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Abstract 

Cragg and Donald (1996) have pointed out that the asymptotic size of 

tests for overidentifying restrictions can be much smaller than the 

asymptotic nominal size when the structural equation is partially 

identified. This may lead to misleading inference if the critical values 

are obtained from a chi-square distribution. To overcome this problem 

we derive the exact asymptotic distribution of the Byron test statistic. 

This allows the calculation of asymptotic critical values and p-values 

corrected for possible failure of identification.  
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1. Introduction 

Tests for over-identifying restrictions are certainly one the most important tools 

available to practitioners for detecting misspecification of linear structural equations. 

They have been studied, among many others, by Sargan (1958), Basmann (1960a), 

Basmann (1960b), Byron (1974) and Hansen (1982).  

 Over-identification is distinct from the concept of identification which has 

recently attracted a lot of attention in econometrics. Over-identification refers to the 

compatibility between the structural equation and the reduced form, so that tests for 

over-identification serve as checks for the coherency of structural equation and 

reduced form. On the other hand, identification pertains to the fact that some of the 

structural parameters may not be uniquely defined given a correctly specified model. 

The implication of having a structural equation that is misspecified or unidentified are 

very different. In the first case, the researcher can try to improve the model, hoping to 

find one that is not clearly misspecified. In the second case, the model use is well 

specified, but it is not informative about the parameters of interest. 

 Tests for over-identifying restrictions are often investigated taking 

identification of the structural parameters for granted. However, Phillips (1989), Choi 

and Phillips (1992) and Staiger and Stock (1997) have convincingly argued that 

identification of the structural parameters may fail in very common situations. 

Recently, considerable attention has been given to the fact that the parameters of a 

linear structural equation may be unidentified (e.g Sims (1980), Sargan (1983), 

Phillips (1983) and Hillier (1985)), partially identified (e.g. Phillips (1989) and Choi 

and Phillips (1992)) or weakly identified (e.g. Staiger and Stock (1997)). Concerns 

have been raised about the severity of the consequences of various forms of lack of 

identification of econometric models. However, the robustness of tests for over-

identification to identification failures has not been fully studied. 

 Cragg and Donald (1996) have shown that commonly used tests for over-

identification may lead to misleading inference when identification fails. Precisely, 

they show that lack of identification tends to concentrate the probability mass of a test 

statistic for over-identification around zero. Therefore, such tests tend to suggest a 

correct specification more often than one would expect under classical conditions. 

 In this paper, we investigate the  properties of tests for over-identification and 

focus on their robustness to partial identification in the spirit of Phillips (1989) and 
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Choi and Phillips (1992). By refining results of Cragg and Donald (1996), we derive 

an asymptotic representation of the Byron test statistic that holds when identification 

or the over-identifying conditions fail. This allows us to find a closed form expression 

for the asymptotic distribution of Byron test that can be used to calculate asymptotic 

critical values under partial identification. 

 We propose a procedure to consistently test for over-identifying restrictions 

that has the correct asymptotic size in models that are only partially unidentified. Our 

method is based on the test statistic suggested by Byron (1974) (or the asymptotically 

equivalent statistic recommended by Basmann (1960a) and Basmann (1960b)) for 

which we modify the critical values to take into account the estimated rank of the 

matrix of correlations between the endogenous variables included as regressors in the 

structural equation and the instruments. Our procedure differs from the one suggested 

by Cragg and Donald (1996) in that (i) we modify the critical values of existing tests 

rather than the test statistics themseves; and (ii) we do not need to establish which 

structural parameters are identified and which ones are not. A further contribution of 

our work is the realization that the problem of deriving the asymptotic distributions of 

tests for over-identifying restriction using a GMM approach can be considerably 

simplified using simple invariance arguments. 

 The paper is structured as follows. Section 2 presents a commonly used Linear 

structural equation model, briefly discusses identification and over-identification. 

Section 3 formulates the testing problem in a GMM framework, and lists the 

assumptions used. Section 4 investigates the asymptotic properties of Byron test for 

over-identifying restrictions. Some numerical results are presented and discussed in 

Section 5. Section 6 concludes.  Proofs are in the appendix. 

2. The model 

We consider a linear structural equation of the form 

(1) 1 2 1y Y Z uβ γ= + +  

where 1y  and  are, respectively, a (2Y 1T × ) vector and a (T ) matrix of 

endogenous variables, 

n×

1Z  is a ( 1T k× ) matrix of exogenous variables, and u  is a 

( ) vector of random variables. The structural parameters 1T × β  and γ  are of 

dimension ( ) and ( ), respectively. The reduced form associated with 1n× 1 1k × (1) is 

(2) [ ] [ ]1 2 1 2 1 2, ,y Y Z Z v V= Φ + Π +  
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where 2Z  is a ( 2T k× ) matrix of exogenous variables excluded from the structural 

equation with , and the random matrix 2k ≥ n [ ]1 2,v V  is partitioned conformably to 

[ ]1 2,y Y . The reduced form parameters Φ  and Π  are of dimension ( ) and 

( ) respectively. We also assume that the rows of 

1 1k n× +

2 1k n× + [ ]1 2,v V  conditional on 

[ ]1 2,Z Z  have covariance matrix Ω  of dimension ( 1 1n n+ × + ). 

 Practitioners tend to interpret the i-th component of β  as the unit change in 

the endogenous variable on the left-hand-side of (1) caused by a unit change in the i-

th endogenous variable on the right-hand-side of (1). This, often unspoken, causality 

relation leads to the specification of the structural equation in (1), and prevents 

practitioners from specifying the structural equation with no explicit normalization as 

advocated by Hillier (1990), despite its advantages (see also Hillier (2006)). 

 By specifying the reduced form (2) we are implicitly assuming that the 

conditional distribution of [ ]1 2,y Y  given [ ]1 2,Z Z  can provide information about , 

 and Ω , and functions thereof only. The structural parameters are regarded as 

functionals on the space of distributions of 

Φ

Π

[ ]1 2,y Y  given [ ]1 2,Z Z , and can be written 

in terms of the reduced form parameters. To see this we partition [ ]1 2,πΠ = Π  and 

[ ]1,Φ2φΦ =  conformably to [ ]1 2,y Y  and insert the reduced form (2) into the 

structural equation (1) to obtain 

(3) ( )1 1 2 1 1 1 2 2 2 2 1Z v Z V Zφ π φ β γ+ Ζ + = + Ζ Π + + + u . 

For the structural equation to be compatible with the reduced form we must have 

(4) 1 2π β= Π  

(5) 1 2φ β γ= Φ +  

and 

(6) 1 2v V uβ= + . 

Equation (4), (5) and (6) define β , γ  and u , and are known as the overidentifying 

restrictions (e.g. Byron (1974) and Hausman (1983)), or the identification condition 

(e.g. Phillips (1983)).  

