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Abstract 

 
A perceived increase in correlation during turbulent market conditions implies a 

reduction in the benefits arising from portfolio diversification. Unfortunately, it is 
exactly then that these benefits are most needed. To determine whether 
diversification truly breaks down, we investigate the robustness of a popular 
conditional correlation estimator against alternative distributional assumptions. 
Analytical results show that the apparent meltdown in diversification could be a 
result of assuming normally distributed returns. A more realistic assumption – the 
bivariate Student-t distribution – suggests that there is little empirical support for 
diversification meltdown.  
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1. Introduction 

Investors’ ability to accurately estimate (and forecast) the correlation between financial asset 

returns is the key to successful portfolio management. Indeed, the benefits arising from 

diversifying risk make it worthwhile to invest part of the portfolio in assets which offer – at 

first sight – inferior expected returns. However, both market lore (e.g., Sullivan, 1995 and 

Blyth, 1996) and recent academic research (Longin and Solnik, 1995 and Karolyi and Stulz, 

1996, Kritzman et al., 2001) suggest that these benefits rapidly erode during turbulent market 

conditions. Large (extreme) movements in financial asset prices are found to be more highly 

correlated than moderate/small movements. In particular, large falls in international financial 

market prices occur with greater simultaneity than the assumption of constant correlation 

would predict (Ang and Chen, 2002, and Longing and Solnik, 2001). Since it is precisely 

under these conditions that diversification is needed most, investors should be extremely 

concerned about “correlation breakdown”1.  

Assume that correlation does indeed depend on the size of asset returns. To avoid 

confusion in terminology, we should carefully define what we mean with size-dependent (or, 

size-conditional) correlation. We distinguish predictable size-dependent correlation from 

random size-dependent correlation. Predictable size-dependency in correlation arises, for 

example, in multivariate GARCH models. The well-known empirical feature of intertemporal 

persistence in the volatility, or size, of returns will also imply persistence in their correlation. 

In effect, time-dependent volatility (correlation) implies size-dependent volatility 

(correlation). Investors would then be wise to condition their forecast correlations on recent 

conditional correlations when optimally allocating their portfolios. But, is this true for all 

investors? More specifically, do the conditional correlation forecasts accurately indicate the 

ex-post diversification benefits? The answer depends on the investment horizon. An example 

                                                           
1  A term coined by Boyer, Gibson, and Loretan (1999). Since correlation actually strengthens under this 

scenario, we prefer to use the term “diversification meltdown”. 
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may illustrate this. Consider an investor whose portfolio allocation on the 1st of January 2003 

is based on a sample period of historical returns characterized as a persistent bear market 

(e.g., 2000-2002). Since correlation is positively related to the size of returns, our investor 

will estimate high correlations between individual asset returns. Are these good (i.e., 

unbiased) forecast correlations, and hence relevant for the duration of the investment? With 

persistence in conditional correlation, short horizon investors can reasonably extrapolate the 

estimated correlations. But what about intermediate and long horizon investors? Eventually, 

the persistent bear market will give way to more conventional market conditions. At longer 

horizons, the persistence in, and hence predictability of, correlation diminishes. The sample 

of historical returns will no longer be representative of the relevant joint distribution of 

returns. The investor would then like to know how a (biased) conditional correlation 

estimated from a select sample can still provide inference regarding the relevant population 

correlation.  

Now imagine that our investor somehow obtains a much longer sample of historical 

returns (perhaps dating back to 1990 covering bear and bull market episodes). A  multivariate 

GARCH model could now reliably be estimated and the short-horizon investors could 

feasibly use the predictable conditional correlations. Would the unconditional correlation 

estimate be a sufficient measure to forecast correlation for our long-horizon investor? Not 

necessarily, if there is also evidence of random size-dependent correlation, i.e., size-

dependent correlation in the standardized returns. To investigate the existence of random 

size-dependency, we  need to introduce a conditional correlation estimator. 

A number of conditional correlation estimators have recently been proposed to 

investigate the intertemporal and random size dependency of correlation between asset 

returns. We investigate the robustness of one particular size-conditional correlation estimator, 

the truncated correlation estimator, which has recently been applied by several authors to 
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investigate the robustness of international portfolio diversification benefits. Butler and 

Joaquin (2002) find that, after accounting for theoretical bias in conditional correlation 

estimates, correlation does indeed depend on the size of returns. However, this conclusion is 

based on the assumption that asset returns are jointly normally distributed. Clearly a 

questionable assumption given abundant empirical evidence of fat-tailedness in the 

(standardized) asset return distributions. Since our interest is precisely in ‘tail’ correlations 

(where the benefits from diversification are most needed), we derive a truncated correlation 

estimator for (one popular class of) fat-tailed return distributions. We find that earlier results 

supporting diversification meltdown no longer hold when the underlying returns are jointly 

Student-t distributed. This suggests that long-horizon portfolio managers need not necessarily 

worry about size-dependent correlation. That is, as long as their portfolio allocation 

methodology acknowledges fat-tailed return distributions, the unconditional correlation 

assumption could still be maintained. We also derive an implied unconditional correlation 

estimator that allows us to infer the population correlation from truncated correlation 

estimates due to select samples (characterized as bear or bull market episodes). This implied 

estimator is easier to interpret and more straightforward to implement in portfolio allocation 

than its truncated equivalent.  

