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Abstract 

The problem considered in this paper is how to find reliable prediction intervals with 

simple exponential smoothing and trend corrected exponential smoothing. Methods 

for constructing prediction intervals based on linear approximation and bootstrapping 

are proposed. A Monte Carlo simulation study, in which the proposed methods are 

compared, indicates that the most reliable intervals can be obtained with a parametric 

form of the bootstrap method. An application of the method to predicting Malaysian 

GNP per capita is considered. 
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1. INTRODUCTION 

The success of the exponential smoothing methods (Brown, 1959; Hoh 1967, 

Winters, 1960) for short term forecasting in business has tended to hide the fact that 

their implementation in computer business systems is done without proper regard for 

their statistical foundations. Consider inventory applications, for example. Prediction 

error variances of total demand over a delivery lead time, generated for safety stock 

determination, are typically based on the assumption of independent and identically 

distributed demands. Being incompatible with the intertemporal dependencies 

implicit in the exponential smoothing methods, this assumption gives rise to quite 

sizeable errors (Johnston & Harrison ,1986; Harvey and Snyder, 1990). Prediction 

variances turn out to be too small, a problem leading to poor customer service levels 

in the inventory context. 

Appropriate methods for the determination of prediction error variances may have 

largely been ignored in practice because of the relative complexity of analytical 

approaches to the problem. Ifthisisthecase, bootstrap methods (Efron, 1979; 

Horowitz, 1995) offer a relatively simple alternative now that cheap high powered 

computers have become commonly available . Bootstrap methods have been 

successfully applied in a time series context to autoregressive processes (McCuUough, 

1994). The time is now ripe to consider them in the context of the exponential 

smoothing methods with a focus on the determination of prediction intervals. 

2. MODELS AND MAXIMUM LIKELIHOOD ESTIMATION 

2.1 Invariant State Space Model 

The general framework used here for the exponential smoothing methods is taken 

from Snyder (1985). y,, the value of a time series in period /, is shaped by forces 



r 

from the past, reflected in a ^-vector of state variables x,_,, and forces from the 

present represented by a random disturbance e,. The relationship, in more specific 

terms, is given by the measurement equation 

y,=h'x,_^+e,, (2.1) 

h being a fixed ^-vector. The evolution of the state variables over time is governed by 

the first-order recurrence relationship \ 

X, =Fx,.,+ae,, (2.2) 

F being a fixed hdc transition matrix and a a fixed k-vector of so-called smoothing 

parameters. The e, are NID(0,CT )̂random disturbances, independent of the so-called 

seed state vector Xg. F,h,a are all potentially functions of an unknown parameter/?-

vector 0. 

Example 1: Local Level Model 

When the state at the beginning of period t is represented by a single number 

a,_,, called the local level, the measurement equation becomes 

y,=a,-x+e,. (2.3) 

Changes in the underlying level are governed by 

a,=a,_^+ae,. (2.4) 

Here 0 = a . 



Example 2: Local Trend Model 

The local level in example 1 can be supplemented with a local growth rate, 

denoted at the beginning of period / by 6,_,. The measurement equation then 

becomes 

y,=o,-\+b,_\+en (2-5) 

the changes in the state variables governed by the level and rate equations: 

a,=a,_i+b,_^+a^e, (2.6) 

b, =6,. ,+a2e,. (2.7) 

Here 9 = (a, a2) . 

2.2 Exponential Smoothing and tlie Decomposition of the Likelihood 

Function 

The point predictions in the study are obtained from the above models fitted to time 

series data using maximum likelihood methods. We show, using the theory of 

conditional probability, that the likelihood function can be written quite simply in 

terms of the one-step ahead prediction errors. We then demonstrate that minimising 

the sum of squared one-step ahead prediction errors also yields the maximum 

likelihood estimates. 

