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ABSTRACT

Let Zy: j=1L2.k, t=0 +1, #2,..... } be kindependent stationary
processes, with spectral density functions Sz;(w) ,j=1.2...k. In many real world
situations there is a need to compare two or more spectra. Tests to compare spectra
already exist in the literature. In this paper we propose a test, based on Bartlett’s
modification of the likelihood ratio criterion, for comparing two or more spectra .
Simulation studies show that for k=2 this test is comparable and in some cases
better than existing test procedures. The performance of this test for k=3 is also
assessed.

1. INTRODUCTION

In many applications there is a need to compare two or more stationary processes. In
the frequency domain, one way of comparing these processes is to compare their
spectra. Given a stationary process Z,, the spectral density function is defined by

=1 2 .—iwk
Sz(w) - Sy(k)e (.1

k=-w

where y(k) is the covariance function of Z, and w, the frequency, is in the range (0,n).
Hence the spectrum is the Fourier transform of the covariance function. Since y(k) is
an even function (1.1) is often written in the equivalent form

Sz(w) = % [7(o)+2g y(k)cos(wk)] 1.2

Tests of hypotheses for the comparison of spectra have been proposed by various
authors including Jones et al. (1972), De Souza and Thompson (1982), Shumway
(1982), Swanepoel and Van Wyk (1986), Coates and Diggle (1986), Diggle and Fisher
(1991). In this paper we propose a new test statistic based on the Bartlett’s
modification of the likelihood ratio criterion.




Given k independent stationary processes, the hypotheses to be tested are:
Hy:Sz, (w) =8, (w)=......... =8, (W) 0<w<=m
H;: At least two spectra are significantly different from each other.

Using Monte Carlo simulations; we will show that for k=2, this test’s performance,
based on our proposed test statistic, in terms of size and power is comparable and in
some cases better than other existing tests in the literature. Again using Monte Cario
simulations, it will also be shown that the test based on our test statistic performs
reasonably well for k=3.

In section 2 we summarise the basic theory for estimating Sz(w). In section 3 we
briefly discuss some existing procedures for comparing spectra. In section 4 we
present our test and in section 5 we discuss the results of Monte Carlo simulations and
compare some of these results with results obtained by Coates and Diggle (1988) and
Diggle and Fisher (1991). In section 6 we discuss some applications to real data.

2. ESTIMATORS AND ASSOCIATED DISTRIBUTIONS

Let z), 2;, ......z, be a stationary series and let Ay be a data window such that it slopes
down to zero on both sides. Then the spectral ordinates may be calculated for each

2r
frequency w, = TP , pP=0,1,....n, from the smoothed pennodogram

§Z(wp) = -11;(7\.000 + Zilkck cos(wpk)) (2.1)

k=1

where M is cailed the truncation point. It is known that applying an appropriate data
window A, converts S, (wp) in (2.1) into a consistent estimator of Sz(w;). Jenkins

"gz (wp) - . 2 o .
(1963) has shown that W—) approximately follows a "~ distribution with v
Z Wp

degrees of freedom, where v is given by
_2n
— T—-—

2 M

kw-M

v 22)

In order to use (2.1) a suitable truncation point M < n must be chosen.



Another consistent estimate as discussed in Swanepbel and Van Wyk (1986) can be
obtained by averaging the spectral ordinates computed from m partitions each of length
L For each partition the power spectra are computed using (2.1) with M replaced by
n-1. Let glzi(wp) be the spectral ordinate at frequency w, of the j th partition,
j=1,2,...m. Then the consistent estimator of Sz(w,) for each

2mp _ L
WP__i‘;_ p—o,l, ...... > 2 >

where L is even, is given by

§Z(wp)= m'liléz}(wp) _ (2.3)
=

Hence v

approximately follows a + distribution with v degrees of freedom

where v is calculated from (2.2) with M replaced by n-1.

If the observations come from a linear process then under fairly general conditions, it
has been shown by several authors including Anderson (1971), Brillinger and
Rosenblatt (1967), Hannan and Quinn (1970), Lomnicki and Zaremba (1957), that

§ z, (wp) follows asymptotically a normal distribution with

EfS;(w,)] = Sz(w,) 2.4)

n-l1
PR
& 34\ k=—(n-])
Va:[sz_(wp)] ~ sz(wp)—-n---- (2.5)
From (2.4 and (2.5) it can be seen that the asymiptotic mean and variance are
proportlonal to Sz(wy) and S, (w ) respectively. Hence this suggests that a

logarithmic transformation will, perhaps, stabilise the variance. It has been shown in
* Priestly (1981) that

E[ind, (w,)] ~ Ins(w,) (2.6)
> x
Var[lnﬁz(wp)] 0 % | 2.7




Let there be two stationary series z,;,2;,........ 2y, and 244,245,........ Zyq,» Whose

cofee2) Bl

From (2.2) and (2,7) it follows that
vafin§{w,)| =~ 2 (2.8)

which is independent of w,,, p=90,1,.....n.

3. SOME EXISTING TESTS FOR THE COMPARISON OF POWER
SPECTRA

A conventional parametric method of testing for the equality of two spectra as
discussed in Swanepoel and Van Wyk (1986) is as follows: -

generating processes have spectral densities Sz (w) and Sz (w) respectively. The
test of hypotheses is ' '

Hy: Sz (w) =Sz (w) Oswsn
Vs (3.1)
H, : Sz,(W) # SZ, (W)

Let § z(w) and § Z,{w) be the estimators of S, (w) and S, (w) respectively as
defined in (2.3). Since In$,,(w) (i = 1,2) follows approximately a normal distribution
§7_’ (w

)
S z, (w)
1

_ | (1
normally distributed with mean 0 and variance Z(V— +v—] Hence it follows that
] 2

with mean InS, (w) and variance 2/v; , it follows that ln{ } 1s approximately

| (3.2)

+ -~
p=0 nszz(“’p)

v V2

followsay® distribution with n= [-Ié"-]+ 1 degrees of freedom.




In his discussion on discriminant analysis of time series, Shumway (1982) uses as a test
statistic to test for pattern differences between spectra of two groups, the ratio of
spectral estimators at each frequency in the range (0, n), from the two groups. Under
the null hypothesis of no difference, the test statistic follows an F-distribution with
2Ln, and 2Ln; degrees of freedom. n;+1 and ny+1 are the number of times series in
each of the groups and L is the number of frequencies over which smoothing is
introduced in order to obtain consistent estimators of the spectra.

To test (3.1), Swanepoel and Van Wyk (1986) have suggested three non parametric
tests based on a Kolmogorov-Smirnov type statistic, a x” statistic and a Kullback
Leibler type statistic, respectively, for comparing two spectra . The bootstrap method
is applied to obtain estimates of size and power. They have shown that estimates of
size are consistent with the stated significance level and that the bootstrap procedure
has higher power for all their test statistics than when the conventional procedure .
based on (3.2) is used .

To test (3.1), Coates and Diggle (1986) consider non parametric tests analogous to the
maximum periodogram ordinate and cumuiative periodogram tests for white noise, and
a parametric test which is a likelihood ratio test based on a postulated linear model and
a postulated quadratic model for the log spectral ratio. They show that the parametric
approach gives a test that is at least as powerful and sometimes considerably more
powerful than the non parametric tests. However the parametric test based on the
quadratic model has higher power that that based on the linear model.

To test (3.1), Diggle and Fisher (1991) consider two nonparametric tests based on the
Kolmogorov-Smirnov and Cramer-von Mises statistics, respectively. Estimates of size
reveal that the test based on the Cramer-von Mises statistic is generally more
conservative than that based on the Kolmogorov-Smimov statistic. Estimates of power
reveal that the test based on the Kolmogorov-Smirnov statistic has generally better
power than the nonparametric and parametric tests considered by Coates and Dingle
(1986).