 

The outline of the paper is as follows. In the following section we briefly discuss the 

estimation methodology for the truncated correlation estimator when the standardized asset 

returns are jointly normally distributed. We then derive the analogue for standardized asset 

returns that are jointly Student-t distributed. This estimator includes the joint normal 

distribution as a limiting case (when the degrees of freedom approximate infinity). We 

illustrate the theoretical bias in truncated correlation estimates by computing correlation 

functions for a range of t-degrees of freedom where the population correlation is independent 
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of size. We also discuss the computation of appropriate standard errors. In Section 3, we 

apply the truncated correlation estimator to daily data on various international stock market 

index returns. We note the importance of first standardizing the returns to remove the 

intertemporal dependency, and only then computing the empirical truncated correlations. We 

compare these empirical correlations to their theoretical counterparts (under the null of size-

independent correlation) for the distributional assumption that best fits the standardized 

returns. The implications for portfolio optimisation are discussed in Section 4, and Section 5 

concludes.  

 

2. Methodology 

The liberalisation of capital flows and integration of financial markets are generally 

considered to be contributing factors to an increase in the correlation between international 

financial asset returns. While emerging markets’ excess returns become a thing of the past, 

the benefits of international diversification disappear as well; see Butler and Joaquin (2002)2. 

In addition to this ‘evolutionary’ increase in correlation, there is also some evidence that 

correlation (between markets and between asset classes) increases during turbulent market 

conditions. Contagion between international financial markets causes large price movements 

in one market to spillover into other international financial markets. It therefore seems 

reasonable to suspect a link between the long-term integration of international financial 

markets and the increased likelihood of return spillovers. Many papers – including Engle, Lin 

and Ito (1994) and Karolyi and Stulz (1996) – have focussed on the issue of stock market 

spillovers implied by increasing correlation between international asset returns during 

especially volatile market conditions.  

                                                           
2  McDonald (2000) claims that these diversification benefits never existed in the first place! 
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Despite the fact that many practitioners believe that correlation changes intertemporally, 

and depends on the level of volatility, empirical evidence for this phenomenon is somewhat 

mixed. The two dominant empirical approaches in the correlation literature are those that 

condition correlation on time, and those that condition correlation on the size of the returns. 

The (multivariate) GARCH model, in turn, dominates the time-conditional correlation 

literature, see e.g., Bollerslev, Engle and Wooldridge (1988), Engle and Kroner (1995), and 

Engle (2002)3. Various multivariate GARCH specifications have been proposed, some of 

which put restrictions on the covariances (and hence correlations) to reduce the inevitable 

parameter dimensionality problem. These restrictions are clearly not appropriate if the 

primary interest is in the stochastic behaviour of correlation. The size-conditional literature 

can be further segmented into the extreme value theory (EVT) literature, see e.g., Longin and 

Solnik (2001); the closely related copula literature, see e.g., Embrechts, McNeil and 

Straumann (1999) and Patton (2001); and the truncated correlation literature, see e.g., 

Loretan and English (2000a), Butler and Joaquin (2002), and Forbes and Rigobon (2002). 

The time- and size-conditional models are certainly not mutually exclusive, a fact that 

potentially confuses the reader (and practitioner). Patton (2001), e.g., illustrates how the 

copula approach can be used to model time-varying conditional distributions. Similarly, by 

conditioning correlation on time, the multivariate GARCH specification links conditional 

volatility (including covariances) to past volatility. Large returns (of either sign) are followed 

by large returns, and vice versa. Of course, this implies that time-dependent volatility is also 

size-dependent. Note, however, that this type of conditional correlation will vary with, and 

may persist over time but will ultimately mean-revert to its long-term unconditional level. 

Hence, short-horizon investors will have to be wary of changes in correlation when volatility 

increases. Long-horizon investors, on the other hand, can safely ignore the intertemporal 

                                                           
3    A stochastic correlation alternative is given in Ball and Torous (2000). 

 6



variability in correlation. For them, the correlation between the standardized return series is 

of greater relevance. However, there is empirical evidence that even after standardizing the 

return series for GARCH time-dependency, multivariate fat-tailedness persists. Is it possible 

that the correlation of these standardized returns still varies with size? Both short- and long-

horizon investors would then have to reconsider the appropriateness of mean-variance based 

portfolio allocation. We revisit the practical consequences of size-conditional correlation in 

Section 4. 

The multiplicity of techniques and approaches to estimate conditional correlation 

suggests the absence of a unique characterization of conditional correlation. Not surprisingly, 

there are as many conditional correlation estimators as there are different ways of 

conditioning on size in multivariate return distributions, see Barnett (1976). Rather 

unsatisfactory for practitioners, the different estimation methodologies do not typically refer 

to (nor benchmark against) each other. Ang and Chen (2002) show that most of these 

conditioning schemes cause a bias in the conditional correlation estimates4, though not 

necessarily in the same direction or of the same magnitude. Consider, for example, that we 

want to measure the correlation between asset returns x and y during bear market conditions. 

We classify a bear market return as a return below some threshold value λ. The extreme 

value approach then conditions on joint marginal thresholds, i.e., ( )λλρ << yxyx ,|, . For a 

bivariate normal distribution, this conditional correlation estimator will tend to zero for 

jointly decreasing marginal thresholds. In contrast, the truncated correlation approach 

conditions on a single marginal threshold, i.e., ( )λρ <xyx |, . For the same bivariate normal 

distribution, the conditional correlation will then increase for a decreasing marginal 

                                                           
4  Campbell, Koedijk and Kofman (2002) develop a conditional correlation estimator that is invariant against 

conditioning and hence does not suffer from this bias. 
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threshold5. For portfolio allocation purposes, a possibly more intuitive approach would be to 

condition on a portfolio threshold, ( )λρ <+ yxyx |, . Campbell, Koedijk and Kofman (2002) 

show that this scheme is in fact bias-free. 