To obtain an expression for the likelihood function, begin by considering the situation 

at the beginning of a typical period t. In these circumstances the old series values 

yi,y2,---,y,.i will be known from past observations of the process, y,, however, still 

being unknown at this point of time, is uncertain. The following argument is built on 

the inductive hypothesis that given trial values of the seed vector XQ and the 

parameter vector 0 , the state vector x,_, may be treated as fixed and known. 

Equation (2.1) then implies that y,\y^,•••,y,_^,XQ,B,<s has the same distribution as e,. 

Using (|)(«) as a generic symbol for a probability density function, and recognising 



that the Jacobian of the transformation between y,\yi,---, y,.,, XQ , 9,(T and e, is unity, 

the associated density is 

<t)(;^,bp--,;',-„x„,G,a) = (27ia^)''"exp(-e,V2a^). (2.8) 

Moving to the end of period t, y, is observed. A fixed value for the error, the one-

step prediction error, is calculated with 

e,=y,-\i'x,_,. (2.9) 

Then a fixed value of x, can be computed with equation (2.2), thus confirming the 

use of the inductive hypothesis about the fixed nature of x,_,. Together, these steps at 

the end of period t, define the most general linear form of exponential smoothing -

see Box & Jenkins, 1976. Some important special cases are considered in the 

following two examples. 

Example 3 (Simple Exponential Smoothing) 

For the local level model (Example 1) the general form of exponential 

smoothing reduces to 

e,=y,-a,_, (2.10) 

a, =a,_,+ae, (2.11) 

This corresponds to the case of simple exponential smoothing (Brown, 1959). 

Note that a, is now conditioned on the sample yx, y2,--,yt and the seed a^. In 

contrast to the model in Example 1 where it was random, a, is now fixed and 

known. 

Example 4 (Trend Corrected Exponential Smoothing) 

For the local trend model (Example 2) we obtain 

e,=y,-a,_^-b,_x (2.12) 

a,=a,_^+b,,^+a^e, (2.13) 

b,=b,_^+a^e, 



This is conventional trend corrected exponential smoothing (Holt, 1957). 

Again it should be noted that being conditioned ony^, y2,--,yt and the seeds QQ 

and 60, both a, and b, are fixed. This should be contrasted with their 

counterparts in the local trend model (Example 2), where both a, and b, were 

random. 

The joint density of a sample of size n governed by the dynamic model (2.1) - (2.2), 

conditional on XQ ,9 and a , is denoted hy ^{yi,y2,---y„\xQ,Q,a). By the theory of 

conditional probability, it can be written in the recursive form 

<l>(3̂ p:V2,"->'JXo.9.«y) = <t>(>'J>'p>'2.---X,-,»Xo,e,CT)(t)(>',,>'2,"->'„_,lXo,e,a) (2.14) 

and resolved into the product of conditional densities 

<t>(3'p:v2,-":vJxo,e,CT) = f|(|)(>',|>',,>'2'--->'M.Xo,0,CT)- (2.15) 
(=1 

More specifically 

<t>U,:>'2,-:)'JXo,e,a) = (27ia') '""exp|-2;e,72^' 
v-n/2 

/=! 
(2.16) 

If the time series were stationary, the seed state vector XQ would have a well-defined 

density. This could then be used in conjunction with (2.11) to obtain the 

unconditional j oint density (j) (_v,, ̂ j >'' \y» I ®»<̂ ) • ^^^ t™^ series are non stationary in 

the cases of simple and trend corrected exponential smoothing. In these 

circumstances, because the distribution of Xg does not exist, the unconditional density 

of the sample cannot be obtained. 

The density (2.12) effectively summarises all that can be known about the sample 

generated by a non-stationary stochastic process and the definition of likelihood must 

be based upon it. The likelihood, a fimction of x,, together with the parameters 0 and 

a , is defined as: 

£{xo,e,(y\y^,y2,---y„) = {2Ka^) exp -^^e] 2c (2.17) 
V '=1 



The rationale for the inclusion of XQ is that it summarises the effects of the past. Yet 

the past provides no information on XQ TO the extent that past forces have shaped the 

sample, any information about the past must be gleaned fi-om the sample alone. It 

therefore makes sense to estimate x̂  from the sample, hence the need to include XQ 

in the definition of the likelihood function. 

