
 
Information Extraction  for  

Data Records with Varying Structures  

from the Deep Web 
 

 

 

 

-Jer Lang Hong- 
 

 
 

 

 

 

 

 

A thesis submitted for 
the degree of Doctor of Philosophy 

to the School of Information Technology  
of Monash University 

 
 
 
 
 

February 2010



i 

 

Notices 

 
Notice 1 
 
Under the Copyright Act 1968, this thesis must be used only under the normal conditions of 

scholarly fair dealing. In particular no results or conclusions should be extracted from it, nor 

should it be copied or closely paraphrased in whole or in part without the written consent of the 

author. Proper written acknowledgement should be made for any assistance obtained from this 

thesis.  

 

Notice 2  

I certify that I have made all reasonable efforts to secure copyright permissions for third-party 

content included in this thesis and have not knowingly added copyright content to my work 

without the owner's permission.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 



ii  

 

Declaration 

 
I hereby declared that Iôm the sole author of this thesis and this thesis is my own 

original work. It contains no material that has been accepted for the award of any 

other degree or diploma in any university or other institution. 

 

 
Jer Lang Hong 

8 Feb 2010 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii  

 

Prior Publications 
 

Our proposed solutions in the development of automatic wrappers in extracting and aligning data 

records with various structures that are presented in this thesis have appeared in various 

publications. The materials of Chapter 3 have been published in Data and Knowledge 

Engineering Journal (Rank A Journal with impact factor of 1.745) [Hong 2009a], Malaysian 

Joint Conference on Artificial Intelligence [Hong 2009b], International Conference on Soft 

Computing and Pattern Recognition [Hong 2009c], and Majlesi Journal of Electrical Engineering 

[Hong 2010f]. Chapters 4 and 6 contain materials that have been published in International 

Conference on Information Retrieval and Knowledge Engineering [Hong 2010b], [Hong 2010c] , 

International Conference on Computer Research and Development [Hong 2010d], [Hong 2010e], 

and International Conference on Systems, Man and Cybernetics (Rank B Conference with EIC 

impact factor of 0.55) [Hong 2010g] while materials in Chapter 5 have been published in 

Symposium on Applied Computing (Rank B Conference with EIC impact factor of 0.85) [Hong 

2010a]. The paper published in Symposium on Applied Computing [Hong 2010a] has also 

obtained a Student Travel Award. Materials in Chapter 4 have been accepted for revision in 

Knowledge and Information Systems Journal (Rank A Journal with impact factor of 2.211) 

[Hong 2010h]. In addition, Chapters 4, 5, and 6 contain materials that have been submitted for 

publication. Finally, an extended version of our work has been published in International 

Conference on Multimedia (Rank A+ conference with EIC impact factor of 0.97) [Fauzi 2009].        

 

 

 

 

 

 

 

 

 



iv 

 

Publications 
 

Journals: 
 

1. Jer Lang Hong, Eugene Siew, and Simon Egerton, "Information Extraction for 
Search Engines using Fast Heuristic Techniques," Data and Knowledge 
Engineering, 2009. 

2. Accepted for Revision, Jer Lang Hong, ñVisualDOM- Data Extraction using Visual 
Cue and DOM Tree,ò Knowledge and Information System, 2010 

3. Jer Lang Hong, Fariza Fauzi, "Data Extraction using Tree Matching Algorithm", 
Majlesi Journal of Electrical Engineering (by invitation), 2010 

4. Submitted, Jer Lang Hong, "Data Extraction for Deep Web using Wordnet," IEEE 
Transaction on Systems, Man, and Cybernetics, 2010 

5. Submitted, Jer Lang Hong, ñExtracting Structured Records from Search Engine 
Results using Fast Heuristic Techniques,ò Malaysian Journal of Computer Science, 
2010 

 

Conferences: 
 
1. Fariza Fauzi, Jer Lang Hong, and Mohammed Belkhatir, "Webpage Segmentation 

for Extracting Images and Their Surrounding Contextual Information," ACM 
Multimedia, 2009. 

2. Jer Lang Hong, Eugene Siew, and Simon Egerton, "Data Extraction for Search 
Engine Result Pages," Malaysian Joint Conference of Artificial Intelligence, 2009. 

3. Jer Lang Hong, Eugene Siew, and Simon Egerton, "DTM- Extracting Data Records 
from Search Engine Results Page using Tree Matching Algorithm," IEEE 
International Conference on SOft Computing and PAttern Recognition, 2009. 

4. Jer Lang Hong, Eugene Siew, Simon Egerton, ñWMS- Extracting Multiple Sections 
Data Records from Search Engine Results Pages,ò ACM Symposium of Applied 
Computing, 2010 

5. Jer Lang Hong, Eugene Siew, Simon Egerton, ñViWER- Data Extraction for Search 
Engine Results Pages using Visual Cue and DOM Tree,ò IEEE International 
Conference on Information Retrieval and Knowledge Management, 2010 

6. Jer Lang Hong, Eugene Siew, Simon Egerton, ñOntoWrap- Extracting Data Records 
from Search Engine Results Pages Using Ontological Technique,ò IEEE 
International Conference on Information Retrieval and Knowledge Management, 
2010 

7. Jer Lang Hong, Eugene Siew, Simon Egerton, ñVisual Data Alignment for Search 
Engine Results Pagesò, IEEE International Conference on Computer Research and 
Development, 2010  

8. Jer Lang Hong, Eugene Siew, Simon Egerton, ñAligning Data Records Using 
WordNetò, IEEE International Conference on Computer Research and Development, 
2010 

9. Jer Lang Hong, ñDeep Web Data Extraction,ò IEEE International Conference on 
Systems, Man, and Cybernetics, 2010 



v 

 

Table of Contents 
 
Title             Page  

 
Notices ............................................................................................................................................. i 
Declaration..................................................................................................................................... ii  
Prior Publications ........................................................................................................................ iii  
Publications .................................................................................................................................. iv 

List of Figures .............................................................................................................................. vii  
List of Tables ................................................................................................................................ ix 

List of Abbreviations ................................................................................................................... xi 
Glossary ....................................................................................................................................... xii  
Acknowledgements .................................................................................................................... xiii  
Abstract ....................................................................................................................................... xiv 

1. Introduction and Overview .................................................................................................. 1 
1.1 Introduction ..................................................................................................................................................... 1 
1.2 HTML Language and DOM Tree .................................................................................................................... 3 
1.3 Wrappers ......................................................................................................................................................... 4 
1.4 Research Goals and Questions ...................................................................................................................... 12 
1.5 Research Contributions of this Thesis ........................................................................................................... 15 
1.6 Thesis Outline ................................................................................................................................................ 18 

2. Components and Design of a Wrapper ............................................................................. 21 
2.1 Overview ....................................................................................................................................................... 21 
2.2 Assumptions and Requirements ..................................................................................................................... 21 
2.3 Current Approaches in Data Extraction and Data Alignment ...................................................................... 22 

3. A Fast and Reliable Wrapper for Data Extraction and Data Alignment ...................... 28 
3.1 Overview ....................................................................................................................................................... 28 
3.2 Related Work ................................................................................................................................................. 37 
3.3 Overview of WISH ......................................................................................................................................... 42 
3.4 Data Extraction at Record Level ................................................................................................................... 44 
3.5 Data Extraction at Data Unit Level .............................................................................................................. 57 
3.6 Experimental Results ..................................................................................................................................... 66 
3.7 Summary ........................................................................................................................................................ 81 

4. A Visual Assisted Wrapper for Data Extraction and Data Alignment .......................... 83 
4.1 Overview ....................................................................................................................................................... 83 
4.2 Related Work ................................................................................................................................................. 85 
4.3 Overview of ViWEA ....................................................................................................................................... 89 
4.4 Data Extraction ............................................................................................................................................. 91 
4.5 Data Alignment ............................................................................................................................................. 95 
4.6 Experimental Results ................................................................................................................................... 100 
4.7 Summary ...................................................................................................................................................... 108 

5. A Visual Assisted Wrapper for Multiple Sections Data Records ................................. 109 
5.1 Introduction ................................................................................................................................................. 109 
5.2 Related Work ............................................................................................................................................... 114 
5.3 Overview of WEAMS ................................................................................................................................... 117 
5.4 Data Extraction ........................................................................................................................................... 119 
5.5 Data Alignment ........................................................................................................................................... 127 
5.6 Experimental Results ................................................................................................................................... 128 
5.7 Summary ...................................................................................................................................................... 131 



vi 

 

6 An Ontology based Wrapper for Data Extraction and Data Alignment ..................... 133 
6.1 Overview ..................................................................................................................................................... 133 
6.2 Related Work ............................................................................................................................................... 137 
6.3 Overview of OW .......................................................................................................................................... 142 
6.4 Data Extraction ........................................................................................................................................... 143 
6.5 Data Alignment ........................................................................................................................................... 148 
6.6 Experimental Results ................................................................................................................................... 151 
6.7 Summary ...................................................................................................................................................... 161 

7 Summary and Future Work ............................................................................................ 162 
7.1 Summary and Conclusion ............................................................................................................................ 162 
7.2 Limitations and Future Work ...................................................................................................................... 170 

Appendices ................................................................................................................................. 174 
Appendix A: Datasets Description ........................................................................................................................ 174 
Appendix B: WISH, ViWEA, WEAMS and OW Datasets ...................................................................................... 175 
Appendix C: Test Results ...................................................................................................................................... 188 

Personal Information ................................................................................................................ 219 
Honors and Awards .............................................................................................................................................. 219 
Professional Memberships .................................................................................................................................... 219 
Personal Homepage .............................................................................................................................................. 219 
Experience ............................................................................................................................................................ 219 

References .................................................................................................................................. 221 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii  

 

List of Figures 

 
Figure 1 Feature of a HTML Tag ................................................................................................... 3 
Figure 2 Data Record, Data Region, Data Item and Data Unit shown in Lycos web site .............. 5 
Figure 3 Data enwrapping and generating process ......................................................................... 5 

Figure 4 Process of data extraction ................................................................................................. 6 
Figure 5 Multiple Sections Data Records ....................................................................................... 9 
Figure 6 Loosely Structured Data Records ................................................................................... 10 
Figure 7 Stages in data extraction for an automatic wrapper ........................................................ 23 

Figure 8 Similarity check used in an automatic wrapper a) string edit distance b) tree edit 

distance ......................................................................................................................................... 25 
Figure 9 Data alignment for three sequences ................................................................................ 27 

Figure 10 An example of data partitioning ................................................................................... 29 
Figure 11 An example of data merging ........................................................................................ 31 

Figure 12 Measuring the size of data records using the bounding box ........................................ 33 
Figure 13 Measuring the size of data region ................................................................................. 35 

Figure 14 Data partitioning using relative position and frequency of occurrence of a token ....... 37 
Figure 15 Trees with different numbers of iterative data but with the same template (bottom tree)

....................................................................................................................................................... 39 

Figure 16 A case where a tree is unable to find match with others .............................................. 41 

Figure 17 Maximal Unique Matches in MSA algorithm and Iterative Data ................................ 41 
Figure 18 The main components of WISH ................................................................................... 43 
Figure 19 Components of Extraction phase in WISH .................................................................. 43 

Figure 20 Potential groups of data records (Case 1: Nodes A separated by same distance, Case 2: 

Nodes A separated by different distance) ..................................................................................... 44 

Figure 21 a) Potential data records, where a node occurs more than 2 times in a level of a tree b) 

Data Extraction in MDR, with nodes AB are taken as one data record instead of two ................ 45 
Figure 22 The Dummy Tree similarity check algorithm .............................................................. 48 

Figure 23 Two trees having similar distinct tags, but different tree structures ............................. 49 
Figure 24 Two trees with similar structures ................................................................................. 50 

Figure 25 Two trees having dissimilar distinct HTML tags ......................................................... 51 

Figure 26 An example of HTML page containing data regions. .................................................. 54 
Figure 27 The DOM Tree for the web page in Figure 26 ............................................................. 54 
Figure 28 Template Detection ...................................................................................................... 60 
Figure 29 String alignment ........................................................................................................... 60 
Figure 30 Application of data alignment using two trees ............................................................. 61 

Figure 31 The resulting template for the two trees in Figure 30 .................................................. 61 
Figure 32 Identification and merging of decorative tags .............................................................. 63 
Figure 33 A sample HTML page from a Journal Web Site .......................................................... 64 
Figure 34 An example of data partitioning ................................................................................... 65 
Figure 35 Results of data partitioning ........................................................................................... 66 

Figure 36 a) Correct Parsing from ICE parser b) Incorrect Parsing from ICE parser .................. 67 

Figure 37 A sample HTML page with 3 data records, each of them containing different items 

(shown in solid circles) ................................................................................................................. 84 
Figure 38 A case where a tree is unable to find a match with others ........................................... 88 



viii  

 

Figure 39 Maximal Unique Matches in MSA algorithm and Iterative Data ................................ 88 
Figure 40 The main components of ViWEA ................................................................................ 90 
Figure 41 Components of Extraction phase in ViWEA................................................................ 90 
Figure 42 An example of HTML page containing data regions. .................................................. 93 

Figure 43 DOM Tree for the web page in Figure 42 .................................................................... 94 
Figure 44 DOM Tree of two data records where the rectangles with round corners denote HTML 

tags which are iterative (Entity 2), hence they should be treated as similar entities .................... 97 
Figure 45 Incorrect alignment of iterative data items ................................................................... 97 
Figure 46 Proper alignment of iterative data items ....................................................................... 97 

Figure 47 Example of two data records where the first data record has additional data items (in 

rectangles) compared to the second data record ........................................................................... 98 

Figure 48 Text nodes of a HTML page are shown in boxes according to their boundaries. The 

numbered boxes are common items while the shaded box is a disjunctive item .......................... 99 
Figure 49 Multiple Sections Data Records where each section has similar formatting for its data 

representation .............................................................................................................................. 111 

Figure 50 Multiple Sections Data Records where each section has dissimilar formatting from 

other sections for its data representation ..................................................................................... 113 

Figure 51 The main components of WEAMS ............................................................................ 117 
Figure 52 The components of Extraction in WEAMS................................................................ 118 
Figure 53 Multiple sections data records where sections are the parent nodes of data records 

