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Abstract 

Lamb wave approach to identify hidden cracks in hard-to-inspect areas of 

metallic structures 

Benjamin Steven Vien 

Monash University, 2016 

Supervisor: Prof Wing Kong Chiu 

 

This thesis reports the results of a study of the scattering of the Lamb wave field due to the presence 

of a small crack in isotropic structures. The study addressed the challenge of detecting and 

quantifying a small defect at a hard-to-inspect location for structural health monitoring (SHM). The 

need for improved aircraft performance and efficiency has made manufacturing design and 

technology far more complicated, and consideration of nondestructive inspection is usually not 

factored into these designs. Thus, conventional methods are insufficient, as they do not to account for 

these advances in design.  

A fuel weep hole is a classical configuration in metallic aircraft structure, which is vulnerable to 

fatigue cracks in hard-to-inspect locations. Conventional diagnosis methods, such as the Eddy Current 

Technique, are not optimal for damage detection especially in such cases where built-in sensors are 

restricted to very limited areas. Previous studies involved using high-frequency bulk-wave wedge 

transducer techniques for weep hole inspection, but the difficulty of reliably detecting and quantifying 

the small hidden crack still remains in SHM. A reliable and novel analytical model is needed as a 

reference for monitoring and assessing the early development of a small crack before reaching it 

reaches a critical size.  

This study investigated the scattered Lamb waves on the defect, which carries information such as the 

severity, location, and size of the crack for SHM purposes. The isotropic specimen used in this 

research is aluminium plates with different geometry, which depends on the specific investigation. 

There is significant interest in the use of Lamb waves for hidden crack detection and quantification 

due to their advantageous properties of rapid wide area inspection with minimal attenuation.  
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It is also anticipated that the point source equivalence, which consists of a particular combination of 

body-force doublets, applies for Lamb wave scattering. This research has demonstrated that the point 

source model can represent the Lamb wave mode scattering by a small crack. This research first 

investigated edge cracks on the straight edge of the plate, then on the hole boundary, and, lastly, on 

the top boundary of a rectangular slot. This approach will guide us to the next problem by using the 

previous study’s findings to determine the later study’s configuration and to compare its results. The 

Finite Element method and experimental method are used for this research to explore not only the 

common scattered Lamb waves amplitude but also the mode, pattern, and wave directivity as a 

conjunction for small crack detection and characterisation. 

The study of the scattering of fundamental Lamb waves by a small edge crack showed a quadratic-

like relationship between crack length and scattered wave amplitude and the scattered wave pattern 

remains independent from the crack length. Within the small crack length-to-wavelength limit, these 

relationships highly correlate to point source model. It is noteworthy that the dominant scattered 

Lamb wave modes by an edge crack are the edge-guided and SH0 waves. 

The leaky circumferential edge wave is an interesting scattering phenomenon that can direct and 

coalesce with SH0 waves to the geometric shadow zone. The rectangular slot study has 

experimentally and computationally demonstrated that leaky symmetric edge-guided waves could 

propagate to hard-to-inspect location impinged with a hidden crack. The scattered waves are then 

redirected back to the location of excitation. 

The findings in this thesis give a fundamental understanding of the scattering of Lamb waves by 

crack on boundaries and holes as well as cracks in hard-to-inspect locations. The novelty of this 

research, which are the scattered wave amplitude, the wave pattern, and its directivity are important 

measurements to locate and quantitatively evaluate small cracks, based on the point source model. 

Under specific conditions, edge-guided waves can propagate around a curved edge to the blindsight 

area and redirected back, as shown in the hole and rectangular slot studies. These findings will assist 

in the development of Lamb wave propagation for SHM as a damage diagnosis tool. 
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Chapter 1 

Introduction & Literature Review 

 

This thesis reports on the potential use of scattered Lamb wave field measurements to detect and 

quantify small, hidden cracks, or cracks in hard-to-inspect location. This is done to address the 

challenges posed for structural health monitoring (SHM) techniques due to the innovation in airframe 

designs. The target is to establish new fundamental science to address a lack of development in 

diagnostic capability, which will complement the modern manufacturing design that has serious 

implications for the safety of future aircraft.  

The investigation of the scattered wave field from a known crack dimension and location is a pre-

requisite forward problem for a subsequent attempt to investigate the inverse problem of 

characterising the crack size based on the scattered field measurements. This chapter establishes the 

relevant background for understanding the use of elastic waves to detect and quantify damages in an 

isotropic medium for SHM.  This first chapter reviews the following: 

1.       The necessity of novel inspection and utilisation of Lamb wave propagation for structural 

integrity monitoring. 

2.       The fundamental understanding of elastic wave and Lamb wave propagations. 

3.       Scattering wave modes by characteristic features for assessing and characterising defects. 

4.       Use of analytical representation models for scattered wave field and measurements for 

quantification purposes. 
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1.1 Background 

1.2.1 Motivation 

 

The extensive improvements of structural performances in weight reduction, fuel efficiency, 

affordability, and producibility have resulted in unitised components, especially for manufacturing of 

airframe for A380, A350 and B787. Ultimately, major aircraft manufacturers have pursued to reduce 

production costs by replacing multi-piece fastener assemblies with unitised components [1, 2]. 

Significant reduction of aluminium sheets and fasteners will result in weight saving, and will result in 

the improvement of fuel efficiency and reduction in greenhouse gas emission. Unitised components 

will help improve package payload per unit of energy and reduction of part counts that enhance 

transport efficiency, according to Renton [3].  

 

Figure 1.1: Benefits of unitised components [2] 

Metallic structures are known to withstand compression loading well, exhibit high ductility, 

flexibility, and considered low-maintenance in manufacturing design. Hence metallic structures are 

widely used in the aircraft industry [1]. For example, a F-22 fighter jet has a majority structural 

weight distribution with 39% titanium [2], which is a superior choice for enduring both tensile and 

compressive loads, and is highly resistant to corrosion. The combination of composites and titanium 

is frequently used to achieve structural efficiency and reduce aircraft weight. However, fatigue 

cracking and corrosion are still common problems for metallic components. 
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The presence of fatigue cracks in metallic aircraft structure is a critical issue and require inspections 

as it can lead to failure of the structure [4]. Regular non-destructive inspection can ultimately reduce 

the risk of fatigue crack failures by evaluating and repairing crucial areas [5]. However, it is not 

feasible for unitised components to be disassembled for the current conventional non-destructive 

inspection, and making it difficult to detect defects [6]. A traditional approach, such as eddy current 

technique, would require disassembling of components. This approach is time-consuming as it is 

required to completely empty the fuel for the diagnosis process [7]. Other methods discussed by Ihn 

and Chang [8, 9], require built-in or already bonded sensors and actuators for diagnostics, which are 

unlikely to be reliable in detecting hidden defects. Also, modern improvements in aircraft 

components design do not usually account for inspection or maintenance. This gives rise to a hard-to-

inspect region, which requires different inspection methods than the conventional inspection to 

complement the advanced technologies and improvements. For a successful implementation of 

unitised component in the next few decades, research on an innovative structural inspection procedure 

is required. 

 

 

Figure 1.2: Schematics of fuel weep hole and location of typical cracks [10, 11] 

 

A specific example of a hard-to-inspect region is the fuel weep hole (Refer to Fig 1.2). The 

configuration is common in current metallic aircraft components, including primary or flight critical 
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structure and therefore poses a significant challenge [4, 10]. The fuel vent hole in the riser acts as a 

stress concentration location. Thus, it is vulnerable to fatigue cracking and due to the presence of 

flammable fuel inside the wing, restricts electrically powered diagnostic sensor to the locations 

external to the wing. Traditional ultrasound method can be used for inspection if fatigue crack 

initiates from the bottom of the hole, given the accessible region is on the lower inner wing panel.  

Previous studies have found that if the fatigue crack initiates from the bottom of the hole, the 

conventional ultrasonic method can be used for inspection [12]. However, if the fatigue cracks initiate 

from the top, the crack becomes hidden in the geometrical shadow zone of the incident ultrasonic 

wave. Thus, the conventional wave based in-situ structural health monitoring methodologies will not 

be able to detect the crack. Previous studies [7] have tackled this problem by using conventional 

wedge-transducers and circumferential creeping waves propagating around the hole boundary to 

detect cracks in the shadow zone. More recent experimental and computational studies [13-15] have 

indicated the possibility that the scattering phenomenon due to the defect can be utilised to 

characterise the damage for the hard-to-inspect fuel vent hole in the wing spar of an ageing aircraft. 

 

Figure 1.3: Damage detection around a through hole by Rayleigh wave generation on the accessible surface 

[14] 

Doherty and Chiu [13] suggested that the scattering at the defect tip can be attributed to the presence 

of fundamental shear horizontal (SH0) wave mode in the riser section. The scattered SH0 wave field 
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from the defect is subsequently shredded from the defect onto the external wing-skin, as shown in Fig. 

1.3. Further research is required to understand this interesting spiralling phenomenon and scattered 

wave field measurement to optimise the detectability and potential quantification of defects on the 

blind side. 

 

1.2.2 Scope 

 

The key purpose for structure health monitoring is to locate a crack before it reaches a critical size, 

which may result in catastrophic failure. Lamb waves normally operate in the low frequency range of 

50-300 kHz, compared to ultrasonic wave diagnostic methods which exceed 4 MHz. This means the 

Lamb wave scatter investigation is at the long wavelength limit, where damage dimension is smaller 

than the incident wavelength. The thesis explores the scattered wave by small defect behaviour in the 

long wavelength limit and models it as a simple source. 

This research objective is to determine useful scattered wave measurements due to the presence of a 

small crack in a hard-to-inspect location of isotropic material. The behaviour of the scattered wave 

field is modelled corresponding to point source equivalence. The study first investigates a simple 

edge crack problem on a plate before introducing a complex geometry. For each stage, the previous 

findings will guide the following configuration and study setup.  

The scope of this thesis is outlined by reviewing on: 

 Whether the small crack can be equivalent to a point source model and, if so, under what 

limitations. 

 The relationship with scattered wave measurements and crack length and can it be used for 

small crack diagnosis.  

 What conditions must be satisfied to direct edge-guided waves around a curved boundary to 

a hidden location? 

 To demonstrate whether the previous findings are still applicable in a hard-to-inspect 

rectangular slot problem.  
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1.2 Lamb Wave 

 

Lamb waves are elastic thin-plate waves propagation discovered by Horace Lamb [16] and Worlton 

introduced Lamb waves for damage detection in 1957 [17]. After the discovery of Lamb waves, many 

published papers emphasised the development and usage of Lamb wave for applications in aerospace 

and civil industries. The fundamental theory for elastic waves is extensively discussed and derived in 

the literature by Graff [18], Achenbach [19] and Auld [20]. 

Lamb waves have been considered for non-destructive evaluation because of their desirable 

properties [21], such as long distance propagation and sensitivity to defect detection. Lamb wave has 

advantageous qualities for structural health monitoring, as it is far more efficient when used for non-

destructive inspection compared to other conventional methods. Such methods are limited to localised 

scanning, and requires components to be disassembled making them time-consuming. Furthermore, 

recent works that indicate the field of research in Lamb wave non-destructive evaluation is currently 

very active [22-26]. However, there is no analytical solution for challenging application such as 

complex structure and composite materials. 

 

1.3 Elastic Wave Propagation 

 

Early elastic wave propagation literature had studied on seismology [27]. In the past few decades, 

elastic wave for structural health monitoring has been studied extensively and has become an active 

field of research. 

The derivation of elastic wave and applications can be found in Graff [18] and Achenbach [19]. In 

elastodynamics, the equation of equilibrium for the elastic displacement (static elasticity) is formed 

through definitions of infinitesimal strain, stress and the constitutive relation of strain and stress. The 

derivation of elastic wave and Rayleigh-Lamb waves can be found in APPENDIX A1-A5. 
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1.4 Lamb Wave based non-destructive evaluation 

 

In the past decade, many studies focused on the scattering field of a defect in a plate at low frequency 

[13, 28-32]. At low frequency, the symmetric Lamb wave stresses along the thickness of the plate are 

simple and almost uniform. Therefore, the defect sensitivity for detection does not depend on 

thickness. Low frequencies wave propagations have become desirable in non-destructive evaluation 

due to the low dispersion (group velocity does not change significantly with frequency) and low 

leakage of energy if immersed in liquids. At higher frequency-thickness product, multiple modes will 

exist, and the signal will be difficult to interpret. Hence, it is more desirable to have single modes, and 

this can be done by exciting waves at low frequency. Lamb waves in plates at low frequency; SH1 

cut-off of approximately 1.53 MHz-mm [33] for aluminium, comprise of at most three fundamental 

modes: antisymmetrical (A0) mode, symmetrical (S0) mode, and shear horizontal (SH0) mode. It is 

known that symmetric waves are more sensitive to through-thickness defect, and antisymmetric 

waves are sensitive to in-plane defect due to their thickness stress profile [34]. Hence, A0 is used 

more in recent research for applicable detection of composite delamination [35, 36].  

 

 

Figure. 1.4: A compact, permanently attached, autonomous guided wave array prototype and multiplex 

electronics unit on aluminium plate with circular part-through hole [37].  

 

Arrays or arrangement of built-in electric sensors is a standard technique for Lamb wave based 

damage identification as shown in Fig. 1.4. Many researchers [8, 24, 38-41] used embedded 
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piezoelectric transducers to monitor fatigue crack and probabilistic methods to locate and characterise 

crack in plate-like structures. These SHM techniques involve using comparative baseline data, which 

originally requires the structure to be without damage. It is highly impractical to obtain an initial set 

of data in operational conditions. To overcome these complications, researchers have proposed 

baseline-free methods [42-44]. Furthermore, time reversal method approach became a recognisable 

technique among researchers in the field of Lamb wave to perform SHM without the need for 

baseline data [45-49]. However, a complex structure such as the fuel weep hole restricts the number 

and arrangement of transducers to a limited region, which makes the use of multiple sensors no 

longer optimal, thus give rise to a hard-to-inspect problem [4, 13-15].  A novel form of diagnostic by 

integrating active smart patch was studied by Rajic et al. [50]. Due to the size of these patches, they 

can impact on the structural integrity of the component due to the discontinuity in elastic modulus. 

Once embedded into a structure they become inaccessible for maintenance. Doherty and Chiu [13-15] 

experimental and computational studies showed elastic waves could impinge with a hidden crack, 

however, did not explore further in depth on the significant of scattered wave measurements for 

quantitative crack characterisation. This will be useful to study and to understand more information 

on this scattering. 

Low frequency symmetric and shear horizontal Lamb wave modes are an attractive option for long 

range non-destructive evaluation due to its non-dispersive nature and uniform stress thickness profile. 

Diligent and Lowe [28-30, 51-53] have published a considerable amount of work on the fundamental 

Lamb wave modes interaction and collaborated with other researchers. In an particular S0 interaction 

study, Lowe and Diligent [29, 30] used reflection characterisation for a notch in a plate and showed 

good agreement with the theoretical result at low-frequency Lamb wave mode. They also stated that 

quasistatic approximation could be used to identify open cracks up to approximately the quarter of the 

plate thickness, whereas higher frequency is not as easily modelled due to the dispersive wave nature 

which other researchers have done the same [23, 54-57]. The difficulty in generating only S0 in their 

experimental investigation has been discussed. A conventional method to excite S0 Lamb waves is 

aligning a plane transducer at an angle to the surface. This can be done by a wedge transducer or 
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coupling through a local fluid bath. An alternative method is to use two PZT applying symmetrical 

loading to generate S0 waves [28, 58]. To ensure an S0 wave, the transducer must be symmetric at 

the centre line of the plate to avoid the unwanted A0 mode. Regardless, A0 can still be easily 

generated even using the wedge, fluid bath or symmetrical two PZT techniques.  

Some studies have focused on shear horizontal waves in the zeroth order, SH0. These waves exhibit 

non-dispersive quality throughout all frequency, negligible attenuation and no change in signal shape 

changing and are sensitive to the crack oriented along the propagation direction. Studies such as 

Rajagopal and Lowe [31] and Ratassepp et al. [32] investigated notches and defects due to SH0 

attractive qualities. They also measured the reflection behaviour influenced by the distance of the 

source. This is done by exciting SH0 dominating in the direction to the defect, while S0 propagates 

perpendicularly away such that maximum amplitude of SH0 impinges with the crack and minimal S0 

waves interacts with the crack, refer to Fig. 1.5. Although a large specimen is required, this is a 

simple technique to ensure the appropriate wave mode interacts with the defect. Recent studies have 

investigated shear PZT sensors to excited SH0 waves [60-63]. A study by Seung et al. [64] has 

investigated on a newly development omnidirectional shear-horizontal guided wave EMAT without 

exciting other modes.  

 

Figure 1.5: Scattering features due to the incident of predominately SH0 waves impinging with a vertical crack, 

Rajagopal and Lowe [31] 
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Furthermore, in the near field, scattering is affected by the diffraction phenomena. Rajagopal and 

Lowe [31] and Ratassepp et al. [32] stated that the scattering field is the interference between the 

primary diffraction from the crack tip and secondary diffraction, Rayleigh-like waves travel along the 

crack and radiate from the crack tip. The waves travelling along the crack face are surface waves, 

which are closely related to Rayleigh waves. It is observed that the leaky surface waves interact with 

the body waves and the undulation in the reflection signals as also observed by Diligent et al. [28] as 

well, although in a different geometry.  

Many previous mentioned Lamb wave studies focused on the analysis of wave interaction with large 

crack length relative to incident wavelength [30, 51, 58]. There is a lack of Lamb wave investigation 

on early development crack; small crack (relative to incident wavelength), and techniques for 

quantifiable diagnosis. It is particularly difficult to detect scattered Lamb wave at low frequency due 

to the size of the defect, where high frequency are often used because of smaller wavelength [21]. 

 

Figure 1.6: Diagram of the interaction of an incident wave with a defect [65] 

For nondestructive testing, Ogilvy and Temple [65] and Scruby et al. [66] assumed plane-strain, and 

discussed diffraction of elastic waves and used the time-of-flight method. When an impinging wave is 

in the same order as the defect and interacts with the crack, three possible outcomes are noted: (i) 

Specular reflection from the crack face, (ii) Rayleigh waves travelling along the crack surface, and (iii) 

Radiating energy when reaching the crack tip, and diffraction or scattered cylindrical waves 
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originating from the crack tip, refer to Fig. 1.6. Ogilvy and Temple [65] indicated that an optimal 

angle incident would provide a maximum scattering to incident amplitude ratio. In such a case, the 

far-field approximation for the results is equivalent to theoretical results. 

Unfortunately, since Lamb waves are dispersive in nature, group velocity changes significantly with 

frequency. This means waves excited at different frequency components of the wave will travel at 

different speeds and the pulse shape will change as it travels along the distance. Thus, long-range 

inspection is rather difficult. A study to predict the linear spreading of wave dispersion and attempt to 

limit the excited bandwidth such that little dispersion occurs was reported by Wilcox et al. [68].  

It has been reported that scattered wave measurements carry essential information to characterise the 

crack. The scattered amplitude is a common quantity to evaluate the crack size, in contrast to 

scattered wave mode and pattern. The majority of researchers only reported on scattering wave 

amplitude at fixed locations and some studies [28, 54-56, 67] provided the radiation patterns due to 

the defect to show the relationship between relative amplitude and angular dependence. The scattered 

wave mode is an effective quantity for potential crack characterisation especially for application with 

non-symmetrical defect or geometry. In a symmetrical geometrical problem, an incident symmetric 

Lamb wave mode will only reflect or scatter symmetric Lamb wave mode, vice versa with 

antisymmetric Lamb wave modes. On the other hand, non-symmetrical applications such as partial 

through-thickness featured studied by Diligent et al. [53] and Grahn [56], an incident Lamb wave 

mode can mode convert to the anti-symmetric and symmetric wave modes.  

To acquire the scattered wave pattern, a common and simple technique is to use circular array around 

a defect [37, 55]. The disadvantage of this technique is that the incident and scattered waves will 

interact with the multiple sensors. Thus, the detected signal will involve scattered by the defect and 

sensor. Another method is to use Laser Vibrometry to scan and produce a 2D wave field [6, 24, 57, 

74-76]. The Laser Vibrometry eliminates embedment of multiple sensors on a test specimen, which 

makes them highly advantageous choice to observe wave propagation. However, only a few 

researchers have access this expensive equipment and it has been currently used for research in the 
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field of Lamb wave propagation since it is impractical to be installed on real structures, unlike PZT. 

The Laser Vibrometry and PZT are further discussed in Chapter 2. 

A recent comprehensive review by Mitra and Gopalakirshnan [69] covered the last decade and 

discussed on current and possible future areas of research in guided waves based SHM. It has been 

reviewed that a majority of researcher still use time and frequency analysis in Lamb wave 

investigation to analysis and characterise damage in plate [70-73]. A popular modal content analysis 

involving 2D Fourier Transformation is commonly used among researchers to post-process wave 

amplitude and frequency. More details on post-processing analysis are discussed in Chapter 2. 

 

1.5 Edge-guided and creeping waves 

 

In a plate, two edge waves exist: the symmetric edge-guided wave (plane-stress analogue of Rayleigh 

waves [77]) and anti-symmetric edge-guided waves, which also decays exponentially with distance 

from the free edge. These Rayleigh-like waves propagation are described as the superposition of the 

antisymmetric and symmetric Lamb wave modes [78]. The existence of edge-guided Rayleigh-like 

waves was first demonstrated by Viktorov [78] and later the first dispersive edge wave was derived 

by using the classical theory of plate bending in Konenkov [79]. The approach to finding the solution 

and dispersion relation involve the same methodology as Rayleigh wave in APPENDIX A.5, however, 

requires implementation of approximate theories, such as classical Kirchhoff plate theory to reduce to 

the Poisson plate theory for antisymmetric waves and Mindlin plate theory reduce to Poisson plate 

theory for symmetric waves. These theories are considered to solve edge wave solutions at very low 

frequency in isotropic plates [80-82]. For higher frequency range, an asymptotic expansion technique 

is used to determine the high-order dispersion relation [83]. Thurston and McKenna [82] used the 

classical theory of thin plates, and Norris [81] approximated the solution for anisotropic plates in thin 

shells. Galinde et al. [84] used semi-analytical and finite element approach to approximate a solution 

for edge waves in anisotropic silicon and mode shape for symmetric and antisymmetric edge waves. 
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These previous findings on the approximate solution of the elastic equation for edge-guided waves, 

which are also verified experimentally and computationally, are consistent among researchers. 

Krushynaska [85] was one of the studies to provide a complete analytical study using superposition 

method to solve low frequency edge wave speed, which is essentially independent of Poison’s ratio 

and similar to Rayleigh wave speed. The study was in good agreement with the experimental edge 

wave study by Lagasses and Oliner [86]. Furthermore, extensive work by Zernov [87] investigated 

symmetric edge guided waves speed and dispersion with different boundary conditions. At the low 

frequency-thickness limit, the edge wave mode is almost uniform across the plate thickness and 

remains essentially non-dispersive, which is ideal for through-crack detection. Whereas, at high 

frequency, the edge wave energy localised at the plate edge, rapidly decays along the plate height and 

are dispersive. Further edge wave analysis at high frequency requires approximate approach are 

derived by Zakharov [83] to take account for in and out-of-plane motions.  

Theoretical work by Rulf [88], as well as literature from Graff [18], Ewing et al. [89] and Viktorov 

[78] derived the elastic wave propagation in the cylindrical core. Given that condition of the hole 

surface is a stress-free boundary, in cylindrical coordinates with the z-axis along the axis of the cavity, 

such that the boundary conditions are 𝜎𝑟𝜃 = 0 and 𝜎𝑟𝑟 = 0, when 𝑟 = 𝑎. Considering plane strain 

conditions, there is no z-axis displacement or variation along that direction i.e.  
𝑑

𝑑𝑧
= 0 . Studies 

relating to the Lamb wave scattering of the hole were investigated by McKeon and Hinders [67], 

Chang and Mal [54], and Fromme and Sayir [55], developed analytical approaches, by using Kane-

Mindlin higher order and other plate theories. As a result with analytical benchmarks, many 

researchers had investigated scattering Lamb by a hole computationally and experimentally as well 

[28, 37, 55, 56, 67, 90, 91]. Furthermore, partial through-thickness hole is also studied to approximate 

corrosion and other composite defects [53, 56]. 

The traction-free and plane strain conditions are considered into the stress equations in cylindrical 

coordinates to solve for the elastic wave propagating around the hole circumference. Analytical 

derivation and analysis of Rayleigh wave propagating around the hole has been discussed [78, 88, 89]. 
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The nontrivial solution of edge wave propagating around a cylindrical surface [78] can be approached 

by setting its determinant of coefficients to zero. This will lead to complex roots, which associate to 

the property of amplitude decay with propagating distance. However, edge-guided waves on the hole 

circumference are not yet analytically solved and will require approximate theories, similar to the 

scattering of the hole [67]. 

Approximation attempted for Rayleigh wave on curved surface implies that the decay is a function of 

diameter to wavelength ratio [78, 88, 92]. On the other hand, surface waves propagating on a straight 

boundary have no geometrical decay with propagating distance. Their investigations developed a 

fundamental framework on wave propagating on the circumference of the hole. This is done by taking 

the characteristic length wavelength to diameter ratio, 𝜆/𝑑, and deriving the equation of motion in 

cylindrical coordinates. Furthermore, an equation is established and shows a dispersion function of a 

ratio of the wavelength to the diameter of the bore. At the asymptotic limit, the surface wave 

wavelength is equivalent to Rayleigh wave wavelength at a plane boundary. This argument does 

reduce the surface wave propagating on the curved surface equation to Rayleigh wave at a plane 

boundary equation. The features of the equation indicate that the phase velocity increases when 

wavelength increases. However over a critical wavelength, due to the increasing phase velocity with 

wavelength, these edge waves cannot propagate around the circumference without attenuation [88]. 

The effect is explained by the fact that over the cut-off wavelength will cause shear waves to radiate 

and the energy of the surface wave to dissipate. The cut-off wavelength highly suggested this scenario 

when the diameter is smaller than the wavelength. This had raised questions on wave propagating 

curved surfaces as well as visualising the effect caused by these surface waves which led to further 

studies to investigate this matter. 

Scattering of bulk waves by cylindrical cavity was first discussed and visualised using photoelasticity 

by Ying et al. [93] in the context of plane-strain scattering from circular holes, refer to Fig. 1.7. The 

incident wave is shown to creep around the hole into the shadow zone and circulates for almost the 

entire circle. This led to the first visualisation of creeping waves and featured its unique ability to 

circulate the circumference and researchers started exploring possible applications [7, 11, 94, 95]. It is 
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valid to note that creeping wave coherently exists with the propagating surface wave on the 

circumference of the hole and that Rulf’s theoretical work [88] closely relates to the existence of 

creeping waves. 

 

Figure 1.7: Snapshot of incident wave creeping around the hole [93] 

Hurst and Temple [94] investigated the velocity of the creeping waves and their applications to non-

destructive testing. They used time-of-flight method, which is the time difference between the arrivals 

of the signals from the upper surface of the hole to the nearest receiver, to determine the speed as well 

as the size of a defect, if present. The speed of the creeping wave is a function of parameter ka; where 

k is wave number, and a is the radius of the cavity and is not necessary the same as a bulk wave speed. 

Hurst and Temple [94] studied ka ranging from 0 to 20. Small ka values showed that the creeping 

wave velocity of compression wave is only 85% of the bulk velocity. At larger ka value of 300, the 

creeping wave is 98% of the bulk wave velocity for compression waves. They indicated a practical 

sense to determine defects by using creeping waves and time-of-flight method. 
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Figure 1.8:  Diagram of the dual transducer to detect creeping wave [7] 

Nagy et al. [7] was the first study to proposed the use of the circumferential creeping waves 

propagating around the hole boundary to detect cracks in the optical shadow zone. Conventional 

ultrasonic techniques often have difficulties to detect the creeping waves signal, which disappears 

from the specular reflection signals. Rather than using the conventional ultrasonic inspection 

technique, Nagy et al. [7] implemented two small-diameter transducers on the same wedge in either 

pulse/echo or pitch/catch mode for detection sensitivity and comparison, as shown in Fig. 1.8. This 

technique eliminates the detection of backscattering reflection from the weeping hole surface and 

increases creeping wave signal. The detectability of the weeping hole crack greatly depends on the 

crack size. However, the diameter and uneven chamfer increases the noise signal. Hence it becomes 

difficult to inspect. The depth of the crack has to be in similar order as the wavelength, and preferable 

be open to cause scattering than ensuring transmission. The effect of crack depth with uneven 

thickness is an adverse effect on the detectability of the flaw. The energy of creeping wave is 

concentrated near the surface region, and a through-thickness crack produces the strongest scattering. 

Due to the phase velocity difference of the leaky and Rayleigh wave, the surface wave attenuates by 

leaking energy into the surrounding material. The leakage significantly decreases with increasing 

frequency, and the attenuation becomes a problem if the frequency is too low, while higher frequency 

cannot effectively excite creeping waves.  
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Further studies by Aldrin and Achenbach [96] and Hassan and Nagy [95, 97]  have expanded on the 

research of Nagy et al. [7] and led to further investigations on circumferential creeping waves, fluid-

filled holes and time-of-flight method to determine arrival times for leaky Rayleigh waves.  

Diligent et al. [28, 53] has worked on the 2D plane strain problem which represents a 3D shape in a 

low frequency of excitation to predict the reflection and scattering field. This is done while varying 

diameter, frequency and detection distance away from the hole. They found that the reflection exhibit 

an undulation effect. This is considered as a secondary reflection, which consists of reflected SH0 

waves, and creeping waves which travel around the circumference of the hole. However, the creeping 

waves were only briefly mentioned, and no additional investigation was conducted to discuss the 

attenuation and properties of the creeping wave. Diligent et al. [28] provided extensive knowledge in 

regards to scattering and reflection of S0 mode from a hole, experimentally, analytically and 

computationally. They were able to conclude that the normalisation of the distance and hole diameter 

at a frequency of 100 kHz is a common trend, in which computational and experimental analysis 

agrees well with the analytical results. 

It was not until a more recent study by Doherty and Chiu [13-15] took advantage of the creeping 

waves and continued the fuel weep hole problem. Doherty and Chiu reported both experimentally and 

computationally, a distinctive spiralling phenomenon due to scattering at the defect, as shown in Fig. 

1.9. They showed the SH0 scattering phenomenon can be used to monitor the growth of the fatigue 

crack in the shadow zone of a hole although no quantitative measurement was demonstrated to assess 

the fatigue crack. Furthermore, they found that the scattered SH0 mode from the defect is 

subsequently converted to a Rayleigh-type wave on the free surface of the flange. They suggested that 

the magnitude of this Rayleigh wave mode can be used to characterise the fatigue crack on the open 

hole within the structure, thereby providing a novel and effective inspection technique for this hard-

to-inspect location. Crack development in hard-to-inspect areas and blind areas which may require the 

use of scattering phenomena and other measurements beside amplitude to monitor these cracks. 
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Figure 1.9: The experimental and computational cylindrical scattered wave field indicated a spiral-like 

scattering in the angular component where the origin is at the centre of the weep hole [14] 

 

Their results indicate that for both A0 and S0 input the θ direction scattered field are of similar 

magnitude for both inputs. The dominant wavelengths of these scattered fields are the same, 

suggesting that they are attributable to the SH0 mode. In their experimental results, the A0 

component scattering appears more intense than the S0 component even though the incident wave has 

a higher S0 content. In their study, it is unsure whether A0, the antisymmetric edge-guided-wave or 

the combination of these two waves interacted with the crack. Furthermore, this is particularly 

unusual because it contradicts previous studies and theory where symmetric waves should be more 

sensitive to through-thickness crack. There is a need for investigations on this phenomenon and to 

address this unusual dominant scattering A0 mode. In addition to previous work [54, 56, 67], further 

investigation on the A0 and S0 scattering wave patterns and directivity due to the crack on holes with 

varying hole diameter size is also essential to understand this spiralling phenomenon.  

Doherty and Chiu stated that A0 mode is more amenable to the scattering process and possibly that 

A0 mode being able to mode convert to a surface wave that travels around the open hole and interacts 

with the defect. Elastic waves travelling around the open hole is anticipated to attenuate similar to the 

leaky Rayleigh wave.  

According to the Doherty and Chiu experimental and computational results, the spiralling scattered 

wave field can be seen to leak SH0 wave tangentially to the open hole. Chang and Mal [54] have 
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already investigated the cracks on the hole using two receivers and their results were verified with the 

theoretical model of the hole which acts as a source [98]. The scattered phenomena found in Doherty 

and Chiu work is most likely to be an SH0 source creeping around the hole boundary. There is a lack 

of a complete; analytical, FE and experimental, study on edge waves circulating a curve boundary. 

Studies by Nagy [7, 97], Hurst and Temple [94], and Doherty and Chui [14] provided the knowledge 

of surface wave propagating on the cylindrical circumferences and its possible application. Additional 

investigations are needed to determine the scattering amplitude signal and scattering pattern of a 

defect with varying incident angle in a plane stress case. These are worth investigating specifically on 

creeping wave and its interaction with the hole to promote and advance detection for hidden cracks in 

complex metallic structures. 

 

1.6 Small Crack Detection and Quantification 

 

Over the past decades, methods of detection have been studied to detect fatigue crack in metallic 

structures. Time-of-flight method is a well-known technique to determine flaws in structures based on 

the travel of arrival and reflection of waves [65, 99]. Amplitude and energy spectrum parameters have 

shown to be a method of analysis for crack detection with Rayleigh wave incident [99, 100].   

Reviews [101-103] discussed further on the theories of scattering of elastic waves by different 

idealised crack behaviours in media and suggested particular characteristic length for crack 

quantification.  Previous studies [104-106] have provided analytical solutions to the plane strain 

diffraction of an elastic wave by crack. A significant contribution in the field of elastic wave 

interaction with several crack types by Mal [107-110] led forward further research in analytical and 

computational studies at that time.  

There are many works done on crack characterisation methods, such as inverse scattering [111, 112] 

and time-domain ray tracing method [113, 114]. A particular area of interest for crack 

characterisation was under the quasi-static approximation of wave interaction. A quasi-static 

approximation of wave interaction with a finite crack was analytical approached by Sih and Loeber 
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[115, 116] and Teitel [117]. Rose and Krumhansl [118] and Resch and Nelson [119] reported on the 

relationship of crack size and amplitude of the scattered wave for crack monitoring and 

characterisation under the long-wavelength condition. Under this condition, the scattered wave 

strength is proportional to the integral of the crack opening displacement [119, 120]. The use of 

elastic wave on small fatigue surface-breaking in the long wavelength limit was also a popular study 

[121-126]. In plane strain case, scattering by Rayleigh wave was highly considered for surface-

breaking, due to the absence of geometrical decay with propagating distance. Detection of small 

surface-breaking cracks has been investigated with the target of characterising the crack as a function 

of crack length [127, 128]. 

 

Figure 1.10: Vertical displacement of the (LEFT) forward and (RIGHT) back-scattered surface wave relative to 

incident wave amplitude [129] 

The solution of the time harmonic elastic wave at a surface crack in plane strain has been solved 

analytically and numerically by Mendelsohn et al. [129] and Achenbach et al. [130, 131] refer to Fig. 

