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Abstract:

Exponential smoothing, often used for sales forecasting in inventory control, has always been
rationalized in terms of statistical models that possess errors with constant variances. It is
shown in this paper that exponential smoothing remains the appropriate approach under more
general conditions where the variances are alowed to grow and contract with corresponding
movements in the underlying level. The implications for estimation and prediction are
explored. In particular the problem of finding the prediction distribution of aggregate lead-time
demand for usein inventory control calculationsis considered. It is found that unless a drift
term is added to simple exponentia smoothing, the prediction distribution is largely unaffected
by the variance assumption. A method for establishing order-up-to levels and reorder levels
directly from the simulated prediction distributionsis also proposed.
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1. INTRODUCTION

The conceptualisation of spte exponential swothing(Brown, 1959) was an iportant
dewelopment for dermand forecastingn inventory control. Yet implementations of this ethod
hawe often been surrounded pyactices, sumarised in Grdner(1985), Wich possess
guestionable theoretical roots antieh, at best, havenjyed a nixed success.his paper is
written on the assuption that gpod practice emsrges fromsound theonand that such a
strategy must be built on the statisticaladels underlyng the technique. @ contribution is

to sugyest that the theorgf sinple exponential swothingcan be extended to a broader class
of models vhere error @riances, instead of raaiming constant, can chaa@ver time. The
implications of this heteroscedasticfty estination are explored in section 8s |
consequences for prediction, particuldriyelation toaggregateleadtime demand, a quantity

of particular interest in irantory control, are outlined in section 4.

In a recent paper (@, Koehler and Srder, 1997) the mthods of exponential smothing

were show to applyunder nuch nore general conditions than those traditionadignisaged
in the literature.n this paper w take a nore detailed loolat sone of the inportant \ersions
of exponential simothingand explore the consequencéathweference to the forecasting

requirenents in in\entory control.

Many expositions of exponential @mthingare related bacto associated RIMA models
(Box and &nkins, ). It is implicitly assurad in such expositions that the processes under
consideration extend baakto the infinite past. Most itesrcarried in a tgical inventory
systemtypically possess a finite life cle so that this serinfinite time assumtion is
unrealistic. 1 is assured in this paper that itesrare introduced into an ieatory at the start
of a period of tine that is desigated period 1.tlis further assued thatn periods hae
elapsed since the introduction and that the prolidetm forecast deamd ower a leadime h

extendingfrom periodn+1 ton+h. Demand for an itemin typical periodt is represented by



Y-
2.  SIMPLE EXPONENTIAL SMOOTHING

2.1 LocAL LEVEL MODELS

Demand ovwer time in basic inentory theoryis usuallyrepresented bgormelly and
independentlyistributed randomwariables with a common meanm and a common standard

deviation S. The series is oftennitten as
Y. =m+ e, (2.2)

the g beingNID(O,sz) randomvariables. e errorsg represent unanticipated damd. in

this nodel the inpact of each error is restricted to the period fichvit occurs. Each error

only has aransienteffect.

In practice unanticipated dend ey spill over into later periods. &v custoners nay cause
demand to increase in the lorigrm New conpetitors entering: market maey permanently
reduce rarket shares. Assumg that a proportiom of unanticipated deand has a peranent

effect fromcauses lik these, the odel (2.1) nay be nodified to gve

t-1

Y, = m+aZe-j +g. (2.2)
£

Muth (1960) introduced this adel, albeit with a semnfinite past and withm= 0, and
showed that it underpins gite exponential swothing Differencingyields, fort = 2, the

processAy, = -0g_, +€ where 8 =1-a. Working in a senitinfinite time context, Bx and

Jerkins (1976) also deanstrated that this adel underlies siple exponential saothing



t-1
A‘local level’ may be defined asn = m+ az €_; . The nodel (2.2) nay then be rewitten
7=0
in terrs of a neasurerent equationy, = m_, + € and a transition equatiom = m_, +ae, .
Both the neasurerant and transition equations defindat may be referred to as a local Bv
model (LLM). It is a special case of the linear state spacedsank in Snyder (1985). he
paraneter a corresponds to the faliar smoothingconstant. A advantage of this

representation @ its ARIMA counterpart is that the linkith the error correction forrof

exponential smothingis nore transparent.

A generalisation of the local le’model that accomodates le&l dependent ariability

consists of the masurerant equation

Yo =m, +mle (2.3)

together with the transition equation

m=m_, +anf.,e (2.4)

where the paraster g deternines the dege of heteroscedasticitl will be desigated
LLM( ). Cur primary focus wil be on the special case$ M(0) and LLM(1). LLM(0)
corresponds to the oiital local level model withadditiveerrors. LLM(1) represents series

with level dependentariability based omelative errors.
The behaiour of the local legl in LLM(q) is governed by
m =6m_, +ay,. (2.5)

This relationship is obtained ®liminatingthe error ternin the LLM(q) equations (2.3) and
(2.4). Interestingy, it does not depengl The behaiour of the lewl is independent of the

form of heteroscedasticityrhe closed fornsolution for the local les is



t-1

=8'm+a$ 0'y,_. . (2.6)
m JZO .

The local leel sunmarises the past behmur of the derand process. fie weights a8’
deternine the inpact of past tira series alues. Whed9| <1 these wights decline vth

increases in the agndex. This discountingof past obsewrtions is warranted whenarkets

are subgct to structural chaeg

The inequality|6| <1 for LLM(0) corresponds to the imstibility condition for the

ARIMA(0,1,1) process (Box anérkins, 1976).1is also equisient to 0<a < 2. Thus
LLM(0) acconobdates structural chaedpr values of the smothingparaneter in excess of 1,
a conclusion that is incqmatible with the traditional angment abowe. The inportance of this
can be guged byfocussingon the firsterder autocorrelation coefficient of the first

differenceslt canbeestablished that the first-der autocorrelation in the differenced dewch
series is tyen by corr(Ay,Ay,_, )= -6 . Demand series \ith positively autocorrelated first

differences can onlipe nodelled, vithin the local leel framework, if a is allowed to tale

values aboe one.

