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1. Introduction 

As a consequence of increases in both the availability of panel data sets, and in the stock of tools the 

applied researcher has to analyse them, the area of panel data econometrics has become very 

popular over the last decade. Moreover, given the vast array of economic theories espousing some 

form of partial adjustment of economic variables to an equilibrium level, it has become increasingly 

obvious that attention must be paid to estimation of dynamic panel models. That is, panel models 

which include lagged value(s) of the endogenous variable as explanatory variable(s). Indeed, this 

topic has been the focus of many recent theoretical and simulation papers (see for example, 

Arellano and Bond [1991], Arellano and Bover [1993], Kiviet [1994], Ahn and Schmidt [1993, 

1995], and Crepon et al. [1996]). 

Panel data sets are likely to be characterised by unobserved individual (and eventually time) 

heterogeneity. To account for this heterogeneity, the two model specifications most frequently used 

are ih& fixed and random effects models. Whereas the later assumes that the individual effects are 

drawings from a particular distribution, the former treats them as fixed parameters. There is much 

debate in the literature as to which is the "preferred" specification (see for example, Mundlak 

[1978a, b] and Hsiao[1985, 1986]), although in this paper we consider estimators of both 

specifications. 

Estimation of dynamic panel models, irrespective of the specification of the heterogeneity, is 

unfortunately problematic. For the fixed effects specification, the problem arises as a consequence 

of the relatively short time series component, typical of most panel data sets. Thus the usual 

Hurwicz type bias is instigated into ordinary least squares (OLS) estimation of a fixed effects 

dynamic panel model (Nickell [1981]). In the random effects specification, traditional (feasible) 

generalised least squares estimators - (F)GLS - are similarly biased due to the correlation between 

the eqtiation's disturbance terms (via the individual effect) and the lagged dependent variable 

(Sevestre and Trognon [1985]). 

Consistent estimators for both specifications however are available. Such estimators generally take 

the form of instrumental variables (IV's). IV estimation involves utilising certain orthogonality 

conditions, primarily that the "instruments" are asymptotically imcorrelated with the equation's 

disturbance terms. However, using a wider set of such orthogonality conditions leads to the more 



general area of Generalised Method of Moments (GMM) estimation. Indeed, such GMM 

estimation has spavmed much interest in attempting to identify the maximum (and optimal) number 

of such conditions (Ahn and Schmidt [1993,1995] and Crepon et al. [1996]). 

It is the purpose of this paper to firstly compare all of the existing IV/GMM estimators' small 

sample performance. Secondly, two new estimators (one each for the fixed and random effects 

specifications) are offered, and their small sample performance is compared to that of the existing 

ones. With these results an applied researcher can be confident in using the most appropriate 

estimator for his/her particular data set. 

The plan of this paper is as follows. Sections 2 and 3 deal with model specification, "traditional" 

estimation and (semi-)consistent estimators for dynamic fixed and random effects models, 

respectively. Section 4 describes the simulation study utilised and discusses its results. The 

divergences across the estimators are illustrated by an application of them to consumer purchases of 

laundry detergent (using the Roy Morgan Research Centre's Consumer Panel of Australia data set 

on consumer purchases in the Melbourne Metropolitan area) in Sections 5. Finally, some 

concluding remarks are drawn in Section 6. 

2. The Fixed Effects Dynamic Panel IModel 

2.1 The Model 

It is assumed that the variable of interest y^,, is a linear function of the individual's previous 

realisation of this variable, and of their contemporaneous personal characteristics x,„ with unknown 

coefficients, 6 and P respectively. Thus one may write: 

(0 '̂rt =a/+5>',v.,+x:,,p + w„, 

where: a, are the individual effects (constant for each /) 

and Mj, are the usual white noise disturbance terms, 

or in matrix form: 

(2) ^ = Z)a+6^_i+Xp+M 



where: D = Ifj<S>x-j. and î . is the Tx 1 unit vector. 

The usual method of estimating equation (1) or (2), i.e., when there is no lagged dependent variable 

(LDV), consists of estimating the equation directly by OLS (the Least Squares Dummy Variable 

Estimator - LSDV), which also leads to the well known Within estimator. It is generally assumed 

that (see for example, Balestra [1992]): 

HFl: the x-variables are non-stochastic and uncorrelated wdth the disturbances, w,,.. 

HF2: The disturbances have zero mean. 

HF3: The disturbances are serially uncorrelated. 

HF4: The individual effects are time invariant. 

Given the short time series component typical of panel data sets, the OLS and Within estimators are 

well known to be biased and inconsistent as Â  ^ oo and finite T (see Nickell [1981] and Sevestre 

and Trognon [1985] for a theoretical approach, and Nerlove [1967, 1971] for a simulation based 

study). 

2.2 Instrumental Variable (IV) Estimators 

The Balestra-Nerlove Estimator (Bl^% 

Balestra and Nerlove (1966) show that consistent parameter estimates in an autoregressive error 

components model can be obtained by use of lagged exogenous variables as appropriate 

instruments. This method can be adapted to the fixed effects specification (see Sevestre and 

Trognon [1992], for example). IV estimates of 5, a and p would be obtained by utilising the 

transformed model of: 

(3) Zy = ZX^i^^Zu, 

where: Xo = (>^_,:XiI>), 

7^=(5:p':a') 

and: Z= {X_;\X\D). 



Once these concatenations have been made, the ̂ -A'̂  estimator is obtained by applying GLS to (3) 

using a Izlz Zj Z as the variance of the transformed disturbance term, Z u. 

The remaining estimators for the fixed effects specification consider the model in terms of first 

differences: 

(4) ^y_= ^Xy_ + ^u, 

where: Aj',, =>>;, -x , . , (and so on) 

A^= (A>^_^:A^) 

and: y = I 5 :p J 

This procedure is favoured as more orthogonality conditions implied by the usual assumptions i.e., 

HF1-HF4, are utilised (see below) and, by assumption HF4, this operation removes the individual 

effects. However, first differencing does create problems of its own. Firstly, the now transformed 

model still cannot be consistently estimated by OLS, as the lagged endogenous variable A;' ^ is 

correlated with the model's disturbance vector Aw. Secondly, if the original disturbances w,„ are 

"well-behaved" {i.e., maintaining HF2 and HF3), the transformed ones Aw„ will follow a first order 

moving average (MA[1]) process (see below). 

The Anderson-Hsiao (AH) and Arellano (AR) Estimators 

Anderson and Hsiao (1982) suggest both ;'„.2 and A>'„_2as an appropriate instrument for A j„_, in 

IV estimation of (4). However, in some instances the second latter yields inefficient estimates and 

therefore yi,_2 is a more appropriate instrument (Arellano [1988]). Moreover, as 

A ,̂,_2 = ̂ „_2 ~yii-3 use of it as an instrument necessitates removal of an additional time period for 

estimation purposes (as opposed to using >'„_2). This may mean curtailment of an already "short" 

time-series. Therefore the instruments are defined as: 

(5) 2,;« = Cy,,.2:x:,-x:,.,) and z,r = (;'..2-3'„_3;^,-^„-,)-

The simple AH and AR estimators are obtained by estimating the transformed model: 



(6) Z't^y = Z'hXy + Z'Lu, 

by OLS. If the number of instruments is the same as the number of explanatory variables, the 

resulting estimator will, in general, have no finite moments (Kinal [1980]). Thus perhaps the small 

sample behaviour of the AH and AR estimators can be improved by including additional 

instruments, AX., for example. The augmented instrument sets become: 

(7) Z.f' = (x , -2 :^ . - , -^ , -2 :^ -^ . - . )andZr ' = iy,.2-y>.-3^^u-^-?^.-^^.-x:,.,). 

Given the excess number of instruments over exogenous regressors, (6) can now be estimated by 

GLS using \z Q^zl as the variance of its transformed disturbance terms. Note that due to the first 

differencing operation, Var(Aw) = CT ̂ Q^: 

(8) Q^=I^(8>I.^=I,® 

(2 

-1 

0 

l o 

-1 0 

2 -1 

-1 '•. 

... 0 

... 0̂  
' • 

•• . 0 

••. -1 

-1 2, 

The Sevestre-Trognon (Sf'^ andSf") Estimators 

Sevestre and Trognon (1992) again suggest using (5), but before applying instruments the model is 

turned into a spherical one by the usual GLS transformation of pre-multiplication of Q^''^. 

Although this will result in a spherical model, there will still be correlations between the lagged 

endogenous variable and the transformed disturbance terms. Moreover, as pre-multiplication of (5) 

leads to disturbances that are linear combinations of the w„'s, the only valid instruments for 

Q'^Ay will be current and lagged values of both Q'^^AX and AX. 

Although these estimators will be more efficient than those using the same instruments on the 

untransformed model (Sevestre and Trognon [1992] and White [1984]), a direct comparison with 

i.e., methods b) and c) respectively (see p. 13 below). 



the Anderson-Hsiao estimator, for example, is not straight forward as different instrument sets are 

used. 

The Arellano-Bond One Step IV (AB) Estimator 

If the time series is assumed to start at r = 0, the variable A>'„_, will only be defined at / = 2. At / = 

2 the only valid instrument for A>̂ „_, is y^^ (recall that at r = 2, Aw,, = w,2 - M„ , which is therefore 

independent of y^g). However, at r = 3, the valid set of instruments for A;̂ „_, is now expanded to 

include y^. This triangular expansion continues for successive time periods, defining the complete 

set of instruments at f = 4 as: 

(9) Z,'̂ « = ( Z , ' : A ^ , ) , 

yio 

y^o yn 

0 ^ , , - x : n ^ 
0 x:,3-x:„ 

yio yn yn ^^A-^Ln) 

Moreover, assuming that the x's are strictly exogenous (HFl), they are all valid instruments for each 

time equation, and the instrument set becomes augmented: 

(10) 
Xo ^/0"- i_ iT 

z': = yiO Xl ^ iO"-^;T 

0 ^ 

y,o yn y>2 ^io---xLj 

zf = (Z,'*:AZ,). 

