying that they are

96



not drawn from the same underlying distribution. In this case, �� i;j is determined by

evaluating the performance of a set of BDTs trained to predict whether an event belongs

to dataset i or j .

Here, the test statistic is calculated for the dataset relative to a pseudoexperiment

(toy) generated from the baseline �t model. If the data is labelled byD and the toy by � ,

then the null hypothesis is represented by the statement

j� � D;� j = 0 (Null hypothesis):

The test statistic is also calculated for an ensemble of other toysf ig relative to the test toy

� . The set of valuesfj � � i;� jg represents the null distribution, which allows to determine

what the acceptable tolerance should be for concluding thatj� � D;� j 6= 0. The results

of the test for two di�erent scenarios are shown in Fig. 4.15. In Fig. 4.15a, the test is

performed excluding theJ= and  (2S) resonance regions, thus primarily considering

the phase space regions that are dominated by contributions from local amplitudes. The

p-value calculated for the dataset in this scenario isp = 0:345, which is a probability far

higher than any typical threshold for rejection of the null hypothesis. The conclusion from

this test is therefore that no evidence for a poor �t quality is identi�ed when considering

the local dominated regions of the phase space.

The main reason for excluding theJ= and  (2S) regions in the goodness of �t test

is due to the overwhelmingly large number of events there which would drown out any

sensitivity to the �t quality in other areas of the phase space. As will be discussed

further in Sec. 4.6.2, the �t quality is also known to be less than perfect in theJ= and

 (2S) regions. This is due to the presence of exotic charmonium-like contributions in the

data that are not included in the baseline �t model. The largest e�ect is in thecos� K

distribution, which is visible in the mid- and high-q2 �t projections shown in Fig. 4.J.1.

This fact provides a means of (partially) assessing the power of the goodness of �t test,

i.e. the test's ability to reject the null hypothesis when it is indeed false. For this purpose,

the test is redone including the entire phase space and the results are shown in Fig. 4.15b.

A very clear distinction between the null distribution and the test statistic for the data

is observed. In fact, within the statistics of the �nite ensemble used to produce the null

distribution, the p-value for the dataset isp = 0 in this scenario. This test indicates near

incontrovertible evidence of mismodelling in theJ= and  (2S) regions. Moreover, in

all cases the BDTs trained to distinguish data from toys identi�edcos� K as the most

important discriminating variable. The goodness of �t test can therefore demonstrably

identify a known mismodelling in the cos� K distribution.
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(a) (b)

Figure 4.15: The distribution of the test statistic j� � i;� j under the null hypothesis that j� � i;� j = 0
at the truth level is shown in grey. The data test statistic is indicated by the red vertical line.
In (a), the J= and  (2S) resonance regions are excluded from the dataset, while in (b) they
are included.

Unfortunately, the ways in which the data could be mismodelled are e�ectively in�nite.

The power of the goodness of �t test used here can therefore not realistically be quanti�ed.

Nevertheless, when considered in combination with visual inspection and the other

numerical crosschecks performed for this analysis, any unexpected deviation from a high

quality description of the data appears to be at an undetectable level.

4.5.6 Alternative minima in the negative log likelihood

Relative phase ambiguity in cc resonance amplitudes

In amplitude analyses ofB 0 !  (0)K � 0 decays, where (0) refers to anycc resonance,

there is well known ambiguity in the de�nition of the relative phases for the polarisation

amplitudes. In particular, when ignoring the nonresonant (penguin) contribution and

summing over �nal state lepton polarisations, the decay rate and angular observables

exhibit an exact symmetry under the following transformation of the (0) relative phases,

(� k; � ? ; � 00) ! (� � k; � � � ? ; � � 00): (4.77)

As a result, there is a two-fold ambiguity in the relative phase de�nition that persists

in experimental measurements. Two distinct minima arise in the negative log likelihood

function, and without additional information there is no reason to prefer one solution over

the other. This ambiguity is indeed observed in this analysis in both pseudoexperiments

and the data, which is con�rmed by �tting the same dataset multiple times with di�erent
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starting values for thecc resonance phases and observing that the �t converges to multiple

distinct phase solutions. In principle, a two-fold ambiguity exists for each of theqq

resonances included in the model, which would lead to a 256-fold ambiguity in the full

model. Thankfully, when coherently adding all the local and nonlocal contributions in the

total amplitude model, the symmetry of Eq. 4.77 becomes approximate due to interference

between the various components. When starting the �t from di�erent approximatecc

phase symmetry points, it is generally found that the symmetry is either completely

broken or one of the solutions is clearly preferred as the deeper minimum. For theJ= 

and  (2S) resonances, the symmetry can still be clearly observed, since the penguin rate

is negligible in comparison. The identi�ed symmetry approximately corresponds to the

transformation of Eq. 4.77, with the addition of a shift in the longitudinal phase of roughly

� 0 ! � 0 � �
2 . The full approximate phase symmetry transformation for theJ= and  (2S)

is thus given by

(� 0; � k; � ? ; � 00) ! (� 0 �
�
2

; � � k; � � � ? ; � � 00): (4.78)

The two solutions are far from degenerate, however. The di�erence in log likelihoods

between the two minima is approximately �NLL = � 60, which is a very signi�cant

di�erence. In pseudoexperiments, it is consistently found that the deeper minimum

corresponds to the true solution, therefore the same criteria is used to select the physical

solution in the data. For the higher 0 and light quark resonances, no symmetry points

are identi�ed.

It is generally stated in the literature that only one phase solution is physical, while

the other is not. And, it is purportedly possible to resolve the ambiguity by incorporating

information from the K + � � system into the �t. This was done in a previousLHCb

measurement [108], where the ambiguity was resolved by �tting for the interference

between the S-wave and P-wave amplitudes as a function of the mass of theK� system,

mK� . The physical phase di�erence� 00 � � 0 between the S-wave and the P-wave amplitudes

is expected to decrease as a function ofmK� , while the unphysical solution leads to an

increasing phase di�erence [131]. Thus, measuring the phase di�erence for both sets of

relative phases allows one to select the physical solution based on the� 00 � � 0 phase

di�erence trend across themK� spectrum. Unfortunately, in this analysismK� is integrated

out and cannot be used to resolve the phase ambiguity.
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Table 4.11: Comparison of observables forB 0 ! J= K � 0 decays. For the third column,
measurements of the polarisation amplitudes are obtained from Ref. [108] and converted into
observables with statistical and systematic uncertainties combined.

Observable This work LHCb 2011 [108] Di�erence

FL 0:5580� 0:0305 0:572� 0:008 0:4�
S3 � 0:0069� 0:0016 � 0:013� 0:010 0:6�
S4 � 0:2450� 0:0035 � 0:250� 0:006 0:7�
S8 � 0:0558� 0:0022 � 0:048� 0:007 1:1�
S9 � 0:0922� 0:0062 � 0:084� 0:006 1:0�

4.5.7 Preunblinding crosschecks

Prior to unblinding the Wilson Coe�cients, several crosschecks of the analysis are devised

and performed in order to give further con�dence in the behaviour of the �t. Where

possible, comparisons are made to existing published measurements of quantities that are

not subject to blinding. This includes the values of some nonlocal amplitude parameters,

and observable level quantities that can be constructed from the �t results without

explicitly revealing the value of any individual parameter.

