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\And it worked?"
\In point of fact it didn't,

but I'm convinced the theory is sound."

Colonel John Patterson,

The Ghost and the Darkness, 1996.






Abstract

This thesis describes an analysis of the transient growth clracteristics of arrangements
of parallel vortices including vortex pairs and four-vortex systems. These ows are a
useful model for the far-wake created by the combination of awing and tail of an
aircraft. These wakes can be extremely hazardous to aircrafmoving through the
same airspace, and increase in strength as the lift of the genating aircraft increases.
Given that aircraft have undergone a signi cant jump in size with the Airbus A380
and the C-17 Globemaster aircraft, the investigation of these types of vortex ows has
experienced renewed interest. Speci cally, this study inestigates an equal strength
two-vortex system, a symmetric four-vortex system (with the vortex strength equal,
but opposing in vorticity sign across the mid-plane for eachvortex pair) with varying
vertical displacement of the vortex pair that represents the tail vortex pair, and an
asymmetric strength four-vortex system (with the vortex strength di ering across the
mid-plane) with a similar varying vertical displacement of the tail vortex pair. The ~ at
tail' and "high tail' cases referred to later in the thesis rder to the cases without and
with vertical displacement of the tail vortex pair respectively (for example, the Airbus
A380 is a " at tail' aircraft and the C-17 Globemaster is a "high tail' aircraft).

It was found in all the cases studied that by seeding various ertex ows with the
perturbations that lead to optimal energy growth (created from a transient growth
analysis in the linear regime) it is possible to obtain very arge reductions in the time
required to cause transition into the non-linear regime andsubsequent destruction of
the coherence of the vortex ow.

The transient growth analysis performed on the symmetric far-vortex system
demonstrated that both the “high tail' and ~ at tail' con gu rations were most unstable
to the transient growth of perturbations at the same axial wavenumber, ka; = 5:3.
This gave the perturbation that leads to optimal energy growth, centered in the tail
vortex pair of the system in the form of a mode [-1,1,1] ellipic instability.

The three-dimensional direct numerical simulation (DNS) o the four-vortex study
demonstrated that there are two main vortex interactions present in the growth and
subsequent destruction of four-vortex ows. If the instability has reached a su cient
magnitude in the tail vortex pair before entering the highly strained region between
the wing vortex pair, the tail vortices are forced to interact with each other, causing
a rapid breakdown into small scale ow structures. Conversdy, if the instability in
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the tail vortex pair has not reached the critical magnitude before entering this highly
strained region, the tail vortex pair will not interact with each other, leading to a slower
growth due to the interaction between the wing and tail vorti ces alone.

The asymmetric four-vortex study found an immediate growth of the instability, by
seeding the ow with the perturbation that leads to optimal e nergy growth. One nding
of interest is that the perturbation that leads to optimal en ergy growth is predominantly
contained within the weaker tail vortex. The three-dimensional DNS demonstrates
that the instability grows in the weaker tail vortex rst, ca using its destruction, then
continuing through the other vortices in order of strength.

The implication of this study is that by seeding the wake with speci ¢ perturbations,
the time that is required to eliminate the hazard of the wake @n be decreased signif-
icantly, reducing the hazard to trailing aircraft. This wou Id allow a reduction in the
spacing of aircraft through airports, increasing throughput. This increase in through-
put would allow for airports to reduce the fuel usage of aircaft having to wait to land
due to the wakes of other aircraft, while maintaining safety Another implication of the
study for real aircraft is that the seeding of instabilities in the wake is most e ective if
seeded within the tail vortex pair, which would mean that a control system only needs
to be present on the tail, reducing the cost of such a system.

An important discovery by this study is the importance of the transition into the
non-linear growth for systems comprising of more than two vetices and how the in-
teractions can change due to the magnitude of the instabiliy as the vortices enter
favourable regions.

A major implication of this study is to elucidate the limitat ions of vortex lament
methods used in previous studies (Crow 1970; Crouch 1997; Bee & Jacquin 2000;
Bristol et al. 2004) compared to methods such as the transient growth methidh These
limitations are due to the vortex lament ignoring any visco us interaction (such as two-
dimensional vortex stripping) between the vortices and theassumption of a specic
mode shape of the instability.

Xii



Acknowledgments

Ainslie Ellis

Peter Ellis

Greg Sheard - Supervisor
Kris Ryan - Supervisor

Monash E-Research centre

Xiii



XV



Publications arising from this
thesis

Ellis, C.L., Ryan, K. & Sheard G.J. 2009 Two-dimensional computational anal-
ysis of 'high tail' con guration aircraft wake vortex pairs . In proceedings of the Seventh
International Conference on CFD in the Minerals and Process Indistries, Melbourne,

Australia, December, 2009.

Ellis, C.L., Ryan, K. & Sheard G.J. 2010 A Three-Dimensional Transient Growth
and DNS Analysis of 'High Tail' and 'Flat Tail' Aircraft Con  gurations. In proceedings
of the 17th Australasian Fluid Mechanics ConferenceAuckland, New Zealand, Decem-
ber 2010.

Ellis, C.L., Ryan, K. & Sheard G.J. Non-linear growth of transient and optimal
three-dimensional disturbances in a counter-rotating votex pair. Physics of Fluids to
appear.

XV



XVi



Nomenclature

List nomenclature here.

Symbol Description

I)?\(’ Thesis section
Integration

r Vector gradient operator (grad)

r? Del squared (or div grad) operator

Re Reynolds Number

q Swirl

k Axial wavenumber

a1 Initial strong vortex core radius

a Initial weak vortex core radius

Ay Time varying vortex core radius

b Vortex separation

Vortex circulation

h Vertical displacement of tail vortex pair

u Velocity vector eld

t Time

p Pressure

Kinematic viscosity
Vaz Azimuthal vortex velocity
XX x-component of rate of strain in the x-direction
vy y-component of rate of strain in the y-direction
Xy x-component of rate of strain in the y-direction
To Initial orbital period of a tail vortex around its correspon ding wing
vortex

Continued on the next page.
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Continued from previous page.

Symbol

Tov
Tst
Tvst
o
Zgs
AR
CL

GR

t

m
X)Y,Z
u; v, w

int
Ns
Pn

G()

Description

Two-vortex normalisation time

Time the ow is seeded with the optimal perturbation

Time from ow seeding

Aircraft wingspan

Downstream distance

Wing aspect ratio

Wing lift coe cient

Instability growth rate

Non-dimensional time coe cient

Number of mesh elements

Spatial coordinates

Velocity components in the x,y and z direction respectively
Kinetic energy in the ow

Evolution operator for the linearised Navier{Stokes equaton
Physical time horizon for the transient growth analysis
Normalised time horizon for the transient growth analysis
Change in interpolated values from DNS

Number of snapshots used in an interpolation

Polynomial order

Number of Fourier modes

Estimated polynomial order

Tail vortex circulation drop normalised by initial circula tion
Growth ampli cation factor

The second largest eigenvalue of the symmetric tens@®?+ 2 (as per
Jeong & Hussain 1995)

Symmetric part of the velocity tensor gradient r u

Asymmetric part of the velocity tensor gradient r u
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Introduction

Wingtip vortices are a byproduct of lift generated by wings of an aircraft. A vortex
sheet comprising small co-rotating vortices are shed fromray defect or change in wing
pro le or when high pressure air from underneath the wing ows around the outer edges
of the wing tip. This vortex sheet rolls up into a large wingtip vortex (McCormick
1995). These vortices have the e ect of creating a net downwat ow behind the
aircraft, causing a hazard for any aircraft trailing the lead aircraft, if the trailing aircraft
encounters either vortex in the pair. If an aircraft encounters one of the vortices, it may
induce a large rolling moment on the trailing aircraft. This can pose a real danger to
following aircraft, as evidenced by the crash of the America Airlines Flight 587 Airbus
A300 in New York, on 12 November 2001, due to a failure of its rdder when abrupt
corrections were applied after passing through another agraft's wake (NTSB Report

Number AAR-04-04).

As aircraft are becoming heavier, the wake vortices they prduce also increase in
size and strength. The residence time of these vortices lirts the frequency at which
aircraft can take o or land, which ultimately limits the max imum passenger throughput
of airports prompting research into mechanisms for reducig the impact of these vortices

in aviation (Gerz et al. 2002).

This type of problem also presents a particular challenge atmilitary air elds, as
the air eld tra c can be large and the types of aircraft movin g through the airspace
vary greatly in size. For example, on the smallest scale, aisuperiority ghters, such
as the Lockheed Martin F-22 Raptor, tend to be on the scale of @4 metre wingspan
with a mass of 30 tonne (Gunston 1995); while at the opposite rd of the scale, the
C-17 Globemaster aircraft has a 52 metre wingspan and a mass$ 265 tonne (Gunston
1995). This extreme disparity in size means that the wake of &-17 could be extremely
hazardous to small ghter aircraft passing through its wake. The e ect of a large

aircraft wake is likely to be a hazard even in open air, as ghters tend to y in close
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formation and a large perturbation to the aircraft can causeit to impact with other
aircraft in the formation if traveling at lower speeds.

Recent research into wake vortices has investigated the datled process by which
these vortex systems are created. In addition, the natural @égradation of these systems
after a period of time has also been investigated. This degation has been found to
be due to viscous properties of the uid, but is not completely understood. It has also
been shown that the tail vortex pair can have a signi cant e ect on the behavior of the
larger and stronger wing vortex pair (Rennich & Lele 1999). While some studies have
been completed that investigated the interaction between he vortex pairs of the wings
and tail, there has been no research into how di erent aircraf tail con gurations, for
example high tail aircraft such as the C-17 Globemaster, a et this interaction. Prior
investigations have concentrated on global instabilities giving only an understanding
of asymptotic instability behaviour in the wake. With a view to dispersing the wakes
behind behind aircraft as rapidly as possible, an analysis fothe transient growth of
disturbances to these wakes may yield new insight. As yet, th transient growth analysis
method (e.g. see Barkleyet al. 2008) has not been applied to this type of uid system,
and this forms a key component of this study.

This research utilises three-dimensional modeling softwa to model and analyse the
interaction between a number of vortex con gurations of varying strength ratio. This
provides a greater understanding of these interactions, ptentially providing a method

of inducing rapid breakdown of the vortex con gurations.



Chapter 1

A Review of the Literature

1.1 Early research

The earliest research in this eld was conducted by Sir William Thomson (Lord Kelvin)
in 1880. He published a study investigating vibrations in anisolated vortex (Thomson
1880). This analytical study consisted of adding perturbaions to a columnar vortex in
an inviscid ow using a linearised analysis. The perturbations, now known as Kelvin

waves, were of the form,

v=( r)ee ttem) g e (1.1)

where k is the axial wavenumber, m is the azimuthal wavenumber or mode,! is a
frequency related to k and m, and c:c: designates the complex conjugate. Thomson
found that perturbations added to a single solitary vortex would neither grow nor
decay, meaning that! is real or zero. However, the perturbations would rotate as he
vortex rotated.

As the hazards of aircraft wakes became clear, interest in thse ows prompted
detailed investigation into the dynamics of idealized repesentations of these aircraft
wakes, such as pairs of two-dimensional vortices. These iestigations began around
the 1970s (Crow 1970; Barker & Crow 1975). The primary reasorfor this renewed
interest was the development of the Boeing 747, with its signcant increase in size
and weight over earlier commercial aircraft. The high-presure air generated under the
wing of an aircraft skips around the wingtip, causing a numbe of trailing vortex pairs
to form in the air and trail behind the aircraft with a strengt h proportional to the lift
provided by the wing. Early work in this eld discovered a long wavelength instability
that can potentially lead to the destruction of these vortex pairs (Crow 1970). For equal

strength vortices, this long wavelength instability is characterised by a sinusoidal, long
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Figure 1.1: An example of the Crow instability in an aircraft contrail. Photo by H. R aab
(2011)

wavelength instability that is symmetrical about the plane dividing the two vortices and
inclined at approximately 45 to a line from the vortex centres (Bristol et al. 2004). The
Crow instability, as it has since become known, is observecdithe contrails of modern

aircraft and an example is shown in gure 1.1.

As an aircraft encounters the trailing vortices of a precedng aircraft, one of two
e ects can occur. If the trailing aircraft enters only one vortex, then it can create a large
rolling moment on the aircraft. The rapid corrections required to level the aircraft can
cause structural damage to the tail and control surfaces. TIs kind of accident occurred
in 2001 with American Airlines Flight 587 where rapid and aggessive corrections made
by the pilot caused the separation of the vertical stabilise (National Transportation
Safety Board (NTSB) Aircraft Accident Report NTSB/AAR-04/ 04). If the trailing
aircraft enters between the two trailing vortices, which is most common in the case of
a landing strip, then the ow causes a large downforce on the @craft. This downforce
counters the lift on the aircraft and can cause a rapid loss inaltitude. In the case
of a landing aircraft, when the altitude is already small, this reduction in lift can be

catastrophic.

Work by Mason & Marchman (1972) used wind tunnels to simulate aircraft wakes
while Miller & Brown (1971) and Lezius (1973) used water towng tanks to simulate
these simple vortex pairs. While experimental work can prowde a Reynolds number
that is similar to an actual aircraft in ight, it also presen ts a signi cant problem due to
turbulent noise. This turbulent noise could have the e ect of masking short wavelength
instabilities in the ow being analysed. This turbulent noi se can also cause “vortex
wandering' which has the e ect of making the vortices appear arger than they actually

are (Barker & Crow 1975).

The other challenge with wind tunnel and towing tank experiments is interference

with the vortex pairs due to the probe used to measure the voréx pair. The physical
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presence of the probe has the e ect of causing the vortex to maaway from the probe,
disturbing the behaviour of the vortex pair (Barker & Crow 1975). Earlier work by
Baker et al. (1974) used a laser anemometer to measure the vortex within avater
towing tank. The advantage with a laser anemometer is that it eliminates the probe
interference. However, the turbulent noise inherent withn experimental results still
remains and this noise provides a likely explanation for theobservation of only long
wavelength instabilities in early studies.

More recently, Constant et al. (1994) demonstrated that Doppler LIiDAR can be
used to measure the actual wake of a landing aircraft in openia This method is
useful for detecting the vortices produced by an aircraft, ad tends to be simple and
robust (Gerz et al. 2002). Unfortunately, this method is prone to error when meauring
close to the vortex core, and also has di culties distinguishing between the uid ow
due to the vortex and the ambient background turbulence (Gee et al. 2002).

As computing technology has advanced, the computing speedia memory resources
have increased exponentially, allowing for the direct simiation of these wake vortex
con gurations. In the early 1980s, new methods of directly smulating a uid ow
were developed that provided high-order results, an exam of which is the spectral
element method developed by Karniadakiset al. (1991). Computational simulations
have the advantage of eliminating probe interference and trtbulent noise. For a direct
numerical simulation of a wake vortex system, theRe must be reduced toO(10°) to
allow for reasonable computational times. This decrease ifRe causes the turbulence
on the smallest scale to be damped out by viscous forces (Leke & Williamson (1998)
and Meunier & Leweke (2005)). This is not a signi cant limitation to the present
study, as the instabilities that lead to the destruction of aircraft wakes are far above
the scale of the turbulence being damped out. The other advalage of computational
simulations is that, due to the lack of turbulent noise, they can demonstrate growth of
shorter wavelength instabilities that are distinct from ot her noise sources in highRe

experimental setups.

1.2 Single vortex immersed in a strain-rate eld

1.2.1 Vortex pro les

There are a number of vortex velocity pro les frequently used to model the vortices in

the wake of an aircraft. These radial pro les of tangential velocity are covered below
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and are summarized in Gerzet al. (2002).

1.2.1.1 Rankine vortex

r
v(r)= 2rocr_cf0” re, v (r)= ﬁforr>rC

1.2.1.2 Lamb{Oseen vortex (Gaussian pro le without axial ow) (Lamb

1923)
8 0 r!219
o 5 @ 1:2526 - A§
=—_ 1 e ¢
v (r) T 3

1.2.1.3 Hallock{Burnham vortex (Burnham & Hallock 1982)

0 r?

v(inN=s ———s
") 21 r2+re2

1.2.1.4 Adapted vortex (Proctor 1998)

38 19 8 0 1,19
2 o e P2 3 @ 12506 — A3
v(r)=1:4ﬁ>1 e b R fe S forr rev()=
8 r 075" 9 |
2 e =2
% 1 e ? b forr>r
2r > > ¢
1.2.1.5 Smooth blending vortex pro le (Winkelmans et al. 2000)
8 0 19

1+ (= o)(r=h)>* =
v(in= =2 1 e (1= o) (r=h) with o, ; and p = 10, 500

and 3 respectively.

1.2.1.6 Multiple scale vortex (Jacquin et al. 2001)

0

————forr; r ro.v(r)= 9 for
2 (ror)*? ' ?

- _o_r . -
v (r) = Ty 1 forr ri. v (r) T

i (riro)
r ro.
One of the most commonly used vortex pro les in this eld of study is the Lamb{

Oseen vortex, a vortex with a Gaussian pro le without axial ow.
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1.2.2 Strain rate de nition

In uid mechanics, the strain rates are a measure of the rate 6 change of the three
directions of velocity (u;v;w) in each of the Cartesian directions §;y;z). This leads
to 9 di erent strain rates as there are three directions of vebcity and three Cartesian

directions. The most common way of presenting these strainates are as a ™ order

tensor,
11 T12 s o xy xz
e= "21 "220 "23 = Ty My Tyz (1.2
"31 "32 "33 "x zy zz

Within this matrix, each component is de ned as,

1
'h,i = _ @J+ @ : (13)
2 @x O©x
where g—; is the derivative of u; with respect to x;, adopting tensor notation.
Within the context of vortex studies, the two-dimensional x-y strain-rate,
1 @Qu @v
"D = —t+ — 1.4

is the most important as it usually dominates the strain rate that causes the elliptic

instability. However, it is possible to have a non-zero stran rate when "y, = 0.

1.2.3 \Vorticity de nition

Vorticity is a measure of the rotation of a uid ow. In a simil ar manner to the strain

rate, the vorticity forms a 2" order tensor,

P11 L2 las Lo 'y 'xz
e= lo1 lop 1oz = Ly Ly ly, (1.5)
la1 !32 las Lox lzy laz

Within this matrix, each component is de ned as,

1 @u @u
1. = - =¥ =¥ 1.6
where g—; is the derivative of u; with respect to x;, adopting tensor notation.

In the context of vortex studies, the x-y component of vorticity (representing rota-
tion about the z-axis) is the most commonly used as the majority of the rotaton of the

ow is in the x-y plane.



1.2.4 Reynolds number de nition

Reynolds number is a dimensionless variable used in uid mdw@nics to characterise
properties of a ow. It is a measure of the ratio of inertial to viscous forces in a given
ow. The Reynolds number allows dimensional similitude betveen dierent experi-

ments. For vortex studies Reynolds number,Re, is de ned based on the circulation of

the wing vortex, 1, and the kinematic viscosity, , as
_ 1,
Re= —: @.7)

1.2.5 Swirl strength de nition

Swirl strength, q, is a variable used when a vortex is subjected to an axial ow.Swirl
strength is de ned as the ratio between the peak angular veloity component to the

peak axial velocity component.

1.2.6 Three-dimensional vortex studies

Early research into vortex ows began with Batchelor (1964) investigating a single
vortex with axial ow using an analytical approach. As this was the rst time that
vortices with axial ow had been investigated, any vortex with a Gaussian pro le with
axial ow is now known as a \Batchelor vortex". One of the main ndings of Batchelor
was that, after an asymptotic timeframe in the presence of vscosity, a vortex will
eventually evolve into a Gaussian vortex pro le.

By examining a single vortex in an externally imposed strainrate eld, a basic model
of a two-vortex system can be constructed. Tsai & Widnall (19/6) took this approach,
investigating a single Rankine vortex lament in an externally imposed strain eld by
use of an analytical stability analysis. Parallel to the study by Tsai & Widnall (1976),
Moore & Saman (1975) also investigated a single vortex lament in an externally
imposed strain eld. The dierence between the two studies isthat, while Tsai &
Widnall (1976) considered a Rankine vortex, Moore & Sa man (1975) considered a
generic vortex pro le. This analytical stability analysis was performed on a vortex in
weak strain with an axial wavenumberk a = O(1). Tsai & Widnall found that the vortex
had a peak instability growth rate for a range of axial wavenumbers, k  2:5;4:5 and
6:5, for a stationary Kelvin wave with an azimuthal wave number equal to -1 and +1.
They found that these unstable regions of short axial wavelegth occurred because of

the circular cross section of the vortex lament becoming €liptical due to the externally
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imposed strain eld. This short axial wavelength instabili ty is now known as the elliptic
instability and is a Kelvin pair which resonates with the very small externally imposed
strain eld. Kerswell (2002) published a review of the discoery and development of

the understanding of the elliptic instability.

Pierrehumbert (1986) investigated the stability of a two-dimensional vortex within
inviscid, incompressible ow to three-dimensional perturbations. Pierrehumbert utilised
the linearised Navier{Stokes equations and reduces the itability to an eigenvalue prob-
lem. He computed the eigenvalues for a number of instabiligs, nding that at short
wavelengths along the vortex axis, the eigenmode is concated near the centre of
the vortex. This leads to the conclusion that, at short wavekngths, the growth rate

becomes independent of the wavelength.

At the same time, Bayly (1986) was investigating the three-dmensional instability
of elliptical ows and follows directly on from Pierrehumbert (1986). Bayly presented
a theory to clarify the physical and mathematical nature of the elliptic instability. The
study extended Pierrehumbert (1986), nding that the structure of the instability is
independent of length scale in the limit of large wavenumber The results of Bayly

correspond extremely well with that of Pierrehumbert (1986).

Using both analytical and experimental methods Landman & Saman (1987) in-
vestigated three-dimensional viscous instabilities thatoccur on a single Rankine vor-
tex with an in nite core size immersed within an externally i mposed strain eld at
a Reynolds number of Re = 40000. They demonstrated that the inviscid instability
mechanisms that lead to vortex destruction persist even whe the viscosity is non-zero.
In addition, they found that a typical vortex structure is la rge enough to support these
three-dimensional instabilities, even when viscosity is pesent. Landman & Sa man
suggested that the Reynolds number could be as low aRe = 1000 and still support
the three-dimensional instabilities that lead to vortex destruction. This is an extremely
bene cial discovery, as it allows the analysis of the instaliities present in aircraft wakes
that lead to the destruction of the wake, without having to simulate the extremely high

Reynolds number,Re  O(108), present for commercial aircraft.

Wale e (1990) presented a physical interpretation for the mechanism with an ana-
lytical treatment of three-dimensional instabilities of a two-dimensional elliptical ow.
Wale e demonstrates an analytical representation for a locdised solution which is di-

rectly consistent with previous studies. The solution pregnted by Wale e demonstrates
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Figure 1.2: A reproduction of gure 2(a) from Eloy & Le Dizs (1999) displaying the tempo-
ral evolution of the product k for a Lamb{Oseen vortex. Note that the symbol, represents
the vortex core size,a, used elsewhere. Reproduced with permission from Cambridge Uni-
versity Press, who retain the copyright.

that for a structured solution, only the average vorticity h as the possibility to stay in
the stretching direction, leading to the growth rate becoming reduced to $16 times the
basic strain rate with a decay term of kv 2, where is the viscosity, k is the axial

wavenumber andv is the velocity.

Studies into single vortices were continued by Jinenezt al. (1996) who investigated
the case of a single Lamb{Oseen vortex immersed in a weak plarstrain at a Reynolds
number of Re = 3500. They began their investigation by using an analyticd approach,
then compared the results against a computational simulaton. They found that the
results were approximately Gaussian in pro le in distorted co-ordinates. They also
found that the asymptotic expansion they used is only valid within the vortex core.
Their results indicated that vortices of two-dimensional turbulence are su ciently long

lived to be controlled by viscous di usion, even for a relatively large Reynolds number.

Eloy & Le Dizs (1999) conducted an analytical study of two types of vortices,
Lamb{Oseen and Burgers vortices, in a non-axisymmetric stain eld. Eloy & Le Dizs
employed a function that describes the boundary of a vortex ore, such that the pressure
inside the core is equal to outside the core which is derivechiMoore & Sa man (1975).
This function is also a measure of the interaction of the vorex with the strain eld.
One of the primary investigations of Eloy & Le Dizs revolves around the Kelvin mode

instability. They investigate the e ect of viscosity and str etching in changing the non-
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dimensional axial wavenumber,k a, from the most unstable situation. Their analysis
showed that for every value of vortex core sizea, there is an axial wavenumber, Kk,
which will maximise the growth rate of the instability. This led to the conclusion that
the vortex core size,a, is a suitable length scale to normalise the axial wavenumtre k.
Hence, as the vortex core size increased over the temporal@ution, a P ag? + 4!t ,
Eloy & Le Dizs investigated how a vortex detunes itself during the evolution due to
this change. This detuning has the e ect of causing the growthrate to decrease with
time, resulting in a subcritical instability in the vortex. Figure 1.2 demonstrates this
detuning by showing that, as the vortex evolves in time, the ortex core will only remain
in the unstable region for a nite length of time. One of the other ndings of Eloy &

Le Dizs was that the internal strain rate of a vortex can be in uenced by both the

external strain rate and the vortex pro le. This led to the co nclusion that the pro le of

the vortex can change the stability of the vortex, leading to a change in the maximum
possible growth rate of an instability in the vortex. For Gaussian and Rankine vortex
pro les, the maximum growth rate for the mode [-1,1] instability approximates well to

9 : : . .
1—680, where s is the perpendicular strain rate in the vortex centre.

Olendraru & Sellier (2002) investigated a single Batchelowortex using a linear sta-
bility analysis at a range of Reynolds numbers, 500 Re 10000. They found, that
for moderate levels of swirl,q < 1, inviscid spatial modes quickly reached an asymptotic
limit as long as Re  2000. They found for large values of swirl,g > 1, the growth
rates of inviscid spatial modes are weak and highly sensitay to the magnitude of the
Reynolds number. Their study revealed that, for intermediae values of Reynolds num-
ber, “viscous' bending modes begin to dominate the instakity mechanism. They nd
that the “viscous' bending modes are spatial counterparts d the temporal asymmetric

modes discovered by Khorrami (1991) and then con rmed by Magr & Powell (1992).

Antkowiak & Brancher (2004) investigated, using a transiert perturbation energy
growth analysis method, a single Lamb{Oseen vortex at a Reyalds number range of
500 Re 5000. They found that the growth ampli cation factor had a primary
peak at an axial wavenumber ofka = 1:4 with a secondary peak atka = 2:4. Their
results displayed that the axial wavenumber of the peak trarsient energy growth is
independent of Reynolds number and that the perturbation that leads to optimal energy
growth on a single Lamb{Oseen vortex comprises of a three-diensional spiral structure

with stretching and tilting. The key nding of Antkowiak & Br ancher is thatm =1
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disturbances are subject to transient ampli cation. This ampli cation is a combination

of a local Orr mechanism and the e ect of global vortex induction.

As an understanding of the dynamics of a single vortex progresed, methods for con-
trolling and enhancing the destruction of vortices were stwied. For example, Matalanis
& Eaton (2007) suggested that miniature trailing edge e ectors could be used to intro-
duce spatial disturbances into the vortex, causing rapid dstruction though the Crow
instability. They tested this hypothesis by using a single wortex generator in a wind
tunnel, and found for all of the static de ections of the trai ling edge e ectors, there was
no change in how di use or concentrated the vortex was. They dil nd that de ection
of the vortices caused by the trailing edge e ectors caused th de ection predominantly
in the lift direction, with a small de ection in the spanwise direction. These de ections

were static and did not cause an increase in the growth of insthilities.

Around this time, methods for analysing the transient respaise of ows to two- and
three-dimensional perturbations were being developed, &ling Heaton & Peake (2007)
to investigate a single Batchelor vortex at a Reynolds numbe of Re = 5000 with a
swirl regime of g & 2. Heaton & Peake hypothesized that stronger transient growh
was possible in a single Batchelor vortex than in a Lamb{Osee vortex, due to the
nature of the three-dimensional inviscid instabilities that occur in Batchelor vortices.
They showed that large transient growth of the energy within the perturbations is pos-
sible through bending instability modes. Heaton & Peake cowrluded that the transient

growth of perturbations was a possible route to vortex destuction.

Investigations into single vortices continued with an analtical and computational
study by Lacazeet al. (2007). Their investigation studied a single Batchelor votex at
a nite Reynolds number, in an externally imposed strain eld in an inviscid ow with
a correction term to account for a reduced growth rate. This eectively allowed the
study of all Reynolds numbers. They found that axial ow modi ed the characteristics
of the elliptic instability. They found that the presence of a small axial velocity breaks
the symmetry between principal Kelvin modes [-1,1], such tlat the elliptic instability
is no longer a sinuous stationary deformation. Lacazest al. found that for moderate
axial velocity, the principal Kelvin mode [-1,1], disappeas because one of the modes
becomes highly damped. The conditions that cause the dampup of the [-1,1] mode
cause the increased ampli cation of another mode [0,-2]. Aghe axial velocity was

increased further, the [0,-2] mode became damped out and letd the formation of a
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[-1,-3] mode. They came to the conclusion that as the axial Vecity can reach up to
10% of the maximum azimuthal velocity in the wake of a real aicraft, the principal
mode of [0,-2] could form in a real wake ow. In addition, they did not expect the long
wavelength Crow instability to be a ected by weak axial ow.

Following the work by Lacaze et al. (2007), Abid (2008) investigated the dynamics
of a single Batchelor line vortex using both a linear stabilty analysis and DNS at a
Reynolds number ofRe = 1000. Abid found that the non-linear e ects of the instabili ty
are con ned to the region near the vortex axis and become moresigni cant as the
swirl, g, increases. For a low value of swirl, Abid selected a four hed DNS mode in
agreement with the most unstable mode obtained from the linar stability analysis. He
found that, as the swirl was increased, the non-linear e ectamanifested themselves by a
long wavelength mode generated near the vortex axis, leadgqto the conclusion that the
di erence between the non-linear evolution and the linear egenmode theory was related
to the transient growth of optimum perturbations resulting from the non-normality of
the linearised Navier{Stokes equations about shear ows.

At the same time that Lacaze et al. (2007) and Abid (2008) were conducting their
studies into a single Batchelor vortex, Fontaneet al. (2008) was looking at the forcing
of instabilities in a Lamb{Oseen vortex. Using a linear stalility analysis at a range of
Reynolds numbers, 500 Re 10000, to investigate the response of a single Lamb{
Oseen vortex to continuous white noise forcing, Fontaneet al. found that the energy
gain of the perturbations was a maximum for an axial wavenumter of k = 0 (a two-
dimensional perturbation) and decreased as the axial wavammber increased. They
concluded that the input structures that are favoured in the k ! 0 limit only corre-
spond to disturbances that grow in nitely slowly. This e ect means that these favoured
disturbances may not have su cient time to grow in nite-tim e experiments, imply-
ing that, for short to medium timescale experiments and simuations, the selection of

nite-time optimal perturbations will be signi cantly die rent.

1.3 Simple vortex pairs

1.3.1 Two-dimensional vortex pair studies

After the work by Crow (1970) many others began to look into this eld. Given the
lack of computing power available, most of this work was accmplished by analytical

or experimental methods. Pierrehumbert (1980) performed a analytical study of a
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two-vortex system, developing an e cient relaxation method. This method was able
to compute the properties of a family of vortex pairs with distributed velocity, prop-
agating without shape through a homogeneous, inviscid uid While this method was
better than those previously employed, in terms of number ofoperations needed to
achieve convergence, it did have some drawbacks. One of tleslrawbacks was that
any information on secondary bifurcation points was lost duing the process. The other
drawback was that it was assumed that the uid was inviscid and was purely two-di-
mensional. Pierrehumbert found the existence of a limitingvortex, and, as such, an
upper bound for r=x, wherer is the vortex core radius andx. is the centroid of the
right hand vortex to the x = 0 line. This was in contrast to the previous work by
Sa man (1979), who indicated that a steady state could be four for arbitrarily large

r=Xc.

A short time later, Sarpkaya (1983) investigated systems oftounter-rotating vortex
pairs produced within a towing tank. These experiments werecarried out at a Reynolds
number of 4 10 Regorg 5 10°. He found that the vortex pairs formed into
horseshoe vortices and ultimately into vortex rings and thd these vortex rings are one
of the primary mechanisms of vortex destruction ( gure 1.3). He also observed that the
formation of the horseshoe vortices was a result of the instality discovered by Crow
(1970). These experiments carried out by Sarpkaya also hache e ect of demonstrating
that the linear theory created by Crow (1970) is sound right up until the time when
the vortices link. He also demonstrated that core bulging aml bursting caused the
destruction of the vortices (gure 1.4). Sarpkaya (1983) ako carried out experiments
observing the behaviour of counter-rotating vortex pairs n stratied uids. As the
density of the atmosphere changes depending on the heightdm the ground, this adds
another e ect present in real aircraft wakes to the experimen. Sarpkaya found that
when weak strati cation was present in the uid, the linking of the vortices into the
horseshoe vortex and vortex core bursting were still the prinary mechanisms that lead
to the destruction of the vortices. However, when strong stati cation was present,
the amplitude of the Crow instability remained relatively small and did not lead to
linking of the vortices, which suppressed the creation of tle horseshoe vortices and
subsequent ring vortices. In the case of strong strati caton, Sarpkaya found that the
lifespan of the vortices was determined by the initial turbulence generated by the vortex

pair; turbulence generated by core bursting; and countergn vorticity generated at the
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Figure 1.3: A reproduction of gure 7 from Sarpkaya (1983) displaying the temporal evolu-
tion of the long wavelength instability. (a) displays the development o the horseshoe vortex,
(b) displays the linking of the vortices and (c) the formation of the rst vortex ring. Repro-
duced with permission from Cambridge University Press, who retain he copyright.

boundaries of the recirculation cell.

In the late 90s, computing power had reached the stage wherab-dimensional direct
numerical simulations (DNS) could be carried out on these tpes of vortex ows. Garten
et al. (1998) considered a two-dimensional two-vortex system wk varying degrees of
strati cation. They used two Lamb{Oseen vortices at a Reynolds number based on the
vortex circulation of Re = 6283 and found that strati cation in the base uid had the
e ect of generating counter-sign vorticity around each of the primary vortices through
baroclinic e ects ( gure 1.5). When weak strati cation was p resent, they observed that

the primary e ect of the strati cation was to advect the prima ry vortices together,
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Figure 1.4: A reproduction of gure 11 from Sarpkaya (1983) displaying the lag stages of
the temporal evolution of the long wavelength instability. (1)-(8) shows the evolution of core
bulging and bursting in the wake of a NACA-0012 wing. Reproduced wih permission from
Cambridge University Press, who retain the copyright.

decreasing their separation distance and causing an increa in vertical propagation
speed. This advection also had the e ect of increasing the s&in imposed on each
of the vortices by the other. They also found that when strong strati cation was

present, internal gravity wave radiation was dominant, causing a rapid reduction in the
intensity and spatial coherence of each vortex. Garteret al. (1998) also investigated
the two-dimensional case where a counter-rotating vortex pir encountered a layer of
constant shear in strati ed and unstrati ed uids. This cas e is analogous to what would
occur when the wake of an aircraft encountered a patch of atmspheric turbulence.
They found that when a vortex pair encountered a eld of constant shear, when no
strati cation was present in the uid, it caused the vortex p air to begin to rotate.

However, the rotating vortex pair did not lose any coherence Contrary to the previous

case, in the case where strati cation was present, they obseed that when a counter-
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Figure 1.5: A reproduction of gure 1 from Garten et al. (1998) displaying contours of
vorticity for an upward propagating vortex pair in strati cation. T he baroclinically generated
wake is demonstrated to evolve around the vortex pair. Reprodued with permission from
Cambridge University Press, who retain the copyright.

rotating vortex pair encountered a constant shear, it couldlead to the emergence of a
single vortex with the same sign as the background shear. Tkie ect was more likely

with higher Reynolds numbers and stronger strati cation.

The research carried out by Meunier & Leweke (2001) (descrieéd in section 1.3.2)
was quickly followed up by more detailed examination of the nerger of co-rotating vor-
tex pairs by Meunier et al. (2002) to search for a merging criterion for two dimensional
vortices. Meunier et al. (2002) combined the previous work by Meunier & Leweke
(2001) with further experiments and two-dimensional DNS toidentify the stages in the

merging process. Meunieet al. found that there were three stages to the merging pro-
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Figure 1.6: A reproduction of gure 1 from Meunier et al. (2002) displaying the stages of
merging of two co-rotating vortices at aRe 2000 at (a)t =1:1,(b)t =1:7,(c)t =2
and (d) t =3:1. Reproduced with permission from the American Institute of Physcs, who
retain the copyright.

cess, beginning with a viscous stage where the square of thertex core size increased
linearly with time without merging ( gure 1.6(b)). The seco nd stage was for the two
vortices to merge on a convective timescale ( gure 1.6(c))followed by the di usion of
laments of vorticity into a nal axisymmetric distributio n of vorticity ( gure 1.6(d)).
Meunier et al. found that the transition between the rst two stages of the vortex
merger was directly related to the critical core size of the wrtices.

At the same time, Le Dizs & Verga (2002) were performing simlar computational
studies on a pair of co-rotating Lamb{Oseen vortices at a rage of Reynolds numbers,
500 Re 16000. They found that, for a Gaussian vortex pro le, time ewlutions
of the elliptic deformations on a non-viscous timeframe areidentical for all of the
investigated Reynolds numbers. As a part of their investigéion, Le Dizs & Verga
found that all axisymmetric vortex pro les relax towards a G aussian vortex pro le,
and that a two-vortex system will also relax to a unique state that corresponds to a
vortex system with Gaussian pro les. Le Dizs & Verga found that this unique state

can be parameterized by a pair of parameters, the ratio of vdex core size to vortex
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Figure 1.7: Areproduction of gure 3 from Hill & Sa man (2002) displaying the de formation
of vortices due to a cross-shear perpendicular to the vortex axisReproduced with permission
from Proc. A R. Soc. Lond, who retain the copyright.

separation, a=ly and the vortex circulation, . These parameters lead to the strain rate,
". This conclusion for co-rotating vortex pairs is very similar to the earlier ndings by
Sipp et al. (2000) for counter-rotating vortex pairs. Le Dizs & Verga observed in
the simulations that the system had a weak dependence on Rewfds number. This
led them to the conclusion that viscous relaxation of a co-rtating, two-vortex system
cannot be perfectly identical to the relaxation of a single aisymmetric vortex (which
has no Reynolds number dependence). Their ndings also commed the experimental
ndings of Meunier & Leweke (2001), that because the visco$y causesa=bto grow with
time, the two vortices will always merge without the presen® of an external strain eld

or a third vortex.

While experimental and computational investigations werebeing undertaken on the
merging of co-rotating vortex pairs, Hill & Sa man (2002) were studying the e ects
of wind shear on counter-rotating vortex pairs as this is a conmon occurrence in real
aircraft wakes. They used an analytical approach to study the two-dimensional interac-
tions of point vortices and nite core size vortices, with a cross-shear perpendicular to
the vortex axis. They found that, when using analytical methods with point vortices,

wind shear has little e ect on the vortex motion, aside from horizontal displacement
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and an asymmetry of the streamlines. As point vortices are a gry simple model, Hill
& Sa man continued the analysis using vortices of nite core sze. This led to the
nding that the vortex cores can be deformed signi cantly, or to a very minor degree,
depending on the sign of the vorticity of the vortex comparedto the vorticity of the

shear (gure 1.7). When the vortex is co-rotating relative to the shear, the vortex re-
tains its circular shape to a good degree. Conversely, theyotind that when the vortex
is counter-rotating relative to the shear, the vortex tendsto be signi cantly deformed
into a long, thin shape, perpendicular to the line joining the centroids of the vortex
and the shear. Hill & Sa man suggested that observed asymmeic properties are due

to wind shear, but conceded that other explanations could banore signi cant.

Soet al. (2007) studied the interactions between unequal, counterotating vortex
pairs, similar to the interaction between a wing and tail vortex. They studied the e ect
of various ratios of weak to strong vortex strength, ,= 1= 0:1; 0:37 and 0:73, and
Reynolds numbersRe = 6660; 13 340 and 20000, and compared these to the case of an
equal strength counter-rotating vortex pair, »= 1 = 1, nding that the interaction
between the vortex pairs is dependent on the ratio of weak to tsong vortex strength.
They observed that di erences between the induced strain on lhe vortices caused them
to evolve with di erent magnitudes of evolution. This led to t he discovery that the
weaker vortex required more time to settle than the strongervortex. So et al. came
to the conclusion that the nal states of the vortices were independent of the Reynolds
number and only dependent on the the ratio of the vortex stremgth and the initial
spacing of the vortices. It is important to note that the general equations of Le Dizs

& Laporte (2002) also predict this behaviour.

1.3.2 Three-dimensional vortex pair studies

Thomas & Auerbach (1994) experimentally investigated a comter-rotating vortex pair

at a Reynolds number of 2000 Re 12000, using a water tank with dye visu-
alisations. Having carried out experiments with one vortex and demonstrating that
it was stable, they found that both the long- and short-wave instability mechanisms
they observed in the vortex pair depended crucially on the iteraction between the two
vortices. They observed that the wavelengths of the instaHlities were approximately
constant through the evolution in time. Thomas & Auerbach also found that the wave-

length of the long wavelength instability was a ected by the length of the container and
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Figure 1.8: A reproduction of gure 5(a) from Leweke & Williamson (1998) displaying the
vortex cores of a vortex pair distorted by the elliptic instability. Rep roduced with permission
from Cambridge University Press, who retain the copyright.

the experimental method used. Despite the experimental ewr, the long wavelength

instability was within 20% of the theoretical calculations by Crow (1970).