Stacking the instrument matrices for each individual Z = (Z,':,...,:Z)y) , the Arellano and Bond 

(1991) estimators are again obtained by applying a GLS type estimator to the transformed model of 

(6). 

The AB estimator is the most semi-asymptotically efficient of all IV estimators using lagged values 

of the dependent variable as instruments (Sevestre and Trognon [1992]), although more efficient 

GMM estimators can be derived (see below). However, computationally both of the AB estimators 



may prove problematic due to: the size of the instrument matrix (especially as T increases); the loss 

of two time periods for estimation; and difficulty in coding matrices such as (9) and (10) in standard 

econometric software packages. 

The Balestra-Nerlove First Difference Estimator (Bl^% 

The Balestra-Nerlove estimator can also be applied to the first difference model, where the 

instriiments for A_v are simply AA!".,. Thus the fiill instrument set is given by: 

(11) Z = ( A X . , : A Z ) , 

which differs fi-om the ST estimators described earlier by the fact that (6) is directly estimated by 

GLS. 

Two Step Estimators IV Estimators of the First Differenced Model 

Following White (1984) one can relax assumptions HF2 and HF3 and consistently estimate the 

matrix Z'Q^Z required for many of the above estimators as: 

(12) h^J\|Nf^Zl^g^uiA, 

as, assuming independent individuals, the covariance matrix Q.^ is block diagonal. However, 

although E 2]Z;'A«,.Aw:,Z =E(Z 'AMAI/Z) , these two estimators of Z'Q^Z will differ 

numerically.̂  For most of the estimators the difference in the resulting parameter estimates was 

very small (in the order of 10'̂ ). It was noted that using the latter gave numerically identical 

estimates between the one and two-step variants of an estimator (see Section 4), therefore in 

subsequent random effects experiments the former was used. 

Consider an AB estimator of the simple AR(1) model with no exogenous variables with two individuals and t = 0,...,2., 
Z'A« Ai/Z = 0,oA«„y + {y^^u,,) + j',„Au„y„Aw„ + 3;„Aw„>',„Au,j * IT,b.u^b.̂ .2, = (V.̂ AM,,)' + (^^Au„y . 



The residual vector Aw, is obtained from an initial consistent estimate of y , produced by setting 

Q^ as per (5). The two-step and one-step variants of the various estimators will be asymptotically 

equivalent if the M„ are independent and homoscedastic (Arellano and Bond [1991]). Note also that 

( '^ ^ 
for those estimators which required it, Q^ was directly estimated as Q^ = l/TV^^ AM,.AU ,̂ . 

^ 1=1 ^ 

2.3 A Generalised Method of Moments (GMM) Estimator 

Since Hansen's (1982) seminal paper, the method of GMM estimation has found much favour with 

applied econometricians (see Pagan and Vella [1989] for a useful summary). The estimation 

technique is very broad, nesting many well know other techniques (for example, IV estimation). 

The essence of GMM estimation involves explicit exploitation of theoretical moment conditipns 

which, for estimation purposes, are replaced by their sample counterparts. Due to the recent work 

of Ahn and Schmidt (1995) and Crepon et al. (1996) for example, attention has turned to GMM 

estimation of dynamic error component panel models, however the technique can also be applied to 

fixed effects dynamic models. 

Firstly, define the initial values as: 

(13) Xo=a,+^/oP+",o-

Note that the parameter vector corresponding to the exogenous variables P is assumed to be 

identical across equations (1) and (13). This is a requirement of the need for consistent starting 

values of the full parameter vector for GMM estimation (see below). Equations (1) and (13), along 

with assumptions HF1-HF4 allow a number of implicit orthogonality conditions to be expressed as: 

2a)E(>^,o-a,-J[:,oP) = 0. 

2b)E(:^/,„-a,-x:,„P)^=a^ 

2c)E(:v,o - a , -x:,oP)(X, - a , - S ^ , - . -^,vP) = 0, V/ = \,...,T. 

2d)E(x, - a , -6;;,,., -x : ,p) = 0, r= l,...,r. 

2e)E(3;, - a , -5^ , , . , -xr,^){y, - a , -8>',,., -xV,P) = 0, /, ^ = l,...,r, t^s. 



2r)Eiy, - a , -6;;,,., -x:,P)(>., - a , - 5 ^ , . , -£ : ,£) = CT̂ , / = \,...,T. 

2g)E(>',o - a , -x:,oP)x* = 0, VA:,/ = 0,...,T. 

2h)E(y, - a , - S ^ , . , - x : , p ) 4 = 0, Vk,t = l,...,r. 

2i) EU, - a , -6;;,,., - X : , P K = 0, Vk,t = l,...,T. 

2j) E(y, - a , -5;; , , . , -x:,PK* = 0, yk,t ^ s,t = l,...,T,s = \,...,T. 

For (GMM) estimation purposes, these ten orthogonality conditions translate into identifying 

equations expressed in terms of observed variables and parameters (an example of such for t = 

0,..,,2, is given in Appendix I). Moreover, generally the IV estimators presented above can be 

shown to be based upon a subset of such identifying equations. The majority of the estimators for 

the fixed effects specification were actually proposed in the context of the random effects model 

(such that by first differencing the individual effects whether fixed or random are removed). 

Therefore, the relationships between such orthogonality conditions and IV estimators are presented 

only for the latter (see Appendix II). 

Once the total number of identifying equations have been identified, the question arises as to how 

many of these one should use. Asymptotic efficiency arguments suggest all of them. However, 

Crepon et al. (1996) have shown that there is no efficiency loss in disregarding those equations in 

which any of the parameters of interest (a,, p and 5) do not feature. Moreover, it is also possible 

to re-arrange some of the equations such that not all of the nuisance parameters need be estimated 

(see Appendices I and II). Defining the full parameter vector as y *, which contains the parameter 

vector of interest y = [ a : P : 5 l , a s well as other nuisance parameters, the GMM estimator 

given by the value that minimises the criterion function: 

(14) y ; = min,^ m (̂y p ^ - V C Y p , 

where: m^ = A^"'J]m,(y p 

is 

W = lim cov Â  '̂ ŷ̂ 'w, = co\(mfj) 
N-*<o V ' T ^ J 



and: W = //"' ̂  w, (y *) w, (y") , evaluated at an initial consistent parameter 

estimate of y *. 
LD 

A computational point not often addressed in the literature, is that as one increases the number of 

orthogonality conditions (especially as T increases) the columns of the matrix W are likely to 

become increasingly collinear, such that the matrix W is not invertible. In this case, one must 

disregard some conditions, although the consequences on efficiency are likely to be small, given the 

strong correlation between the conditions. That is, the maximum number of orthogonality 

conditions the GMM estimator can utilise is dependent upon the sample size in both Â  and T. Table 

la below lists those conditions which could be used in the samples considered in this study, whilst 

Table lb summarises the IV-type estimators. 

Table la: GMM-Type Estimators for the Dynamic Fixed Effects ModeL 

Sample 

T 

4 

4 

10 

10 

4 

4 

10 

10 

Notes: ' W is 

Size 

Â  

25 

50 

25 

50 

25 

50 

25 

50 

the estimated 

Conditions Used 

2a) - 2j) 

2a) - 2j) 

2a) - 2j) 

2a) - 2j) 

2a) - 2g) and 2i)' 

2a) - 2j) 

2a), 2b), 2d) and 2f) 

2a),2b),2d),2f),2i)and2g)^ 

covariance matrix of the empirica 

Weighting 

Matrix 

/ 

/ 

/ 

/ 

W 

W 

W 

W 

1 moments. ^ 2i) for A = 1 on 

Estimator 

Mnemonic 

GMM_F1 

GMM_F1 

GMM_F1 

GMM_F1 

GMM_F2 

GMM_F3 

GMM_F4 

GMM_F5 

ly-

10 



Table lb: IV-Type Estimators for the Dynamic Fixed Effects Model, N -^ co, finite T. 

Method 

OLS 

Within 

BN^'^ 

AH 

AR 

AFf 

AR' 

Sf) 

SjiO 

AB 

AB' 

5A/<̂ ) 

Consistency 

X 

X 

• 

^ 

• 

V 

y 

-/ 

y 

• 

V 

v 

Model Estimated in: 

Levels 

^ 

V 

^ 

X 

X 

X 

X 

X 

X 

X 

X 

X 

First 

Differences 

•/ 

X 

X 

V 

V 

V 

y 

v 

• 

y 

V 

V 

yiof ^ / o -

Instrument(s) for 

X.,-1 or A>',,., 

yij-i o r ^yij-i 

yij-i 

^- , 

X.r-2 

^yij-2 

y<,-2> ^ - . 

Ax.,-2, AZ_, 

Q;"'AAr_, 

AX., 

>',o;j'/o>:>',.;"-

• • ^ i T ' y/O' X l ' ^ / 0 - - - ^ i T ' - - -

A^-i 

3 The Random Effects Dynamic Panel Model 

3.1 The Model 

Under the random effects specification, the a, terms of (1) are treated as independent random 

drawings from a particular distribution and the disturbance term becomes "composite", v„ = a, + Uj,. 