The likelihood (2.17) looks remarkably like the prediction error decomposition of the 

likelihood function associated with Kalman filtering (Schweppe,1965; Harvey, 1991). 

It differs, however, in that the one-step prediction errors used in (2.17) are obtained 

with exponential smoothing rather than the Kahnan filter. Unlike the Kalman filter, 

the one-step ahead prediction errors from exponential smoothing are homoscedastic. 

The conditioning on x̂  eliminates the need to deal vdth the heteroscedastic one-step 

ahead prediction errors. 

2.3 Estimation Method 

The maximum likelihood estimate of CT is given by 

^=]i^ (2.18) 

On concentrating a^ out of the likelihood function (2.17) with (2.18), it may be 

established that maximising the likelihood is equivalent to minimising the sum of 

squared errors function 

Six„Q) = f^ef, (2.19) 

the e, being the one-step ahead prediction errors from the exponential smoothing 

routine which are conditional on x̂  and 9. 

Those values of x,, and 0 which minimise the sum of squared errors function (2.19), 

denoted by x̂  and 6, are obtained by numerical optimisation, possibly vAth a 

suitably adapted version of the Newton-Raphson method. Special transformations 



may be needed to ensure that parameters such as a, and a, are restricted to non 

negative values. The number of variables to be optimised in XQ and G can become 

quite sizeable in some models, particularly those involving seasonality. It is 

anticipated, however, that the model's linearity in x̂  helps to maintain computational 

loads at relatively low levels. 

2.4 Predictions 

Predictions can be obtained, for t = n + l,---n + h, with the equations 

j),=h'x,., (2.20) 

x,=Fx,., (2.21) 

It is convenient to combine the h predictions into the A-vector y. 

3. PR^PICTION INTERVALS 

3.1 Conditional Hessian Method (CHS) 

The future values of the time series, denoted by the /i-vector y, ultimately depend on 

Xo and G. The relationship, which can be written as 

y = f(xo,G) + e (3 1) 

where e is the /i-vector of future disturbances, has a Jacobian with respect to Xo,G 

which, when evaluated at the optimal solution Xg,Q, will be denoted by the matrix J. 

The Hessian of the sum of squares function (2.19), evaluated at the optimal solution, 

will be denoted by H. If y is a /j-vector of future values of the time series, then 

^ (y-y) (y-y) '=a ' ( JH- ' j '+ i ) (3.2) 

The square roots of the diagonal elements of the resuhing RHS matrix in (3.2) may 

then be used as approximate root mean squared prediction errors required to establish 

the prediction intervals. 

A potential difficulty with this strategy is that the elements of G are constrained in our 

context to be non negative. The establishment of prediction intervals when inequality 



restrictions apply to the parameters is a non trivial problem. To avoid the associated 

complexities, we only find the Hessian with respect to those elements of 9 which are 

not at their lower bound of zero in the optimal, feasible solution. The other elements 

are fixed at their optimal value of zero and are treated as though their sampling 

distribution is entirely concentrated at this point. The effect is to understate the risk 

and hence underestimate the root mean squared prediction errors. To the extent that 

the estimates are consistent, the errors from this form of conditioning are likely to be 

insignificant in all but small samples. 

3.2 Bootstrap Methods 

Bootstrap methods (Horowitz, 1995) represent an alternative where inequality 

restrictions are handled relatively simply by imposing constraints on the optimisation 

used to obtain the estimates. It is assumed that estimates Xo,9 of the model have 

been obtained from the time series data and that the associated errors are represented 

by an w-vector e. The bootstrap strategy, in our context, is to simulate from a model 

with seed vector x̂  and parameter vector 9* determined by the approximation 

x;=Xoand9'=9. (3.3) 

3.2.1 Conventional Bootstrap Method (CBS) 

The typical trial T of the conventional bootstrap method, in our context, consists of 

the following steps: 

B1 Generate n + h disturbances e[, • • • e',̂ ./, using random selection with 

replacement from the elements of e. 