4. “HOMOGENEITY OF VARIANCE TEST” FOR THE EQUALITY OF
TWO OR MORE SPECTRA

In this section, we consicler the Bartlett modification of the likelihood ratio test for
homogeneity of variance and we obtain a test statistic based on smoothed averaged

. spectral estimators.

Let {z,j=1,2,...k, t=1,2,...n} be k independent staiionary time series and let Z,,
Z3,....-Zi be their respective generating processes and Sz (w),Sz (W),,........ .Sz, (W)

be their corresponding spectra. We wish to test

Hy:Sz (W) =85 (w)=.......... =8z (W) Oswsn

vs “.1)
H, : At least two spectra are significantly different from each other.

Assume that each series has the same number of observations. Partition each series into
an equal number of parts, say m, each with length L.

Let § Zi,-(wp) denote the estimate of the spectrum Szij(wp) of the i th partition of the
j th process at frequency w,, wherei = 1,2,.m, j=12,..k and

p=12,... L]. Then

§Zj(wp) = igézﬁj(wp) . (4.2)

is a consistent estimator of Szj(wp) ,J=12,..%

It follows that under H,
SZ,' (WP) 2
V—/—7 > ~ %y (4.3)
Sz‘i (Wp) .

where v is defined as in. (2.2).




Let .
2 SZ,‘(WP]
Sj =vj
S w)
zj( P
Then _
1& 2 2
S2 =E§SJ -~ xkv
where vi=vy=__ . =yw=v.

Then by the likelihood ratio criterion and using Bartlett’s resuit

[ ok
Q{") = C”l‘.kvlnsz -vZInS;

(4.4)

@45

(4.6)

is distributed approximately as chi square with (k-1) degrees of freedom, where

(k1]
* v_ka

=)

Hence

5

2

Q=ZQ(V) ~ %n
p=0 .

where 1= ([% +l)(k— 1.

@7

(4.8)




Now

kvinS? - v21n52
i=1

Hence the test statistic in (4.8) becomes

Q= ZC-I kl-{ ZSZ (w ] Vél“(él,(wpl)}

where C is defined as in (4.7).

S. SIMULATION STUDY

5.1 Outline

For k=2, series of lengths n = 64, 256, 1024 were simulated from AR(1) processes

Xe=¢X, +a
and MA(1) processes
X =a.-Qa

where in each case a, is a Gaussian white noise erocess. The series were partitioned
into m = 2, 3, 4 parts for length 64, m = 4, 8, 16 parts for length 256 and m = 16, 20,
24 parts for length 1024. The series length n was adjusted as necessary to ensure that

n/m became a whole number.

(4.9)




Distributional properties of the proposed test, based on Q defined by equation (4.9),
were checked by obtaining estimates of the mean, variance and skewness. Estimates of
size were obtained by applying the test to simultaneous pairs of AR(1) processes for
$=0,0.1,05,09 .
and MA(1) processes for
- 90=0.1,0509
This was done for the vanous values of n and m.

For the various values of m, estimates of power weré obtained by applying the test to
simuitaneous of pairs of AR(1) processes,

forn=64
$=0 vs 0.2,04,06, 08
$=05vs 0.1,0.3,0.7, 0.9,
" for n =256
b=0 vs01,0203,04,0506
$=05vs 0.1,02,0.3,04,06,0.7,0.8,09;
for n= 1024,

=0 vs 0.050,10.15020.25
$=05vs 035,04,045, 055,086, 0.65.

For comparison purpases estimates of power and size were also obtained for the test
based on the statistic X defined in equation (3.2 ). Some of the results of the test based
on Q were also compared to resuits, for the corresponding sample sizes, obtained by
Coates and Diggle (1986) and Diggle and Fisher (1991).

Based on the estimates of size, a criterion was obtained to determine a range of
suitable values of m for a particular value of n. Using this criterion, a value of m was
selected for series of length 198 and 492 for k = 2, and for series of length 252 for

k =3. Estimates of mean, variance, skewness, size and power were obtained.

Each Monte Carlo test used 1000 randomizations. The choice of n and the AR and

MA parameters were made for easy comparison with the resuits of Coates and Diggle
(1986) and Diggle and Fisher (1991). In all cases a Parzen window was used for

+ smoothing.




3.2 Distributional Properties

Theoretical means, variances and measures of skewness for the corresponding degrees
of freedom are shown in table 1. Estimates of mean, variance and a measure of
skewness for the various values of m and n for the test based on Q are shown in tables
2 (a) to (c). In most cases the means are slightly underestimated but reasonably close
to the theoretical means. However the variances tend to be overestimated especially for
very strong autoregressive dependence. Most of the estimated measures of skewness
are shightly larger than the corresponding theoretical measures.

3.3 Size Estimates
Estimates of size for 10%, 5% and 1% significance levels together with their 95%
confidence intervals for tests bases on Q and X are shown in tables 3 (a) to (c). The
first line in each cell of these tables are the estimates of size and the second and third
lines are the lower and upper 95% confidence interval estimates, respectively. For the
test based on Q, for n=64, 256 and 1024 reasonably good estimates of size are
achieved for m=2,3 partitions, m= 6,8 partitions and m=20,24 partitions respectively.
However in all cases, size was overestimated as the AR(1) and MA(1) parameters
tended to their upper limits. In all cases estimates of size for the test based on X are
larger that those for the test based on Q since X is always larger than Q. The estimates
of size based on Q compare favourably with those based of the two non-parametric
tests shown in table 1 of Diggle and Fisher (1991). When prewhitening of the spectra
was attempted to try and improve size estimates for series with strong autocorrelation
dependence, it turned out in all cases that size was considerably underestimated.
Hence no further attempts were made to improve the size estimates.

5.4 Power Estimates

Estimates of power for the test based on Q and on X , for the 10%, 5% and 1%
significance levels for n=64, m=2,3, for n= 252, m=6,8 and for n=1024, m=20,24 are
shown in tables 5 (a) to (f). In all cases the test based on X has slightly higher
probability of rejecting H o when H, is true. This is due to the fact that X is always
larger than Q and hence always has larger size associated with it than that the test
based on Q. By comparison with resuits for corresponding parameter values and series
lengths, in tables 2 and 3 in Diggle and Fisher (1991), the test based on Q has in most
cases comparable power. In some cases the test based on Q, has slightly higher power
and in some cases slightly lower power than the tests in Diggle and Fisher (1991). By
comparison with the results in tables 2a, 2¢, 3a and 3c, the test based on Q tends to
generally perform much better than those non parametric tests and parametric tests in
Coates and Diggle (1986). For example for n=64, AR(1)$=0.5, AR(1)$=0.9,
10% significance level, the power of the parametric test in Coates and Diggle (1986)
for the linear and quadratic models are both 0.48, whereas the power of the test based
on Q is 0.75 for 2 partitions and 0.83 for 3 partitions.

10



3.5 Criteria for Selecting suitable values of m

As mentioned in 5.3, for the values of n below, reasonably good estimates of size were
obtained for the values of corresponding values of m . The corresponding degrees of
freedom are obtained by [((n/2m)+1)(k-1)).

n m degrees of freedom
64 2 3 17 11
256 6 8 22 17
1024 20 24 26 22

Based on the fact that there are between 4 and 6 degrees of freedom between the
jower and upper limits for these values of n, the following criteria were developed and
can be used as a guide to select suitable values of m.

04 20=6D 06, 0=6d) 64 <n <256
(256 -64) ~ 2m (256 - 64)
164 X0=256) _ n_,,, HAB=256) e <1024

(1024-256) ~ 2m (1024 - 256)

Since the square roots of the 64, 256, and 1024 are multipies of 8, these criteria can
easily be extended for larger values of n if necessary. Also, since the degrees of
freedom is a function of (k-1), these criteria can also be used as a guide to select m for
values of k > 2.