Comparison of B 0 ! J= K � 0 angular observables

The angular observables detailed in Sec. 4.2 can be calculated at speci�cq2 values, for

example, the pole mass of theJ= resonance. The observables are dominated by the

nonlocal contribution from the J= here which is insensitive to any local NP contributions.

Previous measurements exist of theB 0 ! J= K � 0 polarisation amplitudes [108] which can

be used to calculate the corresponding angular observables. The resulting observables

are, more-or-less, directly comparable to those obtained in this analysis at theJ= pole

mass. Due to the di�erence in methods of handling the S-wave component, including the

sizemK� window considered, a meaningful comparison can only be performed for the

P-wave observables. This comparison is shown in Table 4.11 for the observablesFL , S3,

S4, S8, and S9. All other observables are identically zero as they involve only di�erences

between left- and right-handed transversity amplitudes (see Eq. 4.26), which are equal for

the B 0 ! J= K � 0 decay.
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Comparison of B 0 ! J= K � 0 and B 0 !  (2S)K � 0 amplitudes

A more trustworthy comparison can be performed at the amplitude level between

the results of this analysis and the results from the Belle amplitude analysis of

B 0 ! J= K + � � and B 0 !  (2S)K + � � decays [88, 89]. The Belle analyses explicitly

model B 0 ! Tcc1(!  (0) � � )K + contributions, while the results of this analysis are cor-

rected for these e�ects as described in Sec. 4.6.2. TheB 0 !  (2S)K � 0 amplitude

measurements from the Belle collaboration [89] are provided in the helicity basis, which

can be converted to the transversity basis via the following transformation,

A V
? ;k =

�
H V

+1 � H V
� 1

�
=
p

2; A 0 = H0; (4.79)

whereH V
� 1;0 are the helicity amplitudes measured by the Belle collaboration, rescaled such

that jH V
+1 j2+ jH V

� 1j2+ jH V
0 j2 = 1. The Belle measurements of theB 0 ! J= K � 0 amplitudes

are provided in both the helicity and transversity bases. In order to calculate the equivalent

quantities using the results of this analysis, theB 0 ! K � 0V nonlocal amplitudes are

evaluated at theJ= and  (2S) resonance pole masses independently,i.e. with all other

amplitudes set to zero. The measured relative phases of theB 0 ! K � 0V amplitudes

can be compared after a transformation to align the phase conventions. Speci�cally, the

phases measured in this analysis are transformed as follows,

� V
k ! � V

k � �; � V
? ! � V

? + �: (4.80)

Table 4.12 gives the results of theB 0 ! K � 0V amplitude comparisons, demonstrating

good compatibility between this analysis and previous measurements.

4.5.8 Comparison of observables to previous analyses

The B 0 ! K � 0� + � � angular observables can also be plotted as continuous functions

of q2 and compared to previousLHCb measurements. The binned angular observables

were measured in Ref. [4] using the Run 1 and 2016 data samples, corresponding to

4.7fb� 1. The decay rate was measured in Ref. [21] using Run 1 data, corresponding to

3fb� 1. Comparison plots for the full set of angular observables are shown in Figs. 4.K.5

and 4.K.4 in Appendix 4.K.1. Good compatibility is observed across the fullq2 spectrum

for all observables. It is useful to note that in the previous measurements each bin is a

statistically independent measurement, thus large bin-by-bin 
uctuations are possible.

In this analysis, an unbinned �t is performed which enforces consistency across theq2
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Table 4.12: Comparison of transversity amplitudes between this analysis and Belle measurements
of the B 0 ! J= K + � � and B 0 !  (2S)K + � � decays. Only the statistical uncertainties are
available for the Belle  (2S) result.

Parameter Fit results Belle [88, 89] Di�erence (� )

jA J= 
k j2 0:22� 0:02 0:23� 0:01 � 0:4�

jA J= 
? j2 0:21� 0:02 0:20� 0:01 +0:4�

jA J= 
0 j2 0:57� 0:03 0:57� 0:01 +0:0�

� J= 
k � 2:91� 0:01 � 2:92� 0:06 +0:2�

� J= 
? 2:93� 0:01 2:91� 0:04 +0:5�

jA  (2S)
k j2 0:27� 0:01 0:31� 0:04 � 1:0�

jA  (2S)
? j2 0:21� 0:03 0:15� 0:03 +1:4�

jA  (2S)
0 j2 0:53� 0:02 0:54� 0:04 � 0:2�

�  (2S)
k � 2:30� 0:19 � 2:42� 0:14 � 0:5�

�  (2S)
? 2:70� 0:12 2:92� 0:12 � 1:3�

spectrum. With this in mind, the agreement between the binned and unbinned observables

is expected to be imperfect even in the case of identical datasets. Rather, the unbinned

observables calculated in this analysis can be expected to converge approximately to the

average value over the bins of the previous measurements. Disagreements at the level of

1{2� with individual bins from the previous measurements are therefore expected and of

no concern. For the comparisons in Appendix 4.K.1, the results from the �t to the full

Run 1 and Run 2 dataset are shown. The same comparison was also performed using

the results of a �t to only the Run 1 and 2016 data samples.5 A very similar level of

compatibility is observed in this case.

4.6 Systematic Uncertainties

Several sources of systematic uncertainty are considered for this analysis, including those

related to the modelling of the signal, backgrounds, detector e�ects, and the analysis

method and implementation. The dominant e�ects are described in the following dedicated

sections, followed by an overview of various other e�ects that are considered but are

generally found to be negligible contributions to the overall systematic uncertainty. The

�nal parameter uncertainties are obtained by combining the statistical covariance matrix

5Due to the more limited dataset size, the full set of nonlocal amplitude parameters cannot reliably
be varied when �tting only the Run 1 and 2016 data samples. For this part of the crosscheck, the
two-particle amplitudes are �xed to the values measured in the �t to the full Run 1 and Run 2 dataset.
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from the likelihood �t with the total combined systematic covariance matrix accounting for

all non-negligible e�ects. Each systematic e�ect is studied in isolation and the systematic

covariance matrices are obtained by the same general method for all e�ects considered.

The method involves creating ensembles of pseudoexperiments and performing the full

�t using alternative �t con�gurations and/or modifying the pseudoexperiments in a

manner representative of the e�ect in question. The results of performing the �t with

the alternative con�guration are compared against the results of performing the same

�t with the baseline con�guration. The covariance is calculated for all �t parameters

using the distribution of di�erences in best �t parameter values between the baseline and

alternative con�gurations. The covariance matrices from each systematic study are added

in quadrature to create the total systematic covariance matrix.