(sections are encircled and data records are encircled in rectangles with round corner) ............ 121 
Figure 54 Multiple sections data records where sections and data records are located in the same 

level of the DOM Tree (sections are encircled and data records are encircled in rectangles with 

round corner) ............................................................................................................................... 121 

Figure 55 Multiple sections data records where the tag representing the section is similar to the 

tag representing the data records (sections are encircled and data records are encircled in 

rectangles with round corner) ..................................................................................................... 122 
Figure 56 Potential groups of data records (Case 1: Nodes A separated by same distance, Case 2: 

Nodes A separated by different distance) ................................................................................... 123 

Figure 57 Adaptive Search in WEAMS, where node that occurs twice or more times are 

considered as potential data records ........................................................................................... 123 

Figure 58 A sample HTML page containing data regions (multiple sections data records and data 

records) ....................................................................................................................................... 126 

Figure 59 Data item, Data record, and Data region shown in Lycos web site ............................ 135 
Figure 60 A case where a tree is unable to find a match with others ......................................... 140 

Figure 61 Maximal Unique Matches in MSA algorithm and Iterative Data .............................. 141 
Figure 62 The main components of OW..................................................................................... 142 
Figure 63 The components of Extraction module in OW ........................................................... 142 
Figure 64 An example of a search results containing data records with contents related to ñWebò 

keyword....................................................................................................................................... 146 

Figure 65 A web site of a pet shop containing iterative and disjunctive data ............................ 148 
Figure 66 DOM tree of data records with their respective iterative and disjunctive data .......... 149 

 

 



ix 

 

List of Tables 

 
Table 1 Data Alignment in WISH ................................................................................................ 62 
Table 2 Result of Training Set ...................................................................................................... 71 
Table 3 Optimal Parameters.......................................................................................................... 71 

Table 4 Sensitivity Tests ............................................................................................................... 72 
Table 5 Results obtained from Dataset 1, using WISH, ViNT, and DEPTA ............................... 72 
Table 6 Results obtained from Dataset 2, using WISH, ViNT, and DEPTA ............................... 73 
Table 7 Results obtained from Dataset 3, using WISH, ViNT, and DEPTA ............................... 74 

Table 8 Results obtained from Dataset 4, using WISH, ViNT, and DEPTA ............................... 74 
Table 9 Results obtained from Dataset 6, using WISH, ViNT, and DEPTA ............................... 75 
Table 10 Indicative WISH running time ....................................................................................... 76 

Table 11 Test on Filter HTML Tags ............................................................................................. 76 
Table 12 Performance of Dummy Tree Matching and String Edit Distance ................................ 77 

Table 13 Performance of Dummy Tree Matching and DEPTA Tree Matching algorithm .......... 78 
Table 14 Test on Filter Number of Nodes .................................................................................... 78 

Table 15 Performance of Scoring Function and Visual Cue ........................................................ 79 
Table 16 Test Result of Data Partitioning in WISH ..................................................................... 80 
Table 17 Result of Data Alignment for Dataset 5 ......................................................................... 81 

Table 18 Results obtained from Dataset 1, using ViWEA, ViNT, and DEPTA ........................ 101 

Table 19 Results obtained from Dataset 2, using ViWEA, ViNT, and DEPTA ........................ 102 
Table 20 Results obtained from Dataset 3, using ViWEA, ViNT, and DEPTA ........................ 102 
Table 21 Results obtained from Dataset 4, using ViWEA, ViNT, and DEPTA ........................ 103 

Table 22 Results obtained from Dataset 6, using ViWEA, WISH, ViNT, and DEPTA ............ 104 
Table 23 Similarity check without visual cue for ViWEA ......................................................... 105 

Table 24 Performance of Scoring Function and Centrally Located Region in VSDR ............... 105 
Table 25 Results of Data Alignment for WISH .......................................................................... 107 
Table 26 Results of Data Alignment for ViWEA ....................................................................... 107 

Table 27 Results for Dataset 2 .................................................................................................... 129 
Table 28 Results for Dataset 7 .................................................................................................... 130 

Table 29 Results of Data Alignment for Datasets 2 and 7 .......................................................... 131 

Table 30 Data alignment after applying WordNet ...................................................................... 151 
Table 31 Results obtained from Dataset 1, using OW, ViNT, and DEPTA ............................... 153 
Table 32 Results obtained from Dataset 2, using OW, ViNT, and DEPTA ............................... 154 
Table 33 Results obtained from Dataset 3, using OW, ViNT, and DEPTA ............................... 154 
Table 34 Results obtained from Dataset 4, using OW, ViNT, and DEPTA ............................... 155 

Table 35 Results obtained from Dataset 6 (Single Section Data Records), using OW, ViWEA 

and WISH.................................................................................................................................... 155 
Table 36 Results obtained from Dataset 7 (Multiple Sections Data Records), using OW, ViWEA 

and WISH.................................................................................................................................... 156 
Table 37 Results obtained from Dataset 8 (Loosely Structured Data Records) ......................... 157 

Table 38 Running time for Part 1, Part 2, and Part 3 when tested on Datasets 1, 2, 3, 4, 6, 7, and 

8................................................................................................................................................... 158 

Table 39 Comparisons between ViNT, DEPTA, WISH, ViWEA, WEAMS and OW Wrappers

..................................................................................................................................................... 158 



x 

 

Table 40 Result of Data Alignment for WISH ........................................................................... 160 
Table 41 Result of Data Alignment for OW ............................................................................... 161 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

List of Abbreviations 
 

CSS  Cascading Style Sheets 

DEPTA Data Extraction based on Partial Tree Alignment 

DOM  Document Object Model 

MDR  Mining Data Records 

MSE  Multiple Sections Extraction 

ODE  Ontology Assisted Data Extraction 

OW  Ontological based Wrapper 

SRR  Search Results Record 

ViDE  Visual based Data Extraction 

ViNT  Visual aNd Tags 

ViPER  Visual Perception for Extraction of Records 

ViWEA Visual Wrapper for Extraction and Alignment 

VSDR  Visual based Segmentation of Data Records 

WEAMS Wrapper for Extraction and Alignment of Multiple Sections Data Records 

WISH  Wrapper Incorporating Set of Fast Heuristics  

 

 

 

 

 

 

 

 
 

 



xii  

 

Glossary 
 

Term Definition 

Wrapper A specialized tool used to extract relevant information from a target 

source  

Information Extraction Extraction of relevant information from a target source 

Data record Structured record generated from a database server using a predefined 

template 

Data region A collection of structurally similar data records  

Data item Sub component of a data record 

Data unit An atomic entity in a data item 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii  

 

Acknowledgements 
 

I would like to express my appreciation and gratitude to my supervisors, Dr Eugene Siew and Dr 

Simon Egerton for their guidance, valuable feedback and suggestions, constructive criticisms, 

friendly discussions and persistent supervision which were invaluable for the completion of this 

research work.  

 

Also, I would like to thank Monash University for providing me with a postgraduate research 

scholarship to conduct this research. I am also grateful to my parents and family members for 

their sacrifices whose loves and continuous support were a constant source of encouragement 

and guidance to me.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

 

Abstract 
 

Arguably the Web now represents the largest database of information in the world. However, 

unlike regular databases, most of the information in the Web is stored in a format for human 

consumption only, typically in the form of HTML pages for presentation within a web browser.  

Wrappers offer a way of extracting information from the Web into a form suitable for processing 

by a computer. Thus, rendering the information is useful for many data processing applications. 

 

Recent development has seen the design of automatic wrappers which have basically replaced 

manual, supervised, and semi supervised wrappers as these earlier wrappers need human labeling 

and intervention in their operations. Automatic wrappers are robust and able to automatically 

understand human readable formatting in inducing the underlying data structures. In this thesis, 

we focus on the development of robust automatic wrappers for data extraction at record level and 

data unit level. Data extraction at record level is the extraction of data records generated from a 

database server following a predefined template. The partitioning of data records into smaller 

units termed data items is the extraction of record at data unit level. The importance of automatic 

wrapper is its use to automate meta search and in comparing and evaluating shopping lists.   

 

For data extraction at record level, our objective is to develop a set of fast wrapper heuristics to 

extract data records of varying structures from deep web. Our heuristics are based on our 

observations of how information within a typical HTML page is structured and they extract a set 

of statistical measures from the Document Object Model (DOM) tree of a HTML page. This 

information is then used to robustly extract the data records from the web page. Our results show 

that our heuristics based wrapper, called WISH, is as robust as the current state of the art 

wrappers such as ViNT, VSDR and ViPER. Moreover, WISH is a non visual wrapper and the 

results bring into question the underlying assumptions the current state of the art wrappers were 

founded on. This simplified wrapper approach could have significant speed advantages when 

processing large volumes of web site data, which could prove helpful for meta search engine 

development.  

 



xv 

 

Our heuristic technique is able to simplify the complicated process of comparing all the nodes of 

the tree structures as used in the tree matching algorithms. We find that tree matching algorithm 

works on the basis of comparing the identity and position of the nodes of two trees to determine 

the similarity of these trees. These algorithms are normally complicated and slow although 

accurate. As data records from deep web usually contain complicated tree structures, comparing 

the tree structures is time consuming and needs a lot of computing works, particularly when a 

tree structure contains a large number of nodes. Our study shows that the similarity of tree 

structures could be checked by calculating the number of nodes of the respective trees. Our 

simple heuristic method thus simplifies the coding procedure and reduces the work of a designer. 

This is an added advantage as fewer nodes are required for matching and comparing the tree 

structures. 

 

Data extracted from a HTML page can be rearranged and presented in a clear and easily read 

way, especially in a tabular form. This process is known as data extraction at data unit level (also 

known as data alignment). This will be of great help in shopping list comparisons, for example. 

Current data alignment algorithms incorporated in wrappers such as DEPTA and ViPER are 

unable to align disjunctive (optional data items) and iterative data items (data items having 

similar identity and structure). To overcome this limitation, we use a template detection 

algorithm to match data records structure and align them accordingly.  

  

We enhance the algorithm of WISH further by incorporating visual cue as part of our wrapper 

design. This wrapper is known as ViWEA wrapper. The use of visual cue in our wrapper design 

leads to higher data extraction and data alignment accuracy. First, we use visual boundary of data 

records to extract them from search engine results pages. Then, we use visual cue in addition to 

DOM Tree to solve the problems of aligning disjunctive and iterative data items. We achieve this 

by measuring the relative position and the size of a data item to differentiate data items which are 

disjunctive and iterative.  

 

Data records from different web pages can be visually similar from the visual perspective of a 

human user, but the underlying coding of the respective data records can be different from each 

other. These are irregular structured data records such as multiple sections data records and 



xvi 

 

loosely structured data records. To distinguish and identify the different coding of such data 

records, we introduce an adaptive search technique to identify sections and data records as 

normally data records are encapsulated by sections. Once the sections and data records are 

identified, data records are partitioned according to the particular sections. Our heuristic and 

filtering methods of WISH are then applied to extract multiple sections data records. This 

wrapper is called WEAMS. 

 

We include in our study the latest technology in ontology, which is an approach dealing with the 

semantic characteristic of data records as data records in a deep web page are generally having 

similar meaning in their contents. Ontological approach can be applied for extracting data 

records with varying structures and aligning data items which are disjunctive and iterative. This 

wrapper is known as OW. Experimental tests show that our wrappers can perform better than the 

existing wrappers on a wide range of data records.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

1. Introduction and Overview 
 

1.1 Introduction 

 

With the advent of information technology, a user is able to obtain relevant information from the 

World Wide Web which contains a huge amount of information simply and quickly by entering 

search queries. In response to the queries, the database servers generate the information using 

server scripts such as Personal Home Page (PHP), Active Server Pages (ASP), Java Server Pages 

(JSP) and deliver it directly to the user [Connolly 2002]. The generated information forms the 

hidden web (deep web or invisible web) and is usually enwrapped in HTML pages as data 

records. Due to the dynamic nature of the generated data records from the hidden web, current 

search engines (either general or commercial) are unable to index the HTML page accordingly. 

Thus, this type of web pages is termed deep web pages. To facilitate human browsing, 

advertisers usually display their information (known as data records) using a predefined template 

[Silberschatz 2002]. However, before data records can be used for further processing, they need 

to be extracted from the deep web page and converted to a machine readable form. To achieve 

this, a specialized program (a wrapper) is needed to identify the data records and extract them 

accordingly [BLiu 2007].  

 

There are many advantages for developing a wrapper [Fatima 2007], [Gregg 2007], [Habegger 

2004a], [Habegger 2004b], [Chuang 2007], [Wong 2002], [Wong 2004], [Irmak 2006]. The 

World Wide Web contains a huge amount of data but not all these are required by a user. 

Furthermore, a user may be interested in only a small portion of data on a particular web site or 

from multiple web sites. Thus, there is a need to extract and collate these relevant data using a 

wrapper.  

 

The extracted data are usually used for further processing and converted into a usable form so 

that a user is able to make future decision based on the readily available data. For instance, 

processed information can be readily used by a human resource (HR) director who wishes to 

gather information from the list of qualified potential recruits who have knowledge in auditing, 

are at least 25 years old and have more than 3 years of working experience, and a bookstore 



2 

 

manager who may wish to enquire the price of a book from several book distributors. In addition, 

he may also like to know the number of copies available and the present edition of the book. 

 

A wrapper is also a major component of a meta search engine as it is able to extract specific 

information [Liu 2007], [HZhao 2007]. For example, an analyst may require information such as, 

ñThe price of all history books, published in Year 2006ò. A simple way to obtain this 

information is to use general search engines. However, general search engines are unable to 

return complete information if the search query is too specific. A meta search engine will be 

more efficient in performing this job because it can carry out the search in a more detailed 

manner and work on a specific area. A good example is Google Scholar, which is a meta search 

engine designed for locating academic related information. A meta search engine links and 

combines results obtained from the general search engines. These results are then ranked and 

displayed in a HTML form for human consumption. However, for a meta search engine to 

perform as described it has to depend on a wrapper to extract the relevant information to present 

them in a structured format. A typical example is the incorporation of Visual aNd Tag (ViNT, a 

visual assisted wrapper) [Zhao 2005] as part of the AllInOneNews meta search engine [Liu 

2007] (http://www.allinonenews.com/). 