Obviously, the specific type of conditioning will depend on the research question. From 

a practical perspective, before embarking on a quest for a robust conditional correlation 

estimator one needs to carefully define the purpose this estimator is supposed to serve. A 

particular purpose may imply a conditioning scheme and hence, a conditional correlation 

estimator. Boyer, Gibson and Loretan (1999) discuss conditioning events (e.g., sub-sampling 

high volatility months) that imply a single marginal conditioning of the joint return 

distribution6. Their conditional correlation estimator conditions on a ‘slice’ of the joint return 

distribution over which it is estimated. Two examples (sub-samples A and B) of this approach 

are given in Figure 1. First, consider the case where the market, with return x, has been in a 

persistent slump and an investment advisor uses short samples to estimate betas for stock y, 

where x∈ A. How should we interpret this estimate of beta? Is the beta estimate suitable for 

both short-term and long-term investors? Or, alternatively, consider the case where x is the 

return on a guaranteed minimum return portfolio, and y is the return on a hedge portfolio. 

How do we measure the relevant correlation between x and y given x∈ B?  

INSERT FIGURE 1 

It is well known (see e.g., Ang and Chen, 2002) that truncating the joint return distribution 

according to A (or B) causes bias in the conditional correlation estimate. We need to ‘unbias’ 

the truncated correlation estimate for the amount and the location of the truncation so that we 

can properly compare it to the unconditional correlation measure. It is relatively 

                                                           
5  Interestingly, the estimation bias is invariably negative, i.e., conditional correlation is always less than 

unconditional correlation for normally distributed returns! Nevertheless, the bias may be increasing or 
decreasing when moving into the tails, depending on the conditioning scheme and/or estimator. 

6  In Campbell, Koedijk and Kofman (2002) we develop an alternative estimator that conditions on portfolio 
returns instead of the univariate thresholds in this truncated correlation estimator. 
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straightforward to derive the bias in the theoretical truncated correlation estimator for a 

bivariate normal distribution. Unfortunately, financial asset returns do not easily fit the 

normality assumption. Even after allowing for time-dependent variance, the standardized 

returns frequently display signs of fat-tailedness in excess of normality. This remaining fat-

tailedness is often captured by dropping the normality assumption in favour of a Student-t 

specification, see e.g., Huisman, Koedijk and Pownall (1998). Butler and Joaquin (2002) 

numerically illustrate how ‘abnormal’ fat-tailedness affects conditional correlation estimates, 

but to the best of our knowledge an analytical derivation is not currently available for the 

Student-t case. We therefore extend the truncated correlation estimator for the fat-tailed 

bivariate Student-t distribution (with degrees of freedom r).  

Section 2.1 briefly revisits the truncated correlation estimator for normally distributed 

returns. We also provide a useful ‘inversion’ result to operationalize the truncated correlation 

estimates for practical portfolio allocation purposes. We then develop the analogue of the 

truncated correlation estimator for Student-t distributed returns in Section 2.2. We illustrate 

the differences in truncated correlation estimates between these maintained distributional 

hypotheses, based on a series of simulation experiments in Section 2.3. 

 

2.1. Truncated correlation for the bivariate normal distribution 

Choose x,y to be correlated random variables driven by independent standard normally 

distributed (SND) random variables εx , εy with drift rates µx , µy and standard deviations σx ,σy 

such that, 

yyxyy

xxx

y

x

εσρερσµ

εσµ
21−++=

+=
         (1) 

We are interested in the correlation for a partitioning Q ( x,y | L ≤ x ≤ U ) of the complete 

bivariate distribution. We can then write the truncated correlation estimator 
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as a ratio of truncated covariance and truncated standard deviations. After some manipulation 

(see Johnson and Kotz, 1972 p.112) it follows that 
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where ρ is the unconditional correlation between x and y of the complete bivariate 

distribution. We label the correlation estimator in (3) as the truncated correlation estimator. 

In (3), the truncated variance of x is equivalent to the variance of a truncated normal 

distribution. The quantiles defining Q are [L,U] such that the truncated variance of x is given 

by 
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and assuming that the truncation limits are evaluated under the standard normal pdf ϕ and 

standard normal cdf Φ : 
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where pQ is the probability mass of Q, i.e., pQ=Φ(U)-Φ(L). Some observations are 

noteworthy. First, if the unconditional variance of x equals its truncated variance, then the 

truncated correlation equals the unconditional correlation. Second, by truncating the 

unconditional distribution of x, the variance ratio ( )2
|

2 / Qxx σσ  will exceed one, which implies 

that the truncated correlation will be less than the unconditional correlation7. For increasing 

                                                           
7  There is an exception to this rule when Q ={x,y | x∈ <-∞,L]∪[U,∞>}, a union of two partitionings as in 

Loretan and English (2000b), a “high-volatility” partitioning. In that case the variance ratio will be less than 
one and truncated correlation will exceed unconditional correlation. Since we want to allow for asymmetry 
between bear and bull market conditions, we exclude this union of partitionings. 
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truncation, truncated variance, and hence truncated correlation, will decrease monotonically 

(but non-linearly). 

If we partition the unconditional distribution into equal parts (say, deciles), truncated 

variance will be smaller for the dense central deciles than for the more dispersed tail deciles. 

Since truncated correlation decreases monotonically in the variance ratio, we can postulate a 

U-shaped function of truncated correlation vis-à-vis the empirical domain of the marginal 

distribution of x. The larger the unconditional correlation, ρ, the less pronounced this U-shape 

will be. 

It follows that we can logically expect truncated correlation to increase if we condition 

on the tails of an empirical distribution in comparison with a central partition of this 

distribution. Any such increase is, of course, purely spurious. Of some importance is the fact 

that for finer and finer partitions Q, the variance ratio will increase and hence reduce 

truncated correlation well below the unconditional correlation. This causes a downward shift 

in the U-shaped truncated correlation function.  