4.6.1 Normalisation to the B 0 ! J= K � 0 branching fraction

The dominant source of systematic uncertainty on the parameters of interest is found

to arise from the normalisation to theB 0 ! J= K � 0 branching fraction, which is only

known with a relative uncertainty of 6.8% [88]. The normalisation is implemented

by applying Eq. 4.74 in order to �x the value of jAJ= 
0 j. Consequently, the magni-

tudes of the J= resonance which enter the total normalised PDF carry a factor of
p

B(B 0 ! J= K � 0)B(J= ! � + � � ). Varying the known B 0 ! J= K � 0 branching fraction

within its uncertainties therefore translates to a variation of thejAJ= 
� j values, which

subsequently a�ects all other parameters of the �t. The e�ect is of the order 50% of the

statistical uncertainty for C9, and 100% forC10: It should be noted that the reason this

e�ect is so signi�cant is due to the larger dataset and dramatically improved statistical

precision in this analysis relative to theBelle measurement ofB(B 0 ! J= K � 0) [88]. This

is currently an irreducible systematic uncertainty, but can be directly improved in the

future with a new precise measurement of theB 0 ! J= K � 0 branching fraction, e.g. from

the Belle II experiment.

4.6.2 Exotic charmonium-like states

The presence of charmonium-like resonances in theJ= � and  (2S)� spectra, denotedTcc1

states6, leads to the interference of the decay amplitudesB ! Tcc1(!  � )K with both

the rare decay andB !  K � 0 �nal states. This analysis performs a �t across the full

q2 spectrum, including theJ= and  (2S) regions, without accounting for these exotica

6Previously called Zc states.
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Figure 4.16: The distribution of cos� k in pseudoexperiments (left) for events around the
J= and (right) for events around the  (2S). The di�erent colours correspond to (black)
pseudoexperiments generated without the presence of the exoticTcc1 states, (blue) with the
central values of theTcc1 states from Belle measurements, and (red) with the systematic variations
of the Tcc1 amplitudes described in the text. The \widths" of each type corresponds to statistical
variations of the toys.

contributions. The reason for not including these amplitude components in the �t is

mainly due to computational e�ciency; the B ! Tcc1(!  � )K decays contribute with

di�erent functional angular dependencies, thus the decay rate no longer factorises into a

simple sum of products ofJi (q2) and f i (~
 ) terms as given in Eq. 4.3. The most prominent

e�ect of the exotica contributions is seen in thecos� K distribution, as shown in Fig. 4.16.

To assess the impact of neglecting the exotica contributions, a correction to the �nal

results is derived by generating pseudoexperiments that contain all of the baseline local

and nonlocal contributions added coherently with the exotica contributions following the

procedure of Refs. [88, 89, 132]. The pseudoexperiments are �t back using the baseline

model that neglects the exotic states. The exotic amplitudes are �xed in the toy generation

to the central values from measurements made by the Belle collaboration [88, 89]. The

resulting average shift of the parameters from their generated values is taken as the

correction. With the exception of theJ= and  (2S) magnitudes and phases, the exotica

correction to the parameters of interest is small (. 20%) relative to the statistical

uncertainty.

A systematic uncertainty is derived for the correction by varying the exotica amplitudes

within their measured 1� uncertainties and recalculating the correction. The standard

deviation of each of the corrections obtained from this process is taken as the systematic

uncertainty. Again, with the exception of theJ= and  (2S) magnitudes and phases, the

systematic uncertainty on the exotica correction is small (. 20%) relative to the statistical

uncertainty. For the J= and  (2S) parameters, the exotica correction and associated

systematic uncertainty are large relative to the statistical uncertainty (from� 100% to
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� 800%); however, the absolute e�ect remains small given the �ne statistical precision

achieved on the resonance magnitudes and phases.

4.6.3 Acceptance model

Alternative simulation weights

The acceptance function described in Sec 4.4.3 is determined from simulated samples

that have been corrected to agree with data. The corrections to the simulation are

described in Sec 4.4.2. The weights applied to the simulated samples have associated

statistical and systematic uncertainties that must be propagated through to the eventual

determination of the signal parameters. To assess the impact of these uncertainties,

ensembles of pseudoexperiments are used in which alternative weights are derived and

subsequently used to produce modi�ed PDFs with alternative acceptance coe�cients. The

resulting set of acceptance functions considered and the di�erence relative to the baseline

model are shown in Fig. 4.17. Pseudoexperiments are generated from the alternative

PDFs and then �tted back using both the baseline and alternative (true) PDFs to assess

the impact of the simulation reweighting.

The largest e�ect is found to come from the corrections to theB 0 meson kinematics.

The e�ect is approximately 10% of the statistical uncertainty for the Wilson Coe�cients

and roughly 200% for the magnitudes of the parallel and transverseJ= amplitudes. In

both cases the e�ect is subdominant. The baseline weights for the kinematic corrections

are derived by comparing the distributions of several variables betweenB 0 ! J= K � 0

decays in simulation and data. The alternative weights are derived by performing the

same comparisons forB 0 !  (2S)K � 0 decays in simulation and data.

Choice of acceptance function polynomial order

As mentioned in Sec. 4.4.3, the Legendre polynomials used to model the acceptance must

be truncated at a �nite order. Evidently, the agreement between the acceptance function

and the simulation sample is not perfect at the chosen orders, especially in the low-q2

and high cos� K regions. The baseline model uses a 9th order polynomial inq2 and a

7th order polynomial in cos� K . Higher polynomial orders cause numerical instabilities

when normalising the PDF and are thus unsuitable for the �t to data. However, it is

possible to generate pseudoexperiments using higher order polynomials. Therefore, to

quantify the systematic uncertainty, two sets of pseudoexperiments are generated, one

with the baseline acceptance function and another with a 12th and 10th order polynomial
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Figure 4.17: One dimensional projections of the acceptance function variations used to assess
the systematic uncertainty. The lower plots show the di�erences with respect to the nominal
function.

for q2 and cos� K , respectively. Both are �t back with the baseline model and the average

di�erence between the baseline and alternative results is used to quantify the systematic

uncertainty. The e�ect is again largest for the magnitudes of theJ= amplitudes, but

found to be a subdominant contribution overall.

4.6.4 Two-particle open-charm constraint

As described in Sec. 4.3.5, a Gaussian constraint is placed on the size of the open-charm

contributions to maintain the stability of the �t. The constraint restricts the real and

imaginary parts, separately, of each two-particle open-charm state (DD, D � D and D � D � )

to be of a similar size to one another. A separate constraint is used for each polarisation

amplitude. The lineshape models for the di�erent two-particle amplitude components are

very similar and the �t does not have su�cient sensitivity to disentangle them e�ectively.