1.10. Later many computational studies [132-134] of surface-breaking crack have compared their 

results to Mendelsohn and Achenbach theoretical solutions [129, 131, 135]. A particular study by 

Masserey and Mazza [72] analysed the near-field scattering at a surface crack using Laser 

Interferometer. It was not until their work that was able to experimentally quantify crack size from of 

crack length to Rayleigh wavelength ratio of 0.15 by using the combination of time and frequency 

domain as a method to quantify a surface crack in near field analysis for an entire range of crack 

length to Rayleigh wavelength, refer to Fig. 1.11. 
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Figure 1.11: Frequency and time domain of sizing sub-procedure against crack length-wavelength ratio [72] 

Analytical solution of wave scattering by a finite crack with an incident SH0 for high frequency has 

been attempted [136]. The solution to the plane wave reflection at a free edge for the incident S0 case 

has been recently solved by Gunawan and Hirose [137]. Their approach is to represent the scattered 

field as a sum of the guided wave modes including the non-propagating modes. Below the SH1 cut-

off (1.53Mhz-mm), the reflection and mode conversion coefficient turn out to be very well 

approximated by plane stress theory. However, to obtain the representation of the field close to the 

edge, one has to use normal mode expansion. This can be done by determining the unknown 

coefficients in this expansion to satisfy the boundary conditions.  

 

1.7 Point Source Equivalence  

 

It is said that the crack can be represented by equivalent body force doublets. When these force 

doublets are applied in the absence of the crack, the same scattered wave field will be produced. This 

equivalent body-force has been well derived in seismology by Aki and Richards [27] and Burridge 

[138]. The equivalent body force for scattering due to a crack has been represented in previous 

studies [139-141]. More recently, Zhang and Achenbach [141] use this equivalent to a crack. 

However no study have utilised this point source equivalence for Lamb wave scattering by crack, 

refer to Fig. 1.12. 
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Figure 1.12: Equivalent body force represents acoustic emission from a sub-surface crack [141] 

Consider an incident Lamb wave at an edge crack problem. For near-normal incidence, the solution 

of plane strain can be easily converted into plane stress. However, for a near-edge incident, the field 

that is generated when viewed along the y-axis includes a major component from an edge-wave in the 

addition of the plane wave at near-normal incidence. An approach is to analytically derive the stresses 

along the y-axis for a plane-wave incidence and the stresses for a point source. Based on the principle 

of superposition [20], the scattered wave field is equivalent to applying equal and opposite baseline 

stresses on the crack face that cancels those produced by the incident wave. This meets the condition 

of a stress-free crack. In the case of bulk waves [27], given the crack is sufficiently small, the 

summation of baseline stresses can be equivalent to the point source consisting of body-force 

doublets. The source term is caused by the crack displacement opening over length. It can be 

anticipated that a similar equivalence still holds for Lamb wave scattering. 

 

1.7.1 Representation Theorem 

 

Consider the equation of motion, recall from Eqn (A1.1) and rearranged such in vector and Cartesian 

tensor notation: 

∇. 𝝈 − 𝜌�̈� = −𝒇  

𝜎𝑗𝑖,𝑗 − 𝜌𝑢𝑖̈ = −𝑓𝑖     (1.6.1) 
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Note that the symmetries of stiffness matrix 𝑐𝑖𝑗𝑘𝑙 

𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑗𝑖𝑘𝑙  because 𝜎𝑖𝑗 = 𝜎𝑗𝑖 

𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘  because 𝜖𝑘𝑙 = 𝜖𝑙𝑘 

𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑘𝑙𝑖𝑗 because 
𝜕𝑊

𝜕𝜖𝑖𝑗
= 𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜖𝑘𝑙  hence 

𝜕2𝑊

𝜕𝜖𝑘𝑙𝜕𝜖𝑖𝑗
=

𝜕2𝑊

𝜕𝜖𝑖𝑗𝜕𝜖𝑘𝑙
  (1.6.2) 

 

For an isotropic material, we recall from Eqn. (A.1.3) 

𝑐𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) 

 

And strain-displacement relations, constitutive equation from Eqn. (A1.4). 

For Betti-Rayleigh Reciprocal Relation, consider the general time dependent case. Here, restrict 

attention to the time-harmonic field 

𝒖(𝒙, 𝑡) = �̂�(𝒙, 𝜔)𝑒−𝑖𝜔𝑡 𝑎𝑛𝑑 𝝈(𝑥, 𝑡) = �̂�(𝒙, 𝜔)𝑒−𝑖𝜔𝑡   (1.6.3) 

 

Consider two elastic states (identified by superscripts A and B), for the same body V, bounded by a 

surface S, and the same frequency 𝜔, so that 

∇. �̂�𝑨 + 𝜌𝜔2�̂�𝑨 = −𝒇𝑨      (1.6.4) 

 

Take the scalar product with �̂�𝑩 

∇. �̂�𝑨. �̂�𝑩 + 𝜌𝜔2�̂�𝑨. �̂�𝑩 = −𝒇𝑨. �̂�𝑩    (1.6.5) 

 

Interchange A and B and subtract the resulting equation to obtain, 
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∇. �̂�𝑨. �̂�𝑩 − ∇. �̂�𝑩. �̂�𝑨 = 𝒇𝑩. �̂�𝑨 − 𝒇𝑨. �̂�𝑩 

Using the vector identity, 

(𝜎𝑗𝑖𝑢𝑖)
,𝑗

= 𝜎𝑗𝑖,𝑗𝑢𝑖 + 𝜎𝑖𝑗𝜖𝑖𝑗      (1.6.6) 

And where  𝜎𝑖𝑗
𝐴𝜖𝑖𝑗

𝐵 = 𝜎𝑖𝑗
𝐵𝜖𝑖𝑗

𝐴  

So that, 

∇. (�̂�𝑨. �̂�𝑩 − �̂�𝑩. �̂�𝑨) = 𝒇𝑩. �̂�𝑨 − 𝒇𝑨. �̂�𝑩    (1.6.7) 

 

This statement of the reciprocal relation holds point wise within V. It is usual to integrate the above 

over V using Gauss’s Theorem to convert the LHS to a surface integral over S. 

∯ (�̂�𝑨. �̂�𝑩 − �̂�𝑩. �̂�𝑨). 𝒏
 

𝑆
𝑑𝑆 = ∫ (𝒇𝑩. �̂�𝑨 − 𝒇𝑨. �̂�𝑩)

 

𝑉
 𝑑𝑉   (1.6.8) 

 

Where 𝒏 = unit outward normal. 

This form of the reciprocal relations is used to derive a representation theorem involving the Green 

function. Note that the two elastic stats A and B do not necessary satisfy the same boundary 

conditions. 

 

1.7.2 Green function and Representation Theorem 

 

Let 𝐺𝑖𝑛(𝒙, 𝝃) denote the 𝑖𝑡ℎ component of displacement at point 𝒙 due to a unit point force acting in 

the 𝑛𝑡ℎ direction at point 𝝃 

Consider the body force 𝒇, 

𝒇 = 𝛿𝑖𝑛𝛿(𝒙 − 𝝃)𝛿(𝑡)      (1.6.9) 
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We omitted the time dependence, so 

(𝑐𝑖𝑗𝑘𝑙𝐺𝑘𝑛,𝑙)
,𝑗

+ 𝜌𝜔2𝐺𝑖𝑛 = −𝛿𝑖𝑛𝛿(𝒙 − 𝝃)    (1.6.10) 

 

And represents an outgoing wave at infinity, if V is infinite. 

 

Figure 1.13: Traction vector acting on a surface element 

 

Using 𝐺𝑖𝑛 as state B with – 𝒇𝑩 leads to the following integral representation for state A; with the 

superscript A omitted i.e. 𝒇𝑩 = 𝒇 = 𝑓𝑖. 

 

�̂�𝑛(𝜉) = ∫ 𝑓𝑖(𝒙)𝐺𝑖𝑛(𝒙, 𝝃)𝑑𝑉 +
 

𝑉 ∯ 𝐺𝑖𝑛(𝒙, 𝝃)𝑇𝑖[�̂�(𝒙)] − 𝑢𝑖(𝒙)(𝑐𝑖𝑗𝑘𝑙𝐺𝑘𝑛,𝑙(𝒙, 𝝃))𝑑𝑆
 

𝑆
 (1.6.11) 

 

Where, 𝑇𝑖 = 𝜏𝑖𝑗. 𝑛𝑗  is traction on 𝑆 , refer to Fig 1.13. So  𝑇𝑖[�̂�(𝒙)]  denotes the traction vector 

associate with �̂� . If G satisfies homogeneous boundary condition on S, i.e. traction of the 

displacement is prescribed to be zero at every point on S, then G satisfies the reciprocal relation 

𝑮(𝒙, 𝝃) = 𝑮(𝝃, 𝒙) ℎ𝑒𝑛𝑐𝑒 𝐺𝑖𝑛 = 𝐺𝑛𝑖    (1.6.12) 
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Interchanging the 𝒙 and 𝝃 leads to the representation theorem. 

�̂�𝑛(𝑥) = ∫ 𝑓𝑖(𝜉)𝐺𝑛𝑖(𝒙, 𝝃)𝑑𝑉 +
 

𝑉 ∯ 𝐺𝑛𝑖(𝒙, 𝝃)𝑇𝑖[�̂�(𝒙)] − 𝑢𝑖(𝜉)(𝑐𝑖𝑗𝑘𝑙
𝜕𝐺𝑘𝑛(𝒙,𝝃)

𝜕𝜉𝑙
)𝑑𝑆

 

𝑆
   

(1.6.13) 

Note that for the application of the reciprocal relation, �̂� and 𝑮  do not need to satisfy the same 

boundary condition. However, the final form here of the presentation theorem requires that 𝑮 satisfies 

homogeneous boundary condition. 

 

1.7.3 Representation theorem for scattered field by cracks 

 

Figure 1.14: Elastic body with a damage defined by the surface Σ 

 

The total field can be regarded as the superposition of the incident field  �̂�𝑰 that would prevail in an 

uncracked body, and a scattered field  �̂�𝑺 due to the presence of a crack indicated by the surface Σ. 

The displacement is discontinuous, but the associated tractions are continuous across  Σ. 

Using the previous equation for the scattered field and considering that since 𝑆1 → ∞ , so its 

contribution can be ignored.  𝑆2 can be collapsed on to Σ, noting that 𝒏(𝑆2) on the upper side of Σ is 

equal to -𝒏(Σ), as indicated in Fig. 1.14, leading to, 
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�̂�𝑛(𝑥) = ∫ ∆�̂�𝑖(𝜉) (𝑐𝑖𝑗𝑘𝑙
𝜕𝐺𝑛𝑘(𝒙,𝝃)

𝜕𝜉𝑙
) 𝑛𝑗𝑑 Σ(𝜉)

 

Σ
    (1.6.14) 

 

Where, ∆�̂�𝑖(𝜉) = �̂�𝑖
+(𝜉) − �̂�𝑖

−(𝜉), and �̂�𝑖
± denotes 𝑢 on the top and bottom faces of Σ respectively. 

This representation is in accord with Aki and Richards [27]. For the case of a shear crack on the plane 

𝜉3 with ∆�̂�1 as the only non-zero displacement discontinuity and an isotropic body, the following 

equation reduces to: 

�̂�𝑛(𝑥) = ∫ 𝜇∆�̂�1(𝜉) {
𝜕𝐺𝑛1

𝜕𝜉3
+

𝜕𝐺𝑛3

𝜕𝜉1
} 𝑑Σ(𝜉)

 

Σ
   (1.6.15) 

 

1.7.4 Solution for a dipole 

 

Start with the solution for a point force at the origin of an anti-plane problem. 

𝜇(∇2𝑊 + 𝑘2𝑤) = −𝛿(𝒙) = −𝛿(𝑥)𝛿(𝑦)    (1.6.16) 

 

Thus the solution is, using 𝑒−𝑖𝜔𝑡, 

 𝐺(𝑥, 𝑦) =
𝑖

4
𝐻0

1(𝑘𝑟)      (1.6.17) 

 

Consider a pair of forces and its limiting process starting from a doublet with strength  
1

∆𝑦
. 

To generate a doublet, we take the limit such that,  ∆𝑦 →  0. 

Take, 

𝐺𝑑𝑖𝑝𝑜𝑙𝑒 = lim
∆𝑦→ 0

1

∆𝑦
{𝐺(𝑥, 𝑦 − ∆𝑦) − 𝐺(𝑥, 𝑦)} 
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= lim
∆𝑦→ 0

1

∆𝑦
{𝐺(𝑥, 𝑦) − ∆𝑦

𝜕𝐺(𝑥, 𝑦)

𝜕𝑦
+ ⋯ − 𝐺(𝑥, 𝑦)} 

= −
𝜕𝐺(𝑥,𝑦)

𝜕𝑦
     (1.6.18) 

For a homogeneous and unbound space, the Green function depends only on the relative location of 

the receiver with respect to the source.   

Hence, a doublet can also be expressed as,  

𝜕𝐺

𝜕𝜉𝑖
(𝒙, 𝝃) = −

𝜕𝐺

𝜕𝑥𝑖
(𝒙, 𝝃)      (1.6.19) 

 

For force doublets in 2D, we can obtain 2 types of doublets,  

𝐺𝑑𝑜𝑢𝑏𝑙𝑒𝑡 = −
𝜕𝐺(𝑥,𝑦)

𝜕𝑦
     (1.6.20) 

𝐺𝑑𝑜𝑢𝑏𝑙𝑒𝑡 = −
𝜕𝐺(𝑥,𝑦)

𝜕𝑥
     (1.6.21) 

 

So the doublet becomes, 

𝜕𝐺𝑛1

𝜕𝜉3
(𝒙, 𝝃) = −

𝜕𝐺𝑛1

𝜕𝑥3
(𝒙, 𝝃)    (1.6.22) 

 

It is the field due to the force doublets, as shown in Fig. 1.15, and similarly for 
𝜕𝐺𝑛3

𝜕𝜉1
so that the kernel 

in shear crack equation (1.97) represents the field of a so-called ‘double couple’. 

Aki and Richards [27] notes that this source has no net force and no net moment. They have indicated 

that the body force equivalent for a displacement discontinuity is not unique. The double couple is the 

standard representation for a mode II crack element. The body force equivalent for a mode I crack 

element is as follows. 
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The general analysis of discontinuous displacement across an internal surface is done by first 

considering the convolution symbol so that, 

�̂�𝑛(𝑥) = ∫ ∆�̂�𝑖(𝜉) ∗ (𝑐𝑖𝑗𝑘𝑙
𝜕𝐺𝑛𝑘(𝒙,𝝃)

𝜕𝜉𝑙
) 𝑛𝑗𝑑 Σ(𝜉)

 

Σ
    (1.6.23) 

Here we introduce a moment, M, and moment density tensor , m, 

𝑚𝑝𝑞 = ∆�̂�𝑖𝑐𝑖𝑗𝑝𝑞𝑛𝑗 and 𝑀𝑝𝑞 = ∬ 𝑚𝑝𝑞 𝑑Σ
 

Σ
   (1.6.24) 

Where this quantity depends on the source strength and orientation. We consider a long wavelength 

compared to the dimension of Σ. Thus, the source now is effectively a point source. 

Hence 

�̂�𝑛(𝑥) = ∫ 𝑚𝑝𝑞 ∗ 𝐺𝑛𝑝,𝑞 𝑑Σ(𝜉)
 

Σ
     (1.6.25) 

Such that for an isotropic body using (1.3), 

𝑚𝑝𝑞 = 𝜆𝑛𝑘[∆�̂�𝑖(𝜉)]𝛿𝑝𝑞 + 𝜇 (𝑛𝑝∆�̂�𝑞(𝜉) + 𝑛𝑞∆�̂�𝑝(𝜉))    (1.6.26) 

 

Figure 1.15: Representation of moment tensor density by equivalent body force doublet in two dimensions 
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Furthermore, in the case of discontinuity in the 𝜉2 = 0  plane with ∆�̂�1  as the only non-zero 

displacement, similarly to the shear crack before, 

𝒎 = ( 0
𝜇∆�̂�1(𝜉)

𝜇∆�̂�1(𝜉)
0

)     (1.6.27) 

 

In a case of a tension cracking, the 𝜉2 = 0 plane with ∆�̂�2 as the only non-zero displacement, thus the 

moment density tensor is 

𝒎 = (𝜆∆�̂�2(𝜉)
0

0
(𝜆+2𝜇)∆�̂�2(𝜉))    (1.6.28) 

 

 

Figure 1.16: Body-force equivalents for a tension and shear crack in an isotropic medium 

 

This represents a tension crack equivalent to two dipoles with magnitudes 𝜆  and (𝜆 + 2𝜇)  body 

forces equivalent to point source. For shear crack, it can be shown to be equivalent to two dipoles 

with magnitude 𝜇 body forces, as illustrated in Fig. 1.16. 

In a sense, a centre of dilation produces only S0 waves where the 𝜓 potential is zero and for a centre 

of shear the contribution of 𝜑 potential is zero and only pure SH0 wave. The attempt is to adopt the 

reasoning to get the plane stress of crack openings; Mode I and Mode II, to a body force equivalent.  
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1.8 Point Source 

 

The solution of a point source on a semi-infinite medium has been investigated by Lamb [16]. One 

can simply convert from a plane strain to a plane stress application by changing the elastic constant 𝜆 

and 𝑣, to 𝜆 and 𝑣 in order to satisfy the plane stress conditions. 

𝜆 =
2𝜇𝜆

𝜆+2𝜇
 𝑎𝑛𝑑 𝑣 =

𝑣

1+𝑣
     (1.7.1) 

 

Consider the equation of motion of an isotropic elastic solid in two-dimensions (𝑥, 𝑦) from Eqn. 

(A1.1.5). 

(𝜆 + 𝜇)∇∇. 𝒖 + 𝜇∇2𝒖 − 𝜌�̈� = 𝜌𝒇   (1.7.2) 

 

Where, 𝒖 is a displacement vector and 𝑢 and 𝑣 are the component displacements. 

The displacement is expressed into scalar 𝜙 and vector 𝝋 potentials. 

𝒖 = ∇. 𝜙 + ∇ × 𝝍     (1.7.3) 

 

So the component displacement can be expressed as, 

𝑢 =
𝜕𝜙

𝜕𝑥
+

𝜕𝝍

𝜕𝑦
 𝑎𝑛𝑑  𝑣 =

𝜕𝜙

𝜕𝑦
−

𝜕𝝍

𝜕𝑥
    (1.7.4) 

 

The potentials satisfy 

∇2𝜙 −
1

𝑐𝐿
2

𝜕2𝜙

𝜕𝑡2 = 0 𝑎𝑛𝑑 ∇2𝜑 −
1

𝑐𝑇
2

𝜕2𝝍

𝜕𝑡2 = 0  (1.7.5) 

Where, 𝑐𝐿
2 =

𝜆+2𝜇

𝜌
 𝑎𝑛𝑑 𝑐𝑇

2 =
𝜇

𝜌
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Assume steady-state solution, the potentials can be expressed in this form, 

𝜙(𝑥, 𝑦, 𝑡) = �̅�(𝑥, 𝑦)𝑒−𝑖𝜔𝑡  𝑎𝑛𝑑 𝜓(𝑥, 𝑦, 𝑡) = �̅�(𝑥, 𝑦)𝑒−𝑖𝜔𝑡  (1.7.6) 

 

Therefore the potentials satisfy the equations, 

∇2𝜙 + 𝑘𝐿
2𝜙 = 0 𝑎𝑛𝑑 ∇2𝜓 + 𝑘𝑇

2𝜓 = 0    (1.7.7) 

 

Where, 𝑘𝐿 =
𝜔

𝑐𝐿
 𝑎𝑛𝑑 𝑘𝑇 =

𝜔

𝑐𝑇
 

Now taking the Fourier transform over 𝑥 domain 

Φ(𝑘, 𝑦) = ∫ �̅�(𝑥, 𝑦, 𝜔) 𝑒−𝑖𝑘𝑥 𝑑𝑥  𝑎𝑛𝑑 Ψ(𝑘, 𝑦) = ∫ �̅�(𝑥, 𝑦, 𝜔) 𝑒−𝑖𝑘𝑥 𝑑𝑥   (1.7.8) 

 

Then from (5a, b), we get, 

∇2Φ − 𝛼2Φ = 0 𝑎𝑛𝑑 ∇2Ψ − 𝛽2Ψ = 0     (1.7.9) 

 

where 𝛼 = √𝑘2 − 𝑘𝐿
2  𝑎𝑛𝑑 𝛽 = √𝑘2 − 𝑘𝑇

2. The positive radicals 𝛼 𝑎𝑛𝑑 𝛽 are chosen by the 

condition, where 𝑅𝑒[𝛼] ≥ 0, 𝑅𝑒[𝛽] ≥ 0.  

 

1.8.1 Branch Cut selection 

 

The radical 𝛼 = ±√𝑘2 − 𝑘𝐿
2  and 𝛽 = ±√𝑘2 − 𝑘𝑇

2  are chosen by the condition where 𝑅𝑒[𝛼] ≥ 0, 

and 𝑅𝑒[𝛽] ≥ 0. Consider the branch points ±𝑘𝐿 𝑎𝑛𝑑 ± 𝑘𝑇; since the branch points are located on the 

real axis, the complex value of 𝜔 must be considered. Therefore, first take the cuts for complex  𝑘𝐿 =

𝜔

𝑐𝐿
 and 𝑘𝑇 =

𝜔

𝑐𝑇
. The radical has four combinations as there are four sheets of 𝛼 and 𝛽, the permissible 

sheet must satisfy the condition for 𝑅𝑒[𝛼] ≥ 0 𝑎𝑛𝑑  𝑅𝑒[𝛽] ≥ 0. 
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Therefore, the cuts will be given by 𝑅𝑒[𝛼] = 0 and 𝑅𝑒[𝛽] = 0. Given, the complex 𝜔 = 𝑎𝜔 + 𝑏𝜔𝑖 

and 𝑘 = 𝑎𝑘 + 𝑏𝑘𝑖. 

 

Figure 1.17: Branch points and cuts in the complex 𝑘 = 𝑎𝑘 + 𝑏𝑘𝑖 plane for 𝑅𝑒[𝜔] > 0 

 

For 𝑅𝑒[𝛼] = 0, then 𝑅𝑒[𝛼2] ≤ 0. So, 

𝛼2 = 𝑘2 − 𝑘𝐿
2 = (𝑎𝑘

2 − 𝑏𝑘
2 −

𝑎𝜔
2

𝑐𝐿
+

𝑏𝜔
2

𝑐𝐿
) + (2𝑎𝑘𝑏𝑘 +

2𝑎𝜔𝑏𝜔

𝑐𝐿
) 𝑖  (1.7.10) 

 

Therefore, 

𝑎𝑘
2 − 𝑏𝑘

2 <
𝑎𝜔

2

𝑐𝐿
−

𝑏𝜔
2

𝑐𝐿
  and 𝑎𝑘𝑏𝑘 = −

2𝑎𝜔𝑏𝜔

𝑐𝐿
 for real and negative  (1.7.11) 

For 𝜔 to be real then, 

𝑎𝑘
2 − 𝑏𝑘

2 <
𝑎𝜔

2

𝑐𝐿
  and 𝑎𝑘𝑏𝑘 = 0    (1.7.12) 
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Either, 

𝑎𝑘 = 0 𝑎𝑛𝑑 − 𝑏𝑘
2 <

𝑎𝜔
2

𝑐𝐿
   or 𝑏𝑘 = 0 𝑎𝑛𝑑 𝑎𝑘

2 <
𝑎𝜔

2

𝑐𝐿
  (1.7.13) 

The condition 𝑅𝑒[𝛼] ≥ 0 restricts the choice of a cut. When 𝑏𝑘 = 0 from Eqn. 1.7.13, a part of the 

real axis between the branch points at 𝐴 and 𝐶, as shown in Fig. 1.18. The imaginary axis determined 

by condition 𝑎𝑘 = 0 from Eqn. 1.7.13 is not an independent cut, since it does no pass through a 

branch point. However, the imaginary axis can be used by combining with that part of the real axis to 

form AOE and BOL cuts as shown in Fig. 1.18. For real 𝜔, the 𝑅𝑒[𝛼] does not change sign in the 

right half plane except for 𝑎𝑘 > 𝑎𝑘1
, which is on 𝐴, refer to Fig. 1.18. Therefore, for any permissible 

path in the right half plane, 𝐼𝑚[𝛼] can change sign only on crossing 𝐴.  

 

Figure 1.18: Limiting cases of the hyperbola parts in Fig. 1.17. Branch points A and B and cuts AOE and BOF 

in complex 𝑘 plane for real 𝜔 
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1.8.2 Point source solution 

 

Then, for a bounded response for 𝑦 →  ∞ 

Φ(𝑘, 𝑦) = 𝐴(𝑘)𝑒− 𝛼𝑦 and  Ψ(𝑘, 𝑦) = 𝐵(𝑘)𝑒− 𝛽𝑦     (1.7.14) 

 

Therefore, the solution to the region 𝑦 > 0 

𝜙𝐼(𝑥, 𝑦) = 𝐴(𝑘)𝑒− 𝛼𝑦𝑒𝑖𝑘𝑥 𝑎𝑛𝑑 𝜓𝐼(𝑥, 𝑦) = 𝐵(𝑘)𝑒− 𝛽𝑦𝑒𝑖𝑘𝑥    (1.7.15) 

 

Consider the stresses in terms of potentials, 

𝜎𝑥𝑥 = 𝜆 (
𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2) + 2𝜇 (
𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑥𝜕𝑦
) = −𝜇𝑘𝑇

2𝜙 − 2𝜇
𝜕2𝜙

𝜕𝑦2 + 2𝜇
𝜕2𝜓

𝜕𝑥𝜕𝑦
  (1.7.16) 

𝜎𝑦𝑦 = 𝜆 (
𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2) + 2𝜇 (
𝜕2𝜙

𝜕𝑦2 −
𝜕2𝜓

𝜕𝑥𝜕𝑦
) = −𝜇𝑘𝑇

2𝜙 − 2𝜇
𝜕2𝜙

𝜕𝑥2 − 2𝜇
𝜕2𝜓

𝜕𝑥𝜕𝑦
  (1.7.17) 

𝜎𝑥𝑦 = 𝜇 (2
𝜕2𝜙

𝜕𝑥𝜕𝑦
−

𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑦2) = 2𝜇
𝜕2𝜙

𝜕𝑥𝜕𝑦
− 𝜇𝑘𝑇

2𝜓 − 2𝜇
𝜕2𝜓

𝜕𝑥2   (1.7.18) 

 

 

Figure 1.19: Normal (P) and shear (Q) surface force diagram on semi-infinite boundary 

 



36 

 

Consider only a normal force at the surface, 𝑦 = 0 such that (as shown in Fig. 1.19), 

𝜎𝑦𝑦 = −𝑃𝛿(𝑥) 

𝜎𝑥𝑦 = 0 

 (1.7.19)  

Using Eqn. (1.7.17) and (1.7.18), then 

𝐴1
𝑠(𝑘) =

𝑘𝑇
2 − 2𝑘2

𝜇((2𝑘2 − 𝑘𝑇
2)2 − 4𝛼𝛽𝑘2)

𝑃 

𝐵1
𝑆(𝑘) =

−2𝛼𝑘

 𝜇((2𝑘2 − 𝑘𝑇
2)2 − 4𝛼𝛽𝑘2)

𝑃𝑖 

 (1.7.20)  

Consider a shear force at the surface, 𝑦 = 0 such that, 

𝜎𝑦𝑦 = 0 

𝜎𝑥𝑦 = −𝑄𝛿(𝑥) 

 (1.7.21)  

 

Using Eqn. (1.7.17) and (1.7.18), then, 

𝐴2
𝑠 (𝑘) =

2𝛽𝑘

 𝜇((2𝑘2 − 𝑘𝑇
2)2 − 4𝛼𝛽𝑘2)

𝑄𝑖 

𝐵2
𝑠(𝑘) =

𝑘𝑇
2 − 2𝑘2

𝜇((2𝑘2 − 𝑘𝑇
2)2 − 4𝛼𝛽𝑘2)

𝑄 

 (1.7.22)  
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1.8.3 Application of steepest descent method 

 

In order to determine the far-field wave pattern due to the normal and tangential surface forces, the 

steepest-descent method is used to determine the field at infinity. 

First, consider the integrals have the general form of, 

𝐼 = ∫ 𝜒(𝑘)𝑒𝑖𝑘𝑥−√𝑘2−𝑚2𝑦 𝑑𝑘
∞

−∞
    (1.7.23)  

 

The polar coordinates are introduced such that 𝑥 = 𝑟𝑠𝑖𝑛𝜃 and 𝑦 = 𝑟𝑐𝑜𝑠𝜃 where 𝜃 is measured from 

the y axis. So, 

𝐼 = ∫ 𝜒(𝑘)𝑒𝑟𝑓(𝑘) 𝑑𝑘
∞

−∞
     (1.7.24) 

 

 Where, 𝑓(𝑘) = 𝑖𝑘𝑠𝑖𝑛𝜃 − √𝑘2 − 𝑚2𝑐𝑜𝑠𝜃 

The saddle points of 𝑅𝑒[𝑓(𝑘)] is determined from 
𝑑𝑓(𝑘)

𝑑𝑘
= 0. We obtain, 

𝑖𝑠𝑖𝑛𝜃 =
𝑘𝑐𝑜𝑠𝜃

√𝑘2−𝑚2
  so 𝑘0 = ±𝑚𝑠𝑖𝑛𝜃   (1.7.25) 

 

Consider point 𝑘0 = −𝑚𝑠𝑖𝑛𝜃, whereas the point at + version would be used for consideration on the 

negative real axis  −𝑚 ≤  𝑘0 ≤ 0.  

At the saddle point 𝑓(𝑘0) = −𝑖𝑚 and 𝑓′′(𝑘0) =
𝑖

𝑚cos2 𝜃
. The contour of integration is now deformed 

so it passes through the saddle point along the steepest descent path. Near the saddle, 

𝑓(𝑘) − 𝑓(𝑘0) =
1

2
(𝑘 − 𝑘0)2𝑓′′(𝑘0) 

𝑓(𝑘) − 𝑓(𝑘0) = −𝑢2     (1.7.26) 
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Let 𝑘 − 𝑘0 = 𝑟 𝑒𝑖𝜃 

So it can be expressed as, 

𝑢2 = −𝑟2 𝑓′′(𝑘0)𝑒2𝑖𝜃     (1.7.27) 

We write, 

𝑓′′(𝑘0) = |𝑓′′(𝑘0)|𝑒𝑖𝜃𝑏      (1.7.28) 

Therefore, 

𝑢2 = −𝑟2|𝑓′′(𝑘0)|𝑒𝑖(𝜃𝑏+2𝜃)    (1.7.29) 

 

For 𝑢2 to be positive and real, 𝑒𝑖(𝜃𝑏+2𝜃) must be real and negative. Hence, fix 𝜃𝑏 + 2𝜃 = ±𝜋, Then 

𝑢2 = −𝑟2|𝑓′′(𝑘0)|𝑒
𝑖(𝜃𝑏+2𝜃)

2 𝑒
𝑖𝜋

2     (1.7.30) 

So that, 𝑢 = ±𝑟|𝑓′′(𝑘0)|
1

2 

 

Then we obtain, 

𝑢 = ±(𝑘 − 𝑘0)|𝑓′′(𝑘0)|
1

2 𝑒−𝑖𝜃    (1.7.31) 

 

Therefore, 

−𝑢2 =
1

2
(𝑘 − 𝑘0)2 𝑖

𝑚 cos2 𝜃
    (1.7.32) 

𝑘 − 𝑘0 = ±2√𝑚𝑢 𝑐𝑜𝑠𝜃 𝑒
𝑖𝜋

4     (1.7.33) 

arg [
1

2
𝑓′′(𝑘0)𝑒2𝑖𝜃] = 0      (1.7.34) 
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We approximate for large value of 𝑟, 

𝐼~√
2𝜋

𝑟

𝜒(𝑘0)

|𝑓′′(𝑘0)|
1
2

 𝑒𝑟𝑓(𝑘0)+
𝑖𝜋

4     (1.7.35) 

𝐼~√
2𝜋𝑚

𝑟
𝜒(𝑘0)𝑐𝑜𝑠𝜃 𝑒𝑟𝑓(𝑘0)+

𝑖𝜋

4     (1.7.36) 

 

1.8.4 Far-field wave patterns due to normal and tangential surface forces 

 

Consider normal surface force from Eqn. (1.7.15); where, 

𝜙𝐼(𝑥, 𝑦) = 𝐴(𝑘)𝑒− 𝛼𝑦𝑒𝑖𝑘𝑥 𝑎𝑛𝑑 𝜓𝐼(𝑥, 𝑦) = 𝐵(𝑘)𝑒− 𝛽𝑦𝑒𝑖𝑘𝑥  (1.7.37) 

 

Now recall, 

𝑢 =
𝜕𝜙

𝜕𝑥
+

𝜕𝝍

𝜕𝑦
= 𝑖𝑘𝜙𝐼(𝑥, 𝑦) −  𝛽𝜓𝐼(𝑥, 𝑦) 𝑎𝑛𝑑  𝑣 =

𝜕𝜙

𝜕𝑦
−

𝜕𝝍

𝜕𝑥
= − 𝛼𝜙𝐼(𝑥, 𝑦) −  𝑖𝑘𝜓𝐼(𝑥, 𝑦) 

(1.7.38) 

Also, from Eqn. (1.7.20) 

𝐴1
𝑠(𝑘) =

𝑘𝑇
2−2𝑘2

𝐹(𝑘)

𝑃

𝜇
  𝑎𝑛𝑑  𝐵1

𝑆(𝑘) =
−2𝛼𝑘

 𝐹(𝑘)

𝑃𝑖

𝜇
    

where, 𝐹(𝑘) = (2𝑘2 − 𝑘𝑇
2)2 − 4𝛼𝛽𝑘2 = (2𝑘2 − 𝑘𝑇

2)2 − 4(𝑘2 − 𝑘𝐿
2)

1

2(𝑘2 − 𝑘𝑇
2)

1

2𝑘2 

 

The displacements from Eqn. (1.7.38) can be expressed as, 

𝑢 = (𝐼𝑢𝐿 + 𝐼𝑢𝑇)
𝑃

𝜇
     (1.7.39) 

𝑣 = (𝐼𝑣𝐿 + 𝐼𝑣𝑇)
𝑃

𝜇
     (1.7.40) 
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Using the displacement form Eqn. (1.7.39) and (1.7.40) and by substituting (1.7.20), we obtain the 

integrals 

𝐼𝑢𝐿 =
𝑖

2𝜋
∫

−𝑘(2𝑘2−𝑘𝑇
2)

𝐹(𝑘)
𝑒

𝑖𝑘𝑥−√𝑘2−𝑘𝐿
2𝑦

 𝑑𝑘
∞

−∞
   (1.7.41) 

𝐼𝑢𝑇 =
𝑖

𝜋
∫

𝑘(𝑘2−𝑘𝑇
2)

1
2(𝑘2−𝑘𝐿

2)
1
2

𝐹(𝑘)
𝑒

𝑖𝑘𝑥−√𝑘2−𝑘𝑇 
2 𝑦

 𝑑𝑘
∞

−∞
   (1.7.42) 

𝐼𝑣𝐿 =
1

2𝜋
∫

(𝑘2−𝑘𝐿
2)

1
2(2𝑘2−𝑘𝑇

2)

𝐹(𝑘)
𝑒

𝑖𝑘𝑥−√𝑘2−𝑘𝐿
2𝑦

 𝑑𝑘
∞

−∞
   (1.7.43) 

𝐼𝑣𝑇 = −
1

2𝜋
∫

𝑘2(𝑘2−𝑘𝐿
2)

1
2

𝐹(𝑘)
𝑒

𝑖𝑘𝑥−√𝑘2−𝑘𝑇
2𝑦

 𝑑𝑘
∞

−∞
   (1.7.44) 

 

Now using the approximation from (1.7.36) and the above Eqn. (1.7.41-44), for 𝑢 displacement. 