As with the fixed effects specification, the traditional estimators (Within and GLS) of the static 

random effects panel model are semi-inconsistent in the dynamic setting (Sevestre and Trognon 

[1985]). 

The semi-consistent estimators for the dynamic random effects model similarly rely on certain 

maintained hypotheses, not necessarily the same for all estimators: 

HRl : The M„ 'S are uncorrelated with 3̂ ,0» V / , / . 

11 



HR2: The «,., 's are uncorrected with a ,̂ V /,/. 

HR3: The w,., 's are uncorrelated, V /,/. 

HR4: The w„ 's have zero mean and scalar variance a ]. 

HR5: The a, 's have zero mean and variance CT I. 

HR6: The x variables are non-stochastic and their individual means uncorrelated with 

either the «„ 's or the a ^ 's, V t,i. 

HR7: The x-variables are non-stochastic and are uncorrelated with either the w„ 's or the 

a,'s,V/,/ . 

Again, HR6 and HR7 are violated by the inclusion of the lagged dependent variable. Also, the latter 

could be easily modified along the lines of Hausman and Taylor (1981) - see below - to allow a 

subset of the x-variables to be correlated with a,. However, this simply affects the choice of valid 

instruments and uimecessarily complicates the following arguments. The assumptions concerning 

the equation's disturbances imply that variance-covariance matrix of the composite disturbance 

term will be: 

(15) 

a p ... p̂  
p i - . ; 
: • • . • • . p 

vp ... p \J 

where: p is the intra-class correlation coefficient, P=CT„/(CT^+CT^), 

^V=^IJT+^IIT=<^\ 

3.2 IV Estimators 

As noted above, all of the IV estimators for the first differenced model are similarly applicable to 

both the random and fixed effects specification. Therefore it only remains to consider estimation of 

the random effects model in levels. 

12 



The Balestra-Nerlove (BN), Hausman-Taylor (HI), Amemiya-MaCurdy (AM) and Breusch-

MizonSchmidt (BMS) Two-Step IV Estimators 

Several estimators have been proposed in the context of a static random effects panel model, that 

first transform the model into a spherical one by the usual GLS pre-muhiplication of Q.'}'^. 

However, generally they can be suitably adapted to dynamic models as well. 

Whatever the estimator, the usual Feasible Generalised Least Squares (FGLS) problem arises, as 

Qy is unknown. Indeed, Q^ cannot be estimated using the residuals from an OLS regression of (1), 

as the parameter estimates will be semi-inconsistent, as would any estimate of Q^ based upon the 

estimated residuals v . Asymptotically, any semi-consistent estimate of v (and hence Q )̂ can be 

used, although differing methods are likely to cause small sample divergences. Once a consistent 

estimator of Q^ has been obtained and an appropriate instrument set (Z) defined, one has a choice 

of three estimation procedures: 

a) Pre-multiply (1) by Z' and estimate by GLS, using Var(Z'v) = Z'Q.Z. 

b) Transform (1) into a scalar model by pre-multiplying by Q;;''^ . Transform again by pre-

muhiplying the (transformed) model by Z'Q'^'^. Finally^ estimate this twice transformed model 

by GLS using Var(Z'Q;' v) = Z'Q;'Z. 

c) As b) above, except in the second stage the untransformed instrument set Z is used (as opposed 

to n;'/ 'Z), and using Var(Z'Q;'/^v) = Z'Z. 

The Generalised Balestra-Nerlove (G-BNran) Two-Step IV Estimator 

The Balestra and Nerlove (1966) estimator again uses current and (one period) lagged exogenous 

variables as an instrument set. 

Hausman-Taylor (HI) IVEstimator 

Hausman and Taylor (1981) partition the ^-matrix such that X = {X{.X.^), where A", are 

uncorrelated with the individual effects, but X^ is not. In a dynamic panel data setting, the lagged 

The exception is the Breusch-Mizon-Schmidt estimator (see below). 

13 



dependent variable is analogous to X2 and under assumption HR7, the remaining explanatory 

variables {X in the notation of this paper) are analogous to Hausman-Taylor's X^. 

Following similar logic to that of the G-BNran estimator, the //T estimator also considers the means 

and deviations from the means of the original exogenous variables as valid instruments in addition 

to lagged values ofX. As Breusch, Mizon and Schmidt (1989, p.696) show, this amounts to using 

the following instrument set: 

(17) Z = {W„X_;:^„X.;:X), 

where: B„ = I^® JTIT , W„ = I^® {Ij - Jf/T) and J,, is a matrix of ones of order /. 

The Amemiya-MaCurdy (AM) IV Estimator 

If the x's are strictly exogenous all past, present and future values become valid instruments. Thus 

the Amemiya and MaCurdy (1986) estimator further extends the instrument set to include X', 

defined as: 

(18) 

(^(}) 
•*ii 

X' = '•21 

fi) 
.0) vO) 

"̂ 21 

hi 

4i 

' •A'l 

,0) 
Mr 

47-

,0) 
'•AT 

rC*)"! 
Mr 
fW 
^r 

^NTJ 

®\T. 

Note that each column of X' contains values of Xj, for only one t, as opposed to X which contains 

values of X;, for / = \,...T. In effectvYis being used (T+ 1) times, Ttimes as X' and once as W„X. 

In the case of the dynamic model however, X\ is required which is defined as: 

(19) 

r^cO) 
-^•lo 

^ : , = 

, ( 2 ) 
MO 

.0) v(2) 
"•lO 

KX^^ 
^ • * A f O 

'-20 

^ATO 

MO 

40 

"•AfO 

,0) 
Mr 
,0) 

'•ATT 

Mr 

i jy . 

^NT^ 

® l , 

The full v4A/instrument set for the dynamic model is therefore: 

14 



(20) Z=iW„X_,\X'_,\X). 

The AM estimator, if consistent, is at least as efficient as the HT estimator (Amemiya and MaCurdy 

[1986], pp.871-872). 

Breusch-MizonSchmidt (BMS) IV Estimator 

The BMS estimator (Breusch, Mizon and Schmidt [1989]) again extends the instrument set. In 

terms of a dynamic setting, this amounts to including iW^y ) ' , similarly defined as X' in (19). 

However, these additional instruments are not valid in the case of a dynamic model, as this is the 

source of inconsistency of the Within estimator. Therefore, in this instance the BMS and AM 

estimators are identical. 

The Wansbeek-Bekker (WB) IV Estimator 

Although consistent for finite T and Â -> oo, the proposed IV estimators will still be biased for finite 

N. In addition to small sample bias, estimators may also be preferred in terms of semi-asymptotic 

efficiency, which is the approach adopted by Wansbeek and Bekker (1993). 

The WB approach extends that of Anderson and Hsiao (1982), such that now both lags and leads 

(and linear combinations of these) of the dependent variable are included in the instrument set. That 

is, by defining the variable y from period / = 1 to / = T, the WB estimator considers linear fimctions 

of _y as instruments, where y is the stacked vector of observations defined from r = 0 to f = T for 

each individual. The linear ftinctions are defined by the {T + \)y.T matrix Aj, which yields A'y 

as the fiill instrument set (where A = I/^® Aj). Restrictions are imposed on.^ such that: 

(22) Aij.=0, and E ( / ^ ^ M ) = tr^E(wyp = 0, 

which respectively ensure elimination of the individual effects and consistency of the estimator. 

Wansbeek and Bekker (1993) show that these conditions for A define its structure such that its rows 

sum to zero, as do each of its lowest T quasi-diagonal elements (in particular, the lower left element 

is zero). Transformation of a variable by the matrix A will, in some instances have a "usual" 
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interpretation, whilst in others it will not (see Wansbeek and Bekker [1993] for examples of ^ ) . 

The full WB instrument set is therefore defined as: 

(23) Z^iA'y^lX), 

and using al(Z'Z) as the variance of Z'u, the WB estimator is obtained by applying GLS to the 

transformed model: 

(24) Z'y= Z'Xy_ + Z'u. 

The estimator's semi-asymptotic variance will be given by: 

(25) a^/plimi-(^'P,^)-'l, 
VAr->« N ) 

where: P^ = ZiZ'Zy'Z', 

which from (23) is a function of ̂ . The optimal choice of ^ is that which minimises (25), such that 

A conforms to its appropriate restrictions . However, A is unspecified apart from these restrictions. 

The form of A for the WB estimator of the simple AR(1) model can be found by constrained 

optimisation (Wansbeek and Bekker [1993]). However, when the model additionally contains 

exogenous variables, numerical methods must be used as the variance of the estimator is a matrix 

not a scalar. 

If one is only interested in the variance of the parameter vector (and not covariances of particular 

elements of it), the optimal WB estimator can be obtained by constrained optimisation, where A is 

that which minimises the trace of (25), treating a^ as a constant, subject to the restrictions of (22). 

Note that the list of valid instruments can be expanded to include not only A'y , but also A'X^ for 

example (WB and WB , respectively), such that: 

^ Note that this expression for the variance of Z'u is only an approximation, differing from the true variance to the 
extent that E(v' u)*Q, and this cross correlation is not taken into account. 
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(26) Z* =iA'y -.A'XJX). 

These estimators can also be adapted to the model where the assumption of a scalar covariance 

matrix of the disturbance terms Uj, is relaxed. The corresponding estimators are still obtained by 

applying GLS to (24), but where the variance of Z'u is now (Z'Q„Z), where Q^ is unspecified. 