 

In this thesis, we focus on the development of robust automatic wrappers for data extraction and 

data alignment. We propose several novel techniques to improve the accuracy and efficiency of 

automatic wrappers. Experimental tests show that wrappers designed using the methods 

proposed can significantly improve the speed and accuracy of automatic wrappers in data 

extraction and data alignment.    

 

The remainder of this chapter describes the HTML language and the underlying Document 

Object Model (DOM) Tree that are important to the design of our proposed wrappers. It also 

provides an overview of a wrapper, solutions to the information extraction problems, lists of 

research goals, objectives, contributions and the outline of the thesis chapters.  

 

 

http://www.allinonenews.com/


3 

 

1.2 HTML Language and DOM Tree 

 

In this section, we discuss the concept of tree structures in a HTML page, which is related to the 

extraction of data records using an automatic wrapper.  

 

In general, the HTML language defines the underlying codes which form a tree structure called 

Document Object Model (DOM) Tree in a web page. This DOM Tree is usually used to 

represent data records which are displayed in a web page. A DOM Tree in the HTML page can 

have two types of nodes, namely text and tag nodes. Tag nodes represent the syntactic form of a 

DOM Tree and they give instructions for the browser to display and structure the contents 

properly. The tag nodes are represented with the ó<ô character, followed by a text and closed with 

the ó>ô character. Text nodes contain the contents of the web page. 

 

A tag node usually begins with a starting tag, followed by a text node and ends with a closing 

tag. Closing tag may be optional for some cases. A tag node may have several parameters, where 

each parameter has a name and its value. Figure 1 gives an example of an ñAò tag node with its 

content, ñBooksò and a parameter name ñhrefò plus a value ñindex.htmlò. The ñAò tag node 

exists in pair, with an open tag (<A>) and a closing tag (</A>). Tag nodes can be headings 

(<h1>, <h6>), paragraphs (<p>), hyperlinks (<a>), lists (<li>), or a number of other structures. In 

addition, the formats of HTML page are usually defined by Cascading Style Sheets (CSS), a 

language used to specify the formatting style of a web page, such as font size and colour.  In 

general, these tags provide some visual information that could help to extract data records. Tag 

nodes are usually nested, that is, they may be located within other tag nodes. Nesting can occur 

in many levels for some pages, enclosed by a pair of opening tag nodes and closing tag nodes. 

 

 

Figure 1 Feature of a HTML Tag  

 



4 

 

For a wrapper to extract the relevant data records successfully, the tag and text contents of a web 

page need to be parsed and stored in a DOM Tree. A wrapper will extract data records located in 

a DOM Tree using the patterns of these data records. Besides constructing a DOM Tree, a 

browser rendering engine is also capable of parsing a HTML page and obtaining the visual 

information for that particular HTML page, such as text boundary and size, for example.    

 

Due to the complexities of the HTML language, many problems are encountered in wrapper 

design. Details of these problems are presented in the next section.    

 

1.3 Wrappers  

 

In this section, we provide an overview of a wrapper, its operation and the problems of extracting 

data records from a web page. We also discuss the attempts made to solve these problems and 

their limitations.  

 

1.3.1 Definition and Operation of a Wrapper 

 

As mentioned earlier, a wrapper is used to extract relevant information from a web page. In this 

study, relevant information is referred to as data records. Data records contain a number of 

smaller components, known as data items. The data items may have several atomic entities 

which can be separated further into smaller components, known as data units. A group of data 

records may form a data region. Figure 2 gives an overview of data units, data items, data 

records and data regions obtained from the Lycos web site.  

 



5 

 

 
Figure 2 Data Record, Data Region, Data Item and Data Unit shown in Lycos web site 

 

We use Figure 3 and Figure 4 to demonstrate how data records are generated by a database 

server and the methods used to extract data records [HZhao 2007]. A web page contains data 

records which are dynamic components generated from a script program embedded in a server. 

The server enwraps data and returns it to the users in HTML form as data records. The process 

for enwrapping data is shown in Figure 3 where W represents the enwrapping process when a 

user requests for a page (e.g. by entering a search query), and dr is the generated data records 

based on the userôs request. The generated pages may contain other information such as 

company logo, advertisements and menu bars. To extract data records (dr) from a web page, we 

need to reverse the web generating process, which is to recover the original data form from the 

server. The extraction process is shown in Figure 4, if we can find a mapping E=W
-1

, then we 

can extract data records (dr) from a web page efficiently.  

 

 

Figure 3 Data enwrapping and generating process   

 

 

 

 Data Record 

Data Region 

Data Item 

Data Unit 

 



6 

 

 

Figure 4 Process of data extraction 

 

In practice, the mapping E can either be a specialized program that receives an input page and 

generates a set of data records or it can be a set of extraction rules applied to a set of sample 

pages by an extraction engine to extract data records. The specialized program used to carry out 

either one of the above processes is called a wrapper in the literature. Our research involves the 

former definition and this definition is used throughout the thesis.          

 

To achieve the mapping E (extracting data records from a HTML page) is a non trivial task as 

HTML language is flexible and tolerant towards human errors as will be explained in detail in 

Section 1.3.2. The main aim of data extraction is to develop methods to automatically convert 

human readable formatting into machine understandable form without any human involvement 

and intervention. To illustrate this, we take the Lycos web site as an example (presented in 

HTML language in Figure 2). As can be seen from the web page, the content of the site is related 

to ñwebò, while the information and layout is nonetheless discernable. In the example shown, we 

can know that there are categorized menu bars at the top of the page, seven visible data records 

related to search query located in the center of the page, and finally advertisements related 

information at the right of the page. From this example, we can deduce that a human user is 

capable of recognizing the general layout of the page and understanding the underlying 

segmentation of data presentation in the web page without any knowledge and understanding of 

the specific information presented in the web page. This means that we do not need to 

understand the hard Artificial Intelligence (AI) technique such as natural language 

understanding. We are able to identify seven data records in the web page because we notice that 

there are typical patterns in these data records (big hyperlink font for the search resultsô title, 

regular font and image layout, words with similar meaning etc). The ability to recognize these 

patterns is important for us to develop a general algorithm to extract data records from a web 

page. If we can generate extraction rules to identify these patterns using the HTML page syntax 

and its visual information, then we will be able to build a system to induce the data structures 

from web page in a generic manner.              



7 

 

1.3.2 Problems of extracting data records from a web site  

 

The extraction of relevant data records from a web site is difficult and complicated because: 

 

1. The number of web sites is increasing rapidly and is continuing to grow exponentially. 

There are billions of web sites available and it is difficult to locate a desired web site of 

interest [SizeOfWeb 2009].  

2. The complexity of the web is far greater than that of traditional documents. Web pages are 

created and defined in HTML language. However, data extraction is affected by the 

ambiguities in HTML language and the different ways in presenting the data. Furthermore, 

HTML language lacks uniformity in its design. Therefore, it is necessary to develop a general 

algorithm that is robust to take into consideration the ambiguities and yet is efficient in its 

performance.  

3. No reliable convention and standard for HTML language. Errors can occur easily because 

firstly, HTML language is used for the presentation of data to facilitate human browsing and 

secondly, the use of HTML tags far exceeded the recommended standards and rules. 

Therefore there is no reliable convention for the design and use of HTML tags for 

enwrapping data records. Furthermore, HTML grammar is rather loose and a browser may 

still display the web page content correctly without enforcing the grammar of the data (e.g. ill 

formed HTML page may end up being ñperfectlyò displayed in a browser screen). 

4. The web is a highly dynamic source of information. The contents and design of the web 

sites change frequently. Companies, organizations and private individuals also regularly 

change the contents, layout and design of the web sites to suit future needs. Therefore, it is 

also necessary to modify the extraction tool to suit the new changes. However, the 

modification works may not be flexible as they can be labor intensive and time consuming. 

Therefore, there is a need for the development of automatic wrapper.  

5. There are many irrelevant data from the web sites. Search engines often return unnecessary 

information, such as advertisements. Moreover, the search may return incomplete data. In 

addition, users would like to find the required information easily and quickly. It becomes 

time consuming when the user has to manually locate the information throughout the web. It 

is also impractical for a user to use many extraction tools to extract the relevant information 



8 

 

from many sites. Preferably, a user is able to rely on a specific tool, which is able to perform 

all the tasks that they need. 

6. Data records have varying structures. Data records can be broadly divided into four 

categories: Single Section Data Records, Multiple Sections Data Records, Loosely Structured 

Data Records, and Unstructured Data Records. Single Section Data Records are by far the 

most common type of data records (Figure 2). They usually exist in most of the current web 

pages and generated from the database server using a fixed template [Liu 2003], [Zhai 2005], 

[Zhao 2005], [Wang 2003], [Kayed 2007], [Kayed 2010]. Some of the data records presented 

in web pages are normally grouped and categorized when presented in the web site, that is 

relevant data records sharing similar characteristics are grouped under the same category. 

These groups are called sections. As sections contain data records and can occur more than 

once, we call them multiple sections data records (Figure 5) [Zhao 2006]. Multiple sections 

data records are highly irregular as each section may have different format compared to other 

sections. On the other hand, some data records follow a simple but strict rule for their pattern, 

and their internal structure can be flexible provided that they do not violate the strict rule of 

the pattern. These data records are known as loosely structured data records [Wu 2008a]. 

Examples of this type of data records are forums and blogs (Figure 6). The other group of 

data records is highly unstructured, that is they have no specific format and layout for their 

structure [Embley 1999] (e.g. plain text document).  

 



9 

 

 

Figure 5 Multiple Sections Data Records  

 



10 

 

 

Figure 6 Loosely Structured Data Records 

 

1.3.3 Limitations in current wrappers 

 

Due to the problems and difficulties encountered in wrapper design, the four types of wrappers 

available currently have their own limitations. The operation and limitations of these wrappers 

are briefly discussed in the following sections:  

 

1. Manual wrapper 

 

Manual wrapper is the earliest wrapper developed and it needs an experienced and 

knowledgeable user for its operation [Hammer 1997], [Crescenzi 1998], [Arocena 1998], 

[Saiiuguet 2001], and [Liu 2000]. By observing the HTML page, the user will find the 

particular patterns and he will be able to hand code the wrapper based on these patterns. 

However, this method soon became impractical, because every type of pages needs its own 

wrapper, and the wrappers need maintaining and updating should their target web pages 

change their layout. Due to the frequent updating and modification made, this wrapper is also 



11 

 

error prone. As many wrappers are required to cater for the individual needs from different 

web sites, this wrapper is not easily scalable for large web sites and is specifically designed 

for a particular domain.  

 

2. Supervised wrapper 

 

Supervised wrapper requires the user to label the HTML pages and the wrapper will 

automatically extract the information based on the labeled instances [Freitag 1998], [Mary 

1998], [Kushmerick 1997], [Soderland 1999], [Adelberg 1998], [Hsu 1998], [Muslea 1999], 

[Boris 2000], [Xiaoying 2004], [Remi 2006], [Liyu 2004], [Cosulschi 2006], [Kong 2001], 

[Suzhi 2003], and [Laender 2002b]. However, the involvement of a user is still needed for 

the operation of the wrapper and manual labeling of web page is time consuming. Even for 

the same web site, the user needs to redo the labeling as the same web site may have different 

contents represented in a different template or schema.  

 

3. Semi supervised wrapper 

 

Similar to supervised wrapper, semi supervised wrapper requires the user to label the HTML 

pages [Chang 2001], [Chang 2004], [Zhai 2005], [Hogue 2005]. However, once labeling is 

carried out, the wrapper will automatically predict the set of extraction rules for extracting 

data from other similar HTML pages. However, semi supervised wrapper requires human 

intervention for the labeling of HTML page, and thus, is not scalable for large web sites.  

 

4. Automatic wrapper 

 

Automatic wrappers are developed currently to overcome part of the limitations found in 

earlier wrappers. Essentially, automatic wrappers attempt to find structure within the target 

web page and extract information accordingly [Crescenzi 2001], [Crescenzi 2004], 

[Crescenzi 2002a], [Crescenzi 2002b], [Crescenzi 2006], [Wang 2003], [Liu 2003], [Liu 

2004], [Arasu 2003], [Kazuhide 2005], [Xiaoying 2006], [Xiaoying 2007], [Nitin 2005], 

[Vuong 2006], [Zhao 2005b], [Álvarez 2007], [Álvarez 2008], [Algur 2006], [Vadrevu 



12 

 

2007], [Tian 2008], [Miao 2009], [Zheng 2009]. As early automatic wrappers used HTML 

tags to determine the structure of data records, the accuracy and precision of these methods 

are affected by ambiguities and non uniformity in the HTML language. To overcome these 

limitations, wrappers are designed using additional visual cues, such as context, font, colour, 

style, size and relative object positions [Longzhuang 2007], [Liu 2006], [Simon 2005], [Liu 

2005], [Zhai 2005], [Zhao 2005], [Zhao 2006], [Zhao 2007], [Baumgartner 2001], [Aumann 

2006].  

 

Automatic wrapper does not require human involvement and intervention for its operation. It 

can also work on a larger domain than earlier wrappers, thus it is scalable for large scale web 

comparisons. Developing an automatic wrapper is important for automating a meta search 

engine and in comparing and evaluating shopping lists [YZhai 2006], [JWang 2004], [WSu 

2007], [KSimon 2009]. Recent developments have seen the design of object level data 

extraction wrappers [Buttler 2001], [Tseng 2006], [Nie 2006], [Nie 2007], ontology assisted 

wrappers [Su 2009], wrappers using clustering techniques [Miao 2009], [Alvarez 2007], 

[Fatima 2007], [Fatima 2008] and wrappers which are able to extract loosely structured 

records [Shen 2007], [Park 2007], [Wu 2008a], [Wu 2008b], [Li 2009], [Xia 2009]. There are 

also wrappers designed specifically to extract tabular data [Bernhard 2005], [Lerman 2004], 

[Gatterbauer 2007], [Tao 2009] and news [Wang 2009].  