 

𝐼𝑢𝐿~𝑖√
1

2𝜋𝑟

𝑘𝐿

3
2𝑠𝑖𝑛𝜃(2𝑘𝐿

2 sin2 𝜃 − 𝑘𝑇
2)

𝐹(−𝑘𝐿𝑠𝑖𝑛𝜃)
𝑐𝑜𝑠𝜃 𝑒−𝑖𝑘𝐿𝑟+

𝑖𝜋
4  

𝐼𝑢𝑇~√
2

𝜋𝑟

−𝑘𝑇

5
2 1

2 𝑠𝑖𝑛2𝜃(𝑘𝑇
2 sin2 𝜃 − 𝑘𝐿

2)
1
2

𝐹(−𝑘𝑇𝑠𝑖𝑛𝜃)
𝑐𝑜𝑠𝜃𝑒−𝑖𝑘𝑇𝑟+

𝑖𝜋
4  

𝑢 = (𝑖
𝑘𝐿

3
2𝑠𝑖𝑛𝜃(2𝑘𝐿

2 sin2 𝜃 − 𝑘𝑇
2)

𝐹(−𝑘𝐿𝑠𝑖𝑛𝜃)
𝑒−𝑖𝑘𝐿𝑟 +

𝑘𝑇
5/2

𝑠𝑖𝑛2𝜃(𝑘𝑇
2 sin2 𝜃 − 𝑘𝐿

2)
1
2

𝐹(−𝑘𝑇𝑠𝑖𝑛𝜃)
𝑒−𝑖𝑘𝑇𝑟) √

2

𝜋𝑟

𝑃

𝜇
𝑒

𝑖𝜋
4 𝑐𝑜𝑠𝜃 

  (1.7.45) 

 

 

 



41 

 

And, for 𝑣 displacement, 

𝐼𝑣𝐿~𝑖√
1

2𝜋𝑟

𝑘𝐿

3
2𝑐𝑜𝑠 (2𝑘𝐿

2 sin2 𝜃 − 𝑘𝑇
2)

𝐹(−𝑘𝐿𝑠𝑖𝑛𝜃)
𝑐𝑜𝑠𝜃 𝑒−𝑖𝑘𝐿𝑟+

𝑖𝜋
4  

𝐼𝑣𝑇~ − √
1

2𝜋𝑟

𝑘𝑇
5/2

sin2 𝜃 (𝑘𝑇
2 sin2 𝜃 − 𝑘𝐿

2)
1
2

𝐹(−𝑘𝑇𝑠𝑖𝑛𝜃)
𝑐𝑜𝑠𝜃𝑒−𝑖𝑘𝑇𝑟+

𝑖𝜋
4  

𝑣 = (𝑖
𝑘𝐿

3
2 cos 𝜃 (2𝑘𝐿

2 sin2 𝜃 − 𝑘𝑇
2)

𝐹(−𝑘𝐿𝑠𝑖𝑛𝜃)
𝑒−𝑖𝑘𝐿𝑟 −

2𝑘𝑇
5/2

sin2 𝜃 (𝑘𝑇
2 sin2 𝜃 − 𝑘𝐿

2)
1
2

𝐹(−𝑘𝑇𝑠𝑖𝑛𝜃)
𝑒−𝑖𝑘𝑇𝑟) √

2

𝜋𝑟

𝑃

𝜇
𝑒

𝑖𝜋
4 𝑐𝑜𝑠𝜃 

 (1.7.46) 

 

Consider tangential surface force, recall from (1.7.22), 

𝐴2
𝑠 (𝑘) =

2𝛽𝑘

 𝐹(𝑘)

𝑄𝑖

𝜇 
   𝑎𝑛𝑑   𝐵2

𝑠(𝑘) =
𝑘𝑇

2 − 2𝑘2

 𝐹(𝑘)

𝑄

𝜇 
 

 

Using the displacement form Eqn. (1.7.39) and (1.7.40) and by substituting (1.7.22), we obtain the 

integrals 

𝐼𝑢𝐿 =
−1

𝜋
∫

𝑘2(𝑘2−𝑘𝑇
2)

1
2

𝐹(𝑘)
𝑒

𝑖𝑘𝑥−√𝑘2−𝑘𝐿
2𝑦

 𝑑𝑘
∞

−∞
   (1.7.47) 

𝐼𝑢𝑇 =
1

2𝜋
∫

(𝑘2−𝑘𝑇
2)

1
2(2𝑘2−𝑘𝑇

2)

𝐹(𝑘)
𝑒

𝑖𝑘𝑥−√𝑘2−𝑘𝑇
2𝑦

 𝑑𝑘
∞

−∞
   (1.7.48) 

𝐼𝑣𝐿 =
−𝑖

𝜋
∫

𝑘(𝑘2−𝑘𝑇
2)

1
2(𝑘2−𝑘𝐿

2)
1
2

𝐹(𝑘)
𝑒

𝑖𝑘𝑥−√𝑘2−𝑘𝐿 
2 𝑦

 𝑑𝑘
∞

−∞
   (1.7.49) 

𝐼𝑣𝑇 =
𝑖

2𝜋
∫

𝑘(2𝑘2−𝑘𝑇
2)

𝐹(𝑘)
𝑒

𝑖𝑘𝑥−√𝑘2−𝑘𝑇
2𝑦

 𝑑𝑘
∞

−∞
    (1.7.50) 
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Now using the approximation from (1.7.36), and the above Eqn. (1.7.47-50) for 𝑢 displacement, 

 

𝐼𝑢𝐿~ −  √
2

𝜋𝑟

𝑘𝐿
5/2

sin2 𝜃 (𝑘𝐿
2 sin2 𝜃 − 𝑘𝑇

2)
1
2

𝐹(−𝑘𝐿𝑠𝑖𝑛𝜃)
𝑐𝑜𝑠𝜃 𝑒−𝑖𝑘𝐿𝑟+

𝑖𝜋
4  

𝐼𝑢𝑇~ − 𝑖√
1

2𝜋𝑟

𝑘𝑇
7/2

𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 2𝜃

𝐹(−𝑘𝑇𝑠𝑖𝑛𝜃)
𝑐𝑜𝑠𝜃 𝑒−𝑖𝑘𝑇𝑟+

𝑖𝜋
4  

𝑢 = (− 
𝑘𝐿

5
2 sin2 𝜃 (𝑘𝐿

2 sin2 𝜃 − 𝑘𝑇
2)

1
2

𝐹(−𝑘𝐿𝑠𝑖𝑛𝜃)
𝑒−𝑖𝑘𝐿𝑟 − 𝑖

1

2

𝑘𝑇
7/2

𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 2𝜃

𝐹(−𝑘𝑇𝑠𝑖𝑛𝜃)
𝑒−𝑖𝑘𝑇𝑟) √

2

𝜋𝑟

𝑄

𝜇
𝑒

𝑖𝜋
4 𝑐𝑜𝑠𝜃 

 (1.7.51) 

 

And, for 𝑣 displacement, 

 

𝐼𝑣𝐿~√
1

2𝜋𝑟

−𝑘𝐿

5
2𝑠𝑖𝑛2𝜃(𝑘𝐿

2 sin2 𝜃 − 𝑘𝑇
2)

1
2

𝐹(−𝑘𝐿𝑠𝑖𝑛𝜃)
 𝑐𝑜𝑠𝜃 𝑒−𝑖𝑘𝐿𝑟+

𝑖𝜋
4  

𝐼𝑣𝑇~𝑖√
1

2𝜋𝑟

𝑘𝑇
7/2

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠 2𝜃

𝐹(−𝑘𝑇𝑠𝑖𝑛𝜃)
 𝑐𝑜𝑠𝜃 𝑒−𝑖𝑘𝑇𝑟+

𝑖𝜋
4  

𝑣 = (
1

2

−𝑘𝐿

5
2𝑠𝑖𝑛2𝜃(𝑘𝐿

2 sin2 𝜃 − 𝑘𝑇
2)

1
2

𝐹(−𝑘𝐿𝑠𝑖𝑛𝜃)
𝑒−𝑖𝑘𝐿𝑟 + 𝑖

1

2

𝑘𝑇
7/2

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠 2𝜃

𝐹(−𝑘𝑇𝑠𝑖𝑛𝜃)
𝑒−𝑖𝑘𝑇𝑟) √

2

𝜋𝑟

𝑄

𝜇
𝑒

𝑖𝜋
4 𝑐𝑜𝑠𝜃 

(1.7.52) 
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The far-field 𝑢 and 𝑣 displacements obtained from using the steepest-descent method for normal and 

tangential surface forces can be plotted into radial and tangential components of the field by using the 

following relations: 

𝑢𝑅 = 𝑢𝑦 cos 𝜃 + 𝑢𝑥 sin 𝜃      

𝑢𝜃 = 𝑢𝑥 cos 𝜃 − 𝑢𝑦 sin 𝜃    (1.7.53) 

 

Hence, the resulting displacement field 𝑢𝑅 and 𝑢𝜃 are shown as a function of 𝜃 in Fig. 1.20 and 1.21. 

 

Figure 1.20: Normal surface force radiation pattern of (LEFT) 𝑢𝑅 and (RIGHT) 𝑢𝜃 for Poisson’s ratio 𝑣 =
1

3

 

Figure 1.21: Tangential surface force radiation pattern of (LEFT) 𝑢𝑅 and (RIGHT) 𝑢𝜃 for Poisson’s ratio 𝑣 =

1

3
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1.9 Thesis Outline  

 

The proposed research aims to meet the challenge of identifying cracks at hard-to-inspect location by 

investigating scattered wave field due to a small crack on different geometries. The thesis objective is 

to find key scattering measurements to potentially enable ultrasonic-based SHM techniques to be 

successfully applied to unitised and complex metallic components. The novelty of the work involves 

using point source model to represent the Lamb wave scattering by an early stage; small, crack and 

using the proposed measurements to detect and determine the crack length. This will address the 

absence of hidden crack study which has not been investigated in complex and hard-to-inspect 

location. This research attempts to determine whether a novel inspection can be implemented to 

detect blind side cracks using the corresponding scattering signature. 

Firstly, by investigating the two basic subcategorised problems; small crack defect and a hole, this 

study provides fundamental knowledge to understand the scattering phenomena due to the defect and 

the hole, individually, before tackling a hidden crack problem. The thesis will report on the edge 

crack problem, hole problem, and lastly the hidden crack (on the rectangular slot) problem. The 

schematic of systematic approach is shown in Fig. 1.22. 

 

Figure 1.22: Schematic of the key investigations starting from edge crack on straight boundary, crack on a hole 

and hidden crack on a rectangular slot 

The first main topic will investigate the interaction of Lamb waves with a small (relative to incident 

wavelength) edge crack at a straight boundary in an isotropic plate. The edge crack problem is viewed 

as a crack on the hole by taking the limit such that radius is approaching infinite. The first 

configuration is to minimise the numbers of characteristic length to achieve a fully defined simple 
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problem. This will give comprehensive scattering results due to the presence of only an edge crack, 

before introducing the effect due to the radius.  

The next topic is the small crack on a hole, and a particular focus of this thesis.  Here, we introduce 

characteristic length of radius-to-wavelength ratio to explore the additional scattering effect of a 

radius. The final main topic is the establishment of a hidden crack by introducing another 

characteristic length so that the geometry is a rectangular slot with a hidden crack. The findings from 

previous chapters are used to tackle this hidden crack problem. 

This study will also provide a fundamental knowledge of scattering Lamb waves to tackle and further 

knowledge on the different investigation methods for hidden defects in innovative and complex 

structures. Hence, the understanding and investigation on the forward scatter problem of a known 

defect and unknown scattering phenomena establish the inverse problem of detecting the hidden 

defects and characterising it from the scattering wave amplitude and pattern. 

The next chapter will explore the computational and experimental considerations and methodologies 

to setup the studies for the scattered wave field from cracks. Furthermore, the post-processing and 

techniques to analyse the scattered wave field are reported.  
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Chapter 2  

Computational & Experimental Procedures 

 

In this chapter, the experimental and computational FE methodology for the study of scattered Lamb 

wave due to a presence of a crack is discussed. The Laser Vibrometer is used to measure the velocity 

wave field at the surface of the specimen, and the excited signals are generated by PZT actuators 

bonded onto the specimen. The 2D Fast Fourier transformation (2D FFT) has been used extensively 

in recent research for determination of Lamb wave velocity and mode. A 2D FFT was performed to 

identify the centre frequency and wavenumber of the wave field in both experimental and 

computational study. 

ANSYS 15.0 is used as a Finite Element computational analysis tool to study the scattering of Lamb 

waves. Finite Element Analysis (FEA) provides an effective and necessary tool for analysing the 

solution for elastic wave propagation. Pre-requisite computational studies such as mesh configuration 

and Lamb wave modelling are investigated to determine the optimal computational setup for this 

research. 

 

2.1 Computational Considerations and Methodology: ANSYS and MATLAB 

 

Many studies have explored different methods of wave propagation simulation such as Finite Element 

[15, 28, 30-32, 53] and LISA/SIM method [23, 142]. These are effective numerical tools for solving 

wave propagation problem. In the context of SHM, FE simulation and modelling for guided waves is 

most common modelling technique to compare and assist experimental studies [23, 142, 143]. For 
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this research, ANSYS 15.0 Explicit Dynamic is used for Finite Element Analysis of wave 

propagation and interaction. It is a particular highly advantageous to use Explicit Solver since the 

explicit increment is approximately to the simulated model size. Thus, it requires much less memory 

than Implicit Solver whereas the cost of the implicit procedure increases exponentially. Implicit 

Solver requires significant smaller time step and has difficulty converging thus resulting in large 

number of iteration than Explicit Solvers. Explicit procedure acquires solution without iterating by 

advancing from the previous increment with the expense of a large number of small time increments. 

Hence, the solution of individual time increment are inexpensive and fine resolution solution of wave 

propagating problem can be obtained at a relatively low cost of memory. 

 

Figure 2.1: FE procedure flow chart from ANSYS simulation to MATLAB post processing 

 

For the post-processing, MATLAB was used for further analysis, computational coding and 

generation of the function for analysis. The ANSYS data files can be significantly compressed 

into .mat files, which reduces memory usage by at least three times. MATLAB scripts and functions 

coded in the preliminary research are data conversion files from ANSYS to MATLAB, 2D Fast 

Fourier transformation to dispersion curve, scattering field, baseline subtraction and scattered polar 

plots.  

For specimen mesh discretisation, many authors use a different number of nodes per wavelength such 

that the error is relatively acceptable. The level of acceptability is different from case to case. The 

fundamental sampling theorem states at least two points per wavelength are necessary to detect the 
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frequency. However, this does not retain the overall wave propagation shape. When a wave travels 

along the distance, the error will accumulate and the numerical solution becomes more inaccurate. 

Although, there is no prescribed method in detail, it is advised at least 6 to 10 nodes per wavelength is 

necessary for achieving the required accuracy of the mode shape [144]. Mace and Manconi [145] 

noted the criterion of at least 6 elements per wavelength is acceptable, given the aspect ratio is 

approximately unity. Depending on the studies integration scheme, some studies implemented over 

20 elements per wavelength for implicit method approach due to the complex geometry of the 

structure [146]. Thus, a mesh study is required to ensure that the mesh size is optimal for the specific 

study.  

 

Figure 2.2: Comparison of a number of nodes per wavelength for S0 and SH0 wave propagation 

A mesh convergence study has been conducted of mesh size 1mm to 8mm. A simple 3D aluminium 

specimen has been modelled to investigate the effect of mesh size with wavelength. We aim to use 

this study to determine a point of compromise where we get sufficient accuracy while keeping 

computational work to an acceptable standard. A planar wave is excited by using an edge forcing 

with symmetrical boundary conditions. Three criterions were investigated; the amplitude decay, wave 

profile and centre frequency and the wavenumber maximum deviations are specified as relative errors 

[147]. It is found that at least 10 nodes per wavelength retain both wave profile and centre frequency 

and are in good agreement with DISPERSE [33] with less than 3% error. In Fig. 2.2 shows a 

graphical comparison of a number of nodes per S0 wavelength. 
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The most common meshes are square or hexagonal elements for the computational analysis of 

propagating waves. However, some studies have used tetrahedron elements to better capture their 

complex shape and problem. In the first hole study, it was later found there was no difference 

between the set of results between using tetrahedron and hexagonal elements. Although, The 

advantage of hexagonal elements is that the computational work is reduced significantly, especially 

for low-frequency fundamental wave propagation. Additionally, Diligent et al. [28] considered 

membrane mesh and produced acceptable solutions as well. Although for small defects and complex 

shapes, it is recommended to have smaller elements refined, such as applying adaptive refinement 

near the defect or sharp edges to capture the near-field effect. For low-frequency wave propagation, 

hexagonal elements are preferred due to the reduced degree of freedom for efficiency in 

computational work. This will ultimately prevent the need for interpolation of data which may 

accumulate error when post-processing results. 

Explicit Time Integration was used in the studies. The maximum allowable time step criterion is L/C 

as stability limit for Explicit Time Integration [148] where factor 0.8 is considered is used as the 

safety factor for most studies, although can differ between users depending on the application, to 

ensure model simulation stability and optimal computational run time. For wave propagation in 3D-

continuum, the critical time time-step is the same as time step criterion in LS DYNA support ANSYS 

manual [149].  Further studies and literature [148, 150, 151] have discussed the critical time step in 

detail for different applications. 

There are many techniques to extract and identify the wave speed and mode. One may plot the wave 

field in the distance-time curve to determine the group velocity, which will require a Hilbert 

transformation or Fourier transform to obtain the maximum amplitude at the centre frequency[152] 

from the dispersion curve. An effective method to determine the wave modes and velocity is 

performing a 2D Fast Fourier transformation (2D FFT)  on the signal [147]. The Fourier 

transformations of signals are represented as a superposition of plane waves. Each wave has a definite 

phase velocity, in the sense of harmonic components of plane waves. The application for 2D FFT 

requires the number of spatial and temporal points as 2𝑛, where 𝑛 is a positive integer. Furthermore, 
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there is a Nyquist sampling rate requirement which determines the maximum frequency and 

wavenumber content given by the time and spatial signal.  Previous studies [13-15, 147, 153] have 

used 2D FFT method to determine the wave velocity, amplitude, wave number and mode of the wave 

propagating in the plate. The investigations of Alleyne and Cawley [147] have significantly shown 

0.5% error while compared to the theoretical solution to the maximum peak value in the dispersion 

curve. For 2D FFT it is ideal to capture the entire wave train within the spatial window for all time 

frames. However, it is also ideal to capture entire signal in the temporal window for all spatial frames 

as well. Since the entire signal cannot be contained in both spatial and temporal window, a 

compromise must be made, refer to Fig. 2.3. 

 

Figure 2.3: Distance versus time of 5 cycles Hann-window SH0 Wave propagation, indicated the temporal and 

spatial window for 2D FFT 

The compromise may induce a discontinuity of the signal. Thus, a slow decay in the discrete 

frequency spectrum, much like an inverse proportionality of sample size may occur. One may 

consider an apodisation, a convolution to prevent discontinuity. The amplitude of the wave signal can 

be obtained through Fourier transformation. However, if the wave signal is windowed or apodisation 

is used, a correction factor is needed since window reduces the power of the signal. For Hann-

window, amplitude correction factor is 2. An effective alternative is taking the maximum peak of 

Hilbert Transformation over the signal to obtain the maximum amplitude. Since 2D FFT accurately 
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identifies the centre frequency and wave number, the compromise can be made by capturing the 

entire signal in the temporal window instead. 2D FFT can compare the data from experimental and 

the computational simulation dispersion curve solution from ‘DISPERSE’ [33]. It is convenient to 

arrange the 2D FFT spatial scan line perpendicularly to the wavefronts to determine the correct wave 

number; hence a radial line from the origin of the source is considered. Otherwise, two spatial scan 

lines are required to determine the horizontal and vertical components of the wave number to resolve 

for the correct wave number. Time gating the signal is required to avoid reflected wave from the 

adjacent boundaries. It may be required to scan at least 2.5 wavelengths away from the boundary 

since the effect of non-propagating Lamb wave modes is negligible [98]. 

The experimental and computational 2D FFT line scans are performed in MATLAB with the inbuilt 

multidimensional Fast Fourier transform function fftn. The 2D FFT results are used to create the 

dispersion curves to identify the dominant Lamb wave modes in different cylindrical coordinate 

components from ’DISPERSE’ [33]. 

In order to investigate the scattered wave field, a baseline subtraction is employed to separate the 

scattered wave displacement field, 𝑢𝑠𝑐𝑎𝑡𝑡𝑒𝑟  associated with the defect. 

𝑢𝑠𝑐𝑎𝑡𝑡𝑒𝑟(𝑟, 𝜃, 𝑡) = 𝑢𝑡𝑜𝑡𝑎𝑙(𝑟, 𝜃, 𝑡) − 𝑢𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑟, 𝜃, 𝑡)   (2.1) 

 

where, 𝑢𝑡𝑜𝑡𝑎𝑙 denotes the response of the damaged structure and 𝑢𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 denotes the baseline field 

that is generated by the same excitation in the absence of a defect. 

The baseline subtraction is particularly simple to perform for FE simulations as illustrated in Fig. 2.4. 

However, for experimental scans, a correction is needed to artificially adjust measured wave field to 

obtain the scattered wave field. This is done by selecting a time where the subtraction of the total and 

baseline field is expected to be zero; before any scattering occurs. The two scanned fields are 

incrementally displaced, vertically and horizontally, until the baseline subtraction field is minimal. 

The experimental wave fields cannot be perfectly subtracted. So, the experimental scattered field will 

have weak signals of the incident waves.  
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Figure 2.4: Baseline subtraction of a total wave field with crack and original wave field without crack to obtain 

the wave field due to the presence of the crack 

Lamb wave modes such as A0, S0 and SH0 were produced with different techniques such as 

symmetrical forcing, edge forcing as well as the traditional single point forcing. Although a 

transducer can be modelled in FE using an Implicit Solver [154, 155], the force excitation method 

significantly reduces computational work but does not give the voltage from the piezoelectric 

transducer. Hence it is efficient since it can produce similar wavefront and pure fundamental Lamb 

modes. In this research, the forcing excitation is regarded to isolate and avoid multimode and 

investigate the interaction of specific wave mode with a defect. Different methods to excite Lamb 

waves were investigated. 

 

Figure 2.5: Method of exciting symmetric Lamb wave modes: (LEFT) In-plane line excitation on the plate 

boundary. (RIGHT) Pinching force on surfaces of the plate generates pure S0 

Conclusively, the traditional single point forcing on the surface of the plate was not a desirable 

method to purely excite one Lamb wave modes. There are two acceptable methods to excite S0 waves 
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as illustrated in Fig. 2.5. First, an edge forcing, where S0 and SH0 are excited. It is best to align the 

line of direction of wave propagation to the defect for maximum S0 interaction and SH0 minimum 

interaction, or vice versa if SH0 is desirable. The second method only excites S0 and this is done by 

symmetrically forcing both plates surface about the mid-plane. This force configuration is also known 

as a pitching force. However, this technique is very difficult to adopt experimentally with transducers. 

If multimode are excited it is preferable to ensure the individual modes incident with the defect at a 

different time such that the incident waves do not overlap, refer to Fig. 2.6. For the symmetric wave 

modes, the distance between the defect and excitation point must be at least the same number of the 

wave train such that the head of the SH0 wave train touches the tail of the S0 wave train. This is 

particularly useful when analysing the scattered wave field experimentally. 

 

Figure 2.6: Diagram showing the minimum required distance of wave train to have separated S0 and SH0 wave 

incidents 

Consider the planar wave approximation investigation. It is difficult to produce plane waves 

computationally, however over a certain distance, an incident cylindrical wave can be equivalent to 

planar wave. The distance from the source to the impinging point such as a defect, ensure the 

curvature wavefront is reasonable planar. A strategy is set up that the wavefront through the point of 

interest error must be significantly smaller than the wavelength. Furthermore, the exciting signal will 

influence this certain for planar wave approximation. The exciting signal is Hann-window to 

minimise the dispersive nature of the wave as well as reduce spectral leakage [22]. Theoretically, a 

greater number of the Hann-windowed cycle is preferable, but they are limited due to the plate 
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dimension. Studies have been done using 3-10 cycles Hann-window. Additional half cycles were 

considered as well, such that the maximum of the signal is also the peak of the envelope window. 

However, it is required to have the full incident wave train for analysis such that the distance should 

be slightly more than the incident wave train. For example, for a 5.5 cycle Hann-window signal, a 

distance of more than 5.5 wavelengths is required. In this research, each study will have a different 

number of cycles and are chosen depending on factors which include plate geometry, incident wave 

speed, scanning locations of scattered waves, and the number of modes. Effectively, the number of 

cycles is optimised to separate wave modes and also to significantly reduce computational time. 

The plate size for wave propagation problem depends on the signal and the defect location. The 

dimension is strictly optimised to avoid or to minimise reflection and mode conversion from the 

boundary, which overlaps and interfere with the scattered wave. Techniques to model an infinite plate 

include infinite boundaries and absorbing boundaries, which Moreau and Castaings [156] states can 

be conducted at approximately 2.5 wavelengths thick to avoid larger plate sizes, and symmetrical 

boundaries for plane wave solution. Rajagopal et al. [31] further developed layer methods for 

frequency and time domain to mimic an unbound isotopic media using commercially available finite 

element packages. Studies such as Diligent et al. [28] used 600mm x 1200mm long plate to avoid 

unwanted edge reflection. Using a simple large plate is sufficient, easiest to use and can avoid 

complex functions to mimic infinite boundaries, where it is impossible to do so in experimental work.  

The number of mesh through the thickness depends on Lamb wave mode. For symmetrical wave 

modes, the profile is simple and uniform given at the frequency-thickness product is less than 1.53 

MHz-mm [33, 157]. Thus the smallest possible thickness may be used as the element size. The 

antisymmetric wave mode thickness profile is complex and requires more elements through the 

thickness. One may use the global mesh condition and a thicker specimen to ensure the wave 

thickness profile is also captured. 

The crack can be modelled by using removal of elements to match the nodes for baseline subtraction, 

or by separation of nodes, as illustrated in Fig. 2.7. A notch is considered equivalent to a V-tip crack, 

since the notch width is significantly smaller than the wavelength and notch length [51, 52]. The 
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results of the V-tip crack and notch are consistent with the findings of Owen and Fawke [158]. 

Although shape stress field results in the near-field of the notch roots have inaccuracies, they exhibit 

the accurate global behaviour.  Further investigation by Ratassepp et al. [32] concluded that the near-

field of the defect of zero width, notch and V-tip crack are similar. Other considerations of near-field 

accurate modelling crack are using quarter point crack tip and local mesh refinement as discussed in 

Aliabadi and Rooke [159]. The notch representation of the defect resembles the artificial crack 

created in the experimental study of this research. Whereas, in the computational study the V-tip 

crack representation is considered. It is worthwhile to note that further mesh refinement may decrease 

the time step to satisfy the criterion, hence increasing computational work.  

 

Figure 2.7: Method of modelling crack (LEFT) by removing elements; (RIGHT) by separating nodes 

ANSYS 15.0 Explicit Dynamic was used as an Analysis System to compute wave propagation in a 

specimen model. At first, the material properties; Young’s Modulus, Poisson’s Ratio and density are 

defined in Engineering Data. The model was dimensioned in Geometry using rectangular sectioning 

to ensure uniform element during meshing operation. In ‘Mechanical model’, the geometry model 

parts are grouped to form the specimen plate. An additional coordinate system can be usually created 

at the centre of a hole or crack tip for later analysis. Furthermore, absorbing boundaries and 

symmetrical boundaries, under Symmetry and Symmetry Region can be used to approximate the 

specimen plate as an infinite medium as discussed previously. The mesh is limited to specific global 

element size using the Mapped Face Meshing Control for uniformity, with no triangular elements to 

minimise the total number of nodes. Named selections can be used to investigate localised area of 

interest and grouping nodes, edges and bodies with the same functionality. In the Explicit Dynamics 
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section Analysis Settings, end time was set between 150 µs to 200 µs with initial, minimum and 

maximum time step to a fixed value.  In Output controls, the results are saved at equally spaced 

points. 

‘Forcing’ is inserted intentionally at a vertex of the rectangular body. The magnitude of the forces 

was tabulated with inputs time and force. The runtime of the simulation strictly depends on the 

number of nodes, hence plate size. Usually, for a simple 2D plate simulation, this is roughly 1 to 2 

hours. However, for a more complex shape with irregular features, the runtime can exceed 48 hours.  

In solution, Directional deformations were used to visualise the elastic wave propagation. In 

directional deformation, the coordinate system is set under specific orientation, and the results are 

sorted by timeframes. The data displacement and coordinates are exported into a .txt file and are 

extracted to MATLAB for post-processing. 

 

Figure 2.8: Dispersion Curve of computationally generated S0 plane wave and S0 cylindrical wave, excited at a 

frequency of 200 kHz 

 

DISPERSE [33] was used as the analytical benchmark to compare with the computational work from 

plane waves and cylindrical waves in the study of errors associated with computational simulations. 

The maximum peak solution in the dispersion curve of computational cylindrical wave and plane 

wave is compared with DISPERSE.  Both the computationally generated plane waves indicated that 
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the frequency was 198.97 kHz and wave number of 234.18 rad/s throughout all distance, compared to 

the expected value of 200 kHz and 233.31 rad/s. The computational cylindrical wave results show 

reasonable solution compared to the solution for the computational plane wave, with a maximum 

deviation of 1.65%. Despite the agreements to cylindrical waves as regarded as plane waves, the 

spread is far greater in the cylindrical wave in the dispersion curve, refer to Fig. 2.8.  

In order to compare results, normalisation is required since the scattered wave field is not planar wave. 

The field is that of a point source, in which cylindrical waves decay with propagating distance, 𝑅, 

where, 

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∝
1

√𝑅
     (2.2) 

By virtue of energy conversation in two dimensions, the decay is inversely proportional to 𝑅2. Hence, 

it is required to factor off this cylindrical decay to obtain measurements of the scattered wave 

amplitude that only depends on the scattered wave and not on the propagating distance. 

The strategy first assumes that the propagating wave is expressed as, 

𝑢(𝑥, 𝑡) = �̂�(𝑥, 𝑤)𝑒−𝑖𝑤𝑡     (2.3) 

 

where �̂�(𝑥, 𝑤) represents the complex amplitude, single frequency; harmonic time dependence.  

A point source at the origin will now generate a field, 

�̂�(𝑥, 𝑤) = 𝐺(𝒙, 𝑜, 𝑤) =
𝑖

4
𝐻0

1(|𝑘(𝒙)|)     (2.4) 

 

For a point source; Greens function for an observation point at source o. 

𝐺 ≅  √
𝑖

8𝜋𝑘𝑟
𝑒𝑖𝑘𝑟 𝑓𝑜𝑟 𝑘𝑟 ≫ 1 (𝑓𝑎𝑟 𝑓𝑖𝑒𝑙𝑑)     (2.5) 

 

Thus that dependence is factored out of  �̂�𝑠(𝑥, 𝑤) to define the scattering amplitude. 

�̂�𝑠(𝑥, 𝑤)  ≅  √
𝑖

8𝜋𝑘𝑟
𝑒𝑖𝑘𝑟  × 𝐴(𝒌𝒔, 𝒌𝑰)     (2.5) 
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This is the FT of time domain scattered field. 

Hence, 

�̂�𝑠(𝑥,𝑤)

{𝑐𝑜𝑛𝑠𝑡√
1

𝑘𝑟
𝑒𝑖𝑘𝑟}

      (2.6) 

is the first normalisation factor.  

The constant can be obtained by taking points away from the defect by FE. 

This then defines  

𝐺(𝑟, 𝑤) =
�̂�(𝑟,𝑤)

𝑝(𝑤)
     (2.7) 

 

Where �̂�(𝑤) is the input. Then, FFT the associated signal, refer to Fig. 2.9. 

  

Figure 2.9: Fast Fourier transformation of the associated signal 

 

Note, a correction factor is required for the maximum |�̂�(𝑤)| due to the windowing of the signal. 

Alternatively, one can also perform a Hilbert transformation and trace the maximum peak 

displacement value over distance, then linearise data such that, 

𝑌 = 𝑀𝑋 + 𝐶       (2.8) 

𝑋 =
1

√𝑅
 𝑎𝑛𝑑 𝑀 = 𝑐𝑜𝑛𝑠𝑡 
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However, if the incident wave is not planar, a second normalisation is required to account for a point 

source tone burst. 

Therefore, the incident field is like a plane wave 𝑒𝑖𝒌𝑰𝒙 but modified by point source decay so 

�̂�𝐼(𝒙, 𝑤𝑐)  ≅ 𝑐𝑜𝑛𝑠𝑡 √
1

𝑘𝑅1
𝑒𝑖𝑘𝑅1  × 𝑒𝑖𝑘𝐼𝑥    (2.9) 

 

where 𝑅1 is the propagating distance due to the incident wave and superscript 𝐼 denotes the incident 

wave. 

Hence, the normalisation is as follows, 

�̂�𝑧
𝑠[(𝑅0, 𝜃𝑆), 𝑤: 𝜃𝐼] ≅ {√

1

𝑘𝑅1
𝑒𝑖𝑘𝑅1  } {√

1

𝑘𝑅0
𝑒𝑖𝑘𝑅0} × 𝐴(𝒌𝒔, 𝒌𝑰) 

(2.10) 

where 𝑅0 is the propagating distance due to the scattered wave and superscript 𝑠 denotes the scattered 

wave. 

The first term of Eqn. (2.10) is the normalisation for input in order to make the input like a plane 

wave and the second term is the scattered field normalisation. The last term is the normalised 

scattering amplitude. 

Hence, upshot is to obtain and plot |𝐴(𝒌𝒔, 𝒌𝑰)|𝑣𝑠 𝜃𝑆. In general, 

 

𝐴(𝒌𝒔, 𝒌𝑰) =
�̂�𝑧

𝑠[𝑄, 𝑤; 𝑃]

√
1

𝑘𝑖𝑛𝑅1
𝑒𝑖𝑘𝑖𝑛𝑅1  √

1
𝑘𝑜𝑢𝑡𝑅0

𝑒𝑖𝑘𝑜𝑢𝑡𝑅0

 

(2.11) 

 

 

2.2 Experimental Considerations and Methodology 

 

In this chapter, the considerations and methodology of the experimental laser vibrometry rig for non-

contact guided wave field measurements, PZT actuator and specimen are discussed.  
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There are many commercially available products to detect Lamb waves. Recently, the Laser 

Vibrometry has become an important tool to record low-frequency wave propagation in velocity 

components. Studies [24, 57, 75, 76] have reported that the experimental results from scanning Laser 

Vibrometry were in good agreement with the classical piezoceramic-based sensing technique, and 

were also comparable with the numerical simulations. The key advantage is its non-contact high-

resolution technique to obtain 2D velocity wave field over a time domain. However, a particular large 

scan will exceed more than 24 hours. The Laser Vibrometry requires high precision setup, regular 

maintenance and additional equipment to operate which can be very costly. Furthermore, due to the 

sensitivity of the laser, there is a material limitation. The surface of the material must be smooth and 

sufficiently reflective otherwise, a retro-reflective film or spray is required. In the field of Lamb wave 

propagation on plate-like structures, the general purpose of Laser Vibrometry has only been used for 

research and not practical for SHM, unlike the PZT. 

