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Abstract: 
Exponential smoothing, often used for sales forecasting in inventory control, has always been 
rationalized in terms of statistical models that possess errors with constant variances. It is 
shown in this paper that exponential smoothing remains the appropriate approach under more 
general conditions where the variances are allowed to grow and contract with corresponding 
movements in the underlying level. The implications for estimation and prediction are 
explored. In particular the problem of finding the prediction distribution of aggregate lead-time 
demand for use in inventory control calculations is considered. It is found that unless a drift 
term is added to simple exponential smoothing, the prediction distribution is largely unaffected 
by the variance assumption. A method for establishing order-up-to levels and reorder levels 
directly from the simulated prediction distributions is also proposed. 
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1. INTRODUCTION 

The conceptualisation of simple exponential smoothing (Brown, 1959) was an important 

development for demand forecasting in inventory control. Yet implementations of this method 

have often been surrounded by practices, summarised in Gardner(1985), which possess 

questionable theoretical roots and which, at best, have enjoyed a mixed success. This paper is 

written on the assumption that good practice emerges from sound theory and that such a 

strategy must be built on the statistical models underlying the technique. Our contribution is 

to suggest that the theory of simple exponential smoothing can be extended to a broader class 

of models where error variances, instead of remaining constant, can change over time. The 

implications of this heteroscedasticity for estimation are explored in section 3. Its 

consequences for prediction, particularly in relation to aggregate lead time demand, a quantity 

of particular interest in inventory control, are outlined in section 4. 

In a recent paper (Ord, Koehler and Snyder, 1997) the methods of exponential smoothing 

were shown to apply under much more general conditions than those traditionally envisaged 

in the literature. In this paper we take a more detailed look at some of the important versions 

of exponential smoothing and explore the consequences with reference to the forecasting 

requirements in inventory control. 

Many expositions of exponential smoothing are related back to associated ARIMA models 

(Box and Jenkins,  ). It is implicitly  assumed in such expositions that the processes under 

consideration extend back into the infinite past. Most items carried in a typical inventory 

system typically possess a finite life cycle so that this semi-infinite time assumption is 

unrealistic. It is assumed in this paper that items are introduced into an inventory at the start 

of a period of time that is designated period 1. It is further assumed that n periods have 

elapsed since the introduction and that the problem is to forecast demand over a lead-time h 

extending from period n+1 to n+h. Demand for an item in typical period t is represented by 
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yt . 

2. SIMPLE EXPONENTIAL SMOOTHING 

2.1 LOCAL LEVEL MODELS 

Demand over time in basic inventory theory is usually represented by normally and 

independently distributed random variables with a common mean m and a common standard 

deviation s . The series is often written as 

yt = +m et , (2.1) 

2 72the et  being NID 0,s  random variables. The errors et  represent unanticipated demand. In 

this model the impact of each error is restricted to the period in which it occurs. Each error 

only has a transient effect. 

In practice unanticipated demand may spill over into later periods. New customers may cause 

demand to increase in the long term. New competitors entering a market may permanently 

reduce market shares. Assuming that a proportion a of unanticipated demand has a permanent 

effect from causes like these, the model (2.1) may be modified to give 

t −1 

yt = +m a∑et − j + et . (2.2) 
j =1 

Muth (1960) introduced this model, albeit with a semi-infinite past and with m = 0 , and 

showed that it underpins simple exponential smoothing. Differencing yields, for t ≥ 2 , the 

process Δyt = −θ t −1 + et 1e  where θ = − a . Working in a semi-infinite time context, Box and 

Jerkins (1976) also demonstrated that this model underlies simple exponential smoothing.  
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t −1 

A ‘local level’ may be defined as mt = +m a∑et − j . The model (2.2) may then be rewritten 
j =0 

in terms of a measurement equation yt = mt −1 + et and a transition equation mt = mt −1 + ae  t . 

Both the measurement and transition equations define what may be referred to as a local level 

model (LLM). It is a special case of the linear state space framework in Snyder (1985). The 

parameter a  corresponds to the familiar smoothing constant. An advantage of this 

representation over its ARIMA counterpart is that the link with the error correction form of 

exponential smoothing is more transparent.   

A generalisation of the local level model that accommodates level dependent variability 

consists of the measurement equation 

yt = mt −1 + mt
q 
−1et (2.3) 

together with the transition equation 

mt = mt −1 + amt
q 
−1et (2.4) 

where the parameter q determines the degree of heteroscedasticity. It will be designated 

LLM( q). Our primary focus will be on the special cases LLM(0) and LLM(1). LLM(0) 

corresponds to the original local level model with additive errors. LLM(1) represents series 

with level dependent variability based on relative errors. 

The behaviour of the local level in LLM( q) is governed by 

mt = θmt −1 + ay  t . (2.5) 

This relationship is obtained by eliminating the error term in the LLM(q) equations (2.3) and 

(2.4). Interestingly, it does not depend q. The behaviour of the level is independent of the 

form of heteroscedasticity. The closed form solution for the local level is 
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t −1 

mt = θ tm + a∑θ j yt j  . (2.6)− 
j =0 

The local level summarises the past behaviour of the demand process. The weights αθ j 

determine the impact of past time series values. When θ < 1 these weights decline with 

increases in the age index j. This discounting of past observations is warranted when markets 

are subject to structural change.  

The inequality θ < 1 for LLM(0) corresponds to the invertibility  condition for the 

ARIMA(0,1,1) process (Box and Jenkins, 1976). It is also equivalent to 0 < < 2 . Thus a 

LLM(0) accomodates structural change for values of the smoothing parameter in excess of 1, 

a conclusion that is incompatible with the traditional argument above. The importance of this 

can be gauged by focussing on the first-order autocorrelation coefficient of the first

differences. It can be established that the first-order autocorrelation in the differenced demand 

series is given by corr1Δ Δyt yt −1 6 = −θ . Demand series with positively autocorrelated first 

differences can only be modelled, within the local level framework, if a is allowed to take 

values above one.  

