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Exponential Smoathing for Inventory Control: Mean and Variances of Lead-time Demand

ABSTRACT

Exponential smoothingis often used to forecast |ead-time demand for inventory control. In
this pgper, formulae are provided for calculating meansand vaiances of lead-time demand
forawidevariety of exponential smoothing methods A feature of many of theformulaeis
tha variances, as well as themeans, depend on tendsand sasond effects. Thus these
formulae providethe opportunity to implement methodstha ensure that safety stocks adjust

to changesin trend orchangesin season.
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1. INTRODUCTION

Inventory control software typically containsaforecasting module based on exponential
smoothing. The purpose of such amodule isto feed meansand variances of |ead-time demand
to an inventory control module for the determination of ordering parameters such as reorder
levels, order-up-to levels and reorder quantities. Typically, exponential smoothing is chosen

because it has a proven record for generating sensble point forecasts (Gardner, 1985)

To bemore specific, consider thetypical situation where areplenishment decision isto be
made at the beginning of period n+L. Any order placed at thistimeis assumed to arive a
lead-time later at the start of period n+ A . Inventory theory dictates that the primary focus
should beon lead-time demand, an aggregate of unknown future values v, ., defined by

Y,(4)= Z Yo - (1)

The problem isto make inferences aboutthedistribution of lead-time demand. Typically an
appropriate form of exponential smoothingis applied to past demand dda vy,,... Yy, , theresults

being used to predict the mean of the lead-time demand distribution.

Variances of lead-time demand are al'so needed for theimplementation of inventory strategies
tha provide a protection agang theworst effects of uncertain cusomer demand. Until
Johndgon and Harrison (1986)derived a variance formulafor use with Smple exponential
smoothing, rather ad-hoc formulae were the vogue in inventory control software. Usinga
simple state space modd, Johngon and Harrison uilized thefact that simple exponentia
smoothing emerges as the steady state form of the assodated Kalman filter in large samples.
Adopingadifferent modd, Snyder, Koehler and Ord (1999)were able to obtain the same
formula withoutrecourse to the Kalman filter strategy. The advantage of thar approach istha
no restrictive large sample assumption is needed. Johngon and Harrison (1986) also obined
avariance formulafor trend mrrected exponential smoothing. Yar and Chafield (1990)
however, have suggested a dightly different formula. They also provideaformulatha
incorporates seasond effects for use with the additive Winters (1960)method.

The purmpo< of this pgper isto take afresh look at the problem of deriving formulae for
forecast variances of lead-time demand. We use the linear version ofthe single source of error
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modd from Ord, Koehler and Shyder (1997)to unify thederivations We aso provide useful
extensgonsto accommodae errors tha depend ontrend and seasond effects. Themodd and
its special cases are introduced in Section 2. Associated formulae for means and vaiances of
lead-time demand are presented in Section 3. Genera prindplesused in their derivation ae
presented in the Appendix. Throughoutthe pgoer, we adopta convention mncerning the sum
opaator 2. In those cases where thelower limit is less than theuppe limit, the sum should

beequaed to zero.

2. MODELS FOR EXPONENTIAL SMOOTHING

Future values of atime series are unknown and musg betreated as randomvariables. Ther
behavior mug belinked to astatistical modd in order to deive prediction dstributons A
modd should have the potential to indudeunobgrved comporents such as levels, growth
rates and seasond effects, because variousforms of exponential smoothing are based on hese
conaepts. Common cases of exponential smoothing and their modds are shown in Table 1.
The column marked * Codée uses nomenclature from Hyndman et a (2001). Here N
designates ‘None', ‘A’ designaes ‘Additive’ and D designates ‘ Damped’. All codesinvolve
two letters. Thefirst letter isused to describethetrend. The second ketter describes the

seasond component. The variouscomponents are ¢, forlocal level, iy forlocal growth rate,
s forlocal seasond effect and g for arandomvariable designating the irregular component.
The a, B, y are so-called amoothing paameters. The ¢, another paameter, is adamping

factor. The pumpo< of thecaret symbolis outlined later.