The following result is well known. 
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Proposition 1. Necessary and sufficient conditions for the structural parameters β  to 

be identified is that (i) equation (4) holds and (ii)  2Π  has rank . Necessary and 

sufficient condition for the structural parameter 

n

γ  to be identified without further 

restrictions on the reduced form parameter 2Φ   is that β  is identified. 

 

 Notice that even if β  is unidentified, the parameter γ  could be identified 

provided further restrictions on 2Φ  are imposed. For example, if 2Π  has rank zero, 

then γ  is identified if  (e.g. Phillips (1989) and Choi and Phillips (1992)). 2 0Φ =

 Proposition 1 acknowledges that identification of the structural parameters 

relies on the simultaneous conditions that equation (4) holds and 2Π  has rank .  The 

first condition is the null hypothesis for tests of over-identifying restrictions, the 

second one is the focus of tests of identification. Notice that although both are needed 

to achieve identification, only one of the conditions is usually tested with the other 

being regarded as satisfied.  

n

3. Byron test statistic and assumptions 

Equation (4) can be written in the equivalent form  

(7) ( ) ( )
21 ( ) 1' 0QQ M Qπ πΠ =  

where  is an arbitrary non-singular (Q 2k k2× ) fixed matrix, and for any ( ) 

matrix 

2k n×

A  of rank , r
2

†
A kM I AA= −  and  denotes the Moore-Penrose inverse of †A

A . Thus, a test for the validity of the over-identifying restrictions (4) is just a test for 

the null hypothesis that (7) holds against the alternative that it does not. A GMM test 

for the validity of (7) (or equivalently (4)) can be based on  

(8) ( ) ( )
2

ˆ ˆ1 1( )
ˆ ˆˆ ˆ'

Q
Q M Qπ π

Π
 

where  is the OLS estimator of 1 2
ˆˆ ,π⎡ Π⎣ ⎤⎦ [ ]1 2,πΠ = Π  in the reduced form given in 

(11) and  can be chosen as Q̂ ( )1

1/ 21
2 2

ˆ ' ZQ T Z M Z−= . This justifies the use of a 

statistic having the asymptotic form 

(9) 
( ) ( )
( )

2
ˆ ˆ1 1( )

* *
11.2

ˆ ˆˆ ˆ'

1 '
Q

T Q M Q
B

π π

β β ω
Π=

+
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where *β  denotes the canonical coefficients of the endogenous variables  

(10) ( )* 1/ 2 1/ 2 1/ 2
22 22 21 11.2/β β ω ω−= Ω −Ω  

 in the structural equation (e.g. Phillips (1983)), 11.2 11 21 22 21'ω ω ω ω= − Ω  and  

  11 21

21 22

'ω ω
ω
⎛ ⎞

Ω = ⎜ ⎟Ω⎝ ⎠

is partitioned conformably to [ ]1 2,y Y . Under standard assumptions ( )2
2

ˆ pB k nχ→ −  

if β  is identified. Notice that the denominator of (9) is the variance of the error in the 

structural equation. 

The tests for over-identifying restrictions of Sargan (1958), Basmann (1960a),  

Basmann (1960b) and Hansen (1982) replace the denominator of (9) with 

 where  is the vector of TSLS residuals in ˆ ˆ' /TSLS TSLSu u T ˆTSLSu (1). The test of Byron 

(1974) – denoted by B̂   – uses β  and Ω   estimated, respectively, with TSLS and .  

Provided the reduced form is correctly specified, a consistent estimator of Ω  can be 

obtained from equation 

Ω̂

(2), and this will not be affected by failure of identification of 

β .  

 In order to derive the asymptotic distribution of B̂  we make essentially the 

same assumptions as Cragg and Donald (1996). 

 

Assumption 1.  The following conditions hold: 

(a)  where  is a fixed, finite, positive definite ( ) 

matrix; 

1

1
2 2

ˆ ' p
ZQ T Z M Z Q−= → Q 2 2k k×

(b) [ ] [ ] [ ]
1 21 2 1 2,

ˆ , ' , / p
Z Zy Y M y Y TΩ = → Ω ; 

(c) The OLS estimator of [ ]1 2,πΠ = Π ,  

(11) ( ) [ ]
1 1

1

1 2 2 2 2 1 2
ˆˆ , ' 'Z Z ,Z M Z Z M y Yπ

−
⎡ ⎤Π =⎣ ⎦  

satisfies 

(12) [ ]( ) ( )1/ 2 1
1 2 1 2

ˆˆ , , 0,dT Nπ π −⎡ ⎤Π − Π → ⊗Ω⎣ ⎦ Q . 

 

Assumption 2. The rank of  is  where 2Π 1n 10 n n≤ ≤  and is unknown. 
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 Assumption 1 is standard. Assumption 2 allows the structural equation to be 

partially identified in the sense of Phillips (1989) and Choi and Phillips (1992). Notice 

that our set-up can be further simplified without loss of generality: the problem of 

testing the null hypothesis that (7) holds against the alternative that it does not, and 

the statistic (9) have an invariance property described by the following lemma that has 

not been noticed before. This allows us to simplify the set-up considerably without 

compromising the generality of our results.  

 

Lemma 1.  Both the testing problem and B  are invariant to the transformations 

(13)  1 2 1 2
ˆ ˆˆ ˆ, , Lπ π⎡ ⎤ ⎡ ⎤Π → Π⎣ ⎦ ⎣ ⎦

where L  is the ( 1n n 1+ × + ) matrix 

(14) , 11

21 22

0l
L

l L
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

with  being  a non-singular (22L n n× ) matrix and . Therefore, there is no loss 

of generality in imposing the following restrictions: 

11 0l >

(a) 1nI +Ω = ; 

(b) [ ]2 21,0Π = Π  where   is a matrix of dimension (21Π 2k n1× ) with rank , 

and  denotes a  ( ), , matrix of zeros; 

10 n n≤ ≤

0 2 2k n× 2n n n= − 1

(c) *β  can be partitioned conformably to 2Π  as * * *
1 2', ' 'β β β⎡ ⎤= ⎣ ⎦  and *

1β   is 

identified while *
2β  is unidentified. 

 

 The particular block-triangular form of the matrix L reflects the fact that post 

multiplication by L must leave unchanged both the over-identifying condition (4) and 

the rank of . If we would insist that L is non-singular only, one or both of these 

conditions would be violated. 

2Π

 We now need to specify in what way the compatibility condition (4) may be 

violated. In this case 1π  is not a linear combination of the columns of , that is,  we 

set 

2Π

(15) * 1/ 2
1 21 1 21Tπ β β− ⊥ ⊥= Π + Π  

where ( )  and 
2 121 21' k nQ I⊥ ⊥
−Π Π = ( )21 21' 0Q ⊥Π Π = . 
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4. Asymptotic properties of Byron test statistic B̂  

In this section we study the asymptotic properties of B̂ .  