The main purpose of the constraints is therefore to avoid that the various amplitude

components may take on arbitrarily large magnitudes with opposite signs, while avoiding

a constraint on the absolute size of the combined contribution. The constraint is given a

generous width of 1.0,7 but could nonetheless cause biases in the open-charm contributions,

7For reference, the coherent sum of all theD � D � states would saturate the decay rate at around 0.22 [107].
Hence, large destructive interference e�ects would need to be present to allow di�erences of order 1.0 in
the amplitude components.
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as well as other parameters, if the components that are constrained have di�erences larger

than this in data. To asses this bias, pseudoexperiments are generated with the di�erence

between the open-charm components set to 1.5. These pseudoexperiments are then �tted

twice, once with the baseline constraint centred at zero, and once with an unbiased

constraint centred at 1.5. The di�erence in the �t results is assigned as a systematic, and

besides the open-charm parameters, the main a�ected parameters areC9 and C9� , with

systematic uncertainties of 24% and 29% of the statistical uncertainty respectively.

4.6.5 Subdominant e�ects

A number of additional systematic e�ects are investigated that have the potential to

in
uence the results in subtle but important ways. Ultimately, the e�ects described in

this section are generally found to be subdominant or negligible impact under the baseline

�t con�guration. The studies performed that lead to these conclusions are detailed below.

Angular resolution

The experimental resolution in the anglescos� ` , cos� K , and � is not explicitly accounted

for in the signal model. Unlike theq2 spectrum, the angular distributions contain no

sharp peaks and thus the detector resolution is expected to have only a small impact.

Ensembles of pseudoexperiments emulating the e�ects of the angular resolution are used

to con�rm that there are no signi�cant e�ects on the signal parameters of interest. In

these pseudoexperiments, the decay angles are smeared according to a resolution model

obtained from an analysis of simulatedB 0 ! K � 0� + � � decays. The pseudoexperiments

are �tted back with the baseline model and the results are compared against �ts to the

same pseudoexperiments in which the angular smearing is not applied.

The angular resolution in each angle� 2 f cos� ` ; cos� K ; � g is modelled by a sum of

three Gaussian PDFs with independent means and widths:

R(� ) = f 1G(� j� 1; � 1) + (1 � f 1)f 2G(� j� 2; � 2) + (1 � f 1)(1 � f 2)G(� j� 3; � 3) (4.81)

The parameters of the models are obtained by �tting the distribution of reconstruction

errors � � � true in simulated B 0 ! K � 0� + � � samples. The parameters are obtained

separately in each of the threeq2 regions used in the analysis. In Appendix 4.I one can

�nd plots of the �tted distributions of reconstruction errors in Figs 4.I.1{ 4.I.3, and the

resulting angular resolution parameters in Tables 4.I.1{ 4.I.3. In summary, the full width

at half maximum of the � � � true distributions is around 40mrad for � ` and � K , and around
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100 mrad for� , with little dependence onq2 observed.

The most signi�cant systematic e�ects due to ignoring the angular resolution in the

�t are small biases in the perpendicular components of theJ= magnitude and relative

phase that are of order 10{15% of the statistical uncertainty in these parameters. This

systematic has no impact on the physics output of this analysis; however, it has potential

implications for other analyses such as the measurement of polarisation amplitudes in

B 0 ! K � 0J= decays which have previously considered the angular resolution of the

detector to be a negligible systematic uncertainty [108].

Variation of q2 resolution

The q2 resolution is accounted for in the baseline model as described in Sec. 4.4.3. The

parameters of the resolution model are assumed to remain constant within eachq2 region,

which is an approximation that holds to varying degrees for eachq2 region as shown in

Fig. 4.6. In the mid- and high-q2 regions, the variation in the resolution is slow. Outside

of the narrow resonances which dominate the determination of the resolution parameters,

these regions contain no other features that are narrower than the resolution. Hence, the

small variation in the q2 resolution within these regions is immaterial. The low-q2 region,

on the other hand, contains a sharp increase in events towards the photon pole,q2 ! 0, in

addition to the narrow � (1020) resonance. It can be seen in Fig. 4.6 that theq2 resolution

also varies faster across this region. The low-q2 resolution parameters are obtained from

a �t to simulated B 0 ! K � 0� + � � decays produced with a physics model and, given the

size of the low-q2 region, the �tted sample contains mostly events that are away from the

photon pole. Consequently, the �t results in an average resolution model for the region

that is not well suited to the photon pole and is closer the expected resolution at the

� (1020) resonance based on Fig. 4.6. This leads to a small over-smearing of the decay

rate model near the lowerq2 boundary that could bias the �t parameters.

Pseudoexperiments are used to investigate the e�ects of mismodelling theq2 resolution

in this region. For these studies, pseudoexperiments are generated with an alternative

resolution model that is much narrower than the baseline model as shown in Fig. 4.18,

emulating the improved resolution at very lowq2. They are then �tted back with both the

true generator level model and the baseline �t model. The di�erence in the �t results is

used to quantify the systematic uncertainty. In order to avoid numerical instabilities, the

magnitude for the narrow� (1020) resonance is set to zero in these studies. Small e�ects

of around 1{3% of the statistical uncertainty are observed for the Wilson Coe�cients and

the nonlocal � C7 parameters, while around 10{30% e�ects are observed for the light-quark
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Figure 4.18: Plots of the baseline and alternative resolution models considered for the low-q2

resolution variation systematic uncertainty study. The baseline (blue) model parameters are
obtained from �tting the q2 reconstruction error distribution in simulated B 0 ! K � 0� + � �

decays. The alternative (red) resolution has modi�ed parameters which reduces the width by a
factor of approximately 50.

resonance phases.

B 0 mass signal region cut

The q2 resolution parameters are determined in the mid- and high-q2 regions by �tting the

core of theJ= and  (2S) resonances in data, respectively. In general, the resolution inq2 is

directly correlated with the resolution in theB 0 mass. This is especially visible around the

resonances as shown in Fig. 4.19a, where clear diagonal bands can be seen. Furthermore,

these resonances are known to have large tails arising from unreconstructed FSR, of which

the main source is photons radiated from the muon system. The �t of the signal model

to data is performed within the region 5259:58 � m(K + � � � + � � ) � 5299:58MeV/ c2,

corresponding to a 40MeV/ c2 window around the knownB 0 mass. Due to the correlation

between unconstrainedq2 and mB , the signal region cut would imply an e�ectiveq2 cut if

the unconstrainedq2 was used. Using theB 0 mass constrainedq2 value largely avoids this

issue, as seen in Fig. 4.19b, since theq2 value is adjusted to correct for the discrepancy in

the B 0 mass. However, any residual correlation could still lead to an e�ectiveq2 cut due

to the B 0 mass signal region cut. Such an e�ect would distort the tails of the resonances

in data in a way that is not well captured by the baseline resolution function. In the

extreme case of assuming all variation in the reconstructedB 0 mass is due to the dimuon
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(a) (b)

Figure 4.19: The reconstructedB 0 mass plotted against (a) unconstrainedq2 and (b) constrained
q2 in simulated B 0 ! J= K � 0 and B 0 !  (2S)K � 0 decays.

invariant mass resolution, then one could expect an e�ectiveq2 cut at

q2 = (
p

q2
true � 0:020 GeV/c2)2:

or equivalently, events with a resolution worse than

q2 � q2
true = 4 � 10� 4 � 0:04

p
q2

true ;

would be removed. This assumption is, of course, not correct. However, any additional

source of variation such as themK� resolution would have the e�ect of smearing out the

e�ective cut in q2 and reducing its impact. Evidently, no e�ect of this kind is observed in

simulated B 0 ! J= K � 0 or B 0 !  (2S)K � 0 decays. This can be seen in Fig. 4.7 showing

the q2 resolution, where good �t quality is observed for all threeq2 regions extending all

the way into the far tails of the distributions.