 

1.4 Research Goals and Questions 

 

Our research focuses on the study of data records with varying structures and the problems 

associated with the extraction and alignment of these records. Our research goals are presented 

below:   

 

1. To reexamine the existing non visual wrappers design and develop a non visual wrapper to 

improve the performance and accuracy of existing non visual wrappers by using the DOM 

Tree properties of data records. 

2. To enhance the data extraction and data alignment accuracy of our non visual wrapper by 

incorporating additional visual cue of data records. 



13 

 

3. To extend our visual assisted wrapper to support the extraction and alignment of irregular 

multiple sections data records. 

4. To develop a semantic based ontological technique to extract and align data records with 

varying structures accurately based on their semantic properties (meaning of individual 

words in data records).    

 

Our research deals exclusively with data records with varying structures, which can be structured 

data records, irregular multiple sections data records, and loosely structured data records. It is 

worth noting that data labeling [Wang 2003], [Song 2004], [Lu 2007], [Zhu 2006], [Zhu 2008], 

[Su 2009], [Simon 2006a], [Simon 2006b], [Hornung 2006] is outside the scope of this thesis.  

 

To address the first research goal, our research questions for data extraction and data alignment 

are: 

 

1. Current state of the art wrappers are visually assisted. These wrappers use DOM Tree in 

addition to visual cue for data extraction, assuming that additional visual information could 

lead to more robust data extraction. This is supported by higher recall and precision rates 

when extracting data records. However, we believe that significant improvements in the 

performance of non visual wrappers could still be achieved. This improvement in data 

extraction accuracy would also be helpful for visual assisted wrappers because generally, 

they too use DOM Tree properties of data records. How do we improve the performance of 

the existing state of the art non visual wrappers while attaining the performance of visual 

assisted wrappers?   

2. Tree matching algorithms are incorporated in a wrapper design to check for similarity of data 

records. This algorithm is complicated and slow in its operation. How do we improve the 

performance of tree matching algorithm without losing its accuracy?     

3. Current state of the art visual assisted wrappers use visual cue to locate relevant data region 

of interest. A browser rendering engine is used to obtain visual cue and this procedure is slow 

as additional parsing is required to parse the HTML page. Can we use DOM Tree to obtain 

relevant data region of interest without relying on complex visual cue techniques?  



14 

 

4. Current wrappers use DOM Tree to align data records. Most of these wrappers do not 

consider for the alignment of disjunctive (optional data item) and iterative (repetitive data 

items). How can we use DOM Tree to align disjunctive and iterative data items? 

5. Data items contain text content. However, text content may contain several smaller 

components that exist as separate entities, which can be further partitioned into smaller data 

units. Separating data items into data units is helpful as data units may convey different 

semantic information. How do we partition data items into data units? 

 

We have the following research questions for our second research goal: 

 

6. Although visual boundary has been used by current wrappers to detect relevant data region, 

current state of the art visual assisted wrappers still use edit distance, and clustering 

techniques to detect the similarity of data recordsô structure. These techniques are based on 

textual comparisons and unable to match similar data records that contain additional data 

items. What is the effect on precision and recall if we use visual boundary of data records for 

similarity check? 

7. Some data records contain disjunctive and iterative data items. Current wrappers treat these 

data items differently, resulting in incorrect grouping of data items. Can visual cues be used 

as a solution to these problems? 

 

For the third research goal, our research questions are as follows: 

 

8. We extend further our visual assisted wrapper to extract multiple sections data records. What 

is the benefit of using this wrapper in terms of accuracy (recall and precision rates) for 

extracting multiple sections data records?   

9. The visual assisted wrapper we developed for extracting multiple sections data records is 

able to align multiple sections data records as well. We use the properties of DOM Tree to 

align multiple sections data records. What is the advantage of aligning multiple sections data 

records? 

 



15 

 

For the fourth research goal, we have the following research questions: 

 

10. Ontological technique has been used in many key areas and has shown promising results, 

particularly in information retrieval. However, to the best of our knowledge this technique 

has not been widely used in the design of automatic wrapper. What is the effect on recall and 

precision rates if we are to use ontological technique in our wrapper design?   

11. Current wrappers are not able to align disjunctive and iterative data items, as these wrappers 

treat iterative data items as not similar and align disjunctive data items in the wrong order.  

Can ontology be used to solve these problems? 

 

1.5 Research Contributions of this Thesis 

 

In this study, we find that the conclusions that non visual wrappers are unable to perform as good 

as visual assisted wrappers are not correct [Zhao 2005], [Liu 2006], [Liu 2009]. Our study shows 

that further improvement can be made in non visual wrappers design by making full use of the 

DOM Tree properties of data records. We also use additional visual information of data records 

in our non visual wrapper design to improve the data extraction and data alignment accuracy. We 

further extend our visual assisted wrapper to extract and align multiple sections data records. Our 

further examination shows that using the semantic properties of data records in our wrapper 

design is equally efficient in data extraction and data alignment. Details of the contribution of 

our research in data extraction and data alignment are described below: 

 

WISH Wrapper  

 

Current state of the art automatic wrappers are visually assisted as they use DOM Tree in 

addition to visual cue for data extraction. However, we develop a non visual wrapper that could 

attain similar performance as visual assisted wrappers [Hong 2009a]. Our wrapper uses a series 

of data filters with a set of fast heuristic techniques to remove irrelevant data and extract the 

relevant data region [Hong 2009b].  

 



16 

 

We also propose a dummy tree matching algorithm which is fast and accurate and is able to 

perform the function of a tree matching algorithm [Hong 2009c]. Our Dummy Tree Matching 

Algorithm works in a time complexity of O(n) and simplifies the complicated process required 

by the tree matching algorithm. This technique brings into question the need for complex tree 

matching algorithm.  

 

The fast heuristic techniques used in our filtering process also incorporate a DOM Tree based 

scoring function to extract relevant data region (search results) from search engine results pages. 

The scoring function developed is able to extract relevant data region from search engine results 

pages in a fast and accurate way. 

 

As our wrapper is fast in its operation, it is suitable for large scale web comparisons and meta 

search engine application. Due to the flexibility of the heuristic techniques used, WISH can 

easily be modified to use in other fields of Information Extraction as well. For example, we have 

recently made some slight modifications in WISH and used it to extract image segments [Fauzi 

2009]. 

 

For data alignment, we generate a regular expression rule for data records and align them 

accordingly. Our regular expression rule provides a one to one mapping between HTML Tags in 

data recordsô structure to the elements of regular expression. Thus, this rule is able to generally 

represent the server scripts used to generate the data recordsô structure. We use the regularity of 

data recordsô structure (e.g. their repetitive patterns and arrangements) to align data records, with 

due considerations for disjunctive and iterative data items. To separate data items into data units, 

we propose a data merging and partitioning algorithm which is more flexible than that of Search 

Results Record (SRR) wrapper [Zhao 2007], hence it is able to identify and extract data units 

more efficiently.  

 

ViWEA Wrapper  

 

Current visual assisted wrappers use visual cue such as visual boundary to detect relevant data 

region for example, a search results output. Our study shows that this technique can also be 



17 

 

applied to check the similarity of data records because data records normally share nearly similar 

visual boundary. This technique is useful because it can be applied for data records having 

similar visual boundary even though some of these data records may contain additional data 

items (Figure 2) [Hong 2010b]. ViWEA is able to accurately extract data records from HTML 

pages containing advertisements. Results from our experimental test indicate that this technique 

could simplify and improve the design and accuracy of our wrapper further in data extraction.   

 

In ViWEA, we enhance our algorithm in WISH further to support the alignment of iterative and 

disjunctive data items [Hong 2010d]. Our approach is to use visual cue such as relative position 

and size of data items to align these data items. Aligning data items are useful in differentiating 

entities which are similar and entities which are dissimilar, hence a more accurate grouping and 

classification of data items. 

 

WEAMS Wrapper  

 

Current wrappers are unable to extract multiple sections data records. We extend the algorithm 

of our ViWEA wrapper further to support the extraction of multiple sections data records (known 

as WEAMS wrapper) [Hong 2010a]. Our wrapper is able to extract irregular multiple sections 

data records accurately. This wrapper is as robust as MSE wrapper [Zhao 2006] and we use 

properties of a DOM Tree in addition to visual cue for the design of our wrapper. WEAMS 

wrapper also does not need the additional requirements such as Section Boundary Marker (SBM) 

as in MSE wrapper for distinguishing sections and data records.   

 

Current wrappers are able to align single section data records. However, there are no wrappers 

available to align multiple sections data records. Using the data alignment algorithm developed 

in WISH, we extend it further to align multiple sections data records (known as WEAMS 

wrapper). Aligning multiple sections data records is useful for differentiating sections and data 

records, which is helpful in shopping list comparisons. 

 



18 

 

OW Wrapper  

 

Current wrappers are designed to extract data records with specific structures such as single 

section data records, multiple sections data records and loosely structured data records. These 

wrappers use the regularity of data records such as repetitive patterns to extract them. In this 

thesis, we carry out a detailed study on the possibility of using ontological technique for our 

wrapper design as ontological technique has been used in a number of areas of Information 

Technology, particularly information retrieval. This technique has produced promising results 

when used to check the semantic properties of documents. Using the same principle, we develop 

an ontological based wrapper which utilizes semantic properties of data records for data 

extraction. Unlike conventional wrappers which use DOM Tree and visual properties of data 

records, this technique is able to extract irregular data records such as multiple sections data 

records and loosely structured data records, thus achieving higher data extraction accuracy 

[Hong 2010c].    

 

We also find it possible to apply ontological techniques for checking the synonymy of words in 

each data item to differentiate iterative data items. Iterative data items contain contents which are 

related semantically (e.g. they have words which are similar in meaning). Ontological technique 

is useful for aligning disjunctive and iterative data items [Hong 2010e].  

 

1.6 Thesis Outline 

 

This thesis focuses on developing wrappers to extract data records, align them into data items 

and finally partition them into smaller data units. 

 

Chapter 1 gives an overview of the research discipline, the benefits of developing a wrapper, the 

basic ideas of HTML language and DOM Tree, the relevant problems encountered in data 

extraction, lists of research goals and questions and finally our research contributions to the 

research area.  

 



19 

 

In Chapter 2, an in-depth evaluation and discussion of current automatic wrappers are presented. 

We also discuss the relevant issues related to a wrapper design, such as the requirements and 

roles of wrappers. We provide a summary of general algorithms used in non visual and visual 

assisted wrappers and also the general algorithms used in data alignment. Finally, we formulate 

the data extraction and data alignment problems.   

   

Chapter 3 presents our proposed techniques used to improve the performance of current non 

visual wrappers. In this chapter, we describe the limitations of current state of the art visual 

assisted wrappers and propose fast heuristic techniques for extracting data records. We then 

identify the limitations of current tree matching algorithms for checking the similarity of data 

records and provide implementation aspects for matching tree structures in a fast and accurate 

way. We also use regular expression rules to align data items, with due consideration given to 

iterative and disjunctive patterns. Finally, we give an in-depth discussion on the problem of 

identifying and extracting data units and propose a solution.  

 

Chapter 4 presents the work of ViWEA wrapper, a visual assisted wrapper using visual cue for 

data extraction and data alignment. Generally, visual cue can also be applied to our previous non 

visual wrapper WISH. We enhance the algorithm of WISH for checking the similarity of data 

records using visual cue such as the boundary of data records. A technique used to locate and 

extract relevant data region by measuring the size of text and image is presented. We also review 

methods used in current wrappers in aligning iterative and disjunctive data items. We then 

propose an efficient data alignment algorithm to align iterative and disjunctive data items using 

visual cues such as relative position and size of data item.  

 

Chapter 5 gives details of WEAMS, an extended visual assisted wrapper of ViWEA developed 

to extract and align multiple sections data records. This chapter provides the implementation 

aspect of WEAMS in extracting and aligning multiple sections data records. We discuss the 

various issues and difficulties related to the extraction of multiple sections data records and 

propose an algorithm for detecting sections and data records and partitioning them accordingly. 

We also enhance and extend the data alignment algorithm in WISH for aligning multiple sections 

data records. 



20 

 

 

In Chapter 6, we present OW, a wrapper using ontological technique for data extraction and data 

alignment. We provide details of applying ontological techniques for data extraction and data 

alignment. For data extraction, OW uses the frequencies of similar words and the set of 

synonymous words obtained from an existing general ontology domain (a lexical database for 

English language) to extract relevant data region. For data alignment, OW uses word matching 

technique based on the lexical database for checking the similarity of words to align disjunctive 

and iterative data items.  

 

In Chapter 7, a summary of our research work, conclusions made, implications and limitations of 

these new algorithms, and future directions of our work are presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     



21 

 

2. Components and Design of a Wrapper 
 

2.1 Overview 

 

In this chapter, we give an overview of the main components of an automatic wrapper and the 

algorithms incorporated in the wrapper are also discussed in detail. The use of properties of data 

records in wrapper design such as the regularity of tree structure and the location of relevant data 

region are also presented. We also discuss the assumptions made in the design of an automatic 

wrapper. These assumptions are necessary for our wrapper to successfully extract data records 

from deep web pages.     

 

2.2 Assumptions and Requirements  

 

For our wrapper to work successfully the sample pages used for data extraction should be 

obtained from a deep web page and each of these sample pages must contain at least three data 

records. Our wrapper however, does not require the HTML page to be converted to XHTML 

format as the parser can recognize HTML format.  

 

Automatic wrappers require certain assumptions and observations that may at first appear 

limiting [Longzhuang 2007], [Zhai 2005]. However, data records by their very nature have 

repetitive patterns and follow certain website design rules as they are automatically generated by 

database server. Thus, automatic wrappers take advantage of these programming practices to 

uncover those patterns. Although these patterns may not hold for all of the web pages, we can 

generalize these patterns to develop a set of heuristic techniques that are applicable for most of 

the web pages.   