2.2 SMOOTHING OF TIME SERIES 

The unknown smoothing parameter a and the seed level m may be assigned trial 

values. At the start of typical period t  the observed values of the series y y, ,� y  from1 2 t −1 

earlier periods are also fixed, known quantities. The information set may be designated by 

, ,  a m  1 |I t −1 = ;y1 y2 � yt −1, , @ . Let mt −1 = mt −1 I t −1 6 . According to (2.5) successive local 

levels can be computed recursively with 
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mt = mt −1 + a y  1 t − mt −1 6  (2.7) 

where m0 = m . These conditional local levels are fixed rather than random quantities. The 

equation (2.7) corresponds to the simple exponential smoothing updating relationship (Brown, 

1959). The traditional view has always been that simple exponential smoothing can only be 

rationalised in terms of an ARIMA(0,1,1) process (Box & Jenkins, 1976). A key finding in 

this paper is that exponential smoothing is also compatible with models where the variation in 

the series is dependent on the underlying level.  

2.3 MAXIMUM LIKELIHOOD ESTIMATION 

A wide variety of methods (Gardner, 1985) have been suggested in the context of 

simple exponential smoothing for estimating the seed level m , the smoothing parameter a 

and the standard deviation s. Holt (1957) recommends the use of the sum of squared one-step 

ahead prediction errors as a criterion for selecting the smoothing parameter. It also makes 

sense to apply the same criterion when choosing the seed level. Yet we have seen that simple 

exponential smoothing is also a legitimate method when demand data is generated by 

LLM(1). I t might be speculated that the same tactic works with the sum of squared relative 

errors. Given that absolute and relative errors are inherently different quantities, one could not 

compare both types of sum of squared errors criterion to make the choice between LLM(0) 

and LLM(1). This is a serious drawback with the sum of squared errors criterion.  

Likelihood functions for different models, in contrast, are comparable quantities. In 

forming such likelihood functions we choose to treat the seed level m as a parameter. Under 

the semi-infinite life assumption adopted quite widely in expositions of the state space 

approach to time series analysis, such a strategy would not be legitimate. Then m would be 

represented as an infinite sum of past errors and therefore would be a random variable with an 

infinite variance. Because m is an unobserved quantity, it would be necessary to integrate it 
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out of the likelihood. In other words it would be necessary to find the marginal likelihood 

function (Kalbfleish & Sprott). Under our finite life assumption for the inventories this 

difficulty is avoided because m is a fixed quantity. Under our assumption the likelihood can 

be shown to be 

−q 

� exp  �−∑et 
2 2s2 �

� 
, (2.8)� m a s y  y  , , |  1, 2 ,� yn 2πs2 −n 2 �

�∏ 
n � � n 

1 6 = 3 8 mt −1 � � �� t =1 i =1 

qthe one-step ahead prediction errors et = 1yt − mt −1 6 mt −1  being obtained from the 

application of simple exponential smoothing relationship (2.7). The maximum likelihood of 

n 

the variance estimate of the variance is given by the familiar formula s2 = ∑et 
2 n . 

i =1 

Substitution of this into (2.8) yields 

−q�

�1m a y  y  , | 1, 2 ,� yn6 = 2 72πs 2 −n 2 

�
�∏ 

n 

mt −1 � exp  1− n 26 . Thus the maximum likelihood �
� 1t = 

estimates of a and m may be obtained by minimising the quantity 

� n � q 

ω = s� n ∏ |mt −1|� .  (2.9) 
� =1 �t 

For LLM(0) ω  corresponds to the standard error s . In other words it is appropriate 

to minimise the standard error or its equivalent, the conventional sum of squared errors 

n 

S = ∑et 
2 . This justifies the extension of Holt’s strategy for the selection of the smoothing 

t =1 

parameter to the problem of choosing the seed level.  The criterion (2.9) is 

� n � 
ω = s� n ∏ �  for LLM(1). The second term in this expression is the geometric mean of mt −1 � 1 �t = 

the local levels. Its effective purpose is to convert s , now measured in relative terms, into a 

quantity with the same units of measurement as those for the original demand series. By 
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focussing on ω rather than s (or the sum of squared errors), comparisons can be made 

between different models using within sample fit. ω  will be referred to as the generalised 

standard error. Those values of m and a which minimise the generalised standard error will be 

represented by m�  and a� . The corresponding value of s  will be designated by s� . The 

statistics � , � s  are maximum likelihood estimates. m a  and �

It now has been established that simple exponential smoothing can be rationalised in terms of 

a broader set of models than has hitherto been appreciated. The form of the updating 

relationship remains the same for all versions of the local level model. Only the fitting criteria 

change to reflect different possible assumptions about the behaviour of the variance. 

Practitioners are therefore faced with the prospect of implementing more elaborate estimation 

procedures based on criteria other than the traditional sum of squared prediction errors. The 

question is whether such change is really warranted?  

To gain insight into this question it is worthwhile considering the stationary model 

qyt = +m  m e  t , a special case of LLM(q) obtained when a = 0 . In this case 

n n n 

ω = ∑ 1yt − m62 
nm  p 

�
� n ∏m 

�
� 

p 

= ∑ 1yt − m62 
n . The generalised standard error is 

t =1 � t =1 � t =1 

n 

independent of the degree of heteroscedasticity q. The sample average m� = ∑ yt n 
t =1 

minimises the generalised standard error for any value of q. In the stationary case LLM(0) and 

LLM(1) have the same maximum likelihood estimate. 

This neat simplification of ω  disappears when a ≠ 0 . To gauge the impact of this, a small 

simulation study was undertaken comparing the estimates obtained from LLM(0) and 

LLM(1). At each of 1000 replications of the simulation, a time series was generated from 

LLM(1) with m = 100 , the sample size n, the smoothing parameter a and the standard 

deviation s being selected randomly from the values shown in Table 1. Both LLM(0) and 
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LLM(1) were fitted to the simulated data and their optimal generalised standard errors ω *
0 

and ω1
*  compared. Apportioning any ties equally between both approaches, it was found that 

LLM(1) was correctly selected 63 percent of the time. In 28 percent of cases ω *
0  proved to be 

more than one percent away from ω1
* . 