Final state radiation from the K + � � system

As discussed earlier in Sec. 4.4.3, events which su�er from unreconstructed FSR from the

K + � � system can be over-corrected by theq2 constraint, leading to a lump in the upper

tails of the J= and  (2S) resonances. The e�ects ofK + � � FSR are clearly visible as the

vertical bands in the unconstrainedq2 distribution shown in Fig. 4.19a. After applying

the B mass constraint, these vertical bands are rotated and become anticorrelated with

mB , as shown in Fig. 4.19b. This presents a problem speci�cally for events which are

true J= or  (2S) decays that originally sit centrally within the peak of the resonance
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Figure 4.20: The K + � � mass resolution, � mK� � mK� � mtrue
K� , obtained from simulated

(red) B 0 ! J= K � 0 and (green) B 0 !  (2S)K � 0 decays. The dashed black lines indicate the
boundaries of the core region,jmK� � mK�; true j = 15 MeV/ c2.

in unconstrainedq2, but slightly below the B 0 mass peak due to missed FSR from the

K + � � system. TheB 0 mass constraint mistakenly compensates for the discrepancy by

shifting q2 to higher values, as if the FSR had originated from the muons. This results

in a bulge of events in the upperq2 tail of the resonance which is not well captured by

the baseline resolution model. With the relatively narrow baseline signal region, only a

small sign of this e�ect is present in theq2 distribution for the B 0 !  (2S)K � 0 decay.

However, if this window is expanded to 80MeV/ c2, for example, then the e�ect indeed

becomes signi�cant.8 This can be seen seen explicitly in Fig. 4.21

Ordering of acceptance and resolution

As described in Sec. 4.52, a potential source systematic uncertainty comes from the order

in which the acceptance and resolution models are applied to the theoretical decay rate

model. The method used in this analysis of applying the resolution prior to the acceptance

is an approximation employed for reasons of computational e�ciency. The impact of

this approximation is assessed in a simple toy model representing a process with a single

resonant contribution sitting atop a constant nonresonant component. The following

function is used to represent the decay rate,

f (x) = a + � (x � m2
res); (4.82)

wherex � q2
true , a represents a simpli�ed constant rate for the nonresonant mode, and

the Dirac delta term places an in�nitely narrow peak in the spectrum as a proxy for

resonance that is much narrower than the resolution. This toy model represents a crude

8The original choice for the baseline signal region was in fact the wider 80MeV/ c2 window. However, this
was modi�ed to the 40MeV/ c2 window upon discovery of theK + � � FSR distortion e�ect which had
previously been assumed to be insigni�cant.
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Figure 4.21: The q2 resolution in simulated (left column) B 0 ! K � 0J= and (right column)
B 0 ! K � 0 (2S) decays. The top row corresponds to a loosemB mass window of width
80MeV/ c2, while the bottom row corresponds to the baseline signal region of width 40MeV/ c2.
The distributions are shown for (red) all candidates, (green) only those in the core of theK + � �

mass resolution,jmK� � mK�; true j < 15MeV/ c2 and (blue) those in the tails of the K + � � mass
resolution, jmK� � mK�; true j > 15 MeV/ c2.

approximation of the B 0 ! K � 0� + � � decay rate considering only theJ= resonance. The

decay rate is augmented with a detector acceptance and resolution model in a similar

fashion to the full B 0 ! K � 0� + � � signal model. The resolution functionR(x) is taken to

be a simple Gaussian with zero mean and width� , while the realistic q2 projection of the

acceptance with 10 polynomial orders is retained:

R(x) = G(xj� = 0; � );

� (x) = � 0 + � 1x + � 2x2 + � � � + � 9x9:
(4.83)

The (correct) method of �rst applying the acceptance followed by the resolution to obtain

the experimental signal model would result in,

f (exp) (x) = [ f (x)� (x)] 
 R(x)

= [ a�(x) + � (x)� (x)] 
 R(x)

= a�(x) 
 R(x) + � (x)R(x)

= a
�
� 0 + � 1x + � 2x2 + � � �

�

 R(x)

+
�
� 0 + � 1x + � 2x2 + � � �

�
R(x)

(4.84)
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on the other hand, the (approximate) method with reversed ordering of the acceptance

and resolution would result result in,

f (exp)
approx (x) = [ f (x) 
 R(x)] � (x)

= a�(x) + R(x)� (x)

= a
�
� 0 + � 1x + � 2x2 + � � �

�

+ R(x)
�
� 0 + � 1x + � 2x2 + � � �

�

(4.85)

In the �nal equalities of Eqs. (4.84) and (4.85), the second terms are identical. Hence,

the approximation being made reduces to the following replacement for each acceptance

order i :

� i x i 
 R(x) ! � i x i (4.86)

This approximation has a negligible impact if either: the resolution function is su�ciently

narrow, i.e. � � 1; and/or, the acceptance function is su�ciently 
at, i.e. j� i j � 1 for

i > 0.

The error of calculation resulting from the reversed acceptance and resolution ordering

reduces to the error involved in the following approximation for eachi :

� i x i 
 R(x) ! � i x i (4.87)

The error is therefore expected to be insigni�cant if either or both of the following are

true: (i) the resolution function is su�ciently narrow, and/or (ii) the acceptance function

is su�ciently 
at. Using parameter values approximately representative of our actual

model, The total relative error of the approximation,
P

n [� n xn 
 R(x)] � � n xn
P

k � k xk 
 R(x) , introduced by

the replacement of Eq. 4.87 is shown as a function ofq2 in Fig. 4.22. The e�ect of the

approximation is found to be negligible (< 0:5%) across the wholeq2 region. We therefore

assign no systematic uncertainty to this.