For k = 2, the test based on Q and X were applied to series of lengths 198 and 492.
Using the above criteria the range of suitable m values was found to be between 5 and
7 for n= 198, and between 11 and 14 for n = 492. Value of m=6 for n=198 and m=12
for n =492 were selected to obtain the estimates of the mean, vanance, measure of
skewness, size and power. These estimates are shown in tables 2(d), 2(e), 3(d), 3(e),
5(g) to 5(j). For the test based on Q, as before , in most cases the means were slightly
underestimated but reasonably close to the theoretical means. However the variances
tend to be overestimated especially for very strong autoregressive dependence. Most
of the estimated measures of skewness were slightly larger than the corresponding
theoretical measures. Reasonably good estimates of size were obtained were obtained
for both Q and X except for when the AR(1) and MA(1) parameters tended to their
upper limits. Reasonably good estimates of power were obtained.
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For k = 3, the test based on Q was applied to series of length 252. Using the above
criteria the range of suitable m values was found to be between 6 and 8. The number of
partitions m= 6 was selected to obtain estimates of the mean, variance, measure of
skewness size and power. These estimates are shown in tables 2(f), 4 and 6. In all cases
the means were slightly overestimated but reasonably close to the theoretical means.

- However the variances tend to be overestimated and more so for very strong
autoregressive dependence. Again most of the estimated measures of skewness were
slightly larger than the corresponding theoretical measures. Reasonably good
estimates of size were obtained except for when the AR(1) and MA(1) parameters
tended to their upper limits. Reasonably good estimates of power were obtained.

6. APPLICATIONS

6.1  Tree Ring Data

In order to reconstruct climates from information from trees, one type of measurement
that climatologists use are distances between the consecutive rings of trees. Figures 1,
2 and 3 show tree ring data for 3 separate sites about 10 km. apart at about the same
altitude on Mount Egmont on the North Island of New Zealand. Each data set consists
of standardised distances between rings, averaged over a number of trees in a
particular site. Standardisation allows samples with large differences in growth rates to
be combined and can be used to remove any undesired growth trends present. It is
expected that there is no significant differénce between growth as influenced by climate
in the three different sites. Each series consisted of n=352 observations. After fiitering
the series, checks revealed no significant cross correlations between the series. The
number of partitions to smooth the spectra i.e. the value of m, was chosen to be 8.
This was done by using the selection criteria from section 5 as a guide. Figure 4 shows
the smoothed spectra of the three sites and it is clear that they are quite similar. The
test of hypotheses of no significant differences based on Q was applied and couid not
be rejected as can be seen from the results below.

Length of Each Time Series . 352

Number of Partitions 8

Q Test Statistic 40.5355
Degrees of Freedom 46 ‘
p-value 0.6997

6.2  Earthquake and Explosion Data _
It is clear from an examination of earthquake and nuclear explosion waveforms, that
there are distinct differences in their patterns. It is therefore expected that there will be
differences in their spectra as well. Figures 5 and 6 show the standardised waveforms
of a nuclear explosion detonated in China in August 1995 and an earthquake which
took place in the Solomon Islands in September 1995. The two events which were of
similar strength were recorded at the same seismological station. Each series consists

12



of 600 observations recorded over a 30 second interval. Even though the series are not
quite stationary and no transformation could be found 10 make them stationary, the test
for no significant difference in underlying spectra was nevertheless carried out. Using
the criteria from section S as a guide, each series was partitioned into m=15 partitions
and smoothed spectra were obtained. Figure 7 shows the smoothed spectra and it is
clear that there are differences in the spectra. The test based on Q was applied to the
spectra and was strongly rejected as can be seen from the results beiow.

Length of Each Time Series 600

Number of Partitions 15
Q Test Statistic 367.9952
Degrees of Freedom 21
p-value 0

7 CONCLUDING REMARKS

The results show that, even though the variation in Q is large for the various values of
n and m, the distributional approximations to the chi-square distribution are reasonably
adequate. The estimates of size and power of the test based of Q compare favourably
with some existing tests and in some cases the test based on Q displayed superior
power. Estimates of size tend to be smaller than the nominal size for a small number of
partitions and larger than the nominal size for a large number of partitions.

Results for n=198 and 492 for k=2 and for n=252 for k=3 show that the criteria for the
selection of m, i.e. the amount of smoothing, are a reasonably good guide for the
choice of m. However it is clear that this idea needs more exploration before it can be
firmly established what the optimum value of m should be.

We believe that the advantage the test based on Q has over existing tests in the
literature is the ease with which it can be extended to the case for k >2. This is
revealed in the results for n=252 for k=3. The results of the application of the test to
real data in section 6 further strengthen our claim the Q is a reasonably good statistic
for testing for significant differences between spectra.
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APPENDIX

TABLE 1
SOME PARAMETERS OF THE CHI-SQUARE DISTRIBUTION
Degrees of Mean " Variance Median Measure of
freedom Skewness
9 9 18 8.34 0.1556
11 11 22 10.34 0.1407
17 17 34 16.34 0.1132
21 21 42 20.34 0.1018
22 22 44 .21.34 0.0995
26 26 52 25.34 0.0915
33 33 66 3234 0.0812
44 44 88 43.34 0.0704
TABLE 2
ESTIMATES OF MEAN, VARIANCE AND A MEASURE OF SKEWNESS OF
THE TEST STATISTIC Q
(a) n=64 k=2
Process m df Mean Variance Skewness
AR(1)
$=0 2 17 14.8368 43.1865 0.1268
3 11 10.0446 27.7782 0.1785
4 9 9.1488 32.7989 0.2057
$=0.1 2 17 15.0836 44,1320 0.1404
3 1 10.1252 29.0984 0.2320
4 9 9.2593 34.7796 0.2117
¢=05 2 17 14.7278 4].0457 0.1404
' 3 11 10.0235 29.0237 0.1957
4 9 9.3061 33.4233 0.1809
$=09 2 17 15.6479 - 66.1720 0.1879
3 11 12.2232 70.6033 0.2427
4 9 9.3707 123.5592 0.3111
MA(1)
6=0.1 2 17 14.8842 44.4456 0.1576
3 | 9.8477 27.0925 0.1783
4 9 9.2421 33,8558 0.2580
60=05 2 17 14.4105 37.8799 0.1433
3 11 9.7336 27.4211 0.2305
4 0 8.9426 29.4933 0.1696
6=09 2 17 15.0960 43.9517 0.1848
3 11 10.6215 38.9845 0.1988
4 9 9.6598 37.5366 0.2266
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(b) n=256 k=2

Process df Mean Variance Skewness
AR(1)

$=0 14 33 27.8413 73.3146 0.1001
: 6 22 198779 58.4140 0.1277
8 17 15.7344 49,5152 0.2206
$=0.1 4 33 28.1639 698812 0.0921
' 6 22 19.7541 56.7707 0.1714
8 17 15.8571 48,0303 0.1535
$=05 4 33 27.9340 72.8203 0.1226
6 22 19.1332 52,9281 0.1627
8 17 15.7881 46.0487 0.1763
$=09 4 33 27.2947 | 73.6094 0.1492
_ 6 22 204012 73.3735 0.1858
8 17 15.2492 77.8392 0.2156

MA(1) - _
=01 4 33 27.9358 | 76.6844 0.1131
6 22 19.6131 53.7048 0.1504
8 17 15.5301 46.0897 0.1692
0=05 4 33 27.5872 71.0168 0.1448
6 22 19.2987 58.6445 0.1606
8 17 15.4537 46.0844 0.1798
86=09 4 33 28.8987 90.3192 0.1796
6 22 20.4674 66.1798 0.1686
8 17 15.2842 58,6626 0.1884
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(c) n=1024 k=2