2.2 SMOOTHING OF TIME SERIES

The unkhown snoothingparaneter a and the seed lely m may be assiged trial

values. At the start of pical periodt the obsered values of the seriey,, Y,,...Y,_; from
earlier periods are also fixedhdwn quantities. The inforation set ray be desigated by
L = {0 Youu - Yo, @, my|. Let M, = (Im_,|1,, ). Accordingto (2.5) successiaocal

levels can be comuted recursigly with



m =m_ +aly, -m.,) 2.7)

where m, = m. Theseconditionallocal leels arefixed rather thamandomquantities. The

equation(2.7) correspond$o the sinple exponential swothingupdatingrelationship (Brown,
1959). The traditional vew has alvays been that siple exponential swothingcan onlybe
rationalised in termof an ARIMA(0,1,1) process (Box &enkins, 1976). Akey findingin
this paper is that exponential aathingis also compatible with nodels where theariationin

the series is dependent on the undedyevel.

2.3  MAXIMUM LIKELIHOOD ESTIMATION

A wide variety of methods (Gardner, 1985) hateen sugested in the context of
simple exponential soothingfor estimatingthe seed le¢t m, the snoothingparaneter a
and the standard dextions. Holt (1957) recommends the use of the suofi squared onetep
ahead prediction errors as a criterion for seledtiegsnoothingparaneter. It also nakes
sense to applthe sare criterion vhen choosinghe seed ledl. Yet we hawe seen that siple
exponential smothingis also a legimate nethod when denand data is gnerated by
LLM(1). It might be speculated that the samactic vorks with the sunof squaredelative
errors. Gven that absolute and relagiverrors are inherentbifferent quantities, oneouldnot
conpare both tpes of sunof squared errors criterion toake the choice between LLM(0)

and LLM(1). This is a serious drawbaetith the sunof squared errors criterion.

Likelihood functions for different mdels, in contrast, are cgarable quantitiesnl
forming such likelihood functions we choose to treat the seed lenas a parasmter. Under
the semtinfinite life assurption adopted quite idely in expositions of the state space
approach to tim series anayys, such a stratggvould not be legimate. Thermwould be
represented as an infinite surhpast errors antthereforewould bearandomvariablewith an

infinite variance. Bzcausam is an unobserd quantity it would be necessatyp integate it



out of the lilelihood. h other words it would be necessatyp find the narginal likelihood
function (Kalbfleish &Sprott). Uhder our finite life assuption for the inentories this
difficulty is awided becausmis a fixed quantityUnder our assuption the likelihood can

be shown to be

(M a gy, y,....y,) = (275°) n/z(l'jlm-llJ exp( g /232] . (2.8)

the onestep ahead prediction errogs = (y, - m_l)/m‘ll beingobtained fronthe

application of sirple exponential swothingrelationship (2.7). fie maximum likelihood of
the \ariance estirate of the wriance is gven bythe faniliar formula 5° = Z éf
i=1

Substitution of this into (2.8)iglds

-q
o(m alyy, Yy, yn):( n/z(r“m l|j exp(—n/2). Thus the reximum likelihood

estimates ofa andm may be obtained byninimisingthe quantity

q
w= §[n I mll) - (2.9)

For LLM(0) w corresponds to the standard ergorin other words it is appropriate

to minimise the standard error or its ecaidnt, the congntional sunof squared errors
n

S= Z éf . This justifies the extension of Holt’s stratefpr the selection of the syothing
t=1

parangter to the problenof choosinghe seed lest. The criterion (2.9) is

n
W= §[n rl |m_1|] for LLM(1). The second terrm this expression is thgeometric meanof
t=

the local lewls. Its effective purpose is to coevt S, nowmeasured in relatevterns, into a

guantitywith the sare units of neasurerant as those for the oiiital denand series. B



focussingon w rather thars (or the sunof squared errors), cgrarisons can be ade
between different wdels usingvithin sanple fit. w will be referred to as thgeneralised
standard error. flose @ues ofmanda which minimise the gneralised standard errall be
represented byh anda. The correspondingalue of S will be designated by$S. The

statistics, & and § are naximum likelihood estimtes.

It now has been established that@arexponential swothingcan be rationalised in teaof
a broader set of atlels than has hitherto been appreciatéé. formof the updating
relationship rerains the sam for all versions of the local lea¥ model. nly thefitting criteria
change to reflect different possible assptions about the behawr of the variance.
Practitioners are therefore facedlwthe prospect of iplementingmore elaborate estiation
procedures based on criteria other than the traditionab$souared prediction errorshd@

guestion is wether such chargs reallywarranted?

To gain insight into this question it is arthwhile consideringhe stationarynodel

y, = m+m’e, a special case of LLM(gpbtained vilen a=0. In this case

p
n 2 n n 2
w= -m)"/nmP| n m| = —-m) /n. The generalised standard error is
[ -/ [Jq] [3 (- . The g

independent of the dezp of heteroscedasticity The sanple average = Z y,/n
t=1

minimisesthe generalised standard error for avgtue ofg. In the stationargase LLM(0) and

LLM(1) have the sam meximum likelihood estimate.

This neat simlification of w disappears ten a # 0. To gauge the inpact of this, a sail
simulation studywas undertadn conparingthe estimtes obtained froraLM(0) and
LLM(1). At each of 1000 replications of the silstion, a tine series \&s gnerated from

LLM(1) with m=100, the sarple siz n, the snoothingparaneter a and the standard

dewvations beingselected randoiy from the \elues shown in @le 1. Both LLM(0) and



LLM(1) were fitted to the simlated data and their optahgeneralised standard erroos;
and w; conpared. Apportioningnyties equallybetween both approaches, it was found that
LLM(1) was correctlyselected 63 percent of the #trin 28 percent of casas, prowved to be

more than one percent ayfrom a);.