The Laser Vibrometer utilise the Doppler Effect caused by the frequency shift due to the incident and 

reflected beam. Thus the measured frequency is related to the surface velocity, and the wavelength of 

the incident laser beam is given by: 

𝑓 =
2𝑣

𝜆
      (2.12) 

 

In this experimental setup, the POLYTEC CLV 3D sensor head is fixed and the specimen is mounted 

onto a Parker Automation 404XE XY positioning system. Previous experimental studies often fix 

their specimen, whereas their sensor head follows an inputted scanned path. However, the 

complication of this technique is that during the scanning process the beam angles are constantly 

changing, and resolving the individual motion components become necessary. Thus it is 

advantageous for a stationary laser head to be used with integrated left, right and top beams for three 

components of velocity.   
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Figure 2.10: Laser Vibrometer, specimen with bonded PZT and retro-reflective sheet and position system for 

the experimental setup 

 

Two Parker Linear Positioner controls the motion in the x-y plane and the laser focal point can be 

adjusted.  Parker stepper motor LV233 is programmed to drive the linear positioning system with 

acceptable step size for the resolution of the scanned path. The laser and specimen rig is mounted on 

a DAEIL system vibration isolation optical table to minimise vibration as shown in Fig. 2.10. 

The 1.5MHz modified CLV-M030.B decoder module converts to surface velocity output, which can 

be set to output a voltage directly proportional to the surface velocity with a factor of 5, 25 or 

125mm/s/V as shown in Fig. 2.11. Data acquisition is processed through a National Instrument PCI-

6115 board and BNC-2110, to convert the measured analogue signal to digital signal as shown in Fig. 

2.12. The excitation signals are filtered with a low pass filter and amplified by a Krohn-Hite Model 

3944 programmable 4 channel 2Mhz filter and 7602 wideband power amplifier. The experimental rig 

diagram is shown in Fig. 2.13. 
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 Figure 2.11: (LEFT) Laser Vibrometer decoder module (RIGHT) Krohn-Hite hardware programming filter 

and amplifier 

 Figure 2.12: (LEFT) Oscilloscope showing input signal to the PZT and acquired signal via laser sensor 

(RIGHT) National Instrument BNC 2110 block 

 

The experimental velocity wave field results exhibit significant noise for the in-plane measurements 

due to weak reflections of laser beam back toward the sensor. In order to maximise the reflected 

energy back to the sensor head, Polytec high-gain retro-reflective sheet with a pressure-sensitive 

adhesive is attached onto the specimen. The retro-reflective sheet greatly improves the resolution of 

the results. ARDOX reflective spray was also tested. However, due to the sensitivity of our research, 

i.e. baseline subtraction, it is highly advised to use the retro-reflective sheet.  
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Figure 2.13: Experimental setup for Laser Vibrometry 

 

 

Figure 2.14: MATLAB interface for Laser Vibrometry experiment 

 

The Laser Vibrometry is controlled by the software platform MATLAB. Operation and control are 

entered in a Graphical User Interface function as shown in Fig. 2.14. Motion scanned paths, voltage-

time relationships can be loaded as .mat files, and are freely adjusted through the GUI. The capture 

rate was set at maximum 10MHz. 
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MATLAB simultaneously controls and positions the specimen on the XY-position system. It sends 

the excitation signals to the PZT and receives data from the Laser Vibrometer decoder.  User 

specified delay for data acquisition ensures the decay of any residual vibrations from the movement. 

The PZT actuator is then excited and data acquisition happens at a specified temporal resolution. A 

second delay ensures the data acquisition is completed, and collection of averaging is performed to 

make sure signal to noise ratio between the XY table is moved onward to the next coordinate. This 

process is repeated until all specified point defined in the motion path is completed. The number of 

point status is updated in the GUI. This experiment normally completes within a few hours.  

Once the scans are complete, the acquired data is post-processed in MATLAB for further analysis. 

The initial stage in post processing is the reconstruction of wave fields in either Cartesian or 

cylindrical components of surface velocity. Regardless, one can simply change from Cartesian to a 

cylindrical coordinate system by a transformation matrix. 

[
𝑒𝑟

𝑒𝜃
] = [

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

] [
𝑒𝑥

𝑒𝑦
]     (2.13) 

 

Both actuator and sensor are an essential part of SHM system. For piezoceramics actuator, the 

materials are lead zirconate titanate which consists of magnetostrictive (Terenol), electrostrictive 

(lead magnesium niobate), and shape memory alloys (nickle titanium alloy). The actuator converts an 

applied electric, magnetic or thermal field signal into a strain that is transmitted to a specimen 

through an adhesive layer. The choice of actuator for different application will depend on its 

categorised performance, which includes stiffness, bandwidth, linearity, temperature sensitivity, 

brittle and fracture toughness, reliability, etc [160]. 

The actuator in this research experimental investigation is a piezoceramic transducer which is used to 

generate incident Lamb wave modes. Pure fundamental modes are known to be particularly difficult 

to excite. For through-thickness crack detection, the symmetric Lamb wave mode is an ideal choice 

due to their uniform thickness profile. However, exciting symmetric Lamb wave mode is known to be 

difficult without exciting the anti-symmetric modes [28, 30, 53].  
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The literature on the solution Lamb-wave tuning with piezoelectric transducers are presented by 

Giurgiutiu [22] by representing the transducer as a generic shear stress distribution model. The 

maximum coupling between the transducer and the fundamental A0 and S0 Lamb wave mode in the 

plate would occur when the transducer length is an odd multiple of the half-wavelength and minima 

when it equals an even multiple of half-wavelength. Although different Lamb wave modes have 

different wavelengths, one will need to select PZT size and tune frequency into one or another Lamb 

wave mode. The operating frequency for the experimental study is at approximately 200 kHz and, 

thus, the optimal PZT diameter in accordance with the tuning curve is range 10mm-16mm to have 

both dominant A0 and S0 mode. It is unlikely to totally eliminate all other wave modes 

experimentally. Hence, it is a requirement to investigate the relative strength between the A0 and S0 

wave modes. Experimental frequency sweep scans over a range of frequency is also conducted to 

verify that the PZT dominantly excites the specific fundamental Lamb wave mode at approximately 

200 kHz. The frequency sweep scan is discussed later.  

The PZT has two common modes of vibration; radial mode and thickness mode. In order to also 

improve the S0 to A0 signal, one should choose a PZT with a smaller thickness. However, this will 

consequently reduce the overall signal strength. Another technique is to bond the PZT symmetrically 

on edge to the midplane, refer to Fig. 2.15. Alternatively, bonding two PZTs on the opposite side can 

also excite predominantly S0 Lamb waves. However, any misalignment using either of those two 

techniques will excite a dominant A0. A simple method is a time gating the signal, such that the faster 

wave propagate and interact first with the defect. 

 

Figure 2.15: (LEFT) Single PZT bonded on the plate surface (RIGHT) PZT bonded on the edge of the plate 
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The bond layer between the PZT and the specimen has a major impact on the experiment. This layer 

dictates the strain transfer to the test specimen and applies local stress distribution. In this research, 

the PZT is bonded with ARALDITE epoxy adhesive and copper conducting tape was attached to the 

PZT surfaces. A load is applied onto the PZT for approximately 24 hours to allow the epoxy to 

evenly distribute, such that a uniform thickness of the epoxy adhesive is achieved. Conducting wires 

are soldered to the copper conducting tape. 

The bond layer and piezoceramic transducer may degrade over time and possibly compromise the 

performance and reliability of the SHM system. Environmental temperature is one of the main factors 

that hinders long-term stability of embedded piezoceramic in SHM systems. A study on the effect of 

a debonding piezoceramic device and adhesive layer indicated significant energy loss and signal 

change [161]. Furthermore, the piezoelectric properties will remain consistent as long the applied 

strain does not exceed the static failure strain of the material, otherwise, the performances are likely 

to degrade [162, 163]. 

To determine the appropriate PZT to excite a particular frequency, a frequency sweep (excitation over 

a range of frequency) is applied by scanning a spatial distance over a temporal domain from the 

excitation source. By using the tuning curve, we were able to determine the estimated frequency 

where the excitation is purely a single mode. To excite S0 wave, since the S0 wavelength at 200 kHz 

is approximately 30mm, the PZT diameter of approximately 15mm is needed. A case study was 

performed and has indicated the relative modal content of the Lamb wave modes in a dispersion 

curve. Fig. 2.16 shows by placing the 16mm diameter PZT with a 2mm thickness on the surface and 

edge of the plate (refer to Fig. 2.15), and exciting Lamb waves at 220 kHz for a 3mm aluminium plate. 

The other advantage of using a 3D Laser Vibrometry is to determine the wave field in the in-plane 

directions. Symmetrics wave modes are dominant in the in-plane directions, and antisymmetric waves 

are dominant in the out-of-plane direction. Based on their particle motions, the SH0 and S0 wave can 

be separately analysed in the angular and radial cylindrical components, respectively. So, wave 

propagation can be analysed in their dominant direction. However, there is still traces of other wave 

modes, and this is because of Poisson’s ratio. 
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Figure 2.16: (LEFT) Signal PZT method: Dispersion curve showing dominant A0 and weak S0; (RIGHT) Edge 

PZT method: Dispersion curve showing dominant S0 and weak A0 at the centre frequency of 220 kHz in the 

out-of-plane component. (GREEN) S0 and (RED) A0 

 

The crack is artificially created with a hacksaw having a thin blade. The achievable width of the crack 

is approximately 0.3 to 0.4 mm. The artificial crack closely resembles a notch. A travelling 

microscope is used to measure the crack dimensions to the hundredth decimal in millimetres. 

Although the artificial notch may not be very representative of a real crack, the research intended to 

investigate open simple straight crack; non-crack crack face such that wave cannot be transmitted 

through the crack faces. Additionally, if the crack length is much larger than the width, the effect due 

to the crack width is negligible. This research only focuses on linear wave propagation behaviour, so 

the notch-like crack is considered in the experimental studies, and whereas, a fatigue crack is a 

plasticity-induced crack which involves nonlinear wave propagation.  

The general procedure is to scan a baseline without a crack and then introduce a small crack. Once 

the small crack is analysed, the crack length is increased, and this procedure is repeated. This practice 

uses the same plate and PZT to maintain a level of accuracy for baseline subtraction. 
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Chapter 3  

Scattering of the fundamental S0 Lamb wave mode by a small 

edge crack in an isotropic plate 

 

This chapter explores the scattering of the fundamental S0 Lamb wave mode by an edge crack in an 

aluminium plate. S0 is essentially non-dispersive at low frequency and symmetric to mid-plane of the 

plate. The edge crack is small, relative to incident wavelength. In particular, the study investigates the 

characteristic of S0 scattered wave field from a crack on the boundary. The fundamental S0 lamb is 

an advantageous wave mode to detect through-thickness crack due to its uniform mode shape 

thickness profile. Furthermore, S0 fast group velocity at low frequency is well suited for rapid long 

range inspection. The scattering from the incident S0 provide the symmetric modes; S0 and SH0, 

given the crack is symmetrical about the midplane of the plate.  

The effect of angle of incidence and crack length are studied as a forward scattering problem, in an 

attempt to establish a quantitative relationship between the scattered amplitude and crack size. 

Frequency analysis is considered in this study to understand the scattering wave field. Additionally, 

the baseline stresses are applied to the crack faces to show that the scattered wave field can also be 

obtained by force equivalent. 

The research focused on early detection such that the crack length is smaller than the incident S0 

wavelength. It is understood that the scattered wave field can be reproduced by applying particular 

combination body forces at the location of the crack tip. This strength of these forces depends on the 

integral of cracking opening displacements. 
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3.1 Introduction 

 

Fatigue cracks in engineering structures are a common problem and require regular inspections to 

detect and monitor small cracks before they reach a critical size that could result in catastrophic 

failure. Conventional ultrasonic techniques, such as pulse-echo and pitch-catch method [26], involve 

scanning over the area of interest and require local accessibility for inspections. This conventional 

technique is very time consuming and can be impractical for crack detection in large and complex 

structures. Lamb waves propagation is an alternative method which has been acknowledged by many 

authors for ultrasonic non-destructive damage detection due to its attractive properties for wide-area 

inspection with little attenuation. Lamb waves and their applications have been extensively 

investigated, both computationally and experimentally [7, 13, 15, 18, 19, 29-32, 52, 78, 147]. The 

Finite Element Method (FEM) provides a time-efficient and advantageous computational tool to 

analyse wave propagation in complicated structures and configurations for which the analytical 

solutions do not exist.  

The scattered wave fields when an incident elastic wave impinges on a crack have been investigated 

for bulk waves [65, 129, 131], and more recently, for Lamb waves [31, 32]. It is known that an 

infinitesimal crack is equivalent to a point source consisting of body-force doublets with different 

forcing combinations that correspond to different crack opening modes [27]. This suggests that the 

scattered wave field due to the presence of small edge crack can be modelled as point source when 

the incident wavelength is much longer than the crack dimension.  

The aim of this chapter is to computationally explore the interaction of low frequency zeroth order 

symmetrical modes with a small (compared to wavelength) edge crack. The first investigation will 

report on the scattered wave pattern and amplitude for various angles of incidence and various crack 

lengths. The second set of investigation is to simulate the scattered wave pattern by applying tractions 

on the crack faces to enforce a traction-free boundary condition, based on the principle of 

superposition. The motivation for this study is to investigate and analyse the scattered wave field 

from a known crack size as a pre-requisite for a subsequent attempt to investigate the inverse problem 
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of characterizing the crack size based on the measurements of the scattered field. The nature of the 

wave scattered by an edge crack will be reported on. 

 

3.2 Computational Set-up and Procedure 

 

Lamb waves are generally dispersive and if excited at higher frequency-thickness product, multiple 

modes will exist and the acquired signals may be difficult to interpret. However if excited by a point 

source that is symmetrical with respect to the plate’s midplane and at low frequency-thickness 

product range, below the SH1 cut-off of 1.53 MHz-mm for aluminium [33], the Lamb waves consist 

of only two propagating modes, viz. the fundamental symmetric wave (S0) and shear horizontal wave 

(SH0). In this study, only S0 Lamb wave excitation will be considered. 

 

Figure 3.1: The scattered wave field due to the crack using baseline subtraction from Eq. (3.1) 

 

A baseline subtraction is employed to separate the scattered wave displacement field, uscatter, 

associated with the small edge cracks as follows (cf. Fig. 3.1): 

uscatter(r,θ,t) = utotal (r,θ,t) – ubaseline(r,θ,t)    (3.1) 

where utotal denotes the response of the cracked structure, whereas ubaseline denotes the baseline field 

that is generated by the same excitation but in the absence of a defect.  
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Figure 3.2: (a) Wave field as a representation of static stress approximation and (b) Scattered wave by the edge 

crack is equivalent to superposition of Mode I and II crack opening displacements response 

 

The scattered field can also be obtained as the field generated by applying equal and opposite 

tractions on the crack faces that cancel those produced by the incident S0, in accordance with the 

principle of superposition [20, 29, 30], as illustrated in Fig. 3.2. This will meet the condition of a 

traction-free crack after the superposition of the incident and scattered field. For this purpose, only 

the baseline σxx and σxy stresses are required as any variant in the normal direction, z, is negligible due 

to the thin-plate approximation. Since the crack is sufficiently small, the stresses along the crack face 

are approximately constant along the crack, and hence only one of nodal stresses is required. The time 

sequence of each baseline stresses are then applied as tractions on the 3mm and 6mm crack faces to 

generate the wave fields that correspond to the scattered fields obtained from Eq. (3.1). 

 

Figure 3.3: (a) Geometry of FE model for 800mm x 600mm x 1mm aluminium plate showing the location of the 

excited force relative to the crack and (b) Detail diagram showing the 2D FFT line, point of excitation and 

scattered wave measurement locations relative to the crack 
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3.3 Computational Investigation 

 

ANSYS is used as the Finite Element (FE) computational analysis tool for this study. The simulation 

represents an aluminum test plate 800mm × 600mm × 1mm (density of 2700kg/m3, Poisson’s ratio of 

0.33 and Young modulus of 69GPa) as shown in Fig. 3.3(a). The plate contains an edge crack located 

at the origin, as indicated in Fig. 3.3. The plate is discretised into 8-node linear cubic elements of size 

1mm, and the crack is accordingly modelled as a notch of width equal to 1mm, which is much smaller 

than the crack length, a, of 3mm and 6mm for the angular dependence investigation. The maximum 

amplitude of the scattered S0 and SH0 wave pattern at 45° incidence is also investigated for crack 

lengths from 1mm to 9mm with 1mm increment, to determine the dependence of scattered amplitude 

with crack length. 

The incident S0 mode is generated by applying equal and opposite point forces to nodes on opposite 

faces of the plate, with the force acting in the direction normal to surface, which can be aptly 

described as a pinching force. The pinching force excitation signal consisted of a 10-cycle Hann- 

window tone burst centred at frequency 200 kHz to minimise dispersion. At this centre frequency, the 

incident S0 mode has a wavelength λS0 = 26.6 mm, and SH0 mode has a wavelength λSH0 = 15.3 mm. 

This input excitation is applied at point P with polar coordinates (R1, θI). To approximate a planar 

incident wave, the cylindrical excitation source is placed at 5λS0 away, to ensure that the impinging 

wavelength at λS0/2 along the boundary from the crack base is no more than 0.05λS0 in error compared 

with a plane wave. Polar coordinates (r, θ) with origin at the crack base and the r and θ components 

of the surface displacement will be used to track the scattered Lamb wave modes (cf. Fig. 3.3).  

The cracks are modelled as a 1mm width notch by element removal in FE. The notch width is 

sufficiently large to prevent contact from the adjacent crack face and small enough to approximate to 

a zero-width discontinuity [52] such that reflectivity from notch width is negligible.  

The FE simulation uses 1mm cubic element size, which satisfies the requirement of 10 elements per 

wavelength for accurate modelling [147] , and a time step of 0.1µs, which satisfies the Explicit Time 

Integration 0.8 L/C stability limit [148], where L is the smallest element length, C is the fastest wave 
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speed. A 2D FFT is performed on the nodes along the line 45° from the crack base edge indicated in 

Fig. 3.3(b) and was used to produce the dispersion curves to identify the dominant scattered Lamb 

wave mode in the θ and r components from DISPERSE [33], as shown in Fig. 3.4(a) and (b). The 2D 

FFT consists of more than 400 time samples, 40µs. The 2D FFT spatial distance is taken at least 

3.5λS0 away from the crack base, to avoid detection of higher non-propagating Lamb wave modes [29] 

and over approximately 10 λS0 distances with 1024 equidistant spatial samples with zero padding 

[147]. The scattered wave pattern is obtained by polar plotting the maximum displacement values, 

which is obtained by performing a Hilbert transformation over a time-domain [26], measured at point 

Q with polar coordinates (R0, θS) at distance R0 ≈ 4 λS0 away as shown in Fig. 3.3(b). 

The scattered patterns are analysed in two sections: back-scattered displacement, uB, measured in 

0°≤θ<90° and forward-scattered displacement, uF, as measured in 90°≤θ≤180°. The maximum 

scattered wave, umax, relative to maximum input excitation displacement as the reference displacement, 

uref, in relation to angle dependence and crack length dependence are investigated. In order to 

compare the scattered wave pattern results, the scattered field maximum displacement is considered 

to normalize the scattered wave field in order to observe the scattered displacements relative to its 

maxima. The edge wave displacements are disregarded because the purpose is simply to compare the 

S0 and SH0 scattering patterns without considering the absolute values of amplitude. The scattered 

wave pattern for various crack lengths are investigated and later compared in the second investigation 

to the wave patterns produced by applying tractions on the crack faces. For each angle of incidence, 

the baseline (without crack) stresses distribution along the location crack length were applied as 

traction on the crack faces to produce the wave field for the second set of investigation. The angular 

location of the lobes was used to compare the scattered wave field due to the crack and wave field 

due to the traction on crack face.  
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3.4 Results 

3.4.1 Scattered field for various incident angles and various crack lengths 

 

 

Figure 3.4: (a) Dispersion curve for scattered wave field of 3mm edge crack in the radial component with 

dominant S0 and (b) Dispersion curve for scattered wave field of 3mm edge crack in the θ component with 

dominant SH0: A0(Red), SH0(Blue) and S0(Green) 

 

The investigation includes results of scattered wave pattern generated by an S0 Lamb wave at various 

incident angles to an edge crack of length 3mm (a/λ=0.11) and 6mm (a/λ=0.23). The dispersion 

curves have indicated predominant scattered SH0 and S0 Lamb wave in the θ and r components, 

respectively, refer to Fig. 3.4. The results also indicated the propagation of Rayleigh-like edge waves. 

In Fig. 3.5 showed scattered wave pattern dependence with angle of incidence. This is expected since 

the stress applied to the crack face will depend on angle of incidence. In general, the larger a/λ 

scattered amplitude have stronger S0, SH0 and edge wave scattered maximum  displacement and the 

scattered SH0 waves are relatively stronger compared to the scattered S0 waves, as can be seen in Fig. 

3.6. Discussion on the pattern and maximum displacements are presented in Section 3.5. 

The increase of crack length has shown an increase of forward-scattered lobe and a trend of 

increasing maximum displacement value as shown in Fig. 3.7. It can be seen that the maximum 

scattered displacement is approximately proportional to a/λ until a/λ≈0.23, beyond which the 

maximum displacement values appear to plateau. 



75 

 

   

Figure 3.5: Scattered wave pattern and polar plot of 3mm crack, a/λ=0.11, at incident (LEFT) 60°and (RIGHT) 

30° (a) θ component and (b) radial component 

 

 

Figure 3.6: Graph of the absolute maximum value of (a) (LEFT) SH0 and S0 scattered displacement and (b) 

(RIGHT) forward and back-scattered edge wave maximum displacement with various incident angles for 

a/λ=0.11 and 0.23. 

 

The θ component results of a/λ=0.11 and 0.23 scattered wave patterns, refer to Fig. 3.8 and Fig. 3.11, 

showed that as incident angle decreases or crack length increase the maximum scattered amplitude 

increases. However, the SH0 scattered wave patterns are distinct at different incident angles. At 75° 

and 60° incidences, in Fig. 3.9 and Fig. 3.12, there is a larger forward-scattered lobe which is almost 

symmetrical at the 90° line. The forward and back-scattered amplitude ratio approaches to unity when 

incident angle is small. Furthermore, the a/λ=0.11 and 0.23 SH0 wave pattern appears more 

symmetrical along the 90° line and similar to a SH0 point source for smaller angle of incidence, 
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which can be seen in Fig. 3.9(d) and Fig. 3.12(d). The symmetrical wave pattern indicates dominant 

primary forcing component, either perpendicular or parallel, acting on the crack at the extreme angle 

of incidences being 30° and 75°. The scattering wave patterns observed at incident angles between 

the extremities are a combination of parallel and perpendicular forces acting on the crack face. 

 

 

Figure 3.7: (LEFT) Maximum forward to back-scattered displacement ratio of scattered SH0 waves at incident 

45° with various a/λ. (RIGHT): Graph of the maximum scattered displacement at incident 45° with various a/λ 

for up to a/λ=0.2 as indicated by the linear blue line. 

 

The radial component of the a/λ=0.11 and 0.23 scattered wave pattern have a slightly stronger back-

scatter and features of a S0 point-like source at incident angle 30°, 45° and 60° incidences as shown 

in Fig. 3.10 and Fig. 3.13. An interesting scattering effect is the surface wave propagating on the 

horizontal boundary, contrasted in Fig. 3.5. The a/λ=0.11 and 0.23 results showed weaker forward-

scattered edge waves amplitude as shown in Fig. 3.6. 

       (a)                          (b)                      (c)                       (d) 

Figure 3.8: [a-d] θ component a/λ = 0.11 (3 mm) crack: comparison of applied-traction to original SH0 

scattered wave patterns, normalized with maximum scattered for 75°, 60°, 45° and 30° incidences, respectively. 
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      (a)                          (b)                      (c)                       (d) 

Figure 3.9: [a-d] θ component a/λ = 0.11 (3 mm) crack: comparison of applied-traction to original SH0 

scattered wave patterns, normalized without edge waves for 75°, 60°, 45° and 30° incidences, respectively. 

 

 
      (a)                          (b)                      (c)                       (d) 

Figure 3.10: [a-d] Radial component a/λ = 0.11 (3 mm) crack: comparison of applied-traction to original S0 

scattered wave patterns, normalized without edge waves for 75°, 60°, 45° and 30° incidences, respectively. 

 

 
      (a)                          (b)                      (c)                       (d) 

Figure 3.11: [a-d] θ component a/λ = 0.23 (6 mm) crack: comparison of applied-traction to original SH0 

scattered wave patterns, normalized with maximum scattered for 75°, 60°, 45° and 30° incidences, respectively. 

 

 

 
      (a)                          (b)                      (c)                       (d) 

Figure 3.12: [a-d] θ component a/λ = 0.23 (6 mm) crack: comparison of applied-traction to original SH0 

scattered wave patterns, normalized without edge waves for 75°, 60°, 45° and 30° incidences, respectively. 
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      (a)                          (b)                      (c)                       (d) 

Figure 3.13: [a-d] Radial component a/λ = 0.23 (6 mm) crack: Comparison of applied-traction to original S0 

scattered wave patterns, normalized without edge waves for 75°, 60°, 45° and 30° incidences, respectively. 

 

 

 

3.4.2 Generated wave patterns by tractions on crack faces 

 

In general, the simulated wave pattern investigation represents much of a point-like source and as 

incident angle decreases the maximum wave field amplitude increases. The applied-traction on the 

crack face S0 and SH0 wave patterns results have shown similarity to the first investigation S0 and 

SH0 scattered wave pattern as shown in Fig. 3.9-13. However it did not match well in the S0 wave 

patterns for larger incident angles as shown in Fig. 3.10 and 3.13.  

 

 
θ component 

 

 
θ component 

 

 
Radial component 

Figure 3.14: [a-c] Parallel and perpendicular forcing on a/λ = 0.11 (3 mm); θ component normalized with 

maximum scatter, θ component normalized without edge waves and radial component, respectively. 

 

The a/λ=0.11 and 0.23 simulated wave pattern reported a slightly larger forward to back-scattered 

edge wave ratio and the SH0 wave displacements are slightly smaller compared to the original 

scattered pattern as shown in Fig. 3.8 and Fig. 3.11. Furthermore, perpendicular and parallel forcing 

components to the 3mm crack face are investigated separately. Fig. 3.14 showed that the 
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perpendicular forcing wave pattern appears much like a symmetrical point-like source pattern, 

however the parallel forcing have shown similar scattered 75° and 60° wave pattern.  

 

3.5 Discussion 

 

The low frequency approach (the wavelength is significant larger than plate thickness and crack 

dimension) makes the assumption that the problem can be analysed in plane stress condition.  

One can obtain normal and shear stresses of elastic waves in a semi-infinite medium problem in plane 

stress conditions by using the simple change of elastic constants to convert plane strain results to 

plane stress, which is found in Graff [18]. In Fig. 3.15 the FE and analytical incident planar wave 

stresses along the y axis have similar trend. However, the difference in stresses, especially σxx, is due 

to the additional contribution of edge wave propagating along the plate boundary. Since the incident 

wave is excited as a cylindrical source, the incident wave field also includes a major component from 

the edge wave travelling on the boundary in addition to the incident S0 wave if excited at a smaller 

angle of incidence.  In the next study, the scattering of edge-guided waves are studied for this 

problem. 

For all angle of incidences, the relationship between stresses and depth to wavelength have shown 

linear behaviour until the depth is approximately 20% of wavelength which is shown in Fig. 3.15.  

Theoretically, the simulated wave pattern will be exactly the same as the scattered wave pattern if the 

stresses are applied to the crack face as a function of depth. When crack length is less than 20% of 

wavelength, the wave pattern can simply be simulated as body-forces acting on the crack face; hence 

equivalent to a point-like source. Whereas theoretically, one might have expected a quadratic 

variation in which strength is proportional to the integral of the crack opening displacement [119]. 

The linear trend observed was from a limit for which the scattered wave pattern appear less likely to a 

point source, however, the quadratic trend may be more apparent for substantially smaller a/λ. It is 

also worth mentioning previous study observe an increasing trend, however for much larger crack 

size to wavelength ratio [58]. 
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Figure 3.15: Normalised Analytical Plane Stress and FE normal and shear stresses with depth (along the y axis) 

 

The preceding FE results show that the scattered wave pattern and amplitude due to an edge crack 

depend on both the crack length and the incident angle. The small cracks have S0 and SH0 point-like 

source scattered wave patterns which are better represented in smaller incident angles. For larger 

incident angles, the scattered wave patterns have a stronger forward scattered lobe. These wave 

patterns are expected since smaller incident angles have a stronger perpendicular force component 

since σxx is more dominant for smaller angle of incidences. Whereas 75° and 60° incidence have a 

relatively stronger parallel force component since σxy has more influence for larger angle of 

incidences. Thus the combination of parallel and perpendicular components on the crack face can 

strongly influence the wave pattern. 

The normal stress σxx gives rise to a so-called mode I crack opening, whereas the shear stress σxy 

gives rise to a mode II crack opening. For small cracks, the mode I crack opening generates a 

scattered field that is the same as that of a force doublet. This field is symmetrical with respect to θ = 

90. Whereas the mode II crack opening generates a scattered field that is the same as that for the force 

doublet shown on the right. This field is asymmetric with respect to θ = 90. 

For small cracks, with a/λ < 0.2, the normal stress is much larger than the shear stress, and 

accordingly the mode I contribution dominates the scattered field. This explains why the scattering 

pattern is symmetrical for small cracks, but becomes increasingly asymmetrical for a/λ > 0.2. 
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In Fig. 3.7 the SH0 wave patterns are almost symmetrical when a/λ is small, hence under this 

condition the scattered wave pattern can be represented as a point-source and its amplitude is a 

function of a as shown in Fig. 3.7.  

The S0 scattered wave patterns have shown multiple narrow side lobes near the plate boundary, 

which are distinguishable in Fig. 3.10. These narrow lobes are interference of head waves connecting 

with the S0 and SH0 as seen in radial components in Fig. 3.5(b). In Fig. 3.4(a) the dispersion curve 

indicated a weak SH0 signal in the radial component which also suggested the existence of head 

waves since head waves have similar velocity as the SH0 wave. The a/λ =0.23 polar plot showed 

some back-scattered multiple narrow lobes which can be seen in Fig. 3.7. The inaccuracy is due to 

assumption of constant stress profile for small crack and in order to simulate an accurate scattered 

wave pattern, the full stress profile is needed to be considered. The 75° and 60° incidences S0 

scattered wave pattern results are significantly weaker and appears inaccurate in which the notch 

width may be a significant contributor to the scattered pattern.  

At higher angle of incidence the problem here is similar to the plane strain problem however at lower 

angle of incidence this resembles a plane stress case with an additional, yet small, contribution of the 

edge wave. This explains the additional stress contribution in FE due to the edge wave as seen in Fig. 

3.15 compare the analytical plane stress normal and shear stress of the S0 Lamb wave. 

 

3.6 Conclusion 

 

The edge crack S0 and SH0 scattered wave fields when impinged by incident S0 wave have been 

reported. The scattered wave amplitude for a small crack of length a, a/λ<0.23, is observed to be 

linearly proportional to a, although it is expected to be increase quadratically [119]. The dominant 

scattered wave modes are edge wave and SH0 and the weaker mode was the scattered S0 wave. The 

scattered wave pattern is influenced by the angle of incidence and due to the difference of normal and 

shear stress combination creates different wave patterns. It is shown that for small crack the scattered 
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wave can be produced by applying traction to the crack faces and, thus, suggesting the scattered wave 

pattern for a small crack can be represented as a point source consisting body-forces doublets. For 

small cracks, the mode I crack opening generated scattered field that is the same as that of a force 

doublet. The result in this chapter is an essential pre-requisite approach to guide the investigation of 

an edge crack on a through-thickness hole. The next study attempts to determine whether the point 

source equivalence also applies to incident edge-guided waves. 
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Chapter 4  

Scattering of edge-guided waves by a small edge crack in an 

isotropic plate 

 

In this chapter, the scattering of the symmetric and antisymmetric edge-guided waves by a small edge 

crack in an aluminium plate are investigated. It is highly advantageous to use edge-guided wave due 

to its attractive property of no geometric decay over propagating distance on a straight boundary. 

Thus, this highlights edge-guide wave is a very attractive incident wave mode for SHM. 

The study involves the incidence of edge-guided waves which eliminated the characteristic length of 

the angle of incidence. Hence, the investigations involve only the varying of crack length to 

determine its dependence with scattering amplitude. The incident edge waves have shown greater 

sensitivity to edge crack compared to the incident S0 wave mode. The edge crack scattered a 

dominant edge wave, SH0 and weak S0, similar to the incident S0 investigation. 

Both studies of symmetric and antisymmetric wave showed scattered wave patterns and amplitude 

trends for small edge crack, indicating a simple point-like source representation. This configuration 

and scattered wave measurements can be used for the inverse problem of characterising a small edge 

crack from the scattered wave field. 
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4.1 Scattering of incident symmetric edge guided wave 

 

This study investigates the scattered wave patterns and amplitudes generated by a small edge crack 

when impinged by an edge-guided wave, for quantitative inspection in structural health monitoring 

(SHM). Exploiting Lamb waves is an alternative method for crack detection due to its attractive 

properties for wide-area inspection with low attenuation [26]. However, problems involving 

propagating and scattering of Lamb waves are considerably more challenging to solve analytically 

than the corresponding problems involving bulk waves [18, 19, 78, 129, 131]. Recent papers [13, 15, 

30-32, 149] have investigated the use of Lamb wave propagation to detect different type of defects in 

idealised and complex structures.  

The aim of this study is to investigate the interaction of an incident edge-guided wave in a plate with 

a small edge crack (i.e. small relative to the incident wavelength). Edge-guided waves exhibit no 

geometrical decay with propagation distance, which is a highly advantageous property for SHM. The 

chapter will report on the scattered wave pattern and amplitude for various crack sizes. This study of 

the forward scattering problem is a desirable pre-requisite before addressing the more practically 

important inverse problem of characterising the crack size based on scattered wave field 

measurements. For the bulk wave case, it is known that scattering by a small (infinitesimal) crack is 

equivalent to the radiated field from a particular combination of force doublets [27]. It can be 

anticipated that a similar equivalence should hold for Lamb-wave scattering by small cracks. This 

will be investigated in the present work for the special case of an incident edge-guided wave. The 

more general case of oblique incidence is also being investigated and will be reported on previously. 

 

4.1.1 Methodology  

 

In the present work, attention is restricted to frequencies below the cut-off for the first order 

symmetric Lamb wave mode SH1 (1.53Mhz-mm). Thus, the only propagating symmetric modes are 
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S0 and SH0. The SH0 mode is non-dispersive whereas the S0 mode is also practically non-dispersive 

in this low-frequency regime.  

 

Figure 4.1.1: Illustrating the procedure of obtaining the scattered wave field due to the presence of a crack by 

using baseline subtraction 

 

These symmetric modes can be generated by applied force distributions that are symmetrical with 

respect to the plate’s mid-plane. Furthermore, a symmetric edge-guided wave can also be generated 

by mid-plane symmetric forces applied along a straight edge. This symmetric edge wave can be 

regarded as the plane stress analogue of the Rayleigh (surface) wave, and the corresponding 

wavespeed can therefore be obtained from the Rayleigh wavespeed by using the familiar change of 

elastic constants to convert plane strain results to plane stress [18]. 

In order to analyse the scattered wave displacement field associated with the small edge crack, a 

baseline subtraction is employed, as indicated in Fig. 4.1.1. Based on the principle of superposition 

[20], the scattered wave field is equivalent to applying equal and opposite tractions to the crack faces 

that cancels the stresses associated with the incident wave. The crack length a is assumed to be in the 

range h<a<λ/2, where h is the plate thickness and λ the wavelength of the incident wave. For this size 

range, the incident field can be expected to consist primarily of the edge-guided wave, with the 

contribution of the propagating symmetric modes along the edge being negligible. For small cracks, 

the scattered field can be expected to be like that of a point source located at the crack mouth (i.e. the 

point of intersection with the straight edge), and with the strength of the point source being 

proportional to some power of the crack length. This equivalence suggests that (i) the scattering 

pattern should be relatively independent of crack size, whereas (ii) the scattering amplitude should 
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depend on some power of the crack length a. It will be seen that these expectations are indeed 

confirmed.  