Recall that the truncated correlation estimate will still be less than the unconditional 

correlation! Empirical truncated correlation estimates can therefore only be compared in a 

meaningful way with their theoretically implied truncated correlation in (3). If we want to 

compare empirical truncated correlation estimates with the unconditional correlation, we first 

need to invert equation (3) 

( ) 2222

22

1 Q|xQxQ

xQimplied

ˆˆˆˆ
ˆˆ

ˆ
σρσρ

σρ
ρ

−+
=                               (3a) 

From the truncated correlation estimate, we derive an implied unconditional correlation  that 

is directly comparable to standard unconditional correlation. These implied unconditional 

correlation estimates would be better suited for the practical implementation discussed in 

Section 4.  
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2.2. Truncated correlation for the bivariate Student-t distribution 

By comparing theoretical truncated correlation in (3) with unconditional correlation, we are 

able to identify the theoretical distortion (bias) in the truncated correlation estimator. We can 

then compare empirical truncated correlations to the relevant theoretical truncated 

correlations to decide whether correlation is indeed size-dependent. Of course, to make this a 

valid exercise, the empirical returns will have to satisfy the assumptions underlying the 

truncated variance of x in (3). A problem arises in using (5) for this purpose if the data are not 

normally distributed, but instead have fatter tails than normality implies. This would naturally 

lead to a further dispersion in the tail observations, and to an even steeper increase in 

truncated correlation. Hence, it would give the mistaken impression of size-conditional 

correlation even if correlation were inherently size-independent.  

According to Boyer, Gibson and Loretan (1999), as long as the bivariate density is 

elliptic, truncated correlation is defined as in (3). Hence, for a bivariate Student-t where the 

marginals have identical degrees of freedom, this will hold. Of course, the truncated variance 

expression in (5) will change even for elliptic distributions. If we assume that the underlying 

density is jointly Student-t distributed, then the truncated variance becomes: 
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where Γ is the gamma function and r is the degrees of freedom parameter of the Student-t 

distribution. ]  is then defined as the probability mass of the interval Q, bounded by U and 

L, for a Student-t distribution with r degrees of freedom. The derivation of (5a) is given in an 

appendix to this paper. The expression in (5a) is still computationally straightforward. In 

graphical terms it also implies a U-shaped truncated correlation function. The increased tail 

dispersion of the Student-t (in comparison with the normal) distribution generates a steeper U 

(than for the normal).  

[
r

ULP ,

 

2.3. Truncated correlation functions and simulated standard errors 

We can now illustrate the impact of fat-tailedness on the theoretical truncated correlation 

estimates. Truncated correlation functions are computed for two distributional models: the 

bivariate normal and the bivariate Student-t with a range (r = 4, 8, 12) of degrees of freedom. 

To emphasise the differences between distributional assumptions, we choose a rather large 

unconditional correlation, ρ = 0.75. We partition the bivariate distribution on the x-domain 

into 20 equal-sized percentiles (5% each) and compute for each percentile the theoretical 

truncated correlation based on equation (3) and (5) respectively (5a). To allow for sampling 

error in our empirical experiments we also compute the 95% confidence interval around the 

theoretical truncated correlation functions. Using equations (1) and (2), we simulate a 

bivariate return distribution for a sample of size 2,580 (which is identical to our empirical 

sample size).  To obtain appropriate standard errors, we repeated this simulation exercise 

1000 times and computed the 2.5 and 97.5 percent confidence limits for the theoretical 

truncated correlations.  

INSERT FIGURE 2 

Figure 2 illustrates the theoretical truncated correlation function for a bivariate normal 

distribution, and a Student-t distribution with r = 4 degrees of freedom, with unconditional 

 13



correlation assumed equal to ρ = 0.75. The Student-t truncated correlations are, as expected, 

larger than their normal equivalents for the tail percentiles. Note that for the central 

percentiles, the Student-t truncated correlations are smaller than their normal equivalents. 

With increasing (decreasing) unconditional correlation, the functions shift upwards 

(downwards) and the U-shape becomes more (less) pronounced, see also Butler and Joaquin 

(2002) who illustrate this for the normal distribution assumption. 

A Student-t with r = 4 degrees of freedom is excessively fat-tailed, but frequently found 

to feasibly fit empirical asset returns. For higher degrees of freedom, the Student-t becomes 

more normal and the distinction between the normal and Student-t theoretical truncated 

correlation functions diminishes. In fact, the distinction is already difficult for the central 

percentiles. There is, however, an alternative illustration to emphasize the truncated 

correlation differences for the two distributional assumptions. Instead of considering non-

overlapping percentiles, we can also compute theoretical truncated correlations for 

cumulative percentiles (or rather, decumulative). That is, we first split the x-domain into 

halves and then estimate the truncated correlation for the lower ( x,y | x<µx ) and the upper 

(x,y | x>µx )  halves, respectively. We then reduce each partitioning successively, thereby 

gradually moving into the left, respectively right tail percentiles. In (5) and (5a) this implies 

that we fix the level of L (U) and successively decrease (increase) the level of U (L). Using a 

Monte Carlo experiment, we simulate the 95% confidence interval around the theoretical 

truncated correlation functions based on these “shrinking” percentiles. The results are given 

in Figure 3. 

INSERT FIGURE 3 

An interesting trade-off occurs. By ‘decumulating’, we reduce the percentile size (and hence 

its truncated variance). At the same time the remaining percentile becomes more diffuse, 

since we move into the tail of the distribution, and hence the truncated variance increases. For 
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the normal distribution (with exponentially declining tails) the first effect more than offsets 

the second effect. This generates an inverse U-shape for the truncated correlation function. 