The variance of the unrestricted WB estimator is: 

(27) pl im^(^ 'P ,„^)- ' , 
N-KO N 

where: P^^ = Z(Z'n,Z)-'Z', 

and where once more the inverse term of P2n is estimated fi-om initial preliminary estimates of w, 

along the lines of equation (12). The unrestricted WB estimator is again obtained by minimising the 

trace of (27) with respect to A subject to the latter conforming to its necessary restrictions. The 

unrestricted WB'*' is as above but where P̂ ^ is replaced by P^ whose definition is obvious. 

The Arellano and Bover (ABov) IV Estimator 

As with the WB estimator, the Arellano and Bover (1993) estimator first involves transforming the 

system of T equations. The nonsingular transformation is now given by: 

(28) r 
/ 

K 

}-rlT, 

where K is similar to Wansbeek and Bekker's A, in that K\^ = 0, where K is any {T-\)y.T matrix 

of rank (J-V). For example, AT could be the first ( r -1 ) rows of the Within group operator, or the 

first difference operator. As the first (T-\) transformed errors. 

(29) vr=^,V/ = 
V/ 

17 



are free of a,, all exogenous variables are valid instruments for these first (7^-1) equations. 

Moreover, assuming serial independence of the disturbance terms v„ along the lines of the Arellano-

Bond estimator, the series (j^,o,;;,,,...,;^,,_|) is also a valid instrument. However, this assumption 

requires more structure for K, which now additionally has to be upper triangular (Arellano and 

Bover [1993] p. 16). This defines the matrix of valid instruments to be: 

(30) Z, = 

(ae^/.A'/o) 0 

(^y.>',o.>'/i) 

(,x;_i,yio,...,yij.2) 

where x̂ ,. = (x^/o^v'^^/r) • Letting Z = (Z;:,...,:Z;) and H=I^® /f,, the A-Bov estimator is 

obtained by estimating the transformed model: 

(31) Z'Hi = Z'HXi + Z'Hv, 

where: WaiiZ'Hv) = Z'HQ^H'Z. 

by GLS. Operationally, Arellano and Bover {ibid p. 18), state that provided K satisfies the above 

restrictions, the ABov estimator is invariant to the choice oiK. 

As with previous estimators, the covariance of the transformed system, Q* = HQ^,H' must be 

estimated from residuals obtained from preliminary semi-consistent estimates. Following White 

(1984), Arellano and Bover {ibid p.6), suggest: 

(32) 
1 ^ ' 

"«v=-2.v,L , 
• ' ' ' 1 = 1 

where: v* are semi-consistent preliminary estimates of //̂  V;. 

Using this result, the first difference operator was used in subsequent simulation experiments (see Section 4 below). 
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which is an unrestricted estimator of Q*. The restricted estimator vmder the usual assumptions of 

the error components model is: 

(33) Q : = HCl^H', 

where: Q, = 7;̂  ® (61J^ +6llj.) 

and: a I and 6 ] are consistent estimates of a „ and a ^. 

GMM Estimators 

Important advances have been made recently in GMM estimation of dynamic panel data models, 

most notably by Ahn and Schmidt (1995) and Crepon et al. (1996). Again the assumptions HRl -

HR7 along with specification of initial values {as per equation [20]) allows one to write 

orthogonality conditions, expressed in terms of parameters and data: 

3a)E(>;,o-x:,oP) = 0. 

3b)E(>;,o-x:,oP)^=a^ 

^c)E{y,,-xiMy„ -^.-x -^u^) = <, Vr = \,...,T. . 

3d)E(:v,-6x,,.,-xV,p) = 0,r=l,...,r. 

3e)E{y, -hy,,_, -xT,^){y^ -6j;,,., -xl^P) = a^, V/ ^ 5. 

2>f)E{y, -6> ,̂,_, -x:,p)^ =a^ +a^, / = \,...,T. 

3g)E>',.o(>',7 -8x.,-, - ^ „ P ) = c, / = l,...,r, where c is a constant. 

3h)E(:v,o -x:,oP)x* = 0, V/:,/ = 0,...,r. 

3i)E{y, -6;;,,., - x : , P ) 4 = 0, \fk,t = 0,...,T. 

3j)E(>',-5;;,,.,-x:,P)x* =0, \/k,t = \,...,T. 

3k)E(y, -5>/,_,., -x:,p)x* = 0, V^,r ^ s,t = l,...,T,s = \,...,T. 

IV estimators are based upon only those conditions which are linear in the parameters of interest 

[c.f. the AB estimator and condition 3g) above], whereas Ahn and Schmidt (1995) focus on the non­

linear conditions [such as 3f)]. However, as Crepon et al. (1996) point out, such estimators ignore 

19 



the first order moments [3a) and 3d)] at the cost of reduced efficiency. Again, an example of these 

identifying equations for t = 0,...,2 is given in Appendix II, along with how IV estimators are related 

to these. One could conceivably consider numerous GMM estimators based upon different subsets 

of conditions 3a) to 3k) above (Ahn and Schmidt [1993]). However, once more numerical 

considerations will to a large extent determine the number of such conditions one can use (see Table 

2b). 

The IV-type estimators for the random effects specification in levels, are summarised in Table 2a 

below (refer to Table la for the first differenced estimators). Again the number of orthogonality 

conditions that can be used for GMM-type estimators was dictated by both Â  and T. These GMM-

type estimators are summarised in Table 2b below. 

Table 2a: IV-Type Estimators for the Dynamic Random Effects Model, N —> oo ^finite T 

Method 

OLS 

Within 

FGLS 

G-BNran^"^ 

G-BNrarf'^ 

G-BNran^" 

f^a) 

HT«» 

f^c) 

AA/"^ 

A^> 

Ah^'^ 

WB 

WB* 

ABov 

Consistency 

X 

X 

X 

y 

V 

V 

V 

y 

y 

y 

V 

y 

y 

y 

v 

Transformation into 

Spherical Model 

-

Wn 

V 

-

•""v 

or'i^ 
V 

-

or:'' 

or"' 
V 

-

V 

V 

A 

A 

H 

Instrument(s) for >»;,., 

^',.,-1 

y^j-x 

yi,-x 

X.y 

^-:"x. 

^ - , 

W„X_,, B.X_, 

n:"'W„X_„ Q:"'B„X_^ 

W„X.„BnX_, 

K^.^K 

n:"Xx.„ n:'"x'_, 

w„x.,,x:, 

I. 

y_^,x., 

.V/O» ^ l O • • • ̂ IT' yia > .Vil» ^ / O • • • ^ ; T ' • • • 

^ 
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Table 2b: GMM-Type Estimators for the Dynamic Random Effects ModeL 

Sample 

N 

4 

4 

10 

10 

4 

4 

10 

Size 

T 

25 

50 

25 

50 

25 

50 

25 

Notes: W is the estimated 

Conditions Used 

3a) - 3k) 

3a) - 3k) 

3a) - 3k) 

3a) - 3k) 

3a) - 3g), 3j) 

3a) - 3k)̂  

3a), 3b), 3d) and 3e) 

covariance matrix of the empirics 

Weighting 

Matrix 

/ 

/ 

/ 

/ 

W 

W 

W 

il moments. ^ for i = 1 onl; 

Estimator 

Mnemonic 

GMM_R1 

GMM_R1 

GMM_R1 

GMM_R1 

GMM_R2 

GMM_R3 

GMM_R4 

i-

4. The Simulation Experiments 

The data for the simulation experiments was generated in the following manner: 

(34) y„ =a , +5:v,_, +xPp, + x f p2 +M,, 

>'/o=a,+^,oP+",o 

where: u^, ~ N(0,1), 

4^ = Jĉ /-i + uniform(-Oi,Oi) ,k=\,2 

and: 6 =p, =p2=0.5. 

The individual effects were generated as a, = 1,..., Â  and a, ~ N(0,1) for the fixed and random 

effects specifications respectively. Sample sizes of T = 4, 10 and Â  = 25, 50 were chosen. Finally, 

due to computation time, the number of Monte Carlo repetitions was limited to 100. In each case, 

analysis is focussed upon the estimation of 6 . Computing was undertaken in GAUSS, using the 

Constrained Optimisor.̂  The results of the experiments for the fixed effects specification can be 

Code is available from the authors on request. 7*= 4 is the smallest sample size that can accommodate all of the 
estimators. The results for (3, and P2 are available on request from the authors. Due to time constraints, the largest 
sample size for the random effects simulations (Â  = 50 and T=\0) was not run. It was estimated that such an 
experiment would take in excess of two months on a Pentium 120 personal computer. 
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found in Tables A2 to A5 and those for the random effects in Tables A6 to A8, in Appendices III 

and IV respectively. Figures 1 to 7 in Appendix V, present the same results in graphics. 

4.1 The Fixed Effects Results 

In the smallest sample size {N= 25, r = 4) one can immediately disregard the simple OLS estimator 

in terms of excessive bias and range of bias (Figure 1). The AB estimator that uses the expanded 

instrument set AB* appears to suffer heavily from the resulting small sample bias, especially due to 

the range of bias. In terms of the remaining semi-consistent estimators, there appears to be very 

little between the variants of the AR and simple AB estimators. However, given their relatively 

small bias and stability, one may be tempted to use either the Within estimator or the simple OLS 

estimator of the first differenced model. Finally, the GMM-type estimators, which respectively use 

all of the conditions and the identity matrix as a weighting matrix (GMM_F1) and a subset of these 

conditions with their empirical covariance matrix as a weighting matrix (GMM_F2), have a very 

similar performance. The latter may be preferred in terms of a slightly smaller bias, and range of 

bias, although both are similarly dominated by the AR and AB estimators. 