Process m df Mean Variance Skewness
AR(1)
é=0 16 33 290872 80.6456 0.1306
20 26 22,9297 58.0265 0.1394
. 24 22 20.3582 61.3481" 0.1432
¢=0.1 16 33 28.9167 81.3104 0.1665
20 26 23.3438 66.7120 0.1250
24 22 20.4902 59.5425 0.1344
$=05 16 33 28.7496 79.3148 0.1122
20 26 23.3963 68.9871 0.1371
24 22 19.9210 52.5393 0.1473
$=09 16 33 28.5661 90.2629 0.1476 -
20 26 23.3746 83,9922 0.1748
24 22 21.8382 103.8434 0.2017
MA(1)
0=01 16 33 29.0508 78.3870 0.1097
20 26 23.5952 63.9143 0.1095
24 22 20,1073 60.2599 0.1755
6=05 16 33 28.8179 78.1336 0.0957
20 26 23.5177 69.0848 0.1579
24 22 202712 61.2867 0.1597
8=0.9 16 33 298176 105.4583 0.1227
20 26 24.7555 102.4055 0.1827
24 22 22.2550 93.0493 0.1931
(d) n=198 k=2
Process m df Mean Variance Skewness
AR(1) _
¢=0 6 17 15.3510 43.7239 0.1990
¢=0.1 6 17 15.2287 42.3803 0.1651
$=05 6 Rl 14.8209 432554 0.1759
=09 6 17 16.4668 79.6309 0.2041
MA(1)
6=01 6 17 15.3501 41.1880 0.1638
6=05 6 17 15.1381 41.3125 0.1492
0=09 6 17 16.0646 51.0467 0.1710
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(e) n=492 k =2

Process m- df Mean Variance Skewness

AR()

=0 12 21 19.2862 57.4521 0.1790

$=01 . 12 21 19.2904 52.3785 0.1716
! ¢=05 12 21 19.2143 - 55.1553 0.1128

$=09 12 21 20.1103 97.8701 0.1934
‘ MA(1) _
| 0=01 12 21 19.4690 56.0665 10.1532

8=05 12 21 19.6596 56.8382 0.1533

0=09 12 21 19.8027 79.2542 0.1998
| . (Hn=252 k=3

Process m df Mean Variance Skewness

- AR(1)

$=0 6 33 392105 117.7417 0.1933

$=0.1 6 33 39.6558 114.0331 0.0687

$=05 6 33 38.8824 113.3108 0.0951

$=09 6 33 38.7496 179.0240 0.1951
| MA(1)

8=01 6 33 39.1330 102.4321 0.1038

80=0.5 6 33 38.6913 100.0431 0.0939

0=09 6 33 42,3929 141.2486 0.1249
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. TABLE 3
ESTIMATES OF SIZE WITH 95% CONFIDENCE INTERVALS FOR TEST
STATISTICS Q AND X for k=2

(a) n=64
Process df Q X
10% 5% 1% 10% 5% 1%
AR(1)
$=0 17 10.0740* 0.0490 0.0130 | 0.1330* 0.0920* 0.0420*
0.0550 0.0352 0.0067 }0.1140 0.0782 0.0357
0.0930 0.0628 0.0193 | 0.1520 0.1058  0.0483
11 |0.0950 0.0500 00130 [0.1310* 0.0860* 0.0360*
0.0760 0.0362 0.0067 |[0.1120 0.0722 0.0297
0.1140  0.0638 00193 |0.1500 0.0998  0.0423
9 10.1350% 0.0910% 0.0320* |0.1670* 0.1160% 0.0470*
0.1160 0.0772 0.0257 }0.1480 0.1022  0.0407
0.1540 0.1048 0.0383 ] 0.1860 0.1298  0.0533
$=0.1 17 10.0840 0.0540 00160 |0.1450* 0.1050* 0.0450*
' 0.0650 0.0402 0.0097 | 0.1260 0.0912 0.0387
0.1030 0.0678 0.0223 {0.1640 0.1188  0.0513
11 |0.0940 0.0570  0.0180* } 0.1470* 0.0780* 0.0320*
00750 0.0432 0.0117 |0.1280 0.0642 0.0257
0.1130 0.0708 0.0243 | 0.1660 0.0918 0.0383
9 |0.1570* 0.1000* 0.0380* [0.1870* 0.1310* 0.0560*
0.1380 0.0862 0.0317 ]0.1680 0.1170  0.0497
0.1760 0.1138  0.0443 | 0.2050 0.1448  0.0623
$=05 17 10.0710* 0.0380 00100 {0.1310* 0.0830* 0.0300*
0.0520 0.0242 0.0037 |0.1120 0.0692 0.0237
0.0900 0.0815 0.0163 ]0.1500 0.0968 0.0363
11 |0.0980 0.0550 0.0210* {0.13%0* 0.0830* 0.0310*
0.079¢ 0.0412 0.0147 |0.1200 0.0692 0.0247
0.1170  0.0688 0.0273 | 0.1579 0.0968 0.0373
9 10.1420% 0.0860* 0.0290* | 0.1760* 0.1150% 0.0430*
0.1230 0.0722 0.0227 |0.1570 0.1012 0.0367
0.1610  0.0998 0.0353 | 0.1950 0.1288 0.0493
$=09 17 10.1140 0.0710* 0.0230* | 0.1910* 0.1370* 0.0610*
0.0950 0.0572 0.0167 |0.1720 0.1232 0.0547
0.1130  0.0847 0.0293 | 0.2100 0.1508 0.0673
11 [0.1870* 0.1390* 0.0780* | 0.2350* 0.1770* 0.0990*
0.1680 0.1252 0.0717 | 0.2160 0.1632 0.0927
02060 0.1528 0.0843 | 0.2540 0.1908 0.1053
9 |0.3070* 0.2380* 0.1520* | 0.3340* 0.2640* 0.1720*
02880 02242 0.1457 | 0.3150 0.2502 0.1657
0.3260 02518 0.1583 | 0.3530 0.2778 0.1783

* Significant at the 5% level
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Process df Q X
10% 5% 1% 10% 5% 1%
MA(1)
8=01 17 | 0.0840 0.0520 00110 |0.1540* 0.1010* 0.0450*
0.0650 0.0380 0.0047 0.1350 0.0872 0.0387
0.1029 - 0.0658 0.0173 {0.1729 0.1148 " 0.0513
11 |0.0860 0.0580 0.0090 [0.1270* 0.0790* 0.0270*
0.0670 0.0442  0.0027 |0.1080 0.0652 0.0207
0.1050 0.0718 0.0153 | 0.1460 0.0928 0.0333
9 0.14%0* 0.1040* 0.0390* ] 0.1910* 0.1310* 0.0520*
0.1300 0.0902 00327 ]0.1720  0.1172 0.0457
0.1680 0.1179 0.0453 §0.2100 0.1448 0.0583
8=05 17 ]0.0520* 0.0290* 0.0110 {0.11590 0.0720* 0.0270*
0.0330 0.0152 0.0047 ]0.1000 0.0583 0.0207
0.0710 0.0428 0.0173 ]0.1380 0.0858 0.0333
11 | 0.0780* 0.0510 0.0150 |0.1220* 0.0740* 0.0260*
0.050 0.0372 0.0087 |0.1030 0.0602 0.0197
0.0970 0.0648 0.0213 | 0.1410 0.0878 0.0323
9 0.1120* . 0.0780* 0.0320* | 0.1530* 0.1020* 0.0430
0.1030 0.0642 0.0257 ]0.1340 0.0882 0.0367
0.1410 0.0918 0.0383 | 0.1720 01158 0.0493
0=09 17 | 0.0880* 0.0420* 0.0130 }0.1590* 0.1070* 0.0330*
0.0690 0.0282 0.0067 [0.1400 0.0932 0.0267
0.1070 0.0558 0.0193 }0.1780 0.1208 0.0393
11 |0.1230% 0.0880* 0.0370* | 0.1460* 0.1160* 0.0540*
0.1040 0.0742 0.0307 |0.1270 0.1022 0.0477
0.1420 01028 0.0433 ] 0.1650 0.1298 0.0603
9 |0.1670* 0.1070* 0.0520* | 0.1980* 0.1350* 0.0690*
0.1480 0.0932 0.0457 |0.1790 0.1212  0.0627
0.1860 0.1208 00583 |0.2170  0.1488 0.0753