Place Table 1 about here 

The LLM(1) generalised standard error ω1
0 , when the optimal LLM(0) estimates are used as 

0approximations for the LLM(1) estimates, was also calculated. The ratio λ ω ω1
*  can= 1 

never be less than 1 because the LLM(0) estimates are not optimal for the LLM(1) model. 

Nevertheless λ  averaged 1.0004 and had a standard deviation of only 0.0013. The optimal 

estimates for both models were usually remarkably close. 

LLM(1) is more ‘nonlinear’ than LLM(0) and therefore potentially more difficult to estimate. 

The above simulation suggests the following estimation strategy for LLM(1): 

� , �	 �1. 	 Find the maximum likelihood estimates m a and the one-step predictions yt  for the 

simpler LLM(0). 

� , �


standard deviation of the relative errors with  


2. 	Use m a as approximations for the corresponding quantities in LLM(1) and estimate the 

n 

s� = n−1 ∑ 1yt − y�t 6
2 

y�t 
2	 . (2.10) 

t =1 

It might be argued, given the above simulation results, that there is little point in using 

LLM(1) and that this proposed estimation procedure is largely redundant from a practical 

point of view. In the simulation, however, λ1 had an average of 1.0166 and a standard 

deviation of 0.0392. The size of the standard deviation indicates that in some contexts the 
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gains from using LLM(1) may be warranted. From a practical point of view, however, it is 

usually the predictive capacity of a model that counts. It is this issue that we now explore. 

2.4 LEAD TIME DEMAND DISTRIBUTION 

The prediction distribution of the typical series value yn j  beyond period n is conditioned on+

, ,�,the sample y y  y . For convenience it is assumed initially that the seed level m , the1 2 n 

smoothing parameter a , and the standard deviation s are known exactly. The problem then 

reduces to finding the distribution of y + |I nn j  . 

For LLM(0), back-substitution of the recurrence relationship (2.4) yields 

+n j  

m + = m + a ∑e where m + = 3mn j  |I 8 . The future conditional local level mn j  is an j n t  n j  + n +

t n  1
= +  

random rather than a constant quantity. It follows from this future local level equation that 

+ −n j  1 

yn j+ = mn + a ∑e + en j  . (2.11)t +

t n  1
= +  

Thus E y  I  = m andVar y I = j −1 a2 +1 s2 .3 n j+ | n 8 n 3 n j+ | n 8 21 6 7 

In inventory control applications the primary interest is in total demand over a lead-time h . 

n h+ h−1 

∑ = hm 1 6 + −Aggregation of (2.11) gives yt n + ∑ 1+ ja e  n h  j  . Thus the mean lead-time 
t n= +1 j =0 

+� n h  � 
demand is given by the usual formula E� ∑ yt | I t � = hm  n . The variance, however, has the 

= +  

+ 

� t n  1 �

� n h  �
I = h a more complex formula Var ∑ yt | n � f 1 62 

s2  where � ,
= +� t n  1 �

f h a  = h31+ a h  −1 1  + 2h1 , 6 1 62 1 −16a 678 . In other words, conditional total lead-time 

demand is normally distributed with mean hmn and standard deviation ,f h a s. In practice 1 6
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the h is often used instead of f h a( ,  )  . This leads to a serious under-estimation of the 

prediction standard deviation and this has serious consequences for safety stock determination 

and customer service, a matter that is more fully explored in Snyder, Kohler and Ord (1997). 

For the LLM(1) 

+ −n j 1 

yn j  = mn ∏ 1+ ae 1+ en j1 63 8 . (2.12)+ t +

t n 1
= +  

Again the conditional mean, which may be used as a forecast, is E y3 n j+ | I n8 = mn . Being 

expressed in relative terms the errors are fairly small. Products of the errors are negligible so 

~ that the random variable yn j+  in (2.12) can be approximated by the quantity yn j defined by+

~ � n j+ −1 � 
y + = mn 1+ a ∑e  e  n j+ . The conditional variance may be approximated by n j  � t + � 

= +� t n 1 �

Var y 3 + |I 21 j 1 a m~ 
n j  n8 = + −  1 6 2 7 n 

2 s2 . For lead-time demand it can be established that the 

+� n h  � 
mean is again given by E� ∑ y I  | � = hm  and that the conditional variance can be � t n 1

t t � n 
= +  

+� n h  � 2 2� ∑ t n� f h ) sapproximated by the slightly different formula Var ~y I | = ( ,a mn 
2 . It is 

= +� t n 1 �

tempting to approximate the lead time demand distribution by a normal distribution with 

mean hmn  and standard deviation f a h mns. Simulation studies indicated that provided it ( , )  

is assumed that m  is known with certainty then this approximation works well.  n

From a practical point of view it is probably simpler to bypass normal approximations based 

on the above moments formulae and simulate lead-time demand distributions directly from 

the relationships (2.11) and (2.12). The quantities m a,  and s  are usually unknown. A 

parametric bootstrap based on the approximations m m� , a a�  and s s�  can be used.= = =

Exponential smoothing, seeded with the maximum likelihood estimates, is used to calculate 
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m�n , the corresponding value of mn . These quantities are used together with the formulae the 

LLM( q) formulae to generate bootstrap samples of lead-time demand. A simulation for 

comparing the results of the bootstrap method for LLM(0) and LLM(1) was undertaken. First, 

a sample was simulated from the LLM(1) with m = 100, s = . 30 . Maximum 0 05 and n =

likelihood estimates were obtained for both models. These were then used obtain both 

bootstrap samples of 1000 lead-time demands, the lead-time being h = 10 . Figure 1 shows 

the quantile-quantile plot of the samples. The plot is quite close to the 450 line reflecting the 

similarity of the LLM(0) and LLM(1) lead-time demand distributions. This result is typical of 

those obtained when the simulation conditions were varied. 

Place Figure 1 about here 

The parametric bootstrap approach ignores the effect of estimation error. An appropriate 

adaptation of the simulation method described in Ord, Koehler and Snyder (1997) would 

account for this source of error. It is anticipated that greater differences would then emerge 

between the two models. 