B2 Calculate the enlarged time series sample 3̂^ ,• • • yl^^ with the relationships in 

the model (2.1)-(2.2) for the seed vector and parameter vector (3.3). 

B3 Find the constrained maximum likelihood estimates XQ,9' for the sample 

yl,---yl • Then generate the corresponding predictions yl^i,---yl+h ^^h 

(2.20) and (2.21). 



B4 Compute the associated prediction errors 

e"=/,-y" it = n + l,---n + h), 

storing them in the T "" row of a matrix E. 

These steps are repeated a total of m times. On completion, the typical coluiimy of 

the result matrix E corresponds to a sample of size m of they-step ahead prediction 

errors. The (l-P)/2 and (l+?)/2 fractiles of this sample are used as the limits of a 

prediction error interval, P being the nominated confidence level. 

3.2.2 Parametric Bootstrap Method (PBS) 

Another strategy is to again rely on the approximation (3.3) but to generate the 

disturbances from a continuous distribution presumed to be a good approximation to 

the empirical distribution of the residuals e. The possibility used here is an N(0,a ̂ ) 

distribution, a being the estimate of the standard deviation computed from the vector 

e with (2.18). This parametric form of the bootstrap method is essentially the same 

as the conventional bootstrap method, the only difference being that step Bl above is 

replaced by random selection from an N(0,CT^) distribution. 

4. MONTE CARLO SIMULATION 

The three approaches to prediction interval determination potentially yield different 

results. Monte Carlo simulation studies were therefore undertaken to gauge the 

differences imder controlled conditions. 

4.1 Monte Carlo Design 

The following steps were repeated 1000 times in each simulation: 

51 Generate an extended sample of disturbances e,, • • •, e„^^ from an N(0,a ̂ ) 

distribution. 

52 Use the model (2.1) to (2.2), in conjunction with the disturbances from step 1, to 

generate the extended time series >',,•••,>'„, >'„+,, • • •, y„^h • 

10 



53 Obtain the prediction intervals for a nominated confidence level P with one of the 

three methods applied to the sample Ĵ ,, • •, X, • {m=\ 000 in the case of the 

standard bootstrap and parametric methods). 

54 Update coverage counters for lead times £ = \,2,...h with 

[K „^f +1 if 3̂ ,,+, is in prediction interval for period n + £ 

[K,,^, otherwise 

On completion of the simulation compute the coverage indexes: 

Y =JSi!±i_ for ^ = 1,2,.../i (4.2) 
"*' lOOOP 

Ideally, when expressed as percentages, these indexes should be 100 percent. Any 

significant deviation from 100 percent is an indicator of serious problems with the 

prediction intervals. 

The computer programs for the simulation, written in Fortran 77, were run on a DEC 

Alpha 7000 - 610 computer under the VMS operating system. Optimisation and 

random number generation were undertaken with standard subroutines from the 

NSWC subroutine library (Morris, 1993). Since the optimiser was designed for 

problems without constraints, non negative conditions on the parameters were 

enforced by replacing each non negative quantity by the square of a quantity 

permitted to range over the entire real line. 