At the same time Garten et al. (1998) were performing two-dimensional investiga-
tions, Leweke & Williamson (1998) were performing experimats utilising dye visuali-
sation in water at a Reynolds number ofRe = 2 750 to observe the cooperative elliptic
instability for the rst time in an open ow. The non-dimensi onal axial wavenumber
that Leweke & Williamson found for the elliptic instability agreed well with the previ-
ous study conducted by Thomas & Auerbach (1994). Leweke & Wilamson observed,
in agreement with previous analytical studies, that the wawelength of the elliptic insta-
bility scaled with the core size of the vortices and that as tte vortices came closer to
each other, the mutually induced strain increased, causingn increase in the growth
rate of the elliptic instability. They observed that the ell iptic instability caused a loss
in symmetry around the plane separating the vortices early in the evolution, and evolve
in a cooperative manner, as shown in Figure 1.8. As the instabty evolved, they
found that it caused the creation of smaller, perpendicular secondary vortices around
the stagnation points of the primary vortices. They observal that the interaction be-
tween the primary and secondary vortices led to rapid decay bthe primary vortices.
Leweke & Williamson found that for a Lamb{Oseen-type Gaussan vortex pro le, the

non-dimensional axial wavenumber of the elliptic instabiity should be approximately
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Figure 1.9: A reproduction of gure 4 from Leweke & Williamson (1998) displaying a tem-
poral evolution of a combined long- and short-wave instability. Repooduced with permission
from Cambridge University Press, who retain the copyright.

ka = 2:3. They suggest that the simultaneous interaction between he long-wave Crow
and the short-wave elliptic instability distribute the ini tial large scale energy to smaller
scales much more e ectively than either instability alone. This simultaneous interaction
can be seen in Figure 1.9.

Research into the e ect of strati cation continued with Holz apfel & Gerz (1999)
using Large Eddy Simulations (LES) to investigate vortex pars in stratied uids.
They found that the prominent e ects { the deceleration, detr ainment and acceleration
{ are caused by the interaction between the vortex vorticity and baroclinic vorticity
present in strati ed uids. While LES does provide advantag es in computing time and
resources, it also fails to resolve the smallest scale turlbence that can be present in

these types of ows because it implements a model for the smigr scale ows, rather
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Figure 1.10: A reproduction of gure 13 from Holzapfel et al. (2001) displaying a temporal
evolution of a combined long- and short-wave instability in a strati ed uid.

than DNS, which resolves the ow eld down to the smallest scdes.

Holzapfel et al. (2001) continued to study the e ects of stably strati ed envi ronments
on vortex pairs at a Reynolds number ofRe = 7400. They found that atmospheric tur-
bulence, coupled with baroclinic vorticity, had the e ect of causing the long wavelength
Crow instability to be dominantly promoted. They found that when strati cation and
atmospheric turbulence were present, they caused the sequee of dominant instability
processes to be reversed. This meant that the Crow instabily formed rst, followed by
the short wavelength elliptic instability, leading to accelerated decay when the vortices
link. This had the overall e ect of suppressing the formation of descending vortex rings.
This can be seen in gure 1.10 as the rst image displays the Cow instability forming,

t = 1:6; the middle image showing the short wavelength instabiliy, t = 2:4; with
the third image showing the destruction of the vortices in the third image, t = 3:3.
Holzapfel et al. also found that the presence of very strong strati cation can cause

the vortex pair to rebound back to ight level due to baroclin ic vorticity, but that the
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Figure 1.11: A reproduction of gure 4 from Meunier & Leweke (2001) showing the vortex
cores of a co-rotating vortex pair undergoing anti-symmetric elliptic instability. Reproduced
with permission from the American Institute of Physics, who retain the copyright.

primary vortices can lose much of their vorticity in the process.

By using a Direct Numerical Simulation (DNS) approach, all scales of ow may
be resolved, but at the cost of higher computational resoures. Laporte & Corjon
(2000) performed DNS on a counter-rotating vortex pair in anunstrati ed uid at a
Reynolds number ofRe = 2400 to investigate the elliptic instability. Laporte & Co rjon
found that, during the linear growth phase of the elliptic in stability, the vortex core size
increased signi cantly due to viscous di usion. They found that the most unstable non-
dimensional axial wavenumber wask a = 2:35. At this wavenumber, due to the elliptic
instability, the decay in circulation from its initial leve | is approximately 40%. This
result was in excellent agreement with the previous experirantal work by Leweke &
Williamson (1998). This shows that DNS techniques can be an ective compliment to
experimental work, as DNS eliminates extraneous sources obise that are unavoidably
present in laboratory experiments.

As the vortex sheet is shed o the back of an aircraft wing, mutiple smaller vortices
are shed o discontinuities on the wing structure, such as ap edges, engines and other
structural pieces. This has led to research into the mergingof co-rotating vortices to
model how the vortex sheet eventually forms into the large vatices found in the far
wake. One of the rst experiments that investigated the three dimensional properties of
the merging process was carried out by Meunier & Leweke (2001 Their investigation
was carried out on a co-rotating vortex pair at Reynolds numker of 700 Re 4000

in a water tank. They found that there was a ratio between critical vortex core size,ac,
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and vortex separation, by, of ac=ky = 0:29, above which vortex merger was initiated. In
addition to this, they found that increasing the Reynolds number and/or reducing the
ratio of initial core size to initial separation, ap=ly, caused the viscous phase before the
vortices merge to last longer, allowing for three-dimensinal instabilities to form while
the two vortices are still separated. This three dimensionainstability causes the vortex
cores to deform sinusoidally in an anti-symmetric manner ashown in Figure 1.11. This
instability is similar to the elliptic instability in count er-rotating vortex pairs, with a
long wavelength instability suppressed by the rotation of the vortex pair. Meunier &
Leweke came to the conclusion that that the three-dimensioal instability is an elliptic
instability of the strained vortical ow in the cores, leadi ng to uid becoming wrapped
around the other vortex. This wrapping of uid evolves into an \almost explosive"
breakdown of the vortices into small scale structures befar they relaminarise into a
single viscous vortex. One of the signi cant discoveries Menier & Leweke made was
that merging will always occur for viscous ows. While theoretical two-dimensional
studies had been conducted (Brandt & lverson 1977; Sa man & Seto 1980), Meunier
& Leweke (2001) did nd very speci c data on the three dimensional merging of co-

rotating vortices.

As a counterpoint to the work by Meunier & Leweke (2001); Meurier et al. (2002); Le
Dizs & Verga (2002), Laporte & Leweke (2002) investigatedthe dynamics of the elliptic
instability in counter-rotating vortex pairs using both ex perimental and computational
methods at a Reynolds number of approximatelyRe = 2400. Using both experimental
and computational methods, Laporte & Leweke sought to test e analytical theory
that the elliptic instability is due to a resonance between the neutral three-dimensional
perturbation waves and the local strain experienced by the wrtex. This led to the
observation of an in-phase axial variation of the elliptic mode for large ratios of vortex
core size to vortex separation,a=h as shown in Figure 1.12. Leweke & Williamson
(1998) demonstrated that this in-phase relationship is dueto a condition where the
components of the velocity are linked on both sides and normato the median plane
separating the vortices. Laporte & Leweke noted that, as thevortices are brought closer
together, relative to the vortex core size, the linking of veocity becomes stronger. From
these observations, Laporte & Leweke theorised that, for smller ratios of vortex core
size to vortex separation, the phase relationship betweenhe two vortices is more likely

to be random, due to the nature of the noise exciting the unsthle modes being stronger
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a) Experiment (Re=2.75 % 10°, a/b=0.2, and t* =6.8)

b) DNS (Re=2.4 x 10°,a/b=0.25,and * =8.8)

Figure 1.12: A reproduction of gure 2 from Laporte & Leweke (2002) displaying the evo-
lution of a short-wave instability on a vortex pair during the linear pha se. Reprinted with
the permission of the American Institute of Aeronautics and Astronautics.

Figure 1.13: A reproduction of gure 13 from Laporte & Leweke (2002) displaying the
evolution of the of the combination of long- and short-wave instabilities on a vortex pair with
(a-b) Experimental and (c-d) DNS methods. Reprinted with the permission of the American
Institute of Aeronautics and Astronautics.
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than the linking of the velocity across the median plane. Lamrte & Leweke found that
the non-dimensional axial wavenumber,k a, favoured by the DNS and experimental
methods, were reasonably close to each other. Laporte & Lewe also observed, in later
stages of the evolution, that bridges of vorticity crossed letween the primary vortices,
forming perpendicular secondary vortices. They observedHhat the inviscid growth rate

of the elliptic instability is almost 40% greater than the inviscid growth rate of the
Crow instability alone. This led to the discovery that, for a pure elliptic instability,

the circulation drop was approximately 40%. However, when he elliptic instability

and Crow instability develop simultaneously, both the expaimental and DNS results
show a drop in circulation of approximately 80%. Figure 1.13shows the e ect of the

combination of the elliptic and Crow instabilities on the vortex pair.

A short time later Bristol et al. (2004) extended the analytical work by Crow (1970),
looking at unequal vortex pairs in an unstrati ed uid by acc ounting for the orbital
motion of the system. Bristol et al. found that the rotation of planar perturbations
needed to be overcome to enable instabilities to grow withinthe ow. Long term
simulations conducted by Bristol et al. of a co-rotating case suggested that a three
dimensional mechanism was present that allowed for vortex marger. This mechanism
began with an elliptic instability on one vortex. They found that as vorticity crossed
local streamlines, it led to the formation of vorticity brid ges, which eventually leads
to the merging of the vortices. For the case of a counter-roting vortex pair, the
weaker vortex became wrapped around the stronger, leadingotthe creation of loops of

vorticity. These loops eventually formed rings that self-induced away from the system.

Continuing the investigations into strati ed ows, Liu (20 06) performed experiments
in a towing tank of a two-vortex, counter-rotating system. Liu de ned the atmospheric
boundary layer near ground level as low strati cation, and was able to demonstrate,
for the rst time, visualisations of detrainment phenomena in vortex wakes in very low
strati cation. However, this level of very low strati cati on does not occur in the atmo-
sphere showing a discrepancy between the observations mabg Liu and the theoretical
work by Crow (1974). Liu (2006) also demonstrated that for three-dimensional wake
trajectories, symptoms of a relatively weak detrainment ae present for relatively low

strati cation.

At the same time that Liu (2006) was conducting their investigation, Nomura et al.

(2006) were also studying the e ects of a counter-rotating vetex pair in strati cation,
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by using DNS at a Reynolds number ofRe = 2400. Nomura et al. found that weak
strati cation had an overall weak e ect on the vortex pair. Th ey did nd that weak
strati cation caused the vortex pair to be drawn together. A s previous studies into the
elliptic instability (Laporte & Leweke 2002) have shown, asthe separation of the vortex
pair decreases, the mutually induced strain becomes greateincreasing the growth of
the elliptic instability. Nomura et al. also found that when strong strati cation was
present, there was a signi cant e ect on the interactions with the instability mode
observed. Given the strati cation is stronger in that case, Nomura et al. observed
a signi cantly greater e ect of the baroclinic torque, forci ng the vortices even closer.
This resulted in a higher axial wavenumber and a more complexadial structure of the

instability.

Given advances in computing power, Orlandi (2007) was abled study, using DNS at
a Reynolds number of 3000 Re 30000, a pair of co-rotating vortices. The results
Orlandi (2007) found for the two-dimensional DNS were very gmilar to Meunier &
Leweke (2001); Meunieret al. (2002), in that the merging of the vortices was directly
related to the separation and Reynolds number; loweRe and reduced separation both
caused a shortening of the merger time. The work by Orlandi (R07) extended the
previous two-dimensional work by looking at a three-dimengnal DNS, and found that

it did not di er greatly from the two-dimensional case.

Given the connection between vortex wake destruction and tle Crow instability,
Brion et al. (2007) conducted a global linear stability analysis on a simple counter-
rotating vortex pair at a Reynolds number of Re = 3600. They found that by stretching
the vorticity at the leading hyperbolic point of the vortex d ipole, a periodic array of
vortex rings were generated along the length of the vortices This caused a reduction

in the characteristic time of the Crow instability by a facto r of two.

In recent years, as the understanding of the instabilities hat cause the destruction of
vortex wakes improved, some researchers, such as Bearmanal. (2007), began to look
for ways to excite these instabilities to speed up their desuction. Bearman et al. (2007)
investigated the forcing of instabilities on an equal stremth counter-rotating vortex
pair through pulsing of air jets blowing in the spanwise direction from the wingtips.
Bearman et al. found that forcing at the frequency of the Crow instability enhances
the growth rate of the instability, leading to faster vortex destruction. As a counter to

this, they found that forcing frequencies outside of the Crav instability actually caused
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the retardation of the growth until the forcing frequency died out, only then allowing
the preferred frequency to grow. This led to the conclusion {p Bearman et al. that the
frequencies used to force instabilities would have to be cafully selected, otherwise the

wake hazard would linger for longer than normal.

Roy et al. (2008) performed linear stability analysis on a pair of co-ptating Batch-
elor vortices, allowing for a rotating strain eld, signi ¢ antly altering the modes that
grow. Roy et al. also used a higher Reynolds number than many previous studseat
around Re = 14000 and 31400. Their studies were similar to the investigtions carried
out by Lacaze et al. (2007) and found similar results. They found that, when axid ve-
locity was present, it caused new elliptic instability modes to appear. The investigation
carried out by Roy et al. found that for small core size to vortex separation ratio,a=h
the principal modes of azimuthal wavenumber found by previais studies (Laporte &
Leweke 2002) became more stable, while other principal modebecame unstable and
replaced the previous modes. Rogt al. examined larger core size to separation ratios,

and found that other modes appeared, but were not the most unsble modes.

More recently, a method for investigating the transient repponse of a generic system
was developed by Barkleyet al. (2008), which is discussed later inx 1.5. Donnadieu
et al. (2009) used this method of transient growth analysis to investigate the transient
response of a pair of counter-rotating Lamb{Oseen vorticesat Reynolds numbers of
Re = 2000 and 10000. They found that, for short times, the transent response can
be up to 50 times greater than the growth rate for a global liner stability analysis.
Donnadieu et al. found that, over longer times, the transient response apprached
the growth rate for a linear stability analysis. They found that the unstable axial
wavenumbers corresponded well with the inviscid theory of @w (1970); Le Dizs &

Verga (2002).

de Sousa & Pereira (2009), continuing the work by Meunier & Leveke (2001); Me-
unier et al. (2002); Roy et al. (2008), investigated the merging of a co-rotating pair of
Batchelor vortices. They used DNS with Reynolds numbers ofRe = 1500; 2000 and
2700. They found that initial azimuthal disturbances grow and result in the appearance
of large scale sheets of helical vorticity. They observed th development of helical insta-
bility waves, causing the axial velocity de cit to be weakened faster than the tangential
velocity. This e ect led to the prevention of the formation of large scale ow structures.

They surmised that these e ects cause the vortices to form inb a more stable state with
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Figure 1.14: A reproduction of gure 9 from Boustead et al. (2010) displaying the contours
of the vorticity eld mode shapes of the perturbations taken at the peak growth rates. Sepa-
ration is (a) a=b=0:251, (b) a=b=0:3625 and (c)a=b= 0:4385. Used with permission from
Inderscience, who retain copyright.

a higher swirl value, g. de Sousa & Pereira mentioned that, after the previous obseed
ow e ects, the evolution is somewhat similar to the evolutio n of a pair of co-rotating
Lamb{Oseen vortices. This evolution consisted of a three-tmensional instability, caus-
ing a deformation of the vortex cores, which is ampli ed by reduced vortex separation.
This deformation leads to vorticity exchange between the vetices and their eventual
merger.

As the vortex separation is such an important factor in the eliptic instability (Le

Dizs & Verga 2002), Bousteadet al. (2010) investigated, using linear stability analysis
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and DNS, the e ect of the ratio of vortex core size to vortex sepration, a=h on the
growth of instabilities on a pair of counter-rotating Lamb{ Oseen vortices at a Reynolds
number of Re = 20000. They found that, as the vortex spacing was reduced, e
growth rate of non-principal axial wavenumbers is enhancedelative to the principal
axial wavenumbers. Bousteadet al. found that the perturbation elds for the principal
unstable modes comprised a pair of counter-rotating vortexpairs within each stream
tube. They observed that, at close vortex spacing, these pas of counter-rotating vortex
pairs in the perturbation eld could merge to cause couplingof the vortex stream tubes
in the vortex cross-over region (gure 1.14). The results denonstrated that the uid
cross-over region could exist at any separation, but was getly enhanced as the initial
separation of the vortex pair, b, was reduced.

Continuing the initial work of So et al. (2007), these researchers (Set al. 2011)
continued the study of a pair of unequal Lamb{Oseen vorticesat a Reynolds number of
Re = 2400 and 14000, using linear stability analysis. They ideti ed three instability
modes across the range of circulation ratio, 1.0 2= 1 0:1. Two of these modes
are Kelvin modes and one is a Crow instability mode. They foud that, as ,= 1 tends
to zero, the global growth rate of the Kelvin mode [-1,1] deceases and the growth rate
of the Crow and [-2,0,-1] mode increases. They also found thahe Crow instability
exhibits strong growth on both vortices down to a circulation ratio of ,= ; 0:15,
below which the growth of the Crow instability begins to reduce in strength.

While Donnadieu et al. (2009) investigated the transient growth properties of a
counter-rotating Lamb{Oseen vortex pair, it was based only on the linearised Navier{
Stokes equations. All of the previous computational reseath using DNS has investi-
gated the linear growth, and resulting non-linear growth, d the ow by seeding with
perturbations that consist of white noise. So far, no reseath has investigated the re-
sponse of two-vortex ows to perturbations from the transient growth method that lead
to optimal energy growth. By seeding with the optimal pertur bations, linear growth in
the vortices can be immediately created, potentially leading to a signi cantly shorter

lifespan of the vortices before they are destroyed.

1.4 Multiple vortex pair systems

It has been shown that the strength of the vortex pair producel from the tail of an

aircraft can be anywhere up to 50% of the strength of the vorte pair produced by the
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Figure 1.15: A reproduction of gure 13 from Crouch (1997) showing a long-wae insta-
bility occurring on the outer vortices and moving to the inner vortices over one period,T.
Reproduced with permission from Cambridge University Press, who &tain the copyright.

wings (Rennich & Lele 1999). The presence of the vortex pairted by the tail can
have a signi cant e ect on the two dimensional kinematic properties of the stronger
vortex pair shed by the wings. While four-vortex systems hae been investigated by
Crouch (1997), and Fabre & Jacquin (2000), the focus has beeon the generation of
three-dimensional instabilities in the main wing vortex pair. To date, no research has
investigated how a change in the aircraft tail con guration a ects the overall vortex
system. For heavy lift aircraft such as the C-17 Globemaster the tail can be o set
vertically by up to 20% of the span of the wings. This researchs particularly pertinent
to military air elds, where the majority of the aircraft are either very large, high tail,

heavy lift aircraft, such as the C-17, or much smaller ghter type aircraft.

An understanding of the stability of these ows is of interest, as it can provide
insight into how to disrupt these types of ows to reduce the hazard for trailing aircraft.
Crouch (1997) investigated, using vortex laments, the indability and transient growth
of a system comprising two pairs of co-rotating vortices. Ths type of four-vortex system
is representative of the vortex system generated by an air@ft from the wingtips or any
discontinuity along the wing surface, such as aps. Crouch éund that the system is
dominated by a shorter wavelength instability than the Crow instability, exhibiting a

growth rate of 60-100% greater than the Crow instability. Crouch used a vortex lament
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model to model the wake of the aircraft. This vortex model do& not capture what is
occurring within the vortex core and is limited to sinuous instability modes, excluding
the study of Kelvin modes. This is in contrast to this thesis, which uses a more realistic
vortex pro le that allows for the analysis of all of the Kelvi n mode instabilities. Crouch
used a Floquet-type analysis to look at the stability of the vortex system. A limitation
of this analysis is that it assumes a periodic ow. However, vake vortices are subject to
di usion from the moment they form and thus strictly lack the t ime periodicity required
for a Floguet-type linear stability analysis. Crouch also ignored any lateral movement
of the vortices, which occurs as the tail vortex pair travels around the wing vortex
pair. He found that the spacing and relative circulation between the ap and wing
vortices had relatively little e ect on the long wavelength Crow instability. This was in
direct contrast to short wavelength instabilities, which Crouch found were signi cantly
a ected by the spacing and relative circulation. He found that instabilities grow faster
on the weaker vortex pair as shown in Figure 1.15. He found thiatransient growth of
perturbations could amplify the perturbation by approxima tely 10-15 times over one
period of rotation for the long wavelength Crow instability. He also found that when
both vortex pairs were excited, little transient growth of p erturbations was present,

while exciting only one pair of the vortices caused signi cat transient growth.

Fabre & Jacquin (2000) used a similar method to Crouch to invetigate a system
comprising two pairs of counter-rotating vortices. This type of four-vortex system is
indicative of the kind of wake shed from aircraft wings and the aircraft tail. Fabre &
Jacquin found that without a long wavelength instability be ing forced onto the system,
the primary method of destruction was a short wavelength insability that only a ected
the weaker tail vortex pair. Fabre & Jacquin used a wing-to-tail vortex separation ratio
of 0:1 bp=b 0:15. This is not indicative of real aircraft geometry, which instead is
closertoby=ly  0:4 (Gunston 1995). This a possible reason why the instabilityin the
tail vortex pair did not have any noticeable e ect on the wing vortex pair. Fabre &
Jacquin also used a stationary vortex system, which is limied, as it does not take into
account that the weaker tail vortex pair will transit around the stronger wing vortex
pair. This rotation of the base ow eld will cause a rotation of the strain eld on
the stronger wing vortex pair, allowing for instabilities t o form, which may have the

potential to accelerate destruction.

At the same time as Fabre & Jacquin (2000) were conducting thi research, Ortega
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Figure 1.16: A reproduction of gure 5 from Fabre et al. (2002) showing a long-wave in-
stability occurring on the outer vortices and moving to the inner vortices. Reproduced with
permission from Cambridge University Press, who retain the copyrigt.

& Savas (2000) were performing experimental work on two- awl four-vortex systems in
a towing tank at a Reynolds number of Re = 107 000. The four-vortex system Ortega
& Savas studied was a counter-rotating system similar to Fébre & Jacquin (2000).
Ortega & Savas found that the weaker inner vortices developa sinusoidal instability at
approximately 20 spans downstream, and that the inner vortces begin to curl around
the stronger wingtip vortices at between 20 and 27 spans dowsiream. This curling
of the weaker inner vortices is the mechanism that leads to no-linear evolution, and

occurs from 27 spans downstream.

A little later, Crouch et al. (2001) began to look at active methods for inducing
instabilities in a multiple-vortex wake. By using both a towing tank and a numerical
analysis, they found that active control could be used to exite instabilities in the far
wake of an aircraft in the ~ aps down' con guration. The results that Crouch et al.
found are promising for the enhancing of instability growth in the far wake of an aircraft,
however, they did identify a number of issues that would needo be resolved for actual
aircraft. These issues related to the performance of the adraft in ight, the viability
for an aircraft with the active method, and the e ectiveness o the enhanced instability

on the hazard to trailing aircraft.

Following the earlier work of Fabre & Jacquin (2000), Fabre et al. (2002) contin-
ued to study instabilities in a four-vortex counter-rotati ng model of the far wake of an
aircraft. Fabre et al. used a vortex lament method with a linear stability analysi s to
investigate the instabilities in the four-vortex model. They found that large optimal
growth rates are possible, but require large tail to wing ciculation ratios, = ;. This
large circulation ratio would lead to large loading on the wings, which would be struc-
turally unsound on a real aircraft. Fabre et al. found that, for a periodic four-vortex

system, optimal perturbations that correspond to a short to medium axial wavelength
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instability, which mainly a ects the weaker, inboard vortic es, grow faster than the
Crow instability. They speculated that forcing a long wavelength Crow instability in

a four-vortex system may lead to a better guarantee of nal dssipation. Figure 1.16
shows how a long wavelength instability excited in the tail vortex pair can cause a long

wavelength instability to form in the wing vortex pair.

Haverkamp et al. (2005) continued the previous study by Crouchet al. (2001)
into active and passive methods for inducing instabilitiesin the wake of an aircraft.
Haverkamp et al. investigated, using a towing tank, a four-vortex counter-rotating con-
guration. They found that high tail loads resulted in highl y unstable vortex systems,
leaving little recognisable vortex structure in the far wake. They also found that for a
wing to tail circulation ratio of ,= 1 0:29, there was no signi cant alleviation of
the wake hazard. This was because the instability for a smaltirculation ratio led to the
destruction of the weaker vortices with little e ect on the st ronger vortices. For a low
angle of attack with oscillating ailerons, Haverkampet al. found that higher wavenum-
bers produced a signi cantly faster breakup of wake vortices in the far eld. For a
high angle of attack with oscillating ailerons they found that the oscillation caused a
rearrangement of the vortex structure, but did not cause entancement of instabilities,
and therefore an alleviation of the wake hazard. The frequeecy they found for optimal
forcing of the instabilities in the four-vortex system they studied are close to the rst

bending mode of an aircraft wing, potentially leading to structural problems.

Continuing the research into four-vortex counter-rotating systems, Stumpf (2005)
used DNS to look at a counter-rotating system with a outer to inner vortex circulation
ratio of ,= 1 = 0:35. Stumpf found that, in the far wake, a shortwave instability
grows in the tail vortex pair as they are pulled around the stronger wing vortex pair.
This instability in the tail vortex pair leads to an instabil ity in the wing vortex pair
(shown in gure 1.17). Stumpf also showed that white noise asa model of atmospheric
turbulence did not trigger the Crow instability, but did tri gger shortwave instabilities.
Stumpf came to the conclusion that four-vortex wakes have tle potential to alleviate

wake hazards.

At the same time, Hubbard & Marquis (2005) looked at both courter- and co-
rotating four-vortex systems with a range of outer to inner vortex circulation ratios,
by using a two-dimensional point vortex model. Their primary investigation was to

study the vortex trajectory, rather than the vortex interac tions. They found that the
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Figure 1.17: A reproduction of gure 9 from Stumpf (2005) showing a short-wave instability
occurring on the outer vortices and moving to the inner vortices. Reprinted with permission
of the American Institute of Aeronautics and Astronautics.

trajectory of rigidly translating systems are easily perturbed by weak and strong shear
layers, and concluded that instability mechanisms that utilise cooperative instability

between vortex pairs on either side of the wake are more likglto survive shear-layer
interactions.

Kauertz & Neuwerth (2007) took a four-vortex counter-rotating system and investi-
gated, using a water towing tank, possible methods of excitig instabilities that would
lead to earlier alleviation of the wake hazard. One of the mdtods they investigated
was the use of winglets on a wing, but found that oscillation & the winglet rudder
did not accelerate the decay of the wake hazard. However, thyedid nd that opti-
mal con guration of passive static rudders could destabilse the vortex systems more
rapidly. They also found that the vortex wake was sensitive b a small sideslip, but
such a con guration would be unfavourable in a real aircraft

The analysis of multiple vortex wakes has been extended to tlude other possi-
ble sources of turbulence, such as the the work by Allen & Brésamter (2008a) that
investigated the e ect on an aircraft wake of the landing gear Allen & Breitsamter
used a 1:19.25 scale half-model in a wind tunnel with hot wireanemometry to conduct
the study. They found that the main wing vortices moved slightly further outboard,
retarding the roll up process in the near wake. Allen & Breitsamter discovered that

landing gear did cause an increase in turbulence in the nearake, but did not enhance
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inherent wake instabilities, or have an e ect on the overall wake dynamics.

Allen & Breitsamter (2008b) also conducted a study into large winglets and winglet
aps attempting to induce instabilities in the wake of large transport aircraft. They
conducted this study using a 1:32 scale half model of a four gne aircraft within a
wind tunnel and testing with hot-wire anemometry. Allen & Br eitsamter discovered
that seven main vortices are shed o discontinuities along he wing surface. Their results
showed that de ection of the winglet aps cause a concentraton of turbulent kinetic
energy in the frequency range associated with the long wawehgth Crow instability.
The de ection of the winglet aps also produced additional vortical structures in the
wing tip area, causing enhanced roll up that leads to the rokkd up vortex forming closer

to the aircraft.

Continuing the previous research by Allen & Breitsamter (2008a,b), Allen & Breit-
samter (2009a) investigated a set of four counter-rotatingvortices using a wind tunnel,
and measured with hot wire anemometry. They found that largeinstabilities grow in
the tail vortex pair signi cantly faster than in the wing vor tex pair. This instability in
the tail vortex pair causes a long wavelength instability to form in the wing vortex pair.
Allen & Breitsamter did not actually observe any coiling of the tail vortex around the
wing vortex, which is in contrast to what was observed by Ortega & Savas (2000), but

this could be explained by the locations where the hot-wire neasurements were taken.

Using the same setup at Allen & Breitsamter (2008b), Allen & Breitsamter (2009b)
also investigated the possibility of using oscillating wirglet aps, both symmetric and
asymmetric de ections, to enhance vortex merger. They foun that oscillations in the
winglet aps could cause vortices to merge in a shorter timefame. This leads to larger
perturbations in the remaining rolled up vortex. Allen & Bre itsamter found that the
asymmetric de ection of the aps was favourable from a aircraft ight perspective,
as it reduced the oscillation in lift, side forces and pitchng moment. However, they
also found that the asymmetric oscillations displayed lowe ampli cation of instabilities
than the symmetrical case. Similar to Haverkampet al. (2005), Allen & Breitsamter
found that the frequencies that cause an ampli cation of indabilities is limited to a
fairly narrow band, with ampli cations within this band occ urring up to a factor of 20

times the initial forcing amplitude.

One of the most recent works published was by Babie & Nelson (2.0) and investi-

gated both co- and counter-rotating four-vortex systems ufng experimental methods.
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The study was conducted at a Reynolds number oRe = 15800 and simulated the kind
of wake generated by a wing/ ap con guration. Babie & Nelson found that a range
of strong to weak vortex circulation ratio and span are consstent with the growth of
a long-wavelength instability. They also found that the wavelength of the instability
scales with the e ective vortex span between the counter-roating wingtip/ ap vortex
vortex pair on each side of the wake. This leads to the nding hat the instability
growth rate is consistent with the predicted growth rate as saled by the applied strain
within the wingtip/ ap vortex pair on each side of the wake. T hey found that the rst
short axial wavelength bending mode was identi ed within the vortex core boundary
for each of the unstable wake con gurations. The streamwiseevolution of the short
wavelength mode that Babie & Nelson found is consistent withthe elliptic instability

mode.

At the same time, Schae er & Le Dizs (2010) were using threedimensional DNS to
investigate two- and four-vortex counter-rotating Lamb{O seen vortices at a Reynolds
number of Re = 6300. One interesting point about the study conducted by Stae er
& Le Dizs is that they used a circulation ratio ,= ; = 1. They found that the
main e ect of non-linear evolution of the elliptic instabili ty was to increase the e ective
core size. The increase in e ective core size was shown to belakto occur multiple
times, and that small deformations caused by the elliptic irstability could cause large
increases in the e ective core size. The study into four-vorex systems conducted by
Schae er & Le Dizs found that the vortex circulation was conserved, even given that
the vortex core size can increase by approximately 40%, whdlonly taking 1/5th of the
time that a two-vortex system would take. As with the two-vor tex investigation, they
found that the elliptic instability could rapidly increase the e ective core size, even for
high Reynolds numbers. They found that the nonlinear dynamcs primarily occurred
in four steps. First, concentrations of vorticity formed in thin layers at the periphery
of the vortex. Then, vortex loops formed from the thin layers of vorticity were expelled
and this leads to the entire structure breaking down. Lastly a relaminarisation process

leads to the vortex reforming into a larger and weaker vortex

So far both counter- and co-rotating four-vortex systems have been inves-
tigated by previous researchers. However, no research has been conducted
into the e ect of having an aircraft tail signi cantly displaced vertically, as

is the case in heavy lift aircraft. In addition to this, no-one has investigated
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if there is an optimum seeding position in the orbit of the tail vortex pair
to ensure the most rapid vortex destruction. These areas are investigated

by this thesis.

1.5 Global stability analysis and transient growth analysi S

The stability of these ows is a eld of interest as it can provide information about po-
tential methods to disrupt these types of ows to reduce the hazard for trailing aircraft.
Crouch (1997) investigated, using vortex laments, the ingability and transient growth
of instabilities for co-rotating vortex pairs. Crouch used Floquet analysis to look at the
stability of the vortex system. This type of stability analy sis has the limitation that it
requires a base system that is periodic, where the conditiomfter a period of time is
the same as the initial condition. Similar studies have lookd at the stability of a pair
of counter-rotating vortex pairs. Both Crouch (1997) and Fabre et al. (2002) consid-
ered a simpli ed Kelvin mode of instability that has no azimuthal mode shape. Both
studies used a vortex lament as a further simpli cation. Th is simpli cation limits the
size of the instability that can be investigated to scale lager than order of the vortex
core radius. However, Lacazeet al. (2007) investigated a full range of Kelvin mode
shaped instabilities with a Batchelor vortex. They discoveed that these mode shapes
are signi cantly damped even with small axial ow. Lacaze et al. (2007) also found
that non-sinusoidal mode shapes are more excited as the axieow increases. Axial
ow is not uncommon in aircraft wakes due to ambient turbulence in the air and the
air moved due to the engine exhaust (Batchelor 1964).

Several studies used a frozen base ow to conduct the stabili analysis (So et al.
(2008), Lacazeet al. (2007) and Lewekeet al. (2004)). Wakes consisting of parallel
vortex tubes, however, are subject to di usion from the momert they form and, as
such, are not completely described by a frozen base ow or thgerfectly time-periodic
ow required for conventional linear stability analysis. For a more complex system,
such as multiple vortex pairs, the extremely transient nature of this ow means that
only a transient growth analysis is capable of analysing thé type of base ow.

Transient growth of perturbations in these types of ow can be very important as
they have the potential to alter the base ow severely and case destruction of the wake
vortices. Barkley et al. (2008) developed a method of transient growth analysis base

on examining the energy of a perturbation after a length of tme , compared with
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its initial energy. The authors used this method on known ows to verify the method
(Blackburn et al. 2008a,b).

Blackburn et al. (2008a) investigated the case of transient growth over a bdavard
facing step. This type of geometry is a fundamental case in ud mechanics, as it
shows separation resulting from severe changes in geometity an open ow (Blackburn
et al. 2008a). They found, for a two dimensional optimal growth conputation, that
the growth ampli cation factor is O(6 10%). Blackburn et al. (2008a) noted that,
in comparison to previous work looking at similar geometry wth a slightly higher Re
(Marquet et al. 2006), the predicted optimal growth ampli cation factor wa s O(10%)
less than the values found by Blackburnet al. (2008a). This indicates that transient
growth may be far stronger than the global instability modes and contribute to their

excitation.

1.6 Summary

So far, signicant research has been conducted into single-, double- and
multiple-vortex systems. While some research has investigated the transient
response of two-vortex ows, there has not been any investigation into the
e ect of seeding these two-vortex ows with the perturbations that lead
to optimal energy growth. The rst results chapter of this thesis seeks to
demonstrate that, by seeding the two-vortex ow with specic modes at
speci ¢ axial wavenumbers, the growth of instabilities can be accelerated
over systems seeded with simple white noise.

By contrast, the four-vortex ow has had fewer investigations conducted
to understand the dynamics underpinning such ows. Investigations into
both counter- and co-rotating ows have been conducted by previous re-
searchers, but no research has been conducted to investigate the e ect of
a vertical displacement of the tail vortex pair as would occur in a heavy
lift aircraft. In addition, a transient growth analysis of the type conducted
by Blackburn et al. (2008a,b) has not been conducted on this type of four-
vortex ow. The second chapter of this thesis seeks to understand the
change in the dynamics and transient response to perturbations that occurs
due to a change in the vertical displacement of the tail vortex pair. The

third chapter of this thesis extends the investigation to study the e ects
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of an asymmetric four-vortex ow (the kind of change in circulation that
would occur in a banking aircraft).

By extending the previous work in this eld, the investigations studied
here could provide insight into the most e ective method of perturbing the

four-vortex ow to ensure rapid destruction of an aircraft wake.
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Chapter 2

Methodology

This chapter describes the methods employed throughout tts thesis to study the two-,
symmetric four-, and asymmetric four-vortex aircraft wake model. It begins by exam-
ining the system under investigation, then de nes the key paameters for the studies,
presents the mathematical description of the problem, desibes how the mathematical
model is implemented numerically, then examines the trangnt growth analysis tech-
nique, and demonstrates the implementation of the three-dinensional solver. Finally,
an error analysis is conducted and grid independence is veed.

Figure 2.1 shows a schematic representation of the counteotating two-vortex sys-
tem investigated in the rst results chapter of this thesis. The variables under investi-
gation for the two-vortex system are the vortex circulation, 1, the initial vortex core
size,a; and the vortex spacing,by. Figure 2.2 shows a schematic representation of the
system under investigation in the second and third results hapters of this thesis. As
the four-vortex system is more complicated, the wing vortexcirculation is de ned as

1, the tail vortex circulation as 5, the wing vortex core size asa;, the tail vortex

-I I

(=

Figure 2.1: Diagram displaying the layout of the initial vortex set and de ning the span
variable, by, for the two-vortex system model.
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Figure 2.2: Diagram displaying the layout of the initial vortex set and de ning the wing
vortex span, tail vortex span and height variables ,b, and h respectively) for the four-vortex
system model.

Figure 2.3:  Contour plot of vorticity for the initial conditions of the 2 vortex sy stem model in
two-dimensional space. Contour lines represent unit increments imon-dimensional vorticity.
The minimum and maximum vorticity levels were -8 and 8 in the left and right tail vortices
respectively. Dashed lines represent negative vorticity levels.

core size asay, the horizontal wing vortex separation asby, the horizontal tail vortex
separation ash, and the vertical displacement of the tail vortex pair ash. The setup of
the wing/tail vortex system comprises two pairs of counter+otating vortices with the

tail vortex pair having opposite sign to the wing vortex pair.

2.1 Initial conditions

Figure 2.3 displays the initial position of the two-vortex problem with an initial separa-
tion of b;. This vortex separation is used to normalise all length scas. It is important
to note that this study is only concerned with parallel vorti ces: no helical vortex wakes,
such as those wakes caused by helicopters, wind turbines oorlg wavelength unequal
strength vortices, have been modeled in this study. Figure 2 displays the initial posi-

tioning of the four-vortex arrangements for the high and at tail models. Figure 2.4(a)
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(b)

Figure 2.4: Contour plot of vorticity for the initial conditions of the ( a) at tail and ( b)
high tail case in two-dimensional space. Contour lines represent unincrements in non-
dimensional vorticity. The minimum and maximum vorticity levels were -8 and 8 in the left
and right tail vortices respectively. Dashed lines represent negate vorticity levels.

Table 2.1: Table of four-vortex “high tail' wake model variables used throughait the studies
considered in this thesis. Note that the only change for the " at tail' case ish=hb, = 0.
2= 1 h=ly o=l ai1=h a=a Re
-0.4 0.2 0.38 0.176 0.5 20000

shows the case of the " at tail' con guration with h=b, = 0. Figure 2.4(b) shows the
“high tail' case with the tail vortex pair displaced vertically (h=b, = 0:2). This was
chosen to correspond to the vertical displacement of the taiof the C-17 Globemaster
aircraft from its wings. A value of ,= ;= 0:4 was chosen for the ratio between the
wing and tail circulation in Chapter 4 and this corresponds to the values found in the
literature for a heavy lift aircraft in landing con guratio n (Rennich & Lele 1999). For
Chapter 5, an inequality in the circulation of 15% is introduced to both the wing and
tail vortex pairs to provide the system with asymmetry. This corresponds to the left
wing vortex having 15% more circulation and the right tail vortex having 15% more
circulation than their paired vortex. The horizontal displ acement of the tail to wing
vortex separation was chosen to bdy=h = 0:38 corresponding to the ratio of wing to

tail span of the C-17 Globemaster aircraft.
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2.2 Mathematical model

The vortex pro le used is that of a Gaussian vortex and was chsen to be consistent
with previous work in the area (Crouch 1997; Fabreet al. 2002; Soet al. 2008, 2011).
In addition, Le Dizs & Verga (2002) demonstrated that other vortex pro les evolve
into a Gaussian vortex pro le after a short transient relaxation period. The azimuthal
velocity eld of a single Gaussian vortex is given by

0 I,!21

Viz = F%]- e @ X; (2.1)

wherer is the radial distance from the centre of the vortex anda; is the vortex core
radius, wherei = 1 and 2 is used to denote the wing and tail vortex respective}. For
these studies,a;=h = 0:176 and the ratio of tail vortex core size,a,, to wing vortex core
size isax=a = 0:5. This was chosen to make the tail vortices self-similar to lhe wing
vortices. The vortices are Lamb{Oseen vortices, which are € ned by the Gaussian
azimuthal velocity given in equation 2.1, which contain no aial ow component.
The global rotation rate of the vortices, , can be normalised by the vortex initial

turnover time (ITT), trt =2 a 2=, such that non-dimensional vorticity, ! , is related

to the dimensional global rotation rate by

2.2)

The system is evolved in time by solving the incompressible Bvier{Stokes equations

%t: (urdlur p+ r?u; (2.3)

r u =0; (2.4)
where 2.3 and 2.4 are the momentum and continuity equationsespectively andu is the

velocity eld, t is the time, p is the kinematic pressure, and is the kinematic viscosity

of the uid.

In this case a Reynolds numberRe, is de ned based on the circulation of the wing

vortex, 1, and the kinematic viscosity, as
Re= -1 (2.5)

In this study a Reynolds number Re = 20000 was considered, consistent with the

ranges considered in similar vortex studies (Lele 2001; Havkamp et al. 2005; Royet al.
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2008). It is assumed that the instabilities being investigded are consistent across the
range of Re observed between an aircraft and these simulations. This asimption is
reasonable as the primary method of destruction of this typeof vortex system is caused
by perturbations with wavelengths that are far above the scde of turbulence damped
out by the higher viscosity inherent in these simulations (Landman & Sa man 1987).
All two-vortex studies are normalised by the reference timeToy =2 b %z. Toy =1
corresponds to the time it takes for the centres of the vortexcores to propagate a
distance equal to their spacing,b; (Crouch 1997). All four-vortex studies are normalised
by the orbit of the tail vortex pair around the stronger wing v ortex pair, To. Crouch
(1997) de nes an equation for the orbital angular frequencyof a weaker vortex pair
around a stronger vortex pair as ¢ = 1= 2, where is dened as Q5(b; by)=h.
However, this model for the orbit of the tail vortices is limited as it assumes that is
small and the vortices remain undistorted. If is not small, or the vortices become
distorted, then the frequency can drop lower than! = 1= 2 (Crouch 1997). Because of
the limitations of this formula, Tp was computed from a simple two-dimensional DNS
of the “high tail' case; the same value is used throughout ashe orbit period is the same

for the “high tail' and " at tail' cases.