 

4.1.2 Computational Set-up and Procedure 

 

In this study, ANSYS 15.0 is used as the Finite Element (FE) computational analysis tool to simulate 

wave propagation in an aluminium test plate. An aluminium plate 800mm×600mm of 1mm thickness 

(density of 2700kg/m3, Poisson’s ratio of 0.33 and Young modulus of 69GPa) is modelled, as shown 

in Figure 4.1.2(a). The edge crack is located at the origin of the plate. The plate is discretised into 

1mm 8-node linear hexagonal elements which satisfy the requirement of 10 elements per λ for 

accurate modelling [147], and a time step of 0.1 µs, which satisfies the Explicit Time Integration 

stability limit of 0.8L/C, where L denotes smallest element length and C the fastest wave speed [148].  

The defect is modelled as a V-tip crack with a maximum spacing of 0.2mm between the crack faces. 

The dependence of scattered amplitude with crack length is investigated by varying the crack size, a, 

from 1mm-6mm with 1mm increments. The incident edge-guided wave is generated approximately 

5λ away with the line force acting direction normal to the edge surface. To minimise dispersion, the 

force excitation signal is chosen to be a 5-cycle Hann-windowed tone burst with centre frequency 200 

kHz. At this centre frequency, the incident wavelengths of edge wave, S0 and SH0 are 13.8mm, 

26.6mm and 15.3mm, respectively [33].  

 

Figure 4.1.2: (a) (LEFT) 800x600x1mm aluminium plate FE geometry showing location of crack and (b) 

(RIGHT) Detail diagram portraying the 45° 2D FFT line, excitation point and scattered wave measurement. 
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2D Fast Fourier Transformation is performed on the nodes along the edge and along the line 45° from 

the crack base edge as indicated in Fig. 4.1.2(b). This is used to create the dispersion curve in order to 

identify the dominant Lamb wave mode from DISPERSE [33]. The 2D FFT spatial distance is taken 

at least 3.5 wavelengths away from the crack base to avoid detection of higher non-propagating Lamb 

waves and over approximately 10λ distances with 1024 equidistant spatial samples with zero padding 

[147].  

The scattered wave displacement are analysed in two regions: Backward-scattered measured in 

0°≤θs<90° and Forward-scattered as measured in 90°≤θs≤180° with the angle θs as defined in Figure 

2(b). Hilbert transformation was performed over the time domain signals measured at points Q at 

distance R0=4λ away from the edge crack, and for various angles θs, cf. Fig. 4.1.2(b). The maximum 

amplitude of the associated analytic signals was used as the measure of the scattered field amplitude. 

For both scattered SH0 and S0 modes, the backward-scattered displacements were measured at 18°, 

42°, 66° and 90° and the forward-scattered were measured at 90°, 114°, 138° and 162° in radial (r) 

and angular (θ) components. The amplitudes of the reflected (θs = 0°) and transmitted (θs = 180°) 

edge waves were also recorded. 

The scattered S0 and SH0 wave pattern results are then normalised to account for the cylindrical 

wave decay (at a rate inversely proportional to the square root of propagating distance), and relative 

to the incident edge wave displacement. In FE simulation, a ‘very low’ geometrical decay of edge 

waves was observed. This decay is attributed to contamination of the edge wave by contributions 

from the symmetric Lamb modes. However, this observed decay was taken into account to normalise 

the edge wave displacements and patterns.  

 

4.1.3 Results 

 

The Lamb-wave dispersion curves were used to identify the dominant modes in each of the 

displacement components. The 2D FFT scan along the 45° line indicated dominant S0 and SH0 in r 
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and θ components respectively, as shown in Fig. 4.1.3(a) and (b). The 2D FFT scan along the edge 

was performed and indicated a propagating edge wave, indicated in Fig. 4.1.3(c).  

 

 

Figure 4.1.3:  Dispersion curves indicate (a) Dominant S0 in the r component, (b) Dominant SH0 in the θ 

component and (c) Dominant Rayleigh-like edge wave along the edge of the plate.  A0 (RED), Plane stress edge 

wave (YELLOW), SH0 (BLUE) and S0 (GREEN). 

 

 

Figure 4.1.4: The scattered wave field due to the presence of a 3mm (a/λ=0.22) edge crack (a) where S0 is 

dominant in r component and (b) SH0 is dominant in θ component. 
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Figure 4.1.5:  The normalised scattered wave polar plot of (a) SH0 mode for 0.07≤a/λ≤0.22 of amplitude uθ (R0, 

θs)/|uθ|max, (b) SH0 mode for 0.29≤a/λ≤0.43 of amplitude uθ (R0, θs)/|uθ|max, (c) S0 mode for 0.07≤a/λ≤0.22 of 

amplitude ur (R0, θs)/|ur|max and (d) S0 mode for 0.29≤a/λ≤0.43 of amplitude ur (R0, θs)/|ur|max 
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Figure 4.1.6: The scattered wave displacement for various a/λ in (a) Forward region of SH0, (b) Backward 

region of SH0, (c) Forward region of S0 and (d) Backward region of S0 with respect to the incident wave 

maximum displacement 

 

 Fig. 4.1.4 portrays the dominant scattered wave fields in cylindrical components due to presence of 

an edge crack. Fig. 4.1.5(a) and (b) for the SH0 mode shows the scattering pattern for the angular 

component of displacement uθ, which is the dominant component for that mode, whereas Fig. 4.1.5(c) 

and (d) for the S0 mode shows the scattering pattern for the radial component ur. There are head 

waves connecting with the S0 and SH0 as indicated in the dispersion curve, seen in Fig. 4.1.3(a), as a 

weak SH0 signal. The SH0 and S0 scattered wave patterns have shown symmetrical wave pattern 
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along the 90° line when crack length is smaller than 3mm (a/λ≤0.22) edge cracks as shown in Fig. 

4.1.5.   

  

Figure 4.1.7:  Forward and back-scattered edge wave displacements due to the presence of edge crack against 

a/λ with respect to the incident maximum displacement compared with analytical Rayleigh wave [129] 

 

 

Figure 4.1.8:  Baseline FE stresses compared with the analytical edge wave stresses in plane stress case, 

relative to the maximum stress 
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As the crack length increases, the scattered wave patterns no longer retain a symmetrical pattern as it 

develops a stronger backward-scattered lobe in both S0 and SH0 scattered wave pattern. The 

scattered S0 and SH0 displacements have indicated in both regions increasing linear trend with 

respect to crack length until a/λ≈0.22 as shown in Fig. 4.1.6. Beyond this limit, the S0 and SH0 

backward-scattered displacements are significantly stronger than the forward-scattered displacements 

values and plateau as crack length increases.  

The transmitted and reflected edge wave maximum displacements are in similar magnitude and also 

increase linearly as a function of a until a/λ≈0.22. However, as crack length continues to increase the 

transmitted edge wave becomes dominant as seen in Fig. 4.1.7. 

 

4.1.4 Discussion 

 

The FE results showed that, for small cracks a/λ≤0.22, the scattered wave pattern is independent of 

crack length, whereas the scattering amplitude increases linearly with a. This is particularly similar to 

the limit of approximately 0.2 depths to wavelength ratio where the direction of particle rotation 

reverses for Rayleigh waves [18], and hence also for the symmetrical edge-guided waves, as shown in 

Fig. 4.1.8. The scattered edge wave amplitude trends very similar to the analytical Rayleigh wave by 

Mendelsohn et al. [129] for small crack length. Since the analytical results only involve with a pure 

Rayleigh wave incidence, there is inaccuracy for larger crack length scattered wave amplitude since 

there is additional contribution due to incident bulk wave, refer to Fig. 4.1.7. For long wavelength 

limit, the edge-guided waves are similar to Rayleigh wave [87], which is shown in Fig. 4.1.7.  

Although the scattered amplitude is observed to increase linearly, it is expected to have a quadratic 

trend as shown in Fig. 4.1.7. The quadratic variation should be more obvious if the study had 

investigated more crack a/λ<0.7. An approximate theory is required to obtain the analytical solution 

of the scattering on incident symmetric edge-guided waves by an edge crack, and to verify the point 

source equivalence.  



93 

 

This suggests, under this cut-off limit, the small edge crack is equivalent to point source. Furthermore, 

since the incident edge wave has a dominant σxx component, the scattered wave patterns can be simply 

represented by a point source only consisting of a perpendicular forcing component.  

However, for larger cracks, the scattered wave pattern is best represented by applying opposite 

baseline stress profile as a function of depth on the crack faces. As crack size increase, the key 

features are strong S0 and SH0 backward-scattered lobes and forward-scattered edge-wave 

displacement. In particular, the scattered S0 and SH0 forward-scattered lobes maximum 

displacements remain the same as crack length increases. These asymmetrical features in wave 

pattern are caused by the significant contribution of σxy component and the non-uniformity of stresses 

along the crack face.  

 

4.2 Scattering of incident antisymmetric edge-guided wave 

 

The aim of this study is to experimentally and computationally investigate the interaction of incident 

antisymmetric edge guided wave in a plate with a small edge crack relative to the incident 

wavelength. Antisymmetric edge-guided wave they also exhibit no geometrical decay, which makes 

them ideal for long range inspection. Scattered wave pattern and amplitude for various crack sizes 

will be reported on and are demonstrated to be equivalent to the radiated field from a particular 

combination of force body-doublets [27].  

 

4.2.1 Methodology 

 

The symmetric and antisymmetric modes are uncoupled and are generated by applied force 

distributions that are symmetrical or antisymmetrical with respect to the plate’s mid-plane. 

Additionally, the antisymmetric edge-guided waves can be excited by out-of-plane forces applied on 

the straight edge. The antisymmetric edge-guided wave has been found to propagate at a similar 

speed as the fundamental A0 Lamb wave. In this study, only the antisymmetric wave modes were 
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investigated. A baseline subtraction is employed to analyse the scattered wave displacement field 

associated with the small edge crack as shown in Fig. 4.2.1. 

Figure 4.2.1: Illustration of baseline subtraction to obtain the scattered wave field due to the presence of a 

crack. 

The scattered wave field is equivalent to applying equal and opposite tractions to the crack faces that 

cancel the stresses associated with the incident wave based on principle of superposition [20]. The 

crack length is in the range 𝑎 < 𝜆/2 , where 𝜆  is the wavelength of the incident wave. It can be 

expected that the incident field consist primarily of the edge-guided wave since the contribution of 

the propagation antisymmetric modes along the edge is negligible. 

For small crack size, the scattered wave field can be expected to be equivalent to a point source 

located the crack mouth. This equivalence suggests that the scattering wave pattern should be 

relatively independent of crack size, whereas the scattering amplitude should depend on crack length 

squared. 

 

4.2.2 Computational Setup 

 

ANSYS 15.0 is used as the Finite Element (FE) computational analysis tool to simulate wave 

propagation in an aluminium test plate. A plate of dimensions 440mm x 220mm of 3mm is modelled, 

as indicated in Fig. 4.2.2 (a) with density of 2700kg/m3, Poisson’s ratio of 0.33 and Young modulus 

of 69GPa.  
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Figure 4.2.2: (a) (LEFT) 440x220x3mm aluminium plate indicating location of crack and (b) (RIGHT) Detail 

diagram of crack showing the 2D FFT line, excitation point and scattered wave measurements. 

 

The edge crack is located at the origin of the plate as shown in Fig. 4.2.2. The plate is discretised into 

0.5mm 8-node linear hexagonal elements which satisfy the requirement of 10 elements per 

wavelength for accurate modelling [147], and a time step of 0.05µs, which satisfies the Explicit Time 

Integration stability limit of 0.8L/C, where L denotes smallest element length and C the fastest wave 

speed [148]. The defect is modelled as a V-tip crack with maximum spacing of 0.2 mm between the 

crack faces. The dependence of scattered amplitude with crack length is investigated by varying crack 

size from 1mm to 5mm. The computational investigation relies on applying an out-of-plane force 

along the edge, at a distance of d0≈7λ from the crack, as indicated in Fig. 4.2.2 (b). This loading 

configuration ensures that the dominant part of the incident wave at the crack location is an 

antisymmetric edge-guided wave mode [84]. To minimise dispersion, the excitation signal is chosen 

to be a 5.5-cycle Hann-windowed tone burst with centre frequency 200kHz. At this centre frequency, 

the A0 wavelength is 9.9mm [33]. 

2D Fast Fourier Transformation is performed on the nodes along the edge and along a line at 45˚ 

degrees from the crack base, as indicated in Fig. 4.2.2(b). This is used to create the dispersion curve 

in order to identify the dominant Lamb wave mode from DISPERSE [33]. The 2D FFT spatial 

distance is taken at least 3.5λ away from the crack base to avoid detection of higher non-propagating 

Lamb waves and over approximately 10λ distance with zero padding [147]. 
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4.2.3 Experimental Setup 

 

A 5005H34 aluminium alloy plate with the same dimensions as for the computational model is 

considered. Polytec CLV 3D automated laser vibrometry is used to record the in-plane and out-of-

plane velocity components of the propagating Lamb waves. A Polytec retro-reflective sheet is 

attached to the plate to significantly improve the data quality. PZ26 transducer of diameter 10mm and 

thickness 2mm was bonded on the edge to excite edge-guided waves. It was found that although the 

transducer is nominally placed symmetrically with respect to the plate’s midplane, in an attempt to 

generate only the symmetric modes, it seems difficult in practice to avoid some asymmetry, which 

results in the generation of antisymmetric modes as well. However, because the crack geometry is 

symmetrical with respect to the plate’s midplane, there is no mode coupling due to the scattering 

process, i.e. an incident antisymmetric wave generates only antisymmetric scattered modes and 

similarly an incident symmetric wave generates only symmetric scattered modes.  

In the experimental investigation, the defect is a notch which is artificially created to prevent the 

surfaces of crack from contact; hence no waves can transmit through the crack surfaces. The notch 

has a width of 0.3 mm and lengths 1.11, 1.76, 2.21, 2.66, 3.15, 3.48 and 4.59mm to determine the 

crack length dependence. Similarly to the computational investigation, the post-processing of data are 

the same. 

The scattered wave displacement are analysed in two regions: Backward-scattered measured in 0 ≤

𝜃𝑠 < 90 and Forward-scattered as measured in 90 ≤  𝜃𝑠 ≤ 180 with the angle define in Fig. 4.2.2(b). 

Hilbert transformation was performed over the time domain signals measured at points at distance 4λ 

away from the edge crack, and for various angles.  The scattered wave amplitudes were measured 

where antisymmetric modes are the greatest; near and along the plate’s edge. Thus, the backward-

scattered amplitudes were measured at 0˚, 10˚, 20˚ and 30˚ and the forward-scattered were measured 

at 150˚, 160˚, 170˚ and 180˚. The amplitude at 0˚ and 180˚ are reflected and transmitted edge waves, 

respectively. The scattered antisymmetric wave pattern results are normalised to account for the 

cylindrical wave decay and relative to the incident edge wave displacement. For the purpose of 
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analysing the wave pattern dependence with crack size, the amplitude is normalised relative to the 

scattered wave field maximum amplitude. 

 

4.2.4 Results 

 

A 2D FFT processing in conjunction with Lamb-wave dispersion curves was used to identify the 

modes, as illustrated in Fig. 4.2.3. The scan along the 45˚ line indicated a dominant A0 in the out-of-

plane component, whereas the scan along the edge indicated a propagating antisymmetric edge-

guided wave whose wave speed is very close to the A0 Lamb wave. Fig. 4.2.3 shows the 

experimental dispersion curve. The computational dispersion curve showed the same dispersion curve 

with the absence of symmetrical Lamb wave modes. For this study, we will be analysing the scattered 

wave field in the z components where the antisymmetric modes are dominant.  

 

Figure 4.2.3: Experimental dispersion curves. (LEFT) Asymmetric edge guided wave along the edge of the 

plate in z component and (RIGHT) Dominant A0 Lamb wave in z component scanned along 45˚ line. 

 

Figure 4.2.4: The normalised FE scattered wave polar plots for various crack lengths: (a) (LEFT) 0.1≤a/λ≤0.25 

and (b) (RIGHT) 0.3≤a/λ≤0.5 with a/λ=0.1 for comparison. 
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Figure 4.2.5: The normalised experimental and computational scattered antisymmetric wave patterns 

comparison for various crack length 

 

It can be seen from Fig 4.2.4 (a) that the scattered wave patterns are unchanged for crack length less 

than 2mm, i.e. for a/λ<0.2, whereas for larger crack, there is a minor difference in the symmetrical 

lobes relative amplitude compared to the smaller crack length, as shown in Fig. 4.2.4(b). The 

antisymmetric scattered wave patterns in both experimental and computational investigations are 

symmetrical along the 90˚ line as shown in Fig. 4.2.5. Both have same features of two symmetrical 

lobes in the forward and backward-scattered regions and their maximum amplitude is along the edge 

of the plate. Overall, the experimental results have shown good agreement with the computational 

results. 
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Fig. 4.2.6 show that the amplitude of the scattered A0 and the antisymmetric edge waves initially 

increases quadratically with crack length until a/λ<0.2, but thereafter, the amplitude increases at a 

reduced rate, which appears to plateau for the backward scattered (reflected) wave, whereas the 

forward scattered (transmitted) edge wave continues to increase and becomes more dominant. 

 

Figure 4.2.6: Experimental and computational comparison of normalised scattered wave displacement 

dependences with crack length for various angles. (a)(LEFT) Forward-scattered amplitude and (b)(RIGHT) 

Backward-scattered amplitudes 

 

4.2.5 Discussion 

 

Both experimental and computational results showed that for small edge crack a/λ<0.2, the scattered 

wave pattern is independent of crack length and the scattering amplitude increases as a function of a2.  

This trend is consistent with the observation that the shear stress distributions along the crack length 

are approximately constant for y/λ<0.2 as shown in Fig. 4.2.7. For a/λ<0.2, a small edge crack is 

equivalent to point source whose strength is proportional to the integral of the crack opening 

displacement [119], and thus proportional to a2. This point source consists of a particular combination 

of body-force doublets where the σxy gives rise to mode II crack opening and σxz gives rise to mode III 

crack opening as portrayed in Fig. 4.2.8. 
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Figure 4.2.7: Shear stresses depth variation of the incident antisymmetric edge wave relative to the maximum 

shear stress. 

 

However, as the crack size increases, the stress distribution in Fig. 4.2.7 show marked variation, and a 

quasistatic approximation becomes less accurate, so that the strength of the equivalent source does 

not continue to increase as a2.  

 

 

Figure 4.2.8: Scattered wave field equivalent to force doublets due to mode III and mode II crack openings. 
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Figure 4.2.9:  Relative displacements with respect to incident wave amplitude of analytical scattered Rayleigh 

wave displacements obtain from Mendelsohn [129] and computational antisymmetric edge-guided wave. 

 

Nevertheless, the scattering pattern remained similar, with only a slight change in relative amplitude 

as crack length increases beyond a/λ≈0.2, as shown in Fig. 4.2.4(b). It is noteworthy that a very 

similar behaviour has been reported both theoretically and experimentally for the scattering of 

Rayleigh waves by small surface-breaking cracks [6, 20], as indicated in Fig. 4.2.9. For small crack 

length to incident wavelength ratio, the antisymmetric edge-guided waves should be similar to 

Rayleigh wave [83, 85, 87], which is indicated in Fig. 4.2.9. Beyond the small crack limit, the stress 

distributions and particle motion of the antisymmetric edge-guided and Rayleigh waves are 

significantly different and hence the scattered displacement is no longer similar. This will require an 

approximate theory to analytically solve the far-field scattering of antisymmetric edge-guided wave 

and to verify if the force doublet method approximates to the scattering at long wavelength limit. 
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In previous study [164], it was reported that the scattering amplitude for an incident symmetric edge-

guided wave appears to increase linearly with crack length for small crack size, whereas theoretically 

one might have expected a quadratic variation. However, the same apparent linear trend can also be 

observed for the Rayleigh wave scattering in Fig. 4.2.9, with closer inspection revealing an initial 

quadratic variation. This quadratic trend is more obvious in the present study of scattering of an 

antisymmetric edge-guided wave, as can been seen in Fig. 4.2.9. 

 

4.3 Conclusion 

 

The scattered wave field of a low frequency edge wave with a small edge crack in an isotropic plate 

has been reported. It was shown that, for small crack lengths a/λ≤0.22, the angular variation of the 

scattering pattern is independent of crack length, which is consistent with modelling the scattered 

field as being due to a point source (a force doublet) at the location of the crack mouth. Furthermore, 

the scattering amplitude for the scattered wave into the plate, as well as the reflected and transmitted 

amplitudes for the edge guided wave, are proportional to crack length a.  

The scattered wave field of a low frequency antisymmetric edge-guided wave with a small edge crack 

in an isotropic plate has been reported. It has been shown that experimental and computational results 

are in close agreement, of both the scattering pattern and for variation of scattering amplitude with 

crack size. For small crack length a/λ<0.2, the scattering pattern is independent of the crack length 

and the amplitude of the scattered A0 Lamb wave and antisymmetric edge waves is proportional to a2, 

which is consistent with modelling the scattered wave field as being due to a point source at the 

location of the crack mouth equivalent to a combination of force doublets. These experimental and 

computational results for the forward scattering problem constitute a valuable finding and have 

shown scattering of incident edge-guided waves by a small crack can be represented by a point source 

model. Further studies are required to determine the analytical solutions using the approximate 

theories to obtain the scattering of symmetric and antisymmetric edge-guided waves by an edge crack. 
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The analytical solutions will verify whether the scattering by an edge crack can also be approximated 

as a point source representation at the long wavelength limit. 

These results for the scattering problem provide a useful framework for addressing a small edge 

cracks on a through-thickness hole by using an incident edge-guided wave. The previous works are 

extended the analysis to radial cracks at circular holes, which is more representative of typical 

occurrences of cracking in practice. 
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Chapter 5 

Scattering of the fundamental Lamb wave modes by an edge 

crack at a circular hole in an isotropic plate 

 

In this chapter, an additional feature of through-thickness hole is introduced. Fuel weep holes are 

prone to develop fatigue crack and these structure components are required to be disassembled for 

damage diagnosis. This process is time-consuming. The current state-of-the-art method is inefficient 

and outdated and requires reliable and innovative diagnosis methods to regularly monitor and assess 

the crack size for structural integrity monitoring purposes. This hole investigation explores the effect 

of crack length on a hole to determine a quantitative relationship between the scattered amplitude and 

crack size for early damage detection.  

The dependence of hole diameter is first investigated to understand the basic scattering phenomenon 

due to this hole feature. It is later observed that the symmetric edge-waves propagating on the 

circumference of a hole completely attenuate into the medium below a critical 𝑑/𝜆 . By 

constraining 𝑑/𝜆 > 1, this allows the incident circumferential edge-guided wave to propagate around 

the hole boundary and impinge with the defect. For 𝑑/𝜆 < 1, only fundamental symmetric wave 

mode can impinge with the defect. Furthermore, the scattering by the fundamental symmetric wave 

mode and edge-guided wave by an edge crack at a circular hole are investigated under these two 

conditions. These hole studies are the extension to the edge crack boundary problem. It is also 

anticipated that the scattered wave field can be represented as a point source located on the hole 

boundary. 
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Many studies [28, 37, 54-56, 67] have investigated the scattering effect of the hole and provided 

scattered wave patterns. Significant investigations have been done on the scattering by part through-

thickness of the hole. Previous researchers [7, 14] have used a creeping wave and was used by the 

means of hidden crack detection. This study attempts to determine the conditions for creeping edge-

waves to circulate around the hole.  

The scattering of S0 from a rivet hole with a crack has been studied [54] however, the scattered Lamb 

wave modes and patterns by the small edge crack on a hole have not been reported and modelled for 

small crack characterisation. Furthermore, no previous study has excited edge-guided waves on a hole 

boundary and investigated the interaction with a propagating leaky circumferential edge-guided wave 

and a hidden crack.  

 

5.1 Scattering of the fundamental symmetric wave mode incident at 

defect on the blind side of a weep hole in an isotropic plate 

 

The aim of this study is to explore computationally the interaction of low frequency zeroth order 

symmetrical modes with a through-thickness crack emanating from a circular hole, with the crack 

being modelled by a notch as indicated in Fig. 5.1.1. The interaction of an incident wave with an open 

hole is presented first. This helps to identify the boundary conditions that exist when a notch is 

included on the open hole to simulate a defect located on the blind side of the incident wave. The 

nature of the wave scattered by this hidden defect will be reported on, and its relevance for the 

detection and quantification of this defect will be discussed. The nature of scattered wave passing the 

notch is studied in terms of the following length-scales: diameter of the open hole and defect length. 

The incident wave frequency is kept constant. The scattering phenomena at the notch on the hole that 

is located on the blind side of the incident Lamb wave will be presented. 
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Figure 5.1.1: (a) (LEFT) Location of typical crack emanating from a fuel weep hole (b) (RIGHT) geometry of 

FE model for 200mmx200mmx4mm aluminium plate showing the location of the excitation force relative to the 

hole and notch. 

 

5.1.1 Elastic wave propagation 

 

At low frequency, only the lowest order Lamb-wave modes (A0, S0 and SH0) are propagating modes.  

SH0 is non-dispersive shear wave propagating in the plate polarised in a direction parallel to the plate 

surface.  S0 is considered non-dispersive at low frequency and has constant amplitude through the 

plate thickness, with its particle vibration predominantly parallel to the direction of propagation.  The 

A0 mode will not be encountered in the present work due to the symmetry of the plate and loading 

configuration relative to the mid-plane. In this work, an incident S0 mode will be used. 

 

5.1.2  Computational Investigation 

 

ANSYS is used as the computational analysis tool for this study.  The simulation represents an 

aluminium test plate 200mm×200mm×4mm (density of 2770kg/m3, Poisson’s ratio of 0.33 and 

Young modulus of 71GPa).  The plate contains a circular hole centred at (80mm, 100mm), and whose 

diameter is varied from 10mm, 30mm and 60mm.  One set of computations involves only the hole as 

scatterer, whereas for a second set of computations, a fatigue crack is simulated by a notch 3mm in 

length and 0.5mm width, located directly on top of the hole, as shown in Fig. 5.1.1(b).  For the 
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purposes of generating only the S0 mode, equal and opposite point forces are applied to nodes on 

opposite faces of the plate, with the forces acting in the direction normal to the plate surface.  This 

disposition of forces can be referred to as a pinching force, which is located at coordinates (50mm, 

80mm), cf. Fig. 5.1.1(b). The pinching force excitation signal consists of a 5-cycle Hanning 

windowed tone burst centred at frequency 200 kHz to minimise dispersion.  At this centre frequency, 

the incident S0 mode has a wavelength of 27.2 mm, and it is tracked in the FE model through the 

associated out-of-plane displacement uz on the plate’s surface.  By contrast, the scattered wave, which 

will be shown to be predominantly SH0, has no out-of-plane component, and it must therefore be 

tracked by the in-plane displacement. Here we shall use polar coordinates (𝑟, 𝜃) with origin at the 

centre of the hole, and the 𝜃 component of the surface displacement will be used for tracking the 

scattered SH0 mode, whose wavelength 𝜆𝑆𝐻0  is 14.9 mm.   

The through-thickness small crack investigation is considered in the FE simulation. The FE 

simulation uses 1mm tetrahedron element size, which satisfies the requirement of 10 elements per 

wavelength for accurate modelling [21, 31], and a time step of 0.2 𝜇𝑠, which satisfies the Explicit 

Time Integration stability limit [148]. The intention for this study was to use tetrahedron elements to 

accurately model the hole geometry. However, it was later investigated that the linear cubic elements 

provided the identical results and solved sufficiently faster. Thereby, all other hole or complex 

geometry studies continued to use linear cubic element instead.  

A 2D Fast Fourier Transform (2D FFT) is taken along the line indicated in Fig. 5.1.1 (b) was used to 

produce the dispersion curves, as shown later in Fig. 5.1.3, and hence identify the modes. The 2D 

FFT consists of more than 100 time samples, 20𝜇𝑠; the spatial distance is approximately 4𝜆𝑆𝐻0 

originating from the notch tip with 1024 equidistant spatial samples and zero padding. 
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5.1.3 Finite Element Simulation Results 

i)  No notch cases 

 

The FE simulation of scattering by a hole without a notch indicated a noteworthy effect. For the 

10mm diameter hole, the incident S0 wave passed through with little perceptible effect (Fig. 5.1.2(a)), 

whereas the 30mm and 60mm diameter holes showed clear evidence of creeping waves, indicated by 

curling S0 wavefronts hugging the surface of the hole (Fig. 5.1.2(b) and (c)). This suggests that the 

effective length scales for creeping waves are when the impinging wavelength is smaller than the hole 

diameter 𝜆 < 𝑑. Previous studies [7, 93, 94] also conducted their investigations on creeping waves 

under this length scale condition. 

The creeping wave is leaky edge-guided wave, which has similar speed to a Rayleigh wave [7, 93].  

As with Rayleigh waves, these edge waves arise from the requirement to ensure stress-free boundary 

conditions at a free surface. These Rayleigh-type edge waves are leaky [7] which can be regarded to 

be a consequence of a weak scattering perturbation caused by the cylindrical surface. 

 

 

Figure 5.1.2: Snapshot from FE simulation of the scattering in the out-of-plane (𝑢𝑧) direction of an incident S0 

wave, 𝜆 =27.2mm,  by a circular hole of diameter (a) 10mm; (b) 30mm, and (c) 60mm [165] 
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ii)  With the inclusion of a 3mm notch 

 

For the simulations involving a notch, a baseline subtraction is used for the purpose of isolating the 

scattered wave field associated with the presence of the notch. 

The FE notch investigation showed SH0 source-like mode conversion at the notch tip. A 2D FFT of 

the scattered field indicated a dominant contribution corresponding to the wavelength of the SH0 

mode, as indicated in Fig. 5.1.3. Since only incident S0 wave was propagated, the scattered field 

suggested SH0 wave originated from the notch tip. The SH0 wave propagating from the notch tip is 

strongly affected by the hole diameter, as can be seen in Fig. 5.1.4. Recall that Fig. 5.1.2 showed the 

S0 wave is held up more visibly at larger hole diameters. It seems plausible that the same would 

happen for the SH0 scattered wave from the notch tip. The FE notch simulation showed that SH0 

wave originating from the notch tip generated a leaky edge wave when impinging with the hole. This 

edge wave turns more sharply in a small diameter hole relative to large diameter holes.  

In Fig. 5.1.4(a), the scattered SH0 waves appears to remain attached to the hole surface, which 

evidently is SH0 combined with leaky edge wave. At time 66𝜇𝑠, in Fig. 5.1.4(a), the leaky edge 

waves radiates into the medium. For larger diameter holes, as can be seen in Fig. 5.1.4(b) and (c), this 

wave coalescing phenomena is also observable, but when the SH0 waves detaches from the surface, 

the edge wave continues to travel along the surface. This wave detachment from the surface is more 

noticeable for larger diameter holes, as can be seen in Fig 5.1.4(c) at 58 𝜇𝑠 and 76 𝜇𝑠.  

The coalescing of SH0 wavefront from the notch tip and the leaky edge wave is what results in the 

appearance of the spiralling SH0 wave observed in Doherty and Chiu [13]. It can be seen from the 

later snapshots in Fig. 5.1.4(a) at 48 𝜇𝑠 and 66 𝜇𝑠 that the subsequent evolution of the SH0 wavefront 

resembles the pattern that would be expected for a point source of SH0 waves located at the notch tip.  

This SH0 virtual source is more noticeable than the SH0 spiral for larger diameter holes, cf. Fig. 

5.1.4(b) and (c). This suggests that the appearance of SH0 spiralling effect depends sensitively on the 

ratio of notch length to wavelength, and is only observed in a limited range of that ratio.  
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Figure 5.1.3: Dispersion curve for diameter (a) 10mm (left), (b) 30mm (middle) and (c) 60mm (right) with 3mm 

notch aluminium plate; S0 (Green), SH0 (Blue) and A0 (Red) 

 

 

 

Figure 5.1.4: Snapshot of the time progression of scattered field 𝜃 direction of diameter:(a) 10mm (top); (b) 

30mm (middle) and (c) 60mm (bottom) (a)  At 30𝜇𝑠 and 48𝜇𝑠 the SH0 spiral is a visible aspect; at 66𝜇𝑠 the 

scattered wavefront, SH0 and edge waves, radiates into the medium also SH0 source is more apparent. (b) and 

(c): The SH0 spiral is not evident but the SH0 source is more apparent. SH0 detaching from the surface as seen 

in (b) 48 𝜇𝑠 and 72 𝜇𝑠and (c) 58𝜇𝑠 and 76𝜇𝑠, although the edge wave still travels around the surface after SH0 

detachment. 
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5.2 Scattering of fundamental Lamb waves by an edge crack at a 

circular hole in an isotropic plate 

 

The scattered wave field when an incident elastic wave impinges on a crack have been investigated 

for both bulk waves [129, 131] and Lamb waves [31, 32, 164, 166, 167]. It is known that a scattering 

by an infinitesimal crack is equivalent to the radiate field from a particular combination of force 

doublets for bulk waves [27]. An extension of this idea to Lamb-wave scattering has been 

investigated in our previous work for edge crack along a straight edge [164, 166, 167]. For small 

cracks, the scattered field can be expected to be like that of a point source located at the crack mouth 

and with strength proportional to some power of the crack length relative to wavelength a/λ. This 

point source equivalence also suggested that the scattering pattern should be relatively independent of 

crack size. It can be expected that an emanating crack on the hole can be represented as a point source 

as well. 

This study computationally investigates the interaction of a symmetric edge-guided wave with a 

through-thickness crack emanating from a circular hole. The amplitude and scattered wave patterns 

due to the presence of emanating crack are reported. It is expected that the scattered wave amplitude 

should increase as a power function of a/λ similarly to the edge crack on a straight boundary case 

[164]. 

 

5.2.1 Methodology 

 

In this investigation, the frequency is restricted below the cut-off for the first order symmetric Lamb 

wave mode SH1 (1.53Mhz-mm). In this low frequency-regime the SH0 is non-dispersive whereas the 

S0 mode is essentially non-dispersive as well. The scattered wave field associated with the small edge 

crack is obtained via a baseline subtraction. This procedure is illustrated in Fig. 5.2.1 using a 

visualisation of computational results. 
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Figure 5.2.1: Illustration of the baseline subtraction procedure to obtain the scattered wave field due to the 

presence of a crack on hole 

 

An applied force distribution that is symmetrical with respect to the plate’s mid-plane can only 

generate purely symmetric modes. Furthermore, the symmetric edge-guided wave are generated by 

mid-plane symmetric force applied on the hole boundary. The symmetric edge wave can be regarded 

as a plane stress analogue of the Rayleigh wave and one can obtain its wave speed by a simple change 

of elastic constants to convert plane strain to plane stress [18]. Although, edge waves propagating 

along the curve, also known as circumferential creeping waves, are known to leak to the medium. For 

plane strain case, studies [88] have analytically solved and revealed conditions for Rayleigh waves 

propagating around curved edges. These conditions should be similar in the plane stress case, so in 

order for edge wave to propagating around the circumference the diameter must be larger than the 

incident wave length d/λ>1. For large radius, this wave should be very similar to edge wave on 

straight boundary. However under a critical diameter to wavelength ratio these waves attenuate to the 

medium and cease propagating on the curved surface.  