The simulation was applied under a range of experimental conditions to the models in 

examples 1 and 2. In the case of the local level model, all simulations began wdth 

QQ = 200. The smoothing parameter a was varied, being assigned any of the values 

0.0,0.5 and 1.0. In all cases of the local trend model â  = 200 and 6o = 3. The 

smoothing parameters (a, a j) were assigned values of (0 0), (0.8 0.5) and 

(l 1). The standard deviation CT of the disturbances was set to 5 and 10. The 

simulations were undertaken for sample sizes n = 30, 50,200. In the case of the local 

trend model we report results for a sample size of 20. To test the robustness of the 

results, all the simulations were repeated with a ̂ distribution in place of the normal 

11 



distribution in step SI above. More specifically, random variates were generated from 

a /-distribution with 5 degrees of freedom. These variates were then scaled by a 

quantity of appropriate size to give the required disturbances with the nominated 

standard deviations of 5 or 10. The objective was to determine the effect of fatter tails 

on the prediction intervals. 

4.1 Monte Carlo results 

Tables 1 and 2 contain cross tabulations of the results expressed in percentage terms. 

Most sections of the tables refer averages of the coverage indexes. Two refer to the 

standard deviations of the coverage indexes. The following notation is used: 

CBS standard bootstrap method 

CHS conditional Hessian method 

PBS parametric bootstrap method 

Smpl Size sample size 

Nominal CL nominal confidence level 

From the tables it can be seen that all methods produced prediction intervals that were 

too small on average. The parametric method is best amongst the three proposed 

methods, its performance being close enough to the 100 percent mark to justify its 

use in practice. 

The conditional Hessian method out performed the conventional bootstrap method, 

despite previous findings indicating that, in many applications, bootstrap statistics are 

more accurate in small samples than first-order approximations (Horowitz, 1995). 

It may have been anticipated, given the dependence of the other methods on the 

normal distribution, that the conventional bootstrap method would have worked best 

in the case of the /-distribution. This preconception, however, is not supported by the 

results. Interestingly, for the local trend model, the prediction intervals proved to be 

12 



more reliable in the case of the /-distribution. The resulting prediction intervals were 

presumably slightly wider than those for data generated from a normal distribution 

and hence had less of a downward bias. 

More detailed findings are as follows: 

• The prediction intervals improve with sample size. The parametric bootstrap 

method could be relied upon for most applications for sample sizes in excess of 

30. 

• The prediction intervals become less reliable with increases in the prediction 

horizon. Again the parametric approach seems to produce satisfactory results for 

the five periods tested. 

• The simulations were undertaken for two nominal confidence levels (0.9 and 

0.95). The results were remarkably similar for both the cases considered. 

• The results for the various parameter values are more complex. Both small and 

large values of the parameters were associated with a strong performance. 

Intermediate values were associated with a diminution in the reliability of the 

intervals. 

Tables summarising the results for the two standard deviations of 5 and 10 are not 

shown in the paper. The results for the prediction intervals were very close for both 

cases. This may reflect an invariance property with respect to the scale parameter CT . 

5. APPLICATION 

The parametric method for prediction interval determination is illustrated with an 

application to current GNP per capita of Malaysia. The data, available in annual 

13 



Figure 1. IVIalaysia: Current GNP Per Capita 
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terms, was taken from the World Bank World Tables (released: 22-April-96), 

extending from 1962 to 1994. This data is reproduced in Table 3. 

Because of the presence of a long term exponential trend, the entire series was 

initially transformed with the natural logarithm fimction. Trend corrected exponential 

smoothing was applied to the transformed series in conjunction with a numerical 

optimiser to find the best smoothing parameters. Point forecasts were generated for 

the period 1995-1999 in the 'log space' and converted back to original terms with the 

exponential function. The limits of the 90 percent prediction intervals, expressed as 

percentage deviations from the point predictions in Table 4, were obtained directly 

from the results of the parametric bootstrap in 'log-space' based on 1000 replications. 

The results appear to be plausible and are illustrative of the potential that this 

approach holds in practice. 