3. SIMPLE EXPONENTIAL SMOOTHING WITH DRIFT 

3.1 LOCAL LEVEL MODELS WITH DRIFT 

Intuitively, it makes sense that heteroscedasticity related to the magnitude of the fluctuations 

in the mean, may be modest when the mean is locally constant. It is likely to have more of an 

impact if there is a tendency for the series to increase or decrease over time. We therefore 

introduce a growth rate b into (2.2) to give 

t −1 

yt = + +  m  bt  α∑ej + et . (3.1) 
j =1 
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This can be written as yt m bt ut t ut −1 −θet −1 et= + +  where u = + . Differencing (3.1) yields 

b − + e  so that the associated time series is ‘difference stationary’. Contrast this Δyt = −θet 1 t 

with the more common case where the trend is accompanied by first-order autocorrelated 

disturbances governed by ut = φut −1 + et , the associated series now being  ‘trend stationary’ 

provided that parameter φ satisfies the condition φ < 1. 

t 

= + +  The local level may be defined as mt m bt α∑et . Then (3.1) may be written as 
j =1 

= b = byt mt −1 + +  et  where mt mt −1 + +  αet . This local level model with drift is the special 

case of the model underlying Holts trend corrected exponential smoothing where the growth 

rate is restricted to a constant value. The generalisation to include heteroscedastic variation is  

yt = 1mt −1 + +  b6 1mt −1 + b6q
et (3.2) 

where 

mt = mt −1 + +  mt −1 + b 
q
et1 b6 α1 6 . (3.3) 

It will be designated LLDM(q). Again q = 1 corresponds to the relative error case. 

t t −1 

The local level, for any LLDM(q) can be written as mt = θ tm + ∑θ jb +α  θ  j yt j  .∑ − 
j =1 j =0 

The local level is still a discounted linear function of series values when the invertibility 

condition θ < 1 holds. In what follows, however, we continue to use the common restriction 

0 ≤ ≤ 1α . 

3.2 SMOOTHING AND ESTIMATION 
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Smoothing and estimation is quite similar to the case where there is no drift. For given values 

of m, b and α  the augmented smoothing relationship mt = mt −1 + b+ α1yt − mt −1 − b6  may 

be applied where m0 = m. The errors may be calculated with 

et = 1yt − mt −1 − b6 1  mt −1 + b6q 
. Using the principle of maximum likelihood, it can be argued 

,that m b and α  should be chosen to minimise the generalised standard error 

n� � q 

ω = s� n ∏ |mt −1 + b|� . 
� t 1 �= 

A simulation study similar to the first study described in section 2.3 was again conducted, but 

now with a drift of b = 05. . Interestingly the simulated ratio λ  now had a moderately larger 

average of 1.0015 and standard deviation of 0.0040. It seems that even with a drift term, the 

LLDM(0) estimates are close enough for most practical purposes to use as approximations for 

their LLDM(1) counterparts. Interestingly, the optimal generalised standard error ω1
*  was 

now greater than ω *
0  about 80 percent of the 1000 replications. Furthermore, the gap between 

ω *
0 and ω1

*  now exceeded one percent in 67 percent of the replications. The differences 

between LLDM(0) and LLDM(1) when there is drift can be quite marked. 

3.3 LEAD TIME DEMAND DISTRIBUTION 

It is possible to obtain formulae for the mean and standard deviation of the lead-time 

demand distributions. It is simplest, however, to undertake a parametric bootstrap of 

the lead-time distribution. Figure 2 shows the quantile-quantile plot obtained when the 

simulation was conducted under essentially the same conditions as those depicted in 

section 2.4. The only difference is that now a drift of b = 05.  is assumed. The 

quantile-quantile plot of simulated lead-time demands is now steeper than the 450 line. 

This indicates that the lead-time demand distribution for LLDM(1) is more spread 
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than that for LLDM(0). It suggests that larger safety stocks may be required if level 

dependent errors are present and that a pronounced drift is observed in demand. 

Place Figure 2 about here 

4. Trend Cor rected Exponenti al Smoothi ng 

t −1 t −1 i 

t = + +  bt 1 ∑ j α 2 ∑∑ej tAnother possible model is y m α e + + e . It may be written as 
j =1 i =1 j =1 

y m bt u 2u = − e − −θ e for t > 2 , the parameters being related by = + +  where Δ e θt t t t 1 t 1 2 t −2 

the equations θ 2 α α  = −= −  −  and θ α 1. It is a trend line with a particular form of 1 1 2 2 1 

autocorrelated disturbances. A local level may be defined as 

t t i t −1 

mt = + +  m  bt  1 ∑ej + α 2 ∑ ej t = mt −1 + +  α 2 ej tα ∑ . Then y b ∑ + e . If, in addition, a 
j =1 i =1 j =1 j =1 

t 

local growth rate is defined as bt = +b α 2 ∑ej , then the model may be written is state space 
j =1 

form as y = m − +  + e = m − +  +b e = t t 1 bt −1 t  where mt t 1 t −1 α 1 t and bt bt −1 + α 2et . Unlike 

LLDM(0), the growth rate is now allowed to change over time. This is the so-called local 

trend model.  

A generalisation to accommodate heteroscedastic variation is 

y = m + +  m + b 
q
eb 1 6  (4.1)t t −1 t −1 t −1 t −1 t 

m = mt 1 +  +  α 1 mt + b 1 6
q
et (4.2)t − bt −1 1 −1 t − 
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bt = bt −1 + α 2 1mt −1 + bt −1 6
q
et (4.3) 

It will be designated LTM(q).  Again q = 1 corresponds to the relative error case.  

Assuming that m, b, α1  and α 2  have been assigned trial values, the information available at 

= � y , , m =the end of typical period t is I ;y , ,  m b  , α α, @ . Let m =  and b b .t 1 t 1 2 0 0 

= I = b I  Furthermore let mt 1mt | t 6  and bt 1 t | t 6  for t ≥ 1. These conditional quantities must be 

consistent with the equations for LTM(q). They may be computed recursively with the 

relationships 

mt = mt −1 + bt −1 +α12yt − mt −1 − bt −1 7  (4.4) 

bt = bt −1 + α 2 2yt − mt −1 − bt −1 7 , (4.5) 

These recurrence relationships are obtained by eliminating the et  from the LTM(q) equations. 