 

Theorem 1.  Suppose that Assumptions 1 and 2, and equation (15) hold.  Then 

(16) 
2 2

ˆ
1 '

dB b
r r
τ

→ =
+

 

where 

(17) ( ) ( ) ( )( )1/ 21 1* *
2 1 1| ' ' / 1 ' , 'r Nδ δ δ δ β β β δ δ− −⊥ +∼  

(18) 2
2 * *

1 1

'
| ,

1 '
M

k n δβ β
τ δ χ

β β

⊥ ⊥⎛ ⎞
−⎜ ⎟+⎝ ⎠

∼  

and 

(19) ( )2 1 2
0, k n nN I Iδ − ⊗∼ . 

Moreover,  and 2r τ  are independent conditional on δ . 

 

 Theorem 1 gives an explicit asymptotic representation for the distribution of 

B̂ . Several known results can be obtained as special cases. If the model is identified 

(2
2

ˆ d )B k nχ→ −  (e.g. Byron (1974)). For local failure of the compatibility condition 

(4)  but with rank of  equal to , 2Π n ( )( )2 *
2 1

ˆ , ' / 1 'dB k n *
1χ β β β β⊥ ⊥→ − + , 

indicating that the test is asymptotically unbiased and consistent.  

 If 0β ⊥ =  and the rank of 2Π  equals 1n n<  then  and 

 are independent. Notice that in this case 

(2
2k nτ χ −∼ )

)( )( 1
2 | 0, 'r Nδ δ δ −∼

{ } (2
20

ˆPr
c

)B c d kχ≥ ≤ −∫ n  (c.f. Theorem 4 of Cragg and Donald (1996)).  The 

following corollary shows that in such a case B̂  has a non-standard non-central chi-

squared distribution. 

 

Corollary 1.1  Suppose that Assumptions 1 and 2, and equation (15) hold.  If  

and the rank of  equals  then the asymptotic distribution of 

0β ⊥ =

2Π 1 1n n n n< = + 2 B̂   is 
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(20) ( )
( )

( )

2

2

2
2

2 1
/ 2 1/ 2

1 2

/ 2 2 2 1

1

1
12 ; ;

2 2 212
2 2

n

k nb
i
n

k n

i

k n i
ne b bpdf b

k n k n i

− −−
=

−

=

− −⎛ ⎞Γ +⎜ ⎟ ⎛ ⎞⎝ ⎠= Ψ⎜ ⎟− − − +⎛ ⎞ ⎛ ⎞ ⎝ ⎠Γ Γ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∏

∏
 

where  denotes a Tricomi confluent hypergeometric function (e.g. Lebedev (1972)). 

Moreover,  

Ψ

(21) 

( )
( )

2

2
2

2

2

2 1

1

/ 2 2 2 1

1

2
2 2 2

2 2
2 2

1
2

2 2 2
2 2

2 2

2
2

12
2 2

1 1, ; 1, ;
1 2 2 2 2 2

2

2 1 12 3, ; 1, ;
1 2 2 2 2 2

2

n

i
n

k n

i

k n

k n

k n i

CDF b
k n k n i

n k n k nb bF
n k n

n k n k nb bF
n k n

π

π

=

−

=

−

− +

− −⎛ ⎞Γ⎜ ⎟
⎝ ⎠= ×

− − − +⎛ ⎞ ⎛ ⎞Γ Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎧
⎪ − − −⎪ ⎛ ⎞+ −⎨ ⎜ ⎟+ −⎛ ⎞ ⎝ ⎠⎪Γ⎜ ⎟⎪ ⎝ ⎠⎩

− − + − +⎛ ⎞− +⎜− +⎛ ⎞ ⎝ ⎠Γ⎜ ⎟
⎝ ⎠

∏

∏

⎫
⎪⎪
⎬⎟
⎪
⎪⎭

−

 

where  is Gauss hypergeometric function  (e.g. Lebedev (1972)). 2 2F

 

 Thus, we can use Byron’s test for over-identifying restrictions even if the rank 

condition fails. In fact, if we know , equation 1n (21)  allows us to find the correct 

asymptotic p-values for Byron test. If we do not know   we can apply a two-step 

procedure. In the first step the rank of 

1n

2Π  is estimated as . This can be done with 

several consistent methods (e.g. Cragg and Donald (1996) and Robin and Smith 

(2000)) that use only the reduced form of , and, thus, do not involve the over-

identifying restrictions themselves.  In the second step, Byron or Basmann test 

statistics can be calculated and their p-values can obtained from 

1̂n

2Y

(21)  with  replaced 

by . 

1n

1̂n

 Our procedure has two advantages over the one proposed by Cragg and 

Donald (1996) (Section 2.3). First, it is simple and relies on test statistics that are 

computed by standard packages, whereas Cragg and Donald (1996) suggests 

modifying the test statistics. Second, our procedure can be applied without having to 

select the identified parameters.  
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 When the compatibility condition fails and the rank of 2Π  equals , the 

test is consistent, but for local departures as in equation 

1n n<

(15) it is difficult to 

disentangle the two effects as the following result shows. 

 

Corollary 1.2  Suppose that Assumptions 1 and 2, and equation (15) hold.  If the rank 

of  equals  then the asymptotic distribution of 2Π 1 1n n n n< = + 2 B̂   is 

(22) 

( )
( )

( )

2

2

2

2

/ 2 1/ 2

/ 2 2

2 1

1

2 1

1

2 1 2

2

0 0 2 1

2
2

1
12 exp
21

2
1

2 2 1 1; ;
2 2 2 2! !

2

k nb

k n

n

i
n

i

i j i
j j

j i

j i

e bpdf b
k n

k n i

k n i

k n n
nb b

2
j i

k ni j

λ

λ

− −−

−

=

=

+∞ ∞

= =

+

=
−⎛ ⎞Γ⎜ ⎟

⎝ ⎠
− −⎛ ⎞Γ +⎜ ⎟ ⎧ ⎫⎝ ⎠× −⎨ ⎬
− − +⎛ ⎞ ⎩ ⎭Γ⎜ ⎟

⎝ ⎠
− +⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎛ ⎞⎡ ⎤ ⎛ ⎞× Ψ⎜ ⎟ ⎜ ⎟⎢ ⎥−⎛ ⎞ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠

⎜ ⎟
⎝ ⎠

∏

∏

∑∑ + +

 

where  denotes a Tricomi confluent hypergeometric function (e.g. Lebedev (1972)), 

and 

Ψ

( )* *
1 1' / 1 'λ β β β β⊥ ⊥= + . 

 

 Using results of  Cragg and Donald (1996) one can easily show that  Byron’s 

test statistic is asymptotically equivalent to Basmann’s test statistic in all situations 

considered in this paper. Therefore, Theorem 1 and its corollaries also characterize the 

asymptotic distribution of the latter. 