 

The authors of the papers [Longzhuang 2007], [Simon 2005], [Liu 2005], [Zhao 2005], [Zhai 

2005], [Miao 2009], [Su 2009], on Information Extraction have pointed out several unique 

features inherent to a data record in a web page. We have also made several observations on the 

constitution of a data record. Based on these observations, we come out with a way to apply 

heuristic techniques to correctly extract a data record. In general, data records in deep web pages 



22 

 

usually occur in repetitive sequence and located in the center of these pages. These records are 

usually large in size and contain a large number of text and images. The following are the 

observations made by several authors as presented in their papers: 

 

Observation 1 [Longzhuang 2007], [Simon 2005], [Zhao 2005], [Su 2009]: 

The size of the data records in deep web page is usually large in relation to the size of the whole 

page 

 

Observation 2 [Liu 2003], [Zhai 2005], [Simon 2005], [Miao 2009], [Su 2009]: 

Data Records in deep web page usually occur more than three times in a given web page.       

 

Observation 3 [Simon 2005], [Liu 2003], [Zhai 2005], [Wang 2003], [Miao 2009], [Su 2009]: 

Data Records usually conform to a specific regular expression rule to represent their individual 

data, hence they have nearly similar tree structure.  

 

Our Observation 4: 

Data Records usually consist of three HTML tags that make up their tree structure. This is 

evidenced by the fact that, in the simplest form, data records consist at least a pair of HTML tags 

(opening and closing tags, usually hyperlinks) to present their content followed by a separator 

tag (e.g. <br> tag).    

 

Our Observation 5: 

Data Records in a deep web page are also related semantically, that is they contain words which 

are similar in meaning. For example, in a search engine results page, the search results usually 

contain words which are related to the search query.  

 

2.3 Current Approaches in Data Extraction and Data Alignment 

 

2.3.1 Overview 
 

In this section, we briefly discuss the general algorithms used in data extraction and data 

alignment. An automatic wrapper will normally go through four stages in order to extract data 



23 

 

records successfully (Figure 7). In the first stage, an input such as search engine results page will 

be parsed by a parser incorporated in a wrapper (Figure 7 Step 1). The parser will generate a 

DOM Tree, and in some cases provide valuable visual information for the user. The wrapper 

uses the DOM Tree and additional visual cues for extracting data records from the HTML pages. 

This is the extraction phase. Data extracted can be aligned and used for further processing 

(Figure 7 Step 4). Data alignment is optional as they may not be needed by a user in some cases. 

Once data records are properly aligned and presented in tabular form, data items can then be 

labeled so that they can be easily distinguished (Figure 7 Step 5).  

 

 

Figure 7 Stages in data extraction for an automatic wrapper 

 

2.3.2 Parsers 
 

The purpose of parsing is to correct any code errors in the web page, separate the HTML codes 

(tags) from the text information and identify HTML tags that only deal with the structure of the 

web page. When the tags and texts are identified, a tree is constructed based on the HTML tag 

structure. The resulting tree should be similar to Document Object Model (DOM) defined under 

W3C. We use ICE Parser [ICE 2008] for WISH, ViWEA, WEAMS, and OW wrappers (See 



24 

 

Sections 3, 4, 5, and 6). A parser is used in our wrappers to obtain the DOM Tree which contains 

the tree structures of data records (Figure 7 Step 1). 

 

2.3.3 Data Extraction 
 

Non visual wrappers use the properties of DOM Tree to extract data records. Recent 

development has seen the emergence of visual assisted wrappers. Unlike non visual wrappers, 

visual assisted wrappers rely on additional information such as visual cue to extract data records.  

  

We broadly classify the operation of a wrapper in data extraction into three categories: 

 

1. Single page or multi ple pages wrapper 

 

Wrappers in the early days use multiple sample pages to extract data records [Crescenzi 2001], 

[Arasu 2003], [Zhao 2005]. These wrappers take two sample pages and match them to identify 

the similar and non similar components. This procedure is repeated for the remaining sample 

pages. They assume that non similar components found in the sample pages are data records 

while the similar components are irrelevant information such as company logo and 

advertisements. Recent wrappers use single site for data extraction. These wrappers are able to 

reduce the overhead required for extracting data records. 

 

2. Extracting data records based on their regularity 

 

Current non visual wrappers use the regularity of data recordsô structure such as repetitive 

pattern of HTML tags for data extraction (Figure 7 Step 2) [Chang 2001], [Wang 2003], [Liu 

2003], [Liu 2005], [Zhai 2005], [Miao 2009]. As data records are similar in structure, these 

wrappers use similarity check algorithms such as string (Figure 8a) and tree edit distances 

(Figure 8b) to match data recordsô structure. 

 

The string edit distance algorithm involves matching two strings and the determination of how 

the first string is to be transformed into the second string. String edit distance algorithms are 

generally fast in operation and run in a time complexity of O(m) (m is the number of tags in a 



25 

 

data record). The tree edit distance algorithm uses two tree structures and matches them by 

comparing each of the node identity and position. Referring to Figure 8a, there are two strings x 

and y containing four elements in each of the strings. It is noticeable that both strings x and y 

have elements A, C, and E as part of their contents. Therefore, the string x is ¾ similar to that of 

string y as string x contains three similar elements out of four elements to that of string y. To 

match tree structures, tree edit distance will determine the number of similar nodes in the two 

trees. The nodes in these two trees must also be arranged in the same order. Figure 8b shows an 

example of two trees, with the first tree x have 6 nodes and the second tree y have 7 nodes. Tree 

edit distance algorithm will determine that the first tree x is 6/7 similar to that of the second tree 

y as the first tree x has 6 nodes similar to that of the second tree y.       

 

 

Figure 8 Similarity check used in an automatic wrapper a) string edit distance b) tree edit 

distance  

 



26 

 

3. Locating the relevant data region containing relevant data records  

 

To date, only visual assisted wrappers are able to locate and extract relevant data region (Figure 

7 Step 3). Most of the visual assisted wrappers use visual boundary of data records to extract the 

relevant data region [Zhao 2005], [Simon 2005], [Longzhuang 2007], [Su 2009]. These wrappers 

have the advantage of being able to locate and extract the relevant data region using the size and 

position of the data region (by detecting the centrally located and large data region) in the HTML 

page.     

 

2.3.4 Data Alignment 
 

Current wrappers use DOM tree to align data records (Figure 7 Step 4). These wrappers identify 

the various text components in data records, rearrange and tabulate them accordingly. To align 

the text components in a proper order, current wrappers use HTML Tags as a reference point to 

determine the correct position where text components are inserted into the table. As an example, 

Figure 9 shows data items A, B, C, E, F, and H which are combined to form data records 

(Sequences 1, 2 and 3). Not all the data items exist in each of the sequence, for example data 

item B is not included in Sequence 1. Before rearranged, data item C is in column 2 of Sequence 

3. After proper alignment, C will be located in column 3 of each sequence. Once aligned, a user 

will be able to locate item C easily. Furthermore, the user will be able to know the particulars of 

C by simply looking at column 3.  

 

For data alignment, a wrapper requires a few general steps to align data records: 

 

1. Identification of partitioning point for alignment  

 

DEPTA [Zhai 2005] uses partial tree alignment for data alignment. Every node in the tree is 

given a unique identity and these nodes are aligned according to their identity. ViPER [Simon 

2005] uses Maximal Unique Matches (MUM) to align data records. MUM is a maximal set of 

repetitive HTML Tags that serves as partitioning points for rearrangements of data items.         



27 

 

 

2. Global alignment  

 

DEPTA [Zhai 2005] assumes that each of the nodes in a tree is unique, therefore DEPTA is able 

to merge any partial trees to form a final tree. ViPER [Simon 2005] determines MUM from a set 

of HTML Tags, assuming that all the MUMs are distinct and unique. These MUMs determine 

the correct positioning of data items in a table.   

 

 

Figure 9 Data alignment for three sequences 

 

 

2.3.5 Summary 
 

The concepts discussed above are adopted for our wrapper design. Our wrappers are designed to 

extract and align data records with different structure and format and we use only single page for 

the extraction of these data records. Ideally, single page wrapper requires little overhead 

compared to multiple pages wrapper. This is a significant advantage in speed performance of a 

wrapper with a slight decrease in accuracy.   

 

 

 

 

 

 

 

 

 

 



28 

 

3. A Fast and Reliable Wrapper for Data Extraction and Data 
Alignment 

 

3.1 Overview 

 

In this chapter, we focus on developing an automated non visual wrapper for the extraction of 

data records at record and data unit levels, particularly the search engine result pages. Our aim is 

to improve on current non visual wrapper performance and demonstrate that our wrapper, 

Wrapper Incorporating Set of Heuristic Techniques (WISH) performs equally as well, and in 

many cases, better than the current state of the art automatic visual assisted wrappers. Our results 

show that our non visual wrapper WISH could attain similar performances as current state of the 

art wrappers. In this chapter, we propose a set of fast heuristic techniques for extracting data 

records.  

 

A review of previous work shows that the problems generally related to wrapper design are: 

 

1. Current non visual wrappers rely on HTML Document Object Model (DOM) Tree are unable 

to locate and extract relevant data region (groups of data records [Zhai 2005]) from search 

engine results pages [Wang 2003], [Liu 2003], [Arasu 2003]. A DOM tree is the underlying 

code of a HTML page that has a ñtreeò like structure rendered by an internet browser. Visual 

based wrappers [Zhao 2005], [Zhao 2006], [Zhao 2007], [Longzhuang 2007], [Liu 2006] are 

developed to overcome this problem using additional visual cues from HTML page. 

However, these visual steps incur an additional computational overhead, and make the 

running process slow because they require rendering information from the web browser and 

additional parsing to extract the visual information [Shen 2006].  

2. Non visual wrappers use tree matching algorithm to check the similarity of data records by 

comparing the position and identity of each node in the trees (data structure to represent the 

data recordsô structure in a tree form) to remove irrelevant data records with dissimilar 

structure [Zhai 2005], [Liu 2005], [Liu 2003]. However, the implementation and coding of 

the algorithm are complicated [Zhai 2005], [Liu 2005]. This algorithm also runs in a time 

complexity of O(n1n2) where n1 is the number of nodes in the first tree and n2 is the number 



29 

 

of nodes in the second tree. In general, most web pages consist of complex trees with a large 

number of nodes. Therefore, these complexities slow down the current tree matching 

algorithm. 

 

 

Figure 10 An example of data partitioning 

 

3. Iterative data items are data items which are similar and occur repetitively and disjunctive 

data items are data items which may exist in some data records but not in all the data records. 

For example, in a web site showing a pet shop with dogs for sale, the data items ñlabrador 

retrieverò, ñgerman sherperdò and ñsiberian huskyò are iterative data items as they have 

similar format and structure. This pet shop may also sell other pets as part of their items, for 

example cats. Therefore, data item ñpersian catò is a disjunctive data item as this pet shop 



30 

 

may not have this data item as part of their contents shown in the web site. Current state of 

the art wrappers are unable to align iterative data items [Zhai 2005], [Simon 2005] because 

they treat the detected data items as separate entities without further checking whether these 

data items are having similar parent HTML tags and similar tree structures. Take the ñpetò 

data item as an example, ñlabrador retrieverò, ñgerman sherperdò and ñsiberian huskyò 

should be aligned under three columns with similar column name under ñpetò but current 

wrappers will align them under three separate columns with different names. For disjunctive 

data items, current wrappers are unable to align them correctly because they are optional 

items in some data records and thus, the position to which they are to be inserted into the 

template cannot be determined.  

 

 

 



31 

 

 

Figure 11 An example of data merging 

 

4. Current wrappers are having difficulties in solving the HTML Tag (web page syntax) and 

Text (webpage content) mismatches problem efficiently as they make invalid assumptions on 

the formation of data units from the HTML Tag and Text nodes [Zhai 2005], [Simon 2005], 

[Wang 2003]. Tag and text mismatches problem involves the identification of atomic 

elements (data units) to correctly segment the data. Previous work on wrapper design 

assumes that the entire text node is the smallest entity and this entity is a non divisible text. 

Therefore, for each of the text nodes encountered in a data record, it will be aligned in a 

particular column of a table according to its correct position. However, a text node may be 

stored under a parent HTML tag and may consist of several data units which themselves can 

be smaller sub texts. In actual case, these smaller sub texts can be treated as separate 



32 

 

individual text units. Furthermore, if a text is separated by a decorative tag (a HTML 

formatting code), for example HTML tags representing bold, italic text, the text will be 

separated into smaller units and represented separately by several texts. We use Figure 10 to 

illustrate the problem of identifying the separate entities of a text node. There are two data 

records in Figure 10 and each of these has two text nodes. In each data record, one of the text 

node contains one data unit (i.e. ñTitleò), and the other contains two data units, namely 

ñPriceò and ñISBNò. The existing automatic wrappers (excluding Search Result Records 

(SRR)) will not be able to identify ñPriceò and ñISBNò as two data units because the text 

ñPrice: $65.00 ISBN: 14532ò of Data Record 1for example  is stored under the parent 

HTML Tag <B> and is considered as the smallest entity. Therefore, they are unable to 

segment these data units correctly. In Figure 11, we demonstrate the problem of identifying 

text separated by a decorative tag. In this example, there are also two data records. In the 

HTML page displayed, each data record has three data units. However, when shown in a 

DOM Tree form, each data record contains six data units due to the presence of decorative 

tags. For instance, ñTitle:  World Wide Webò will appear as two texts as they are separated 

by the bold tag <B>. These data records cannot be separated correctly using current 

wrappers. In the tables at the bottom of Figure 10 and Figure 11, we also illustrate, in tabular 

form, the traditional way of segmentation of data units and our proposed method of 

identifying the data units. In these tables, the first row represents the label assigned to each of 

the entity, while the remaining rows are the contents of the data units. Once the data units are 

clearly identified, they can be aligned properly.   

 

The techniques we proposed to improve the speed and accuracy of our wrapper in extracting and 

aligning data records are discussed below: 

 

1. Filtering Techniques 

 

We incorporate a series of data filters to remove irrelevant data records from the HTML 

page. These filters are designed based on heuristic techniques, each of them works based on 

the observations made by authors of [Liu 2003], [Simon 2005], [Longzhuang 2007]. The idea 



33 

 

is to reduce the ñnoiseò or irrelevant data region in each filtering stages so that the wrapper 

can be more efficient in extracting the correct data region containing data records.  