6. CONCLUSIONS 

The bootstrap approach provides a relatively simple solution to the problem of 

establishing prediction intervals for the exponential smoothing methods. Despite the 

associated approximations, this study indicates that the parametric form of the 

bootstrap method produces sufficiently accurate prediction intervals for them to be 

used in practice. The computational loads associated with this method are quite high 

on traditional standards. With the recent advances in modem desktop computers, 

however, it has reached a point where the associated calculations can be done in a 

relatively short period of time, in the range of 30 to 60 seconds for the 1000 iterations 

of the bootstrap on the DEC Alpha computer. The parametric bootstrap method is 

now an attractive proposition for many business forecasting applications. 
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Method 
Factor CBS CHS PBS 
Distribution Effect on Average Coverage 
Normal 97.6 98.5 99.1 
t-Dist 97.1 98.4 98.8 
Distribution Effect on Std Dev of Coverage 
Normal 1.8 1.4 1.2 
t-Dist 2.4 1.6 1.5 
SmpI Size Effect on Average Coverage 
30 96.4 97.8 99.0 
50 97.3 98.3 98.8 
200 99.1 99.4 99.5 
Lead Time Effect on Average Coverage 
1-Step 99.0 99.6 100.2 
2-Step 97.6 98.5 99.0 
3-Step 97.5 98.1 98.8 
Nominal CL 
0.9 
0.95 

Effect on 
97.4 
97.9 

Average Coverage 
98.3 
98.7 

99.0 
99.1 

Alpha Effect on Average Coverage 
0 98.6 99.0 99.6 
0.5 96.9 97.9 98.5 
J 97.4 98.6 99.1 

Table 1. Simulation of Prediction Intervals: Local Level Model 

•V 

I. 
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Factor 
Distribution 
Normal 
t-Dist 
Distribution 
Normal 
t-Dlst 
SmpI Size 
20 
30 
50 
Lead Time 
1-Step 
2-Step 
3-Step 
4-Step 
5-Step 
Nominal CL 
0.9 
0.95 

Alphal Alpha2 
0 0 
0.8 0.5 
1 1 

Method 
CBS CHS 

Effect on Average Coverage 
95.8 96.1 
96.4 97.2 

PBS 

98.2 
98.7 

Effect on Std Dev of Coverage 
3.9 3.7 
2.8 2.4 

Effect on Average Coverage 
84.5 85.7 
93.8 94.2 
96.4 96.8 

Effect on Average Coverage 
97.9 98.0 
96.2 96.5 
95.3 95.6 
95.1 95.7 
94.3 95.0 

Effect on Average Coverage 
95.4 95.8 
96.1 96.5 

Effect on Average Coverage 
96.9 96.8 
93.8 94.3 
96.9 97.6 

2.5 
1.6 

90.7 
97.6 
98.6 

99.8 
98.4 
97.7 
97.7 
97.2 

98.1 
98.2 

99.1 
96.7 
99.0 

Table 2. Simulation of Prediction Intervals: Local Trend Model 
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Year 1966 1967 1968 1969 1970 
NGNP 340 350 370 380 390 

Year 1971 1972 1973 1974 1975 
NGNP 410 460 600 780 890 

Year 1976 1977 1978 1979 1980 
NGNP 950 1010 1160 1470 1800 

Year 1981 1982 1983 1984 1985 
NGNP 1940 1860 1800 1940 1910 

Year 1986 1987 1988 1989 1990 
NGNP 1880 1960 2130 2240 2400 

Year 1991 1992 1993 1994 
NGNP 2530 2830 3140 3520 

Table 3. Current Gross National Product per Capita of Malaysia ($US) 
Source:World Bank World Tables (released: 22-April-96) 
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Year Prediction Lower Upper 
Limit Limit 

1995 
1996 
1997 
1998 
1999 

3955 
4273 
4617 
4989 
5390 

-4.3% 
-4.7% 
-5.4% 
-6.3% 
-7.3% 

3.7% 
4.3% 
5.1% 
5.8% 
6.7% 

Table 4. Predictions and 90 Percent Prediction Intervals 
Current GNP per Capita of Malaysia 
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Figure 1. IVIalaysia: Current GNP Per Capita 
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