The geometrical configuration being investigated is shown in Fig. 5.2.2. It involves a radial crack of 

length, a, emanating from a circular hole of diameter, d. The crack length is assumed to be small 

compare to the incident wavelength λ and the hole diameter, such that a/λ<<1 and a/d<<1. Under 

these conditions, for small cracks, the scattered wave field is expected to behave like a point source 

with strength being proportional to some power of the crack length. Additionally, this point source 

equivalent also suggests that the scattered pattern should be relatively independent of crack size. 



113 

 

It is anticipated that the scattered wave patterns should have some similar features to the edge crack 

on a straight boundary [164]. Furthermore, the scattered edge wave on straight boundary study 

investigated crack length with 1mm increment and the amplitudes were observed to increase linearly 

with crack length. In this study, a smaller crack size increment is used and the SH0 and S0 scattered 

patterns and displacement trends with crack length are reported. 

 

5.2.2 Computational Procedure 

 

 

Figure 5.2.2: (a) (LEFT) 600x600x3mm aluminium plate FE geometry showing the location of crack, 45° 2D 

FFT scan line, scattered wave measurement; (b) (RIGHT) Near hole diagram portraying the excitation point, 

crack location and origin of cylindrical coordinate system. 

 

ANSYS 15.0 is used as the Finite Element (FE) computational analysis tool to simulate wave 

propagation in an aluminium test specimen.  An aluminium plate 600mm x 600mm of 3mm thickness 

(density 2700kg/m2, Poisson ratio of 0.33 and Young modulus of 69 GPa) is modelled, refer to Fig. 

5.2.2. A through-hole with 40mm diameter is located centre of the plate. The small crack modelled as 

a notch with width 0.5mm emanate at the 12 o’clock position of the hole with size 1mm to 4.5mm in 

0.5mm increments. The plate specimen is discretised into 0.5mm 8-node linear hexagonal elements 

which satisfy the requirement of 10 elements per wavelength for accurate modelling [147] and time 
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step of 0.02 µs, which satisfies the standard stability criterion for Explicit Time Integration of being 

less than or equal to 0.8L/C, where L denotes the smallest element length and C the fastest wave 

speed [148].  

The incident edge-guided wave is generated at 9 o’clock position of the hole, which is approximately 

3λ away from the edge crack as shown in Fig. 5.2.2(b). The force excitation signal is chosen to be a 

5.5 cycle Hann-windowed tone burst with centre frequency 200 kHz. At this centre frequency the 

wavelength of circumferential edge wave, S0 and SH0 are 14.4mm, 26.6mm and 15.3mm [33]. It is 

noted that the circumferential edge wave wavelength is larger than the wavelength of 13.8mm for 

edge waves at a straight edge [164], indicating a slightly faster wave speed for the circumferential 

edge wave around a circular hole relative to the straight edge. This leads to a spiralling pattern 

scattering by a small crack as observed by Doherty and Chiu [13, 15] .The force excitation will also 

generate S0 and SH0 wave, however, given the small crack length range, the incident field can be 

expected to consist primarily circumferential edge wave where the contribution of the other 

symmetrical wave mode along the circumference are negligible. 

2D Fast Fourier transformation is performed around the circumference and along the 45˚ line from 

the crack base edge as portrayed in Fig. 5.2.2(a). The 2D FFT results is used to create the dispersion 

curve in order to identify the dominant Lamb Wave modes from DISPERSE [33]. The 2D FFT spatial 

distance is taken at least 3.5λ away from the crack base over approximately 10λ distance with 1024 

equidistant spatial sample with zero padding [147]. A 2D FFT scan is also perform along the hole 

circumference to determine the circumferential edge wave wavenumber. Hilbert transformation was 

performed over the time domain signals measured at point Q at distance approximately 10λ away to 

obtain an approximated far-field scattered wave pattern refer to Fig. 5.2.2(a). The maximum 

amplitude of the associated analytic signals was used as the measure of the scattered field amplitude. 

The scattered wave displacements are analysed in two regions: from 0˚ to 180˚ and 180˚ to 360˚ refer 

to Fig. 5.2.2(b) and the maximum scattered displacements were measured at 0˚, 45˚, 90˚, 180˚, 225˚ 

and 270˚. 
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The scattered wave pattern results are normalised to account for the cylindrical wave decay and 

relative to the incident edge wave displacement at the location of the crack. For the purpose of 

analysing the wave pattern dependence with crack size, the amplitude is normalised relative to the 

scattered wave field maximum amplitude. The back-scatter and forward-scatter circumferential edge 

wave displacement is measured at 9 o’clock and 3 o’clock position of hole circumference, 

respectively, and the results are normalised to account for the circumferential edge wave decay as 

well. This leaky edge wave attenuation over circumferential distance is also briefly reported for this 

specific hole geometry. 

 

5.2.3  Results 

 

Figure 5.2.3: Plots of 2D FFT amplitude and dispersion curve indicating (a) (LEFT) a dominant SH0 wave in 

the θ component; (b) (MIDDLE) a dominant S0 wave in the r component; (c) (RIGHT) a circumferential edge 

wave along the hole circumference with wave speed close to the plane stress edge wave speed. 

 

Figure 5.2.3 shows the Lamb wave dispersion curves indicating dominant S0 and SH0 modes in the 

radial, r, and angular, θ, components respectively. A 2D FFT is performed along the hole 

circumference to determine the circumferential edge wave wavelength as shown in Fig. 5.2.3(c) 
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Figure 5.2.4: Normalised scattered wave polar plot of SH0 waves with respect to the incident wave maximum 

displacement. (a) 0.07≤a/λ≤0.17; (b) 0.21≤a/λ≤0.31 

 

Figure 5.2.5: Normalised scattered wave polar plot of S0 waves with respect to the incident wave maximum 

displacement. (a) 0.07≤a/λ≤0.17; (b) 0.21≤a/λ≤0.31 

 

Figure 5.2.6: The scattered SH0 wave displacement for various a/λ in (a) 0˚-180˚ region and (b) 180˚-360˚ 

region with respect to the incident wave maximum displacement 
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Figure 5.2.7: The scattered S0 wave displacement for various a/λ in (a) 0˚-180˚ region and (b) 180˚-360˚ 

region with respect to the incident wave maximum displacement 

 

The scattered SH0 and S0 wave patterns are symmetrical along the 90˚ line and the pattern remains 

similar for a/λ<0.10 and a/λ<0.17, respectively, as seen in Fig. 5.2.4(a) and 5.2.5(a). As crack length 

increases, the SH0 lobes at 0˚ and at approximately 120˚ and S0 lobe at approximately 150˚ become 

relatively larger hence no longer retain a symmetrical pattern as shown in Fig. 5.2.4(b) and 5.2.5(b). 

Additionally, the SH0 lobe at 180˚ becomes relatively smaller. The scattered SH0 and S0 

displacements have indicated in 0˚-180˚ degree regions increasing quadratically with respect to crack 

length until a/λ≈0.21 as shown in Fig. 5.2.6(a) and Fig. 5.2.7(a). As crack length increases further, the 

scattered displacement appears to stagnate. In 180˚-360˚ region, shown in Fig. 5.2.6(b), the scattered 

SH0 displacements increase with crack length until a/λ≈0.14. The scattered SH0 displacements trend 

is not apparent and amplitude is significantly weaker in this region. In Fig. 5.2.7(b), the scattered S0 

displacements appear to plateau after a/λ≈0.14 in the 180˚-360˚ region.  

The back-scatter and forward-scatter circumferential edge wave steadily increases with similar 

displacement until a/λ≈0.14 as shown in Fig. 5.2.9. Beyond this limit, the forward-scatter edge wave 

displacement dominants the back-scatter edge wave. 
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Figure 5.2.8: Relative displacements with respect to incident wave amplitude of analytical scattered Rayleigh 

wave displacement obtained from Mendelsohn [129], computational edge wave obtained from Vien et al [164] 

and computational circumferential edge wave.  

 

 

Figure 5.2.9: The attenuation of incident circumferential edge wave displacement over the circumference; 

(DOT) FE circumferential edge wave displacements, (LINE) data interpolation.  
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5.2.4  Discussion 

 

The FE results showed that for small cracks a/λ<0.10, the scattered wave pattern is independent of 

crack lengths and the scattered amplitude increases with a2. The small crack is equivalent to point 

source whose strength is proportional to the integral of the crack opening displacement, and thus 

gives a quadratic trend [119]. This suggests, under this cut-off limit, the small crack is equivalent to 

point source. Similarly to the edge crack investigation, the incident circumferential edge wave has a 

dominant σθ component and that the scattered wave pattern can be represented by a point source only 

consisting of a perpendicular forcing component. 

The particular limit a/λ≈0.20 is where the direction of particle rotation reverse for Rayleigh wave, 

similarly for symmetrical edge-guided waves, and where σrθ component becomes significantly 

dominant and σθ component is minimal. Since the stresses are no longer uniform, this resulted to an 

asymmetrical feature in wave pattern. Furthermore, representation for larger crack size can be 

achieved by applying opposite baseline stress profile as a function of depth on the crack faces.  

The crack scattered a dominant circumferential edge-guided wave and a weak S0 wave. The scattered 

wave pattern trends; scattered lobes, similarly to the SH0 and S0 wave patterns for the edge crack 

case [164]. In Fig. 6.1.8(a), the reflected and transmitted circumferential edge wave trends similarly 

to the analytical results of Mendelsohn plane strain problem [129] and symmetrical edge wave with 

edge crack [164]. 

For d/λ≈2.8, as the circumferential edge wave propagates, it has attenuated at a rate inversely 

proportional to a power of approximately 0.7 of propagating distance refer to Fig. 6.1.8(b). The rate 

of which the circumferential edge wave attenuates will also depend on the material property; 

Poisson’s ratio. For smaller d/λ, the edge wave should decay at a faster rate until at a critical ratio, the 

edge wave stops propagating along the circumferential and instead leaks to the medium. For larger 

d/λ, the wave should converge to the symmetrical edge wave speed similar to the plane strain case 
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[88]. Further study is required to analyse the circumferential edge wave dependence on d/λ and 

Poisson’s ratio in detail. 

 

5.2.5  Antisymmetric circumferential edge wave propagation around hole 

 

The scattering of antisymmetric edge wave by edge crack on a straight boundary was also 

investigated. A pre-requisite attempt to investigate the antisymmetric edge wave propagating 

around a curved surface was conducted. The FE model configuration and analyse are the same as 

the symmetric circumferential edge problem, however the excitation involves an out-of-plane 

forcing component to generate antisymmetric wave modes.  

  

Figure 5.2.10 Time snapshot at 20µs and 40µs of edge waves propagating around the hole. 

 

It was found that the antisymmetric edge wave immediately attenuates to the medium and decays 

much rapidly than symmetric edge wave propagating around the hole circumference, refer to Fig. 

5.3.1. Although the diameter of the hole is 40mm, which is d/λ >1, the attenuation cannot be 

quantified. This suggests the antisymmetric edge wave may not be ideal for curve boundary for 
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shadow zone detection. Additional investigation analytical study is required to determine the 

behaviour of antisymmetric edge wave propagating around curve surface. The hole investigation 

proceeds to the scattering by symmetric Lamb wave mode instead. 

 

 

5.3 Scattering of fundamental symmetric Lamb waves by an edge 

crack at a circular hole in an isotropic plate: Experimental and 

computational studies. 

 

This study computationally and experimentally investigates the interaction of a symmetric edge-

guided wave with a through-thickness crack emanating from a circular hole. This study is an 

extension to a previous small edge crack on a straight boundary problem [167]. The scattered wave 

amplitude and patterns dependencies on crack length are reported. It is expected that the scattered 

wave amplitude should increase quadratically with a/λ. This is a pre-requisite approach to determine 

the crack length dependence based on scattered wave measurements to facilitate the inverse problem 

of hidden crack detection. 

 

5.3.1 Methodology  

 

The scattered wave field associated with the small crack on hole is obtained via a baseline 

subtraction. This baseline subtraction procedure is illustrated in Fig. 5.3.1 using a visualisation of the 

computational results. 
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Figure 5.3.1: Illustration of the baseline subtraction procedure to obtain the scattered wave field due to the 

presence of a crack on hole 

 

Edge waves can propagate around a hole, given the diameter is much larger than the wavelength. 

Unlike edge wave propagating along a straight boundary, these leaky circumferential edge waves 

decay with propagating distance, which is depended on d/λ and material property; Poisson’s ratio. 

Beyond a critical diameter to wavelength ratio, these leaky edge waves attenuate to the medium and 

cease propagation on the curved surface.  

A radial crack of length, a, emanating from a circular hole of diameter, d, is investigated. The crack 

length is assumed to be small compared to the incident wavelength λ and the hole diameter, such that 

a/λ<<1 and a/d<<1. Under these conditions, for small cracks, the scattered wave field should behave 

similarly to a point source consisting a particular combination of body-force doublets. This point 

source equivalence also suggests that the scattered wave pattern should be relatively independent of 

the crack size. 

It is anticipated that the scattered wave patterns should have some features similar to the edge crack 

on a straight boundary [164, 167]. The scattered representation for larger crack size can be done by 

applying opposite baseline stress profile along the crack [20] as well.  In this study, the SH0 and S0 

scattered patterns and displacement trends with crack length are reported.  
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5.3.2 Computational Procedure 

 

ANSYS 15.0 is used as the Finite Element (FE) computational analysis tool to simulate Lamb wave 

in an aluminium test specimen. An aluminium plate of 450mm x 450mm dimension and 3mm 

thickness (density 2700kg/m2, Poisson ratio of 0.33 and Young modulus of 69 GPa) is modelled, refer 

to Fig. 5.3.2. A through-thickness hole with 20mm diameter is located at the centre of the plate. In 

this critical condition where d/λ <1, circumferential edge wave cannot propagate along the hole 

boundary without rapidly attenuating into the medium. So, the incident wave is primarily S0 wave 

mode. 

 

Figure 5.3.2: (LEFT) 450x450x3mm aluminium plate FE geometry showing the location of the crack, 45° 2D 

FFT scan line, scattered wave measurement; the excitation point and excitation point (RIGHT) Near hole 

diagram portraying the crack location and origin of the cylindrical coordinate system at centre of the hole. 

 

The small crack modelled as a 0.5mm width notch emanate at the 12 o’clock position of the hole, 

with size 1mm to 4.5mm in 0.5mm increments as shown in Fig. 5.3.2. The plate specimen is 

discretised into 0.5mm, 8-node linear hexagonal elements, which satisfy the requirement of 10 

elements per wavelength for accurate modelling [147]. The time step is 0.02 µs, which satisfies the 

standard stability criterion for Explicit Time Integration of being less than or equal to 0.8L/C, where L 
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denotes the smallest element length and C the fastest wave speed [148]. An applied force distribution 

that is symmetrical with respect to the plate’s mid-plane can only generate purely symmetric modes. 

To generate only the S0 mode, equal and opposite point forces; pinching forces, are applied to nodes 

on opposite faces of the plate, with the forces acting in the direction normal to the plate surface.  The 

S0 mode is excited at coordinate (195, 125) which is approximately 5λ away at incident 16.7˚, such 

that the crack is hidden along the illuminating path, as shown in Fig. 5.3.2. The force excitation signal 

is chosen to be a 5.5 cycle Hann-windowed tone burst with centre frequency 220 kHz. At this centre 

frequency, the wavelength of S0 and SH0 are 22.2mm and 14.0mm [33].  

2D Fast Fourier transformation is performed along the 45˚ line from the centre of the hole as shown 

in Fig. 5.3.2. The 2D FFT results is used to create the dispersion curve for identifying the dominant 

Lamb Wave modes from DISPERSE [33]. The 2D FFT spatial distance is taken at least 3.5λ away 

from the crack base over approximately 5λ distance, with 1024 equidistant spatial sample and zero 

padding [147]. The maximum amplitude of the associated analytic signals was used as the measure of 

the scattered field amplitude. The maximum peak of Hilbert transformation over the time domain 

signals measured at point Q, at a distance approximately 4λ away was performed to obtain the 

maximum amplitude, refer to Fig. 5.3.2. The scattered wave displacements are analysed in two 

regions: from 0˚ to 180˚ and 180˚ to 360˚, refer to Fig. 5.3.2. The maximum scattered displacements 

are measured at 0˚, 45˚, 90˚, 180˚, 225˚ and 270˚. 

The scattered wave amplitude results are normalised to account for the cylindrical wave decay and 

relative to the maximum incident S0 wave displacement at the location of the crack. For the purpose 

of analysing the scattered wave pattern dependence with crack size, the amplitude is normalised 

relative to the scattered wave field maximum amplitude. The scattered wave lobes locations and 

relative amplitudes with other lobes are used to determine whether the pattern is changing with crack 

length. 
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5.3.3 Experimental Procedure 

 

The experimental specimen is a 5005H34 aluminium alloy plate with the same geometrical 

configuration as for the computational model. The in-plane velocity components of the propagating 

Lamb waves were recorded by Polytec CLV 3D automated laser vibrometry. A Polytec retro-

reflective sheet is attached to the plate to significantly reduce the noise and improve the data quality. 

The specimen is secured on a XY positioning system and the experimental rig is mounted on a 

DAEIL system vibration isolation optical table to minimise vibration. The experimental setup is 

shown in Fig. 5.3.3. A PZ26 transducer of diameter 16mm and thickness 2mm was bonded on the 

aluminium plate to excite incident Lamb waves. Although, one can analyse the symmetric and 

antisymmetric modes in their dominant in-plane and out-of-plane component, respectively, refer to 

Fig. 5.3.4. However, weak signals of the other nondominant modes can still be detected. To achieve a 

clearer signal, the excitation distance being approximately 5λ ensures that the S0 Lamb wave cycle 

completely incident with the defect before the incident and reflected A0 waves from the boundaries. 

  

Figure 5.3.3: Experimental setup of 3D Laser Vibrometer and specimen and close-up image of the hole with 

crack attached with retro-reflective film 

 

In the experimental investigation, a 0.4mm width notch is artificially created to prevent the surfaces 

of crack from contact. So, no waves can transmit through the crack surfaces as shown in Fig. 5.3.3. 
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The notch with lengths of 3.11mm, 3.58mm and 4.61mm are investigated. The post-processing of 

data is the same as that for the computational investigation. 

 

5.3.4 Results and Discussion 

 

 

Figure 5.3.4: Plots of 2D FFT FE dispersion curve of the scattered wave field due to presence of crack 

indicating that (a) a dominant S0 wave in the r component;(b) a dominant SH0 wave in the θ component. 

 

As crack size increases, the SH0 scattered wave pattern for a/λ≈0.05, as shown in Fig. 5.3.5, 

immediately becomes asymmetric. This is caused by the change in the distribution of normal and 

shear stress components along the location of the crack. For a/λ<0.11, the lobes at 0˚, 60˚ and 120˚ 

remain relatively the same, whereas 180˚ lobe becomes relatively smaller when crack size increase, 

refer to Fig. 5.3.5. For 0.14<a/λ<0.20, the 60˚ lobe becomes relatively smaller than the rest of the 

other lobes. The two lobes at 60˚ and 120˚ are similar to the scattered wave pattern for the edge crack 

problem [164, 167]. In Fig. 5.3.6, the S0 scattered wave patterns have two lobes at 30˚ and 150˚ and 

remain very similar and symmetrical about the 90° line. 
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Figure 5.3.5: Normalised scattered wave polar plot of SH0 waves with respect to the incident wave maximum 

displacement. (a) 0.05≤a/λ≤0.11; (b) 0.14≤a/λ≤0.20 

 

Figure 5.3.6: Normalised scattered wave polar plot of S0 waves with respect to the incident wave maximum 

displacement. (a) 0.05≤a/λ≤0.11; (b) 0.14≤a/λ≤0.20 

 

 

Figure 5.3.7: FE and experimental results: Normalised scattered SH0 wave displacement for various a/λ in (a) 

0˚-180˚ region and (b) 180˚-360˚ region with respect to the incident wave maximum displacement. 
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Figure 5.3.8: FE results: Normalised scattered S0 wave displacement for various a/λ in (a) 0˚-180˚ region and 

(b) 180˚-360˚ region with respect to the incident wave maximum displacement. 

The scattered wave field shown in Fig. 5.3.7 are similar with the exception of the lobe at 

approximately 180˚ decreasing in relative amplitude as crack size increases. It is unsure why this 

particular lobe is relative smaller than the lobe at approximately 0˚ since it is expected minor different 

in pattern under this region. This may be an effect due to angle of incidence, however, future 

investigation is required to determine this discrepancy. The FE results suggest that the scattered wave 

field due to the presence of a small crack can be equivalent to a point source if the scattered wave 

pattern is independent of crack lengths and the scattered amplitude increases with a2. The quadratic 

trend can be seen in the 0˚-180˚ regions in Fig. 5.3.7 and 5.3.8. Beyond a/λ>0.10, the increasing rate 

begins to stagnate. ‘ 

The experimental SH0 wave patterns indicated similar amplitude trend and features to the FE results, 

refer to Fig. 5.3.7. The experimental and computational SH0 wave patterns both showed weak 

scattering behind the hole between 240˚ and 330˚ and maximum scattered amplitude near 0˚. Two 

lobes at approximately 60˚ and 120˚ are apparent in FE and experimental wave patterns, refer to Fig. 

5.3.9 and 5.3.10. 
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Figure 5.3.9: Snapshot of experimental scattered SH0 wave field at time 40μs for (a) a/λ≈0.14, (b) a/λ≈0.16 and 

(c) a/λ≈0.20. 

 

 

Figure 5.3.10: Experimental and computational comparison of the normalised scattered wave polar plot of SH0 

waves with respect to the incident wave maximum displacement for (a) a/λ≈0.14, (b) a/λ≈0.16 and (c) a/λ≈0.20 

 

In Fig. 5.3.10, there is a difference at the 90˚ between FE and experimental results. It is observed that 

the edge-guided wave leaks at the crack tip and propagating into the medium. This effect is similar to 

leaking Rayleigh wave observed by previous studies [32, 168], although it is considered a likely 

effect due to long crack lengths. 

The crack scattered a dominant SH0 and a weak S0 wave. Experimental data in the radial component 

is particularly very weak compared the angular component. Consequentially, only the experimental 

scattered SH0 results were analysed and compared to the FE results.  

The scattered leaky edge wave was also observed attenuating in the medium, similar to the Doherty 

and Chiu [13] scattering SH0 spiralling effect. The spiralling SH0 is the coalescing of the scattered 

SH0 wavefront from the crack and the leaky edge wave, resulting in the spiralling appearance [165]. 
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Later, it evolves to resemble the wave pattern of a source located at the crack which is shown in this 

study. Further study is required to analyse the attenuation of circumferential edge wave and its 

dependences.  

 

5.4  Conclusion 

 

Three key studies are investigated in this chapter on the effect of a hole diameter, the scattering of 

fundamental S0 waves and symmetric edge-guided wave by the hidden crack. 

The findings in the investigation of Lamb-wave (S0) scattering due to small notch on an open hole 

with different diameter are discussed. Provided the impinging wavelength is smaller than the hole 

diameter, creeping waves are perceptible, otherwise it will immediately leak to the medium. A 2D 

FFT analysis indicated the dominant presence of the SH0 mode in the scattered wave field. The SH0 

spiralling effect has been explained as being due to SH0 source-like waves guided by leaky edge 

waves, and it has been shown to be strongly dependent on hole diameter relative to wavelength. The 

scattered field at first has the appearance of a spiralling SH0 wave, but later evolves to resemble the 

wave pattern of a source located at the notch tip. The guided edge waves can direct the scattered SH0 

waves to an accessible region where damage detection can be conducted. These scattering phenomena 

suggest that the scattered SH0 waves can be utilised to characterise the defect.   

The scattered wave field of a low frequency circumferential edge wave with a small crack on a hole 

in an isotropic plate has been reported. In study the hole was significantly large to allow edge-guided 

to creep around the hole to impinge with a hidden crack. It was shown for small crack length, 

a/λ<0.10, the scattered pattern is independent of crack size which suggest the scattered wave field can 

be represented as a point source consisting of a particular combination of force doublet at the location 

of the crack mouth. The scattered SH0 and S0 wave amplitude and reflected and transmitted 

amplitude for the circumferential edge guided wave are proportional to crack length squared a2.  
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The scattered wave field of a fundamental symmetric Lamb wave mode with a small crack on a hole 

in an isotropic plate has been reported. In this particular study, the hole diameter is significantly small 

so that edge-guided wave cannot propagated around the hole boundary, so only incident S0 impinged 

with the hidden crack. It was shown for small crack length, a/λ<0.10, the scattered pattern is also 

independent of crack size and the scattered SH0 and S0 amplitude increases like a2, when impinged 

by an incident S0 wave. This also suggests that the scattered wave field by incident S0 can be 

represented as a point source.  

The findings in these hole studies, the scattering due to a small can is equivalent point source model 

when impinged by incident S0 or incident edge-guided wave. It is demonstrated that for hole diameter 

larger than the incident wave, waves can creep around the hole and propagates to the hard-to-inspect 

location. Furthermore, the studies have provided scattered wave measurements; amplitude and 

pattern, and its relationship with crack length which indicate the possibility to characterise the small 

crack on a hole as a simple source representation. This addresses the inverse problem of detecting and 

quantifying hidden cracks in hard-to-inspect location, based on scattered field measurements for an 

incident symmetric Lamb wave mode and edge-guided wave. In the next study, this research proceeds 

to a more complex geometry; rectangular slot, to show that edge-guided waves can be travel to 

hidden location and then  
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Chapter 6  

The experimental and computational study on the scattering of 

fundamental edge-guided wave by a hidden crack on a 

rectangular curved slot 

 

6.1 Introduction 

 

This chapter reports on the investigation of scattering by a hidden crack on a rectangular curved slot 

with incident symmetric edge-guided waves. The study tackles on detecting and quantifying crack in 

a hard-to-inspect location by using the key findings from the previous chapters of the edge crack and 

hole. Both experimental and computational investigations were conducted to determine the scattered 

wave patterns and amplitudes due to the presence of small crack when impinged by symmetric edge-

guided waves. This is done for quantitative inspection in structural health monitoring (SHM).  

The objective of this study is to investigate the interaction of incident symmetric edge-guided wave in 

a plate with a small hidden crack (relative to the incident wavelength) in the shadow zone of the 

rectangular slot. It is highly advantageous to utilise edge-guided waves for SHM, since they do not 

decay with propagation distance on a straight boundary. However, edge-guided waves propagating 

around the curved surface will decay at a rate dependent on d/λ and Poisson’s ratio. The characteristic 

lengths in this problem are configured such that the edge-guided wave impinges with the crack at the 

upper surface of the rectangular curved slot. The scattered wave pattern and amplitude for crack 

length dependence will be reported on and compared to the previous findings of edge crack problem 

[164, 167] and hole problem. 
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In the case of bulk waves, it is known that scattering by an infinitesimal crack is equivalent to the 

wave field from a particular combination of body- force doublets [27]. The Lamb wave scattering by 

a small edge crack is expected to have similar force doublets equivalents [164, 166]. This point 

source equivalence indicates that the scattering pattern should be relatively independent of crack size 

and should increase quadratically with increasing a/λ. It is expected that a hidden crack on the 

rectangular slot can be represented as a point source on its boundary. 

The study is a forward scattering problem of a known crack length and location. This is a necessary 

study before tackling the practical inverse problem of quantifying and detecting the crack size, based 

on scattered wave field measurements. 

 

6.2 Methodology  

 

 

Figure 6.1: Time snapshot of the experimental wave field in the vertical component of the edge-guided wave 

propagating around the rectangular curved slot at 20, 40, 60 and 80µs 
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The excitation frequency is selected to be well below the cut-off of 1.53MHz-mm for the first order 

symmetrical Lamb wave mode SH1 for aluminium [33]. Hence, the only propagating Lamb waves 

are the fundamental modes S0, SHO and A0.  

The symmetric modes can be generated by the application of force distributions that are symmetrical 

with respect to the plate’s mid-plane. Likewise, a symmetric edge-guided wave can also be generated 

by mid-plane symmetric forces applied along a straight edge. This symmetric edge wave can be 

regarded as the plane stress analogue of the Rayleigh (surface) wave. The corresponding wave speed 

can therefore be obtained from the Rayleigh wave speed by using the familiar change of elastic 

constants to convert plane strain results to plane stress [18]. Symmetric edge wave can propagate on a 

curve surface as shown in Fig. 6.1. However, it will decay and travel with a wave speed slightly 

slower than the ones propagating along a straight boundary. At critical d/λ value, these leaky 

circumferential edge-guided waves cannot propagate on a curve surface without attenuating into the 

medium. 

 

Figure 6.2: Baseline subtraction of total wave field with crack and original wave field without crack to obtain 

the scattered wave field due to the presence of a hidden crack 

 

In order to analyse the scattered wave displacement field associated with the small hidden crack, a 

baseline subtraction is employed. The crack length a is assumed to be a<<λ, where λ the wavelength 

of the incident wave. For this crack size limitation, the incident field can be expected to consist 

primarily of the edge-guided wave. The contribution of the other propagating modes along the edge is 

negligible. For small cracks, the scattered field can be expected to be like that of a point source 
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located at the crack tip and with the strength of the point source being proportional to some power of 

the crack length. This point source equivalence also suggests that the scattering pattern should be 

relatively independent of crack size. It is anticipated that the scattering of Lamb wave should share 

similar features to the previous study on a hole and edge crack problem [164, 166].  

 

6.3 Computational Procedure 

 

In the computational study, ANSYS 15.0 is used as the Finite Element (FE) computational analysis 

tool to simulate Lamb wave in a 450mm x 450mm aluminium plate of 3mm thickness (density 

2700kg/m2, Poisson ratio of 0.33 and Young modulus of 69 GPa), refer to Fig. 6.3. A through-

thickness rectangular curved slot is located at the centre of the plate. The slot curves are modelled as 

semi-circles with 25mm radius, and the total length of the slot is 150mm, refer to Fig. 6.3. 

 

Figure 6.3: Model configuration of the rectangular curved slot centre in a 450 x 450 x 3 mm aluminium plate 

and close-up diagram of rectangular slot showing excitation and crack location. 

 

The crack is located on the upper straight boundary of the slot, refer to Figure 6.3. The plate is 

discretised into 0.5mm 8-node linear hexagonal elements which satisfy the requirement of 10 

elements per λ for accurate modelling [147]. The time step is set at 0.02 µs, which well satisfies the 
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standard stability criterion for Explicit Time Integration of being less than or equal to 0.8L/C, where L 

denotes the smallest element length and C is the fastest wave speed [148]. The defect is modelled as a 

0.5mm width notch to avoid crack face contact. The dependence of scattered amplitude with crack 

length is investigated by varying the crack size, a, from 0.5mm to 4.5mm with 0.5mm increments. 

The incident edge-guided wave is generated approximately 8λ propagating distance away with the 

line force acting direction normal to the edge surface at (195, 200). To minimise dispersion, the line 

force excitation signal perpendicular to the slot straight edge (refer to Fig. 6.3) is chosen to be a 5.5 

cycle Hann-windowed tone burst with a centre frequency of 220 kHz. At this centre frequency the 

wavelength of S0, SH0 and symmetric edge wave are 22.2mm, 14.0mm and 13.4mm, respectively 

[33]. It is noted that the wavelength of circumferential edge wave is slightly larger than the 

wavelength of symmetric edge waves travelling on a straight boundary; thus circumferential edge 

wave propagates relatively faster. 

2D Fast Fourier Transformation is performed on the nodes along the straight boundary and along the 

line 45° from the crack base edge, as indicated in Fig. 4.1.2(b), to create the dispersion curve in order 

to identify the dominant Lamb wave mode from DISPERSE [33]. Another scan was performed along 

the boundaries of the rectangular slot to determine the leaky edge-guided wave modal content. The 

2D FFT spatial distance is taken at least 3.5 wavelengths away from the crack base to avoid detection 

of higher non-propagating Lamb waves and approximately 10λ distances with 1024 equidistant 

spatial samples with zero padding [147].  

The maximum amplitude of the associated signals was used to measure the scattered wave amplitude 

and to construct the scattering wave pattern in a polar plot. This is done by taking the maximum peak 

of Hilbert transformation over the time domain signals measured at point Q which is at a distance 

approximately 10λ away, refer to Fig. 6.4.  

The scattered wave amplitude is analysed in the region from 0˚ to 180˚ centred at the crack base refer 

to Fig. 6.4 and the maximum scattered displacements were measured at 30˚, 60˚, 90˚, 120˚ and 150˚ 

in radial (r) and angular (θ) components. The amplitudes of the back-scatter and forward-scatter edge 
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waves were also analysed by taking the scattering displacements along the rectangular straight 

boundary. 

The scattered S0 and SH0 wave pattern results are then normalised to account for the cylindrical 

wave decay, which is at a rate inversely proportional to the square root of propagating distance, and 

relative to the maximum incident edge wave displacement. For the purpose of analysing the wave 

pattern dependence with crack size, the amplitude is normalised relative to the maximum amplitude 

of the scattered wave field. This leaky edge wave attenuation over the curved boundary is measured, 

by taking the Hilbert transformation to obtain the maximum value, as a function of distance-to-

wavelength ratio and briefly reported. This geometry decay is also accounted for in the normalisation 

process to analyse the scattered edge waves. 

 

6.4 Experimental Procedure 

 

A 5005H34 aluminium alloy plate with the same FE model configuration is considered as the test 

specimen for the experimental study. The plate is secured on a XY positioning system, as shown in 

Fig. 6.3 and the experimental rig is mounted on a DAEIL system vibration isolation optical table to 

minimise background vibration. The in-plane velocity components of the propagating Lamb waves 

were acquired by Polytec CLV 3D automated laser vibrometer. In order to enhance the data quality a 

Polytec retro-reflective sheet is attached to the aluminium plate. A PZ26 transducer of diameter 

16mm and thickness 2mm was bonded to the straight edge of the rectangular slot to generate incident 

edge-guided waves refer to Fig. 6.4. This bond location is not applicable in real structures but 

significant in research to generate edge-guided waves. Since the plate thickness is smaller than the 

PZT diameter, it is difficult to bond the PZT on the edge of the plate. Furthermore, extreme care is 

need when handling the specimen since the PZT can be easily detached. The transducer was 

nominally placed symmetrically with respect to the plate’s midplane, in an attempt to generate only 

the symmetric modes. However, it was found to be difficult in practice to avoid some asymmetry, 

which results in the generation of weak antisymmetric modes as well. There is no mode coupling due 
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to the scattering process because the crack geometry is symmetrical with respect to the plate’s 

midplane. This means an incident symmetric wave generates only symmetric scattered modes and 

vice versa for the antisymmetric wave. The symmetric wave modes can be analysed in their dominant 

in-plane components. However, since the scattered S0 signal is particularly weak, only the SH0 

scattered wave amplitude and patterns are analysed in the experimental study. It should be noted that 

the weak signal of non-dominant modes can still be detected due to the nature of Lamb waves.  

 

Figure 6.4: (LEFT) Laser vibrometry setup showing 450 x 450 mm aluminium plate with retroreflective sheet 

mounted on the positioning system (RIGHT) Close-up image of crack and PZT bonded on the rectangular slot 

edge. 

 

In the experimental investigation, 0.4mm width notches are artificially created to prevent wave 

transmission through the crack surface as shown in Figure 6.4. The notch of lengths 2.59mm, 3.49mm, 

and 4.64mm scattered wave patterns are investigated. The post-processing of data is the same in both 

computational and experimental investigations.  
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6.5 Results 

 

A 2D FFT processing was used to identify the dominant wave modes in conjunction with Lamb-wave 

dispersion curves from DISPERSE, as shown in Fig. 6.5. The scans taken along the 45˚ line from the 

crack base have indicated a dominant scattering S0 and SH0 wave in the radial and angular 

components, respectively. Thus, the scattered S0 and SH0 wave amplitudes and patterns are analysed 

in their respective dominant cylindrical components. The 2D FFT scan along the straight boundary of 

the slot indicated a propagating symmetric edge-guided wave whose speed is similar to the Rayleigh 

wave speed. The scattered edge wave amplitude does not decay as it propagates on the straight 

boundaries. However, as the edge wave travels along the curve boundaries it leaks energy into the 

medium at a rate inversely proportional to a power of 0.55 over propagating distance for d/λ≈3.7, 

refer to Fig. 6.6. The FE and experimental scattered edge-guided wave results were normalised to 

account for this decay and compared with the analytical Rayleigh wave case. 