When T is held constant and Â  is increased to fifty, a similar pattern emerges. That is, the AR and 

simple AB estimators dominate, followed closely by the GMM-type estimators. However, for the 

same reasons as before, one still may be tempted to use either of the (inconsistent) Within or OLS 

(A) estimators. Other points of interest are firstly that the AB* estimators can be disregarded due to 

excessive instability. Secondly, although the increase in the number of individuals allows the 

GMM estimator using the empirical covariance matrix (GMM_F3) to use all of the conditions (see 

Table la), this does not appear to improve its performance relative to the one that uses the identity 

matrix (GMM_F1). Both of these estimators are still marginally inferior to the AR and AB ones. 

Increasing the number of time periods to ten (with Â  = 25) has several noticeable consequences. 

Firstly, it quite severely worsens the performance of the AB* estimators and also, somewhat 

surprisingly, that of the OLS (A) estimator (Figure 3). Those estimators that performed well in the 

previous samples continue to perform the best. The rankings do however change, with the AB 

estimators now having marginally smaller bias than the AR estimators. The Within estimator 

continues to perform well, on a par with the AB estimators. The GMM-type estimators again 

closely follow these estimators, and although increasing the number of time periods severely 
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restricts the number of orthogonality conditions that the GMM_F4 estimator can use (Table la), this 

estimator performs well relative to its identity matrix counterpart. 

A similar pattern is found in the largest sample size, with the simple AB and AR estimators 

performing the best. However, the Within estimator remains on a par with the former. The GMM 

type estimators continue to have reasonable performance, although they are now surpassed by the 

AH estimators. 

In summary, the findings illustrated the known biases of the OLS and Within estimators (although 

the OLS estimator for the first differenced model performs relatively well in the smallest sample), 

and the relatively small variance of the Within estimator (Kiviet [1994]). The increased efficiency 

of the AR over the AH estimators was also evident (Arellano [1988]). However, somewhat 

surprising was the good performance of the Within estimator, especially in light of previous results 

(see Nickell [1981] and Maddala [1991]).̂  It was also found that there is effectively no difference 

between those variants of an estimator that use an estimated covariance matrix and those which use 

the theoretical one. Similarly, somewhat surprisingly, adding further instruments to the original AR 

and ̂ //estimators has little effect on their performance. 

Thus, for preferred semi-consistent estimators, those which only use current lagged values of the 

exogenous variables (and transformations of these) i.e., the ST and Â'̂  estimators, are dominated by 

those which, in some form, use previous values of the dependent variable. In the smaller samples, 

the simple AR estimator appears a good candidate, closely followed by the simple AB and GMM-

type estimators. In the larger samples, the AB estimator starts to dominate and the performance of 

the GMM-type estimators also relatively improves (that is, although additional parameters require 

estimation as A'̂  increase, better estimation of the theoretical moments is afforded by a larger cross-

sectional component of the sample). 

For ease of computation, however, one would have to choose the simple AR estimator, as coding of 

the AB instrument matrix may prove difficult in standard software. Even easier to estimate would 

' This is not strictly true as the simulated (absolute) biases were estimated as: 0.022,0.008,0.014 and 0.0038 (Tables 
A4 to A7). The exact asymptotic biases can be calculated using Nickell's (1981) equation (25). These were 
respectively calculated as: 0.023, 0.007, 0.010 and 0.0025. 

23 



be the simple Within and OLS (A) estimators, which do tend to perform rather well, especially in 

small samples. Moreover, following Nickell (1981) one can calculate the likely biases of these 

estimators quite accurately. Finally, if an optimising package is available, the GMM-type 

estimators may well prove attractive, especially in larger samples, and especially if one has doubts 

about any of the underlying assumptions concerning the true data generating process. 

4.2 The Random Effects Results 

Estimation of the random effects specification appears to be much more troublesome. For example 

in the smallest sample size, one would be reticent to use any of the semi-consistent estimators apart 

from the GMM-type, WB* and AM estimators, and probably in that order (Figure 5). There is 

however, effectively no difference between any of the y4M variants. Once more one may be tempted 

here to use either of the inconsistent simple OLS or FGLS estimators. Although these estimators 

are dominated in terms of absolute bias by the GMM-type estimators, they do tend to be more stable 

(Figure 5). Note that there is effectively no difference between the GMM-type estimators, even 

though several conditions have to be dropped in the GMM_R2 estimator (Table 2b). 

Increasing Â  to fifty (Figure 6) allows the GMM-estimators to more accurately estimate the 

empirical moments, and their performance increases accordingly. Indeed, in this sample size (T = 

4, // = 50), the GMM estimators clearly dominate. Again, even though the increase in A'̂  allows the 

estimated GMM-type estimator to use virtually all of the conditions (Table 2b), there is very little 

difference between the two GMM-type variants. Of the other estimators, the WB* estimator again 

performs well, only being dominated by the GMM-type estimaitors. Also, although the biases of the 

HT, AR and BN estimators, for example, are slightly smaller than those of the AM ones, the latter 

may be preferred in terms of a smaller range. 

Increasing the number of time periods to ten significantly improves the performance of most of the 

estimators (Figure 7). Indeed, in line with previous studies (see for example, Arellano and Bond 

[1991] and Kiviet [1994]) variants of the AR and AB estimators for example, could now be 

considered possible candidates. However, the best performing estimators are quite easily the WB 

and WB* estimators (the latter marginally more so), with the smallest biases, low MSB's of biases 

and small ranges of such. The GMM-type estimators again continue to perform well. However, the 

rise in T severely reduces the number of orthogonality conditions that GMM_R4 can utilise (Table 
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2b), which appears to adversely affect its performance, especially relative to GMM_R1. Other 

candidates in this sample are the BN (especially BI^'^^) estimators and the simple AB estimator, as 

most of the other estimators can be disregarded in terms of either excessive bias or range of such. 

Finally, although inconsistent, the Within estimator still performs well, being out performed only by 

the WB and WB^ estimators. 

In summary, unlike the fixed effects estimators, the semi-consistent random effects estimators do 

not appear to be dominated by inconsistent traditional estimators (for example, only with T= \0,N 

= 25 does the Within estimator outperform most of the consistent estimators). With small T, for 

ease of computation the choice would appear to be between the AM and (inconsistent) OLS and 

FGLS estimators. However, if an optimising package is available, either the GMM-type or the WB* 

estimators are good candidates. In samples with more time periods, the clear winner is the WB* 

estimator, closely followed by its simpler counterpart, WB. GMM-type estimation could again be 

considered, especially if one has any strong feelings concerning the true data generating process. 

However, if no such optimising package is available, again the simple AB estimator appears 

appropriate. 

Interesting anomalies arise between different variants of a particular estimator. Firstly, now there is 

a significant divergence in the simple AR and AH estimators and their expanded instrument set 

counterparts (the latter performing better in all samples for both AR and AH). Although using 

\/N^ZI u'u] Z, (where w* represents estimates of the generalised transformed disturbance term) -
;=1 

see footnote 2 - no longer yields identical estimates, they are still very close for most of the 

estimators which have "estimated" counterparts. Finally, concerning the GMM-type estimators, 

unlike the fixed effects specification, the "estimated" version does not appear to imiformly dominate 

its identity matrix coimterpart. Indeed, in "large" T samples the latter performs at least as well as 

the former, and often outperforms it both in terms of lower bias and efficiency. 

Four estimators (BN, HT, AM and ST) use the three GLS-type IV variants a) to c).* In all samples, 

the AM appears invariant to the choice and, as noted above, clearly exhibits increased efficiency 

' Noting that Bf/''^ would be equivalent to 57 °̂'. 
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over the other three estimators. However, apart from this estimator, no clear pattern emerges either 

for any particular estimator or indeed for any particular sample size. 

An interesting question is how these results position themselves with respect to previous ones. 

Three studies have considered the AB, AR and ̂ 4//estimators (Arellano and Bond [1991], Arellano 

and Bover [1993], who only consider the AH and AR estimators, and Kiviet [1994]). Arellano and 

Bover (1993) consider a purely AR(1) process with T= 3. The disturbance terms were (pseudo) 

random drawings from a standard normal distribution. The individual effects were similarly (but 

independently) normally distributed, although different variances were considered. Initial values 

were defined as: 

(35) Xo=a , / ( l -5 ) + (l-5^)-'/^«, /o-

For 5 = 0.5, Var(a;) = 1 and A'̂  = 100, they find the value of the simulated AH estimator to be 0.8, 

with a (relatively unstable) standard deviation of just under three. The one and two step AB 

estimators had very similar performances which were much more stable (with standard deviations 

of 0.24) and accurate (simulated values 0.4762 and 0.4748, respectively) than that of AH. Although 

the biases of these estimators decreased significantly when Â  was increased to 500, were an 

increasing ftmction of the true parameter 5 and also varied with the variance of the individual effect, 

their rankings invariably remained unchanged. 