* Significant at the 5% level
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(b) n=256

Process df Q X
10% 5% 1% 10% 5% 1%
AR(1)
$=0 33 | 0.0400* 0.0170* 0.0050 | 0.0730* 0.0340*% 0.0120
0.0210 0.0032 -0.0013 | 0.0540 0.0252 0.0057
0.0590 0.0308 0.0113 ]0.0920 0.0528 0.0183
22 10.0840 0.0540 0.0160° | 0.1080 0.0680* 0.0220*
0.0650 0.0402 0.0097 |0.0890 0.0542 0.0157
0.1030 0.0678 0.0223 |0.1270 0.0818 0.0283
17 {0.1140  0.0650*% 0.0240* | 0.1300* 0.0820* 0.0320*
0.0950 0.0512 00177 |0.1110 0.0682 0.0257
0.1330 0.0788 0.0303 | 0.1490 0.0958 0.0383
$=0.1 33 [0.0310* 0.0200¢* 0.0050 |0.0660* 0.0310* 0.0110
- 10.0121 0.0062 -0.0013 | 0.0470 0.0172 0.0047
00500 0.0338 . 00113 | 00850 0.0448 0.0173
22 | 0.0880° 0.0430 00110 |0.1160 0.0660* 0.0170*
0.0690 0.0292 0.0047 | 0.0970 0.0522 0.0107
0.1070 0.0568 0.0173 | 0.1350 0.0798  0.0233
17 [ 0.0870 0.0480 0.0180* | 0.1070 0.0570 0.0220*
0.0680 0.0342 00117 |0.0880 0.0432 0.0157
0.1060 0.0618 00243 | 0.1260 0.0708 0.0283
$=05 33 1 0.0540* 0.0310* 0.0080 | 0.0830 0.0570 0.0210%
0.0350 0.0172 00017 |0.0640 0.0432 0.0147
0.0730 0.0448 0.0142 |0.1020 0.0708 0.0273
22 | 0.0720* 0.0330* 0.0120 |0.0930 0.0550 0.0150
0.0530 0.0192 0.0057 | 0.0740 0.0412 0.0087
00010 00468 0.0183 |0.1120 0.0688 0.0213
17 100950 0.0570 0.0220* ] 0.1140 0.0690* 0.0270*
0.0760 0.0430 00157 |]0.0950 0.0552  0.0207
0.1140 0.0708 0.0283 | 0.1330 0.0828 0.0333
$=09 33 | 0.0420* 0.0220*¢ 0.0050 | 0.0660* 0.0410* 0.0120
: 0.0230 0.0082 -0.0013 ) 0.0470 0.0272  0.0057
0.0610 0.0358  0.0113 { 0.0850 0.0548 0.0183
22 |0.1070 0.0690* 0.0260* {0.1320* 0.0850* 0.0370*
0.0880 0.0552 0.0197 [0.1130 0.0712  0.0307
0.1260 0.0828 0.0323 {0.1510 0.0988 0.0433
17 ]0.1560* 0.1070* 0.0490* | 0.1780* 0.1200* 0.0580*
0.1370 0.0932 0.0427 10.1590 0.1062 0.0517
0.1749  0.1208 0.0553 ] 0.1970 0.1338 0.0643

* Significant at the 5% level
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Process df Q X
10% 5% 1% 10% 5% 1%
MA(1) ‘ :
0=01 33 | 0.0580* 0.0300* 0.0040 {0.0870 0.0570 0.0140
' 0.0390 0.0162 -0.0023 | 0.0680 0.0382 0.0077
0.0770 0.0438  0.0103 ] 0.1060 0.0658  0.0203
22 10.0810 00400 0.0150 |0.1070 0.0600 0.0210*
0.0620 0.0262 0.0087 '] 0.0880 0.0462 0.1047
0.1000 0.0538 0.0213 | 0.1260 0.0738 0.0273
17 §0.1020 00570 0.0150 |0.1200* 0.0730* 0.0200*
0.0830 0.0432  0.0087 . | 0.1010 0.0592 0.0137
0.1210 0.0708 0.0213 | 0.1390 0.0868 0.0263
8=05 33 | 0.0430* 0.0180* 0.0030 | 0.0800* 0.0420* 0.0130*
0.0240 0.0042  -0.0033 | 0.0610 0.0282 0.0067
0.0620 00318 0.0093 | 0.0990 0.0558 0.0193
22 |0.0790 0.0510 00130 |0.1100 0.0640* 0.0250*
0.0600 0.0372 0.0067 |0.0910 0.0502 0.0187
0.0980 0.0648 0.0193 |0.1290 0.0778 0.0313
17 100940 00600 0.0170* | 0.1050 0.0700* 0.0200*
0.0750 0.0462 0.0107 | 0.0860 0.0562 0.0137
0.1130  0.0738 0.0233 ]0.1240 0.0838 0.0263 .
6=09 33 10.0760 0.0420 0.0110 |oO.1170 0.0730* 0.0230*
0.0570 0.0282 0.0047 | 0.0980 0.0592  0.0167
0.0950 0.0558 0.0173 |0.1360 0.0868 0.0292
22 |0.1110 0.0700* 0.0210* {0.1400* 0.0950* 0.0360*
0.0920 0.0562 0.0147 |0.1210 0.0812 0.0297
0.1300  0.0838 0.0273 | 0.1590 0.1088 0.0423
17 {0.1350* 0.0870* 0.0350* | 0.1510* 0.1020* 0.0470*
0.1160 0.0732 0.0287 |0.1320 0.0882 0.0407
0.1540 0.1008 0.0413 | 0.1700 0.1159 0.0532

* Significant at the 5% level
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(c) n=1024

Process |m |df Q X
10% 5% 1% 10% 5% 1%
AR(D) . :
1¢=0 16 {33 |0.0620* 0.0290* 0.0090 |0.0690* 0.0350* 0.0120
0.0430 0.0152  0.0027 -| 0.0560 0.0212 0.0057
0.0810 0.0428 0.0153 {0.0880 0.0488 0.0183
20 [26 |0.0720% 0.0330 0.0060 |0,0740* 0.0380* 0.0070
0.0530 0.0192 -0.0003 {0.0350 0.0242 0.0007
0.0910 0.0468 0.0468 | 0.0930 0.0518 0.0133
24 |22 100870 0.0560 0.0210* {0.0920 0.0600  0.0210*
0.0680 0.0422 0.0147 }0.0730 0.0462 0.0147
0.1060 0.0698 0.0273 10.1110 0.0738 0.0273
$=0.1 16 |33 |0.0680* 00370 0.0110 | 0.0750* 0.0450* 0.0140
0.0490 0.0232 0.0047 [ 0.0560 0.0312 0.0077
0.0870 0.0508 0.0173 | 0.0940 0.0558 0.0203
20 |26 |0.0770* 0.0350* 0.0090 {0.0910 0.0420 0.0100
0.0580 0.0212 0.0027 {0.0720 0.0282 0.0037
0.0960 0.0488 0.0153 10.1100 0.0558 0.0163
24 |22 |00980 00590 0.0150 | 0.1050 0.0640* 0.0180*
-~ 10.0790  0.0452  0.0087 | 0.0860 0.0502 0.0117
0.1170 0.0728 0.0213 ]0.1240 0.0778 0.0243
$=0.5 16 [33 | 0.0610* 0.0340* 0.0110* | 0.0640* 00380 0.0120
0.0420 0.0202 0.0047 | 0.0450 0.0242 0.0058
0.0800 0.0478 0.0073 | 0.0830 0.0518 0.0183
20 |26 |0.0820 0.0490 00160 | 0.0890 0.0550 0.0200*
0.0630 0.0353  0.0097 | 0.0700 0.0412 00138
0.1010 0.0628 0.0223 ] 0.1080 0.0688 0.0263
24 122 100800 00370 0.0070 | 0.0860 0.0480 0.0080
0.0610 0.0232 0.0007 |0.0670 0.0342 0.0017
0.0990 0.0508 0.0133 ] 0.1049 0.0618 0.0143
$=09 |16 |33 |0.0600* 00390 00090 |0.0670* 00460 0.0130
0.0410 0.0252 0.0027 | 0.0480 0.0322 0.0067
0.0790 0.0528 0.0153 | 0.0860 0.0600 0.0193
20 |26 |0.0960 0.0600 0.0290* | 0.1030 0.0660* 0.0310*
0.0770  0.0462 - 0.0227 | 0.0840 0.0522 0.0247
0.1150 0.0738 0.0353 |0.1220 0.0798 0.0373
24 |22 |0.1600* 0.1060* 0.0520* | 0.1700* 0.1140* 0.0560*
0.1410 0.0922 0.0457 ]0.1510 0.1002 0,0498
0.1790  0.1110 0.0583 ] 0.1890 0.1278 0.0623