Events with multiple candidates

After the full selection has been applied, the fraction of events that contain more than one

candidate is approximately 0.18%. These events are unlikely to correspond to multiple

true candidates and this e�ect represents a known di�erence between simulation and

data, since in simulation only one true candidate is retained per event by de�nition of the
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(a) (b)

Figure 4.22: The total relative error introduced by the approximation of Eq. 4.87 in a simpli�ed
toy model.

truth matching requirements used in this analysis.9 As shown in Fig. 4.23a, the events

containing multiple candidates are not distributed evenly throughout the phase space. In

particular, a spike in the number of such events is observed at high cos� K values, which

corresponds to events with a low momentum� � . Since the nominal acceptance function

is calculated using the truth matched simulation, this concentration of multiple candidate

events is not captured. Fig. 4.23b shows that the distribution of events with multiple

candidates is in fact well modelled in simulation when the truth matching requirements

are removed. Hence, in order to determine if this small potential bias in the acceptance

function is signi�cant, the truth matching requirements are removed from the simulation

and the acceptance function is recalculated. Ensembles of pseudoexperiments are used to

determine the shift in parameter best �t values resulting from the alternative acceptance

function. The most signi�cant e�ects are found to be on the magnitudes and phases of

the J= polarisation amplitudes, which are at the level of 30% and 15% of the statistical

uncertainty, respectively. These e�ects are dominated by other sources of systematic

uncertainty on these parameters. The impact on all other parameters is less than 5% of

the statistical uncertainty.

9In fact, some fraction of the multiple candidates may be due to \clones" in which multiple reconstructed
particles correspond to the same true particle. These candidates can in principle be included in the
truth matched simulation but in this case they are not.
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(a) (b)

Figure 4.23: The distribution of multiple candidates in (a) data and (b) simulation when the
truth matching requirements are removed.

Table 4.13: Results for the Wilson coe�cients. The �rst uncertainty is statistical, while the
second is systematic.

Wilson coe�cient results

C9 3:56� 0:28� 0:18
C10 � 4:02� 0:18� 0:16
C

0

9 0:28� 0:41� 0:12
C

0

10 � 0:09� 0:21� 0:06
C9� (� 1:0 � 2:6 � 1:0) � 102

4.7 Results

The full q2 spectrum resulting from the simultaneous �t is shown overlaid on the data in

Fig. 4.24. The total PDF is decomposed into signal and background components, and

the signal component is further decomposed into the contributions from local amplitudes,

one- and two-particle nonlocal amplitudes, and the interference between them.

The optimal values of the Wilson Coe�cientsC(0)
9;10 and C9� are listed in Table 4.13 along

with 1� statistical and systematic uncertainties. The quoted statistical uncertainties are

obtained from the covariance matrix evaluated at the best �t point as described in Sec. 4.5.

The systematic uncertainties are evaluated as described in Sec. 4.6. The corresponding

one-dimensional likelihood pro�les are shown in Fig. 4.25, wherein the 1� , 2� , and 3�

con�dence intervals are indicated considering both statistical and systematic uncertainties.

The intervals obtained using the pro�le likelihood method are in agreement with parameters

obtained from the covariance matrix. The SM values for the Wilson Coe�cients obtained

from Ref. [115] are also indicated in Fig 4.25, revealing a 2:1� deviation in the C9 �t

result, and otherwise good agreement with the SM. Two-dimensional con�dence regions
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Figure 4.24: The q2 distribution in the data, overlaid with the PDF projection from the baseline
data �t. The total PDF is decomposed into signal and background components, with the signal
contributions further decomposed into local and nonlocal contributions as described in Sec. 4.3.5.
Note the hybrid linear/log scale to incorporate the very tall peaks from the charmonium states.

for C(0)
9;10 are also obtained, as shown in Fig. 4.26. The parameters of the dominant nonlocal

contributions, i.e. the one-particle resonance amplitudes, are listed in Tables 4.14 and 4.15,

and the two-particle and nonresonant contributions toC7 are given in Table 4.16. The full

statistical correlation matrix for all �t parameters is shown in Fig. 4.L.1 in Appendix 4.L.

The prior and posterior values for the local form factor parameters are given in

Table 4.17. Projections of the �t on the angles as well asq2 in the individual subregions

can be found in Fig. 4.J.1 in Appendix 4.J.

4.8 Discussion

The primary observation to be made based on the results of Sec. 4.7 is that while the

data-driven nonlocal model used in this analysis shows that there is some contribution of
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Figure 4.25: One-dimensional con�dence intervals for the Wilson Coe�cients, obtained using
a likelihood pro�le method. The shaded regions consider only statistical uncertainties, while
the dotted vertical lines indicate the same regions with systematic uncertainties included. The
vertical black dotted lines show the Standard Model values.

nonlocal amplitudes in theq2 regions used by previous binned analyses [4], it still prefers

a value ofC9 that is shifted from the SM expectation. Based on a 1D pro�le likelihood

scan, shown in Fig. 4.25, a shift of �CNP
9 = � 0:71� 0:33 is observed that corresponds to

a 2:1� deviation from the SM prediction ofCSM
9 = 4:27 [115], with both statistical and

systematic uncertainties accounted for. This discrepancy also takes into account small

corrections to the value ofC9 stemming from asymptotic statistical biases and the exotica
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Figure 4.26: Two-dimensional con�dence regions for selected combinations of the Wilson
Coe�cients, obtained using a likelihood pro�le method. The shaded regions indicate the 1�
and 3� con�dence regions considering only statistical uncertainties, while the dotted contours
indicate the same regions with systematic uncertainties included. The horizontal and vertical
dotted lines show the Standard Model values.

contributions discussed in Secs. 4.5.4 and 4.6.2, respectively. This correction has a total

numerical value of +0.05, thereby slightly reducing the observed tension relative to the

raw �t result. The global signi�cance of the deviation from the SM considering all of

the Wilson Coe�cients in Table 4.13 is reduced to 1:5� . The global signi�cance of the

deviation from the SM is diluted through the additional degrees of freedom introduced

through C10; C
0

10; C
0

9; C9� that do not signi�cantly improve the �t quality compared to NP

in C9 alone. No signi�cant deviation in C10 is observed, nor any evidence for the presence

of right-handed currents.

This is the �rst direct measurement ofC9� , and the value ofC9� = � 116� 264� 98 is

consistent with both zero and the SM expectation of lepton 
avour universality,CSM
9� =

4:27 [115]. The uncertainty onC9� is dominated by statistical e�ects. The largest

systematic uncertainty, accounting for� 30% of the total uncertainty, arises from the

constraint on the relative size of theB 0 ! D (� )D
(� )

K � 0 contributions, as detailed in
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Table 4.14: Results for the (left column) magnitudes and (right column) phases of the dominant
one-particle nonlocal contributions. The �rst uncertainty is statistical, while the second is
systematic. The magnitudes, jA �

j j, and phases,� �
j , are de�ned in Eq. 4.38. The values of

amplitude parameters that are �xed in the �t to the data appear with a dash.

Nonlocal parameter results

jAk
J= j (3:98� 0:01� 0:15) � 10� 3 � k

J= 0:23� 0:01� 0:01
jA?