Case | Code| Modd Smoothing Method Description

1 NN |y =(,+e 9.=0,, Simple exponential
ly=l,+ag }t :zt_l +a(y, - %) smoothing (Brown,

1959)

2 AN y,=(_+h, +e g, :%t—l +§_1 Trend-corrected
(=l +h_ +aeg 1, =1, +b,+a(y,-9) |ePponetia smooting
b =h,+ape ~n .

1 h — h—1+aﬁ(yt _ yt) (Holt, 1957)
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3 AD Y=l th,+e Y, = %t_l + Ei_l Damped trend
ly=l,+h,+ag T =1, +h,+a(y-y,) | (Gadnerand
b =¢h,+ape ~ o . i
1 B :m—1+aﬁ(yt _yt) McKenze, 1985)
4 Y, =S, te J,=§.., Elementary seasonal
§=S-mtVe étzé_m+y(yt—§/t) case
5 AA |y =l s+ | g =7+ +5§., Winters additive
ft zﬁt—1+h—1 +ae[ Et :Et—l+a—l+a(yt _9t) methOd (WlntGI’S,
b =k +aBe ~ e . 1960)
b =h,+aB(y.~ ¥,
§=54+/8 A S
§=8.+v(v—%)
6 DA |y, =l +b +c *+& | § =0 _+h +§ Damped trend with
(.=l +h_ +aeg 7,=1,+b +a(y,-9,) | seesond effects
b =¢h,+ape A~
=g, taB(y, Y,
§=8.*V8 NG (‘A‘)
§=8tr(%-%)

Table 1. Models for Common Linear Forms of Exponential Smoothing.

Each model in Table 1 contains a measurement equation that specifies how a seriesvalueis
built from unobserved components. It contains transition equations that describe how the
unobserved components change over time in response to the effects of structural change. It

involves arandom variabl e representing the irregular component.

All the modelsin Table 1 are special cases of what is best called a single source of error state

space model. The unobserved components are stacked to give avector X . It is assumed that

all components combine linearly to give the series value, so the measurement equation is

specified as
Y =hx.+e @D

where his afixed vector of coefficients. Thelag on x. isused to reflect the assumption that

the conditions at time t-1 determine what happens during the period t. The evolution of the

unobserved components is governed by the first-order transition relationship

% =Fx,+0§ )
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where F isafixed matrix and g is afixed vector that reflects the impact of structural change.

It is possible to think of the first component of (1) as an underlying level and to designate it

by m =h'x_, . Itispossible that the disturbance isindependent of thislevel. It is also possible

that its variance increases with this level. Both possibilities are captured by the assumption
that the disturbance is governed by the relationship

e=me for r=0,1 (3

where &, isamember of a NID (O, 0’2) series? The measurement equation may now be

writtenas y, =m +¢& when r =0or y, =m (1+¢,) when r =1. Inthe latter case theg, isa

unit-lessquantity, conveniently thought of as arelative error. It means that the irregular
component potentially depends on the other components of atime seaies, something that can

be very important in practice. The elements h, F, g potentially depend on a vector of

parameters designated by w.

It isassumed that the same model governs both past and future values of atimeseies. Past
values are known, in which caseit is possble to make a passthrough the data, applying a
compatible form of exponential smaothing in each period. Suppose at the beginning of
typical period t, past applications of exponential smaothing have yielded the value % _, for the

state vector x._, . After obseving y, at the end of periodt, it is possble to calculate the error
e =y, —h'X_, . The error can be substituted into the transition equation to give
% =F%,+9(y, —h'%k_,) for the value of the state vector X . Given the progressive nature of

thisagorithm, it isclear that X =X | y;,... ¥, %, @. Induction may be used to confirm that X

isafixed value.

A specia caseof the above model, best termed a composite model, is now considered. The

state vector x, is partitioned into random sub-vectors designated by x,, and x,, . The

measurement equation has the form

Ve =hx,, +hX,  +6 (4)
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where h and h, are sub-vectorsof h. The sub-vectors of the state vector are governed by

transition equations
X« =FXeatae (k=12) (5)

where F,F, aretransition maricesand g,,g, are sub-vectors of g. The special feature of this
composite mode is that the transition equation for x,, does not contain x,, and vice versa. It

isshown in the Appendix that the resuts for a composite model can be built directly from
thoseof its constituent models.