For the Student-t distribution (with tails declining by a power) the second effect more than 

offsets the first effect when the Student-t is parameterised with less than (about) 5 degrees of 

freedom. This generates a U-shape for the truncated correlation function with very heavy-

tailed distributions, but inverse U-shaped truncated correlation functions for lighter-tailed 

Student-t distributions. As the degrees of freedom increase for the Student-t (in the limit the 

distribution approaches normality) the distribution becomes less diffuse, resulting in a smaller 

truncated variance and hence lower truncated correlation in the tails. Hence, when increasing 

the degrees of freedom r from say 4 to 12, we will first observe a U-shaped truncated 

correlation function, which at some level r becomes inverted like the normal distribution 

shape. 

INSERT FIGURE 4 

Figure 4, panel A, illustrates the rather wide 95 percent confidence intervals that surround the 

theoretical correlation functions for the normal and Student-t (r = 4) distributions. Standard 

errors increase for the tail percentiles and are a decreasing function of the sample size. Figure 

4, panel B, illustrates how the simulated standard error of a single 5 percent left tail truncated 

correlation estimate decreases with increasing sample size. The vertical line indicates the 

sample size of 2,580 in our empirical application. Note that the effective sample size in our 

examples is only 0.05*N (where N is the total sample size). That means that the truncated 

correlation estimate estimate of the 5 percent left tail percentile is based on only 129 

observations, and therefore has large standard errors. 
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3. Empirical results 

The graphs in Section 2.3 clearly show the bias in the theoretical truncated correlation 

functions for the bivariate normal and bivariate Student-t distributions. They illustrate how 

easy it is to mistakenly conclude that correlation increases in the tails, particularly when the 

underlying distribution is fat-tailed. It is therefore vital that we disentangle the spurious 

increases from the empirically observed tail correlations before deriving any conclusions 

regarding size-dependent correlation. The relationship in (3) combined with (5) or (5a) allows 

us to investigate whether there is empirical evidence for diversification meltdown during 

turbulent market conditions, after discarding truncation bias.  

Our data set consists of daily stock market index data (and one bond market index) 

collected from Datastream for the USA, UK, France, and Germany. The sample period 

extends from January 1990 to December 1999, i.e., 2581 daily observations. We note that this 

sample period covers a variety of bull market episodes, bear market episodes and 

conventional market episodes. The sample is also comparable to the data set used in Longin 

and Solnik (2001), but our data is based on a higher sampling frequency8. We argue that 

efficient estimation of tail correlations requires as many observations as possible, cf., the 

standard errors in Figure 4, lower panel. 

Using continuously compounded returns on the S&P500, FTSE100, CAC40, DAX100 

and the 10-year US Datastream Government Bond Index, we observe that the average return 

on equity markets averaged about 13.5% over the sample period, twice the return on US 

Government Bonds. At the same time, the returns on the equity indices were more than twice 

as volatile as the US Government Bond returns. Summary statistics for the data are given in 

Table 1.  

                                                           
8  Longin and Solnik (2001) use monthly data. 
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INSERT TABLE 1 

Three of the return series exhibit highly significant excess kurtosis, and all bar the FTSE100 

exhibit significant negative skewness. It is no surprise therefore, that the Jarque-Bera 

normality test is strongly rejected for every series, except for the FTSE100. This confirms the 

typical characteristic of asset return distributions with excessive probability mass in the tails 

relative to the normal distribution. Also note that this excess probability mass seems 

asymmetrically distributed. Thus, a greater probability of larger (negative) movements in the 

stock and bond markets than the assumption of normally distributed returns would predict. As 

we observed in Section 2.3, deviations from normality may have implications for the 

truncated correlation function of the bivariate returns distribution. The theoretical results in 

Section 2.2 require that the observations are independently and identically distributed. In 

keeping with the literature, it seems reasonable to expect that the variance of the asset returns 

is in fact time-dependent. Similar to Engle (2002), we therefore first filter the univariate 

series by estimating univariate GARCH(1,1) models and compute the standardized residuals. 

The GARCH(1,1) parameters are invariably highly significant (also for the US Government 

Bond returns)9. Nevertheless, the GARCH models only capture a limited amount of the 

observed fat-tailedness in the raw returns. For all standardized return series, the Jarque-Bera 

test for normality is still rejected. 

To gain additional insight into the tail characteristics of the univariate standardized 

return distributions, we estimate the degrees of freedom parameter r to parameterise the 

Student-t distribution for each series individually. Maximum likelihood estimation indicates 

that the series with the higher degree of excess kurtosis tend to have lower estimates for the 

Student-t degrees of freedom parameter r, with estimates ranging from  to . Each 

standardized series (including the FTSE100) therefore has considerably fatter tails than the 

5.3ˆ =r 5ˆ =r
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normal distribution, for which the degrees of freedom tend to infinity. We also estimate the 

so-called tail index parameter α (see Hill, 1975). For a normal distribution, the tails decline 

exponentially and the tail index parameter tends to infinity. For fat-tailed distributions, the 

tails decline by a power and the tail index parameter goes to zero. For the Student-t 

distribution, the tail index parameter α has the attractive property that it equals the degrees of 

freedom parameter r. We observe that the tail index parameter estimates are, indeed, 

satisfactorily close to the Student-t degrees of freedom parameter r estimates. 

These empirical findings, confronted with the theoretical results in Section 2, suggest 

that we are more likely to find prima facie (spurious) evidence of diversification meltdown. 

Before estimating truncated correlations, Qρ̂ , we need to estimate their unconditional 

correlation, ρ̂ . These unconditional correlation estimates are given for the standardized (and 

raw) returns in Table 2. The unconditional correlation estimate between the standardized 

S&P500 and the three standardized European return series averages 0.31. The estimated 

unconditional correlation is much higher between the standardized European return series 

individually, averaging 0.59. This greater co-movement between standardized European 

stock market returns implies that 35% (0.59 squared) of stock price movements are common 

to European markets, whereas 10% of stock price movements are common to both the US 

and European markets. Not surprisingly, unconditional correlation is less between stock 

market returns and bond market returns.  