* Significant at the 5% level
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Process |m |df | Q X -
10% 5% 1% 10% 5% 1%
MA(I)
0=01 16 |33 }0.0520* 0.0330* 00110 |0.0630* 0.0370 0.0130
0.0330 0.0192 0.0047 | 0.0440 0.0232 0.0067
0.0710 0.0468 0.0173 ] 0.0820 0.0508 0.0193
20 |26 |0.0720* 0.0370 0.0110 §0.0800* 0.0450 0.0150
0.0530 0.0232 0.0047 |0.0610 0.0312 0.0087
0.0910 0.0508 0.0129 | 0.0990 0.0588 0.0213
24 |22 {0.0950 0.0530 0.0190* | 0.1040 0.0570 0.0190%
0.0760 0.0392 0.0127 70.0850 0.0432 0.0127
01140 0.0668 0.0253 ]0.1230 0.0708 0.0253
0=05 16 [ 33 |0.0540* 0.0260* 0.0060 |0.0640* 0.0340* 0.0100
0.0360 0.0122 -0.0003 | 0.0452 0.0202 0.0037
0.0730 00398 0.0123 | 0.0830 0.0478 0.0163
20 126 |0.0910 00470 0.0130 ]0.1040 0.0600 0.0130
0.0720 0.0332 0.0067 | 0.0850 0.0462 0.0067
0.1099 00608 0.0193 0.1230 0.0738 0.0193
24 |22 |0.1090 0.0660* 0.0180* 10.1150 0.0680* 0.0190*
0.0900 00522 0.0117 |]0.0960 0.0542 0.0127
0.1280 0.0798 0.0243 [}0.1340 0.0818 0.0253
6=09 |16 |33 |00870 0.0550 0.0210* } 0.0970 0.0630 0.0240%
0.0680 00412 0.0147 {0.0780 0.0492 0.0177
0.1060 00688 0.0273 |0.1160 0.0768 0.0303
20 |26 {0.1180 0.0820* 0.0430* | 0.1260* 0.0870* 0.0480*
0.0990 0.0682 00367 | 0.1070 0.0732 0.0447
0.1370 0.0960 0.0493 | 0.1450 0.1008 0.0543
24 |22 10.1640* 0.1210* 0.0490* | 0.1720* 0.1260* 0.0540*
0.1450 0.1072 0.0427 | 0.1530 0.1122 0.0477
0.1830 0.0553 |]0.1910 0.1397 0.0603

0.1347

* Significant at the 5% level
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(d) n=198

Process df Q X
10% 5% 1% 10% 5% 1%
AR(1)
$=0 17 100910 0.0520 0.0170* | 0.1140 0.0700* 0.0250*
0.0720. 0.0382 0.0107 |0.095¢ 0.0562 0.0187
0.1100 0.0658 00233 |0.1330 0.0838 0.0313
=01 17 | 0.0810 0.0450 0.0170* | 0.1090 0.0620 0.0230*
0.0620 00312 0.0107 {0.0900 00482 0.0167
0.1000 0.0588 0.0233 |0.1280 0.0758 0.0293
$=05 17 |0.0860 0.0420* 0.0160 |0.1050 0.0610 0.0230*
0.0670 0.0282 0.0097 {0.0860 0.0472 0.0167
0.1050 0.0558 0.0223 10.1240 00748 0.0293
¢=09 17 ]0.1240* 0.0900* 0.0410* [ 0.1440* 0.1060* 0.0530*
0.1050 0.0762 0.0347 |0.1250 0.0922  0.0467
0.1430 0.1038 0.0473 |0.1630 0.1198 0.0593
MA(1) -
0=01 17 | 0.0810 0.0410 00100 ]0.0960 0.0520 0.0140
0.0620 0.0272 00037 }00770 00382 0.0077
0.1000 0.0548 0.0163 ]0.1150 0.0658 0.0203
0=05 17 |1 0.0820 00530 0.0110 {0.0950 0.0720* 0.0160
0.0630 0.0392 0.0047 {00760 0.0582 0.0097
0.1010 0.0668 0.0173 10.1140 0.0858 0.0223
6=09 17 | 0.1200* 0.0670* 0.0250*% §0.1390* 0.0940* 0.0300*
0.1010 0.0532 0.0187 ]0.1200 0.0802 0.0237
0.1390 0.0808 0.0313 ]0.1580 0.1078  0.0363

* Significant at the 5% level
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(e) n=492

Process |m |df Q X
10% 5% 1% 10% 5% 1%
AR(1)
=0 12 |21 |0.1070 0.0600 0.0150 |0.1200* 0.0660% 0.0170*
0.0880  0.0462 0.0087 |0.1010 0.0522 0.0107
0.1260 0.0738 0.0213 ]0.1390 0.0798 0.0233
o= 0.1 12 |21 |0.0930 0.0570 0.0160 |0.0970 0.0640* 0.0180*
0.0740 00432 0.0097 }0.0780 0.0502 0.0117
0.1120 0.0708 0.0223 100116 0.0778 0.0243
¢=05 12 §21 |0.0930 0.0520 0.0140 [0.1050 0.0620 0.0160
0.0740 0.0382 - 0.0077 {0.0860 0.0482 0.0097
0.1120 0.0658 0.0203 {0.1240 0.0758  0.0223
$=09 J12 |21 |0.1360* 0.0910% 0.0480* }0.1480* 0.1010* 0.0510*
0.1170  0.0772 0.0417 |0.1290 0.0872  0.0447
0.1550 0.1048 0.0543 ]0.1670 0.1148 0.0573
MA(]) ‘
8=01 12 |21 |0.0930 0.0560 0.0180* |0.1010 0.0630 0.0230*
0.0740 0.0422 0.0117 10.0820 0.0492 0.0167
0.1120 0.0698 0.0243 |0.1200 0.0768 0.0293
0=0.5 12 121 |0.1070 0.0610 0.0210* | 0.1210 0.0720* 0.0230*
0.0880 0.0472 00147 |0.1020 0.0582 0.0167
0.1260 0.0748 0.0273 {01400 0.0858  0.0293
6=09 12 {21 |0.1240* 0.0880* 0.0370* 10.1330* 0.0930* 0.0440*
0.1050 0.0742 0.0307 101140 0.0792 0.0377
0.1430 0.1018 0.0433 J0.1520 01068 0.0503

* Significant at the 5% level
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TABLE 4