 

2. Similarity check algorithm     

 

We propose a Dummy Tree Matching algorithm based on the frequency measures of a tree 

structure as part of the filtering stages to check the similarity of data records. This algorithm 

does not actually match two tree structures and find their similarity by checking each node 

identity, but uses the number of nodes in a tree to determine the similarity of two trees. As 

our method does not require the comparison of all the nodes in a tree structure, it will reduce 

significantly the computational overhead. Our algorithm works in a time complexity of O(n), 

and is faster than the current tree matching algorithms. This increase in speed is useful when 

our wrapper is used in large scale web comparisons.  

 

3. Scoring function 

 

 

Figure 12 Measuring the size of data records using the bounding box 

 

We use the number of occurrence of text and image to develop a scoring function for 

detecting relevant data region. Current visual assisted wrappers such as Visual Segmentation 

based Data Records (VSDR) [Longzhuang 2007], Visual information aNd Tags (ViNT) 

[Zhao 2005], and Visual Perception based Extraction of Records (ViPER) [Simon 2005] use 

visual boundary to locate and extract the relevant data region. Our study shows that it is 

possible to achieve the same objective using an alternative way which is more accurate and 



34 

 

yet simple and fast in operation. We use Figure 12 to demonstrate the correct way of 

measuring the size of data records using the bounding box method of VSDR. In Figure 12b, 

there are 2 data records with a huge portion of unoccupied space. To measure the size of the 

bounding box of individual HTML Text, we consider appropriate to take into account the 

bounding box of individual data records as shown in Figure 12a. For this case, unoccupied 

space will not be taken into account in calculating the size of the data records. Figure 13 

illustrates a case where the visual calculations of VSDR cause it to incorrectly identify data 

records by over estimating the valid data record area. VSDR will treat the size of the right 

data region (menu bars surrounded by a rectangle) in Figure 13 as slightly larger than that of 

the data region in the center (search results surrounded by a rectangle). In actual case, the 

data region containing search results is larger because half of the data region in the menu bars 

is occupied by empty space (rectangle with round corners). Therefore, the technique used to 

measure the size of data records proposed for Figure 12a is preferred. To detect the data 

record size accurately without reducing the accuracy of data extraction, the alternative way is 

to take into account the number of occurrence of text and image. This information is readily 

available in HTML text and <IMG> tag in a given HTML page. As data region containing 

search results has more text and image than data region containing menu bars, data region 

containing search results is the correct data region. Distinguishing correct data region in this 

way has more advantages than boundary detection as the space occupied by data records is 

measured more efficiently.  



35 

 

 

Figure 13 Measuring the size of data region  

 

4. Data alignment with template provided 

 

In this study, the template detection technique is used to accurately align data items and for 

solving the problems encountered in aligning disjunctive and iterative data. A web template 

is a server script used to generate fragments of HTML code to be embedded in a HTML page 

which can be displayed for human consumption [Zhai 2005]. This code fragment is a tree 

that is used to represent the structure of a group of data records. It is usually defined and 

implemented by the programmer of the database server. When a user enters a query, the 

database server will process the query and prepare the necessary information to be sent to the 

user. This information is encoded and returned to the user based on a template predefined in 

the server. The wrapper can be used to extract data records from HTML pages, decode and 

return them to the original template provided by the database server. Our wrapper aligns the 

extracted data records, with a new format to identify the various data items presented in a 

data record. Template of data records is used as it could represent all the data records in a 



36 

 

single form, assuming that data records contain nearly similar format and structure. 

Therefore, it will have the advantage of a general view of the data itemsô position stored in 

the data records. The tree structure of data records is fully utilized for aligning data items. 

Making use of tree structure has the advantage of cutting down the time complexity of the 

algorithm as trees can be pruned and traversed. We also strictly adhere to the atomic 

properties of a text node, therefore for every text node encountered in a HTML DOM tree, 

we align it as one entity instead of having more than one text node as an entity. Our 

algorithm is able to make a wiser and more flexible decision when handling disjunctive and 

iterative data by taking into consideration the adjacent data items. 

 

5. Solving the Imperfect Segmentation Problem  

 

To solve the imperfect segmentation problem, we propose a data merging algorithm that can 

detect decorative tags (HTML tags that contains tags such as <b>, <i> tags) and merge them 

accordingly. We use a clustering technique to partition and separate a text into several data 

units. Our approach is different from previous work on merging and partitioning data units as 

the previous methods use a simple rule that measures only the tokenôs frequency and its 

absolute position [Zhao 2007]. A token is a word stored in a text node of a DOM Tree 

separated by spaces. 

 

We also propose a method to detect high frequency tokens regardless of their positions in the 

data records. We achieve this by partitioning data records into data items in the first phase of 

our data alignment process. We then further partition these data items into smaller data units. 

Our algorithm measures the relative position of similar tokens instead of their actual position. 

Thus, this allows us to determine the correct sequence of the data units. In addition, we treat 

a number of tokens in a text as one group irrespective of their frequency of occurrence in that 

particular text. If these tokens occur with the same number of times as the number of 

occurrence of data records, data partitioning will be carried out.  

 

Figure 14 gives an overview of our proposed solutions to data partitioning problem. The 

ñTitleò token (enclosed by rectangles) occurs twice in the data records and the relative 



37 

 

position (calculated based on absolute positions of ñTitleò token, the first ñTitleò token in 

Data Record 1 will have relative position of 1, the second ñTitleò token in Data Record 2 

will have relative position of 1, and so on) of the two ñTitleò tokens is the same for the two 

texts, therefore they are chosen as cut off point for partitioning the text into smaller data 

units. If one were to use absolute position, ñPriceò token in the first and second data records 

would have absolute positions of 4 and 5. Due to separation of one position, previous 

wrappers would not partition the text using ñPriceò token as a cut-off point. 

 

 

Figure 14 Data partitioning using relative position and frequency of occurrence of a token  

 

3.2 Related Work 

 

3.2.1 Data extraction at record level 

 

The key component of a wrapper is the algorithm that checks the similarity of data records. Data 

records are retained and considered valid if they are similar and discarded if they are dissimilar. 

Current wrappers such as Data Extraction based on Partial Tree Alignment (DEPTA) [Zhai 

2005] and Mining Data Region (MDR) [Liu 2003] use edit distance techniques to check the 

similarity of the structure of data records. Common edit distance techniques in such area are 

string edit distance and tree edit distance [Baeza 1989], [Gusfield 1997]. For more information 

on edit distance techniques the readers are encouraged to refer to the surveys of Baeza-Yates 

[Baeza 1989], Gusfield [Gusfield 1997] and Navarro [Navarro 2001].  

 



38 

 

The string edit distance algorithm involves matching two strings and the determination of how 

the first string is to be transformed into the second string. String edit distance algorithms are 

generally fast in operation and run in a time complexity of O(m) (m is the number of tags in a 

data record). However, these algorithms are unable to compare two trees having nearly similar 

tree structures, with iterative and disjunctive data. This is because this algorithm matches flat 

level data, which occur in single level (strings) rather than tree structures. String edit distance 

algorithms are also unable to distinguish HTML Tag as a single entity (they tend to compare 

strings by examining the characters in these strings), therefore this may result in inaccurate 

matching. For example, when two HTML tags <P> and <NOBR> are matched, we assume that 

this mismatch is counted as one (one mismatch of two HTML tags), but string edit distance 

algorithms consider this mismatch as 4 (4 characters in the second string do not match with the 1 

character in the first string). There are several variants of string edit distance algorithms, some 

common ones are Levenshtein distance [Levenshtein 1966], Hamming distance [Sankoff 1999], 

Episode distance [Das 1997], and Longest common subsequence distance [Needleman 1970], 

[Apostolico 1987]. 

 

The tree edit distance algorithm uses two tree structures and matches them by comparing each of 

the node identity and position. Tree matching algorithms developed are the tree edit distance [Tai 

1979], alignment distance [Jiang 1994], isolated-subtree distance [Tanaka 1988], top down 

distance [Tai 1979], [Yang 1991], and bottom up distance [Valiente 2001], [Touzet 2007]. Tree 

edit distance algorithm is quite similar to string edit distance, except that it includes tree nodes 

matching. Tree edit distance algorithm for unordered tree is NP Complete. The top down 

algorithm was proposed in [Yang 1991]. For this algorithm, two trees are matched in O(n1n2) 

time (n1 is the number of nodes in the first tree and n2 is the number of nodes in the second tree). 

The bottom up approach was introduced by [Valiente 2001] and the time complexity for it is 

O(n1+n2) (n1 is the number of nodes in the first tree and n2 is the number of nodes in the second 

tree). The top down and bottom up approaches are restricted versions of tree matching algorithm.  

 

DEPTA [Zhai 2005] uses a bottom up tree matching algorithm to match tree structures of data 

records. A tree matching algorithm matches two tree structures and determines how the first tree 

can be transformed into the second tree. DEPTAôs tree matching algorithm determines the 



39 

 

maximum matches between two trees by comparing the location and identity of the nodes in the 

tree structures. Although this algorithm solves the problem emerged in data matching 

successfully, the algorithm requires a complex data structure for its implementation. Therefore, 

an algorithm that could simplify the implementation process will be helpful.  

 

 

Figure 15 Trees with different numbers of iterative data but with the same template 

(bottom tree) 

 

DEPTA checks the similarity of two trees using the percentage similarity of the trees. In this 

context, DEPTA may not be able to match two trees having particular elements (HTML Tags) 

which occur iteratively in the two trees. This is due to the fact that the number of occurrence of 

the particular element (HTML Tags) in a tree might not be the same as it occurs in the other tree. 

Figure 15 shows such a case. The upper left and right trees are of different sizes, DEPTA will 

assume that the upper left tree is 3/((5+3)/2)=3/4=75% similar to that of the upper right tree. 

Basically, the two trees have a similar template (the bottom tree of Figure 15), DEPTA treats the 

two trees as dissimilar because they have different numbers of iterative data. A reasonable way 

to check the similarity of two trees is to calculate the difference in the number of nodes of the 

two trees. As an example, given two trees with 4 and 5 nodes each, and assume that they have 3 

similar nodes, DEPTA will assume the first tree is ¾=75% similar to the second tree. However, 

for large trees say with 50 and 51 nodes each, assuming they have 49 similar nodes, then DEPTA 

will assume the first tree is 49/50=98% similar to the right tree. We consider the trees of the two 

examples as nearly similar as in each case, the difference between the total number of nodes and 

the total number of similar nodes is only 1. DEPTAôs tree matching algorithm works in a time 



40 

 

complexity of O(n1n2) time (n1 is the number of nodes in the first tree and n2 is the number of 

nodes in the second tree). 

 

A wrapper is also designed to locate and extract the correct data region. Visual assisted wrappers 

such as ViNT [Zhao 2005], VSDR [Longzhuang 2007], and ViPER [Simon 2005] use visual cue 

to locate and extract correct data region. These wrappers calculate the boundary and location of a 

data region, and take data region which is large and centrally located as the correct data region. 

For example, VSDR uses the Vision-based Page Segmentation Algorithm (VIPS) which 

segments a HTML page content into several regions while ViPER uses the boundary of a HTML 

tag to determine data region which is centrally located.  

 

3.2.2 Data extraction at data unit level 

 

For data extraction at data unit level, a wrapper usually aligns extracted data records in a tabular 

form. Each column of the table contains individual data items and these data items are used for 

further processing.  

 

Zhai [Zhai 2005] proposes a partial tree alignment algorithm to insert data into the tree 

accordingly where necessary. Before data alignment is carried out, the tree structure of data 

records are matched to determine the template for all the data records. Whenever two nodes are 

identical, they are considered as matched and their contents will be used for further matching.  

 

Zhaiôs data alignment algorithm assumes that a data could find a match in a tree structure for 

insertion. If this location could not be found, the algorithm will search further to match the data 

with a second data for insertion. This process will be repeated until the last data is chosen for 

insertion. This procedure becomes impractical if there is no match for all the possible data 

chosen. Furthermore, early insertion of data will affect the state of the tree for future insertions of 

data. Figure 16 shows a case where a partial tree cannot find a match. Assuming that there are 

three partial trees, the partial tree AM is unable to merge with the first partial tree EB as there is 

no correct sequence for the match. Partial tree AM will then be used to match with partial tree 

HCO (second partial tree) and they cannot be merged for the same reason.  



41 

 

 

 

Figure 16 A case where a tree is unable to find match with others 

 

 

Figure 17 Maximal Unique Matches in MSA algorithm and Iterative Data 

 

Simon [Simon 2005] proposes Multiple Sequence Alignment (MSA) algorithm to align data 

based on Maximal Unique Matches (MUM). MSA could efficiently align data records in a 

polynomial time complexity, but to find the MUM requires extensive checking on the DOM tree 

structure. MUM is also not suitable to represent data which is iterative. For example, if there are 

two sequences of HTML Tags/Text in two different data records with contents ñ<a>Text</a> 

<a>Text</a>ò, and ñ<a>Text</a> <a>Text</a> <a>Text</a>ò, MSA will detect these sequences 

of HTML Tags/Text and MUM is identified as ñ<a>Text</a> <a>Text</a>ò, since this is the 

largest pattern occurring in the two sequences of HTML Tags/Text. The correct content for 



42 

 

MUM should be ñ<a>Text</a>ò, as the sequence of HTML Tags/Text ñ<a>Text</a>ò is actually 

an iterative data, and this sequence of HTML Tags/Text is the smallest non divisible unit (Figure 

17). MSA also assumes that if a MUM is created, it may contain more than one text elements. 

Text nodes in a HTML DOM tree are atomic entities and therefore they should be considered as 

separate entities when used for data alignment.    

    

Extraction of data records at data unit level also involves the correct identification of atomic 

entities in the data items. Zhao [Zhao 2007] develops Search Results Record (SRR) wrapper for 

solving imperfect segmentation problem by merging and partitioning data items into data units 

using clustering and voting strategies. Solving the imperfect segmentation problem will help the 

user to differentiate real world entities rather than looking at the tag structure of data records to 

determine their various entities.      