They correspond to the error correction form of Holts trend corrected exponential smoothing 

(Gardner, 198*). Thus this traditional method is applicable under much broader conditions 

than those traditionally stated in the literature. It applies when the variation depends on the 

underlying level. 

Maximum likelihood estimates of m, b, α1  and α 2  can be obtained by minimising the 

� n � q 

generalised standard error ω = s� n ∏ |mt −1 + bt −1|� . The standard deviation s  is still 
� =1 �t 

n 
2 2calculated from the formula s = ∑et n but now the errors are obtained from trend 

i =1 

corrected exponential smoothing using the formula et = 2yt − mt −1 − bt −1 7 2  mt −1 + bt −1 7
q 

. 

LTM(q) reduces to LLDM(q) when α 2 = 0 . Both models have similar properties so the 
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conclusions reached with the simulations for LLDM(q) also apply to LTM(q). 

5. Seasonal Effects 

LTM(0) can be augmented by a seasonal cycle of length p if required. Let ct  denote the 

seasonal effect associated with typical period t. The resulting model, when the seasonal 

effects are additive, is yt = mt −1 + bt −1 + ct − p + et  where mt = mt −1 + bt −1 +α 1et , 

bt = bt −1 + α 2et and ct = ct − p +α 3et . It is easily seen that this model underpins the additive 

version of Holts seasonal exponential smoothing. Its multiplicative counterpart is 

1  6 1 6 1 61 6yt = mt −1 + bt −1 ct − p 1+ et  where mt = mt −1 + bt −1 1+ α 1et , 

bt = bt −1 + α 2 1mt −1 + bt −1 6et and ct = ct − p 11+ α 3et 6 . If the errors are substituted out of these 

equations and the appropriate conditioning on past information is undertaken, the equations 

for Winters method of exponential smoothing is obtained (Winters, 1960). The details are 

covered in Ord, Koehler and Snyder (1997). 

To reduce the number of parameters it is often better to use a Fourier representation of 

seasonal cycles (Brown, 196X). Winters method would not be practical if applied to say 

weekly demand data.  One possibility is a linear local level model with drift and seasonal 

cycle LLDSM(0) 

yt = mt −1 + b + ct − p + et 

mt = mt −1 + b + ae  t 
r 

ct = ∑ 4α j sin ω j t j 3 83 8+ γ cosω j t 9 
j =1 

where the ω j  are the frequencies and the α j  and β j  are coefficients. Note that 

r ≤ p +1 2 . Usually r is much smaller than 1p + 1 26 . Otherwise there would be no 

advantage in using Fourier representations. In this model the seasonal cycle is deterministic. 

Stochastic error representations of a seasonal cycle are possible. These imply, however, that 

1 6
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the seasonal cycle follows a random walk, something that is difficult to believe. Another 

possible generalisation involves local growth rates as found in the local trend model. 

A nonlinear heteroscedastic generalisation of this model is: 

yt = 1mt −1 + b631+ ct − p 811+ et 6 
mt = 1mt −1 + b611+ ae  t 6 . 

r 

c = α sin3 8t γ 3 8t ∑ 4 j ω j + j cos ω j t 9 
j =1 

The seasonal and irregular components increase with the trend. This model will be designated 

LLDSM(1). 

Again the generalised standard error may be used as the estimation criterion. It is  

ω = − − −− − 
= 
∑ y m b c nt t t p 
t 

n 

1 

2 

1 

3 8 

and 

ω = 
− + + 

+ + 

� 

� 
� 

� 

� 
� + +− − 

− −= 
− − 

= 
∑ ∏

y m b c 

m b c 
n m b c 

t t t p 

t t pt 

n 

t t p 
t 

n 

n 
1 

1 

2 

1 
1 

1 

1 

1 
1 

1 63 8 
1 63 8 

1 63 8 

for LLDSM(0) and LLDSM(1) respectively. 

A simulation study similar to the one described in section 3.3 was undertaken to determine the 

differences in the estimates for the linear and nonlinear cases. The series for the simulation 

were generated from the nonlinear model with ct = 05. sin  12πt 52 6 . This corresponds to a 

pronounced seasonal cycle in the time series but the size of the amplitude of the cycle is quite 

plausible in practice. On average the generalised standard error turned out to be about 20 

percent higher for the estimates based on the wrong LLDSM(0).  Using the generalised 

standard error as the selection criterion, the correct model was chosen 99 percent of the 
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time. Thus, for the first time, we have detected a major difference between the homoscedastic 

and heteroscedastic models. The implications of this will be explored in greater depth using 

criteria from inventory control. 

 INVENTORY CONTROL 

In this section we attempt to gauge the impact of differences arising from the linear and 

nonlinear seasonal models in the context of an inventory problem. The focus will be on an 

order level system with periodic reviews and the backlogging of excess demand.  

The state of an order level system at any point of time is represented by the stock position, a 

quantity governed by the formula StockPosition = Stock – Backlog + OnOrder. The order 

level represents the appropriate level for the stock position following the placement of a new 

replenishment order. It is assumed that such orders are placed at the start of each review 

period. 

The size of the order level determines the service given to customers. It is assumed that 

service is summarised by the fill-rate (customer service level), a statistic that measures the 

proportion of demand satisfied without delays caused by shortages. It is further assumed that 

managers specify a target value for the fill-rate, the problem then being to choose the order 

level to meet this target. 

A theory for the determination of order levels using the fill-rate (customer service level) 

statistic appears to have been first proposed by Brown (19??). The theory involves the use of 

exponential smoothing in combination with what Brown refers to as a ‘partial expectation’. 