ESTIMATES OF SIZE WITH 95% CONFIDENCE INTERVALS OF THE TEST

STATISTICS Q FOR k=3 and n=252

Process df 10% 5% 1%
AR(1)
$=0 44 0.0830 0.0550 0.0150
: 0.0640 0.0412 0.0087
0.1020 0.0688 0.0213
$=0.1 44 0.1000 0.0520 0.0130
0.0810 0.0382 0.0067
0.1190 0.0658 0.0193
$=05 44 0.0810 0.0470 0.0190*
0.0620 0.0332 0.0127
0.1000 0.0608 0.0253
$=09 44 0.1600* 0.1040*  0.0560*
- 0.1410 0.0902 0.0497
0.1790 0.1178 0.0623
MA(1) o
8=0.1" 44 0.0890 0.0440 0.0090
0.0700 0.0302 0.0027
0.1080 0.0579 0.0153
6=05 44 0.0760* 0.0320*  0.0070
0.0570 0.0182 0.0007
0.0950 0.0458 0.0133
8=09 44 0.1600* 0.1030*  0.0360*
0.1410 0.0892 0.0297
0.1790 0.1168 0.0423

* Significant at the 5% level
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TABLE 5

ESTIMATES OF POWER. OF THE TEST STATISTICS Q AND X FOR

FOR k=2
(a)AR(1) 6 =0vs$ >0 n=64
¢ m |df Q X
: 10% 5% 1% 10% 5% 1%
0.0 2 17 00740 0.0490 0.0130 (0.1330 0.0920 0.0420
0.2 0.1470 0.0930 0.0310 |0.2340 0.1620 0.0830
0.4 0.3880 03030 0.1530. |0.5230 04210 0.2830
0.6 0.7700 0.6870 0.5280 0.8650 0.7960 0.6590
: 0.8 0.9780 09650 09400 |0.9910 0.9820 0.9610
! . 0.0 3 11 [0.0950 0.0500 00130 |0.1310 0.0860 0.0360
- 102 0.1970 0.1320 00550 |0.2540 0.1850 0.0870
04 0.5080 04180 02460 |0.5690 04900 0.3280
0.6 0.8730 - 08100 06640 |09030 0.8560 0.7420
0.8 0.9910 09870 09670 |09940 0.9880 0.9820
0.0 4 9 10.1350 0.0910 00320 |0.1670 0.1160 - 0.0470
0.2 02440 0.1810 0.0920 |0.2850 02100 0.1130
0.4 0.6000 0.5230 03370 |0.6400 0.5560 0.3940
0.6 09080 0.8810 0.7530 |09250 0.8990 0.8010
0.8 09930 09890 09770 |09930 0.9940 0.9850
MAR(1)d=0.5vsb=0.5 n=64
¢ m |df Q X
10% 5% 1% 10% 5% 1%
0.1 2 17 104100 03080 0.1540 |0.5210 04420 0.2860
03 0.1630 0.1060 0.0390 |0.2680 0.1900 0.0950
0.5 0.0710 00380 00100 |0.1310 00830 0.0300
0.7 0.1930 01180 00470 |0.2790 02280 0.1660
0.9 0.7470  0.6710 04700 |0.8230 0.7760  0.6590
0.1 3 11 105120 04150 02670 |0.5930 04920 0.3540
0.3 0.2270  0.1610 0.0720 |0.2780 0.2120 0.1180
0.5 0.0980 00550 0.0210 |0.1390 0.0830 0.0310
0.7 0.2930 02140 0.0970 | 03630 0.2820 0.1560
0.9 0.8300 07720 0.6420 |0.8670 0.8240 0.7250
0.1 4 |9 106130 05170 03440 |0.6590 05640 04140
0.3 0.29000 02160 0.1100 |0.3330 0.2570 0.1490
0.5 0.1420 0.0860 00290 |0.1760 0.1150 0.0430
0.7 0.3400 02680 01680 |0.3800 03080 0.1970
0.9 0.8810 08440 07680 |0.8980 08600 0.8070
28




{) AR(1D)d=0vs >0 n=256

¢ m |df | Q X
K 10% 5% 1% 10% 5% 1%

0.0 4 {33 |0.0400 00170 0.0050 {0.0730 0.0390 0.0120
0.1 0.0890 0.0430 00090 |0.1260 0.0860  0.0220
0.2 0.2760 0.1850 00940 ]0.3550 0.2750 0.1440
03 0.5770 04760  0.2960 | 0.6570  0.5650  0.4000
0.4 0.8750 0.8310 0.6830 |0.9060 0.8700 0.7660
0.5 0.9820 09730 09390 |0.9880 0.9810 09610
0.6 0.9990 09980 09980 |0.9990  0.9990  0.9980
0.0 6 |22 £00840 0.0540 0.0160 |0.1080 00680 0.0220
0.1 0.1420 0.0940 00300 {0.1840 0.1170 0.0470
0.2 03990 02940 0.1480 |0.4470 03500 0.1950
0.3 0.7300 06470 04520 [0.7720 0.68%0  0.5070
0.4 09480 09230 0.8350 | 09580 09340 08720
0.5 09960 09920 09780 |0.9970 09950 0.9870
0.6 1.0000  1.0000 0.9970 | 1.0000 1.0000 0.9980
0.0 8 {17 |0.1140 0.0650 00240 |0.1300 0.0820 0.0320
0.1 0.1880 0.1120 0.0300 }0.2180 0.1400 0.0430
0.2 0.4780 03700 02320 [0.5150 0.4050 0.2580
0.3 0.7920 07330 05590 |0.8180 0.7600 0.5930
0.4 0.9620 09450 08730 |0.9650 09500 0.8960
0.5 0.9980 09950 09850 |0.9980 09960 09880
0.6 1.0000 1.0000 1.0000 {1.0000 1.0000 1.0000
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(d) AR(1)$=0.5vs d # 0.5 n=256

Py m [df | Q X -
- 10% 5% 1% 10% 5% 1%

0.1 4 ]33 [09090 08610 07210 [0.9450 0.9040  0.8000
0.2 ' 06290 05370 03490 |0.7090 0.6210  0.4530
03 03110 02180 0.1100 |03820 03070 0.1660
0.4 0.0950 00570 00210 |01410 00930 0.0400
0.5 00540 00310 00080 |0.0830 0.0570 0.0210
0.6 0.1240 00790 00260 |0.1820 0.1170  0.0600
0.7 04080 03150 0.1520 |05030 04030  0.2400
0.8 0.1872 08150 06690 |09120 08690 0.7710
0.9 0.9980 09960  0.9930 }0.9980 0.9980 - 0.9950
0.1 6 [22 [09630 09430 08590 |[0.9740 09530 0.8930
0.2 07820 07010 05550 |08160 0.7460  0.5960
0.3 04440 03450 0.1960 |04870 03980 0.2420
0.4 0.1520 00900 00380 |0.1860 0.1140  0.0490
0.5 00720 00330 00120 |0.0930 0.0550 0.0150
0.6 0.1670 0.1130 00480 |02070 01390 0.1630
0.7 0.5560 04530 02910 [0.6180 05160 0.3580
0.8 09490 09270 08310 |09610 09420 0.8740
0.9 10000 1.0000 09980 |1.0000  1.0000 _ 1.0000
0.1 8 [17 [09870 09650 09300 [09870 09700 0.9370
0.2 08500 07910 06370 08620 0.8210 0.6760
03 05100 04270 02740 [0.5440 04580 0.3050
04 02000 0.1420 00600 |02290 0.1660 0.0670
0.5 0.0950 00570 0.0220 [0.1140 00690  0.0270
0.6 02480 0.1830 0.0910 |02690 02140 0.1100
0.7 0.6680 05770 04050 |0.6910 0.6040 0.4410
0.8 09630 09430 0.8800 |0.9680 09550 0.9110
0.9 10000 1.0000 09980 | 1.0000  1.0000  0.9980