 

There are several limitations in Zhaoôs algorithm when it is used to detect high frequency tokens 

to partition data into smaller units. In SRR, tokens located in the same position are given a larger 

weight than others. This assumption is partially true as a text may have a larger content than 

other texts. A text may also have more similar tokens than other texts. For example, a book web 

site may have Price and Discounted Price as two entities in the first text and may contain 

another three entities of Price, Discounted Price, and Final Price in the second text. The first 

text has price entities occurring twice while the second text has price entities occurring three 

times. In such a case, Zhaoôs algorithm will fail to detect Final Price as the third entity as price 

entity is assumed to occur only twice. The third entity, Final Price in the second text is located in 

a position far away from the price entity in the first text, therefore Zhaoôs algorithm will fail to 

recognize Final Price as the third entity.    

 

3.3 Overview of WISH 

 

In this section we discuss the requirements and the assumptions made for WISH. For WISH to 

work successfully the sample pages used for data extraction should be obtained from a search 

engine query and each of these sample pages must contain at least three data records. WISH 



43 

 

however, does not require the HTML page to be converted to XHTML format as the parser can 

recognize the HTML format.  

 

 

 

Figure 18 The main components of WISH 

 

The three main components of WISH are shown in Figure 18. The first component involves 

parsing the HTML page and organizing it into the DOM tree representation. In the second 

component, WISH extracts data records using heuristic techniques. WISH then determines the 

template of the data records and aligns the data using the template. WISH further checks the 

individual data unit and partitions them accordingly to their patterns. Finally, WISH stores each 

of the individual data records in a XML file. The sub components of Component 2 are shown in 

Figure 19. Detailed description of Component 2 is presented in Section 3.4 which includes set of 

filtering rules. Section 3.5 provides the implementation work for Component 3.    

 

 

Figure 19 Components of Extraction phase in WISH  

 



44 

 

3.4 Data Extraction at Record Level 

 

3.4.1 Breadth First Search (BFS) 

 

 

Figure 20 Potential groups of data records (Case 1: Nodes A separated by same distance, 

Case 2: Nodes A separated by different distance) 

 

Once a web page is parsed and represented in a DOM Tree structure, our wrapper needs to 

traverse through the DOM Tree and identify the various data regions in the web page. To achieve 

this, we use Breadth First Search (BFS) technique to detect and label the different data regions. 

Our BFS technique developed is based on the improved and modified version used in MDR. A 

data region can be defined as a set of data records. Data records in turn can be defined as any 

records that have similar parent HTML tag, contains repetitive sequence of HTML tags and are 

located in the same level of the DOM tree.  

 

The nodes in the same level are checked to determine their similarities. In the case where none of 

the nodes can satisfy this criterion, then the search will go one level lower and perform the 

search again on all the lower level nodes. WISH takes all the nodes in the same level having 

similar HTML tag as a potential group of data records regardless of the distance between them 

(Figure 20). As long as there is a repetitive sequence of HTML tags, WISH treats and labels 

these similar tag nodes as one group (Figure 20). Figure 20 shows two cases, where the first case 

has three A Nodes which are separated by a same distance of 2 while the second case has two A 

Nodes separated by distance of 2 and a third A Node separated by a distance of 3.  

 

In WISH, potential data records are treated as containing two or more nodes in one group. Figure 

21a depicts 4 data records, as shown by the rectangles. These data records appear at least twice 



45 

 

in the same level of the tree, and have similar HTML tag identity. Figure 21b shows the data 

detection algorithm in MDR. Unlike our wrapper, MDR is able to group nodes which occur 

repetitively (e.g. Nodes A and B). However, this procedure is time consuming as additional 

processing is required to locate and group these nodes. Our wrapper does not require this step, 

thus reduces the running time required. Data records that are not relevant are removed in the 

filtering stages accordingly.   

 

 

Figure 21 a) Potential data records, where a node occurs more than 2 times in a level of a 

tree b) Data Extraction in MDR, with nodes AB are taken as one data record instead of two 

 



46 

 

3.4.2 Filtering Stages 

 

3.4.2.1 Overview 

 

Four stages of filtering rules are proposed, each of them considers the observations presented in 

Section 2.2.  After the completion of BFS extraction, WISH will have a list of data regions. Our 

examination shows that data regions fall into one of the several groups. We group the first set of 

potential data regions as menus, these typically determine the layout of HTML pages and are 

usually large in size and highly dissimilar. The second data region group is advertisements, 

regions of this group are highly similar but with simple structures. The third group of data 

regions consists of menu bars, these are simple but are nearly similar in structure. The fourth and 

last group in these groups of data records is relevant to our work, they are the search engine 

results output. This group of data records is highly similar in structure and large in size. We aim 

to design our wrapper so that it can extract this last group of data regions, while removing the 

other irrelevant ones. We used filtering stage 1 to remove advertisements, filtering stage 2 to 

remove menus which determine the layout of the HTML page, and finally filtering stage 4 to 

remove the remaining irrelevant data records. Filtering stage 3 is designed to remove data 

records which occur less frequently, as observed by author of [Zhai 2005].   

 

3.4.2.2 Stage 1: HTML Tag Structures 

 

In this rule, WISH performs the filtering process based on Observation 4. Once the list of the 

data regions are obtained from BFS Extraction, Stage 1 involves removing data records that have 

less than three HTML tags in each and every group. The purpose of this filtering stage is to 

remove advertisement related information. We observe that advertisement usually contains 

simple structure to present its content (usually a list of hyperlinks as its content). Removing these 

data records will result in faster execution time and more accurate data extraction as there will be 

fewer irrelevant data records for the other components to consider.    

 



47 

 

3.4.2.3 Stage 2: Similarity 
 

In this section, we introduce the Dummy Tree Matching Algorithm which is developed to check 

the similarity of data records. We derive this method based on Observation 3 and our finding that 

data records share an important characteristic, i.e. the distinct tags of a tree and the total number 

of distinct tags in each level of the tree are nearly similar to those of the other trees of the group. 

Thus we are able to formulate a similarity check algorithm which can mimic the behavior of a 

full tree matching algorithm. Our approach is to carry out the similarity check of two trees by 

examining the distinct tags and comparing the total number of distinct tags in all levels of the 

trees. Our algorithm is simple but efficient and it can obtain similar results as those of a tree 

matching algorithm but it has a reduced time complexity. Details of our algorithm and its use in 

detecting similarity of data records and filtering dissimilar data regions are presented in the 

following subsections.   

 

3.4.2.3.1 Dummy Tree Matching Algorithm  

 

Our Dummy Tree Matching algorithm consists of a two stage screening procedure to check the 

similarity of a group of trees. Given a number of trees, our algorithm first examines the distinct 

tags of the first tree and that of the second tree. If almost all the distinct tags occur concurrently 

in the two trees (overall with say only one element different), then the trees pass the similarity 

test of the first stage and they are used for the second stage similarity test. In the second stage, 

we calculate the total number of distinct tags in all the levels of the first tree and that of the 

second tree. If the first two trees have almost equal number of distinct tags in all levels of the 

trees (overall with a difference of only one tag), then the two trees are considered similar 

according to the stage two criterion. The first two trees are similar only if they pass the screening 

procedures of both stages. If the first two trees are similar, the first tree is retained for further 

processing and the second tree is then compared with the third tree of the group to check their 

similarity using Stages 1 and 2 of our screening algorithm. On the other hand, if the first two 

trees are not similar, the first tree will be removed and the second tree will be compared with the 

third tree to check their similarity. The screening procedures for both the above cases are 

repeated until the last tree is used for comparison.   

 



48 

 

1  Algorithm Similarity Check   

2  for (int i:1 to numDataRecords){ 

3      //there are n nodes in a data record (O(n) complexity) 

4      //total number of distinct tags (Step 1) 

5      int  firstNumDistinctTags=getNumDistinctTags(record(i)); 

6      int  secondNumDistinctTags=getNumDistinctTags(record(i+1)); 

7      //compare left and right tree 

8      if (abs(firstNumDistinctTags - secondNumDistinctTags)>1){ 

9          //remove record(i); delete the left tree if not similar 

10    }//end if 

11     //total number of distinct tags in all level (Step 2) 

12     int  firstDistinctTagsAllLevel=getNumDistinctTagsAllLevel(record(i)); 

13     int  secondDistinctTagsAllLevel=getNumDistinctTagsAllLevel(record(i+1)); 

14     //compare left and right tree 

15     if (abs(firstDistinctTagsAllLevel - secondDistinctTagsAllLevel)>1){ 

16         //remove record(i); delete the left tree if not similar 

17    }//end if 

18}//end for 

Figure 22 The Dummy Tree similarity check algorithm  

 

Figure 22 gives the complete algorithm derived for similarity check in WISH. As can be seen in 

Figure 22, a data record contains n nodes, therefore the algorithm will run in n times to calculate 

the similarity of two trees. This implies that Dummy Tree Matching algorithm is able to 

determine the similarity of two trees in O(n) time.  

 



49 

 

 

Figure 23 Two trees having similar distinct tags, but different tree structures 

 



50 

 

 

Figure 24 Two trees with similar structures 

 



51 

 

 

Figure 25 Two trees having dissimilar distinct HTML tags   

 

Figure 23, Figure 24, and Figure 25 show data records presented in a tree form obtained from the 

DOM Tree of HTML pages. For simplicity, we show only two trees in each figure. We calculate 

the similarity of the two trees of Figure 23, Figure 24, and Figure 25 using our Dummy Tree 

Matching algorithm. In Figure 23, the distinct tags of the left tree are <table, tr, td, p> which are 

exactly similar to those of the right tree, so the left tree is similar to the right tree according to the 

rules of stage 1 of our similarity check. Further check using rules of stage 2 shows that the total 

number of distinct tags for all levels is 8 for the left tree (1 <table> tag in level 1, 1 <tr> tag in 

level 2, 1 <td> tag in level 3, 1 <p> and 1 <table> tag in level 4, 1 <tr> tag in level 5, 1 <td> tag 

in level 6, and 1 <p> tag in level 7 of the tree) and 4 for the right tree (1 <table> tag in level 1, 1 

<tr> tag in level 2, 1 <td> tag in level 3, 1 <p> in level 4 of the tree). The overall similarity 

checks considering rules of both stage 1 and stage 2 indicate that the two trees are not similar and 

therefore the left tree will be removed. For data records of Figure 24, the distinct tags are <table, 

tr, td, div, a, p, b> for both the left and the right trees. The first screening procedure shows that 

the trees are similar. The total number of distinct tags in all levels is 7 for the left tree and 7 for 

the right tree respectively (1 <table> tag in level 1, 1 <tr> tag in level 2, 1 <td> tag in level 3, 1 

<div> tag in level 4, 1 <a> tag and 1 <p> tag in level 5, 1 <b> tag in level 6 of the trees). 

Therefore, the left tree is retained for further processing as the two trees are similar. For Figure 

25, the distinct tags of the left and right trees are <tr, td, div, a> and <tr, td, p, b>, the rule in the 

first step says that the left tree should be deleted as the trees are considered not similar (out of 4 



52 

 

distinct tags, only tr and td tags are similar tags that exist in both the left and right trees). The 

screening procedures will be repeated using the second tree and third tree and so on until the last 

tree of the group is used if there are more than 2 trees. 

 

Calculations using the tree matching algorithm (e.g. DEPTA) show that trees of Figure 24 are 

similar and those of Figure 23 and Figure 25 are dissimilar. This algorithm gives results 

consistent with our Dummy Tree Matching algorithm. In general, single data record is usually 

represented by a regular expression which is applicable to all the data records. 

 

In summary, the procedures used in our Dummy Tree Matching Algorithm to check the 

similarity of a group of trees are: 

 

1. Examine the distinct tags of the first and second trees and if the trees have similar distinct 

tags, they pass the first test and will be used for the second test. 

2. Calculate and compare the number of distinct tags in all levels of the trees passing the first 

test, the trees are considered to pass second test if they have the same number of distinct tags 

in all levels of the trees. 

3. The first tree and second tree are considered similar if they pass both the tests, for such a 

case, the first tree will be retained for further use. The trees are considered not similar if they 

fail to pass one of the tests carried out in Steps 1 and 2, therefore the first tree will be 

removed from the group. For both cases, the second tree will be compared with the third tree 

and the similarity tests are repeated for tree 2 and tree 3 and so on until the last tree in the 

group is used for comparison.   

 

3.4.2.3.2 Filtering dissimilar data regions 

 

In general, there are two types of data regions left after the BFS stage, namely data regions with 

similar data records and data regions with entirely dissimilar data records. Dummy Tree 

Matching algorithm is designed to work by checking the data records of a data region and if they 

are not similar, they will be removed one by one and thus a data region with dissimilar data 

records will finally be filtered out. For data regions with similar data records, all these data 



53 

 

records will be retained for further processing. The aim of this filtering stage using Dummy Tree 

Matching algorithm is to detect data regions with structurally similar data records normally exist 

in search engine results page, which are relevant to our study. Dissimilar data regions such as 

menus which determine the layout of a HTML page have structurally dissimilar data records and 

will be removed by our filtering algorithm.  

 

We use Figure 26 and Figure 27 to demonstrate how our Dummy Tree Matching algorithm is 

used to remove dissimilar data regions and retain the similar data regions. Figure 26 shows the 

Lycos search engine results page. Figure 27 is the similar page presented in a tree form. As can 

be seen from Figure 26, Data Region 1 (solid rectangles in Figure 26, nodes <table> of Data 

Region 1 in Figure 27) contains repetitive nodes but these nodes are considered not similar (first 

<table > tag contains different sub tree from those of second and third <table> tags) because they 

have subtree structure with different sizes. Data records in Data Region 2 (Figure 26 and Figure 

27), which are represented by the dotted rectangles in Figure 26 are similar because they have 

subtree structures of similar sizes. The same applies to Data Regions 3, 4 and 5. Using the 

Dummy Tree Matching algorithm, Data Region 1 is removed while other data regions (Data 

Regions 2, 3, 4, 5) are retained. 

 



54 

 

 

Figure 26 An example of HTML page containing data regions.   