Place Bble 1 about here

The LLM(1) generalised standard errmf, when the optiral LLM(0) estimates are used as

approxinations for the LLM(1) estirates, vas also calculated hE ratio A = a)f/wz can
newr be less than 1 because the LLM(0) eates are not optiat for the LLM(1) nodel.

NeverthelessA aweraged 1.0004 and had a standardidéen of only0.0013. e optinal

estimates for both mdels were usuallgermerkably close.

LLM(2) is nore ‘nonlinear’ than LM(0) and therefore potentiallyiore difficult to estinate.

The aboe simulation sugests the followng estirmation stratey for LLM(2):

1. Find the naximum likelihood estimtesi, & and the onetep predictionsy, for the

simpler LLM(0).

2. Usem, a as approxirations for the correspondinguantities in LLM(1) and estiate the

standard deawation of the relatig errors with

§= \/n‘li(yt -9, /92 . (2.10)

It might be argied, gven the aboe sinulation results, that there is little point in using
LLM(2) and that this proposed estition procedure is lagly redundant frona practical

point of iew. In the sinulation, howeer, A, had an asrag of 1.0166 and a standard

deviation of 0.0392. e siz of the standard deation indicates that in satontexts the

10



gains fromusingLLM(1) may be warranted. Frorma practical point ofiew, howeser, it is

usuallythe predictie capacityof a model that countst s this Bsue that we now explore.

2.4 LEAD TIME DEMAND DISTRIBUTION

The prediction distribution of the pycal series &ue Y,,; beyond periodn is conditioned on

the sample y,, ¥,,..., Y, . For conwenience it is assued initially that the seed lel’ m, the
snoothingparangter a, and the standard detions are known exactly The problenthen

reduces to findinghe distribution ofy,, |1,

For LLM(0), backsubstitution of the recurrence relationship (2.@lgs
n+ j

m., =m,+a z g wherem, ; = (m+j|ln) . The futureconditionallocal lewel M, ; is a
t=n+1

randomrather than aonstantguantity It follows from this future local legl equation that

n+j-1

Yooy =M+ ) @ +e,;. (2.11)

t=n+1

Thus E(yn+j|ln) =m, and\/ar(yn+j|ln) =((j-1Da*+1)§".

In inventory control applications the priany interest is irtotal denand ower a leadime h.

n+h h-1
Aggrecation of (2.11) ives Z y, = hm, + Z (1+ ja)e,., ;- Thus the rean leadime
t=n+1 j=0

n+h

denand is gven bythe usual formla E( z ytllt] = hm,. The variance, how\er, has the

t=n+1

n+h
more conplex formula Var[| > yt|lnj = f(h,a)’s® where

t=n+1

f (h,a)= \/h(1+ a(h-1)(1+(2h~-1)a/6)) . In other verds, conditional total leatime
demend is nornally distributed with reanhm, and standard déation f (h,a)s. In practice

11



the vh is often used instead df (h,a) . This leads to a serious undestimation of the

prediction standard detion and this has serious consequences for sstf@tikdeternination

and custorar servce, a natter that is rore fully explored in Snger, Kohler and Ord (1997).

For the LLM(2)

n+j-1

Yooy =M, [ (1+28)(L+ €. ). (2.12)

t=n+1

Again the conditional man, vhich may be used as a forecast,I:Ts{ yn+j|In) =m,. Being

expressed in relatevterns the errors are fairlgmall. Products of the errors are tigihle so

that the randomariable y,,, ; in (2.12) can be approxated bythe quantity')7n+j defined by

t=n+1

n+j-1
)7n+j = m(|1+ a z g+ en+jJ . The conditional @riance nay be approxirated by

Var(yn+jlln) = (1+(j - 1)a*)m?’s’. For leadtime denand it can be established that the

n+h
mean is agin gven byE[ Z yt|ItJ = hm, and that the conditionabsiance can be
t=n+1
n+h
approxinated bythe slidntly different formula Var( z yt“”j = f (h,a)’my’s’. Itis
t=n+1

tenpting to approxinate the lead tira denand distribution bya nornal distribution with

mean him}, and standard deation f (a,h)m,s. Simulation studies indicated that piided it

is assured thatm), is known with certaintythen this approxi@tion works well.

Froma practical point ofiew it is probablysimpler to bypass norra approxinations based
on the abog noments forrmulae and simlate leadtime denand distributions directlyrom
the relationships (2.11) and (2.12helquantitiesm, a and S are usuallyunknown. A
parangtric bootstrap based on the approagiions m= M, a= & and S= S can be used.

Exponential smothing seeded Wth the naximum likelihood estimtes, is used to calculate

12



M, the correspondingalue of mM},. These quantities are used édwer with the formulae the

LLM( g) formulae to gnerate bootstrap squtes of leadime denand. A simulation for
conparingthe results of the bootstragetinod for LLM(0) and LLM(1)wasundertalen.First,
a sanple was sinulated fromthe LLM(1) with m=100, s=0.05 andn = 30. Maximum
likelihood estimtes vere obtained for both odels. hese vere then used obtain both
bootstrap sapies of 1000 leatime denands, the leadime beingh =10. Figure 1 shows
the quantileguantile plot of the saptes. The plot is quite close to the’4ifie reflectingthe
similarity of the LLM(0) and LLM(1) leadime denand distributions. Tis result is tpical of

those obtained when the silation conditions werearied.