2.2.1 Dominant strain

The dominant strain referred to in later chapters is de ned as

"Tom = 5 o yyi (2.6)
where
Xy:% 3_;+3_Z ; 2.7)
o= o (2.8)
vy = 3—;; (2.9)

that was rst used by Ryan et al. (2011). This is considered the "dominant' strain
as it is the component of strain in the x-y plane that, when coupled with ! ,,, acts
to dominate the de nition of the , eld (de ned as the criterion for identi cation

of a vortex proposed by Jeong & Hussain (1995)) when the strai in any plane other
than the x-y plane is minimal (e.g. ;; 0). Given the con gurations of the vortices

examined in this thesis, it is reasonable to assume that,, 0.
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Figure 2.5: Left: The full computational domain, identifying the re ned region at the centre.
Right: A detailed view of the re ned region of the mesh. The dark shaled circles identify
the vortex cores of the “high tail' four-vortex system for referaice. The re ned region extends
over 2 x=by 2and 2 y=h 2, and comprisesn m elements withm = 36.

2.3 Numerical simulation method

The system described inx 2.2 is simulated with a computational uid dynamics solver
employing a spectral-element discretization in space and third-order operator splitting
technique for time integration based on backwards di erentiation. The solver employs
a nodal formulation, in which Lagrangian tensor-product pdynomials are employed
in each element. The polynomial degreep,, can be changed for a given simulation
to control special resolution. More detail may be found in Kaniadakis et al. (1991).
This algorithm has been used extensively to study a number ofvake and vortex ows
(Sheardet al. 2007, 2009; Scet al. 2011).

A single mesh was constructed for use throughout this projei¢ which is shown
in gure 2.5. Care was taken to ensure that the mesh is su ciertly large to render
negligible dependance of the results on the domain size. Orhé mesh boundaries,
a Dirichlet condition is imposed on the velocity eld to specify a uniform cross ow
to counteract the propagation of the vortices, thus maintaining their position in the
re ned region of the mesh. The mesh contains 1794 elements thithe majority located
in the central re ned region. The boundaries of the domain ae 20y from the vortex
system, ensuring that any e ect from the domain boundary is naligible. As the outer

region contains no important ow structures, signi cantly lower resolution is used to
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reduce the computational expense of the simulations. Dest# the initial con guration
possessing a re ective symmetry about the vertical centerhe, the full system of vortices
was always resolved to permit re ective symmetry-breakingbehavior in the evolving

vortices to be captured.

2.4 Transient growth analysis

Transient growth analysis is a method for determining the ogimal initial linearised
disturbances leading to maximum energy growth over a specid time interval. While
global stability analysis predicts the asymptotic stability of a ow, where the evolution is
contributed to only by a single leading eigenmode of the sysm, transient growth anal-
ysis is able to capture large short-timescale ampli catiors which can emerge due to the
interaction between the non-orthogonal eigenmodes of thérnearised evolution operator
of the Navier{Stokes equations. The implementation of the ransient growth analy-
sis suitable for time-stepping solvers was initially propsed by Barkley et al. (2008);
Blackburn et al. (2008b,a), and this implementation method was used througbut this
study to conduct the transient growth analysis. A description of the implementation
of this method is described in this section. The transient gowth analysis method is
particularly attractive for analysing this kind of ow syst em due to the highly transient
nature of the base ow eld, which lacks the time periodicity required for a global
linear stability analysis. This method begins by de ning an operator A (t) describing

the evolution of a perturbation eld over a time interval t,
uqt) = A (t)uqo): (2.10)

The norm used by Barkley et al. (2008) to quantify the size of a perturbation is the
total kinetic energy of the perturbation eld. By normalizi ng the energy growth of the

perturbation with its initial energy and using the evolutio n operator such that

=== A()uY0);A (Hu%0) = uo)A (HA (YO ; (2.11)

where A () is the adjoint evolution operator to A ( ) in the L? norm, it becomes
possible to nd the dominant eigenvalues ofA ( )A ( ) which dictate the largest pos-
sible energy growth for a linear disturbance over a given tine interval . This property
arises from the close association between the eigenvalues A ( )A ( ) and the sin-

gular value decomposition ofA (t) (Barkley et al. 2008). The action of the evolution
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(@ =0:446 (b) =5:35

Figure 2.6: An example of the optimal initial condition for a two-vortex equal st rength sys-
tem computed at Re = 20000 andka; =2:12, with (a) =0:446 and (b) 535. Streamlines
relative to the vortex pair are plotted on the right half-plane in (b) t o elucidate the location
of hyperbolic points above and below the vortex pair. Axial vorticity contours are plotted on
the base ow (lines) and the linearised perturbation eld ( ooded co ntours).

operator, A (), on the perturbation vector is equivalent to integrating t he linearised

Navier{Stokes equations,
wl= (U rHu® W r)u r p’+ Re r 2u° (2.12)

and
r u®=0; (2.13)

(where u® and p® denote the perturbation velocity and pressure elds respetvely)
forward in time, and the e ect of the adjoint operator, A ( ), on the perturbation

vector is the equivalent of integrating the adjoint Navier{ Stokes equation,
W= (U ryu+(ru)T u r p+Relry (2.14)

and
r u =0; (2.15)

(whereu and p denote the adjoint perturbation velocity and pressure elds respec-
tively) backwards in time over . More detailed information and implementation of this
method is provided in Barkley et al. (2008). The eigenvalue solver used in this study
has been validated and employed in the past in linear stabity analysis of other ows
(Sheardet al. 2009; Sheard 2011) and produced results consistent with amdependent
formulation of the algorithm (Blackburn & Sheard 2010).

The advantages of this method is that the perturbation evoluion and adjoint oper-

ators do not need to be explicitly constructed, which is not vable for problems as large
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as the one investigated in this study. When using the Arnoldipackage eigenvalue solver
employed by the code, only the e ect on the perturbation eld t hrough time integration
using the forward or adjoint linearised Navier{Stokes equdions is required. The eigen-
value solver outputs both the leading eigenvalue and the caesponding eigenvector of
A ( )A (), which corresponds to the leading singular value and rightsingular vector
of A ( ); the right singular vector speci es the optimal initial co ndition leading to the

largest possible energy growth for a linear disturbance evaeing over time

An example of how the initial perturbation eld that leads to maximum energy
growth can change with change in is shown in gure 2.6. This gure shows the optimal
initial condition for a a two-vortex equal strength system computed at Re = 20 000 and
ka; =2:12, with (&) =0:446 and (b) 535. As increases (gure 2.6(b)), the initial
optimal perturbation eld begins to resemble the global instability mode for the mode
[-1,1,1] elliptic instability. In contrast, the vortex cor es in the short- optimal initial
disturbance eld are devoid of a perturbation vorticity dip ole, but retain a di erent
pattern of strong vorticity ( gure 2.6(a)), and the umbrell a band of perturbation above
the vortices lies inside the hyperbolic streamlines. Heredeer, this perturbation eld

will be referred to as the “initial optimal perturbation el d'".

Due to the requirement to integrate the adjoint equations backwards in time, an
interpolation method is used to reconstruct the base ow duiing the adjoint operation.
To determine the accuracy of the interpolation method, a twodimensional DNS of
the four-vortex “high tail' con guration was compared to th e interpolated base ow.
The four-vortex “high tail' model was considered as it was kely to demonstrate a
higher error than the " at tail' or two-vortex case. The Reyn olds number was set at
Re = 20000 as it is the highest used in this study and therefore imposes the greatest
strain on the resolution of the system. The comparison was m@e using the average
percentage of the di erences in theL, norm between the DNS and interpolated ow
acrosst=Ty = 0:5 intervals in the range 0 t=Tg 3. The average percentage of the

dierences is de ned as iyt .

Two interpolation approaches for the velocity eld were considered: polynomial
interpolation and Akima spline interpolation. Tests determined that polynomial inter-
polation produced undesirable wiggles in the reconstructd base ow, which is respon-
sible for the massive errors seen in gure 2.7 asiy > 10'2 for the largest number of

interpolation points used.
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Figure 2.7: Plot of di erence between interpolation values and DNS values (j,: ) against
number of snapshots used to create the interpolationns. Dotted line represents interpolation
using a polynomial method and solid line represents Akima interpolationmethod.

However, Akima interpolation (Akima 1970), which are known to be e ective in
suppressing wiggle artifacts, was found to provide a very olse reproduction of the time
evolution of the ow, as shown by i < 0:14% in gure 2.7, and is therefore employed
throughout this study. Pleasingly, the Akima interpolatio n method demonstrates rapid
convergence with increasing number of velocity eld snapsbts: the plateau in Akima

interpolation error corresponds to the limit of machine precision.

As with linear stability analysis, this transient growth an alysis method assumes that
the perturbations are small. Thus if the predicted ampli cation energies are large, the
disturbance can become non-linear, leading to bulk changes the ow. This thesis will
investigate the possibility that optimal disturbances can accelerate the destruction of

the vortex system by invoking nonlinear growth in the ow.
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2.5 Three-dimensional DNS method

The three-dimensional direct numerical simulations repoted in this thesis are con-
ducted using a spectral element-Fourier method (Karniadaks 1990; Karniadakis &
Sherwin 1999; Henderson 1999), in which the same spectrdeeent discretization in

the x{y plane as used by the two-dimensional solver is used, with theddition of a

Fourier expansion of the velocity eld in the z (out-of-plane) direction. The extent of

the axial domain for the three-dimensional simulations waschosen to correspond to the
peak axial wavenumber found from the transient growth analysis for the two-vortex

and symmetrical four-vortex system. The axial extent for the asymmetrical four-vortex
system was chosen to correspond to the axial extent of the symetrical four-vortex

system to allow for better comparison between the two cases.

In this study three-dimensional simulations are used to vaildate the transient growth
analysis by seeding the three-dimensional ow with the optimal disturbance elds pre-
dicted by the transient growth analysis. In addition, the th ree-dimensional simulations
will importantly be used to study the non-linear evolution characteristics of the distur-

bance elds.

2.6 Grid independence

A grid resolution study was undertaken to quantify the error in the simulations. This
grid resolution study was conducted by examining the solutbn dependance on polyno-
mial order, p,, and the number of Fourier planes,ps, independently. The symmetric
four-vortex “high tail' case was selected for the grid indepndence study as it was the
most complex case investigated and likely to have the largéserrors. Re = 20000
was selected as it is the highest Reynolds number used durinthe study. The specic
de nition of the variables in the symmetric four-vortex "hi gh tail' case are de ned in

table 2.1.

2.6.1 Element size

While it is tempting to suppose that a small number of very high-order elements could
be employed to discretize the ow in the re ned region of the mesh, in practice it
is found that elements need to be modestly sized in relationd the larger-scale ow
structures. Within the vicinity of the vortices, the elements have an maximum aspect

ratio of approximately 1.675, with a reduction in size towards the centre of the re ned
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Table 2.2: Table of polynomial order p, against |, at t=Tp = 3 to approximate the error
in the simulations.

Pn L2

5 0.00040143
6 0.000144981
7 6.69167E-05
8 3.61214E-05
9 2.24026E-05
10 1.44944E-05
11 9.58284E-06
12 6.28801E-06
13 3.9665E-06
14 2.3571E-06
15 1.25617E-06
16 5.40948E-07
17 1.20547E-07
18 7.48872E-08
19 1.01157E-07

region where the vortices are located. The largest of the méselements are the extreme
corners of the re ned region with the elements in the centralarea of the re ned region
being 40% of the size of the largest elements. The width of themallest elements,w,
is de ned by w=b =0:08.

In the re ned region of the mesh, the elements within the vicinity of the vortices are
of a width such that w=g; = 0:4539 for the wing vortices andw=a = 0:9091 for the talil
vortices. The ratio of element size to vortex core radius is B0 consistent with previous

computational work by So et al. (2007); Bousteadet al. (2010); Soet al. (2011).

2.6.2 Polynomial order

In order to quantify the uncertainty due to nite resolution in the x-y plane of the
simulations, errors were approximated by taking the energyin the fundamental mode
(L2) with a polynomial order p, = 20 as a reference value for estimating the error in the
lower resolution cases. The percentage change of the loweplgnomial cases compared
to the reference case isdened as », =100 | E(pn) E(pn =20)j=E(pn = 20). From
table 2.2 and gure 2.8, a polynomial order p, = 13 was selected as it was deemed to
provide a suitable balance between error (> = 3:9665 10 “%) and compute time,

and was therefore selected for the computations reported heafter.
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Figure 2.8: Plot of polynomial order p, against [, at t=Tq = 3 for the symmetric “high
tail' case to approximate the error in the simulations.

Table 2.3: Table of polynomial order p, against at t=Ty = 3 to approximate the error in
the simulations.

Pn

5 0.149313368
6 0.323827901
7 0.074653213
8 0.035087382
9 0.005345918
10 0.011019582
11 0.000635867
12 0.002074199
13 0.000438485
14 0.000629367
15 5.00581E-05
16 5.46354E-05
17 3.57246E-05
18 6.93442E-06
19 8.00044E-06
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Figure 2.9: Plot of polynomial order p, against at t=Ty = 3 for the symmetric “high tail’
case to approximate the error in the simulations.

To ensure that the error is within acceptable levels, the stain at the centre of
the wing vortex was examined att=Tg = 3. As with the energy in the fundamental
mode, the strain was computed for an increasing polynomial @er, p,. The highest
polynomial order case,p, = 20, was used as a reference for the error of the lower
polynomial cases as a percentage, =100 | (pn) (pn = 20)j= (pn = 20). As the
strain rate is the addition of two derivatives, this variabl e should produce the largest
error and therefore be a good indicator as to the error in the nulation. As table 2.3
and gure 2.9 displays polynomial order p, = 13 was deemed to give a good balance

between computation time and error (= 0:0438485%).

Since the vorticity is de ned as the subtraction of two derivatives, it should also
provide a good estimate of error in the simulation and was corputed (by using | =
100 j '(pn) ! (pn = 20)j=! (pn = 20), similar to above) to estimate the error
as shown in table 2.4. The ow was evolved tot=Ty = 3 to ensure su cient time to
allow the error to grow. As table 2.4 shows, the error forp, = 13 is particularly small
(1 =2:172 10 “%) and so this polynomial order was deemed to provide a good

balance between error and computation time.
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Table 2.4: Table of polynomial order p, against , at t=Ty = 3 to approximate the error in
the simulations.

Pn !

5 0.000745492
6 0.000545423
7 5.32267E-05
8 3.18138E-05
9 2.1304E-05
10 3.18136E-06
11 5.59518E-06
12 4.46277E-06
13 2.17182E-06
14 1.55277E-06
15 1.21961E-06
16 1.27877E-06
17 1.50574E-08
18 7.37179E-09
19 1.39574E-09

Table 2.5: Table of number of fourier modes,p; against the sum of the perturbation energy
across all of the Fourier modes normalised by the highest resolutionase,E (p; )=E(p; = 20).

Pt E (pr )=E(pr =20)
4 0.065667992
8 0.098349501
12 0.001405918
16 4.89256E-05

2.6.3 Fourier modes

In order to quantify the uncertainty due to nite resolution in the Fourier expansion
(z plane), errors were approximated by examining the sum of theenergy in the Fourier
modes after the ow has begun to evolve and normalising by a cge with 20 Fourier
modes, pr = 20. The symmetric four-vortex “high tail' case (de ned in x 2.1) seeded
with the optimal perturbation was used at Re = 20000 as it was deemed to be the
most complex case and the highest Reynolds number used thrghout this study. The
axial domain was chosen to correspond to one wavelength of ¢h[-1,1,1] mode present
and the perturbation was seeded in only the leading Fourier mmde. This allows for
smaller, higher frequency perturbations to be captured wih a minimum of computa-

tional memory resources. The energy in the optimal perturbdéion used was 001522%
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Table 2.6: Table of number of fourier modes,ps against the perturbation energy in the
second Fourier mode normalised by the highest resolution cas& (ps )=E(p: = 20).

Pr E (pr)=E(pr = 20)
4 0.281088271

8 0.087784609

12 0.01596279

16 0.006604896

of the initial energy in the base ow. Throughout these studies, both the optimal and
white noise perturbations used had similar (within half and order of magnitude) energy.
The seeding with the optimal perturbation was used as it allaved immediate growth of
the perturbation in the linear regime. The time selected wast=Ty = 0:2 as this time is
well into the linear regime where the instability has had time to grow to a signi cant
magnitude. The maximum number of Fourier modes,ps = 20 was used as the reference
as it is the largest number of Fourier modes possible with thecomputational resources
available.

Sixteen Fourier modes was selected as it was deemed to proeich suitable balance
between error (0.00489% for the case of the sum of the Fourienodes and 0.66% for
the second Fourier mode) and nite available computationalresources and computation

time (table 2.5 and 2.6).

2.6.4 Timestepping

Given the third-order time accuracy of the scheme, the timesep required for stable
evolution of the ow ( t = 0:00005y) provided negligible time integration errors. A
study was conducted and found that a decrease in the timesteppy a factor of 10 only
produced a di erence in the strain rate of 0.0612%. It is of importance to note that
as the ow structures become smaller, the required timestepalso needs to decrease
due to a stability restriction inherent in the spectral element method (along with other
discretization methods). This is known as the Courant{Friedrichs-Lewy condition and is
a necessary condition for the convergence of the solution gfartial di erential equations
(Courant et al. 1928). The general form of the Courant{Friedrichs-Lewy cordition in

n-dimensional space for a rst order partial di erential equation is,

Xy

t C 2.16
% (2.16)
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wherex; is a spatial variable of dimension,i, wherei is an integer fromi = 1to n. For a
general caseC is a constant that is dependant on the partial di erential equ ation that
is being solved. It is important to note that the Courant{Fri edrichs-Lewy condition is
a necessary condition, but may not be su cient for convergerce of a particular set of
partial di erential equations.

If the timestep is held constant for many of the three-dimensonal computations
reported in this thesis, the simulation will eventually diverge and terminate as the
ow structures become smaller. This does not invalidate theevolution prior to the
divergence. If the timestep is progressively decreased, ¢hsmallest ow structures could
be evolved, but this leads to prohibitively long simulations and is only required if long
term non-linear growth is to be considered. As most of this tlesis is only concerned
with the linear and early non-linear growth of instabilitie s in the ows, an eventual
divergence of the ow is considered acceptable as the data lime the divergence is

valid.

2.7 Vortex lament analysis method

By using a vortex lament method, a theoretical, inviscid value of peak axial wavenum-
ber can be found to compare to the peak value of axial wavenundr found with the

transient growth method described later in this chapter. This section describes the
development of the governing equations for the vortex lameit method and equations
for the motion of the unperturbed vortex cores used to deternine the theoretical peak
axial wavenumber. This method is solved by utilising a MATLAB code separately to

the spectral-element solver described earlier in this chapr.

2.7.1 Governing equations

Consider several vortex laments, each of di erent circulation strength. The velocity
at any point in the ow eld may be determined from the Biot{Sa vart formula (Moore
& Saman 1972). The Biot{Savart formula can be used to determine the velocity
components at the vortex lament locations by writing

Up = X —ml Rm_ dbm, (2.17)
m=1 iRumn j?

where U, is the velocity at some position along then® vortex lament, o, is the

circulation of the m™ vortex lament, R, is a vector describing the distance from
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the vortex lament n to the vortex lament m, and dL , is an incremental distance
along the vortex lament m. Note that equation 2.17 allows forM vortex laments to
interact and as such, is a generalisation of previous model§or example Crow 1970;
Crouch 1997; Fabre & Jacquin 2000).

The distance between two vortex laments is de ned as,

Rmn = Xmni + Ymn | + Zmnk + (PSP (2.18)
where
Xmn = Xm  Xn; (2.193)
Yon = Ym  Yni (2.19b)
Zon = 20 Zn: (2.19c¢)

Here, xn, Yo and z, describe the unperturbedx, y and z position of the n" vortex
lament, and P, describes the perturbation vector acting on then™ vortex lament.

Where m = n, the primes are used to distinguish di erent locations alongthe vortex
lament. The perturbation vector has components in the x{y plane and denotes the

lament position relative to its unperturbed position, it m ay be written as,

P = Px(z;t)i + Py(z;1)j; (2.20)

where Py and Py are the x and y components of the perturbation respectively.

An in nitesimally long segment of the vortex lament m may be de ned as

@ m
@

In order to close the governing mathematical model, the voréex transport theorem

dLm =

+ k dzpy: (2.21)

can be used, which states that an element of vorticity will mave with the local velocity.

This implies that both the unperturbed vortex and the pertur bation will move as a
result of the local velocity.

For a position vector, R, describing the position of then vortex lament with respect

to the origin, the time evolution of this vector is described by,

@@{2:(Un+un)i+(vn+vn)j Wi g; :

where U, and V, are the x and y components of the velocity due to the unperturbed

(2.22)

vortex laments surrounding the n™ vortex; and u,, v, and w, are the components of

the perturbation velocity. The position vector R, may be written as
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Rn = Rno+ Pn; (2.23)

where R g is the position of the unperturbed vortex lament n from the origin. From

this de nition it may be written as,

@Rn _ @Rn0+ @n,

@t @t ot (2.24a)
@Rno _ - -,

at Uni + Vij; (2.24b)

@n_ v w, o (2.240)

@t @z

Equation 2.24c governs the growth of the vortex perturbatims on the n" vortex.
The velocity components for then vortex are obtained by substituting equations 2.18
and 2.20 into equation 2.17. Following Crow (1970), Crouch 1997) and Bristol et al.
(2004), equation 2.17 can be linearised by taking a Taylor s&s expansion of equation
2.18 about the unperturbed vortex lament position. Note th at the term @ ,=@g in
equation 2.24c is typically much smaller than the other terns in the equation, and may
be ignored to a rst-order approximation.

Therefore, there are two linearised equations describinghte motion of the unper-

turbed vortex laments in the x{y plane

)M m Z 1 Ymn

Uy = — — dZmn ; (2.25a)
m=1 4 1 [Xﬁm + yr%m + Zr%m]3 2
N Z, «

V, = _m mn dzmn (2.25b)

3=2
41 Ko * Yan * Zfn]

Following Crouch (1997), the solution of these equations &bws the stability of the
system to be determined through the use of a Floquet stabiliy analysis. Details of this
analysis technique are presented in chapters 4 and 5.

There is also two linear equations describing the perturbaibn velocity acting on the

nt" vortex lament,

61



z @6
mn @%
nt Yion t Zin ™
Ry 3Ymn an(me Pxn)

[an + ernn + Zrznn]5=2
R1 3Ymn (P39m Pyn)

[XEn + Van + 230177
@)
Zmn @2? (me
mn + ymn + ngn
Rl 3Xr2nn (P>?m Pxn)

(K + Yoo * Zan ]
Ri  3YmnXmn (P;)m Pyn)

5=2
[an + yr2nn + Zrznn]

The de nitions for u, and v, can be substituted into equation 2.24c to develop a

2
gr Om P

(2.26a)

dmn

2
Vn - m=1 4_m g

+

3=2
n

2.26b
dzmn ( )

+ dzmn

linear di erential equation governing the growth of the pert urbation,

2
O Pyn)  Zmn @€m
@0 _Pu_ g ’ @8 g,
@t ta + Yoo+ 25077
R; 3Ymn Xmn (P>?m Pxn) d
1 2 2 o=z L2mn
[an + ym8 + Z5n]
R1 3Ymn (Pym Pyn) d .
2 [an Yin *+ Z&n] (2.27)
Zon —==> (P, P
P By e Ok,
m=1 4 1 mn

+ Rl 3X%1n (P>9m Pxn) dz
mn T Ymn mn
+ Ry 3YmnXmn (P)Sjm IDyn) dz .
boxe o +y2 o+ 22 157 mn I
mn T Ymn mn

3=2
[an + yr%m * Zr%m]

Inspection of equation 2.27 indicates that wherem = n, a pole exists in each of
the integrands asz,n, ! 0. Crow (1970) overcame this problem of the existence of the
pole by using the cuto method. Widnall et al. (1974) showed that this led to spurious
results at high wavenumbers. Instead this problem can be avded by following Sa man
(1992) by replacing this term with a numerically calculated estimate of the self induction

term for a Rankine lament. This technique is exactly the same as that used by Bristol

62



et al. (2004). The self induction of each vortex core was calculatéthrough solution of

the dispersion equations provided by Sa man (1992).

2.7.2 Linear analysis

General solutions to the linearised governing equation (eggtion 2.27) are assumed to

have the form

Pn= Pyekni+ P ekt (2.28)

where B, and Iby represent the component perturbation amplitudes, acting @ the nt
vortex lament, in the x andy directions respectively (note that the analysis inx 2.7.1
allows us to preclude perturbation growth in the z direction). Equation 2.28 can be
substituted into equation 2.27 and the integral terms can beanalytically solved. Details
of this technique may be found in Crow (1970).

In order to non-dimensionalize the governing equations, seral de nitions are re-
quired. First, every lament has an associated circulation which may be normalised

by the maximum lament circulation in the system,

m>= m max- (2.29)

Here,  is the ratio of the circulation of the m™™ lament with the maximum lament
circulation in the system.

The distance between the two furthest vortex cores in the clster is de ned ashb.
The distance between any two vortices within the cluster maybe written as by, (here,

m represents them™ lament and n represents then™ lament). Therefore

Bn = (Xmn )2+ (Ymn)?; (2.30a)
o = b =0 (2.30b)
Additional normalisations are introduced,
mn = XE”; mn = y“t")”; mn = Z’E”; (2.31)
= kb: (2.32)

All terms can be temporally non-dimensionalised to form
t=1t ; (2.33)
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where is dimensionless and is de ned as

2
t = 2b : (2.34)
max
d
d F‘xn = n$ nF‘yn h
P :
+ m=1;m6n 2—m SN2 mn )P . (2.353)
mn |
cos(2 mn)ﬂyn %n Idxm + mn Idym ;
d
q ﬂyn = n$ nFixn
P
+ Meimen - €OSQ2mn)Pn (2.35b)
mn |
sin(2 mn)F‘yn T mn Rm + %hn Idym ;
where mn is the non-dimensional distance between the vorticest and m, ,, is the
angle of the vortex n relative to m, and
mn = 2 ﬁmK[O; mn]+ K [L  mn] sin2( mn) 2K[2; mn];
mn = COSZ( mn) ZK[Z; mn ] 2 rznnK[O; mn]l K I[L  mnl;
%n = coS( mn)Sin( mn) ZK![Z; mn |; (2.36)
03 2k
3a)= 2 P 1
where |, is the nth root from the dispersion relation de ned as:
P
1J9(a) _  KQ(ka) sm 2+Kk? (2.37)
aJn(a)  kaKn(ka) ka2 2 '
wheres = 1 (Saman 1992, page 232, equation 6). It is important to note that

the dispersion relation in Sa man (1992) is for a Rankine vorex. As the pro le used

throughout this thesis elsewhere is that of a Gaussian proé, it will introduce error

into the peak axial wavenumber found through this method. Asthis method is a rst

approximation, it is considered an acceptable simpli cation.

2.7.3 Vortex lament transient growth analysis

The lament method described above may be written in the geneal form,

d=d P = [A][P]:
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This equation, coupled with a time marching technique, may ke used to evolve
the perturbation forward in time. This thesis employs a fourth order Runge{Kutta
technique to evaluate the time evolution matrix A from equation 2.7.3 such that we
may write

P. =[A]P, (2.39)

Following the transient growth analysis theory, the transient growth ampli cation
factor may then be assessed through the de nition thatG( ) is the maximum eigenvalue
of [A][A] , where [A] is the adjoint evolution operator.

The Runge{Kutta technique employed a timestep of Q01 T,y, and the evaluation
of the transient growth ampli cation factor occurred at an i nteger number of base

vortex revolution, i.e. n = Tpy.

2.7.4 Motion of unperturbed vortex cores

Calculating the motion of the unperturbed vortex cores requres the solution of equa-
tions 2.25a and 2.25b. The integral terms in each of these eations may be determined

analytically, and these equations may be written in non-dimensional form as,

d n )M mn
U, = = —_ (240&)
" d m=1 " %m + %ﬁn
and
d n W mn
" d m=1 " %ﬁn + %m
where
2b
U, = Up——; (2.41)
max
2b
VAERVA (2.42)
max
(2.43)
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Chapter 3

Results: Kinematics and stability
of an equal strength
counter-rotating two-vortex
system model

This chapter reports on the study of a two-vortex counter-ratating aircraft wake model
with symmetrical strength about the x = 0 plane. This model is indicative of the
vortices shed from the wings of a large commercial aircraftri the far wake. This type
of aircraft wake model has been commonly used in the past to stly the dynamics
of the far wake. For this chapter, the time interval that a perturbation is allowed to
grow in the transient growth analysis, , is normalised by the time scaleToy =2 b?=,

giving the normalised time = =T,y (as de ned in chapter 2, x 2.2). As a rst

order approximation, the vortex cores will expand throughaut the evolution in the uid

: . . p :
according to the relationship, ay (t) = = af+4 t (Schae er & Le Dizs 2010).

3.1 Context for transient growth analysis

Previous studies have investigated the linear response ofapal instability mechanisms
in counter-rotating two-vortex systems (Le Dizs & Laport e 2002; Donnadieuet al.
2009). They found that for the elliptic instability, the rs ttwo branches of the instabil-
ity (as denoted by the last number in the mode label) correspad to a hon-dimensional
axial wavenumber ofka; = 2:26 for the Kelvin mode [-1,1,1] andka; = 3:96 for the
mode [-1,1,2]. For reference, the shapes of these rst two nu@s are shown in gure 3.1.
The rst branch, mode [-1,1,1], is de ned as having a single @ir of opposite-sign vor-

ticity lobes within the vortex core and a pair of lobes of oppaing sign vorticity outside
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Figure 3.1: A reproduction of gure 4 from Donnadieu et al. (2009) displaying the elliptic

instability mode shapes of (a) the [-1,1,1] mode and (b) the [-1,1,2] moal Each image is the
perturbation within the left vortex. These perturbation elds disp lay re ective symmetry

about the x = 0 plane. The dash-dot line has been added to illustrate the line that the cores
of the vorticity lobes lie on. Reproduced with the permission from the American Institute of

Physics, who retain the copyright.

the vortex core such that the central points of the vorticity lobes all lie on a straight
line (dashed-dot line in gure 3.1(a)). The second branch, node [-1,1,2], is de ned as
having two pairs of opposite-sign vorticity lobes within the vortex core and a third pair
of opposing sign vorticity lobes outside of the vortex corewhere the central point of
all of the lobes lie on a straight line (dashed-dot line in gure 3.1(b)). Inviscid theory
predicts that the growth of both modes will be the same (Le Dies & Laporte 2002),
but as the second mode is structurally more complex, it is a eted by viscosity to a
larger degree and therefore has a lower growth ampli catiorfactor as shown in the next

section.

3.2 Transient growth analysis

In this section, the response of the counter-rotating vorte pair to a number of transient
perturbations, and the linearised transient growth of the perturbations, is studied at
a range of axial wavenumbers. Figure 3.2 displays the resudtof a transient growth
analysis of the two-vortex system for = 5:35,3:56;,2:67 and 178. The dashed and
dash-dot lines correspond to the peak axial wavenumbers a; = 2:26 and 396, for the
[-1,1,1] and [-1,1,2] global instability modes respectivg, from inviscid theory (Le Dizs
& Laporte 2002). The transient growth analysis reveals thatpeak energy ampli cation

occurs atka; = 2:12 with a secondary peak atka; = 3:7. These peaks occur at an
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Figure 3.2: Transient growth ampli cation factor G( ) plotted against axial wavenumber
ka; computed for Re = 20000. ;2; and represent = 1:78;2:67;3:56 and 535 re-
spectively. The dashed and dash-dot lines show respectively, thegak wavenumbers for the
[-1,1,1] and [-1,1,2] global instability modes from inviscid theory (Le Dizs & Laporte 2002).

axial wavenumber which is consistent with the instability modes [-1,1,1] and [-1,1,2]
found in previous studies (Donnadieuet al. 2009). It is interesting to note that for

= 1:78, no obvious mode peaks are present, leading to an approxately constant
growth ampli cation factor. The instability mode [-1,1,1] becomes apparent at = 2:67
with an axial wavenumber of k a; = 2:12, but the secondary mode [-1,1,2] is not present
at this value of . The secondary mode [-1,1,2] is rst observed at = 3:56 with an axial
wavenumber ofk a; = 3:7. Both peaks grow signi cantly as is increased. These results
strongly imply that the modes [-1,1,1] and [-1,1,2] both hae characteristic timeframes
that are required before the modes can form.

The peaks in energy ampli cation in the vicinity of the [-1,1,1] and [-1,1,2] modes
shift to slightly lower ka; values as increases. The most likely reason for this occurring
is as a result of the enlargement of the vortices over time du¢o the viscous di usion
via ay (t) = P al+4t.

It is of interest that the peak found for the transient growth analysis that corre-

sponds to the Crow instability, ka; = 0:154, corresponds relatively well to previous
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Figure 3.3: Theoretical asymptotic peak axial wavenumber kpeak a1, plotted against vortex
core to separation ratio, a;=b (solid line). The solid dot represents the separation ratio and
peak axial wavenumber found from the transient growth analysis inthis study (a;=b=0:176
andk a; = 0:154) and the open dot represents the separation ratio and peakxal wavenumber
found by Brion et al. (2007) (a=b=0:2 andka; = 0:18).

studies that have investigated this. Brion et al. (2007) found a peak in growth rate
for the Crow instability at around ka = 0:18, which, given that they used a slightly
di erent ratio of core size to separation (a=b= 0:2 for Brion et al. (2007) compared
to a;=b= 0:1762 in this study), this small di erence is not surprising. Furthermore,
the growth ampli cation factor predicted in the waveband of the Crow instability is
extremely large (G( ) 1:82 10° for = 5:35), and is within an order of magni-
tude of the growth ampli cation factor for the mode [-1,1,1] elliptic instability. What
is of interest is that axial wavenumber, where the peak in thegrowth ampli cation
factor occurs for the Crow instability, does not change signcantly for the values of

investigated here.

An asymptotic vortex lament method was employed to investigate the predicted
theoretical maximum for the peak axial wavenumber of the Crav instability. This
technique is the same as that described by Crow (1970). The Banduction of each

vortex was calculated through the solution of the dispersim equations described by
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Figure 3.4: Transient growth ampli cation factor G( ) plotted against computed for Re =
20000. The dashed, dash-dot and solid lines represent axial wavemberska; = 2:12; 3.7
and 0:176 respectively. These axial wavenumbers correspond to the e [-1,1,1] and [-1,1,2]
of the elliptic instability and the Crow instability respectively.

Saman (1992). The asymptotic vortex lament method assumes that perturbations

take the form of sinuous oscillations along the axis of eachartex. The model can be
reduced to an eigenvalue problem, where the eigenvalues megsent the global growth
rate, and the eigenvectors represent the mode shape comparnis. Figure 3.3 shows the
results of an asymptotic lament study conducted to examine the change in peak axial
wavenumber, k a1, for the Crow instability against change in vortex separation ratio,

a;=h It shows that the peak axial wavenumber found in the transiet growth analysis

(shown in gure 3.2) for the Crow instability ( ka; = 0:154) and the previous work done
by Brion et al. (2007) both correspond well to the theoretical predictionsfor the peak
axial wavenumber from the vortex lament study for the separation ratios used.

The functional variation of G( ) with  at speci ¢ axial wavenumbers will now be
considered. Figure 3.4 displays a plot of growth ampli cation factor, G( ), against
For smaller values of , both elliptic instability modes investigated here follow the same
trend until = 2:10, where the mode [-1,1,1] becomes asymptotic from this pati and

gains a constant growth rate. By contrast, the mode [-1,1,2kontinues for longer on the
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original trend until = 3, at which time it also becomes asymptotic with a constant
growth rate. This reinforces the observation that both the dliptic modes [-1,1,1] and
[-1,1,2] have characteristic timeframes that are requiredbefore the instability modes
form and the instability reaches asymptotic growth. In addition to this, the energy
required for the [-1,1,2] mode to enter the linear growth regme requires a larger energy
than the mode [-1,1,1]. This demonstrates that the mode [-11,1] instability will form
in preference to the mode [-1,1,2], as it requires less engrgp reach the linear growth
regime. This is also supported by the asymptotic analyses that also show that the

[-1,1,1] mode has a larger asymptotic linear growth rate comared to the mode [-1,1,2].

It is of interest to note that the trend for the Crow instabili ty follows a similar
pattern to the mode [-1,1,1] and [-1,1,2] elliptic instabiity, except that it enters a
broadly linear regime at a signi cantly smaller value of . The Crow instability does
appear to have three separate regions of linear increase imayth ampli cation factor.
The rst region begins from = 0 and nishes at < 0:25 and has a growth rate
of gr = 5:20. The second region begins at = 0:25 and ends at = 1:91 and has
a growth rate of gr = 1:01. For > 1:91, the Crow instability appears to enter
a third region of linear increase of growth ampli cation factor with a growth rate of

cr = 0:625. Another item of interest is that, for 3:47, the Crow instability
exhibits larger growth ampli cation factor than both the mo de [-1,1,1] and [-1,1,2]
elliptic instabilities. This demonstrates that the growth of the Crow instability is more
susceptible to the e ects of transient growth of perturbations than both of the elliptic
instabilities studied here, strongly implying that over short periods of time, the Crow

instability will exhibit larger instability growth.

Figure 3.5 displays the optimal perturbation vorticity mod e shape found from the
transient growth analysis computed at Re = 20 000 for an axial wavenumber ofk a; =
2:12, corresponding to the mode [-1,1,1] elliptic instabiliy for (a) =1:78 and (b) =
2:23. These two values of directly bracket the transition of the growth ampli cation
factor into the linear regime shown in gure 3.4 for the mode [1,1,1] of the elliptic
instability. One major di erence of interest in the optimal p erturbation eld is that,
before the growth ampli cation factor reaches the linear regime, there is no perturbation
within the vortex core (gure 3.5(a)). After the growth ampl ication factor becomes
linear, a weak dipole of perturbation appears within the vortex core that corresponds

to the asymptotic solution of the mode [-1,1,1] elliptic ingability.
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(a)t=178

Figure 3.5: The optimal initial condition of the [-1,1,1] elliptic instability mode comput ed
at Re =20000 andka; =2:12, with (a) =1:78 and (b) =2:23. Axial vorticity contours
are plotted on the base ow (lines) and the linearised perturbation eld ( ooded contours).

(a)r=2.67 (b)yr=3.12

Figure 3.6: The optimal initial condition of the [-1,1,2] elliptic instability mode comput ed
at Re = 20000 andka; = 3:7, with () =2:67 and (b) = 3:12. Axial vorticity contours
are plotted on the base ow (lines) and the linearised perturbation eld (ooded contours).

It is of interest to note that the strongest perturbation in b oth cases in gure 3.5
is the smear of oppositely signed perturbation above the vdex cores. This strongly
implies that the best way to cause an instability to grow is to induce an oscillation
above the vortex pair.

Figure 3.6 displays the optimal perturbation vorticity mod e shape found from the
transient growth analysis computed at Re = 20000 for an axial wavenumber ofk a; =
3.7, corresponding to the mode [-1,1,2] elliptic instability for (a) = 2:67 and (b)

= 3:12. These two perturbation elds directly bracket the transition of the growth
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ampli cation factor into the linear regime shown in gure 3. 4, for the mode [-1,1,2] of
the elliptic instability. The transition of the mode [-1,1, 2] perturbation eld into the
linear regime shown in gure 3.4, is signi cantly more sevee than for the mode [-1,1,1]
elliptic instability shown in gure 3.6. The optimal pertur bation eld transitions from
a single smear of oppositely signed perturbation between # vortices ( gure 3.6(a))
to a perturbation eld resembling the asymptotic solution of the mode [-1,1,2] elliptic
instability (gure 3.6(b)). One item of interest worth noti ng is that a spiral structure
of perturbation has formed around the outside of the vortex ores, as well as a smear of
oppositely signed perturbation above the vortices. This issimilar to the mode [-1,1,1]
elliptic instability shown in gure 3.6. This large change in the optimal perturbation
eld is likely for the same reason as the mode [-1,1,1] elligt instability - the larger
value of allows the perturbation to convect into the cores of the vortices and form

into the structures that resemble the asymptotic solution.

3.3 Vortex lament analysis

Using the vortex lament method developed in x 2.7, a theoretical prediction of the
peak axial wavenumber can be calculated for the equal-stregth, counter-rotating, two-
vortex system. This theoretical prediction can be used to cmpare with the transient

growth analysis.

Figure 3.7 shows the growth ampli cation factor, G( ) computed using the vortex
lament method developed in x 2.7 to create a theoretical prediction of the three-di-
mensional response. It demonstrates that the vortex lamen method predicts a long
wavelength instability at k;a; = 0:08. The long wavelength instability corresponds
relatively well with the predicted peak in the transient growth analysis ofk;a; = 0:154.
It is important to note that the growth ampli cation of the vo rtex lament study is
under-estimated. The under-estimation of the growth amplication is due to the vortex
lament method assuming a speci ¢ mode shape of the instabity (which is controlled
at the beginning of the simulation). In contrast, the transient growth analysis nds
the optimal initial perturbation, limited only by availabl e spatial resolution. This
is demonstrated in the next section where the initial optima perturbations do not

necessarily resemble the nal global instability modes.
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Figure 3.7: Vortex lament growth ampli cation factor G( ) plotted against axial wavenum-
ber ka; computed for Re = 20000. =t,y = 5:35 for these simulations. The solid line
represents the vortex lament study conducted for the long wawelength Crow instability.

3.4 Evolution of the optimal perturbation elds

In this section, the perturbations that lead to optimal energy growth over the time

found as an output of the transient growth method (describedin chapter 2) are
evolved using the linearised Navier{Stokes equations. Th&e simulations are computed
by evolving a base ow and perturbation eld utilising the li nearised Navier{Stokes
equations to prevent the perturbations from causing a chang in the base ow. The
linearised simulations were evolved ta=T,y = 5:35, which provided su cient time for
the perturbation to evolve into a steady state.

Figure 3.8 shows the time history of the perturbation energynormalised by the
initial energy of the solution of the linearised Navier{Stokes equation for both the
Crow and the mode [-1,1,1] elliptic instabilities. Initial ly, the linear perturbation energy
for the mode [-1,1,1] elliptic instability is slightly larg er, only being surpassed by the
perturbation for the Crow instability at around t=Toy = 1:5. This behaviour is a
little surprising as the transient growth analysis implies that the Crow instability will

have a slightly larger growth ampli cation factor in this ve ry early regime, t=Tg < 1
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Figure 3.8: Time history of perturbation energy normalised by initial energy of the solution
of the linearised Navier{Stokes equation. represents the Crow instability (ka; = 0:155) and
4 represents the mode [-1,1,1] elliptic instability ka; = 2:12) cases. The initial perturbation
eld was set from =t,y =5:35.