 

Figure 6.5: (a) Plots of 2D FFT FE dispersion curve indicating (a) a dominant S0 wave in the r component; (b) 

a dominant SH0 wave in the θ component; (c) a symmetric edge-guided wave along the straight boundary. 



140 

 

 

Figure 6.6: The experimental and FE attenuation of incident circumferential edge wave displacement over the 

circumference. Interpolation line indicates a rate of inversely proportional to power of 0.55 over 

distance/wavelength. 

 

 

Figure 6.7: FE normalised scattered wave polar plot of SH0 waves with respect to the incident wave maximum 

displacement. (a) 0.04≤a/λ≤0.19; (b) 0.22≤a/λ≤0.34. 
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Figure 6.8: FE normalised scattered wave polar plot of S0 waves with respect to the incident wave 

maximum displacement. (a) 0.04≤a/λ≤0.19; (b) 0.22≤a/λ≤0.34. 

 

Figure 6.7 portrays the scattering pattern for SH0 mode for various crack lengths. For a/λ≤0.19, the 

SH0 wave pattern remains symmetrical along the 90˚ line. However, as crack length increase beyond 

this limit, the wave pattern is asymmetrical and has a relatively larger back-scatter lobe, which is 

approximately twice as large than the forward-scatter lobe. The a/λ≈0.19, 0.26, and 0.34 experimental 

scattered wave pattern results indicated a strong bias back-scatter lobe as well and have shown good 

correlations with the computational results, refer to Fig. 6.9. There is also an additional contribution 

of the leaky edge-guided wave in the scattered SH0 wave pattern as shown in Fig. 6.7 in the 150˚-

180˚ region.   

Fig. 6.8 shows the scattering pattern for S0 wave for various crack lengths. Similarly to the SH0 

waves, the S0 wave pattern remains the independent of crack length for a/λ≤0.19. As crack increases, 

the back-scatter S0 lobe becomes relatively larger than the forward-scatter lobe and hence, no longer 

retains its symmetrical pattern. The S0 and SH0 scattered wave pattern results are very similar to a 

previous edge crack problem investigation.  
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Figure 6.9: (TOP) Snapshot of experimental in the angular cylindrical component showing a dominant 

scattered SH0 wave field at time 70μs and (BOTTOM) Experimental and FE normalised scattered SH0 wave 

patterns for (a) a/λ≈0.19, (b) a/λ≈0.26 and (c) a/λ≈0.34 

 

The S0 and SH0 scattered wave displacements have indicated increasing quadratic trend with respect 

to crack length until approximately a/λ≈0.19 as shown in Fig. 6.10. As crack length increases beyond 

a/λ>0.19, the scattered wave displacement no longer increases with crack length. The forward and 

backward scattered edge wave maximum displacements are of similar magnitude and increases as a 

function of a2 until a/λ≈0.11, refer to Fig. 6.11. The forward scattered edge wave becomes dominant 

as crack length increases. The experimental scattered wave displacement trends are similar to the 

computational wave displacement.  
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Figure 6.10: FE and experimental results: Normalised scattered SH0 wave displacement for various a/λ and (b) 

FE results: Normalised scattered S0 wave displacement for various a/λ with respect to the incident wave 

maximum displacement 

 

 

Figure 6.11: Experimental and computational comparison of the normalised scattered wave displacement of the 

edge-guided waves with respect to the incident wave maximum displacement, compared with analytical 

Rayleigh wave case[129] 
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6.6 Discussion 

 

The FE results indicated that for relatively small crack a/λ≈0.19, the scattered S0 and SH0 wave 

patterns are independent of crack length, and the scattered wave displacement increases with crack 

length squared. This suggests that the scattered wave pattern due to a crack with length a/λ<0.19 is 

equivalent to the radiation field produced by a point source.  

At approximately 0.2 depths to wavelength ratio, the Rayleigh wave retrograding particle motion and 

stress reverse. This is similar to symmetric edge-guided wave particle displacement and stress. Under 

a/λ<0.19, the incident edge wave has a dominant normal stress component σxx, and minimal shear 

stress component σxy, as shown in Fig. 6.12. 

The normal stress gives rise to a mode I crack opening whereas the shear stress gives rise to a mode II 

crack opening. For small, relative to incident wavelength, the mode I crack opening generate a 

scattered field that is the as that of a force doublet as shown in Fig. 6.13. This field is symmetrical 

with respect to θ = 90°. The mode II crack opening generates a scattered field that is the same as that 

for the force doublet. However, this field is asymmetric with respect to θ = 90°. Therefore, under the 

cut-off limit a/λ<0.19, the point source representation consists of a primarily perpendicular forcing 

component for a small crack impinged with an incident symmetric edge-guided wave. 

 

Figure 6.12: Stress variations associated with the incident edge wave, as a function of depth y from the edge 



145 

 

 

Figure 6.13: Scattered wave field representation due to the contribution of force-doublets associated with the 

mode I and mode II crack opening displacements 

 

The scattered symmetric edge-guided amplitude has a similar trend to the analytical result of 

Mendelsohn et al. [129] for the corresponding plane strain problem as shown in Fig. 6.11. It can be 

seen that there is a reasonably good agreement for approximately a/λ≈0.11. The inaccuracy for larger 

crack size is because the FE and experimental results of the incident wave include some contribution 

from the bulk wave modes, whereas the incident wave for the analytical results is purely Rayleigh 

wave. Thus, this difference also applies for the scattered wave.  

The results showed that the scattering amplitude appears to increase quadratically, which is in 

agreement with the theoretical expectation [119]. In a previous edge crack problem [164], a linear 

trend was observed for 0.07<a/λ<0.22. The normal and shear stress variation within 0.07<a/λ<0.22 

(refer to Fig. 6.12) are the reason for the linear increase of scattering amplitude with crack size. In 

this hidden crack study, a smaller crack length a/λ≈0.04 was also investigated. Hence, a more obvious 

quadratic trend is observed for the values a/λ<0.19.  

Beyond the cut-off limit, the point source representation is no longer valid as the stress profiles and 

crack opening displacements vary rapidly, refer to Fig. 6.12.  It can be seen that the normal stress is a 

maximum at the surface and decays to zero for y/λ≈0.2, and it is negative after that. On the other hand, 

the shear stress increases to a maximum at y/λ≈0.2. This maximum value is less than half the 

maximum value of the normal stress. These characteristic of the stress distribution serve to explain 

the feature of the asymmetry wave pattern results. 
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For a/λ<0.19, the normal stress is much larger than the shear stress, and accordingly the mode I 

contribution dominates the scattered wave field. This explains why the scattering pattern is 

symmetrical for small crack but becomes asymmetrical as crack length increases beyond this value 

due to the dominant contribution of shear stress, refer to Fig. 6.7 and 6.8.  

Based on the principle of superposition [20], the scattered wave pattern can be produced by applying 

opposite baseline stress profile as a function of depth on the crack face for a crack size larger than 

a/λ≈0.19.  

For potential crack detection, it is observed that the scattered edge-guided wave coalescing with the 

scattered SH0 wave can redirect back to the location of the PZT. This suggest if edge-guided waves 

can be generated on the slots edge, which can also be done by mode conversion with incident 

symmetric wave modes, a hidden crack can be detected. The relationship scattered wave 

measurements; amplitude and pattern, and crack length can be exploited to characterised small crack. 

The scattering S0 wave is found to be significantly weaker than SH0 mode and was difficult to detect 

experimentally. It will be more beneficial to use all fundamental symmetric Lamb wave 

measurements to assess the crack, thus enhance techniques to detect the weaker S0 wave should 

further be investigated in future.  

Smaller crack lengths were also investigated, however only experimental scattered wave 

measurements of crack lengths larger than 2.59mm were detected, hence was not reported in this 

study. This is a noteworthy limitation as it requires high performance transducers to detect and 

integrated into complex structures if implemented for SHM systems.   

The possible crack characterisation strategy, based on these research findings, is explained as follows. 

The strategy consists of excitation of Lamb waves at different low frequencies to impinge with the 

hidden defect. A specific frequency is recorded when scattered wave pattern starts to be crack length 

dependent and  scattered wave pattern stop varying quadratically with crack length. At that particular 

frequency, we can characterise the crack length based on point source equivalence cut-off limit i.e. 

a/λ≈0.19. This can be repeated by using scattered S0, SH0 and edge-guided waves for confidence and 
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accuracy. This particular strategy will involve accurately acquiring scattered wave patterns. The range 

of frequency for this strategy is determine by SH1 cut-off and  minimum frequency needed so the full 

scattered wave trains can be measured. Based on this studies aluminium plate geometry, it is 

estimated that frequency range of 100 kHz to 500 kHz can be excited to predict crack size of 

approximately 1mm-7mm. 

 

6.7 Conclusion 

 

The findings of the previous hole and straight edge problems established the configuration and 

technique to detect a hard-to-inspect crack on a rectangular slot. The rectangular slot problem is an 

extension to the previous problems by combining the two previous problem unique features; curve 

and straight boundary, to form a complex application. 

It has been shown that incident symmetric edge-guided waves can propagate along the rectangular 

slot boundary and impinge on small hidden crack. The ability for symmetric edge-guided waves to 

propagate on a curve boundary strongly depends on the diameter to incident wavelength ratio. Thus, 

the symmetric edge-guided wave serves as an essential incident propagating wave to detect and 

quantify cracks in hard-to-inspect location for SHM. 

It has been shown in this study that for a small crack, in the range of a/λ<0.19, the scattering wave 

pattern is independent of crack size and the scattering amplitude increases quadratically with the 

crack size. In particular, the FE scattered wave directivity and scattered amplitude variation with 

crack size were investigated and are in good agreement with the experimental findings. The scattered 

wave amplitudes and patterns are very similar to the results found in the previous hole and straight 

edge investigations. 

The study has shown a potential technique to propagate waves in the shadow zone and interaction 

with a small crack on a complex geometric shape. The scattered wave amplitudes and patterns vary 

with crack size and, thus, serve as a key measurement tool for crack detection and quantification. A 
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strategy is reported by using sequence of multiple frequencies to determine when the scattered wave 

measurements cease to be a point source model. The research established a fundamental groundwork 

before tackling the inverse problem of detecting and quantifying hidden crack, based on the scattered 

wave field measurements. 
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Chapter 7  

Summary 

 

The aim of this thesis was to develop new knowledge that will enable the scattering Lamb wave 

measurements based structural health monitoring techniques to be successfully applied to complex 

and unitised components. Over the past few decades, Lamb wave propagation has been a very active 

field of research for non-destructive evaluation purposes in ideal and complex structures. Although 

the advanced unitised components significantly improve the aircraft performances, the conventional 

methods for structural health monitoring are not optimal for these components. Hence, the new 

manufacturing design and technology pose a significant challenge for SHM. Therefore, there is a lack 

of development in diagnosis methods to address the anticipated challenging problems of damage 

detection and quantification in hard-to-inspects in future structures.  

The thesis presents a systematic study to investigate the pre-requisite problems of edge crack and hole 

before extending the research to a hard-to-inspect rectangular slot problem. The approach was to 

conduct the studies as a forward scatter problem of known crack geometry and location but an 

unknown scattering wave field. This will give comprehensive insight into the inverse problem of 

crack characterisation based on scattering wave measurements. 

The experimental and computational investigations primarily explored the scattered wave pattern and 

amplitude variations due to varying crack length. The findings have shown for small crack size 

(relative to incident wavelength) the scattered wave field can be represented as the field produced by 

a point source. This was anticipated for Lamb wave scattering since it is already known that bulk 

wave at an infinitesimal small crack is equivalent to point source consisting of a particular 



150 

 

combination of body-force doublets. The point source representation suggests that the scattered wave 

pattern is independent of crack size and the scattered wave amplitude increases proportionally to the 

integral of the crack opening displacement. The results indeed indicated that the Lamb wave 

scattering is of point source equivalence.  

 

7.1  Scattering of symmetric waves by edge crack in isotropic plate 

 

The first topic chapter involves a computational investigation to study the scattering of symmetric 

Lamb waves by edge crack on a straight boundary in an aluminium plate. The S0 and SH0 scattered 

wave patterns and amplitudes change as crack length and incident angle increase. The scattered wave 

pattern remains symmetrical and independent until a/λ≈0.23, where the pattern becomes asymmetrical. 

Stresses beyond this limit change rapidly resulting in asymmetrical wave pattern. Under this cut-off 

limit, the variation of stresses is simple and thus, the small crack is equivalent to a point source. 

A second set of investigations has shown that by applying the opposite baseline stresses as traction on 

the crack faces, very similar wave patterns to the scattered wave fields due to the presence of a small 

crack are produced. The results indicated that for small cracks, a scattered wave field could be 

modelled as body-forces. The combination and strength of the body forces relate to the normal and 

shear baselines stresses. For example, at lower incident angle, the normal stress is much larger than 

the shear stress, and accordingly, the perpendicular forcing dominates the scattered field. It is noted 

that the normal stress corresponds to a mode I crack opening displacement and shear stress gives rise 

to a mode II crack opening displacement. 

The first study established the fundamental understanding of scattering due to a small crack impinged 

by an incident symmetric Lamb wave. For a given cut-off limit, the existence of small crack can be 

modelled as point source approximation, whose body-force strength depends on the incident angle 

and crack length. Furthermore, the study indicated that scattered wave directivity and amplitude could 

be utilised to locate and quantify crack.  
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7.2  Scattering of edge-guided waves by edge crack in isotropic plate 

 

The second topic chapter investigates the scattering of symmetric and antisymmetric edge-guided 

wave by edge crack on a straight boundary in an aluminium plate. Edge-guided waves travelling on 

straight boundary has no geometric decay over propagating distance, which makes them highly 

advantageous for SHM. Since the model configuration and force excitation are symmetrical with 

respect to the midplane of the plate, only symmetric waves mode scatter symmetric waves mode and 

only antisymmetric waves mode scatter antisymmetric waves mode. 

For the incident symmetric edge-guided wave, the S0 and SH0 scattered wave patterns remain 

symmetrical and independent of crack length until a/λ≈0.22 before becoming asymmetrical. This 

asymmetrical feature is due to the additional contribution of the shear stress component. For the 

incident antisymmetric edge-guided wave, the A0 scattered wave pattern remains symmetrical 

throughout all investigated crack lengths. Both experimental and computational wave pattern and 

amplitude results have shown in good agreement.  

At approximately 0.2 depths to wavelength ratio, the Rayleigh wave and edge-guided wave particle 

motions and stresses reverse direction. Under this cut-off limit, the symmetric edge-guided wave 

normal stress is dominant than the shear stress component and thus, the small crack is equivalent to a 

simple point source consisting primarily of perpendicular forcing components. Similarly, for the 

antisymmetric edge wave incidence, the small crack is equivalent to a point source consisting of a 

combination of body-forces, which corresponds to the mode II and mode III crack opening 

displacements. The shear stresses, σxy and σxz, give rise to mode II and mode III cracking, 

respectively.  

For crack size a/λ<0.22, the scattered wave amplitudes for the symmetric edge guided wave have 

shown similar trends to the analytical Rayleigh wave scattering. Furthermore, the scattering 

amplitudes for the scattered wave into the plate are observed to increase linearly with the crack length 

a. For the antisymmetric edge-guided wave, the quadratic trend is more apparent within the range of 
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a/λ<0.2. The scattered wave fields by edge crack were investigated and had shown informative 

scattering behaviour for potential crack quantification. The point source model can be used for 

characterising small crack severity when propagating edge-guided waves for non-destructive wide 

area inspection.  

 

7.3  Scattering of fundamental Lamb wave mode by an edge crack at circular 

hole in isotropic plate  

 

The third topic chapter investigates the scattering of symmetric Lamb wave by an edge crack at a 

through-thickness circular hole in an aluminium plate. If the impinging wavelength is smaller than the 

hole diameter, edge waves can creep around the hole boundary. This circumferential edge wave also 

leaks energy to the medium as it propagates along a curved surface at a decay rate depending on 

diameter to wavelength ratio and Poisson’s ratio. The wave speed, which is similar to the Rayleigh 

wave speed, also depends on these parameters. 

A scattered SH0 source-like wave guided by leaky edge portrayed a SH0 spiralling effect. The SH0 

scattered wave has the appearance of a spiralling SH0. But later in the far-field, it resembles a point 

like source located at the crack tip. This spiralling effect is perceptible for a particular range of 

diameter to wavelength ratio. 

An investigation was mode for an incident leaky circumferential edge-guided wave, which was 

excited to impinge on a small crack on the hole. This study is an extension to the edge crack on 

straight boundary problem with an impinging edge-guided wave. Thus, the results found in this 

investigation are similar to the previous edge crack problem.  

The investigation proceeds to an incident symmetric Lamb wave mode and the geometry was 

configured such that the crack is in the shadow zone of the incident wave. The configuration of the 

model has limits such that the edge-guided wave cannot propagate along the curve boundary but 

instead attenuates to the medium. So, the primarily incident wave is the fundamental symmetric Lamb 
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wave mode. However, the scattered waves produced by the incident symmetric wave mode are 

weaker than the one produced by edge-guided wave incidence. Furthermore, both experimental and 

computational results have shown good correlation with the scattered wave pattern and amplitude. 

For both incident symmetric edge-guided wave and incident symmetric wave mode, the S0 and SH0 

scattered wave pattern and amplitude results acquired are very similar. For a/λ<0.10, the scattered 

pattern is independent of crack size and the scattered wave amplitude are proportional to crack length 

squared a2. This suggests that the scattered wave field can be represented as a point source, which 

consists of a particular combination of force doublets at the location of the hole boundary. 

 

7.4  Scattering of edge-guided wave with a hidden crack on a rectangular 

curved slot in isotropic plate 

 

The last topic chapter tackles on detection of a hidden crack on a rectangular curved slot in an 

aluminium plate. The previous findings aid the configuration to construct this hidden crack problem.  

The symmetric edge-guided wave is excited on the bottom straight boundary of the rectangular slot. 

The incident wave leaks energy as it propagates around the curved surface and then impinges on a 

hidden crack on the top straight boundary of the slot. It is expected and shown that the scattering field 

of the crack will give similar results to the previous edge crack problem. Experimental results of the 

scattered wave pattern and amplitude are in good agreement with the findings from the computational 

investigation. Since a smaller crack size was investigated in this study, an obvious quadratic trend 

was perceivable for the scattered wave amplitude variation with crack dependence in the limit 

a/λ<0.19 for point source equivalence.  

The guided edge waves can propagate to the hard-to-inspect areas and scattered waves to an 

accessible region where damage evaluation is possible. Furthermore, the scattered wave 

measurements can be utilised to characterise the defect in hard-to-inspect location for SHM. 
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7.5  Implication for crack detection and quantification 

 

The research focuses on the forward scattering problem to determine the scattering phenomena, based 

on known crack geometry. The study primarily investigated scattered wave field with the crack length 

dependence for crack on the straight boundary and hole, as well as hidden cracks. The scattered wave 

field also depends on the incident angle of an impinging symmetric Lamb wave mode.  

It is shown that for small crack size (relative to the incident wavelength) can be approximated as a 

point source for the Lamb wave case. The feature of scattered wave pattern independence and 

scattered wave amplitude increases as a function of crack length squared, suggesting a point source 

representation. Additionally, the edge-guided wave propagation has shown the ability to interact with 

hidden crack. This implies the effectiveness of edge-guided waves to direct waves to hard-to-inspect 

areas. 

The study provided insights that both scattered wave pattern directivity and amplitude variation can 

be employed for non-destructive crack evaluation. Furthermore, the point source approximation of a 

small crack can be applied to characterise cracks before critical size is reached. 

The fundamental sciences are explored on the scattering phenomena of a crack in this thesis. The 

thesis provided understanding in the area of Lamb wave and engineering knowledge to provide the 

basis for innovative inspection technique. Further studies can develop from this basis to address the 

other possible complexities of extending the use of Lamb wave scattering for structural integrity 

management. 

 

7.6  Future work 

 

This research showed findings on the most basic levels of configuration to allow future studies to 

develop. In this study, it was demonstrated that edge-guided waves were able to propagate around to 

the blind of sight location. It would be useful to analytically investigate the attenuation of leaky edge 
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waves propagating around the curve surfaces for both symmetric and antisymmetric edge-guided 

waves. 

An investigation on a partial-thickness edge crack is also worth studying. Due to the defect 

asymmetry about the midplane, it is expected that the modes will be coupled in the scattering process. 

One may also apply a more practical idea of generating a fatigue crack, or model a closed crack with 

different orientations for research. 

Lamb waves have been studied in metallic structures, however, extensive studies have been 

increasingly published on Lamb wave propagation to characterise delamination in composite 

materials [169-172]. This is a resulted because the use of composite materials has significantly 

increased in the majority of industries, such as aerospace, automotive and civil due to their 

advantageous properties which include their light weight and high specific stiffness characteristic. 

However, most studies on Lamb wave in composite relies on computational simulation since 

analytical models of Lamb wave scattering at defect do not exist for composite. Thus, studies 

commonly investigate composite by first attempting and comparing to the equivalent isotropic model 

[169]. This research approach is to investigate simple analytical models for quantifying small defects 

in an isotropic plate which can be later incorporated into composites materials. It should be noted 

defect in a composite, such as delamination, is entirely different study and should be considered as a 

part of future work. 

Although, in practice, the researchers favour a method in which the signals are simple as possible, 

studies on the second harmonic generation of elastic waves propagating in a nonlinear and dispersive 

medium have shown to be more effective in monitoring fatigue crack before crack initiation. 

Nonlinear Lamb wave propagation is subjected to considerable attention because the non-linear 

parameters are much more sensitive to defect than the linear parameters [173-176]. The acoustic 

nonlinearity parameter is an intrinsic material parameter which is obtained from the magnitude of the 

second order harmonic. In contrast to linear ultrasonic methods, nonlinear ultrasonic wave methods 

showed more potential to quantitatively assess early damage, especially for fatigue crack which is 

caused by plastic deformation. It is expected future studies will revolve around nonlinear wave 
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propagating for effective crack detection due to nonlinear guided waves are much more suited for real 

crack. However, it is known that nonlinear Lamb wave propagations are significantly more difficult 

to solve analytically. There is a lack of a novel analytical solution in complex problems such as 

composite and non-linear wave propagation which needs to be addressed. 

A multiple frequencies strategy, as explained previously, to determine the point source limit by using 

scattered wave measurement should be considered. An attempt on the inverse problem of crack 

characterisation will be a good extension to this study as well. The behaviour of the scattering wave 

field in this study focused only on the low frequency-thickness regime. Thus, further understanding of 

the scattering phenomena due to the presence of edge crack with higher order Lamb wave modes 

should be considered. More investigations are required to demonstrate whether the point source 

model can be included in high frequency excitation, nonlinear propagation, and composite materials. 
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APPENDIX A 

A.1  Elastic waves in infinite medium 

 

The governing equation of motion (d’Alembert’s principle) for a homogeneous isotropic elastic solid, 

in Cartesian tensor notation is given by: 

𝜏𝑖𝑗,𝑗 + 𝜌𝑓𝑖 = 𝜌𝑢𝑖̈       (A1.1.1) 

 

where, 𝜏𝑖𝑗  is the stress tensor; symmetric, at a point 𝑢𝑖 is the displacement vector of a point. The 

density is 𝜌 and body force per unit mass acting on the medium is 𝑓𝑖.  

Constitutive equation of stress tensor and strain tensor relationship is 

 𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜖𝑘𝑙      (A1.1.2) 

 

Where, 𝑐𝑖𝑗𝑘𝑙 is stiffness matrix. 

For an isotropic material, the stiffness matrix is expressed as 

𝑐𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)     (A1.1.3) 

 

The elastic constants for material is 𝜆 and Lamé constant is 𝜇. 
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Where, 𝛿𝑖𝑗 is the Kronecker delta tensor, 𝛿𝑖𝑗 = {
1   if i = j
0   if i ≠ j

 

Furthermore, the relationships are 

𝜎𝑖𝑗 = 𝜆𝜖𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜖𝑖𝑗       

𝜖𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)       

𝜔𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 − 𝑢𝑗,𝑖)      (A1.1.4) 

 

Here, the strain tensor is 𝜀𝑖𝑗 and the rotational tensor is 𝜔𝑖𝑗. 

By substituting into the stress-strain relations Eqn. (A1.1.3) and (A1.1.4) into the equation of motion 

Eqn. (A1.1.1), this reconfigure to the Navier’s equation, 

(𝜆 + 𝜇)𝑢𝑗,𝑗𝑖 + 𝜇𝑢𝑖,𝑗𝑖 + 𝜌𝑓𝑖 = 𝜌𝑢𝑖̈  

 

And in vector form, 

(𝜆 + 𝜇)∇(∇. 𝐮) + 𝜇∇2𝒖 + 𝜌𝒇 = 𝜌�̈�    (A1.1.5) 

 

An approach to uncouple the equation is by considering Helmholtz Decomposition Theorem. The 

above equation (A1.1.5) can be express in terms of scalar and vector potentials. 

𝒖 = ∇φ + ∇ × 𝜓  given ∇. 𝜓 = 0 

𝑢𝑖 = φ𝑖,𝑖 + 𝜓𝑘,𝑗 − 𝜓𝑗,𝑘     (A1.1.6) 

 

Again, we know, 

𝒇 = ∇f + ∇ × Π given ∇. Π = 0     (A1.1.7) 
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Considering no body forces 𝑓and  Π = 0, Helmholtz decomposition of 𝒖 can provide the scalar and 

vector wave equations of velocity 𝑐1 and 𝑐2.  

(𝜆 + 𝜇)∇∇. (∇φ + ∇ × 𝜓) + 𝜇∇2(∇φ + ∇ × 𝜓) = 𝜌
𝜕2

𝜕𝑡2 
(∇φ + ∇ × 𝜓̈ )  (A1.1.8) 

 

Since ∇. ∇φ = ∇2φ and ∇. ∇ × 𝜓 = 0 

∇((𝜆 + 2𝜇)∇2φ − 𝜌
𝜕2

𝜕𝑡2 
φ) + ∇ × (𝜇∇2𝜓 − 𝜌

𝜕2

𝜕𝑡2 
𝜓) = 0  (A1.1.9) 

 

Considering the scalar field component, we have, 

∇2φ =
1

𝑐1
2 

 𝜕2φ

𝜕𝑡2 
      (A1.1.10) 

 

And for the vector field component, 

∇2𝜓 =
1

𝑐2
2 

 𝜕2𝜓

𝜕𝑡2 
      (A1.1.11) 

Further investigation will lead to the wave equation of dilatational and distortional waves. The 

propagating wave velocities are, respectively, 

𝑐1 = √
(𝜆+2𝜇)

𝜌
= √

𝐸(1−𝑣)

𝜌(1+𝑣)(1−2𝑣)
   𝑎𝑛𝑑   𝑐2 = √

𝜇

𝜌
    (A1.1.12) 
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Figure A.1: (TOP) Longitudinal wave and (BOTTOM) Transverse wave and their particle oscillation direction 

 

𝑐1 is the wave speed of dilatational waves, which are also called longitudinal, volumetric, irrotational 

and primary (P) waves. 𝑐2 is the wave speed of rotational waves, which are also called transverse, 

shear, equi-voluminal, distortional and secondary (SV) waves, as illustrated in Fig. A.1. Given the 

condition 0 ≤  𝑣 ≤  
1

2
, longitudinal velocity is always greater than shear velocity 𝑐1 > 𝑐2. 

The ratio of the two wave speeds, 𝑘, is expressed as 

𝑘 =
𝑐1

𝑐2
= √

(𝜆+2𝜇)

𝜇
= √

2−2𝑣

1−2𝑣
     (A1.1.13) 

 

A.2  Elastic waves in semi-infinite medium 

 

Considering semi-infinite medium, where the motion is invariant with respect to z direction, the 

problem can be resolved into plane strain and anti-plane strain components. By applying boundary 

conditions and considering Snell’s law, the possible mode conversion from a single wave incident can 

be deduced.  Furthermore, the relationship between the ratio of longitudinal speed and transverse 
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speed is only depended on the Poisson’s ratio and the relationship depends on only the angle of 

incident and Poisson’s Ratio as well. 

In a situation where the motion is invariant with respect to z direction, if the wave normal is in 

vertical in the plane, the governing equations become: 

𝑢𝑥 = φ𝑥 + 𝜓𝑧,𝑦 

𝑢𝑦 = φ𝑦 − 𝜓𝑧,𝑥 

𝑢𝑧 = −𝜓𝑥,𝑦 + 𝜓𝑦,𝑥 

𝜓𝑥,𝑥 + 𝜓𝑦,𝑦 = 0 

∇2φ =
1

𝑐1
2 

 𝜕2φ

𝜕𝑡2 
        

∇2𝜓 =
1

𝑐2
2 

 𝜕2𝜓

𝜕𝑡2 
      (A1.2.1) 

 

The stress-displacement expression are given by, 

𝜏𝑥𝑥 = (𝜆 + 2𝜇)(𝑢𝑥,𝑥 + 𝑢𝑦,𝑦) − 2𝜇𝑢𝑦,𝑦 

𝜏𝑦𝑦 = (𝜆 + 2𝜇)(𝑢𝑥,𝑥 + 𝑢𝑦,𝑦) − 2𝜇𝑢𝑥,𝑥 

𝜏𝑧𝑧 =
𝜆

2(𝜆 + 𝜇)
(𝜏𝑥𝑥 + 𝜏𝑦𝑦) = 𝜆(𝑢𝑥,𝑥 + 𝑢𝑦,𝑦) 

𝜏𝑥𝑦 = 𝜇(𝑢𝑥,𝑦 + 𝑢𝑦,𝑥)       

𝜏𝑦𝑧 = 𝜇𝑢𝑧,𝑦   

𝜏𝑥𝑧 = 𝜇𝑢𝑧,𝑥             (A1.2.2) 
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The above stress equations are expressed in terms of potential as: 

𝜏𝑥𝑥 = (𝜆 + 2𝜇)(φ𝑥𝑥 + φ𝑦𝑦) − 2𝜇(φ𝑦𝑦 − 𝜓𝑧,𝑦𝑥) 

𝜏𝑦𝑦 = (𝜆 + 2𝜇)(φ𝑥𝑥 + φ𝑦𝑦) − 2𝜇(φ𝑥𝑥 + 𝜓𝑧,𝑥𝑦) 

𝜏𝑧𝑧 = 𝜆(φ𝑥𝑥 + φ𝑦𝑦) 

𝜏𝑥𝑦 = 𝜇(2φ𝑥𝑦 + 𝜓𝑧,𝑦𝑦 − 𝜓𝑧,𝑥𝑥) 

𝜏𝑦𝑧 = 𝜇(𝜓𝑦,𝑥𝑦 − 𝜓𝑥,𝑦𝑦) 

𝜏𝑥𝑧 = 𝜇(𝜓𝑦,𝑥𝑥 − 𝜓𝑥,𝑥𝑦)            (A1.2.3) 

 

The displacement components 𝑢𝑥  and 𝑢𝑦  are depended on φ  and 𝜓𝑧 , since 𝜏𝑥𝑥 , 𝜏𝑦𝑦 𝑎𝑛𝑑 𝜏𝑧𝑧  are 

depended only on these components, they are also dependent on φ  and 𝜓𝑧 . Component 𝑢𝑧  is 

depended only on 𝜓𝑥  and 𝜓𝑦  and so does 𝜏𝑦𝑧  and 𝜏𝑥𝑧 . Hence the problem can be dealt as two 

uncoupled wave motions equation. The problem can be resolve into two parts; plane strain and shear 

horizontal (SH; anti-plane).  

The boundary conditions are given by, 

𝜏𝑦𝑦 = 𝜏𝑥𝑦 =  𝜏𝑦𝑧 = 0  at 𝑦 = 0            (A1.2.4) 

 

 

In plane strain motion, the conditions are: 

𝑢𝑧 =
𝜕

𝜕𝑧
= 0 

𝑢𝑦 𝑎𝑛𝑑 𝑢𝑥 ≠ 0      𝜏𝑦𝑦 = 𝜏𝑥𝑦 = 0    (A1.2.5) 
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And in SH wave motion, the conditions are: 

𝑢𝑥 = 𝑢𝑦 =
𝜕

𝜕𝑧
= 0 

𝑢𝑧 ≠ 0 𝜏𝑦𝑧 = 0 at 𝑦 = 0          (A1.2.6) 

 

Considering the solution of plane strain motion, 

φ = 𝑓(𝑦)𝑒𝑖(𝜉𝑥−𝜔𝑡)  

𝜓𝑧 = ℎ𝑧(𝑦)𝑒𝑖(𝜉𝑥−𝜔𝑡)         (A1.2.7) 

 

Substituting the potential wave equation, 

𝑑2𝑓

𝑑𝑦2 + 𝛼2𝑓 = 0   

𝑑2ℎ𝑧

𝑑𝑦2 + 𝛽2ℎ𝑧 = 0          (A1.2.8) 

Where, 

𝛼2 =
𝜔2

𝑐1
2 − 𝜉2   

𝛽2 =
𝜔2

𝑐2
2 − 𝜁2          (A1.2.9) 

 

Thus the solution for the plane wave,  

φ = 𝐴1𝑒𝑖(𝜉𝑥−𝛼𝑦−𝜔𝑡) + 𝐴2𝑒𝑖(𝜉𝑥+𝛼𝑦−𝜔𝑡) 

𝜓𝑧 = 𝐵1𝑒𝑖(𝜁𝑥−𝛽𝑦−𝜔𝑡) + 𝐵2𝑒𝑖(𝜁𝑥+𝛽𝑦−𝜔𝑡)        (A1.2.10) 
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It may be written as, 

𝜉 = 𝛾1 sin 𝜃1,    𝛼 = 𝛾1 cos 𝜃1      

𝜁 = 𝛾2 sin 𝜃2,    𝛽 = 𝛾2 cos 𝜃1        (A1.2.11) 

 

𝜃1 and 𝜃2between the normal of the boundary and the wave normal of the longitudinal and transverse 

waves. 𝛾1 and 𝛾2 are the wave numbers along the respective waves. 