Place Figre 1 about here

The paramtric bootstrap approachrigres the effect of estation error. An appropriate
adaptation of the siakation method described in @, Koehler and Srder (1997) vould
account for this source of errot.i$ anticipated thatrgater differences euld then erarge

between the two odels.
3. SIMPLE EXPONENTIAL SMOOTHING WITH DRIFT

3.1 LocAL LEVEL MODELS WITH DRIFT

Intuitively, it makes sense that heteroscedastimfpted to the agnitude of the fluctuations
in the nean, nay be nodest when the ean is locallyconstant.tlis likely to hawe more of an
impact if there is a tendendgr the series to increase or decreasy tive. We therefore

introduce a gowth rateb into (2.2) to gve

t-1

y,=m+bt+a) e +e. (3.1)
t lej q

13



This can be vitten asy, = m+bt+u, whereu, = u,_, —8e_, + ¢ . Differencing(3.1) yields
Ay, =b-0e_, + & so that the associated Brseries is ‘difference stationargontrast this

with the nmore common case Were the trend is accgranied byfirst-order autocorrelated

disturbancesayerned byu, = gu,_, + €, the associated series nbaing ‘trend stationary

provided that paraeter ¢ satisfies the conditioty| < 1.
t

The local lewl may be defined asn = m+ bt + az € . Then (3.1) nay be witten as
=1

y, =m_, +b+e wherem =m_, +b+ag. This local leel model with drift is the special

case of the wdel underlyng Holts trend corrected exponential sathingwhere the gowth

rate is restricted to a constamtue. The generalisation to include heteroscedastdation is

Y, = (M +b)+(m_ +b)’e (3.2)

where

m = (m_, +b)l+ a(m_, +b)'e. (3.3)
It will be designated LLDM(q). Again q =1 corresponds to the relagi\error case.

t-1

t
The local lew, for anyLLDM(q) can be witten asm = 6'm+ ze'b+az 8y, .
el =0

The local lew is still a discounted linear function of seriesues wien the inertibility
condition|f| < 1 holds. h what follows, howeer, we continue to use the comn restriction

O<ac<l.

3.2 SMOOTHING AND ESTIMATION

14



Snoothingand estimtion is quite sinfar to the case here there is no drift. Forigen values
of m, b anda the augnented smothingrelationshipf = M_, +b+a(y, -mM_, —b) may

be applied wherén, = m. The errors ray be calculated with

& = (Y, -m., —b)/(M_, +b)" . Usingthe principle of raximum likelihood, it can bargued

that m,b and a should be chosen toinimise the gneralised standard error

q
wzg[n |‘]|n—1-1+b|) .

A simulation studysimilar to the first studylescribed in section 2.3as agin conducted, but
now with a drift ofb = 0.5. Interestindy the sinulated ratioA now had a mderatelylarger
average of 1.0015 and standard diation of 0.0040.tIseens that een with a drift term the

LLDM(O) estimates are close endudor nost practical purposes tseasapproxinationsfor

their LLDM(1) counterpartsnterestindy, the optinal generalised standard erras, was
now greater tharw; about 80 percent of the 1000 replications. Furtioeenthe gp between

a); and a)i now exceeded one percent in 67 percent of the replicatitresdifferences

between LLDM(0) and LLDM(1) when there is drift can be quitekad.

3.3 LEAD TIME DEMAND DISTRIBUTION

It is possiblgo obtan formulae for themean and standad deviation of thelead-time
demand distributionst Is simplest, however, to undertake a parametric bootstrap of
the lead-time distribution.igure 2 shows the quantilguantile plot obtained when the
simulation was conducted under essentiddysame conditions as those depicted in
section 2.4. The onlgifference is that now a drift df = 0.5 is assume. The
quantile-quantile plot of simulaed lead-time demands is now steper than the45’ line.

This indicates tha thelead-time demand distribution for ILDM(1) is moresprexd

15



than that for LDM(0). It suggests that largr safetystocks maye required if level

dependent errors are present and that a pronounced drift is observed in demand.

Place Figire 2 about here

4.  Trend Cor rected Exponenti al Smoothi ng

t-1 t-1
Another possible wdel is y, = m+bt + alz g +a, Z Z e +¢ . It may be witten as
=1

i=1 j=1
y, = m+bt+u, where Ay, =g - 6,6_,-0,e_, for t > 2, the pararters beingelated by
the equation®, =2-a, - a, andf, =a, —1. Itis a trend line with a particular forof

autocorrelated disturbancesldtcal level may be defined as

t t i t-1
m = m+bt+aljZlej +azz Zej . Theny, = m_l+b+aszlej +¢ . If, in addition, a

=1 =1

t
local gowth rate is defined dg =b+a, Z g, , then the radel nay be written is state space

=1

formasy, =m_, +h_, +€ wherem =m_, +b_, +a,e andb, =hb_, +a,e . Unlike
LLDM(0), the gowth rate is novallowed to chang over time. This is the saalled local

trend nodel.

A generalisation to accomodate heteroscedastiariation is
— q
y,=myt+h +(m,+h,)'e (4.1)

m = m-1+h-1+0’1(|W1-1+Q-1)qet (4.2)

16



b = b1-1+az(W1-1+h-1)qe[ (4.3)
It will be desigiated LTM(q). Again q = 1corresponds to the relagéierror case.

Assuningthatm, b, a, and a, haw been assitwed trial \alues, the inforration ailable at
the end of tpical perioct is I, ={y;,...,Y,,mb,a,,a,}. Let M, =m andb, =b.

Furthernore letm = (m|1,) andb, = (k]l,) for t =1. These conditional quantitiesust be

consistent with the equations for MT{q). They may be conputed recursiely with the

relationships

m=m,+h+ al(yt -m,- t1—1) (4.4)

b = ti—l*‘az(Yt _m—1_5—1)1 (4.5)

These recurrence relationships are obtaineellibynatingthe g fromthe LTM(q) equations.

They correspond to the error correction foafnHolts trend corrected exponential@sthing
(Gardner, 198*). Tus this traditional ethod is applicable underuoh broader conditions
than those traditionallgtated in the literaturet &pplies vihen the ariation depends on the

underlying level.