The approach was a major breakthrough in its day and its influence may still be found in 

modern inventory control software. It has, however, two weaknesses that can nowadays be 

circumvented with the common availability of powerful computers. 

a) It employed heuristics, based on mean absolute deviations, to measure the variability of 
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lead-time demand. 

b) It relied on an approximation for the fill-rate that was a necessary convenience when 

calculations were done manually, but which is known to be inaccurate when review 

periods are short in length – see below for details. 

The theory of this paper provides an opportunity to circumvent the heuristics for measuring 

variability while using the exact formula for the customer service level. We now outline a 

parametric bootstrap approach that would have been impractical until recent times. It is based 

on the assumption that an order placed at time n is delivered at time n h+  and that the 

problem is therefore to use such an order to influence the performance of the inventory system 

in the period 1n h n  h+ +  16 . The fill-rate in this period is defined as + , 

β = − E xn h  n  E y  n h  n8  where xn h  is the excess demand in period n+h+1 and 1 3 + +1| 8 3 + +  1| + +1|n

yn h 1|  is the demand in period n+h+1 given the information set In. Since x + +1 n ≤ y + +1 n+ + n n h  | n h  | 

the fill-rate always lies in the interval [0, 1]. This measure of service should not be confused 

with the tail of the lead time demand distribution commonly used in some approaches to 

inventory control (Buffa, 19??).  

Demand in period n+h+1 may be easily simulated from the model underlying the forecast 

method using parameter estimates in place of the unknown parameters. Given a particular 

order level S, the corresponding excess demand in the same period can also be calculated with 

+ + 
xn h  1 n = y : + +  n − S − y :n h n  − S9 . Each RHS term, being the excess of lead+ + | 4 1n+1 n h  16| 9 4 1n+1 + 6| 

time demand over total supply, is a backlog. They correspond to the closing and opening 

backlog in period n+h+1 given the information In. Being the increase in the backlog, the RHS 

corresponds to the excess demand in period n+h+1. It is possible to follow Brown (1959) and 

assume that the opening backlog is small enough to be ignored. The second term on the RHS 

of the formula for excess demand would then disappear. In practice, particularly when review 
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periods are relatively short, a delivery may be insufficient to completely eliminate an existing 

backlog. It is better not to make this approximation. 

A bootstrap involving R replications may be used to estimate the fill rate. Denoting the rth 

r r1 6 1 6replication of excess demand and demand by xn h+ +1|n and y + +1|n  respectively, a bootstrap n h  

R R 
r1 6  estimate of the fill-rate is β� = −  x1 6r 

+ +1|n1 ∑ n h  y + +1|n .∑ n h  
r =1 r =1 

The fill-rate depends on the order level S, a relationship that may be represented by the 

function β1 6S . The problem is to find that value of S which satisfies the condition β1 6S = β 

where β  is the target fill rate. The ‘true’ implicit function β1 6S  is unknown. However β�

also depends on S, a relationship which that may be designated by β� 1 6S . Using β� 1 6S  as an 

approximation for β1 6S , the problem can be revamped to one of finding the solution S� of 

the equation β� 1S6 = β . 

The parametric bootstrap procedure consists of the following steps: 

r1 6a) Simulate from the appropriate exponential smoothing demand model the yn j n for j = 1+ | 

to h+1, r = 1 to R. 

b) Use a binary search procedure to solve the implicit function equation β� 1 6S = β for S� . 

Note that β� 1S6  is evaluated at step (b) for each trial value of S using the demands from step 

(a). There is no need to regenerate the demands for each function evaluation.  

This bootstrap procedure is easily implemented on modern computers. But it is likely to yield 

values for the order level slightly below those actually required because the parametric 

bootstrap method ignores the effects of estimation error. It is possible to adapt this procedure 
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to largely overcome this problem using a more complex prediction methodology from Ord, 

Koehler and Snyder (1997). This option is not pursued here. 

The fill rate is an appropriate criterion for evaluating whether there are significant gains from 

using a relative error rather than an additive error approach to forecasting when it is known 

that demands are generated by a relative error model. Any differences that might occur can be 

gauged from a simulation study. Let LLDSM( q,θ ) denote the local level with drift and 

seasonal cycle model with parameter vector θ . Furthermore, let θ� q  denote the maximum 

likelihood estimate of the parameter vector θ  from LLDSM(q). The steps in each replication 

of the simulation are: 

a)	 Generate a time series of length n from the ‘true’ model LLDSM(1, θ ). 

b)	 Estimate the time series on the assumption that the LLDM(0, θ ) is the appropriate 

model to yield estimate θ� 0 . 

c)	 Use LLDM(0, θ� 0 ) with the bootstrap method to find the order level denoted by S�0 . 

d)	 Estimate the time series on the assumption that the LLDM(1, θ ) is the appropriate 

model to yield estimate θ� 1. 

e)	 Use LLDM(1, θ� 1) with the bootstrap method to find the order level denoted by S�1 . 

f)	 Generate an ensemble of future demands from the ‘true’ model LLDM(1, θ ) and 

evaluate the fill rates achieved with S�0  and S�1  respectively. These fill rates are 

designated by β� 0  and β� 1 respectively. 

The values of β� 0  and β� 1 from each replication of the above steps potentially change. These 

values can be collected into a sample. The two samples may be compared to determine 
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whether there are significant differences between the additive and relative error demand 

models. They can also be compared with the nominal fill rate β  to gauge the effect of 

ignoring the estimation error in the parametric bootstrap or any bias in the forecast procedure. 

In the simulation study it was assumed that: 

a)	 The stock position is reviewed at the beginning of each week. 

b)	 Orders are delivered after a delay of 9 weeks. Thus the aim is to control inventories in 

the week following the delivery, namely week 114 (2*52+9+1). 

c)	 Deliveries occur at the start of a week, immediately following the review. 

d)	 Weekly demand is governed by the LLDSM(1) with m = 100, b = 01. , 

c = 05. sin12πt . .52  6 , a = 05 and s = 0 05. The growth rate, in annual terms, is 5.2 t 

(ie 0.1 * 52 weeks). This, relative to the initial level, is a little over 5 percent per 

annum. 

e)	 Weekly demand data for two years is available for forecasting purposes so that the 

current review occurs at the beginning of period 105 (ie 2*52+1).  

f)	 The target fill-rate is β = 95% . 