5. Numerical results 

We now illustrate some of the properties of the asymptotic distribution of Byron’s test 

statistic using graphs. First we study the effect of lack of identification on the density 

of B̂ . Figure 1 shows the typical density of B̂  for fixed 2 10k =  and , and 

 (solid line),  (dotted line), 

3n =

2 0n = 2 1n = 2 2n =  (dashed line) and  (dotted-

dashed line). Clearly, the density of 

2 3n =

B̂  tends to shift to towards the origin as the 

number of unidentified components of β  increases. Therefore, if we choose the 
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critical value for the test from the tables of a ( )2
2k nχ − , the test may be seriously 

undersized as Table 1 shows. This is especially true for small . 2k

 

[Figure 1 approximately here] 

[Table 1 approximately here] 

 

 Next we consider the combined effect of lack of identification and violation of 

the compatibility conditions. Figure 2 shows a typical graph for the asymptotic 

density of B̂  for ,  when 2 10k = 3n = 2 0n = , i.e. the structural parameters are 

identified, (dashed line),  and no violation of the over-identifying restrictions 

(dashed line), and  and violation of the over-identifying restrictions with 

2 2n =

2 2n =

12λ =  (solid line). The dot-dashed line is the density of a non-central chi-squared 

distribution with   degrees of freedom and non-centrality parameter equal to 2 7k n− =

12λ = . The effect of violation of the over-identifying restrictions on the density of B̂  

when  are not as marked as in the case where the structural parameters are 

completely identified. 

2 2n =

 Figure 3 shows the potential loss of asymptotic power due to the use of the 

incorrect critical values from a chi-square distribution when the rank condition is 

violated. The striking, but not unexpected, feature is that the test is asymptotically 

biased if the structural equation is partially unidentified and the critical values are not 

adjusted. 

 

[Figure 2 approximately here] 

[Figure 3 approximately here] 

 

 Next, we assess the goodness of the approximation offered by the asymptotic 

theory. We compare the asymptotic and the small sample size of Byron test for 

different values of T  and . Table 2 shows some representative results for   

and . In Table 2, first two columns, the size is based on the critical values 

obtained from 

2n 4n =

2 8k =

(20). However, for the results in the first column  is calculated by 

estimating  with the procedure suggested by Robin and Smith (2000) while, 

2n

1n n n= − 2
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in the second column,  is taken as known. The third column contain the size of the 

test when the critical values are obtained from a chi-square distribution 

2n

( )2
2k nχ − . 

The random variates are generated as independent ( ) (2 1 2
ˆ ,n nT k W T k I+− Ω −∼ )

)

 and 

, and (1

2

1/ 2
1

ˆ 0,
0 0

n
k n

I
T N I I

β
−

+

⎛ ⎞
Π + ⊗⎜ ⎟

⎝ ⎠
∼ β  is a vector of ones, and  is taken to be 

an identity matrix. The size of the rank test used in estimating the rank of  is 

Q̂

2Π

( ) ( )=.01ln 100 /ln Tα . The number of replications employed in the Monte Carlo test is 

30,000.  

 It is evident from Table 2 that there are only small differences between the 

first two columns, so that estimating  does not have a significant effect on the size 

of Byron test when the critical values are obtained from Corollary 1.1. The size of the 

classical Byron test is strongly affected by failure of the rank condition. For small 

sample size ( , say) all three versions of Byron test seem to be oversized 

independently of the method used to calculate the critical values 

2n

100T <

 

[Table 2 approximately here] 

6. Conclusions 

Classical tests for over-identification may be seriously misleading in partially 

identified linear structural equations, however, by modifying the critical value of 

Byron or Basmann tests to take into account such a possible failure of identification, 

we can construct a consistent testing procedure having asymptotically the correct size. 

In contrast to the method of Cragg and Donald (1996) our procedure can be 

implemented without the need to modify the test statistic and to select the identified 

parameters. 

Appendix: Proofs 

Proof of Lemma 1 

Invariance of the testing problem. The transformation (13) induces the 

transformations  
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2 2 22 2

1 11 1 2 21

'

L
l l
L L

1π π π
Π →Π = Π

→ −Π =

Ω→ Ω = Ω

 

in the parameter space. Note that if (7) holds then 

 ( ) ( ) ( ) ( )
221 1 1 ( )( )' ' QQQ M Q Q M Qπ π π πΠΠ 1 0= = , 

otherwise ( ) ( )
21 1( )' 0QQ M Qπ πΠ > . 

Invariance of the test statistic. The statistics 1 2
ˆˆ ,π⎡ ⎤Π⎣ ⎦  transform as 

  2 2 22

2 11 2 2

ˆ ˆ

ˆˆ ˆ .

L

l lπ π

Π → Π

→ −Π 1

Replacing these in (9), the numerator changes according to 

 ( ) ( ) ( ) ( )
2 2

2
ˆ ˆˆ ˆ1 1 11 1( ) ( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ' '
Q Q

Q M Q l Q M Q 1π π π
Π Π

→ π . 

It can be easily checked that  2
11.2 11 11.2 11.2lω ω ω→ = , which shows that the statistic is 

also invariant to the transformations (13).  

 It follows that there is no loss of generality to assume that 1nI +Ω = , because 

we can transform the model using  

  
1/ 2

11.2
1/ 2 1 1/ 2

11.2 22 21 22

0
L

ω
ω ω

−

− − −

⎛ ⎞
= ⎜ ⎟

− Ω Ω⎝ ⎠

such that . Note that in this case  1' nL L I +Ω =

 ( )
1/ 2

2 2 22

1/ 2 1
1 11.2 1 2 22 21 ,π ω π ω

−

− −

Π = Π Ω

= −Π Ω
 

and that if (4) holds then *
1 2π β= Π , otherwise *

1 2π β≠ Π . Thus, we can assume that 

the structural equation is in canonical form (e.g. Phillips (1983)). The invariance 

property above also applies to the model when the structural equation is reduced to its 

canonical form. In this case, we can choose another matrix L  of the form 

  
1 0
0

L
H

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

where H  is an ( n ) orthogonal matrix such thatn× [ ]2 21,0HΠ = Π  and the rank of 

 is the same as the rank of 21Π 2Π . That is, if identification fails we can separate 

identified and unidentified components of β  as suggested by Phillips (1989) and 

Choi and Phillips (1992):  
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(23) 
*
1*
*
2

'H
β

β
β

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

and *
1β  is identified while *

2β  is unidentified. 

Proof of Theorem 1 

We first prove the following lemma. 

 

Lemma 2. Suppose that assumptions 1 and 2 and equation (15) hold then: 

(i) , ( )ˆ ˆ 21 21 ' 1pQ
M M oδ

⊥ ⊥
Π
= Π Π +

(ii) ( )
21

1 1
ˆ ˆ22 22

ˆ ˆˆ ˆ' ' pQ
QM Q T o Tδ δ− −

Π
Π Π = + ,  

(iii) ( ) ( ) ( )* 1/ 2 * 1/ 2
21 21 1 1

ˆ ˆˆ' pQ T z W oπ β β β⊥ − ⊥Π −Π = + − + T − , 

(iv) ( ) ( )
21

1 *
ˆ ˆ22 1 1

ˆ ˆˆ ˆ' ' pQ
QM Q T z W o Tπ δ β β− ⊥

Π
Π = + − + 1− , and  

(v) ( ) ( ) ( )
21

1 * *
ˆ ˆ1 1 1 1

ˆ ˆˆ ˆ' ' pQ
QM Q T z W z W o Tπ π β β β β− ⊥ ⊥

Π
= + − + − + 1−  

where , ( )2 1 2
0, k n nN I Iδ − ⊗∼ ( )2 1

0, k nz N I −∼  and ( )2 1 1
0, k n nW N I I− ⊗∼  are 

independent. 