φ = 𝐴1𝑒𝑖(𝛾1 sin 𝜃1𝑥−𝛾1 cos 𝜃1𝑦−𝛾1𝑐1𝑡) + 𝐴2𝑒𝑖(𝛾1 sin 𝜃1𝑥+𝛾1 cos 𝜃1𝑦−𝛾1𝑐1𝑡)    

𝜓𝑧 = 𝐵1𝑒𝑖(𝛾2 sin 𝜃2𝑥−𝛾2 cos 𝜃1𝑦−𝛾2𝑐2𝑡) + 𝐵2𝑒𝑖(𝛾2 sin 𝜃2𝑥+𝛾2 cos 𝜃1𝑦−𝛾2𝑐2𝑡)       (A1.2.12) 

 

Now, applying the boundary conditions for plane strain wave, 𝜏𝑦𝑦 = 𝜏𝑥𝑦 = 0 at 𝑦 = 0, we get, 

(𝜏𝑦𝑦)
𝑦=0

= 𝛾1
2(2 sin 𝜃1 − 𝑘2)(𝐴1 + 𝐴2)𝑒𝑖𝛾1(sin 𝜃1𝑥−𝑐1𝑡) − 𝛾2

2 sin 2𝜃2 (𝐵1 − 𝐵2)𝑒𝑖𝛾2(sin 𝜃2𝑥−𝑐2𝑡) = 0 

(𝜏𝑥𝑦)
𝑦=0

= 𝛾1
2 sin 2𝜃1 (𝐴1 − 𝐴2)𝑒𝑖𝛾1(sin 𝜃1𝑥−𝑐1𝑡) − 𝛾2

2 cos 2𝜃2 (𝐵1 + 𝐵2)𝑒𝑖𝛾2(sin 𝜃2𝑥−𝑐2𝑡) = 0       

(A1.2.13) 

 

In optical and acoustic waves, waves are reflected and transmitted as it encounters a boundary 

between two media as illustrated in Fig. A.2. For the case of elastic waves, wave energy is reflected 

and transmitted from and across the boundary, respectively. The elastic wave will also undergo mode 

conversion as it encounters a boundary. An incident wave is converted into two waves on reflection; 

longitudinal and transverse wave. In addition, surface waves may also propagate in a semi-infinite 

media. 
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Figure A.2: Reflection, transmission and mode conversion of incident longitude wave at an angle 

When incident wave propagates and meets an interface at an angle normal to the boundary, the angle 

of reflection and oblique transmission (refraction) are determined by Snell’s Law. This is illustrated 

in Fig. A.2, where the subscript 1 denotes incident; subscript 2 denotes reflected wave; and subscript 

3 denotes transmitted wave. 

sin(𝜃1)

𝑉𝑃(𝐴1)
=

sin(𝜃2)

𝑉𝑆𝑉(𝐵2)
=

sin(𝜃3)

𝑉𝑃(𝐴3)
=

sin(𝜃4)

𝑉𝑆𝑉(𝐵3)
     (A1.2.14) 

Furthermore, since  

sin 𝜃1

sin 𝜃2
=

𝑐1

𝑐2
=

𝛾2

𝛾1
= 𝑘      (A1.2.15) 

The boundary stress condition equations (A1.2.5) reduce to: 

(𝜏𝑦𝑦)
𝑦=0

= 𝛾1
2(2 sin 𝜃1 − 𝑘2)(𝐴1 + 𝐴2) − 𝛾2

2 sin 2𝜃2 (𝐵1 − 𝐵2) = 0    

(𝜏𝑥𝑦)
𝑦=0

= 𝛾1
2 sin 2𝜃1 (𝐴1 − 𝐴2) − 𝛾2

2 cos 2𝜃2 (𝐵1 + 𝐵2) = 0    (A1.2.16) 

These equations govern the reflection of plane waves in half space. 
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i) Reflection of SH waves 

 

The reflection of the plane shear horizontal (SH) waves is an anti-plane strain problem. SH-wave is 

the simplest wave mode to study due to the one directional vector restriction and no mode 

conversation. The SH-wave upon reflection must satisfy the boundary condition of traction free 

surface with no out-of-plane displacement at the surface. 

Consider the solutions in this case 

𝜓𝑥 = ℎ𝑥(𝑦)𝑒𝑖(𝜉𝑥−𝜔𝑡)       

𝜓𝑦 = ℎ𝑦(𝑦)𝑒𝑖(𝜉𝑥−𝜔𝑡)     (A1.2.17) 

 

Hence through substitution to potential wave equations 

𝑑2ℎ𝑥

𝑑𝑦2 + 𝜂2ℎ𝑥 = 0       

𝑑2ℎ𝑦

𝑑𝑦2 + 𝜂2ℎ𝑦 = 0      (A1.2.18) 

Where, 

𝜂2 =
𝜔2

𝑐2
2 − 𝜉2      (A1.2.19) 

 

Hence the solutions 

𝜓𝑥 = 𝐶1𝑒𝑖(𝜉𝑥−𝜂𝑦−𝜔𝑡) + 𝐶2𝑒𝑖(𝜉𝑥+𝜂𝑦−𝜔𝑡) 

𝜓𝑦 = 𝐷1𝑒𝑖(𝜉𝑥−𝜂𝑦−𝜔𝑡) + 𝐷2𝑒𝑖(𝜉𝑥+𝜂𝑦−𝜔𝑡)    (A1.2.20) 

 

Apply this equation to the divergence of vector potential 

𝑖𝜉(𝐶1𝑒−𝑖𝜂𝑦 + 𝐶2𝑒𝑖𝜂𝑦) + 𝑖𝜂(−𝐷1𝑒−𝑖𝜂𝑦 + 𝐷2𝑒−𝑖𝜂𝑦) = 0 
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(𝜉𝐶1𝑒−𝑖𝜂𝑦 − 𝜂𝐷1𝑒−𝑖𝜂𝑦) + (𝜉𝐶2𝑒𝑖𝜂𝑦 + 𝜂𝐷2𝑒−𝑖𝜂𝑦) = 0     (A1.2.21) 

Therefore, 

𝐷1 =
𝜉

𝜂
𝐶1   

𝐷2 = −
𝜉

𝜂
𝐶2      (A1.2.22) 

 

So the solutions simplify to, 

𝜓𝑥 = 𝐶1𝑒𝑖(𝜉𝑥−𝜂𝑦−𝜔𝑡) + 𝐶2𝑒𝑖(𝜉𝑥+𝜂𝑦−𝜔𝑡) 

𝜓𝑦 =
𝜉

𝜂
𝐶1𝑒𝑖(𝜉𝑥−𝜂𝑦−𝜔𝑡) −

𝜉

𝜂
𝐶2𝑒𝑖(𝜉𝑥+𝜂𝑦−𝜔𝑡)    (A1.2.23) 

 

Under boundary conditions,  𝜏𝑦𝑧 = 0 at 𝑦 = 0 

(𝜏𝑦𝑧)
𝑦=0

= 𝜂2(𝐶1 + 𝐶2) + 𝜉2(𝐶1 + 𝐶2) = 0    (A1.2.24) 

 

The above equations govern the reflection of SH waves.  

For incident SH wave case for reflection from equation (A1.2.21), 

 

(𝜂2 + 𝜉2)(𝐶1 + 𝐶2) = 0 

𝜂2(𝐶1 + 𝐶2) + 𝜉2(𝐶1 + 𝐶2) = 0     (A1.2.25) 

Thus, 𝐶2 = −𝐶1 
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Figure A.3: Ray representation of reflection of SH-wave from a free boundary 

 

Hence the reflection angle is the same as the incident angle. The SH wave reflects itself with no mode 

conversion in Fig. A.3.  

 

ii) Reflection of longitudinal waves 

 

Unlike SH-waves, the reflection of P waves is more complex. The free and fixed boundary condition 

of longitudinal waves are considered, where traction is zero and displacement at the surface is 

constrained.  

An incident P wave will reflect P wave and mode convert SV wave. The reflected P wave at the free 

surface satisfies traction free boundary. A condition that has to be met is that wavelength along the 

common boundary has to equal for all reflected and mode converted waves. Therefore the reflected 

SV wave will always have a lower angle of refection compared to the P waves, which obeys Snell’s 

law as illustrated in Fig. 1.7. 
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Figure A.4: Ray representation of the reflection of P-wave from a free boundary 

Hence, for longitudinal waves, 𝐵1 = 0 in the expressions (A1.2.16). Therefore, the amplitude ratios 

are, 

𝐴2

𝐴1
=

sin 2𝜃1 sin 2𝜃2 − 𝑘2 cos 2𝜃2

sin 2𝜃1 sin 2𝜃2 + 𝑘2 cos 2𝜃2
 

𝐵2

𝐴1
=

2sin 2𝜃1 cos 2𝜃2

sin 2𝜃1 sin 2𝜃2 + 𝑘2 cos 2𝜃2
 

(A1.2.26) 

 

Figure A.5: Amplitude ratios A2/A1 and B2/A1 for incident P wave for Poisson’s ratio v=1/3 
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The other special case 
𝐴2

𝐴1
= 0 implies that there will be no reflected P waves as the critical angle is 

achieved. 

 

iii) Reflection of SV waves 

 

 

Figure A.6: Ray representation of the reflection of SV-wave from a free boundary 

For incident SV waves, in this case 𝐴1 = 0 in the expressions (A1.2.16). The amplitude ratios are 

𝐵2

𝐵1
=

sin 2𝜃1 sin 2𝜃2 − 𝑘2 cos 2𝜃2

sin 2𝜃1 sin 2𝜃2 + 𝑘2 cos 2𝜃2
 

𝐴2

𝐵1
=

− k22sin 2𝜃2 cos 2𝜃2

sin 2𝜃1 sin 2𝜃2 + 𝑘2 cos 2𝜃2
 

(A1.2.27) 

We see for P and SV waves, the amplitudes are depended only on incident angle and Poisson’s Ratio.  

Similar to P waves, incident SV wave undergoes mode conversion. For the special case where  
𝐴2

𝐵1
= 0 

and  
𝐵2

𝐵1
= −1, as of normal incidence when 𝜃2 = 0°. The case where 𝜃2 = 45° where 

𝐴2

𝐵1
= 0 and 

𝐵2

𝐵1
= 1 has applications in plate theory. Only P reflection occurs, when 𝐵2 = 0 due to only an incident 

SV wave. This occurs when, 



180 

 

sin 2𝜃1 sin 2𝜃2 = 𝑘2 cos2 2𝜃2        (A1.2.28) 

For critical angle such that P wave is tangential to the surface, 

sin 𝜃1 = k sin 𝜃2 = 1         (A1.2.29) 

Where 𝑘 > 0 

 

Figure A.7: Amplitude ratios A2/B1 and B2/B1 for incident SV wave for Poisson’s ratio v=1/3 

 

If the shear wave of arbitrary polarisation impinges on a free surface, the SV portion of the wave will 

lose a portion of its energy to P wave. However, the SH portion of the amplitude and energy will 

reflect a change in phase. 
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A.3  Surface waves (Rayleigh waves) 

 

 

Figure A.8: Rayleigh wave propagation 

 

Where there is a boundary, in a half-space problem, a surface wave may exist. First investigated by 

Lord Rayleigh, surface waves effectively decrease with depth. The velocity of propagation of surface 

waves are smaller than body waves as illustrated in Fig. A.8. These waves are known as Rayleigh 

waves and have been used extensively in non-destructive evaluation [72, 78, 100, 114, 119, 127, 177]. 

The energy associated with this wave suggest that the energy dissipates less rapidly than P and SV 

waves, though this could only be accounted for by assuming it was essentially confined to the surface. 

The Rayleigh wave’s displacement field can be decomposed into scalar and vector potential by using 

Helmholtz theorem.   

From equation (A1.2.8), consider the potential equations are now given by  

𝑑2𝑓

𝑑𝑦2 − �̅�2𝑓 = 0   

𝑑2ℎ𝑧

𝑑𝑦2 − �̅�2ℎ𝑧 = 0     (A1.3.1) 

Note that, 

�̅�2 = −𝛼2 = 𝜉2 −
𝜔2

𝑐1
2   
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�̅�2 = −𝛽2 = 𝜉2 −
𝜔2

𝑐2
2   

𝜔 = 𝜉𝑐𝑅      (A1.3.2) 

 

This study of incident SV wave extends beyond the critical angle such that the angle at which P-

waves are reflected tangential to the free surface. The solutions give waves with exponentially 

increasing and decreasing parts. Ignoring the increasing term, we have 

φ = 𝐴𝑒−�̅�𝑦𝑒𝑖𝜉(𝑥−𝑐𝑅𝑡) 

𝜓𝑧 = 𝐵𝑒−�̅�𝑦𝑒𝑖𝜉(𝑥−𝑐𝑅𝑡)     (A1.3.3) 

 

Therefore the expression for displacement and stresses are, 

𝑢𝑥 = (𝑖𝜉𝐴𝑒−�̅�𝑦 − �̅�𝐵𝑒−�̅�𝑦)𝑒𝑖𝜉(𝑥−𝑐𝑅𝑡) 

𝑢𝑦 = −(�̅�𝐴𝑒−�̅�𝑦 + 𝑖𝜉𝐵𝑒−�̅�𝑦)𝑒𝑖𝜉(𝑥−𝑐𝑅𝑡) 

𝜏𝑥𝑥 = 𝜇 ((�̅�2 − 𝜉2 − 2�̅�2)𝐴𝑒−�̅�𝑦 − 2𝑖�̅�𝜉𝐵𝑒−�̅�𝑦) 𝑒𝑖𝜉(𝑥−𝑐𝑅𝑡) 

𝜏𝑦𝑦 = 𝜇 ((�̅�2 + 𝜉2)𝐴𝑒−�̅�𝑦 + 2𝑖�̅�𝜉𝐵𝑒−�̅�𝑦) 𝑒𝑖𝜉(𝑥−𝑐𝑅𝑡) 

𝜏𝑥𝑦 = 𝜇(−2𝑖�̅�𝜉𝐴𝑒−�̅�𝑦 + (�̅�2 + 𝜉2)𝐵𝑒−�̅�𝑦)𝑒𝑖𝜉(𝑥−𝑐𝑅𝑡)   (A1.3.4) 

 

At the free surface 𝜏𝑥𝑦 = 𝜏𝑦𝑦 = 0 at 𝑦 = 0 and it will reduce to 

(�̅�2 + 𝜉2)𝐴 + 2𝑖�̅�𝜉𝐵 = 0 

−2𝑖�̅�𝜉𝐴 + (�̅�2 + 𝜉2)𝐵 = 0    (A1.3.5) 
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Hence the amplitude ratio, 

𝐴

𝐵
= −

2𝑖�̅�𝜉

�̅�2+𝜉2 =
�̅�2+𝜉2

2𝑖�̅�𝜉
     (A1.3.6) 

 

And the frequency of the surface wave, 

(�̅�2 + 𝜉2)
2

− 4�̅��̅�𝜉2 = 0     (1.3.7) 

 

Resulting in, 

 
𝑐𝑅

2

𝑐2
2 ( (

𝑐𝑅

𝑐2
)

6
− 8 (

𝑐𝑅

𝑐2
)

4
+ (24 − 16𝑘−2) (

𝑐𝑅

𝑐2
)

2
− 16(1 − 𝑘−2)) = 0  (A1.3.8) 

 

Further investigation indicates that the roots of the equation are depended on the Poisson’s ratio given 

by equation (A1.1.12). The resulting surface wave propagating with the velocity form equation above 

is called Rayleigh surface wave. 

The particle motion from the equation and using the amplitude ratio at  𝑦 = 0 

𝑢𝑧 = 𝐴𝑖 (𝛾 −
�̅�2+𝛾2

2𝛾
) 𝑒𝑖𝜉(𝑥−𝑐𝑅𝑡)   

𝑢𝑦 = 𝐴 (−�̅� +
�̅�2+𝛾2

2�̅�
) 𝑒𝑖𝜉(𝑥−𝑐𝑅𝑡)    (A1.3.9) 

 

The propagation Rayleigh velocity is independent of frequency indicates that a surface propagates 

non-dispersive and velocity less than the shear velocity. An approximate expression for Rayleigh 

velocity is graphed in Fig. A.9,  

𝑐𝑅

𝑐2
=

0.87+1.12𝑣

1+𝑣
      (A1.3.10) 
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Figure A.9: Rayleigh wave speed as a function of Poisson’s Ratio using the approximation expression 

Rayleigh wave has no geometric decay with propagating distance, which makes it a good choice for 

long-range non-destructive evaluation. The particle motion is elliptical and retrograde with the 

direction of travel as illustrated in Fig. A.8. The vertical displacement component is greater than the 

horizontal component at the surface and the motion decreases exponentially in depth. At 

approximately 0.192 wavelengths in depth, the direction of the particle motion as well as the normal 

stress is reversed, as illustrated in Fig. A.10. 

 

Figure A.10: Relative normal and shear stresses of Rayleigh wave as a function of depth/wavelength 



185 

 

A.4  Wave propagation in plates 

 

The early developments of wave propagation in solid plates were concerned with bulk waves, which 

are also known as Lamb waves. This chapter introduces the solution of Lamb waves in isotropic 

plates. In addition to the expressions from bulk waves for plates, the boundary conditions now have 

two traction free surfaces to guide the wave, refer to Fig. A.11. 

 

Figure A.11: Boundary conditions at  𝑦 = ±𝑏 on isotropic plate for Lamb wave propagation 

 

Consider a plate with two boundary surfaces with thickness 2b in the x-y plane. Two concerns of 

complexity arise: first the multiple reflections of waves between boundary surface, and second the 

mode conversion of P and SV waves. Since we are considering only SH wave case, the second 

complication is removed. Hence, we restrict our attention to the first area of concern. 

First, we consider the simplest case, SH wave.  

The governing equation is  

∇2𝑢𝑧 =
1

𝑐2
2

𝜕2𝑢𝑧

𝜕𝑡2       (A1.4.1) 

 

Such that 𝑢𝑧 = 𝑢(𝑥, 𝑦, 𝑡) 
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Immediately, the general solution of the wave equation is, 

𝑢𝑧 = ℎ(𝑦)𝑒𝑖(𝜉𝑥−𝜔𝑡)     (A1.4.2) 

 

By substituting in the wave equation gives, 

𝑑2ℎ

𝑑𝑦2 + 𝛽2ℎ = 0   

𝛽2 =
𝜔2

𝑐2
2 − 𝜉2      (A1.4.3) 

 

Thus the solution becomes, 

𝑢𝑧 = (𝐴1 sin 𝛽𝑦 + 𝐴2 cos 𝛽𝑦)𝑒𝑖(𝜉𝑥−𝜔𝑡) 

𝑢𝑧 = 𝐴1
′ 𝑒𝑖(𝜉𝑥−𝛽𝑦−𝜔𝑡) + 𝐴2

′ 𝑒𝑖(𝜉𝑥+𝛽𝑦−𝜔𝑡)    (A1.4.4) 

 

Considering the boundary conditions, 

𝑦 = ±𝑏, 𝜏𝑦𝑦 = 𝜏𝑥𝑦 = 𝜏𝑧𝑦 = 0    (A1.4.5) 

 

Since SH wave restriction has restriction on 𝜏𝑧𝑦 and given that 

𝜕𝑢𝑧

𝜕𝑦
= 0 where, 𝑦 = ±𝑏     (A1.4.6) 

 

Applying these conditions to the solutions, 

𝐴1 sin 𝛽𝑏 − 𝐴2 cos 𝛽𝑏 = 0 

𝐴1 sin 𝛽𝑏 + 𝐴2 cos 𝛽𝑏 = 0    (A1.4.7) 
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Resulting in, 

cos 𝛽𝑏 sin 𝛽𝑏 = 0 

𝛽𝑏 =
𝑛𝜋

2
  given 𝑛 = 0, 1, 2, 3, …     (A1.4.8) 

Under these results, the harmonic SH wave may propagate only under special conditions. Consider 

the displacement solution with respect to the 𝑦 = 0 , the motion involves symmetric (𝑆) and 

antisymmetric (𝐴) mode, denoted in the equation by 𝐴2 and 𝐴1, respectively. 

Suppose the frequency satisfies cos 𝛽𝑏 = 0 where 𝐴2 = 0. Then the motion is antisymmetric, 

𝑢𝑧 = (𝐴1 sin 𝛽𝑛𝑦)𝑒𝑖(𝜉𝑥−𝜔𝑡)     (A1.4.9) 

Where 𝑛 = 1, 3, 5, … 

 

Similarly, if sin 𝛽𝑏 = 0 where 𝐴1 = 0. Then the motion is symmetric, 

𝑢𝑧 = (𝐴2 cos 𝛽𝑛𝑦)𝑒𝑖(𝜉𝑥−𝜔𝑡)    (A1.4.10) 

Where 𝑛 = 0, 2, 4, … 

For the longitudinal and transverse waves propagating in a plate, we consider plate geometry and if 

conditions of plane strain hold in the z-direction we have 

𝑢𝑧 = 0 
𝜕

𝜕𝑧
= 0 

𝑢𝑥 = 𝑢𝑥(𝑥, 𝑦, 𝑡) = 𝜑𝑥 + 𝜓𝑧,𝑦 

𝑢𝑦 = 𝑢𝑦(𝑥, 𝑦, 𝑡) = 𝜑𝑦 − 𝜓𝑧,𝑥 

∇2𝜑 =
1

𝑐1
2 

 𝜕2𝜑

𝜕𝑡2 
       

∇2𝜓 =
1

𝑐2
2 

 𝜕2𝜓

𝜕𝑡2 
       

(A1.4.11) 
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In the P and S wave boundary conditions are, 

𝑢𝑦 = 𝜏𝑥𝑦 = 𝜏𝑧𝑦 = 0 at 𝑦 = ±𝑏     (A1.4.12) 

 

Hence, the solutions to the wave equation are, 

𝜑 = 𝑓(𝑦)𝑒𝑖(𝜉𝑥−𝜔𝑡)       

𝜓𝑧 = 𝑖ℎ𝑧(𝑦)𝑒𝑖(𝜉𝑥−𝜔𝑡)     (A1.4.13) 

 

Note: factor of 𝑖 has been insert for later convenience. 

Substituting the potential wave equation: 

𝑑2𝑓

𝑑𝑦2
+ 𝛼2𝑓 = 0 

𝑑2ℎ𝑧

𝑑𝑦2
+ 𝛽2ℎ𝑧 = 0 

 

Where, 

𝛼2 =
𝜔2

𝑐1
2 − 𝜉2 

𝛽2 =
𝜔2

𝑐2
2 − 𝜉2 

𝑓 = 𝐴 sin 𝛼𝑦 + 𝐵 cos 𝛼𝑦  

ℎ𝑧 = 𝐶 sin 𝛽𝑦 + 𝐷 cos 𝛽𝑦    (A1.4.14) 
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The resulting potentials and displacements are: 

𝜑 = (𝐴 sin 𝛼𝑦 + 𝐵 cos 𝛼𝑦 )𝑒𝑖(𝜉𝑥−𝜔𝑡) 

𝜓𝑧 = 𝑖(𝐶 sin 𝛽𝑦 + 𝐷 cos 𝛽𝑦)𝑒𝑖(𝜉𝑥−𝜔𝑡)  

𝑢𝑥 = 𝑖(𝜉(𝐴 sin 𝛼𝑦 + 𝐵 cos 𝛼𝑦) + 𝛽(𝐶 cos 𝛽𝑦 − 𝐷 sin 𝛽𝑦))𝑒𝑖(𝜉𝑥−𝜔𝑡) 

𝑢𝑦 = (𝛼(𝐴 cos 𝛼𝑦 − 𝐵 sin 𝛼𝑦) + 𝜉(𝐶 sin 𝛽𝑦 + 𝐷 cos 𝛽𝑦))𝑒𝑖(𝜉𝑥−𝜔𝑡)  (A1.4.15) 

 

Consider the stress potentials, provided previously, the stress is in terms of the potentials.  

So, 

𝜏𝑥𝑥 = 𝜇 ((2𝛼2 − 𝑘2(𝜉2 + 𝛼2))(𝐴 sin 𝛼𝑦 + 𝐵 cos 𝛼𝑦) − 2𝜉𝛽(𝐶 cos 𝛽𝑦 − 𝐷 sin 𝛽𝑦)) 𝑒𝑖(𝜉𝑥−𝜔𝑡) 

𝜏𝑦𝑦 = 𝜇 ((2𝜉2 − 𝑘2(𝜉2 +  𝛼2))(𝐴 sin 𝛼𝑦 + 𝐵 cos 𝛼𝑦) + 2𝜉𝛽(𝐶 cos 𝛽𝑦 − 𝐷 sin 𝛽𝑦)) 𝑒𝑖(𝜉𝑥−𝜔𝑡) 

𝜏𝑥𝑦 = 𝑖𝜇(2𝜉𝛼(𝐴 cos 𝛼𝑦 − 𝐵 sin 𝛼𝑦) − (𝛽2 − 𝜉2)(𝐶 sin 𝛽𝑦 + 𝐷 cos 𝛽𝑦))𝑒𝑖(𝜉𝑥−𝜔𝑡)  (A1.4.16) 

 

𝜏𝑧𝑧 is obtained from 𝜏𝑥𝑥 and 𝜏𝑦𝑦, while  𝜏𝑥𝑧 = 𝜏𝑧𝑦 = 0 

Applying solutions for 𝑢𝑦 and 𝜏𝑥𝑦 to boundary conditions to obtain 

 

𝛼(𝐴 cos 𝛼𝑏 − 𝐵 sin 𝛼𝑏) + 𝜉(𝐶 sin 𝛽𝑏 + 𝐷 cos 𝛽𝑏) = 0 

𝛼(𝐴 cos 𝛼𝑏 + 𝐵 sin 𝛼𝑏) − 𝜉(𝐶 sin 𝛽𝑏 − 𝐷 cos 𝛽𝑦) = 0 

2𝜉𝛼(𝐴 cos 𝛼𝑏 − 𝐵 sin 𝛼𝑏) − (𝛽2 − 𝜉2)(𝐶 sin 𝛽𝑏 + 𝐷 cos 𝛽𝑏) = 0 

2𝜉𝛼(𝐴 cos 𝛼𝑏 + 𝐵 sin 𝛼𝑏) + (𝛽2 − 𝜉2)(𝐶 sin 𝛽𝑏 − 𝐷 cos 𝛽𝑏) = 0   (A1.4.17) 
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Simplifying further, 

𝛼𝐴 cos 𝛼𝑏 + 𝜉𝐷 cos 𝛽𝑏 = 0 

𝛼𝐵 sin 𝛼𝑏 − 𝜉𝐶 sin 𝛽𝑏 = 0 

2𝜉𝛼𝐴 cos 𝛼𝑏 − (𝛽2 − 𝜉2)𝐷 cos 𝛽𝑏 = 0 

2𝜉𝛼𝐵 sin 𝛼𝑏 + (𝛽2 − 𝜉2)𝐶 sin 𝛽𝑏 = 0     (A1.4.18) 

 

Hence, 

[
𝛼cos 𝛼𝑏 𝜉cos 𝛽𝑏

2𝜉𝛼 cos 𝛼𝑏 −(𝛽2 − 𝜉2) cos 𝛽𝑏
] [

𝐴
𝐷

] = 0 

[
𝛼 sin 𝛼𝑏 −𝜉 sin 𝛽𝑏

2𝜉𝛼 sin 𝛼𝑏 (𝛽2 − 𝜉2) sin 𝛽𝑏
] [

𝐵
𝐶

] = 0   (A1.4.19) 

 

Before continue further investigation, it should be noted that the displacement in equation, 𝑢𝑥 and 𝑢𝑦 

contain symmetric and antisymmetric mode. 

The term B and C gives symmetric displacement with respect to 𝑦 = 0, whereas A and D terms gives 

antisymmetric displacement in  𝑢𝑥 and 𝑢𝑦. 

Continuing with the determinants for the antisymmetric mode, 

𝛼(𝛽2 + 𝜉2) cos 𝛼𝑏 cos 𝛽𝑏 = 0     (A1.4.20) 

 

This frequency equation will be satisfied by 

𝛼 = 0,  𝛼𝑏 =
𝑚𝜋

2
,  𝛽𝑏 =

𝑛𝜋

2
,  where 𝑚, 𝑛 = 1, 3, 5, …  (A1.4.21) 
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If 𝛼 = 0 or 𝛼𝑏 =
𝑚𝜋

2
 such that 𝐷 = 0, so, antisymmetric P mode, 

𝑢𝑥 = 𝑖𝜉𝐴 sin 𝛼𝑚𝑦 𝑒𝑖(𝜉𝑥−𝜔𝑡)   

𝑢𝑦 = 𝛼𝑚𝐴 cos 𝛼𝑚𝑦 𝑒𝑖(𝜉𝑥−𝜔𝑡)     (A1.4.22) 

 

If 𝛽𝑏 =
𝑛𝜋

2
 such that 𝐴 = 0, antisymmetric SV mode, 

𝑢𝑥 = −𝑖𝛽𝐷 sin 𝛽𝑚𝑦 𝑒𝑖(𝜉𝑥−𝜔𝑡)       

𝑢𝑦 = 𝜉𝐷 cos 𝛽𝑚𝑦 𝑒𝑖(𝜉𝑥−𝜔𝑡)     (A1.4.23) 

 

It is possible for these modes to be uncoupled from one another due to the boundary condition. Recall 

the study of the half-space, where it is was found that P and SV reflect without mode conversion from 

mixed boundary constraints of the present type. 

Similarly, for symmetric mode, 

𝛼(𝛽2 + 𝜉2) sin 𝛼𝑏 sin 𝛽𝑏 = 0 

 

This frequency equation will be satisfied by, 

𝛼 = 0,  𝛼𝑏 = 𝑚𝜋,  𝛽𝑏 = 𝑛𝜋,  where 𝑚, 𝑛 = 1, 2, 3, …  (A1.4.24) 

 

If 𝛼𝑏 = 𝑚𝜋 such that 𝐶 = 0, then, for symmetric P mode, 

𝑢𝑥 = 𝑖𝜉𝐵 cos 𝛼𝑚𝑦 𝑒𝑖(𝜉𝑥−𝜔𝑡)       

𝑢𝑦 = −𝛼𝑚𝐵 sin 𝛼𝑚𝑦 𝑒𝑖(𝜉𝑥−𝜔𝑡)     (A1.4.25) 
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For 𝑚 = 0 

𝑢𝑥 = 𝑖𝜉𝐵𝑒𝑖(𝜉𝑥−𝜔𝑡) 

𝑢𝑦 = 0       (A1.4.26) 

 

If 𝛽𝑏 = 𝑛𝜋 such that  𝐵 = 0, symmetric SV mode, 

𝑢𝑥 = 𝑖𝛽𝐶 cos 𝛽𝑚𝑦 𝑒𝑖(𝜉𝑥−𝜔𝑡) 

𝑢𝑦 = 𝜉𝐶 sin 𝛽𝑚𝑦 𝑒𝑖(𝜉𝑥−𝜔𝑡)     (A1.4.27) 

 

A.5  The Rayleigh-Lamb frequency equation for the plate 

 

Again, consider waves of plane strain propagating in the x-direction in a plate of thickness 2b with 

traction-free boundaries. The displacements, potential functions and stresses governing equations, 

again, still holds and the boundary conditions are given by, 

𝜏𝑦𝑦 = 𝜏𝑥𝑦 = 𝜏𝑧𝑦 = 0, at 𝑦 = ±𝑏     (A1.5.1) 

 

Resolving for antisymmetric wave, 

𝑢𝑥 = 𝑖(𝐴𝜉 sin 𝛼𝑦 −  𝐷𝛽 sin 𝛽𝑦 )𝑒𝑖Ψ      

𝑢𝑦 = (𝛼𝐴 cos 𝛼𝑦 +  𝐷𝜉 cos 𝛽𝑦 )𝑒𝑖Ψ     (A1.5.2) 

Where, 

Ψ = 𝜉𝑥 − 𝜔𝑡 

Ψ is called the phase factor. 

Since, for antisymmetrical case, 𝐵 = 𝐶 = 0. Thus, applying boundary conditions, we obtain 
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±((𝜉2 − 𝛽2)𝐴 sin 𝛼𝑏 − 2𝜉𝛽𝐵 sin 𝛽𝑏) = 0 

2𝜉𝛼𝐴 cos 𝛼𝑏 − 𝐷(𝛽2 − 𝜉2) cos 𝛽𝑏 = 0    (A1.5.3) 

Thus, the Rayleigh-Lamb frequency equation for antisymmetric waves and amplitude ratios are 

tan(𝛽𝑏)

tan (𝛼𝑏)
= −

(𝜉2 − 𝛽2)2

4𝛼𝛽𝜉2
 

𝐴

𝐷
=

2𝜉𝛽 sin 𝛽𝑏

(𝜉2−𝛽2) sin 𝛼𝑏
= −

(𝜉2−𝛽2) cos 𝛽𝑏

2𝜉𝛼 cos 𝛼𝑏
    (A1.5.4) 

 

Now, resolving in symmetric wave, 

𝑢𝑥 = 𝑖(𝐵𝜉 cos 𝛼𝑦 +  𝐶𝛽 cos 𝛽𝑦 )𝑒𝑖Ψ 

𝑢𝑦 = (−𝛼𝐵 sin 𝛼𝑦 +  𝐶𝜉 sin 𝛽𝑦 )𝑒𝑖Ψ    (A1.5.5) 

 

Since, for symmetrical case, 𝐴 = 𝐷 = 0. Hence, applying boundary conditions, we obtain, 

(𝜉2 − 𝛽2)𝐵 cos 𝛼𝑏 + 2𝜉𝛽𝐶 cos 𝛽𝑏 = 0      

±𝑖(2𝜉𝛼𝐵 sin 𝛼𝑏 + 𝐶(𝜉2 − 𝛽2) sin 𝛽𝑏) = 0    (A1.5.6) 

 

With the boundary conditions and equating the determinant of coefficient to zero, frequency equation 

and amplitude ratio are produced. 

In summary, the Rayleigh-Lamb frequency equation for the plate, 

tan(𝛽𝑏)

tan (𝛼𝑏)
= − {

4𝛼𝛽𝜉2

(𝜉2 − 𝛽2)2}

±1

{
+1 = 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐        
−1 = 𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐

 

Recall that, 
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𝛼2 =
𝜔2

𝑐1
2 − 𝜉2 and  𝛽2 =

𝜔2

𝑐2
2 − 𝜉2  and wavenumber 𝜉 =

𝜔

𝑐
  (A1.5.7) 

The real roots of the Rayleigh-Lamb frequency Eqn. (A.1.5.7) corresponds to the propagating 

symmetric and antisymmetric wave modes. The roots can be obtained by using numerical root 

solution methods [157]. It is found that there exist an infinite number of solutions for infinite number 

of modes to the Rayleigh-Lamb frequency equation. The program DISPERSE [33] is used to obtain 

the solution to dispersion equations of Lamb waves, as illustrated in Fig. A.12.  

 

Figure A.12: Dispersion curve for the symmetric and antisymmetric modes in a 3mm aluminium plate 

Furthermore, the symmetric and antisymmetric waves have different mode shapes. The dominant 

displacements for symmetric modes are the in-plane components, and for antisymmetric modes are 

the out-of-plane components.  

 

Figure A.13: Stress through thickness profile of mode shape (LEFT) 𝑆0 mode and (RIGHT) 𝐴0 mode in a 3mm 

aluminium plate at 200 kHz frequency (BLUE) in-plane stress (RED) out-of-plane stress and (GREEN) shear 

stress 



195 

 

In Fig A.13, the 𝑆0  mode has a strong in-plane stress component and the normal 𝜎𝑥𝑥  is almost 

uniform throughout thickness. However, the 𝐴0 mode stresses are more complex and have a dominant 

shear stress distribution through thickness. Due to the 𝐴0 stress profile, the antisymmetric wave is 

highly advantageous than the symmetric wave when detecting laminar type defect such as 

delamination [178]. 

The dispersion can be expressed in terms of phase velocity, 𝑐𝑝. One can obtain the phase velocity by 

using, 

𝑐𝑝 =
𝜔

𝑘
      (A1.5.8) 

 

Fig A.14 shows the dispersion curve in terms of phase velocity and group velocity. At low frequency-

thickness regime, the 𝑆0 mode is essentially non-dispersive, and the group velocity is independent of 

frequency. This makes 𝑆0 highly favourable for wide area scanning for SHM. The phase velocity of 

all modes converges to Rayleigh wave speed at higher frequency. 

 

Figure A.14: (LEFT) Dispersion curve in terms of phase velocity. (RIGHT) Dispersion curve in terms of group 

velocity 



196 

 

When exciting Lamb waves, usually a number of cycles of wave train are generated to minimise 

dispersion. One may consider group velocity of the wave packet, 𝑐𝑔, which describes the speed at 

which the energy is travelling through the medium The group velocity can be obtained by using, 

𝑐𝑔 =
𝑑𝜔

𝑑𝑘
      (A1.5.9) 
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