Arellano and Bond (1991) consider a sample of N = 100 and T - 1, and extend the model to 

additionally include one strictly exogenous variable (generated with AR parameter equal to 0.8) 

with a corresponding coefficient of P = 1. All of the disturbance terms were independent random 

drawings from the standard normal distribution. Although initial values were set to zero, the first 

ten observations were then discarded. With 5 = 0.5, the simulated estimates of the one and two step 

AB estimators were foimd to be 0.4884 and 0.4920, respectively. The simple AH estimator had very 

poor performance, with a mean simulated value of -2.4753 and standard deviation of over 45. The 

simple AR estimator fared much better with a mean value of 0.5075 (and a standard deviation of 

0.0821). Again biases generally increased with 6 (values of 0.2, 0.5 and 0.8 were considered) and, 

although in the experiments with 5 = 0.2 and 0.8 biases were very close across estimators, the AB 

ones may be preferred in terms of smaller variances. 
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Kiviet (1994) presents the results of a much more extensive set of simulation experiments, where 

the model also includes one exogenous variable. Given the range of results, the reader is referred 

directly to the paper. However, the broad conclusions were that the AH estimators were very 

volatile, often having large variances and poor performances (in particular, they were susceptible to 

changes in the true value of 6). Of the estimators considered in this study, the simple one and two-

step AB and AR estimators again appeared the most appropriate. 

Comparing these results with those of the present experiment, we found much larger biases. These 

increased biases can be primarily attributed to the smaller cross-sectional sample sizes considered 

(i.e., N= 50 compared to N= 100). The results of our experiments thus confirm those from these 

previous studies, highlighting the unreliability of the AH estimator (its performance varying 

markedly with the sample size and the true parameter value). Moreover, our results confirm the 

relative superiority of the AB and AR over the AH ones, although in most instances there appears to 

be very little between these two, (one may prefer the AB estimator in terms of smaller variances, but 

the AR in terms of ease of coding). However, our study considered many more estimators, and 

although the AR and AB estimators did preform relatively well, they were clearly surpassed by the 

GMM and WB estimators. 

5. An Application to a Consumer Demand Schedule 

Panel data is especially usefiil in estimating demand schedules, as by using individual unit data, one 

avoids the identification problem encountered at an aggregate level. In its simplest form, demand 

theory postulates that price and income will be important determinants in consumer purchases. 

Although in the short run consumer purchases of necessities will be invariant to income, price may 

be influential, possibly affecting the timing of purchases. However, a lagged dependent variable in 

such instances will probably capture the effects of any remaining, and possibly unobserved, 

variables. In this application the variable of interest is such a necessity, that of laimdry detergent. 

The data comes from The Roy Morgan Consumer Panel of Australia (CPA), which consists of an 

Australia wide sample of 2831 households, recording information on consumer purchases and 

personal demographics. Although many product fields are available, attention was restricted to 

laundry detergent as, by being a necessity, it was expected to be the most appropriately modelled 
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using a lagged dependent variable. To avoid any problems caused by regional differences, the 

analysis was based solely upon the purchases made by the panel members in the Melbourne 

Metropolitan area. As laundry detergent is in general an infrequently purchased product, the 

monthly data for the financial year in question (1992/93) was aggregated into quarters so as to be 

comparable with the simulation experiment (i.e., T= 4) but primarily to reduce the (troublesome) 

occurrence of zeros in the data set. Individuals who made no purchases in any one of the four 

quarters were removed from die sample (this reduced the sample to 113 individuals). Units are the 

quarterly number of kilograms of laundry detergent purchased and the average price per kilogram of 

such. Finally, although we have made no attempt in this paper to justify use of either fixed or 

random effects models, we only consider the latter in the empirical application primarily due to the 

large number of individuals in the data set. 

The results for the estimators that explicitly consider the model in terms of first differences are 

presented in Table 3a below, and the remainder in Table 3b (the latter differs by virtue of the fact 

that a constant was included). A priori one would expect the constant (when estimated) and the 

lagged dependent variable to exert positive and price negative influences on current demand. 

Tables 3a and 3b clearly illustrate, different methods can provide extremely different point 

estimates for the parameters of interest. On the basis of asymptotic standard errors, the lagged 

dependent variable appears to be insignificant for most of the estimators. The ABov estimator did 

yield a significant coefficient, however the estimator's poor performance in the simulations casts 

doubts as to the validity of this estimate. The AR^ estimates gave significantly negative results, 

which we would be reticent to accept, but the AB* estimator did yield significant and sensible 

loyalty coefficient of just over 0.3. Of the other estimators, many can be disregarded in terms of 

perverse signs (most notably the GMM variants), however there appears to be some agreement 

between the AB and WB estimators, suggesting a loyalty coefficient in the range of between 0.2 -

0.3. 
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Table 3a Parameter Estimates of a Consumer Demand Schedule for Laundry Detergent (in First 

Differences). 

Method 

AOLS 

AH 

AlTiQ^ 

Aff{Q^) 

AR 

AR\n^ 

AR^iQ^) 
\ i\/ / 

57̂ *̂  («A) 

Lagged 

Demand 

-0.491 
(0.064) 
0.836 

(0.323) 
-0.478 
(0.072) 
-0.488 
(0.110) 
-0.052 
(0.139) 
-0.053 
(0.198) 
-0.053 
(0.560) 
-0.290 
(0.516) 

Price 

-0.196 
(0.093) 
-0.458 
(0.167) 
-0.215 
(0.098) 
-0.187 
(0.166) 
-0.324 
(0.095) 
-0.324 
(0.135) 
-0.324 
(0.384) 
-0.169 
(0.145) 

Method 

Sf^Q-^'^) 

S'f'\b.A 
V a / 

^5(QJ 

AB\^^ 

AB{Q^) 
^ CKC ' 

AB\h^) 

BN^"^ 

BN^^'^Cl^) 

Lagged 

Demand 

-0.078 
(0.575) 
-0.116 
(1.185) 
0.298 

(0.184) 
0.308 
(0.581) 
0.322 
(0.158) 
0.249 
(0.480) 
0.040 
(0.635) 
0.040 

(1.703) 

Price 

-0.274 
(0.152) 
-0.224 
(0.352) 
-0.342 
(0.131) 
-0.343 
(0.416) 
-0.414 
(0.117) 
-0.195 
(0.361) 
-0.301 
(0.158) 
-0.301 
(0.441) 

Notgs: 
' Quarterly data concerning laundry detergent in the Melbourne metropolitan district, taken from the Roy Morgan 
Research Consumer Panel of Australia (Â  = 113) in the financial year 1992/3. Dependent variable is the quarterly 
change in the number of kilograms purchased, explanatory variables are a lagged dependent variable and the quarterly 
change in the average price of purchases. Asymptotic standard errors are given in parenthesis, for inconsistent 
estimators standard errors are similarly inconsistent. Parameters in bold indicate statistical significance at 5% size two-
sided test based upon estimated standard errors. 

There is more consensus with the coefficient on price, with all the estimators agreeing on a negative 

influence on demand. Moreover, the range of estimates is tighter, ranging from about 0.2 to 0.6 (the 

GMM (W) estimator yielding the largest parameter estimate). Again though several estimates 

appear to be statistically insignificant, most notably in the first difference model. The appropriate 

estimate would again appear to be around 0.2, which includes the (significant) HT, AM, WB and 

ABov estimators, although the significant first difference estimators generally suggest a slightly 

higher 0.3 - 0.5. Finally, of the estimators that consider the model in levels, all suggest a 

statistically significant habitual purchase of approximately 3.5 to 6 kilos of laimdry detergent per 

quarter. Again the GMM{W) estimator yields an estimate (of over 10) that appears "too large". 
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Table 3b Parameter Estimates of a Consumer Demand Schedule for Laundry Detergent (in 

Levels).^ 

Method 

OLS 

Within 

FGLS 

BN^"^ 

BN^'^ 

BN^'^ 
fjj^a) 

J^t) 

fjfc) 

Ah^"^ 

AW^ 

AA^'^ 

WB 

WB" 

WBCPZ^) 

WE" (P,„) 

ABo^> ( Q ; J 

ABov {Q.I) 

GMM {I) 

GMM(Wf 

Notes: 

Lagged Demand 

0.647 (0.045) 

-0.349(0.051) 

0.733 (0.036) 

-0.165(0.559) 

-0.226(0.413) 

-0.010 (0.439) 

-0.223 (0.413) 

-0.209 (0.404) . 

-0.064(0.416) 

-0.102(0.352) 

-0.102 (0.352) 

0.005 (0.352) 

0.208 (0.233) 

0.281 (0.202) 

0.226(0.177) 

0.286(0.165) 

0.413(0.132) 

-0.136(0.316) 

-0.008 (0.027) 

-0.007(0.125) 

Price 

-0.158(0.084) 

-0.155 (0.068) 

-0.108(0.072) 

-0.207(0.130) 

-0.190(0.107) 

-0.266(0.128) 

-0.204 (0.128) 

-0.193 (0.106) 

-0.252 (0.123) 

-0.208 (0.095) 

-0.208 (0.095) 

-0.230 (0.098) 

-0.185 (0.083) 

-0.180 (0.079) 

-0.184(0.098) 

-0.195 (0.089) 

-0.188 (0.047) 

-0.222 (0.0.97) 

-0.333 (0.199) 

-0.634(0.221) 

Constant 

1.929 (0.421) 

-

1.353 (0.355) 

5.710 (2.396) 

5.916(1.647) 

5.772(1.851) 

5.956(1.801) 

5.850(1.616) 

5.958(1.784) 

5.439(1.466) 

5.439(1.466) 

5.345(1.459) 

3.973 (0.405) 

3.634 (0.373) 

3.893 (0.902) 

3.586 (0.827) 

3.172(0.667) 

5.571(1.345) 

5.579 (0.850) 

10.131 (1.951) 

' See Table 3a, except variables are now expressed as levels. ̂  Conditions used: all except 3k). 