(gure 3.4). After this time, the linear perturbation energ y in the Crow instability is

greater until =T,y = 3. This behaviour is not surprising as the peak in the growth
ampli cation factor shown in gure 3.2 shows that for values of = 2:67, the peak
in growth ampli cation factor for the Crow instability is la rger than the mode [-1,1,1]
elliptic instability. Following this behaviour, the energy in the perturbation of the

mode [-1,1,1] elliptic instability grows larger for longertimeframes, and this is mirrored
by the peak growth ampli cation factor in the transient grow th analysis for =5:35

demonstrating a higher value for the mode [-1,1,1] ellipticinstability.

3.4.1 Elliptic instability

Donnadieu et al. (2009) noted that for optimal disturbances arising from transient
growth analysis for an equal stength, counter-rotating twovortex system without axial
ow over short times (i.e. = 0:025), the predicted optimal disturbance eld diers
signi cantly from the global stability mode at the same axial wavenumber. They found
that with increasing , the optimal disturbance mode shape approaches that obseed

for the global mode, and the growth ampli cation factor, G, varies exponentially with
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Figure 3.9: Top: The optimal initial condition computed at Re = 20000 andka; = 2:12,
with (&) = 0:446 and (b) 535. Streamlines relative to the vortex pair are plotted on
the right half-plane in (b) to elucidate the location of hyperbolic point s above and below the
vortex pair. Bottom: These optimal perturbations integrated to t=T,y, = 5:35 in a simulation
utilising the linearised Navier{Stokes equations. Axial vorticity cont ours are plotted on the
base ow (lines) and the linearised perturbation eld ( ooded conto urs).

. The present study demonstrates identical behaviour; optmal disturbances captured
at short and long time intervals are shown in gure 3.9. The optimal initial elds di er
markedly. The long- optimal initial disturbance ( gure 3.9(b), top) exhibits s tructures
resembling the global instability modes within the cores ofthe vortices, along with a
band of perturbation vorticity following the streamline, r elative to the right half-plane,
passing through the hyperbolic points (this was also seen byDonnadieu et al. 2009).

In contrast, the vortex cores in the short- optimal initial disturbance eld are
devoid of perturbation vorticity, and the umbrella band of p erturbation above the
vortices lies inside the hyperbolic streamlines. In both istances, after long time inte-
gration, transients die away and the disturbance resembles [-1,1,1] instability mode
(gure 3.1(a)), di ering only by the level of energy ampli ca tion produced.

Figure 3.10 displays the optimal perturbation eld for the [ -1,1,2] mode of the elliptic
instability evolved using a linearised Navier{Stokes soler to prevent the perturbation
from changing the base ow. It is interesting to note that the initial optimal pertur-
bation is very similar to the optimal perturbation for the [- 1,1,1] mode for the longer
wavelength (gure 3.9(a)). The di erence in axial wavenumber means that the pertur-

bation evolves in a di erent manner to the [-1,1,1] mode, evetually growing into the
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Figure 3.10: (a) The optimal initial condition of the [-1,1,2] elliptic instability mode com -
puted at Re = 20000 and ka; = 3:7, with = 0:445. (b)-(f) The optimal perturbations
integrated to t=T,y = 0:89; 1:78; 2:67; 3:56; 4:46. Axial vorticity contours are plotted on the
base ow (lines) and the linearised perturbation eld ( ooded conto urs).

asymptotic solution of the [-1,1,2] mode. It is of interest o note that the perturbation
goes through an intermediate stage resembling the asymptat [-1,1,2] mode (as seen
in Donnadieu et al. 2009) within the the vortex cores ( gure 3.10(c)). However, the
presence of perturbation in the region surrounding the vorex cores causes the pertur-
bation to become signi cantly more agitated ( gure 3.10(d)) before it settles into a
perturbation roughly corresponding to the asymptotic perturbation eld, but with the

perturbation dipole not quite at 45° to the horizontal plane ( gure 3.10(e)). After fur-
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ther time, t=Toy  4:46, the perturbation nally settles at 45° to the horizontal plane

(‘gure 3.10(f)), corresponding to the asymptotic solution.

3.4.2 Crow instability

Figure 3.11 displays the optimal perturbation eld for the | ong-wavelength Crow in-
stability evolved using the linearised Navier{Stokes soler to prevent the perturbation
from changing the base ow. Figure 3.11(a) shows the initialoptimal perturbation eld
found through the transient growth analysis method with the base ow vortices over-
layed as lines while (b)-(h) shows the temporal evolution ofthe perturbation eld. The
initial optimal perturbation eld shows a strong streak of v orticity between the vortex
pair along x = 0 and a signi cantly weaker halo encircling the vortices, in a similar
manner to that seen in gure 3.9(b). This initial perturbati on eld is very similar to the
optimal eld found by Brion et al. (2007). After a short evolution, a stronger eld of
positive and negative axial vorticity forms beneath the par of vortices ( gure 3.11(b)).
By t=T,y = 1:34, a strong dipole has formed within the cores of the vortics, arranged
at approximately 50 to the line between the centres of the vortex cores, with a thm,
but strong, region of vorticity surrounding the vortex pair (gure 3.11(d)). As the ow
is evolved further to t=T,y = 1:78, the vorticity far outside the vortex cores begins to
damp out, while the dipole within the vortex cores continuesto settle to approximately
45 to the line between the centres of the vortex cores ( gure 3.1(e)). After a longer
period of time, t=T,y = 3:12, all of the perturbation vorticity outside the vicinity o f
the vortex cores have decayed, leaving the strong perturbabn dipole ( gure 3.11(h)),

which is consistent with previous studies of the Crow instalility (Brion et al. 2007).

3.5 Direct numerical simulation

In this section, a number of three-dimensional simulationswere conducted to study the
response of the two-vortex ow to seeding by both the optimal perturbations shown in
the previous section, and by white noise. Both the short-waelength elliptic instability
and the long-wavelength Crow instability are considered inisolation in di erent simu-
lations. For these simulations, the polynomial order was seto p, = 13 with 16 Fourier
modes @ = 16) included in the axial discretization. The periodic wavelength of the
axial domain was selected to encompass a single axial wavefgh of the instability of

interest.
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Figure 3.11: (a) The optimal initial condition for the Crow instability computed at Re =
20000 andka; = 0:155, with = 5:35. (b)-(f) The optimal perturbations integrated to
t=Toy = 0:89;1.78; 2:67; 3:56; 4:46; 5:35; 6:24. Axial vorticity contours are plotted on the base
ow (lines) and the linearised perturbation eld ( ooded contours) .
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Figure 3.12: Time history of perturbation energy normalised by initial energy (E(0)). The
dashed line represents the solution of the linearised Navier{Stokesquation and the solid line
represents the energy in the non-zero Fourier modes of the DNSSimulations were seeded
with the optimal disturbance eld predicted for = 5:35. The axial wavenumber was set
to ka; = 2:12, corresponding to the dominant wavenumber of the mode [-1,1,1¢lliptic
instability.

Figure 3.12 shows a time history of the energy in the perturbfions, normalised by
the initial energy in the perturbations. Up to t=Tyy 1.5, both sets of data follow
almost exactly the same trend. After that time, the energy in the perturbation evolved
with the linearised Navier{Stokes equations continues to gow at the same rate, reaching
E(t)=E(0) 25000 att=T,y = 3:65. The perturbation energy in the DNS tapers o
after t=Toy 1.5 as non-linear e ects lead to saturation of the three-dimengnal ow
structures, causing the mode to be less conducive to growthThe perturbation energy
in the DNS reaches a peak energy o (t)=E(0) = 1550 at t=Toy = 3:38. Thereafter
it plateaus, as the ow eld is no longer conducive to growth of the instability (also

shown by Schae er & Le Dizs 2010).

The evolution time history in the Crow instability will now b e considered. Fig-
ure 3.13 shows a time history of the energy in the perturbatio, normalised by the
initial energy in the perturbations. Up to t=Tyy 1:75, both the data sets fol-

low similar trends, with the linearised solution producing slightly higher energy. For
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Figure 3.13: Time history of perturbation energy normalised by initial energy (E (0)). The
dashed line represents the solution of the linearised Navier{Stokesquation and the solid line
represents the energy in the non-zero Fourier modes of the DNShe perturbation that leads
to optimal energy growth was from =5:35. The axial wavenumber was set aka; = 0:155
to correspond to the Crow instability.

t=Toy 175, the DNS starts to become non-linear and the energy growttbegins to
plateau slightly compared to the energy in the perturbation in the simulation using
the linearised Navier{Stokes equation. Even after signi ant evolution of the DNS, the
perturbation energy is still very similar to the simulation evolved using the linearised
Navier{Stokes equations. This implies that the predominart mechanism of the Crow

instability is the linear evolution of the perturbations.

Figure 3.14 shows the energy in the perturbations for both tve-vortex ows seeded
with the optimal perturbations (described in x 2.4) for the [-1,1,1] elliptic instabil-
ity and the Crow instability (shown in gure 3.9(a) and 3.11( a)), and the same ows
seeded with white noise, normalised by the initial energy inthe perturbations. The
axial wavenumber for the elliptic and Crow DNS studies are tle same as those exam-
ined for the linearised studies. The base ow for all the DNS ases is the same, except
for the di erence between the axial wavenumber of the elliptc and Crow instability.
Perturbation energy from the DNS simulations demonstratesoverwhelmingly that op-

timal disturbances yield energy growths vastly larger thanthe cases seeded with white
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Figure 3.14: Time history of perturbation energy, normalised by initial energy. and 4
represents the Crow instability (ka; = 0:155) and elliptic instability ( ka; = 2:12) cases
respectively. Solid lines represent the cases seeded with the optitnperturbation; dashed
lines represent the cases seeded with white noise.

noise over a signi cantly shorter period of time. The cases seded with white noise
require signi cantly longer evolution times for the instability modes to emerge from the
white noise. For the case of the short-wavelength elliptic mstability seeded with white
noise here, it is just beginning to grow att=Ty,y 5. This is because only specic
invsicid modes are susceptible to growth in this kind of ow, and so can draw energy
from the base ow eld into the Fourier modes. Therefore, over the initial phase of
the simulation, the energy time history is dominated by the decay of the majority of
the modes contained in the white noise perturbation. This deay removes energy in
the perturbation through the e ect of damping due to viscosity until the growth of the
unstable mode dominates the perturbation energy. After a gjni cant period of time,
the cases seeded with white noise demonstrate similar groiwtto the cases seeded with
the optimal perturbation. For the elliptic instability, th e perturbation only reaches the
initial energy after t=Toy  6:4: a signi cant delay in the growth of instabilities that
lead to the destruction of the vortices. The Crow instability requires even more time for
the perturbation energy to reach a magnitude of the initial seeding energy, occurring

after t=Toy  9:35. It is important to note that, because the white noise seethg is a
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random combination of many modes of varying magnitude, the werall time required
for the ow to enter an obvious linear growth regime may shift slightly when repeat-
ing these simulations. In the cases seeded with the optimal grturbations, the modes
that can draw energy from the base ow eld are arti cially pr omoted, overcoming the
damping e ect of viscosity. This demonstrates that, if an aircraft wake can be seeded
with an optimal perturbation, the time it takes to be destroy ed can be signi cantly
reduced over the time they would take to dissipate followinginstability growth from

ambient turbulence in the air alone.

The cases seeded with the optimal perturbations, as shown ithe previous section,
demonstrate signi cant growth as soon as the ows are seededand rapidly become
non-linear. It is interesting to note that initially the nor malised energy is greater in
the short-wavelength elliptic instability (until t=T,y 1), but leads to a lower energy
(E(t)=E(0)  10®) upon saturation. Given that the vortex core radius ay has only
increased by 2% att=T,y = 1 (according to the rst order approximation), it is highly
unlikely that the increase in vortex core size is a key factoin this e ect. By contrast, the
long-wavelength Crow instability demonstrates a lower nomalised energy initially, but
surpasses the short-wavelength elliptic instability att=T,y 1 and reaches a normalised
energy almost an order of magnitude higher =T,y  4:3). As shown previously, the
Crow instability is only just diverging from linear growth, showing that this delay in
non-linear growth can lead to a signi cantly higher perturbation energy. This is an
interesting outcome, and demonstrates that the non-lineare ects cause a signi cant
change in the perturbation energy of the two cases, as the pety linear case shows the
energy in the perturbation of the elliptic instability to al ways be of greater magnitude

then the Crow instability ( gure 3.8).

Figure 3.15 shows a time history of the perturbation energy gowth rate, g, for the
mode [-1,1,1] elliptic instability at an axial wavenumber of ka; = 2:12. It shows that,
for both the optimal and white noise cases, they reach a linaastage where the growth
rate is constant around gr  0:14. It is interesting to note that the case seeded with
the optimal perturbation reaches this linear growth regimein approximately 14% of the
time taken by the case seeded with white noise. Another poinof interest is that the case
seeded with the optimal perturbation begins with a signi cantly higher growth rate, and
actually drops in growth rate to reach the linear regime. This is interesting as it is the

opposite to the case seeded with white noise. This higher gngh rate before the linear
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Figure 3.15: Time history of perturbation energy growth rate, ggr, for the mode [-1,1,1]
elliptic instability at an axial wavenumber of ka; =2:12. The dashed line with  represents
the case seeded with white noise and the solid line witdl represents the case seeded with
the perturbation that leads to optimal energy growth.

regime indicates that the energy in the perturbation will be greater before entering the
linear regime, which explains why the linear region of instdility growth for the case
seeded with the optimal perturbation is signi cantly short er - approximately half the
time - than the case seeded with white noise. The drop in growt rate after the linear
regime demonstrates the ow becoming non-linear, and occw once the perturbation
energy saturates. Since the perturbation energy is greatein the case seeded with the

optimal perturbation, it will reach this saturation criter ion earlier in the linear regime.

3.5.0.1 Comparison of strain rate to growth rate

Previous literature has found a theoretical relationship between the growth rate of the
elliptic instability and the strain rate imposed on a vortex. For a single, unbounded

vortex in a strain eld, the growth rate is related to the stra in through the relationship
= — (3.1)

where is the growth rate of the instability (calculated from the velocity) and is

the strain imposed on the vortex core Wale e 1990; Leweke & Williamson 1998;
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Kerswell 2002). Wale e (1990) also determines that viscosit in the uid has the e ect
of reducing the maximum growth rate due to a decay term of k 2v2. In the current
study, the growth rate is found to be gr  0:14, with a strain rate of = 0:221. While
the ratio of gr= = 0:636 it is important to note that ggr is calculated with respect
to the energy, and so is double what the growth rate calculatd from velocity would be.
Taking this into account, the growth rate, based on velocity, is well within the range
expected for a vortex in an externally imposed strain eld with viscosity (Wale e 1990;

Leweke & Williamson 1998).

3.5.1 Crow instability

Visualisation of the evolving three-dimensional structures will now be described. Many
of the visualisations are plotted with iso-surfaces of ,. The , eld is de ned as the
criterion for identi cation of a vortex proposed by Jeong & Hussain (1995). The iso-
surfaces are overlaid with ooded contours of the dominant $rain, which is de ned in
chapter 2.

Figure 3.16 shows a time sequence of iso-surfaces of plotted from a three-dimen-
sional DNS of the two-vortex long-wave instability case inwestigated inx 3.2.2. The left
side shows the case seeded with the optimal perturbations gplayed in the previous
section, while the right side shows the case seeded with wigtnoise of a similar energy
magnitude. The case seeded with the optimal perturbation gickly begins to deform.
This sinuous deformation to approximately 45, symmetrical about the x = 0 plane,
is consistent with the Crow instability (Crow 1970). The lon g-wavelength case seeded
with white noise displays no discernable instability growth. This is not to say that the
instability is not there, but that the instability growth is insu cient to be noticeable
over the time interval shown here.

The ooded contours of dominant strain in gure 3.16(a v) demonstrate that the
strain on the vortices increases signi cantly at the apex ofthe vortices as they are

drawn together.
3.5.2 Mode [-1,1,1] elliptic instability

Figure 3.17 shows a time sequence of iso-surfaces ofplotted from a three-dimensional
DNS of the two-vortex short-wavelength instability (mode [-1,1,1] elliptic instability)
case investigated inx 3.2.1. The left side shows the case seeded with the optimal

perturbations displayed in the previous section, while theright side shows the case
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Figure 3.16: Time sequences of iso-surfaces of, plotted from a three-dimensional simu-
lation of the two-vortex case with an axial extension correspondiig to the Crow instability
at a wavenumber ofka; = 0:155. The iso-surfaces are ooded with the dominant strain.
Re = 20000 for these simulations. (a i)-(a v) displays the ow seeded wih the perturbation
that leads to optimum energy growth at t=T,y = 0;0:891;1:783 2:67; 3:565 respectively. (b
i)-(b v) displays the ow seeded with white noise at the same times.
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Figure 3.17: Time sequences of iso-surfaces of, plotted from a three-dimensional simula-
tion of the two-vortex case with an axial extention correspondingto the elliptic instability
at a wavenumber ofka; = 2:12. The iso-surfaces are ooded with the dominant strain.
Re = 20000 for this simulations. (a i) - (a v) display the ow seeded with th e perturbation
that leads to optimum energy growth at t=T,y = 0;0:891;1:783 2:67; 3:565 respectively. (b
i) - (b v) display the ow seeded with white noise at the same times.
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seeded with white noise with a similar energy magnitude. It § interesting to note that,
in a very short timeframe, the ow seeded with the optimal perturbation quickly causes
the vortex pair to deform as a sinuous waviness along the axialirection. As can be seen
in gure 3.17(a iii), this deformation of the vortex core occurs at approximately 45 to
the horizontal plane. As is typical of the elliptic instabil ity, the left vortex is deformed
at approximately +45 while the right vortex is deformed at approximately 45 to
the horizontal plane between the vortex cores, with positie angle taken clockwise from
the left of the vortex. As the ow evolves, azimuthal vortex laments form around
the cores of the vortices with high levels of dominant strainin the outside of the
‘bows' of the deformed vortex cores ( gure 3.17(a iv)). Oncethe ow reaches longer
times, the vortex cores rapidly become highly disturbed, agan be seen in gure 3.17(a
v). This transformation into small scale ow structures is t he nal stages of vortex
destruction before the ow reaches a scale that can be dampedut by the uid viscosity.
Close examination of the small scale ow structures att=T,y = 5:565 showed that the
structures are of an order of ve times the local grid mesh. Sapshots, which are not
shown in this thesis, closer to the simulation divergence, lsow di erent ow structures
that are of a scale of the local grid mesh and are obviously aifacts of computational
aliasing. In addition, the azimuthal vortex laments have extended to surround the
bottom half of the vortices. In contrast there appears to be ro discernable instability
in the case seeded with white noise, even after a signi cant @riod of time (gure 3.17(b
Vv)). As with the previous case investigating the Crow instahlity, the case seeded with
white noise does have an instability present, though the magitude is not of su cient

size to be observable.

3.6 Transition into non-linear growth

In this section, the transition of the ow into the non-linea r growth regime is studied.
This transition into the non-linear growth regime is characterised by bulk changes in
the base ow eld caused by the growth of the instabilities. Fields of o, [ 7+ ! Z]%°
andj! j are used to interrogate the evolution of the three-dimensioal modes.! y and
I « are the components of vorticity about the y and x axes respectively. The , eld

is used as it shows the presence of a vortex and can show how eoént the vortex is
during the breakdown. The presence of ow in the [ 7+ ! 2% eld demonstrates the

transition of ow from two-dimensional ow in the x{y plane to three-dimensional ow.
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Figure 3.18: Time sequences of iso-surfaces o with dominant strain ooding plotted from

a three-dimensional simulation of the two-vortex case with an axialextension corresponding
to the Crow instability at a wavenumber of ka; = 0:155. Re = 20000 for this simulation.
(a)-(f) display the ow seeded with the perturbation that leads to optimum energy growth
( =5:35) at t=Toy = 3:12;3:30; 3:47, 3:65; 3:83; 4:01 respectively.

Thej! | eld shows the overall structure of the ow as it transitions into the non-linear

regime.

3.6.1 Crow instability

Figures 3.18 - 3.20 show a top-down view of the iso-surfacesrfthe long-wavelength
Crow instability case seeded with the optimal perturbation. Figure 3.18 shows that
the dominant mode for the Crow instability causes a sinusoidl distortion in the vortex
pair, symmetrical about the plane separating the vortices. The dominant strain for the
Crow instability is con ned to the region that is most distor ted by the instability - the

central "bow' in the vortices. This strain becomes large whe the most deformed section
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Figure 3.19: Time sequences of iso-surfaces of thé J + ! 7]° eld with dominant strain
ooding plotted from a three-dimensional simulation of the two-vortex case with an axial
extension corresponding to the Crow instability at a wavenumber ofka; = 0:155. Re =
20000 for this simulation. (a)-(f) display the ow seeded with the perturbation that leads to
optimum energy growth ( = 5:35) at t=T,y = 3:12; 3:30; 3:47, 3:65; 3:83; 4:01 respectively.

of the vortices approach each other ( gure 3.18(f)). This baving of the vortices is typi-
cal of the Crow instability, and has been shown in previous lierature to lead eventually
to the vortices joining to form vortex rings, with a diameter approximately equal to
the instability wavelength (Leweke & Williamson 2010). It i s interesting to note that
a short wavelength instability is becoming apparent in gure 3.18(f). This short wave-
length instability could be the beginning of an elliptic instability as is has been shown
previously that the interaction of the Crow and elliptic ins tability produces greater

ability for the large scale energy to be distributed to smaler scales more e ectively
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Figure 3.20: Time sequences of iso-surfaces of vorticity magnitude with dominanstrain
ooding plotted from a three-dimensional simulation of the two-vortex case with an axial
extension corresponding to the Crow instability at a wavenumber ofka; = 0:155. Re =
20000 for this simulation. (a)-(f) display the ow seeded with the perturbation that leads to
optimum energy growth ( =5:35) at t=T,y, = 3:12; 3:30; 3:47, 3:65; 3:83; 4:01 respectively.

than either instability alone Leweke & Williamson (1998). The increased magnitude
of the short wavelength instability where the vortices are doser, and therefore more
highly strained, indicates that it is likely an elliptic ins tability.

Figure 3.19 shows iso-surfaces of the § + 1 2]%° eld, again ooded with the dom-
inant strain. It shows that even late in the evolution, the o w is predominantly two-
dimensional in the axial direction with very little vortici ty in directions other than the
axial direction ( gure 3.19(a)). As the vortices become highly deformed, the magnitude

of the vorticity in directions other than the axial directio n grows in the regions other
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Figure 3.21: Time sequences of iso-surfaces of with dominant strain ooding plotted from

a three-dimensional simulation of the two-vortex case with an axialextension corresponding
to the elliptic instability at a wavenumber of ka; = 2:12. Re = 20000 for this simulation.
(a)-(f) display the ow seeded with the perturbation that leads to optimum energy growth
( =5:35) at t=Tpy =1:87;2:05;2:23; 2:41; 2:58; 2:76 respectively.

than the middle or ends of the vortices (gure 3.19(d)). Later in the evolution, the
magnitude of vorticity in directions other than the axial be gins to grow into the central
region where the ow is highly strained (red region in gure 3.19(f)).

It is interesting to note that gures 3.18 and 3.20 are very similar in structure.

2 exceeds that of the

Due to the nature of the » eld, any locations where the !

dominant strain (de ned in chapter 2), the local uid ow is d ominated by the axial
vorticity and the » eld will identify a vortex core at this location. Conversely, when
the magnitude of the dominant strain is greater than the ! fy, the local uid ow is
dominated by the strain eld and the , eld will not identify a vortex core at this
location (Jeong & Hussain 1995). This similarity between the , eld and vorticity
magnitude demonstrates that the the axial component of stran rate is lower than the
vorticity magnitude and perpendicular to it throughout the transition into non-linear
instability growth. The lack of di erence between gure 3.19 and 3.20 implies that the
vast majority of the vorticity is con ned to the axial plane t hroughout the transition

into non-linear instability growth.

3.6.2 Mode [-1,1,1] elliptic instability

Figures 3.21 - 3.23 show a view from below of the iso-surfacésr the short-wavelength

mode [-1,1,1] elliptical instability case seeded with the ptimal perturbation. This view
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Figure 3.22: Time sequences of iso-surfaces of thé ] + ! £]° eld with dominant strain
ooding plotted from a three-dimensional simulation of the two-vortex case with an axial
extension corresponding to the elliptic instability at a wavenumber ofka; = 2:12. Re =
20000 for this simulation. (a)-(f) display the ow seeded with the perturbation that leads to
optimum energy growth ( =5:35) at t=T,y = 1:87;2:05; 2:23; 2:41; 2:58; 2:76 respectively.
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Figure 3.23: Time sequences of iso-surfaces of vorticity magnitude with dominanstrain
ooding plotted from a three-dimensional simulation of the two-vortex case with an axial
extension corresponding to the elliptic instability at a wavenumber ofka; = 2:12. Re =
20000 for this simulation. (a)-(f) display the ow seeded with the perturbation that leads to
optimum energy growth ( =5:35) at t=T,y = 1:87;2:05; 2:23; 2:41; 2:58; 2:76 respectively.
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is chosen to highlight the ow structures that occur as the eliptic instability enters the
non-linear regime. Figure 3.21(a) shows that, when the elptic instability has grown to
the stage when it begins to cause a bulk change in the base owt begins by deforming
the vortex pair at approximately 45 with respect to the line between the centres of
the vortex cores. The dominant strain on the vortices is maxmum on the inside of the
bend in the vortex, as is shown on the left hand side of gure 31(a). This peak in
dominant strain increases and spreads over the outside of thbend, as shown in light
blue on the right of gure 3.21(c). Figure 3.21(d) shows that lobes of , are beginning

to form o the primary vortex pair and grow larger during the e volution.

Figure 3.22 shows iso-surfaces of the § + 1 Z]*> eld ooded with the dominant
strain. It shows that early in the transition to the non-line ar regime, the ow is predom-
inantly two-dimensional with only a small amount of [! Z+ 1 Z]° present ( gure 3.22(a))
where the vortex cores are becoming distorted in a sinuous nmaer ( gure 3.21(a)). At
t=Toy = 2:05, regions of [ 7 + ! 7] occur on the outside of the vortex cores, approxi-
mately perpendicular to the vortex cores (gure 3.22(c)). These regions of![Z + I £]0°
grow into long lobes that begin to encircle the vortex cores @ure 3.22(d)). As the ow
evolves into highly three-dimensional ow, the lobes of [ + ! 7] almost completely
encircle the vortex cores, while the elds within the vortex cores grow to dominate the
vortex core (gure 3.22(f)). The regions of highest dominart strain (coloured red in
the ooded contours) correspond with the regions of the vorex cores that are most

distorted.

Figure 3.23 shows iso-surfaces of vorticity magnitude, oded with the dominant
strain. A comparison of gures 3.23(a) - (c) with gures 3.21(a) - (c) shows that
the elds are the same, demonstrating that the ! 2 eld is higher than the dominant
strain. This indicates that the ow is dominated by the axial vorticity, and so the

o eld identi es a vortex core where the vorticity magnitude i s dominated by the
axial vorticity. As the ow evolves, the dominant strain bec omes greater than the
| 2 eld, showing dierences between the iso-surfaces of , and vorticity magnitude
(‘gures 3.21(d) and 3.23(d) respectively). These regions gw, forming lobes of vorticity
magnitude ( gure 3.23(f)) that are not present in the , eld (gure 3.21(f)).
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3.7 Summary

This chapter reported on the results of a study into the dynamics of an equal strength,
counter-rotating, two-vortex system as a model of an aircrdét wake created by the
wings of the aircraft. The study began with a transient growth analysis at a range
of axial wavenumbers. This study found that the rst two Kelv in modes, [-1,1,1] and
[-1,1,2], require a certain amount of time before they becom apparent in the transient
growth analysis. The [-1,1,1] mode only becomes apparent at = 2:67 with an axial

wavenumber of ka; = 2:12. The second mode, [-1,1,2], appears at = 3:56 with

an axial wavenumber ofka; = 3:7. It is interesting that, for the values of that

were investigated, the Crow instability becomes apparent & = 1:78 with an axial

wavenumber of ka; = 0:155. This is of interest as the literature had identi ed the

global mode of the Crow instability with an axial wavenumber of ka = 0:18 (Brion

et al. 2007).

The transient growth analysis provides the perturbation that will lead to optimal
energy growth, and an analysis of these elds for the Crow andelliptic instability
was conducted. In addition, the elds were evolved using thelinearised Navier{Stokes
equations and investigated. It was found that the elliptic instability formed into the
asymptotic solution of a pair of dipoles similar to that found in the literature. While
the initial optimal perturbation eld for the Crow instabil ity at an axial wavenumber
of ka; = 0:155 looks very di erent to the global mode, it does evolve intothe global
mode after a short period of time.

Next, a DNS study was conducted on both the elliptic and Crow nstabilities, in-
vestigating the e ect of seeding the ow with the optimal pert urbations against white
noise of similar energy magnitude. To the author's knowledg, this is the rst time
such a study has been conducted. This study found that the ingbility in the DNS
seeded with the optimal perturbation quickly grew to a stage where it became non-
linear and caused the base ow to deform signi cantly. By cortrast, the perturbation
that consisted of white noise began to decay almost immedia&ly before growing after a
very long period of time. This decaying of the white noise peturbation is because only
a small number of instability mode shapes are conducive to gwth. Because of this,
the overall energy in the perturbation will appear to decay avay, while the mode that
is conducive to growth will begin at a very small magnitude ard take a long period of

time to grow to a magnitude where the total perturbation energy is dominated by the
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energy of the modes conducive to growth.
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Chapter 4

Results: Kinematics and stability
of an equal-strength four-vortex
system

This chapter covers the study of a four-vortex, counter-rofating aircraft wake model
with symmetric vortex strength about the vertical mid-plan e. This model is applicable
to the far wake of virtually any xed-wing aircraft, and also considers the e ect of
vertical displacement of the tail vortex pair. This signi ¢ ant vertical displacement is
common on heavy lift aircraft as it allows for a design that facilitates easy loading of

large items into the aircraft.

4.1 Equal-strength four-vortex system model

The initial position of the four-vortex system has already been de ned in chapter 2.
Figure 2.4 displays the initial positioning of the four-vortex systems for the high and
at tail models. Figure 2.4(a) shows the control case of the “at tail' con guration with
h=b, = 0. Figure 2.4(b) shows the “high tail' case with the tail vortex pair displaced
vertically with h=by, = 0:2. This was chosen to correspond to the vertical displacemen
of the tail of the C-17 Globemaster aircraft relative to its wings. In chapter 4, a value
of »,= 1 = 0:4 was chosen for the ratio between the wing and tail circulatbn and
this corresponds to the values found in the literature for a keavy lift aircraft in landing
con guration (Rennich & Lele 1999). The horizontal displacement of the tail to wing
vortex separation was chosen to béyp=h = 0:38, which corresponds to the ratio of wing
to tail span of the C-17 Globemaster aircraft.

For these studies,a;=h = 0:176 and the ratio of tail vortex core size,a,, to wing

vortex core size isay=a; = 0:5. This was chosen to make the tail vortices self-similar
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Figure 4.1: Contour plots of vorticity for the initial conditions of the ( a) at tail and ( b)
high tail case in two-dimensional space. Contour lines represent unincrements in non-
dimensional vorticity. The minimum and maximum vorticity levels were -8 and 8 in the left
and right tail vortices respectively. Dashed lines represent negate vorticity levels.

to the wing vortices.

All times are normalised by the initial orbit period of the ta il vortex, Tp, around
the wing vortex, consistent with previous four-vortex studies (Crouch 1997; Fabre &
Jacquin 2000; Crouchet al. 2001). To was calculated from a two-dimensional DNS of
the "high tail' case and the same value is used throughout, athe orbit period is the

same for the “high tail' and " at tail' cases.

4.2 Two-dimensional ow

In this section, the two-dimensional kinematics of the couter-rotating four-vortex
model are considered rst. Following this the circulation history of the vortices are
considered, followed by the long-term stability of the sysem. The linearised transient

growth model is considered last to elucidate the observatios from the DNS.

421 Two-dimensional kinematics

To consider the two-dimensional kinematics, two cases wereomputed: the “high tail’
and " at tail' cases described inx 4.1. Figures 4.2 and 4.3 plot the trajectories of the
vortices over 0 t=Tg 0:5 for the " at tail' and “high tail' con gurations respectiv ely.

Throughout this initial stage of their evolution, both cases are symmetric about the
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Figure 4.2: A time sequence of contour plots of vorticity for the " at tail' case at (a)
t=To =0, (b) 0.25 and (c) 0.5. Contour lines are at vorticity increments of 2. The minimum
vorticity is -8 and the maximum is 8 in the right- and left-tail vortex re spectively. Dashed
and solid lines represent negative and positive vorticity respectively The dashed-dot line
showsy = 0. The thin line with arrows shows the trajectory from the initial co n guration of

the four vortices.

vertical mid-plane. Figure 4.2 visualises the ow for the * at tail' two-dimensional case.
This gure shows that the wing vortex pair only descends a sm#l amount through
0 t=To 0:5. Figure 4.3 shows that the tail vortex pair descends consierably
faster in the “high tail' con guration during the same time p eriod. In both cases the
vortices adapt to the strain elds present from the surrounding vortices, with the wing
and tail vortices all becoming elongated into elliptical shapes. An investigation into
the strain rate is covered later in detail in x 4.2.4. Figures 4.2 and 4.3 show that a
small di erence in the initial vertical displacement of the tail can have a signi cant
e ect on the movement of the vortex pair produced by the main wing over a short
timeframe. They also show that (at least initially) the ows are re ectively symmetric
about the vertical centreline, and the weaker tail vortices orbit around their respective

wing vortices.

The respective vertical travel of the wing vortex pairs for the two cases is considered

in gure 4.4. As can be seen, the wing vortex pair in the " at tail' case only travels
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Figure 4.3: A time sequence of contour plots of vorticity for the “high tail' case & (a)
t=To = 0, (b) 0.25 and (c) 0.5. Contour scale and lines are as per gure 4.2.

to a vertical displacement of approximately 0.36y from its initial position by time

t=To = 0:5, where as a change in the initial vertical displacement oflhe tail vortex pair
by as little as 0.2, causes the wing vortex pair to descend to approximately 0.8% over
the same normalised time period. This large di erence in wingvortex drop is due to
the tail vortex pair providing a downward induced velocity over a longer part of the
cycle in the initial stages before each tail vortex swings beeath the corresponding wing

vortex.

The behaviour shown in gure 4.2 and 4.3 can by extension shovthat as the tail
vortices orbit the wing vortices, the downward propagation speed will vary signi cantly
throughout the orbit period. This is due to the induced velodity on the wing vortex pair
by the tail vortex pair changing direction as the tail vortex pair orbits the wing vortex

pair. For example, when the tail vortices are inside the wingvortices, their induced
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Figure 4.4: A plot of drop, against normalised time, t=T, of the centre of the wing vortex
core, vy, for the “high tail' and " at tail' cases. The dashed line represents the " at tail' case
and the solid line represents the “high tail' case.

velocity acts to push their respective wing vortices downwad, whereas when the tail
vortices are outside, their induced velocity acts to retardthe downward trajectories of
the system. This rotation of the tail vortex pair will also in duce a vibration in the wing

vortex pair over the period of rotation of the tail vortex pair.

4.2.2 Vortex circulation history

This section examines the change in circulation of the wing ad tail vortices for the
“high tail' and " at tail' cases. Figure 4.5(a) shows that the general trend of the tall
circulation for both cases exhibits a decay in a qualitativdy similar manner. Given that
the Re of both cases is the same, the circulation decay is dependennly on viscosity.
The “high tail' case exhibits a small but sudden drop in circdation around t=Tp = 1:5,
which will be discussed shortly. The circulation for the wing vortex in both cases decays
at a relatively constant rate, implying that viscous di usio n dominates the circulation
reduction process and is una ected by the initial vertical displacement of the tail vortex
pair. It is interesting to note that the decay rate of both the tail and wing vortices is
approximately the same, implying that the decay rate is indgpendent of circulation.
The small increase in circulation in the “high tail' wing vortex at t=To  4:25 is
due to a postprocessing artifact, as a symmetry breaking insbility shown in the next

section causes some of the circulation from the tail vortex o the other side of the
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Figure 4.5: (a) Time evolution of the circulation of the positive tail and wing vorte x. The

dashed lines show the circulation for the " at tail' cases and the solid lires show the “high
tail' cases. (b) Plot of the drop in tail vortex circulation to time t=Ty = 1:5 for the "high

tail' case normalised by the initial tail vortex circulation, , as the weaker tail vortices pass
between the stronger wing vortices against initial separationbhy=a,. Re = 20000 for these
simulations.

vertical mid-plane to enter the integration area used to catulate the circulation.

A number of two-dimensional simulations were run to examinethe circulation drop
present in gure 4.5(a) at t=To = 1:5 for the "high tail' case. The only variable that
was changed was the vortex separatiorip=ag, Starting at by=ay = 5:67 used for the
reference case, and increasing tth=ay = 7:20 where the circulation drop is almost
negligible ( = 0:018). Figure 4.5(b) shows that the tail circulation drop present in
gure 4.5(a) at t=Tg = 1:5 for the "high tail' case, is directly related to the initial
horizontal spacing of the vortex system. When the vortices & placed closer together,
more circulation is pulled o the tail vortex pair by the wing vortex pair as they are
strained through the small space between the stronger wing artex pair. It is this
process that leads to the sudden circulation decrease seeor fthe “high tail' tail vortex

in gure 4.5(a).

4.2.3 Two-dimensional stability

This section examines the two-dimensional stability of the high tail' and " at tail' sys-
tems by examining the u-velocity component recorded at the position (0,0). Figure4.6
shows a time history of theu-velocity component recorded at the position (0,0) for the

" at tail' and “high tail' cases described in the previous setion. If the ow remains
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Figure 4.6: Plot of velocity in the x-direction against time for the position (0,0). T he solid
line represents the velocity for the "high tail' case and the dashed lineepresents the at tail
case. The contour plots show the vorticity of the " at tail' and “high t ail' con gurations as
show att=Tp = 5. The minimum vorticity is -4 and the maximum is 4 in the right and left
wing vortex respectively. Each contour line represents an unit incement of vorticity. Dashed
and solid lines represent negative and positive vorticity respectively

symmetrical about x=b; = 0, then the u-velocity at this point will remain zero. While
any number of points would provide information about a break in symmetry about
x=b; = 0, the location (0,0), between the wing vortices, lies in what is presumed to be
the most sensitive position for asymmetry to be exhibited. As can be seen in the gure,
the " at tail' case begins to show a slight disturbance in the velocity at t=Tg 2:6, as
the tail vortex pair is squeezed between the wing vortex pair This velocity disturbance
increases in magnitude as a major symmetry-breaking instaility develops in the ow.
The inset vorticity contour plot shows that by t=Ty = 5, the former re ective sym-
metry has been completely destroyed. This symmetry-breakig instability ultimately
causes the system to become severely unbalanced. This syminyebreaking instability

is covered in greater detail inx 4.2.5.

It can been seen in gure 4.6 that the "high tail' case underges a similar symmetry-
breaking instability, but while it is seen to develop at the same part of the tail orbit

cycle, when the tail vortex pair passes between the wing voex pair, its magnitude
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is signi cantly smaller than that produced by the " at tail' arrangement at the corre-
sponding point in the cycle. As a result of this, the “high tal' case is not as unbalanced
as the " at tail' case at t=Tg = 5. The spikes in u-velocity are due to only one vortex
being in the region between the wing vortex pair. The higher pike in u-velocity for

the " at tail' case is due to this case being more asymmetric han the "high tail' case
around t=To 4.

These simulations were not explicitly perturbed, but instead the symmetry-breaking
disturbance has developed from noise at the limit of machingrecision. This demon-
strates the extraordinary ampli cation of disturbances produced by these ows, and
motivates the employment of transient growth analysis to investigate two- and three-
dimensional perturbations throughout this thesis. The resilts in gure 4.6 imply that
the " at tail' case is more susceptible to white-noise distubances over a long time-
frame in a two-dimensional plane. This is most likely due to he tail vortex pair in the
" at tail' case beginning in a highly strained region between the stronger wing vortex
pair. This also implies that the initial position of the tail vortex pair in relation to the
wing vortex pair will have a signi cant e ect on the onset of th e symmetry breaking

instability.

4.2.4 Strain rates at vortex centres

The strain rate (de ned in x 1.2.2) was calculated at the centres of the vortices and thei

time histories are plotted in gure 4.7. The externally imposed strain on a vortex is

the primary driving mechanism in the elliptic instability, as it causes the circular cross
section of the vortex to become elliptical (Moore & Saman 195; Tsai & Widnall
1976). As this is the primary driving mechanism for the elliptic instability, it is useful
to understand how the strain varies through time.

It is interesting to note that the strain at the wing vortices is almost exactly the
same for both the “high tail' and " at tail' cases. In contrast, the strain at the tail
vortices does di er a signi cant amount, with the strain at th e tail vortex of the “high
tail' case being higher for 0 t=Tg 0:5. This signi cantly higher strain rate is due to
the initial state of the tail vortices just entering the high ly strained region between the
wing vortex pair. Initially, the “high tail' tail vortex exp eriences slightly less strain than
the " at tail' tail vortex, as it is slightly further from the cores of the wing vortices.

However, as it convects into the highly strained region, thetail vortices experience an

106



25 T T T T T T T T T T T T T

Figure 4.7: Plot of strainrate, sgr, against t=Ty at the center of one of the wing and tail
vortices for an axial wavenumber ofk a; = 0 for the “high tail' and " at tail' cases. 4 and
represent the " at tail' and “high tail' case respectively.

externally imposed strain from both wing vortices as well asthe other tail vortex. As
the initial condition for the " at tail' case is half-way thr ough the highly strained region
between the wing vortex pair, the time it is within this regio n is signi cantly less and

so drops o0 more quickly in the evolution time history shown in gure 4.7.