 

Proof of Lemma 2

Let  be partitioned conformably to 2Π̂ [ ]2 21,0Π = Π  as 2 21 2
ˆ ˆ ˆ, 2⎡ ⎤Π = Π Π⎣ ⎦ . Assumption 

1(c) implies that 

(24) ( ) ( ) ( ) ( )1/ 2 1 1/ 2
2 21 22 2 21 1 2

ˆ ˆˆ , , , ,0 , , pT Q x X X o Tπ π − − −Π Π = Π + +  

where ( ) ( 21 2 1, , 0, k n )x X X N I I +⊗∼ . Note that the mapping  is 

continuous (e.g. Forchini (2005)) so that 

2121 QQ M ΠΠ →

( )
2121

ˆ ˆ 1Q pQ
M M oΠΠ

= +  by the continuous 

mapping theorem. Moreover, ( )ˆ 1pQ Q o= + . 

Write . Then, , 

 and 

21 21 21 'QM ⊥ ⊥
Π = Π Π ( )2 1

1/ 2
21 ' 0, k nw Q x N I⊥

−= Π ∼

( )2 1 2

1/ 2
21 2' 0, k n nQ X N I Iδ ⊥

−= Π ⊗∼ ( )2 1 1

1/ 2
21 1' 0, k n nW Q X N I I⊥

−= Π ⊗∼ ,  are 

independent. Then, (i) can be proved as follows 
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( ) ( ) ( ) ( )
[ ] ( )
( )

21 21 21 21

1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ22 22 22 22

1
21 21 21 21

21 21

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ' '

' ' ' ' 1

' 1 .

Q Q Q Q Q

p

p

M M M Q Q M Q Q M

o

M oδ

δ δ δ δ

−

Π Π Π Π

−⊥ ⊥ ⊥ ⊥

⊥ ⊥

⎡ ⎤= − Π Π Π Π⎣ ⎦

= Π Π +Π Π +

= Π Π +

Π̂

 

Equation (ii) follows from (i)  

 

( ) ( ) (
( )
( )

( )

2121

21

1/ 2 1/ 2 1/ 2 1/ 2 1
ˆ ˆ22 22 2 2

1 1/ 2 1/ 2 1
2 2

1 1/ 2 1/ 2 1
2 21 21 2

1 1

ˆ ˆˆ ˆ' '

'

' '

' .

Q pQ

Q p

p

p

QM Q T Q X QM Q T Q X o T

T X Q M Q X o T

T X Q Q X o T

T o Tδ δ

− − − − −
ΠΠ

− −
Π

− ⊥ ⊥ −

− −

Π Π = +

= +

= Π Π +

= +

)

 

To prove (iii) note that  

 
( ) ( ) (

( ) ( )

* 1/ 2 1/ 2 1/ 2 * 1/ 2
21 21 1 21 1 1 21

1/ 2 * 1/ 2
1

ˆ ˆˆ' '

.

p

p

Q T Q x Q X Q o

T z W o T

π β β β

β β

⊥ − ⊥ ⊥ ⊥

− ⊥ −

Π −Π = Π − + Π +

= + − +

)T −

 

Finally, 

 

( )
( )

( ) ( )

21 21

*
ˆ ˆˆ ˆ22 1 22 1 21 1

1 1/ 2 1/ 2 1/ 2 *
2 21 21 1 1 21

1 * 1
1

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ' '

' '

'

Q Q

p

p

QM Q QM Q

T X Q Q x Q X Q o T

T z W o T

π π β

β β

δ β β

Π Π

− ⊥ ⊥ ⊥ ⊥

− ⊥ −

Π = Π −Π

= Π Π − + Π +

= + − +

( )1−  

and  

( ) ( )
( ) ( )
( ) ( ) ( )

21 21

* *
ˆ ˆˆ ˆ1 1 1 21 1 1 21 1

1 1/ 2 1/ 2 * 1/ 2 1/ 2 * 1
1 1 21 21 21 1 1 21

1 * * 1
1 1

ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ' '

' '

'

Q Q

p

p

QM Q QM Q

T Q x Q X Q Q x Q X Q o T

T z W z W o T

π π π β π β

β β β β

β β β β

Π Π

− ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

− ⊥ ⊥ −

= −Π −Π

= − + Π Π Π − + Π +

= + − + − +

( )−

and Lemma 2 is proved. 

 
 
 We can now prove Theorem 1. Write 

 

( )
( ) ( )

( )

21 21

1

ˆ ˆˆ ˆ2 22 22 22

ˆ ˆ

1 1

2 2 1 1

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ' '

ˆ ˆˆ ˆ'
ˆ

ˆ ˆ1 '
ˆˆ ,

ˆ ˆ ˆ ˆ1 ' / 1 '

Q Q

Q

TSLS

r QM Q QM

Q M Q

r r
TB

r r r r

Qπ

π π
τ

τ

−

Π Π

Π

= Π Π Π

=
+

=
+ +
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where  and  are the TSLS estimators of 1̂r 2̂r
*
1β  and *

2β  respectively. Note that 

 from the results of Choi and Phillips (1992). So using the notation of 

Lemma 2 we have that  

( )*
1 1ˆ 1pr oβ= +

 

( )
( )( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( )

21 21

1

ˆ ˆˆ ˆ2 22 22 22 1

11 1 1 *
1

1 *
1

1
*
1

2

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ' '

' '

' ' 1

1
' ' , 1

1 ,

Q Q

p p

p

p

p

r QM Q QM Q

T o T T z W o T

z W o

z W o

r o

π

δ δ δ β β

δ δ δ β β

δ δ δ β
β

−

Π Π

−
− − − ⊥

− ⊥

− ⊥

= Π Π Π

= + + − +

= + − +

⎛ ⎞
= + +⎜ ⎟−⎝ ⎠
= +�

( )1−

)1
1 T −

 

say, and 

(25)  
( )( ) ( ) ( ) (

( )

1 * * *
1 1*

1

1 1

1
ˆ 1 , , / 1 '

.

p

p

T z W M z W o

T o T

δτ β β β β β
β

τ

− ⊥ ⊥

− −

⎛ ⎞
= − + + + +⎜ ⎟−⎝ ⎠

= +

Note that  

  
( ) ( )( )

( ) ( )( )
2 1

2 1

* *
1 1*

1

1/ 2 1/ 2* * * *
1 1 1 1

1
, , 1 '

1 ' / 1 ' ,

k n

k n

z W N I

N I

β β β β
β

β β β β β

⊥ ⊥
−

⊥
−

⎛ ⎞
+ +⎜ ⎟−⎝ ⎠

+ +

∼

∼

and this is independent of δ . So, conditioning on δ  we have 

 
( ) ( ) ( ) ( )( )

( )( )

1/ 2 1/ 21 1* * * *
2 1 1 2 1 1

2 * *
2 1 1

1 ' | ' ' / 1 ' , '

| , ' / 1 ' .

r r N

k n Mδ

β β δ δ δ δ β β β δ δ

τ δ χ β β β β

− − −⊥

⊥ ⊥

= + +

− +

� ∼

∼
 

Conditional independence of these two statistics follows from the fact that 0Mδδ = . 