INSERT TABLE 2 

If we assume that the bivariate distributions are normal, then these unconditional correlation 

estimates, and the (non-reported) variance ratio estimates, are sufficient to compute the 

theoretical truncated correlations in equation (3). If the bivariate distribution is better fit by a 

                                                                                                                                                                                     
9  We also estimate EGARCH(1,1) models to allow for asymmetry, and use these standardized residuals 

whenever the EGARCH(1,1) model outperforms the GARCH(1,1) model. 
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Student-t, then we first need to estimate the joint degrees of freedom parameter. These 

parameter estimates are given in Table 3. The range of the joint degrees of freedom parameter 

estimates (  to ) is slightly greater than the range of the univariate degrees of 

freedom parameter estimates, in Table 1. 

5.3ˆ =r 3.6ˆ =r

INSERT TABLE 3 

The empirical truncated correlations are estimated for the standardized data, first for non-

overlapping percentiles of 5 percent each, then for cumulative percentiles from 5 percent to 

50 percent coverage. Figure 5 matches these empirical estimates to the theoretical truncated 

correlations for the standardized S&P500 and FTSE100 returns. Note that the theoretical 

truncated correlation function is based on a bivariate Student-t distribution with 4ˆ =r  joint 

degrees of freedom (see Table 3). Figure 5 also gives the simulated 95% confidence limits. 

INSERT FIGURE 5 

The non-overlapping empirical results do seem to follow the general U-shape postulated in 

Section 2 and indicated by the theoretical function in Figure 5, panel A. It would appear that 

the variability in the empirical truncated correlations is well within the 95 percent confidence 

interval. The cumulative empirical truncated correlation estimates in Figure 5, panel B, also 

fit within the 95% confidence interval. Interestingly, the empirical inverted U-shape would 

better fit a theoretical Student-t distribution with a larger joint degrees of freedom parameter 

than the empirically estimated  4ˆ =r  (cf., Figure 3). In any case, the empirical evidence does 

not support size-dependent correlation or a meltdown in diversification. 

Of course, the evidence has to be rather strong before we are able to reject the size-

independent correlation null hypothesis. The standard error function in Figure 4 suggests that 

we need a large sample size to obtain a sufficiently narrow confidence interval. 

To compare a low (cross-Atlantic) unconditional correlation pair with a high (inter-

European) unconditional correlation pair, we also present and discuss the FTSE100 and 
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CAC40 combination with 65.0ˆ =ρ  10. The results in Figure 6 consist of four panels. Panels 

A and B illustrate the truncated correlation estimates for non-overlapping percentiles. Panels 

C and D illustrate the truncated correlation estimates for cumulative percentiles. Panels A and 

C are based on a bivariate Student-t distribution with 5ˆ =r  joint degrees of freedom. Panels 

B and D are based on a normal distribution.  

INSERT FIGURE 6 

 

Under the assumption of normality, the empirical results (Panels B and D) would lead us 

to conclude that truncated correlation between standardized FTSE100 and CAC40 returns 

increases for large movements in the FTSE100 returns. In fact, panels B and D suggest a 

significant diversification meltdown for extremely negative returns on the FTSE100, since 

the lowest left tail percentile estimate in panel B is outside the 95 percent confidence limits. 

The cumulative impact of that single exceedance is evident in panel D. However, this size-

dependent increase in correlation may simply be due to the fact that the returns are better 

parameterised by a bivariate Student-t distribution. Table 3 suggests that the FTSE100 and 

CAC40 return distribution is best characterized by a Student-t with 5ˆ =r  degrees of freedom.  

Panel A, Figure 6, indicates that the relatively high empirical truncated correlation estimates 

almost perfectly fit the theoretical truncated correlation function based on this particular 

Student-t assumption. The standard errors in Figure 6 (panels A and C) indicate that for the 

left-tail percentiles, we cannot reject the null hypothesis of size-independent correlation for 

large negative FTSE100 returns. Surprisingly, the results do suggest that the upper right tail 

percentile estimate is outside (below) its 95 percent confidence limits. This negative size-

dependency suggests a decrease (increase) in correlation (diversification). Of course, this 

happens exactly when it is least wanted by investors who are long in British and French 

                                                           
10 The graphs for other combinations of return series are available from the authors on request. 
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stocks. This apparent asymmetry in truncated correlations (not unlike the findings in Ang and 

Chen, 2002) could indicate a mixture of Student-t distributions with e.g., respectively 4ˆ =r  

(for negative returns on the FTSE100) and 6ˆ =r  (for positive returns on the FTSE100) 

degrees of freedom. Please note that we imposed a single degrees of freedom parameter on 

our bivariate Student-t distribution. Nevertheless, even if right tail r̂ were to increase to its 

limiting value, we would still reject the null of size-independent correlation for large positive 

FTSE100 returns. In that case, the normal distribution applies and Panel D, Figure 6, 

indicates that the right-tail percentiles are still outside (below) the confidence bands. We 

found similar evidence of size-dependent correlation for large positive returns in the DAX-

S&P500, and DAX-FTSE100 combinations. In both cases, our findings suggest an increase 

in correlation. For the S&P500-USGB, we found evidence of size-dependent correlation for 

large negative returns in the S&P500. Here, also, the size-dependency indicated an increase 

in correlation. None of our results therefore support the diversification meltdown hypothesis. 