Figure 4.8(a) plots the same data as gure 4.7, but over a longr timeframe. It is of
interest to note that the strainrate at the centres of the tail vortices peak to a similar
value for both the “high tail' and " at tail' case, with the “h igh tail' case lagging slightly
behind. This is because the tail vortices in the "high tail' ase enter the highly strained
region between the wing vortex pair at a slightly later time to the " at tail' case. The
observation of a similar trend between the cases, but with aime lag, implies that the
four-vortex system can be modeled as a more general systemjtivthe initial position
of the tail vortex pair in the orbit path being the variable to be examined. This general
case is investigated inx 4.4. The larger strain experienced by the tail vortex pair in
both cases is likely to cause the elliptic instability to growv at a signi cantly higher
rate than an instability in the wing vortex pair. The regions where the strain imposed

on the tail vortex pair is at its highest is during the times where the tail vortex pair
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Figure 4.8: Plot of strain rate, sgr, against (a) t=Tg and (b) angle of the tail vortices in
radians around the wing vortices (with the " at tail' case as zero ande) at the center of one
of the wing and tail vortices for an axial wavenumber ofk a; = 0 for the “high tail' and " at
tail' cases. 4 and represents the " at tail' and "high tail' case respectively. Note that the
symbols shown are only every third data point.

are located within the region directly between the wing vortex pair. This can be used
to predict that the instability growth during the times when the tail vortex pair are
located in this highly strained region will be signi cantly higher than at other times.

This hypothesis is investigated in section 4.3.

Figure 4.8(b) shows the change in strain in the wing and tail ortices as a function
of the angle of the tail vortices from a (horizontal) orientation such as used ton initiate
the " at tail' con guration. It demonstrates that the tail v ortices experience the same
very large peak in strain as they pass through the region diretly between the wing
vortices (= 2 ), with the tail vortices in the “high tail' case experiencing slightly
higher strain. It also demonstrates that the strain experienced by the tail vortices is

signi cantly lower outside the highly strained region between the wing vortices.

Both cases begin with almost no strain, due to the numerical equirement for the
vortices to relax from the imposed initial conditions to a state adapted to the presence
of the other vortices and the strains that they impose. Due tothe constantly changing
motion of the vortices, the strain rate is also constantly changing, preventing a dedicated
relaxation time. It is interesting to note that the strain ra te is signi cantly higher than
previous analytical studies (Leweke & Williamson 1998). Ths signi cantly higher strain

may lead to the observation of other instability mode shapes
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Figure 4.9: Plot of transient growth ampli cation factor, G( ), against =T for an axial
wavenumberk a; = 0, and an initial time, to=Tp = 0.

4.2.5 Transient growth

A transient growth analysis was computed for 0 =Ty 3 for a two-dimensional
disturbance with an axial wavenumber of ka; = 0, and the resulting ampli cation
factor eigenvalues from this study are shown in gure 4.9.x 4.2.3 demonstrated that
both the “high tail' and " at tail' cases are naturally unsta ble in two-dimensional space.
It can be seen in gure 4.9 that the “high tail' case has consintly higher growth
ampli cation factors for all values of below =Ty = 2:5. That the " at tail' case
has higher G( ) above =Tg = 2:5 ts with the previous data ( gure 4.6), showing
that over long timeframes, the "~ at tail' case will display symmetry breaking instability
at an earlier time than the “high tail' case. This is particularly visible in gure 4.6
at t=Tg = 4, where the instability occurs at a similar time for both cases, but the
magnitude is higher for the " at tail' case. The plateaus that can be seen in the “high
tail', and to a lesser extent the " at tail' case, at 0:5 =Ty 1, correspond to times
where the tail vortices are located on the outside of the voréx system, and are not
subjected to the strong external strain eld present betweea the stronger wing vortices.

This plateau e ect can also be seen around 2 =Ty 2.5, which again is a region
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where the tail vortices are outside the highly strained regbn between the wing vortex
pair. This strongly implies that the primary mechanism for t ransient growth is directly
related to the position of the tail vortices in relation to th e wing vortices. Both the
" at tail' and "high tail' cases demonstrate extremely large growth ampli cation factors
(in the order of 10%%) at =T = 3. These extremely large growth ampli cation factors
strongly imply that, in a physical experiment, the ows woul d be dominated by localized
transient disturbance growth rather than asymptotic insta bilities (Barkley et al. 2008).
Given the accuracy of double-precision arithmetic (accuray of approximately 10 12),
errors at machine level can easily cause the two-dimensiohaow to become unstable
without the addition of additional disturbances (as shown in gure 4.6). Moreover,
machine noise is many orders of magnitude smaller than whatan be achieved in the
laboratory, making it almost certain that these disturbances would be seen in practice.
The symmetry breaking instability described in gure 4.6 shows a very small ripple
in the u-velocity (measured at the centre of the four-vortex system at approximately
t=To = 2:5, which is consistent with the growth ampli cation factor s hown in gure 4.9.
At t=Ty = 2:5 the growth ampli cation factor is G( ) 10'9, and since the symmetry
breaking instability (observed in gure 4.6) would be causel by errors at machine level
arithmetic in the two-dimensional DNS (errors of an order ofapproximately 10 3), the

instability would have grown to a stage where it was becomingobservable.

4.3 Three-dimensional ow

This section describes an investigation into the three-dinensional dynamics of the “high
tail' and " at tail' cases. First, the section covers a transient growth analysis to identify
the peak axial wavenumbers where the growth ampli cation fector is a maximum.
Next, it examines how the optimal perturbation elds found f rom the transient growth
analysis at the peak axial wavenumber evolve in the linear dmain. Then the section
covers the overall dynamics of the “high tail' and * at tail' cases through the use of three-
dimensional DNS. Lastly, this section covers an investigabn into the mechanisms that

cause the " at tail' and “high tail' cases to transition into non-linear growth.

4.3.1 Transient growth analysis

A transient growth analysis was conducted to examine the trasient response of the

“high tail' and " at tail' cases in a three-dimensional domain. Figure 4.10(a) shows,
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Figure 4.10: Plot of (a) " at tail' and (b) “high tail' transient growth ampli cation fa  ctor,
G( ), against non-dimensional axial wavenumberk a;, for an initial time of to=Tp = 0. Each
line represents a =T value as shown.

for the " at tail' case, how the growth ampli cation factor, G( ), changes with the
non-dimensional axial wavenumber,k a;, of the perturbation as well as the time that
the perturbation is allowed to grow, =Tg. It is seen that as =Tg increases, the general
trend of the growth ampli cation factor against non-dimensional axial wavenumber
remains similar. The peak growth for a given time interval ocurs consistently for
an axial wavenumberka; = 5:3. This is interesting, as it shows, that regardless of
the timeframe over which the perturbation is allowed to grow, the maximum growth
ampli cation factor will occur at the same wavenumber (it is important to note that
when normalised by the tail vortex, the normalised axial wavenumber iska, = 2:65,
which is more consistent with prior studies; Laporte & Corjon 2000). This means that
a control system developed to incite the disturbance of thiscoherent vortex ow would
only need to perturb the ow consistently at a frequency corresponding to this specic
wavenumber in a trailing aircraft wake. The high value of G( ) at the peak wavenumber
indicates that it is likely that the perturbation is of su ci ent size to cause large changes
in the base ow, and that the ow is likely to be dominated by tr ansient disturbance

growth (Barkley et al. 2008).

Figure 4.10(b) shows, for the “high tail' case, howG( ) changes withk a; as well as
the time that the perturbation is allowed to grow, =Tg. It shows qualitatively similar

characteristics to the " at tail' case and peaks at a very sinilar axial wavenumber,
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ka; = 5:3. Although not necessarily obvious on a logarithmic scaleijt is interesting
to note that the peak growth for the " at tail' case is higher, by approximately 200%
at = 3, than the "high tail' case, indicating that it is more susceptible to transient
growth. It is important to note that the peak growth ampli ca tion factor, ka; = 5:3,
for both three-dimensional cases at=Tg = 3 is signi cantly higher ( G( )  10?®) than
the ka; = 0 case at =To = 3 shown in gure 4.9 (G( ) 10%). This indicates that

the instabilities that a ect this base ow eld will be predom inantly three-dimensional.

An interesting point that is shared by both the "high tail' an d " at tail' cases is a
small peak atk a; = 2:38, displaying a growth ampli cation factor of G( ) =3:53 10!/
for the “high tail' case and G( ) = 1:96 10 for the " at tail' case. This peak
corresponds to an axial wavenumber where the wing vorticesra most susceptible to
transient growth, and as the core size of the wing vortices islouble the tail vortices,
a,=a; = 0:5, it is reasonable to expect the peak axial wavenumber for th wing vortices
to be approximately half that of the tail vortices. Importan tly, the prior assumption
that the highest growth rate corresponds to an instability is correct, and is also shown

in x4.3.3.

Both cases also demonstrate a large long wavelength peak &ta; = 0:88 and Q90
for the " at tail' and “high tail' cases at =T = 3 respectively. It is interesting to note
that both cases exhibit a small amount of drift with increasing value of . While the
long wavelength peak is signi cantly smaller than the short wavelength peak, it still
demonstrates signi cant growth ampli cation of G( ) =1:45 10%? and 1:28 10%! for
the " at tail' and “high tail' cases at =Ty = 3 respectively. The larger value of G( )
for the " at tail' case is of interest as it follows the same trend of the short wavelength
instability.

The signi cantly smaller peak growth ampli cation factor f or the wing vortices,
compared to the overall peak, can be explained by the signi ant di erence in strain
that the vortices experience. Figure 4.8 clearly demonstries that the externally im-
posed strain experienced by the wing vortices is signi cary smaller than the strain

experienced by the tail vortices.

As the growth ampli cation factor is signi cantly higher fo r the overall peak, where
the tail vortices are expected to have a peak instability, than the smaller peak where the
wing vortices are expected to exhibit peak instability growth (10° for the “high tail' and

102 for the " at tail'), the DNS examined in x 4.3.4 will focus on the axial wavenumber
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Figure 4.11: Plot of growth ampli cation factor, G( ) against initial time, to=Tp. The
wavenumber for both " at tail' and “high tail' con gurations are xed at kapg = 5:3, and
:To =1.

of ka; = 5:3 (when normalised by the tail vortex pair it becomesk a, = 2:65). While the
instability for the wing vortices should occur in reality, t he timescale of the development
of the instability would be signi cantly longer than the mod e at ka; = 5:3, therefore
the DNS examined inx 4.3.4 will accurately predict the initial non-linear development

for the perturbations in the ow.

An important parameter in the transient growth analysis is t he time at which the
disturbance is added to the system,y. Figure 4.11 shows how a change imng a ects
the growth ampli cation factor at the previously discovered peak axial wavenumber,
ka; =5:3. It can be seenin gure 4.11 that, for both vortex con gurat ions, the stability
of the ow varies with this initial time to a signi cant degre e. As the tail vortex pair
orbits the wing vortex pair, it experiences an increase, andhen a decrease, in stability.
Here the analysis was conducted using=To = 1, so the perturbations for the " at
tail' case grow through the region in the strain (correspondng to 0:6 t=Tp; 1.6 in
gure 4.8 where the tail vortex pair in the " at tail' case rea ches a very large peak). As
the time horizon for the transient growth analysis overlapsless of this peak, the growth

ampli cation factor drops o signi cantly. This is also dem onstrated in the “high tail'
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Figure 4.12: Plot of (a) " at tail' and (b) “high tail' transient growth ampli cation fa  ctor,
G( ), against non-dimensional axial wavenumber,ka;, for an initial time of to=Tp = O.
=T, = 3 for these simulations. The solid line represents the vortex lamen study conducted
for the long wavelength Crow instability.

case, as the transient growth analysis with a start time ofto=Ty = 0:25 demonstrates a
dip in the growth ampli cation factor (in gure 4.11) and thi s corresponds to the lower
strain experienced by the tail vortex pair at 0:25 t=T¢ 1:25 shown in gure 4.8.

It is interesting to note that, for 0:1 tp=Tp 1.2, both cases produce the same
general trend, with the high tail having a much narrower range in which it peaks. This
suggests that the " at tail' case is initially susceptible to perturbations for a longer
duration of its rotation. This also implies that the positio n of the tail vortex pair
determines the characteristics of the transient growth of gerturbations to the system
for both cases during at least the rst two orbits. It is also interesting to note that the
growth ampli cation factor of the "~ at tail' case is higher t han the "high tail' case for all
times except 12 to=Tp 1:4. This suggests that the " at tail' con guration is more
susceptible to transient growth of perturbations than the "high tail' con guration, for

the majority of the rst two tail orbits.

4.3.2 Vortex lament analysis

By utilising the method described in x 2.7, a theoretical prediction of the peak axial
wavenumber expected for the Crow instability. This section demonstrates that the
vortex lament method can provide a reasonable prediction br the four-vortex " at

tail' and “high tail' cases.
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Figure 4.12(a) shows the results of a vortex lament analyss for the " at tail' case.
The vortex lament method provides a good estimation of the peak axial wavenum-
ber for the Crow instability, nding a peak with an axial wave number of ka; = 0:75.
This corresponds very well with the peak found in the transiet growth analysis, ( g-
ure 4.10(a)) ka; = 0:87. That the axial wavenumbers correspond very well indicags
that the instability that the transient growth analysis fou nd is de nitely the Crow
instability.

Figure 4.12(b) shows the results of a vortex lament analyss for the “high tail' case.
As with the " at tail' case, the vortex lament method provid es a good estimation
of the peak axial wavenumber for the Crow instability, ndin g a peak with an axial
wavenumber of ka; = 0:59. This corresponds well with the peak for the transient
growth analysis, ka; = 0:87.

As with the two-vortex case, the dierence in G( ) is due to the limitation of the
vortex lament method assuming the shape of the instability mode, while the transient
growth analysis nds the perturbation that leads to optimal energy growth and is
limited only by available spatial resolution. The vortex | ament method described here
(and the method utilised by Crouch 1997) does provide a good @proximation as to
the expected peak axial wavenumbers, but is limited becausef the need to specify a
speci ¢ mode shape for the analysis and the lack of viscous teraction between the

vortices.

4.3.3 Optimal perturbation elds

In this section the linearised evolution of the predicted ogimal initial disturbances is

considered for the three-dimensional asymmetric “high tdiiand " at tail' cases.
4.3.3.1 Evolution of short wavelength instability

Figure 4.13 shows the temporal evolution of the linearised erturbations, beginning
with the initial optimal perturbation eld, for the ~at tai I' case excited at the axial
wavenumber ( a; = 5:3) that corresponds to the peak growth ampli cation factor found
from the transient growth analysis. The initial perturbati on eld, seen in gure 4.13(a),
shows that the majority of the perturbation is centered on the tail vortex pair, with
tendrils of perturbation vorticity between and around the vortices. At t=Tp = 0:25
(‘gure 4.13(b)), the perturbation vorticity has become concentrated in the tail vortex

pair, with only a small magnitude circling around the wing vortex pair. From t=Tp = 0:5
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Figure 4.13: A time sequence of plots of spanwise vorticity in the linearised pertubation
eld ( ooded contours) for the " at tail' case with an axial wavenum ber ofka; = 5:3. Flooded
contour levels are chosen arbitrarily to display the perturbation structure in each frame. The
simulation was initialised with the optimal disturbance acquired with =T, = 3. Solid contour
lines show spanwise vorticity in the base ow at levels of vorticity ofj ! ; j=1;3;7. (a)-(d)
representt=Ty = 0; 0:25; 0:5; 0:75 respectively.

(‘gure 4.13(c)), the perturbation is only concentrated in t he tail vortex pair, resembling
a dipole similar to the elliptic instability with a mode of [- 1,1,1]. It can be seen that this
dipole rotates as the tail vortices are pulled around the stonger wing vortices, leading
to the same vorticity sign of the dipole always facing the wirg vortex. The dipole is
arranged at an angle of 45 to a line between the wing and tail vortex centres. This
is very similar to the elliptic instability with a mode of [-1 ,1,1] in a counter-rotating,

equal strength vortex pair. This instability mechanism implies that the instabilities in

these perturbations are due to the mutually imposed strain ketween the wing and tail

vortices (Leweke & Williamson 1998; Le Dizs & Laporte 2002 Soet al. 2011).

Figure 4.14 shows the temporal evolution of the linearised prturbations, beginning
with the initial optimal perturbation eld, for the “high ta il' case excited at the axial
wavenumber ka; = 5:3). This corresponds to the peak growth ampli cation factor
found from the transient growth analysis. The initial pertu rbation eld, gure 4.14(a),

shows that the majority of the optimal disturbance structur e is concentrated in a thin
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Figure 4.14: A time sequence of plots of spanwise vorticity in the linearised pertubation
eld (ooded contours) for the “high tail' case, with an axial wavenu mber of ka; = 5:3.
Flooded contour levels are chosen arbitrarily to display the perturkation structure. The
simulations was initialised with the optimal disturbance acquired with =T, = 3. Solid
contour lines show spanwise vorticity in the base ow at levels of voricity of j !, j=1;3;7.
(a)-(d) represent t=T = 0; 0:25; 0:5 and Q.75 respectively.

band connecting the tail vortices. This thin band of vorticity is reminiscent of the
optimal disturbance feeding the mode [-1,1,1] elliptic intability for the two-vortex case
studied in chapter 3 and shown in gure 3.5. Like the evolution of the mode [-1,1,1]
elliptic instability in the two-vortex case (gure 3.9), at t=Tg = 0:25 for the “high tail'
case ( gure 4.14(b)), the majority of the perturbation vort icity has become concentrated
in the tail vortex pair, with only a small connection between them. From t=To = 0:5
(‘gure 4.14(c)), the perturbation is only concentrated in t he tail vortex pair, resembling
a dipole similar to the elliptic instability with a mode of [- 1,1,1], identi able as it only
contains a pair of lobes of opposite sign vorticity within the vortex cores. It can be seen
that the dipole rotates as the tail vortices are pulled arourd the stronger wing vortices,
leading to the same vorticity sign of the dipole always facig the wing vortex at an
angle of 45 to the line between the wing and tail vortex centres. Similarto previous
studies (Leweke & Williamson 1998; Laporte & Corjon 2000; St al. 2011), an angle
of 45 is anticipated as the majority of the interaction is between the wing and tail

vortex pair.
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The similarities between the " at tail' and "high tail' case s, both forming dipole
perturbations in the tail vortex pair at 45 to the line between the wing and tail
vortex centres, demonstrate that the same instability mectanism is present here. This
instability is very similar to an elliptic instability with a mode of [-1,1,1] in an equal
strength, counter-rotating vortex pair, and so implies that the underlying mechanism
is the mutually imposed strain between the stronger wing votices and the weaker tail
vortices. This result is very similar to the study conducted by So et al. (2011) for a
circulation ratio of 1= , = 0:3, demonstrating a very strong perturbation of mode
[-1,1,1] within the weaker vortex, but almost nothing withi n the stronger vortex. It is
interesting to note that the theoretical peak axial wavenumber for an unequal vortex
pair with circulation ratio of 1= », = 0:4 that So et al. (2011) found, was around
ka; 2:9. As Soet al. (2011) used the same vortex core size for both vortices, it inot
surprising that the peak axial wavenumber, ka; = 5:3, in the current case where the
weaker tail vortices have a vortex core half the size of the wig vortices is approximately
double (therefore when normalised by the tail vortex core sie the axial wavenumber
becomesk a, = 2:65), while still retaining the mode [-1,1,1] elliptic instability mode
shape in the weaker vortex. That the peak axial wavenumber isnot exactly double
that of the isolated unequal vortex pair, will be due to the di erence in rotation of the
vortex system (Laporte & Corjon 2000), which in this study, is caused by the presence

of the other two vortices.

4.3.3.2 Evolution of long wavelength instability

Figure 4.15 shows the temporal evolution of the linearised prturbations, beginning
with the initial optimal perturbation eld, for the “at tai I' case excited at the axial
wavenumber (ka; = 0:881) that corresponds to the growth ampli cation factor of t he
secondary, long wavelength peak found from the transient gowth analysis. The optimal
perturbation eld begins with smears of opposing sign vorticity between the wing and
tail vortices (gure 4.15(a)). As the perturbation evolves, a dipole of opposing sign
vorticity forms within the tail vortices at an angle of appro ximately 45 to a line between
the centre of the tail vortex and its corresponding wing vortex core (gure 4.15(b)).
Unlike the short wavelength mode examined inx 4.3.3.1, the perturbation dipoles do
not exhibit re ective symmetry about the mid-plane. This la ck of re ective symmetry is

typical of the Crow instability. It is also of interest that | ike the short wavelength mode,
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Figure 4.15: A time sequence of plots of spanwise vorticity in the linearised pertubation
eld (ooded contours) for the " at tail' case with an axial wavenum ber of ka; = 0:881.
Flooded contour levels are chosen arbitrarily to display the perturkation structure in each
frame. The simulation was initialised with the optimal disturbance acquired with =T = 3.
Solid contour lines show spanwise vorticity in the base ow at levels of warticity of j !, j=
1;3;7. (a)-(d) representt=Ty = 0; 0:25; 0:5; 0:75 respectively.

the perturbation is primarily contained within the tail vor tex pair and any perturbation
outside of this region is damped out (gure 4.15(c)). In addition, the perturbation

rotates as the tail vortex orbits the corresponding wing vottex ( gure 4.15(d)).

Figure 4.16 shows the temporal evolution of the linearised prturbations, beginning
with the initial optimal perturbation eld, for the “high ta il' case excited at the axial
wavenumber (ka; = 0:881) that corresponds to the growth ampli cation factor of t he
secondary, long wavelength peak found from the transient gwth analysis. The initial
perturbation eld, gure 4.16(a), shows that the majority o f the optimal disturbance
structure is concentrated in a thin band connecting the tail vortices. It is of interest to
note that as the perturbation evolves, it forms into a dipole of perturbation within the
tail vortex pair that maintains an angle of of approximately 45 to a line between the

centre of the tail vortex and its corresponding wing vortex cre ( gure 4.16(b)). It is of
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Figure 4.16: A time sequence of plots of spanwise vorticity in the linearised pertubation
eld (ooded contours) for the “high tail' case with an axial wavenumber of ka; = 0:881.
Flooded contour levels are chosen arbitrarily to display the perturkation structure. The
simulations was initialised with the optimal disturbance acquired with =Ty = 3. Solid
contour lines show spanwise vorticity in the base ow at levels of voricity of j!,j=1;3;7.
(a)-(d) represent t=To = 0; 0:25; 0:5; 0:75 respectively.

interest to note that, unlike the long wavelength " at tail' case, the perturbation dipole
present in the tail vortex of the “high tail' case does exhibi re ective symmetry about
the mid-plane as it rotates around the corresponding wing vatex ( gure 4.16(c)). This
indicates that the interaction between the tail vortex and t he corresponding wing vortex
is the driving factor behind the four-vortex instabilities , rather than any interaction

across the mid-plane.

4.3.4 Direct numerical simulation

A DNS study of the symmetric four-vortex system was performel following the linear
analysis. The energy in the perturbations of the linear simdations was compared to the
energy in the non-zero Fourier modes of the DNS. The DNS was aducted by seeding

the " at tail' and “high tail' cases with either the optimal p erturbation or white noise, to
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Figure 4.17: Plot of (a) " at tail' and (b) “high tail' perturbation energy normalised by
initial energy. The solid line represents the solution of the linearised Mvier{Stokes equation
and the dashed line represents the energy in the non-zero Fourianodes of the DNS. The
dash-dot line in (b) shows when the four-vortex cores are lined up brizontally. Simulations
were initialised with the optimal disturbance captured with ka; =5:3 and =T¢ =3

study the response of the system to the di erent perturbations. An axial wavenumber
of ka; = 5:3 was chosen, as it corresponded to the peak in growth ampliation factor
found in the transient growth analysis. The axial domain waschosen to allow for one
wavelength of the desired instability, and both the white noise and optimal cases were
seeded in only the rst Fourier mode (thus corresponding to &citing only a wavelength
of ka; =5:3). Sixteen Fourier modes were chosen for the simulations eded with the
optimal perturbation (as these exhibit greater instability growth rates and reach non-
linear growth faster), and eight Fourier modes were chosenof the simulations seeded
with white noise, to speed up the computation time as shown inthe error analysis in
X 2.6.3. The energy in the optimal perturbation used was @033% of the initial energy
in the base ow. The energy level of the white noise seeding sl was 00040% of the

base ow energy. The vortex core sizes and separations are a®r x 2.1.

Figure 4.17 shows the energy in the perturbations evolved usg the linearised
Navier{Stokes equations, compared to the sum of energy acss the non-zero Fourier
modes of the DNS for the " at tail' and “high tail' cases. Thes are normalised by
the initial perturbation energy, E(0), in the linearised Navier{Stokes equations and
the non-zero Fourier modes of the DNS respectively. The petrbation elds become

highly non-linear after only a short timeframe (signi ed by the departure of the pair
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Figure 4.18: Time history of DNS zeroth mode energy for the (a) " at tail' and (b) “high
tail' case, normalised by initial energy in the zeroth Fourier mode. Anaxial wavenumber of
ka; = 5:3 is prescribed for the perturbation eld. Solid lines represent the @ses seeded with
an optimal perturbation with =Ty = 3, dashed lines represent the cases seeded with white
noise and the dash-dot line represents a two-dimensional case. [&hd [2] show the times
t=To = 0:25 and 125 respectively.

of curves), with the " at tail' case having more energy once he non-linear disturbance
saturates, leading to faster instability growth. The very short time frame that the
DNS perturbation energy becomes non-linear implies that tle primary e ect of seeding
with the optimal perturbations is to drive the ow into the no n-linear regime extremely
quickly.

Figure 4.18 shows a time history of the zeroth Fourier mode fothe (a) " at tail'
and (b) “high tail' cases seeded with the optimal perturbaton and white noise, as
well as the two-dimensional reference case. It shows that th linear growth of the
perturbations causes a large drop in the energy of the zerotimode. This represents a
large reduction in the coherency of the vortices. It is of inerest to note that for the
“high tail' case, both the white noise and optimal seeding rach the same energy in the
zeroth mode, E (t)=E(0) = 0:705, after a long period of time,t=Tg = 3 ( gure 4.18(a)).

It also shows that the instabilities have the e ect of signi c antly lowering the energy
in the zeroth mode as compared to di usion (as represented by he two-dimensional
case). Byt=Tg = 3, the two-dimensional "high tail' case has reached an engy level of
E (t)=E(0) = 0:906 and the two-dimensional " at tail' case has reached an egrgy level of
E (t)=E(0) = 0:901, both signi cantly higher than the three-dimensional cases. Another

point of interest is that at t=Ty = 3, the "high tail' case reaches a lower energy level in
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the zeroth mode, E (t)=E(0) = 0:705, than the " at tail' case, E(t)=E(0) = 0:761. This
strongly implies that the “high tail' case reaches a less carent state by t=To = 3 and so
is more desirable in terms of wake reduction. This rapid drogn the zeroth Fourier mode
can be related to the devolution of the tail vortex pair into small scale ow structures.
Location [1] in gure 4.18(b) corresponds to the ow visualisation in gure 4.21(a ii)
and shows that the large drop in zeroth Fourier mode energy iglirectly related to the
devolution of the tail vortices. A comparison of location [1] in gure 4.18(a) with the
related ow visualisation (gure 4.22(a ii)) demonstrates that the higher energy in the
zeroth Fourier mode corresponds to a state where the tail vdices are larger coherent
ow structures. A similar comparison can be made with the two cases seeded with white
noise at location [2] in gure 4.18. Location [2] in gure 4.18(b) corresponds to the ow
visualisation in gure 4.21(b vii). The drop in zeroth Fouri er mode energy corresponds
to the rapid devolution of the tail vortices into a region of small scale ow structures.
The signi cantly higher zeroth Fourier mode energy at location [2] in gure 4.18(a) is
demonstrated in the ow visualisation (gure 4.22(b vii)) w here the tail vortices are

still fairly coherent ow structures.

Figure 4.19 shows the time history of normalised perturbaton energy calculated
from DNS runs comparing the " at tail' and “high tail' cases seeded with both the
optimum perturbation found from the transient growth analy sis and white noise. It can
be seen that, for both the “high tail' and " at tail' cases, th e energy of the perturbation
that leads to optimal energy growth from the transient growth analysis begins to grow
immediately. This occurs before the ow subsequently formsinto ow structures small
enough for the energy to be dissipated by the viscosity in theuid. In contrast, the
energy in the white noise-perturbed ow begins to decay immédiately as all of the
decaying mode shapes are damped out before the unstable maosteapes grow su ciently
to dominate the perturbation eld. The energy only begins to grow after approximately
t=To = 0:5 for the “high tail' case andt=Ty = 0:75 for the " at tail' case. This behaviour
is the same observed in the two-vortex ow demonstrated in clapter 3, gure 3.14. A
point of particular interest about the normalised energy growth of the perturbations is
that for the cases seeded with the perturbation that leads tooptimal energy growth, the
" at tail' case peaks higher than the “high tail' case. In cortrast, in the cases seeded with
white noise, the “high tail' case peaks at a signi cantly hicgher level than the " at tail'

case. This is opposite to the cases seeded with the perturbahn that leads to optimal
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Figure 4.19: Time history of DNS perturbation energy, normalised by initial energy in the
non-zero Fourier modes. An axial wavenumber ok a; = 5:3 is prescribed for the perturbation
eld. and represent the “high tail' and " at tail' cases respectively. Solid lines rgresent
the cases seeded with an optimal perturbation with =T = 3, and dashed lines represent the
cases seeded with white noise.

energy growth. However, due to the random nature of the whitenoise seeding these
cases, the overall peak height will be determined by the inial energy in the unstable
mode shapes, not the initial overall energy of the white nois (which is very similar to
the magnitude of the optimal perturbation seeding, E (0)=Egr (0) = 0:01522% for the
initial energy in the optimal perturbation eld against E (0)=Egg (0) = 0:0189% for the

total energy in the white noise seeding).

Figure 4.20 shows a time history of the perturbation energy gowth rate, gr, for
the “high tail' and " at tail' cases seeded with the optimal perturbation and white
noise. It is of interest to note that the peak growth rate the instability experiences,
varies signi cantly depending on the seeding of the ow, andbetween the “high tail'
and " at tail' cases. The growth rate was calculated using a ve-point stencil method
to evaluate the derivative of the log of the perturbation enegy. The “high tail' case
seeded with the optimal perturbation found from the transient growth analysis has the
highest growth rate in the beginning of its evolution, g =0:755. The " at tail' case

also follows a similar trend, beginning with a high growth rate, gr = 0:6375 that
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Figure 4.20: Time history of perturbation energy growth rate, ggr, for the “high tail' and
" at tail' cases seeded with the optimal perturbation and white noise. An axial wavenumber
of ka; = 5:3 is prescribed for the perturbation eld. and represent the “high tail' and " at
tail' cases respectively. Solid lines represent the cases seeded wéh optimal perturbation
with =Ty = 3, and dashed lines represent the cases seeded with white noise.

then decays. It is of interest to note that the “high tail' case seeded with white noise
enters a linear phase of instability growth (where the growh rate reaches a plateau for
a period of time) at a much lower growth rate of gr = 0:54, which is lower than the
“high tail' case seeded with the optimal perturbation. It is also noted that the ™ at tail'
case exhibits the opposite e ect, with the peak growth rate ofthe " at tail' case seeded
with white noise experiencing a higher growth rate, g = 0:90, than the " at tail' case

seeded with the optimal perturbation.

It is interesting to note that, while the "high tail' case seeded with white noise
experiences a long period of almost constant growth, neittre’high tail' nor " at tail’
cases seeded with the optimal perturbation experiences angonstant growth regime. It
is likely that the reason for this is that the seeding with the optimal perturbation is
high enough in perturbation energy to drive the ow quickly i nto the non-linear regime
(as shown by gure 4.17). The lack of a clearly de ned, broad Inear regime in the " at
tail' case seeded with white noise is most likely due to the v high growth rate of

the fastest-growing modes causing them to evolve large engh to exhibit non-linear
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interaction with the base ow before other modes have time todecay to negligible levels.

4.3.4.1 Comparison of strain rate to growth rate

As in x 3.5.0.1, the strain rate imposed on the vortices can be relad to the growth
rate of the instability. As the four-vortex system is signi cantly more transient than
the two-vortex system, a direct comparison between the stran rate and growth rate
is more di cult. Even given this di culty, the peak growth ra te remains well below
the theoretical maximum ratio of 9=16 (Wale e 1990; Leweke & Williamson 1998)
(becoming GRrpeak = peak = 0:120, based on velocity, for the "high tail' case). This is not
unexpected as gRr is the growth rate calculated from a global integration of the velocity
eld, rather than quantifying the growth of an isolated inst ability on a single vortex, and
includes an extremely weak instability growth on the tail vortices. The rapid transition
into the non-linear regime also contributes to the less tharoptimal nature of the growth
rate. Determining the exact di erence between the theoreti@al maximum and the local
instability growth rate on a single vortex would be almost impossible. This is due
to a number of factors present in the DNS, including the transent base ow, a vortex
induced strain eld rather than a uniform eld, multiple vor tices inducing strain on any
given vortex in a time dependent fashion, and the simulatiors not being initialised with
an exponentially growing mode (either white noise, or a supgosition of many modes

found from the transient growth analysis as the optimal initial perturbation eld).
4.3.4.2 Visualisation of direct numerical simulation

Figure 4.21 shows a three-dimensional visualisation of th®NS evolution of the “high
tail' case when seeded with the perturbation found from the tansient growth analysis
and white noise. As the transient growth analysis predicted the perturbation begins
in the tail vortex pair, causing the cores to become unstableand distort signi cantly.
The primary di erence between the two cases is that the visibe growth of the three-
dimensional structures occurs much earlier in the evolutio of the case seeded with the
optimum perturbation than the case seeded with white noise. Once the tail vortex
pair becomes highly disturbed, coinciding with the peak in gerturbation energy seen in
gure 4.21, the perturbation has a strong e ect on the wing vortex pair ( gure 4.21(a
ii)). This e ect causes the cores of the wing vortex pair to become highly distorted,
which leads to destruction of the vortices. As the tail vortex pair enters the region

between the wing vortex pair, it can be seen from the red shadig of the ooded
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Figure 4.21: Time sequences of iso-surfaces of an arbitrarily small negative vaduof the
eld (the criterion for identi cation of a vortex proposed by Jeong & Hussain 1995) plotted
from a three-dimensional simulation of the “high tail' case with an axialextent corresponding
to a wavenumber ofka; = 5:3. The coloured shading shows levels of dominant strain, with
blue corresponding to little or no strain and red corresponding to hidn values of dominant
strain. (a i)-(a vii) displays the ow seeded with the perturbation th at leads to optimum
energy growth for =T = 3 at times t=To = 0;0:25;0:5;0:75; 1; 1:25 and 15 respectively.
(b i)-(b vii) display the ow seeded with white noise at the same times.
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contours that it is undergoing a very high level of strain (gure 4.21(a ii)). This
dominant strain is in uenced by both the destruction of the vortex and the proximity
to the wing vortex pair. When the remnants of the tail vortex p air are close to the wing
vortex pair ( gure 4.21(a iii)), there is still a large amount of dominant strain in the
ow structures close to the wing vortex pair (green shading) The primary interaction
between the vortices is between the two tail vortices, refared from this point onwards
as a T-T interaction (gure 4.21(a ii)). This interaction is characterised by ow of the
tail vortices crossing the midplane of the domain and enhaning the destruction of the
tail vortices. Itis interesting to look at the similarities between the case seeded with the
optimal perturbation at t=Tg = 0:25 (gure 4.21(a ii)) and the case seeded with white
noise att=To = 1:5 (gure 4.21(b vii)). Both cases are undergoing the T-T interaction
and consist of a rapid devolution of the coherent tail vortices into signi cantly smaller
ow structures. The case seeded with white noise has higherx@al modes present,
leading to less coherent and smaller ow structures. The smier ow structures in the
case with white noise seeding also leads to a lower strain, #ise smaller ow structures
cause less imposed strain than a smaller number of larger owtructures as present in

the case seeded with the optimal perturbation.

The mechanism that causes destruction of the vortex systensivery similar for both
cases, except there is signi cant lag in the onset of the casseeded with white noise
(gure 4.21(a ii) for the optimal seeding versus gure 4.21(b vii) for the white noise
seeding). This is due to the white noise supplying energy to mny sub-optimal mode
shapes that are not conducive to growth and therefore decayThe increase in dominant
strain in the tail vortex pair as it undergoes transition int o small scale ow structures
and also enters the highly strained region between the wingartex pair can be seen in
gure 4.21(b vi) as light blue and green ooding. The "high tail' case seeded with white
noise also undergoes the T-T interaction, causing a rapid dsruction of the tail vortex

pair (gure 4.21(b vii)).

Between the two “high tail' cases, the case seeded with the tmal perturbation is
preferable, from the perspective of vortex wake hazard redetion, as it begins to grow
noticeably from seeding, and, byt=Ty = 1:5, demonstrates signi cantly more distortion
of the cores of the wing vortex pair. This distortion of the wing vortex pair demonstrates
that an instability is already growing to disrupt the wing vo rtices. This situation is

preferable, as the tail vortices in the case seeded with theptimal perturbation remain
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as larger ow structures. The presence of a smaller number ofarger, coherent ow
structures (gure 4.21(a iii)) will cause a greater imposedstrain for a longer period of

time on the wing vortices, leading to faster instability growth in the wing vortices.

Figure 4.22 shows three-dimensional visualisation of the NS evolution of the ™ at
tail' case when seeded with the perturbation found from the tansient growth analysis
and when seeded with white noise. The initial perturbation energy in the seeding is
the same as in the "high tail' case stated at the beginning ofhis section. The method
of destruction for these cases is very similar to the “high tél cases. The delay of the
onset of the instability in the case seeded with white noise @ be seen to occur in a
similar manner to the two “high tail' cases. In the " at tail' case seeded with the optimal
perturbation, it can be seen that the ow does not cross the mdplane. This results in
an interaction between only the wing and tail vortex on each &e, referred to as a T-W
interaction from here on (gure 4.22(a ii)). As the tail vort ices lose coherency in the
axial direction due to the T-W interaction, the dominant str ain increases signi cantly,
as can be seen by the red shading in gure 4.22(a iii). The " attail' case seeded with
white noise also demonstrates the T-W interaction as ow fran the tail vortices do
not cross the mid-plane, while the tail vortices are within the highly strained region

between the wing vortex pair ( gure 4.22(b vi)).

Figure 4.23 shows a time history of the peak dominant strain,” yom, during the tran-
sition from the linear regime to the non-linear regime for anaxial extent corresponding
to a wavenumber ofka; = 5:3. It is of interest to note that the “high tail' case (both
cases seeded with the optimal perturbation and white noisegxperiences a signi cantly
higher peak dominant strain than both of the " at tail' cases. This is most likely due to
the “high tail' cases experiencing the T-T interaction, which leads to an enhancement
of the instability destroying the tail vortices. In additio n to this, the cases seeded with
white noise experience a greater peak dominant strain. Thiss likely due to the cases
with white noise retaining a small amount of energy in higherfrequency modes, causing
a slight damping in the primary mode that will lead to less distortion in the base ow.
This reduced distortion of the base ow will lead to a delay of the onset of non-linear
e ects, producing the greater peak dominant strain. One thing that is of interest is that
the peak dominant strain is greater where the ow is still mainly coherent (t=Tg = 0:1
for the "high tail' case seeded with the optimal perturbation shown in gure 4.21(a ii))

and drops o sharply when the ow devolves to random small scde ow structures
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Figure 4.22: Time sequences of iso-surfaces of an arbitrarily small negative vaduof the
eld plotted from a three-dimensional simulation of the " at tail' case with an axial extent
corresponding to a wavenumber ok a; = 5:3. The coloured shading shows levels of dominant
strain, with blue corresponding to little or no strain and red corresponding to high values
of dominant strain. (a i)-(a iii) display the ow seeded with the pertur bation that leads to
optimum energy growth for =Ty = 3 at times t=Tp = 0;0:25 and Q5 respectively. (b i)-
(b viii) displays the ow seeded with white noise at t=To = 0;0:25; 0:5; 0:75; 1; 1:25; 1.5 and
1:75 respectively.
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Figure 4.23: Time history of dominant strain, "4om (de ned in x2.2.1), during the transition
into the non-linear regime for an axial extent corresponding to a waenumber ofka; =5:3.

and represent the “high tail' and " at tail' cases respectively. Solid lines r@present the
cases seeded with an optimal perturbation with =T¢ = 3, and dashed lines represent the
cases seeded with white noise.

(t=Tp = 1:5 for the “high tail' case seeded with white noise shown in gue 4.21(b vii)).
This is unsurprising, as a smaller number of larger, coherd@now structures will create

stronger imposed strain than a large number of very weak, srmihscale ow structures.

Referring back to gure 4.19, it can now be seen that the switting of peak energy
height between the “high tail' and " at tail' cases seen in gure 4.19 is due to the in-
stability interacting between the vortices. In the cases ofthe "high tail' seeded with
the perturbation that leads to optimal energy growth, the interaction is between the
tail vortex pair as they are highly strained in the space between the wing vortex pair,
causing a very large amount of ow across the mid-plane betwen the vortices ( g-
ure 4.21(a ii)). By contrast, the " at tail' case seeded with the perturbation that leads
to optimal energy growth contains interactions causing theinstability between the wing
and tail vortices, with very little or no ow crossing across the mid-plane between the

vortices (gure 4.22(a ii)). It is important to note that the nature of the white noise
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means that the magnitude of the unstable modes is random as We This can have the
e ect of changing the vortex interaction over two runs with th e same initial conditions
and magnitude of white noise from the T-W interaction to the T -T interaction and vice
versa. These interactions can be seen clearly in gure 4.21na 4.22. Figure 4.21(a ii)
and (b vii) show a T-T interaction for both the case seeded wih the optimal pertur-
bation and the case seeded with white noise respectively. §ure 4.22(a ii) and (b vi)
display a T-W interaction for both the case seeded with the opimal perturbation and
white noise respectively. It is important to note that the in stability can begin with a
T-W interaction, and become a T-T interaction if the instabi lity has reached su cient
magnitude in the tail vortex pair before it has reached the highly strained region be-
tween the wing vortex pair. A closer investigation into the physical mechanism behind

the T-T and T-W interactions is covered in x 4.3.5.

It is important to note that the visualisations for the cases seeded with white noise in
gures 4.21 and 4.22 are di erent simulation runs from the data shown in gure 4.19.
This di erence is due to the random nature of the white noise seding producing a
random magnitude of the unstable mode shapes. For gure 4.19the “high tail' case
seeded with white noise is of the T-W interaction type while the " at tail' seeded with

white noise is of the T-T interaction type.