Proofs of Corollaries 1.1 and 1.2 

The joint density of ( )2, rτ  is 
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(26) 

( )
( ) ( ) ( )

( )

( )
( )

{ }

2

2 2 12

2
2 1 2

/ 2 1
2

1 / 2/ 2 2

1/ 2
2 2

2
0 1 2

'exp
2, e

22 2
2

1 ' ' '
2

; ' exp '
2 4

k n n

k n

n k nk n

n

m m

pdf r
k n

etr I r r

k nF m M m m r dδ

ττ τ
π

δ δ δ δ

τ δ δ

−

− −

− +−

⎧ ⎫−⎨ ⎬ ⎧ ⎫⎩ ⎭= −⎨ ⎬−⎛ ⎞ ⎩ ⎭Γ⎜ ⎟
⎝ ⎠

⎧ ⎫− +⎨ ⎬
⎩ ⎭

−⎛ ⎞
⎜ ⎟
⎝ ⎠

∫
\

xp

)

 

where . To evaluate the integral we transform ( 1/ 2* *
1 1/ 1 'm β β β⊥= + δ  as  

where 

1/ 2VRδ =

'R 0δ δ= >  and  satisfies ( ) 1/ 2'V δ δ δ −=
2

' nV V I= . The Jacobian of the 

transformation is ( ) ( )2 1 22
/ 2 1 / 22 k n nn R − − +− . We also note that the integral over  is 

invariant to the transformation 

2
' nV V I=

1/ 2 1/ 2
2 2' 'R r m R r m H→  where H  is an ( ) 

orthogonal matrix. Then using Theorem 7.4.1 of Muirhead (1982) we have  

2 2n n×

 { }( )
2

1/ 2 2
2 0 1 2

' '

1' ; '
2 4

nH H HH I

netr R r m H dH F r m VV mr R
= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ 2' ' , 

where (dH )  represent the standardized Haar measure on the group of ( ) 

orthogonal matrices. Thus, the integral over  can be evaluated using Theorem 

7.3.4 of Muirhead (1982) to yield after some simplifications 

2 2n n×

0R >

 

( )
( ) ( )

( )

( )( )

( )

( )

2

2

2 1
2 2 2 2 1

2 1

2

/ 2 12 1

2 1 / 2
/ 2 1 / 22 2 2

2
0 1

'

2 1 2 2 2
1 1

2 2

' 1exp exp
2 2 2,

1 '2
2

; ' '
2 4

1 1 '; ; ' ' .
2 2 2 1 '

n

k n
n

k n
n k n n k n

k n
V V I

m m k n

pdf r
k n r r

k nF m I VV m

k n n r rF m VV m dV
r r

τ τ
τ

π

τ

− −

− +
+ − − +

−
=

− +⎧ ⎫ ⎧ ⎫⎛ ⎞− Γ −⎨ ⎬ ⎨ ⎬⎜ ⎟
⎩ ⎭ ⎩ ⎭⎝ ⎠=

−⎛ ⎞ +Γ⎜ ⎟
⎝ ⎠
−⎛ ⎞−⎜ ⎟

⎝ ⎠

⎛ ⎞− +
⎜ ⎟+⎝ ⎠

∫  

The function ( )
2n aΓ  is defined in Theorem 2.1.12 of Muirhead (1982). We now let 

( 2 21 'b r r )τ= +  and transform  to polar coordinates  where  and 

 so that  

2r
1/ 2

2r vq= 'v v =1

02 2'q r r= >

 - 17 - 



(27) 

( )
( ) ( )

( )

( ) ( )

( ) ( )

2
2

2 2 2 2 1

22

2 1

2

2 1

/ 2 1

/ 2 / 22 2

1 / 2/ 2 1

0

2
0 1

'

2 1 2
1 1

1'exp
2 2 exp

22
2 2

exp 1
2

1
; ' '

2 4

1 1; ; ' '
2 2 2 1

n

n
k n

n k n n k n

nn

q

k n
V V I

k nm m
bpdf b b

k n n

qb q q

b qk nF m I VV m

k n n qF m VV m

π

− −

+ − −

− +−

>

−
=

− +⎛ ⎞⎧ ⎫− Γ⎨ ⎬ ⎜ ⎟ ⎧ ⎫⎩ ⎭ ⎝ ⎠= −⎨ ⎬−⎛ ⎞ ⎛ ⎞ ⎩ ⎭Γ Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎧ ⎫− +⎨ ⎬
⎩ ⎭

+⎛ ⎞−
−⎜ ⎟

⎝ ⎠

− +

∫

∫

( )dV dq
q

⎛ ⎞
⎜ ⎟+⎝ ⎠

 

where we used ( ) ( )
2 / 2

2'

2
/ 2

n

v v

dv
n
π

=
Γ∫ . Corollary 1.1 follows easily by setting  in 0m =

(27) and noting that  

(28) ( )
( )2 1 22

2
2

/ 2

2 1'

2

2
n

k n nn

V V I
n

dV
k n

π −

=

=
−⎛ ⎞Γ ⎜ ⎟

⎝ ⎠

∫  

and  

(29) ( ) ( )22
1 / 2/ 2 1 2 2

0

1exp 1 ; ;
2 2

nn

q

n nqb bq q dq− +−

>

⎛ ⎞ ⎛⎧ ⎫− + = Γ Ψ⎨ ⎬ ⎜ ⎟ ⎜
⎩ ⎭ ⎝ ⎠ ⎝∫ 2 2 2

⎞
⎟
⎠

. 

To prove Corollary 1.2 we expand the hypergeometric functions in infinite series and 

integrate term by term. The integral over  is similar to 0q > (29) and produces  

Tricomi confluent hypergeometric function 

 2 2 2 1; ;
2 2 2 2 2j

n n n bj i⎛ ⎞⎛ ⎞ ⎛Γ Ψ + +⎜ ⎟⎜ ⎟ ⎜
⎝ ⎠⎝ ⎠ ⎝

⎞
⎟
⎠

)

)

1

.

s s−

1

. 