A number of simulation experiments were conducted under a variety of conditions. Each 

simulation experiment involved 200 replications. At each replication the bootstrap method for 

finding the order level itself involved 1000 replications. The results are summarised in Table 

2. The benchmark case represents a situation that we think may be fairly typical in the 

inventory control context. The other cases were obtained by varying one factor at a time from 

its benchmark value. 

Insert Table 2 and Figure 3 about here 
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The following observations can be made. 

a)	 The means are generally below the medians. The distributions of the simulated fill

rate must possess a left skew. This is exemplified by the distribution in Figure 3 for 

the benchmark case. 

b)	 The medians obtained with the bootstrap method from LLDM(1) are usually about 

one percent below the target fill-rate of 95 percent. This gap is probably due to the 

fact that the bootstrap method ignores the effect of estimation error. Given the size of 

this gap, refinements geared to eliminating this problem appear to be unwarranted. 

c)	 The median fill-rates associated with LLDM(0) are little lower again. There appear to 

be some gains from using the relative error approach when the data generating 

process involves relative errors.  

d)	 The gains from using the bootstrap method with LLDM(1) instead of LLDM(0) 

increase with higher growth rates. The changes in the underlying level are larger and 

the fluctuations of the irregular component increase as a consequence. Nevertheless, 

the growth rate has to reach unrealistic levels before the differences become 

pronounced. 

e)	 Variations in most factors have little impact on the median fill-rate for the LLDM(1) 

bootstrap method. 

4.	 CONCLUSIONS 

In this paper we have proposed a generalisation of the additive local level model or its 

equivalent, the ARIMA(0,1,1) model, to incorporate a general form of conditional 

heteroscedasticity. It was demonstrated that simple exponential smoothing, in its traditional 
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form, remains the valid updating relationship under this more general class of models. The 

only change required is in the form of the criterion function used for selecting the estimates. A 

simulation indicated that the maximum likelihood estimates obtained with simple exponential 

smoothing under a level dependent form of heteroscedasticity are almost identical to those for 

the homoscedastic case. Since the homoscedastic case is inherently easier to estimate than its 

multiplicative counterpart we recommend the use of the former for estimation purposes. 

The issue of heteroscedasticity becomes more critical in the prediction context. Analytical 

formulae become unreliable for the multiplicative case. We therefore recommend a two-stage 

procedure: 

a)	 estimate m , a  and s  using the additive model 

b)	 use the estimates from the previous step in conjunction with the multiplicative model to 

simulate the prediction intervals. 

Appendi x 

This appendix contains the derivation of the formulae for the mean and variance of the linear 

and multiplicative local trend/seasonal models. To simplify notation the origin for forecasting, 

designated period n in the body of the paper, will be relabelled period 0. The prediction 

′ y1	 y2 � yh  designates h 

unknown future values of the time series. Furthermore, �0  and b0  denote the local level and 

local rate at the start of the prediction origin. They no longer represent the seed values for 

these quantities in the period prior to the sample. These quantities are known exactly. The 

horizon is designated by h. Thus the random h-vector y = 

′ vector γ = of seasonal factors required for forecasting is also known r rc− +1 c− +  2 � c0 

exactly. The formulae to be derived in this appendix are therefore based on the assumption 

that there is no estimation error. 
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The derivations rely extensively on a matrix B called the ‘backward shift’ matrix. It is the 

matrix counterpart of the backward shift operator used so extensively in Box and Jenkins 

(19XX). The notation employed, together with explanations, is shown in the following Table. 

To simplify  matters it is assumed that h is an exact multiple of the seasonal lag r. Let 

m h r . It is the length of the forecast horizon measured in years.  = 

Notation 

ξ 
the unit h-vector 1 0  0� ′ 

1 
the ones h-vector 1 1  1� ′ 

τ 
the arithmetic series h-vector 1 2  � h ′ 

τ 21 6  the series h-vector 1 3  6  10  1  2� h h  +1 6  

B the backward shift matrix where bii − = 1 1 for i n= 1,�,  and bij = 0 otherwise. 

eg 

0 0  0  

1 0  0  

0 1  0  

01 

2 

3 

1 

2 

� 

! 

" 

$ 

# 
# 
# 

� 

! 

" 

$ 

# 
# 
# 

= 
� 

! 

" 

$ 

# 
# 
# 

x 

x 

x 

x 

x 

Br the backward shift matrix of lag r where bii r− = 1 for i r  n= +1,�,  and bij = 0 otherwise. 

eg. if B = 

� 

! 

" 

$ 

# 
# 
# 
# 

0 0 0  0  

1 0 0  0  

0 1 0  0  

0 0 1  0

  then B2 

0  0 0 0  

0  0 0 0  

1  0 0 0  

0  1 0 0  

= 

� 

! 

" 

$ 

# 
# 
# 
#

 and 

0 0  0 0  

0 0  0 0  

1 0  0 0  

0 1  0 0  

0 

0 
1 
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3 
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2 
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# 
# 
# 
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# 
# 
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# 
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# 
# 
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x 
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x 

x 

x 

. 

Note that B Oj =  for all j n≥ . 
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S partial sum matrix being a unit lower triangular matrix with all elements below the diagonal 

equal to 1. 

eg. S = 
� 

! 

" 

$ 

# 
# 
# 

1 0  0  

1 1  0  

1 1  1

 so that 

1 0  0  

1 1  0  

1 1  1  

1 

2 
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1 

1 2 

1 2 3 
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! 
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# 
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� 
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# 
# 
# 

= + 
+ + 
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! 

" 

$ 

# 
# 
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x 

x 

x 

x x 

x x x 

. 