 

4. Portfolio allocation implications of size-dependent correlation 

The previous sections illustrate the risks involved in drawing conclusions about a breakdown 

in diversification based on an incorrect distributional assumption. The empirical Section 3 

provides a more careful approach to determine whether there is evidence supporting size-

conditional correlation. We did find limited support for size-conditional correlation, but it 

was not in the expected direction. Nevertheless, it seems worthwhile to investigate how size-

conditionality could possibly affect finance practitioners. In Section 2, we mentioned the 

relevance for beta estimation. We generalize the discussion here, to include the implications 

of size-dependent correlation on portfolio allocation11.  

                                                           
11  Loretan and English (2000a) discuss the impact of increasing conditional correlation on portfolio Value-at-

Risk (VaR). Individual asset VaRs are often computed based on short observation periods to correctly reflect 
VaR sensitivity to conditionality in variance. Portfolio VaRs are similarly sensitive to conditionality in 
correlation. 
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The benefits of international portfolio diversification depend crucially on asset returns 

being less than perfectly correlated. These benefits could be overrated if correlation is found 

to increase in the lower tails of the bivariate return distributions. In fact, when most needed, 

the protection offered by diversification would rapidly vanish. This finding necessitates a 

revision of the mean-variance portfolio allocation model. For short-horizon investors, this 

need not necessarily be a problem. Their dynamic portfolio allocation would be based on the 

conditional correlation matrix, which would be their best forecast correlation matrix if there 

is persistence in the size of returns (e.g., a persistent bear market). That is, they would 

immediately capture the excessive correlation and adjust their portfolios accordingly. A 

straightforward implementation of short-horizon dynamic asset allocation is given by Turtle, 

Buse and Korkie (1994). For long-horizon investors, the issue is more complicated. Their 

best forecast correlation matrix would be based on the unconditional correlation matrix (since 

bear markets do not persist indefinitely). If there is still evidence of size-dependent 

correlation, after filtering for intertemporal dependency, then this would suggest a flaw in 

standard mean-variance optimization. Instead of maximising expected returns given the 

unconditional correlation matrix, long-term investors would then have to maximise expected 

returns given a size-conditional correlation matrix. That would probably require higher-order 

moments (in addition to mean and variance) to also be included in the investor’s utility 

function.  

Our results in Section 3 suggest that this could in fact be necessary. After inferring the 

unconditional correlation from the biased conditional correlation estimates, we find 

significant evidence of size-dependent correlation. This suggests that adjustments to the 

portfolio allocation process will be necessary. Even without size-dependent correlation, 

certain adjustments to the allocation process may still be necessary due to the apparent non-

normality of the data. 
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5. Conclusions 

Turbulent financial market conditions easily lead to an impression of contagion and spillover 

effects wreaking havoc on the benefits of international diversification. The obvious 

conclusion is that correlation between international financial asset returns increases with the 

size of (usually negative) returns. If this intuition is corroborated by empirical evidence, it 

would have serious implications for international portfolio allocation, in particular for short-

horizon investors given the persistence in the size of returns. A variety of conditional 

correlation estimators have recently been proposed to measure this diversification meltdown 

effect. Unfortunately, most of these estimators suffer to some extent from estimation bias 

making comparisons difficult or even impossible. In this paper, we evaluate the performance 

of one popular conditional correlation estimator, the truncated correlation estimator that 

conditions on non-overlapping and/or cumulative percentiles of the bivariate return 

distribution. It is relatively straightforward to capture the estimation bias for this truncated 

correlation estimator under the assumption of conditional normality. Since the joint 

conditional normality assumption is unlikely to be valid for financial asset returns, we 

analytically derive and measure the bias in this estimator for fat-tailed bivariate Student-t 

distributions. The estimation bias is now considerably larger than for the bivariate normal 

distribution. This suggests that earlier studies may have overestimated the size-dependency in 

correlation, simply due to the assumption of bivariate normality.  

When applied to a data set of standardized international stock market index returns, we 

find that, under the assumption of normally distributed returns, there is evidence of (positive) 

size-dependent correlation. This would indicate that a size-conditional variance-covariance 

matrix ought to be used for dynamic mean-variance portfolio allocation. However, when 

assuming the more likely Student-t distribution, we find that positive size-dependency 
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disappears. Instead, we find significant evidence of negative size-dependency, indicating a 

strengthening of diversification for large positive returns. After measuring the Student-t bias 

in the truncated correlation estimate, from short, select, samples of historical returns, we can 

then infer the relevant correlation estimate to be used in the portfolio allocation. Note, 

however, that the allocation exercise should also account for the non-normality of the joint 

return distributions.  
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Appendix – Mean and Variance of the Truncated Student-t 

 
Let T have a Student-t distribution with r degrees of freedom and denote  
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Now let S have a truncated Student-t distribution with r degrees of freedom, so that 
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The variance of S can be determined from the usual relationship 
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where for the truncated Student- t  distribution, r
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To derive this result, note that 
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The integral can be solved using integration by parts, i.e. 
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The remaining integral on the right hand side of (A8) is related to probabilities associated 

with an untruncated Student-t distribution with (r-2) degrees of freedom. In particular,  
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and hence the result in (A6). 
 