Maximum likelihood estimtes ofm, b, a, anda, can be obtained byinimisingthe

q
generalised standard erros = §[‘n |_| |m_, + 5[_1|] . The standard deation S is still
t=1

n
calculated fronthe formula §° = éf/n but now the errors are obtained from trend
1=1

corrected eponential smoothingsingthe formulag = (y, -m_, - E_l)/(m_l + H_l)q .

LTM(q) reduces to LLIM(q) when a, = 0. Both nmodels hae similar properties so the

17



conclusions reachedith the sinulations for LLDM(q) also applyto LTM(Q).

5. Seasonal Effects

LTM(0O) can be augented bya seasonal cje of lengh p if required. Letc, denote the
seasonal effect associatedhatypical periodt. The resultingnodel, when the seasonal
effects are addite, isy, =m_, +b_, +¢_, +€ wherem =m_ +b_, +a.§,

b =h_,+a,g andc =c_,+0.§. Itis easilyseen that this odel underpins the additv
version of Holts seasonal exponential epthing Its multiplicative counterpart is

Y, = (M +ho)e ,(1+) wherem = (m_, +b_,)(1+ a.8),

b =h_+a,(m +h_)g andg =¢_,(1+a,g). If the errors are substituted out of these

equations and the appropriate conditionamgpast inforration is undertadn, the equations
for Winters nethod of exponential saothingis obtained (Winters, 1960) h& details are

cowvered in Ord, Koehler and Srger (1997).

To reduce the nubrer of pararaters it is often better to use a Fourier representation of
seasonal @jles (Brown, 196X). Winters rehod would not be practical if applied to say
weely denmand data.One possibilityis a linear local lest model with drift and seasonal

cycle LLDSM(0)

Yo =m,+b+c_ +§
m=m.,+b+ag

G = Z(aj sifw;t)+y, cos(wjt))|
=1
where thew; are the frequencies and tilg and 3; are coefficients. bte that

r<[(p+1)/2]. Usuallyr is much smaller than(p+1)/2. Otherwise there would be no

advantage in usingFourier representations this nodel the seasonal clg is deterrmistic.

Stochastic error representations of a seasowmé eye possible.fiese inply, however, that
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the seasonal cje follows a randonwalk, sonething that is difficult to beliee. Another

possible gneralisation inglves local gowth rates as found in the local trenddel.

A nonlinear heteroscedastiergralisation of this wdel is:

= (M. +b)(1+c_,)1+e)
=(m., +b)(1+ag )

- i(aj sir(wjt)+ v, COS(COJ-'[))|

=1

The seasonal and irreigr conponents increaseith the trend. fis model will be desigated

LLDSM(1).

Again the g@neralised standard errotagnbe used as the estition criterion. 1 is

0= |5 buom o

t=1

and

o (ly, - (m. +b)(L+c, ) s
ﬂ (M., +b)i+c.,) } J”“”‘ B)p+ )

for LLDSM(0) and LLDSM (1) respectiely.

A simulation studysimilar to the one described in section 3.8swindertagén to deterrime the

differences in the estiates for the linear and nonlinear casd® 3eries for the siufation
were gnerated fronthe nonlinear mdel with ¢, = 0.58n(27t/52) . This corresponds to a

pronounced seasonaldag in the tine series but the sof the anplitude of the cgle is quite
plausible in practice. On avag the gneralised standard error turned out to be about 20
percent higer for the estirates based on therengLLD SM(0). Using the generalised

standard error as the selection criterion, the corredieirwas chosen 99 percent of the
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time. Thus, for the first tira, we hawe detected a ajor difference betwen the howscedastic
and heteroscedasticottels. e implications of this Wl be explored in geater depth using

criteria frominventory control.

INVENTORY CONTROL

In this section w attenpt to gauge the inpact of differences arisinigom the linear and
nonlinear seasonaladels in the context of an iantory problem The focus vill be on an

order lewel systemwith periodic revews and the badigging of excess deamd.

The state of an order lelvsystemat anypoint of time is represented lilie stockposition, a
guantitygoverned bythe fornula Stocksition = Stock— Backlog+ OnOrder. The order
level represents the appropriate éefor the stockposition following the placerant of a new
replenishrent order.tlis assurad that such orders are placed at the start of eadhwev

period.

The siz of the order ledl deternines the selice gven to custorars. t is assured that
senice is sumtmarised bythe fill-rate (custorer senice lew), a statistic that masures the
proportion of derand satisfied vwthout delay caused bghorta@s. t is further assued that
managers specifya targt value for the fillrate, the problerthen beingo choose the order

level to meet this targt.

A theoryfor the deternmation of order legls usingthe fill-rate (custorer seruce lewel)
statistic appears to habeen first proposed Brown (19?7?). e theoryinvolves the use of
exponential smothingin conbination with what Brown refers to as a ‘partial expectation’.
The approach as a mjor breakhrouch in its dayand its influence ay still be found in
modern inentory control softvare. It has, howwer, two weaknesses that can nadays be

circumvented with the conmon anailability of powerful conputers.

a) It enployed heuristics, based orean absolute déations, to reasure theariability of
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leadtime denand.

b) It relied on an approxiation for the fill-rate that vas a necessappnwenience en
calculations were done ranually, but which is known to be inaccurate lven revew

periods are short in letly— see belovior details.

The theoryof this paper prades an opportunityo circunvent the heuristics for asuring
variability while usingthe exact formla for the customr servce level. We nowoutline a
parangtric bootstrap approach thabwid hawe been inpractical until recent ties. t is based
on the assuption that an order placed at #m is delivered at tine n+ h and that the

problemis therefore to use such an order to influence the peafarenoftheinventory system

in the period(n+ h,n+h+1)|. The fill-rate in this period is defined as
B =1 E(Xunap )/ E([Ynenean) Where X, is the excess deand in periodn+h+1 and

Yasnerp 1S the derand in periodn+h+1 given the information set,. Since X, .y < Yornsap

the fill-rate alvays lies in the interal [0, 1]. This measure of seige should not be confused
with the tail of the lead tiendenand distribution commonly used in somapproaches to

inventory control (Buffa, 19?7?).