The integral over  is 
2

' nV V I=

(30)  
( ) ( ) ( ) ( ) (

( ) (

2 1

2

2

0'

'

' ' ' ' '

' '

n

n

ii j i
k n

sV V I

j s

V V I

i
m I VV m m VV m dV m m

s

m VV m dV

−
−

==

+

=

⎛ ⎞⎡ ⎤− = ⎜ ⎟⎣ ⎦ ⎝ ⎠
∑∫

∫

We now interpret V  as the matrix formed by the first  columns on an 

( ) orthogonal matrix and write the integrand as a top-order zonal 

polynomial, so that by reformulating the integral over a standardized measure we have 

2n

2 1 2k n k n− × −
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( ) ( )
( )

[ ] ( )

( ) [ ] ( ) [ ]

[ ] ( )

( ) ( )

2 1 22
2

12 2
2

2

2 1 22

2 1
2

2 1 22

2

/ 2

2 1' ' '

/ 2

2 1

/ 2

2 1

02' ' ' '
0 0

2
0

'
0 02

2

'2

2

n k n

k n nn
j s n

j s
V V I H H HH I

n

n
j s j sk n nn

k nj s
n

j sk n nn

n

I
m VV m dV C mm H H dH

k n

I
C mm C

k n C I

m m
k n

π

π

π

−

−
+

+
= = =

+ +−

−+

+−

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟−⎛ ⎞ ⎝ ⎠⎝ ⎠Γ ⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

−⎛ ⎞Γ ⎜ ⎟
⎝ ⎠

=
−⎛ ⎞Γ ⎜ ⎟

⎝ ⎠

∫ ∫

( )
( )( )

2

2 1

/ 2
.

/ 2
j s

j s

n

k n
+

+
−

 

Corollary 2.1 follows from noting that  

 ( )
( )

( )( )
( ) ( )( )

( )( )
2 2 2

0 2 1 2 1

/ 2 / 2 / 2
1

/ 2 / 2

i
s j s j i

s j s j i

n n k ni
s k n k n

+

= + +

−⎛ ⎞
− =⎜ ⎟ − −⎝ ⎠

∑ . 

To prove the second part of Corollary 1.1 we need the following lemma. 

 

Lemma 3. For 0δ > ,  and 0b > 0γ ≠ we have 

{ } ( ) ( ) ( )1
1 1 2 2

0

exp / 2 ; ; / 2 / , ; 1, ; / 2 .a

t b

t t F t dt b a F bδ α γ γ α δ δ γ−

< <

− = − +∫ −  

Proof of Lemma 3

Using Kummer transformation we can write the integrand above as  

 ( )1
1 1 ; ; / 2t F tδ γ α γ− − − . 

We let t , so that the desired integral becomes bx=

 ( )1
1 1

0

; ; / 2
x b

t F t dδ γ α γ−

< <

− −∫ t . 

We can now expand the hypergeometric function as a power series and integrate term 

by term to obtain  

 

( ) ( )
( )

( )
( )
( ) ( )
( ) ( )

1 1
1 1

00 0

0

0

1; ; / 2
! 2

1
! 2

.
! 1 2

i
ii

ix b x bi
i i

i

i i
ia

i i

i i i

t F t dt t d
i

b
i i

b b
a i

δ δ

δ

γ α
γ α γ

γ

γ α
γ δ

γ α δ
γ δ

∞
− + −

=< < < <

+∞

=

∞

=

− ⎛ ⎞− − = −⎜ ⎟
⎝ ⎠

− ⎛ ⎞⎛ ⎞= −⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

− ⎛ ⎞= −⎜ ⎟+ ⎝ ⎠

∑∫ ∫

∑

∑

t

 

The results stated in Lemma 3 follows. 
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We can now focus on equation (21). Note that 

(31)

 ( )
( )

( )

2

2

2
2

2 1

/ 2 1/ 21 2

/ 2 2 2 1 0

1

12 ; ;
2 2 212

2 2

n

k nti
n

k n t b

i

k n i
n tCDF b e t dt

k n k n i
− −−=

− < <

=

− −⎛ ⎞Γ⎜ ⎟ ⎛ ⎞⎝ ⎠= Ψ⎜ ⎟− − − +⎛ ⎞ ⎛ ⎞ ⎝ ⎠Γ Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∏
∫

∏
. 

Using equation (9.10.3) of Slater (1960) we can write 

 2 2
1 1 1 1

2 2

11 1 2; ; ; ; ; ;
12 2 2 2 2 2 2 2 2

2 2

n nt b bF F
n n
π π +⎛ ⎞ ⎛ ⎞ ⎛Ψ = −⎜ ⎟ ⎜ ⎟ ⎜+⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠ ⎝Γ Γ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

2 3n b ⎞
⎟
⎠

. 

So, using Lemma 3 we have 

( )

( )

2
2

2

2

1 / 2 1/ 2 / 22 22
1 1

20 0

1 / 2 1/ 2 2
1 1

2 0

2
2 2 2

2 2
2 2

1 1; ; ; ;
12 2 2 2 2 2

2

12 3; ;
2 2 2

2

12 1, ; 1, ;
1 2 2 2 2

2

k n
k nt t

t b t b

k nt

t b

k n

n nt be t dt e t F dt
n

n be t F dt
n

n k n k nb F
n k n

π

π

π

−
− − −− −

< < < <

− + −−

< <

−

⎛ ⎞ ⎛ ⎞Ψ =⎜ ⎟ ⎜ ⎟+⎛ ⎞⎝ ⎠ ⎝ ⎠Γ⎜ ⎟
⎝ ⎠

+⎛ ⎞− ⎜ ⎟⎛ ⎞ ⎝ ⎠Γ⎜ ⎟
⎝ ⎠

− − −
= +

+ −⎛ ⎞Γ⎜ ⎟
⎝ ⎠

∫ ∫

∫

−

2 1
2

2 2 2
2 2

2 2

2

2 1 12 2 3, ; 1, ;
1 2 2 2 2

2

k n

b

n k n k nb bF
n k n
π

− +

⎛ ⎞
⎜ ⎟
⎝ ⎠

− − + − +⎛ ⎞− +⎜ ⎟− +⎛ ⎞ ⎝ ⎠Γ⎜ ⎟
⎝ ⎠

.
2

−

 

Inserting this in (31) we obtain the desired result. 