6. Conclusions 

In this paper we propose two new estimators for dynamic panel data models, and evaluated their 

small sample performance along with that of the numerous existing ones. In terms of the fixed 

effects specification, the new (GMM) estimator for the fixed effects specification performed well 

and it appears that it will be useful in many empirical applications. However, its small sample 
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performance is marginally surpassed by that of the simple AR and AB estimators, which indeed may 

be favoured due to ease of computation. Somewhat surprisingly, those estimators which performed 

well in the fixed effects specification, did not do so in the random effects specification (especially in 

samples with few time periods). The GMM-type estimators appear appropriate for this latter 

specification, generally irrespective of the sample size. However, the other new estimator proposed, 

the WB estimator, also appears to have very desirable small sample properties. Indeed, in samples 

with more time periods, this estimator has the best small sample performance. Therefore we would 

also expect this new estimator to be appropriate for many empirical applications. 

Finally, the importance of the choice of estimator was highlighted by an application to a consumer 

demand schedule for laundry detergent, we foimd that there was a vast difference not only in the 

sign and magnitude of parameter estimates, but also in the statistical significance of such as 

determined by estimated asymptotic standard errors. This emphases the importance of the proper 

choice of estimator for particular problems and data sets. 
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Appendix I: Identifying Equations and IV/GMM Estimators for the Fixed 

Effects Model 

Assuming that the time series runs from / = 0,...,2 the six orthogonality conditions 2a) to 2f), 

translate into nine identifying equations which can be used for estimation purposes: 

AI- l )T7i^ .o-^,oP-a,=0. 
Jy 1=1 

^ 1=1 

^•^)j;fliyio-^io^-oiiXyn -5^0 -^ / .P-a, ) = 0. 
•(V ,=1 

AI-4)-^ZUo -£:,oP-a,)(:v,2 -5j ; , -x^n^-a,) = 0. 
• ' ' ( = 1 

AI-5)^ i ;^ . . -5; ' ,o-£:„P-a,=0. 

N , = , 

AI-7)^Z(3',2 -SJ'M - ^ / iP -aJO' . -5Xo - ^ „ P - a / ) = 0-

AI•8)^i;(>'..-5xo-^„p-a,)^=cT^ 

Including the equations implied by the orthogonality conditions 2g) to 2k), yield the further nine 

equations: 

AI-10)-^ZUo-^,oP-a/)a[: ,o=0,^=l, . .X 
•A' ,=1 

AI-ll)T7Z(:>'.o-^,oP-a,)x:,,=0,^=l,..X 

^•12)-^i;(:>',o-^/oP-a,)x:,2=0,/:=l,. .X 
Jy ioi 
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AI .13) lX (>^„-6xo-x:,,p-a,)x:,„=0,^=l,..X 
/=i 

AI-14)^ | ; a . , -6;; , -x[al-a,)x^,, =0,k= \,...K. 

AI.15)i-2;(3^M-53^,0-^„P-a.)x:,,=0,/:=l,..X 
^ 1=1 

AI.16)i-2(>/,, -5>/, -x:,,p-a,)x:,, = 0, ̂ = 1,..X 
^ 1=1 

AI.17)l2;(3;,, -5 ; ; , -x : , ,p-a , )x: , = 0, ^= 1,..X 

AI-18)T7S(3 ' . . -SXO -x : , , p -a , )^ , , = 0 , ^ = 1,..X 

Appendix II: Identifying Equations and IV/GMM Estimators for the Random 

Effects Model 

Assuming that the time series runs from t = 0,...,2 the six orthogonality conditions 3a) to 3g), 

translate into the following eleven identifying equations which can be used for estimation purposes: 

^ 1=1 

AII.3)l2Uo-ll/oaX^'n-S>',o-x:,P) = a ^ 

AII-4)^E(>'-o - ^.oP,)^: -5;^,, -x l .P) = CT̂ . 
•(V / „ i 

A«-5)-^Sx,-5;',o-^„P = o. 
Ntt 

Aii.6)lx>',2-5;'„-i:.2P = o. 

AII-7)^E(>'.2 -^yn-xLnmyn "S^̂ .o " ^ n P ) = < • 
•(V ,=1 
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AII.8)-iX(x, -by^o-^n^f = <+^:-

AII.10)lXxo(X,-Sj^,o-^„P) = c. 

AII.ll)l2:>;,„0;,,-6;.,-x:,,P) = c. 

Again, including additional conditions 3h) to 3k) augments the list by nine further equations: 

AII.12)lX(;;,o -x:,„P)x:,o = 0, ^= 1,..X 

Aii.i3)lx(j/,o -x:,op)x:,, .= 0, ^= i,..x 
^ 1=1 

^I-14)^Z(}^,o -^,oP)£:,2 = 0, A:= 1,..X 
•/v ,=1 

AII.15)-i:Xa, -6>;,o -x:,P)x:,o = 0, *= 1,..X 
^ 1=1 

AlU6)^f^iy,,-by, -x:,,P)x:,o = 0,^= 1,..X 
^ / = i 

Aii.i7)l|;u,-5>.,o -x:,p)x:„ = o, =̂ i,..x 
•'» 1=1 

AII.18)i-X(>',2-S;'„-^,2P)^,2 = 0 , ^ = 1,..X 
•'V , = 1 

AII.19)i-X(3.,, -6;; , -x:,,P)x:, = 0, ^= 1,..X 
^ 1=1 

AII .20 ) lXU, -6j/,o -^nP)^,2 = 0, ^= 1,..X 
^ 1=1 

The relationship between these total number of orthogonality conditions and the various IV 

estimators is summarised in Tables Ala and Tables Alb below. 
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Table Ala: IV/GMM Estimators: Identifying Equations Used (First Difference Model)^ 

Method Disturbance Terms Equations Exogeneity of X Equations 

1R A I I . 2 ) - A . I I 4 ) , A I I . 7 ) - A I I . 1 1 ) AII.17)-AII.20) 

"W .^^.^..^^^.^^y^.^j:^:. - .^.^^.^..^^^ 
"57^ ^^^^.^.^j™.^j^j^^;^p.^.^ - _,„..„™^.„..^^.^^^ 

•57^ ^j.^^^.^.^j..^^„.^™.;.^.^.^.^ - _„„..„.„^.^.^^.^^.. 

"AB .^^...—^^.^^y^..^j:^^ - ^„..„™™.„..̂ ^™^„. 

"W .^^.^.^^^.^^y^.^j:^^ .^.^^.^..^^^ 
TsA^^ "^jj^:"^^jj^ - M"i5)-AiL20) 

Notes: A-H estimators are not appropriate as the time series is not long enough. 

Table Alb: IV/GMM Estimators: Identifying Equations Used (Levels Model) 

Method 

G-BNran'"^ 

G-BNran^^ 

G-BNran^'^ 

Jjj(a) 

'"W^ 
Jjjro 

jg-a) 

AM^^ 

jgc) 

WB 

wW 

ABov 

Disturbance Terms Equations 

AII2) - AIM), AII.7) - AII.9) 

AII2) - AIM), AII.7) - AII.9) 

AII2) - AIM), AII.7) - AII.9) 

AII2) - AIM), AII.7) - AII.9) 

AII2) - AIM), AII.7) - AII.9) 

AII2) - AIM), AII.7) - AII.9) 

AII2) - AIM), AII.7) - AII.9) 

AII2) - AIM), AII.7) - AII.9) 

AII2) - AIM), AII.7) - AII.9) 

AII2) - AIM), AII.7) - AII.9), 

AIL 10), AIL 11) 

AII2) - AIM), AIL7) - AII.9), 

AIL10),AIL11) 

AII2) - AIM), AIL7) - AIL9), 

AIL 10), AIL 11) 

Exogeneity of ̂ Equations 

AIL16)-AIL19) 

AIL16)-AIL19) 

AIL16)-AIL19) 

AIL 13), AIL 14), AIL 17) - AII.20) 

AIL 13), AIL 14), AII.17) - AIL20) 

AIL13), AII.14), AII.17) - AII.20) 

AIL12)-AII.20) 

AIL12)-AIL20) 

AIL12)-AII.20) 

AIL 17),-AIL 18) 

AIL15),AIL17)-AIL19) 

AIL12)-AII.20) 
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Appendix III: Simulation Results for the Fixed Effects Estimators 

Table A2: Estimators of 6 in the Dynamic Fixed Effects Model, T = 4,N = 25, 

Mean Bias Mean Squared Error Range of Bias Method 

OLS 

Within 

Bl^'^ 

A OLS 

AH 

AfT (Q^) 

AH'iQ^ 

AR 

AR" (Q^) 

AR\Q^ 

ST^'^ {Q^ 

ST^'^Ql'") 

57^*>(Q,) 

ABiQ^ 

AB\n^ 

AB (Q^) 

AB' (Q^) 

5A/<̂ ) 

GMM_F1 

GMM_F2 

0.626961 

0.02223 

0.092606 

0.027923 

0.060932 

0.060932 

0.060837 

0.025142 

0.025142 

0.025012 

0.092606 

0.123255 

0.092606 

0.022702 

0.105704 

0.022702 

0.105704 

0.145435 

0.04596 

0.037867 

0.393384 

0.000766 

. 0.012683 

0.001264 

0.006231 

0.006231 

0.006158 

0.000954 

0.000954 

0.000958 

0.012683 

0.022971 

0.012683 

0.000756 

0.133651 

0.000756 

0.133651 

0.033843 

0.004483 

0.002988 

0.576235 

6.77E-05 

0.003159 

0.000417 

7.35E-05 

7.35E-05 

0.000944 

0.00066 

0.00066 

0.000228 

0.003159 

0.005993 

0.003159 

2.95E-05 

1.81E-04 

2.95E-05 

1.81E-04 

0.00247 

0.000189 

0.000129 

0.657811 

0.068714 

0.254004 

0.083383 

0.195061 

0.195061 

0.187598 

0.087974 

0.087974 

0.089501 

0.254004 

0.555902 

0.254004 

0.067831 

3.29119 

0.067831 

3.29119 

0.710408 

0.173703 

0.162064 

Notes: 

Q = number of Monte Carlo Repetitions = 100. ^ l y | 5 , - 8 p - y ( 6 , - 5 ) ' 

'Min(5i)toMax(6i), 
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Table A3: Estimators ofd in the Dynamic Fixed Effects Model, T = 4, N = 50. 