 
 

 28



Table 1. Summary statistics for index returns 

 S&P 500 FTSE 100 CAC 40 DAX 100 USGB 10yr 

Descriptive statistics for raw returns 

Annualized 
Mean 

 
16.52% 

 
13.43% 

 
12.84% 

 
10.82% 

 
6.81% 

Annualized 
Standard 
Deviation  

 
13.93% 

 
12.62% 

 
18.91% 

 
18.07% 

 
6.37% 

Maximum 
Daily Return 

 
4.99% 

 
5.70% 

 
6.81% 

 
6.44% 

 
1.67% 

Minimum 
Daily Return 

 
-7.11% 

 
-3.54% 

 
-7.57% 

 
-10.05% 

 
-2.83% 

 
Skewness 

 
-0.35* 

 
0.08 

 
-0.16* 

 
-0.64* 

 
-0.39* 

 
Kurtosis 

 
5.55* 

 
3.08 

 
2.58* 

 
6.72* 

 
3.00 

Jarque-Bera 
test statistic** 

 
756.32* 

 
3.40  

 
29.51* 

 
1665.48* 

 
65.30* 

Tail statistics for standardized returns 

Hill upper tail  
index α*** 

 
5.00 

 
4.23 

 
5.43 

 
4.15 

 
5.04 

Hill lower tail 
index α*** 

 
4.59 

 
3.77 

 
4.24 

 
3.76 

 
4.56 

t-degrees of 
freedom r 

 
3.51 

 
4.74 

 
4.99 

 
3.55 

 
4.82 

The table gives the summary statistics for daily (standardized) return indices: S&P 500 Composite Index, FTSE 
100 All Share Index, CAC 40 Index, DAX 100 Performance Index and the 10-Year US Benchmark Government 
Bond Index over the period January 1990 - December 1999 (N=2580 daily observations).  
*  indicates significantly different from normal distribution values at 95% confidence level. 

** Jarque Bera normality test: 
( ) 2

2

22

~
24
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χ






 −
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*** Hill tail index estimator: ( )( ) ( )( )
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−
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m

i
i XX

m
α where the X(i) are the descending order 

statistics of the returns X and m is selected (pragmatically) at 2% of the total sample size N (here: 258 
observations).   
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• Table 2. Unconditional correlation matrix for index returns 

Panel A – Raw Returns 

 S&P 500 FTSE 100 CAC 40 DAX 100 USGB 10yr 

S&P 500 1     

FTSE 100 0.350 1    

CAC 40 0.367 0.661 1   

DAX 100 0.294 0.573 0.623 1  

USGB 10yr 0.273 0.103 0.124 0.037 1 

Panel B – Standardized Returns 

 S&P 500 FTSE 100 CAC 40 DAX 100 USGB 10yr 

S&P 500 1     

FTSE 100 0.345 1    

CAC 40 0.331 0.651 1   

DAX 100 0.249 0.524 0.597 1  

USGB 10yr 0.340 0.141 0.147 0.044 1 

The table gives the unconditional correlation matrix for the sample period January 1990 - December 1999 for 
the following daily index return series: S&P 500 Composite Index, FTSE 100 All Share Index, CAC 40 Index, 
DAX 100 Performance Index and the 10-Year US Benchmark Government Bond Index. 

 

 

 
Table 3. Bivariate Student-t joint degrees of freedom parameter estimates  

 S&P 500 FTSE 100 CAC 40 DAX 100 USGB 10yr 

S&P 500 3.507     

FTSE 100 3.970 4.741    

CAC 40 4.420 5.060 4.994   

DAX 100 3.640 3.780 4.030 3.546  

USGB 10yr 4.850 6.200 6.320 4.490 4.824 

The table gives the joint t-degrees of freedom parameter, r̂ , estimates for the bivariate Student-t distribution for 
the standardized index return series using Maximum Likelihood Estimation.  
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Figure 1. Marginal conditioning of the joint returns distribution 
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Two possible partitionings of a bivariate normal distribution 
Conditioning occurs on one marginal component, x. 
 
 
Figure 2. Theoretical truncated correlation functions 
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unconditional correlation ρ=0.75 and compare the theoretical trunc
those for a bivariate Student-t distribution (r=4 degrees of freedom).
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Figure 3. Theoretical truncated correlation functions (cumulative percentiles) 
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The figure gives theoretical truncated correlations for cumulative percentiles of the joint distribution of returns. 
We assume unconditional correlation ρ=0.75, and compare the theoretical truncated correlations for a bivariate 
normal with those for three bivariate Student-t distributions (r=4, 8, 12 degrees of freedom).  
  
Figure 4. Simulated standard errors: precision and sample size  
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Standard errors in panel B are computed by simulation for the 5 percent left tail truncated correlation. 
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Figure 5. S&P500 versus FTSE100 truncated correlation  
Panel A           Panel B 
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Truncated correlations are computed for fixed percentiles (panel A) and cumulative percentiles (panel B). The 
solid black line illustrates the theoretical truncated correlation function for a bivariate Student-t distribution with 
r=4 degrees of freedom, and unconditional correlation ρ=0.35. The thin black lines indicate the 95% simulated 
confidence limits. The diamonds indicate the empirical truncated correlations. The vertical black line indicates 
the cumulative sample split between right and left tail returns 
 
 
Figure 6. FTSE100 versus CAC40 truncated correlation  
Panel A           Panel B 
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Panel A assumes a Student-t (r=5) distribution; Panel B assumes a normal distribution. Non-overlapping 
truncated correlations are computed for fixed 2.5 percent percentiles. The solid black line illustrates the 
theoretical truncated correlation function for a bivariate Student-t distribution with r=5 degrees of freedom, and 
unconditional correlation ρ=0.65. The thin black lines indicate 95% simulated confidence limits. The diamonds 
indicate the empirical truncated correlations. 
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Panel C assumes a Student-t (df=5) distribution; Panel D assumes a normal distribution. Cumulative truncated 
correlations are computed for increasing percentiles starting in the outer left tail up to the median [0 to 0.50>, 
respectively the outer right tail up to the median [1 to 0.50>. The solid black line illustrates the theoretical 
truncated correlation function for a bivariate Student-t distribution with r=5 degrees of freedom, and 
unconditional correlation ρ=0.65. The thin black lines indicate 95% simulated confidence limits. The diamonds 
indicate the empirical truncated correlations. The vertical black lines indicate the cumulative sample split 
between right and left tail returns. 
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