  

 
 

 - 20 - 



 

5 10 15 20

0.025

0.05

0.075

0.1

0.125

0.15

 
Figure 1: Asymptotic density of  B̂  for 2 10k = , 3n =  and 2 0n =  (solid line),  
(dotted line),  (dashed line) and 

2 1n =

2 2n = 2 3n =  (dotted-dashed line). 
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Figure 2: Comparison of the density of a chi-squared distribution with  degrees 
of freedom (dashed line), the density of a non-central chi-squared distribution with 

 degrees of freedom (dotted-dashed line) and 

2k n−

2k n− 12λ = , the asymptotic density of 
 given in Corollary 1.1 (dotted line), and the asymptotic density of  given in 

Corollary 1.2 (solid line) for , 
Β̂ Β̂

2 10k = 3n = , 2 2n =  and 12λ = . 
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Figure 3: Asymptotic power for the case where the critical values are from a chi-
squared distribution with  degrees of freedom (dashed line) and from the 
distribution in Corollary 1.1 (solid line) for 

2k n−

2 10k = , 4n = , 2 4n =  and [ ]0,15λ∈ . 
 

 
   k2=5 k2=10 k2=20 k2=40 k2=80 

n=1 n2= 0 5.00 5.00 5.00 5.00 5.00 
  1 2.91 3.33 3.70 4.02 4.27 
n=2 n2= 0 5.00 5.00 5.00 5.00 5.00 
  1 2.77 3.26 3.68 4.01 4.27 
  2 1.62 2.16 2.71 3.21 3.64 
n=3 n2= 0 5.00 5.00 5.00 5.00 5.00 
  1 2.59 3.19 3.65 4.00 4.26 
  2 1.47 2.08 2.67 3.19 3.63 
  3 0.88 1.38 1.96 2.54 3.08 
n=4 n2= 0 5.00 5.00 5.00 5.00 5.00 
  1 2.37 3.11 3.62 3.99 4.26 
  2 1.30 1.99 2.63 3.17 3.62 
  3 0.77 1.29 1.91 2.52 3.07 
  4 0.49 0.86 1.40 2.00 2.60 

 
Table 1: Asymptotic size of Byron’s test (in %) using a nominal 5% level from 

( )2
2k nχ −  
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n2 n2 estimated n2 known ( )2
2k nχ −  

  T=25  
0 29.61 23.19 23.19 
1 23.59 21.12 16.42 
2 19.52 19.51 11.70 
3 18.80 18.80 8.94 
4 18.16 18.16 6.56 
  T=50  
0 15.31 12.85 12.85 
1 11.21 11.21 7.89 
2 10.30 10.31 5.12 
3 10.27 10.27 3.35 
4 9.86 9.86 2.51 
  T=100  
0 9.38 9.08 9.08 
1 7.61 7.64 4.89 
2 7.34 7.36 3.05 
3 7.23 7.24 1.94 
4 7.09 7.10 1.34 
  T=400  
0 6.08 6.08 6.08 
1 5.51 5.44 3.32 
2 5.43 5.44 2.04 
3 5.55 5.56 1.24 
4 5.40 5.42 0.76 
  T=1600  
0 5.23 5.23 5.23 
1 5.25 5.26 3.07 
2 5.13 5.13 1.84 
3 4.87 4.89 1.20 
4 5.06 5.08 0.71 
  T=6400  
0 5.15 5.15 5.15 
1 4.91 4.91 2.83 
2 5.02 5.04 1.82 
3 5.07 5.09 1.17 
4 5.07 5.08 0.77 
  Asymptotics  
0 5.00 5.00 5.00 
1 5.00 5.00 2.91 
2 5.00 5.00 1.76 
3 5.00 5.00 1.10 
4 5.00 5.00 0.71 

 
Table 2: Size of Byron’s test (in %) using a nominal 5% value, . 2 8k =

 
 

 - 23 - 



References 

Basmann, R. L. (1960a), "On Finite Sample Distributions of Generalized Classical 
Linear Identificability Test Statistics", Journal of the American Statistical 
Association 55, 650-659. 

Basmann, R. L. (1960b), "On the Asymptotic Distribution of Generalised Linear 
Estimators", Econometrica 28, 97-107. 

Byron, R. P. (1974), "Testing Structural Specification Using the Unrestricted Reduced 
Form", Econometrica 42, 869-883. 

Choi, I. and P. C. B. Phillips (1992), "Asymptotic and Finite Sample Distribution 
Theory for IV Estimators and Tests in Partially Identified Structural 
Equations", Journal of Econometrics 51, 113-150. 

Cragg, J. G. and S. G. Donald (1996), "Testing Overidentifying Restrictions in 
Unidentified Models", Unpublished UBC discussion paper 96/20. 

Forchini, G. (2005), "A Note on the Continuity of Projection Matrices with 
Application to the Asymptotic Distribution of Quadratic Forms", 
Applicationes Mathematicae 32, 51-55. 

Hansen, L. P. (1982), "Large Sample Properties of Generalized Method of Moments 
Estimators", Econometrica 40, 1029-1054. 

Hausman, J. A. (1983), "Specification and Estimation of Simultaneous Equation 
Models", Handbook of Econometrics, Volume, M. D. Intriligator, Amsterdam, 
North-Holland Publishing Company, 391-448. 

Hillier, G. H. (1985), "On the Joint and Marginal Densities of Instrumental Variable 
Estimators in a General Structural Equation", Econometric Theory 1, 53-72. 

Hillier, G. H. (1990), "On the Normalization of Structural Equations: Properties of 
Direction Estimators", Econometrica 58, 1181-1194. 

Hillier, G. H. (2006), "Yet More on The Exact Properties of IV Estimators", 
EconometricTheory, Forthcoming. 

Lebedev, N. N. (1972), Special Functions and Their Applications New York, Dover 
Publications Inc. 

Muirhead, R. J. (1982), Aspects of Multivariate Statistical Theory New York, John 
Wiley and Sons, Inc. 

Phillips, P. C. B. (1983), "Exact Small Sample Theory in the Simultaneous Equation 
Model", Handbook of Econometrics, Z. Griliches, Amsterdam, North Holland, 
449-516. 

Phillips, P. C. B. (1989), "Partially Identified Econometric Models", Econometric 
Theory 5, 181-240. 

Robin, J.-M. and R. J. Smith (2000), "Tests of Rank", Econometric Theory 16, 151-
176. 

Sargan, J. D. (1958), "The Estimation of Economic Relationships using Instrumental 
Variables", Econometrica 26, 393-415. 

Sargan, J. D. (1983), "Identification and Lack of Identification", Econometrica 51, 
1605-1633. 

Sims, C. A. (1980), "Macroeconomics and Reality", Econometrica 48, 1-48. 
Slater, L. J. (1960), Confluent Hypergeometric Functions London, Cambridge 

University Press. 
Staiger, D. and J. H. Stock (1997), "Instrumental Variables Regression with Weak 

Instruments", Econometrica 65, 557-586. 
 

 - 24 - 


	 
	 1. Introduction 
	2. The model 
	3. Byron test statistic and assumptions 
	4. Asymptotic properties of Byron test statistic   
	5. Numerical results 
	6. Conclusions 
	Appendix: Proofs 
	Proof of Lemma 1 
	Proof of Theorem 1 
	Proofs of Corollaries 1.1 and 1.2 
	References 

	WP20COVER.pdf
	 
	Australia 
	November 2006 
	Working Paper 20/06 



	newcover20.pdf
	 
	Australia 
	November 2006 
	Working Paper 20/06 