Demand in periodn+h+1 may be easilysimulated fromthe nodel underling the forecast
method usingparaneter estinates in place of the unkwn paraneters. Gven a particular

order lewd S the correspondingxcess deamd in the samperiodcanalsobe calculatedwith

+ +

X ot = (y(n+1n+h+l)|n - S)| - (y(mmh)In - S)| . Each R4S term beingthe excess of lead

time denand o\er total supplyis a baclog. They correspond to the closirand opening
backog in periodn+h+1 gven the infornationl,. Being the increase in the bdol, the RHS
corresponds to the excess @anhin periodn+h+1. It is possible to follow Brown (1959) and
assune that the openingackog is small enoudp to be ignored. The second terron the RKEB

of the formula for excess deand would then disappeam practice, particularlyhen revew
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periods are relataly short, a deliery may be insufficient to completely eliminate an existing

bacKkog. It is better not to ke this approxination.

A bootstrap inelving R replications ray be used to estiate the fill rate. Enotingtherth

replication of excess deamd and derand by Xr(1r+)h+lh and y,(]i)mlh respectiely, a bootstrap

. R R
estimate of the fillrate is 3 = 1- z Xf]?hﬂln / z yf]i)hlun .
r=1 r=1

The fill-rate depends on the orderde®, a relationship that ay be represented lifze

function B(S) . The problenis to find that elue of Swhich satisfies the conditio(S) = 3
whereﬁ is the targt fill rate. The ‘true’ inplicit function B(S) IS unknown. Howe'er /f?
also depends o8 a relationship which thatay be desigated by,f?(S) . Using ﬁ(S) as an

approxination for B(S) , the problentan be reamped to one of findinghe solution$ of

the equatior}@(S) =p.
The paramtric bootstrap procedure consists of the followsteps:

a) Simulate fromthe appropriate exponential saothingdenand nodel theyr(]:)”n for j=1

toh+1l, r=1toR

— A

b) Use a binangearch procedure to selthe inplicit function equationB(S) = for S.

Note that[f?(S) is ewaluated at step (b) for each trislwe of Susingthe demands fromstep

(a). There is no need to regerate the deamds for each function eluation.

This bootstrap procedure is eadityplemented on radern computers. But it is likly to yield
values for the order le¥ slightly belowthose actuallyequired because the pamnt

bootstrap rathod ighores the effects of estation error. 1 is possible to adapt this procedure
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to largely overcorre this problenusinga nore conplex prediction nsthodolog from Ord,

Koehler and Snger (1997). Tis option is not pursued here.

The fill rate is an appropriate criterion foradwatingwhether there are sigicant gains from
usinga relatie error rather than an addgierror approach to forecastimpen it is khown
that denands are gnerated bya relative error nodel. Any differences that imght occur can be

gauged froma sinulation study Let LLDSM(Q, 8 ) denote the local leywith drift and
seasonal ayle nodel with paraneter vector 8 . Furthernore, Ietéq denote the Bximum

likelihood estimate of the paraster vector 8 from LLD SM(q). The steps in each replication

of the sinulation are:
a) Generate a tira series of lerth n from the ‘true’ nodel LLDSM(1, 6).

b) Estimate the tine series on the assption that the LLDM(0, 8) is the appropriate

model to yeld estinate éo.

C) Use LLDM(O, éo) with the bootstrap ethod to find the order lesk denoted byéb.

d) Estimate the tine series on the assption that the LLDM(1, ) is the appropriate

model to yeld estinate él.

e) Use LLDM(1, él) with the bootstrap mthod to find the order le denoted by§l.

f) Generate an enséfe of future derands fromthe ‘true’ model LLDM(1, ) and

evaluate the fill rates achiegt with éb and él respectiely. These fill rates are

desiqated by,[AiO and Bl respectiely.

The values of,f?o and Bl from each replication of the abesteps potentiallghang. These

values can be collected into a gam The two sanples nay be conpared to deterine
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whether there are sigicant differences beteen the addite and relatie error derand

models. Theycan also be copared wth the nonmal fill rate B to gauge the effect of

ignoringthe estimtion error in the paragtric bootstrap or anpias in the forecast procedure.
In the sinulation studyit was assued that:
a) The stockposition is reiewed at the bagningof each veek

b) Orders are deliered after a delagf 9 weels. Thustheaimis to controlinventoriesin

the weelfollowing the delivery, narmely week114 (2*52+9+1).
C) Deliveries occur at the start of a&ek immediatelyfollowing the revew.

d) Weely denand is governed bythe LLDSM(1) with m=100, b=0.1,
¢ =05sn(2nt/52), a =05 and s= 0.05. The gowth rate, in annual tesnis 5.2

(ie 0.1 * 52 veels). This, relatiwe to the initial lew, is a little ower 5 percent per

annum

e) Weely denand data for tw years is agilable for forecastingurposes so that the

current reyew occurs at the bamingof period 105 (ie 2*52+1).
f) The tareet fill-rate is/_3 = 95%.

A number of sinulation experinents were conducted under aniety of conditions. Each
simulation experinent involved 200 replications. tfeach replication the bootstraggthodfor
finding the order led itself involved 1000 replications.He results are sumarised in Table
2. The benchrark case represents a situation thattkink may be fairlytypical in the
inventory control context. e other casesete obtained byarying one factor at a tismfrom

its benchrark value.

Insert Table 2 and Figre 3 about here
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The following obsenations can be @aue.

a)

b)

d)

The means are @nerally belowthe nedians. The distributions of the sifated fill-
rate nust possess a leftsl. This is exerplified by the distribution in Figre 3 for

the benchrark case.