30



(e) AR d=0vsd>0n=1024

$ m |df Q X
10% 5% 1% 10% 5% 1%

0.00 16 {33 |0.0620 00290 0.0090 |0.0690 0.0350 0.0120
0.05 0.1240  0.0860  0.0290 |0.1300 0.0980  0.0400
0.10 03110 02180 0.1060 |0.3340 02350 0.1200
0.15 0.6400  0.5440 03530 }0.6610 0.5660 0.3790
0.20 09070 08620 0.7300 {09130 0.8750 0.7490
0.25 09860 09710 0.9330 109870 09750  0.9450
0.00 20 |26 |0.0720 0.0330 0.0060 |0.0740 0.0380 0.0070
0.05 0.1330  0.0840 0.0230 |0.1450 0.0940 0.0280
0.10 03630 02730 0.1440 |03790 0.2840 0.1560
0.15 0.7190  0.6080 - 0.4290 {07340 0.6250 0.4460
0.20 09470 09120 0.7930 {09500 09190 0.8070
0.25 0.9920  0.9860 0.9670 {09930 09870 0.9710
0.00 24 {22 |00870 0.0560 00210 {0.0920 00600 00210
0.05 0.1680 0.1090 0.0370 [0.1710 0.1160  0.0410
0.10 0.4410 03550 0.1990 | 04530 03660 0.2100
0.15 0.7440 0.6700 0.4980 |0.7510 0.6790  0.5090
0.20 09420 09060 0.8310 |0.9470 09120 0.8360
0.25 0.9980 0.9920 0.9800 |0.9980 0.9940 09810
() AR(D$=0.5vs$ = 0.5n=1024 '

¢ m {df Q X

10% 5% 1% 10% 5% 1%

0.35 16 133 |07810 06790 04960 ]0.7920 0.7070 0.5210
0.40 03800 0.2910 0.1500 04000 0.3150 0.1630
0.45 0.1190  0.0800 0.0280 |0.1350 0.0900  0.0340
0.50 0.0540 0.0260 0.0060 |0.0640 0.0340 0.0100
0.55 0.1390  0.0860 0.0240 |0.1520 0.0940 0.0270
0.60 0.4260 03260 0.1840 | 04430 03570 0.1990
0.65 0.8200 0.7580 0.5870 | 0.8330 0.7750  0.6150
0.35 20 |26 |0.8020 0.7280 05380 |0.8150 0.7410  0.5640
0.40 0.4520 0.3460 0.1880 |0.4720 03610 02040
0.45 0.1500 0.0940 0.0370 |0.1590 0.1010  0.0400
0.50 0.0910 00470 00130 |0.1040 0.0600 0.0130
0.55 0.1420 0.0850 0.0.50 |0.1510 0.0940 0.0370
0.60 0.4150 0.3310 0.1900 |0.4270 03470 0.2030
0.65 0.7980  0.7320  0.5570 | 0.8090 0.7390  0.5740
0.35 24 |22 | 08340 07670 0.6320 |0.8450 0.7810 0.6470
0.40 05140 04210 02610 |0.5270 04360 0.2710
0.45 02190 0.1500 0.0600 |0.2290 0.1580 0.0670
0.50 0.0800 0.0370 0.0070 |0.0860 0.0480  0.0080
0.55 0.2280 0.1510 0.0670 |0.2400 0.1630  0.0760
0.60 0.5660 0.4850 0.3160 |0.5810 04970 03270
0.65 0.9120 0.8770  0.7720 | 09140 0.8830 07820
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(g AR(1)d=0vs ¢ >0n=198

) m |df Q X
10% 5% 1% 10% 5% 1%
0.0 6 |17 |0.0910 0.0520 0.0170 {01140 0.0700 0.0250
0.1 0.1340 0.0830 0.0280 |0.1630 0.0990 0.0410
0.2 0.3200  0.2300 0.1140 |0.3680 0.2660  0.1480
0.3 0.6740 05660 03670 |0.7050 06110 04270
04 0.8950 0.8610 0.7420 | 09100 08810 0.7780
0.5 09870 09750 09390 (09900 09800 0.9550
0.6 09980 09970 0.9930 (09980 09980  0.9960
(h) AR(1)$=0.5vs ¢ = 0.5 n=198
¢ m |df Q X
10% 5% 1% 10% 5% 1%
0.1 6 |17 |09340 09660 0.7860 |[0.9440 09170 0.8230
02 0.7240 0.6500 04800 |0.7620 06890 0.5350
03 0.4020 03130 0.1740 |0.4390 03510 0.2070
04 0.1640 0.0980 0.0380 |0.2000 0.1260  0.0530
0.5 0.0860 0.0420 0.0160 |0.1050 0.0610  0.0230
0.6 0.1810 0.1340 0.0460 | 02170 0.1560 0.0720
0.7 0.5260 04270 02560 |0.5680 04800 0.3200
08 0.9040 08550 0.7690 |}0.9200 0.8870 0.8010
0.9 09980 09950 0.9860 |]0.9980 0.9980  0.9900
O AR(Dd=0vs b >0 n=492
¢ m |df Q X
10% 5% 1% 10% 5% 1%
0.0 12 |21 [0.1070 00600 00150 |0.1200 00660 0.0170
0.1 0.2290 01630 0.0720 ]0.2420 0.1760  0.0840
02 0.7010 0.6110 04320 07170 0.6410  0.4460
03 0.9640 09500 09000 |09690 0.6540 09110
0.4 1.0000 1.0000 0.9980 ]1.0000 1.0000 1.0000
() AR(1)$=0.5 vs ¢ # 0.5 n=492
¢ m |df Q X
10% 5% 1% 10% 5% 1%
0.1 12 121 | 10000 1.0000 10000 |1.0000 1.0000 1.0000
02 09820 09860 09310 |09860 09730 0.9380
0.3 0.7560 0.6700 0.5140 ]10.7760 0.6950 0.5430
04 0.2580 0.1980 0.0910 |0.2770 0.2110 0.1040
0.5 0.0930 0.0520 0.0140 |0.1050 0.0620 0.0160
0.6 0.2580 0.1950 00930 103090 02140 0.1030
0.7 08710 038220 0.6800 |0.8870 0.8350 0.7090
0.8 0.9970 09950 09930 |0.9970 0.9950 0.9940
0.9 1.0000  1.0000 1.0000 {10000 1.0000 1.0000
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TABLE 6
ESTIMATES OF POWER OF THE TEST STATISTIC Q .

FOR n=252 k=3

(a)AR(D6=0vs >0

b m df 10% 5% 1%
0.0 6 44 0.0830 10.0550 0.0150
0.1 0.1620 0.1080 0.0420
0.2 0.4060 0.3030 0.1560
0.3 0.7850 0.7050 0.5370
0.4 0.9560 10.9290 0.8630
0.5 ' 0.9990 0.9990 0.9990
(b)AR(1) $=0.5vs = 0.5 _

b m af - | 10% 5% 1%

0.1 6 44 0.9720 0.9490 0.8800
02 0.8160 0.7390 0.5700
03 . 0.4330 0.3340 0.1850
04 0.1500 0.0980 0.0370
0.5 0.0810 0.0470 0.0190
0.6 0.1970 0.1330 0.0500
0.7 0.6140 0.5200 0.3410
0.8 0.9620 0.9410 0.9980
0.9 1.0000 0.9980 0.9980
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FIGURE 3
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FIGURE §

Displacement in Nanometres
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FIGURE 7 (a)

Smoothed Spectra of Nuclear Explosion and Earthquake
[
ar
s
‘g
lﬁ ———ex
E - = eq
]
&
w
& & 8 & &§ 5 8 § 5 8 =
[ =] (=] (=] o -~ - -— o~ o~ o ™
Frequency
(b)
Smoothed Spectra of Nuclear Explosion and Earthquake
0.005 -
0.0045 +
0.004 }
$ 00035+
g o
E 0003+
% 00025 | nex
— - - - eq
£ oo002]
& 00015 |
0.001 +
0.0005 + .
0 —+—t—tt—tp——t———t—t o ——
- «)
» 0 ©
[~} [~ ] o
Frequency

37