Range of Bias Mean Bias Mean Squared Error Method 

OLS 

Within 

BI/'' 

A OLS 

AH 

AlT (Q^) 

Af^iQ^ 

AR 

AR" (Q^) 

AR\n^ 

Sf'^ (QA) 

S7^'\QI'") 

57<*)(QJ 

AB(Q^ 

AB\Q^ 

AB (Q^) 

AB' (Q^) 

Bh^^^ 

GMM_F1 

GMM_F3 

Notes: 

'•" See Table A2. 

0.634094 

0.008109 

0.050695 

0.010092 

0.022658 

0.022658 

0.022568 

0.008136 

0.008136 

0.008149 

0.050695 

0.068122 

0.050695 

0.007594 

0.03149 

0.007594 

0.03149 

0.113507 

0.02663 

0.018544 

0.402151 

9.72E-05 

0.003905 

0.00016 

0.000715 

0.000715 

0.000714 

0.000102 

0.000102 

0.000103 

0.003905 

0.008047 

0.003905 

8.56E-05 

2.28E-02 

8.56E-05 

2.28E-02 

0.068733 

0.001524 

0.000684 

0.600266 

0.000239 

0.001824 

0.000237 

0.000222 

0.000222 

6.98E-05 

0.000105 

0.000105 

0.000592 

0.001824 

0.001224 

0.001824 

0.000535 

6.13E-05 

0.000535 

6.13E-05 

0.001609 

0.000227 

0.000377 

0.652773 

0.02626 

0.158318 

0.02943 

0.056046 

0.056046 

0.056903 

0.024882 

0.024882 

0.025736 

0.158318 

0.262963 

0.158318 

0.02383 

1.478822 

0.02383 

1.478822 

2.321198 

0.119583 

0.093935 
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Table A4: Estimators of 5 in the Dynamic Fixed Effects Model, T= 10,N = 2S. 

Mean Bias Mean Squared Error Range of Bias Method 

OLS 

Within 

Bhf'^ 

A OLS 

AH 

AH" (Q^) 

Atti^i^ 

AR 

AR" (n^) 

AR" (Q^ 

57<*) (Q J 

57^''^(Q;'/') 

57<*>(QJ 

ABiQ^ 

AB^Q^ 

AB{Q^) 

AB\Q^) 

BN^^^ 

GMM_F1 

GMM_F3 

Notes: 

'•* See Table A2. 

0.528715 

0.01447 

0.070544 

0.094141 

0.043144 

0.043144 

0.041868 

0.019785 

0.019785 

0.019916 

0.070544 

0.195972 

0.070544 

0.012862 

0.374869 

0.012862 

0.374869 

0.229236 

0.051264 

0.021225 

0.279573 

0.000318 

0.007827 

0.009384 

0.00318 

0.00318 

0.002992 

0.000603 

0.000603 

0.000601 

0.007827 

0.074054 

0.007827 

0.00026 

0.914585 

0.00026 

0.914585 

0.173915 

0.004914 

0.000913 

0.515311 

2.58E-05 

0.000325 

0.052919 

0.001558 

0.001558 

0.00039 

0.000581 

0.000581 

0.000583 

0.000325 

0.001611 

0.000325 

0.000147 

0.000835 

0.000147 

0.000835 

0.002428 

0.00147 

0.000143 

0.540887 

0.047925 

0.209585 

0.155376 

0.1854 

0.1854 

0.1859 

0.068485 

0.068485 

0.063629 

0.209585 

1.008407 

0.209585 

0.042427 

6.314226 

0.042427 

6.314226 

3.097474 

0.191849 

0.131132 
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Table AS: Estimators of 5 in the Dynamic Fixed Effects Model, T = J0,N = 50. 

Mean Bias Mean Squared Error Range of Bias Method 

OLS 

Within 

BN^'^ 

A OLS 

AH 

AftiQ^) 

AH'iQ^ 

AR 

AR\h^) 

AR\Qd 

sf''\Q^ 

57<^)(Q-/^) 

Sf^Cl,) 

ABiQ^ 

AB^(n^ 

AB(Cl^) 

AB\C1^) 

5iV<̂ ) 

GMM_F1 

GMM_F4 

Notes: 

'"" See Table A2. 

0.532876 

0.003836 

0.045384 

0.024326 

0.014663 

0.014663 

0.014543 

0.007418 

0.007418 

0.007343 

0.045384 

0.110731 

0.045383 

0.004269 

0.097396 

0.004269 

0.097396 

0.146942 

0.033789 

0.028738 

0.283967 

2.57E-05 

0.003057 

0.000671 

0.000335 

0.000335 

0.000333 

8.09E-05 

8.09E-05 

8.01E-05 

0.003057 

0.021933 

0.003057 

2.99E-05 

0.127879 

2.99E-05 

0.127879 

0.049532 

0.002097 

0.001576 

0.522233 

7.83E-08 

0.001725 

0.001507 

9.43E-05 

9.43E-05 

7.57E-05 

3.12E-05 

3.12E-05 

2.78E-05 

0.001725 

0.001822 

0.001725 

5.14E-05 

0.000378 

5.14E-05 

0.000378 

0.006799 

0.000157 

3.77E-05 

0.539038 

0.015 

0.135072 

0.053246 

0.055326 

0.055326 

0.055273 

0.022434 

0.022434 

0.023025 

0.135072 

0.422576 

0.135072 

0.01642 

2.662699 

0.01642 

2.662699 

1.054854 

0.121882 

0.103539 
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Appendix IV: Simulation Results for the Random Effects Estimators 

Table A6: Estimators ofh in the Dynamic Random Effects Model, T = 4,N = 25. 

Method 

OLS 

Within 

FGLS 

BN^"^ 

BN"" 

BN^'^ 

f^a) 

//7<*> 

f^c) 

Al^"^ 

AJ^'^ 

AK^'^ 

WB 

WB* 

WBCPZC,) 

WB' (An) 

ABov (Q;J 

ABov (Q;) 

Notes: 

'"• See Table A2. 

Mean Bias^ 

0.393918 

0.433624 

0.415627 

0.524715 

0.490185 

0.496658 

0.495023 

0.599695 

0.508347 

0.584756 

0.586823 

0.586154 

0.481925 

0.400603 

0.49612 

0.456712 

2.94097 

5.229269 

Mean Squared Error^ 

0.161595 

0.203912 

0.161595 

0.745830 

0.424652 

0.466430 

0.494498 

2.306882 

0.722328 

0.362804 

0.364954 

0.364290 

0.374013 

0.210255 

0.384152 

0.312176 

91.80679 

183.0042 

Range of Bias"* 

0.151584 

0.034334 

0.163908 

0.003487 

0.000721 

4.39E-05 

0.00357 

0.015717 

0.006374 

0.103801 

0.100193 

0.102883 

0.007922 

0.016837 

0.005073 

0.012567 

0.005289 

0.065776 

0.571731 

0.71087 

0.611003 

4.685131 

3.491835 

2.912157 

3.088249 

13.77857 

6.088942 

0.920026 

0.91939 

0.919934 

2.079929 

1.140163 

1.875037 

1.794976 

82.80889 

96.12697 
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Table A6 (cont): Estimators of 6 in the Dynamic Random Effects Model, T = 4,N = 25. 

Method Mean Bias Mean Squared Error Range of Bias 

AOLS 

AH 

AfTiQ^ 

AH'(n^) 

AR 

AR'(Q^ 

AR\Cl^) 

ST^'^ (QA) 

SJ^'^Ql'/') 

SJ^'HQ,) 

ABiQ^ 

AB^(n^ 

AB(Q^) 

AB\Q^) 

5A/<̂ ^ 

BI^^\Q^) 

GMM_R1 

GMM_R2 

Notes: 

'"' See Table A2. 

0.637704 

2.462849 

0.776385 

0.761807 

2.04976 

0.601406 

0.581013 

0.582355 

0.741805 

0.581547 

0.721149 

1.179342 

0.819952 

0.496043 

0.744876 

0.756441 

0.232456 

0.231362 

0.422294 

22.16758 

1.060268 

0.991632 

16.05741 

0.665818 

0.622498 

0.681493 

1.190795 

0.548405 

0.877135 

36.20289 

1.087605 

0.350279 

1.160283 

1.151141 

0.095405 

0.097492 

0.316655 

0.002307 

0.015223 

0.016161 

0.00814 

0.023453 

0.00872 

0.010648 

0.001692 

0.001725 

0.013853 

0.000233 

0.020533 

0.022255 

0.006272 

0.023782 

0.000807 

0.002344 

0.924967 

27.48942 

5.054092 

3.883861 

26.88921 

3.386397 

3.531342 

4.520265 

5.615191 

2.210813 

2.840147 

59.54117 

3.001129 

1.60222 

5.755997 

5.893527 

0.854169 

0.837758 
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