The nmedians obtained with the bootstragthmod fromLLDM(1) are usuallyabout
one percent belowhe targt fill-rate of 95 percent. Thisag is probablydue to the
fact that the bootstrapetiod ighores the effect of estation error. Gien the sie of

this gap, refinenents geared to elirnmatingthis problemappear to be unwarranted.

The median fill-rates associateditr LLDM(0) are little lower again. There appear to
be sore gains fromusingthe relatie error approach ken the dataenerating

process inglves relatie errors.

The gains fromusingthe bootstrap ethod with LLDM(1) instead of LLDM(0)
increase \ith higher gowth rates. Tie changs in the undering level are largr and
the fluctuations of the irredar conponent increase as a consequeneweftheless,
the gowth rate has to reach unrealisticésvbefore the differences becem

pronounced.

Variations in nost factors haglittle impact on the mdian fill-rate for the LDM(1)

bootstrap rethod.

CONCLUSIONS

In this paper w hawe proposed a@neralisation of the additéslocal lexl model or its

equivalent, the RIMA(0,1,1) nodel, to incorporate aegeral formof conditional

heteroscedasticityt was deronstrated that siple exponential swothing in its traditional
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form, rereins the \alid updatingrelationship under this one general class of wdels. e
only chang required is in the forrof the criterion function usddr selectinghe estimates A
simulation indicated that the amimum likelihood estimtes obtained with siple exponential
snoothingunder a leel dependent fornof heteroscedasticitgre alnost identical to those for
the honoscedastic case. Since the lo@gedastic case is inherenglgsier to estiate than its

multiplicative counterpart @reconmend the use of the foren for estination purposes.

The issue of heteroscedasticitgcones nore critical in the prediction context.nalytical
formulae becoraunreliable for the mitiplicative case. We therefore recoend a two-stage

procedure:
a) estimate m, a and s usingthe additie nodel

b) use the estiates fromhe prevous step in comjnction wth the multiplicative nodel to

simulate the prediction inteals.

Appendi x

This appendix contains the deadion of the fornulae for the raan and ariance of the linear
and multiplicative local trend/seasonalattels. 1 simplify notationtheorigin for forecasting

desiqated periodh in the bodyof the paper, Wl be relabelled period 0.Fe prediction

horizon is desigated byh. Thus the randorh-vectory =[y, 'y, - yh]' desigatesh

unknown future alues of the tire series. Furtherane, 7, andh, denote the local leland

local rate at the start of the prediction arigrhey no longer represent the seeduwes for

these quantities in the period prior to the peEmThese quantities arenkwn exactly The

vector y :[C C,p CO]’ of seasonalflactors required for forecastirng also kown

—r+1
exactly The fornulae to be deried in this appendix are therefore based on the gagam

that there is no estiaion error.
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The deriations relyextensiely on a natrix B called the ‘backard shift’ matrix. It is the
matrix counterpart of the bawakard shift operator used so extemdinin Box and énkins
(19XX). The notation emloyed, togther with explanations, is shown in the followihgble.
To simplify matters it is assued thath is an exact mitiple of the seasonal lag Let

m= tyr . Itis the lenth of the forecast horin neasured in gars.

Notation

3 the unith-vector[l o -- O]'

1 '
the oresh-vector [1 1 - 1]

T '
the arithnetic seriesh-vector [1 2 .- h]

7@ | theserieﬁ—vector[l 36 10 -- h(h+1)/2]|

B the kackward shift matrix wherely;_; =1 for i =1,...,n ard b; = 0 otherwise.

o0 ofx] flo
egl 0 O x,|= X

0 1 O] [

B"  the tackwerd shift matrix of lagr whereby,_, =1 for i =r +1,...,n ard by, = 0 otherwise.

0 0 00O (0000 [P 0O Of] [0
10 , 0000 0 0 0 0]x, 0
eqgifB= then B = ard = :
0 1 1 000 1 0 0 Ofx X,
P o 1o P 1oo [p1o o] [k

Note thatB’ = O forall j =n.
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S partial summatrix being aunit lower triangular matrix with al elements below the diagonal

equal tol.
L oo Lo ofik] I x
eg S= 1 1 Ofsothat 1 1 O X [= X +X,
It 11 L1 1] [tX+X

Note that S=(1 = B) " = | + B+ B?+...+B"*

S gefnedby S = (I -B') =1 + B + B¥ +...+B™

Q,] is the natrix counterpart of &

Uselul Relationships

s=(1-8)" | +BS=1+SB=S &f=1 Sl=t1

E+Bl=1 1+Br=T1 si==7 BS) k=gl

Linear Seasonal Model

Proposition

A randomvector y governed bythe linear seasonal local trenddel has a ean U, + U,

and \ariance natrix AA where u, =1/, + 1, 4, =Zy and
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A=1+BYa,l +a,S)+a,B'S"!

Proof

Stackthe equations of LSM(0) to dve

y=&(ly+hy)+ =y +B(/+b)+ B'c+e (F.1)
(= &ty +y)l+ B(¢+b)+a.e F.2)
b=£&h, +Bb+a,e F3)

c=Zy+B'c+a.e. E4)
Solwve (2.2) forc to give
c=pu, +a,S"é.
Also sole (2.5) forb to yield
b=1b +a,Se.
Similarly, the equation (3.1) ay be sohed for { to give
(=, +(0,SB+a,)Se
Substitutingthese results into (2.6)ambtain
y=Hut+Ae
where = i, + i, and A= | + BS(a,| +a,S)+a,B'S") . The result follow.