Figure 4.24 shows a time sequence of attened axial vorticiy of the zeroth mode
of the "high tail' DNS case seeded with the optimal perturbaton. By showing the
attened axial vorticity, the structure of the base ow as it devolves can be closely
examined. Initially, both the tail and wing vortices are lar gely coherent with only
the tail vortices demonstrating some deformation ( gure 4.24(a)). Over a short time,
the tail vortices become more distorted, becoming highly pgurbed as the instability
grows in them ( gure 4.24(b)-(c)). These small scale strucures begin to wrap around
the wing vortices and the cores of the tail vortex pair becomeextremely distorted
(gure 4.24(e)). The wing vortices interact with the tail vo rtices at their periphery and
while the cores of the wing vortices remain fairly coherentthe strain imposed on them
by the small scale ow structures surrounding them will vary signi cantly, potentially

causing instability growth ( gure 4.24(h)).

Figure 4.25 shows a time sequence of axial vorticity of the zeth mode of the “high
tail' DNS case seeded with white noise. Before the tail vortg pair enters the highly

strained region between the wing vortices, the tail vortices are contained in a relatively
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Figure 4.24: A time sequence of attened vorticity across the axial domain shoving
the base ow of the "high tail' DNS case seeded with the optimal pertubation. Red
indicates positive vorticity and blue indicates negative vorticity. (a)-(h) displays times
t=To = 0:15; 0:20; 0:25; 0:30; 0:35; 0:40; 0:45 and Q50 respectively.
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Figure 4.25: A time sequence of attened vorticity across the axial domain shoving
the base ow of the "high tail DNS case seeded with white noise. Red indates
positive vorticity and blue indicates negative vorticity. (a)-(h) disp lays times t=Ty =
1:10; 1:15; 1:20; 1:25; 1:30; 1:35; 1:40; 1:45 respectively.
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small region. In addition to this the wing vortices are still very large, coherent structures
with almost no distortion ( gure 4.25(a)). The highly strai ned region between the wing
vortex pair causes the tail vortices to become small scale w structures. These small
scale structures respond to externally imposed strain moreseverely and the region of
these ow structures begins to surround the wing vortex pair as it is stretched and
distorted ( gure 4.25(c)). As the region of small scale ow structures extends and is
pulled around the wing vortices, it begins to dominate the peiphery of the wing vortices,

reducing their size and deforming them (gure 4.25(d)). This is also demonstrated in
the large reduction in the energy of the zeroth mode in gure 418(b). The wing

vortex cores begin to form into a teardrop shape due to the stain imposed on them
by the region of small scale ow structures, and rotate as thg become surrounded by
it (gure 4.25(f)). These small scale ow structures continue until they surround the

wing vortices, reducing the area of the vortex cores ( gure 425(h)).

Figure 4.26 shows a time sequence of axial vorticity of the bse ow of the " at
taill' DNS case seeded with the optimal perturbation. Initially, the four vortices are
coherent ow structures with no obvious distortion of the vortex cores ( gure 4.26(a)).
The instability causes the core of the tail vortices to becone a ring of strong vorticity
(‘gure 4.26(c)) while the wing vortex pair is almost completely una ected. This ring of
strong vorticity that the tail vortex cores form into is the rst stage of the degradation
of these vortices towards small scale ow structures. The mg of strong vorticity that
the tail vortex cores forms into breaks due to the instability, forming into two arcs
while opposite-sign vorticity begins to form (gure 4.26(e)). The interaction between
the wing vortex and tail vortex causes the tail vortices to slowly devolve into small
scale ow structures, still leaving the wing vortices in a very coherent state with the

devolved tail vortices occupying a relatively small region( gure 4.26(h)).

Figure 4.27 shows a time sequence of axial vorticity of the bee ow of the " at tail'
DNS case seeded with white noise. Initially, the ow exhibits similar characteristics to
the case seeded with the optimal perturbation, that being the tail vortices forming into a
ring of peak vorticity (as denoted by the strong red and blue olouring in gure 4.27(a)).
As the tail vortices are forced through the highly strained region between the wing
vortex pair, they are forced to interact with each other, causing rapid devolution into
incoherent ow structures ( gure 4.27(c)-(d)). This forci ng of the tail vortices together

allows the strain from the wing vortices to stretch the region of incoherent ow into
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Figure 4.26: A time sequence of attened vorticity across the axial domain shoving the
base ow of the "at tail' DNS case seeded with the optimal perturbation. Red indi-
cates positive vorticity and blue indicates negative vorticity. (a)-(h) displays times t=T =
0:05; 0:10; 0:15; 0:20; 0:25; 0:30; 0:35; 0:40 respectively.
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Figure 4.27: A time sequence of attened vorticity across the axial domain show
ing the base ow of the "at tail' DNS case seeded with white noise. Redindicates
positive vorticity and blue indicates negative vorticity. (a)-(h) disp lays times t=To =
1:10; 1:15; 1:20; 1:25; 1:30; 1:35; 1:40; 1:45 respectively.
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Figure 4.28: A time sequence of iso-surfaces of an arbitrarily small negative vakiof the
eld plotted for the “high tail' case, viewed from directly below, for an axial wavenumber of
ka; = 5:3, seeded with the perturbation that leads to optimal energy growh for =Tg = 3.
The iso-surfaces are coloured by dominant strain rate with blue andred corresponding to
low and high levels respectively. (a)-(f) displays timest=Ty = 0; 0:05; 0:1; 0:15; 0:20 and Q25
respectively.

a long arc that starts to surround the wing vortices ( gure 4.27(f)). The region of
incoherent ow is pulled around, beginning to surround the wing vortices, and leaving
the highly strained region between the wing vortices clear @ure 4.27(g)). While the

tail vortices have devolved into incoherent ow, this had little e ect on the coherence
of the wing vortices (gure 4.27(h)). The main e ect on the win g vortices is a slight
deformation due to the imposed strain from the remnants of tke wing vortices and a

reduction in size around the periphery.

4.3.5 Transition into the non-linear phase

Throughout this section, the ow is visualised using three d erent de nitions. The
rst is the , eld, de ned by Jeong & Hussain (1995) and shows the presencef a
vortex as de ned in their work. The second visualisation mehod utilises the vorticity
magnitude eld and is dened as [! 2+ ! 7+ | §]%°. The nal visualisation method
examines the non-axial vorticity eld, de ned as [! 7+ ! £]%°. Each of the visualisations
in this section are examined in the order given here.

Figures 4.28-4.30 display the vortex systems of the iso-staces for the “high tail' case
seeded with the optimum mode shape. These show that, when thmstability reaches
a certain magnitude and is forced between the stronger vorte pair, it causes the tall

vortices to interact with each other. This interaction causes the ow to become highly
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Figure 4.29: A time sequence of iso-surfaces of vorticity magnitude for the “highail' case,
viewed from directly below, for an axial wavenumber ofk a; = 5:3, seeded with the pertur-

bation that leads to optimal energy growth for =Ty = 3. The colouring of the iso-surfaces
and times are as per gure 4.28.

Figure 4.30: A time sequence of iso-surfaces of the | + ! 7]° eld with dominant strain
ooding for the “high tail' case, viewed from directly below, for an axial wavenumber of
ka; = 5:3, seeded with the perturbation that leads to optimal energy grovth for =Tg = 3.
The colouring of the iso-surfaces and times are as per gure 4.28.

non-linear. As can be seen in gure 4.28(b), the instability begins in the tail vortex pair
with a higher mode, leading to the tail vortices becoming hidnly distorted as they are
forced close together between the stronger wing vortex pair The crossing of vorticity
over the centre (seen in gure 4.28(c)) demonstrates how thdnteraction is primarily
between the tail vortices and not between the wing vortices the aforementioned T-T
interaction). The forcing of the tail vortex pair through th e highly strained region
between the wing vortices causes the tail vortex pair to inteact strongly with each

other. It can also be seen in gure 4.29(c) that lobes of vortcity magnitude are present
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Figure 4.31: Plot of mode energy,E (t)=E(0), against axial wavenumber,k a;, for the "high
tail' case seeded with the optimal perturbation found from the transient growth analysis.
(a)-(d) represent times, t=To = 0:1;0:2; 0:4 and 055 respectively.

in highly strained regions of the ow (red shading). This die rence in iso-surfaces
of vorticity magnitude (gure 4.29(c)) and , eld (gure 4.28(c)) shows that the
magnitude of the dominant strain is greater than the ! 2, therefore, the local uid ow
is dominated by the strain eld and the , eld will not identify a vortex core at
this location (Jeong & Hussain 1995). Early in the transition, a comparison between
gures 4.29(a)-(b) with gures 4.28(a)-(b) shows that the v orticity magnitude and
eld correspond without the lobes of vorticity magnitude. T his shows that early in the
transition into the non-linear regime, there are no regionswhere the dominant strain

is greater than ! 2 and so the ow is dominated by the axial vorticity.

Figure 4.30 shows that, early in the transition into the non-linear regime, there is a

small amount of the | 7+ 1 2]°° eld present in the tail vortex pair, indicating that the
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Figure 4.32: Plot of mode energy growth rate, GR , against axial wavenumber,k a;, for
the “high tail' case seeded with the optimal perturbation found from the transient growth
analysis. (a)-(d) represent times,t=T = 0:15; 0:2; 0:4 and 055 respectively.

ow is predominantly two-dimensional ( gure 4.30(a)). Ast he ow evolves and the T-T
interaction occurs, the [ J+ ! Z]°° eld joins across the centre, forming two horizonal
bands where the tail vortices are interacting with each othe ( gure 4.30(b)). As the
tail vortex pair evolves into small scale ow structures, the [| 7 + 1 2]°° eld grows to
encompass the whole axial direction in the vicinity of the tal vortex pair, indicating
that the tail vortex pair has become highly three-dimensioral ( gure 4.30(e)).

Figure 4.31 displays the normalised energy in the individuhFourier modes for the
“high tail' case seeded with the optimal perturbation found from the transient growth
analysis. Before the overall peak in the energytETg = 0:1, gure 4.31(a)), there is still
very little energy in the smaller axial wavenumbers. After this time, there is a very
large growth in the energy of the smaller axial wavenumbersfor example, for an axial

wavenumber ofk a; = 70, the energy changes fromE (t)=E(0) 10 ° at t=Tg = 0:1 to
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Figure 4.33: A time sequence of iso-surfaces of an arbitrarily small negative vakiof the
eld plotted for the “high tail' case, viewed from directly above, for an axial wavenumber of
ka; = 5:3, seeded with white noise. The iso-surfaces are coloured by domintastrain rate
with blue and red corresponding to low and high levels respectively. (r(f) displays times
t=To = 0:85; 0:90; 0:95; 1:00; 1:05 and 110 respectively.

E(t)=E(0) 10 ! at t=Tp = 0:2 (gure 4.31(a)-(b)). This large increase implies that
the higher harmonics of the axial wavenumber play a signi cant role in the transition
of the ow into the non-linear regime. As the ow proceeds further into the non-linear
regime, the higher axial wavenumbers begin to decay. This dmy occurs because the
size of possible ow structures is limited by the viscosity aad therefore they become

damped out once they reach this limitation ( gure 4.31(d)).

Figure 4.32 displays the energy growth rate in the individud Fourier modes for the
“high tail' case seeded with the optimal perturbation found from the transient growth
analysis. This shows that during the linear growth regime ( gure 4.32(a)), the growth
rate in the higher harmonics of the instability are signi cantly greater than the primary
Fourier mode. These higher growth rates in the higher harmoits continue until around
t=To = 0:4 ( gure 4.32(c)) where the growth rate remains slightly postive in the lower
harmonics and becomes negative in the higher harmonics, recting the decrease in
energy shown in the higher harmonics in gure 4.31(c). Byt=Ty = 0:55, the growth
rate is slightly negative throughout the spectrum of the Fourier modes, which is not
surprising since the non-linear regime is dominated by the dil vortices devolving into

ow structures small enough to be damped out by the uid viscosity.

Figures 4.33-4.35 show the iso-surfaces for the “high taitase seeded with white
noise. The gures show that the instability is of a similar higher wavenumber to the
case seeded with the perturbation that leads to optimal enegy growth. The instability
also begins in the tail vortex pair ( gure 4.33(a)). However, in this case the instability
grows due to the interaction between the wing and tail vortices (the aforementioned T-

W interaction). This is the opposite of the case seeded with lhe optimal perturbation,
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Figure 4.34: A time sequence of iso-surfaces of vorticity magnitude for the “highail' case,
viewed from directly above, for an axial wavenumber ofk a; = 5:3, seeded with white noise.
The colouring of the iso-surfaces and times are as per gure 4.33.

Figure 4.35: A time sequence of iso-surfaces of the f + ! 7]° eld with dominant strain
ooding for the “high tail' case, viewed from directly above, for an axal wavenumber of
ka; = 5:3, seeded with white noise. The colouring of the iso-surfaces and ties are as per
gure 4.33.

where ow from the tail vortices crosses the mid-plane betwen the two wing vortices.
This change in interaction occurs because the instability m the tail vortex pair requires
a certain magnitude before it enters the highly strained regon between the wing vortex
pair. If the instability has grown to su cient magnitude, th e high strain and forcing
of the tail vortices into close proximity will cause ow to occur across the mid-plane
between the wing vortices (a T-T interaction). As in the “high tail' case seeded with
the optimal perturbation, early in the transition the , eld (gure 4.33(a)) corre-
sponds well with the vorticity magnitude at the same time (g ure 4.34(a)). This shows
that early in the transition into the non-linear regime, the re are no regions where the
dominant strain is greater than ! 2 and so the ow is dominated by the axial vorticity.
Later in the evolution, lobes of vorticity in highly straine d regions (red shading) appear
in the vorticity magnitude ( gure 4.34(b)) which are not pre sent in the , eld (g-
ure 4.33(b)). This shows that in these regions of the ow the cdominant strain is greater
than ! 2, leading to the » eld not identifying a vortex. Later in the evolution, the ta il
vortices have devolved into incoherent ow as shown in gures 4.33(f) and 4.34(f).

It is of interest to note that the right tail vortex displays a higher amount of [! §+
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Figure 4.36: Plot of mode energy,E (t)=E(0), against axial wavenumber,k a;, for the "high
tail' case seeded with white noise. (a)-(d) represent timest=Ty = 0:85; 1; 1:2 and 1.5 respec-
tively.

I 2195, indicating that it is transitioning into three-dimension al ow faster than the
left tail vortex (gure 4.35(a)). The left tail vortex displ ays only a small amount of
[! {+ ! Z1°°, indicating that it is still predominantly a two-dimension al ow. This e ect
is most likely due to the nature of the white noise that has bee used to seed the
ow. As the white noise is a combination of di erent magnitude s of di erent mode
shapes, the modes that are conducive to instability growth nay not be of the same
energy magnitude in two localised regions of the ow. In this case, the ideal mode
in the right tail vortex would have begun with more energy and so exhibits greater
instability growth. The transition into non-linear and thr ee-dimensional ow occurs in
three bands, one on either end of the vortex and a band in the cere ( gure 4.35(b)).

As the ow evolves, tendrils of [! 7+ ! 2]%° curl around the vortex core, growing in size
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Figure 4.37: Plot of mode energy growth rate, g, against axial wavenumber k a;, for the
“high tail' case seeded with white noise. (a)-(d) represent timest=T, = 0:85;1; 1:2 and 15
respectively.

(gure 4.35(d)). It is of interest to note that the structure of the [I 7 + 1 Z]%° ow is
the same for both tail vortices, simply occurring at a later time for the left tail vortex
and re ected about the centreline (gure 4.35(d) for the left tail vortex compared to
gure 4.35(b) for the right tail vortex). As the instability grows, it begins to encompass
the whole of the axial domain in the vicinity of the tail vorti ces, indicating they have

become extremely three-dimensional ( gure 4.35(f)).

Figure 4.36 displays the normalised energy in the individuaFourier modes for the
“high tail' case seeded with white noise. It shows that like he case seeded with the
optimal perturbation, the energy in the higher harmonics increase signi cantly during
the linear phase ( gure 4.36(a)-(b)) and then begin to decayduring the transition into
the non-linear regime ( gure 4.36(c)-(d)). The lower waverumbers also follow a similar

trend throughout the transition into the non-linear regime , but with a smaller increase
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Figure 4.38: A time sequence of iso-surfaces of an arbitrarily small negative vakiof the

eld plotted for the " at tail' case, viewed from directly below, for an axial wavenumber of
ka; = 5:3, seeded with the perturbation that leads to optimal energy grovth for =Tg = 3.

The iso-surfaces are coloured by dominant strain rate with blue anded corresponding to low
and high levels respectively. (a)-(f) displays timest=Ty = 0:05; 0:1; 0:15; 0:20; 0:25 and Q30
respectively.

and decrease in normalised energy. This rapid increase in ergy in the higher axial
wavenumbers indicates that the transition into the non-linear regime causes the vortices
to break down into small scale (high axial wavenumber) ows that can be damped out

by the uid.

Figure 4.37 displays the energy growth rate in the individud Fourier modes for
the “high tail' case seeded with white noise. It shows that tle higher wavenumbers
have signi cantly larger growth rates during the linear regime and in the beginning of
the transition into the non-linear regime ( gure 4.37(a)-(b)). As the ow transitions
further into the non-linear regime and the ow breaks down into smaller structures,
the greater growth rate present in the higher axial wavenumters decreases signi cantly
(gure 4.37(c)). The energy in the higher axial wavenumbersindicate smaller ows
and as such they can be damped out, resulting in the rapid de&ase in the higher
wavenumber modes until they have a larger negative growth ree ( gure 4.37(d)). This
behaviour implies that while the energy in the higher axial wavenumbers will grow at

a faster rate, it will also reach a value that will lead to faster loss of energy as well.

Figures 4.38-4.40 show the iso-surfaces for the " at tail' ase seeded with the per-
turbation that leads to optimal energy growth. These gures reveal that the instability
growth and mechanisms are similar to the “high tail' case sated with white noise, in
that the instability that arises due to the interaction betw een the stronger and weaker
vortices, a W-T interaction, rather than between the tail vortex pair. This is empha-
sized by the lack of crossing of vorticity magnitude across lie centreline. It can be

seen in gure 4.39(c) that lobes of vorticity magnitude are present in regions of high
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Figure 4.39: A time sequence of iso-surfaces of vorticity magnitude for the " attail' case,
viewed from directly below, for an axial wavenumber ofk a; = 5:3, seeded with the pertur-
bation that leads to optimal energy growth for =Ty = 3. The colouring of the iso-surfaces
and times are as per gure 4.38.

Figure 4.40: A time sequence of iso-surfaces of the f + ! 7]° eld with dominant strain
ooding for the " at tail' case, viewed from directly below, for an axia | wavenumber ofk a; =
5:3, seeded with the perturbation that leads to optimal energy growh for =Ty = 3. The
colouring of the iso-surfaces and times are as per gure 4.38.

Figure 4.41: Plot of mode energy,E (t)=E(0), against axial wavenumber,k a;, for the " at
tail' case seeded with the optimal perturbation found from the transient growth analysis. (a)
and (b) represent times,t=Ty = 0:2 and 05 respectively.
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Figure 4.42: Plot of mode energy growth rate, ggr, against axial wavenumber,k a;, for the
" at tail' case seeded with the optimal perturbation found from the transient growth analysis.
(a) and (b) represent times, t=To = 0:2 and 04 respectively.
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strain when compared to the , eld (gure 4.38(c)) for the same reasons as described
for the “high tail' case seeded with the optimal perturbation. These lobes of vorticity

magnitude are once again not present earlier in the ow evoltion.

It can be seen that very early in the transition, there is almost no evidence of
[+ 1 Z1%° (gure 4.40(a)). As the instability grows and the ow transi tions into
non-linear growth the [I 7 + | Z]°° smears horizontally, forming into two bands that
encircle the tail vortex cores ( gure 4.40(b)). It is of inte rest to note that the transition
into three-dimensional ow is symmetrical about the centerline dividing the vortices.
As the ow evolves and transitions into the three-dimensional and non-linear regime,
[! 2+ 1 2]%° forms into a pair of thick tendrils that encircle the tail vor tex cores but do

not cross the centreline ( gure 4.40(e)).

Figure 4.41 displays the normalised energy in the individubFourier modes for the
" at tail' case seeded with the optimal perturbation found from the transient growth
analysis. As with the previous cases shown, the higher Fougsr modes experience a
signi cant increase in normalised energy during the lineargrowth regime. While the
leading Fourier mode experiences an increase in hormaliseshergy of half an order of
magnitude, the normalised energy in the higher Fourier mode increase by up to three
orders of magnitude (gure 4.41(b)). This behaviour follows the same trend in the
“high tail' cases seeded with white noise and the optimal péurbation found from the

transient growth analysis.

Figure 4.42 shows the energy growth rate in the individual Farrier modes for the
" at tail' case seeded with the optimal perturbation found from the transient growth
analysis. As in the previous cases examined, the higher Foier modes experience a
signi cantly higher growth rate than the leading Fourier mo des during the linear growth
phase ( gure 4.42(a)). As with the “high tail' cases, the gravth rate of all of the modes

reach a near constant growth rate in the non-linear regime (gure 4.42(b)).

Figures 4.43-4.45 show the iso-surfaces for the " at tail' ase seeded with white
noise. These gures reveal that the instability grows in a smilar manner and with
similar mechanisms to the “high tail' case seeded with the péurbation that leads to
optimal energy growth. As seen in the previous case, the ingbility mechanism has
grown to a stage where the higher strain between the wing voex pair forces vorticity
across the centreline ( gure 4.44(d)). This causes the tailvortices to primarily interact

with each other, a T-T interaction, causing rapid destruction. As in the previous cases,

149



Figure 4.43: A time sequence of iso-surfaces of an arbitrarily small negative vakiof the
eld plotted for the " at tail' case, viewed from directly below, for an axial wavenumber of
ka; = 5:3, seeded with white noise. The iso-surfaces are coloured by domintastrain rate
with blue and red corresponding to low and high levels respectively. (g(f) displays times
t=To = 1:0; 1:05; 1:10; 1:15; 1:20 and 1.25 respectively.

Figure 4.44: A time sequence of iso-surfaces of vorticity magnitude for the " attail' case,
viewed from directly below, for an axial wavenumber ofk a; = 5:3, seeded with white noise.
The colouring of the iso-surfaces and times are as per gure 4.43.
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Figure 4.45: A time sequence of iso-surfaces of the | + ! 7]° eld with dominant strain
ooding for the " at tail' case, viewed from directly below, for an axia | wavenumber ofk a; =
5:3, seeded with white noise. The colouring of the iso-surfaces and ties are as per gure 4.43.

Figure 4.46: Plot of mode energy,E (t)=E(0), against axial wavenumber,k a;, for the " at
tail' case seeded with white noise. (a)-(d) represent timest=Tp = 0:9; 1:1; 1:2 and 1.4 respec-
tively.
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Figure 4.47: Plot of mode energy growth rate, ggr, against axial wavenumber,k a;, for the
" at tail' case seeded with white noise. (a)-(d) represent times,t=Tg = 0:9;1:1;1:2 and 1.4
respectively.
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early in the evolution the » eld and vorticity magnitude correspond well with each
other (gures 4.43(a)-(b) and 4.44(a)-(b)) due to the reasas described before. The
lobes of vorticity magnitude that are not identi ed by the , eld are rst observed
from t=Ty = 1:10 ( gures 4.44(c) and 4.43(c)). These lobes are most likelwgtill present
later in the evolution, but due to the transition of the tail v ortices into a large region of

small scale structures, are extremely di cult to identify ( gures 4.44(f) and 4.43(f)).

As in the previous cases examined in relation to![Z + ! ]°°, the case of the " at
tail' case seeded with white noise begins the transition inb non-linear growth in a
predominantly two-dimensional fashion ( gure 4.45(a)). As the ow transitions into
the non-linear regime, it becomes more three-dimensionafprming tendrils that begin
to encircle the tail vortex pair, with the right tail vortex d isplaying a larger region
of [ 3+ 1 2]°° (gure 4.45(b)). As in the “high tail' case seeded with white noise,
the disparity between the instability growth between the tail vortices is likely due to
the initial white noise seeding having a slightly higher enegy in the ideal mode shape
present in one tail vortex than the other. Due to the T-T inter action, the tendrils of
[! 2+ 1 £1°° join together to encircle both of the tail vortices ( gure 4.45(c)). As the
tail vortex pair becomes highly perturbed, the three-dimersional nature dominates the
ow, encompassing the entire axial domain in the vicinity of the tail vortex pair with
[ 2+ 1 2195 (gure 4.45(f)).

Figure 4.46 displays the normalised energy in the individuaFourier modes for the
" at tail' case seeded with white noise. As in the previous caes examined, the higher
Fourier modes begin with very small normalised energy and naidly increases during the
linear phase ( gure 4.46(a)-(b)). As the ow enters the non-linear regime, the higher
Fourier modes begin to decay as the base ow breaks down intoows small enough to
be damped out by the uid. It is interesting to note that once t he leading Fourier mode
reaches a normalised energy of approximatel§ (t)=E(0) = 107, it remains at this level

throughout the transition into the non-linear regime.

Figure 4.47 shows the growth rate in the individual Fourier modes for the " at
tail' case seeded with white noise. As with the previous casg the growth rate of the
higher Fourier modes begins with a very large magnitude durig the linear phase ( g-
ure 4.47(a)) and rapidly decreases as the ow transitions ito the non-linear regime
(gure 4.47(b)). Once the ow has entered the non-linear regme, the growth rate

of the leading Fourier mode becomes almost zero and the highé-ourier modes be-
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Figure 4.48: Time histories of (a) normalised and (b) absolute perturbation enegy of the
“high tail' case seeded with the optimal perturbation obtained for =T, = 3 and an axial
wavenumber ofka; = 5:3. Each case is seeded with an initial condition scaled to energy
levels, Eq (dotted line), 10 2 E, (dashed-dot line), 10 % E, (dashed line), and 10 ® E, (solid
line). The short vertical lines represent the times when each plot eters the non-linear regime.

come negative, demonstrating that the small scale ows are bcoming damped out
(‘gure 4.47(d)).

The results shown in this section reveal that when the tail vatices are forced through
the space between the wing vortices, this can initiate an ingraction between the two tail
vortices. This interaction is characterised by vorticity magnitude crossing the centreline
of the ow. This T-T vortex interaction always leads to the vo rtices being destroyed
at a much faster rate than the T-W interactions. The destruction of the tail vortices
is what causes the instabilities in the wing vortex pair to fom, leading to a faster

destruction of the entire vortex ow in the T-T interaction.

4.3.6 Seeding with di erent initial magnitudes

This section shows the results of simulations seeding the igh tail' case with di erent
magnitudes of the optimal perturbation. The case used as a fference is the same “high
tail' case seeded with the optimal perturbation used in the pevious sections with a
perturbation energy of Eq and is de ned as having 001522% of the initial energy in the
base ow. The values for the variables are as the "high tail' ase de ned in table 2.1.
This study was conducted to examine the e ect of initial perturbation seeding energy
on the types of vortex interaction, the T-T and T-W interacti on shown in the previous

section.
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Figure 4.49: Time histories of the zeroth Fourier mode of the "high tail' case seedkwith
the optimal perturbation obtained for =T, = 3 and an axial wavenumber of ka; = 5:3.
Each case is seeded with an initial condition scaled to energy levelg, (dotted line), 10 2E,
(dashed-dot line), 10 * E, (dashed line), and 10 ® E, (solid line).

155



Figure 4.48 displays the (a) normalised and (b) absolute pdurbation energy for
the "high tail' case seeded with the optimal perturbation oltained for =Ty =3 and an
axial wavenumber ofka; = 5:3 at a number of di erent seeding energy magnitudes.
Figure 4.48(a) shows that by reducing the strength of the intial perturbation relative
to the base ow, the onset of the non-linear phase is delayedleading to a higher
normalised energy peak. The deviation from the collapsed ggon in gure 4.48(a)
signals the onset of non-linear e ects in the growing disturtance. This is because it
takes longer for the disturbance to grow to su cient amplitu de to modify the base
ow. As the initial perturbation energy decreases, the onsé of the non-linear regime is

delayed even further.

Figure 4.48(b) shows that the delay of the non-linear regimehas the overall e ect
of increasing the amount of energy that grows until it become saturated. This higher
level of saturation indicates that the base ow will become nore distorted and there-
fore lead to faster destruction. As each of the plots deviatdrom the linear evolution
(gure 4.48(a)) they all have approximately the same level d absolute energy in the
transition, E(t) O(0:1). This implies that once the absolute perturbation energy
reaches this level,[E(t) 10 1, it will always transition into the non-linear regime. As

the absolute energy plateaus, all of the graphs reach a nalmergy of E(t) O(1).

Figure 4.49 displays the normalised energy in the zeroth Fater mode for the “high
tail' case seeded with the optimal perturbation obtained fa =Ty = 3 and an axial
wavenumber of ka; = 5:3 at a number of dierent seeding energy magnitudes. It
shows that the decrease in seeding magnitude has the e ect ofllawing the linear
regime to decrease the energy in the base ow to a larger degee The dashed-dot line,
corresponding to a seeding magnitude of 1¢ E dips to a lower energy in the zeroth
Fourier mode than the reference case. This indicates that wite it may take a slightly
longer time to reach the non-linear regime, it will dip to a lower energy in the zeroth

Fourier mode.

This leads to the conclusion that there should be an optimal seding energy that
produces enough of a drop in the energy of the zeroth Fourier ode to reduce the
coherence of the vortices (and therefore reduce the hazardbttrailing aircraft), but

does not take an extended period of time to reach this state.

Figure 4.50 illustrates the main di erence between a ow that has become non-linear

and one that is still in the linear growth regime. Before the tail vortex pair enters the

156



Figure 4.50: Plots of iso-surfaces of axial vorticity at times (i) - (iv) t=To =

0:05; 0:10; 0:15; 0:20 for the “high tail' case seeded with the optimal perturbation for =T = 3.

The simulation has an axial extension ofka; = 5:3. The colours represent levels of the ;

eld, with green representing small negative value to blue represeting a high negative value.
(a) and (b) show the cases seeded with disturbances of magnitudé, and 10 ? E, respec-
tively.
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highly strained region between the wing vortex pair, the tail vortices are still strong,
coherent vortices (gure 4.50(a i) and (b i)). In the case of the disturbance seeded
with a magnitude of Eq, a signi cant amount of ow from the tail vortices crosses the
mid-plane at t=Tp = 0:10, leading to a T-T interaction and causing the ow to become
non-linear (gure 4.50(a ii)). At the same time, t=Tp = 0:1, the ow seeded with a
disturbance of magnitude 10 2E is still in the linear growth regime, demonstrating a
lack of perturbation energy required to cause a T-T interacion. This prevents any ow
from the tail vortices crossing the mid-plane between the vatices and leading to a T-W
interaction (gure 4.50(b ii)). The crossing of ow across the mid-plane between the
wing vortices in the T-T interaction causes a rapid loss of cberence in the tail vortices,
leading to a rapid destruction of the tail vortices ( gure 4.50(a iv)) and a reduction
in instability growth. In the case of the seeding of a magnitue 10 ? Eq perturbation,
the tail vortices are still coherent vortices, and this allons the instability to continue
growing (gure 4.50(b iv)). The delay of the interaction acr oss the mid-plane allows for
enhanced linear growth for an orbit until the tail vortices are next entering the highly

strained region between the wing vortex pair.

4.4 E ect of seeding time during rst tail vortex orbit

In this section the results of a study conducted to investigaée the e ect of seeding the
ow with an optimum perturbation during the rst orbit of the  tail vortex pair around
the wing vortex pair are discussed, beginning with the “hightail' con guration. Tg; is
the seeding time andty st is taken as the time from seeding for this section, where
tvst =t Ts. As Tg is normalised throughout by the orbit time of the tail vortex
pair, then T4 =Ty is the fraction of a complete orbit completed by the tail vortex pair.
It is important to note that due to the requirement of the nume rical method to initially
relax from the imposed solution to a true solution of the Navier{Stokes equations over
0 t=Tg 0:1, the solutions for Ts;=Tp = 1 will not correspond to the solution for
Tst=To = 0. This has the e ect of making the solutions not purely cyclic for the rst
orbit period, but due to the nature of the constantly changing position of the four-vortex
system, obtaining a relaxed initial solution is almost impassible.

Figure 4.51 shows a schematic of the layout of the four-vorte system used for the
position study. The tail orbit fraction, Tg=Tp, begins at Ts;=Tg = 0 when the tail

vortices are in the position shown, and follows the path show by the solid black arrow
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Figure 4.51: Diagram displaying the layout of the initial vortex set and de ning the span
variable for the 4 vortex system model for the position study.

until they return to that position after a complete orbit, Tg=Tg = 1.

4.4.1 Transient growth analysis

Figure 4.52 shows a transient growth analysis of the “high @ case with growth am-
pli cation factor, G( ) against the orbit fraction, Tg=Ty. It shows that the stability of
a four-vortex system is directly related to the position of the tail vortex pair around
the wing vortex pair. This gives the ow a stability of a cycli ¢ nature based on the
orbit of the tail vortex pair, with a maximum at Tg=Tp = 0:6. This is interesting as
it corresponds to an orbit fraction when the tail vortex pair is initially on the outside
of the wing vortex pair. Given that =Ty = 1, this corresponds to a situation where
the perturbation undergoes a majority of its transient growth while within the highly
strained region between the wing vortex pair.

Figure 4.53 shows the initial optimal perturbation elds fo r orbit fractions of Tg=Tp =
0:15; 0:25; 0:35; 0:45; 0:55; 0:65; 0:75; 0:85; 0:95. The initial optimal perturbation eld is
the perturbation eld that leads to maximum energy growth fo r a given value of =Ty
and axial wavenumber, ka;. An axial wavenumber of ka; = 5:3 was chosen as it
corresponds to the peak in transient growth ampli cation factor found in x 4.3.1. It
is interesting to note that the majority of the perturbation vorticity is contained in a
mode [-1,1,1] within the cores of the tail vortex pair. This perturbation dipole rotates
with the ow, maintaining an angle of approximately 45 to a line from the tail vortex
core to the closest wing vortex core. This implies that the mat e ective way to desta-
bilise the system is to add a perturbation to the tail vortex pair to maximise energy

growth of the perturbation. It is also interesting to note th at all of the cases exhibit
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Figure 4.52: Plot of growth ampli cation factor, G( ), against tail vortex orbit fraction,
Tst=To (Where Tqt=To = 0 is equivalent to the high tail' case shown in previous sections).
For this plot an optimal disturbance with ka =5:3 and =T =1 is used.
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Figure 4.53: A sequence of spanwise vorticity in the initial optimal perturbation eld

(ooded contours) for the “high tail' case for =T¢ = 3. Flooded contour levels are chosen
arbitrarily to display the perturbation structure. Solid contour line s show spanwise vorticity
in the base ow at levels of vorticity of j !, j=1;3;7. An axial wavenumber ofka; = 5:3

to correspond to the peak found in the transient growth analysis inx 4.3.1. (a)-(h) are the

initial optimal perturbations for Tg =Ty = 0:15; 0:25; 0:35; 0:45; 0:55; 0:65; 0:75; 0:85 and Q95

respectively.
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symmetry about the mid-plane separating the vortices. WhenTg=Tp = 0:15, there is
a thin smear of opposing perturbation vorticity directly between the vortices, which
becomes a thin “tail' of vorticity that wraps around the wing vortices for higher values
of Tg=Tp. It is of interest to note that there is a thin band of perturba tion vorticity
that connects the perturbation present in the tail vortices when they are above the
wing vortices ( gure 4.53(g)-(h)). In these latter cases, the perturbation surrounding
the vortex cores takes the form of a spiral of opposite sign péurbation vorticity. This

is in contrast to the earlier cases, which exhibit a single rgion of perturbation with one
sign of vorticity ( gure 4.53(b)-(e)). This implies that th e rotation of the tail vortex
has the e ect on the initial optimal perturbation eld of draw ing the spiral more tightly

around the tail vortex pair.

4.4.2 Direct numerical simulation

A study comprising a number of direct numerical simulationswas performed to observe
the e ect of seeding the ow with the optimal perturbations at di erent tail vortex orbit
fractions, Tst=Tp, and the transition into non-linear ow. An axial wavenumbe r of ka; =
5:3 was chosen as it corresponded to the peak in growth ampli cégon factor found in
the transient growth analysis. The axial domain was chosenda allow for one wavelength
of the desired instability and all the cases were seeded in dnthe rst Fourier mode.
Sixteen Fourier modes were chosen to give a good balance be®n computational time
and error as shown inx 2.6.3. The energy levels of all the perturbations used to see
the di erent cases are the same and are of a magnitude 0f.01522% of the initial energy
in the base ow. The vortex core sizes and separations are asep the “high tail' case
described inx 2.1.

The optimal perturbation elds found from the transient gro wth analysis by varying
tail orbit fraction, Tg=Tp, were used to seed a number of direct numerical simulations.
Figures 4.54-4.65 will be described in this section. Figue4.54-4.57 show a time history
of normalised perturbation energy for successive interval of T =Ty variation. The
perturbation energy is the sum of all of the Fourier modes use for each simulation and
is normalised by the initial perturbation energy, which is the same for all cases. The
axial wavenumber is xed at ka; = 5:3 to correspond with the peak axial wavenumber
found in the transient growth analysis in x 4.3.1.

Figures 4.60-4.65 show temporal evolution and transitionmto the non-linear regime
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Figure 4.54: Time history of normalised perturbation energy with the ow seeded at di er-
ent times during the rst orbit of the tail vortex pair around the win g vortex pair. ;4 ;r ;}
and represent seeding at tail orbit fractions of T¢t=Tp = 0:05;0:10; 0:15; 0:20 and Q25 re-
spectively. The reference seeding time ofy; = O is represented by and a dashed line.
tvst=To = 0 is used to de ne initial time so that all curves originate at the vert ical axis.
An axial wavenumber of ka; = 5:3 was considered to correspond to the peak found in the
transient growth analysis in x 4.3.1.

for successive intervals off s;=Tp variation. The iso-surfaces displayed in these plots are
an arbitrarily small negative value of the » eld with coloured shading representing
levels of dominant strain, with blue and red corresponding b low and high values

respectively.

Figure 4.54 shows a time history of normalised perturbationenergy for a band of
seeding forTs=Tp = 0:05 0:25. It can be seen that the growth rate of the instability is
directly a ected by the position of the tail vortex pair at see ding. When the tail vortex
pair are seeded within the highly strained region between tk wing vortex pair, the
growth of the instability is greater and leads to a faster on®t of non-linearity. As the
tail vortex pair is seeded as it leaves the highly strained rgion between the wing vortex
pair, the growth rate is lower, leading to a delay of the onsetof non-linear growth.

It is of interest to note that the perturbation energy of the cases where the onset of
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Figure 4.55: Time history of normalised perturbation energy with the ow seeded at di er-
ent times during the rst orbit of the tail vortex pair around the win g vortex pair. ;4 ;r ;}
and represent seeding at tail orbit fractions of Tg;=Tp = 0:30; 0:35; 0:40; 0:45 and Q50 re-
spectively. The reference seeding time ol = O is represented by and a dashed line.
tvst=To = 0 is used to de ne initial time so that all curves originate at the vert ical axis.
An axial wavenumber of ka; = 5:3 was considered to correspond to the peak found in the
transient growth analysis in x 4.3.1.

non-linear growth is delayed peaks at a higher level to the cses with earlier onset of

non-linear growth.

Figure 4.55 shows a time history of normalised perturbationenergy for a band of
seeding forTg=Tp = 0:30 0:50. It can be seen that as the seeding of the ow occurs
further away from the highly strained region between the wirng vortex pair the growth
rate of the instability decreases as well. The growth rate ofthe instability seeded at
Tst=Tp = 0:50 is lower than the growth rate of the instability seeded atTs;=Tp = 0:30. It
is of interest to note the case ofTs;=Tp = 0:30 as the lower growth rate of the instability

allows it to grow to a higher energy before becoming non-linar.

Figure 4.56 shows a time history of normalised perturbationenergy for a band of
seeding forTg=Tg = 0:55 0:75. It can be seen that the growth rates of the seeding

orbit fraction, 0:55 Tg  0:75, are approximately the same, leading to all of the
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Figure 4.56: Time history of normalised perturbation energy with the ow seeded at di er-
ent times during the rst orbit of the tail vortex pair around the win g vortex pair. ;4 ;r ;}
and represent seeding at tail orbit fractions of T¢t=Tp = 0:55; 0:60; 0:65; 0:70 and Q75 re-
spectively. The reference seeding time ofy; = O is represented by and a dashed line.
tvst=To = 0 is used to de ne initial time so that all curves originate at the vert ical axis.
An axial wavenumber of ka; = 5:3 was considered to correspond to the peak found in the
transient growth analysis in x 4.3.1.
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Figure 4.57: Time history of normalised perturbation energy with the ow seeded at di er-
ent times during the rst orbit of the tail vortex pair around the win g vortex pair. ;4 ;r and
} represent seeding at tail orbit fractions of T¢t=Tp = 0:80; 0:85;0:90 and Q95 respectively.
The reference seeding time oy = 0 is represented by and a dashed line.tyst=Top =0 is
used to de ne initial time so that all curves originate at the vertical axis. An axial wavenum-
ber of ka; = 5:3 was considered to correspond to the peak found in the transiengrowth
analysis inx 4.3.1.
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Figure 4.58: Perturbation energy growth rate, gr, at tyst=Tp = 0:15 against the talil
orbit fraction the ow is seeded at, Ts=Tp. An axial wavenumber of k a; = 5:3 is prescribed
for the perturbation eld.

perturbation energies collapsing into a similar trend. It is of interest to note that the

perturbation energies for the latter seeding orbit fraction Tg=Tg = 0:75 are higher at
latter times due to a delay of the onset of the non-linear regne. The delay of onset of
the non-linear regime for all of the cases means that the petrbation energy can reach

a higher level than the reference case ofs;=Ty = 0.

Figure 4.57 shows a time history of normalised perturbationenergy for a band of
seeding forTg=Tg = 0:80 0:95. It can be seen that early in the evolution the growth
rates of the seeding orbit fraction, 080 Tg=Tg 0:95, are approximately the same
for0 t=Ty 0:2, leading to the perturbation energies collapsing into a shilar trend.
As the seeding orbit fraction increases,Ts=Tg = 0:95, the growth rate later in the
evolution, t=Tp  0:2, increases due to the proximity of the seeding close to theighly
strained region between the wing vortex pair. In all of the caes the perturbation energy
becomes greater than the reference casé&g=Tp = 0. This is because the lower growth
rate delays the onset of the non-linear region and thereforéhe subcritical nature of the

ows.