Note that  S I B I B B Bn= − = + + + +− −1 6 1 2 1
� 

S r1 6  
defined by S I B I B B Br r  r  r  mr  1 6  2 7= − = + + + + 

−1 2 
� 

Ξ 
Ξ =  ′ I O Or r r�  is the matrix counterpart of ξ 

Z 
Z I I Ir r r = ′ 

� 

Useful Relationships 

S I B= − −1 6 1 I BS I SB S+ = + = Sξ = 1 S1 = τ 

ξ + =B1 1  1 + =Bτ τ  S Zr1 6Ξ =  B S  I  Sr r r1 6  1 6  + =  

Linear Seasonal Model 

Proposition 

A random vector y  governed by the linear seasonal local trend model has a mean µ1 + µ2 

and variance matrix AA'  where µ1 = 1�0 + τb0 , µ2 = Zγ and 
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1 

r rA I= + BS  1α1I + α 2 S6+α 3 B S1 6  . 

Proof 

Stack the equations of LTSM(0) to give 

r+  +  γ + +  6y = ξ1�0 b0 6 Ξ + B1� b  B c  + e (F.1) 

ξ 0 + +  b6 1� = 1� b0 6 B1� +  +  α e      (F.2)  

b = ξb0 + Bb  + α 2e       (F.3)  

rc = Ξγ + B c  +α 3e .       (F.4)  

Solve (2.2) for c to give 

µ α r ec = 2 + 3S
1 6  . 


Also solve (2.5) for b to yield 


b = 1b0 + α 2 Se  . 


Similarly, the equation (3.1) may be solved for �  to give


� = µ  α  + 1 SB + α 6Se .1 2 1 

Substituting these results into (2.6) we obtain 

µy = + Ae  

r r= and A I  1α 2where µ µ  µ1 + 2 = + BS  1I + α S6+α 3 B S1 6 . The result follows. 

Multip licative Seasonal Model 
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The situation is more complicated for the multiplicative model. It is necessary to form 

diagonal matrices from certain vectors. Thus diag(a) represents the matrix with diagonal 

elements a a  a . We utilise the following properties of diagonal  matrices: , ,�,1 2 n 

diag a b  = diag + diag 1b diag 1 6a b= diag b a6+ a 6 11 6  1 6  

LTSM(1) is approximated by the model 

= 1� 6ct  r  + 2 1� | 6 1  I 67 1 − | I e  yt t −1 + bt −1 − E t −1 I n + E b  t −1| n E c  t r  n6 t (F.5) 

E 6 1  e�t = �t −1 + bt −1 + α 12 1�t −1|I n + E b  t −1|I n67 t (F.6) 

bt = b 1 α 2E1�t −1|I + E b  I n67 tt − + 2 n6 1  t −1| e (F.7) 

c = c + α 3 E c  1 t r  |I e  6 t      (F.8)  t  t r  − − n 

The coefficients of the errors are converted by this approximation from stochastic to fixed 

quantities that are easier to manipulate.  

Let the mean trend and seasonal vectors be defined by µ1 = 1�0 + τb0 and µ2 = Zγ . The 

equations (2.6)-(2.7) can be stacked to give 

ry 1�0 + b0 6ξ + B � + b 7 Ξ 7+ diag µ1 diag µ2 e= diag2 1 6  2 γ + B c  1 6  1 6  (F.9) 

� = 1�0 + b0 + � + b + α 1diag1 61ξ B µ e (F.10)6 1  6  

b = ξb0 + Bb  + α 2diag1 6µ1 e (F.11) 

rc = Ξγ + B c  + α 3diag1µ2 6e (F.12) 

Equation (F.12) may be solved for c to give 
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µ α  r µ ec = 2 + 3S
1 6diag 1 2 6 . (F.13) 

Solving for b in (F.11) gives 

b = 1b0 +α 2 Sdiag1µ1 6e . (F.14) 

Substituting (F.14) into (F.10) and then solving for �  gives 

� = µ1 + 1α1I +α 2 BS  S  6 diag1 6µ1 e . (F.15) 

The expressions (3.1)-(2.7) can be substituted into (F.9) to give a nonlinear relationship for y 

in terms of the errors e. Given that the errors are in relative terms, products of the form e ei j  

are relatively small. The linear component of the relationship, with the general form 

yL µ Ae  b  simplifies to = +  must be a good approximation for y. Noting that � +

� + =  +  b µ1 1b0 + 1α1I + α 2 S Sdiag 6 1µ1 6e it can be shown that 

� = µ1 + 1α1I +α 2 BS  S  6 diag1µ1 6e and 

r rA = diag1µ2 6BS  1α1I + α 2 S6diag1µ1 6+α 3diag1µ1 6B S1 6diag1µ2 6+ diag1µ1 6diag1µ2 6 . 

An approximation for the variance matrix of the prediction distribution is therefore given by 

2s AA' . Although it is relatively complex, the formula for A is readily calculated in a matrix 

oriented computer language such as Gauss or Matlab. Provided that the approximations made 

during its derivation combined with the normal approximation for a distribution that is not 

normal, do not lead to serious error, this option is a convenient way to derive the prediction 

distribution. 
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Figure 1. Simulated lead-time demand: exponential smoothing
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n 30, 50, 100, 200 


a 0, 0.2, 0.5, 1.0 


s 0.02, 0.05, 0.1 


Table 1. Simulation options 
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Conditions 

b s a n 

LLDM(0) fill rate 

mean median 

LLDM(1) fill rate 

mean median 

Benchmark case 

0.1 0.05 0.5 

Growth rate effect 

1 0.05 0.5 

Variability effect 

0.1 0.1 0.5 

Sample size effect 

0.1 0.05 0.5 

Smoothing parameter effect 

0.1 0.05 0.1 

104 

104 

104 

260 

104 

91 93 

89 90 

91 92 

93 93 

92 93 

91 93 

93 94 

90 94 

94 94 

92 94 

Table 2. Summary of simulated percentage fill -rates with m = 100 and β = 95% . 
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Figure 2.Simulated lead-time demand: exponential smoothing with drift
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Figure 3. Comparison of simulated fill rates. Target fill rate = 95% 
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Figure 3.Simulated lead-time demand: seasonal exponential smoothing with drift
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Seasonal case 

LLDSM(0) LLDSM(1) 
Mean 0.82 0.94 
Median 0.84 0.95 

Figure 3. Comparison of simulated fill rates. Target fill rate = 95% 
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