J= j (3:85� 0:01� 0:14) � 10� 3 � ?
J= � 0:21� 0:00� 0:01

jA0
J= j { � 0

J= � 1:92� 0:05� 0:02

jAk
 (2S) j (9:59� 0:28� 0:82) � 10� 4 � k

 (2S) 0:84� 0:02� 0:19
jA?

 (2S) j (8:38� 0:27� 0:62) � 10� 4 � ?
 (2S) � 0:44� 0:02� 0:11

jA0
 (2S) j (13:4 � 0:4 � 1:1 ) � 10� 4 � 0

 (2S) � 2:54� 0:13� 0:12
jA0

� (770) j { � 0
� (770) 1:38� 0:53� 0:65

jA0
! (782) j { � 0

! (782) � 0:49� 0:92� 0:53
jA0

� (1020) j { � 0
� (1020) 0:10� 0:82� 0:78

Table 4.15: Results for the (left column) real and (right column) imaginary parts of the higher
charmonium resonance nonlocal amplitudes as de�ned in Eq. 4.38. The �rst uncertainty is
statistical, while the second is systematic.

Nonlocal parameter results (� 10� 5)

< (Ak
 (3770)) 3:68� 1:34� 0:73 = (Ak

 (3770)) 2:87� 1:88� 0:49
< (A?

 (3770)) � 3:53� 1:45� 0:47 = (A?
 (3770)) � 0:86� 1:56� 0:53

< (A0
 (3770)) � 3:14� 1:39� 0:60 = (A0

 (3770)) 1:67� 1:54� 0:62

< (Ak
 (4040)) � 2:39� 1:53� 0:96 = (Ak

 (4040)) � 0:71� 1:80� 1:11
< (A?

 (4040)) � 2:01� 1:47� 0:59 = (A?
 (4040)) 0:35� 1:49� 0:82

< (A0
 (4040)) � 5:62� 1:71� 1:07 = (A0

 (4040)) 1:32� 1:87� 0:99

< (Ak
 (4160)) 0:04� 1:72� 0:56 = (Ak

 (4160)) 1:91� 1:98� 1:45
< (A?

 (4160)) � 2:81� 1:75� 0:61 = (A?
 (4160)) 0:32� 0:15� 0:09

< (A0
 (4160)) 1:03� 1:77� 0:39 = (A0

 (4160)) � 1:66� 1:67� 1:04

section 4.3.5. The development of theory calculations that can be used to constrain the

B 0 ! D (� )D (� )(! � + � � )K � 0 amplitudes would help improve sensitivity toC9� in future

measurements.

The current best upper limit on theB(B 0 ! K � 0� + � � ) branching fraction is 3:1� 10� 3

at 90% Con�dence Level [133] (CL), corresponding to an upper limit ofjC9� j < 680 at

90% CL (assuming no NP contribution in theC10� coe�cient) or jC9� j < 600 (assuming

the relation C10� = �C 9� ). The 90% CL upper limit on the jC9� j parameter from this

work is jC9� j < 500 (jC9� j < 600 at 95% CL). To convert the upper limits on the

B 0 ! K � 0� + � � branching fraction in Ref. [133] to upper limits on the parameterjC9� j,
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Table 4.16: Results for the parameters of the two-particle nonlocal contributions toC9 and the
nonresonant nonlocal contributions to C7 for the (left) real and (right) imaginary components
as de�ned in Eq. 4.43 and Sec. 4.3.7. The �rst uncertainty is statistical, while the second is
systematic.

Nonlocal parameter results

< (Ak
D 0 �D 0 ) � 0:07� 0:93� 0:69 = (Ak

D 0 �D 0 ) � 0:44� 0:71� 0:73
< (A?

D 0 �D 0 ) � 0:12� 0:83� 0:71 = (A?
D 0 �D 0 ) 0:02� 0:80� 0:74

< (A0
D 0 �D 0 ) � 0:33� 0:91� 0:70 = (A0

D 0 �D 0 ) � 0:27� 0:77� 0:81
< (Ak

D � 0 �D � 0 ) � 0:06� 0:96� 0:63 = (Ak
D � 0 �D � 0 ) � 0:25� 0:79� 0:67

< (A?
D � 0 �D � 0 ) � 0:16� 0:91� 0:66 = (A?

D � 0 �D � 0 ) � 0:03� 0:85� 0:70
< (A0

D � 0 �D � 0 ) � 0:17� 0:95� 0:66 = (A0
D � 0 �D � 0 ) � 0:28� 0:85� 0:78

< (Ak
D � 0 �D 0 ) 0:02� 0:42� 0:66 = (Ak

D � 0 �D 0 ) � 0:46� 0:32� 0:58
< (A?

D � 0 �D 0 ) � 0:24� 0:42� 0:70 = (A?
D � 0 �D 0 ) � 0:11� 0:39� 0:61

< (A0
D � 0 �D 0 ) � 0:51� 0:41� 0:68 = (A0

D � 0 �D 0 ) 0:12� 0:35� 0:58
< (� Ck

7) 0:00� 0:03� 0:02 = (� Ck
7) � 0:10� 0:03� 0:01

< (� C?
7 ) � 0:05� 0:03� 0:02 = (� C?

7 ) � 0:04� 0:04� 0:01
< (� C0

7) 0:33� 0:33� 0:09 = (� C0
7) � 0:19� 0:20� 0:09

the flavio package [134] is used, with localB 0 ! K � 0 form factors from Ref. [42] and

subleading e�ects parameterised as in Ref. [135].

As can be seen in Fig.4.L.1 in Appendix 4.L, the vast majority of �t parameters are

uncorrelated with one another. This can be attributed to extensive �t validation studies

aimed at removing degeneracies in the parameter space and maximising the stability of the

�t. Nevertheless, some small parameter subsets show signi�cant correlations. This includes

several of the local form factor parameters, which are constrained by an external covariance

matrix that mostly dictates this level of correlation. Beyond this, the magnitudes and

relative phases of the nonlocal amplitudes are in general correlated between the di�erent

polarisation components. This behaviour is consistent with previous amplitude analyses of,

for example,B 0 ! J= K � 0 decays [108]. The parameters of the e�ective S-wave amplitude

are strongly correlated due to the �t having only moderate sensitivity to this component.

As explained in Sec. 4.3.3, the chosen parameterisation allows for as much freedom in the

S-wave amplitudes as possible in order to remove potential systematic uncertainties from

relying on theoretical input and is found to be statistically well behaved despite retaining

large parameter correlations. Finally, a number of the background and mass �t parameters

as well as the parameters of the resolution model show strong correlations. Some of these

e�ects have already been discussed earlier in Sec. 4.5.4. Most of the parameters in question

describe the tails and widths of summated Crystal Ball functions, which are notorious for

being highly correlated. Ultimately, the correlations between these parameters are found
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Table 4.17: Results for the local form factors. The �rst uncertainty is statistical, while the
second is systematic. The dashed entries represent the parameters being �xed in the �t due to
their degeneracy with the nonlocal � C? ;0

7 parameters.