Figure 4.58 shows a time history of the perturbation energy gowth rate, gr for
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Figure 4.59: Perturbation energy at tyst=To = 0:3, normalised by initial perturbation
energy, against tail orbit fraction, Ts;=Ty, where the ow is seeded. An axial wavenumber of
ka; = 5:3 is prescribed for the perturbation eld.

the linear growth regime against the tail orbit fraction, Tg=Ty the ow is seeded at.
It demonstrates that the linear growth rate of the instabili ty growth is directly related
to the position of the tail vortices, given by the tail orbit f raction. When the ow
is seeded just before or within the highly strained region b&veen the wing vortices,
0 Tg=Tp 0:3 the growth rate is signi cantly higher than when the tail vo rtex pair
is seeded after the tail vortex pair has passed the highly sained region between the
wing vortex pair, 0:3 Tg=Tp 0:9. This shows that the growth rate of the instability
is directly related to the proximity of the tail vortex pair t o the highly strained region

between the wing vortex pair.

Figure 4.59 shows the perturbation atty st=Tp = 0:3, normalised by initial per-
turbation energy, against tail orbit fraction, Ts=Tp, where the ow is seeded. As the
growth rate of the instability (as shown in gure 4.58) changes in a cyclic manner in
relation to the tail vortex orbit fraction, Tg=Tp, it is unsurprising that the normalised
perturbation energy at a speci c time also follows a similar pattern with a maximum at
Tst=To = 0:15 and a minimum at Tg;=Tg = 0:65 ( gure 4.59). As with the growth rate,

the cases where the ow is seeded with the tail vortex pair jus before or within the
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highly strained region between the wing vortex pair, 0 Tg=Ty 0:3, the normalised
perturbation energy is signi cantly higher than the cases where the ow is seeded when
the tail vortex pair is outside of the highly strained region between the wing vortex pair,
0:3 Tg=Tp 0:9. Overall, gures 4.54-4.57 have a number of things in comma.
The growth rate of the linear region is directly related to the position of the tail vortex
pair compared to the highly strained region between the wingvortex pair. When the
ow is seeded just before the tail vortex pair enters the higHy strained region between
the wing vortex pair, 0 Tg=Tp 0:10, the growth rate is at its highest. When the
tail vortex pair is seeded outside the highly strained regio, 0:15 Tg=Tg 0:75, the
growth rate is at its lowest and only begins to increase as théail vortex pair approaches

this region again, Tt=Tp  0:80.

Figure 4.60 shows the temporal evolution of the four-vortexDNS seeded aflg=Tg =
0:05 for the period @00 tyst=Tg 0:35. It shows that the instability begins growing
immediately from seeding. As the instability is growing while in the highly strained
region between the wing vortex pair it leads to the tail vortices being forced to interact
with each other in a T-T interaction ( gure 4.60(b)). Loops o f » from the tail vortices
begin to cross thex = 0 plane, greatly enhancing the growth of the instability in the
tail vortex pair (gure 4.60(d)). From this point, the tail v ortices evolve into small
scale ow structures as the stronger wing vortices pull themapart ( gure 4.60(f)). As
the tail vortex pair devolves into small scale structures, a instability begins to form in
the wing vortex pair as an asymmetric bending at about 45 to the line between the

vortex cores (gure 4.60(h)).

Figure 4.61 shows the temporal evolution of the four-vortexDNS seeded afl;=Tp =
0:2 for the period GO0 tyst=Tp 0:30. It shows that the instability grows as the
tail vortex pair is leaving the highly strained region between the wing vortex pair
and presents as an asymmetric bending at about 45 to the line between the vortex
cores (gure 4.61(b)). As the tail vortices have left the highly strained region between
the wing vortices before the instability has been seeded, th ow resolves into a T-W
interaction ( gure 4.61(c)). It of interest to note that the instability in the wing vortex
pair becomes observable as early as st=Tg = 0:25 ( gure 4.61(f)), unlike the earlier
seeding case where it is is not as evident untity st=Tp = 0:35 (gure 4.60(h)). The
instability beginning to form in the wing vortex pair is an as ymmetric bending at about

45 to the line between the vortex cores, which is similar to the pevious case.

169



Figure 4.60: Time sequences of iso-surfaces at an arbitrarily small negative vaduof the

2 eld plotted from a three-dimensional simulation of the Tg =Ty = 0:05 case with an axial
extent corresponding to a wavenumber ofka; = 5:3. The ow is seeded initially with the
optimal perturbation for =Ty = 1. The coloured shading shows levels of dominant strain,
with blue and red corresponding to low and high values respectively. g)-(h) displays the
evolution of the instability for times ty st =Ty = 0:00; 0:05; 0:10; 0:15; 0:20; 0:25; 0:30 and Q35
wherety st =Ty = 0 is taken as seeding time.
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Figure 4.61: Time sequences of iso-surfaces at an arbitrarily small negative vaduiof the
eld plotted from a three-dimensional simulation of the T =Ty = 0:2 case with an axial extent
corresponding to a wavenumber oka; = 5:3. The ow is seeded initially with the optimal
perturbation for =Ty = 1. The coloured shading shows levels of dominant strain, with blue
and red corresponding to low and high values respectively. (a)-(g¥lisplays the evolution of
the instability for tyst =T = 0:00; 0:05; 0:10; 0:15; 0:20; 0:25 and Q30 wheretyst=Tp = 0 is
taken as seeding time.
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Figure 4.62: Time sequences of iso-surfaces at an arbitrarily small negative vaduiof the
eld plotted from a three-dimensional simulation of the T =Ty = 0:3 case with an axial extent
corresponding to a wavenumber ok a; = 5:3. The ow is seeded initially with the optimal
perturbation for =Ty = 1. The coloured shading shows levels of dominant strain, with blue
and red corresponding to low and high values respectively. (a)-(g¥lisplays the evolution of
the instability for tyst =T = 0:00; 0:05; 0:10; 0:15; 0:20; 0:25 and Q30 wheretyst=Tp = 0 is
taken as seeding time.
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Figure 4.63: Time sequences of iso-surfaces at an arbitrarily small negative vatuof the

2 eld plotted from a three-dimensional simulation of the T4 =Ty = 0:45 case with an axial
extent corresponding to a wavenumber ofka; = 5:3. The ow is seeded initially with the
optimal perturbation for =Ty = 1. The coloured shading shows levels of dominant strain,
with blue and red corresponding to low and high values respectively. g)-(h) displays the
evolution of the instability for ty st =Tp = 0:00; 0:05; 0:10; 0:15; 0:20; 0:25; 0:30 and Q35 where
tvst =To = 0 is taken as seeding time.
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Figure 4.62 shows the temporal evolution of the four-vortexDNS seeded afTs=Tp =
0:3 for the period 000 tyst=Tg 0:30. It shows that the instability in the tail vortex
pair evolves in a similar manner to the T =Ty = 0:2 case, leading to a T-W interaction.
As the tail vortices were seeded with the instability when they were outside the highly
strained region between the vortex pair, the tail vortices maintain coherence for longer
before evolving into small scale ow structures ( gure 4.62¢)). This extension of the
coherence of the tail vortex pair appears to lead to an enhared instability growth in the

wing vortex pair, leading to it becoming rst evident at tyst=Tp = 0:2 ( gure 4.61(¢e)).

Figure 4.63 shows the temporal evolution of the four-vortexDNS seeded afTs=Tp =
0:45 for the period Q00 tyst=Tp 0:35. The instability mechanisms are similar to
the Tg=To = 0:3 case with the instability in the tail vortex evolving away from the
highly strained region between the wing vortex pair, leadirg to a T-W type interaction.
The tail vortices maintain coherence for a longer period of ime before evolving into
small scale ow structures, leading to an earlier deformaton of the wing vortex pair,
tvst=Tp = 0:15 (gure 4.63(d)). By the time the tail vortices have become highly
perturbed ( gure 4.63(h)) the instability in the wing vorte x pair has grown to be sig-
ni cant and exhibits the asymmetric bending at about 45 to the line between the

vortex cores.

Figure 4.64 shows the temporal evolution of the four-vortexDNS seeded afls;=Tp =
0:6 for the period 000 tyst=Tp 0:35. The instability that forms is very similar to
the T =Tp = 0:45 case with the instability in the tail vortex pair evolving away from
the highly strained region between the wing vortex pair, lealing to a T-W interaction.
Similar to the previous case, the evolution of the instabilty away from the highly
strained region between the wing vortex pair leads to a slowegrowth of the instability
in the tail vortex pair, which in turn leads to a longer imposed strain from the tail
vortex to the wing vortex. By the time the tail vortices have b ecome highly perturbed
(‘gure 4.64(h)) the instability in the wing vortex pair has g rown to be signi cant and

exhibits the asymmetric bending at about 90 to the line between the vortex cores.

Figure 4.65 shows the temporal evolution of the four-vortexDNS seeded afTs=Tp =
0:9 for the period GO0 tyst=To 0:35. It shows that this seeding case exhibits
properties of both previous cases. As it is seeded when theitavortex pair is outside

the highly strained region between the wing vortex pair (gure 4.65(a)) the instability
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Figure 4.64: Time sequences of iso-surfaces at an arbitrarily small negative vatuof the

2 eld plotted from a three-dimensional simulation of the Tg=To = 0:6 case with an axial
extent corresponding to a wavenumber ofka; = 5:3. The ow is seeded initially with the
optimal perturbation for =Ty = 1. The coloured shading shows levels of dominant strain,
with blue and red corresponding to low and high values respectively. )-(h) displays the
evolution of the instability for ty st =Tp = 0:00; 0:05; 0:10; 0:15; 0:20; 0:25; 0:30 and Q35 where
tvst =To = 0 is taken as seeding time.

in the tail vortex pair grows as a T-W interaction (gure 4.65 (a)-(f)). This leads to
an earlier growth of instability in the wing vortex pair as th e imposed strain from the
tail vortex remains for longer. The interaction changes to aT-T interaction as the
highly perturbed tail vortices are pulled through the highly strained region between
the wing vortex pairs ( gure 4.65(h)). As the type of interaction changes and speeds
the destruction of the tail vortex pair, the wing vortex pair has a smaller level of evident
instability growth than either the Tg=Tg = 0:45 or Ts=Tp = 0:6 cases.

Figures 4.60-4.65 show a number of points of interest. One ithat the time of
seeding before the tail vortex pair enters the highly straired region between the wing
vortex pair will determine if a T-W or T-T interaction occurs . When the ows are

seeded with the tail vortex pair outside the highly strained region between the wing
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vortex pair, 0:2 Tg =Ty 0:9 then the rst type of interaction that occurs is a T-T
interaction. This can change as the instability grows in the tail vortex pair and is
then highly strained as can be seen later in the evolution oftie Tg=Tg = 0:9 case. If
the ow is seeded while the tail vortex pair is within the highly strained region, the
Tst=Tp = 0:05 case, then the rst interaction is a T-T interaction that | eads to a very
rapid evolution of the tail vortex pair into small scale ow s tructures. The second point
is that the T-W interaction, while leading to a slower destruction of the tail vortex pair,
allows the tail vortices to impose a strain on the wing vortices for a longer period of
time. This is shown in the 0.2 Tg=Tgp 0:6 cases where the instability in the wing
vortices becomes more evident earlier in the evolution.

Figure 4.66 shows the energy in the zeroth Fourier mode aty st=Tp = 0:3, nor-
malised by the initial energy in the zeroth mode, against tal orbit fraction, Tg=Tp,
where the ow is seeded. The energy in the zeroth mode is a gooiddicator of how
coherent the vortices are in the ow. Figure 4.66 shows that b obtain rapid breakdown
of the vortices, the ideal place to seed the ow is when the tdivortices are within
the highly strained region between the wing vortices, @5 Tg=Tp 0:2. It also
shows that when the ow is seeded when the tail vortices are otside of this region,
0:25 Tg=To 0:9, the reduction in zeroth mode energy is less and so the vodes are

more coherent.

4.5 Summary

This chapter has reported on the results of a study into the dyamics of a symmetric
four-vortex ow as a model of an aircraft wake entrained behnd its wings and tail. The
study started with a two-dimensional transient growth and DNS study. This study
found that at long timeframes, the four-vortex system undemwent a two-dimensional
instability that leads to a breaking of the symmetry of the system along thex = 0
plane. The transient growth analysis found that over the timeframe of three orbits of
the tail vortex pair ( =T = 3), massive transient growth of perturbations was possibé
(in the order of 10'?) implying that any tiny perturbation (even to the level of ma chine
code error) would cause a two-dimensional instability to gow.
The study proceeded to investigate three-dimensional trasient growth of instabili-

ties in the four-vortex system. The transient growth analyss demonstrated that both

the “high tail' and "~ at tail' cases demonstrated even more nassive transient growth
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Figure 4.65: Time sequences of iso-surfaces at an arbitrarily small negative vatuof the

2 eld plotted from a three-dimensional simulation of the Tg=Tp = 0:9 case with an axial
extent corresponding to a wavenumber ofka; = 5:3. The ow is seeded initially with the
optimal perturbation for =Ty = 1. The coloured shading shows levels of dominant strain,
with blue and red corresponding to low and high values respectively. g)-(h) displays the
evolution of the instability for ty st =Tp = 0:00; 0:05; 0:10; 0:15; 0:20; 0:25; 0:30 and Q35 where
tvst =To = 0 is taken as seeding time.
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Figure 4.66: Zeroth Fourier mode energy atty st =Tp = 0:3, normalised by initial energy
in the zeroth mode, against tail orbit fraction, Ts;=To, where the ow is seeded. An axial
wavenumber ofk a; = 5:3 is prescribed for the perturbation eld.
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of perturbations (order of 10?® for =T = 3) with a peak corresponding to an ax-
ial wavenumber of ka = 5:3. The transient growth analysis also discovered that, for
both the "high tail' and " at tail' cases, the perturbations that leads to optimal energy
growth appear as a dipole angled at approximately 45 from a line between the centre
of the tail vortex to the wing vortex, similar to a [-1,1,1] mode elliptic instability in
a counter-rotating vortex pair. This constant angle of perturbation between the tail
and wing vortex demonstrates that during the linear regime, the primary interaction

driving the instability is the interaction between the wing and tail vortex.

By using three-dimensional DNS, a comparison was made betwa the "high tail'
and " at tail' cases seeded with both white noise and the optmal perturbations. The
study found that by seeding with the optimal perturbations, immediate growth of the
instabilities occurred. In contrast, the cases seeded witlwhite noise entered a region
of decaying perturbation energy as the modes not conduciveot growth were damped
out before the optimal modes dominated the instability. The three-dimensional DNS
also discovered that four-vortex interactions were possike. The rst is where the tall
vortices are forced to interact with each other as they passhrough the highly strained
region between the wing vortices (referred to as a T-T inter&tion). The second type
of interaction is where the primary interaction is between the wing and tail vortices
without any crossing of ow across the mid-plane between thevortices (referred to as
a T-W interaction). This demonstrates that while the primar y interaction during the
linear phase is the T-W interaction, the non-linear regime (hich the DNS quickly

enters) can change this interaction to one between the tail ortices.

A study into varying the energy magnitude of the optimal perturbation and the
seeding position discovered that the triggering of the T-T nteraction is directly related
to the magnitude of the instability before the tail vortex pa ir enters the highly strained
region between the wing vortices. If the tail vortices have lecome su ciently perturbed,
they can be forced to interact with each other as they pass though the highly strained

region between the wing vortex pair.

Lastly, a more generalised study into the e ect of seeding pasion in the rst orbit
of the tail vortex pair around the wing vortex pair was examined. A transient growth
analysis was conducted at intervals through the rst orbit of the tail vortex pair around
the wing vortex pair. The transient growth analysis found that the magnitude of the

growth ampli cation factor was directly related to the prox imity of the tail vortex pair

179



to the highly strained region between the wing vortex pair. When the perturbation
was allowed to grow predominantly within the highly strained region between the wing
vortex pair, the growth ampli cation factor was signi cant ly higher (approximately two
orders of magnitude). Using the initial optimal perturbati ons found from the transient
growth analysis to seed DNS, the non-linear response of theext of seeding position
was studied. The DNS study found that the growth rate of the instability was directly
related to the position of the tail vortex pair. When the tail vortex pair was seeded
within or just before entry into the highly strained region b etween the wing vortex
pair, the growth rate of the instability was signi cantly hi gher, resulting in a more
rapid transition into the non-linear regime and a faster reduction in the energy in the
zeroth Fourier mode. This result implies that seeding just kefore or within the highly
strained region between the wing vortex pair will lead to a mae rapid destruction of

the wake hazard for trailing aircraft.
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Chapter 5

Results: Kinematics and stability
of an unequal-strength
four-vortex system

This chapter covers the study of a four-vortex, counter-rofating aircraft wake model
with an asymmetric vortex strength about the vertical mid-p lane. Applications of this
model include banking aircraft. As in the previous chapter,this chapter also investigates

the e ect of the vertical displacement of the tail vortex pair .

5.1 Problem outline

The asymmetric model used in this chapter is similar to the synmetric “high tail' and
" at tail' cases considered in the previous chapter. To modé the change in vortex
circulation representative of a banking aircraft, the circulation of the left wing vortex
was increased by 15% to model the change in lift across the wgs with the circulation of
the right tail vortex increased by 15% to model the necessarghange in tail lift required
to maintain an aircraft banking manoeuvre (McCormick 1995). This con guration
intrinsically breaks the re ective symmetry of the “high tail' and ~ at tail' con gurations
investigated in the previous chapters.

The change in circulation strength of 15% was chosen as a mildi erence, in order
to investigate the magnitude of the e ect of such an imbalancein the system. A
preliminary study showed that even a small di erence producel signi cant di erences
in the two-dimensional kinematics of the system and as suchhe change in circulation
strength of 15% was chosen as a representative case. As thesudis in this chapter
show, a mild imbalance in circulation strength can have a sesre e ect on the overall

dynamics and instability of the system.
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To maintain consistency, all times in this chapter are normdised by the same value

of Tg used in the previous chapter.

5.2 Two-dimensional ow

In this section, rst the two-dimensional kinematics of the asymmetric four-vortex air-
craft wake model are considered. Then the long-term stabity of the system is consid-
ered, and last the two-dimensional transient growth model & the system is considered

to elucidate the observations from the DNS.

5.2.1 Two-dimensional kinematics

The two-dimensional kinematics of the asymmetric four-votex wake model were exam-
ined to determine the trajectories of the vortices over a shd timeframe.

Figure 5.1 shows the trajectory over 0 t=Ty 0:5 for the asymmetrical " at tail'
case. It can be seen that while the system is highly unbalanck the average vertical
displacement of the wing vortex pair is very similar to the symmetrical case shown
in chapter 4. The imbalance between vortex circulation strexgths of the initial system
leads to a rotation of the vortex system, through a similar process to that which invokes
the tail vortex orbit around each wing vortex. It is of intere st to note that the main wing
vortices are drawn apart as the ow evolves. The negative-vdicity wing vortex (the
stronger of the wing vortices) does not translate a signi cant distance from the initial
position. This is a result of the larger circulation of this vortex increasing the rotation of
the positive-vorticity tail vortex around the wing vortex. This increase in rotation rate
means that the velocity induced on the negative-vorticity wing vortex will be rotating
faster (shown by it completing approximately 3/4 of an orbit by t=Ty = 0:5), leading
to a shorter time in which the wing vortex is being drawn in any speci c direction and
therefore creating a signi cantly smaller circular path. T his e ect is compounded by
the weaker vorticity in the positive (left) tail vortex. By ¢ ontrast, the positive (right)
wing vortex has a lower level of vorticity, slowing the rotation of the negative (right)
tail vortex around that wing vortex (closer to 1/2 an orbit by t=Tg = 0:5). Combined
with the larger circulation strength of the negative-vorti city tail vortex, the positive
tail vortex is drawn signi cantly further away from its init ial position by the higher
induced velocity from the tail vortex and the longer time that this induced velocity is

acting in one direction. An additional e ect that the stronge r negative-vorticity tail
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Figure 5.1: A time sequence of contour plots of vorticity for the " at tail' case at (a)
t=To =0, (b) 0.25 and (c) 0.5. Contour lines are at vorticity increments of 2. The minimum
vorticity is -8 and the maximum is 6 in the right and left tail vortex resp ectively. Dashed
and solid lines represent negative and positive vorticity respectively The vertical thin dashed
line showsx = 0. The horizontal thin dashed line showsy = 0.

vortex has is a small deformation of the positive-vorticity wing vortex into an elliptic

pro le.

This drawing apart of the vortices will have three main e ects on the ow. The
rst e ect is that the induced strain between the wing vortice s will be reduced, slowing
the growth of any instabilities that are caused by this regian of higher induced strain.
The second e ect is that the overall average downward propag@on of the system will

be reduced due to the greater distance between the wing vortes created by the e ects
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Figure 5.2: A time sequence of contour plots of vorticity for the “high tail' case a (a)
t=To = 0, (b) 0.25 and (c) 0.5. Contour levels and lines are as per gure 5.1.

described previously. The third e ect is due to the di erence in downward propagation
of the wing vortices. This will lead to a change in the direction of the velocities induced
on each wing vortex by the other, causing the overall rotation of the system.

Figure 5.2 shows the trajectory over 0 t=tg 0:5 for the asymmetrical "high tail'
case. The left wing/tail vortex pair tends to remain close to the level of the initial system
with little observable vertical displacement (note that similar behaviour is observed in
gure 5.1). In contrast, the right wing/tail vortex pair ten ds to translate downwards
signi cantly more. As in the " at tail' case shown previously, the change in relative
strengths of the wing and tail vortices have a signi cant e ect on the trajectories of
the individual vortices. One of the primary di erences is that the vertical displacement
of the tail vortices in the “high tail' case causes the tail vatices to linger within the

region between the wing vortices. The lingering of the tail ortices between the wing
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Figure 5.3: A plot of vertical displacement, y, against normalised time,t=Ty, of the centre
of the wing vortex core, for the asymmetric (a) “high tail' and (b) ~ a t tail' cases. The dashed
line represents the position of the right wing vortex and the solid line lepresents the position
of the left wing vortex.

vortices slows down the orbit of the tail vortices as the indwced velocity from one side
of the system to the other is reduced by the close proximity ofthe tail vortices to
each other (the positive-vorticity tail vortex travels app roximately 2/3 of an orbit by
t=Tp = 0:5, while the negative-vorticity tail vortex travels approx imately 1/3 of an orbit
by t=Ty = 0:5). This lag of the tail vortices have the e ect of keeping the wing vortices
together for a longer period of time, allowing for an increasd time that the wing vortices
can induce a velocity on each other and propagate downward. fer the tail vortices
have left the region between the wing vortices, they begin tanduce velocities that draw
the wing vortices apart. As the negative-vorticity (right) tail vortex is rotating at a
slower rate and has a higher circulation, it has a greater e eton the positive-vorticity
(right) wing vortex, leading to a signi cantly higher downw ard propagation than the
negative (left) wing vortex.

As in the " at tail' case, the separation of the wing vortices will reduce the induced
strain within the region between the wing vortices as well asreducing the induced
velocity between the wing vortices. The di erence in downwaid propagation of the two
wing vortices also changes the direction of the induced vetities, causing the system
to rotate in a similar manner to the " at tail' case.

The respective changes in the vertical displacement of the img vortices are consid-

ered in gure 5.3. The asymmetric "high tail' case shown in gure 5.3(a) demonstrates
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that the stronger left wing vortex is less in uenced by its corresponding tail vortex and
undergoes a smaller drop in vertical displacement, while tb weaker right wing vortex
is more in uenced by its corresponding tail vortex and so dr@s a greater amount. The
asymmetric " at tail' case undergoes a similar pattern to the drop of the left and right
wing vortices ( gure 5.3(b)), with the stronger left vortex undergoing a smaller drop
due to the reasons described earlier. It is of interest to na that each of the wing
vortices in the asymmetric " at tail' case undergoes less dop than the corresponding
wing vortex in the asymmetric “high tail' case. This is unsuprising as this behaviour,
a larger drop in the “high tail' case compared to the " at tail case, was seen for the

symmetric four-vortex system in the previous chapter.

5.2.2 Two-dimensional stability

This section describes the long term two-dimensional stallity of the asymmetric four-
vortex system by examining the long term evolution of the ow through a two-di-
mensional DNS. It is important to note that unlike the symmetric four-vortex system
described in the previous chapter, the asymmetric case beus the temporal evolution

without re ective symmetry about x =0.

Figure 5.4 shows a long-term temporal evolution of vorticiy of the asymmetrical
“high tail' case that was depicted in gure 5.2(a). The asymnetry of the ow can be
seen in gure 5.4(b) where the tail vortices have already reahed a state where they
are orbiting the wing vortices at di erent rates, leading to severe asymmetry about the
horizontal mid-plane. At longer time frames, this asymmetry allows the tail vortices to
closely approach the wing vortex with the same sign of vortidy ( gure 5.4(e)). This
allows vortex merger to occur, stripping vorticity o the we aker tail vortex and feeding
the larger wing vortex (Meunier et al. 2002; Soet al. 2007). The contour levels in
gure 5.4 do not clearly display the stripping and merging process; these are elucidated
in more detail shortly. The stripping of vorticity o a vorte x occurs when vorticity
di uses into the hyperbolic points in the streamlines relative to the pair of vortices and
is rapidly convected away (Meunieret al. 2002; Soet al. 2007). It is important to note
that this was not observed in any of the symmetric four-vortex cases. After a long period
of time, this can be seen in gure 5.4(f). By the time the tail vortices have merged
with the wing vortices, the line between the wing vortices isalmost perpendicular to

the x-axis, implying the wing vortices will translate primarily in the horizontal plane.
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Figure 5.4: A time sequence of contour plots of vorticity for the unequal “high &il' case at
(a) t=To =0, (b) 1, (c) 2,(d) 3, (e) 4 and (f) 5. Contour scale and lines are as per gure 5.1.

There is likely to still be a small rotation present as the postive tail vortex is still just
visible, and the wing vortices have become very similar, bunot quite equal, in vorticity
levels (under 15%).

Figure 5.5 shows a long-term temporal evolution of vorticiy of the asymmetrical
" at tail' case that was depicted in gure 5.1(a). In a simila r manner to the “high tail’
case, the tail vortices in the asymmetric "~ at tail' case quickly break symmetry due to
the di erences in strength of the wing vortices ( gure 5.5(b)). While the asymmetry
of the system does allow the tail vortices to approach the wig vortices of the same

sign, there is not as large a stripping of vorticity o the tai | vortex pair ( gure 5.5(¢e))
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Figure 5.5: A time sequence of contour plots of vorticity for the unequal " at tail' case at
t=To = ()0, (b) 1, (c) 2,(d) 3, (e) 4 and (f) 5. Contour levels and lines are as per gure 5.1.

as was found for the asymmetric “high tail' case ( gure 5.4(¢). This leads to the tall
vortices lingering for a longer period of time and still being present at the end of the

long timeframe evolution ( gure 5.5(f)).

In order to elucidate the e ect of vortex stripping described earlier, gure 5.6 shows
a time sequence of ooded contour plots of vorticity for the asymmetric “high tail' case
at times in the vicinity of frame (e) from gure 5.4. At t=Ty = 3:65, all four vortices
show little evidence of deformation, with only a slight defamation in the weaker tail
vortices. As the tail vortex with negative vorticity is pull ed through the highly strained
region between the two wing vortices, it becomes distorted ad stretched due to the close

proximity of the wing vortices (gure 5.6(b)). The distorte d and stretched negative-
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Figure 5.6: A time sequence of ooded contour plots of vorticity for the unequal “high

tail' case. Blue ooding represents negative vorticity and red and yellow shading represents
positive vorticity. (a)-(h) represent times t=Ty = 3:65; 3:70; 3:75; 3:80; 3:85; 3:90; 3:95 and 400

respectively. 189



vorticity tail vortex rotates as it travels through the high ly strained region between the
wing vortex pair, setting up a condition on the far side of the highly strained region
where the strained vortex is approximately an equal distane between the two vortices,
with tendrils of vorticity entraining from the tail vortex b eing equally convected around
each of the wing vortices ( gure 5.6(d)). This is due to the vorticity in the tail vortex

entering a hyperbolic point in the relative streamlines and being rapidly convected

away.

The tendrils of vorticity from the negative-vorticity tail vortex are stretched and
pulled around the two wing vortices, but predominantly around the negative-vorticity
wing vortex. This prevents the negative-vorticity tail vor tex from continuing in its
original orbit around the positive wing vortex (gure 5.6(e)). At the same time, the
positive-vorticity tail vortex is just beginning to approa ch the highly strained region,
becoming stretched and distorted as the strain from the wingvortex pair becomes
more severe (gure 5.6(f)). As the ow evolves, the negativevorticity tail vortex is
held at an equal distance between the wing vortices in the hazontal direction by the
relatively large proximity to the two wing vortices compared to the velocity the wing
vortices are inducing on the negative-vorticity tail vortex. It does exhibit a small drift
away from the wing vortices due to the combined velocities ating together in that
direction. These two velocities acting in opposite directons causes two thin tendrils of
vorticity to be pulled o the periphery of the negative-vort icity tail vortex, while the
core remains in place ( gure 5.6(g)). As the negative-vortcity tail vortex is maintaining
its position due to the competing velocities induced on it, the positive-vorticity tail
vortex is being rapidly transported through the highly strained region between the wing
vortices. This has the e ect of elongating the positive-vorticity tail vortex signi cantly,
and also placing it into a position where it can prevent the ngative-vorticity tail vortex
from returning to its original orbit around the positive-vo rticity wing vortex thus leading
to the negative-vorticity tail vortex being transported fr om one wing vortex to the other.
It is important to note that this is not seen at all in the symme tric four-vortex cases
shown in the previous chapter. This excision of the negativevorticity tail vortex from
its original orbit around the positive-vorticity wing vort ex and subsequent capture by
the negative-vorticity wing vortex sets up the eventual merger of the negative-vorticity
tail vortex with the negative-vorticity wing vortex. This i s of interest as it leads to the

elimination of the stronger tail vortex from the system, while also strengthening the
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negative-vorticity wing vortex, and so is counterproductive to the desired destruction

of the wing vortices.

To elucidate the e ect of vortex stripping in the " at tail' ca se described earlier,
gure 5.7 shows a time sequence of ooded contour plots of vdicity for several times
in the vicinity of frame (e) from gure 5.5. As in the asymmetr ic "high tail' case, the
vorticies at the beginning of the sequence are still predonmiantly circular, with little
evidence of stretching or distortion (gure 5.7(a)). One interesting thing to note is
that the wing vortices are signi cantly further apart than t he asymmetric "high tail’
case. This indicates that the tail vortices will not experience as much strain as they
are pulled through this region. This is shown in gure 5.7(b)-(d) where the positive-
vorticity tail vortex travels through the strained region b etween the wing vortices with
little appreciable change in shape. It is interesting to noe that as the positive-vorticity
tail vortex leaves the strained region between the wing vorices (aroundt=Ty = 3:85),
it begins to deform into an elongated ellipse. This is intersting as it shows that the
positive tail vortex is more susceptible to strain when the mposed strain from each
of the wing vortices are perpendicular to each other (gure 57(f)). This e ect of two
strain elds being imposed at right angles on the positive-wrticity tail vortex has the
e ect of drawing the positive tail vortex into an elongated, spiral shape ( gure 5.7(g)).
As the negative-vorticity tail vortex is on the opposite side of the positive-vorticity wing

vortex, it is largely una ected by the strain from the negativ e-vorticity wing vortex.

Both the asymmetric “high tail' and " at tail' two-dimensio nal cases demonstrate
that the presence of only one of the tail vortices within the drained region between
the wing vortices has the e ect of causing the tail vortex to become highly elongated
and distorted as it exits the highly strained region. This straining on exiting the highly
strained region can lead to one of two e ects, depending on wire the other tail vortex
is located. If the other tail vortex is closely following, asin the asymmetric “high tail’
case (e.g. gure 5.6), it can force the tail vortex to become gparated from the wing
vortex it was originally orbiting. This leads to the tail vor tex orbiting the wing vortex
of the same vorticity sign and eventual merger of the two. Theother e ect is shown by
the " at tail' case, where the tail vortex becomes highly elmmgated and distorted into
a spiral shape due to the imposed strain elds at right anglesfrom the wing vortices
when leaving the strained region between the wing vorticesHowever, as the other tail

vortex is not following closely, the highly strained and digorted tail vortex continues
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Figure 5.7: A time sequence of ooded contour plots of vorticity for the unequal “high
tail' case. Blue ooding represents negative vorticity and red and yellow shading represents
positive vorticity. (a)-(h) represent times t=Ty = 3:65; 3:70; 3:75; 3:80; 3:85; 3:90; 3:95 and 400
respectively.
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Figure 5.8: Plot of strain rate, sgr, againstt=T, at the center of the positive vorticity wing
and tail vortices for an axial wavenumber ofk a; = 0 for the asymmetric (a) “high tail' and
(b) " at tail' cases. 4 and represent the " at tail' and "high tail' case respectively. The
solid line represents the strain rate at the centre of the positive vticity tail vortex and the

dashed line represents the strain rate at the centre of the positie vorticity wing vortex. For
clarity only every third data point is plotted.

to move around the wing vortex it was originally orbiting.

5.2.3 Strain rate at vortex centres

This section investigates the change in the strain rate expgenced by the positive
vorticity wing and tail vortices for both the asymmetric "hi gh tail' and " at tail' cases

as the strain rate is one of the driving mechanisms for the eiptic instability examined

later.

Figure 5.8 shows the strain rate at the centre of the positivevorticity wing and tail
vortex for the (a) “high tail' and (b) " at tail' cases. As in t he symmetric four-vortex
case (shown inx 4.2.4), the tail vortices in the asymmetric case experienca higher
strain rate due to the proximity and di erence in vortex stren gth between the wing
and tail vortices. It is interesting to note that due to the asymmetry of the system the
tail vortices do not experience the large peak in strain ratethat the symmetric four-
vortex case does. This is because, aside from the initial tie the tail vortices do not
enter the highly strained region between the wing vortices athe same time. The wing
vortex examined in both the " at tail' and "high tail' cases experiences a very similar
strain rate, but slightly o set due to the di erence in positio n of the tail vortices. It

is interesting to note that the tail vortex in the asymmetric “high tail' case experiences
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Figure 5.9: Plot of transient growth ampli cation factor, G( ), against for an axial
wavenumberk a; = 0, and an initial time, to=Tp = 0.

a signi cantly more varying strain rate, while the positive vorticity tail vortex in the

asymmetric " at tail' case experiences an almost constant sain rate.

5.2.4 Transient growth

It can be seen fromx 5.2.2 that two very di erent e ects can occur during the two-
dimensional evolution of the asymmetric four-vortex systen. It is of interest to know
whether either of these e ects causes the ow to be more suscéple to the transient
growth of perturbations.

Figure 5.9 displays the growth ampli cation factor, G( ), against for an axial
wavenumber ofk a; = 0 (a two-dimensional perturbation). As =Tg increases, the " at
tail' and “high tail' cases alternatively reach higher peakvalues of growth ampli cation
factor. For =T < 1, the "high tail' case exhibits a greater growth ampli cation factor.
Fortheregionl =T, 2:25, the " attail' case exhibits a larger growth ampli catio n
factor and as =Ty 2:25 the "high tail’ once again exhibits a larger growth ampli ca-
tion factor. The trend for the high tail case to exhibit a greater growth ampli cation
factor at higher values of implies that the merging of the tail vortices with the wing

vortices makes the ow more susceptible to transient growth of perturbations. One
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Figure 5.10: Plot of asymmetric (a) " at tail' and (b) “high tail' transient growth am pli -
cation factor, G( ), against non-dimensional axial wavenumber ka;, for an initial time of
to = 0. Each line represents a value as shown.

thing that is interesting to note is that the growth ampli ca tions in the asymmetrical
case are signi cantly smaller G( =3) 10°) than the symmetrical case examined in
the previous chapter G( =3) 10'). This implies that in two-dimensional space, the
asymmetric cases are signi cantly more stable to the transént growth of perturbations

than the symmetric four-vortex cases.

5.3 Three-dimensional ow

Consideration is now given to the transient response of the symmetric four-vortex sys-
tem to three-dimensional disturbances. First, a transientgrowth analysis is performed
on the asymmetric four-vortex aircraft wake model with a range of axial wavenumber.
The optimal perturbation elds obtained through the transi ent growth analysis are also
shown. Then the results of DNS of both the "high tail' and " at tail' cases are compared
seeding with the optimal perturbations. Last, a study of the transition of the ow into

the non-linear domain is conducted.

5.3.1 Transient growth analysis

A transient growth analysis was conducted to examine the trasient response of the
asymmetric “high tail' and " at tail' cases in a three-dimensional domain.
Figure 5.10 displays the growth ampli cation factor against for the asymmetric

(@) " at tail' and (b) “high tail' cases. Both cases demonstrate a similar behaviour to
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the respective symmetrical cases. The " at tail' case does@&monstrate a small drift in
peak axial wavenumber for larger values of , while the “high tail' case displays almost
no change with . This implies that there is only a weak connection between pak axial
wavenumber and . This change in peak wavenumber for the " at tail' case is likely due
to the greater spacing of the vortices and longer time the tdivortices linger outside the
highly strained region between the wing vortices. The asymmtry of the ow changes
the axial wavenumber where the peak growth ampli cation fador occurs compared to
the symmetric case. This is likely due to the instability ocaurring on only the weak talil
vortex, leading to a change in the global rotation rate for that vortex when compared
to the symmetric case, leading to the change irk a; (Bristol et al. 2004). For =T = 3,
the " at tail' case peaks at an axial wavenumber ofka; = 6:25, andka; = 6:12 for
the “high tail' case with the same value of . Also for =T = 3, the " at tail' case
demonstrates a larger peak growth ampli cation factor, G( ) = 6:14 10?5, than the
“high tail' case, G( ) = 1:89 10?6, Because of the disparity between the strength of
the tail vortices, the peak response of the system produces lroader range of axial
wavenumbers with a growth ampli cation factor in the order of G( ) 1076, This
is likely due to this region actually being a superposition é two di erent peaks with

slightly di erent peak axial wavenumbers corresponding to each tail vortex.

It is of interest that the long wavelength peak for the asymmeric cases are signi -
cantly larger than the symmetric cases and occur at a shortewavelength (ka; = 1:233
and 1:32 for the asymmetric "high tail' and " at tail' cases respedively). The ampli-
tudes of the long wavelength modes are signi cant, reachings( ) = 4:17 10?* and
4:47 10°* for the asymmetric “high tail' and " at tail' cases. A direct comparison of the
growth ampli cation regime between the symmetric and asymmetric cases is examined

below.

Figure 5.11 shows a direct comparison between the symmetrimur-vortex transient
growth analysis (shown inx 4.3.1) and the asymmetric four-vortex transient growth
analysis shown above. It shows that for both the symmetric "at tail' and “high tail’
cases, the growth ampli cation factor for the short wavelength elliptic instability that
forms in the tail vortices peaks to a higher value and has a dijhtly longer wavelength
(kaz = 5:3 for both of the symmetric cases againska;  6:2 for the asymmetric cases).
This is likely due to the presence of both tail vortices within the highly strained region

acting to increase the strain on the tail vortices and therebre the instability growing
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Figure 5.11: Plot of asymmetric and symmetric (a) " at tail' and (b) "high tail' trans ient

growth ampli cation factor, G( ), against non-dimensional axial wavenumberka;, for an

initial time of to =0. =T = 3 for the cases shown here. The solid line (and ) represents
the growth ampli cation factors for the four-vortex symmetric ¢ ase and the dashed line (and
4 ) represents the growth ampli cation factors for the four-vort ex asymmetric cases.

on both the tail vortices (in the symmetric case) as opposedd the asymmetric cases

where the instability only grows in the weaker tail vortex.

It is of interest that both of the asymmetric cases exhibit a ggni cantly larger
growth ampli cation factor for the long wavelength mode (approximately three orders
of magnitude larger for the asymmetric cases), but that the vavelength that it occurs
at is shorter (ka;  1:25 for the asymmetric cases compared tika;  0:89 for the
symmetric cases). It is theorised that the reason for the asymetric case having such a
signi cantly larger growth ampli cation factor for the lon g wavelength mode is due to
the presence of only one vortex in the highly strained regiorbetween the wing vortices
at any given time. The presence of the other tail vortex in the highly strained region
between the wing vortices has the e ect of minimising the loc&rotation rate of the tail
vortices and therefore damping the possible growth of the log wavelength instability.
As the asymmetric case only has one vortex in the region betvem the wing vortices,
the local rotation rate experienced by the vortex is signi cantly increased, leading to
a larger growth of the long wavelength instability, even though it only occurs on the

weaker tail vortex.

As with the symmetrical four-vortex systems, the size of thegrowth ampli cation

factor at the peak axial wavenumber indicates that it is likely that the perturbation is
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Figure 5.12: Plot of asymmetric (a) " at tail' and (b) "high tail' transient growth am pli -
cation factor, G( ), against non-dimensional axial wavenumberk a;, for an initial time of
to=Tp = 0. =T, = 3 for these simulations. The solid line represents the vortex lamert study
conducted for the long wavelength Crow instability.

of su cient size to cause large changes in the base ow and thathe ow is likely to

be dominated by transient disturbance growth (Barkley et al. 2008). In addition, the
signi cantly larger values for the growth ampli cation fac tors found in the three-di-
mensional transient growth analysis when compared to the tw-dimensional transient
growth analysis indicate that the predominant instability will be three-dimensional in

nature.

5.3.2 Vortex lament analysis

By utilising the method described in x 2.7, a theoretical prediction of the peak axial
wavenumber expected for the Crow instability can be determined. This section demon-
strates that the vortex lament method can provide a reasonable prediction for the
four-vortex, asymmetric, ~ at tail' and “high tail' cases.

Figure 5.12(a) shows the results of a vortex lament analyss for the asymmetric
" at tail' case. As with the symmetric case, the vortex lame nt method provides a
reasonable prediction for the peak axial wavenumber for theCrow instability, nding a
peak atka; = 0:91 as compared to the peak found in gure 5.10(a)ka; = 1:31.