All themodelsin Table 1 are specia cases of the single saurce of error model or the
composite model. The links with thesegeneral models are provided in Table 2. Here O, refers
to ak-vector of zerosand |, referstoa kxk identity matrix. Note that athough the seassanal

cases are governed by mth-order recurrence relationships, they are converted to equivalent
firstorder relationships. Alsonote that w isavector formed from sameor al of the

parameters a, B,y ¢.

Case | x h F g
1 x =1, h=1 F=1 g=a
2 ! ! = [ !
x=[t, b] L O I e | 1} g=[a ap]
01
3 ! ! = [ !
x =[¢, b] L 1} 9=[a ap]
0 ¢
4 I ’_ / Wal I
x =[5 < S| VL0 4| g [0 1} g=[y 0,.]
_Im—l Om—l
5 ! ! = !
%, =[6, b] =t 1] Flz[l 1} 6.=[a ap]
01
=0, 1| =% 1 ,
X =[8 S (O 4| Lm_l 0, %=y 0.
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°  |x.=[ u] =ML 1 Flz[l 1} g,=[a ap]
0 ¢

fo 4| e [Om 1 ,

Xz,tz[st St—m+1:| h2 [m ] l:2_|:|m_1 Om_1:| gzz[y O’m—l]

Table 2. Conformity of Special Casesto the General Model or Composite Model.

Anintriguing insight from Table 2 is that each smoothing method applies for both a
homoscedastic and a heteroscedastic model. Now, each homaoscedastic caseis equivalent to
an ARIMA process(Box, Jenkins and Reinsd, 1994). However, no heteroscedastic caseis
equivaent to an ARIMA process.Thus, exponential smaothing applies for awider classof
models than the ARIMA class(Ord, Koehler and Snyder, 1997).

In the homoscedastic cases, only the mean potentially depends on trend and seasonal effects.
However, in the heteroscedastic cases, both the mean and the variance of theirregular
component depend on trend and seasanal effects. Thus, prediction variances reflect trend and
seasnal effects in the heteroscedastic case, afeature that is potentially quite useul in

practice.

Many other cases are conceivable when addition operators are replaced in the measurement
equation by multiplications. Examples of such cases are presented in Hyndman, Koehler,
Snyder and Grose (2002). A variety of models underlying the multiplicative version of
Winters multiplicative method have been introduced in Koehler, Snyder and Ord (2001). The
complexity of these non-linear posshilities precludes the derivation of resuts using the

methodology of this paper.

3. MEANS AND VARIANCES OF LEAD TIME DEMAND

It is assumed that methods similar to thosedesaibed in Ord, Koehler and Snyder (1997) have
been applied to past demand data to estimate the parameters of an appropriate model The
problem is now to find the moments of the lead-timedemand (1). Our analysisisbuilt, in
part, on prediction variance resuts from Hyndman, Koehler, Ord and Snyder (2001) for

conventional prediction distributions.

It is shown in the Appendix that lead-time demand can be resdved into alinear function of

the uncorrelated irregular components:
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A A
Yn ()\):Zl'ln+j +zcjen+j - (6)
j=1 j=1
where
/’In+j = h’F Jl_lxn (7)

isthe mean of the j-step prediction distribution. It is further established that the coefficients of

the errorsin (6) are given by

A=
C,=1+> ¢ for j=1...,A. (8)
i=1
where

¢ =hF'g. 9)

Particular cases of the formulae for the means 1, and the coefficients C; are shownin

= 1 -
Table3. Notethat ¢ => ¢ ; (ﬁjz) =>ig; p:Per l—l; d,,=1if jisamutipleof m
i=0 m

i=1

and d, , = Ootherwise Theresutsfor Case5 and Case 6 are constructed by adding the

corresponding resuts for constituent basic models, an approach that is alsorationalized in the

Appendix.
Case /'ln+j Cj Cj
1 17, a 1+(A-j)a
2 |7 +ib, a(1+jp) 1+(A—j)a+(A_')(A_j+1)a,B
2
3 | 7,+an, a(1+6g) 1+(A-j)a+(A-)aBe,, -apd?
4 §n+j—p dj y o
" " 1+ dim
5 En+j6n+§n+j—pm a(1+Jﬂ)+dme 1+(A_J)a+(A_J)(/\_J+1)aﬁ+y/]z_id
2 — i,m
6 C,+@b +§, . a(1+,8(pj)+dj'my 1+(/\—j)a+(/\—j)a,8@_j—a,B(éﬁ)ﬁyAZ_fdim
i=1
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Table 3. Key Results for Basic models.