Local form factor results

Parameter Prior [42] Posterior

� A 0
1 � 1:12� 0:20 � 1:21� 0:19� 0:02

� A 0
2 2:18� 1:76 3:23� 1:69� 0:18

� A 1
0 0:29� 0:02 0:29� 0:01� 0:00

� A 1
1 0:46� 0:13 0:40� 0:10� 0:01

� A 1
2 1:22� 0:73 1:21� 0:69� 0:10

� A 12
0 0:28� 0:02 0:26� 0:02� 0:00

� A 12
1 0:55� 0:34 0:47� 0:22� 0:04

� A 12
2 0:58� 2:08 0:53� 1:26� 0:17

� V
0 0:36� 0:03 0:36� 0:02� 0:00

� V
1 � 1:09� 0:17 � 1:09� 0:17� 0:01

� V
2 2:73� 1:99 3:93� 1:74� 0:25

� T1
1 � 0:95� 0:14 � 0:94� 0:14� 0:01

� T1
2 2:11� 1:28 2:07� 1:16� 0:05

� T2
0 0:32� 0:02 {

� T2
1 0:60� 0:18 0:61� 0:16� 0:01

� T2
2 1:70� 0:99 1:78� 0:98� 0:03

� T23
0 0:62� 0:03 {

� T23
1 0:97� 0:32 0:95� 0:30� 0:01

� T23
2 1:81� 2:45 1:68� 2:15� 0:04

to cause no signi�cant statistical issues with the �t. Moreover, reducing the number of

free parameters in an attempt to remove high correlations is found to give inadequate �t

quality and introduces new systematic uncertainties.

A number of cross-checks are performed to validate the results of this analysis. The

description of the dominant nonlocal amplitudes,i.e. those of theJ= and  (2S) resonances,

is validated by comparing the �tted amplitude parameters and resulting angular observables

to those measured in previous analyses. To this end, the angular observablesFL , S3, S4, S8,

and S9 are calculated at theJ= pole mass, and compared along with the magnitudes and

phases,jAJ= 
k;? j and � J= 

k;? , to the results reported byLHCb [108]. Agreement within 1:5�

is observed between the two measurements for all observables, magnitudes, and phases.

The measured magnitudes and phases ofB 0 ! J= K � 0 and B 0 !  (2S)K � 0 transitions

are also in good agreement with previous amplitude analyses performed byBelle [88, 89],

once the systematic uncertainties due to the presence ofZ (4430) andZ(4200) states are

accounted for.
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In order to check that the model used in this analysis is complete regarding its

description of the nonlocal contributions, an alternative �t is performed in which the

values ofC9 and C10 are allowed to carry a linear dependence onq2. Speci�cally, the

following replacements are made,

Cq2

9 = C9 + � (q2 � q2
mid ); Cq2

10 = C10 + � (q2 � q2
mid ); (4.88)

whereq2
mid = 8:95 GeV2=c4 and denotes the middle of the �ttedq2 range. Statistically

signi�cant nonzero values of� and/or � would imply an incorrect description of the

nonlocal contributions since aq2 dependent shift is not consistent with being of local

origin. Allowing for this linear dependence in the �t does not signi�cantly alter the values

for C9 and C10, and results in � = 0:029� 0:082, � = � 0:058� 0:026. No evidence for an

incorrect description of the nonlocal contributions toC9 is observed while forC10; which

receives only local contributions in the model, a 2:2� deviation from zero is observed in

the � slope parameter. If this could point to an inconsistency in form factors between the

low and high q2 regions has not been explored. No systematic uncertainty is assigned due

to this e�ect.

The results of the �t are also cross-checked for di�erent choices of the dispersion relation

subtraction point, q2
0, which serves as additional validation of the nonlocal model. The

subtraction constant, Ycc(q2
0), enters Eq. 4.33 as a constant o�set toC9 and is degenerate

with a NP contribution. In principle, the dispersion relation of Eq. 4.33 is exact and should

be independent of the number and location of subtractions, provided the subtraction point

is within the region in which Ycc(q2
0) can be calculated reliably,i.e. q2

0 < 0. A deviation

from this behaviour would reveal itself as a change in theC9 �t results dependent upon

the chosen subtraction point. This would indicate a problem in either the calculation of

Ycc(q2
0) or in the extrapolation to physical q2 values via the dispersive integral | that is,

a problem with the parameterisation of the spectral densities used in this analysis. To

check this, the �t is run an additional two times with subtractions at q2
0 = � 1GeV2=c4 and

q2
0 = � 10GeV2=c4 and the results are compared to the baseline �t with the subtraction

at q2
0 = � 4:6GeV2=c4. The change inC9 is found to be � 0:1 in both cases which is

approximately 35% of the statistical uncertainty. Therefore, within the precision of this

measurement, the choice of subtraction point is found to have a negligible impact on the

results.

To investigate the sensitivity of the �t to the local form-factor constraints, an alternative

set of SM predictions from Ref. [100] are used to constrain the form factors. The main

di�erence between the two sets of form factor predictions are the LCSR inputs, leading to
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slight di�erences in the central values and widths of the constraints in this alternative

�t. Modifying the constraint results in a nonnegligible shift in the Wilson Coe�cients.

The e�ect is approximately 35% of the statistical uncertainty forC9 and 90% forC10:

This di�erence is visible due to the improved precision of the measurement presented

here. Further advances in the calculation of the local form factors are necessary to resolve

these di�erences. Plots of the baseline local form factors as a function ofq2 are shown

in Fig. 4.27, where only the statistical uncertainty is shown. The statistical precision of

the data provides some mild overconstraining power and in some cases prefers slightly

modi�ed central values; however the global di�erence between the pre- and post-�t form

factors, evaluated using the change in� 2 of the Gaussian constraint, is negligible.

The results of the nonlocal hadronic amplitudes, expressed as polarisation-dependent

shifts to C9 are shown in Fig. 4.28. A comparison is made to the nonlocal amplitudes

measured using 4.7fb� 1 of LHCb data [82] that employed a polynomial expansion in

the z parameter, de�ned similarly to that shown in Eq. 4.29 and relies on the analytical

properties of these functions in theq2 rangeq2 2 (1:1; 8:0) [ (11:0; 12:5) GeV2=c4. In the

measurement of Ref. [82] two �ts were considered. One �t that relied on a simultaneous

�t to both LHCb data in the region and theory calculations at q2 < 0 using an expansion

up to fourth order in z, and another �t only to LHCb data using an expansion up to

second order inz. In contrast to the study of Ref. [82], the model used in this analysis

gives access to the entireq2 range ofB 0 ! K � 0� + � � decays. A good agreement is seen in

the real part of nonlocal amplitudes between all three �t variations. However, it is clear

that the data prefers large= (� Ctotal
9;k ) contributions, that cannot be accommodated by

the theory inputs at q2 < 0 for the z-expansion �t.
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