Figure 5.12(b) shows the results of a vortex lament analyss for the asymmetric
“high tail' case. The vortex lament method provides a reasmable estimate for the peak

axial wavenumber of the Crow instability, ka; = 0:70, but is still under-estimating
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Figure 5.13: Plot of a comparison between asymmetric and symmetric (a) " at tail' and
(b) “high tail' transient growth ampli cation factor, G( ), against non-dimensional axial
wavenumber, k a;, for an initial time of to=Tyg =0. =T = 3 for these simulations. The solid
line represents the vortex lament study conducted for the long wavelength Crow instability.
4 and represent the asymmetric and symmetric cases respectively.

the peak axial wavenumber predicted by the transient growth analysis, ka; = 1:24

(‘gure 5.10(b)).

As with the symmetric four-vortex case, the di erence in G( ) between the vortex
lament method and transient growth analysis is due to the limitation of the vortex
lament method assuming the shape of the instability mode, while the transient growth
analysis nds the perturbation that leads to optimal energy growth and is limited only
by available spatial resolution. The vortex lament method described here (and the
method utilised by Crouch 1997) does provide a good approxiition as to the expected
peak axial wavenumbers, but is limited because of the need tepecify a speci c mode

shape for the analysis and the lack of viscous interaction beeen the vortices.

Figure 5.13(a) shows the comparison of the results of the voex lament analysis for
the symmetric " at tail' case contrasted to the asymmetric " at tail' case. The vortex
lament analysis predicts a similar increase inG( ) for the Crow instability from the

symmetric case to the asymmetric case.

Figure 5.13(b) shows the comparison of the results of the véex lament analysis
for the symmetric “high tail' case contrasted to the asymmetic “high tail' case. The
comparison for the “high tail' cases with the vortex lament analysis produces the same

agreement with the transient growth analysis as the " at tail' cases (agreeing with an
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increaseG( ) in the Crow instability for the asymmetric case).

While the vortex lament method (both the general method uti lised in this thesis
and such as those utilised by Crow 1970; Jinenezt al. 1996; Crouch 1997; Fabre &
Jacquin 2000; Fabreet al. 2002) does have limitations (primarily the requirement of a
pre-de ned instability mode shape and a lack of viscous inteaction), the vast reduction
in computational power required for the vortex lament anal ysis does provide a useful
tool to determine the best regions of axial wavenumber to cooentrate a study utilising

the transient growth analysis method.

5.3.3 Optimal perturbation elds

In this section the linearised evolution of the predicted ogimal initial disturbances is

considered for the three-dimensional asymmetric “high tdiiand " at tail' cases.

5.3.3.1 Evolution of short wavelength instability

The optimal perturbations evolved for the asymmetric “hightail' and ™ at tail' cases for
the short wavelength instability are at ka; = 6:12 and 625 respectively, for =T = 3
to correspond to the peak response of the systems found fromhé transient growth
analysis.

Figure 5.14 displays a temporal evolution of the linearisedberturbation eld for the
asymmetric " at tail' case, beginning with the perturbatio n eld that leads to optimal
energy growth. The initial optimal perturbation eld (gur e 5.14(a)) shows that the
perturbation begins in the weaker, left tail vortex and manifests as a[-1,1,1] mode dipole
at about 45 to the line from the centre of the tail vortex to the closest wing vortex.
A small smear of perturbation vorticity in a spiral pattern a Iso appears on the outside
of the left tail vortex. As the perturbation evolves, it remains in the same vortex,
rotating with it, and maintaining the same angle with respect to the line between the
tail vortex and the closest wing vortex. In addition, the small spiral smear present
in the initial eld forms into a weaker dipole of opposite sign surrounding the main
[-1,1,1] dipole present in the left tail vortex. It is of interest to note that throughout
the evolution, the perturbation grows in magnitude, but remains con ned to the one
tail vortex (gure 5.14(h)). This is similar to the symmetri ¢ "high tail' case except that
in the symmetric case, the perturbation is present in both tal vortices (gure 4.14).
This isolation of the perturbation to the weaker tail vortex is likely due to the increased

strain experienced by the weaker tail vortex being in close mximity to the stronger
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Figure 5.14: A time sequence of plots of spanwise vorticity in the linearised pertubation
eld (ooded contours) for the asymmetric " at tail' case with an ax ial wavenumber ofk a; =
6:25. Flooded contour levels are chosen arbitrarily to display the pentrbation structure.
The simulation were initialised with the optimal disturbance acquired with =T, = 3. Solid
contour lines show spanwise vorticity in the base ow at levels of voricity of j !, j=1;3;7.
(a)-(h) represent t=Ty = 0; 0:25; 0:5; 0:75; 1:00; 1:25; 1:50 and 175 respectively.
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wing vortex.

Figure 5.15 displays a temporal evolution of the linearisedberturbation eld for the
asymmetric “high tail' case, beginning with the perturbation eld that leads to optimal
energy growth. The initial optimal perturbation eld (gur e 5.15(a)) consists of a strong
[-1,1,1] mode dipole located within the weaker left vortex vith a smear of vorticity that
begins with signi cant magnitude at the bottom left of the we aker, left tail vortex and
weakens in a semicircle under the tail vortices to end at the bttom right of the stronger,
right vortex. As the ow evolves, the majority of the extra vo rticity present outside the
weaker, left vortex, in the perturbation eld has decayed away, leaving a small visible
halo of vorticity around the primary dipole in the weaker left vortex ( gure 5.15(b)).
In addition, the perturbation dipole rotates as the tail vor tex orbits the wing vortex,
maintaining an angle of approximately 45 from the centre of the left wing vortex to
the left tail vortex. Even after a signi cant evolution, the perturbation is still con ned
to the weaker of the two tail vortices ( gure 5.15(h)). The perturbation being con ned
to the weaker tail vortex can be explained through the increaed strain that the weaker
tail vortex experiences due to its proximity to the stronger wing vortex, and the lack

of initial perturbation around the stronger tail vortex.

5.3.3.2 Evolution of long wavelength instability

The optimal perturbations evolved for the asymmetric “hightail' and "~ at tail' cases for
the long wavelength instability are at ka; = 1:23 and 132 respectively, for =Tg = 3
to correspond to the secondary peak response of the systenmsuhd from the transient
growth analysis.

Figure 5.16 displays a temporal evolution of the linearisedperturbation eld for
the asymmetric " at tail' case, beginning with the perturbation eld that leads to
optimal energy growth for an axial wavenumber ofk a; = 1:32. It is interesting to note
that although the instability is at a considerably di erent w avenumber to the short
wavelength caseka = 6:25, gure 5.14) it exhibits almost exactly the same mode shap,
that of a mode [-1,1,1] elliptic instability in the weaker tail vortex ( gure 5.16(b)). As
in the short wavelength case, the perturbation dipole in thelong wavelength case also
forms at an angle of approximately 45 to a line between the centre of the tail and the
respective wing vortex (gure 5.16(c)). The dipole perturbation rotates, retaining the

angle of approximately 45 to a line between the centre of the tail and the respective
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Figure 5.15: A time sequence of plots of spanwise vorticity in the linearised pertubation
eld (ooded contours) for the asymmetric "high tail' case with an ax ial wavenumber ofk a; =
6:12. Flooded contour levels are chosen arbitrarily to display the pentrbation structure.
The simulation were initialised with the optimal disturbance acquired with =T, = 3. Solid
contour lines show spanwise vorticity in the base ow at levels of voricity of j !, j=1;3;7.
(a)-(h) represent t=Ty = 0; 0:25; 0:5; 0:75; 1:00; 1:25; 1:50 and 175 respectively.
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Figure 5.16: A time sequence of plots of spanwise vorticity in the linearised pertubation
eld ( ooded contours) for the asymmetric " at tail' case with an ax ial wavenumber ofk a; =
1:32. Flooded contour levels are chosen arbitrarily to display the pemirbation structure.
The simulation were initialised with the optimal disturbance acquired with =T, = 3. Solid
contour lines show spanwise vorticity in the base ow at levels of voricity of j !, j=1;3;7.
(a)-(h) represent t=Ty = 0; 0:25; 0:5; 0:75; 1.00; 1:25; 1:50 and 175 respectively.
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wing vortex as the tail vortex orbits the respective wing vortex. This dominance of
instability in the weaker tail vortex is likely due to the inc reased strain and rotation
rate experienced by the weaker tail vortex being in close pnamity to the stronger wing

vortex.

Figure 5.17 displays a temporal evolution of the linearisecperturbation eld for the
asymmetric “high tail' case, beginning with the perturbation eld that leads to optimal
energy growth for an axial wavenumber ofka; = 1:23. As with the long wavelength
mode of the asymmetric " at tail' case, the asymmetric "hightail' case excited at the
long wavelength mode exhibits a very similar mode shape (thtaof the Crow instability
in the weaker tail vortex) to the long wavelength instability for the asymmetric " at
tail' case. As with the previous cases, the dipole forms at arangle of approximately 45
to a line between the centre of the tail and the respective wig vortex ( gure 5.17(c)).
In addition, the perturbation rotates as the tail vortex orb its the corresponding wing
vortex, maintaining the approximately 45 angle to the line between the centre of tail
and the respective wing vortex ( gure 5.17(d)). As in the long wavelength asymmetric
" at tail' case, the dominance of the instability in the weaker tail vortex in the long
wavelength “high tail' case is most likely due to the increasd strain and rotation rate
experienced by the weaker tail vortex being in close proxiny to the stronger wing

vortex.

5.3.4 Direct numerical simulation

A DNS study of the asymmetric system was performed followingthe linear analysis.
The energy in the perturbations of the linear simulations wa compared to the energy
in the non-zero Fourier modes of the DNS. To study the respores of the system to
the optimal perturbation, the DNS was conducted by seeding he " at tail' and "high
tail' cases with the optimal perturbation. Axial wavenumbers ka; = 6:25 and 612
were chosen for the asymmetric " at tail' and “high tail' cases respectively. These axial
wavenumbers were chosen to correspond to the peak axial wawembers predicted by
the transient growth analysis. The axial domain was chosend allow for one wavelength
of the desired instability with both the ™ at tail' and “high tail' cases being seeded in only
the rst Fourier mode (thus corresponding to exciting only a wavelength ofka; = 6:25
and 6:12 for the " at tail' and "high tail' cases respectively). Sixteen Fourier modes

were employed for these simulations as perx 2.6.3. The energy in the optimal initial
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Figure 5.17: A time sequence of plots of spanwise vorticity in the linearised pertubation
eld ( ooded contours) for the asymmetric “high tail' case with an ax ial wavenumber ofk a; =
1:23. Flooded contour levels are chosen arbitrarily to display the pemirbation structure.
The simulation were initialised with the optimal disturbance acquired with =Ty = 3. Solid
contour lines show spanwise vorticity in the base ow at levels of voricity of j !, j=1;3;7.
(a)-(h) represent t=Ty = 0; 0:25; 0:5; 0:75; 1:00; 1:25; 1:50 and 175 respectively.
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Figure 5.18: Plot of asymmetric (a) " at tail' and (b) “high tail' perturbation energ vy nor-
malised by initial energy. The dashed line represents the solution oftte linearised Navier{
Stokes equation and the solid line represents the energy in the norero Fourier modes of the
DNS. Simulations were initiated with the optimal disturbance computed with ka; = 6:25
and 6:12 for the " at tail' and “high tail' cases respectively, with =T = 3.

perturbation was 0:00248% of the initial energy in the base ow. The vortex core &es

and separations are as pek 2.1.

Figure 5.18 shows the normalised energy in the perturbatios evolved using the
linearised Navier{Stokes equations compared to the energin the Fourier modes of the
non-linear simulation for the " at tail' and "high tail' cas es. The perturbation elds
become highly non-linear after only a short timeframe (sigmed by the departure of
the pair of curves), with the “high tail' case exhibiting more disturbance energy than
the ™ at tail' case once the non-linear disturbance saturats, leading to faster instability

growth.

Figure 5.19 shows the time history of normalised perturbaton energy in the DNS
comparing the asymmetric " at tail' and “high tail' cases seeded with the optimum
perturbation found from the transient growth analysis. It c an be seen that for both the
asymmetric "high tail' and " at tail' cases seeded with the gptimal perturbations, the
instability begins to grow immediately as the ow is evolved in time. The “high tail' case
seeded with the optimal perturbation reaches a signi cantly higher perturbation energy
in a similar period of time to the " at tail' case, implying th at the ow is becoming

signi cantly more perturbed in a shorter timeframe.

Table 5.1 shows the peak grow rate, and the time that the peak ocurs, of the asym-
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Figure 5.19: Time history of perturbation energy, normalised by initial energy. and
represent the “high tail' and " at tail' cases respectively. Simulationswere initiated with the
optimal disturbance computed with ka; = 6:25 and 612 for the " at tail' and "high tail' cases
respectively, with =Tq = 3.

Table 5.1: Table of peak energy growth rate, gr, for the asymmetric four-vortex cases.

"High tail' - Optimal Seeding “Flat tail' - Optimal Seeding
Gr(t=Tp =0:1) cr(t=Tp =0:1)
0.506 0.466

metric cases seeded with the optimal perturbation. The growh rate was calculated
using a ve-point stencil method to evaluate the derivative of the log of the pertur-
bation energy. It shows that the asymmetric “high tail' case seeded with the optimal
perturbation reaches a higher growth rate than the asymmetic "~ at tail' case seeded
with the optimal perturbation. This higher growth rate indi cates that the asymmetric
“high tail' case is more unstable than the " at tail' case and should saturate faster. It
is interesting to note that both the asymmetric “high tail' and " at tail' cases exhibit a
smaller instability growth rate than the symmetric “high ta il' and " at tail' cases (shown
in x 4.3.4). This is of interest as it shows that the symmetric cass are more unstable
than the asymmetric cases when seeded with the perturbatiornthat leads to optimal
energy growth.

As with the relationship between the strain rate and the instability growth rate cov-
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Figure 5.20: Time history of DNS zeroth mode energy for the asymmetric (a) " at tail' and
(b) “high tail' case, normalised by initial energy in the zeroth Fourier mode. Simulations
were initiated with the optimal disturbance computed with ka; = 6:25 and 612 for the " at
tail' and “high tail' cases respectively. Solid lines represent the caseseeded with an optimal
perturbation with =T = 3 and the dashed line represents a two-dimensional case.

ered in the previous chapters ¥ 3.5.0.1 and 4.3.4.1), the four-vortex asymmetric system
also exhibits a ratio of growth rate to strain rate of less than the theoretical maximum
the literature describes for the elliptic instability of 9/ 16 (Leweke & Williamson 1998;
Kerswell 2002).

Figure 5.20 shows a normalised-energy time history for the eroth Fourier mode
for the asymmetric (a) " at tail' and (b) “high tail' cases seeded with the optimal
perturbation and the two-dimensional reference case. It sbws that the linear growth of
the perturbations causes a large drop in the energy of the zeth mode, which represents
a large reduction in the coherency of the vortices. As in the ymmetrical case, the
energy in the zeroth Fourier mode begins to drop signi cantly earlier in the case seeded
with the optimal perturbation as the linear regime begins almost immediately after the
ow is seeded when compared to di usion present in the two-dinensional case. This
demonstrates that the three-dimensional instability devdopment does accelerate the
destruction of the coherency of the two-dimensional vorties. The asymmetric "high
tail' case seeded with the optimal perturbation reaches a smller base ow energy in
a shorter period of time than the asymmetric " at tail' case seeded with the optimal

perturbation, indicating that the base ow is becoming less coherent.

Figure 5.21 shows a three-dimensional visualisation of thdONS evolution of the
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Figure 5.21: Time sequences of iso-surfaces of an arbitrary small negative vauof the
eld plotted from a three-dimensional simulation of the asymmetric “high tail' case with an
axial extent corresponding to a wavenumber ok a; = 6:12. The coloured shading shows levels
of dominant strain, with blue and red corresponding to low and high vdues respectively. (a)-
(f) display the ow seeded with the perturbation that leads to optim um energy growth for
=To =3 at t=Tp =0, 0:05;0:10; 0:15; 0:20; 0:25 respectively.

asymmetric "high tail' case seeded with the perturbation that leads to optimal energy
growth. The seeding of the optimal perturbation can be seennitially as a slight de-
formation of the left tail vortex (gure 5.21(a)). As the ow evolves, the tail vortex
pair enters the highly strained region between the wing vorex pair, leading to the
already deformed vortex becoming highly deformed ( gure 521(c)). This extreme de-
formation of one of the tail vortices leads to tendrils visibe in the , eld crossing
the vertical mid-plane and wrapping around the the other, less deformed, tail vortex
(gure 5.21(d)). The wrapping of these tendrils causes a grater strain in the right tail

vortex, increasing its deformation, while the left tail vortex disintegrates into extremely
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Figure 5.22: Time sequences of iso-surfaces of an arbitrary small negative vauof the
eld plotted from a three-dimensional simulation of the asymmetric = at tail' case with an
axial extent corresponding to a wavenumber ok a; = 6:25. The coloured shading shows levels
of dominant strain, with blue and red corresponding to low and high vdues respectively. (a)-
(f) display the ow seeded with the perturbation that leads to optim um energy growth for
=To =3 at t=Tp =0, 0:05; 0:10; 0:15; 0:20; 0:25 respectively.

small scale ow structures (gure 5.21(e)). The left tail vo rtex continues its transition
into small scale ow structures, with the tendrils greatly speeding up the transition of
the right vortex into a similar state of small scale ow structures ( gure 5.21(f)). This

type of interaction is analogous to the T-T interaction demonstrated in chapter 4.

Figure 5.22 shows a three-dimensional visualisation of th&NS evolution of the
asymmetric " at tail' case seeded with the perturbation that leads to optimal energy
growth. As with the “high tail' case seeded with white noise,a small deformation
of the left tail vortex can be seen due to the seeding of the ojnal perturbation
(gure 5.22(a)). This deformation begins to grow as the ow evolves in time and the

tail vortex pair leaves the highly strained region between he wing vortex pair, but only
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Figure 5.23: A time sequence of iso-surfaces an arbitrarily small negative valuefthe , eld
plotted for the asymmetric “high tail' case, viewed from directly below, for an axial wavenum-
ber of ka; = 6:12, seeded with the perturbation that leads to optimal energy gravth for
=To = 3. The iso-surfaces are coloured by dominant strain rate with blueand red correspond-
ing to low and high levels respectively. (a)-(f) display the timest=Ty = 0;0:05; 0:1; 0:15; 0:20
and 0:25 respectively.

in the left tail vortex (gure 5.22(b)-(c)). As the instabil ity in the left tail vortex has
not grown to su cient magnitude before leaving the highly st rained region between
the wing vortex pair, the instability growth is predominant ly due to the imposed strain
between the wing and tail vortex pair, which is analogous to he T-W interaction shown
in chapter 4. This is more likely to remain a T-W interaction without any interaction
between the tail vortices as the asymmetry of the system measthat after the initial
condition the tail vortices are never in the highly strained region between the wing

vortex pair at the same time.

5.3.5 Transition into the non-linear regime

Throughout this section, the ow is visualised using three d erent de nitions to exam-
ine the transition of the ow from the linear regime to the non-linear regime. The rst
isthe » eld, de ned by Jeong & Hussain (1995) and shows the presencef a vortex as
de ned in their work. The second visualisation method utilises the vorticity magnitude
eld and is dened as [! £+ ! 7 + 1 1. The nal visualisation method examines the
non-axial vorticity eld, dened as [ ! 7 + ! . Each visualisation in this section is
examined in the order given here.

Figures 5.23-5.25 display the iso-surfaces for the asymnrét “high tail' case seeded
with the optimal perturbation. As the instability grows in t he left tail vortex (weaker
tail vortex) in the form of a sinusoidal axial deformation ( gure 5.23(b)) it forms two

tendrils visible in the , eld which begin to extend towards the right tail vortex
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Figure 5.24: A time sequence of iso-surfaces of vorticity magnitude for the aspmetric "high
tail' case, viewed from directly below, for an axial wavenumber ok a; = 6:12, seeded with the
perturbation that leads to optimal energy growth for =Ty = 3. The iso-surfaces are coloured
by dominant strain rate with blue and red corresponding to low and high levels respectively.
(a)-(f) displays the times t=To = 0; 0:05; 0:1; 0:15; 0:20 and Q25 respectively.

Figure 5.25: A time sequence of iso-surfaces of the | + ! 7]° eld with dominant strain
ooding for the asymmetric "high tail' case, viewed from directly below, for an axial wavenum-
ber of ka; = 6:12, seeded with the perturbation that leads to optimal energy grovth for
=T, = 3. The iso-surfaces are coloured by dominant strain rate with blueand red correspond-
ing to low and high levels respectively. (a)-(f) displays the timest=Ty = 0;0:05; 0:1; 0:15; 0:20
and 0:25 respectively.

(gure 5.23(c)). These tendrils form a loop that begins to wrap around the right
vortex, causing it to sinusoidally deform in the axial direction (gure 5.23(d)). The
combination of the linking of the two vortices through these tendrils and the highly
strained region between the wing vortex pair causes a T-T tyg interaction, which, in
turn, causes a rapid devolution into small scale ow structures in the tail vortex pair
(‘gure 5.23(f)).

Figure 5.24 displays similar characteristics to gure 5.23 As with the symmetrical
cases, the , and vorticity magnitude elds correspond well in early in th e evolution

due to the dominant strain being weaker than! )%y and so the ow is dominated by the
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Figure 5.26: Plot of mode energy,E (t)=E(0), against axial wavenumber,k a;, for the asym-
metric “high tail' case seeded with the optimal perturbation found from the transient growth
analysis. (a)-(b) represent times,t=Tp = 0:1 and G2 respectively.

Figure 5.27: Plot of mode energy growth rate, GR , against axial wavenumber,k az, for
the asymmetric “high tail' case seeded with the optimal perturbationfound from the transient
growth analysis. (a)-(b) represent times,t=Ty = 0:05 and Q15 respectively.

axial vorticity (gure 5.24(a)-(c)). As the ow evolves int o the non-linear regime, the
dominant strain becomes greater than! 2 and so regions of the vorticity magnitude are
visible that are not identi ed in the » eld (Figure 5.24(d)-(f)).

Figure 5.25 shows that the majority of the system is two-dimasional with only a
small amount of three-dimensional ow in the left tail vorte X. This three-dimensional
ow begins as a pair of distortions in line with the vortex core ( gure 5.25(a)) with
a highly strained region (red shading) beginning to surrourd the core. This non-axial

ow spreads across the domain, eventually interacting with the right tail vortex and
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causing it to become three-dimensional ( gure 5.25(d)). Asthe instability grows, the
tail vortices become highly three-dimensional, dominatirg the domain close to the tail

vortices ( gure 5.25(f)).

Figure 5.26 displays the normalised energy in the individua Fourier modes for
the asymmetric “high tail' case seeded with the optimal pertirbation found from the
transient growth analysis. It shows that at t=Tg = 0:1 (gure 5.26(a)), the energy is
primarily concentrated in the smaller Fourier modes. This is to be expected as the ow
is initially seeded in only the leading Fourier mode. Figure5.26(b) demonstrates that
during the linear regime the ow is still dominated by the leading Fourier mode, but
the higher Fourier modes undergo signi cant energy growth E (t)=E(0) =1:4 10 ° at
t=Tog=0:1to E(t)=E(0) =8:8 10 2 at t=To = 0:2). This result shows that the higher
Fourier modes play a signi cant role in the devolution of the ow into small scale ow

structures.

Figure 5.27 displays the energy growth rate in the individud Fourier modes for
the asymmetric "high tail' case seeded with the optimal pertirbation found from the
transient growth analysis. The growth rates were calculatel using a ve-point stencil
method utilising the energy in the individual Fourier modes. Early in the disturbance
evolution (t=Tg = 0:05, gure 5.27(a)), there is signi cant growth in the leadin g Fourier
mode and larger growth in the Fourier modes with an axial waveumber of k a;
40. This re ects the rapid development of small scale ow stuctures noted earlier
in gure 5.21. By t=Tg = 0:15, the growth rate of all of the Fourier modes have
levelled out, with the leading Fourier modes having slightly less energy growth rate
(gure 5.27(b)). This reduction in growth rate indicates th at the non-linear growth of
the instability is not as conducive to growth as the base ow devolves into small scale
ow structures. That the energy growth in the Fourier modes is still non-zero indicates

that the disturbance has not completely saturated at this time.

Figures 5.28-5.30 display the iso-surfaces for the asymnrat ~ at tail' case seeded
with the optimal perturbation. It can be seen in gure 5.28(a) that the instability
begins in the weaker tail vortex (left tail vortex as seen fran the bottom). As in the
previous cases, the instability begins as a sinusoidal defmation in the one tail vortex
(gure 5.28(b)). The unstable tail vortex forms a “bow' of u id that has regions of high
dominant strain (red shading in gure 5.28(c)) before disintegrating ( gure 5.28(e)).

By the time the weaker tail vortex has disintegrated, a sligh distortion has grown along
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Figure 5.28: A time sequence of iso-surfaces of an arbitrarily small negative vaki of the

> eld plotted for the asymmetric " at tail' case, viewed from directly b elow, for an ax-
ial wavenumber of ka; = 6:25, seeded with the perturbation that leads to optimal en-
ergy growth for =Ty = 3. The iso-surfaces are coloured by dominant strain rate with
blue and red corresponding to low and high levels respectively. (a)ff displays the times
t=To = 0; 0:05; 0:1; 0:15; 0:20 and Q25 respectively.

Figure 5.29: A time sequence of iso-surfaces of vorticity magnitude for the asymetric ~ at
tail' case, viewed from directly below, for an axial wavenumber ok a; = 6:25, seeded with the
perturbation that leads to optimal energy growth for =T = 3. The iso-surfaces are coloured
by dominant strain rate with blue and red corresponding to low and high levels respectively.
(a)-(f) displays the times t=Ty = 0; 0:05; 0:1; 0:15; 0:20 and Q25 respectively.

Figure 5.30: A time sequence of iso-surfaces of the | + ! 2]° eld with dominant strain
ooding for the asymmetric ~ at tail' case, viewed from directly below , for an axial wavenum-
ber of ka; = 6:25, seeded with the perturbation that leads to optimal energy gravth for
=T, = 3. The iso-surfaces are coloured by dominant strain rate with blueand red correspond-
ing to low and high levels respectively. (a)-(f) displays the timest=T, = 0:05; 0:1; 0:15; 0:20
and 0:25 respectively.
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Figure 5.31: Plot of mode energy,E (t)=E(0), against axial wavenumber,k a;, for the asym-
metric " at tail' case seeded with the optimal perturbation found fr om the transient growth
analysis. (a) and (b) represent times,t=To = 0:1 and 0.2 respectively.

Figure 5.32: Plot of mode energy growth rate, gr, against axial wavenumber,k a;, for
the asymmetric "~ at tail' case seeded with the optimal perturbation found from the transient
growth analysis. (a) and (b) represent times,t=Tp = 0:10 and Q15 respectively.

the axis of the left wing vortex ( gure 5.28(f)). Throughout the devolution of the left
tail vortex into small scale ow structures, the right side of the system remains free of
any type of noticeable instability. This type of vortex inte raction is analogous to the

T-W interaction described in the previous chapter (chapter 4).

As in the previous cases, early in the transition into the norlinear regime, the
vorticity magnitude corresponds well to the » eld (gures 5.29(a)-(b) and 5.28(a)-
(b)). As the ow transitions into the non-linear regime, the vorticity magnitude begins

to diverge from the » eld for the reasons described previously ( gures 5.29(c)¢d) and
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5.28(c)-(d)).

Figure 5.30(a) shows that the majority of the ow is two-dimensional, with only
a small region of three-dimensional ow present in the weake tail vortex. As the
ow transitions into the non-linear regime, the deformation in the weaker tail vortex
becomes stronger, forming two regions around the vortex ca; which also show high
dominant strain (red shading in gure 5.30(c)-(d)). As the t ail vortex devolves into
very small scale ow structures, it also becomes highly thre-dimensional, covering the

entire axial domain around the left tail vortex ( gure 5.30( f)-(g)).

Figure 5.31 displays the normalised energy in the individuh Fourier modes for
the asymmetric " at tail' case seeded with the optimal perturbation found from the
transient growth analysis. This case is very similar to the high tail' case seeded with
the optimal perturbation where the higher Fourier modes begn with very little energy
and proceed to grow at an extremely high rate, while the leadig Fourier mode only
undergoes a relatively small growth in perturbation energy The energy in the highest
Fourier mode at t=Tp = 0:1 begins atE(t)=E(0) = 1:14 10 ’ (gure 5.31(a)) and
transitions to E(t)=E(0) = 4:69 10 2 at a time of t=Tp = 0:2 (gure 5.31(b)). This
extremely large increase in the energy of the highest Fourremode indicates that the
ow is rapidly devolving into very small scale ow structure s in a very short period of

time.

Figure 5.32 shows the energy growth rate in the individual Farrier modes for the
asymmetric " at tail' case seeded with the optimal perturbation found from the transient
growth analysis. Early in the linear regime, t=Tg = 0:1, the highest Fourier modes
experience a high energy growth rate (gure 5.32(a)), whichis consistent with the
asymmetric “high tail' cases examined previously. This initates that the ow is rapidly
degrading into very small scale ow structures. As the ow transitions into the non-
linear regime, aroundt=Tg = 0:15, the growth in the highest Fourier modes begins
to decrease, indicating that the ow is reaching a scale limied by the uid viscosity
(gure 5.32(b)). It is of interest that, while the leading Fo urier mode begins with a
smaller energy growth rate, it also undergoes a smaller rediion in growth rate into
the non-linear regime. This indicates that it is less a ected by the transition into the

non-linear regime.
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5.4 Summary

This chapter reported on the results of a study into the dynamcs of an asymmetric
four-vortex ow as a model of an aircraft wake shed o an aircrafts wings and tail. The
study started with a two-dimensional transient growth and DNS study. It was found
that the short term two-dimensional kinematics of the system are extremely unbalanced,
but exhibit a similar downward translation to the symmetric al case. In both the “high
tail' and " at tail' cases, the left wing/tail pair exhibite d less drop than the right side,
with the ™ at tail' case showing less drop overall. For the zero-wavenumber (two-dimen-
sional) transient growth analysis, there is a band of where the " at tail' case exhibits

larger growth (1 =Ty 2:25), but for the majority of the time, the “high tail' case

demonstrates a larger growth ampli cation factor.

The study continued with a three-dimensional transient gravth analysis of both the
asymmetrical " at tail' and "high tail' cases. It was found t hat the asymmetry of the
system has the e ect of shifting the peak axial wavenumber at virich the system is most
susceptible to the transient growth of perturbations (ka; = 6:12 and 625 for the “high
tail' and " at tail' cases respectively). The system does hae a broad wave band over
which signi cant growth ampli cation factors of G( ) 0O(10%°) are maintained. This
magnitude of the growth ampli cation factor is in the same order as the symmetrical
case.

The evolution of the optimal perturbation elds in the linea r regime was considered,
and it was found that the optimal seeding for this ow is to int roduce a [-1,1,1] Kelvin
mode into the weaker tail vortex only. In the linear regime, the instability is con ned
to the weaker tail vortex.

A three-dimensional DNS study was conducted, seeding bothhe “high tail' and " at
tail' cases with the optimal perturbation at axial wavenumb ers ka; = 6:25 and 612
for the asymmetric " at tail' and "high tail' cases respectively. The DNS demonstrated
that similar vortex interactions are present in the asymmetrical case to the symmetrical
case, namely the T-T and T-W interactions. The T-T interacti on is signi cantly rarer
as it requires both tail vortices to reach a level of instabilty and be present within the
highly strained region between the wing vortex pair, and wasonly observed to occur in
the "high tail' case seeded with the optimal perturbation. The requirement of both tail
vortices being present between the highly strained region étween the wing vortex pair

is uncommon in these cases. This is because the orbit period the tail vortices are
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di erent due to the di erent strength ratios between the wing a nd tail vortices on each
side of the domain. In the two cases, the weaker tail vortex ighe one that undergoes
destruction rst, with the stronger tail vortex following a nd then the wing vortices.
The implication of this study is that a minor instability in t his ow can cause the
wake to be destroyed in a very di erent manner. The destruction of the vortices begins
in the weaker tail vortex and then spreads throughout the renmaining vortices. The
asymmetry of the ow means that the T-T interaction is signi cantly rarer, as the tail
vortices are rarely within the highly strained region between the wing vortices at the
same time. Therefore, aside from the “high tail' case seededlith the optimal pertur-
bation, the destruction of the wake will take a longer periodof time when compared to

the " at tail' case.
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Chapter 6

Conclusions

This thesis has described a numerical study into the stabily of two systems of parallel
vortices and their application to wingtip vortices produced in xed-wing aviation. The
rst system comprises a counter-rotating pair of parallel vortices, and the second sys-
tem comprises a strong counter-rotating vortex pair, representing the wing vortex pair,

in conjunction with a pair of weaker opposite-sign vortices representing tail vortices.

The investigation of the second system was split into two di erent studies: one compris
ing a system where the wing and tail vortices had symmetric stength (but opposing
sign) across the mid-plane, and a second study where the cintation strengths were
asymmetric across the mid-plane. The major conclusions asing from this study are

highlighted in the sections to follow.

6.1 Equal strength two-vortex system

The equal strength two-vortex study found that the rst two K elvin modes, [-1,1,1]
and [-1,1,2], require a certain amount of time before they beome apparent in the
transient growth analysis. The [-1,1,1] mode only becomespparent at = 2:67 with
an axial wavenumber ofka; = 2:12. The second mode, [-1,1,2], appears at = 3:56
with an axial wavenumber of ka; = 3:7. It interesting that for the values of that
were investigated, the Crow instability becomes apparent & = 1:78 with an axial
wavenumber of ka; = 0:155. This is of interest as the literature had identi ed the
global mode of the Crow instability with an axial wavenumber of ka = 0:18 (Brion
et al. 2007).

The transient growth analysis provides the perturbation that will lead to optimal
energy growth, and an analysis of these elds for the Crow ancklliptic instability was

conducted. In addition, the elds were evolved and investigated using the linearised
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Navier{Stokes equations. It was found that the elliptic instability formed into the
asymptotic solution of a pair of dipoles similar to that found in the literature. While
the initial optimal perturbation eld for the Crow instabil ity at an axial wavenumber
of ka; = 0:155 looks very di erent to the global mode, it does evolve intothe global
mode after a short period of time.

Next, a DNS study was conducted on both the elliptic and Crow nstability, investi-
gating the e ect of seeding the ow with the optimal perturbat ions against white noise
of similar energy magnitude. Literature in this area indicated that this type of study
has not been conducted before. This study found that the inshbility in the DNS,
seeded with the optimal perturbation quickly grew to a stage where it became non-
linear and caused the base ow to deform signi cantly. By cortrast, the perturbation
that consisted of white noise began to decay almost immedi&ly before growing after a
very long period of time. This decaying of the white noise peturbation is because only
a small number of instability mode shapes are conducive to gwth. This means that
all of the mode shapes that are not conducive to growth have talecay away before the

mode shapes that are conducive to growth can dominate the ow

6.2 Equal strength four-vortex system

The "high tail' con guration has the kinematic e ect of initi ally driving the wing vortex
pair vertically downward to almost double the distance of the ™ at tail' case. While the
" at tail' case displays slightly less circulation in both t he wing and tail vortices, the
decay rate is very similar between the two. This implies that both cases will take a
similar time to decay via viscous di usion alone. There is a diop in the circulation in
the tail vortex of the “high tail' case, which is due to the stripping of circulation as the
tail vortex is forced through the highly strained region between the wing vortex pair.
This drop in circulation is directly related to the initial h orizontal spacing of the wing
vortex pair, where smaller initial separation results in higher circulation drop. The slow
decay time of the tail circulation will cause greater vibration in the wing vortex pair,
potentially leading to greater three dimensional instabilties in the wing vortex pair,
thus causing the system to reach destruction faster. The twedimensional, symmetry
breaking instability present after a long timeframe were faund to occur aroundt=Ty 4
for both cases. However, the " at tail' case did display a sigi cantly higher magnitude

of instability. This symmetry breaking instability causes the system to become highly
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unbalanced, potentially causing three-dimensional instailities to form faster. This
work highlights just how signi cant a small change in vertical displacement of the tall

vortex pair can be in the dynamics of the entire wake system.

This is also signi cant as some of the previous work, which uilised a stationary
vortex lament analysis method, would not have found this. T his symmetry breaking
instability leads to a non-symmetrical vibration in the win g vortex pair. Therefore,
the non-symmetrical vibration is likely to lead to a faster onset of three-dimensional
instability.

When a transient growth analysis is applied to a zero wavenurber (two dimensional)
case, it accurately predicts the slightly faster onset of a wo-dimensional symmetry

breaking instability in the " at tail' case when compared to the "high tail' case.

The transient growth analysis of the three-dimensional peturbations shows that
both the "high tail' and " at tail' cases respond optimally t 0 a perturbation of an axial
wavenumber ofk ag = 5:3. This is con rmed by the three-dimensional DNS and shows
that in very short times, both con gurations seeded with the perturbation that leads
to optimal growth, cause the ow to become highly perturbed and non-linear. After
this peak energy occurs, the instabilities in the vortex coes of the wing vortices are
destroyed, leaving only a weak level of vorticity. This is incontrast to the simulations
seeded with white noise, where the perturbations decay awags the decaying modes
damp out until the unstable modes grow to dominate the ow, taking signi cantly
longer to cause destruction. The interesting result to noteis that the “high tail' case
seems more susceptible to white noise perturbations than # " at tail' case. This is
the opposite to the cases seeded with the perturbations thatead to optimal energy
growth found from the transient growth analysis. Given the nature of white noise, this
can change from simulation to simulation, as the magnitude 6 the transient modes

conducive to growth can vary in magnitude.

Regardless, in both cases, the seeding of the ow by the pertbation that leads to
optimal energy growth reduces signi cantly the time the ow takes to be destroyed from
simple seeding with white noise. The instability takes the tbrm of two types of vortex
interaction. If the instability in the tail vortex pair has g rown to su cient magnitude
as it enters the highly strained region between the wing voréx pair, the tail vortices are
forced to interact with each other with ow crossing the mid- plane (T-T interaction),

causing a rapid devolution into small scale ow structures. The other interaction that
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can occur is between the wing and tail vortices with no ow cressing the mid-plane
(T-W interaction). The interaction between only the wing an d tail vortices causes the
instability to grow at a smaller rate, therefore extending the time it takes for the tail
vortices to devolve into small scale ow structures.

The magnitude study found that the magnitude of the instability as the tail vortices
enter the highly strained region between the wing vortices dectly a ects the type of
vortex interaction. If the instability is of insu cient mag nitude, no ow occurs across
the mid-plane of the domain, leading to the T-W interaction. If the instability has grown
to su cient magnitude as the tail vortices enter the highly s trained region between the
wing vortex pair, the tail vortices interact with each other, causing ow across the mid
plane, leading to the T-T interaction.

The position that the vortices are seeded in the rst orbit also has an e ect on the
type of interaction that occurs. This is directly related to the energy present in the
instability in the tail vortex pair as they enter the highly s trained region between the
wing vortex pair. When the tail vortices are seeded just befoe they enter the highly
strained region, the instability has enough time to grow to dlow the ow to cross the
mid-plane and cause the T-T interaction. If the ow is seededwhen the tail vortex pair
is leaving, or outside, the highly strained region, then theinteraction is of the T-W
type, as the instability grows due to the mutually induced strain between the wing and
tail vortex, with little e ect from the other side of the midpl ane. The DNS study found
that the growth rate of the instability was directly related to the position of the tall
vortex pair. When the tail vortex pair was seeded within, or just before, entry into the
highly strained region between the wing vortex pair, the gravth rate of the instability
was signi cantly higher, resulting in a more rapid transiti on into the non-linear regime
and a faster reduction in the energy in the zeroth Fourier moe. This result implies that
seeding with a certain magnitude of instability, so that the transition of the ow into
non-linear regime occurs in a favourable position, will led to a more rapid destruction

of the wake hazard for trailing aircraft.

6.3 Unequal strength four-vortex system

The study investigating the unequal strength four-vortex system found that the short
term two-dimensional kinematics of the system are extremel unbalanced, but exhibit a

similar drop to the symmetrical case. In both the “high tail' and " at tail' cases, the left
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wing/tail pair exhibited less drop than the right side, with the " at tail' case showing
less drop overall. For the zero-wavenumber (two-dimensioal) transient growth analysis,
there is a band of where the at tail exhibits larger growth (1 =To 2:25), but
for the majority of the time, the “high tail' demonstrates a | arger growth ampli cation

factor.

The study continued with a three-dimensional transient gravth analysis of both the
asymmetrical " at tail' and “high tail' cases. It was found t hat the asymmetry of the
system has the e ect of shifting the peak axial wavenumber whee the system is most
susceptible to transient growth of perturbations (ka;  6:1). However, the system
does have a fairly broad band of wavenumbers that it will respnd to however and still
maintain growth ampli cation factors of G( )  O(10%®). This magnitude of growth

ampli cation factor is in the same order as the symmetrical @ase.

The evolution of the optimal perturbation elds in the linea r regime was considered
next. It showed that the optimal way to seed this ow with an in stability is to introduce
a [-1,1,1] Kelvin mode into the weaker tail vortex only. In the linear regime, the

instability is con ned to the weaker tail vortex.

A three-dimensional DNS study was conducted, seeding bothhe “high tail' and "~ at
tail' cases with the optimal perturbation. An axial wavenum ber of ka; = 6:25 and 612
were chosen for the asymmetric ™ at tail' and “high tail' cases respectively. The DNS
demonstrated that similar vortex interactions are presentin the asymmetrical case to
the symmetrical case, the T-T and T-W cases. The T-T case is gini cantly rarer, as it
requires both tail vortices to reach a level of instability, and both be present within the
highly strained region between the wing vortex pair. It was aly observed to occur in
the “high tail' case seeded with the optimal perturbation. The requirement of both tall
vortices being present between the highly strained region étween the wing vortex pair
is uncommon in these cases, as the orbit period of the tail vdices are di erent, due
to the di erent strength ratios between the wing and tail vort ices on each side of the
domain. In the two cases, the weaker tail vortex is the one thaundergoes destruction
rst, with the stronger tail vortex following and then the wi ng vortices in the same

order.

The implications of the asymmetric study is that a minor instability in this ow
can cause the wake ow to be destroyed in a very di erent manner The destruction of

the vortices begins in the weaker tail vortex and then spread throughout the rest of
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the vortices. The asymmetry of the ow means that the T-T inte raction is signi cantly
rarer, as the tail vortices are rarely within the highly strained region between the wing
vortices at the same time, and so, aside from the "high tail' ases seeded with the

optimal perturbation, the destruction of the wake will take a longer period of time.
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