 

 

Figure 27 The DOM Tree for the web page in Figure 26 



55 

 

 

3.4.2.4 Stage 3: Number of Nodes 
 

In this stage, WISH will filter out irrelevant data records based on Observation 2. Data records 

occurring less than 3 times will be filtered out and excluded for further processing. The purpose 

of this filtering stage is to reduce the number of irrelevant data regions, thus the data extraction 

in the final filtering stage (scoring function) can be more accurate. 

 

3.4.2.5 Stage 4: Scoring Function  

 

After the completion of Stage 3, WISH will have a filtered list of data regions. From the list of 

available data regions, only one data region is chosen based on the scoring function of this stage 

assigned to each of the data regions. Filter Rule in Stage 4 is the most important component of 

the data extraction phase because a good scoring function is needed to differentiate the correct 

data region from incorrect ones.  

 

This filter rule is derived based on Observations 1 and 2. Since data records occupy most of the 

space in a web page, we need to represent this property in our implementation. The best way to 

deal with this is to look at the text and images of the data records. It is noted that correct data 

records have more text and images than the rest of the data records. Therefore we take into 

account the total length of the text and the number of images.  

 

A constant value of 15 is added to the scoring function for every image detected in the data 

records. We also add a value of 1 to the scoring function for every character encountered in the 

data records. We decide to normalize the size of images with respect to the size of a character. 

Therefore, we choose a value of 15 to be added to the scoring function for each image detected 

assuming that one image has the size of 15 characters on the average.  

 

We notice that correct data records usually have more parent nodes than the rest of the potential 

data records. Therefore, we give a value of 150 for every parent node of the data records. We 

choose a value of 150 for the parent node after experiments were carried out on the set of 



56 

 

possible values in our training data and find that this is the best value for our evaluation. When 

the total number of images, text length and parent nodes have been determined, a final value of 

the scoring function is calculated to represent a data region. 

 

There are several reasons for the adoption of the various values for the scoring function. A value 

of 150 is assigned for the data recordsô parent nodes as these nodes occur less frequently than the 

total text length and number of images. A relatively much smaller value is assigned for every 

character encountered in data records as characters tend to occur in large quantities. Images are 

generally larger than character, hence they are given a value of 15 instead of 1. WISH also 

recognizes separator tags such as <br> and <hr> that tend to occupy space in data records. 

Therefore, whenever WISH encounters these tags, it will assign a value of 50 to them, assuming 

that each tag contains 50 characters on the average. 

 

The aim of choosing various parameters is to achieve a balance on the number of occurrences of 

data records and also the space occupied by the data records. A too high score given to parent 

node will result in extraction of incorrect potential data records such as menu bar that has larger 

number of occurrences than the correct data records. However, this menu bar has significantly 

fewer text and images than the correct data records. On the other hand, a high text and image 

score will result in WISH extracting incorrect potential data records such as menus which 

determine the layout of the HTML page.  

 

WISH calculates the value of the scoring function according to the following equation: 

a=NumParentNodesLevel 

b=TotalTextLength 

c=NumImages 

d=NumSeparatorTags 

x=Data Region 

 

)5*))50*()15*((()150*()( dcbaxScore    

 

With a list of available candidates, WISH will locate the data region with the highest score value 

and used it as input for the next stage, i.e. data alignment.  



57 

 

3.5 Data Extraction at Data Unit Level 

 

3.5.1 Data Alignment 

 

Once the relevant data region is extracted, the data records in this data region can be aligned for 

further use. The data items in each of the data records need to be rearranged and presented in a 

tabular form for the user. WISH checks the patterns of data records to determine the template to 

be used for the data records, with consideration also given to the sub template of a subtree unlike 

other current wrappers [Zhao 2007]. DeLa [Wang 2003] uses string matching to determine 

template for data records. However, DeLa considers only the single level string matching, hence 

it fails to consider the sub tree structures of data records. We use the tree structure of data 

records to merge similar tags in the tree located next to each other. Our observations indicate that 

data records contain nearly similar tree structures, therefore we find it useful to match these tree 

structures and create a template based on the regular expression rule inferred to generate the data 

records. Further observations show that an iterative statement (e.g. for, while) in the server 

scripts generates iterative data, while a selective statement (e.g. if) generates disjunctive data. 

Based on these observations, we use repetitive HTML Tags and sub tree structures of these 

HTML Tags to check for iterative data and string alignment to check for disjunctive and optional 

data. Figure 28 gives a simple example to show how our template detection algorithm is used in 

our wrapper.  

 

As shown in Figure 28, WISH uses the first data record to create an initial template. WISH will 

further enhance the template by adding dissimilar elements from the subsequent data records to 

the template. When WISH encounters two different nodes located in the same position in two 

different trees, it will treat these nodes as disjunctive provided that these nodes have the same 

previous and subsequent elements.  

 

The general rules incorporated in WISH to generate a data template for different types and 

groups of data items are as follows: 

 



58 

 

1. Iterative data. In response to a userôs queries, a database server usually generates a set of 

data records and embeds them in a HTML page for the user. As the server usually uses the 

same code to generate these data records, it allows us to use a generalized rule to represent 

these data records. Our study shows that data records appear contiguously and we are able to 

use the symbol * to represent repetitive pattern for the regular expression of data records.  

2. Optional and disjunctive data. We need to specially treat data records with optional and 

disjunctive data items. WISH takes into consideration the characteristics of special data items 

such as optional and disjunctive data items. For example, given 4 data records with elements 

ABCCCD, ACCE, ABCCE, and ACE, where element B is the optional data item and 

elements D and E are the disjunctive data items, we will be able to create three regular 

expressions ABC*D, AC*E and ABC*E. From the three regular expressions, we can further 

generalize them to form a final regular expression AB?C*(D|E). To generalize the regular 

expression rule, we use string alignment [Gusfield 1997] to detect data records with 

disjunctive and optional patterns and data merging to handle iterative patterns. An alignment 

of two strings is carried out by appending the HTML Tags in a particular level of a tree. 

Referring to Figure 28, the first level of the tree in Record 1 contains HTML Tags of the 

sequence P, DIV, B, P, DIV, B, P, I. Appending these HTML tags results in a string 

sequence of <P><DIV><B><P><DIV><B><P><I>. Likewise, we can also append HTML 

Tags in Record 2 to form a string sequence of <P><DIV><B><P><DIV><B><P>. From 

these two sequences, we can then determine the optional and disjunctive patterns by 

examining the position of the individual HTML Tag. Take Figure 29 as an illustrative 

example, the HTML Tag <I> occurs in the first string but do not occur in the second string. 

Therefore, we use the symbol ñ?ò for HTML Tag <I> as an optional attribute. The resulting 

regular expression after applying the string alignment algorithm is <P><DIV><B><P> 

<DIV><B><P><I>?.  

3. Groups of HTML Tags which are iterative data. To determine iterative patterns, we need 

to generalize the regular expression rules by detecting repetitive HTML Tags (See Point 1 

above). However, our observations on data recordsô structure indicate that not only HTML 

Tags occur repetitively, but a group of HTML Tags may also occur repetitively. Referring to 

Figure 28, none of the HTML Tags occur repetitively for the sequence 

<P><DIV><B><P><DIV><B><P><I> and <P><DIV><B><P><DIV><B><P>. However, 



59 

 

we can see that the group of HTML Tags (<P><DIV><B> and <DIV><B><P>) occur 

repetitively. Based on these patterns, we are left with the choice of applying the group of 

HTML Tags <P><DIV><B> as iterative data or <DIV><B><P> as another iterative data. In 

actual case, the former pattern is the right pattern while the latter is the incorrect pattern. To 

determine the correct pattern, our template detection algorithm analyzes the tree structures of 

the HTML Tags in the patterns to check for regularity in their tree structures. For our 

example, we know that the string sequence <P><DIV><B><P><DIV><B> have similar tree 

structures for all the similar HTML Tags (e.g. first HTML Tag <DIV> has tree structure of 

<A>, which is similar to the second HTML Tag <DIV>). However, after checking the string 

sequence <DIV><B><P><DIV><B><P>, we find that the first HTML Tag <P> has tree 

structure of HTML Text node (USD) while the second HTML Tag <P> has tree structure of 

HTML Tag <A> containing subtree structure of HTML Text node (Add to cart). Due to the 

difference in tree structures of these two HTML tags, we can then conclude that the string 

sequence <P><DIV><B><P><DIV><B> contains iterative data <P><DIV><B> while the 

string sequence <DIV><B><P><DIV><B><P> does not have iterative data.    

 

 

 



60 

 

 

Figure 28 Template Detection 

 

4. Sub tree of HTML Tags. Once the iterative, optional, and disjunctive data are considered, 

we can generalize our regular expression rule and apply to the remaining tree structures of 

the first level HTML Tags (i.e. applying the rules to the remaining levels of HTML Tags in 

data records).                     

 

 

Figure 29 String alignment 

 

In WISH, an element which appears more than once but if the two same elements are not located 

next to each other in a template, they are treated differently. For example, for the data records 

ABBCDBE and ABCFBBE, WISH will take same elements located next to each other as similar 

and the regular expressions for the data records are AB*CDBE and ABCFB*E. When the two 

data records are merged, the result is a new template AB*C(D|F)B*E. WISH treats the two 



61 

 

similar B elements as different elements as they are located in positions not next to each other, 

even though they contain similar identities.   

 

Once the template has been obtained as described in the previous section, data alignment is 

carried out. The nodes of a tree are labeled using the notation [A1, A2, A3éAb], where  Ab 

represents the position of the node in the tree starting with the leftmost node in level l,  Ab-1 is the 

position of the parent node in a higher level, Ab-2 is the label of node in a position one level 

higher than the parent node etc. 

 

In Figure 30, there are two trees with two different data records and four text elements. WISH 

will use the template detection algorithm to generate a template for the two data records as 

shown in Figure 31. Nodes A to F are determined from the template generated. 

 

 

Figure 30 Application of data alignment using two trees  

 

 

Figure 31 The resulting template for the two trees in Figure 30 

 

The results of data alignment are summarized in Table 1. Row 1 of Table 1 shows the columnsô 

name for each of the text nodes of the data records. Row 2 is the aligned data for data record 1 



62 

 

and row 3 shows the aligned data for data record 2. WISH aligns each of a set of data records 

starting from the first data record, referring to the template generated from all the data records to 

be aligned.  

 

Take for example Text 1 (Figure 31) the column name assigned to it is (1:1:2:1) as it is in the 

first position in level 1 (node A), first position in level 2 (node B), second position in level 3 

(node E, there is a node D on the left of E in level 3), and first position in level 4. The other 

elements are aligned using the same principles.  

 

Table 1 Data Alignment in WISH 

Label 1:1:2:1 1:1:2:2 1:2:1 1:2:3 1:3 

Data Record 1 Text 1 Text 2 / Text 4 Text 5 

Data Record 2 Text 1 Text 2 Text 3 Text 4 / 

 

3.5.2 Data Merging and Partitioning in WISH  

 

The data merging and partitioning algorithm was first proposed by Zhao [Zhao 2007]. Zhao 

proposes a method to identify the decorative tags and merge them. He also solves the Imperfect 

Segmentation problem by partitioning data items into multiple data units. Solving the Imperfect 

Segmentation problem is important as real world entities could be identified instead of using the 

HTML web page format and structure. For example, a text token might contain the author name 

of a book, with its title, price and ISBN. This token contains 4 different entities, but they are 

located under the same text token. Separating these 4 entities is helpful in meta search 

application.   

 

We check the decorative tags and merge them into a new text token as shown in Figure 32. This 

work is carried out recursively in a depth first manner. We also use the frequency of text to 

partition data items into several data units.  

  



63 

 

 

Figure 32 Identification and merging of decorative tags 

 

Data partitioning can be carried out once data records are aligned and tabulated. Take Table 1 as 

an example, WISH will match the text tokens located in the same column. Thus text 1 in column 

1 will be matched and text 1 and text 5 cannot be matched as they are located in different 

columns. The texts are further separated to form tokens. A token from the first text is then 

compared with the rest of all the tokens of other data records. The above step is repeated for the 

remaining tokens of the first text. The purpose of this process is to determine the frequency of 

occurrence of the tokens within each data record and also among different data records. 

 

WISH uses a predefined library of keywords to filter out tokens that are not relevant. This 

predefined library contains keywords that are not relevant to the web page, such as óisô, óaô, 

ówasô and óareô. The number of these tokens is large, however they are treated as tokens that are 

of no value to the wrapper.  

 

Tokens which are similar are grouped and identified. The number of occurrence of a particular 

group of tokens in the data records is then recorded. If the frequency of occurrence of a group of 

tokens is almost the same as the number of data records (within the range of ±1), WISH will then 

use the identified token for data partitioning. This particular token is used as a cutoff point of the 

text in a column of a table which contains the token. 

 

For a particular token to be chosen as a cutoff point, it is required that: 

 

1. The token should appear in all the texts used for partitioning. The frequency of occurrence of 

the token should be the same in each individual text (within the range of ±1). 



64 

 

2. The relative position of the token should be the same in all the texts. 

3. The tokens in all the texts should occur in the same sequential order. 

 

 

Figure 33 A sample HTML page from a Journal Web Site    

 



65 

 

 

Figure 34 An example of data partitioning     

 

An example of data partitioning is shown in Figure 33 and Figure 34. In this example the 

ñauthorò, ñtitleò and ñdateò tokens can be considered as cutoff points. ñauthorò and ñtitleò 

appear once (Texts 1, 2, 3), and  ñdateò occurs thrice in each individual text.  

 

The absolute positions of the first token is {1, 1, 1} for all the texts, the second token is {4, 4, 4}, 

and the third token is {8, 11, 10}, {11, 14, 13}, {14, 17, 16}. From the absolute positions, we can 

calculate the values for relative positions using their order in the respective text. For example, in 

Text 2, Authorôs absolute position is 1, Title is 4, while Date is 11, 14, 17. Using some simple 

sorting algorithm, we can deduce that the sequential order of the tokens in Text 2 is {Author, 

Title, Date, Date, Date} with their relative positions as {1, 2, 3, 4, 5}. The relative position of 

ñauthorò is 1, that of ñtitleò is 2 while the relative position of the first ñdateò is 3, that of the 

second ñdateò is 4 and that of the final ñdateò is 5 for all the text.  

 