From (6), the conditional varianceis given by
A
va (Y, (1) [x,w)=0*.C’. (10)
j=1

in the homoscedastic case. All the information needed to evaluate the grand mean and the

grand variance is available in Table 3. In the heterosaedastic case the grand variance is
A

var (¥, (1) 1%,@) =0*>-C?6,, (1)
j=1

where 6,,; = E(mfﬂ. |xn,a)). It is established, in the Appendix, that the heteroscedastic

formul ae may be computed using the recurrence relationship
-1
Ory = Howy + 616,10 12)
i=1
wherethe c; arealso givenin Table 3.

4. CONCLUSIONS

Formulae for calculating the mean and variance of lead-time demand have been derived for
many common forms of exponential smoothing in this paper. For the homoscedastic cases,
the prediction distributions are Gaussian, so the means and variances provide all the
information required to make probabilistic statements about future |ead-time demand. In
theory, the prediction distributions for the heteroscedastic cases are not Gaussian. However, a
numerical study in Hyndman, Koehler, Ord and Snyder (2001) indicates that thereislittle
error involved in approximating them by a Gaussian distribution. The same conclusion must
apply to lead-time distributions where aggregation must help to further reduce the

approximation error.

By using the single source of error state space model, we have unified the derivation of the
formulae. In the homoscedastic cases, many of the formulae obtained in this paper agree with
those found in earlier work (Johnston and Harrison, 1986; Y ar and Chatfield, 1990; Snyder,
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Koehler and Ord, 1999). A small advance was obtained in relation to Winters additive
seasona method in that the recursive variance formulae in Y ar and Chatfield (1990) has been
replaced by a closed counterpart. Furthermore, we have obtained, for the first time, formulae
for the variance of lead-time demand for the damped trend cases.

It has been argued in the paper that the irregular component of a demand series can depend on
trend and seasonal effects. Thus, amajor part of our contribution has been the provision of
lead-time demand variance formulae for heteroscedastic extensions to exponential smoothing.
Such formul ae admit the possibility of smarter approaches to safety stock determination. It is
now possble to implement schemes that tailor levels d safety stock to changesin trend or
changes in season.
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APPENDIX

General results governing the formulae in Table 3 are derived in this Appendix. To get the

formulae governing Cases 1-4, back solve the transition equation (2) from period n+ j to

period n, to give

) i o
X..j =FIx +> Fl'ge, (A1)

i=1

Lag (A1) by one period, pre-multiply the result by h', and use the definitions (7) and (9) to
get

11
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j-1
My = o +ZCj-i% : (A2
=

Recall that g isgiven by (3) sothat E(€2,; |) = o*E(n,;). Then we may square (A2) and

n+i

take expectations to give the recurrence relationship (12) for the heteroscedastic factors.
j-1

Substitute (A2) into (1) to give y,,; = i, + Z C,_i€. +6,; - Substitute thisinto (1) to give
i=1

A

j-1
Y, (i) :Z{'unﬂ' +> ¢ 8 +eh+jj. Rearrange terms to yield the required result (6) where
1

n
j:]_ i=

the C, are defined by (8). Note that the derivation of the C; is expedited using the following

equations: C; =1and C, =C,,, +c,_; for j=A-1...,1.

Cases 5 and 6 are composite models. Each transition equation (5), for acomposite model, has

the same structure as (2). Thus,
_ .
Xentj = . Xen T Z F/ 708 - (A3)
i=1

Lag (11) by one period and pre-multiply the resut by h to give

Mo = o #3006 (n2)
where
Hiene; = RF %, (A5)
and
6, =hF.g,. (A6)

Substitute (Ad) into m,,; =m ., +m, ., toyield the earlier equation (A2) where

Howi = Hyne T Hons (A7)

12
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and

CG=¢C, +C,;. (A8)

Thus, theformula C, =C,; +C,, —1 may be used to derive the results for Case 5 and Case 6

from their constituent basic cases. In the heteroscedastic cases, the appropriate factors are still
derived with the relationship (12).

13
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