Multip licative Seasoral Model

29



The situation is rare conplicated for the maltiplicative nodel. L is necessarto form

diagonal retrices fromcertain ectors. hus diaga) represents the atrix with diagonal

elenentsa;, a,,...,a,. We utilise the followng properties of diagnal matrices:

diaga+ b) = diaga) + didg(b) diaga)b = diagb)a

LTSM(1) is approxinted bythe nodel

Ve = (L +Ba)o, * (E(4all,) + E(BlL))B(e 1, )e (F.5)
6=l +b oy (E()1,)+ E(bLll))e (F.6)
b =, +a,(E(4l1)+ E(Rll,))e (F.7)
G =G +asE(G.l,)q F9)

The coefficients of the errors are cented bythis approxination from stochastic to fixed

quantities that are easier t@ampulate.

Let the nean trend and seasonalctors be defined ky, = 1/, + th, and u, = Zy . The

equations (2.6§2.7) can be staekl to gve

y = diag(|(¢, +b,)& + B(¢ +b))(Zy +B'c)+diag i, )didg(u,)e | (F.9)

0= &ty +hy,)+B(¢+b)ta,diag i, )e (F.10)
b= &b, + Bb+a,diagu, e (F.11)
c=Zy +B'c+adiag u,)e (F.12)

Equation (F.12) &y be soled forc to give
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c=p, +a,S"diag s, )e. (F.13)
Solving for b in (F.11) gves

b =1h, + a,Sdiag i, Je. (F.14)
Substituting(F.14) into (F.10) and then sahg for { gives

(= p, +(a,l +a,BS)Sdiag i, Je. (F.15)

The expressions (3.12.7) can be substituted into (F.9) ieganonlinearmrelationshipfor y
in terms of the errors e. Gén that the errors are in relagiverns, products of the forng S

are relatiely small. The linear corponent of the relationship, with thergeral form

Y, = U+ Ae must be a god approxination fory. Noting that £ + b sinplifies to
(+b=p, +1b +(ayl +a,S)Sdiad 14, )e it can be shown that

(=, +(a,l +a,BS)Sdiag y, )e and

A= diag i,)BS(a, | +a,S)diag 1) + a,diad 1, )B' S"diag 1, ) + diag 1, )diag( 1, )

An approxination for the \ariance natrix of the prediction distribution is thereforéevgn by

s* AA'. Althoudh it is relatively conplex, the fornula for A is readilycalculated in a atrix
oriented cormuter langiage such as Gauss or Matlab. Pided that the approxiations nade
duringits deriation conbined with the norra approxinetion for a distribution that is not
normel, do not lead to serious error, this option is a emient wayto derie the prediction

distribution.

REFERENCES

31



Box, GE.P and QM. Jenkins, “Time Series MAalysis: ForecastingndControl”, Holden-Day,

San Francisco, 1976.

Brown, RG., “Statistical Forecastingor Inventory Control”, Mc.Graw-Hill, New York,

1959.

Brown, R. G, “Decision Rules fornventory Managment”, Dryden Press, hhsdale, 1967.

Gardner, E.S. i, “Exponential Smaothing The State of the A", Journal of Forecastingt

(1985), 128.

Harrison, P.J “Exponential Smothingand Shorterm Sales Forecastifig Managment

Science, 13 (1967), 82842.

Harrison, P.Jand C.F.Steans, “Baysian ForecastirigJournal of the Rogl Statistical

Society Series B, 38, 20247.

Harvey, A.C., “ForecastingStructural Time Series Models and the Kalam Riter”,

Canbridge University Press, Cabridge, 1991.

Harwey, A.C. and R. D. Srder, “Structural Tme Series Models innventory Control”,

International durnal of Forecasting (1990), 187:98.

Holt, C.E. (1957), “Forecastingrends and Seasonals ByponentiallyWeighted Averags”,

ONR Menorandum 52, Garnegde Institute of Technolog, Pittsburdp, 1957.

Johnston, F.R. and P .Harrison, “The Variance of Lead iime Demand”, Journal of the

Operational Research Socie§7 (1986), 30308.

Makridakis, S. et. al., “Tie Accuracyof Extrapolatie (Time Series) Methods: Results of a

ForecastingCompetition”, Journal of Forecastind, (1982), 111153.

Muth, JF., “Optimal Properties of ExponentiallW/eighted Averags”, burnal of the

32



American Statistical Association, 55 (1960), 235.

Ord, JK. , A. B. Koehler, and RD. Snyder, “Estimation and Prediction for al&ss of
Dynanic Nonlinear Statistical Models”pdirnal of the Amarican Statistical Association,

forthcoming.

Schweppe, F. “Ealuation of Likelihood Functions for Gaussian 8ajs”, IEEE Transactions

on Information Theory, 11 (1965), 6170.

Snyder, R. D. (1985), “RecursévEstination of Dynanic Linear Statistical Models” alirnal

of the Rowl Statistical SocietyB, 47, 272276.

33



LLM(1)

1350

Figure 1. Simulated lead-time demand: exponential smoothing

1300

1250

1200

1150

1100

1050

1000

950

900

850
900

1000

1050

1100
LLM(0)

1150

1200

1250

1300

34



n

a

S

30, 50, 100, 200

0,0.2,0.5,1.0

0.02,0.05,0.1

Table 1. Simulation options
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Conditions LLDM(O) fill rate LLDM(2) fill rate

b S a n mean median mean median
Benchmark case
0.1 0.05 0.5 104 91 93 91 93
Growth rate effect
1 0.05 0.5 104 89 90 93 94
Variability effect
0.1 0.1 0.5 104 91 92 90 94
Sanple siz effect
0.1 0.05 0.5 260 93 93 94 94
Smoothingparaneter effect
0.1 0.05 0.1 104 92 93 92 94

Table 2. Sutmary of simulated percentagfill -rates withm= 100 and B = 95%.
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Figure 2.Simulated lead-time demand: exponential smoothing with drift
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LLDSM(1)

Figure 3.Simulated lead-time demand: seasonal exponential smoothing with drift
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Seasonal case

LLDSM(0) LLDSM(1)
Mean 0.82 0.94
Median 0.84 0.95

Figure 3. Comparison of simulated fill rates. Target fill rate = 95%
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